
Pro  
MEAN Stack 
Development

—
Elad Elrom

www.allitebooks.com

http://www.allitebooks.org


     Pro MEAN Stack 
Development 

     

   

     

           Elad Elrom   

www.allitebooks.com

http://www.allitebooks.org


Pro MEAN Stack Development

Elad Elrom     
New York     
USA   

ISBN-13 (pbk): 978-1-4842-2043-6  ISBN-13 (electronic): 978-1-4842-2044-3
DOI 10.1007/978-1-4842-2044-3

Library of Congress Control Number: 2016960665

Copyright © 2016 by Elad Elrom

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Anselm Bradford
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, 

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, 
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Lauren Marten Parker
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
  orders-ny@springer-sbm.com    , or visit   www.springer.com    . Apress Media, LLC is a California LLC and the 
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance 
Inc is a Delaware corporation.

For information on translations, please e-mail   rights@apress.com    , or visit   www.apress.com    . 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at   www.apress.com/bulk-sales    .

Any source code or other supplementary materials referenced by the author in this text are available to 
readers at   www.apress.com    . For detailed information about how to locate your book’s source code, go to 
  www.apress.com/source-code/    . Readers can also access source code at SpringerLink in the Supplementary 
Material section for each chapter . 

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org


iii

Contents at a Glance

About the Author ................................................................................................... xiii

About the Technical Reviewer .................................................................................xv

Acknowledgments .................................................................................................xvii

 ■Chapter 1: Code Dependencies .............................................................................. 1

 ■Chapter 2: Rollout Servers .................................................................................. 27

 ■Chapter 3: Node Modules .................................................................................... 51

 ■Chapter 4: Cordova, PhoneGap & Ionic ................................................................ 75

 ■Chapter 5: AngularJS ........................................................................................ 101

 ■Chapter 6: CSS, Bootstrap, & Responsive Design .............................................. 131

 ■Chapter 7: Write Services Once ......................................................................... 165

 ■Chapter 8: AngularJS SEO ................................................................................. 197

 ■Chapter 9: Build Scripts .................................................................................... 221

 ■Chapter 10: Platform Deployment ..................................................................... 249

Index ..................................................................................................................... 281

www.allitebooks.com

http://www.allitebooks.org


v

Contents

About the Author ................................................................................................... xiii

About the Technical Reviewer .................................................................................xv

Acknowledgments .................................................................................................xvii

 ■Chapter 1: Code Dependencies .............................................................................. 1

Git Version Control ............................................................................................................ 1

Customize Git .......................................................................................................................................... 3

Download Git Libraries ........................................................................................................................... 7

Git “Hello World” ..................................................................................................................................... 7

Gitfl ow .................................................................................................................................................. 10

Node.js ........................................................................................................................... 11

npm ................................................................................................................................ 12

Grunt............................................................................................................................... 13

Gulp ................................................................................................................................ 14

Bower ............................................................................................................................. 14

Integrated Development Environment ............................................................................ 15

Installing a Free Open Source IDE ........................................................................................................ 22

Installing Xcode .................................................................................................................................... 24

Summary ........................................................................................................................ 25

 ■Chapter 2: Rollout Servers .................................................................................. 27

Ubuntu Server ................................................................................................................ 27

SSH Connection and Upgrade Servers ........................................................................... 31

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS

vi

Install and Update Software ........................................................................................... 33

Installing Git .......................................................................................................................................... 34

Installing Node.js .................................................................................................................................. 34

Installing npm ....................................................................................................................................... 34

Creating Our Web Folder ....................................................................................................................... 35

Linux Server ................................................................................................................... 35

Start a Linux server .............................................................................................................................. 36

Create IPs and Associate Servers ......................................................................................................... 37

Set Bash Profi le .................................................................................................................................... 37

Update Software ................................................................................................................................... 38

MongoDB Database ........................................................................................................ 39

Connect to Ubuntu Server..................................................................................................................... 40

Install and Confi gure MongoDB Database ............................................................................................ 40

MongoDB Hello World ........................................................................................................................... 41

MySQL Database ............................................................................................................ 42

Connect to Database and Dump MySQL Database ............................................................................... 44

MySQL Workbench tool ......................................................................................................................... 46

Create Your First Database and Table ................................................................................................... 47

Summary ........................................................................................................................ 50

 ■Chapter 3: Node Modules .................................................................................... 51

npm Node Packages ...................................................................................................... 51

Install Node.js Modules .................................................................................................. 52

Caret Version Option ............................................................................................................................. 57

Tilde Version Option .............................................................................................................................. 57

Latest Version Option ............................................................................................................................ 57

Specifi c Version Option ......................................................................................................................... 58

Install Save Flag ............................................................................................................. 58

Global Installation ........................................................................................................... 58

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS

vii

Create Your Own First Node Modules ............................................................................. 59

Create a GitHub Project Repository ...................................................................................................... 59

Create a Module Project ....................................................................................................................... 59

Write Your Module Code ....................................................................................................................... 60

Run Your Module Code .......................................................................................................................... 61

Install Dependencies ...................................................................................................... 63

Ignore Files ..................................................................................................................... 64

Create Test Stubs ........................................................................................................... 64

Confi gure Package.json File ........................................................................................... 66

Run Test Stubs Using npm .................................................................................................................... 67

Create Markdown Home Page File ................................................................................. 68

Markdown Plugin in WebStorm ............................................................................................................ 70

Publish Module to GitHub ............................................................................................... 70

Summary ........................................................................................................................ 73

 ■Chapter 4: Cordova, PhoneGap & Ionic ................................................................ 75

Apache Cordova ............................................................................................................. 75

Cordova “Hello World” .......................................................................................................................... 76

Running Your App in Cordova ................................................................................................................ 77

Cordova Platform Deployment .............................................................................................................. 79

Cordova Plugins .................................................................................................................................... 82

Cordova Distributions ........................................................................................................................... 86

PhoneGap Distribution .................................................................................................... 86

Installing PhoneGap .............................................................................................................................. 86

Install PhoneGap Mobile App ................................................................................................................ 87

Start Coding .......................................................................................................................................... 87

Preview Your PhoneGap App ................................................................................................................. 88

PhoneGap Development ....................................................................................................................... 89

Ionic ................................................................................................................................ 93

Ionic Front-end ..................................................................................................................................... 96

Add Plugins in Ionic .............................................................................................................................. 96

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS

viii

Preview Your App .................................................................................................................................. 96

iOS Simulator ........................................................................................................................................ 99

Ionic Resources .................................................................................................................................. 100

Summary ...................................................................................................................... 100

 ■Chapter 5: AngularJS ........................................................................................ 101

Angular Seed Project .................................................................................................... 102

Bower Component ........................................................................................................ 104

App Layout File ............................................................................................................. 105

Partial Views ................................................................................................................. 108

Styles............................................................................................................................ 108

Controllers .................................................................................................................... 109

AngularJS Directives .................................................................................................... 114

Template Expanding Directive ............................................................................................................ 115

AngularJS Filters .......................................................................................................... 117

Components ................................................................................................................. 118

Testing .......................................................................................................................... 118

Karma Testing ..................................................................................................................................... 118

Adding New Tests ............................................................................................................................... 124

Proctractor Testing ............................................................................................................................. 124

Routes .......................................................................................................................... 128

Service ......................................................................................................................... 129

Summary ...................................................................................................................... 129

 ■Chapter 6: CSS, Bootstrap, & Responsive Design .............................................. 131

CSS Classes Used by AngularJS ................................................................................... 131

Create a New Project .......................................................................................................................... 132

ng-scope ............................................................................................................................................. 132

ng-dirty, ng-invalid, and ng-pristine ................................................................................................... 134

Install Bootstrap ................................................................................................................................. 137

UI Bootstrap ........................................................................................................................................ 138

Creating a Custom UI Bootstrap Build ................................................................................................ 143

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS

ix

CSS Bootstrap ..................................................................................................................................... 144

Responsive CSS Media Queries .......................................................................................................... 147

CSS Responsive Design Utilizing a Break Point .................................................................................. 151

Bootstrap Responsive Tables .............................................................................................................. 157

Bootstrap CSS Common Styles ........................................................................................................... 160

Angular-Responsive Library................................................................................................................ 162

Summary ...................................................................................................................... 164

 ■Chapter 7: Write Services Once ......................................................................... 165

Express App .................................................................................................................. 165

Installing Express ............................................................................................................................... 165

Hello World Express ............................................................................................................................ 167

Express Generator Tool ....................................................................................................................... 168

Pugjs, Previously Known as Jade ................................................................................. 168

Setting Up a Service Layer ................................................................................................................. 170

Setting Up a POST Service .................................................................................................................. 172

MongoDB Database Integration .......................................................................................................... 174

Start MongoDB ................................................................................................................................... 176

Create a Database .............................................................................................................................. 177

Read Results from MongoDB into our Express App ...................................................... 178

MongoDB API ...................................................................................................................................... 178

app.js .................................................................................................................................................. 178

users.js ............................................................................................................................................... 179

Express and Socket.IO .................................................................................................. 180

Install Socket.IO .................................................................................................................................. 180

Add Socket.IO to the App .................................................................................................................... 180

Update Users Service to Include Socket.IO ........................................................................................ 181

Retrieve a Socket.IO Event Using MongoDB Results .......................................................................... 182

Test Socket.IO App .............................................................................................................................. 182

rooms.js........................................................................................................................ 182

Creating Static Service ....................................................................................................................... 185

Creating MongoDB Service ................................................................................................................. 186

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS

x

Creating a MongoDB GUI Client .......................................................................................................... 188

Connect Front-End Application to Service .......................................................................................... 189

rooms.js with Angular ......................................................................................................................... 193

node-email-templates Library ...................................................................................... 194

Summary ...................................................................................................................... 196

 ■Chapter 8: AngularJS SEO ................................................................................. 197

Confi g AngularJS Redirect Settings ............................................................................. 197

Start a New AngularJS Seed Project .................................................................................................. 197

AngularJS HTML Mode and Hashbang ............................................................................................... 198

Snapshot ...................................................................................................................... 203

Install and Confi g PhantomJS ............................................................................................................. 203

Apply Angular-SEO Script ................................................................................................................... 204

Deployment Script .............................................................................................................................. 205

Update .htaccess ................................................................................................................................ 209

Set .htaccess Redirect ........................................................................................................................ 210

AngularJS Metadata Tags ............................................................................................. 210

Update Metadata Using a Service Module .......................................................................................... 211

Update Metadata with ngMeta ........................................................................................................... 213

Robots Instructions ...................................................................................................... 216

Robots Meta Tags ............................................................................................................................... 216

Robots Exclusion Protocol .................................................................................................................. 216

Sitemap .............................................................................................................................................. 216

Social Media Meta Tags ...................................................................................................................... 217

Webmasters ................................................................................................................. 217

Submit Pages to Google  .................................................................................................................... 218

Ensure Successful Page Submission .................................................................................................. 219

Summary ...................................................................................................................... 219

 ■Chapter 9: Build Scripts .................................................................................... 221

Browserify .................................................................................................................... 221

Create a New Node.js Module ............................................................................................................ 221

Install Browserify ................................................................................................................................ 223

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS

xi

Compile a Browserify Bundle File ....................................................................................................... 223

Using a Node.js Module in an AngularJS Project ................................................................................ 224

Babelify ........................................................................................................................ 226

Installing Babel ................................................................................................................................... 227

Setting Babel in WebStorm ................................................................................................................. 227

Writing ES6 Code ................................................................................................................................ 228

Grunt............................................................................................................................. 229

Grunt with a Babel Task ...................................................................................................................... 229

Install Grunt Babel Plugins ................................................................................................................. 230

Run Grunt Babel Task ......................................................................................................................... 230

Grunt Babelify & Browserify Task ....................................................................................................... 231

Grunt Watch ........................................................................................................................................ 233

Gulp .............................................................................................................................. 234

Differences Between Grunt and Gulp ................................................................................................. 234

Installing Gulp ..................................................................................................................................... 234

Creating a Gulp Task ........................................................................................................................... 235

Installing Gulp Plugins ........................................................................................................................ 236

Running Gulp Tasks ............................................................................................................................ 236

Webpack ....................................................................................................................... 236

Installing Webpack ............................................................................................................................. 236

Creating Webpack Confi g File ............................................................................................................. 237

Webpack Watcher ............................................................................................................................... 237

Webpack Transpiling ES6 Code .......................................................................................................... 238

Webpack CSS Loader ......................................................................................................................... 239

Vagrant VM ................................................................................................................... 240

Installing Vagrant & Virtual Machine ................................................................................................... 241

Networking Access ............................................................................................................................. 242

HTTP Sharing ...................................................................................................................................... 243

Share with SSH Access ...................................................................................................................... 245

Provision AngularJS Projects .............................................................................................................. 246

Summary ...................................................................................................................... 247



■ CONTENTS

xii

 ■Chapter 10: Platform Deployment ..................................................................... 249

Node.js Deployment ..................................................................................................... 249

Connect to Node.js Ubuntu Server ...................................................................................................... 250

Deployment with Grunt ....................................................................................................................... 251

Deployment with Gulp ........................................................................................................................ 254

AngularJS Deployment ................................................................................................. 256

Web Deployment with Grunt ............................................................................................................... 259

Web Deployment with Gulp ................................................................................................................ 260

Web Deployment with Webpack ......................................................................................................... 263

AngularJS App Deployment .......................................................................................... 265

PhoneGap Deployment ....................................................................................................................... 265

Deployment with PhoneGap ............................................................................................................... 266

Build Your App on Different Platforms .......................................................................... 266

Ionic Deployment .......................................................................................................... 269

Creating an Ionic Project .................................................................................................................... 270

Set Up Ionic Project in WebStorm ....................................................................................................... 270

Add Platforms ..................................................................................................................................... 270

Deploy Development Build .................................................................................................................. 271

Build and Emulate on iOS ................................................................................................................... 271

Continuous Integration with Travis CI ........................................................................... 274

Authenticate Travis CI ......................................................................................................................... 274

Integration of Travis CI and GitHub Projects ....................................................................................... 275

Customize and Confi gure Travis CI  .................................................................................................... 277

Generating a Status Badge on Travis CI .............................................................................................. 277

Summary ...................................................................................................................... 279

Index ..................................................................................................................... 281



xiii

    About the Author 

     Elad   Elrom       is a coder, technical lead, and technical writer. He has co-
authored four technical books. Elad has consulted for a variety of clients 
in different fields, from large corporations such as HBO, Viacom, NBC 
Universal, and Weight Watchers to smaller startups. Elad is also a certified 
PADI dive instructor, a motorcycle enthusiast, and a certified pilot. 

       



xv

        About the Technical Reviewer 

     Anselm   Bradford       is a front-end web developer passionate about open 
source projects for government, non-profits, and higher education. 

 Currently, he’s developing tools to help protect consumers from 
misleading and illegal financial practices. He has experience working on 
social services discovery for Code for America, user research at Imgur, and 
digital media curriculum development at AUT University. 

 He’s the lead author on the book  HTML5 Mastery  (Apress).         



xvii

  Acknowledgments  

 I would like to thank Jessica Wendle for proofreading each chapter before it was sent back for the Editor’s 
Review phase—your contribution is invaluable. 

 Additionally, I would like to express my gratitude to the coordinating editor, Nancy Chen, for her superb 
professionalism and constant encouragement. Many thanks to Akshat Paul for his on-point reviews and to 
the technical reviewer, Anselm Bradford, who has provided valuable comments and useful insights. I would 
also like to acknowledge the Apress editors, Ben Renow-Clarke and Louise Corrigan. Without them, this 
book would not have been possible. 

 Last but surely not least, I would like to thank the entire production team at Apress, who have labored to 
have this book published on time, and you, the reader, for purchasing a copy of this book and putting in the 
time and effort to better yourself.  



1© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_1

    CHAPTER 1   

 Code Dependencies                          

 In this chapter, we will be installing tools, customizing and setting our development workarea on a Mac 
for developing applications on all devices. We will be installing tools such as integrated development 
environment (IDE), Git, node.js, npm, Grunt, Gulp, Bower, and Xcode. 

 These tools are not only necessary so we can hit the ground running in the following chapters, but 
having access to node.js, Grunt, Gulp, Bower, and Git will also give us access to millions of free open source 
libraries. Keep in mind that each tool we will discuss in this chapter has many features and can be used in 
many different ways—in fact, there are entire books covering each tool. Once you become equipped with 
basic knowelege, feel free to explore and broaden your personal knowledge on each individual tool. Even if 
you are already familiar with the some or all of the tools covered in this chapter, we encourage you to take 
a look at this chapter anyway, since there will be additional configuration and customization that will help 
make using these tools easier. 

     Git Version Control 
 We’ll start off by installing Git. What is Git? It is a free open source distributed version control system. If you 
have previously been using other version control systems such as SVN or CVS, we would still encourage 
you to install Git. Git is great tool to have, considering many open source libraries are only available on Git. 
In fact, there are millions of open source Git libraries, so this is a cruicial piece of software to have in your 
arsenal of tools. It gives you access to free software you can use rather than rushing to develop a solution on 
your own. 

 The easiest way to install Git is to simply download and install the latest version from the following link : 

    http://git-scm.com/download/mac      

 Before you begin downloading and installing using their installer, we recommend installing an 
additional package manager that can be used to install other Unix tools and open source software on a Mac. 
This will come handy when you begin to need additional tools. There are very few package managers on the 
market for Mac—Homebrew, Fink, and Macports are the most popular ones. Homebrew is the newest and 
most well liked package manager of these three. 

 To  install Homebrew     , open Terminal by typing “terminal” in the Spotlight search box (right top corner) 
(see Figure  1-1 ).  

http://git-scm.com/download/mac


CHAPTER 1 ■ CODE DEPENDENCIES

2

 Before rushing to  install Homebrew   and Git, check to ensure you don’t already have them installed on 
your machine. Once Terminal opens, up type in: 

   $ git 
 $ brew 

   Typing “git” in Terminal will give you a printout example of usage and commands. Similarly, Brew will 
print out example usage, troubleshooting, and commands. If they are already installed, feel free to skip this 
step. 

 Type in the following command, as shown in Figure  1-2 :  

   $ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 
(See Figure 1-2). 

   The default Terminal color scheme is “basic”— a white background with black text color—but you can 
easily change it by typing “command” + “,” when the Terminal window is focused, under the “Profiles” ➤ 
“Text” options. I selected the “Homebrew” color scheme. 

 After Brew installation is completed, you can start using Brew and use it to install Git. In Terminal, type: 

   $ brew install git bash-completion 

   That’s it! Once you’re done, confirm Git has been installed by typing in Terminal: 

   $ git 

   Typing “git” in Terminal will give you a printout example of usage and commands. 

  Figure 1-1.     Terminal search in Spotlight         

  Figure 1-2.    Install Homebrew using terminal       

 

 



CHAPTER 1 ■ CODE DEPENDENCIES

3

     Customize Git 
 We recommend bookmarking this URL:    https://git-scm.com/     . It is a great source to use if you need to find 
documents, the latest available version of Git, and much more. 

 Next, we want to configure and customize Git. We will start with entering your personal information. To 
do so, type in Terminal: 

   $ git config --global user.name "Your Name" 
 $ git config --global user.email "you-email@email-address.com" 
 $ git config --global apply.whitespace nowarn 

     Git  Customization and Configuration   
 The following site is a great resource for Git customization and configuration: 

    https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration      

 In terms of customization, we recommend customizing colors for Git so it will appear more “readable” 
once you begin to work in a command line. The default Git settings will color output your list of files when 
you are in Terminal. However, we will customize it a bit more and select the appropriate colors for the type of 
repositories (repos) that we will be using. To do so, type into Terminal: 

   $ vim ~/.gitconfig 

   This will open the Git configuration file in a text editor and allow you to make changes. If you have 
previously used different text editors such vi, feel free to do so here. 

 Paste the following into a Git config file, below the existing settings: 

   [color] 
     branch = auto 
     diff = auto 
     status = auto 
 [color "branch"] 
     current = yellow reverse 
     local = yellow 
     remote = green 
 [color "diff"] 
     meta = yellow bold 
     frag = magenta bold 
     old = red bold 
     new = green bold 
 [color "status"] 
     added = yellow 
     changed = green 
     untracked = cyan 

   If you are not familiar with vim, or maybe just a bit rusty, use the following instructions to edit and save 
the Git config file:

    1.    To open the file, type: “vim ~/.gitconfig”.  

    2.    Next, insert content; type “i” on your keyboard.  

https://git-scm.com/
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration


CHAPTER 1 ■ CODE DEPENDENCIES

4

    3.    Continue by pasting code using “command + v”, just like in any other text editor.  

    4.    Lastly, to save, press the escape key on your keyboard and type “:wq” and press 
enter. Note: if you are unhappy with the changes and you want to just quit, type 
“:q!”, which will revert the changes and quit.        

 You can confirm that your changes have been made by typing: 

   $ cat ~/.gitconfig 

      Adding gitexcludes 
 Now let’s add the “ gitexcludes  ” file. This file will instruct Git to ignore specific files. For now, let’s just tell Git 
to ignore Mac famouse “DS_Store” file: 

   $ vim ~/.gitexcludes 

   Then, type in a list of files you would like to ignore: 

   .DS_Store 

   This file can be very useful. Let’s say you work on a large team, and each developer wants to keep their 
own IDE settings. You can use this file to ignore an entire folder.  

   Adding the Repo  Branch   
 Next on the list is branches. Branches are a staging environment. When you don’t want to make changes in 
the working directory, you can request a copy from Git and make changes on that branch, then integrate the 
branch into the working environment when you are ready to commit the changes. Git records these commits 
and they show as a fork of the project. Git allows you to add, delete, and rename these branches, so it’s 
helpful know what branch you’re working are on without having to ask Git to tell you. 

 We’ll add some magic to your Bash prompt so that it will include your branch information. Doing 
this will add the repo branch. Figure  1-3  shows the folder name along with the branch name in brackets 
“(master)”.  



CHAPTER 1 ■ CODE DEPENDENCIES

5

 This setting will be very useful when you switch between branches following the Gitflow process 
(discussed later in this chapter).  

   Configurate bash_ profile   
 To configure these options, we will be editing the Bash profile file. Bash profile is used to set PATH and other 
shell environmental variables. There are two type of  bash profile files  : .bash_profile and .bashrc. bash_
profile excutes login shell commands, while bashrc excutes non-login shell commands. In our case, we want 
the changes to be reflected in all directories and all users, so we will be using bash_profile. 

 To edit, open the bash_profile file in a vim editor by typing in Terminal: 

   $ vim ~/.bash_profile 

   Then add the following code to your Bash file: 

   parse_git_branch() { 
     git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ (\1)/' 
 } 
 source /usr/local/etc/bash_completion.d/git-completion.bash 
 GIT_PS1_SHOWDIRTYSTATE=true 
 export PS1="\u@\h \W\[\033[32m\]\$(parse_git_branch)\[\033[00m\] $ " 

  Figure 1-3.    Command line showing branch  name         

 



CHAPTER 1 ■ CODE DEPENDENCIES

6

   Lastly, remember to run the Bash profile file to allow these changes to take effect: 

   $ . ~/.bash_profile 

   Figure  1-4  shows the command line with the repo branch name and colors:  
 By the way, in Figure  1-4 , we are using a “git status” command, which shows you the changes in your Git 

directory in comparison to the remote server. In your directory, this command won’t work until you set an 
actual Git project and will create a “fatal” error message if you type “git status”, but we wanted to show you 
what it looks like on a working Git direcctory. 

 Additionally, you can add extra commands to a Bash profile to ajust your working environment to your 
liking. For instance, the code below sets custom colors for list view, shortcuts to edit Bash profile, change 
directory to locations and reload Bash profile automatically with one command: “bash”. See below: 

    alias ls='ls -ltra' 
 export CLICOLOR=1 
 export LSCOLORS=ExFxCxDxBxegedabagacad 
 export ANDROID_HOME=/usr/local/opt/android-sdk 

   alias vimb='vim ~/.bash_profile' 
 alias runb='. ~/.bash_profile' 
 alias cdr='cd /Applications/XAMPP/xamppfiles/htdocs/' 
 alias bash='. ~/.bash_profile' 

  Figure 1-4.    Command line with adjusted colors and branch name  prompt         

 



CHAPTER 1 ■ CODE DEPENDENCIES

7

          Download Git Libraries 
 There are millions of open source Git repos, and now that you have installed Git, you can start taking 
advantage of these  libraries  . As an example, we will be downloading the following repository: 

   https://github.com/pilwon/ultimate-seed 

   First, we want to create a directory and change it into the newly created directory: 

   $ mkdir ultimate-seed && cd $_ 

   Then you can clone the repository from the hosting server: 

   $ git clone https://github.com/pilwon/ultimate-seed 

        Git  “Hello World”   
 Now you are ready to set up your first project, and since we are starting from scratch, we will be creating your 
Git-hosted project. 

 First, create a directory where your project will reside. To do so, type into the terminal: 

   $ mkdir [/path/to/your/project] && cd $_ 

   This will create the directory and change the current working directory into the newly created directory. 
Then, initiate Git by typing in the following command line: 

   $ git init 

   Here are the complete commands to create a “test” folder and init git on your desktop: 

   $ cd ~/Desktop 
 $ mkdir test && cd $_ 
 $ git init 
 $ git status 

   That’s it! You’ve created your project and intiated a Git. 
 Now, you can create a repo on GitHub, Bitbucket, AWS CodeCommit, or your favorite hosting solution 

and upload your code. 
 Need help deciding which hosting solution you should be using? we believe that it boils down to factors 

such as how many members are on your team, the repo size, the number of repo you need, and your budget. 
To make it easy to select your version control remote hosting solution, we have created a quick comparison 
between GitHub, Bitbucket, and AWS CodeCommit (Table  1-1 ).  



CHAPTER 1 ■ CODE DEPENDENCIES

8

 Visit the following link, which will provide more information on these three types of hosted Git 
solutions:    http://stackshare.io/stackups/github-vs-bitbucket-vs-aws-codecommit      

 As you can see from Table  1-1 , GitHub is great for publishing free open source libraries and would be 
our primary choice. It’s great for open source projects and provides easy-to-use UI and integration with 
many tools, however it does not offer free private repos. That feature alone makes Bitbucket and AWS 
CodeCommit good tools to add to your arsenal. Not having to pay an additional fee for source control adds 
great value in my opinion, especially when it’s your personal repo.     

 To upload a repo to Bitbucket, start by creating a free account by going to   https://bitbucket.org     and 
signing up. Then, create a new repository by selecting “Create a repository” or going to “Create” ➤ “Create 
Repository” in your dashboard (Figure  1-5 ).  

 Next, select the repository owner, name, description, and other settings. Notice that you have an option 
to set the access level as private (Figure  1-6 ).  

  Figure 1-5.    Creating a new  repository   on BitBucket       

    Table 1-1.    Git  showdown     

 GitHub  Bitbucket  AWS CodeCommit 

 Filesize limit  1GB  1GB  10GB 

 Free Repo  Free Unlimited users  Free for unlimited users  Free for up to 5 active users 

 Private Repo  Starts at $7/month  Free for up to 5 users  Free for up to 5 active users 

 Web Visual  GitHub Flow  Not available  Not available 

 3 rd  Party Integration  Integration with many 
3 rd  party tools. 

 Integrate via Plugins  Integrates well with AWS 
services. 

 Pricing  Private repo $7/month  Free for up to 5 users  $1 per active user per month 

 

http://stackshare.io/stackups/github-vs-bitbucket-vs-aws-codecommit
https://bitbucket.org/


CHAPTER 1 ■ CODE DEPENDENCIES

9

 Next, change the directory (cd) to where your project resides, in case you are not there, and add a file. 
For instance you can just add a markdown readme file (we’ll talk more about markdown in later chapters): 

    $ vim readme.md 

   Inside of “vim”, press “i" to insert any text and “:wq” to save and quit. Now we can commit 
our changes: 

   $ git add . 
 $ git commit -m 'first commit' 

    Now we are ready to commit our project. To add a remote origin location, change to your username and 
repo name and then type the following into the command line: 

   $ git remote add origin ssh://git@bitbucket.org/[username]/[repo-name].git 

  Figure 1-6.    Create a new repository settings window on Bitbucket          

 



CHAPTER 1 ■ CODE DEPENDENCIES

10

   Here’s an example of what the code should look like: 

   $ git remote add origin  https://elinewyorkcity@bitbucket.org/elinewyorkcity/test.git  

   Lastly, push up the changes to Git: 

   $ git push -u origin –all 

   This will push the changes to the “master” branch. You can confirm you are on the “master” branch in 
terminal. My terminal shows me that I am in the “test” folder—using the “master” branch looks like this: 

   eli@Elis-MBP-6 test (master) $ 

   This will commit and upload your changes. Now, you can log in to Bitbucket and you will be able to see 
your files. 

 In case you don’t have SSH set up yet, follow the instructions here: 

    https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html      

 This simple setup works great for a project with a small team, but when you’re working with larger team 
it can become a challenge if you don’t have a well-organized framework in place.  

      Gitflow   
 So far we’ve created and uploaded a repo and downloaded a repo. Since we did not set a branch, we were 
working with the “master” branch. This type of simple workflow is called “ Feature Branch Workflow  ,” since 
we are using only one feature branch (master). 

 As things get more complicated, especially when you are working in a large team, there is a need for 
standard practices that all developers can follow, such as scheduling releases, fixing bugs, and other general 
development tasks. The most common solution for these tasks is Gitflow Workflow. 

  Gitflow   is a strict branching model designed around the project release. While somewhat more 
complicated than the Feature Branch Workflow, it provides a robust framework for managing larger projects 
and has been proven to work well on projects with many members. 

 You can read more about it here, from a Vincent Driessen article: 

    http://nvie.com/posts/a-successful-git-branching-model/      

 We will not be explaining the entire Gitflow model since it’s beyond the scope of this book, but we 
would like to point out a couple of tools that will make using Gitflow much easier and reduce the boilerplate 
code needed to follow the Gitflow practice. 

 Take a look at the following repository: 

    https://github.com/nvie/gitflow      

 As we mentioned earlier, to download this tool, all you have to do is type into the command line: 

   $ git clone https://github.com/nvie/gitflow 

   Installing Gitflow is simple with Brew: 

   $ brew install git-flow 

   Next, to initialize a new repository with the basic Gitflow branch structure, use the following command: 

   $ git flow init [-d] 

https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow


CHAPTER 1 ■ CODE DEPENDENCIES

11

   Using the “-d” flag will accept all default settings. Then you can implement operations such as list, start, 
finish, and publish a branch. 

   Gitflow on GitHub 
 As you become more comfortable with Git, and specifically if you are using  GitHub      as your Git remote server 
provider, you will find GitHub to be a friendly environment. In fact, it has a built-in user interface (UI) to 
make pull requests, merge branches, and perform all Gitflow and other structure operations. 

 Nevertheless, for programmers, using a UI can take longer than a command line operation. Luckily, 
there is an open source tool called “node-gh” that allow us to perform the commands via Terminal instead of 
GitHub UI. Check it out here:    https://github.com/node-gh/gh      

 In addition to this, I have forked and cloned gh repository and added commands to match Gitflow so 
you can also make a pull request in the command line, in addition to following Gitflow methodology: 

   git clone https://github.com/eladelrom/node-gh 

          Node.js 
 Node.js is a fast, lightweight JavaScript runtime built on Chrome’s V8 JavaScript engine, and uses an 
event-driven, non-blocking I/O model. It includes the npm package ecosystem, with access to hundreds of 
thousands of packages. 

 You can  install   node via Brew: 

   $ brew install node 

   However, for Mac, the safest way is to install Node.js is using the installer available here:    http://
nodejs.org     . See Figure  1-7 :  

  Figure 1-7.    Node.js  Mac installer         

 

https://github.com/node-gh/gh
http://nodejs.org/
http://nodejs.org/


CHAPTER 1 ■ CODE DEPENDENCIES

12

 To check that the installation was successful, type into the command line terminal: 

   $ node 

   Typing “node.” will kick off the interactive shell (AKA “REPL”). Next, type: 

   > console.log('Hello World'); 

   Node.js replies with “Hello World”. See Figure  1-8 .  

 This interactive shell is great for testing one-liners. To exit out of it, press Ctrl + C twice. 
 Do you want to know more about Git commands? You can visit the following page to download a Git 

cheat sheet: 

    https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf       

     npm 
 npm is the  Node.js package manager  . It’s mainly used to install Node.js packages. When used in 
development, it allows you to easily link dependencies to your project for quick installation and updates. 

 npm comes with Node.js right out of the box, so you don’t need to do anything additional to install 
it. You can now install any package for your project. See the list of available packages here:    https://www.
npmjs.com/      

 Although npm does comes with Node.js, it’s a good idea to know how to update npm, since it needs to 
be updated more often than Node.js. 

 To update, open Terminal and ensure node.js is at least v0.10.32. Check it by typing: 

   $ node -v 

   To check the npm version, type: 

   $ npm –v 

   The version should be higher than 2.1.8. 

  Figure 1-8.    Node.js  Hello World example         

 

https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://www.npmjs.com/
https://www.npmjs.com/


CHAPTER 1 ■ CODE DEPENDENCIES

13

 To update npm, type the following: 

   $ [sudo] npm install npm -g 

   See Figure  1-9  for the complete commands.   

     Grunt 
 Next on our list is  Grunt  . Grunt is a JS-based task runner. It provides easy automation using JavaScript, 
with access to thousands of plugins to choose from to automate just about anything you can think of. 
Additionally, publishing your own Grunt plugin to npm is easy to do. 

 ■   Note    A task runner is automation. We developers are known to be “lazy” and prefer to create an 
automated task when doing repetitive work.  

 Now that we have Node.js and npm, you can install Grunt. Install Grunt by using command line 
interface (CLI) globally: 

   $ [sudo] npm install -g grunt-cli 

   If you want to install Grunt on a local project, the npm init command will create a basic package.json 
file and add Grunt to the “devDependencies” section, using a tilde version range. Type the following: 

   $ npm install grunt --save-dev 

   There are thousands of plugins available for Grunt. These plugins are what really make Grunt great. 
They give you access to community open-source projects that will help you to easily automate your tasks. 
You can see a list here:    http://gruntjs.com/plugins     . Anytime you need anything that Grunt doesn’t offer 
out of the box, you can simply search the Grunt plugin directory and see if there is a plugin available. 

 Installing a Grunt plugin is just like installing any of the other node modules. For example, to install the 
grunt-nglue plugin, type this: 

   $ npm install grunt-nglue --save-dev 

   See more details here:    http://gruntjs.com/getting-started       

  Figure 1-9.    Installing npm and checking Node.js and npm versions       

 

http://gruntjs.com/plugins
http://gruntjs.com/getting-started


CHAPTER 1 ■ CODE DEPENDENCIES

14

     Gulp 
 Another JS-based task runner is  Gulp. Gulp   emerged after Grunt and was quickly adopted by a large portion 
of the JS community. Gulp is a streaming build system. When you think of Gulp, imagine Grunt, but faster 
and less work for your config boilerplate code. 

 In a nutshell, Grunt focuses on configuration, while Gulp focuses on gluing community-developed 
micro-tasks to one another. 

 Each Gulp module is a streaming node, which has nothing to do with Gulp except for the module name. 
Gulp runs on its own, while Grunt plugins only work inside of Grunt. 

 Many consider Gulp to be better. Most developers choose one or the other, but they can be used 
together for different tasks. 

 To install, in Terminal, type: 

   $ [sudo] npm install --g gulp 

   To install Gulp on a local project, the npm init command will create a basic package.json file (if you 
don’t already have one) and will add Gulp to the devDependencies section. Using a tilde version range, type 
the following; 

   $ npm install --save-dev gulp 

   Now you can browse through the Gulp plugin list, located here:    http://gulpjs.com/plugins/      
 To create your first Gulp file, check the GitHub project here:    

    https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md       

      Bower   
 Last but not least is the  Bower package manager  . Bower helps keep track of your project’s packages as well as 
making sure they are up to date. See:    http://bower.io/      

 You can install Bower easily with npm: 

   $ [sudo] npm install -g bower 

   To install locally, use the following command: 

   $ npm install --save-dev bower 

   Now you can search for packages here:    http://bower.io/search/      
 To install a package, simply type into the Terminal: 

   $ bower install some-package 

   Bower is used together with many other tools and can be integrated with all sorts of setups and 
workflows to your liking. 

 Check the Bower tools page, which includes tons of links to many tools you can integrate: 

    http://bower.io/docs/tools/      

 Having Node.js, npm, Grunt, Gulp, and Bower will give you instant access to about half a million free 
open source community projects, and I personally believe that they’re essential to have before starting any 
JavaScript project.  

http://gulpjs.com/plugins/
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md
http://bower.io/
http://bower.io/search/
http://bower.io/docs/tools/


CHAPTER 1 ■ CODE DEPENDENCIES

15

     Integrated Development Environment 
 The first thing we will do with an integrated development environment (IDE) is set our developer environment. 
WebStorm (   https://www.jetbrains.com/webstorm/     ) by Jetbrains would be our first pick for the best type of 
app/site we will be building. It combines the entire  “MEAN” stack development   into one easy-to-use IDE. 

 You will be able to easily develop MongoDB, Express.js, AngularJS, and Node.js using WebStorm. It also 
includes integration with everything else that we will be using in this book. The only caveat is that their pricing 
model has changed, and they are now charging a yearly subscription, which can be a big turnoff for large 
businesses. At the time of this writing, the cost is $649 per year for a business license. However, for individual 
customers, the price is as low as $59 for the first year and free for students and and open source contributors. 

 Of course, there are many other free alternatives to WebStorm, especially if you are comfortable with 
command line. For instance, Sublime Text (   https://www.sublimetext.com/     ), Notepad++ (   https://
notepad-plus-plus.org/     ) and brackets.io (   http://brackets.io/     ) can be great alternatives. 

 Keep in mind that this is based entirely on personal preference, and you will have no problem working 
with whatever IDE you prefer, whether your main choice is listed here or not. 

 Now, let’s install and configurate the WebStorm IDE. Go to the download page and begin downloading: 

    https://www.jetbrains.com/webstorm/download/      

 At the time of writing, the current version of WebStorm is Version 2016.1.3. Once the download is 
completed, start WebStorm. The first message will request the type of license. If you don’t have a license, you 
can use the “evaluate for free for 30 days” option. See Figure  1-10 :  

  Figure 1-10.    WebStorm  license activation window         

 

www.allitebooks.com

https://www.jetbrains.com/webstorm/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
http://brackets.io/
https://www.jetbrains.com/webstorm/download/
http://www.allitebooks.org


CHAPTER 1 ■ CODE DEPENDENCIES

16

 In the initial WebStorm configuration window, the Keymap scheme has plenty of options in case you 
are used to other IDEs, such as Visual Studio or Eclipse. For color scheme, “Darcula” is the default, but feel 
free to select a different one. You can view a preview of the theme (see Figure  1-11 ).  

 Once you click “OK,” WebStorm 11 restarts and gives you the option to create a new project, open, or 
check out from Version Control, as shown in Figure  1-12 . Select “Create New Project.”  

  Figure 1-11.    WebStorm  initial configuration window         

 



CHAPTER 1 ■ CODE DEPENDENCIES

17

 We will be creating two projects: an AngularJS project and a Node.js project. 
 Let’s start with the AngularJS app. Select “Create New Project,” select “AngularJS,” and then “Create.” 

See Figure  1-13 .  

  Figure 1-12.    WebStorm  welcome window         

 



CHAPTER 1 ■ CODE DEPENDENCIES

18

 As you can see, WebStorm automatically downloads the AngularJS seed project, so you can get started 
right away. See Figure  1-14 .  

  Figure 1-13.    WebStorm  welcome window   .        

 



CHAPTER 1 ■ CODE DEPENDENCIES

19

 All you have to do now is double click “index.html” (see Figure  1-15 ). Once you hover over the page, the 
browsers’ icons will show up.  

  Figure 1-14.     AngularJS hello world app         

 



CHAPTER 1 ■ CODE DEPENDENCIES

20

 Select the browser of your choice and the “Hello World” app will open up in your browser (see 
Figure  1-16 ).  

  Figure 1-15.     Index.html browser icons         

  Figure 1-16.     Angular seed app   running in the browser       

 

 



CHAPTER 1 ■ CODE DEPENDENCIES

21

 The same process will work for the Node.js app. Select “Create New Project,” then select “Node.js 
Express App” and finally “Create” (see Figure  1-17 ).  

 Next, your work environment will open up and you can begin working on your Node.js project right 
away. See Figure  1-18 .  

  Figure 1-17.    Creating a Node.js express  app   in WebStorm       

 



CHAPTER 1 ■ CODE DEPENDENCIES

22

     Installing a  Free Open Source   IDE 
 Installing and setting WebStorm was a breeze, but it’s not completely necessary, and you can perform your 
entire development using free, open source tools. Sublime Text can be used to view files in any development 
language; in fact, you can create your entire development directory on your own and simply view and edit 
the contents of your files with the Sublime Text editor. Download Sublime Text here: 

    http://www.sublimetext.com/      

  Figure 1-18.     Node.js workspace   in WebStorm       

 

http://www.sublimetext.com/


CHAPTER 1 ■ CODE DEPENDENCIES

23

 Now all you have to do is add a folder (Figure  1-19 ). To do so, follow these steps:

    1.    Select top menu, then: “Project” ➤ “Add Folder to Project…”  

    2.    Browse to the folder where your files are located and select that folder.      

 You can now select and edit files (Figure  1-20 ).   

  Figure 1-19.    Sublime Text select a project folder menu       

 



CHAPTER 1 ■ CODE DEPENDENCIES

24

  Figure 1-20.    Edit an HTML file in Sublime  Text         

     Installing  Xcode      
 Lastly, another great set of tools that we would recommend installing would be Apple “Xcode” 
(see Figure  1-21 ). This includes an IDE for developing iOS apps, a compiler, instruments, a simulator and 
SDKs. We will need these once we start to develop apps that will be deployed for iOS.  

 Visit the following link to download: 

    https://developer.apple.com/xcode/download/        

 

https://developer.apple.com/xcode/download/


CHAPTER 1 ■ CODE DEPENDENCIES

25

     Summary 
 In this chapter, we covered installing, customizing, and configuating tools such as integrated development 
environments (IDEs), and we installed Brew, Git, Node.js, npm, Grunt, Gulp, Bower, WebStorm, Sublime 
Text and Xcode. These tools will come handy in the following chapters as we start to develop and deploy 
applications. Keep in mind that there are entire books and much more information online for each of 
the tools we discussed. We have only scratched the surface in this regard, but feel free to acquire more 
information on your own; the more you know about these tools, the easier it will be to develop your 
applications quickly and efficiently in the future. In the next chapter, we will be rolling out servers, 
customizing them, and configuring them so we can deploy our code and see it work.     

  Figure 1-21.    Xcode welcome screen       

 



27© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_2

    CHAPTER 2   

 Rollout Servers                          

 In the previous chapter, we learned to install and configure our personal work environment so that we would 
be able to hit the ground running. In this chapter we are going to put on our administrative hats and roll out 
the servers that we can then use to deploy our MEAN stack apps. We will roll out Ubuntu and Linux servers 
and install both MongoDB and MySQL databases. These servers can be used to deploy MEAN stack-type 
applications, as well as to deployment of a Linux server will be helpful in the future, as we will be using it to 
deploy our app, as well as connecting to the database and running cron jobs. With these servers deployed 
and configured, we will be able to tackle just about anything that comes our way and see the code in action. 

     Ubuntu Server 
 There once was a time when deploying servers was expensive; in the past, a dedicated server could easily 
cost over $1,000 per month. All of this changed with the delivery of cloud computing. In fact, we can now 
deploy servers for free under low resource configurations, and scale up as needed. In this chapter, we will 
be rolling out an Ubuntu server; SSH connecting to the server; installing and updating software such as Git, 
Node.js, and npm; and creating a web folder we can deploy our code into. 

  MEAN stack-type applications   can be deployed in many different ways, including Heroku or Cloud9 
which enable deployment straight to a cloud server or a $5 Node.js Cloud Server on Ubuntu using 
digitalocean.com. Another solution is utilizing Vagrant VM, which we will be covering in Chapter   9     of this 
book in more detial. 

 In this book specifically, we’ve chosen to deploy using Amazon EC2 and Vagrant VM, since we want 
to give you the tools to be able to deploy and administrate the server yourself. If you decide to go with a 
solution that provides automation, it will be easier, but you will have the tools in your arsenal and will not 
be forced to depend on one particular service or another. The benefit of having these servers at our disposol 
early is that we’re able to deploy the examples from this book, or any other code you would like to deploy. 

 We highly recommend keeping track of the steps you take as you set your environment to ensure you 
will always be able to easily replicate it, in case you want to switch providers or you experience a server 
collapse. Ubuntu is a widely used OS (Operating System), popular for the  Node.js application  . It’s easy to 
deploy, configure, and scale. 

 ■   Note    Ubuntu is a free and widely used Linux-based OS available for all type of devices and is a popular 
server OS to deploy Node.js-type applications.  

http://dx.doi.org/10.1007/978-1-4842-2044-3_9


CHAPTER 2 ■ ROLLOUT SERVERS

28

 When using  Amazon EC2   on a low-resource bandwidth, you can deploy your server easily, freely, and 
effortlessly. According to Amazon, “Amazon Elastic Compute Cloud (EC2) provides scalable computing 
capacity in the  Amazon Web Services (AWS) cloud  .” They promise, “You can develop and deploy 
applications faster and use Amazon EC2 to launch as many or as few virtual servers as you need.” 

 With that being said, it takes some knowledge and dodging some minefields to be able to roll servers 
on EC2 free of cost for a year.  Amazon EC2   specifically designed their forms so that any misstep could end 
in hundreds of dollars in fees if you are not careful or you don’t know exactly what you are being asked. 
Although it’s easy to make a slip-up and end up receiving a bill from Amazon, their customer support will 
allow you to change your settings and they will then remove the charge. 

 In this article, we will help you navigate through some of the more confusing forms and install all the 
basic software necessary to be able to run the servers you need to deploy MEAN stack (MongoDB, Express.js, 
AngularJS, Node.js) apps, and more. 

 To begin, you may read and reference the Amazon Free tier article here:    http://aws.amazon.com/free/      
 This article gives Amazon’s definition of what their free tier includes. It can change, so be sure to pay 

close attention to what they offer to continue using the free tier. 
 At the time of writing, Amazon EC2’s free tier includes:

•    750 hours per month of t2.micro instance usage  

•   For example, run one instance for one month or two instances for half a month.    

 Amazon’s Relational Database Service ( RDS  )    includes:

•    750 hours of Amazon RDS Single-AZ db.t2.micro instance  

•   30 GB of database storage  

•   15 million I/Os    

 Keep in mind:

•    Free services will expire 12 months after signup.  

•   They are available to new AWS customers.  

•   You can check the latest pricing information for the free and paid accounts here: 
   https://aws.amazon.com/ec2/pricing/     .    

 To get started, sign up for Amazon Web Services, then sign into AWS using the following URL to create 
an EC2 instance:    https://us-west-2.console.aws.amazon.com/ec2/v2      

 To launch a new server, select “Create Instance” ➤ “Launch Instance” from the bottom of the page 
(Figure  2-1 ).  

http://aws.amazon.com/free/
https://aws.amazon.com/ec2/pricing/
https://us-west-2.console.aws.amazon.com/ec2/v2


CHAPTER 2 ■ ROLLOUT SERVERS

29

 Next, select: “ Ubuntu Server 14.04 LTS  ” under “Free tier eligible”, and hit “Select”. see Figure  2-2  below:  

 ■   Note    Keep in mind that 14.04 LTS is the latest Ubuntu version number available on Amazon. That may 
change, but the instructions here will stay relevant as long as Amazon provide this service with its interface.  

 After you select the server type, the next screen will read “Step 2: Choose an Instance Type,” the Amazon 
wizard will start, and you can now configure the server:

    1.    Ensure you select a server under the “Free tier eligible” again.  

    2.    On the next screen, select: “t2.micro Free tier eligible.”  

    3.    Select “Review and Launch.”  

    4.    In the preview screen, choose “Edit security groups.” Important: For HTTP and 
HTTPS, you want to open it to the world (0.0.0.0/0), but SSH limit to “My IP” so 
that no one else can SSH your server. See Figure  2-3  below:   

  Figure 2-1.    Launch an instance on  Amazon EC2         

  Figure 2-2.    Select Ubuntu image from Amazon EC2 options       

 

 



CHAPTER 2 ■ ROLLOUT SERVERS

30

    5.    Next, select “Review and Launch.”  

    6.    A screen will open reading “Step 7: Review Instance Launch. Click “Launch.”  

    7.    Select “Create a new key pair” ➤ [Your key name] ➤ “Download Key Pair” and 
save it somewhere safe. These keys encrypt and decrypt your login information, 
ensuring you can log in to your account using SSH.  

    8.    Lastly, “Launch Instances.”     

 And that is all there is to it. It’s pretty simple and straightforward, and now you have a server to work 
with. 

 To ensure your account won’t be charged, there are two options:

    1.    The safest way to avoid billing is to disable your server after you are done using it. 
That’s a good option if your server is just staging for you to experiment. To do so, 
follow these steps:

    a.    In AWS home, select “EC2.”  

    b.    Select “Instances” under the “EC2 Dashboard” left menu pane.  

    c.    Right click the server. Under “Instance State” select “Stop.”  

    d.    That will ensure the instance is not using any additinoal resources.  

    e.     You can also right click the server and, under “Instace State,” select 
“Terminate” to completely remove the server and ensure you won’t get 
billed.      

    2.    The other option is to set a billing alert.

    a.    Go to this URL :    https://console.aws.amazon.com/billing/       

  Figure 2-3.     Configuring   your security group in Amazon AWS       

 

https://console.aws.amazon.com/billing/


CHAPTER 2 ■ ROLLOUT SERVERS

31

    b.     Start by enabling the feature that monitors estimated charges. Click “Enable 
Now” at the bottom of the screen.  

    c.     The preferences page will come up. Select “Receive Billing Alerts” and select 
“Save preferences.”  

    d.     Now you can create a billing alert. Open the SNS Home page:    https://
console.aws.amazon.com/sns/       

    e.     Click “Get started” and select “Create topic.”  

    f.     The topic popup will open up. Select a name (for instance, you can use 
“email_billing_notification”) and a display name (such as “billing.”) Then, 
click “Create topic.”  

    g.     Next, open “Cloud watch”:    https://console.aws.amazon.com/
cloudwatch/      .   

    h.     From the left menu under “Alarms,” select “Billing” and choose the region 
your EC2 was deployed in.  

    i.     Select “Create Alarm.”  

    j.     In the “Create Alarm” popup, select “When my total AWS charges for the 
month exceed,” select “$0.1” and enter your email address, then click 
“Create Alarm.”  

    k.     Confirm your email address, and that’s it. You will get an email if you are 
being billed.          

     SSH Connection and Upgrade Servers 
 Now that we have created the server, downloaded an SSH key, and set the security level, the next step is to 
connect and configure the server with all the software we will need. We will be using this server for our API / 
Services, so this step involves SSH, the Ubuntu server, and beginning to install our software. 

 First, we will create an IP address and associate the server, so that our server have an actual IP address 
instead of the tag ID Amazon assigns to a server. 

 To do this, select “NETWORK & SECURITY” ➤ “Elastic IPs” ➤ “Allocate New Address” on the AWS left 
side menu. A popup will appear asking “Are you sure you want to allocate a new IP address?” Select “Yes 
Allocate”. 

 Next, right click and select “Associate Address” ➤ “instance” ➤ “select instance ID” (you should only 
have one option, since we have only launched one server) and then select “associate.” Now we will create an 
SSH shortcut to access the servers. Configurating the SSH in the config file will allow us to easily access the 
new server that we just set up. 

 To edit the SSH  config file  , return to the Mac OSX Terminal and type: 

   vim ~/.ssh/config 

   Next, insert the new server information: 

   Host api 
 HostName [elastic ip address] 
 User ubuntu 
 IdentityFile /[location to API key]/[api key name].pem 

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/


CHAPTER 2 ■ ROLLOUT SERVERS

32

   You will need to set the permission of the server key: 

    $ chmod 400 /[location to API key]/[api key name].pem  

   Lastly, try to SSH the server; in the command line, type: 

   $ ssh api 

   When the command line asks, “Are you sure you want to continue connecting (yes/no)?” reply “yes” 
and you should then be able to log in. See Figure  2-4 .  

 Now that we are logged in to the new Ubuntu server we have launched, the next step is to set the Bash 
profile file with shortcuts to make our lives easier. In the command line, while SSH is logged in to the server, 
type: 

   $ vim ~/.bash_profile 

   Paste the code shown in Listing  2-1 . 

     Listing 2-1.     Bash profile shortcuts     

  alias stopnode='sudo forever stop 0' 
 alias startnode='sudo forever start server.js' 
 alias cdr='cd /home/ubuntu/www' 

  Figure 2-4.    SSH  server via command line         

 



CHAPTER 2 ■ ROLLOUT SERVERS

33

 alias vimb='vim ~/.bashrc' 
 alias runb='. ~/.bashrc' 
 alias taillog='tail -f /home/ubuntu/www/data/eventslogs' 

   alias l='ls -ltra' 
 alias c='clear' 
 alias cls='clear' 
 alias ll='ls -ltra' 
 alias killnode='sudo killall -2 node' 

   export PORT=8081 
 sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j REDIRECT --to-port 8081 
 sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 443 -j REDIRECT --to-port 8000 

    Save and close the file, but remember to run the following code to reload the Bash settings: 

   $ . ~/.bash_profile 

   Notice that we have been settings two aliases to clear the screen: “c” and “cls”. This is personal 
preference; you can set it however you want. 

 You can test that everything is working by typing “c”, which should clear the screen. Notice that we have 
already placed shortcuts to start and stop the node service we will be creating (startnode, stopnode); edit 
and run this Bash profile (vimb, runb); kill all node services (killnode); and even redirect to port 80, so we 
will be able to view our node services in the browser. 

 We will explain more about these shortcuts once we create our first Node.js services in the following 
chapters.  

     Install and Update Software 
 We first want to upgrade and ensure that we have the latest software available. It’s always a good idea to do 
the upgrade first to ensure that any software we install next will be based on the latest update. It would be a 
shame to spend the time installing everything only to find an issue with the server and services once we do 
the upgrade. 

 Start off by downloading the package lists from the repositories and “update” them to get information 
on the newest versions of packages available. To do so, type in command line, while still SSH to the server, 
the following command: 

   $ sudo apt-get update 

   Once the newest versions of the packages have been updated, we can update the server: 

   $ sudo apt-get -y upgrade 

   Afterward, install rcconf, a Debian Runlevel configuration tool, which will allow you to control which 
services are opened when the server starts or restarts: 

   $ sudo apt-get install rcconf 



CHAPTER 2 ■ ROLLOUT SERVERS

34

   Next, install the “build-essential,” which will gather an informational list of packages: 

   $ sudo apt-get install build-essential 

   And now we can actually install what we really need: 

   $ sudo apt-get install libssl-dev 

        Installing Git   
 As you may recall, in Chapter   1    , we installed and configurated Git on our local box. It’s useful to install Git 
on the server for few reasons, including that we can use Git to deploy our scripts. Usually, when you upload 
Node.js apps, it is common to not install the entire library that the project uses, since this can be installed 
with one command. To install Git on Ubuntu, all we have to do is type the following command: 

   $ sudo apt-get install git-core 

        Installing Node.js 
 Next, we will install Node.js. As you may also recall, we installed and configurated Node.js on our local box, 
and now we need to do the same on the server so we can run Node.js for the apps we will be creating. To 
install Node.js, follow Listing  2-2 . 

     Listing 2-2.     Installing Node.js   on Ubuntu server   

 $ sudo wget http://nodejs.org/dist/v0.10.7/node-v0.10.7.tar.gz 
 $ sudo tar xzf node-v0.10.7.tar.gz 
 $ cd node-v0.10.7 
 $ sudo ./configure --prefix=/usr 
 $ sudo make 
 $ sudo make install 

   Notice that we have selected to install Node.js version 0.10.7, because the services we will be using play 
nicely with that version. It is important to know which Node.js you’re running, since many times Node.js is 
not backwards compatible, and a change in Node.js may break your apps.  

     Installing npm 
 Now that we have Git, we can easily install the  npm package manager   on Ubuntu. npm package manager is 
an essential tool used to install all of the libraries we will need. To do so, follow the following code sequence 
in Listing  2-3 . 

     Listing 2-3.    Installing npm on Ubuntu   

 $ cd ~ 
 $ git clone git://github.com/isaacs/npm.git 
 $ cd npm/scripts 
 $ chmod +x install.sh 
 $ sudo ./install.sh 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 2 ■ ROLLOUT SERVERS

35

        Creating Our Web Folder 
 In our next step, we want to create a web  folder  . Remember that the Amazon Ubuntu server comes 
stripped right out of the box, and we will have to install everything we need. To create the folder, type in 
the command line: 

   $ cd ~ 
 $ mkdir ~/www 
 $ cd ~/www 

   Equipped with npm, we can now install “forever” service globally. Forever service (   https://www.
npmjs.com/package/forever     ) is a simple command line tool that will help us ensure the Node.js script 
is running continuously, even after we close our command line. We can install it easily with npm. In the 
command line, type: 

   $ cd ~ 
 $ sudo npm install -g forever 

   Now that the “forever” tool is installed, we can forward the port from 8081 to 80: 

   $ export PORT=8081 
 $ sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j REDIRECT --to-port 8081 

   The command above is for illustration purposes. We do not need to run that command since we have 
already completed the port redirect in the Bash profile file, so everytime we restart the server, the port 
forward will be completed automatically. 

 Lastly, just to make sure, you can ensure your account falls under the free tier once again by going to 
Amazon’s EC2 billing home:    https://console.aws.amazon.com/billing/home      

 And that’s it—you now have a free AWS Ubuntu server for the year that you can use to install Node.js 
services. We also installed upgrades, essential software including node, npm and the “forever” tool. 

 We configured the Bash profile for simple commands on the server and set up an easy way to connect 
to the new server. In future chapters, we will learn to install services that can be run on any devices and 
configure the server to include SSH and other essential tools.   

     Linux Server 
 In this section, we will roll out a free Linux. 

 Now, why do we even need a Linux server if the core focus of this book is MEAN stack? Linux servers 
come in handy in the following scenarios:

•    Hosting your AngularJS app on Linux instead of Express server  

•   Hosting your WordPress blog  

•   Automating tasks    

 Just as setting Ubuntu, Amazon EC2 offers free service for a year for Linux servers. In this section, we 
will start a Linux server and configure the server, install software, and update and connect to the new server. 

 Since we have already created an Ubuntu server under our current account, you will need to create this 
second server under a separate email account, since Amazon provides only one server per email. The other 
alternative is to terminate the Ubuntu server with servers provided at the Ubuntu server sub chapter. 

https://www.npmjs.com/package/forever
https://www.npmjs.com/package/forever
https://console.aws.amazon.com/billing/home


CHAPTER 2 ■ ROLLOUT SERVERS

36

     Start a Linux server 
     1.    Login in to Amazon:    https://us-west-2.console.aws.amazon.com/console/

home       

    2.    Next, select “EC2” ➤ “Launch Instance,” just as we have done in Ubuntu.  

    3.    Choose “Amazon Linux” ➤ “Select” (see Figure  2-5  below).      

 On the next page, select: “General purpose” ➤ “t2.micro Free tier eligible” ➤ “Review and Launch.” On 
the preview screen, select “Edit security groups.” Important: For HTTP and HTTPS, we want to open it to the 
world (0.0.0.0/0), but SSH limit to “My IP” so that no one else can SSH your server. See Figure  2-6 .  

  Figure 2-6.     Configure Linux security group         

  Figure 2-5.    Selecting a Linux  Amazon Machine Image         

 

 

www.allitebooks.com

https://us-west-2.console.aws.amazon.com/console/home
https://us-west-2.console.aws.amazon.com/console/home
http://www.allitebooks.org


CHAPTER 2 ■ ROLLOUT SERVERS

37

 Note that the security group name doesn’t matter. We selected “API,” but you can leave it as the default 
“launch-wizard-1.” Now that we have completed the configuration of our server, select “Review and Launch” 
➤ “Launch.” 

 Before the server launches, you will be asked about a key pair. Select “Create a new key pair” ➤ [Your 
key name] ➤ “Download Key Pair” and save it somewhere safe. Lastly, launch instances by clicking “View 
instances” button. 

 All of this should be somewhat familiar, since we completed the same steps previously when we rolled 
out the Ubuntu server. Once again, you can ensure your account falls under the free tier by going to the 
Amazon EC2 billing home: 

    https://console.aws.amazon.com/billing/home       

     Create IPs and Associate  Servers   
 Now that our server has started, we want to associate it with an IP address, just as we’ve done with the 
Ubuntu server. To do so, on the AWS Left side menu, select “NETWORK & SECURITY” ➤ “Elastic IPs” ➤ 
“Allocate New Address.” 

 Right click and select “Associate Address” ➤ “instance” ➤ “select instance ID” (you should only have 
one option) ➤ “associate.” 

 All of these steps are exactly the same as the steps we used with the Ubuntu server. 
 Next, we also want to create an SSH shortcut to access the servers. As you may have noticed, setting up 

the shortcut is very useful and allows us to easily access the new Ubuntu server; we will edit the SSH config 
file and add the Linux server. In the command line, type: 

   $ vim ~/.ssh/config 

   Insert the new server information as follows:    

   Host app 
 HostName [elastic ip address] 
 User ec2-user 
 IdentityFile /[location to key]/[api key name].pem 

   Next, set the permission of the server key, which is necessary in order to connect to the server: 

   $ chmod 400 /[location to key]/[api key name].pem 

   Lastly, try to SSH the server. In the command line, type: 

   $ ssh app 

   Just as before, when it asks “Are you sure you want to continue connecting (yes/no)?” Reply “yes” and 
you should then be logged in.  

     Set Bash Profile 
 Now that we’re logged in to the server, our next step, just as in setting the Ubuntu server, is setting up the 
Bash profile  file   for easy shortcuts. See Listing  2-4 : 

https://console.aws.amazon.com/billing/home


CHAPTER 2 ■ ROLLOUT SERVERS

38

     Listing 2-4.     Linux Bash file  .   

  $ vim ~/.bashrc 

   alias cdr='cd /var/www/html/' 
 alias vimb='vim ~/.bashrc' 
 alias runb='. ~/.bashrc' 
 alias l='ls -ltra' 
 alias c='clear' 
 alias cls='clear' 
 alias ll='ls -ltra' 

    Once you’re finished, run the Bash file: 

   $ . ~/.bashrc 

   Notice that the shortcuts are a bit different. We have “cdr” to change the directory to the server home 
directory, we no longer need all the shortcuts for Node.js, and we kept the shortcuts for “l,” “c,” “cls,” and “ll.”  

     Update Software 
 Just as we’ve previously done for Ubuntu, we want to update the software and install some additional basic 
software that will help us to maintain the server. We will install  Linux, Apache, MySQL, and PHP (“LAMP”) 
software   bundles, but first, we may find it useful to have a FTP installed so we can easily connect and 
distribute our files. 

    Set Up FTP   
 In order to set up the FTP client, we first need to SSH the server. We should already be in the server, since we 
ran this command: 

   $ ssh app 

   We will be using the free Very Secure FTP (“vsftpd”) client. To install this software, type the following in 
the Linux command line: 

   $ sudo yum install vsftpd 

   To connect to the EC2 console, open security group and set a Custom TCP rule for ports 20-21 and ports 
1024-1048. Without opening these ports, we will not be able to connect the FTP. 

 The next step is to update the “vsftpd.conf” file: 

   $ sudo vi /etc/vsftpd/vsftpd.conf 

   We want to set: “anonymous_enable=NO”, and also add the following: 

   pasv_enable=YES 
 pasv_min_port=1024 
 pasv_max_port=1048 
 pasv_address= 



CHAPTER 2 ■ ROLLOUT SERVERS

39

   Setting the “anonymous” enable to “NO” in “vsftpd.conf” file is important because we don’t want 
random users to be able to access the FTP client. Lastly, you should also uncomment the following line in 
“vsftpd.conf” file: 

   "chroot_local_user=YES" 

   Save vi changes by clicking “escape” + “:” + “wq” 
 Next, restart the “vsftpd” client to apply these changes: 

   $ sudo /etc/init.d/vsftpd restart 

   Now that the client is installed and configured, we can create an FTP user: 

   $ sudo adduser eli 
 $ sudo passwd eli 

   Then you will be prompted to enter a new password: 

   [your password]    

   What we have done, as an example, is created a username “eli” and set a password. 
 That’s it; we are now finished and can connect to FTP. The preferred FTP software is FileZilla, and it can 

be downloaded here: 

    https://filezilla-project.org/      

 However, feel free to use your preferred FTP client.  

   Install LAMP 
 To  install LAMP  , simply follow this Amazon blog post: 

    http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html      

 Once LAMP is running, you should see the welcome page at the Amazon public IP address that we 
linked to this server. That’s it—we have completed starting and setting up the Linux server, as well as 
upgrading software, setting up FTP, installing LAMP, and setting up shortcuts.    

     MongoDB Database 
 To start, exit the Linux server by typing in the command line: 

   $ exit 

   That will log you out and close the connection with the following output: 

   logout 

   Connection to your elastic IP address is now closed. 

https://filezilla-project.org/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html


CHAPTER 2 ■ ROLLOUT SERVERS

40

 Next, we will install MongoDB. MongoDB is the “M” in the “MEAN” stack and often a faster and easier 
way to connect to certain types of applications. As you can see, MongoDB is not a replacement for the 
traditional NoSQL; we have still installed a MySQL database, which has its own good practices. 

 ■   Note    MongoDB is one of the most popular  NoSQL databases  .  NoSQLs   were created to provide scaling 
support for increasing numbers of users that run the app on different devices. The old SQL database 
architecture failed since it was meant to be built on one database—the bigger, the better. Scaling is not easy 
under the old architecture. MongoDB allows to easily be scaled from a database servicing a mere few hundred 
to millions of users on all platforms.  

 The Ubuntu server we have created is a good place to install the MongoDB database, and with “apt-get,” 
it will be a breeze. 

     Connect to Ubuntu  Server   
 As you recall, we have a handy shortcut to the SSH the server; open the command line and type: 

   $ ssh api 

        Install and Configure MongoDB Database 
 The Ubuntu out-of-the-box package management tools (such as dpkg and apt) ensure package consistency 
and authenticity by requiring that distributors sign packages with GPG keys. To start, type the following into 
the command line to import the MongoDB public GPG key: 

   $ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927 

     Create a List  File   for MongoDB 
 Now, we want to create the “/etc/apt/sources.list.d/mongodb-org-3.2.list” file, which holds the sources list 
so we can update the MongoDB. Since we installed Ubuntu 14.04, we will use the command: 

   $ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2 multiverse" | sudo tee 
/etc/apt/sources.list.d/mongodb-org-3.2.list 

   Next, reload the local package database. Type in the following command: 

   $ sudo apt-get update 

   After that, install the MongoDB packages. 
 You can either install the latest stable version of MongoDB or a specific version of MongoDB. We will be 

installing the latest stable version of MongoDB. 
 In the Ubuntu command line, type: 

   $ sudo apt-get install -y mongodb-org 

   We have now installed MongoDB and, it’s running. At any time, you can stop or restart the MongoDB 
database by typing the following commands: 



CHAPTER 2 ■ ROLLOUT SERVERS

41

   $ sudo service mongod stop 
 $ sudo service mongod start 

   Or just run the restart command: 

   $ sudo service mongod restart 

   Now, to verify that MongoDB has restarted successfully, we can check the contents of the log file at “/
var/log/mongodb/mongod.log” for a line reading:    

   $ cat /var/log/mongodb/mongod.log 

         MongoDB Hello World 
 After we have MongoDB installed and working, we can login in to MongoDB. To login in to the Ubuntu 
terminal, type: 

   $ mongo 

 ■     Note    If you are getting memory warnings or any other warnings after starting the server, such as 
“transparent_hugepage,” don’t be too concerned at this point, since our MongoDB database is for testing 
purposes and not a production-grade database.

Next, switch to the database you want to use:  

   > use mydatabase 

   The database will reply with a confirmation: 

   switched to db  mydatabase   

   Then, create a user object and insert the content of a user object: 

   > db.users.insert({username:"someuser",password:"password"}) 

   MongoDB should reply with the following confirmation: 

   WriteResult({ "nInserted" : 1 }) 

   Next, use the “find” MongoDB command to view a list of users: 

   > db.users.find() 

   Mongo will reply with a list of users: 

   { "_id" : ObjectId("56cfd879edcf4111efe8f016"), "username" : "someuser", "password" : 
"password" } 

   You can see the command we have typed into MongoDB in Ubuntu Command line in Figure  2-7 :    



CHAPTER 2 ■ ROLLOUT SERVERS

42

     MySQL Database 
 As mentioned before, the MongoDB NoSQL database has its own usage, but it’s always a good idea to also 
have a MySQL database ready in case we need a SQL database. To do this, sign into Amazon:    https://
console.aws.amazon.com/console/home      using the Linux account . 

    1.    After you log in, select “RDS” from the list of available services.  

    2.    Next, select “Launch a MySQL DB Instance” or just “Launch” (depending on your 
welcome screen).  

    3.    For the free tier database, select “MySQL MySQL Community Edition” and hit 
“Select.” See Figure  2-8 .   

  Figure 2-7.    MongoDB  Hello World         

  Figure 2-8.    Select the database engine in Amazon  AWS         

    4.    In the next window, you will be asked whether you plan to use the database for 
“production purposes.” Select “Dev/Test MySQL,” then select “Next Step.” See 
Figure  2-9 .   

 

 

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home


CHAPTER 2 ■ ROLLOUT SERVERS

43

    5.    Now we can select settings regarding our database. See Figure  2-10 .

    a.    Select the “Only show options that are eligible for RDS Free Tier” check box.  

    b.    Select “db.t2.micro” as the “DB Instance Class.”  

    c.    Leave the remaining options as their default settings.       

  Figure 2-9.    Set database purpose in Amazon  AWS         

  Figure 2-10.    MySQL  instance specification window options         

 

 



CHAPTER 2 ■ ROLLOUT SERVERS

44

    6.    On the next page, “Specify DB Details,” set your user name and master password. 
Be sure to note these settings, as you’ll need them later, and then select “Next 
Step” (see Figure  2-11 ).   

    7.    The “Configure Advanced Settings” page will open. In the network and security 
section, select “Default VPC” with “VPC Security Group(s)” as “rds-launch-
wizard (VPC).”

    a.     Under “Database Options,” select the DB Instance Identifier. In Figure  2-11 , 
we are using “mydatabase” (choose your own name).  

    b.     Under “Database port,” leave default port 3306.      

    8.    Lastly, select “Launch DB Instance.”     

 We are now done with this setup and have a MySQL database available at our disposal. 

     Connect to Database and Dump MySQL Database 
 The next step is to  connect   to the new database and create a MySQL  “Hello World” database  . 

 There are a few popular, free, and open source GUI tools used to connect to a MySQL database and 
make our lives easier—for instance, the popular phpMyAdmin (   https://www.phpmyadmin.net/     ) web tool 
MySQL Workbench (   https://dev.mysql.com/downloads/workbench/     ), which is most popular tool, and 
Sequel Pro (   http://www.sequelpro.com/     ) make administrating a MySQL database a breeze. 

 Additionally, Navicat (   http://www.navicat.com/     ) is another popular tool that allows for syncing larger 
databases as well as easily reverse-engineering an existing database for a  Unified Modeling Language (UML)   
diagram, but it is not free. At the time of this writing, the starting cost is $19.99—see “Navicat for MySQL 
(iOS)” at the bottom of the price page (   https://www.navicat.com/store/navicat-for-mysql     ). 

 Before we start connecting, we want to configure Amazon RDS to allow our IP address to connect to the 
database, as well as store the database information.     

 Log in to  Amazon AWS   (   https://console.aws.amazon.com     ) and navigate to the EC2 server security 
group by clicking “NETWORK & SECURITY” at the bottom left pane menu. That will open the security group 
menu. See Figure  2-12 .  

  Figure 2-11.    Set your  user name and passwrod setttings         

 

https://www.phpmyadmin.net/
https://dev.mysql.com/downloads/workbench/
http://www.sequelpro.com/
http://www.navicat.com/
https://www.navicat.com/store/navicat-for-mysql
https://console.aws.amazon.com/


CHAPTER 2 ■ ROLLOUT SERVERS

45

 You will have an RDS security group created automatically for you. Next, click the “Inbound” tab and 
“Edit” button, so you can add “My IP” address and open port 3306 (see Figure  2-13 ) to allow our local 
machine IP address to be able to connect to the MySQL server. Remember that we are opening the port for 
our IP address only. In case you plan to work remotely or your IP address changes, you will need to update 
these settings.  

 However, it’s highly recommended to simply open your IP addresss and keep this port closed to the 
outside world, since it’s a major security risk and there isn’t an administrator working full time; it’s better to 
be safe than sorry.  

  Figure 2-12.     Setting MySQL security group   in Amazon  AWS         

  Figure 2-13.    Opening port 3306 for machine local IP address       

 

 



CHAPTER 2 ■ ROLLOUT SERVERS

46

     MySQL  Workbench tool   
 We have mentioned a few tools thus far, but Workbench is probably the most popular of the free tools, so let’s 
get started:

    1.    Download Workbench from here:    http://dev.mysql.com/downloads/
workbench/      . Notice that Oracle prompts you to create a web account. There is a 
“No thanks, just start my download” link at the bottom if you don’t wish to sign 
up with Oracle.   

    2.    After installation is completed, we can configure Workbench to connect to our 
database. Open MySQL Workbench and select the “+” sign next to the “MySQL 
Connections” label on the top left side. See Figure  2-14 .   

  Figure 2-14.    Configurate  Workbench MySQL connection         

 

http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/downloads/workbench/


CHAPTER 2 ■ ROLLOUT SERVERS

47

    3.    The “Set Up New Connection” wizard will open. Set your Amazon RDS settings 
we configured earlier.  

    4.    Next, select “Test Connection” (Figure  2-15 ).      

 That’s it! You are now connected to the database.     

     Create Your First Database and  Table   
 To create your first table, right click on the left “schemas” area (see Figure  2-16 ) and select “Create Database.” 
Enter the database name you want—the example name created for the table is “theluxurygame.” Next, follow 
the same steps to create a table. Right click and then select “Create a table…” (Figure  2-16 ).  

  Figure 2-15.    Test connection alert message       

 



CHAPTER 2 ■ ROLLOUT SERVERS

48

 Now we can enter the table columns we want. For our example, we will add two columns: “user_id” and 
“user_name.” For the “user_id,” we set the column as an integer, as our primary key, and for the “user_name” 
we set this column as varchar type with a 45-character limit. See Figure  2-17 .  

  Figure 2-16.    Create a new database and  table         

 



CHAPTER 2 ■ ROLLOUT SERVERS

49

 Hit “apply” and the SQL will allow you to review the SQL statement. See Figure  2-18 .  

  Figure 2-17.    Setting up a new table with  columns         

  Figure 2-18.    SQL script review       

 

 



CHAPTER 2 ■ ROLLOUT SERVERS

50

 We have now created our first table. To remove the new table, right click the table and select “drop 
table” (See Figure  2-19 ).    

     Summary 
 In this chapter, we rolled out Ubuntu and Linux servers and installed MongoDB and MySQL databases. We 
also configurated the database and servers, upgraded the software, and created simple database where it 
was applicable. These servers will be used to deploy our MEAN stack applications as well as deploy other 
types of neccessary software, such as app automation or Linux shell script. With these servers deployed and 
configured in our toolbox, we are now equipped to tackle just about anything that comes our way, to deploy 
our code and see it live. In the upcoming chapters, we will dive in and begin creating Node.js and AngularJS 
applications.     

  Figure 2-19.    Drop table from  databse          

 



51© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_3

    CHAPTER 3   

 Node Modules                          

 A typical MEAN application can often depend on up to hundreds of packages. These modules are often 
small and consist of both Node.js and Bower libraries. By combining libraries, you are able to create a 
mashup of small-shared building blocks and custom apps for the purpose of solving a larger problem. 

 The ability to harness node is powerful, not just for node-based applications, but for just about any task, 
regardless of the platform or language you might be using. In this chapter, we will be utilizing npm to install 
popular node modules, learning how to deploy a Node.js project, and setting up a config file for easy future 
updates. We will create our first node module and learn how to submit it to npm as an open source project. 

      npm Node Packages      
 npm (   htttp://npm.com     ) is the premier location to search for modules. The source code for many of these 
libraries will usually live on GitHub (   http://github.com     ). In fact, as you may recall from Chapter   1    , we have 
already installed a few npm modules, such as Grunt, Gulp, and Bower. Also, we already have Git installed on 
our local and server environments, so you actually already have everything you will need to install and set 
your node modules. In this section, we will expand on this subject, help you find what you need, and provide 
a better understanding of how to install these packages. 

 npm began as the free and open source node package manager—it eventually became more than that. 
In fact, it’s been used as package manager for Node.js, JavaScript, Grunt, Gulp, Bower, AngularJS, and much 
more. These days, npm allows holding private modules and makes it easy to share, update, and reuse code. 

 ■   Note   Notice that the words “module,” “library,” and “packages” are interchangeable and all mean the same 
thing: a directory of files with reusable code, capable of solving a specific targeted problem or set of problems.  

 At the time of this writing, there are over 250,000 open source packages on npm (Figure  3-1 ). npm has a 
URL listing the most starred packages:  

    https://www.npmjs.com/browse/star      

htttp://npm.com
http://github.com/
http://dx.doi.org/10.1007/978-1-4842-2044-3_1
https://www.npmjs.com/browse/star


CHAPTER 3 ■ NODE MODULES

52

 Additionally, npm lists stats for downloads in the last day, week, and month, so picking a node module 
can be based on useful information. In fact, we encourage you to visit the GitHub location of the code and 
check for the latest update, known errors, and other information to make sure you’re picking a module that 
can do what you need. 

 Generally, node packages are one of two types:

    1.     Server side modules : as mentioned, npm originated as the node package 
manager, so you will find many server side packages to support the writing of 
your node app.  

    2.     Command line packages : these packages can enhance the capability of the local 
environment or our server/s. Some notable examples: Grunt and Gulp packages, 
which we installed back in Chapter   1    .     

 Once you’ve found the npm package you would like to install, all you have to do is open Terminal, and 
in the command line, simply type: 

    $ [sudo] npm install [modules]  

   Beside npm, you may search through this link farm and discover some usefull Node.js:    https://
github.com/sindresorhus/awesome-nodejs      

 You will learn a lot just looking at other people’s code and seeing how they do a particular thing, so go 
ahead and explore.  

     Install Node.js Modules 
  Although   it is simple to install node modules, we should be strategic about how we do so to global or local 
locations. The versions of libraries and the management of updates should all be taken into consideration 
before we begin installing. 

  Figure 3-1.    npm most popular  packages            

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1
https://github.com/sindresorhus/awesome-nodejs
https://github.com/sindresorhus/awesome-nodejs


CHAPTER 3 ■ NODE MODULES

53

 To better understand the different types of installations, we’ll create a dummy project and install few 
modules. In your favorite IDE, such as WebStorm or Sublime (see Chapter   1     if you haven’t installed any), 
create a project and name it “Tester.” 

 Here, we are using  WebStorm IDE  . From the top menu, select “File” ➤ “New Project…” and set the 
project name as “Tester,” then select “Empty project” (Figure  3-2 ).  

 Hit “OK,” and now you should have an empty shell project that we can start working with; see Figure  3-3 .  

 Notice that at the bottom of the project, there is an icon of a command line next to the word “Terminal.” 
Click that and a Terminal will open up. We can use that Terminal to work in, just as Mac builds in a 
Terminal—see Figure  3-4 .  

  Figure 3-2.    Create  tester project in WebStorm         

  Figure 3-3.    Tester window project in WebStorm       

 

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 3 ■ NODE MODULES

54

 If you selected a different IDE than WebStorm, simply open the Mac command line “Terminal” and 
navigate to the project root directory. 

 Let’s say we need to manipulate dates and convert them from one format to another. We can create our 
own daunting library, but there’s no need—npm lists a library called “moment” (   https://www.npmjs.com/
package/moment     ) that will allow us to parse, validate, and manipulate dates easily. If that library is missing 
what we need, we can always clone that project, since it’s listed as a  GitHub open source project   (   https://
github.com/moment/moment     ), or create our own modules and share them with others (when possible) in 
case we cannot find what we need at all. 

 As mentioned, all you have to do is type into the command line Terminal: 

     $ npm install moment    

   If you type this command, it will create a “node_modules” directory in our project and add a “moment” 
library. Then, we are ready to continue; see Figure  3-5 .  

  Figure 3-4.     Terminal window in WebStorm         

 

https://www.npmjs.com/package/moment
https://www.npmjs.com/package/moment
https://github.com/moment/moment
https://github.com/moment/moment


CHAPTER 3 ■ NODE MODULES

55

 npm has installed the library moment at version 2.12.0 locally. However, npm has spit out a warning 
message: “enoent ENOENT, open '/Users/eli/WebstormProjects/Tester/package.json'” (see Figure  3-5 ). 

 What is that all about? npm expects to have a package.json file in order to be able to manage and keep 
track of locally installed libraries. You can create this on your own; the most minimalistic “JASON” code is 
this name and version: 

    { "name": "tester", "version": "1.0.0" }  

   The easiest way to create the package JSON  file   is to simply type into the command line: 

    $ npm init  

   You may also use the –yes flag to accept all of the default settings: 

    $ npm init --yes  

   We have selected the option without the –yes flag checked. It opens with a quick questionnaire and 
eventually creates the package JSON file. We have accepted the default settings we want by hitting the 
“enter” key—see Figure  3-6 .  

  Figure 3-5.    Installing  moment library command line output and project window         

 



CHAPTER 3 ■ NODE MODULES

56

 The npm init command has generated the package.json file for us automatically in Listing  3-1 . 

     Listing 3-1.    Content of package.json file   

 { 
   "name": "Tester", 
   "version": "1.0.0", 
   "description": "just a tester project", 
   "main": "index.js", 
   "dependencies": { 
     "moment": "^2.12.0" 
   }, 
   "devDependencies": {}, 
   "scripts": { 
     "test": "echo \"Error: no test specified\" && exit 1" 
   }, 
    “keywords”: [], 
   "author": "eli", 
   "license": "ISC"    
 } 

  Figure 3-6.    npm init walk through to create package.json  file         

 



CHAPTER 3 ■ NODE MODULES

57

   The file includes the name, version, description, author, and license, which you can edit at any time on 
your own. 

 Notice that this package.json file includes the following code: 

   test": "echo \"Error: no test specified\" && exit 1" 

   npm encourages developers to set a test file to ensure changes don’t break the code, which is crucial 
when you have a project with many contributors. Later on in this chapter, we will show you how to set up a 
test through npm. 

 Additionally, sub-objects called “ devDependencies  ” and “dependencies” have been created. It is also 
presumed that we installed moment and has added it to the “dependencies” library. 

 There are two types of packages: “dependencies” and “ devDependencies  ”:

•    “Dependencies” are packages that are required by your application to work in 
production.  

•   “DevDependencies” are packages that are only necessary for development and 
testing.    

 An application can consist of hundreds of small modules, so managing your dependencies efficiently 
will help a lot in organizing your library and will eventually decrease deployment time, so it’s a good practice 
to begin doing right away. The following sections discuss the four best options. 

      Caret Version Option   
 Notice that “moment” was installed as “^2.12.0”. The “^” caret or circumflex symbol means that it will update 
to the most recent major version (the first number). ^2.12.0 will match any 2.x.x release, but will hold off on 
3.x.x; this is the default setting, but it could potentially cause problems. 

 If “moment” updated their libraries and had broken previous code and you then fail to update your 
code, when you do an npm update or deploy, the code will break. Additionally, it is recommended to 
inspect the script before updating. npm includes security vulnerability scanning, but it is still possible for a 
package to include worms or unwanted scripts, so in addition to the possibility of breaking a script, it is also 
a security concern.  

     Tilde Version Option 
 In case you want to be more specific, use the  tilde version option     , which will match the most recent minor 
version (the middle number). ~2.12.0 will match all 2.12.x versions but will skip 2.2.x versions. This can help 
ensure that you only upgrade middle versions; the type will change, but you will bypass major changes. 

   "moment": "~2.12.x" 

         Latest Version Option   
 You are also able to update to the latest version, but as I said earlier, it may break your library if changes in 
code were made that were not backward compatible. 

   "moment": "latest" 



CHAPTER 3 ■ NODE MODULES

58

         Specific Version Option   
 Lastly, you can specify an exact version, such as “2.12.0,” to ensure nothing breaks. You can limit the version 
with “>=”, “<=”, “>”, “<”, and so on. 

    "moment": "2.12.0" 

         Install Save  Flag      
 Now that we have the package.json file, moving forward we can use the --save install flag to allow us to add 
any libraries to the package json file. If we only want to save to the “devDependency” object, we will need to 
use the --save-dev install flag. 

 For instance, the command in Listing  3-2  will grant npm as root/Administrator (sudo) in case it needs 
to update any files or install and save Grunt as a devDependency. 

     Listing 3-2.    Content of package.json file includes Grunt   

 sudo npm install grunt --save-dev 
 { 
   "name": "tester", 
   "version": "1.0.0", 
   "description": "just a tester project", 
   "main": "index.js", 
   "dependencies": { 
     "moment": "^2.12.0" 
   }, 
   "devDependencies": { 
     "grunt": "^1.0.1" 
   }, 
   "scripts": { 
     "test": "echo \"Error: no test specified\" && exit 1"       
   }, 
   "author": "eli", 
   "license": "ISC" 
 } 

        Global Installation 
 Another option is installing libraries globally. As we have mentioned, there are two ways to install npm 
packages: “locally” or “globally.” In order to choose which type of installation is right for you, you will need to 
think about how you will want to use the package. 

 If you need the package for more than just your specific project, use the global flag: 

   $ sudo npm install -g epress 

   This command will install the Express library globally. Notice that we used “sudo” to allow 
administration rights and avoid errors, but it’s not always necessary. 

 npm offers a large collection of docs covering just about anything to do with npm, from getting started 
to usage to configuration and everything in between. See:    https://docs.npmjs.com/       

https://docs.npmjs.com/


CHAPTER 3 ■ NODE MODULES

59

     Create Your Own First Node Modules 
 As I pointed out, there are more than 250,000 modules on npm alone. Creating a module is easy—in this 
section we will walk you through the process. We recommend that you follow this section as a guideline and 
create your own unique module so that you fully understand this process. 

 We chose a simple and minimalistic example so that you can easily grasp the idea. We’ve created a 
module to log messages in Node.js, but unlike “console.log,” this one will use colors, allowing you to log 
different types of messages. You can set the type of function you want to log, which allows you to disable the 
messages from being logged all together. 

     Create a  GitHub Project Repository   
 We are starting off by creating a Git repository. Log in to GitHub and select the top “+” sign and hit “new 
repository,” which opens up the “create new repository” page:    https://github.com/new      and allows us to 
select the “repository name,” owner, and other settings. Once the repo (repository) has been created, we will 
be given the Git location and command line instructions—see Figure  3-7 :  

 Notice we have created the repo name “woodenlog” as an example—you can create any name you want 
to practice publishing a project.  

     Create a  Module Project   
 To continue, we will create a new project in WebStorm from the “Empty Project” template, following the 
same process as before: 

  Figure 3-7.    Woodenlog repository in  GitHub         

 

https://github.com/new


CHAPTER 3 ■ NODE MODULES

60

 “File” ➤ “New Project.” For the project name, we’ll be using “woodenlog.” We already checked with 
npm (   https://www.npmjs.com/     ) to ensure there isn’t already a project with that name; it’s not always easy to 
find a unique name these days.  

     Write Your  Module Code   
 Next, we need to create an “index.js” file in the root directory. To create a new file in WebStorm, use the top 
menu “File” ➤ “New” ➤ “File,” or right click the project and choose “File” ➤ “New.” 

 The “index.js” file will be the entry point of the library. 
 We will be using the code in Listing  3-3 . 

     Listing 3-3.    Woodenlog index.js  file     

  const style = require('ansi-styles'); 

   var logFunction = console.log, 
         logColor = 'green', 
         warnColor = 'yellow', 
         errorColor = 'red'; 

   module.exports = { 

           log: function(object) { 
                 logFunction(style[logColor].open + object + style[logColor].close); 
                 return true; 
         }, 

           warn: function(object) { 
                 logFunction(style[warnColor].open + object + style[warnColor].close); 
                 return true; 
         }, 

           error: function(object) { 
                 logFunction(style[errorColor].open + object + style[errorColor].close); 
                 return true; 
         }, 

           configurate: function(logOutFunction, logColorName, warnColorName, errorColorName) { 
                 if (logOutFunction) logFunction = logOutFunction; 
                 logColor = logColorName; 
                 warnColor = warnColorName; 
                 errorColor = errorColorName; 
                 return true; 
         } 
 }; 

    We will be using the “ansi-styles” module. This is a library that uses ANSI escape codes for styling strings 
in a terminal. You can see the source code here:    https://github.com/chalk/ansi-styles      

   const style = require('ansi-styles'); 

https://www.npmjs.com/
https://github.com/chalk/ansi-styles


CHAPTER 3 ■ NODE MODULES

61

   Next, we need to define the colors we want to use for the log, warn, and error, as well as the type of 
method we would like to use in order to paste messages. 

   var logFunction = console.log, 
         logColor = 'green', 
         warnColor = 'yellow', 
         errorColor = 'red'; 

   Notice that we have already set the default values and will be using the good old “console.log” JavaScript 
function to show the messages. 

 Now, we’ll define each method, log, warn, and error with the color we will be using: 

           log: function(object) { 
                 logFunction(style[logColor].open + object + style[logColor].close); 
                 return true; 
         },    

   We have encapsulated the index.js code so it can be utilized in other files by using the “module.exports” 
variable once a file is required. You will see how it works once we implement the module: 

   module.exports = { 
   // code goes here 
 } 

        Run Your Module Code 
 We can now run our library to ensure that we don’t encounter any errors. To do so, select the caret from the 
top right corner in WebStorm and select “Edit Configurations…” See Figure  3-8 .  

 The wizard will open up and we will select the “+” sign to add a new configuration. From the drop-down 
menu, select “Node.js.” See Figure  3-9 .  

  Figure 3-8.     Edit Configurations menu item in WebStorm         

 



CHAPTER 3 ■ NODE MODULES

62

 The program will then allow us to configure the Run/Debug options. We will leave all the default 
settings as they are, but for the JavaScript file, we’ll select the name of the app, “woodenlog,” and enter the 
“index.js“ file we created (see Figure  3-10 .) Hit “OK” to close this wizard.  

 Now, at the top right corner of WebStorm, we can see “woodenlog” added to the top menu, and also a 
green “play” icon (see Figure  3-11 ).    

  Figure 3-9.     Add new configration in WebStorm         

  Figure 3-10.    Run/Debug configuration settings for Node. js  .       

 

 



CHAPTER 3 ■ NODE MODULES

63

     Install  Dependencies   
 We could go ahead and run the application by pressing the play button, but we will encounter errors—see 
Figure  3-12 .  

 From looking at the errors, we can see that we’re missing some code, so before we can run the code 
successfully, we need to install the module we are using called “ansi-styles.” 

 We need our package.json file to store our dependencies before we begin installing the module. Open 
the Terminal using either WebStorm’s built-in Terminal (bottom right corner) or the Mac built-in Terminal 
and navigate to the project root. 

 We want to run “npm init” so it will create the “package.json” file for us, the same as we did for the 
“Tester” application. In the Terminal, run: 

   $ npm init 

   This time, set the package.json file that npm created to read/write permission, so we will be able to 
manually edit the file, which will be used be as npm when we publish our module. In the command line, type: 

   $ sudo chmod 777 package.json 

   Now, we can install “ansi-styles;” in the command line, type: 

   $ npm install ansi-styles --save 

   Notice that we have used the –save flag to allow the module to be added to the dependencies list in the 
package.json file. 

  Figure 3-11.    WebStorm top right menu shows “woodenlog”  app         

  Figure 3-12.    Woodenlog error message in  WebStorm            

 

 



CHAPTER 3 ■ NODE MODULES

64

 Now, hit the green “play” button once again and you should see the following output: 

    /usr/local/bin/node index.js 

   Process finished with exit code 0 

    This means that the code has been run successfully.  

      Ignore Files   
 Now that our library is ready and working, we want to prepare to publish to GitHub. We do not want to 
publish any dependencies, which is what package.json is for. This will allow other users to select “npm install” 
and thus download npm to all of the libraries, which will decrease any redundancies on the hosting servers. 

 Also, note that WebStorm has created a hidden “.idea” folder with settings regarding a project that we 
don’t want to upload either. To achieve this, we want to create a “gitignore” file at the root of the project that 
will instruct Git to ignore these files. 

 In the WebStorm or Mac Terminal, create the file using vim or your favorite editor: 

   $ vim .gitignore 

   Next, type “i" to insert and paste the following: 

   node_modules 
 .idea 

        Create Test  Stubs   
 If you recall, earlier we showed you the code that npm generates in package.json for testing; the code looked 
like this: 

   test": "echo \"Error: no test specified\" && exit 1" 

   We will implement this test now. We won’t delve into  Test Driven Development (TDD)   and  Behavior 
Driven Development (BDD)  , since it’s not necessary to sidetrack from the chapter’s main objectives, but feel 
free to read about it online or in other books. There is a large school of thought that believes writing tests 
before writing code is superior. 

 To get started, we need to create a folder in the root of the project and name it “test,” and then add a file 
call “index.js” inside of that folder. See Figure  3-13 .  



CHAPTER 3 ■ NODE MODULES

65

 For testing, we will be using “chai” (   http://chaijs.com/     ). Chai is a BDD / TDD assertion library for 
Node.js and the browser. It can be easily paired with other JavaScript testing frameworks. We will pair it with 
a test framework called “mocha” (   https://mochajs.org/     ). 

 Start off by installing “chai” and “mocha.” In the Terminal, type: 

   $ npm install chai –save-dev 
 $ npm install mocha –save-dev 

   Now paste the code from Listing  3-4 . 

     Listing 3-4.    Test code for woodenlog module using  mocha     

  var should = require('chai').should(), 
         woodenlog = require('../index'), 
         log = woodenlog.log, 
         warn = woodenlog.warn, 
         error = woodenlog.error; 

   describe('#log', function() { 
         it('log message', function() { 
                 log('message').should.equal(true); 
         }); 
 }); 

   describe('#warn', function() { 
         it('warn message', function() { 
                 warn('message').should.equal(true); 
         }); 
 }); 

   describe('#error', function() { 
         it('error message', function() { 
                 error('message').should.equal(true); 
         }); 
 }); 

  Figure 3-13.    Test folder structure in  WebStorm            

 

http://chaijs.com/
https://mochajs.org/


CHAPTER 3 ■ NODE MODULES

66

    We define “should” and also our methods:    

   var should = require('chai').should(), 
         woodenlog = require('../index'), 
         log = woodenlog.log, 
         warn = woodenlog.warn, 
         error = woodenlog.error; 

   Then, we are able to define each of our test stubs. In our case, the method returns true once the 
message has been logged successfully: 

   describe('#log', function() { 
         it('log message', function() { 
                 log('message').should.equal(true); 
         });    
 }); 

   We have used “log,” “warn,” and “error” as our test stubs naming conventions, however it is common 
to see the words “test” or “unit” at the end of each test. For example: “logTest” or “logUnit.” It’s a matter of 
preference.  

     Configure Package.json File 
 Now we can configure our package.json  file      with the repo Git URL location, test script, license, version, and 
other information. See Listing  3-5 . 

     Listing 3-5.    Package.json file configure all changes   

 { 
   "name": "woodenlog", 
   "version": "1.0.1", 
   "description": "Minimalist log node messages module", 
   "main": "index.js", 
   "scripts": { 
           "test": "./node_modules/.bin/mocha --reporter spec" 
   }, 
   "repository": { 
     "type": "git", 
     "url": "git+https://github.com/eladelrom/woodenlog.git" 
   }, 
   "keywords": [ 
     "log", 
     "woodenlog", 
     "log", 
     "messages" 
   ], 
   "author": "Elad (Eli) Elrom", 
   "license": "MIT", 
   "bugs": { 
     "url": "https://github.com/eladelrom/woodenlog/issues" 
   }, 



CHAPTER 3 ■ NODE MODULES

67

   "homepage": "https://github.com/eladelrom/woodenlog#readme", 
   "dependencies": { 
     "ansi-styles": "^2.2.1" 
   }, 
   "devDependencies": {    
     "chai": "^3.5.0", 
     "mocha": "^2.4.5" 
   } 
 } 

       Run Test Stubs Using npm 
 Since we have configured the test field in package.json: 

   "test": "./node_modules/.bin/mocha --reporter spec" 

   We will now be able to run our tests. In the Terminal, type the following command: 

   $ npm test 

   Once you run this command, you should see a pass message for our three methods and a spit-out of our 
code in the console, already formatted with our colors (Figure  3-14 ).    

  Figure 3-14.    npm test results in  Terminal         

 



CHAPTER 3 ■ NODE MODULES

68

     Create Markdown Home Page File 
 Last but not least, we want to create a README.md file. The “.md” file extension stands for “markdown.” 
Markdown is lightweight syntax for styling your writing on GitHub and other platforms. It uses charcters to 
instruct styling and it makes styling your document easy. 

 The  README.md file   is considered our “home” page; it’s configured by default with the package file 
and GitHub. We will be using this file automatically as your “home” page for the repository. 

 The markup language is straightforward. For instance, to highlight code, you’ll wrap code inside ```js 
opening tags and ``` closing tags (Listing  3-6 ). 

     Listing 3-6.     Format code   in Markdown syntax   

  ̀``js 
 var woodenlog = require('woodenlog'); 
 // woodenlog.configurate(null, 'white', 'green', 'red'); 

   woodenlog.log('just log!'); 
 woodenlog.warn('this is a warning!'); 
 woodenlog.error('this is an error!'); 

   ̀`` 

    This will format your code in a nice, easy-to-see box, complete with colors and spacing. See Figure  3-15 .  

 To see all your available options and different Markdown syntax, feel free to visit this cheat sheet page: 
   https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet      

 We will be using the following complete code block for our README.md file (Listing  3-7 ). 

     Listing 3-7.     README.md file content     

  WoodenLog 
 ========= 

   Minimalist log node messages module to add colors for console.log for specific type of log. 

   ## Installation 

   ̀``shell 
   npm install woodenlog --save 
 ̀`` 

   ## Usage 

  Figure 3-15.    Format  code   in Markdown  results         

 

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet


CHAPTER 3 ■ NODE MODULES

69

   ̀``js 
 var woodenlog = require('woodenlog'); 
 // woodenlog.configurate(null, 'white', 'green', 'red'); 

   woodenlog.log('just log!'); 
 woodenlog.warn('this is a warning!'); 
 woodenlog.error('this is an error!'); 

   ̀`` 

   ## Tests 

   ̀``shell 
    npm test 
 ̀`` 

   ## Release History 

   * 1.0.0 Initial  release   

    The results can be seen in Figure  3-16 .  

  Figure 3-16.     README.md formatted         

 



CHAPTER 3 ■ NODE MODULES

70

     Markdown  Plugin in WebStorm   
 WebStorm has a Markdown plugin that helps you display and work with Markdown files. To add the 
Markdown plugin or any other plugins you want, follow the steps below:

    1.    Open the “Preference” window by selecting “command” + “ , ” or top menu 
“WebStorm” ➤ “Preferences…”  

    2.    Select “Plugins.”  

    3.    Search for “Markdown” plugin.  

    4.    Click “Install.”     

 Next, toggle between the “Text” and “Preview” tabs to see the code and its results. See Figure  3-17 .    

     Publish Module to GitHub 
 Before we publish to npm, we will publish to GitHub. The first step is to initialize Git, just as we did in 
Chapter   1    . 

   $ git init 

   Next, you need to generate GitHub SSH keys on your computer. Follow the instructions in the following 
link:    https://help.github.com/articles/generating-an-ssh-key/      

 Now we can add the files, commit, and push the changes (Listing  3-8 ). 

  Figure 3-17.    Markdown plugin preview in  WebStorm         

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1
https://help.github.com/articles/generating-an-ssh-key/


CHAPTER 3 ■ NODE MODULES

71

     Listing 3-8.     Publish module to GitHub        

 $ git add . 
 $ git commit -m 'init commit' 
 $ git push --set-upstream origin master 

   Note that if you didn’t configure your Git with your GitHub credential, it will ask for your username and 
password. 

   Username for 'https://github.com': [your user name] 
 Password for 'https:// [your user name]@github.com': 

   You will see a confirmation in the Terminal, confirming that the repo was published. 

   To https://github.com/eladelrom/woodenlog. git   
  * [new branch]      master -> master 
 Branch master set up to track remote branch master from origin.    

   You may also visit the GitHub page to see your module README.md file and module files. See Figure  3-18 :  

  Figure 3-18.     GitHub woodenlog repo home page         

 



CHAPTER 3 ■ NODE MODULES

72

 Now, we are ready to publish to npm. In order to publish to npm, run the command: 

   $ sudo npm publish 

   Just like with GitHub, since we haven’t configured our user, npm will ask for authentication. See 
message below: 

   npm ERR! need auth auth required for publishing 
 npm ERR! need auth You need to authorize this machine using `npm adduser` 

   As you can see, it has given us the command in an error message. Type the command into the Terminal 
to add a username: 

   $ npm  adduser   

   Now that the user has been added, we can publish again: 

   $ npm publish 

   npm confirms that this publishing was correct:    

   + woodenlog@1.0.0 

   At this point, we can publish the library publically, install it from any computer, and implement the 
high-level API. To implement, we will use the “Tester” project we created at the beginning of the chapter, 
add the index.js file, edit and run the configuration and set the index.js file as the JavaScript file, just like 
we’ve done previously with the woodenlog project. 

 Inside the index.js file, paste the following code (see Listing  3-9 ): 

     Listing 3-9.    Implement  woodenlog API     

  var woodenlog = require('woodenlog'); 
 // woodenlog.configurate(null, 'white', 'green', 'red'); 

   woodenlog.log('just log!'); 
 woodenlog.warn('this is a warning!'); 
 woodenlog.error('this is an error!'); 

    Next, install the woodenlog module. In the Terminal, type in: 

   $ npm install woodenlog --save-dev 

   This will install woodenlog and update the project’s “package.json” file, just as we did in Chapter   1    . 
Open “package.json” and you can see the module added as a developer dependency: 

     "devDependencies": { 
     "woodenlog": "^1.0.1" 
   } 

   Run the project and you will see the following results in WebStorm Run Terminal. See Figure  3-19 :   

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 3 ■ NODE MODULES

73

     Summary 
 In this chapter, we looked at npm popular node modules; learned how to install Node.js; installed 
dependency modules locally, globally and using different module versions options and flags; and configured 
an npm package.json file. 

 We created our own first node modules, learned how to create a GitHub project repository, created our 
module code and ran the code, learned which files to ignore, and created test stubs using mocha and chai. 

 We created a Markdown file using the Markdown plugin in WebStorm and published our module to 
GitHub and npm. 

 In the next chapter, we will learn how to set up a PhoneGap / Cardova project.     

  Figure 3-19.     WebStorm Run Terminal results         

 



75© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_4

    CHAPTER 4   

 Cordova, PhoneGap & Ionic                          

 In this chapter, we will be learning about Cordova, PhoneGap and Ionic. Cordova enables us to write our 
code only once and deploy our app on just about any platform out there while still using the same code base. 
We will learn how to create projects, preview them in the platform we selected, and easily deploy our apps. 
We will also cover how to install plugins and learn about the distribution process. 

     Apache Cordova 
 Cordova is an  open-source mobile development framework  . It allows the use of HTML5, CSS3, and 
JavaScript for cross-platform development. Because of the technology stack of Cordova, using it will allow us 
to easily create and integrate MEAN stack apps. 

 Why Apache? Cordova is licensed under the  Apache License, Version 2.0  , which allows the royalty-free 
distribution of your app, making it free of charge worldwide. See the complete license here:    http://www.
apache.org/licenses/LICENSE-2.0      

 Cordova’s applications execute  within wrappers  , which are targeted to each platform you select and thus rely 
on plugins to access each device's own specific capabilities. Some examples include camera, push notifications, 
and device status. In fact, you can view all of the plugin options Cordova offers and filter by device here: 

    https://cordova.apache.org/plugins/      

 By using the Cordova platform, we can deploy the same code base across the most popular  platforms 
and stores  , such as Android, iOS, and Web, without having to re-implement with each platform's specific 
language and tool set. Additionally, we can create a WebView (special browser window) that is able to access 
device-level APIs. 

 ■   Note    The main advantage of Cordova is that it is budget-friendly and can cross-platform, removing the 
need to write specific platform native code.  

 Writing native code for each platform has its own  advantages.  , and many large Fortune 500 companies 
have specific teams dedicated to each platform. But the ability to re-use your code and deploy it on multiple 
devices and stores can reduce the development effort and resources for a project. This will allow startups 
and smaller-sized companies to gain a presence in all popular stores and platforms, just like the “big boys,” 
while utilizing a single development team. 

 Cordova is supported by all major  platforms  , including iOS mobile and desktop, Android, Bada, 
BlackBerry, Windows mobile and desktop, Amazon Fire OS, and much more. Visit Cordova to see the list of 
supported platforms: 

    https://cordova.apache.org/contribute/      

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://cordova.apache.org/plugins/
https://cordova.apache.org/contribute/


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

76

     Cordova “Hello World” 
 You actually already have all of the tools you will need to get started. You will be utilizing Node.js and npm, 
which we have covered extensively in previous chapters. Let’s begin. 

 The most common way to install Cordova and plugins and maintain a Cordova project is to use the 
Command Line Interface ( CLI  )       utility, such as Mac OSX’s Terminal application. Open Terminal. 

 To install Cordova, you will need to install the code globally using npm: 

   $ sudo npm install -g cordova 

 ■     Note    Notice we use the “g” flag to ensure that the code will be available to us locally, for our specific Hello 
World project, but also globally for future projects. As a rule of thumb, any package that provides command-line 
tools that you will need to use on multiple projects should be installed globally.  

 Notice that we have installed Cordova as a  “sudo” in order   to allow npm to make any changes it needs 
in our environment. If you encounter any errors, simply try to run the same command again or follow the 
instructions that the error has given you. 

 Next, create your first Cordova app: 

   $ cordova create HelloCordova 

   Now we can navigate into the folder and add a platform: 

   $ cd HelloCordova 
 $ cordova platform add browser 

   Once these commands are run in the Terminal, you should be able to see the same or similar output in 
your Terminal. See Figure  4-1 .      



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

77

     Running Your App in Cordova 
 Lastly, run the project in the platform. In the Terminal, run the following command: 

   $ cordova  run browser   

   This command will execute and open up the app we just created in your browser. See Figure  4-2 .  

  Figure 4-1.    Terminal  output   installing Apache Cordova       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

78

 At any time, you can terminate the app by typing ctrl+c in Terminal. The project’s files just created are 
shown in Figure  4-3  and described in the following list. 

•      config.xml   : This file provides information about the app and specifies parameters 
affecting how it will work, such as whether it responds to orientation shifts or not.  

•     www   : This folder holds the actual web app HTML, CSS, and JS files.  

•     Plugins   : The plugins folder contains the plugins your app will be using. The plugins 
are an interface for Cordova and native components to communicate with each 
other, as well as bindings to standard device APIs. These enable you to invoke native 
code from JavaScript.  

  Figure 4-2.    Apache Cordova deployed in the  browser         

  Figure 4-3.    HelloCordova project list of files       

 

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

79

•     Platforms   : This folder contains the platforms you will be using, such as Android, 
BlackBerry, iOS, and Windows Mobile.  

•     Hooks   : The hooks folder holds special scripts, which can be added by applications, 
plugin developers, or even by your own build system, to customize Cordova 
commands.    

 Figure  4-4  (from    https://cordova.apache.org/docs/en/latest/guide/overview/index.html      )  
provides a high-level architectural overview of the Cordova platform. The “Web App” is your “www” folder 
and “config.xml” file, and the HTML rendering targets specific platforms and allows added plugins to 
interact with specific native code from JavaScript.   

     Cordova  Platform Deployment   
 So far, we have deployed a simple “Hello World” Cordova app on a web browser. Now let’s say we want to 
add a platform, such as iOS. In the Terminal of the project, type ctrl+c to stop the app, and then: 

   $ cordova platform add ios 

  Figure 4-4.    Cordova app  architecture         

 

https://cordova.apache.org/docs/en/latest/guide/overview/index.html


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

80

   Next, navigate to the project files. In the Terminal, type: 

   $ cd platforms/ios/ 

   Lastly, we can now open the project in Xcode, which we already installed back in Chapter   1    . In the 
Terminal, type: 

   $ open HelloCordova.xcodeproj 

   The project will open in Xcode if the SDK was properly. See Figure  4-5 .  

 The deployment of each platform is different. For iOS, the process consists of the following steps:

    1.     Deploy App to Emulator : Test the app in the iOS Simulator.  

    2.     Deploy to an Actual Device : Follow the same iOS developer steps as if you were 
to deploy a native iOS app.     

 To see the app running in the emulator, all you have to do is select the type of device you want your 
app to run under in Xcode. Click the “HelloCordova” icon on the top menu, then select “HelloCordova” and 
select one of the iOS Simulators from the available list. We chose the iPhone 6 (See Figure  4-6 ):  

  Figure 4-5.    Opening Cordova app iOS platform in  Xcode         

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

81

 Now that you have selected a device, hit the play icon on the top menu to begin the simulator and the 
stop icon to close it. See Figure  4-7  to watch our app running in the simulator.     

 Next, navigate back to the platform folder:    

   $ cd .. 

   To remove the iOS or any other platform, all you have to do is type the following command: 

   $ cordova platform remove ios 

  Figure 4-6.    Select iOS device in Xcode       

  Figure 4-7.    Cordova Hello World app running in iOS Simulator for iPhone 6       

 

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

82

   Of course you would need to replace the platform name, depending on whichever platform you want to 
remove. 

 You can also add a specific version of a platform. For example, to add the iOS platform version 4.0.0: 

   $ cordova platform add ios@4.0.0 

   Deployment to the iOS store using the Apple iOS Developer Program will be covered later on in this 
book (see “Platform Deployment”). You can jump to that section of the book and have the app installed and 
tested on your actual device if you are anxious to do so. 

 Notice we used “browser” and now “iOS” as our platform name, but you can use any platform available 
from the list we previously mentioned. They can be viewed here: 

    https://cordova.apache.org/contribute/      

 A few helpful Cordova commands:

    1.    “cordova –v”: Displays the cordova version  

    2.    “cordova –h”: Provides a list of commands and options  

    3.    “cordova platform update   ios@4.0.0    ”: Updates a platform to a specific version  

    4.    “cordova platform update   ios    ”: Updates a platform to the latest version. At the 
time of writing, iOS latest version is 4.1.1.         

     Cordova  Plugins   
 The Apache Cordova project maintains a set of plugins known as the core plugins, which are available on 
most platforms. These core plugins allow your application to access device capabilities such as battery, 
camera, and contacts. 

 In addition to the core plugins Cordova maintains, there are also many third-party plugins, which 
provide additional features not necessarily available on all platforms. 

 You can search for Cordova plugins using the command line search or directly on npm. You are also 
able to develop your own plugins, as described in the  Plugin Development Guide   on the Cordova website. 
Some plugins may be necessary, for example, to communicate between Cordova and custom native 
components. 

 To find a plugin, visit the plugin page, where you can sort by platform and/or quality:    http://cordova.
apache.org/plugins/      

 The command line can be used to search for features. For example, let’s say we want to find a push 
notifications feature for our platform. In the command line, type: 

   $ cordova plugin search notifications 

   This opens up your default browser with the following URL: 

    http://cordova.apache.org/plugins/?q=notifications      

 See Figure  4-8  below.  

https://cordova.apache.org/contribute/
http://mailto:ios@4.0.0/
http://mailto:ios@4.0.0/
http://cordova.apache.org/plugins/
http://cordova.apache.org/plugins/
http://cordova.apache.org/plugins/?q=notifications


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

83

 To install a plugin, type the name of the plugin you would like to add. The following command would 
not be successful: 

   $ cordova plugin add phonegap-plugin-push 

   If you try to install using the command above, it will spit out an error message in the Terminal because 
it’s expecting a sender ID (see Figure  4-9 ), and you will see the following error message:  

   Error: Variable(s) missing (use: --variable SENDER_ID=value). 

   Since this is a third-party plugin, it was configured to require a parameter. Clicking on the plugin in the 
Cordova search results page we opened earlier will result in the Cordova page opening up the npm project 
URL, located here:    https://www.npmjs.com/package/phonegap-plugin-push      

 Follow the Installation link and read the author notes to see what the installation requires. In our case, it 
will need the store ID for Android. Since we will not be installing this plugin for the Android platform, we can 
install it with the default ID of “XXXXXXX.” Let’s try again: 

   $ cordova plugin add phonegap-plugin-push --variable SENDER_ID="XXXXXXX" 

  Figure 4-8.    Searching plugins result  page         

 

https://www.npmjs.com/package/phonegap-plugin-push


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

84

   This time it successfully installed the plugin. Additionally, there are other core plugins that are worth 
mentioning:

•    Basic Device Information (Device API): cordova-plugin- device    

•   Network Connection Events: cordova-plugin-network-info  

•   Battery Events: cordova plugin add cordova-plugin-battery-status  

•   Accelerometer: cordova plugin add cordova-plugin-device-motion  

•   Compass: cordova plugin add cordova-plugin-device-orientation  

•   Geolocation: cordova plugin add cordova-plugin-geolocation  

•   Camera: cordova plugin add cordova-plugin-camera  

•   Media Capture: cordova plugin add cordova-plugin-media-capture  

•   Media Playback: cordova plugin add cordova-plugin-media  

•   Access Files: cordova plugin add cordova-plugin-file  

•   Network File Access: cordova plugin add cordova-plugin-file-transfer  

•   Notification via Dialog Box: cordova plugin add cordova-plugin-dialogs  

•   Notification via Vibration: cordova plugin add cordova-plugin-vibration  

•   Contacts: cordova plugin add cordova-plugin-contacts  

•   Globalization: cordova plugin add cordova-plugin-globalization  

•   Splashscreen: cordova plugin add cordova-plugin-splashscreen  

•   Open New Browser Windows (InAppBrowser): cordova plugin add cordova-plugin-
inappbrowser  

•   Debug Console: cordova plugin add cordova-plugin-console    

 To install these plugins, we can use the same syntax that we used to install the “phonegap-plugin-push” 
plugin: 

   $ cordova plugin add [plugin name] 

   Also notice that some plugins rely on other plugins. For example, “cordova-plugin-media-capture” 
relies on “cordova-plugin-file.” The plugin will be automatically installed on all platforms we add—in our 
case, iOS and browser. 

 To see the plugin list, type the following command:    

   $ cordova plugin list 

  Figure 4-9.    Terminal output for installing phonegap-plugin-push       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

85

   In the back stage, you can see that the “config.xml” added configuration for these plugins automatically. 
For example, for the push notification, there is an entry: 

       <feature name="PushNotification"> 
         <param name="ios-package" value="PushPlugin" /> 
     </feature> 

   Visit the plugins folder inside the “www” folder and you will see the plugin was added correctly. See 
Figure  4-10 :  

   Cordova  Plugman   
 In addition to installing plugins manually, as we have done, Cordova utilizes a tool called “Plugman” to help 
you manage plugins. 

 To install the manager, run this command: 

   $ sudo npm install -g plugman 

   To see a help printout and a version, just as we’ve done in Cordova, use the “-h” and “-v” flags: 

   $ plugman –h 
 $ plugman –v 

   The Plugman tool implements the plugin on all device APIs and disables them by default—you decide 
when to enable the plugin. It also supports two different ways of adding and removing plugins, depending 
on your choice of workflow, discussed in the Overview:

    1.    If you use a cross-platform workflow, you will need to use the Cordova CLI utility 
to add plugins, as described in the Command-Line Interface, which is what we 
showed you earlier in the chapter. As you have seen, CLI sets the plugin for all of 
the platforms at once.  

    2.    If you want to use a platform-centered workflow, you will need to use a lower-
level Plugman CLI, separately, for each targeted platform.     

 Here’s an example of using Plugman for a specific platform. Type the following commands: 

   $ cd ~/desktop 
 $ cordova create TestPlugMan 
 $ cd TestPlugMan/ 
 $ cordova platform add android 
 $ plugman install --platform android --project platforms/android --plugin cordova-plugin-console 

  Figure 4-10.    Plugin folder shows installed plugins       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

86

   In this example, we navigated to our desktop directory, created a new project called “TestPlugMan,” 
added the Android platform and installed a console plugin to that specific platform. 

 Additionally, Plugman comes handy when you want to create a plugin on your own and it’s not 
published yet.      

     Cordova Distributions 
 Apache Cordova is the engine that powers the  distribution solutions   . Distributions contain additional tools 
to help the developer deploy and develop apps, which is why they differ in command from Cordova, but 
technically they do the same thing. 

 Each tool can provide command line tools, JavaScript frameworks, and cloud services that extend 
beyond Cordova. 

 There are many distributions to choose from: Adobe PhoneGap, Ionic, Monaca, Onsen UI, Visual 
Studio, TACO, Telerik, GapDebug, App Builder, Intel XDK, Cocoon, and Framework7. 

 You can read more about these here:    https://cordova.apache.org/      or visit the sites of each 
distribution directly. 

 PhoneGap, the most popular distribution, offers easy cloud deployment, while Ionic is built from CSS with 
superpowers (“Sass”) and optimized for AngularJS, so both are great options for MEAN stack types of apps. 
Recently, Ionic changed their pricing model, and it’s now free for developers up to using limited resources and 
monthly charges based on resources used. See more information here:    https://ionic.io/pricing        

     PhoneGap Distribution 
 We have chosen Adobe PhoneGap as our example of a Cordova distribution. The reason we chose PhoneGap is 
that it’s an open source distribution and the original and most popular of Apache Cordova distributions available. 

 The benefit of using PhoneGap over Cordova directly is that it has a built-in feature that enables 
developers to deploy their app in the cloud. This means that you may not need to open the app in Xcode 
or any other native development SDK in order to publish your app, and you can use additional tools and 
commands offered by the distribution. 

 In the section below, we will install PhoneGap, start coding, and show you how to preview the 
PhoneGap App. 

      Installing   PhoneGap 
 For installing PhoneGap, Adobe offers either a CLI installation or a desktop app. 

 If you prefer the desktop app, simply download it here: 

    https://github.com/phonegap/phonegap-app-desktop/releases/download/0.2.3/PhoneGapDesktop.dmg      

 To install the CLI, type in the Terminal: 

   $ sudo npm install -g phonegap@latest 

   You can confirm that the installation was successful by typing “phonegap” in the Terminal command line. 
 In the future, when new versions of PhoneGap are released, you can upgrade your PhoneGap 

installation by using the following command: 

   $ sudo npm update -g phonegap 

https://cordova.apache.org/
https://ionic.io/pricing
https://github.com/phonegap/phonegap-app-desktop/releases/download/0.2.3/PhoneGapDesktop.dmg


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

87

        Install PhoneGap Mobile  App   
 Phonegap offers developers distribution for mobile apps on devices and allows tests and previews of 
PhoneGap mobile apps across platforms without additional platform SDK setup, which brings tremendous 
value. It provides access to the PhoneGap core APIs providing access to the native device features without 
having to install plugins or compile locally first.

    1.     iTunes :    https://itunes.apple.com/app/id843536693       

    2.     Google Play :    https://play.google.com/store/apps/details?id=com.adobe.
phonegap.app       

    3.     Windows Phone Store :    http://www.windowsphone.com/en-us/store/app/
phonegap-developer/5c6a2d1e-4fad-4bf8-aaf7-71380cc84fe3          

 Additionally, you can find the app directly on a device’s store using the “PhoneGap Developer” 
keyword. See the app installed on an iPhone, Figure  4-11 .   

      Start Coding   
 We have already installed PhoneGap and the PhoneGap Developer app, and now we can create our first 
PhoneGap app. To get started, we will utilize PhoneGap to create the basic scaffolding for our app. In the 
Terminal, type the following command: 

  Figure 4-11.    PhoneGap Developer app install on an  iPhone         

 

www.allitebooks.com

https://itunes.apple.com/app/id843536693
https://play.google.com/store/apps/details?id=com.adobe.phonegap.app
https://play.google.com/store/apps/details?id=com.adobe.phonegap.app
http://www.windowsphone.com/en-us/store/app/phonegap-developer/5c6a2d1e-4fad-4bf8-aaf7-71380cc84fe3
http://www.windowsphone.com/en-us/store/app/phonegap-developer/5c6a2d1e-4fad-4bf8-aaf7-71380cc84fe3
http://www.allitebooks.org


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

88

   $ phonegap create helloPhoneGap 

   This command created a folder for us named “helloPhoneGap,” which holds everything we will need to 
get started. 

 Navigate into that folder and see what was created. 

   $ cd helloPhoneGap/ 

   As you can see, it created a similar structure as Cordova with a “www,” platforms, plugins, hooks folders, 
and a config.xml and package.json file.  

     Preview Your PhoneGap App 
 To preview the application that was created, all there is left to do is type one command into the Terminal: 

   $ phonegap serve 

   This command will start up the app server and advise us of the IP address it is listening in on. In our 
case, it’s listening in on 192.168.1.65:3000. See Figure  4-12 .  

 Now, open your device, such as iPhone or Android, and in the PhoneGap Developer app we installed, select 
the IP address the app server is listening in on (192.168.1.65:3000 in our case, but it will be different for you). 

 PhoneGap will build and transfer the files via Socket.IO to the device automatically. See Figure  4-13  for 
a preview of the app. Figure  4-12  shows in the Terminal that the files were moved successfully.  

  Figure 4-12.    Starting PhoneGap app  server and moving files to device         

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

89

 You can see the value of using PhoneGap over Cordova; we didn’t have to install Xcode or follow the 
tedious process of Apple in order to run the app on our device. In fact, the PhoneGap Developer app gives us 
access to the device API, so that we can also easily access our device hardware.  

     PhoneGap Development 
 Now that we have PhoneGap installed and we know how to install and preview our app on our devices, we 
can go ahead and make changes in our app and start the actual development process. 

 We will be using WebStorm to import our project. However, feel free to use any Integrated Development 
Environment ( IDE  )       you would like. 

 In WebStorm, select “Open” on the Welcome page (see Figure  4-14 ). If you have any projects open, 
close them and the Welcome page will appear.  

  Figure 4-13.    PhoneGap  Developer app preview   on iPhone       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

90

 Next, it will open up the “Open File or Project” window. Then, WebStorm asks us to define the project 
root directory. Navigate to where you placed the “helloPhoneGap” project and click on “Project Root” 
(see Figure  4-15 .)  

  Figure 4-14.     WebStorm Welcome window         

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

91

 Click “Finish” and that’s all there is to it. WebStorm will open up with the project configured 
(see Figure  4-16 ).  

  Figure 4-15.    Selecting project  root   in WebStorm       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

92

 Navigate into the “www” folder and open the index.html file in WebStorm—see Figure  4-16  and Listing  4-1 . 

     Listing 4-1.     Index.js content     

 <body> 
     <div class="app"> 
         <h1>PhoneGap</h1> 
         <div id="deviceready" class="blink"> 
             <p class="event listening">Connecting to Device</p> 
             <p class="event received">Device is Ready</p> 
         </div> 
     </div> 
     <script type="text/javascript" src="cordova.js"></script> 
     <script type="text/javascript" src="js/index.js"></script> 
     <script type="text/javascript"> 
         app.initialize(); 
     </script> 
 </body> 

   The code is straightforward; it shows a title called “PhoneGap” and has a div with text that will change 
according to the device. Then, it loads the Cordova.js and js/index.js scripts and initializes the app. 

 Change the heading tag from “Hello”: 

   <h1>PhoneGap</h1> 

  Figure 4-16.    WebStorm with helloPhoneGap project  configured         

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

93

   To “Hello PhoneGap”: 

   <h1>Hello PhoneGap</h1> 

   Now, to see this change on the actual device, all you have to do is run the server command again in the 
Terminal: 

   $ phonegap serve 

   As you recall, WebStorm has a “Terminal” window, so you don’t need to open up the Mac Terminal—
simply use the built-in Terminal. To stop the local server created by PhoneGap, click ctrl-c. 

 You should be able to see the change we have made on your actual device—see Figure  4-17 .    

     Ionic 
 A second Cordova distribution we would like to point out and cover is Ionic. Ionic distribution is geared 
toward the  AngularJS framework  . 

 Similar to PhoneGap, Ionic has built-in features that enable developers to develop and deploy their app 
easily. Additionally, it will automatically set your project with structure, libraries, and settings according to 
AngularJS best practices. 

  Figure 4-17.     “Hello PhoneGap”   is showing on device       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

94

 In this section, we will install Ionic, add plugins, preview the app we will be creating, preview the app in 
an iOS simulator, and review the Ionic resources. 

 To get started, install Ionic using the following command in the Terminal: 

   $ sudo npm install -g ionic 

   That command will install the Ionic  CLI:      https://www.npmjs.com/package/ionic     . It is a Cordova 
decorator, meaning all Cordova commands will work plus additional commands added be ionic. 

 Once Ionic is installed, you can start a new project. We’ll call the project “helloionic”: 

   $ ionic start helloionic 

   Ionic adds the iOS application by default and uses the “tabs” template project. The command is the 
same as writing tabs at the end: 

   $ ionic start helloionic tabs 

   See the Terminal output in Figure  4-18 :  

 Ionic offers currently three template starters: tabs (default), sidemenu, and blank. 
 Next, let’s start a new project in WebStorm so we can explore the project easily. Similar to how we 

imported the “helloPhoneGap” project into WebStorm, we’ll do the same with “helloionic”(see Figure  4-19 ). 
As you recall:

    1.    Select “Open.”  

    2.    Next, select “Source files are in a local directory, no Web server is yet configured.”  

    3.    Now, browse and set the project root, “helloionic,” and click “OK”      

  Figure 4-18.    Ionic  “helloionic” project output         

 

https://www.npmjs.com/package/ionic


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

95

 Ionic automatically created our project and included the same files and folder we have seen before in 
Cordova and PhoneGap, such as index.html, hooks, platforms, plugins, config.xml, bower.json, and package.json. 

 Additionally, Ionic includes all the basic AngularJS  structures and templates   to get you started as soon 
as possible. For instance:

•    www/js/app.js: App file is a global place for creating, registering, and retrieving 
AngularJS modules.  

•   www/js/controllers.js: AngularJS controller is the glue that holds the model and view 
together.  

  Figure 4-19.    “helloionic” configured in  WebStorm         

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

96

•   www/js/services.js: AngularJS services are substitutable objects that are wired 
together using  dependency injection (DI)     .  

•   www/templates: The view representation includes the following: chat-detail.html, 
tab-account.html, tab-chats.html, tab-dash.html, tabs.html.  

•   www/lib: Includes the following libraries: CSS, SCSS, fonts, and the js folder, which 
includes Angular libraries and Ionic libraries.  

•   www/lib/ionic/scss/ionic.scss: SCSS is described on    http://sass-lang.com/      as 
“CSS with superpowers.” Sass is a preprocessor for generating CSS that adds power 
and elegance to the basic language.    

 In the next chapter, we will be diving deep into AngularJS, folder structure, and framework, and we 
don’t want to get sidetracked from the chapter objective. Go over the code and you will get an idea, or review 
this project again after you’ve completed Chapter   5    . 

     Ionic Front-end 
 Ionic excels when it comes to front-end, offering  pre-made UI components   ready to use across different 
platfroms. To see the available UIs, check the Ionic component page: 

    http://ionicframework.com/docs/components/      

 Additionally, Ionic follows OS-specific guidelines for following styles, behaviors, and transitions to fit the 
platform you choose. For example, the menu toggle button is on the left in iOS but on the right in Android. 

 Ionic also put lots of effort into performance. For instance, for handling lists, Ionic introduced a 
“collection-repeat” directive to replace ng-repeat and its only showing list that are displaying instead of 
rendering all the items in a collection.  

     Add  Plugins   in Ionic 
 Adding plugins or re-installing in Ionic is the same as Cordova and PhoneGap: 

   $ ionic plugin add [plugin name] 

   That command will register the plugin inside the “package.json,”    just as we’ve seen in Cordova and 
PhoneGap.  

     Preview Your App 
 To run the project, in the Terminal either inside of WebStorm or directly in Terminal, after changing the 
directory to the Ionic library (“cd helloionic”), type: 

   $ ionic serve 

   The  “serve” command   deploys the project in the browser. See Figure  4-20 :  

http://sass-lang.com/
http://dx.doi.org/10.1007/978-1-4842-2044-3_5
http://ionicframework.com/docs/components/


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

97

 Use the lab flag to see your app in different platforms (see Figure  4-21 ).  

   $ ionic serve –lab 

  Figure 4-20.    “helloionic” deployed in the browser       

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

98

   Also worth mentioning:

    1.    livereload flag: Watch for changes and update your app automatically.  

    2.    c flag: Print the console logs to the Terminal.     

 Let’s put it all together: 

   ionic serve --c --lab --livereload 

  Figure 4-21.    Ionic serve  with lab flag         

 



CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

99

         iOS Simulator      
 To deploy the same project on iOS, you need to install the “ios-sim” project using the following command: 

   $ sudo npm install -g ios-sim 

   Then you can run the project in the simulator using the following command (see output in Figure  4-22 ):  

   $ ionic run ios 

   You can also open the Ionic project in Xcode by typing this command in the Terminal: 

   $ open platforms/ios/HelloCordova.xcodeproj 

   In Xcode, build and run the current scheme, the play icon, just as we did in Chapter   1    . Ionic supports 
the  Crosswalk Project   (   https://crosswalk-project.org/     ). Crosswalk is an HTML application runtime 
originally sponsored by Intel and built on open source foundations. It extends the web platform and adds 
new capabilities, ensuring they are available on your build. Benefits include:

  Figure 4-22.    “helloionic” deployed on  iPhone 6         

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1
https://crosswalk-project.org/


CHAPTER 4 ■ CORDOVA, PHONEGAP & IONIC

100

    1.    Improved performance and visuals using HTML5, CSS3, and JavaScript  

    2.    Access to latest recommended and emerging web standards  

    3.    Ability to try experimental APIs not supported by mainstream web browsers  

    4.    Control over the update cycle of your app by distributing it with its own runtime.  

    5.    Debug easily using Chrome DevTools     

 To install Crosswalk, run the following commands: 

   $ npm install -g ios-deploy 
 $ ionic browser add crosswalk 

   After installing Crosswalk, you can provide a rich experience on all Android 4.x devices. Ionic will 
automatically embed Crosswalk for your Android build, ensuring everything is working correctly. 

 You can use the browser list command to see the different versions of Crosswalk you can install: 

   $ ionic browser list 

        Ionic  Resources   
 Next, when you are ready to deploy, you’ll need icons and a splashscreen for your app on each platform you 
deploy. This can add a lot of work, since you need to follow each platform’s guidelines. Ionic handles that 
gracefully. All you have to do is follow these templates for icons and splashscreens:

    1.    Icons:    http://code.ionicframework.com/resources/icon.psd       

    2.    Splashscreens:    http://code.ionicframework.com/resources/splash.psd          

 Place the icon and splash file template in the Ionic resource folder (“helloionic/resources”) and run this 
command: 

   $ ionic resources 

   Alternatively, you can run “ionic resources” first and, once the directory and files are created, add PSD 
and run the command again. 

 Running the command will generate all the files and take care of parameters such as image dimension, 
OS Device, and landscape/portrait. That command will also upload the files to Ionic’s servers and create the 
correct platform folders and edit the “config.xml” file for you automatically.      

     Summary 
 In this chapter, we learned about Apache Cordova, created a Cordova “Hello World” sample app, and 
learned how to run this app. We studied the different platform deployments that Cordova supports and 
also the different Cordova plugins available and where to locate them. We covered several of the Cordova 
distributions, such as PhoneGap and Ionic. We installed PhoneGap and the PhoneGap Mobile App and 
created a PhoneGap Hello World sample project. We began coding and previewed our PhoneGap app on our 
specific device. Lastly, we configured WebStorm IDE with the PhoneGap project we had created. We then 
created and configured an Ionic project, previewed some of the features and commands that can help you 
use Ionic to its fullest potential, and deployed your app in the browser and on iPhone 6. 

 In the next chapter, we will learn about AngularJS and how to create apps in AngularJS, which can be 
deployed using Cordova, PhoneGap, and Ionic on most popular devices. This will allow us to leverage and 
use the same codebase to deploy our app without having to write native code for each specific device.     

http://code.ionicframework.com/resources/icon.psd
http://code.ionicframework.com/resources/splash.psd


101© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_5

    CHAPTER 5   

 AngularJS                          

 AngularJS is the “A” in the MEAN stack. AngularJS enables developers to create  front-end rich client side 
applications  . The pieces are loosely coupled and structured in a modular fashion, resulting in less code to 
write, added flexibility, easier-to-read code, and quicker development time. 

 At the end of the day, AngularJS simply allows the developer to put together a toolset for building a 
framework, which will fit your exact application’s needs. Additionally, AngularJS is well structured and built 
to be fully accessible, in accordance with Accessible Rich Internet Applications ( ARIA  )       so your app or site 
can be built correctly for people with disabilities. AngularJS also gets along very well with other JavaScript 
libraries; its features can be easily modified or replaced to fit your exact needs. 

 We will be covering AngularJS throughout this chapter, diving deep into one of its most popular skeleton 
projects, called “Angular  Seed  .”    We will be looking at each piece individually, which will allow us to gain a 
full understanding of the AngularJS framework. Much of the work we have done in past chapters will come 
in handy here, since we won’t need to do much installation and we can hit the ground running right away. 

 ■   Note    The word “Angular” means having multiple angles or measured by an angle. Visit    https://
angularjs.org/      to learn more about AngularJS.  

 An AngularJS best practice is using a  Model View Controller (MVC) style architecture        , and in fact, 
AngularJS supports coding with seperation of concerns. Splitting code into different piles is practiced in 
most programming languages, and applies to AngularJS as well. 

 ■   Note   AngularJS MVC includes the model, which is the application’s data; the view, which is the HTML and 
directives (more on these later in this chapter), and the controller, which is the glue holding the model and the 
view together. The controller takes the data, applies business logic, and sends the results to the view.  

 The current version of AngularJS is version 1, AKA  AngularJS1  , however in 2015 a developer preview of 
AngularJS2 was released, and it’s in Release Candidate 5 (RC5) status at the time of this writing. There are 
differences between the two versions, and it’s a good idea to get familiar with AngularJS version 2 now to be 
able to migrate your code if you ever need to. 

 AngularJS2’s goal is for users to be able to use the same code to develop across all platforms, which 
aligns very well with this book and will make it easier for us to upgrade to Angular 2. 

https://angularjs.org/
https://angularjs.org/


CHAPTER 5 ■ ANGULARJS

102

     Angular Seed Project 
 You can create your project from scratch, download the necessary libraries, test, build scripts, and create 
your own folder structure, or you can download a skeleton project to quickly bootstrap your project. You can 
use a pre-set dev environment so that you can begin developing quickly and efficiently, following AngularJS’s 
best practices. 

 There are pros and cons of using a  boilerplate skeleton code  . You can decide on your own if you want to 
use this skeleton for future projects, but it is a good way to start your first AngularJS app and learn the ropes. 

 A good example of a project boilerplate skeleton project to use is “angular-seed”; visit the page on 
GitHub to learn more about the project:    https://github.com/angular/angular-seed     . 

 “Angular-seed” includes the AngularJS framework as well as development and testing tools to help you 
start coding immediately. 

  WebStorm   already includes a copy of angular-seed, so you can get up and running quickly. Open 
WebStorm and close any open projects, then wait for the welcome screen to come up. 

 On the welcome screen, select “Create New Project” ➤ “AngularJS” from the left menu—see Figure  5-1 .  

  Figure 5-1.    Create New Project: Choose  Project Directory window         

 Under “New Project” choose the location and name of the app as “angular-seed.” Click “Create” and the 
new project opens up—see Figure  5-2 .  

 

https://github.com/angular/angular-seed


CHAPTER 5 ■ ANGULARJS

103

 Now that we have the project downloaded, we can fetch all of the libraries we will need. “Angular-seed” is 
set with a preconfigured npm command to automatically run and install all of these libraries. In the command 
line, simply type the following in the location of the project: 

   $ sudo npm install 
 $ sudo bower install --allow-root 

   That’s it! These commands install all the libraries we need from npm and Bower. Now we have all we 
need to start our project. To run the project, all we have to do is run this command: 

   $ sudo npm start 

   Navigate to the following URL, or use the “open” command in the second command line to see the app. 
See Figure  5-1 . 

   $ open http://localhost:8000 

   Now, the project is ready (see Figure  5-3 ). If you want to shut down the server, click ctrl+c.  

  Figure 5-2.    “angular-seed” project in  WebStorm         

 



CHAPTER 5 ■ ANGULARJS

104

 Now that we have the project set up in WebStorm, we can run the project commands from the 
WebStorm Terminal window. Type “npm start” instead of using the Mac Terminal application—see the 
WebStorm Terminal window in Figure  5-2 . 

 Let’s now dive into the files and libraries that the Angular-seed project includes.  

      Bower Component   
 The first folder under the “app” root folder is the “bower_components” folder, located here: “angular-seed/
app/bower_components.” When we run the command “npm install”, it’s actually running the “Bower install” 
command for us. 

 Open “angular-seed/bower.json” and you will see what has been installed for us in the Bower 
component  folder  : 

     "dependencies": { 
     "angular": "~1.5.0", 
     "angular-route": "~1.5.0", 
     "angular-loader": "~1.5.0", 
     "angular-mocks": "~1.5.0", 
     "html5-boilerplate": "^5.3.0" 
   }    

  Figure 5-3.    angular-seed My AngularJS app showing in a  Google Chrome browser         

 



CHAPTER 5 ■ ANGULARJS

105

   The “bower_components” folder includes the following libraries, and if you open the “README.md” 
file in each library, you can retrieve all of the information regarding that library. As you may recall, we have 
already configured WebStorm with a Markdown plugin, so when you open the  “README.md” file  , it should 
open in its pre-styled form.

•      Angular :   This is an AngularJS framework code base.  

•     Angular-loader   : This is the AngularJS loader library. It will allow your AngularJS 
scripts to be loaded in any order you want them. To implement this, place it on top of 
your index file (so that it's executed first) and proceed to load your files in any order 
you want. There are other libraries that can be used in order to achieve the same 
goal, such as “RequireJS” or “angular-async-loader,” or you can use more modern 
libraries such as “Browserify” or “webpack,” but feel free to search through these 
libraries online and explore.  

•     Angular-mocks   : The library is built to replace functionality for testing purposes. An 
example is the AngularJS $http service internal API, which is mocked by AngularJS's 
built-in $httpBackend in ngMocks. Why would you need this? You are able to create 
a mocked service and use the results in tests. If the backend is tested properly and 
the interfaces are defined clearly, there will be a clean separation of concerns and 
the testing strategy will be efficient.  

•     Angular-route   : The $route library is used for deep-linking URLs to controllers and 
views. $route API listens for $location.url() change event and then tries to map a path 
to route definition; more about that later in this chapter.  

•     html5-boilerplate   : HTML5 boilerplate code is aimed at enabling you to build faster 
and more enterprise-grade web apps or sites. You can check the project and see what 
it contains here:    https://html5boilerplate.com/     . The HTML5 boilerplate includes 
analytics, icons, Normalize.css, jQuery, and Modernizr configured Apache setting 
codes to  increase   performance.     

      App Layout File   
 The “index.html” file is the app entry point layout file (the main HTML template file of the app). It holds the 
Bower components, styles, routes, controllers, directives, filters, and components. See Listing  5-1 . 

     Listing 5-1.    App layout file  index.html     

    <div ng-view></div> 

     <div>Angular seed app: v<span app-version></span></div> 

     <!-- In production use: 
   <script src="//ajax.googleapis.com/ajax/libs/angularjs/x.x.x/angular.min.js"></script> 
   --> 
   <script src="bower_components/angular/angular.js"></script> 
   <script src="bower_components/angular-route/angular-route.js"></script> 
   <script src="app.js"></script> 

https://html5boilerplate.com/


CHAPTER 5 ■ ANGULARJS

106

   <script src="view1/view1.js"></script> 
   <script src="view2/view2.js"></script> 
   <script src="components/version/version.js"></script> 
   <script src="components/version/version-directive.js"></script> 
   <script src="components/version/interpolate-filter.js"></script>    

    When using the AngularJS script tag, AngularJS will be integrated and initialized automatically. 
 Notice that the scripts are set at the bottom of the page, which improves the app load time. If the scripts 

had been at the top,  HTML loading would   have been blocked by the loading of the JS scripts. 
 It is recommended that you place the “ng-app” at the root of the app, usually on the “html” tag. This 

will enable AngularJS to bootstrap your app automatically. Also, it is a good idea to add the “ng-strict-di” 
directive on the same element as “ng-app” to the HTML tag to ensure the app is annotated correctly. It is 
recommended that you enable “ng-strict-di” in all of your scripts as soon as possible in order to prevent the 
app from breaking later on when the annotation is added.    

 ■   Note    To ensure that your app will be able to be minified once ready for deployment, a good practice is 
using “strict-di.” The app must fail to run when invoking functions that don’t use explicit function annotation. 
This means that the methods used must be declared. Using the “ng-strict-di” will ensure the app is confirming 
with dependency injection guidelines and will fail to run if not.  

 You can achieve this by using: 

   <html ng-app="myApp" ng-strict-di> 

   Add the following to each HTML tag: 

   <!DOCTYPE html> 
 <!--[if lt IE 7]>      <html lang="en" ng-app="myApp" class="no-js lt-ie9 lt-ie8 lt-ie7" ng-
strict-di> <![endif]--> 
 <!--[if IE 7]>         <html lang="en" ng-app="myApp" class="no-js lt-ie9 lt-ie8" ng-strict-
di> <![endif]--> 
 <!--[if IE 8]>         <html lang="en" ng-app="myApp" class="no-js lt-ie9" ng-strict-di> 
<![endif]--> 
 <!--[if gt IE 8]><!--> <html lang="en" ng-app="myApp" class="no-js" ng-strict-di> 
<!--<![endif]--> 

   The other entry layout file, “index-async.html,” holds the same content as “index.html,” but it loads the 
JS files asynchronously instead of synchronously. 

 These two index files are interchangeable, and either one can be used to build your app. “index-async.
html” loads scripts asynchronously, which usually gives you a faster bootstrap time, while “index.html”    
loads scripts synchronously, which is often a bit slower, but its code is easier to understand for someone new 
to the AngularJS framework (Listing  5-2 ). 

     Listing 5-2.    App layout file index-async.html   

  <script> 
     // load all of the dependencies asynchronously. 
     $script([ 
       'bower_components/angular/angular.js', 
       'bower_components/angular-route/angular-route.js', 



CHAPTER 5 ■ ANGULARJS

107

       'app.js', 
       'view1/view1.js', 
       'view2/view2.js', 
       'components/version/version.js', 
       'components/version/version-directive.js', 
       'components/version/interpolate-filter.js' 
     ], function() {    
       // when all is done, execute bootstrap angular application 
       angular.bootstrap(document, ['myApp']); 
     }); 
   </script> 
   <title>My AngularJS App</title> 
   <link rel="stylesheet" href="app.css"> 
 </head> 
 <body ng-cloak> 
   <ul class="menu"> 
     <li><a href="#/view1">view1</a></li> 
     <li><a href="#/view2">view2</a></li> 
   </ul> 

     <div ng-view></div> 

     <div>Angular seed app: v<span app-version></span></div> 

   </body> 
 </html> 

    AngularJS offers a bootstrap guide, which allows you to learn more about the initialization process—
specifically, how you can manually initialize an AngularJS project when necessary: 

    https://docs.angularjs.org/guide/bootstrap      

 In order for “index-async.html” to work, you will need to inject a piece of AngularJS JavaScript code 
into the HTML page. Luckily for Angular-seek, the project has a predefined script to help you do that. In the 
command line, just type the following code: 

   $ npm run update-index-async 

   The npm script copies the contents of the “angular-loader.js” file into the “index-async.html” HTML 
page. Note that you will need to run this script every time you update a version of AngularJS.    

 There are times that you will need to have even more control over the AngularJS framework and you 
may want to manually initialize AngularJS. Here is a simple example of manually initializing AngularJS 
(see Listing  5-3 ). 

     Listing 5-3.    Manually initialize  AngularJS     

  <!DOCTYPE html> 
 <html> 
 <body> 
 <script src="bower_components/angular/angular.js"></script> 

     <script> 
     angular.module('myApp', []) 

https://docs.angularjs.org/guide/bootstrap


CHAPTER 5 ■ ANGULARJS

108

       .controller('MyController', ['$scope', function ($scope) { 
         // TODO 
       }]); 

       angular.element(document).ready(function() { 
       angular.bootstrap(document, ['myApp']); 
     }); 
   </script> 
 </body> 
 </html> 

    Notice that, only once the AngularJS element received the “ready”    event will be dispatch result in 
bootstrap of AngularJS.  

     Partial Views 
 Creating partial views allows you to split the view into separate files. Think of each piece as a stand-
alone reusable UI module. “Angular-seed” promotes this type of architecture and comes with two partial 
 templates  :

    1.    angular-seed/app/view1/view1.html  

    2.    angular-seed/app/view2/view2.html     

 “view1.html” holds a paragraph tag with a copy—see below: 

   <p>This is the partial for view 1.</p> 

   “view2.html” holds a paragraph tag and a binding tag along with the version of the app—see below: 

   <p>This is the partial for view 2.</p> 
 <p> 
   Showing of 'interpolate' filter: {{ 'Current version is v%VERSION%.' | interpolate }} 
 </p> 

   “Angular-seed” gives us a taste of the data binding’s feature available in AngularJS. The code 
implements two-way data binding and connects the “view” to your “model” seamlessly using a reflection, 
meaning that once you change the JavaScript object (model), the HTML code (view) will be updated 
automatically. The result? View is updated without the need for your own DOM manipulation or event 
 handling  .  

     Styles 
 “app.css” is the default  stylesheet   for the app. It can be used as the starting point for you to build upon. See 
the CSS code created for us in Listing  5-4 . 

     Listing 5-4.    app.css stylesheet   

  .menu { 
   list-style: none; 
   border-bottom: 0.1em solid black; 



CHAPTER 5 ■ ANGULARJS

109

   margin-bottom: 2em; 
   padding: 0 0 0.5em; 
 } 

   .menu:before { 
   content: "["; 
 } 

   .menu:after { 
   content: "]"; 
 } 

   .menu > li { 
   display: inline; 
 } 

   .menu > li:before { 
   content: "|"; 
   padding-right: 0.3em; 
 } 

   .menu > li:nth-child(1):before { 
   content: ""; 
   padding: 0; 
 } 

         Controllers 
 The concept of controller is not new; it’s the “C” in the “MVC” (“Model-View-Controller”) pattern and acts as 
the glue between the view (HTML) and model (JavaScript object). In AngularJS, the controller is defined by a 
 JavaScript constructor function   that used to augment what AngularJS calls a  $scope  . 

 ■   Note   In AngularJS, the $scope is the owner or context of the application’s variables and functions. Once 
the $scope is created, you can then create objects in the controller’s $scope, such as variables and functions. 
The “ng-model” directives can then use the variables and functions in that context.  

 Behind the scenes, when a controller is attached to the DOM via the “ng-controller” directive, the 
AngularJS instantiates the controller's constructor function you created, all of which is done automatically 
for you. 

 When you create a new controller, a new child $scope is created and can be used as an injectable 
parameter to the controller's constructor function. See code below as example: 

   .controller('View1Ctrl', ['$scope', function($scope) { 
   // Implement 
 }]); 



CHAPTER 5 ■ ANGULARJS

110

   According to AngularJS’s guides, controllers should be used to:

    1.    Set up the initial state of $scope object.  

    2.    Add behavior to the $scope object.     

 Common  implementation   mistakes regarding AngularJS Controllers include:

•     Formatting input : Do not use controllers to format <input> tags. This can be done 
inside AngularJS form controls.  

•    Filtering output : Do not filter output or results inside of controllers—use filters 
(more about filters later in this chapter).  

•    Sharing state:  Do not share code or state across multiple controllers. You can use 
services instead (more about service in future chapters).  

•    Manipulating the DOM : Controllers should contain business logic only; it’s the “C” 
in the MVC pattern. Putting view logic into controllers can break the AngularJS MVC 
framework and reduce testability. As we mentioned, use reflection (data binding) or 
directives to manipulate the DOM.    

 These are some common mistakes that developers often make in regards to any MVC. They can be seen 
in all MVC frameworks where MVC is implemented regardless of the language. It’s a good idea to become 
familiar with MVC patterns— that way, AngularJS will make much more sense. 

 Take a look at “view1” controller logic. The code is located here: “angular-seed/app/view1/view1.js”. See 
Listing  5-5 . 

     Listing 5-5.    Content of view. js     

  'use strict'; 

   angular.module('myApp.view1', ['ngRoute']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view1', { 
     templateUrl: 'view1/view1.html', 
     controller: 'View1Ctrl' 
   }); 
 }]) 

   .controller('View1Ctrl', [function() { 

   }]); 

    Similarly, “view2,” located here “angular-seed/app/view2/view2.js”, holds the controller logic for 
“view2.” See Listing  5-6 . 

     Listing 5-6.    Content of view2. js     

  'use strict'; 

   angular.module('myApp.view2', ['ngRoute']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view2', { 



CHAPTER 5 ■ ANGULARJS

111

     templateUrl: 'view2/view2.html', 
     controller: 'View2Ctrl' 
   }); 
 }]) 

   .controller('View2Ctrl', [function() { 

   }]); 

    AngularJS sets the controls “View1Controller” and “View2Controller” and initiates them. “Angular-
seed” leaves the controllers unimplemented but all ready to be coded. 

 The $scope becomes available to the “view1” and “view2” templates when the controllers are registered. 
The following example implements “View1Controller,” which attaches the greeting property “Hello!” to the 
$scope. 

 Change “view1.js” from the following: 

   .controller('View1Ctrl', [function() { 
 }]); 

   To the implemented code: 

   .controller('View1Ctrl', ['$scope', function($scope) { 
   $scope.greeting = 'Hello!'; 
 }]); 

   Now that we have added a variable, we can use the “greeting” property in “view1.html,” using binding, 
to change “view1.html” from: 

   <p>This is the partial for view 1.</p> 

   To the following code: 

   <div ng-controller="View1Ctrl"> 
     <p>This is the partial for view 1.</p> 
     {{ greeting }} 
 </div> 

   Run the app by typing in the  Bash command line   the following commands, in two separate Bash 
terminal windows: 

   $ npm start 
 $ open http://localhost:8000/app/index.html 

   As mentioned before, it’s good practice to open two tabs for the Terminal in WebStorm so that you can 
type commands without leaving your IDE. The browser opens up to the following URL: 

    http://localhost:8000/app/index.html      

 You can see the binding of the word “Hello!” to the template “view1” (see Figure  5-4 ).  

http://localhost:8000/app/index.html


CHAPTER 5 ■ ANGULARJS

112

 We can extend the code and create a custom greeting input box with a button. To submit the change of 
the greeting, paste the following code into “view1.html.” See Listing  5-7 . 

     Listing 5-7.     view1.html   including custom greeting.   

  <div ng-controller="View1Ctrl"> 
     <p>This is the partial for view 1.</p> 
     <input data-ng-model="customGreeting"> 
     <button data-ng-click="changeGreeting(customGreeting)">Change Greeting</button> 

       <p>{{ greeting }}</p> 
 </div> 

    Notice that the code is using “data-ng-click” and “data-ng-model,” which is the recommended prefix 
according to the Angulara guide. 

 ■   Note    “data-ng-model,” “ng:model,” “ng_model,” or even “x-ng-model” are all interchangeable, and the 
element has matches “ngModel” API for all these examples, the same works for other controller tags. The 
AngularJS HTML compiler digests all of these the same way, but the AngularJS guide recommends using the 
data-prefixed “data-ng-model” version. The other forms shown above are accepted for legacy reasons, but 
AngularJS advises us to avoid using them, so it’s better to get into the habit from day one.  

 As you can see, we added a “customGreeting” function that is marked as an “ng-model” and an “ng-
click” to be mapped to the “changeGreeting” function, allowing us to pass the “customGreeting” variable to 
the controller. 

  Figure 5-4.    angular-seed project implementing controller for “view1”       

 



CHAPTER 5 ■ ANGULARJS

113

 In “view1.js,” copy the code in Listing  5-8 . 

     Listing 5-8.     view1.js controller   including custom greeting code   

  'use strict'; 

   angular.module('myApp.view1', ['ngRoute']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view1', { 
     templateUrl: 'view1/view1.html', 
     controller: 'View1Ctrl' 
   }); 
 }]) 

   .controller('View1Ctrl', ['$scope', function($scope) { 
   $scope.greeting = 'Hello!'; 
   $scope.customGreeting = "Hello Angular"; 
   $scope.changeGreeting = function(output) { 
   $scope.greeting = output; 
 }; 
 }]); 

    Notice that we added two objects—a “customGreeting” variable and a “changeGreeting” function—to 
be used to update the greeting variable. 

 Refresh the page and then you can insert a custom greeting. Once you click “Change Greeting,” the text 
changes accordingly (Figure  5-5 ).   

  Figure 5-5.    angular-seed project implementing controller component for view1       

 



CHAPTER 5 ■ ANGULARJS

114

     AngularJS Directives 
 Directives are  considered   by many to be the most complex concept in AngularJS,    but understanding and 
being able to write your own directives very rewarding. You will have the ability to create your own custom 
HTML tags with just a few lines of code. 

 At a high level, directives are markers on a DOM  element  . These markers can point to any DOM 
component, from an attribute to an element name, or even a comment or CSS class. These markers then tell 
the AngularJS’s HTML compiler to attach a specified behavior or to transform the entire DOM element and 
its children based on a specific logic. 

 Angular comes with a set of many of these directives already built-in. In fact, we have already used 
them—in “view1.html” and “view2.html” we used “ngModel” and “ngClick” directives. 

 ■   Note   AngularJS directives are usually spelled with lowercase letters and camel case—for example,“ngModel” 
and “ngClick.” You should use the same convention when writing your own custom directives.  

 See the code below: 

   <input data-ng-model="customGreeting"> 

   In these directives, AngularJS extends HTML by providing custom directives that add functionality to 
the markup and allow us to create powerful, dynamic templates. Adding a reflection via data binding has 
given us a whole new feature. 

 In addition to the built-in directives, AngularJS allows us to develop our own, creating reusable 
components to fill our needs. Abstracting away the DOM manipulation logic creates a great separation of 
high-level code from implementations and makes JavaScript and HTML more  object-oriented languages  . 

 “Angular-seed” aids us in creating directives—in fact, it comes with a directive called “version.”    The 
“version” directive includes testing and implementation to get you started, which is tremendously helpful; it 
comes set with the folder structure and an example you can easily follow. 

 Let’s examine the “version” directive: 
 The “version” directive is placed in a folder called “components,” where you are encouraged to place all 

directives moving forward. Behind the scenes, just like controllers, directives are registered in what is called 
“module.directive.” 

 Look at “version.js,” located here: “app/components/version/version.js.” It holds the version module 
declaration and basic "version" value service. See below: 

    'use strict'; 

   angular.module('myApp.version', [ 
   'myApp.version.interpolate-filter', 
   'myApp.version.version-directive' 
 ]) 

   .value('version', '0.1'); 

    In the code, there is a reference to “interpolate-filter,”    which replaces the token and will be covered 
more thoroughly later on in this chapter. 

 Notice that the “module.directive” API was used to register the directive. The “module.directive” 
takes the normalized directive name, followed by a factory function, which is the actual directive you are 
registering. 



CHAPTER 5 ■ ANGULARJS

115

 ■   Note   The AngularJS module is defined as a collection of directives, controllers, services, etc. It’s used to 
register and retrieve modules. All the modules you will be using must be registered before they will work.  

 Next, look at the “version-directive.js” file. This is the actual custom directive that returns the current 
app version. See Listing  5-9 . 

     Listing 5-9.     Version-directive code     

  'use strict'; 

   angular.module('myApp.version.version-directive', []) 

   .directive('appVersion', ['version', function(version) { 
   return function(scope, elm, attrs) { 
     elm.text(version); 
   }; 
 }]); 

    As you can see, the directive is defined as “appVersion,” and it is used as a factory function. It 
returns an object with different options to tell the HTML compiler how the directive should behave 
when it’s matched. 

 ■   Note   AngularJS factory, service, and provider are similar—the difference is in what you get. Service just 
executes code, factory returns an object and provider executes the code and calls the $get method.  

 In the background, the “appVersion” factory function gets invoked once the compiler matches the 
directive for the first time. You can and should perform any initialization work necessary. In the background, 
the function is invoked on AngularJS using $injector.invoke, which makes it injectable, just like the 
controllers. 

 Once the directive is set, you can look at the implementation. Take a look inside of “index.html” or 
“index-async.html”—they will have the following declaration: 

   <div>Angular seed app: v<span app-version></span></div> 

   The tag “app-version” will be handled by the HTML compiler ($compile) and will attach a specified 
behavior to that DOM element. Now we see “Angular seed app: v0.1” in each view. Using directive is 
powerful, since you now have the ability to create your own custom HTML tags. 

      Template Expanding   Directive 
 Let’s create our own custom directives for AngularJS to use. 

 Let's say you have a chunk of template that represents some information you want to present internally 
or to the end user. The template must be repeated many times in the code, and when you change the code 
in one place, you will want to change it in several others places without copying and pasting or doing a 
refactoring effort. 

 This is a good opportunity to utilize a directive type called “Template,” expanding to simplify your code. 
Let's create a directive that simply replaces the contents of the HTML code with a static template. 



CHAPTER 5 ■ ANGULARJS

116

 First, create a new directive. We will call our first directive <first>—the name doesn’t need to describe 
the directive functionality since it’s just for practice. The folder structure can follow the <version> directive 
that came out of the box with Angular-seek. 

 Add the code from Listing  5-10  into the following structure: app/components/first/first-directive.js 

     Listing 5-10.    First directive returns a template   

  'use strict'; 

   angular.module('myApp.first.first-directive', []) 

       .directive('myFirstDirective', [function() { 
         return { 
             template: 'Name: {{info.name}} <br /> version: {{info.version}}' 
         }; 
     }]); 

    As you can see, we are returning a template with the info object that holds the project name and version 
number. Next, register the directive by pasting Listing  5-11  into app/components/first/first.js: 

     Listing 5-11.        

  'use strict';    

   angular.module('myApp.first', [ 
     'myApp.first.first-directive' 
 ]) 

    Now, we can implement the <first> directive, open app/view2/view2.html and place it in Listing  5-12 . 

     Listing 5-12.    View2.html with first dircetive   

 <p>This is the partial for view 2.</p> 
 <p> 
   Showing of 'interpolate' filter: 
   {{ 'Current version is v%VERSION%.' | interpolate }} 
 </p> 
 <div my-first-directive></div> 
 <br /> 

   The div tag with “my-first-directive” will be replaced with the template. 
 Lastly, don’t forget to add the scripts to the index.html and index-async.html files: 

     <script src="components/first/first.js"></script> 
   <script src="components/first/first-directive.js"></script> 

   See the scripts implemented into “index-async.html” in Listing  5-13 . 

     Listing 5-13.    index-async.html with first directive scripts   

     // load all of the dependencies asynchronously. 
     $script([ 
       'bower_components/angular/angular.js', 



CHAPTER 5 ■ ANGULARJS

117

       'bower_components/angular-route/angular-route.js', 
       'app.js', 
       'view1/view1.js', 
       'view2/view2.js', 
       'components/version/version.js', 
       'components/version/version-directive.js', 
       'components/version/interpolate-filter.js', 
       'components/first/first.js', 
       'components/first/first-directive.js' 
     ], function() { 
       // when all is done, execute bootstrap angular application 
       angular.bootstrap(document, ['myApp']); 
     });    

   The best practices in regards to writing directives:

    1.      Naming Convention   : It is important to avoid a naming convention that 
may conflict with a potential future standard of HTML or AngularJS. It is 
recommended that you use your own prefix for directive names. For instance, 
if you create a <calendar> directive, it may collide with a future releases of 
HTML—the HTML6 <calendar> tag already exists. Instead, use <myCalendar> 
or <tripCalendar>. The directive <ngCalendar> may also conflict with a future 
AngularJS directive.  

    2.      Coding Convention   : It’s recommended that you use a definition object instead 
of returning a function. As you have seen in <first> directive, we used the “info” 
object defined in the controller and return a template, not a function.          

     AngularJS Filters 
 AngularJS offers filters to help sort data. You can select a subset of items from an array and it will be returned 
as a new filtered array. 

 Additionally, AngularJS gives us the ability to create our own custom filters. To create a new filter, we 
need to first create a filter module and then register the custom filter with the newly created module, just as 
we’ve done for directives and controllers. 

 As we’ve seen in the <version> directive that comes with “angular-seed,” it uses a custom filter called 
“interpolate-filter.js” (Listing  5-14 ). 

      Listing 5-14.     interpolate-filter.js content     

  angular-seed/app/components/version/interpolate-filter.js 

   'use strict'; 

   angular.module('myApp.version.interpolate-filter', []) 

   .filter('interpolate', ['version', function(version) { 
   return function(text) { 
     return String(text).replace(/\%VERSION\%/mg, version); 
   }; 
 }]); 



CHAPTER 5 ■ ANGULARJS

118

    The filter replaces the value of “version” with a specific version number. As you may recall, “version.js” 
sets the value of the version: 

    'use strict'; 

   angular.module('myApp.version', [ 
   'myApp.version.interpolate-filter', 
   'myApp.version.version-directive', 
 ]) 

   .value('version', '0.1'); 

          Components   
 In AngularJS, a “component” is defined as a special type of directive that uses a simpler configuration. A 
component works well when you want to create a reusable component based on application structure. This 
makes it easier to write an app in a way that's similar to Web Components or Angular 2's style of application 
architecture, so it’s a good idea to start moving in that direction now. 

 It is important to understand the difference between a directive and a component. Components are 
triggered by an element, so there’s no need to use components for directives that need to be triggered 
by attribute or a CSS class. Additionally, we shouldn’t use components when we want to rely on DOM 
manipulation or are adding event listeners, because the HTML $compile and link functions will not be 
available when we need advanced directive definition options. 

 “Angular-seed” is already set with a component folder, as you may recall, and we have the <version> and 
<first> directives in that directory. 

 To create and register a component, use the “component” method with the Angular module, just as 
we’ve done with directives, controllers, and filters. 

 You can find more information here:    https://docs.angularjs.org/guide/component     . To learn about 
components in Angular 2, visit this page: 

    https://angular.io/docs/ts/latest/tutorial/toh-pt3.html          

     Testing 
 In Chapter   3    , we configured npm with the “mocha” testing library and were able to run a test simply by 
typing: 

   $ npm test 

   We then terminated the process by hitting ctrl + c—otherwise the test would keep running the process 
in the background. Mocha tests JavaScripts, but there are times you want to run browser tests. 

      Karma Testing   
 “angular-seed” comes with a “Karma” library to run browser tests, and it is already configured, so there’s no 
need to install anything. To see the code in action, just run “npm test” just as we’ve done with mocha in the 
Bash command line terminal. 

 A key feature of Karma is that we can use it to run tests against multiple browsers at the same time. The 
most common browsers include Chrome, Firefox, Safari, and IE. 

 When you type “npm test” in the background, it will run the following command: “karma start karma.
conf.js”. 

https://docs.angularjs.org/guide/component
https://angular.io/docs/ts/latest/tutorial/toh-pt3.html
http://dx.doi.org/10.1007/978-1-4842-2044-3_3


CHAPTER 5 ■ ANGULARJS

119

 The code picks up the testing configurations to be used from the “package.json” script tag: 

   "scripts": { 
   "pretest": "npm install", 
   "test": "karma start karma.conf.js", 
   "test-single-run": "karma start karma.conf.js  --single-run", 
 } 

   To learn more about Karma, check the GitHub open source project located here: 

    https://github.com/karma-runner/karma      

 Karma is a highly visible project, and there are plenty of plugins available on npm that extend the 
functionality of the base code. You can check out the list of plugins here:    https://www.npmjs.com/browse/
keyword/karma-plugin      .  

 The decision of “angular-seed” to use Karma is not random; the AngularJS team developed Karma, and 
it is the recommended testing tool for AngularJS projects. 

 The config file for Karma is called “karma.conf.js.” Luckily, it has already been created for us 
automatically in the root folder. Open the “karma.conf.js” config file. As you can see, it is set to run the unit 
tests with Karma (Listing  5-15 ). 

    Listing 5-15.    karma.conf.js config file   

  module.exports = function(config){ 
   config.set({ 

       basePath : './', 

       files : [ 
       'app/bower_components/angular/angular.js', 
       'app/bower_components/angular-route/angular-route.js', 
       'app/bower_components/angular-mocks/angular-mocks.js', 
       'app/components/**/*.js', 
       'app/view*/**/*.js' 
     ], 

       autoWatch : true, 

       frameworks: ['jasmine'], 

       browsers : ['Chrome'], 

       plugins : [    
             'karma-chrome-launcher', 
             'karma-firefox-launcher', 
             'karma-jasmine', 
             'karma-junit-reporter' 
             ], 

       junitReporter : { 
       outputFile: 'test_out/unit.xml', 
       suite: 'unit' 

https://github.com/karma-runner/karma
https://www.npmjs.com/browse/keyword/karma-plugin
https://www.npmjs.com/browse/keyword/karma-plugin


CHAPTER 5 ■ ANGULARJS

120

     } 

     }); 
 }; 

    Notice that “karma.conf.js” is already configured with each library, including AngularJS, 
Angular-mocks, and the modules: 

       files : [ 
       'app/bower_components/angular/angular.js', 
       'app/bower_components/angular-route/angular-route.js', 
       'app/bower_components/angular-mocks/angular-mocks.js', 
       'app/components/**/*.js', 
       'app/view*/**/*.js' 
     ], 

   Next, take a look at the actual test—angular-seed/app/view1/view1_test.js—in Listing  5-16 . 

     Listing 5-16.    view1_test.js test file   

  'use strict'; 

   describe('myApp.view1 module', function() { 

     beforeEach(module('myApp.view1')); 

     describe('view1 controller', function(){ 

       it('should ....', inject(function($controller) { 
       //spec body 
       var view1Ctrl = $controller('View1Ctrl'); 
       expect(view1Ctrl).toBeDefined(); 
     })); 

     }); 
 }); 

    Notice that the code checks to see that the controller is being defined—the same goes for “view2_test.js” 
(Listing  5-17 ). 

     Listing 5-17.    view2_test.js test  file     

  'use strict'; 

   describe('myApp.view2 module', function() { 

     beforeEach(module('myApp.view2')); 

     describe('view2 controller', function(){ 

       it('should ....', inject(function($controller) { 
       //spec body 



CHAPTER 5 ■ ANGULARJS

121

       var view2Ctrl = $controller('View2Ctrl'); 
       expect(view2Ctrl).toBeDefined(); 
     })); 

     }); 
 }); 

    When we run the test using the command line “npm test” in the terminal, the test fails (Figure  5-6 ).  

 The tests fails because there is no $scope service, so the $controller provider cannot instantiate the 
injected $scope argument, so it creates the following error message: 

 “Karma Unknown provider: $scopeProvider <- $scope” 
 To fix this, we need to provide the $scope while instantiating a controller using the $controller provider. 
 Paste the following update in Listing  5-18 . 

     Listing 5-18.    view1_test.js file, including creating a new $rootScope  instance     

  'use strict'; 

   describe('myApp.view1 module', function() { 

     beforeEach(module('myApp.view1')); 

     describe('view1 controller', function(){ 
           var view1Ctrl, scope; 

             beforeEach(inject(function ($controller, $rootScope) { 
                   scope = $rootScope.$new(); 
                   view1Ctrl = $controller("View1Ctrl", {$scope:scope}); 

  Figure 5-6.    Karma tests fails       

 



CHAPTER 5 ■ ANGULARJS

122

           })); 

       it('should ....', inject(function() { 
       expect(view1Ctrl).toBeDefined(); 
     })); 

     }); 
 }); 

 ■      Note    Notice that we sometimes we use $rootScope and sometimes $scope. The difference between 
$scope and $rootScope is the context. $rootScope is the parent (“root”) of all the scopes we create in our app, 
inside all the controllers.  

 We have then injected the $rootScope into the “setUp" stub of the test and the child $scope is then 
defined as $rootScope.$new(). Now we are able to inject the $scope as an argument into the $controller 
constructor as a new child scope: 

   view1Ctrl = $controller("View1Ctrl", {$scope:scope}); 

   In “view2_test.js”, we will do the same thing. See Listing  5-19 . 

     Listing 5-19.    view2_test.js includes creating a new $rootScope instance   

  'use strict'; 

   describe('myApp.view2 module', function() { 

     beforeEach(module('myApp.view2')); 
        describe('view2 controller', function(){ 
            var view2Ctrl, scope; 

             beforeEach(inject(function ($controller, $rootScope) { 
                   scope = $rootScope.$new(); 
                   view2Ctrl = $controller("View2Ctrl", {$scope:scope}); 
            })); 

       it('should ....', inject(function() { 
       expect(view2Ctrl).toBeDefined(); 
     })); 

     }); 
 }); 

    Press ctrl + c and then run the tests again. Now, the tests will pass (Figure  5-7 ).  



CHAPTER 5 ■ ANGULARJS

123

 To test the <version> directive, take a look at this file: angular-seed/app/version-directive_test.js. See 
Listing  5-20 . 

     Listing 5-20.    directive_test.js test file for version directive   

  'use strict'; 

   describe('myApp.version module', function() { 
   beforeEach(module('myApp.version')); 

     describe('app-version directive', function() { 
     it('should print current version', function() { 
       module(function($provide) { 
         $provide.value('version', 'TEST_VER'); 
       });    
       inject(function($compile, $rootScope) { 
         var element = $compile('<span app-version></span>')($rootScope); 
         expect(element.text()).toEqual('TEST_VER'); 
       }); 
     }); 
   }); 
 }); 

    The test expects that it should print the current version number, and it compares the “TEST_VER” with 
the element text value to see if they match. We already know that it works, since we have made sure it would 
pass the tests. 

 Similarly, there is a code to test the interpolate filter. See the following file: angular-seed/app/
interpolate-filter_test.js. Listing  5-21  shows the content of the file: 

     Listing 5-21.    interpolate-filter_test.js test file   

  'use strict'; 

   describe('myApp.version module', function() { 

  Figure 5-7.    Karma tests success       

 



CHAPTER 5 ■ ANGULARJS

124

   beforeEach(module('myApp.version')); 

     describe('interpolate filter', function() { 
     beforeEach(module(function($provide) { 
       $provide.value('version', 'TEST_VER'); 
     })); 

       it('should replace VERSION', inject(function(interpolateFilter) { 
       expect(interpolateFilter('before %VERSION% after')).toEqual('before TEST_VER after'); 
     })); 
   }); 
 }); 

    The code expects to interpolate the filter of “%VERSION%” against “TEST_VER.”     

     Adding New Tests 
 We have added a new directive <first>, so what we then want to do is to also add a test for our directive 
template. Add “first-directive_test.js” to the “angular-seed/app/components/first” folder. 

 This test will ensure that the template has produced the correct text (see Listing  5-22 ). 

     Listing 5-22.     first-directive_test.js test file     

  'use strict'; 

   describe('myApp.version module', function() { 
   beforeEach(module('myApp.first')); 

     describe('app-first directive', function() { 
     it('should print the template', function() { 
       inject(function($compile, $rootScope) { 
         var element = $compile('<div my-first-directive></div>')($rootScope); 
         expect(element.text()).toEqual('Name: {{info.name}}  version: {{info.version}}'); 
       }); 
     }); 
   }); 
 }); 

    Once again, run the tests using “npm test” in the shell command line and you should get “Executed 6 of 
6 SUCCESS” results.  

     Proctractor Testing 
 Protractor is  defined   as an “end-to-end” testing framework for the AngularJS applications based on Node.js, 
and as such it is built to make the process of testing easier. Let’s take a look at testing the functionality of an 
AngularJS app, specifically with Protractor. If you have used Selenium and Selenium WebDriver for creating 
automated tests, then you will be familiar with how Protractor works. Protractor tests can be run on both 
regular and headless browsers such as DalekJS or  PhantomJS  . They are intended to emulate the user’s actions 
on the application. 



CHAPTER 5 ■ ANGULARJS

125

 ■   Note    End-to-end testing means to test the flow of the application from start to finish. In testing end-to-
end, we want to ensure the flow is as expected and that the data is reflected in the view upon change.  

 This particular testing framework is built with AngularJS apps in mind and can test elements that are 
specific to the development structure. Protractor testing is also smart enough to automatically wait for a 
pending task to complete. 

 Protractor is built on top of  WebDriverJS   and runs tests against your application in an actual browser, 
interacting with it as a user would, so if you have ever used behavior-driven development then this should all 
be familiar to you. 

 Protractor supports high  visibility projects   like Jasmine, Mocha, Karma, or Cucumber libraries as well 
custom frameworks; Jasmine and Mocha are more often used than Cucumber. In fact, Jasmine is set as the 
default for the Protractor framework. 

 Take a look at the project in GitHub:    https://github.com/angular/protractor      
 We don’t need to install or configure anything, since everything is already pre-set for us by “angular-seed.” 
 Open the “package.json” config file; notice that there is a script for “preprotractor” and “protractor.” See 

below: 

   "scripts": { 
   "preprotractor": "npm run update-webdriver", 
   "protractor": "protractor e2e-tests/protractor.conf.js", 
 } 

   As you can see “angular-seed” comes with two  configuration files  , located in the “e2e-tests” folder:

    1.    “protractor-conf.js”: Protractor config file  

    2.    “scenarios.js”: End-to-end scenarios/behavior to be run by Protractor     

 “Protractor.conf.js” stores each option needed to run such tests, such as timeouts, test directory sources, 
and suites. See Listing  5-23 . 

     Listing 5-23.     protractor.conf.js config file     

  exports.config = { 
   allScriptsTimeout: 11000, 

     specs: [ 
     '*.js' 
   ], 

     capabilities: { 
     'browserName': 'chrome' 
   }, 

     baseUrl: 'http://localhost:8000/app/', 

     framework: 'jasmine', 

     jasmineNodeOpts: { 
     defaultTimeoutInterval: 30000 
   } 
 }; 

https://github.com/angular/protractor


CHAPTER 5 ■ ANGULARJS

126

      Scenarios File 
 The “scenarios.js”  file  , as, stores the behavior of the app from an end-user standpoint. See Listing  5-24 . 

     Listing 5-24.    scenarios.js testing behavior   

  'use strict'; 

   describe('my app', function() { 

     it('should automatically redirect to /view1 when location hash/fragment is empty', 
function() { 
     browser.get('index.html'); 
     expect(browser.getLocationAbsUrl()).toMatch("/view1"); 
   }); 

     describe('view1', function() { 

       beforeEach(function() { 
       browser.get('index.html#/view1'); 
     }); 

       it('should render view1 when user navigates to /view1', function() { 
       expect(element.all(by.css('[ng-view] p')).first().getText()). 
         toMatch(/partial for view 1/); 
     }); 

     }); 

     describe('view2', function() { 

       beforeEach(function() { 
       browser.get('index.html#/view2'); 
     }); 

       it('should render view2 when user navigates to /view2', function() { 
       expect(element.all(by.css('[ng-view] p')).first().getText()). 
         toMatch(/partial for view 2/); 
     }); 

     }); 
 }); 



CHAPTER 5 ■ ANGULARJS

127

    As you can see, it checks both view1 and view2 to ensure that  the   user sees these partials as expected. 
 To begin the Protractor tests, first we must ensure the project is running in a separate command line 

shell. 

   $ sudo npm start 

   Then, run the following two commands in the command line: 

   $ sudo npm run update-webdriver 
 $ sudo npm run protractor 

   Running these commands may result in an error messages, while running “npm run protractor” on Mac 
OS X 10.10. However, this can be resolved easily by making a change in “protractor.conf.js.” Simply add the 
following line: 

   directConnect: true, 

   Here is the complete “protractor.conf.js” file content with the change included: 

    exports.config = { 
   allScriptsTimeout: 11000, 

     specs: [ 
     '*.js' 
   ], 

     capabilities: { 
     'browserName': 'chrome' 
   }, 

     directConnect: true, 

     baseUrl: 'http://localhost:8000/app/', 

     framework: 'jasmine', 

     jasmineNodeOpts: { 
     defaultTimeoutInterval: 30000 
   } 
 }; 

    Now, run “npm run protractor” again and the test results should show success, as you can see in 
Figure  5-8 .     



CHAPTER 5 ■ ANGULARJS

128

     Routes 
 $route service in AngularJS is used for  deep-linking URLs   to controllers and HTML partials (view). AngularJS 
watches $location.url() and then tries to map the path to an existing route definition, which you set. 

 The $route service is typically used in conjunction with the “ngView” directive and the $routeParams 
service. The $routeParams service allows you to retrieve the current set of route parameters that were 
configured. 

 Open the “app/app.js” main application module file. See Listing  5-25 : 

      Listing 5-25.     app.js with first directive     

  'use strict'; 

   // Declare app level module which depends on views, and components 
 angular.module('myApp', [ 
   'ngRoute', 
   'myApp.view1', 
   'myApp.view2', 
   'myApp.version', 
   'myApp.first' 
 ]). 
 config(['$routeProvider', function($routeProvider) { 
   $routeProvider.otherwise({redirectTo: '/view1'}); 
 }]); 

    As you can see from Listing  5-25 , the $routeProvider is set to the “otherwise” option, to run “view1” as 
the default view. If, for example, we want to create a routing of “home,” we can change that easily; all we have 
to do is set the route to “home.” See Listing  5-26 . 

  Figure 5-8.    Protractor  results         

 



CHAPTER 5 ■ ANGULARJS

129

     Listing 5-26.    Adding  routeProvider home page     

 config(['$routeProvider', function($routeProvider) { 
   $routeProvider. 
   when('/home', {redirectTo: '/view2'}). 
   otherwise({redirectTo: '/view1'}); 
 }]); 

   To test these changes, ensure “npm start” is running, then open the following URL: 

   localhost:8000/app/index.html#/home 

   The app will change the URL in the browser automatically to: 

    http://localhost:8000/app/index.html#/view2      

 This can come in handy when handling URLs and later on for  Search Engine Optimization (SEO)     , as 
you will see in future chapters.  

     Service 
 Many apps need content to drive the app. As they say, content is king! 

 AngularJS  XMLHttpRequest (XHR) services   create a good separation of MVC and can be considered 
as an “MVCS” for service, you can create high-level code and low-level implementation. Create a service 
module, register it just like we’ve done with other modules, then re-use the API calls. This allows you to 
move your model and business logic out of the front-end code and build back-end agnostic web apps, 
aligning very well with the MVC pattern. As you’ve seen with data binding, you can then use reflection to 
display and filter the data in the view. 

 In Chapter   7    , we will be covering building services and we will use these services in an AngularJS app as 
an example.  

     Summary 
 In this chapter, we covered AngularJS. We installed the “angular-seed” project and took a deep dive into fully 
understanding how it works under the hood. We looked at the Bower components that are installed, Partial 
Views, CSS styles, controllers, directives, filters, routes, services, and components. We also created our own 
first directive and implemented it into the view. 

 We also looked at testing. Angular-seed comes configured with Karma, we looked at the existing tests’ 
scripts and added new tests, then looked at Protractor testing and executed those tests. Lastly, I also went 
over best practices, AngularJS 2, and how to prepare and build our app to make it AngularJS2 friendly. 
Angular guide devoted a section and you can see the difference between AngularJS1 and AngularJS2 here: 
   https://angular.io/docs/ts/latest/cookbook/a1-a2-quick-reference.html      

 Where to go from here: AngularJS provides a good tutorial, which will walk you through AngularJS and 
can be found here:    https://docs.angularjs.org/tutorial      .  After being equipped with what you have 
learned in this chapter, it should now be a breeze for you to review the examples they provide for you and 
will allow you to expand your knowledge. In the next chapter, we will expand on CSS and responsive design.     

http://localhost:8000/app/index.html#/view2
http://dx.doi.org/10.1007/978-1-4842-2044-3_7
https://angular.io/docs/ts/latest/cookbook/a1-a2-quick-reference.html
https://docs.angularjs.org/tutorial


131© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_6

    CHAPTER 6   

 CSS, Bootstrap, & Responsive 
Design                          

 In the previous chapter, we covered AngularJS extensively, but we didn’t talk about styling our code. In this 
chapter, we will cover styling—specifically, Cascading Style Sheets (CSS) classes used by AngularJS. We will 
also be covering UI Bootstrap, which includes out-of-the-box components such as an accordion or an alert, 
written in AngularJS by the AngularJS team. These can be used to expedite the development time of your app 
if it is done according to AngularJS’s best practice recommendations. Lastly, we will be covering responsive 
design, including the two most used techniques: media quieries and creating different views for each device. 

     CSS Classes Used by AngularJS 
 AngularJS already has a pre-defined CSS style that it uses right out of the box. In fact, the guide docs offer a 
page that shows all of the CSS classes used by the AngularJS  framework  ; feel free to visit this page:   https://
docs.angularjs.org/guide/css-styling    . 

 The AngularJS framework offers a list of  methods   you can tap into, such as:

•    “ng-scope”  

•   “ng-isolate-scope”  

•   “ng-binding”  

•   and many more    

 In this section, you will learn how to utilize different internal AngularJS CSS processes in order to create 
custom CSS styles. 

 ■   Note    Cascading Style Sheets (CSS) is used to properly maintain information such as colors, sizes, and 
fonts, and provide consistent user experience.  

https://docs.angularjs.org/guide/css-styling
https://docs.angularjs.org/guide/css-styling


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

132

     Create a New Project 
 Let’s start by looking at the internal functionality in action. Create a new instance of “angular-seed” 
or use the one we created in Chapter   5    . We encourage you to create a new project to give you a quick 
reference of how easy it should be to have one up and running by now. To create a new  project  , in the 
command line, type: 

   $ git clone https://github.com/angular/angular-seed.git 
 $ cd angular-seed 

   In WebStorm, import the project and open two terminal windows. In one window, type: 

   $ npm install 
 $ npm start 

   In the second window, type: 

   $ open http://localhost:8000 

   As you may recall, the “open” command will navigate to the URL in your default browser. 
 For more details, refer back to Chapter   5    . As you can see, in less than two minutes, we were able to start 

a new project with a mere five commands; not too bad! 
 We do not need to create a style sheet, since “angular-seed” already comes with a ready-to-use CSS 

stylesheet. You can see a reference in index.html and index-async.html: 

     <link rel="stylesheet" href="app.css"> 

   Similarly, “html5-boilerplate”, which is part of the “angular-seed” components,    also includes a base CSS 
file: 

     <link rel="stylesheet" href="bower_components/html5-boilerplate/dist/css/main.css"> 

         ng-scope   
 Open the “angular-seed” app CSS file “/app/app.css” and add the following code: 

   .ng-scope { 
      border: 2px solid #000000; 
      margin: 5px; 
 } 

   Refresh the index page in the browser to see the app in action. See Figure  6-1 .     

http://dx.doi.org/10.1007/978-1-4842-2044-3_5
http://dx.doi.org/10.1007/978-1-4842-2044-3_5


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

133

 The style is attached to the “ng-scope” class, and all of the elements with a “new” scope get a border 
automatically. Since the elements now have a border, it shows us all of the elements that got created. 

 Applying the style automatically can help with creating a  custom style design  . Let’s say we want to add a 
100-pixel padding to each new element. All we have to do is change the code to the following: 

   .ng-scope { 
         padding-left: 100px; 
 } 

   Similarly, AngularJS offers the option to apply  CSS style      to the following:

•    “ng-isolate-scope”: for isolating the scope of a directive  

•   “ng-binding”: databinding  

•   “ng-invalid” and “ng-valid”: form validations  

•   “ng-pristine” and “ng-dirty”: user interaction, pristine, not touched by user vs. dirty  

•   “ng-touched” and “ng-untouched”: blur control for form control widget    

 Let’s create another example. If we want to add a red border to any element that uses a  data binding  , 
this can be done easily. 

 Open “view1.js” and implement the controller. Change the code from: 

   .controller('View1Ctrl', [function() { 
 }]); 

   to the following code: 

   .controller('View1Ctrl', ['$scope', function($scope) { 
   $scope.viewCopy = 'This is the partial for view 1.'; 
 }]); 

  Figure 6-1.     angular-seed app   showing in Chrome browser with custom ng-scope       

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

134

   As you can see, all that we’ve done is add the $scope and create a variable in the scope called “viewCopy” 
and then we attached the text that we want. Next, in the “view1.html,” we’ll replace the following line: 

    <p>This is the partial for view 1.</p> 

   with a binding tag that uses “viewCopy” variable we’ve attached to the scope: 

   <p>{{viewCopy}}</p> 

    Now we can add in the style sheet “app.css” the “ng-binding” style definition.    See code below: 

   .ng-binding { 
   border: 3px solid red;    
 } 

   Notice that earlier we used #00000, which is a hex color code for black. You can just use a color name if 
you don’t care about the exact color hex code. 

 Refresh the page and you will see that the binding element has a red style—see Figure  6-2 .     

 ■   Note    Keep in mind that this feature can come handy not just for style—you can use the feature for 
debugging purposes as well.   

     ng-dirty, ng-invalid, and ng-pristine 
 Similar to how we used the  “ng-binding” style  , we can also use the following tags:

•    “ng-dirty”   : for elements that have been interacted with already  

•   “ng-invalid”   : for invalid elements  

•   “ng-pristine”   : for elements that have not been interacted with yet.    

  Figure 6-2.    “angular-seed”  app   showing in a Chrome browser with custom ng-binding  style         

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

135

 These styles can come in handy for forms. 
 Add the following styles in the “app.css” file—see Listing  6-1 . 

     Listing 6-1.    ng- dirty  , invalid,    and pristine  definitions     

  .ng-dirty { 
   border: 2px solid yellow; 
 } 

   .ng-invalid { 
   border: 2px solid red; 
 } 

   .ng-pristine { 
   border: 2px solid green; 
 } 

    Next, place the following code in the “view1.html” view file—see Listing  6-2 . 

     Listing 6-2.    Simple form view using  ng style defenitions     

 <form name="form"> 
         <input name="input" ng-model="userName" required> 
         <span class="error" ng-show="form.input.$error.required">required</span><br/> 
         <div> 
                 form.$valid: {{form.$valid}}<br/> 
                 form.input.$valid: {{form.input.$valid}}<br/> 
                 form.input.$error: {{form.input.$error}}<br/> 
         </div> 
 </form> 

   Lastly, in “view1.js,” we’ll define the user name: 

   .controller('View1Ctrl', ['$scope', function($scope) { 
                 $scope.userName = ''; 
 }]); 

   Refresh the page (see Figure  6-3 ).  



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

136

 Next, start typing into the text input box and see the results (Figure  6-4 ).  

  Figure 6-4.     Validate form style         

  Figure 6-3.     Form validation style            

 

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

137

 As you can see, the form was validated and we now see the style we defined. If the form was not 
validated, we would see the results shown in Figure  6-5 .   

     Install  Bootstrap   
 Bootstrap was released in 2011 as an  open source front-end responsive framework   for developing mobile 
first apps as well as web. Bootstrap is considered to be the most popular front-end framework. It is often 
associated with AngularJS because they are often used together. Bootstrap is the second most popular library 
on GitHub at the time of writing. Visit the GitHub page here: 

   https://github.com/twbs/bootstrap     

 Bootstrap requires  HTML5  . In order to use HTML5, we need to declare the document as HTML5. Open 
“index.html” in the “angular-seed” project. 

 Bootstrap utilizes HTML5 and the HTML doctype uses  “<!DOCTYPE>”   and must be declared. Luckily, 
unlike HTML 4.01 where there are three different “<!DOCTYPE>” declarations, in HTML5 there is only one 
declaration: “<!DOCTYPE html>”. 

 At the time of this writing, the current production version of Bootstrap is 3.3.6 and Bootstrap 4 is at 
Alpha version 4. Although Bootstrap 4 is not out yet, having knowledge as to where the platform is heading 
can benefit you greatly. While writing the code, take into account future releases of Bootstrap; we encourage 
you to read more about version 4 here: 

   http://blog.getbootstrap.com/2015/08/19/bootstrap-4-alpha/     

   Bootstrap is composed of two libraries: 

•      Bootstrap    JavaScript   : a set of reusable and common components  

•    Bootstrap CSS : commonly used styles    

 They do not need to be used together within a project. 

 To install Bootstrap, simply run the following Bower command: 

   $ bower install bootstrap 

  Figure 6-5.     Form not validated         

 

https://github.com/twbs/bootstrap
http://blog.getbootstrap.com/2015/08/19/bootstrap-4-alpha/


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

138

   Next, add the Bootstrap CSS file to the “index.html” page inside of the “<head>” tag: 

            <!-- Bootstrap CSS --> 
         <link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootswatch/3.3.6/paper/
bootstrap.min.css " rel="stylesheet"> 

   Make sure you add the “bootstrap.min.css” prior the other CSS stylesheets, since we want our specific 
CSS delcalartions to override the default CSS configurations. See below: 

     <!-- Bootstrap CSS --> 
   <link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootswatch/3.3.6/paper/bootstrap.
min.css" rel="stylesheet"> 

     <link rel="stylesheet" href="bower_components/html5-boilerplate/dist/css/normalize.css"> 
   <link rel="stylesheet" href="bower_components/html5-boilerplate/dist/css/main.css"> 
   <link rel="stylesheet" href="app.css"> 

    Refresh the “index.html” page to confirm that the Bootstrap CSS style sheet was applied. See Figure  6-6 .   

  Figure 6-6.    Bootstrap CSS style sheet in  “angular-seed” project         

     UI Bootstrap 
 We’ve added the Bootstrap CSS to our project, but what about the Bootstrap JavaScript file? The Bootstrap 
JavaScript relies on jQuery for its component set, but AngularJS best practices dictate that it’s not 
recommended for use with the full version of jQuery. 

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

139

 AngularJS has already shipped with a version of jQuery, the lite version (jqLite), and it is already 
available for your use. When you call “angular.element,” it’s actually an alias for the  “jQuery lite” library  . With 
that being said, if you want, you can install the full jQuery and reference “angular.element” to jQuery. 

 ■   Note    jqLite is a compatible API to jQuery. It implements only the most-used functionality and enables 
AngularJS cross-browser manipulation.  

 Bootstrap v3.x is based on the full jQuery library, and thus it is not ideal to use with AngularJS. However, 
AngularJS offers UI Bootstrap, which provides common  components   as the Bootstrap UI. See:   http://
angular-ui.github.io/bootstrap/     .  

 Why is the full version of jQuery being integrated and used in AngularJS considered bad practice? 
jQuery is based on manipulating the DOM, using events, and injecting  elements  , while AngularJS is based 
on data binding, having Angular bind variables and JQuery injecting elements at the same time, which can 
make our project messy and buggy. 

 The AngularJS version of UI Bootstrap is a rewrite of Bootstrap’s component developed by the 
AngularUI team, built specifically for the AngularJS framework. UI Bootstrap is based on Bootstrap’s markup 
and CSS, and the components are coded in native AngularJS using directives. These integrate well with the 
AngularJS mindset without depending on jQuery or Bootstrap JavaScript files. 

 In the previous chapter, we learned how to create a directive, which is the recommended way to code 
in AngularJS when we want to manipulate the DOM. We are basically telling our app how to watch data 
changes for specific elements. UI Bootstrap requires the Bootstrap CSS file, which we have already added. 

 Next, replace the content of “view1.html” with the following code, which was taken directly from the 
  https://angular-ui.github.io/bootstrap/     tutorial page—see Listing  6-3 . 

     Listing 6-3.    Buttons  utilizing   UI Bootstrap and Bootstrap CSS   

 <div class="btn-group"> 
     <label class="btn btn-primary" ng-model="checkModel.left" uib-btn-checkbox>Left</label> 
     <label class="btn btn-primary" ng-model="checkModel.middle" uib-btn-checkbox>Middle</
label> 
     <label class="btn btn-primary" ng-model="checkModel.right" uib-btn-checkbox>Right</
label> 
 </div> 

   Lastly, add the declaration of “ui-bootstrap” in “index.html” at the bottom of the page, where we declare 
all of our components:

  <script src="//angular-ui.github.io/bootstrap/ui-bootstrap-tpls-2.1.4.js"></script> 

   Refresh “index.html” and you should be able to see the button group (see Figure  6-7 ).  

http://angular-ui.github.io/bootstrap/
http://angular-ui.github.io/bootstrap/
https://angular-ui.github.io/bootstrap/


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

140

 Try clicking the buttons—nothing will happen. Visually they seem fine, but they are not working. Once 
you click, they do not stay selected as you would expect from a button group. To fix this, we will need to 
include “ui.bootstrap” in the module declaration. 

 To do so, open “view1.js” and change the following code from: 

   angular.module('myApp.view1', ['ngRoute']) 

   to: 

   angular.module('myApp.view1', ['ngRoute', 'ui.bootstrap']) 

   Now that we’ve declared the UI Bootstrap in our module, buttons will stay in an active state once clicked 
(see Figure  6-8 ):  

  Figure 6-8.    UI Bootstrap  button group implementation         

  Figure 6-7.    “angular-seed” with UI Bootstrap and Bootstrap CSS utilizing the  group button         

 Next, let’s say we want to know the buttons’ state as we click them, so we can trigger a user gesture. To 
do so, take a look at Listing  6-4 . We declare the logic in “view1.js” to handle the data of the group button. 

     Listing 6-4.     View1.js group button logic     

  'use strict'; 

   angular.module('myApp.view1', ['ngRoute', 'ui.bootstrap']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view1', { 
     templateUrl: 'view1/view1.html', 

 

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

141

     controller: 'View1Ctrl' 
   }); 
 }]) 

   .controller('View1Ctrl', ['$scope', function($scope) { 
       $scope.data = { 
         left: true, 
         middle: false, 
         right: false 
       }; 
 }]); 

    Then, in Listing  6-5 , we’ll set “view1.html” with the actual buttons  we   will be using and bind the 
properties we’ve set in the controller. 

     Listing 6-5.     View1.html group button view     

 <div ng-controller="View1Ctrl"> 
     <pre>{{data}}</pre> 
     <div class="btn-group"> 
         <label class="btn btn-primary" ng-model="data.left" uib-btn-checkbox>Left</label> 
         <label class="btn btn-primary" ng-model="data.middle" uib-btn-checkbox>Middle</label> 
         <label class="btn btn-primary" ng-model="data.right" uib-btn-checkbox>Right</label> 
     </div> 
 </div> 

   Lastly, remove “padding-left: 100px;” and line in app.css “.ng-scope” class, since it’s distracting. 
 That’s it! Simply refresh the page and you will be able to see the text changes as you click the buttons—

see Figure  6-9 . As we click a button, the AngularJS data binding sets the label element with the correct data.  

  Figure 6-9.    Adding logic to group buttons to know the state of the buttons       

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

142

 Similarly, let’s say we want to implement the alert code in the   https://angular-ui.github.io/
bootstrap/     tutorial page. We can easily implement the alert messages in “view2.” 

 Open “view2.js” and replace the code with Listing  6-6 .     

     Listing 6-6.    view2.js logic to handle adding, closing, and showing alert  messages     

  'use strict'; 

   angular.module('myApp.view2', ['ngRoute', 'ui.bootstrap']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view2', { 
     templateUrl: 'view2/view2.html', 
     controller: 'View2Ctrl' 
   }); 
 }]) 

   .controller('View2Ctrl', ['$scope', function($scope) { 
       $scope.alerts = [ 
         { type: 'danger', msg: 'Oh snap! Change a few things up and try submitting again.' }, 
          { type: 'success', msg: 'Well done! You successfully read this important alert 

message.' } 
       ]; 

         $scope.addAlert = function() { 
         $scope.alerts.push({ msg: 'Another alert!' }); 
       }; 

         $scope.closeAlert = function(index) { 
         $scope.alerts.splice(index, 1); 
       }; 
 }]); 

    Here, we’ve initiated the module with “ui.bootstrap” and added logic to the controller with alerts and a 
method to both add and close alerts. 

 Next, in “view2.html,” we’ll add the view. See Listing  6-7 .     

     Listing 6-7.    view2.html includes  alert components     

  <div ng-controller="View2Ctrl"> 
   <script type="text/ng-template" id="alert.html"> 
     <div class="alert" style="background-color:#fa39c3;color:white;" role="alert"> 
       <div ng-transclude></div> 
     </div> 
   </script> 

      <div uib-alert ng-repeat="alert in alerts" ng-class="'alert-' + (alert.type || 'warning')" 
close="closeAlert($index)">{{alert.msg}}</div> 

   < div uib-alert template-url="alert.html" style="background-color:#fa39c3;color:white">A 
happy alert!</div> 

   <button type="button" class='btn btn-default' ng-click="addAlert()">Add Alert</button> 

   </div> 

https://angular-ui.github.io/bootstrap/
https://angular-ui.github.io/bootstrap/


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

143

    We specifically used the code straight from the   https://angular-ui.github.io/bootstrap/     
tutorial page so you can see how to implement a component. Now you can do the same with every single 
component on the page on your own, whenever you need them.   

     Creating a Custom UI Bootstrap Build 
 So far we have used two of the UI Bootstrap components: an alert and a group button. However, the entire 
UI Bootstrap min library is loaded to 121kb, which is a large-sized file for a mere two components. To solve 
this, UI Bootsrap allows for the creation of custom builds based on the components you are using, instead of 
loading the entire library. This is a good practice for optimizing your app.

    1.    To create your own custom build, go to:   https://angular-ui.github.io/
bootstrap/     and click “Create a Build.”  

    2.    Select the modules you will be using. In this case, we’ll be selecting Alert and 
Buttons (see Figure  6-11 ). Select “Download 2 Modules.”   

    3.    Place the “ui-bootstrap-custom-tpls-1.3.3.min.js” in the “components” folder 
and change the index.html reference: <script src="components/ui-bootstrap-
custom-tpls-1.3.3.min.js"></script>.     

 See Figure  6-11 . 

  Figure 6-10.    “angular-seed” with UI  Bootstrap alerts         

 

https://angular-ui.github.io/bootstrap/
https://angular-ui.github.io/bootstrap/
https://angular-ui.github.io/bootstrap/


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

144

 The potential gain is significant: we are able to reduce the library size from 121Kb to 3Kb. If you want to 
add additional components, all you will have to do is replace the current build with a new one.  

     CSS Bootstrap 
 We have added CSS Bootstrap and we are now able to see the style in our app change automatically. Since 
Bootstrap comes with definitions for common elements, we are also able to see Angular UI Bootstrap styled 
with CSS Bootstrap automatically, but there is still more to learn regarding CSS Bootstrap. 

 One of the most useful features that CSS Bootstrap has to offer is its grid system, which consists of  containers 
and media queries  . These features are very useful for page layouts; forget about tables or HTML divs. 

 ■   Note    Media queries are an advanced CSS3 technique that uses “@media” rule to add a block of CSS 
code, only under certain conditions—think “if” statements in CSS.  

 There are different  grid options  , which can be used based on the device’s screen size:

•    Extra small devices <768px (such as phones): “.col-xs-”  

•   Small devices ≥768px (such as tablets): “.col-sm-”  

  Figure 6-11.    Creating  custom UI Bootstrap build         

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

145

•   Medium devices ≥992px (such as desktops): “.col-md-”  

•   Large devices ≥1200px (such as desktops): “.col-lg-”    

 Let’s create an example: place the following code inside of “view1.html.” See Listing  6-8 . 

     Listing 6-8.    Bootstrap grid system   

 <div ng-controller="View1Ctrl"> 
         <div class="row grid"> 
                 <div class="row"> 
                         <div class="col-md-8">.col-md-8</div> 
                         <div class="col-md-4">.col-md-4</div> 
                 </div> 
         </div> 
 </div> 

   The code is straightforward—we’ll create two medium rows and set the div class “grid,” then we will 
need to add the “grid” class to the “app.css” style sheet. See Listing  6-9 . 

     Listing 6-9.    Setting grid style in “app.css”   

 .grid [class^=col-] { 
         padding-top: 10px; 
         padding-bottom: 10px; 
         background-color: #ffff00; 
         border: 1px solid #ddd; 
 } 

   Also delete all the CSS “ng” classes from “app.css” we added earlier, so we can see the changes better: 

    .ng-scope { 
   border: 2px solid #000000; 
   margin: 5px; 
 } 

   .ng-binding { 
   border: 3px solid red; 
 } 

   .ng-dirty { 
   border: 2px solid yellow; 
 } 

   .ng-invalid { 
   border: 2px solid red; 
 } 

   .ng-pristine { 
   border: 2px solid green;    
 } 

    The style sheet code will apply to any style that has a class name “col-*”. Now refresh the page 
(see Figure  6-12 ).  



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

146

 As you can see in Figure  6-12 , we were able to apply a style to our grid. However, we now have an 
issue—the text can be cut off in the current screen size selected. To solve this, Bootstrap includes a container 
called “container-fluid.” It can be used for full-width containers, utilizing the complete width of the screen. 
Change “view1.html” and the class from “row” to “container-fluid” (see Listing  6-10 ). 

     Listing 6-10.     view1.html container fluid grid     

 <div ng-controller="View1Ctrl"> 
         <div class="container-fluid grid"> 
                 <div class="row"> 
                         <div class="col-md-8">.col-md-8</div> 
                         <div class="col-md-4">.col-md-4</div> 
                 </div> 
         </div> 
 </div> 

   In the “app.css” style sheet, we are also able to define the width of the container, which will be adjusted 
for use in whatever size we decide and will center the container for us automatically. Add the following class 
in the “app.css” style sheet: 

   .container-fluid { 
    width: 940px; 
   .center-block(); 
 } 

   Refresh the screen. Now we can see the complete text copy. Once we adjust the screen to a size larger 
than 940px, the page will center the container for us automatically (see Figure  6-13 ).  

  Figure 6-12.    Bootstrap grid system       

  Figure 6-13.    Bootstrap grid utilizing container- fluid         

 

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

147

 Bootstrap CSS best practices for grid dictate:

•    “.row” class should be used to create horizontal groups of columns.  

•   “.container” should be used for “fixed-width” containers.  

•   “.container-fluid” should be used to utilize the full width of the screen.    

 For more information, visit:   http://getbootstrap.com/css/      

     Responsive CSS  Media Queries   
 As we have previously discussed, CSS3 offers @media rules in order to help us define style rules for different 
screens. These media queries can be used for the following  tasks:  

•    Resolution  

•   Width and height of view and device screen  

•   Landscape / portrait orientation  

•   Print view    

 In fact, this is such a common practice that the “angular-seed” “main.css” file already comes with  pre-
defined settings   for @media queries. For example, “angular-seed” off default media query for “view” port 
and for “print” settings. 

 Add “main.css” in “index.html” <head> tag: 

    <link href="bower_components/html5-boilerplate/dist/css/main.css" rel="stylesheet"> 

   Next, search for the following comment inside of “angular-seed/app/bower_components/html5-
boilerplate/dist/css/main.css”: 

   /* ========================================================================== 
    EXAMPLE Media Queries for Responsive Design. 
    These examples override the primary ('mobile first') styles. 
    Modify as content requires. 
    ========================================================================== */ 

   As you can see, “angular-seed” is already a defined media query for a screen size of 35em, which equals 
560px. 

   @media only screen and (min-width: 35em) { 
     /* Style adjustments for viewports that meet the condition */ 
 } 

   Next, change the @media tag to the following code (see Listing  6-11 ): 

      Listing 6-11.    Set  background color   to yellow on screen size   

  body { 
     background-color: red; 
 } 

   @media only screen and (min-width: 35em) { 

http://getbootstrap.com/css/


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

148

     /* Style adjustments for viewports that meet the condition */ 
     body { 
         background-color: yellow; 
     } 
 } 

    Now, refresh the browser and change the size of your screen. Once the size is smaller than 560px, the 
color will be red, while over 560px, the color will be yellow. See Figures  6-14  and  6-15 .   

  Figure 6-14.     @media style for screens   smaller than 560px       

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

149

 Take another look at Listing  6-11 . Inside the “@media only screen and (min-width: 35em),” you can 
set all of the CSS classes you want to change once the screen size is over 560px. 

 Here, we’ve created a responsive design that adjusts our style based on screen size with a minimal 
amount of code. 

   Portrait and Landscape Orientation 
 We can also set custom style settings for both portrait and landscape orientations. See Listing  6-12 . 

     Listing 6-12.    Using  custom style settings     

 @media only screen and (orientation: landscape) { 
     body { 
         background-color: green; 
     } 
 } 

   Once you turn the device orientation to landscape, the background color will be green. Obviously we 
don’t need to set the portrait orientation, since it is the default.  

   Emulating  Mobile Browsers   
 Chrome and Firefox offer different plugins that you can use to easily emulate mobile devices; one example is 
“Mobile Browser Emulator.” You can download it free from the Google Chrome webstore (see Figure  6-16 .)  

    https://chrome.google.com/webstore/detail/mobile-browser-emulator/lbofcampnkjmiomohpbaihdcb
jhbfepf?hl=en      

  Figure 6-15.    Background color for  desktop-sized screens         

 

https://chrome.google.com/webstore/detail/mobile-browser-emulator/lbofcampnkjmiomohpbaihdcbjhbfepf?hl=en
https://chrome.google.com/webstore/detail/mobile-browser-emulator/lbofcampnkjmiomohpbaihdcbjhbfepf?hl=en


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

150

 Once you install the plugin, you will see an “m” icon close to your Chrome’s address bar. Clicking the 
icon will give you drop-down options to emulate a mobile device. See Figure  6-17 .    

  Figure 6-16.     Mobile browser emulator         

  Figure 6-17.     Mobile browser emulator   drop-down  menu         

 

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

151

     CSS Responsive Design Utilizing a Break Point 
 When working with responsive design, best practices dictate that mobile should be taken into account first, 
and then other devices. The reasoning behind this is, if the user displays our content on a smaller device, 
which is less capable than a desktop, we want the content to be optimized and come up as soon as possible. 
With that in mind, let’s create a page that takes screen size into account. We want to change the style once 
the device screen size is at least 800px. 

 Ideally, we want our design to be optimized for device size, which will result in a better user experience. 
Media queries are built for this. We add breakpoints so that a portion of the content will behave differently 
on each size of the breakpoint we create. 

 Take a look at Listing  6-13 . Place the code inside of “main.css” right after the “EXAMPLE Media Queries 
for Responsive Design” comment, as we have done previously. 

     Listing 6-13.     Adding breakpoints     

  body { 
     background-color: black; 
 } 

   .left-menu ul { 
     list-style-type: none; 
     padding: 15px; 
 } 

   .left-menu li { 
     padding: 10px; 
     margin-bottom: 10px; 
     background-color : darkgrey; 
 } 
 .left-menu li:hover { 
     background-color: slategray; 
 } 
 .copy { 
     padding: 25px; 
 } 

   /* mobile */ 
 [class*="col-"] { 
     float: left; 
     width: 100%; 
 } 

   /* desktop */ 
 @media only screen and (min-width: 800px) {    
     .col-1 {width: 8.33%;} 
     .col-2 {width: 16.66%;} 
     .col-3 {width: 25%;} 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

152

     .col-4 {width: 33.33%;} 
     .col-5 {width: 41.66%;} 
     .col-6 {width: 50%;} 
     .col-7 {width: 58.33%;} 
     .col-8 {width: 66.66%;} 
     .col-9 {width: 75%;} 
     .col-10 {width: 83.33%;} 
     .col-11 {width: 91.66%;} 
     .col-12 {width: 100%;} 
 } 

    As you can see, we have defined a custom list to be used as our left menu and set the style to be used as 
a mobile style, unless the screen size is bigger than 800px. We have set the width size for each column. In our 
example, we will only be using “col-3,” but it’s good practice to set everything up front so that we can then 
adjust our style as needed (Listing  6-14 ). 

     Listing 6-14.    Adjusting the  style     

 <div class="row"> 
     <div class="col-3 left-menu"> 
         <ul> 
             <li>Left item 1</li> 
             <li>Left item 2</li> 
             <li>Left item 3</li> 
         </ul> 
     </div> 
     <div class="col-6 copy"> 
         <h1>Lorem Ipsum</h1> 
         <p> Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum vestibulum 
metus vitae magna viverra, id venenatis dui egestas. Suspendisse tincidunt rhoncus nisi. 
Suspendisse tristique commodo sapien, eu dictum erat. Vivamus accumsan quis orci et 
pulvinar. Ut efficitur placerat arcu, ut dapibus mauris egestas sit amet. Proin convallis 
massa justo, eu molestie nunc sodales in. Proin facilisis non arcu id venenatis. Interdum et 
malesuada fames ac ante ipsum primis in faucibus. Integer lacus ipsum, interdum eu maximus 
id, gravida a metus. Mauris sed pharetra tellus. Donec in pretium augue.</p> 
    </div>    
 </div> 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

153

   We have created a left menu, a title, and a copy in the middle. When the user views this content using a 
small device (less than 800px), the menu will extend to 100%, and when viewed on a desktop, the menu list 
will decrease in size so that the copy can fit. See Figures  6-18  and  6-19 .   

  Figure 6-18.    Responsive design with breakpoint  desktop view         

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

154

   Responsive Design Breakpoint Bootstrap 
 In the previous example, we used lists to create our containers using list HTML components and CSS, but it’s 
not necessary. Bootstrap CSS already has a container and rows, which we can style easily and then adjust for 
the container automatically. To do so in “bower_components/html5-boilerplate/dist/css/main.css,” add the 
following code (see Listing  6-15 ): 

     Listing 6-15.    Breakpoint Bootstrap  “main.css”     

 .content { 
   background: lightgray; 
   padding: 15px; 
   margin-bottom: 15px; 

  Figure 6-19.    Responsive design with breakpoint  mobile view         

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

155

   min-height: 300px; 
 } 
 .content.slategrey { 
   background: slategrey; 
 } 

   In “view1.html,” replace the existing code with following code (see Listing  6-16 ): 

     Listing 6-16.        

 <div class="container"> 
     <div class="row"> 
         <!-- 1 Columns at a time on mobile and 2 columns on desktop --> 
         <div class="col-xs-12 col-sm-6"> 
             <div class="content">.col-xs-12 .col-sm-6</div> 
         </div> 
         <div class="col-xs-12 col-sm-6"> 
             <div class="content slategrey">.col-xs-12 .col-sm-6</div> 
         </div> 
     </div> 
     <hr> 
     <!-- 2 /8 desktop or 1 column at a time for desktop --> 
     <div class="row"> 
         <div class="col-sm-2"> 
             <div class="content">.col-sm-4</div> 
         </div> 
         <div class="col-sm-10"> 
             <div class="content slategrey">.col-sm-8</div> 
         </div> 
     </div> 
 </div> 

   This code automatically takes mobile into account and adjusts the first set of columns to display one 
column at a time, and will adjust to two columns for desktop. For the second set of columns, the code 
displays 20% and 80% widths for desktop and full size for mobile. See Figure  6-20 .  



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

156

 Now, just as we’ve done before, change the container from: 

   <div class="container"> 

   to: 

   <div class=".container-fluid"> 

   As I have mentioned, the “.container-fluid” style changes a fixed-width grid layout into a full-width 
layout. See Figure  6-21 .    

  Figure 6-20.    Responsive design breakpoint Bootstrap CSS  desktop view         

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

157

     Bootstrap Responsive  Tables   
 There are cases when you will want to design a responsive table, which hides columns that are less 
important, based on screen size. For instance, let’s say your table has twelve columns but only five are 
important. We can use Bootstrap CSS to set the table as “unseen” and then set which columns we want to 
hide based on the user’s screen size. 

 To implement this type of design, in “view1.html,” place the following code (see Listing  6-17 ): 

     Listing 6-17.    Bootstrap responsive tables  “view1.html”     

 <section id="unseen"> 
         <table class="table-striped table-condensed table-bordered"> 
                 <thead> 
                 <tr> 

  Figure 6-21.    Responsive design breakpoint Bootstrap CSS  desktop view   using “.container-fluid”       

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

158

                         <th>Column1</th> 
                         <th>Column2</th> 
                         <th>Column3</th> 
                         <th>Column4</th> 
                         <th>Column5</th> 
                         <th>Column6</th> 
                         <th>Column7</th> 
                         <th>Column8</th> 
                         <th>Column9</th> 
                         <th>Column10</th> 
                         <th>Column11</th> 
                         <th>Column12</th> 
                 </tr> 
                 </thead> 
                 <tbody> 
                 <tr> 
                         <td>1</td> 
                         <td>2</td> 
                         <td>3</td> 
                         <td>4</td> 
                         <td>5</td> 
                         <td>6</td> 
                         <td>7</td> 
                         <td>8</td> 
                         <td>9</td> 
                         <td>10</td> 
                         <td>11</td> 
                         <td>12</td> 
                 </tr> 
                 </tbody> 
         </table> 
 </section>    

   Notice the following code on the table class: “<table class="table-striped table-condensed table-
bordered">”. The different Bootstrap CSS files indicate the following:

    1.     “   table-striped    ” : sets zebra striping style for the rows  

    2.     “table-   condensed    ” : makes tables more compact by cutting cell padding in half  

    3.     “table-   bordered    ” : sets borders on all sides of the table and cells     

 If we wanted to add a hover state for the table, we would just add “table-hover”. 
 Next, set the “bower_components/html5-boilerplate/dist/css/main.css” with the columns you want to 

hide based on the media screen size (see Listing  6-18 ). 

     Listing 6-18.     “main.css” style with hidden columns     

  @media only screen and (max-width: 800px) { 
         #unseen table td:nth-child(2), 
         #unseen table th:nth-child(2) {display: none;} 
         #unseen table td:nth-child(10), 
         #unseen table th:nth-child(10){display: none;} 
         #unseen table td:nth-child(11), 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

159

         #unseen table th:nth-child(11){display: none;} 
 } 

   @media only screen and (max-width: 640px) { 
         #unseen table td:nth-child(4), 
         #unseen table th:nth-child(4), 
         #unseen table td:nth-child(7), 
         #unseen table th:nth-child(7), 
         #unseen table td:nth-child(8), 
         #unseen table th:nth-child(8){display: none;} 
         #unseen table td:nth-child(9), 
         #unseen table th:nth-child(9){display: none;} 
         #unseen table td:nth-child(10), 
         #unseen table th:nth-child(10){display: none;} 
         #unseen table td:nth-child(11), 
         #unseen table th:nth-child(11){display: none;} 
 }    

    Also, to remove the previous yellow and red background body colors, we added in  “bower_components/
html5-boilerplate/dist/css/main.css”,  

    body { 
     background-color: red; 
 } 

   @media only screen and (min-width: 35em) { 
     /* Style adjustments for viewports that meet the condition */ 
     body { 
         background-color: yellow; 
     } 
 } 

  Figure 6-22.    Bootstrap responsive tables style with hidden columns,    mobile view       

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

160

           Bootstrap CSS Common Styles 
 Take a look at Listing  6-19 . These are some commonly used CSS styles. Bootstrap CSS already offers default 
settings for these common  elements  —they are self explanatory. Copy them into “view1.html” to replace the 
existing code (see Listing  6-19 ). 

      Listing 6-19.    Bootstrap CSS common styles code example   

  <h1>h1. Bootstrap heading <small> with a secondary text</small></h1><br> 
 <p class="lead">Stand out with lead style</p><br> 
 <mark>Highlight with the mark tag</mark><br> 
 <del>Cross off a line</del><br> 
 <s>No longer accurate</s><br> 
 <u>Underlined</u><br> 
 <p class="text-left">Left aligned text.</p> 
 <p class="text-center">Center aligned text.</p> 
 <p class="text-right">Right aligned text.</p> 
 <p class="text-justify">Justified text.</p> 
 <p class="text-nowrap">No wrap text.</p> 
 <p class="text-lowercase">Lowercased text.</p> 
 <p class="text-uppercase">Uppercased text.</p> 
 <p class="text-capitalize">Capitalized text.</p> 
 <abbr title="abbreviation">abbreviation</abbr><br> 
 <abbr title="initialism" class="initialism">initialism</abbr><br> 
 <code>&lt;inline code&gt;</code><br> 
 <kbd>ctrl</kbd> 
 <button type="button" class="btn btn-default">Default</button> 

  Figure 6-23.    Bootstrap responsive tables style with hidden columns,    desktop view       

 



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

161

 <button type="button" class="btn btn-primary">Primary</button> 
 <button type="button" class="btn btn-success">Success</button> 
 <button type="button" class="btn btn-info">Info</button> 
 <button type="button" class="btn btn-warning">Warning</button> 
 <button type="button" class="btn btn-danger">Danger</button> 
 <button type="button" class="btn btn-link">Link</button> 
 <button type="button" class="btn btn-primary btn-xs">Extra small button</button> 
 <button type="button" class="btn btn-primary btn-sm">Small button</button> 
 <button type="button" class="btn btn-primary btn-lg">Large button</button> 
 <address> 
         <strong>Name</strong><br> 
         123 Rainbow Street<br> 
         Los Angeles, CA 90210<br> 
         <abbr title="Phone">P:</abbr> (310) 111-1111 
 </address> 

       Responsive Images   with Bootstrap CSS 
 There are times you will need to implement an image on different screen sizes. Creating a responsive image 
with Bootstrap CSS is easy—all you have to do is use the “img-responsive” class in the image tag (see below): 

 <img src="[url]" class="img-small" alt="Responsive image"> 

 When you use “img-responsive,” the images will respond automatically, which means that the width 
will adjust on its own based on the screen size. 

 You can then customize the image height with the “@media” tag. 
 In “bower_components/html5-boilerplate/dist/css/main.css,” set the following small class: 

   @media screen and (max-width: 480px) { 
         img.small { 
                 max-height: 250px; 
                 min-height: 50px; 
         } 
 } 

   Then, in “view1.html,” set the image class to “responsive” and “small,” and replace the existing “view1.
html” with the following: 

   <img src="http://goo.gl/fcpsyI" class="img-responsive small"> 

   See Figure  6-24 .       



CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

162

      Angular-Responsive Library   
 In the previous sub-chapters, we’ve shown you how to create media queries using pure CSS and Bootstrap 
CSS to build elegant views. However, using media queries is often less than ideal, and although we can set 
“unseen” content and optimize the content, the DOM is still going to process the content using valuable 
device resources. 

 Instead of using media queries, the other most common option is to create a completely different view 
for each screen size. It’s easy enough to create it on your own, check screen size, and apply the view, 
but you don’t need to. There are already libraries that include directives to do just that—here’s one 
example:   https://github.com/lavinjj/angular-responsive    . 

 The “angular-responsive” directive is set to not add content unless it’s displayed on the targeted device. 
This reduces the expensive use of network traffic and DOM processing, but still requires you to create 
different views for each device, so it’s a bit of a trade-off. To install the libraries, type the following command: 

   $ bower install angular-responsive 

   You can confirm that the library was added here: “angular-seed/app/bower_components/angular-
responsive.” 

  Figure 6-24.    Responsive image using Bootstrap CSS. Photo credit “National geographic.”          

 

https://github.com/lavinjj/angular-responsive


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

163

 Alternatively, you can check out the library directly from GitHub and add it manually to the component 
folder using the following commands:

•    Git clone   https://github.com/lavinjj/angular-responsive      

•   Create a “components/angular-responsive” folder and copy “responsive-directive.js” 
to the target folder.    

   Why are we showing you both options? The “angular-responsive” library on Bower may not include the 
latest code, so it’s good to have both options handy. 

   Next, add the directive to the “view1.js” module: 

   angular.module('myApp.view1', ['ngRoute', 'ui.bootstrap', 'angular-responsive']) 

   Don’t forget to load the directive in “index.html” add at the end of the page, the responsive directive: 

   <script src="bower_components/angular-responsive/src/responsive-directive.js"></script> 

   Now, we can use different images (content) for each device,    without taxing the device. Swap the images 
in brackets with an image of your choice with the image size listed. For example: [image50x50] should be 
replaced with an image with 50-by-50-pixel dimentions. 

    Listing 6-20.    “angular-responsive” used to display different images on different devices   

 <div class="container-fluid" ng-controller="View2Ctrl"> 
         <div class="row-fluid"> 
                 <div data-ar-mobile> 
                         mobile devices<br> 
                         <img ng-src="[image50x50]" alt="mobile" 
                                          height="50"/> 
                 </div> 
                 <div data-ar-tablet> 
                         Tablet devices<br> 
                         <img ng-src="[image100x100]" alt="tablets" 
                                          height="100"/> 
                 </div> 
                 <div data-ar-desktop> 
                         desktop devices<br> 
                         <img ng-src="[image500x500]" alt="desktop" 
                                          height="500"/> 
                 </div> 
                 <div data-ar-responsive="{ 'Mobile': true, 'Tablet': true, 'Desktop': false }"> 
                         mobile or tablet devices<br> 
                         <img ng-src="[image150x150] " alt="tablets and mobile" 
                                          height="150"/> 
                 </div> 
         </div> 
 </div> 

https://github.com/lavinjj/angular-responsive


CHAPTER 6 ■ CSS, BOOTSTRAP, & RESPONSIVE DESIGN

164

   As you can see in Figure  6-25 , we can emulate the different devices and see the results. The code will 
be using different images, and we can ensure that, for mobile, we’re using smaller-sized images that require 
fewer resources.    

     Summary 
 In this chapter, we put a bucket of paint on our app and learned how to use the built-in CSS classes used 
by AngularJS. We creaed a new project and used “ng-scope,” “ng-dirty,” “ng-invalid,” and “ng-pristine.” We 
installed Bootstrap CSS and UI Bootstrap and learned how to create a custom UI Bootstrap build. 

 We covered CSS Bootstrap and how to create and use responsive CSS media queries to adjust to device 
screen sizes, as well as portrait and landscape orientation. We installed a plugin to emulate mobile browsers 
and used CSS and Bootstrap CSS to create responsive design to utilize breakpoints. 

 We also created Bootstrap CSS responsive tables and showed you some of the common styles that 
Bootstrap CSS has to offer. We created content utilizing responsive images with Bootstrap CSS and, finally, 
implemented the “Angular-responsive” library to reduce processing time on different devices. 

 In the next chapter, we will be covering the process of creating services that our app can use utilizing 
Node.js and ExpressJS.     

  Figure 6-25.    “angular-responsive” using  different   images on different devices. Photo credit “National 
Geographic.”       

 



165© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_7

    CHAPTER 7   

 Write Services Once                          

 As you may recall, in Chapter   1    , we installed Node.js on our local machine using the installer from    http://
nodejs.org     . In Chapter   2    , we rolled out servers and installed Node.js on Ubuntu servers. In Chapter   3    , we 
installed modules and created our very own first Node.js module and published it to both npm and GitHub. 

 In this chapter, we will put it all together and utilize Node.js to create a service layer that can be used on 
any machine. 

 ■   Note    A service layer, middle layer, or middle tier is the processing taking place between the front end 
and the database. It include business logic and processing data. The service layer allows for creating different 
presentations of the same data.  

     Express App 
 Our first step is to set up our server so that we can have an address that the client side can call and be able to 
receive a result from a service call. 

 Node.js and Express are built without a strict folder structure, but there are better practices out there. 
WebStorm includes a folder structure based on these best practices, but of course, what fits one project may 
not fit another. Regardless, it is recommended that we start by creating a new Node.js Express project.    

 We’ll create a Node.js Express server, examine best practices, and create services. 

 ■   Note    Express is a flexible Node web application framework based on Node.js with a small footprint 
that provides a set of features for application development. Remember, the “E” in the MEAN Stack stands for 
Express, and using Express can help simplify and accelerate development over creating a separate server for 
front end. The same Node.js server can be used for the middle layer and presentation layer. Visit the Express 
website here:    http://expressjs.com     .  

     Installing  Express   
 To start an Express skeleton project, open WebStorm, select “Create New Project,” then select “Node.js 
Express App,” and lastly, “Create” (Figure  7-1 ).  

http://dx.doi.org/10.1007/978-1-4842-2044-3_1
http://nodejs.org/
http://nodejs.org/
http://dx.doi.org/10.1007/978-1-4842-2044-3_2
http://dx.doi.org/10.1007/978-1-4842-2044-3_3
http://expressjs.com/


CHAPTER 7 ■ WRITE SERVICES ONCE

166

 Look at the directory list and you will see that we have a project with the following directories and files:

    1.     node_modules folder : the Node.js module dependencies being used by the 
project  

    2.     public folder : where we will place our static files, such as images, JavaScript files, 
and stylesheet CSS files  

    3.     routes folder : currently includes index.js and users.js JavaScript files (the 
services we will be using for our app)  

    4.     views folder : holds Jade (now called Pug) templates rendered and served by the 
routes. Jade/Pug uses a concise, readable syntax to make authoring HTML pages 
easier.  

    5.     app.js file : initializes and glues the app components together.  

    6.     package.json file : stores references to the modules (installed in node_modules) 
and their versions that the app depends on  

    7.     bin/www file : Node.js entry point that creates servers and loads required 
 dependencies       

  Figure 7-1.    Creating a new Express project in WebStorm          

 



CHAPTER 7 ■ WRITE SERVICES ONCE

167

 If you look at the “package.json” file, notice that "express" "~4.13.4" is the current stable version is 4 and 
Express 5 is in alpha state. Feel free to visit Express to see the list of changes in Version 5:    http://expressjs.
com/en/guide/migrating-5.html       

     Hello World  Express   
 Now that we have a project set up in WebStorm, we’ll create a server locally and get a “Hello World.” In the 
upper right corner of WebStorm, click the green caret to run the “www” file. See Figure  7-2 .  

 You will see in the left button in the corner, the run window shows that the app is running successfully 
on port 3000. See Figure  7-3 .  

 Open    http://localhost:3000/      and you will be able to see the app running (Figure  7-4 ).   

  Figure 7-2.    Run “www” Node.js Express app       

  Figure 7-3.    App running successfully on port  3000          

 

 

http://expressjs.com/en/guide/migrating-5.html
http://expressjs.com/en/guide/migrating-5.html
http://localhost:3000/


CHAPTER 7 ■ WRITE SERVICES ONCE

168

      Express Generator Tool   
 If you don’t want to use WebStorm to create your Express project, there is another way. In the section below, 
we’ll create the same project with a generator. 

 Express has a generator tool called “express-generator.” You can create the same seed project as the one 
built in to WebStorm with just two commands: 

   $ sudo npm install express-generator –g 
 $ express  untitled   

   The app the Express tool creates is the same as the one in WebStorm.   

     Pugjs, Previously Known as Jade 
 Jade’s name was changed to  Pugjs  , and it is one of the most popular template engines. You can take a look at 
the project here:    https://github.com/pugjs/pug     . It allows us to quickly write intuitive, easy-to-read code 
that will convert to HTML, saving development time and making the code readable. We have seen Pugjs in 
action in the previos example. In this section, we will cover Pugjs more, showing you how to integrate it into 
your app and utilize it. 

 Add the pug library to our project: 

   $ npm install pug --save-dev 

   Next, create the following file inside of the views folder  views/   index.pug   , as shown in Listing  7-1 . 

      Listing 7-1.     Index.pug     

 doctype html 
 html(lang="en") 
   head 

  Figure 7-4.    Express app running on port 3000          

 

https://github.com/pugjs/pug


CHAPTER 7 ■ WRITE SERVICES ONCE

169

     title= pageTitle 
     script(type='text/javascript'). 
       if (foo) bar(1 + 5) 
   body 
     h1 Pug - node template engine 
     #container.col 
       if youAreUsingPug 
         p You are amazing 
       else 
         p Get on it! 
       p. 
         Pug is a simple templating language with a 
         strong focus on performance and powerful features.    

   Listing  7-1  was taken straight from a Pug project; it illustrates how to write an easy-to-read HTML code 
in Pugjs. It creates an HTML document, sets the page title, performs some simple JavaScript calculation, and 
adds “h1” and “p” tags to the document. 

 Similarly, the code creates another file (“views/hello.pug”). The file will create an HTML document, add 
an “h1” tag and set “body” as the value (Listing  7-2 ). 

     Listing 7-2.     hello.pug     

 html 
   head 
   body 
     h1=body 

   Now that we have two  template documents  , all we have to do is wire our app and set the view folder. 
Inside of “app.js,” after setting the app “app.set('view engine', 'jade')”, add the following code (see Listing  7-3 ):    

     Listing 7-3.    Set app.js to map to the view  folder     

 // set pug 
 app.set('view engine', 'pug'); 
 // pass variables to pug 
 app.get('/hello', function (req, res) { 
     res.render('hello', { body: 'hello world pug'}); 
 }); 

   Notice that we’re passing the value of “body” to the hello.pug template page. 
 To view the template (Figure  7-5 ), open the documents:  



CHAPTER 7 ■ WRITE SERVICES ONCE

170

   $ Open http://localhost:3000 

   Now, open the hello.pug page (Figure  7-6 ):  

   $ Open http://[computer name]:[port]/hello 

  Figure 7-6.    Hello.pug template page       

  Figure 7-5.    Index.pug template page       

   As you can see, creating a template is a powerful tool to put in your bag of tricks when creating Express 
apps. It can be used for many different things, such as static pages, content, and HTML emails, as we will see 
later in this chapter.       

     Setting Up a Service  Layer   
 Next, to set up a service layer, we can utilizie Express’s built-in functionality. Express handles service 
requests using “routing.” 

 

 



CHAPTER 7 ■ WRITE SERVICES ONCE

171

 ■   Note    Routing in Express is the application end point (URI, or path) and an HTTP request method 
(GET, POST, HEAD, PUT, DELETE, etc) and how the end point responds to a client’s request.  

 Open the “routes” folder in your app and you will see that there are two files:

•    index.js  

•   users.js    

 index.js is the default “home” page file, and app.js routes the “routes/index.js” file with the “views/
index.jade” template file. When the client calls    http://localhost:3000/     , it sets the index as the route. In 
app.js (Listing  7-4 ), it also creates the app as Express, sets the views as a Jade template, and uses routes we 
define.    

     Listing 7-4.    app.js sets routes   

  var routes = require('./routes/index'); 
 var users = require('./routes/users'); 

   var app = express(); 

   // view engine setup 
 app.set('views', path.join(__dirname, 'views')); 
 app.set('view engine', 'jade'); 

   app.use('/', routes); 
 app.use('/users', users); 

    Now, in index.js and users.js, we define how to handle the request. For “views/index.js,” the script sets 
the title as “Express,” which the Jade template will be using (Listing  7-5 ). 

     Listing 7-5.    Content of index.js file   

  var express = require('express'); 
 var router = express.Router(); 

   /* GET home page. */ 
 router.get('/', function(req, res, next) { 
   res.render('index', { title: 'Express' }); 
 }); 

   module.exports = router; 

    In the “views/index.jade” template file, the code defines the front-end representation (Listing  7-6 ).    

     Listing 7-6.    Content of “index.jade” file   

  extends layout 

   block content 
   h1= title 
   p Welcome to #{title} 

http://localhost:3000/


CHAPTER 7 ■ WRITE SERVICES ONCE

172

    The Jade template code is similar to HTML, but without the tags. h1 is the same as the HTML heading 
<h1> tag, and p is the same as the HTML <p> paragraph tag. More on Jade (Pugjs) later in this chapter. 

 For “routes/users.js,” the service responds with the message, “respond with a resource” (Listing  7-7 ). 
You can also open the URL to see the message:    http://localhost:3000/users     .     

     Listing 7-7.    Content of users.js file   

  var express = require('express'); 
 var router = express.Router(); 

   /* GET users listing. */ 
 router.get('/', function(req, res, next) { 
   res.send('respond with a resource'); 
 }); 

   module.exports = router; 

    The service is using the route “get” HTTP method router.get(). Additionally, Express supports all of 
the following methods: get, post, put, head, delete, options, trace, copy, lock, mkcol, move, purge, unlock, 
report, mkactivity, checkout, merge, m-search, notify, subscribe, unsubscribe, patch, search, and connect.    

 Express also supports “all()”, which will accept any type of HTTP method.  

     Setting Up a POST  Service   
 In this section, we will be setting up a POST Service Layer and testing it. Change the code inside of “routes/
users.js” to the following (Listing  7-8 ): 

     Listing 7-8.    users.js POST HTTP method   

  var express = require('express'); 
 var router = express.Router(); 

   /* GET users listing. */ 
 router.get('/', function(req, res, next) { 
   res.send('GET'); 
 }); 

   /* POST users listing. */ 
 router.post('/', function(req, res, next) { 
   res.send('POST: ' + req.body.query); 
 }); 

   module.exports = router; 

    We have added a “router.post” HTTP method, and when the client sends a POST request, it expects a 
query param in the body of the request. To see this service at work, create a new HTML file and name it “test.
html” (Listing  7-9 ). 

http://localhost:3000/users


CHAPTER 7 ■ WRITE SERVICES ONCE

173

     Listing 7-9.    test.html  form     

  <form action="http://localhost:3000/users" method="post"> 
     <input type="text" name="query" id="query"/> 
     <button id="btn">submit</button> 
 </form> 

   <script> 
     var button = document.getElementById('btn'); 
     button.addEventListener(function() { 
         document.getElementById('btn').submit(); 
     }); 
 </script> 

    Now open test.html in a browser. The content of the file is simple—use “vim test.html” or your personal 
favorite editor to create the code. In the Terminal, type “$ open test.html”, or just double click the file. See 
Figure  7-7 .  

 Reload the server (or click the Rerun button in WebStorm) for the Express changed files to apply. 
 Next, type anything into the text input box and hit submit (Figure  7-8 ).  

  Figure 7-7.    Test.html form test  page         

  Figure 7-8.    Users POST HTTP method return form  data         

 

 



CHAPTER 7 ■ WRITE SERVICES ONCE

174

 As you can see, the service displays the results of the text input box. This data can be used to retrieve a 
user from a database or any other data source.     

     MongoDB Database  Integration   
 In this section, we will be installing the MongoDB database, integrating the database using Express, and 
creating a service. 

 MongoDB consists of the following tools:

•      mongod   : the actual database process  

•     mongos   : MongoDB Shard—like a controller routing service for MongoDB. It 
processes queries from the application layer and determines location of the data in 
the sharded cluster.  

•     Mongo   : the database shell (which uses interactive JavaScript)    

 and the following utilities:

•      Mongodump   : a dump tool-for backups, snapshots, and other tasks  

•     Mongorestore   : allows dumping of a single collection  

•     Mongoimport   : allows the importing of data in JSON or CSV format  

•     Mongofiles   : allows placing and retrieving files from MongoDB GridFS mongostat 
and shows performance statistics    

   Install MongoDB 
 To install MongoDB 

    http://www.mongodb.org/downloads      

 Select “Community Server” tab, select “Current Stable Release,” and lastly, “Download (tgz),” as shown 
in Figure  7-9 .     

http://www.mongodb.org/downloads


CHAPTER 7 ■ WRITE SERVICES ONCE

175

 Next, navigate to the download folder and extract the gzip compressed tar file: 

   $ cd ~/Downloads 
 $ tar xzf mongodb-osx-ssl-x86_64-3.2.10.tgz 

   Note that the version at the time of writing is 3.2.10, but the version may have changed by the time you 
install. Next, move the file to a user local folder under  MongoDB.   

   $ sudo mv mongodb-osx-x86_64-3.2.10 /usr/local/mongodb 

   Now we can set a data folder for our MongoDB database: 

   $ sudo mkdir -p /data/db 
 $ whoami 
 $ [user name] 
 $ sudo chown [user name] /data/db 

  Figure 7-9.    Downloading  MongoDB         

 



CHAPTER 7 ■ WRITE SERVICES ONCE

176

   Next, we will add the permission of MongoDB to a Bash profile. 

   $ cd ~ 
 $ vim .bash_profile 

   Inside the Bash profile, insert the following: 

   export MONGO_PATH=/usr/local/mongodb 
 export PATH=$PATH:$MONGO_PATH/bin 

   To save and quit, click “ESCAPE” + “:wq” + “Enter.” Run the Bash profile for these changes to take effect: 

   $ . ~/.bash_profile 

   MongoDB is now installed. You can verify by running the following command: 

   $ mongo -version 
 MongoDB shell version: 3.2.7 

   As you can see, MongoDB replies with the version number. Similarly, for command line options, use the 
help flag: 

   $ mongod --help 

          Start MongoDB   
 To start MongoDB, open a new Terminal, type “command” + “t”, and run the mongod command. 

   $ mongod 

   MongoDB shows all the output connection messages and ends with the following message: 

   [initandlisten] waiting for connections on port 27017 
 > 

   A few troubleshooting tips:

    1.    To stop MongoDB on a mac in Terminal, open “$ top,” identify the 
process, and type “$ kill [pid]”, where pid should be the MongoDB 
process ID.  

    2.    If you get a message such as “Failed to obtain address information 
for hostname [COMPUTER NAME]: nodename nor servname provided, or 
not known," you need to add the host of your computer: “$ vim /etc/
hosts”. Then, add the host: “127.0.0.1 [COMPUTER NAME]”.  

    3.    If you receive the message “Do you want the application mongod to 
accept incoming network connection,” select “Allow.”     

   Visit MongoDB docs regarding FAQ diagnostics:    https://docs.mongodb.com/manual/faq/
diagnostics/ 



CHAPTER 7 ■ WRITE SERVICES ONCE

177

   Next, open another Terminal tab instance while “waiting for connections on port 27017” mongod is still 
running. 

    $ mongo 
 MongoDB shell version: [version] 

   If you go back to the mongod Terminal tab, it will confirm that mongod is connected: 
“[initandlisten] connection accepted from 127.0.0.1:49360 #1 (1 connection now open).” 

    As you can see, it replies with a connection and we see “>,” and MongoDB is ready for a command. 

   > show dbs 
 local  0.000GB 

   We don’t have a database yet, so it returns with no data size.  

     Create a  Database   
 Now that we have mongod running and we can interact and type commands, we can create our first 
MongoDB database. In the MongoDB command line, switch to the username (as you recall, we discover 
ouruser name by using “whoami”): 

   > use [username] 

   The server will reply in the Terminal output: 

   switched to db [username] 

   Next, we’ll create a user collection under our username and insert information about our user: 

   > db.usercollection.insert({ "username" : "someuser", "email" : "someuser@gmail.com" }) 

   The server replies in the Terminal output: 

   WriteResult({ "nInserted" : 1 }) 

   Now we can confirm that the information was inserted correctly: 

   > db.usercollection.find().pretty() 

   The server replies in the Terminal output: 

   { 
         "_id" : ObjectId("5771bc5a4c127a7131da18e2"), 
         "username" : "someuser", 
         "email" : "someuser@gmail.com" 
 } 



CHAPTER 7 ■ WRITE SERVICES ONCE

178

   Also, running “show dbs” will show us that the user has a collection; the size is still insignificant.    

   > show dbs 

   The server replies in the Terminal output: 

   [username] 0.000GB 
 local 0.000GB 

   We have created our first MongoDB database, inserted a user collection under our username, and 
confirmed that the information was inserted correctly.   

     Read Results from MongoDB into our Express App 
 Next, we want to be able to interact with the MongoDB database we created and set our Node.js service 
layer to be able to execute CRUD (create, read, update, and delete) operations and interact with the 
express front layer. 

     MongoDB  API   
 In this section, we’ll install an API that can create the connection between Node.js and MongoDB. Navigate 
back to the Express project we created in the previous section. We want to add the following two libraries:

    1.    MongoDB: the official Node.js driver for MongoDB. See:    https://www.npmjs.
com/package/mongodb       

    2.    Monk: substantial usability improvements for MongoDB usage within Node.JS. 
See    https://www.npmjs.com/package/monk          

 Install these two libraries locally and save them in the package.json file by typing:    

   $ npm install mongodb monk --save-dev 

         app.js   
 Now that we have an API that can do the talking, we can go back to our “app.js” file and make our MongoDB 
database accessible to all of our routers. Place Listing  7-10 ’s code after “var app = express();”. 

     Listing 7-10.    “app.js” connected to MongoDB   

  var mongo = require('mongodb'); 
 var monk = require('monk'); 
 var db = monk('localhost:27017/[USER NAME]’); 

   // Make our db accessible to our router 
 app.use(function(req,res,next){ 
   req.db = db; 
   next(); 
 });    

https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/monk


CHAPTER 7 ■ WRITE SERVICES ONCE

179

    Notice that we set our database as our username. We got it by running “$ whoami” in the Terminal. 
Ensure you change the bracketed username (“[USERNAME]”) to your username.  

      users.js   
 Now in users.js, we can query the database and return the users (Listing  7- 11 ). 

     Listing 7-11.    users.js get service   

  /* GET users listing. */ 
 router.get('/', function(req, res, next) { 
   console.log('start get'); 
   var db = req.db; 
   var collection = db.get('usercollection'); 
   collection.find({},{},function(e,docs){ 
     res.send(docs); 
   }); 

   }); 

   Similarly, a post request will look like Listing 7-12. 

       Listing 7-12.    users.js post service   

  /* POST users listing. */ 
 router.post('/', function(req, res, next) { 
   var db = req.db; 
   var collection = db.get('usercollection'); 
   collection.find({'username': req.body.query},{},function(e,docs){ 
     res.send(docs); 
   }); 
 }); 

   You can just copy the complete code into routes/users.js as shown in Listing 7-13. 

       Listing 7-13.    users.js complete  code     

  var express = require('express'); 
 var router = express.Router(); 

   /* GET users listing. */ 
 router.get('/', function(req, res, next) { 
   console.log('start get'); 
   var db = req.db; 
   var collection = db.get('usercollection'); 
   collection.find({},{},function(e,docs){ 
     res.send(docs); 
   }); 

   }); 



CHAPTER 7 ■ WRITE SERVICES ONCE

180

   /* POST users listing. */ 
 router.post('/', function(req, res, next) { 
   var db = req.db; 
   var collection = db.get('usercollection'); 
   collection.find({'username': req.body.query},{},function(e,docs){ 
     res.send(docs); 
   }); 
 }); 

   module.exports = router; 

    Remember to ensure “mongod” is running by typing “mongod” in a Terminal instance.     
 Be sure to “run” the Node.js app by clicking the green return icon in WebStorm or by typing command + 

R while on the run window for the changes to take effect. 
 To test these changes, go to the user URL and you should be able to see the results of users: 

    http://localhost:3000/users      

 You will see the results in the browser: 

   [{"_id":"57f303a9ed4425e3f6a7724e","username":"someuser","email":"someuser@gmail.com"}] 

   Now open “test.html” again, and this time give “someuser” as the user name and hit submit. 
 You’ll get the same results:    

   [{"_id":"57f303a9ed4425e3f6a7724e","username":"someuser","email":"someuser@gmail.com"}] 

   Hit the back button in the browser and try a false username—you will get an empty result: “[]”. 
 We were able to create a MongoDB database connect to the MongoDB database through Node.js and 

create a Service Layer in Express to perform CRUD operations. In the following sections, we’ll add more 
interactions using Socket.IO.   

     Express and Socket.IO 
 In the section below, we will be covering creating a Service Layer that utilizes Web Socket to transfer data. 
Web Socket is often used to transfer real-time messages such as chats or streaming videos. Web Socket is a 
valuable feature that can be added that realism features to your application. 

      Install Socket.IO   
 Socket.IO allows us to easily create real-time event communications. This is a core feature and a good 
technology to keep in your bag of tricks for any type of app you will be building. Let’s start off by installing 
Socket.IO. Run the following command in the project root location: 

   $ npm install socket.io --save-dev 

        Add Socket.IO to the  App   
 To add Socket.IO, open app.js and create a server variable, then initialize Socket.IO. We also want to add 
Socket.IO to our response so it will be available (Listing  7-14 ). Place code after “var app = express();”. 

http://localhost:3000/users


CHAPTER 7 ■ WRITE SERVICES ONCE

181

     Listing 7-14.    Update app.js to set a Socket.IO server   

  // NOTE: add socket.io 
 var server = require('http').Server(app); 
 var io = require('socket.io')(server); 

   app.use(function(req, res, next){ 
   res.io = io; 
   next(); 
 });    

    Lastly, we want to change our Express app signature to pass the app and server. bin/www need both 
app and server instead of just app. Be sure to add the following line at the bottom of the app.js file: 

   // NOTE: change from: module.exports = app; 
 module.exports = {app: app, server: server}; 

   Next, open the “bin/www” file and make changes so that the app variable will point to the app and 
server. This accomodates the changes we’ve made in app.js(Listing  7-15 ).    

     Listing 7-15.    “bin/www” changes to changes of Express app   

  // NOTE: changed from: var app = require('../app'); 
 var app = require('../app').app; 

   // NOTE: changed from: var server = http.createServer(app); 
 var server = require('../app').server; 

          Update Users Service   to Include Socket.IO 
 Now we can update our “routes/users.js” service file and send Socket.IO event notifications. Open “routes/
users.js” and replace the service router.get with Listing  7-16 . 

     Listing 7-16.    users.js calling “helloSocketIO” and passing data   

 /* GET users listing. */ 
 router.get('/', function(req, res, next) { 
   var db = req.db; 
   var collection = db.get('usercollection'); 
   collection.find({},{},function(e,docs){ 
     // NOTE: EE: added socket IO call 
     res.io.emit("helloSocketIO", docs); 
     res.send(docs); 
   }); 
 }); 

   Note that once we have the results from the database, we are able to send these results as event 
notifications using Socket.IO, so that any subscriber to “helloSocketIO” can retrieve data. 

 You can return “bin/www” and refresh “   http://localhost:3000/users     ,” which will produce the same 
results, since we are sending the data back “res.send(docs);”.     

http://localhost:3000/users


CHAPTER 7 ■ WRITE SERVICES ONCE

182

     Retrieve a Socket.IO Event Using MongoDB Results 
 On the front end, our index can subscribe to the event notification and display an alert showing the data. In 
“views/index.jade,” change the code to that in Listing  7-17 .    

     Listing 7-17.    Update “index.jade” to include socket.io connection and results from database   

  extends layout 

   block content 
   h1= title 
   p Welcome to #{title} 
   script(src="/socket.io/socket.io.js") 
   script. 
     var socket = io('//localhost:3000'); 
     socket.on('helloSocketIO', function (data) { 
       alert('Hello ' + data[0].username); 
     });    

         Test  Socket.IO App   
 To test our app, restart the app using the run command in WebStorm and open an instance of the app in 
your browser: 

   $ open http://localhost:3000 

   Now, when we call the users service using a browser, it will display our user in an alert: 

   $ open http://localhost:3000/users 

   You can also do it without user interaction using cURL: 

   $ curl http://localhost:3000/users 

 ■     Note    cURL is a Linux tool that can be used without user interaction and is built to transfer data to or from 
a server using protocols such as FTP, HTTP, HTTPS, POP3, RTMP, and others. It’s available for Mac OS X out of 
the box in Terminal.    

     rooms.js 
 An easy way to integrate Engine.IO and Socket.IO, or any other transporters, with your app is to use an 
implementation layer that sits on top of these engines. There are many implementations out there, and we 
will review one as an example. 

  rooms.js   is a JavaScript Node.js module for creating rooms and streaming data between the front end 
and back end. It uses Engine.IO or Socket.IO for sending messages and provides a way to send and receive 
messages and switch different transporters for creating rooms and streaming data between users, streaming 
data from a database and even streaming from a third-party CDN. 



CHAPTER 7 ■ WRITE SERVICES ONCE

183

 Take a look at Figure  7-10     to better understand the flow. rooms.db connects to a database or a CDN, and 
through rooms.js, it uses Socket.IO to send messages through a controller to an app.  

 rooms.js, rooms.db and rooms.js-client together combine a light-weight back-end/front-end libraries 
built to stream live data and solve problems related to real-time communications. 

 To start a new project, open WebStorm and select “Create New Project,” then select “Node.js Express 
App.” Name the project “rooms”. Lastly, click the “Create” button. 

 Next, open the Terminal in WebStorm and run the following commands: 

    $ npm install roomsjs rooms.db http  --save-dev 

   We will be using Mongoose as the database connector: 

   $ npm install mongoose --save-dev 

    If you didn’t install Bower in Chapter   1    , you can run the following command prior to installing the 
rooms.js-client to  install Bower:   

    $ npm install -g bower 

   Next, install the front-end client: 

   $ bower install roomsjs-client 

    Next, we want to add app.js as an entry point, since we will be configuring the server and connection 
there instead of using “bin/www”:

    1.    Click “Run/Debug configurations” ➤ “Edit configurations…” (Figure  7-11 ).      

  Figure 7-10.    rooms.js  high-level architecture         

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 7 ■ WRITE SERVICES ONCE

184

    2.    Next, click “Add new configuration” (plug symbol) and select “Node.js” 
(Figure  7-12 ).      

    3.    Name the configuration “app”  

    4.    Set the working directory as [location of WebStorm Projects]/rooms  

    5.    Set the “JavaScript file” field to “app.js” (Figure  7-13 ).         

  Figure 7-11.    Edit configurations in WebStorm       

  Figure 7-12.    Add new configuration in run/debug  wizard         

  Figure 7-13.    Run/Debug configrations window in WebStorm       

 

 

 



CHAPTER 7 ■ WRITE SERVICES ONCE

185

 Now copy the following into the  “rooms/app.js” file   (Listing  7-18 ): 

     Listing 7-18.    app.js application entry point   

  'use strict'; 

   var os = require('os'), 
     rooms = require('roomsjs'), 
     roomdb = require('rooms.db'), 
     port = (process.env.PORT || 8081); 

   // create express server if needed 
 var express = require('express'), 
     app = express().use(express.static(__dirname + '/client')); 

   // engine.io, socket.io 
 var server = require('http').createServer(app).listen(port, function () { 
     console.log('Listening on http://' + os.hostname() + ':' + port); 
 });    

   // services 
 roomdb.setServices('services_sample/', app); // pass the app to get rest services or null 

   // set rooms 
 rooms = new rooms({ 
     isdebug : true, 
     transporter : { 
         type: 'engine.io', /* options: engine.io|socket.io|sockjs */ 
         server : server 
     }, 
     roomdb : roomdb /* or null if db not needed */ 
 }); 

   We’ve created an Express server and set the services we will be using as well as passed reference of the 
server we will be using, decided on the Web Socket type and database. 

   If you try to run the application at this point, you will received an error message, since we didn’t set any 
services yet but defined them here: 

   roomdb.setServices('services_sample/', app);    

        Creating  Static Service   
 In this section, we will create a service that can interact with the database and create a Web Socket 
connection for us to use. What we’ve done so far is create a server and pass the app, then have the app scan 
the services folder for any services. 

 For services, we’ll create a static data service that just returns names. First, create a folder in the project 
root and name it “services_sample.” Next, create a “services_sample/getnames.js” file in the “services_
sample” directory. 

 Copy Listing  7-19 .    



CHAPTER 7 ■ WRITE SERVICES ONCE

186

     Listing 7-19.    getnames.js service with static data   

 'use strict'; 
 function getnames(data, dbconnectorCallBackToRooms) { 
   var vo = ['Liam', 'Samuel', 'Noah']; 
   dbconnectorCallBackToRooms(data, vo); 
 } 
 module.exports.getnames = getnames; 

   The code creates an array with names and passes it back to the database connector. The 
“dbconnectorCallBackToRooms” command returns the value object with the names “Liam,” “Samuel,” and 
“Noah.” 

 To test the code, run “app” in WebStorm. You should see the Terminal output:    

   /usr/local/bin/node app.js 
 adding service method: getnames 
 created rest API: /getnames 
 Listening on http://[computer name]:[port] 

   Navigate to a browser and give it a try: 

    http://localhost:8081/getnames      

 See Figure  7-14 .  

 This example is simple in nature, but it shows you how to create a service and how the app can return 
the data from any data provider you want.     

     Creating  MongoDB Service   
 In the next section, we can connect to an actual mongo database and insert and read data. To do so, all we 
need to do is define the data source we will be connecting to. In app.js, add the following line after we set the 
services: 

   roomdb.connectToDatabase('mongodb', 'mongodb://localhost/usercollection', {}); 

   Listing  7-20  provides the updated code for app.js. 

  Figure 7-14.    rooms.js getnames service       

 

http://localhost:8081/getnames


CHAPTER 7 ■ WRITE SERVICES ONCE

187

     Listing 7-20.    app.js include connection to Mongo database   

  'use strict'; 

   var os = require('os'), 
     rooms = require('roomsjs'), 
     roomdb = require('rooms.db'), 
     port = (process.env.PORT || 8081); 

   // create express server if needed 
 var express = require('express'), 
     app = express().use(express.static(__dirname + '/client')); 

   // engine.io, socket.io 
 var server = require('http').createServer(app).listen(port, function () { 
     console.log('Listening on http://' + os.hostname() + ':' + port); 
 }); 

   // services 
 roomdb.setServices('services_sample/', app); // pass the app to get rest services or null 
 roomdb.connectToDatabase('mongodb', 'mongodb://localhost/usercollection', {}); 

   // set rooms 
 rooms = new rooms({ 
     isdebug : true, 
     transporter : { 
         type: 'engine.io', /* options: engine.io|socket.io|sockjs */ 
         server : server 
     }, 
     roomdb : roomdb /* or null if db not needed */ 
 });    

    In services, create a service to insert data and name the file “services_sample/insertchatmessage.js”. 
(Listing  7-21 ). The service will be creating a connector to connect to the database and create the schema 
(if it does not exist already) then enter chat message and lastly, display the existing message. 

     Listing 7-21.    insertchatmessage service   

  'use strict'; 

   function insertchatmessage(data, dbconnectorCallBackToRooms) { 
   var connector = this.getConnector(), 
     Chat; 

     if (connector.isModelExists('Chat')) { 
     Chat = connector.getModel('Chat'); 
   } else { 
     var schema = connector.setSchema({ 
       chatMessage: 'string', 
       roomId: 'Number', 
       gravatar: 'string', 
       email: 'string', 



CHAPTER 7 ■ WRITE SERVICES ONCE

188

       userName: 'string' 
     });    
     Chat = connector.setModel('Chat', schema); 
   } 

     var chatMessage = new Chat({ 
     chatMessage: data.params.chatMessage, 
     roomId: data.params.roomId, 
     gravatar: data.params.gravatar, 
     email: data.params.email, 
     userName: data.params.userName 
   }); 

     chatMessage.save(function (err) { 
     if (err) { 
       console.log('error' + err.message); 
     } else { 
       Chat.find(function (err, messages) { 
         if (err) { 
           console.log('error getting messages: ' + err.message); 
         } 
         dbconnectorCallBackToRooms(data, messages); 
       }); 
     } 
   }); 
 }    
 module.exports.insertchatmessage = insertchatmessage; 

    To test the service, rerun the app. 
 When you rerun the app, you should see the new service we have added in the run output: 

   /usr/local/bin/node app.js 
 adding service method: getnames 
 created rest API: /getnames 
 adding service method: insertchatmessage 
 created rest API: /insertchatmessage 
 Listening on http://[computer name]:[port]    

   To see the code in action, call the service in the browser: 

    http://localhost:8081/insertchatmessage?chatMessage=test&roomId=1&email=test@example.
com&userName=eli      

 Ensure MongoDB is still open. As you may recall, we ran mongod by typing “mongod” in the command 
line in Terminal. 

   $ mongod 

        Creating a  MongoDB GUI Client   
 In order to mange MongoDB more easily, it’s recommended to download a GUI tool such as mongoclient in 
order to view the data entered. 

    https://github.com/rsercano/mongoclient      

http://localhost:8081/insertchatmessage?chatMessage=test&roomId=1&email=test@example.com&userName=eli
http://localhost:8081/insertchatmessage?chatMessage=test&roomId=1&email=test@example.com&userName=eli
https://github.com/rsercano/mongoclient


CHAPTER 7 ■ WRITE SERVICES ONCE

189

 The link to download the OSx software is at the bottom of the page: 

    https://github.com/rsercano/mongoclient/releases/download/1.2.2/osx-portable.zip      

 Move the software to the “Applications” folder or your favorite software location. To create a connection 
to the local database, click “connect” from the right top corner, select “Create New,” and fill in the following 
information:    

 Connections:

    1.    Connection Name: local  

    2.    Hostname: localhost  

    3.    Port: 27017 (default)  

    4.    DB Name: usercollection     

 Select “Save changes,” as shown in Figure  7-15 .  

 Select “Connect Now.” Under the “Collections” item in the left-hand sidebar, you should be seeing 
“chats,” which is the data collection we just created using the “insertchatmessage” service. Click the “chats” 
collection and click the “execute” button, leaving all the default form settings in place.     

      Connect Front-End Application to Service   
 Now that we know how to create services, we can create front-end code to consume the data into our app. 
room.js comes with predefined examples for creating a front-end app for Angular, Engine.IO, Socket.IO, or 
SockJS. To get started:

    1.    Copy “bower_components/roomsjs-client/client” to the “rooms” root directory: 

   $ cp -rf bower_components/roomsjs-client/client ~/WebstormProjects/rooms 

  Figure 7-15.    MongoClient connect  wizard         

 

https://github.com/rsercano/mongoclient/releases/download/1.2.2/osx-portable.zip


CHAPTER 7 ■ WRITE SERVICES ONCE

190

       2.    Rerun “app.js.”  

    3.    Open a few instances of the examples: 

   $ Open http://[computer name]:[port]/examples/engineio/ 

       Look at the console and click “get results.” You will be able to see the data from the service being 
retrieved (Figure  7-16 ).  

 As we open more instances of our app, we can see how we are able to consume the data from Engine.IO 
to determine how many users are connected to our room. Once we click “get results,” we can connect to our 
room to retrieve the data from the service we created. 

 Open “client/examples/engineio/index.html” and take a look at the code (Listing  7-22 ).    

     Listing 7-22.    Retrieved data   

 <html> 
 <head> 
   <script src="http://code.jquery.com/jquery-1.10.1.min.js"></script> 
   <script type="text/javascript" src="libs/engine.io.js"></script> 
   <script type="text/javascript" src="../../dist/libs/rooms.js"></script> 
   <script type="text/javascript" src="libs/autostartcontroller.js"></script> 
 <body> 
 <button id="getResultsButton">Get results</button> 
 <div id="visitors"/> 
 </body> 
 </html> 

  Figure 7-16.    Engine.IO example connecting to service  getnames         

 



CHAPTER 7 ■ WRITE SERVICES ONCE

191

   This example is adding the libraries we’re using—jQuery, Engine.IO.js, rooms.js, and 
autostartcontroller.js—and including a button and a div for displaying the visitor count. 

 Take a look at “client/examples/engineio/libs/autostartcontroller.js” (Listing  7-23 ). The code includes 
methods to “connectUser” and “listenToUserActions”. The code connects to a room, and once there are 
changes in the room, we listen to the change and update the front end. 

     Listing 7-23.    autostartcontroller.js control  rooms.js     

  'use strict'; 

   var isAutoConnect = false, 
   rooms, 
   userId, 
   roomName; 

   function listenToUserActions() { 
   $("#getResultsButton").bind('click', function () { 
     rooms.callDbConnector(userId, 'getitems', 'messageFromRoomCallBackfunction'); 
     rooms.callDbConnector(userId, 'getnames', 'messageFromRoomCallBackfunction'); 
   }); 
 } 

   function connectToSocket() { 
   var hostName = window.location.hostname, 
     port, 
     roomSetup, 
     transporter, 
     connectURL; 

     userId = Rooms.makeid(16); 
   roomName = window.location.href; 
   port = (hostName !== '0.0.0.0' && hostName !== 'localhost') ? '80' : '8081'; 
   connectURL = 'http://' + hostName + ':' + port; 

     roomSetup = { 
     roomName : roomName, 
     subscriptions : { 
       RoomInfoVO : true 
     } 
   }; 

     rooms = new Rooms({ 
     roomSetup : roomSetup, 
     userConnectedCallBackFunction : userConnectedCallBackFunction, 
     userRegisteredCallBackFunction : userRegisteredCallBackFunction, 
     numOfUsersInARoomCallBackFunction : numOfUsersInARoomCallBackFunction, 
     stateChangeCallBackFunction : stateChangeCallBackFunction, 
     debugMode : true 
   });    

     transporter = new eio.Socket('ws://localhost/'); 
   rooms.start({ 



CHAPTER 7 ■ WRITE SERVICES ONCE

192

     transporter : transporter, 
     type : 'engine.io' 
   }); 
 } 

   function stateChangeCallBackFunction(data) { 
   // impl 
 } 

   function userConnectedCallBackFunction() { 
   if (isAutoConnect) { 
     rooms.registerUser(userId); 
   } 
 } 

   function userRegisteredCallBackFunction() { 
   rooms.getNumberOfRegisteredUsersInRoom(userId); 
 } 

   function numOfUsersInARoomCallBackFunction(data) { 
   var numofppl = data.size; 
   document.getElementById('visitors').innerHTML = '<div style="font-size: 15px; top: 
5px">Currently there are <b>'+numofppl+'</b> visitors on this page</div>';    

     if (data.hasOwnProperty('register')) { 
     sendMessageToLog('register userId: ' + data.register); 
   } else if (data.hasOwnProperty('disconnect')) { 
     sendMessageToLog('disconnect userId: ' + data.disconnect); 
   } 
 } 

   function messageFromRoomCallBackfunction(data) { 
   sendMessageToLog('messageFromRoomCallBackfunction'); 
   sendMessageToLog(JSON.stringify(data.vo)); 
 } 

   function messageFromRoomCallBackfunction2(data) { 
   sendMessageToLog('messageFromRoomCallBackfunction2'); 
   sendMessageToLog(JSON.stringify(data.vo)); 
 } 

   function connectUser() { 
   isAutoConnect = true; 
   connectToSocket(); 
 } 

   if (typeof jQuery !== 'undefined') { 
   $(document).ready(function () { 
     'use strict'; 
     connectUser(); 



CHAPTER 7 ■ WRITE SERVICES ONCE

193

     listenToUserActions(); 
   }); 
 } else { 
   sendMessageToLog('jQuery not loaded'); 
 }    

         rooms.js with  Angular   
 Similarly, we can create an Angular app that connects with rooms.js. Run this command a few times in order 
to open a few instances of the app: 

   $ open http://localhost:8081/examples/angular/ 

   Take a look at the console in the browser. You can see the interaction of users entering and leaving the 
room:

   numberOfUsersInRoom message: 1  

  disconnect userId: 0r1sO64uyQGIl42m    

 The app entry point index.html is located here: “client/examples/angular/index.html” (Listing  7-24 ). 
This loads all the libraries we will be using: Engine.IO, Angular, rooms and angular-rooms. 

     Listing 7-24.    rooms.js utilizing Angular index.html  page     

  <!doctype html> 
 <html ng-app="myModule"> 
 <head> 
 </head> 

   <body> 
 <script type="text/javascript" src="../engineio/libs/engine.io.js"></script> 
 <script src="http://code.angularjs.org/1.0.6/angular.min.js"></script> 
 <script type="text/javascript" src="../../dist/libs/rooms.js"></script> 
 <script src="angular-rooms.js"></script> 
 <script src="scripts/app.js"></script> 
 </body> 
 </html> 

    In the angular app, we define the module we will be using and create a connection; see “client/
examples/angular/scripts/app.js” (Listing  7-25 ). 

     Listing 7-25.    Defining module and creating a connection   

 angular.module('myModule', ['rooms']) 
   .run(['roomsGateway', function (roomsGateway) { 
     'use strict'; 
     roomsGateway.connectToGateway('ws://localhost:8081/', true); 
   }]);    

   angular-rooms (see “client/examples/angular/angular-rooms.js”), is where the heavy lifting is 
happening. It’s similar to what we’ve done in autostartcontroller.js; we create a room, connect to it, and 
receive messages.   



CHAPTER 7 ■ WRITE SERVICES ONCE

194

      node-email-templates Library   
 Sending emails is a crucial and common task that is needed when creating a service, and there are many 
template libraries out there. One of the more popular ones is “node-email-templates.” Visit the project here:

   https://github.com/niftylettuce/node-email-templates      

 It allows us to integrate a template with popular template engines and services. To get started, install the 
following libraries into the project: 

    $ npm install email-templates async ejs node-sass -save-dev 

   To create an example, we will be creating a service that loads an email template we can use to send 
emails. Create a new service here: “services_sample/newsletter.js” (Listing 7-26). 

       Listing 7-26.    Newsletter service   

  'use strict'; 
   function newsletter(data, dbconnectorCallBackToRooms) { 

       var EmailTemplate = require('email-templates').EmailTemplate 
     var path = require('path') 

       var templateDir = path.join(__dirname, '../templates', 'newsletter') 

       var newsletter = new EmailTemplate(templateDir) 
     var user = {name: 'Joe', pasta: 'spaghetti'} 
     newsletter.render(user, function (err, result) { 
         // result.html 
         // result.text 
     })    

       var async = require('async') 
     var users = [ 
         {name: 'John', email: 'john@aol.com'}, 
         {name: 'Jane', email: 'jane@aol.com'} 
     ] 

       async.each(users, function (user, next) { 
         newsletter.render(user, function (err, result) { 
             if (err) return next(err) 

               result.subject = user.name + ' newsletter email'; 
             console.log(result); 
             // send an email via a service 
         }) 
     }, function (err) { 
         console.log('error'); 
         console.log(err); 
     }) 

       dbconnectorCallBackToRooms(data, 'sending emails to users'); 
 } 

   module.exports.newsletter = newsletter; 

https://github.com/niftylettuce/node-email-templates


CHAPTER 7 ■ WRITE SERVICES ONCE

195

    This service is based on the example “node-email-templates” provided on their GitHub landing page. 
It cycles through an array of users and creates a template HTML email using the data. Then, we can set the 
email. In a real life example, we can easily wire our MongoDB into this service, so we pull the data from the 
database instead of a static variable. 

 Next, add these three pages to the “templates/newsletter” folder: html.ejs, style.scss, and text.ejs:   

    1.    “templates/newsletter/html.ejs” is the HTML template. Notice that it expects 
“name” to be passed. 

   <h1>Hi there <%= name %></h1> 

       2.    “templates/newsletter/style.scss” utilizes SASS (Syntactically Awesome Style 
Sheets). It uses “common.scss” and sets some properties: 

    @import '../common'; 

   body { 
   background-color: #ddd; 
   color: white; 
 } 

   h1 { 
   text-align: center; 
 } 

        3.    “templates/newsletter/text.ejs” is a text version of “html.ejs” stripted out of any 
HTML tags. 

   Hi there <%= name %>. 

       Lastly, we want to create a global “common” SASS-style “templates/_common.scss” that we can utilize 
with any template we will be using:    

   h1 { 
   font-family: 'Avenir Next', sans-serif; 
 } 

   That’s it! Rerun the app, and once we navigate to the new service we’ve created, we can see in the Node.
js console that the email template is being generated. 

   $ open http://localhost:8081/newsletter 

   Here’s the Node.js console output for our example: 

   { html: '<h1 style="font-family: \'Avenir Next\', sans-serif; text-align: center;">Hi there 
John</h1>', 
   text: 'Hi there John.', 
   subject: 'john@aol.com newsletter email' } 
 { html: '<h1 style="font-family: \'Avenir Next\', sans-serif; text-align: center;">Hi there 
Jane</h1>', 
   text: 'Hi there Jane.', 
   subject: 'jane@aol.com newsletter email' } 



CHAPTER 7 ■ WRITE SERVICES ONCE

196

   From here, we can wire it up to a mail service, such as “nodemailer” (   https://github.com/
nodemailer/nodemailer      ) .     

     Summary 
 In this chapter, we covered the process of creating services utilizing Node.js and ExpressJS. We created a 
new project in WebStorm, installed Express, and created a Hello World Express application. We covered the 
Express Generator Tool and set up a simple Express GET / POST service, then we added MangoDB database 
integration to the mix, installed MongoDB, started the MongoDB server, and created a database. After that, 
we integrated and read the results from MongoDB into our Express app and viewed the database using the 
command line and a mongoclient GUI. 

 In this chapter, we also covered Socket.IO, Engine.IO, and the integration of Express and these 
transporters. We updated the users service to include Socket.IO and retrieved a Socket.IO event using 
MongoDB results. We also used rooms.js to easily create services that can consume data from any CDN. 
Lastly, we took a look at creating templates utilizing both PugJS and node-email templates. In the next 
chapter, we will be covering AngularJS SEO.     

https://github.com/nodemailer/nodemailer)
https://github.com/nodemailer/nodemailer)


197© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_8

    CHAPTER 8   

 AngularJS SEO                          

 In previous chapters, we covered the process of building an AngularJS application from front-end to back-
end services. It’s easy to see why AngularJS is popular, with its millions of available libraries, ease of use, and 
ability to build code that can be deployed on any device. However, many developers and companies still 
refuse to use AngularJS due to a lack of understanding, SEO and thought that AngularJS can not be crawled 
by search engines the same as other HTML static pages. In this chapter, we will walk you through the steps 
of how to set your site to be SEO friendly, so that the robots can crawl and display the pages as if you built a 
purely HTML site. Sure, Google has updated their crawler and can now execute JavaScript, but other search 
crawlers, as well as social media web sites, still crawl pages after being rendered by JavaScript, so you will 
still need to create a static HTML page for the best SEO results.    

     Config AngularJS Redirect Settings 
 The redirect happens in your AngularJS apps when using the hashbang “#!” tag in your route. This is a 
common practice; you can see large sites such as  Twitter   doing the same. 

 Using Twitter as an example, pick a user and add the “hashbang” tag: 

    http://twitter.com/#!/EliScripts      

 This will redirect you to    http://twitter.com/EliScripts      .  

     Start a New AngularJS Seed  Project   
 To get started, open WebStorm and create a new “angular-seed” project. 

 As you may recall:

    1.    “Create New Project” ➤ “AngularJS”  

    2.    Call the project “SEOTester” and click “Create.”  

    3.    Open the WebStorm Terminal window (bottom left corner) and run these two 
commands: “ npm install ” and “ npm start ”.  

    4.    Open a separate terminal by clicking the plus sign ("New Session") and type the 
following command: “ open     http://localhost:8000     ”.     

 That’s it. You should see the same page with the tabs we created in Chapter   5     (Figure  8-1 ).  

http://twitter.com/#!/EliScripts
http://twitter.com/theluxurygame
http://localhost:8000/
http://dx.doi.org/10.1007/978-1-4842-2044-3_5


CHAPTER 8 ■ ANGULARJS SEO

198

 Now that we have a seed project, we will be following this process:

    1.    Change the AngularJS project to use HTML5 routing mode.  

    2.    Create a snapshot of your pages.  

    3.    Redirect the pages to the static snapshot.  

    4.    Submit the pages to search engines.      

     AngularJS HTML Mode and Hashbang 
 AngularJS offers Hashbang and HTML5 routing modes. 

 Out of the box, AngularJS seed projects use Hashbang mode. You can try it yourself by redirecting to the 
following URL:    http://localhost:8000/#!/view1      

 The first step is to update how AngularJS routes pages so that it redirects a page without the hashbang. 
The URL will look like this: localhost:8000/ view1  . 

 To do so: 
 Open SEOTester/app/app.js and you will see the $locationProvider with the hashPrefix('!') attached: 

     config(['$locationProvider', '$routeProvider', function($locationProvider, $routeProvider) {  
    $locationProvider.hashPrefix('!');  

      $routeProvider.otherwise({redirectTo: '/view1'});  
  }]);  

  Figure 8-1.    “angular-seed” landing page: index. html         

 

http://localhost:8000/#!/view1


CHAPTER 8 ■ ANGULARJS SEO

199

    The  $location service   is the API used by AngularJS to redirect our app based on the URL. $location API 
can be used to watch URL changes, history links, and back and forward buttons. It is similar to the “window.
location” in JavaScript, but with some extra capabilities for HTML5. You can learn more about the $location 
API in AngularJS docs:    https://docs.angularjs.org/guide/$location      

 Looking at the app.js, the code looks for a Hashbang tag and redirects accordingly—otherwise it would 
use the default view: “view1.” You can confirm this by typing the root URL,    http://localhost:8000/     , which 
redirects to view1:    http://localhost:8000/#!/view1     . 

 We want to update the URL and remove the Hashbang for a more standard URL (HTML5 mode). The 
first step is to set your app.js for HTML5 mode. It’s better to use a URL that includes a description of the 
product or article than just an item ID.  Google search engine   Page Rank (PR) formula published that they 
give priority to sites with a URL that hits the keywords you will want to promote on your page. 

 In fact, according to Google, “Some users might link to your page using the URL of that page as 
the anchor text. If your URL contains relevant words, this provides users and search engines with more 
information about the page than an ID or oddly named parameter would (2).” See:    http://static.
googleusercontent.com/media/www.google.com/en/us/webmasters/docs/search-engine-optimization-
starter-guide.pdf      

 The link above is the  Engine Optimization Starter   guide. I encourage you to read it if you plan on taking 
SEO seriously. 

 The first step is setting the AngularJS $location API with “html5Mode” to “true” in “app/app.js”: 

    $locationProvider.html5Mode(true).hashPrefix(‘!’);  

   Change the complete  “app/app.js” location configuration tag   from: 

     config(['$locationProvider', '$routeProvider', function($locationProvider, $routeProvider) {  
    $locationProvider.hashPrefix('!');  

      $routeProvider.otherwise({redirectTo: '/view1'});  
  }]);     

    To the following: 

    config(['$locationProvider', '$routeProvider', function($locationProvider, $routeProvider) {  
     $locationProvider.html5Mode(true).hashPrefix('!');  
     $routeProvider.otherwise({redirectTo: '/view1'});  
  }]);     

   By default, “html5Mode” requires the use of <base href=”/” /> in the header, so add that to your code 
inside of the “index.html” file. We also want to give the search engines instruction to look for the Hashbang 
in the URL. 

 Consequently, the  “SEOTester/app/index.html” file   should include these two lines inside of the header 
tag: 

    <head>  
          <base href="/" />  
               <meta name="fragment" content="!">  
  </head>  

https://docs.angularjs.org/guide/$location
http://localhost:8000/
http://localhost:8000/#!/view1
http://static.googleusercontent.com/media/www.google.com/en/us/webmasters/docs/search-engine-optimization-starter-guide.pdf
http://static.googleusercontent.com/media/www.google.com/en/us/webmasters/docs/search-engine-optimization-starter-guide.pdf
http://static.googleusercontent.com/media/www.google.com/en/us/webmasters/docs/search-engine-optimization-starter-guide.pdf


CHAPTER 8 ■ ANGULARJS SEO

200

   Next, we want to add a forward slash (“/”) to all of the links in our app—otherwise, it will add the link 
URL at the end of the address bar. On the index.html page, change from:    

    <body>  
  ...  
      <li><a href="#!/view1">view1</a></li>  
      <li><a href="#!/view2">view2</a></li>  
  ...  
  </body>  

   To: 

    <body>  
  ...  
      <li><a href="/#!/view1">view1</a></li>  
      <li><a href="/#!/view2">view2</a></li>  
  ...  
  </body>    

   Now you are able to test the HTML5 mode by opening the  index page   again. In the WebStorm Terminal, type: 

    $ open http://localhost:8000  

   As you can see, it has redirected the page to “localhost:8000/#!/view1,” then the page was redirected to 
“localhost:8000/view1” (Figure  8-2 ).  

 Now that we are using the HTML5 mode, we can set routing with SEO-friendly URLs. Open “SEOTester/
app/view1/view1.js” and add the following route provider command: 

      $routeProvider.when('/view1/:id/:date/:title', {  
      templateUrl: 'view1/view1.html',  
      controller: 'View1Ctrl'  
    });  

  Figure 8-2.     Address bar   without hashbang       

 



CHAPTER 8 ■ ANGULARJS SEO

201

   It’s common practice to send end users to a specific URL, passing information such as product ID and 
date. Our app will be able to query the database and render results. The title we are adding is not necessary, 
since we already passed a product ID, but it will make things more search-engine friendly. Your complete 
 view1/view1.js   should look like Listing  8-1 . 

     Listing 8-1.    view.js adding a redirect for a URL with information   

  'use strict'; 

   angular.module('myApp.view1', ['ngRoute']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view1', { 
     templateUrl: 'view1/view1.html', 
     controller: 'View1Ctrl' 
   }); 
   $routeProvider.when('/view1/:id/:date/:title', { 
     templateUrl: 'view1/view1.html', 
     controller: 'View1Ctrl' 
   }); 
 }]) 

   .controller('View1Ctrl', [function() { 

   }]);    

    Now you can open the following URL: 

    http://localhost:8000/#!/view1/1/08-05-2016/some_title      

 In our code, we redirected to the same view1.html URL, and we can now extract the URL params inside 
of the controller. Inside of “view1/view1.js,” update the controller to the following code: 

   .controller('View1Ctrl', ['$scope','$routeParams', function($scope, $routeParams) { 
       $scope.id =  $routeParams.id; 
       $scope.date =  $routeParams.date; 
       $scope.title =  $routeParams.title; 
 }]); 

   Listing  8-2  shows the complete  view1/view1.js content:   

     Listing 8-2.    view1.js complete code extracting params   

  'use strict'; 

   angular.module('myApp.view1', ['ngRoute']) 

   .config(['$routeProvider', function($routeProvider) { 
   $routeProvider.when('/view1', { 
     templateUrl: 'view1/view1.html', 
     controller: 'View1Ctrl' 
   }); 
   $routeProvider.when('/view1/:id/:date/:title', { 

http://localhost:8000/#!/view1/1/08-05-2016/some_title


CHAPTER 8 ■ ANGULARJS SEO

202

     templateUrl: 'view1/view1.html', 
     controller: 'View1Ctrl' 
   }); 
 }]) 

   .controller('View1Ctrl', ['$scope','$routeParams', function($scope, $routeParams) { 
   $scope.id =  $routeParams.id; 
   $scope.date =  $routeParams.date; 
   $scope.title =  $routeParams.title; 
 }]);    

    Now that we’ve set these params in the controller, we can update the view “app/view1/view1.html” and 
display these params: 

   <p>This is the partial for view 1. </p> 
 <p>Id: {{id}}</p> 
 <p>Date: {{date}}</p> 
 <p>Title: {{title}}</p> 

   Redirect to the URL once again: 

    http://localhost:8000/#!/view1/1/08-05-2016/some_title      

 We can now see that the param has passed to the  view   (Figure  8-3 ).  

  Figure 8-3.     params passed to view         

 

http://localhost:8000/#!/view1/1/08-05-2016/some_title


CHAPTER 8 ■ ANGULARJS SEO

203

 As you can see, we have passed params in the URL. In the controller, we can call a service that will call a 
database to retrieve results.   

     Snapshot 
 Our next step is to create snapshots of the app pages and give these to the search engine. The snapshot 
will have a pure static HTML code that the  search engines   will understand and crawl. If we leave the code 
as is with the hashbangs and AngularJS code, the search engine won’t be able to interpet the binding and 
variables we are passing, and the content will be missing on the page when the search engines crawl. 

 There are a few ways to do this, including using a hosted service that will cache your pages and serve 
them back to Google quickly. 

  Paid services   will take care of a “PhantomJS” or a similar server as well as look after maintenance for a 
fee, or you can choose to do it on your own. 

 If you prefer to use a paid service, there are services such as “Prerender.io” (   https://prerender.io/     ), 
available. Their service is free when you use up to 250 pages and reasonably priced after that. 

 Often, you will want to serve thousands of pages and customize the process, so it’s good to know how to 
deploy the snapshots yourself. 

 This process can be broken down into the following steps:

•    Install and configure a PhantomJS server  

•   Apply “angular-seo” script.  

•   Create a deployment script.  

•   Update the “.htaccess” file.  

•   Submit the URL to Google.    

      Install and Config PhantomJS   
 Our first step is to install the PhantomJS server. 

 ■   Note    PhantomJS is a headless WebKit (web browser) that is scriptable with a JavaScript API. It allows 
running a page without displaying the actual visual page on a browser.  

 A PhantomJS project can be seen here:    https://github.com/amir20/phantomjs-node     . To get started, 
install and run the following command: 

   $ sudo npm install -g phantom -- save   

   The command will install PhantomJS globally. During installation, it will show the location of 
PhantomJS in the Terminal console: 

   Done. Phantomjs binary available at /usr/local/lib/node_modules/phantom/node_modules/
phantomjs-prebuilt/lib/phantom/bin/phantomjs 

   Copy the location, since we will configure the server to be accessible from any folder location on your 
machine. Call PhantomJS and be sure to point to the location of the libraries we have just copied: 

   $ /usr/local/lib/node_modules/phantom/node_modules/phantomjs-prebuilt/lib/phantom/bin/phantomjs 

https://prerender.io/
https://github.com/sgentle/phantomjs-node


CHAPTER 8 ■ ANGULARJS SEO

204

   Once you run the command, the Terminal then replies with: 

   phantomjs> 

   This is a sign that PhantomJS is working correctly. Hit “control + c” to exit. It’s a good idea to copy 
PhantomJS to be accessible without typing in the entire location of PhantomJS; you can do so by copying 
PhantomJS to your local bin folder: 

   $ sudo cp /usr/local/lib/node_modules/phantom/node_modules/phantomjs-prebuilt/lib/phantom/bin/
phantomjs /usr/local/bin/ 

   Now, you can simply type “phantomjs” into the command line: 

   $ phantomjs 

   Hit “control + c” to exit.     

     Apply  Angular-SEO Script   
 For our next step, we’ll install an open source code called an “angular-seo” library, which will utilize 
PhantomJS to render our app in HTML code. You can learn more about “angular-seo” projects here: 
   https://github.com/steeve/angular-seo      

 To install “angular-seo,” we’ll use Bower. In the “SEOTester” project in WebStorm, type the following 
command into the Terminal to install “angular-seo”: 

   $ sudo bower install angular-seo --allow-root 

   Depending on the version you’re using, you may receive the following message:    

   Unable to find a suitable version for angular, please choose one by typing one of the 
numbers below: 
     1) angular#1.3.13 which resolved to 1.3.13 and is required by angular-seo#d6b50c5b48 
     2) angular#~1.5.0 which resolved to 1.5.8 and is required by angular-seed 
     3) angular#1.5.8 which resolved to 1.5.8 and is required by angular-route#1.5. 

   At the time of writing, “Angular-seed” in WebStorm is utilizing version “0.0.0” and AngularJS version 
“1.5.8.” Select option 2. 

 Now that installation is complete, you can test that the “Phantomjs” server is working properly with 
“angular-seo”; run the PhantomJS server on your machine and point to the “angular-seo” script and the local 
server: 

   $ phantomjs --disk-cache=no app/bower_components/angular-seo/angular-seo-server.js 8888 
http://localhost:8000 

   If you're asked to allow incoming connections from PhantomJS, select "allow." 
 Hosts are pointing to localhost:8000. Now we need to test that the PhantomJS server is creating static 

pages and that we can point to a URL and serve pure HTML pages.    
 If everything is set correctly, once you go to your pages and replace the hashbang with _escaped_

fragment_, you should see an HTML version of your page, clear of any AngularJS or Ajax codes. 
 For instance, take the page we previously created: 

    http://localhost:8000/#!/view1/1/08-05-2016/some_title      

https://github.com/steeve/angular-seo
http://localhost:8000/#!/view1/1/08-05-2016/some_title


CHAPTER 8 ■ ANGULARJS SEO

205

 Open up a browser and type the following URL in a second tab in the browser: 

    http://localhost:8888/?_escaped_fragment_=/view1/1/08-05-2016/some_title      

 This may take a minute to open up, since it’s generating a static page. Now look at the page source of 
this page—in some browsers, you can add "view-source:" in front of the URL: 

   view-source:http://localhost:8888/?_escaped_fragment_=/view1/1/08-05-2016/some_title 

   As you can see, the entire code is static HTML, which the search engine is able to crawl.    
 For the data, you should see the static HTML code: 

   <p class="ng-binding ng-scope">Id: 1</p> 
 <p class="ng-binding ng-scope">Date: 08-05-2016</p> 
 <p class="ng-binding ng-scope">Title: some_title</p> 
 </div> 

         Deployment Script   
 Now that we can generate static pages, it’s good practice to tie the snapshots deployment process with the 
deployment script, so on each deployment a new set of snapshots will be updated. 

 There are many ways to create the deployment script, but we will be using Grunt to create our snapshots 
and upload these files to the server. The Grunt is broken down to create files, change the base, and upload to 
the server. 

 If you did not install GruntJS during our earlier chapters, you can do so by typing the following 
command: 

   $ sudo npm install -g grunt grunt-cli 

   To get Hello World, we’ll create a task to uglify and minify our app.js JavaScript file. 
 Create a Grunt build file, “SEOTester/Gruntfile.js,” and copy the code in Listing  8-3 . 

     Listing 8-3.    Gruntfile.js complete Hello World code   

  module.exports = function(grunt) { 
     // Project configuration. 
     grunt.initConfig({ 
         pkg: grunt.file.readJSON('package.json'), 
         uglify: { 
             options: { 
                 banner: '/*! <%= pkg.name %> <%= grunt.template.today("yyyy-mm-dd") %> */\n' 
             }, 
             build: { 
                 src: 'app/app.js', 
                 dest: 'build/<%= pkg.name %>.min.js' 
             } 
         }    
     }); 

http://localhost:8888/?_escaped_fragment_=/view1/1/08-05-2016/some_title


CHAPTER 8 ■ ANGULARJS SEO

206

       // Load the plugin that provides the "uglify" task. 
     grunt.loadNpmTasks('grunt-contrib-uglify'); 

       // Default task(s). 
     grunt.registerTask('default', ['uglify']); 

   }; 

    The Gruntfile.js file includes the following:

    1.    Loading the plugins we’ll be using  

    2.    Project configurations  

    3.    Creating tasks     

 We will be using the uglify plugin, so first we want to install the plugin. In the WebStorm Terminal, type 
the following command: 

   $ sudo npm install grunt grunt-contrib-uglify --save-dev 

   Now we can run the default task:    

   $ grunt 

   After you run the command, you should get: 

   Running "uglify:build" (uglify) task 
 >> 1 file created. 

   Grunt has created a new file inside of “SEOTester/build/angular-seed.min.js.” The app.js file was 
uglified and minified, and a comment was added. See part of the file below: 

   /*! angular-seed 2016-08-21 */ 
 "use strict";angular.module("myApp",["ngRoute","myApp.view1","myApp.view2", 

   Now, let’s continue by creating a task to handle the snapshots. These tasks will consist of the following:   

    1.    Clean folder directory  

    2.    Create a snapshot static page  

    3.    Upload files to server     

 First, we want to install the plugins we will be using: a cURL command and a shell command. Lucky 
for us, there are modules for that functionality. Install the modules using the following commands in the 
WebStorm Terminal: 

   $ npm install grunt-curl grunt-shell --save-dev 

   Copy the complete code shown in Listing  8-4  to the “Gruntfile.js” file on the root of the project:     

     Listing 8-4.    Gruntfile.js generate snapshots files, complete code   

  module.exports = function(grunt) { 
     // Project configuration. 
     grunt.initConfig({ 



CHAPTER 8 ■ ANGULARJS SEO

207

         pkg: grunt.file.readJSON('package.json'), 
         uglify: { 
             options: { 
                 banner: '/*! <%= pkg.name %> <%= grunt.template.today("yyyy-mm-dd") %> */\n' 
             }, 
             build: { 
                 src: 'app/app.js', 
                 dest: 'build/<%= pkg.name %>.min.js' 
             } 
         }, 
         shell: { 
             clean_snapshots: { 
                 command: 'rm -rf /[PATH to project]/SEOTester/snapshots' 
             }, 
             server_upload: { 
                 command: 'scp -r -i /[location to amazon key]/amazon-key.pem /[location to 
project]/SEOTester/snapshots/* ec2-user@[server ip]:/var/www/html/[location of snap folder]' 
             } 
         }, 
         curl: { 
             'snapshots/view1': 'http://localhost:8888/?_escaped_fragment_=/view1/1/08-05-
2016/some_title', 
         } 
     }); 

       // Load the plugin that provides the "uglify" task. 
     grunt.loadNpmTasks('grunt-contrib-uglify'); 
     grunt.loadNpmTasks('grunt-curl'); 
     grunt.loadNpmTasks('grunt-shell'); 

       // Default task(s). 
     grunt.registerTask('default', ['uglify']); 
     grunt.registerTask('snap', ['shell:clean_snapshots', 'curl' /*, 'shell:snap_upload'*/ 
]);    

   }; 

    Let's examine the code. First, we load the Grunt plugins. Add the following commands inside of the 
Grunt file: 

   grunt.loadNpmTasks('grunt-curl'); 
 grunt.loadNpmTasks('grunt-shell'); 

   Now we can register the task. We will call the task “snap”: 

   grunt.registerTask('snap', ['shell:clean_snapshots', 'curl' /*, 'shell:snap_upload'*/ ]);    

   Notice that we have commented out the server upload for now, since we are going over the basics and 
will not actually upload the files to the server. 

 We’ll create the actual tasks of cleaning the snapshot folder and use a cURL command to generate a 
snapshot. 



CHAPTER 8 ■ ANGULARJS SEO

208

           shell: { 
             clean_snapshots: { 
                 command: 'rm -rf /[path to project]/SEOTester/snapshots' 
             }, 
             server_upload: { 
                  command: 'scp -r -i /[path to amazon key]/amazon-key.pem /[path to project]/

SEOTester/snapshots/* ec2-user@[server ip]:/var/www/html/[path to snap folder]' 
             } 
         }, 
         curl: { 
              'snapshots/view1': 'http://localhost:8888/?_escaped_fragment_=/view1/1/08-05-

2016/some_title', 
         } 

   Be sure to replace the path to project, path to snap folder, and server IP address or public DNS address. 
We are deploying the snap files to the Linux server we created in Chapter   2    . 

 You can ensure the connection to the Linux server is still working by using the SSH connection shortcut 
we set in ~/.ssh/config "$ ssh app." If you don't get a connection, make sure the server is still running in AWS 
and the SSH connection is open for your IP address. Refer to Chapter   2     for more details. 

 Keep in mind that for the script to work, you will need to still have two terminal windows open with the 
following commands: 

   $ npm start 
 $ phantomjs --disk-cache=no app/bower_components/angular-seo/angular-seo-server.js 8888 
http://localhost:8000     

   We are downloading the files using cURL; Grunt has utilized the grunt-curl plugin for that. The task 
goes in and calls any page that we want to be crawled. 

 Lastly, take note that we want to upload these files to the server. We will be using a grunt-shell for this: 

   server_upload: { 
   command: 'scp -r -i /[path to amazon key]/amazon-key.pem /[path to project]/SEOTester/
snapshots/* ec2-user@[server ip]:/var/www/html/[path of snap folder]' 
             } 

   Run the Grunt command:    

   $ grunt snap 

   The console will show you the following responses: 

    $ grunt snap 
 Running "shell:clean_snapshots" (shell) task 

   Running "curl:snapshots/view1" (curl) task 
 File "snapshots/view1" created. 

   Done. 

    Also, notice that a new folder has been created with the name “snapshots,” and it includes a snapshot of 
the view file, which includes the params we had passed through the URL (Figure  8-4 ).  

http://dx.doi.org/10.1007/978-1-4842-2044-3_2
http://dx.doi.org/10.1007/978-1-4842-2044-3_2


CHAPTER 8 ■ ANGULARJS SEO

209

 When our app is created, we can use the server’s upload tasks to automatically upload all of these 
snapshots to the production server.  

      Update .htaccess   
 Apache web server, which we installed on the AWS Linux server, is a one of the most common web servers used 
to deploy web app pages, and we have already created a task to upload our static snapshots to that server. 

 All we have to do now is modify the .htaccess file and redirect any files that include _escaped_fragment_ 
to the corresponding snapshot. We want our deployment server to redirect from: 

    http://[some domain name]/view1/1/08-05-2016/some_title      

 to: 

    http://[some domain name]/?_escaped_fragment_=/view1/1/08-05-2016/some_title      

 This will use the file “view1” we’ve created, instead of the complete URL structure. Here is the .htaccess 
code snippet: 

   RewriteEngine On 
 RewriteCond %{REQUEST_URI}  ^/$ 
 RewriteCond %{QUERY_STRING} ^_escaped_fragment_=/?([^/]+(?:/[^/]+|)) 
 RewriteRule ^(.*)$ /snapshots/%1? [P,L] 

   Lastly, we want any hashbang URL to be redirected to the HTML none hashbang URL:    

   <IfModule mod_rewrite.c> 
     Options +FollowSymlinks 
     RewriteEngine On 
     RewriteBase / 
     RewriteCond %{REQUEST_FILENAME} !-f 
     RewriteCond %{REQUEST_URI} !^/$ 
     RewriteRule (.*) /#!/$1 [NE,L,R=301] 
 </IfModule> 

  Figure 8-4.    Snapshots folder created with a static  file         

 

http://[some domain name]/view1/1/08-05-2016/some_title
http://[some domain name]/?_escaped_fragment_=/view1/1/08-05-2016/some_title


CHAPTER 8 ■ ANGULARJS SEO

210

         Set .htaccess Redirect   
 Listing  8-5  is an example of a complete “.htaccess” code that handles the redirect. 

     Listing 8-5.    .htaccess complete redirect script   

  <IfModule mod_rewrite.c> 
    <IfModule mod_negotiation.c> 
       Options -MultiViews 
    </IfModule> 

      RewriteEngine On 

      RewriteCond %{QUERY_STRING} ^_escaped_fragment_=/?([^/]+(?:/[^/]+|)) 
    RewriteRule ^(.*)$ /snapshots/%1? [NC,PT] 

      # Redirect Trailing Slashes... 
    RewriteCond %{REQUEST_FILENAME} !-d 
    RewriteRule ^(.*)/$ /$1 [L,R=301] 
 </IfModule> 

   <IfModule mod_rewrite.c> 
     Options +FollowSymlinks 
     RewriteEngine On 
     RewriteBase / 
     RewriteCond %{REQUEST_FILENAME} !-f 
     RewriteCond %{REQUEST_URI} !^/$ 
     RewriteRule (.*) /#!/$1 [NE,L,R=301] 
 </IfModule> 

    That’s it! The site should be set. You can confirm that it was successful by trying out links and seeing 
whether they have been redirected automatically, like this:    

   http://[some domain name]/?_escaped_fragment_=/view1/1/08-05-2016/some_title 

         AngularJS Metadata Tags 
 An important portion of an organic SEO is setting up the page’s HTML metadata tags—but what is the page 
metadata tag? 

 ■   Note    Organic SEO is achieving high search engine placement/ranking in the unpaid section. You can 
achieve this by better understanding the search engine algorithm and applying principles that have proven to 
work.  

 The metadata  tags   are set as part of the <head> tag and are not visible to the end user, but they can 
provide search engines with information about your page. There are different types of metadata that you can 
include in each page, but the most well-known are title, description, and keywords. There are a few good 
practices to take into consideration regarding these metadata in order to achieve the best results possible. 



CHAPTER 8 ■ ANGULARJS SEO

211

 The <meta> tag provides metadata with the HTML document .  Metadata will not be displayed on the 
page, but will parse the machine. Meta elements are typically used to specify a page’s description, keywords, 
the author of the document, when it was last modified, and other metadata. 

 You are able to either roll your own solution or use open source solutions. 
 We are not done here yet. You probably want to customize each page to have its own unique metadata 

for the best exposure. There are many ways to do this, but we will show you two possible approaches—
creating your own solution using the service module and using a solution library. 

     Update Metadata Using a  Service Module   
 We can create a service factory method to help us handle the page’s metadata. Using a service module is 
great because it can provide us with a centralized script that will handle the data. 

 To get started, create a new service file and place it here: “SEOTester/app/components/services.js” 
(Listing  8-6 ). 

     Listing 8-6.    Service factory to handle pages metadata   

  'use strict'; 

   /* Services */ 

   angular.module('myApp.services', []) 
     .value('version', '0.1') 
     .factory('Page', ['$rootScope', function ($rootScope) { 

           var defaultTitle = 'defaultTitle', 
             defaultDescription = 'defaultDescription', 
             defaultKeywords = 'defaultKeywords'; 

           return { 
             getDefaultTitle: function() { 
                 return defaultTitle; 
             }, 
             getDefaultDescription: function() { 
                 return defaultDescription; 
             }, 
             getDefaultKeywords: function() { 
                 return defaultKeywords; 
             }, 
             setMeta: function(title, description, keywords) { 
                 $rootScope.meta = { 
                     title: title, 
                     description: description, 
                     keywords: keywords 
                 } 
             }, 
             setDefaultMeta: function() { 
                 $rootScope.meta = { 
                     title: defaultTitle, 
                     description: defaultDescription, 
                     keywords: defaultKeywords 



CHAPTER 8 ■ ANGULARJS SEO

212

                 } 
             } 
         }; 
     }]);    

    As you can see, we can set default values for title, description, keywords, and any other metadata you 
may want. We can get these values and also set our own custom values via setMeta and setDefaultMeta 
functions, as well as retrieve each metadata value. 

 Now, include a reference to the service file we created in the app index.html page. 

     <script src="components/services.js"></script> 

   Also, bind the metadata values to the title, description, and keywords in the index.html “<head>” tag: 

     <title>{{meta.title}}</title> 
   <meta name="description" content="{{meta.description}}"> 
   <meta name="keywords" content="{{meta.keywords}}" /> 

   Next, add a reference to the service module in the “app.js” file: 

   angular.module('myApp', [ 
   'ngRoute', 
   'myApp.view1', 
   'myApp.view2', 
   'myApp.version', 
   'myApp.services' 
 ]). 

   Now we can use the service in any of the view scripts. See the “view1/view1.js” controller script we’re 
adding:    

    .controller('View1Ctrl', ['$scope', '$rootScope', '$routeParams', 'Page', function($scope, 
$rootScope, $routeParams, Page) { 

     Page.setDefaultMeta(); 
   console.log($rootScope.meta); 

     $scope.id =  $routeParams.id; 
   $scope.date =  $routeParams.date; 
   $scope.title =  $routeParams.title; 
 }]);    

    Test the results by opening the app again and inspecting the object we’ve placed at the console when we 
set the “console.log”, console.log($rootScope.meta) in the view1 controller (Figure  8-5 ).  

  Figure 8-5.    Console log values showing at the inspector       

 



CHAPTER 8 ■ ANGULARJS SEO

213

   $ open http://localhost:8000 

   We can even build a custom solution where we pick the values out of our database. All we have to do is 
set the metadata in the controller to each page, or use the default values, in the “view1/view1.js” controller 
tag instead of what we have now: “Page.setDefaultMeta();” we can set the following: 

   Page.setMeta(title, description, Page.getDefaultKeywords() + hashtags); 

   And the hashtag variables can be fetched from an AngularJS service module. Don’t copy that code—it’s 
just for illustration purposes. 

 To actually see the values being parsed, we can create a snapshot and then look at the source file:    

   $ open http://localhost:8888/ 

   You will see the default values we have assigned if you view the source file: 

     <title class="ng-binding">defaultTitle</title> 
   <meta name="description" content="defaultDescription"> 
   <meta name="keywords" content="defaultKeywords"> 

        Update Metadata with  ngMeta   
 The service solution works fine, but there are a few other good solutions on GitHub, such as “ngMeta” 
(   https://github.com/vinaygopinath/ngMeta     ) and “ui-router-metatags” (   https://github.com/tinusn/
ui-router-metatags     ) that can also be utilized for updating metadata. 

 We will install and utilize ngMeta. To set the module, follow these steps: 
 Start by installing the module using npm:    

   $ bower install ngMeta --save 

   Next, in the index.html file, add ngMeta script: 

   <script src="bower_components/ngMeta/dist/ngMeta.min.js"></script> 

   Your complete code should appear as follows: 

     <script src="bower_components/angular/angular.js"></script> 
   <script src="bower_components/angular-route/angular-route.js"></script> 
   <script src="app.js"></script> 
   <script src="view1/view1.js"></script> 
   <script src="view2/view2.js"></script> 
   <script src="components/version/version.js"></script> 
   <script src="components/version/version-directive.js"></script> 
   <script src="components/version/interpolate-filter.js"></script> 
   <script src="components/services.js"></script> 
   <script src="bower_components/ngMeta/dist/ngMeta.min.js"></script> 

   Now, for the <head> metadata, replace the title, description, and keywords with the following: 

     <title>{{ngMeta.title}}</title> 
   <meta property="og:type" content="{{ngMeta['og:type']}}" /> 

https://github.com/vinaygopinath/ngMeta
https://github.com/tinusn/ui-router-metatags
https://github.com/tinusn/ui-router-metatags


CHAPTER 8 ■ ANGULARJS SEO

214

   <meta property="og:locale" content="{{ngMeta['og:locale']}}" /> 
   <meta name="author" content="{{ngMeta.author}}" /> 
   <meta name="description" content="{{ngMeta.description}}" /> 

   Then, add “ngMeta” to the modules in app.js and set the default values:    

    'use strict'; 

   // Declare app level module which depends on views, and components 
 angular.module('myApp', [ 
   'ngRoute', 
   'myApp.view1', 
   'myApp.view2', 
   'myApp.version', 
   'ngMeta' 
 ]). 
 config(['$locationProvider', '$routeProvider', 'ngMetaProvider', function($locationProvider, 
$routeProvider, ngMetaProvider) { 
   $locationProvider.html5Mode(true).hashPrefix('!'); 
   $routeProvider.otherwise({redirectTo: '/view1'}); 

         ngMetaProvider.useTitleSuffix(true); 
       ngMetaProvider.setDefaultTitle('Fallback Title'); 
       ngMetaProvider.setDefaultTitleSuffix(' - the best site'); 
       ngMetaProvider.setDefaultTag('author', 'Eli Elrom'); 
 }]) 
 .run(['ngMeta', function(ngMeta) { 
   ngMeta.init(); 
 }]); 

    Now we are able to use “ngMetaProvider” to set the default values and initialize the “ ngMeta” module.   
 We can do so by setting the metadata to each page, as shown below for “view1/view1.js”: 

    'use strict'; 

   angular.module('myApp.view1', ['ngRoute', 'ngMeta']) 

   .config(['$routeProvider', 'ngMetaProvider', function($routeProvider) { 
   $routeProvider.when('/view1', { 
     templateUrl: 'view1/view1.html', 
     meta: { 
       'title': 'title1', 
       'description': 'description1' 
     }, 
     controller: 'View1Ctrl' 
   }); 
   $routeProvider.when('/view1/:id/:date/:title', { 
     templateUrl: 'view1/view1.html', 
     meta: { 
       'title': 'title2', 
       'description': 'description2' 



CHAPTER 8 ■ ANGULARJS SEO

215

     }, 
     controller: 'View1Ctrl' 
   }); 
 }]) 
 .controller('View1Ctrl', ['$scope','$routeParams', function($scope, $routeParams) { 
   $scope.id =  $routeParams.id; 
   $scope.date =  $routeParams.date; 
   $scope.title =  $routeParams.title; 
 }]); 

    Lastly, install the “ng-inspector” Chrome extension to see the values: 

   http://ng-inspector.org/ 

   Now we can see the changing metadata (Figure  8-6 ).  

    http://localhost:8000/#!/view1/1/08-05-2016/some_title        

  Figure 8-6.    ng-inspector showing metadata  values         

 

http://localhost:8000/#!/view1/1/08-05-2016/some_title


CHAPTER 8 ■ ANGULARJS SEO

216

     Robots Instructions 
 There are instructions you can give to the search engines via the index.html meta tags. Additionally, you can 
provide the search engines with two files: “robots.txt” and “sitemap.xml.” In fact, it’s highly recommended 
that you create these files in your root folder. 

     Robots  Meta Tags   
 Google recommends that you place instructions on your index.html page via meta tags. Normally, if you 
wanted to include the page in the index and follow any links, you would say: 

   <meta name="robots" content="index, follow"> 

   Here is a handy list of instructions you can give to the robots:

•    NOINDEX: Don’t index the page.  

•   NOFOLLOW: Don’t follow any links on the page.  

•   NOARCHIVE: Don’t cache a copy of this page.     

•   NOSNIPPET: Don’t include a description of the page.     

      Robots Exclusion Protocol   
 Create a file called “robots.txt,” place it on the root directory of your site, and tell the search engine any 
instructions you want to be followed. This process is called the “robots exclusion protocol.” The default file 
content will look like this: 

   User-agent: * 
 Disallow: / 

   You can then give specific instructions to disallow the crawling of certain pages: 

   User-agent: * 
 Disallow: /some-folder/ 

   You can also explicitly disallow specific pages:    

   User-agent: * 
 Disallow: /some-folder/some-page.html 

         Sitemap   
 Search engines require that you provide a “sitemap.xml” file that includes instructions on how often you 
change the content of the site and the priority and location of your home page. Take a look at the sample 
code to visit your site on a daily basis and point to the site “view1” as your home page: 

   <?xml version="1.0" encoding="UTF-8"?> 
 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> 
 <url> 



CHAPTER 8 ■ ANGULARJS SEO

217

     <loc>http://some-site.com/view1</loc> 
     <changefreq>daily</changefreq> 
     <priority>1.0</priority> 
 </url> 
 </urlset>    

         Social Media Meta Tags   
 It’s also good practice to leave instructions for popular social media robots. Listing  8-7  gives you an example 
of instructions for Google Plus, Facebook, and Twitter. 

     Listing 8-7.    Meta tags for social media   

  <!-- Schema.org markup for Google+ --> 
 <meta itemprop="name" content="Site-name.com"> 
 <meta itemprop="description" content="{{ meta.description }}"> 
 <meta itemprop="image" content="//images/favicons/apple-touch-icon-120x120.png"> 

   <!-- Twitter Card data --> 
 <meta name="twitter:card" content="summary" /> 
 <meta name="twitter:site" content="@TwitterAccountName" /> 
 <meta name="twitter:title" content="{{ meta.title }}"> 
 <meta name="twitter:description" content="{{ meta.description }}"> 
 <meta name="twitter:image" content="//images/favicons/apple-touch-icon-120x120.png" /> 
 <meta name="twitter:url" content="http://some-site.com" /> 

   <!-- Facebook data --> 
 <meta property="og:title" content="Site-name.com" /> 
 <meta property="og:type" content="website" /> 
 <meta property="og:url" content=https://Site-name.com /> 
 <meta property="og:image" content=http://[icon path]/some-icon.ico /> 
 <meta property="og:site_name" content="Site-name"/> 
 <meta property="og:description" content="{{ meta.description }}"> 

    Notice that the data is binding to Angular $rootscope, so you can tie it to the values you set in “ngMeta” 
or the service metadata example I provided you with.      

      Webmasters   
 Webmaster is responsible for the submission of pages to search engine robots. Google is the most notable 
search engine out there, so we will be focusing on Google for the submission of our pages. However, it’s 
good practice to educate yourself on every single search engine you are targeting for optimal results. 
Luckily, Google is very transparent in regards to the submission of pages; you can use their webmaster tool 
dashboard to see how Google robots will crawl your site and then see if anything requires changes. You will 
first need to create an account or sign in to the webmasters section:    https://www.google.com/webmasters/     . 

 Next, you can add a “property,” meaning an app or a site (Figure  8-7 ).  

https://www.google.com/webmasters/


CHAPTER 8 ■ ANGULARJS SEO

218

 A property can be a web site or an Android app. After verifying your properties, you can log back in and 
enter the following URL into the dashboard area: 

    https://www.google.com/webmasters/tools/dashboard      

     Submit Pages to  Google    
 On the left menu, there is a link to “Crawl” and “Fetch as Google” (Figure  8-8 ).  

  Figure 8-7.    Google Webmasters add a  property         

  Figure 8-8.    Fetch as Google in Google Webmaster.          

 

 

https://www.google.com/webmasters/tools/dashboard


CHAPTER 8 ■ ANGULARJS SEO

219

 In the “Fetch as Google” functionality, we are able to “Fetch and Render” the pages as a Google spider 
renders the page and displays any issues in reaching resources. 

 We would then submit the URL with the “escaped fragment” as the URL and our “.htaccess” will be 
redirected to the snapshots: 

  http://[somewebsite]/?_escaped_fragment_=/view1/1/08-05-2016/some_title   

     Ensure Successful Page Submission 
 After the submissions have been made, we can ensure that the page has been submitted to Google correctly 
and has been crawled by the search engine as expected, meaning you can check to see that your site’s pages 
actually show up on Google. To do so, you’ll use the following search:    

    https://www.google.com/#q=site:somesite.com      

 As a result, Google will return all pages that were crawled. Note that it may take Google few days to show 
the results.   

     Summary 
 In this chapter, we covered AngularJS SEO, configured AngularJS redirect settings, and began a new test 
AngularJS seed project. We covered the different options available in AngularJS to use HTML5 mode, as 
well as Hashbang mode. We learned how to create a snapshot of our pages by installing and configuring 
a “PhantomJS” server, applied “angular-seo” script and even applied a Grunt deployment script for each 
upload and snapshot of our pages. We also learned about how to set and redirect pages using the “.htaccess” 
file. 

 Additionally, we learned how to set AngularJS meta tags, update the meta tags using a service module, 
and update the meta tags with the “ngMeta” module. We studied the robot exclusion protocol and learned 
about setting specific instructions for search engines and social media robots. 

 Lastly, we learned about the Google Webmasters service, how to submit pages to Google robots, and 
how to ensure the pages’ submissions were successful. 

 In the next chapter we will be covering build scripts.     

https://www.google.com/#q=site:somesite.com


221© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_9

    CHAPTER 9   

 Build Scripts                          

 When working on a JavaScript project, right from the beginning, we need to be mindful of the build scripts. 
However, with so many tools available, it is easy to get confused about what to use and when to use it. 

 As you may recall from Chapter   1    , I introduced you to Grunt and Gulp, and we installed them via npm. 
Both Grunt and Gulp, while utilizing Node.js, help us to automate our tasks. These both require that we 
install plugins and create a build file, and both are command line packages that can enhance the capability 
of your local environment as well as the deployment servers, but what is the difference between these two 
tools? Additionally, what other tools can we utilize to do what is necessary in order to help us manage, 
automate, and deploy our project? 

 In this chapter, we will answer these questions and provide you with options for automating your build 
and getting it ready for deployment. 

     Browserify 
 As you have seen, there are tens of thousands of open source Node.js modules avaliable, and during 
previous chapters, we have used some of these examples and even created our own npm module. However, 
if we build a browser-based project such as  AngularJS  , we can’t utilize these Node.js modules on the 
front-end code as is. Locating all of the modules in a project and bundling them into one file before we 
go to production is a common practice that reduces the end-user download time of loading large piles 
of JavaScript code to make our app work, as well as allowing us to prevent other developers from reverse 
engineering our code. 

 This is when Browserify can come in handy, solving our problem by bundling up all of these Node.js 
module dependencies, creating one bundle file that we can then use and include in all of the modules we 
need. Let’s take a closer look to see how it works. 

     Create a New Node.js  Module   
 First, let’s create a New WebStorm Node Project. Open WebStorm and select “Create New Project” ➤ “Node.
js Express App” ➤ “Create.” You can name the project whatever you’d like, or simply leave the default name 
“untitled.” 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 9 ■ BUILD SCRIPTS

222

 The project is now created. Next, we’ll create a Node.js module that will compute two numbers. To do 
so, create a folder named “compute” in the “node_modules” folder, and then create a file name: “index.js”. 
The content of “node_modules/compute/index.js” will hold the following (see Listing  9-1 ): 

     Listing 9-1.    "node_modules/compute/index.js" compute Node.js module   

 'use strict'; 
 module.exports = function (x, y) { return x + y; } 

   Our node module computes two numbers and then returns the results. We can refactor the code by 
referencing a function for better readability, as shown in Listing  9-2 . 

     Listing 9-2.    “node_modules/compute/index.js” compute Node.js module refactored   

  'use strict'; 

   function compute(x, y) { 
     return x + y; 
 } 
 module.exports = compute 

   Additionally, add a “node_modules/compute/package.json” file and add the following minimum 
package.json code: 

   { 
   "name": "my-compute-package", 
   "version": "1.0.0" 
 } 

    Next, in the “app.js” entry file, add a reference to our Node.js compute module. At the end of the files, 
add two numbers and show the results: 

   var compute = require('compute'); 
 console.log(compute(1, 2)); 

   Now, to run the project, click the green “play” icon in the top right corner. The app is configured to run 
“bin/www,” and you can see the results on the run console (see Figure  9-1 ).   



CHAPTER 9 ■ BUILD SCRIPTS

223

     Install Browserify 
 Now that we have our compute node module created, we can bundle it to be used in any JavaScript engine. 
 Install   Browserify globally via npm in the WebStorm command line window: 

   $ sudo npm install -g browserify 

        Compile a Browserify Bundle File 
 Next, to bundle our module, we will point to the compute module we created and tell Browserify to create a 
bundle file, which we’ll name “bundle.js,” like so: 

   $ browserify -r ./node_modules/compute/index.js > bundle.js 

   You can then confirm that a “bundle.js” was created in the root of the project. Given the way we 
instructed Browserify to  compile   the file, we will need to use the module file location in the AngularJS 
project we'll create shortly, add the bundle.js file as a reference in the index.html file, and then place the 
following statement in AngularJS: 

   var add = require('./node_modules/compute/index.js'); 

  Figure 9-1.    Compute module running in a Node.js project.          

 



CHAPTER 9 ■ BUILD SCRIPTS

224

   This does work, but to shorten the path and make the code align better with what we have in Node.js, 
we can also set the target name to “compute”: 

 $ browserify -r ./node_modules/compute/index.js:compute ➤ bundle.js 

 ■   Note    Browserify’s “–r” option flag stands for “require.” It requires that we place the module name. 
After doing so, we can then use the colon separator to set the target name.  

 Compiling with the target  name   will enable us to call “compute” in our AngularJS project instead of 
pointing to the file location: 

   var compute = require('compute'); 

   Behind the scenes, Browserify compiled a “bundle.js” file for us that includes the code in Listing  9-3 . 

     Listing 9-3.    Portion content of “bundle.js”   

  require=(function e(t,n,r){function.............. 
 'use strict'; 

   function add(x, y) { 
     return x + y; 
 } 
 module.exports = add 
 },{}]},{},[]); 

         Using a Node.js Module in an AngularJS Project 
 The end goal is to be able to use the “bundle.js” file we created in our  AngularJS project  . Let’s go ahead and 
create an AngularJS project to use the bundle.js file we’ve just created. First, ensure you stop the Node.js app, 
since it will be holding up the same localhost port we need to use in our AngularJS project. You can stop the 
Node.js project from WebStorm by clicking the “Stop” icon on the Run console. See Figure  9-2 .  

 I want to give you an additional handy tip to ensure that no Node.js  projects   are running in the 
background. If you have a project running and you run this command in the command line: 

   $ ps -ax | grep node 

   You will get a response showing any Node.js services running, such as: 

   59572 ?? 0:00.25 / WebStorm/untitled/bin/www 

  Figure 9-2.    Stop "bin/www" icon in WebStorm       

 



CHAPTER 9 ■ BUILD SCRIPTS

225

   Now, to terminate the service, all you have to do is use the “kill” command with the service ID, which 
we received as a response: 

   $ kill -9 59572 

   That’s it—now we are ready to create our AngularJS project.

    1.    In WebStorm, select “File” ➤ “New” ➤ “Project” ➤ “AngularJS” ➤ name the 
project “MyAngularProject” ➤ “Create.” Select “New Window” so you can have 
both projects side by side.  

    2.    Open the WebStorm Terminal window (bottom left corner) and run these two 
commands:

    a.    $ npm install  

    b.    $ npm start      

    3.    To view the project, open up a browser client:

    a.    open    http://localhost:8000              

 Now that we have an AngularJS project to work with, copy the “bundle.js” file we created in the Node.js 
project onto the AngularJS project “app/bundle.js.” Next, reference the bundle file in our “index.html” file: 

   <script src="bundle.js"></script> 

   See Figure  9-3 .     

 Now we can open “app/view1/view1.js” and add our script to the “view1.js” controller (Listing  9-4 ). 

     Listing 9-4.    Using compute  Node.js module   in view1.js AngularJS project   

  .controller('View1Ctrl', [function() { 
   var compute = require('compute'); 
   console.log(compute(3, 6)); 
 }]); 

  Figure 9-3.    Including  bundle.js   in index.html AngularJS project       

 

http://localhost:8000/


CHAPTER 9 ■ BUILD SCRIPTS

226

    All we’re doing is adding a “require” to reference the module we’re using and then sending the result of 
adding two numbers together to the console. Run the project or refresh the browser if you still have it open: 

   $ open http://localhost:8000 

   Inspect the element in the browser and look at the console messages. You should see the computed 
results of 9. See Figure  9-4 .  

 As you can see, this is powerful, considering Browserify not only allows us to bundle all of our modules 
together, but gives us the option to use tens of thousands of modules from Node.js.   

     Babelify 
 Many criticize JavaScript as second-class citizen due to its lack of object-oriented programming syntax 
and other deficiencies. JavaScript is evolving and, in fact, ECMAScript 2015 is the JavaScript standard that 
is also known as ES2015, or ES6. It holds the most significant update of the language since ES5, which was 
standardized back in 2009. However, many browser engines and other JavaScript runtimes such as Node.js 
have been implementing these features slowly, and not all the features from ES6 are available on all engines 
at the time of this writing. Babelify allows us to use ES2015 features today. 

  Figure 9-4.    Console message in  AngularJS project   where compute module is used.       

 



CHAPTER 9 ■ BUILD SCRIPTS

227

 ■   Note    ES6 transpiling is compiling code down to ECMAScript from 2009 (also known as ES5) so it can be 
backward compatible with JavaScript engines that don't yet support ES6.  

      Installing   Babel 
 In the section below, we’ll cover how to install Babel. In the same AngularJS project we created previously, 
install Babel CLI in the WebStorm command line and add a second window via “New Session” since we have 
“npm start” running, and install Babel via npm: 

   $ npm install babel-cli --save-dev 

   Next, we need to install "Babel 6 preset" for transpiling ECMAScript 6 locally, so that we can support all 
of the capabilities of ES2015: 

    $ npm install babel-preset-es2015 --save-dev 

   This download may take a while. Lastly, we will create “.babelrc” file in the root of the project that tells 
Babel that we are using ES2015: 

   { 
   "presets": ["es2015"] 
 } 

         Setting Babel in  WebStorm   
 Now that Babel is installed and configured, all we need to do is set a watcher so that the transpiling will 
happen automically via WebStorm and we won’t need to compile the files every time. Click “command + ,” 
to open the WebStorm preferences window and select “Tools” ➤ “File Watchers” ➤ “+” ➤ “Babel.” 

 In the configuration window, set the Babel program location, which we have already installed: 
“node_modules/.bin/babel”. See Figure  9-5 .  



CHAPTER 9 ■ BUILD SCRIPTS

228

 Notice that WebStorm, with its default settings, doesn't show ".bin" folders. You can navigate with the 
command line to view the contents of the folder, or check the “Show hidden files and directories” button in 
the “Select path” dialog box.  

     Writing  ES6 Code   
 Now that we have Babel installed and configured and a watcher in place that will generate and compile 
files automatically for us, we are ready to do some coding; for example ES6 has a feature that will allow us to 
extend built-in JavaScript classes. Let's create a code that does just that. Add the code from Listing  9-5  into 
the " view1/view1.js" controller. 

     Listing 9-5.    Extending Array JavaScript built in class   

  .controller('View1Ctrl', [function() { 
     var compute = require('compute'); 
     console.log(compute(3, 6)); 

       class MyArray extends Array { 
         constructor(args) { 
             super(args); 
         } 
         speak() { 
             console.log('I have ' + this.length + ' items'); 

  Figure 9-5.    Adding Babel File Watcher to  WebStorm         

 



CHAPTER 9 ■ BUILD SCRIPTS

229

         } 
     } 

       var arr = new MyArray(); 
     arr[1] = 12; 
     arr.length == 2; 
     arr.speak(); 

   }]); 

    The code  extends   the built-in array and adds a method called "speak" that tells us how many items the 
array contains. We’ve created a basic example, but you can imagine how this feature will be useful in cases 
where you would want to create custom filtering and sorting of an array. 

 Once you save the file, you can see that WebStorm is executing the Babel task at the footer of 
WebStorm—see Figure  9-6 .  

 We have extended the array’s built-in class and added a method called “speak.” Once we create a 
new instance of the class and use the new method, we can then open   http://localhost:8000     and view the 
messages in the console to confirm that we’re receiving the message “I have 2 items.” 

 As you can see, this is a powerful tool, and will allow us to utilize ES6 today. There is a PDF document 
online that lists all of the features in ES6:   http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf    ., 
which is the ECMA-262 6th Edition, of the ECMAScript 2015.   

     Grunt 
 We have installed and run Grunt tasks before. As you may recall, back in Chapter   8     we used Grunt to create a 
task that would then create a static snapshot of our pages that we then deployed to our server. Grunt is often 
used to automate common tasks that we need to run in order to get our code ready for production. Common 
operations before deployment include renaming files, uglifying (obfuscating) files, minifying files, bundling 
together all of our assests, and uploading all of our files to a server. 

     Grunt with a  Babel Task   
 We can create a Grunt task that can be used to run our code through Browserify and Babelify, either by 
calling the task directly or by placing a watcher on it, so when we make changes to our files, Grunt handles 
what is needed behind the scenes. This saves us the headache of dealing with all of that individually on 
our own. 

  Figure 9-6.    WebStorm executing Babel  task         

 

http://localhost:8000/
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://dx.doi.org/10.1007/978-1-4842-2044-3_8


CHAPTER 9 ■ BUILD SCRIPTS

230

 To get started, create a Grunt build file in the root of your AngularJS project, “Gruntfile.js”, and copy the 
code from Listing  9-6 . 

    Listing 9-6.    Gruntfile.js Babel task   

  module.exports = function(grunt) { 

       require('load-grunt-tasks')(grunt); 

       grunt.initConfig({ 
         babel: { 
             options: { 
                 sourceMap: true, 
                 presets: ['es2015'] 
             }, 
             dist: { 
                 files: { 
                     'dist/app/view1/view1.js': 'app/view1/view1.js' 
                 } 
             } 
         } 
     }); 

       grunt.registerTask(run-babel', ['babel']); 
 }; 

    As you may recall, the “Gruntfile.js” file consists of loading the plugins we’ll be using, setting the project 
configurations, and creating tasks. 

 In the code above, we are setting a task to compile the “app/view1/view1.js” file into the “dist/app/
view1/view1.js” location while using the “babel” plugin.  

     Install Grunt Babel Plugins 
 Next, we need to  install   Grunt locally, as well as the plugins we will be using: 

   $ npm install grunt load-grunt-tasks grunt-babel --save-dev 

   Note that, depending on your Internet connection, this may take a while to download. Additionally, 
you’ll need the “present es-2015” plugin to be installed, which I covered  previously  .  

     Run Grunt Babel Task 
 Now that we have our Grunt file  ready   and we’ve installed all of the plugins we need, all we have to do is run 
the root of the project the task we want in the command line:

  $ grunt run-babel 



CHAPTER 9 ■ BUILD SCRIPTS

231

   The task will compile our "view.js" file. If you open up “/dist/app/view1/view.js,” you can see the 
following ES6 code we’ve created: 

     class MyArray extends Array { 
     constructor(args) { 
       super(args); 
     } 
     speak() { 
       console.log('I have ' + this.length + ' items'); 
     } 
   } 

   …is replaced with the following code that will work on all ES5 JavaScript engines: 

      var MyArray = function (_Array) { 
     _inherits(MyArray, _Array); 

       function MyArray(args) { 
       _classCallCheck(this, MyArray); 

         return _possibleConstructorReturn(this, (MyArray.__proto__ || Object.
getPrototypeOf(MyArray)).call(this, args)); 
     } 

       _createClass(MyArray, [{ 
       key: 'speak', 
       value: function speak() { 
         console.log('I have ' + this.length + ' items'); 
       } 
     }]); 

       return MyArray; 
   }(Array); 

         Grunt Babelify & Browserify Task 
 Similarly, we can run a task that will Babelify and Browserify our code and watch for changes in the file. This 
can be achieved by utiltizing the following Grunt plugins: 

   $ npm install babelify grunt-browserify grunt-contrib-watch --save-dev 

   These plugins include “grunt-browserify” to compile the Node.js modules, the “babelify” module to 
write our ES6 code, and “grunt-contrib-watch” so that Grunt can watch for changes, just as WebStorm is 
doing. 

 The task will replace the command line we’ve created in order to build the “bundle.js” file and will then 
compile the ES6 code so that we can actually code ES6 in our Node.js module. See Listing  9-7 . 



CHAPTER 9 ■ BUILD SCRIPTS

232

     Listing 9-7.    Browserify,  babelify  , and watch for changes Grunt task   

         browserify: { 
             dist: { 
                 options: { 
                     transform: ["babelify"] 
                 }, 
                 files: { 
                     "./dist/bundle.js": ["./node_modules/compute/index.js"] 
                 } 
             } 
         }, 
         watch: { 
             scripts: { 
                 files: ["./modules/*.js"], 
                 tasks: ["browserify"] 
             } 
         } 

   The complete Grunt file code is below (see Listing  9-8 ). 

     Listing 9-8.    Complete  GruntJS code   to run babel, browserify, babelify, and watch for changes   

  module.exports = function(grunt) { 

       require('load-grunt-tasks')(grunt); 

       grunt.initConfig({ 
         babel: { 
             options: { 
                 sourceMap: true, 
                 presets: ['es2015'] 
             }, 
             dist: { 
                 files: { 
                     'dist/app/view1/view1.js': 'app/view1/view1.js' 
                 } 
             } 
         }, 
         browserify: { 
             dist: { 
                 options: { 
                     transform: ["babelify"] 
                 }, 
                 files: { 
                     "./dist/bundle.js": ["./node_modules/compute/index.js"] 
                 } 
             } 
         }, 
         watch: { 
             scripts: { 



CHAPTER 9 ■ BUILD SCRIPTS

233

                 files: ["./modules/*.js"], 
                 tasks: ["browserify"] 
             } 
         } 
     }); 

       grunt.loadNpmTasks("grunt-browserify"); 
     grunt.loadNpmTasks("grunt-contrib-watch"); 

       grunt.registerTask("default", ["watch"]); 
     grunt.registerTask("build", ["browserify"]); 
     grunt.registerTask('run-babel', ['babel']); 
 }; 

    Before you run the  task  , add the following files we created in the Node.js project, inside of our AngularJS 
project: “/node_modules/compute/index.js.” As you may recall, all the Node.js module does is include a 
code that computes two numbers: 

   'use strict'; 
 module.exports = function (x, y) { return x + y; } 

   Now we can build the “bundle.js” file using the build task: 

   $ grunt build 

   We can see the results in the command line, confirming that the task has been completed successfully. 

    Running "browserify:dist" (browserify) task 
 >> Bundle ./dist/bundle.js created. 

   Done. 

         Grunt Watch 
 As you have seen previously, we’ve utilized a “grunt-contrib-watch” plugin in the Grunt file: 

           watch: { 
             scripts: { 
                 files: ["./modules/*.js"], 
                 tasks: ["browserify"] 
             } 
         } 

   This task is used to  watch   for changes. It can replace the action of WebStorm, or we can use the built-in 
feature in WebStorm when we develop locally and then use Grunt for deployment. 

 In the Grunt file, we set the default task to utilize the watcher: 

   grunt.registerTask("default", ["watch"]); 



CHAPTER 9 ■ BUILD SCRIPTS

234

   To see the code in action, run the default GruntJS task in the command line: 

    $ grunt 

   In the command line, we can confirm that the watcher is in progress: 
 Running "watch" task 
 Waiting... 

    To cancel the watch task, click “command + c”. Additionally, you can open the “dist/bundle.js” file and 
see the code that has been generated by Grunt for us automatically.   

     Gulp 
 Gulp is a rival task runner of Grunt. Let’s take a look at the differences between the two, as well as another 
choice for you to use while creating tasks. 

     Differences Between  Grunt   and Gulp 
     1.     Coding : Grunt is similar to Ant or Maven (if you’ve ever used these tools). It is 

configuring tasks, while Gulp is writing a JavaScript code that utilize plugins.  

    2.     Streaming : Gulp offers streaming, so you end up with one simple file instead of 
dealing with multiple folders and files. Remember that we created a watch task in 
Grunt—it’s not needed in Gulp, since it’s a core functionality.  

    3.      Plugins   : Plugins in Gulp are more loosely coupled and aimed at solving a single 
task, whereas Grunt connects plugins to create a shared functionality, making 
Grunt more like a composition.     

 ■   Note    In a nutshell, Gulp is a better tool, but Grunt has about 6,000 plugins (at the time of this writing) 
while Gulp only has about 2,700. Grunt having been around longer gives it a big edge.  

 In the end, it’s more about your own preferences. If you have not used other automating tasks such as 
Ant or Maven, Gulp is probably a better choice, since it’s just programming as opposed to configuring tasks. 
However, if you are already using Grunt, it may not be worth your effort to move to Gulp.  

     Installing  Gulp   
 Although we installed Gulp back in Chapter   1    , we haven’t used it in this book yet, so let’s see how the same 
tasks of Browserify, Babelify, and watching the file for changes will look in Gulp. 

 Previously, we installed a version of Gulp globally, so you can run it at any time: 

   $ sudo npm rm --global gulp 

   To ensure the old version of Gulp doesn't collide with "gulp-cli," let's install the latest "gulp-cli": 

   $ sudo npm install --global gulp-cli 

http://dx.doi.org/10.1007/978-1-4842-2044-3_1


CHAPTER 9 ■ BUILD SCRIPTS

235

   Next, install Gulp locally and add a reference in package.json, devDependencies: 

   $ npm install gulp --save-dev 

        Creating a Gulp Task 
 Now that we have  Gulp   installed, we can create "gulpfile.js" at the root of our project. Gulpfile is the 
equivalent to Gruntfile. Both are written in JavaScript, but rather than configuring tasks, Gulp prefers code 
over settings configuration. See Listing  9-9 . 

     Listing 9-9.    Gulpfile talks to  Browserify  , Babelify and watch for changes   

  var gulp = require('gulp'); 
 var browserify = require('browserify'); 
 var watchify = require('watchify'); 
 var babel = require('babelify'); 
 var sourcemaps = require('gulp-sourcemaps'); 
 var source = require('vinyl-source-stream'); 
 var buffer = require('vinyl-buffer'); 

   function compile(watch) { 
      var bundler = watchify(browserify('./node_modules/compute/index.js', { debug: true 

}).transform(babel)); 

       function rebundle() { 
         bundler.bundle() 
             .on('error', function(err) { console.error(err); this.emit('end'); }) 
             .pipe(source('build.js')) 
             .pipe(buffer()) 
             .pipe(sourcemaps.init({ loadMaps: true })) 
             .pipe(sourcemaps.write('./')) 
             .pipe(gulp.dest('./build')); 
     } 
     if (watch) { 
         bundler.on('update', function() { 
             console.log('bundling'); 
             rebundle(); 
         }); 
     } 
     rebundle(); 
 } 

   function watch() { 
     return compile(true); 
 }; 

   gulp.task('build', function() { return compile(); }); 
 gulp.task('watch', function() { return watch(); }); 
 gulp.task('default', ['watch']); 



CHAPTER 9 ■ BUILD SCRIPTS

236

    The Gulpfile consists of setting references to all of the plugins we will be using, compiling our scripts, 
streaming, and watching for changes. Lastly, we will create a Gulp task to build and watch.  

     Installing  Gulp Plugins   
 We have referenced Gulp plugins, but we haven't yet installed them, so let's go ahead and install all of the 
Gulp plugins we will be using, via npm: 

   $ npm install browserify gulp-sourcemaps vinyl-source-stream vinyl-buffer watchify babelify 
--save-dev 

             Running Gulp Tasks 
 Now that we have the  Gulp   file and all of the plugins created, we can run the Gulp task. We will be using the 
default task, which is set up to watch for changes: 

   $ gulp 

   We can then confirm that everything is working. Take a look at a typical output result: 

   [15:47:54] Using gulpfile ~/Documents/WebStorm/[project name]/gulpfile.js 
 [15:47:54] Starting 'watch'... 
 [15:47:54] Finished 'watch' after 19 ms 
 [15:47:54] Starting 'default'... 
 [15:47:54] Finished 'default' after 4.78 ms 

   As you can see, streaming and watching is much simpler than with Grunt, and the coding was simply 
that of JavaScript, rather than a clumsy configuration file. 

 ■   Note    To conceptually understand streaming in Gulp, think of our files passing through a pipe. At one or 
more points along that pipe, a task is done—for example, renaming files.    

     Webpack 
 We took a look at Grunt and saw the simplicity of Gulp, and we configured these tools to bundle our modules 
and allow us to do other tasks such as writing ES6 JavaScript code, but there are additional tools worth 
mentioning. Webpack and Browserify do pretty much the same thing, which is bundling our JavaScript 
modules to be used in a browser environment. Webpack does this more easily, since it doesn't need Grunt 
and Gulp or knowelge of Node.js. In fact, Webpack was built taking into account the deficiencies of Grunt/
Gulp and Browserify. It's more “set it and forget it” when it comes to watchers. Let's take a look. 

     Installing Webpack 
 First, we must  install   Webpak globally via npm, just as we've done with the other tools: 

   $ sudo npm install webpack -g 



CHAPTER 9 ■ BUILD SCRIPTS

237

   Then, in the command line, pack the bundle the same way we did with Browserify: 

   $ webpack ./node_modules/compute/index.js bundle.js 

   The syntax was entry and output. We should get an output in the command line that looks like this: 

   Hash: be87e8b8b39b72caef48 
 Version: webpack 1.13.2 
 Time: 53ms 
       Asset     Size  Chunks             Chunk Names 
 ./bundle.js  1.45 kB       0  [emitted]  main 
     + 1 hidden modules 

   As you can see, although both  tools   do practically the same thing, Browserify uses Grunt and Gulp with the 
help of installed plugins to get the job done, while Webpack includes all that you need, straight out of the box. In 
the end, deciding to use Webpack or the Browserify Grunt/Gulp combo boils down to personal preference and 
team experience. Teams that are unfamiliar with Node.js may find that it's better and easier to use Webpack.  

     Creating Webpack Config  File   
 As mentioned previously, Webpack offers out-of-the-box features without the need to install anything else. 
For instance, Webpack acknowledges that assets such as CSS and images are dependencies of your project 
and treats them as such. As the deployment script becomes more complex, we will need a config file and 
will need to add loaders. Loaders are the preprocess files as you require() or “load” them and can add a task, 
or as Webpack calls it, “transform” them to a different language, such as CoffeeScript to Javascript. You can 
even create a pipeline and pass the files through that pipeline as you apply multiple transformation. That is 
similar to the tasks we saw in Gulp. 

 The config file is somewhat similar to the Grunt and Gulp file and is configured similarly to Grunt. In 
the root directory of the project, create a “webpack.config.js” file. 

 A basic “webpack.config.js” file holds the entry and output destination. See Listing  9-10 . 

     Listing 9-10.    Webpack minimalist config file   

 module.exports = { 
     entry: './node_modules/compute/index.js', 
     output: { 
         filename: './bundle.js' 
     } 
 }; 

   The minimalist config file includes an entry file location and an output to help build our bundle file. 
Now, run the Webpack command and you’ll receive the same results as we did in the previous command, 
where we included the entry and output location.    

    $ webpack 

         Webpack  Watcher   
 Next, remember how we set the config file in order to watch for changes in Browserify. In Webpack, it’s built 
out of the box, so all we have to do is set the watch flag: 

   $ webpack --watch 



CHAPTER 9 ■ BUILD SCRIPTS

238

   Or, in short, "w": 

   $ webpack --w 

   To cancel, just type “command + c”. Alternatively, we can set the watch flag "watch: true" in the 
“webpack.config.js” configuration file—see Listing  9-11 : 

     Listing 9-11.    Adding watch flag to webpack.config.js   

  module.exports = { 
     entry: './node_modules/compute/index.js', 
     output: { 
         filename: './bundle.js' 
     }, 
     watch: true 
 }; 

         Webpack Transpiling ES6 Code 
 Just as we used the “Babelify” module to write  ES6   in Grunt and Gulp, we can do the same in Webpack. All 
we have to do is create a loader that will let Webpack know how to handle the ES6 code. 

 As you may recall, in “app/view1/view1.js,” we coded our ES6 code: 

      class MyArray extends Array { 
     constructor(args) { 
       super(args); 
     } 
     speak() { 
       console.log('I have ' + this.length + ' items'); 
     } 
   } 

     var arr = new MyArray(); 
   arr[1] = 12; 
   arr.length == 2; 
   arr.speak(); 

    Next, we need to install the Webpack loader and Babel through npm: 

    $ npm install babel-loader babel-core --save-dev 

   You have to have Babel installed. As you recall, we installed it previously: 

 $ npm babel-preset-es2015 --save-dev 

    Lastly, we need to config Webpack’s “webpack.config.js”  file   in the root of the project, which needs to be 
set to use the loader, and configure the entry and output file location. See Listing  9-12 : 



CHAPTER 9 ■ BUILD SCRIPTS

239

     Listing 9-12.    Configure webpack.config.js to compile ES6 code   

 module.exports = { 
     module: { 
         loaders: [ 
             { 
                 test: /\.js$/, 
                 exclude: /node_modules/, 
                 loader: 'babel', 
                 query: { 
                     presets: ['es2015'] 
                 } 
             } 
         ], 
     }, 
     entry: './app/view1/view1.js', 
     output: { 
         filename: './dist/app/view1/view1.js' 
     } 
 }; 

   Run Webpack via the command line "$ webpack" and you will see the output of Webpack in the 
terminal (Figure  9-7 ):  

 Next, open the file in “/dist/app/view1/view1.js” to view the content. As you can see, it has compiled the 
file to ES5 code.  

     Webpack  CSS Loader   
 Next, to allow Webpack to handle CSS, we will perform the same action as we did with Babel—we will add a 
CSS loader. We do so by installing a CSS loader and then a Style loader, via npm: 

   $ npm install css-loader style-loader --save-dev 

  Figure 9-7.    Webpack output transpiling  ES6 code         

 



CHAPTER 9 ■ BUILD SCRIPTS

240

   Now all we have to do is add a reference in our "view1/view1.js" code to the CSS file at the top of the 
document: 

     require('../app.css'); 

   Lastly, we need to add the loader to the Webpack config file. See Listing  9-13 . 

     Listing 9-13.    Configure webpack.config.js to compile ES6 code and CSS   

   module.exports = { 
     module: { 
         loaders: [ 
             { 
                 test: /\.js$/, 
                 exclude: /node_modules/, 
                 loader: 'babel', 
                 query: { 
                     presets: ['es2015'] 
                 } 
             }, 
             { 
                 test: /\.css$/, 
                 exclude: /node_modules/, 
                 loader: 'style!css' 
             } 
         ], 
     }, 
     entry: './app/view1/view1.js', 
     output: { 
         filename: './dist/app/view1/view1.js' 
     } 
 }; 

   Now that we have the loader set up, all we have to do is run Webpack once again: 

   $ webpack 

   As you can see, it’s much  easier   to configure Webpack to handle our tasks than to set up Browserify. 
Webpack’s ease of use is especially significant in a team where the members are not familiar with Node.js, 
Grunt, and/or Gulp. In the next chapter, we’ll have a more in-depth discussion as well as examples of Gulp, 
Grunt, Browserify, and Webpack so you can better understand the trade-offs.   

     Vagrant VM 
 In the previous sections of this chapter, we showed you how to bundle different tools in order to use the 
latest JavaScript ES6 today, as well as how to bundle modules, automate tasks, and watch for changes. 

 Once your environment is all set up, how neat would it be to be able to just fire up a script and the same 
environment is reproduced anywhere and for all the team members of the project? Vagrant VM does just 
that. We can fire up or, as Vagrant calls it, "Vagrant up" and everything will be installed and configured. 



CHAPTER 9 ■ BUILD SCRIPTS

241

      Installing   Vagrant & Virtual Machine 
 At the time of writing, Vagrant 1.8.5 is the latest Vagrant version; download Vagrant from the following link: 

    https://www.vagrantup.com/downloads.html      

 Vagrant also requires a virtual machine. That could be VirtualBox, VMware, AWS, or others. We'll be 
using VirtualBox, since it's free at the time of writing. On a Mac OS X, the latest version is "VirtualBox 5.1.6 
for OS X." It can be downloaded from the following link: 

    https://www.virtualbox.org/wiki/Downloads      

 Now that we have Vagrant and VirtualBox installed, all we have to do is initialize Vagrant. In your 
WebStorm command line, run this command: 

   $ vagrant init hashicorp/precise64 

   Notice that  Vagrant   has created a Vagrantfile in the root of the project. The Vagrantfile includes a 
description of machines and resources needed to run and the software to be installed. Next, fire up Vagrant: 

   $ vagrant up 

   A successful output looks like Figure  9-8 .  

 Now we can SSH the virtual machine: 

   $ vagrant ssh 

   Once you SSH the virtual box, you can view all of the files we’ve downloaded by typing into the 
command line: 

   $ ls /vagrant 

  Figure 9-8.    Vagrant showing successfull setup of a virutal box       

 

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads


CHAPTER 9 ■ BUILD SCRIPTS

242

   To exit the virtual box, simply type “exit”: 

   $ exit 

   If at any time you make changes, type “reload”: 

    $ vagrant reload 

   Or to reload and provision: 

 ■      Note “   Provision” in Vagrant means that you allow automatically installed software and its altered 
configuration of the virtual machine. When you first Vagrant up the machine, it is done automatically.  

   $ vagrant reload -- provision   

         Networking Access   
 In this section, we will set up Vagrant networking so that other authorized guests can access the box. We do 
so by setting up an Apache web server. 

 Open the Vagrantfile file and uncomment this line by removing the "#" symbol: 

   # config.vm.network "forwarded_port", guest: 80, host: 8080 

   Before the end of the script, at the section "# Enable provisioning with a shell script. Additional 
provisioners such as", add the following line: 

   config.vm.provision :shell, path: "bootstrap.sh" 

   Save and close the file. Next, SSH the virtual box and install Apache: 

   $ vagrant ssh 
 $ sudo apt-get update 
 $ sudo apt-get install -y apache2 
 $ exit 

   Set a file named "bootstrap.sh" at the root of the project with the following content: 

   #!/usr/bin/env bash 
 apt-get update 
 apt-get install -y apache2 
 if ! [ -L /var/www ]; then 
   rm -rf /var/www 
   ln -fs /vagrant /var/www 
 fi 



CHAPTER 9 ■ BUILD SCRIPTS

243

   Then reload and provision: 

   $ vagrant reload --provision 

   Now you can navigate to the following URL and see all of the files we are setting up for sharing, since we 
have a web server up:    http://127.0.0.1:8080/     . See Figure  9-9 :   

     HTTP Sharing 
 In this  section  , we will share the Vagrant box. Share allow collaboration on your Vagrant environment. 
Vagrant currently provides three types of sharing—HTTP sharing, SSH sharing, and general sharing—
through HashiCorp's Atlas account.  Since the people you’re sharing with don’t need Vagrant installed, it’s 
ideal to share with managers, clients, or just about anyone. 

 The first step of sharing is creating a free account at    https://atlas.hashicorp.com/account/new     . 
 Now that we have an account with Atlas, we need to log in to the account. In the WebStorm command 

line, type: 

   $ vagrant login 

  Figure 9-9.    Vagrant networking configured and web server  up         

 

http://127.0.0.1:8080/
https://atlas.hashicorp.com/account/new


CHAPTER 9 ■ BUILD SCRIPTS

244

   The command line will ask for your username and password and will then confirm that you are logged 
in correctly: 

   Username or Email: [your username] 
 Password (will be hidden): [your password] 
 You are now logged in! 

   Now we can share. Type into the WebStorm command line: 

   $ vagrant share 

   You will get a share of information via the command line output: 

   ==> default: Creating Vagrant Share session... 
     default: Share will be at: spoiled-crocodile-4501 
 ==> default: Your Vagrant Share is running! Name: spoiled-crocodile-4501 
 ==> default: URL: http://spoiled-crocodile-4501.vagrantshare.com 

   You can confirm that the share was successful by  looking   at your account on the Atlas website. See 
Figure  9-10 .  

 To connect via the command line, type the following command into the Terminal: 

   $ vagrant connect spoiled-crocodile-4501 

   Note that this name “spoiled-crocodile-4501” will be different for you. Refer to the name in your share 
from Figure  9-10 . 

 This is what a guest user will see when they connect. To end the session, just type "exit" and “ctrl+c” 
to stop the connection. You can also navigate to the URL provided when you share (see Figure  9-11 ):   

  Figure 9-10.    Vagrant site show share       

 



CHAPTER 9 ■ BUILD SCRIPTS

245

     Share with  SSH Access   
 In this section, we will set our Vagrant box with SSH access for others to connect. This is useful for pair 
programming, debugging, and working with quality assurance. 

 Similar to the way we shared HTTP in the previous section, we can share and provide SSH access to 
guests. You do so by sharing with the SSH flag: 

   $ vagrant share --ssh 

   To connect, add the SSH flag: 

   $ vagrant connect spoiled-crocodile-4501 --ssh 

   When you share, Vagrant will ask you for a password that you will provide to the guest user for security 
reasons. 

 Vagrant can help you ensure that you share your whole project or only part of the project with other 
members of your team, and can help in the deployment process, which makes it a great tool to add to your 
arsenal of helpful built script tools. 

 You can read more about  sharing   from the Vagrant docs:    https://www.vagrantup.com/docs/share/       

  Figure 9-11.    Vagrant share via web  browser         

 

https://www.vagrantup.com/docs/share/


CHAPTER 9 ■ BUILD SCRIPTS

246

     Provision AngularJS Projects 
 We have created a  basic   "bootstrap.sh" file for setting up Apache and installing an entire project for learning 
purposes. However, for Node.js and AngularJS projects, we want to be able to set the project with the tools 
needed, such as Grunt, Gulp, npm, Node.js, and Git. We don't want all of our node modules and code 
downloaded, but we do want them to be installed on each machine. This is why we set a "package.json" file 
to begin with; it stores all of the modules that the project needs, so we don't need to upload all of them. To 
achieve this, we can use "Puppet" (not covered in this book), which Vagrant supports, or we can extend our 
"bootstrap.sh" file. Open the “bootstrap.sh” file we created and paste the following code: 

    #! /bin/bash 
 if [ ! -f /home/vagrant/isSettingInstalled ] 
 then 
   echo "UPDATING APT-GET" 
   apt-get -qq update 
   echo "INSTALLING NODE.JS" 
   apt-get -qq -y install Node.js 
   echo "INSTALLING NPM" 
   apt-get -qq -y install npm 
   echo "INSTALLING GIT" 
   apt-get -qq -y install git 

     echo "CLONING CODE" 
   cd /home/vagrant 
   git clone https://github.com/angular/angular-seed 
   cd angular-seed 
   git checkout -f step-0 

     echo "INSTALLING MODULES" 
   sudo npm install 
   echo "STARTING NPM" 
   sudo npm start 

     touch /home/vagrant/isSettingInstalled 
   echo "COMPLETE" 
 else 
   echo "SETTINGS ALREADY INSTALLED" 
 fi 

   With this code, we have created a flag to check whether the installation has already taken place or not. 
We have named the flag file “isSettingInstalled”. We have installed all of the tools we will need via “apt-get,” 
cloned the “angular-seed” project, installed the npm module, and run the npm start command. Instead of 
setting a box via the command line every time, we can simply connect to Vagrant and be up and running 
quickly. You can see how powerful Vagrant can be when used to set up  environments   quickly. 



CHAPTER 9 ■ BUILD SCRIPTS

247

          Summary 
 In this chapter, we focused on build scripts, created a new Node.js module, and installed Browserify and 
compiled a Browserify bundle file. Then, we used the bundle file, which included the Node.js module, and 
used that module in a new AngularJS project. We took a look at the new ES6 changes and learned how to 
utilize it today on any JavaScript engine using Babelify. We learned how to set up Babel in WebStorm and 
began writing ES6 code, then continued to learn more about Grunt and created a Grunt file with Babel task. 
Next, we installed Grunt plugs and ran a Babel task. We also created a Grunt task with the ability to Babelify, 
Browserify, and create a Grunt File Watcher. 

 We continued with installing Gulp and learned the differences between Grunt and Gulp. We created 
a Gulp task, installed Gulp plugins, and ran the Gulp tasks. We then looked at the installation of Webpack, 
created a Webpack config file, and learned how to use a watcher in Webpack. We learned how to use 
Webpack for transpiling ES6 code and also learned how to use the Webpack CSS loader. 

 Lastly, we reviewed how to set up a Vagrant VM, installed Vagrant, set a Virtual Machine for sharing 
access, and set up custom SSH scripts for AngularJS and Node.js projects. Selecting the right tools for the job 
is all about personal preference, as well as team knowledge and experience; it is an extremely important part 
of building any app. 

 In the next chapter we will be covering platform deployment.     



249© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3_10

    CHAPTER 10   

 Platform Deployment                          

 In this chapter, we will be deploying our Node.js and AngularJS applications on production. AngularJS 
is the front-end side, while Node.js is often used for building the service layer, which can be used by any 
device, as we have seen throughtout this book. In order to illustrate the process of deploying our app and 
the service layer to a server or to an application store such as Apple App Store, we would use the Node.
js and AngularJS seed projects. We will be covering the same tools we have been covering throughout the 
book, such as Grunt, Gulp, Browserify, and Webpack, as well as deployment of the Cordova app through 
PhoneGap and Ionic. Lastly, we will cover the Travis Continuous Integration server to ensure that our 
code is tested and will continue to work once changes have been committed. Each deployment is different 
and has specific requirements, so there isn't one basic solution that would fit all projects. However, our 
goal is to give you the essential tools so you will be able to identify your options and decide for yourself 
which tools you’d like to use. 

     Node.js Deployment 
 To create a Node.js seed  project   in WebStorm, from the splashscreen, select: “Create New Project” ➤ “Node.
js Express App.” Name the app “node” in the location input box and complete by selecting “create.” 

 To start the app, select the green “play” button at the top right corner. You should see it in the run that 
JavaScript used as an entry point: “bin/www.” Once you run the project, the console will confirm that the 
app is running correctly with the following output message: 

   /usr/local/bin/node /Users/eli/Documents/WebStorm/service/bin/www 
   service:server Listening on port 3000 +0ms 

   You can confirm that the app is indeed running by navigating to the following URL: 

    http://localhost:3000/     . 

 You will see the “Welcome to Express” message (Figure  10-1 ).  

http://localhost:3000/


CHAPTER 10 ■ PLATFORM DEPLOYMENT

250

     Connect to Node.js Ubuntu Server 
 As you may recall, in Chapter   2     we rolled out an Ubuntu server on AWS and set it up. You can log in here to 
ensure that the server is still running: 

   https://us-west-2.console.aws.amazon.com/ec2/v2     

 Visit Chapter   2     to set up the server if you have not already. You won’t need to use AWS—you can use any 
Ubuntu server you would like. Just follow the steps listed below. 

 ■   Note    Remember to terminate the server and/or ensure Amazon is not billing you. The billing home page 
can be viewed here:    https://console.aws.amazon.com/billing/home       

 Once an Ubuntu  server   is set through Amazon or any other provider, you can access the server using the 
following command: 

   $ sudo ssh -i key.pem ubuntu@[IP ADDRESS OR DNS] 

   The SSH command uses the user name with the IP address. The user name would be "ubuntu" on AWS 
and the IP address or public DNS can be found at the Instance description under "instances": 

    https://us-west-2.console.aws.amazon.com/ec2/v2/home#Instances      

 In Chapter   2    , we set up easy access to help us  connect   to the server through an “SSH” command. 
 We also set up a shortcut to connect us to the server in the Terminal through the ~/.ssh/config. We used 

the following command: 

   $ ssh api 

 ■     Note    It may have been a while since you’ve worked on Chapter   2    , and your IP address may have changed. 
Make sure you add the IP address to the security section in the EC2 console:   https://us-west-2.console.aws.
amazon.com/ec2/v2/home?region=us-west-2#SecurityGroups    . For more information, refer back to Chapter   2    .  

 Now that we can access the Ubuntu server again, we want to deploy our Node.js seed app.  

  Figure 10-1.    Node.js application deployed  locally         

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_2
https://us-west-2.console.aws.amazon.com/ec2/v2
http://dx.doi.org/10.1007/978-1-4842-2044-3_2
https://console.aws.amazon.com/billing/home
https://us-west-2.console.aws.amazon.com/ec2/v2/home#Instances
http://dx.doi.org/10.1007/978-1-4842-2044-3_2
http://dx.doi.org/10.1007/978-1-4842-2044-3_2
https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#SecurityGroups
https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#SecurityGroups
http://dx.doi.org/10.1007/978-1-4842-2044-3_2


CHAPTER 10 ■ PLATFORM DEPLOYMENT

251

     Deployment with  Grunt   
 We have already worked with Grunt in previous chapters. As you may recall, we need to first install Grunt 
locally and install the plugins we will be using: 

   $ npm install grunt --save-dev 
 $ npm install grunt-shell grunt-open --save-dev 

   The “grunt-shell” plugin provides the ability to run a command line so that “grunt-open” can read the 
files. 

 Each deployment is different and would need to be customized to your specific needs; there will not 
be just one universal solution to fit every single deployment. However, one easy way to deploy our app is to 
SSH the Ubuntu server, upload the files, and restart Node. A second option would be to check the files into 
version control and then pull them on the server. We can FTP the server as well, but SSH is a much more 
secure option. 

 We will create a task which will SSH into the server and copy the files to the server. We will also create a 
task that will be able to commit our changes more easily into a Git version control, so that we will have our 
changes backed up. 

 Place “Gruntfile.js” at the root of the project. Take a look at the following Grunt file that does just that 
(Listing  10-1 ): 

     Listing 10-1.    Gruntfile.js publish Node.js app and commit changes to  version   control   

  module.exports = function (grunt) { 

     grunt.loadNpmTasks('grunt-shell'); 
   grunt.loadNpmTasks('grunt-open'); 

     grunt.initConfig({ 

       /** 
      * We read in our `package.json` file so we can access the package name and 
      * version. 
      */ 
     pkg: grunt.file.readJSON('package.json'), 

       shell: { 
       multiple: { 
         command: [ 
           'git add .', 
           'git add -u', 
           "git commit -m '<%= pkg.version %> -> <%= pkg.commit %>'", 
           'git push' 
         ].join('&&') 
       }, 
       server_upload: { 
          command: 'scp -r -i /[PATH TO key.pem] /Users/[USER]/Documents/WebStormProjects/

node/* ubuntu@[SERVER IP OR PUBLIC DNS]:/home/ubuntu/www' 
       }, 
       stop_node: { 
          command: "ssh -i /[PATH TO key.pem] ubuntu@[SERVER IP OR PUBLIC DNS]  'sudo forever 

stop 0'" 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

252

       }, 
       start_node: { 
          command: "ssh -i /[PATH TO key.pem] ubuntu@[SERVER IP OR PUBLIC DNS] 'cd /home/

ubuntu/www; sudo forever start bin/www'" 
       } 
     } 
   }); 

      grunt.registerTask('default', ['shell:multiple', 'shell:server_upload', 'shell:stop_node', 
'shell:start_node']); 

    grunt.registerTask('build', ['shell:server_upload', 'shell:stop_node', 'shell:start_
node']); 

    grunt.registerTask('node-restart', ['shell:stop_node', 'shell:start_node']); 
 }; 

 ■      Note    Add your own parameters in the commands in brackets.  

 Take a look at the  code   “grunt.loadNpmTasks”. It is used to load our plugins. Next, look at our “package.
json” file. You may notice that we are expecting the “package.json” file to have a node for version and 
commit. Version is already included in the “package.json” file, but we need to add an entry for the commit 
comment. In “package.json,” we will add the "commit": "Update" commands as shown below: 

   { 
   "name": "angular-seed", 
   "commit": "Update", 
   "private": true, 
   "version": "0.0.0", 
   "scripts": { 
      “start”: “node ./bin/www” 
   }, 
   ... 
 } 

   “server_upload” is set up to use the “scp” command line, which allows us to do an SSH copy. 
 The location of the files is set with "/Users/[USER]/Documents/WebStormProjects/node," which is 

based on the latest WebStorm EAP (3). For this project, we're running the early access preview for WebStorm 
2016.3, the upcoming major release of WebStorm at the time of this writing, and you can use these EAP 
builds with lots of new features for free. 

    https://blog.jetbrains.com/webstorm/2016/08/webstorm-2016-3-early-access-preview/      

 You will have to change the locations to the URLs and server IP or public DNS. We’ve also set two 
additional commands to stop and start the server using “forever”. 

 Now, to upload the files, run this command: 

   $ grunt build 

   You will get an error (“scp: /home/ubuntu/www: No such file or directory”) if you haven’t followed all the 
steps in Chapter   2     to create the www folder. If you did, you should be able to view our Node.js application here: 

    http://[IP ADDRESS OR PUBLIC DNS      ]  

https://blog.jetbrains.com/webstorm/2016/08/webstorm-2016-3-early-access-preview/
http://dx.doi.org/10.1007/978-1-4842-2044-3_2
http://hyperlink/


CHAPTER 10 ■ PLATFORM DEPLOYMENT

253

 Keep in mind that it may take a while to transfer all these files to the server. You can SSH the Ubuntu 
server "ssh api" and watch the files being uploaded (Figure  10-2 ).  

 If you are experiencing any issues, you can SSH the server: 

   $ ssh api 

   Navigate to the Node.js public folder we created  back   in Chapter   2    : 

   ubuntu:~$ cd /home/ubuntu/www 

   Ensure that all of the files are there: 

   ubuntu:~$ ls 

   Next, stop Forever if it’s running: 

   ubuntu:~/www$ sudo forever stop 0 

   The server will reply with the following message if Forever is not running: 

   error:   Forever cannot find process with id: 0 

   To run JavaScript through Node.js, run: 

   ubuntu:~/www$ node bin/www 

   To cancel Node.js, run “ctrl + c”. Then you can run Forever to keep the connection persistent: 

   ubuntu:~/www$ sudo forever start bin/www 

  Figure 10-2.    Node.js application deployed on Ubuntu server       

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_2


CHAPTER 10 ■ PLATFORM DEPLOYMENT

254

        Deployment with Gulp 
 Similar to Grunt, we can use Gulp to deploy our code to the Ubuntu server. Gulp should already be available 
on your computer from previous chapters—as you may recall, we installed  Gulp globally:   

   $ sudo npm install --global gulp-cli 

   Next, we will need to install Gulp locally and add a reference in “package.json” devDependencies by 
using the save-dev flag: 

   $ npm install gulp gulp-shell --save-dev 

   Now we need to create a Gulp file (“Gulpfile.js”) that will include the task of publishing our code. Take a 
look at the content of the Gulp file: 

    Listing 10-2.    Gulpfile.js deployment of Node.js seed project to Ubuntu server   

  var gulp  = require('gulp'); 
 var shell = require('gulp-shell'); 

   gulp.task('server_upload', shell.task([ 
     'echo "CLEAN OLD"', 
      'ssh -i /[PATH TO key.pem] buntu@[IP OR PUBLIC DNS] "rm -rf /home/ubuntu/www; mkdir /

home/ubuntu/www"', 
     'echo "START UPLOAD"', 
      'scp -r -i /[PATH TO key.pem] /[PATH TO PROJECT]/bin ubuntu@[IP OR PUBLIC DNS]:/home/

ubuntu/www/bin', 
      'scp -r -i /[PATH TO key.pem] /[PATH TO PROJECT]/public ubuntu@[IP OR PUBLIC DNS]:/home/

ubuntu/www/public', 
      'scp -r -i /[PATH TO key.pem] /[PATH TO PROJECT]/routes ubuntu@[IP OR PUBLIC DNS]:/home/

ubuntu/www/routes', 
      'scp -r -i /[PATH TO key.pem] /[PATH TO PROJECT]/views ubuntu@[IP OR PUBLIC DNS]:/home/

ubuntu/www/views', 
      'scp -r -i /[PATH TO key.pem] /[PATH TO PROJECT]/*.js ubuntu@[IP OR PUBLIC DNS]:/home/

ubuntu/www/', 
      'scp -r -i /[PATH TO key.pem] /[PATH TO PROJECT]/package.json ubuntu@[IP OR PUBLIC 

DNS]:/home/ubuntu/www/package.json', 
      'echo "COPY COMPLETE"', 
      'ssh -i /[PATH TO key.pem] ubuntu@[IP OR PUBLIC DNS] "cd /home/ubuntu/www; npm 

install"', 
     'echo "NPM INSTALL COMPLETE"', 
      'ssh -i /[PATH TO key.pem] ubuntu@[IP OR PUBLIC DNS] "forever stopall; sudo killall 

node; ps axl | grep node; forever list"', 
      'echo "KILL NODE"', 
      'ssh -i /[PATH TO key.pem] ubuntu@[IP OR PUBLIC DNS] "forever start /home/ubuntu/www/

bin/www"', 
     'echo "START NODE"', 
     'open http://[IP OR PUBLIC DNS]' 
 ])); 

   gulp.task('default', ['server_upload']); 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

255

    Gulp-shell provides us with a plugin so that we can type commands just as we’ve done in the Terminal; 
it is similar to the Grunt-shell plugin. We will delete the old code from the Ubuntu server, uploading all the 
files we need. Notice that we are not loading all of the files in this example. We purposely did not upload the 
“node_modules” folder, since it’s not necessary. We keep the reference to the version and node modules we 
will be using in our package.json, and once we are done uploading all the files to the server, we will be using 
the “npm install” command, which will install all of the node modules on the Ubuntu server.    

 Next, we want to stop node from running. To do so, we need to use the following commands: 

   ubuntu$ forever stopall 
 ubuntu$ sudo killall node 
 ubuntu$ ps axl | grep node 
 ubuntu$ forever list 

   “Forever stop all” stops any “forever” service that may be running. “killall node” will ensure that all of 
the Node.js apps have stopped. We can then confirm all of the Node.js applications by running a “ps axl | 
grep node” command. “forever list” should not show sign of any forever tasks currently running. 

 We can now start Node.js again using this command: 

   ubuntu$ sudo forever start /home/ubuntu/www/bin/www 

   Lastly, we will open our browser with the Ubuntu server URL so we can ensure that it’s up and running 
as expected. 

   $ open http://[IP OR PUBLIC DNS] 

   Notice that we are repeating all of these server and local definitions many times with these commands. 
We can refactor the code by adding an object “config” that will hold the variables we will be using, so we can 
simply change our config object to reflect the changes. See Listing  10-3 . 

     Listing 10-3.    Gulpfile.js   

  var gulp  = require('gulp'); 
 var shell = require('gulp-shell'); 

   var config = { 
     key: '/[PATH TO KEY]/key.pem', 
     server_user: 'ubuntu', 
     ip_dns: '[IP OR PUBLIC DNS]', 
     server_home: '/home/ubuntu/www', 
     project_home: '/[LOCAL PROJECT]' 
 }; 

   gulp.task('server_upload', shell.task([ 
     'echo "CLEAN OLD"' , 
      'ssh -i ' + config.key + ' ' + config.server_user + '@' + config.ip_dns + ' "rm -rf ' + 

config.server_home + '; mkdir ' + config.server_home + '"', 
     'echo "START UPLOAD"', 
      'scp -r -i ' + config.key + ' ' + config.project_home + '/bin ' + config.server_user + 

'@' + config.ip_dns + ':' + config.server_home + '/bin', 
      'scp -r -i ' + config.key + ' ' + config.project_home + '/public ' + config.server_user 

+ '@' + config.ip_dns + ':' + config.server_home + '/public', 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

256

      'scp -r -i ' + config.key + ' ' + config.project_home + '/routes ' + config.server_user 
+ '@' + config.ip_dns + ':' + config.server_home + '/routes', 

      'scp -r -i ' + config.key + ' ' + config.project_home + '/views ' + config.server_user + 
'@' + config.ip_dns + ':' + config.server_home + '/views', 

      'scp -r -i ' + config.key + ' ' + config.project_home + '/*.js ' + config.server_user + 
'@' + config.ip_dns + ':' + config.server_home + '/', 

      'scp -r -i ' + config.key + ' ' + config.project_home + '/package.json ' + config.
server_user + '@' + config.ip_dns + ':' + config.server_home + '/package.json', 

      'echo "COPY COMPLETE"', 
      'ssh -i ' + config.key + ' ' + config.server_user + '@' + config.ip_dns + ' "cd ' + 

config.server_home + '; npm install"', 
      'echo "NPM INSTALL COMPLETE"', 
      'ssh -i ' + config.key + ' ' + config.server_user + '@' + config.ip_dns + ' "forever 

stopall; sudo killall node; ps axl | grep node; forever list"', 
      'echo "KILL NODE"', 
      'ssh -i ' + config.key + ' ' + config.server_user + '@' + config.ip_dns + ' "forever 

start ' + config.server_home + '/bin/www"', 
      'echo "START NODE"', 
     'open http://' + config.ip_dns + '' 
 ])); 

   gulp.task('default', ['server_upload']); 

    Since we’ve set the task as the default task, all we’ll have to do is run: 

   $ gulp 

   In our example, we are not  utilizing   the full functionality of Gulp, such as streaming and watching for 
changes, so the code is somewhat similar to Grunt. However, you may notice that placing variables in Gulp is 
really just writing JavaScript code. Instead of utilizing tokens as we have done with Grunt, we are using “<%= 
pkg.version %>”. Even in a simplified example, you can see the advantages of using Gulp.   

     AngularJS Deployment 
 Just as we've done with Node.js, we will create a seed application in WebStorm and deploy the application 
with Grunt, Gulp, Browserify, and Webpack. 

 Close your "node" project and  create   an AngularJS seed project.

    1.    In the WebStorm splashpage, select “Create New Project” ➤ “AngularJS” and 
name the project “angular” ➤ “Create.” Select “New Window” to view both 
projects side by side.  

    2.    Open the WebStorm Terminal window (bottom left corner) and run these two 
commands:

    a.    $ npm install  

    b.    $ npm start      

    3.    To view the project, open up a browser client:

    a.    open    http://localhost:8000              

http://localhost:8000/


CHAPTER 10 ■ PLATFORM DEPLOYMENT

257

 The browser opens up with the seed application—see Figure  10-3 .  

 When it comes to deploying your AngularJS app, there are many options to choose from. You may 
deploy your application on different web servers that serve HTML content, such as nginx or Linux. 

 Heroku is a popular paid platform that offers a minimal Express and Node.js script to publish your 
AngularJS front-end code. Additionally, you can deploy your pages on Amazon S3 bucket (free for the first 
year) or even on GitHub Pages for free. 

 As you may recall from Chapter   2    , we created a Linux server (see "Start a Linux server"). This server can 
be used to deploy our static front-end AngularJS pages, as well as for other purposes. 

 Log in to Amazon:    https://us-west-2.console.aws.amazon.com/console/home      
 Once the Linux server is set up and we have configured an SSH shortcut by adding our host information 

inside the "~/.ssh/config" file, all we have to do to connect is call: 
 $ ssh app 
 Next, to install LAMP, type the following commands on the Linux server: 

   [ec2-user@ip] $ sudo yum update -y 
 [ec2-user@ip] $ sudo yum install -y httpd24 php56 mysql55-server php56-mysqlnd 
 [ec2-user@ip] $ sudo service httpd start 
 [ec2-user@ip] $ sudo chkconfig httpd on 

   And you can confirm  Linux   is running correctly by visiting your IP address or public DNS 
(see figure  10-4 ):  

    [ec2-user@ip] $ cd /var/www/html 

  Figure 10-3.    AngularJS seed project deployed locally       

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_2
https://us-west-2.console.aws.amazon.com/console/home


CHAPTER 10 ■ PLATFORM DEPLOYMENT

258

   If you recall from Chapter   2    , we previously edited the Linux " ~/.bashrc" file with shortcuts, so we can 
type "$ cdr" to navigate to the public root directory where we will deploy our application: "/var/www/html" 

   [ec2-user@ip] $ sudo vim index.html 

   Type "i" in vim to insert content, and then type: 

   hello world 

   To close and save vim, type “Escape + : + wq + Enter” (as you may recall from previous chapters). You 
can confirm your changes by refreshing your browser (see Figure  10-5 ).  

  Figure 10-5.     Linux server   running on Apache with "hello world"       

  Figure 10-4.    Linux server running on Apache       

 

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_2


CHAPTER 10 ■ PLATFORM DEPLOYMENT

259

     Web Deployment with Grunt 
 Now that we have a Linux  server   running and a seed AngularJS application added locally, we can upload the 
app with a Grunt deployment script. Create a Grunt file: 

    $ npm install --save-dev grunt 
 $ npm install grunt-shell --save-dev 

   $ touch Gruntfile.js 

    Add the following to Gruntfile.js in the project’s root directory: 

    module.exports = function (grunt) { 

       grunt.loadNpmTasks('grunt-shell'); 

       grunt.initConfig({ 

           shell: { 
             cleanup: { 
                  command: "ssh -i /[PATH TO KEY]]/key.pem ec2-user@[IP OR PUBLIC DNS] 'sudo 

rm -rf /var/www/html; sudo mkdir /var/www/html; sudo chown ec2-user /var/
www/html'" 

             }, 
             server_upload: { 
                  command: 'scp -r -i /[PATH TO KEY]/key.pem /[PROJECT LOCATION]/angular/app/* 

ec2-user@[IP OR PUBLIC DNS]:/var/www/html/' 
             } 

           } 
     }); 

       grunt.registerTask('default', ['shell:cleanup', 'shell:server_upload']); 
 }; 

    Run the default  Grunt command:   

   $ grunt 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

260

         Web Deployment with Gulp 
 Deploying our AngularJS app with  Gulp   can be done in the same way as our Node.js application. In Gulp, we 
can SSH to the Linux server to clear up and then "scp" our files over to the Linux server (see Listing  10-4 ). 

     Listing 10-4.    Gulpfile.js   

  var gulp  = require('gulp'); 
 var shell = require('gulp-shell'); 

   gulp.task('server_upload', shell.task([ 
      "ssh -i key.pem ec2-user@[IP ADDRESS] 'sudo rm -rf /var/www/html; sudo mkdir /var/www/

html; sudo chown ec2-user /var/www/html'", 
     'scp -r -i key.pem /[PROJECT]/angular/app/* ec2-user@[IP ADDRESS]:/var/www/html/' 
 ])); 

   gulp.task('default', ['server_upload']); 

    However, in a more realistic  application  , we will want to do more than simply move our files. A full 
working application often includes the following:

    1.     Minification and Uglified:  removing unnecessary characters from your code 
without changing the functionality of your code; compressing your code and 
mangling (obfuscating) names  

    2.     JSHint / ESLint : Think of a code review. Running your code through JSHint / 
ESLint can help identify potential errors.  

    3.     Browserify : As we saw in Chapter   9    , using Browserify will allow us to bundle our 
modules together so we can "require" modules.  

  Figure 10-6.    AngularJS seed deployed on Linux server       

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_9


CHAPTER 10 ■ PLATFORM DEPLOYMENT

261

    4.     Watch : We often want to watch for changes and update our local instance. 
I covered this in Chapter   9    , when we used Babel. The watch can be used to 
automatically deploy if we want it to.  

    5.     LESS / SASS Support : give CSS superpowers, preprocessing & compatible with 
CSS, it adds features such as variables, partials, and Mixins.     

 There is so much more—indeed, Grunt has plugins for all of these tasks. You can also add each task, but 
utilizing Gulp can help streamline this process. Let's take a closer look. 

 We need Browserify locally: 

   $ npm install browserify --save-dev 

   Next, we need to install all of the Gulp plugins that we will be using: 

   $ npm install gulp-browserify gulp-concat gulp-jshint gulp-uglify pump jshint --save-dev 

   Now, we need to create a "Gulpfile.js" and parse. See Listing  10-5 . 

     Listing 10-5.    Gulpfile.js to boundle with Gulp   

  var gulp  = require('gulp'), 
     shell = require('gulp-shell'), 
     jshint = require('gulp-jshint'), 
     browserify = require('gulp-browserify'), 
     concat = require('gulp-concat'), 
     uglify = require('gulp-uglify'), 
     pump = require('pump'); 

   gulp.task('jshint', function() { 
     gulp.src('./app/*.js') 
         .pipe(jshint()) 
         .pipe(jshint.reporter('default')); 
 }); 

   gulp.task('browserify', function() { 
     gulp.src(['app/entry.js']) 
         .pipe(browserify({ 
             insertGlobals: true, 
             debug: true 
         })) 
         .pipe(concat('bundle.js')) 
         .pipe(gulp.dest('app')); 
 }); 

   gulp.task('compress', function (cb) { 
     pump([ 
             gulp.src('app/bundle.js'), 
             uglify(), 
             gulp.dest('app') 

http://dx.doi.org/10.1007/978-1-4842-2044-3_9


CHAPTER 10 ■ PLATFORM DEPLOYMENT

262

         ], 
         cb 
     ); 
 }); 

   gulp.task('watch', ['jshint'], function() { 
     gulp.watch(['app/*.js', 'app/*/*.js'],[ 
         'jshint', 
         'browserify' 
     ]); 
 }); 

   gulp.task('server_upload', shell.task([ 
      "ssh -i key.pem ec2-user@[ip] 'sudo rm -rf /var/www/html; sudo mkdir /var/www/html; sudo 

chown ec2-user /var/www/html'", 
      'scp -r -i key.pem [project location]/angular/app/* ec2-user@[IP]:/var/www/html/' 
 ])); 

   gulp.task('default', ['jshint', 'browserify', 'compress']); 
 gulp.task('deploy', ['browserify', 'compress', 'server_upload']); 

    'jshint' will report and lint  suggestions   in our code to ensure that it's written according to our specs. 
"Browserify" will browse through our entry.js file, which we will create. In our entry.js file, we want to 
reference the AngularJS files we will be using, and then Browserify will take over and extract any scripts 
needed. 

 Create the following file ("app/entry.js") and reference all of the AngularJS files: 

    'use strict'; 

   var angular = require('./bower_components/angular/angular.js'); 
 require('./bower_components/angular-route/angular-route.js'); 
 require('./view1/view1.js'); 
 require('./view2/view2.js'); 
 require('./components/version/interpolate-filter.js'); 
 require('./components/version/version-directive.js'); 
 require('./components/version/version.js'); 
 require('./app.js'); 

    The “compress” task will uglify our files to reduce our file size and remove any extra code. We can utilize 
Gulp with the default task: 

   $ gulp 

   Gulp builds our bundle file. Remember to  update   the "index.html" file and comment out all references 
to the AngularJS JavaScript, since Browserify will bundle all of them for us. We only need: " <script 
src="bundle.js"></script>" (see below). 

      <!-- <script src="app.js"></script> 
   <script src="view1/view1.js"></script> 
   <script src="view2/view2.js"></script> 
   <script src="components/version/version.js"></script> 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

263

   <script src="components/version/version-directive.js"></script> 
   <script src="components/version/interpolate-filter.js"></script> --> 

     <script src="bundle.js"></script> 

    We can also use the “watch” task to have jshint watch for any changes and build our bundle file: 

   $ gulp watch 

   Lastly, we can deploy the code to our Linux server: 

   $ gulp deploy 

   Confirm that the code is present by refreshing the browser and checking that the bundle file is in fact 
still there (see Figure  10-7 ).  

 We have deployed “bundle.js” to the app  folder  , but when things start to get complex, it's wise to deploy 
it to a distribution folder so we can know what's on the server and what is local. 

 ■   Note    You can create your own directory structure or deploy anywhere you want final files, but many times 
you will see the final build in a folder called: "dist." This is considered best practice by many developers.   

     Web Deployment with  Webpack   
 As you recall, in Chapter   9    , we covered Webpack and installed Webpack globally via npm: 

   $ sudo npm install webpack -g 

  Figure 10-7.    bundle.js file deployed on Linux server       

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_9


CHAPTER 10 ■ PLATFORM DEPLOYMENT

264

   We used Webpack to watch for changes and transpile ES6 Code, and we used the Webpack CSS Loader, 
all without using Grunt or Gulp. 

 To bundle using Webpack, we will install two plugins: "webpack" to get out-of-the-box functionality 
such as optimization and "webpack-shell-plugin" to allow us to upload files to the server. 

   $ npm install --save-dev webpack webpack-shell-plugin 

   Now that we have our plugins installed, we must create a "webpack.config.js" file and write the code 
below—see Listing  10-6 . 

     Listing 10-6.    webpack.config.js to bundle and optimize AngularJS code   

  var WebpackShellPlugin = require('webpack-shell-plugin'), 
     webpack = require('webpack'); 

   module.exports = { 
     entry: './app/entry.js', 
     output: { 
         filename: './app/bundle.js' 
     }, 
     plugins: [ 
         new WebpackShellPlugin({ 
             onBuildStart:[ 
                  "ssh -i /[PATH TO key.pem] ec2-user@[IP ADDRESS] 'sudo rm -rf /var/www/html; 

sudo mkdir /var/www/html; sudo chown ec2-user /var/www/html'" 
             ], 
             onBuildEnd:[ 
                  'scp -r -i /[PATH TO key.pem] /[LOCATION OF APP]/app/* ec2-user@[IP ADDRESS 

OR PUBLIC DNS]:/var/www/html/', 
                 'open localhost:8000', 
                 'open http://[IP OR PUBLIC DNS]' 
             ]}), 
         new webpack.optimize.UglifyJsPlugin({ 
             compress: { 
                 warnings: false 
             }, 
             include: /\.min\.js$/, 
             minimize: true 
         }) 
     ] 
 }; 

    We set the entry file “app/entry.js,”  which   is the same file as before. It includes all of the required 
libraries for the AngularJS project. We also set the output folder; in our test application, it will be "app/
bundle.js." WebpackShellPlugin is set to run SSH script "onBuildStart," which we are cleaning and removing 
from the HTML folder on the server and "onBuildStart", which we will be using with "scp" to SSH copy our 
files to the server, just as we've done in Gulp: 

   scp -r -i /[PATH TO key.pem] /[LOCATION OF APP]/app/* ec2-user@[IP ADDRESS OR PUBLIC DNS]:/
var/www/html/' 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

265

   Lastly, we're utilizing the UglifyJsPlugin built-in plugin to optimize the bode. What’s neat about 
Webpack implementation is that, as you may recall, we needed six plugins in Gulp to get the job done, and in 
Webpack we only need to use a single shell plugin; you can see the appeal.   

     AngularJS App Deployment 
 We installed XCode in Chapter   1     from here:    https://developer.apple.com/xcode/download/      

 Additionally, in Chapter   4    , we covered iOS deployment on a browser and an emulator to simulate usage 
on an actual device. In this section, we will provide you with the necessary tools to submit your application 
to the iOS store. 

 Note that, to deploy your application on iOS, you will need to purchase a Development Certificate from 
Apple through their Apple Developer Program:    https://developer.apple.com/account     . 

 In Chapter   4    , we covered Cordova, PhoneGap, and Ionic Cordova distributions. Go ahead and 
download the Android SDK if you have not done so already:    https://developer.android.com/studio/
index.html     . 

 The Android SDK is a JetBrain custom installation of IntelliJ (same as WebStorm) that gives Android 
developers an IDE. We won’t need to use this, since we won’t be building our app natively. 

 Be sure to export the path of the SDK folder: 

   $ export ANDROID_HOME="[PATH TO ANDROID SDK]/sdk/" 

   Ours looks like this: 

   $ export ANDROID_HOME=/Users/Eli/Library/Android/sdk 

   You will also need to have Java SDK installed. To make sure it's installed, type: 

   $ java -version 

   If you don't have Java SDK installed, you can download it from here:    http://www.oracle.com/
technetwork/java/javase/downloads/index.html      

 Cordova Distribution makes it extremely easy to deploy your app onto different devices. In the following 
section, we will deploy our app to iOS, Android, and Windows mobile. 

      PhoneGap Deployment   
 PhoneGap is a popular Cordova Distribution that allows deployment of our JavaScript code without 
installing native code or actually opening our application in any third-party environment, as opposed to 
Cordova or Ionic, where we would need XCode and Android SDK. We covered this information in Chapter   4    . 

 As you may also recall from Chapter   4    , we installed the PhoneGap desktop app from:    https://github.
com/PhoneGap/PhoneGap-app-desktop/releases      

 As well as the CLI via npm: "sudo npm install -g PhoneGap@latest". Additionally, in Chapter   4    , we 
installed the PhoneGap mobile app, available for each device. We want to take the app we’ve created for 
development and actually be able to submit the file to application stores. 

 We will be creating a seed project to work with. In WebStorm, create a new project by going to “File” ➤ 
“New” ➤ “Project…” and selecting "PhoneGap/Cordova app." Name your app "myapp" and hit "create."  

http://dx.doi.org/10.1007/978-1-4842-2044-3_1
https://developer.apple.com/xcode/download/
http://dx.doi.org/10.1007/978-1-4842-2044-3_4
https://developer.apple.com/account
http://dx.doi.org/10.1007/978-1-4842-2044-3_4
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://dx.doi.org/10.1007/978-1-4842-2044-3_4
http://dx.doi.org/10.1007/978-1-4842-2044-3_4
https://github.com/PhoneGap/PhoneGap-app-desktop/releases
https://github.com/PhoneGap/PhoneGap-app-desktop/releases
http://dx.doi.org/10.1007/978-1-4842-2044-3_4


CHAPTER 10 ■ PLATFORM DEPLOYMENT

266

     Deployment with PhoneGap 
 To view the developer’s  build   in a browser, type in the WebStorm Terminal: 

   $ PhoneGap serve 

   You should receive the following message from the Terminal output: 

   Phone gap sets a server and reply with the ip address and port number such as: 
 [PhoneGap] listening on 192.168.1.65:3000 

   The PhoneGap seed project comes with an out-of-the-box browser platform deployment. You can see a 
browser folder under Platforms ➤ "myapp/platforms/browser." To see the app deployed, open your browser 
in the IP address and port provided to you in the Terminal output—see Figure  10-8 .  

 To shut down the server, hit "control + c" in the WebStorm Terminal. 
 To view the developer built on your device, such as Android, iOS, or Blackberry, you will need to have 

the "PhoneGap developer" app. As you may recall from Chapter   4    , you can download the app directly onto 
your devices from your device's app store. You can find the app under the keywords “PhoneGap Developer.” 
The app will use socket connection on your network to download the files and deploy them.   

     Build Your App on Different Platforms 
 To install our app on other platforms, rather than the browser, all we have to do is add a platform and 
Cordova will compile the code through Cordova. Then, we can deploy the code on our devices. Here is a 
handy command to use to find out what platforms are supported by PhoneGap: 

   $ PhoneGap platform list 

  Figure 10-8.    PhoneGap deployed on a web browser.       

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_4


CHAPTER 10 ■ PLATFORM DEPLOYMENT

267

   This command will output the installed and available platforms in the Terminal. See what we are 
receiving at the time of writing: 

   Installed platforms: 
   browser 4.1.0 
 Available platforms: 
   amazon-fireos ~3.6.3 (deprecated) 
   android ~5.1.1 
   blackberry10 ~3.8.0 
   firefoxos ~3.6.3 
   ios ~4.1.0 
   osx ~4.0.1 
   webos ~3.7.0 

   To install iOS or any other platform, all we have to do is add the platform we want. For example, we will 
add iOS and Android: 

   $ PhoneGap platform add ios 
 $ PhoneGap platform add android 

   We can confirm that the platforms were added by checking to see if they were added to the platform 
folder: "myapp/platforms/ ." See Figure  10-9 .  

 To serve the app again on different platforms, just type again: 

   $ PhoneGap serve 

   Open up the "PhoneGap Developer" app on your device to view the app. You will have an option to 
connect to the application via socket and view the app on your device. See Figure  10-10 .  

  Figure 10-9.     iOS and Android platforms   added in PhoneGap       

 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

268

 You can also use the PhoneGap desktop app we installed in Chapter   4    , downloaded from here:    http://
docs.phonegap.com/getting-started/1-install-phonegap/desktop/      

 To start and stop the server anytime you want, instead of using the command line, all you have to do is 
drop your PhoneGap folder into the PhoneGap desktop application—see Figure  10-11 .  

  Figure 10-10.    Connect to PhoneGap deployed application on device          

  Figure 10-11.    Starting PhoneGap server through  PhoneGap desktop app         

 

 

http://dx.doi.org/10.1007/978-1-4842-2044-3_4
http://docs.phonegap.com/getting-started/1-install-phonegap/desktop/
http://docs.phonegap.com/getting-started/1-install-phonegap/desktop/


CHAPTER 10 ■ PLATFORM DEPLOYMENT

269

 So far, we have deployed our app to our devices as testing/developer built. When you are ready to 
deploy your app to any of the PhoneGap available device stores, PhoneGap offers free deployment for up 
to one app on a private repo, or unlimited deployment for open source apps. Visit Adobe's page to find out 
more about their pricing policy: 

    https://build.PhoneGap.com/plans/free-adobeid      

 The deployment process is where PhoneGap really shines, since it allows production deployment 
without the hassle of actually dealing with native code, installing SDKs, or maintaining compatibility. Create 
a profile to take a look: 

   https://build.PhoneGap.com/      

 Once you create an account and log in, you can upload your PhoneGap project and generate IPA (iOS), 
APK (Android) or an XAP (Windows Mobile) files, which can be deployed to device stores. See Figure  10-12 .     

 You will need to create a key and have certification on devices, but once you create a key, you will be 
able to easily build and download files that you can submit to be deployed on multiple platforms. This 
process is easy and will make the deployment process painless.  

     Ionic Deployment 
 Similar to PhoneGap, Ionic provides tools to build and deploy your application, which is easier than using 
the out-of-the-box Cordova platform. Close the PhoneGap project we’ve created ("myapp" project), since we 
will now be creating an Ionic project. 

  Figure 10-12.    Building application on multiple  devices   using PhoneGap       

 

https://build.phonegap.com/plans/free-adobeid
https://build.phonegap.com/


CHAPTER 10 ■ PLATFORM DEPLOYMENT

270

     Creating an Ionic  Project   
 Keep in mind that you will need to have Ionic and Cordova installed. If you haven't done so already, install 
these tools globally via npm: 

   $ sudo npm install -g cordova ionic 
 $ npm install -g cordova 

   Next, navigate to the location of your WebStorm projects: 

   $ cd /[LOCATION OF WEBSTORM PROJECTS] 

   Ionic provides three types of seed projects: "blank," "tabs," or "sidemenu. For our example, we'll pick the 
sidemenu seed and, as the name suggests, the app will have sidemenu built in. 

   $ ionic start myIonicApp sidemenu 

   During the command line installation, you will be asked if you want to "Create an Ionic Platform 
account to add features like User Authentication, Push Notifications, Live Updating, iOS builds, and more?"    

 Select "Y" if you don't already have an account and want to create one. This will redirect you to the Ionic 
signup page: 

   https://apps.ionic.io/signup       

     Set Up Ionic Project in  WebStorm   
 To import the project we’ve created, in WebStorm, select "Open" and navigate to the location of 
"myIonicApp" and select "open."  

     Add Platforms 
 Just as with PhoneGap, you can see the list of supported platforms and install platforms for iOS, Android, 
and browser: 

   $ ionic platform list 
 $ ionic platform add browser 
 $ ionic platform add ios 
 $ ionic platform add android 

   Just as with PhoneGap, you can confirm that these platforms were added by checking the "myIonicApp/
platforms/" folder.  

https://apps.ionic.io/signup


CHAPTER 10 ■ PLATFORM DEPLOYMENT

271

     Deploy Development Build 
 Also, as with  PhoneGap deployment  , we simply need to type the serve command: 

   $ ionic serve 

   This creates a server and will deploy our app. The browser opens up automatically for us with our app 
(see Figure  10-13 ).   

     Build and Emulate on  iOS   
 As we’ve mentioned, you will need to have Xcode installed for the build and emulators to work. To build for 
iOS, run the following commands in the Terminal: 

   $ ionic build ios 
 $ ionic emulate ios 

   Or simply type: 

   $ ionic run ios 

   Note that the first time you run this command, it may take a few minutes, but eventually the Xcode 
emulator will open up with our app. See Figure  10-14 .  

  Figure 10-13.    Ionic deployed on a browser       

 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

272

 You need to install additional tools to generate a build and target the SDK you have installed. To find out 
what's installed on your box, open the Android SDK Manager. This depends on your installation, the default 
settings should install the Android SDK Manager here(see Figure  10-15 ):  

   $/Users/[USER]/Library/Android/sdk/tools/android 

   Make sure that you have the latest "Android SDK Platform-tools" and "Android SDK Build-tools." Also, 
you should check out which SDK platforms are already installed (see Figure  10-15 ). 

 These two files need to point to a target you have installed: 

   platforms/Android/CordovaLib/project.properties 
 platforms/Android/project.properties 

  Figure 10-14.    Ionic app running on iOS 10.0  emulator         

  Figure 10-15.     Android SDK Manager            

 

 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

273

   On our machine, the Android SDK was set to 23, but we did not have SDK 23 installed (only 24), so we 
changed the files to the following: 

   target=android-24 

   Failure to have the latest SDKs build tools and SDK platform and tools will output the following error 
code in the Terminal: 

   Hint: Open the SDK manager by running: /Users/[USER]/Library/Android/sdk/tools/android 

   You will require: 

   1. "SDK Platform" for android-23 
 2. "Android SDK Platform-tools (latest) 
 3. "Android SDK Build-tools" (latest) 

   Now you can run the following command: 

   $ ionic build android 

   You can connect an Android  device   and deploy your app directly onto the device. Additionally, to 
emulate Android, you need to install an emulator on your computer. Otherwise, you will receive the 
following error message in the Terminal: 

   Error: No emulator images (avds) found. 

   To open the Android virtual device emulator menu, type in the command line: 

   $ /Users/[USER]/Library/Android/sdk/tools/android avd 

   At the  Android Virtual Device (AVD)   menu, you can select an emulator to run your application on. See 
Figure  10-16 .  

  Figure 10-16.    Android Virtual Device (AVD       

 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

274

 Once the emulator is installed and running correctly, you can run the application on the emulator: 

   $ ionic run android 

   From here, you can now easily deploy on Android and iOS. 
 Use the release commands to create APK and IPA files: 

   $ ionic build --release android 
 $ ionic build ios --release 

   You will need to have certificates for both the Apple App Store and Google Play; visit the Ionic 
publishing page for instructions: 

    http://ionicframework.com/docs/guide/publishing.html      

 As you can see, deploying and publishing an app is similar in PhoneGap and Ionic, since they are both 
based on Cordova. Both will provide out-of-the-box deployment tools, so you won’t need to create your own.   

     Continuous Integration with Travis CI 
 If you have ever dealt with Continuous Integration (CI), you know that it can be very time consuming and 
frustrating at times. It's an essential part of the deployment process to be able to recognize if the changes 
committed broke the build. 

 An easy way to test and deploy open source code is by using Travis CI. Travis offers free continuous 
integration for open source projects as well as inexpensive paid options for private repositories. 

      Authenticate   Travis CI 
 To utilized Travis CI, you need to have an account with GitHub, and the account must authorize Travis. 
To do so, visit Travis’ authorization page: 

    https://travis-ci.com/auth      

 Once you have logged into your GitHub account, you will be given an option to authorize 
(see Figure  10-17 ).   

http://ionicframework.com/docs/guide/publishing.html
https://travis-ci.com/auth


CHAPTER 10 ■ PLATFORM DEPLOYMENT

275

     Integration of Travis CI  and GitHub Projects   
 Next, you want to install an integration between Travis and the GitHub repo. This can be done by navigating 
to the settings page on GitHub: 

    https://github.com/[USER]/[REPO NAME]/settings/installations      

 If you don't have a repo, you can just create a new repo on GitHub to experiment. Log in to GitHub, and 
under the GitHub home page, you will see a link called "new repository." 

 Once you are on the settings page, select "Integrations & services" and add "Travis CI" as a service. See 
Figure  10-18 :  

  Figure 10-17.    Travis CI GitHub  authorization         

 

https://github.com/[USER]/[REPO NAME]/settings/installations


CHAPTER 10 ■ PLATFORM DEPLOYMENT

276

 Next, you will be redirected on GitHub to set the "Automatic configuration from Travis CI" in "Services" 
➤ "Add Travis CI" page or redirect to your profile page on Travis:    https://travis-ci.org/profile/[USER     ] 

 The Travis profile page will allow you to activate repos—see Figure  10-19 .   

  Figure 10-18.    Service integration of Travis and GitHub  repo         

  Figure 10-19.    Activate repos on Travis profile page       

 

 

https://travis-ci.org/profile/[USER


CHAPTER 10 ■ PLATFORM DEPLOYMENT

277

     Customize and Configure  Travis CI    
 You can create a ".travis.yml" file where you can configure and customize the build. For instance, you can set 
the language of your repo so that Travis will know what to expect: 

   language: node_js 
 node_js: 
   - 4.4.7 

   More options regarding customizing your build can be found on Travis’ website:    https://docs.
travis-ci.com/user/customizing-the-build     . 

 We can now watch the build and ensure that it passes on Travis:    https://travis-ci.org/[USER]/
[REPO]/settings      

 See Figure  10-20 .   

  Figure 10-20.    Travis CI repo status page       

     Generating a Status Badge on  Travis CI   
 On the Travis page, you can find a status badge image, which you can use to display the status of your repo. 
Just click the "build" badge and you will receive an option to get a status image URL. See Figure  10-21 .  

 

https://docs.travis-ci.com/user/customizing-the-build
https://docs.travis-ci.com/user/customizing-the-build
https://travis-ci.org/[USER]/[REPO]/settings
https://travis-ci.org/[USER]/[REPO]/settings


CHAPTER 10 ■ PLATFORM DEPLOYMENT

278

 This badge can be added to your "README.md" page on your GitHub repo. Use the Markdown 
language to create an image tag: 

   [![Build Status](https://travis-ci.org/eladelrom/woodenlog.svg?branch=master)](https://
travis-ci.org/eladelrom/woodenlog.svg?branch=master) 

   See Figure  10-22 .  

  Figure 10-21.    Build status badge image on  Travis CI         

  Figure 10-22.    Displaying Travis CI build status image on GitHub repo       

 

 



CHAPTER 10 ■ PLATFORM DEPLOYMENT

279

 As you can see, we have set a continuous integration to test our code automatically upon change to 
ensure that it's still working as expected.   

     Summary 
 In this chapter, we covered platform deployment and extended our knowledge of working with previously 
used tools. We created and deployed a Node.js app on the Ubuntu server with Grunt and Gulp, and we 
learned how to restart the app with Forever and automate the process. Additionally, we created an AngularJS 
project and deployed the project to the Web using Grunt and Gulp on a Linux server. We learned more about 
the different deployment techniques used to streamline the process and create one bundle file. We also 
deployed using Webpack, eliminating the Grunt and Gulp plugins, for easy bundling and deployment of our 
AngularJS app. 

 We then moved to mobile deployment. We set up a PhoneGap mobile app in WebStorm and took a look 
at PhoneGap and the process of deploying our app to iOS, Android, and Windows Mobile, without the need 
for native SDKs installed on our box. 

 We created an Ionic seed project and looked into the Ionic deployment of the mobile app process. 
Lastly, we covered Continuous Integration with Travis CI and were able to test our app and create a status 
badge on GitHub. 

 “Congratulations!! You have completed the entire book and should be proud of yourself, because you 
have acquired much knowledge and improved yourself. I would love to hear your feedback about your 
experience and any projects you may be working on. You can reach out to me at    http://www.linkedin.com/
in/eladelrom      or    http://twitter.com/EliScripts     , looking forward hearing from you!”     

http://www.linkedin.com/in/eladelrom
http://www.linkedin.com/in/eladelrom
http://twitter.com/EliScripts


281© Elad Elrom 2016 
E. Elrom, Pro MEAN Stack Development, DOI 10.1007/978-1-4842-2044-3

          A 
  Accessible Rich Internet Applications (ARIA) , 101   
  Amazon AWS , 44   
  Amazon EC2 , 28   
  Amazon’s Relational Database Service (RDS) , 28   
  Amazon Web Services (AWS) cloud , 28   
  Android SDK Manager , 272   
  Android Virtual Device (AVD) , 273   
  AngularJS , 221  

 angular-seed project , 197–198  
 description , 197  
 HTML mode and Hashbang , 198  

 address bar , 200  
 “app/app.js” location confi guration tag , 199  
 Engine Optimization Starter , 199  
 Google search engine , 199  
 index page , 200  
 $location service , 199  
 params passed to view , 202  
 “SEOTester/app/index.html” fi le , 199–200  
 view1/view1.js , 201–202  

 Twitter , 197   
  AngularJS deployment 

 Grunt , 259  
 Gulp , 260–263  
 Linux , 257–258  
 PhoneGap  , 265–266  
 project creation , 256  
 Webpack , 263–264   

  AngularJS framework   . See also  Bootstrap; Directives 
 AKA AngularJS1, version 1 , 101  
 “Angular Seed” , 101  
 app layout fi le , 105–108  
 ARIA , 101  
 components , 118  
 create new project , 132  
 form not validated , 137  
 form validation style , 136  
 interpolate-fi lter.js content , 117  
 methods , 131  
 MVC style architecture , 101  

 “ng-binding” style , 134  
 ng-scope , 132–134  
 validate form style , 136   

  AngularJS metadata tags 
 description , 210  
 ngMeta , 213–215  
 service module , 211–213   

  Angular-responsive library , 162–164   
  Angular Seed project 

 boilerplate skeleton code , 102  
 bower component , 104–105  
 description , 101  
 Google Chrome browser , 104  
 Project Directory window , 102  
 WebStorm , 102–103   

  “app.css” stylesheet , 108   
  App layout fi le 

 HTML loading , 106  
 “index-async.html , 106–107  
 index.html , 105–106  
 manual initialization, AngularJS , 107   

  ARIA   . See  Accessible Rich Internet 
Applications (ARIA)   

          B 
  Babel , 226  

 ES6 code , 228–229  
 installation , 227  
 WebStorm , 227–228   

  Bash profi le fi les , 5, 6, 32, 35, 37   
  Behavior Driven Development (BDD) , 64, 65   
  Bootstrap 

 adding, closing and showing 
alert messages , 142  

 alert components , 142–143  
 “angular-seed” project , 138  
 button group implementation , 140  
 buttons utilization , 139  
 components , 139  
 custom UI Bootstrap build , 144  

            Index 



■ INDEX

282

 “<!DOCTYPE>” , 137  
 elements , 160  
 events and injecting elements , 139  
 group button , 140  
 HTML5 , 137  
 JavaScript and CSS , 137  
 “jQuery lite” library , 139  
 open source front-end responsive 

framework , 137  
 responsive images , 161–162  
 view1.html group button view , 141–142  
 view1.js group button logic , 140–141   

  Bower component , 14  
 angular , 105  
 angular-loader , 105  
 angular-mocks , 105  
 angular-route , 105  
 folder , 104  
 html5-boilerplate , 105  
 “README.md” fi le , 105   

  Bower package manager , 14   
  Browserify 

 AngularJS project 
 bundle.js , 225  
 Node.js module , 224–226  
 WebStorm , 224  

 compile , 223–224  
 installation , 223  
 node.js module creation , 221, 223    

          C 
  Cascading style sheets (CSS)   . 

See also  AngularJS framework 
 container-fl uid utilization , 146  
 containers and media queries , 144  
 grid options , 144–145  
 media queries    (see  Media queries )  
 view1.html container fl uid grid , 146   

  CLI   . See  Command line interface (CLI)  
  Coding convention , 117   
  Command line interface (CLI) , 76   
  Controllers 

 Bash command line , 111  
 implementation , 110  
 JavaScript constructor function , 109  
 $scope , 109  
 view1.html , 112  
 view.js content , 110  
 view1.js controller , 113  
 view2.js content , 110   

  Cordova 
 advantages , 75  
 Apache License, Version 2.0 , 75  

 architecture , 79  
 CLI , 76  
 confi g.xml , 78  
 deployed browser , 78  
 distribution solutions , 86  
 hooks , 79  
 open-source mobile development 

framework , 75  
 platform , 75, 79  
 platform deployment , 79–82  
 platforms and stores , 75  
 plugins , 78, 82–84  
 Plugman , 85–86  
 run browser , 77  
 “sudo” in order , 76  
 terminal output installation , 76–77  
 within wrappers , 75  
 www , 78    

          D, E 
  Dependencies installation , 63   
  Dependency injection (DI) , 96   
  DevDependencies , 57   
  DI   . See  Dependency injection (DI)  
  Directives 

 description , 114  
 DOM element , 114  
 “interpolate-fi lter” , 114  
 object-oriented languages , 114  
 template expanding , 115–117  
 “version” , 114  
 version-directive code , 115    

          F 
  Feature branch workfl ow , 10   
  First-directive_test.js test fi le , 124   
  Form validation style , 136    

          G 
  Git 

 bash_profi le, confi guration , 5–6  
 customization and confi guration , 3–4  
 “gitexcludes” fi le , 4  
 Gitfl ow , 10  
 GitHub , 11  
 “Hello World” , 7–8  
 install Homebrew , 1–2  
 libraries download , 7  
 repo branch , 4–5  
 repository creation, BitBucket , 8–9  
 showdown , 8  
 terminal search, Spotlight , 2   

Bootstrap (cont.)



■ INDEX

283

  Gitfl ow , 10   
  GitHub , 11, 71   
  Grunt , 13  

 Babel task , 229  
 browserify and babelify task , 231–233  
 execution , 230  
 Grunt Watch , 233  
 installation , 230   

  Gulp , 14  
 execution , 236  
  vs.  Grunt , 234  
 installation , 234  
 plugins installation , 236  
 task creation , 235    

          H 
  Homebrew , 1–2    

          I, J 
  IDE   . See  Integrated development environment (IDE)  
  Integrated development environment (IDE) , 89  

 free open source , 22, 24  
 installing Xcode , 24  
 “MEAN” stack development , 15  
 WebStorm 

 AngularJS hello world app , 19  
 angular seed app , 20  
 index.html browser icons , 20  
 initial confi guration window , 16  
 license activation window , 15  
 node.js express app, creating , 21  
 node.js workspace , 22  
 welcome window , 17–18   

  Ionic deployment 
 iOS , 271  

 Android SDK Manager , 272  
 AVD , 273  
 emulator , 272  

 PhoneGap deployment , 271  
 project creation , 270  
 WebStorm set up , 270   

  Ionic distribution 
 AngularJS framework , 93  
 CLI , 94  
 Crosswalk Project , 99  
 “helloionic” project output , 94  
 iOS simulator , 99  
 iPhone 6 , 99  
 with lab fl ag , 98  
 plugins , 96  
 pre-made UI components , 96  
 resources , 100  
 “serve” command , 96  

 structures and templates , 95  
 WebStorm confi guarion , 95   

  iOS simulator , 80, 84, 91, 99–100    

          K 
  Karma testing , 118–124    

          L 
  Linux, Apache, MySQL, 

and PHP (“LAMP”) software , 38   
  Linux Bash fi le , 38   
  Linux server 

 Amazon Machine Image (AMI) , 36  
 IPs creation and associate servers , 37  
 Linux security group confi guration , 36  
 setting up Bash profi le fi le , 37  
 update software 

 install LAMP , 39  
 set up FTP , 38–39    

          M 
  Markdown Home Page File creation 

 format code , 68  
 plugin, WebStorm , 70  
 README.md fi le , 68–69  
 README.md formatted , 69   

  Media queries 
 background color , 147  
 desktop-sized screens , 149  
 @media style for screens , 148  
 pre-defi ned settings , 147  
 tasks , 147   

  Mobile browser emulator , 150   
  Model View Controller (MVC) style architecture , 101   
  MongoDB 

 API , 178  
 app.js , 178  
 database integration , 177–178  
 download , 174–175  
 mongod , 174  
 Mongodump , 174  
 Mongofi les , 174  
 Mongoimport , 174  
 Mongorestore , 174  
 mongos , 174  
 start , 176  
 users.js , 179–180   

  MongoDB database 
 Hello World , 41–42  
 list fi le creation , 40–41  
 NoSQL databases , 40  
 Ubuntu server connection , 40   



■ INDEX

284

  MVC   . See  Model View Controller (MVC) 
style architecture  

  MySQL database 
 database and table, creation , 47–50  
 database engine selection, Amazon AWS , 42  
 “Hello World” database , 44–45  
 instance specifi cation window options , 43  
 set database purpose, Amazon AWS , 43  
 setting MySQL security group , 45  
 user name and password setttings , 44  
 Workbench tool , 46–47    

          N, O 
  Naming convention , 66, 117   
  “ng-dirty” style , 134–135   
  “ng-invalid” style , 134–135   
  “ng-pristine” style , 134–135   
  ng-scope 

 angular-seed app , 132–134  
 CSS style , 133  
 custom style design , 133  
 data binding , 133–134   

  ng style defi nitions , 135   
  Node-email-templates library , 194–196   
  Node.js 

 Hello World example , 12  
 installation , 11  
 Mac installer , 11   

  Node.js deployment 
 Grunt , 251–253  
 Gulp , 254–256  
 project creation , 249, 250  
 Ubuntu server connection , 250   

  Node.js Express App 
 description , 165  
 express generator tool , 168  
 "Hello World" , 167–168  
 installation , 165–166   

  Node.js modules, installation 
 caret version option , 57  
 dependencies and devDependencies , 57  
 GitHub open source project , 54  
 latest version option , 57  
 moment library command line output 

and project window , 55  
 npm install moment , 54  
 package JSON fi le, creation , 55–56  
 specifi c version option , 58  
 terminal window, WebStorm , 54  
 tester project, WebStorm , 53  
 tilde version option , 57  
 WebStorm IDE , 53   

  Node.js package manager , 12   
  Node modules 

 creation 
 add new confi gration, WebStorm , 62  
 edit confi gurations menu item, 

WebStorm , 61  
 GitHub project repository , 59  
 module code , 60–61  
 module project , 59  
 run/debug confi guration settings , 62  
 woodenlog app , 63  

 ignore fi les , 64  
 install save fl ag , 58  
 Node.js    (see  Node.js modules, installation )  
 npm node packages , 51–52  
 package.json fi le confi guration , 66  
 publish module, GitHub , 71–72  
 test folder structure, WebStorm , 65  
 test stubs creation , 64–66   

  NoSQLs , 40, 42   
  npm node packages , 51–52    

          P, Q 
  Package.json fi le confi guration , 66–67   
  Partial views 

 DOM manipulation/event handling , 108  
 templates , 108   

  PhoneGap 
 building application , 269  
 connecting to device , 268  
 Developer app preview , 89  
 “Hello PhoneGap” , 92, 93  
 IDE , 89  
 index.js content , 92  
 installation , 86, 87  
 iOS and Android platforms , 267  
 project root selection , 91  
 server and moving fi les , 88  
 start coding , 87  
 WebStorm Welcome window , 90   

  Plugin Development Guide , 82   
  Portrait and landscape orientation 

 custom style settings , 149  
 mobile browsers , 149–150   

  Protractor 
 confi guration fi les , 125  
 DalekJS/PhantomJS browsers , 124  
 defi ned , 124  
 protractor.conf.js confi g fi le , 125  
 visibility projects , 125  
 WebDriverJS , 125   

  Publish module to GitHub , 71–72   
  Pugjs 

 app.js, view folder , 169–170  
 description , 168  
 hello.pug , 169  



■ INDEX

285

 index.pug , 168–169  
 MongoDB    (see  MongoDB )  
 POST service layer , 172–174  
 routing, service layer , 170–172  
 template documents , 169–170    

          R 
  Responsive design   . See also  Responsive tables 

 adding breakpoints , 151  
 breakpointsstyle adjust , 152  
 desktop view , 153, 156–157  
 “main.css” , 154  
 mobile view , 154   

  Responsive tables 
 “main.css” style, hidden columns , 158–160  
 table-bordered , 158  
 table-condensed , 158  
 table-striped , 158  
 “view1.html” , 157–158   

  Robots instructions 
 exclusion protocol , 216  
 meta tags , 216  
 sitemap , 216–217  
 social media meta tags , 217   

  rooms.js 
 add new confi guration, run/debug wizard , 184  
 Angular app , 193  
 connect front-end application, service , 189–193  
 description , 182  
 edit confi gurations, WebStorm , 183  
 high-level architecture , 183  
 install Bower , 183  
 JavaScript fi le , 184  
 MongoDB GUI client , 188–189  
 MongoDB service , 186–188  
 “rooms/app.js” fi le , 185  
 static service , 185–186   

  $route service 
 app.js with fi rst directive , 128  
 deep-linking URLs , 128  
 routeProvider home page , 129    

          S 
  Save fl ag installation , 58   
  Scenarios.js fi le , 126–128   
  Search Engine Optimization (SEO) , 129   
  SEO   . See  Search Engine Optimization (SEO)  
  Snapshots 

 angular-SEO script , 204–205  

 deployment script , 205–209  
 paid services , 203  
 PhantomJS , 203–204  
 search engines , 203  
 set .htaccess redirect , 210  
 update .htaccess , 209   

  Socket.IO 
 add to app , 180–181  
 “index.jade” , 182  
 install , 180  
 test , 182  
 update users service , 181   

  SSH connection 
 bash profi le shortcuts , 32  
 confi g fi le , 31  
 server via command line , 32    

          T 
  Test driven development (TDD) , 64   
  Tilde version option , 57   
  Travis CI 

 authorization , 274–275  
 customize and confi gure , 277  
 and GitHub projects , 275–276  
 status badge generation , 277–278    

          U 
  Ubuntu server 

 Amazon EC2 , 28–29  
 Amazon AWS, confi guration , 30  
 install and update software 

 create, web folder , 35  
 Git installation , 34  
 Node.js installation , 34  
 npm package manager , 34  

 MEAN stack-type applications , 27  
 Node.js application , 27  
 RDS , 28  
 Ubuntu Server 14.04 LTS , 29   

  Unifi ed modeling language (UML) , 44    

          V 
  Vagrant VM 

 HTTP sharing , 243–245  
 installation , 241–242  
 networking access , 242–243  
 provision AngularJS Projects , 246  
 SSH access , 245    



■ INDEX

286

          W 
  Webmasters , 217–219   
  Webpack 

 Confi g fi le creation , 237  
 CSS loader , 239–240  
 ES6 code , 238–239  
 installation , 236–237  
 watcher , 237   

  WebStorm Run Terminal results , 73   

  Woodenlog API , 72   
  Woodenlog error message, WebStorm , 63   
  Woodenlog module, mocha , 65–66   
  Workbench MySQL connection , 46    

          X, Y, Z 
  Xcode , 1, 24–25, 80, 81, 86, 89, 99, 265, 271   
  XMLHttpRequest (XHR) services , 129          


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Code Dependencies
	Git Version Control
	Customize Git
	Git Customization and Configuration
	Adding gitexcludes
	Adding the Repo Branch
	Configurate bash_profile

	Download Git Libraries
	Git “Hello World”
	Gitflow
	Gitflow on GitHub


	Node.js
	npm
	Grunt
	Gulp
	Bower
	Integrated Development Environment
	Installing a Free Open Source IDE
	Installing Xcode

	Summary

	Chapter 2: Rollout Servers
	Ubuntu Server
	SSH Connection and Upgrade Servers
	Install and Update Software
	Installing Git
	Installing Node.js
	Installing npm
	Creating Our Web Folder

	Linux Server
	Start a Linux server
	Create IPs and Associate Servers
	Set Bash Profile
	Update Software
	Set Up FTP
	Install LAMP


	MongoDB Database
	Connect to Ubuntu Server
	Install and Configure MongoDB Database
	Create a List File for MongoDB

	MongoDB Hello World

	MySQL Database
	Connect to Database and Dump MySQL Database
	MySQL Workbench tool
	Create Your First Database and Table

	Summary

	Chapter 3: Node Modules
	npm Node Packages
	Install Node.js Modules
	Caret Version Option
	Tilde Version Option
	Latest Version Option
	Specific Version Option

	Install Save Flag
	Global Installation
	Create Your Own First Node Modules
	Create a GitHub Project Repository
	Create a Module Project
	Write Your Module Code
	Run Your Module Code

	Install Dependencies
	Ignore Files
	Create Test Stubs
	Configure Package.json File
	Run Test Stubs Using npm

	Create Markdown Home Page File
	Markdown Plugin in WebStorm

	Publish Module to GitHub
	Summary

	Chapter 4: Cordova, PhoneGap & Ionic
	Apache Cordova
	Cordova “Hello World”
	Running Your App in Cordova
	Cordova Platform Deployment
	Cordova Plugins
	Cordova Plugman

	Cordova Distributions

	PhoneGap Distribution
	Installing PhoneGap
	Install PhoneGap Mobile App
	Start Coding
	Preview Your PhoneGap App
	PhoneGap Development

	Ionic
	Ionic Front-end
	Add Plugins in Ionic
	Preview Your App
	iOS Simulator
	Ionic Resources

	Summary

	Chapter 5: AngularJS
	Angular Seed Project
	Bower Component
	App Layout File
	Partial Views
	Styles
	Controllers
	AngularJS Directives
	Template Expanding Directive

	AngularJS Filters
	Components
	Testing
	Karma Testing
	Adding New Tests
	Proctractor Testing
	Scenarios File


	Routes
	Service
	Summary

	Chapter 6: CSS, Bootstrap, & Responsive Design
	CSS Classes Used by AngularJS
	Create a New Project
	ng-scope
	ng-dirty, ng-invalid, and ng-pristine
	Install Bootstrap
	UI Bootstrap
	Creating a Custom UI Bootstrap Build
	CSS Bootstrap
	Responsive CSS Media Queries
	Portrait and Landscape Orientation
	Emulating Mobile Browsers

	CSS Responsive Design Utilizing a Break Point
	Responsive Design Breakpoint Bootstrap

	Bootstrap Responsive Tables
	Bootstrap CSS Common Styles
	Responsive Images with Bootstrap CSS

	Angular-Responsive Library

	Summary

	Chapter 7: Write Services Once
	Express App
	Installing Express
	Hello World Express
	Express Generator Tool

	Pugjs, Previously Known as Jade
	Setting Up a Service Layer
	Setting Up a POST Service
	MongoDB Database Integration
	Install MongoDB

	Start MongoDB
	Create a Database

	Read Results from MongoDB into our Express App
	MongoDB API
	app.js
	users.js

	Express and Socket.IO
	Install Socket.IO
	Add Socket.IO to the App
	Update Users Service to Include Socket.IO
	Retrieve a Socket.IO Event Using MongoDB Results
	Test Socket.IO App

	rooms.js
	Creating Static Service
	Creating MongoDB Service
	Creating a MongoDB GUI Client
	Connect Front-End Application to Service
	rooms.js with Angular

	node-email-templates Library
	Summary

	Chapter 8: AngularJS SEO
	Config AngularJS Redirect Settings
	Start a New AngularJS Seed Project
	AngularJS HTML Mode and Hashbang

	Snapshot
	Install and Config PhantomJS
	Apply Angular-SEO Script
	Deployment Script
	Update .htaccess
	Set .htaccess Redirect

	AngularJS Metadata Tags
	Update Metadata Using a Service Module
	Update Metadata with ngMeta

	Robots Instructions
	Robots Meta Tags
	Robots Exclusion Protocol
	Sitemap
	Social Media Meta Tags

	Webmasters
	Submit Pages to Google 
	Ensure Successful Page Submission

	Summary

	Chapter 9: Build Scripts
	Browserify
	Create a New Node.js Module
	Install Browserify
	Compile a Browserify Bundle File
	Using a Node.js Module in an AngularJS Project

	Babelify
	Installing Babel
	Setting Babel in WebStorm
	Writing ES6 Code

	Grunt
	Grunt with a Babel Task
	Install Grunt Babel Plugins
	Run Grunt Babel Task
	Grunt Babelify & Browserify Task
	Grunt Watch

	Gulp
	Differences Between Grunt and Gulp
	Installing Gulp
	Creating a Gulp Task
	Installing Gulp Plugins
	Running Gulp Tasks

	Webpack
	Installing Webpack
	Creating Webpack Config File
	Webpack Watcher
	Webpack Transpiling ES6 Code
	Webpack CSS Loader

	Vagrant VM
	Installing Vagrant & Virtual Machine
	Networking Access
	HTTP Sharing
	Share with SSH Access
	Provision AngularJS Projects

	Summary

	Chapter 10: Platform Deployment
	Node.js Deployment
	Connect to Node.js Ubuntu Server
	Deployment with Grunt
	Deployment with Gulp

	AngularJS Deployment
	Web Deployment with Grunt
	Web Deployment with Gulp
	Web Deployment with Webpack

	AngularJS App Deployment
	PhoneGap Deployment
	Deployment with PhoneGap

	Build Your App on Different Platforms
	Ionic Deployment
	Creating an Ionic Project
	Set Up Ionic Project in WebStorm
	Add Platforms
	Deploy Development Build
	Build and Emulate on iOS

	Continuous Integration with Travis CI
	Authenticate Travis CI
	Integration of Travis CI and GitHub Projects
	Customize and Configure Travis CI 
	Generating a Status Badge on Travis CI

	Summary

	Index



