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   Introduction 

   Four years ago, when I had just started to work on the first edition of  Pro SQL Server Internals , many people 
asked me, “Why have you decided to write yet another book on the subject? There are plenty of other 
Internals books already published.” It was — and, as a matter of fact, still is — a very valid question, which I feel 
obligated to answer. 

 I set myself two goals when I started to work on the series. First, I wanted to explain how SQL Server 
works in the most practical way, demonstrating dependencies between particular aspects of SQL Server 
Internals and the behavior of your systems. Perhaps it deserves some explanation. 

 There is a joke in the SQL Server community: “How do you distinguish between junior- and senior-level 
database professionals? Just ask them any question about SQL Server. The junior-level person gives you the 
straight answer. The senior-level person, on the other hand, always answers, ‘It depends.’” 

 As strange as it sounds, that is correct. SQL Server is a very complex product with a large number of 
components that depend on each other. You can rarely give a straight  yes  or  no  answer to any question. Every 
decision comes with its own set of strengths and weaknesses and leads to consequences that affect other 
parts of the system. 

  Pro SQL Server Internals  covers on what, exactly, “it depends.” I wanted to give you enough information 
about how SQL Server works and to show you various examples of how specific database designs and code 
patterns affect SQL Server’s behavior. I tried to avoid generic suggestions based on best practices. Even 
though those suggestions are great and work in a large number of cases, there are always exceptions. I hope 
that, after you read this series, you will be able to recognize those exceptions and make decisions that benefit 
your particular systems. 

 My second goal was based on the strong belief that the line between database administration and 
development is very thin. It is impossible to be a successful database developer without knowledge of SQL 
Server Internals. Similarly, it is impossible to be a successful database administrator without the ability 
to design efficient database schema and write good T-SQL code. That knowledge helps both developers 
and administrators to better understand and collaborate with each other, which is especially important 
nowadays in the age of agile development and multi-terabyte databases. 

 This belief came from my personal experience. I started my career in IT as an application developer, 
slowly moving to backend and database development over the years. At some point, I found that it was 
impossible to write good T-SQL code unless I understood how SQL Server executed it. That discovery forced 
me to learn SQL Server Internals, and it led to a new life in which I design, develop, and tune various database 
solutions. I do not write client applications anymore; however, I perfectly understand the challenges that 
application developers face when they deal with SQL Server. I have “been there and done that.” 

 My biggest challenge during the transition to the  Internals  world was to find good learning materials. 
There were plenty of good books; however, all of them had a clear separation in their content. They expected 
the reader to be either developer or database administrator — never both. I tried to avoid that separation 
in this book. Obviously, some of the chapters are more DBA-oriented, while others lean more toward 
developers. Nevertheless, I hope that anyone who is working with SQL Server will find the content useful. 

 You should not, however, consider  Pro SQL Server Internals  to be a SQL Server tutorial. Nor is it a 
beginner-level book. I expect you to have previous experience working with relational databases, preferably 
with SQL Server. You need to know RDBMS concepts, be familiar with different types of database objects, 
and be able to understand SQL code if you want to get the most out of this series. 
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■   INTRODUCTION

 As you may have already noticed, this book covers multiple SQL Server versions, from SQL Server 2005 
up to recently released SQL Server 2016. With a few exceptions, I did not specifically cover Microsoft Azure 
SQL Databases; however, they are based on the most recent SQL Server codebase, and the majority of the 
book’s content can be applied to them. 

 I also need to mention that I completed the manuscript shortly after SQL Server 2016 RTM was released.
 The recent development process changes have made Microsoft significantly more agile, and we should 
expect enhancements and improvements to be delivered in service packs and even CU releases. Some of 
them would even appear in the previous versions of the product, as we have already seen with SQL Server 
2012 SP3 and SQL Server 2014 SP2. 

 With the agile nature of development and the  cloud-first  model adopted by Microsoft, I would expect 
that some of the limitations that the new SQL Server 2016 features have in the RTM release will be lifted 
in the future. Check the latest documentation and do not rely strictly on this book as your source of 
information. While it is challenging to work with and write about a product that evolves all the time, it is a 
good challenge to have. 

 I was extremely nervous two and half years ago when the first edition of  Pro SQL Server Internals  was 
about to be published. I did not know if I would succeed in my goals. I was very happy to find that many of 
you liked the book and found it useful. I hope you will enjoy the second edition, which I  subjectively  think is 
even better than the first one. 

 Finally, I want to thank you again for all your feedback, encouragement, and support — and, most 
important, for your trust in me. I would have been unable to write it without all your help! 

   How This Book Is Structured 
 The book is logically separated into eight different parts. Even though all of these parts are relatively 
independent of each other, I would encourage you to start with Part I, “Tables and Indexes,” anyway. This 
part explains how SQL Server stores and works with data, which is the key point in understanding SQL 
Server Internals. The other parts of the book rely on this understanding. 

 The parts of the book are as follows:

    Part I: Tables and Indexes  covers how SQL Server works with data. It explains 
the internal structure of database tables; discusses how and when SQL Server 
uses indexes; and provides you with basic guidelines about how to design and 
maintain them. The second edition of the book brings a new chapter about new 
SQL Server 2016 features, along with some additional SQL Server 2016 – related 
changes in the other chapters.  

   Part II: Other Things That Matter  provides an overview of different T-SQL 
objects and outlines their strengths and weaknesses; it also supplies use cases 
showing when these objects should or should not be used. It also includes a long, 
architecture-focused discussion on data partitioning. The second edition adds 
content on JSON support and geospatial types enhancements, and it has several 
other minor improvements in other areas.  

   Part III: Locking, Blocking, and Concurrency  talks about the SQL Server 
concurrency model. It explains the root causes of various blocking issues in 
SQL Server, and it shows you how to troubleshoot and address them in your 
systems. Finally, this part provides you with a set of guidelines on how to design 
transaction strategies in a way that improves concurrency in systems. This 
area has not been changed in SQL Server 2016; however, I rewrote a couple of 
chapters to make them better.  
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   Part IV: Query Life Cycle  discusses the optimization and execution of queries in 
SQL Server. Moreover, it explains how SQL Server caches execution plans, and it 
demonstrates several issues related to plan caching commonly encountered in 
systems. As with the SQL Server concurrency model, there are not many changes 
in SQL Server 2016; however, I tried to improve content here and there.  

   Part V: Practical Troubleshooting  provides an overview of the SQL Server 
execution model and explains how you can quickly diagnose systems and 
pinpoint the root cause of a problem. The second edition introduces a new 
chapter on the new and exciting SQL Server 2016 feature called  Query Store . 
Moreover, the “System Troubleshooting ”  chapter has also been extended and 
improved.  

   Part VI: Inside the Transaction Log  explains how SQL Server works with the 
transaction log, and it gives you a set of guidelines on how to design backup and 
High Availability strategies in systems. The second edition adds content on SQL 
Server 2016 and Microsoft Azure improvements in those areas.  

   Part VII: Columnstore Indexes  provides an overview of columnstore indexes, 
which can dramatically improve the performance of data warehouse solutions. 
SQL Server 2016 adds many improvements in that area, including the use of 
columnstore indexes in operational analytics scenarios, which are now covered 
the second edition.  

   Part VIII: In-Memory OLTP Engine  discusses In-Memory OLTP 
implementation in both SQL Server 2014 and 2016. There are many technology 
improvements in SQL Server 2016 that are described in this book.    

 It is also worth noting that most of the figures and examples in this book were created in the Enterprise 
Edition of SQL Server 2012-2016, with parallelism disabled on the server level in order to simplify the 
resulting execution plans. In some cases, you may get slightly different results when you run scripts in your 
environment using different versions of SQL Server.  

   Downloading the Code 
 You can download the code used in this book from the Source Code section of the Apress website (   www.
apress.com     ) or from the  Publications  section of my blog (   http://aboutsqlserver.com     ). The source code 
consists of SQL Server Management Studio solutions, which include a set of the projects (one per chapter). 
Moreover, it includes several .Net C# projects, which provide the client application code used in the 
examples in Chapters   13    ,   14    , and   15    .  

   Contacting the Author 
 You can visit my blog at    http://aboutsqlserver.com      and email me at  dk@aboutsqlserver.com . I am always 
happy to answer any of your questions, and I would be enormously grateful for any feedback you provide —
 both privately and publicly on Amazon and in other web sites. Trust me, it makes a difference and helps 
improve the quality of future books in the series.   

http://www.apress.com/
http://www.apress.com/
http://aboutsqlserver.com/
http://dx.doi.org/10.1007/978-1-4842-1964-5_13
http://dx.doi.org/10.1007/978-1-4842-1964-5_14
http://dx.doi.org/10.1007/978-1-4842-1964-5_15
http://aboutsqlserver.com/
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    CHAPTER 1   

 Data Storage Internals                          

 A SQL Server database is a collection of objects that allow you to store and manipulate data. In theory, SQL 
Server supports 32,767 databases per instance, although the typical installation usually has only several 
databases. Obviously, the number of databases SQL Server can handle depends on the load and hardware. 
It is not unusual to see servers hosting dozens or even hundreds of small databases. 

 In this chapter, we will discuss the internal structure of databases and how SQL Server stores data. 

     Database Files and Filegroups 
 Every database consists of one or more transaction log files and one or more data files. A   transaction log  
     stores information about database transactions and all of the data modifications made in each session. Every 
time the data is modified, SQL Server stores enough information in the transaction log to undo (roll back) 
or redo (replay) this action, which allows SQL Server to recover the database to a transactionally consistent 
state in the event of an unexpected failure or crash. 

 Every database has one primary data file, which by default has an  .mdf  extension. In addition, every 
database can also have secondary database files. Those files, by default, have  .ndf  extensions. 

 All database files are grouped into filegroups. A   filegroup       is a logical unit that simplifies database 
administration. It permits the logical separation of database objects and physical database files. When you 
create database objects — tables, for example — you specify what filegroup they should be placed into without 
worrying about the underlying data files’ configuration. 

 Listing  1-1  shows the script that creates a database with the name  OrderEntryDb . This database consists 
of three filegroups. The  primary  filegroup has one data file stored on the  M:  drive. The second filegroup, 
 Entities , has one data file stored on the  N:  drive. The last filegroup,  Orders , has two data files stored on the 
 O:  and  P:  drives. Finally, there is a transaction log file stored on the  L:  drive. 

     Listing 1-1.    Creating a  database     

 create database [OrderEntryDb] on 
 primary 
 (name = N'OrderEntryDb', filename = N'm:\OEDb.mdf'), 
 filegroup [Entities] 
 (name = N'OrderEntry_Entities_F1', filename = N'n:\OEEntities_F1.ndf'), 
 filegroup [Orders] 
 (name = N'OrderEntry_Orders_F1', filename = N'o:\OEOrders_F1.ndf'), 
 (name = N'OrderEntry_Orders_F2', filename = N'p:\OEOrders_F2.ndf') 
 log on 
 (name = N'OrderEntryDb_log', filename = N'l:\OrderEntryDb_log.ldf') 

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-1964-5_1    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1964-5_1
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   You can see the physical layout of the database and data files in Figure  1-1 . There are five disks with four 
data files and one transaction log file. The dashed rectangles represent the filegroups.  

  Figure 1-1.    Physical layout of the database and data  files         

 The ability to put multiple data files inside a filegroup lets us spread the load across different storage 
drives, which could help to improve the I/O performance of the system. You should consider, however, 
the redundancy of the storage subsystem when you do that. A database would become fully or partially 
unavailable if one of the storage drives failed. 

 Transaction log throughput, on the other hand, does not benefit from multiple files. SQL Server works 
with transactional logs sequentially, and only one log file would be accessed at any given time. 

 ■   Note   We will talk about the transaction log’s internal structure and best practices associated with it in 
Chapter   30    , “Transaction Log Internals.”  

 Let’s create a few tables, as shown in Listing  1-2 . The  Customers  and  Articles  tables are placed into the 
 Entities  filegroup. The  Orders  table resides in the  Orders  filegroup. 

     Listing 1-2.    Creating  tables     

  create table dbo.Customers 
 ( 
     /* Table Columns */ 
 ) on [Entities]; 

   create table dbo.Articles 
 ( 
     /* Table Columns */ 
 ) on [Entities]; 

   create table dbo.Orders 
 ( 
     /* Table Columns */ 
 ) on [Orders]; 

    Figure  1-2  shows the physical layout of the tables in the database and on the disks.  

 

www.allitebooks.com
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 The separation between logical objects in the filegroups and the physical database files allows us to 
fine-tune the database file layout to get the most out of the storage subsystem without worrying that it breaks 
the system. For example,  independent software vendors (ISV)   who are deploying their products to different 
customers can adjust the number of database files during the deployment stage based on the underlying I/O 
configuration and the expected amount of data. These changes will be transparent to developers who are 
placing the database objects into the filegroups rather than into database files. 

 ■   Best Practice   Do not use the   PRIMARY  filegroup   for anything but system objects. Creating a separate filegroup 
or set of filegroups for the user objects simplifies database administration and disaster recovery, especially in 
the case of large databases. We will discuss this in greater depth in Chapter   31    , “Backup and Restore.”  

 You can specify initial file sizes and auto-growth parameters at the time that you create the database 
or add new files to an existing database. SQL Server uses a  proportional fill  algorithm when choosing to 
which data file it should write data. It writes an amount of data proportional to the free space available in the 
file — the more free space a file has, the more writes it handles. 

 ■   Tip   OLTP systems and filegroups with volatile data usually benefit from multiple data files regardless of 
the underlying storage configuration. The optimal number of files depends on workload and the underlying 
hardware. As a rule of thumb, create four data files if the server has up to 16 logical CPUs, keeping a 1/8 th  ratio 
between files and CPUs afterward. 

 Set the same initial size and auto-growth parameters, with grow size being defined in megabytes rather than 
by percentage for all files in a same filegroup. This helps the proportional fill algorithm balance write activities 
evenly across data files.  

 Setting the same initial size and auto-growth parameters for all files in the filegroup is usually enough 
to keep the proportional fill algorithm working efficiently. However, in some rare cases SQL Server can grow 
filegroup files unevenly, even with this setup. 

 SQL Server 2016 introduces two options —   AUTOGROW_SINGLE_FILE    and  AUTOGROW_ALL_FILES— which 
control auto-growth events on a per-filegroup level. With  AUTOGROW_SINGLE_FILE , which is the default 
option, SQL Server 2016 grows the single file in the filegroup when needed. With  AUTOGROW_ALL_FILES , SQL 
Server grows all files in the filegroup whenever one of the files is out of space. 

  Figure 1-2.    Physical layout of the  tables         
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 When using SQL Server releases prior to 2016, you can control this behavior with the  instance-level  trace 
flag  T1117 . Enabling this flag forces SQL Server to grow all files in the filegroup, similar to the  AUTOGROW_
ALL_FILES  filegroup option, whenever one of the files is out of space. I usually do not use this flag unless I 
constantly see the problem with uneven filegroup file sizes. 

 Every time SQL Server grows the files, it fills the newly allocated space with zeros. This process blocks 
all sessions that are writing to the corresponding file or, in the case of transaction log growth, generating 
transaction log records. 

 SQL Server always zeros out the transaction log, and this behavior cannot be changed. However, you 
can control if data files are zeroed out or not by enabling or disabling  Instant File Initialization . Enabling 
Instant File Initialization helps speed up data-file growth and reduces the time required to create or restore 
the database. 

 ■   Note   There is a small security risk associated with Instant File Initialization. When this option is enabled, 
an unallocated part of the data file can contain information from previously deleted OS files. Database 
administrators are able to examine such data.  

 You can enable Instant File Initialization by adding an  SA_MANAGE_VOLUME_NAME  permission, also known 
as a   Perform Volume Maintenance Task ,   to the SQL Server startup account. This can be done under the 
Local Security Policy management application ( secpol.msc ), as shown in Figure  1-3 . You need to open the 
properties for the Perform Volume Maintenance Task permission and add a SQL Server startup account to 
the list of accounts there.  

  Figure 1-3.    Enabling  Instant File Initialization   in  secpol.msc         

 ■   Tip    SQL Server checks to see if Instant File Initialization is enabled on startup. You need to restart the SQL 
Server service after you give the corresponding permission to the SQL Server startup account.  

 SQL Server 2016 allows you to enable Instant File Initialization by granting Perform Volume 
Maintenance Task permission to the SQL Server startup account during setup. Figure  1-4  illustrates that.  
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 In order to check if Instant File Initialization is enabled, you can use the code shown in Listing  1-3 . 
This code sets two trace flags that force SQL Server to put additional information into the  error log,   create a 
small database, and read the content of the error log file. 

     Listing 1-3.    Checking to see if Instant File Initialization is enabled   

 dbcc traceon(3004,3605,-1) 
 go 
 create database Dummy 
 go 
 exec sp_readerrorlog 
 go 
 drop database Dummy 
 go 
 dbcc traceoff(3004,3605,-1) 
 go 

   If Instant File Initialization is not enabled, the SQL Server error log indicates that SQL Server is zeroing 
out the .mdf data file in addition to zeroing out the log .ldf file, as shown in Figure  1-5 . When Instant File 
Initialization is enabled, it would only show the zeroing out of the log .ldf file.  

  Figure 1-4.    Enabling Instant File Initialization in SQL Server 2016 setup       
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 Another important database option that controls database file sizes is  Auto Shrink . When this option is 
enabled, SQL Server shrinks the database files every 30 minutes, reducing their size and releasing the space 
to the operating system. This operation is very resource intensive and is rarely useful, as the database files 
grow again when new data comes into the system. Moreover, it greatly increases index fragmentation in 
the database.   Auto Shrink     should never be enabled.  Moreover, Microsoft will remove this option in future 
versions of SQL Server. 

 ■   Note    We will talk about index fragmentation in greater detail in Chapter   6    , “Index Fragmentation.”   

     Data Pages and Data Rows 
 The space in the database is divided into logical 8KB  pages . These pages are continuously numbered starting 
with zero, and they can be referenced by specifying a file ID and page number. The page numbering is 
always continuous, such that when SQL Server grows the database file, new pages are numbered starting 
from the highest page number in the file plus one. Similarly, when SQL Server shrinks the file, it removes the 
highest-number pages from the file. 

 DATA STORAGE IN SQL SERVER

 Generally speaking, there are three different ways, or technologies, in which SQL Server stores and 
works with the data in the database. With the classic  row-based storage , the data is stored in data rows 
that combine the data from all columns together. 

 SQL Server 2012 introduced  columnstore indexes  and  column-based storage . This technology stores 
the data on a per-column rather than a per-row basis. We will cover column-based storage in Part VII of 
this book. 

 Finally, there is the set of in-memory technologies introduced in SQL Server 2014 and further improved 
in SQL Server 2016. Even though they persist the data on disk for redundancy purposes, their storage 
format is very different from both row- and column-based storage. We will discuss in-memory 
technologies in Part VIII of this book. 

 This part of the book is focused on row-based storage and classic B-Tree indexes and heaps.  

  Figure 1-5.    Checking whether Instant File Initialization is enabled — SQL Server  error log         
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 Figure  1-6  shows the structure of a data page.  

  Figure 1-6.    The data page  structure         

 A 96-byte page header contains various pieces of information about a page, such as the object to which 
the page belongs, the number of rows and amount of free space available on the page, links to the previous 
and next pages if the page is in an index-page chain, and so on. 

 Following the page header is the area where actual data is stored. This is followed by free space. Finally, 
there is a slot array, which is a block of two-byte entries indicating the offset at which the corresponding data 
rows begin on the page. 

 The   slot array       indicates the logical order of the data rows on the page. If data on a page needs to be 
sorted in the order of the index key, SQL Server does not physically sort the data rows on the page, but rather 
it populates the slot array based on the index sort order. Slot 0 (rightmost in Figure  1-6 ) stores the offset for 
the data row with the lowest key value on the page; slot 1, the second-lowest key value; and so forth. We will 
discuss indexes in greater depth in the next chapter. 

 SQL Server offers a rich set of system data types that can be logically separated into two different 
groups: fixed length and variable length.    Fixed-length data types, such as  int ,  datetime ,  char , and others, 
always use the same amount of storage space regardless of their value,  even when it is NULL . For example, 
the  int  column always uses 4 bytes and an  nchar(10)  column always uses 20 bytes to store information. 

 In contrast, variable-length data types, such as  varchar ,  varbinary , and a few others, use as much 
storage space as is required to store data, plus two extra bytes. For example, an  nvarchar(4000)  column 
would use only 12 bytes to store a five-character string and, in most cases, two bytes to store a NULL value. 
We will discuss the case where variable-length columns do not use storage space for NULL values later in 
this chapter. 

 Let’s look at the structure of a data row, as shown in Figure  1-7 .  
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 The first two bytes of the row, called  Status Bits A  and  Status Bits B , are bitmaps that contain information 
about the row, such as row type, if the row has been logically deleted (ghosted), and if the row has NULL 
values, variable-length columns, and a versioning tag. 

 The next two bytes in the row are used to store the length of the fixed-length portion of the data. They 
are followed by the fixed-length data itself. 

 After the fixed-length data portion, there is a  null bitmap , which includes two different data elements. 
The first two-byte element is the number of columns in the row. The second is a null bitmap array. This array 
uses one bit for each column of the table, regardless of whether it is nullable or not. 

 A null bitmap is always present in data rows in heap tables or clustered index leaf rows, even when the 
table does not have nullable columns. However, the null bitmap is not present in non-leaf index rows nor in 
leaf-level rows of nonclustered indexes when there are no nullable columns in the index. 

 Following the null bitmap, there is the  variable-length data   portion of the row. It starts with a two-byte 
number of variable-length columns in the row followed by a column-offset array. SQL Server stores a two-
byte offset value for each variable-length column in the row, even when the value is NULL. It is followed by 
the actual variable-length portion of the data. Finally, there is an optional 14-byte versioning tag at the end 
of the row. This tag is used during operations that require row versioning, such as an online index rebuild, 
optimistic isolation levels, triggers, and a few others. 

 ■   Note    We will discuss index maintenance in Chapter   6    , triggers in Chapter   9    , and optimistic isolation levels 
in Chapter   21    .  

 Let’s create a table, populate it with some data, and look at the actual row data. The code is shown in 
Listing  1-4 . The  Replicate  function repeats the character provided as the first parameter ten times. 

     Listing 1-4.    The data row format:  Table creation     

  create table dbo.DataRows 
 ( 
     ID int not null, 
     Col1 varchar(255) null, 
     Col2 varchar(255) null, 
     Col3 varchar(255) null 
 ); 

   insert into dbo.DataRows(ID, Col1, Col3)  values (1,replicate('a',10),replicate('c',10)); 
 insert into dbo.DataRows(ID, Col2) values (2,replicate('b',10)); 

  Figure 1-7.    Data row  structure         

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_6
http://dx.doi.org/10.1007/978-1-4842-1964-5_9
http://dx.doi.org/10.1007/978-1-4842-1964-5_21
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   dbcc ind 
 ( 
     'SQLServerInternals' /*Database Name*/ 
     ,'dbo.DataRows' /*Table Name*/ 
     ,-1 /*Display information for all pages of all indexes*/ 
 ); 

    An undocumented but well-known   DBCC IND  command   returns information about table page 
allocations. You can see the output of this command in Figure  1-8 .  

  Figure 1-8.    DBCC IND output       

 There are two pages that belong to the table. The first one, with  PageType=10 , is a special type of page 
called an  IAM allocation map . This page tracks the pages that belong to a particular object. Do not focus on 
that now, however, as we will cover allocation map pages later in this chapter. 

 ■   Note   SQL Server 2012 introduces another undocumented  data-management function (DMF)  ,  sys.dm_db_
database_page_allocations , which can be used as a replacement for the  DBCC IND  command. The output of 
this DMF provides more information when compared to  DBCC IND , and it can be joined with other system DMVs 
and/or catalog views.  

 The page with  PageType=1  is the actual data page that contains the data rows. The  PageFID  and 
 PagePID  columns show the actual file and page numbers for the page. You can use another undocumented 
command,  DBCC PAGE , to examine its contents, as shown in Listing  1-5 . 

     Listing 1-5.    The data row format: DBCC PAGE  call      

 -- Redirecting DBCC PAGE output to console 
 dbcc traceon(3604); 
 dbcc page 
 ( 
     'SqlServerInternals' /*Database Name*/ 
     ,1 /*File ID*/ 
     ,214643 /*Page ID*/ 
     ,3 /*Output mode: 3 - display page header and row details */ 
 ); 

   Listing  1-6  shows the output of the  DBCC PAGE  that corresponds to the first data row. SQL Server stores 
the data in byte-swapped order. For example, a two-byte value of  0001  would be stored as  0100 . 
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     Listing 1-6.    DBCC PAGE output for the first  row     

  Slot 0 Offset 0x60 Length 39 

   Record Type = PRIMARY_RECORD        Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS 
 Record Size = 39                    
 Memory Dump @0x000000000EABA060 

   0000000000000000:  30000800 01000000 04000403 001d001d 00270061  0................'.a 
 0000000000000014:  61616161 61616161 61636363 63636363 636363    aaaaaaaaacccccccccc 

   Slot 0 Column 1 Offset 0x4 Length 4 Length (physical) 4 
 ID = 1                              

   Slot 0 Column 2 Offset 0x13 Length 10 Length (physical) 10 
 Col1 = aaaaaaaaaa                   

   Slot 0 Column 3 Offset 0x0 Length 0 Length (physical) 0 
 Col2 = [NULL]                       

   Slot 0 Column 4 Offset 0x1d Length 10 Length (physical) 10 
 Col3 = cccccccccc   

    Let’s look at the data row in more detail, as shown in Figure  1-9 .  

  Figure 1-9.    First data row       

 As you can see, the row starts with the two status bits followed by a two-byte value of  0800 . This is the 
byte-swapped value of  0008 , which is the offset for the  Number of Columns  attribute in the row. This offset 
tells SQL Server where the fixed-length data part of the row ends. 

 The next four bytes are used to store fixed-length data, which is the  ID  column in our case. After that, 
there is the two-byte value that shows that the data row has four columns, followed by a one-byte NULL 
bitmap. With just four columns, one byte in the bitmap is enough. It stores the value of  04 , which is  00000100  
in the binary format. It indicates that the third column in the row contains a NULL value. 

 The next two bytes store the number of variable-length columns in the row, which is 3 ( 0300  in byte-
swapped order). It is followed by an offset array, in which every two bytes store the offset where the variable-
length column data ends. As you can see, even though  Col2  is NULL, it still uses the slot in the offset array. 
Finally, there is the actual data from the variable-length columns. 

 Now, let’s look at the second data row. Listing  1-7  shows the  DBCC PAGE  output, and Figure  1-10  shows 
the row data.  
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     Listing 1-7.    DBCC PAGE output for the second  row      

  Slot 1 Offset 0x87 Length 27 

   Record Type = PRIMARY_RECORD        Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS 
 Record Size = 27                    
 Memory Dump @0x000000000EABA087 

   0000000000000000:  30000800 02000000 04000a02 0011001b 00626262  0................bbb 
 0000000000000014:  62626262 626262                               bbbbbbb 

   Slot 1 Column 1 Offset 0x4 Length 4 Length (physical) 4 
 ID = 2                              

   Slot 1 Column 2 Offset 0x0 Length 0 Length (physical) 0 
 Col1 = [NULL]                       

   Slot 1 Column 3 Offset 0x11 Length 10 Length (physical) 10 
 Col2 = bbbbbbbbbb                   

   Slot 1 Column 4 Offset 0x0 Length 0 Length (physical) 0 
 Col3 = [NULL]       

    The NULL bitmap in the second row represents a binary value of  00001010 , which shows that  Col1  and 
 Col3  are NULL. Even though the table has three variable-length columns, the number of variable-length 
columns in the row indicates that there are just two columns/slots in the offset array. SQL Server does not 
maintain the information about the trailing NULL variable-length columns in the row. 

 ■   Tip    You can reduce the size of the data row by creating tables in a manner in which variable-length 
columns, which usually store null values, are defined as the last ones in the  CREATE TABLE  statement. This is 
the only case in which the order of columns in the  CREATE TABLE  statement matters.  

 The fixed-length data and internal attributes must fit into the 8,060 bytes available on the single data page. 
SQL Server does not let you create the table when this is not the case. For example, the code in Listing  1-8  
produces an error. 

  Figure 1-10.    Second data row data       
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     Listing 1-8.    Creating a table with a data row size that exceeds 8,060  bytes     

  create table dbo.BadTable 
 ( 
     Col1 char(4000), 
     Col2 char(4060) 
 ) 

   Msg 1701, Level 16, State 1, Line 1 
 Creating or altering table 'BadTable' failed because the minimum row size would be 8,067, 
including 7 bytes of internal overhead. This exceeds the maximum allowable table row size of 
8,060 bytes. 

         Large  Objects Storage   
 Even though the fixed-length data and the internal attributes of a row must fit into a single page, SQL Server 
can store the variable-length data on different data pages. There are two different ways to store the data, 
depending on the data type and length. 

       Row-Overflow Storage   
 SQL Server stores variable-length column data that does not exceed 8,000 bytes on special pages called 
 row-overflow pages . Let’s create a table and populate it with the data shown in Listing  1-9 . 

     Listing 1-9.    Row-overflow data: Creating a table   

  create table dbo.RowOverflow 
 ( 
     ID int not null, 
     Col1 varchar(8000) null, 
     Col2 varchar(8000) null 
 ); 

   insert into dbo.RowOverflow(ID, Col1, Col2) values 
(1,replicate('a',8000),replicate('b',8000)); 

    As you see, SQL Server creates the table and inserts the data row without any errors, even though the 
data-row size exceeds 8,060 bytes. Let’s look at the table page allocation using the  DBCC IND  command. The 
results are shown in Figure  1-11 .  

  Figure 1-11.    Row-overflow data: DBCC IND results       
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 Now you can see two different sets of  IAM  and data pages. The data page with  PageType=3  represents the 
data page that stores row-overflow data. 

 Let’s look at data page 214647, which is the in-row data page that stores main row data. The partial 
output of the  DBCC PAGE  command for the page (1:214647) is shown in Listing  1-10 . 

     Listing 1-10.    Row-overflow data: DBCC PAGE  results   for IN_ROW data   

  Slot 0 Offset 0x60 Length 8041 

   Record Type = PRIMARY_RECORD        Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS 
 Record Size = 8041                  
 Memory Dump @0x000000000FB7A060 

   0000000000000000:  30000800 01000000 03000002 00511f69 9f616161  0............Q.iŸaaa 
 0000000000000014:  61616161 61616161 61616161 61616161 61616161  aaaaaaaaaaaaaaaaaaaa 
 <Skipped> 
 0000000000001F40:  61616161 61616161 61616161 61616161 61020000  aaaaaaaaaaaaaaaaa… 
 0000000000001F54:  00010000 00290000 00401f00 00754603 00010000  .....)…@…uF..... 
 0000000000001F68:  00 

    As you can see, SQL Server stores  Col1  data in-row.  Col2  data, however, has been replaced with a 
24-byte value. The first 16 bytes are used to store off-row storage metadata, such as type, length of the data, 
and a few other attributes. The last chunk of 8 bytes is the actual pointer to the row on the row-overflow 
page, which is made up by the file, page, and slot number. Figure  1-12  shows this in detail. Remember that 
all information is stored in byte-swapped order.  

  Figure 1-12.    Row-overflow data: Row-overflow page pointer structure       

 As you can see, the slot number is 0, the file number is 1, and the page number is the hexadecimal value 
 0x00034675 , which is decimal  214645 . The page number matches the  DBCC IND  results shown in Figure  1-10 . 

 The partial output of the   DBCC PAGE  command      for the page (1:214645) is shown in Listing  1-11 . 

      Listing 1-11.    Row-overflow data: DBCC PAGE results for row-overflow data   

  Blob row at: Page (1:214645) Slot 0 Length: 8014 Type: 3 (DATA) 
 Blob Id:2686976 

   0000000008E0A06E: 62626262  62626262  62626262  62626262 bbbbbbbbbbbbbbbb 
 0000000008E0A07E: 62626262  62626262  62626262  62626262 bbbbbbbbbbbbbbbb 

    As you can see,  Col2  data is stored in the first slot on the page.   
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      LOB  Storage   
 For the  text ,  ntext , or  image  columns, SQL Server stores the data off-row by default. It uses another kind of 
pages called a  LOB data pages . 

 ■   Note    You can control this behavior to a degree by using the “text in row” table option. For example,  exec 
sp_table_option dbo.MyTable, 'text in row', 200  forces SQL Server to store  LOB  data less than or equal 
to 200 bytes in-row.  LOB  data greater than 200 bytes would be stored in  LOB  pages.  

 The logical  LOB  data structure is shown in Figure  1-13 .  

  Figure 1-13.    LOB data: Logical structure       

 As with row-overflow data, there is a pointer to another piece of information called the  LOB root 
structure , which contains a set of the pointers to other data pages and rows. When  LOB  data is less than 32 
KB and can fit into five data pages, the  LOB  root structure contains the pointers to the actual chunks of LOB 
data. Otherwise, the  LOB  tree starts to include additional intermediate levels of pointers, similar to the index 
B-Tree, which we will discuss in the next chapter. 

 Let’s create the table and insert one row of data, as shown in Listing  1-12 . We need to cast the first 
argument of the  replicate  function to  varchar(max) . Otherwise, the result of the  replicate  function would 
be limited to 8,000 bytes. 

     Listing 1-12.    LOB data: Table creation   

  create table dbo.TextData 
 ( 
     ID int not null, 
     Col1 text null 
 ); 

   insert into dbo.TextData(ID, Col1) values (1, replicate(convert(varchar(max),'a'),16000)); 

    The page allocation for the table is shown in Figure  1-14 .  
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 As you can see, the table has one data page for in-row data and three data pages for  LOB  data. I am 
not going to examine the structure of the data row for in-row allocation; it is similar to the row-overflow 
allocation. However, with the LOB allocation, the table stores less metadata information in the pointer and 
uses 16 bytes rather than the 24 bytes required by the row-overflow pointer. 

 The result of the  DBCC PAGE  command for the page that stores the  LOB  root structure is shown in 
Listing  1-13 . 

     Listing 1-13.    LOB data: DBCC PAGE results for the LOB page with the LOB root structure   

  Blob row at: Page (1:3046835) Slot 0 Length: 84 Type: 5 (LARGE_ROOT_YUKON) 

   Blob Id: 131661824 Level: 0 MaxLinks: 5 CurLinks: 2 

   Child 0 at Page (1:3046834) Slot 0 Size: 8040 Offset: 8040 
 Child 1 at Page (1:3046832) Slot 0 Size: 7960 Offset: 16000 

    As you can see, there are two pointers to the other pages with  LOB  data blocks, which are similar to the 
blob data shown in Listing  1-11 . 

 The format, in which SQL Server stores the data from the  (MAX)  columns, such as  varchar(max) , 
 nvarchar(max) , and  varbinary(max) , depends on the actual data size. SQL Server stores it in-row when 
possible. When in-row allocation is impossible, and data size is less than or equal to 8,000 bytes, it is stored 
as row-overflow data. The data that exceeds 8,000 bytes is stored as  LOB  data. 

 ■   Important    text ,  ntext , and  image  data types are deprecated, and they will be removed in future versions 
of SQL Server. Use  varchar(max) ,  nvarchar(max) , and  varbinary(max)  columns instead.  

 It is also worth mentioning that SQL Server always stores rows that fit into a single page using in-row 
allocations. When a page does not have enough free space to accommodate a row, SQL Server allocates a 
new page and places the row there rather than placing it on the half-full page and moving some of the data 
to row-overflow pages.    

      SELECT * and I/O   
 There are plenty of reasons why selecting all columns from a table with the  SELECT *  operator is not a good 
idea. It increases network traffic by transmitting columns that the client application does not need. It also 
makes query performance tuning more complicated, and it introduces side effects when the table schema 
changes. 

  Figure 1-14.    LOB data: DBCC IND result       
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 It is recommended that you avoid such a pattern and instead explicitly specify the list of columns 
needed by the client application. This is especially important with row-overflow and  LOB  storage, when one 
row can have data stored in multiple data pages. SQL Server needs to read all of those pages, which can 
significantly decrease the performance of queries. 

 As an example, let’s assume that we have table  dbo.Employees , with one column storing employee 
pictures. Listing  1-14  creates the table and populates it with some data. 

     Listing 1-14.    Select * and I/O: Table  creation     

  create table dbo.Employees 
 ( 
     EmployeeId int not null, 
     Name varchar(128) not null, 
     Picture varbinary(max) null 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Employees(EmployeeId, Name, Picture) 
     select 
         ID, 'Employee ' + convert(varchar(5),ID), 
         convert(varbinary(max),replicate(convert(varchar(max),'a'),120000)) 
     from Ids; 

    The table has 1,024 rows with binary data amounting to 120,000 bytes. Let’s assume that we have code 
in the client application that needs the  EmployeeId  and  Name  to populate a drop-down menu. If a developer 
is not careful, he or she could write a select statement using the  SELECT *  pattern, even though a picture is 
not needed for this particular use case. 

 Let’s compare the performance of two selects — one selecting all data columns and another that selects 
only  EmployeeId  and  Name . The code to do this is shown in Listing  1-15 . The execution time and number of 
reads on my computer is shown in Table  1-1 .  

     Listing 1-15.    Select * and I/O: Performance  comparison     

 select * from dbo.Employees; 
 select EmployeeId, Name from dbo.Employees; 

   Table 1-1.    Execution Time of Two SELECT Operators   

 Number of Reads  Execution Time 

  select EmployeeID, Name from dbo.Employees   7  2 ms 

  select * from dbo.Employees   90,895  3,343 ms 
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   As you can see, the first select, which reads the  LOB  data and transmits it to the client, is a few orders of 
magnitude slower than the second select. One case where this becomes extremely important is with client 
applications, which use Object Relational Mapping (ORM) frameworks. Developers tend to reuse the same 
entity objects in different parts of an application. As a result, an application may load all attributes/columns 
even though it does not need all of them in many cases. 

 It is better to define different entities with a minimum set of required attributes on an individual use-
case basis. In our example, it would work best to create separate entities/classes, such as  EmployeeList  
and  EmployeeProperties . An  EmployeeList  entity would have two attributes:  EmployeeId  and  Name. 
EmployeeProperties  would include a  Picture  attribute in addition to the two mentioned. This approach 
can significantly improve the performance of systems.  

     Extents and Allocation Map Pages 
 SQL Server logically groups eight pages into 64 KB units called  extents . There are two types of extents 
available:   mixed extents    store data that belongs to different objects, while   uniform extents    store the data for 
the same object. 

 By default, when a new object is created, SQL Server stores the first eight object pages in mixed extents. 
After that, all subsequent space allocation for that object is done with uniform extents. 

 SQL Server uses a special kind of pages, called  allocation maps,  to track extent and page usage in a file. 
There are several different types of allocation map pages in SQL Server. 

  Global allocation map (   GAM)        page  s track if extents have been allocated by any objects. The data is 
represented as bitmaps, where each bit indicates the allocation status of an extent. Zero bits indicate that 
the corresponding extents are in use. The bits with a value of one indicate that the corresponding extents are 
free. Every  GAM  page covers about 64,000 extents, or almost 4 GB of data. This means that every database file 
has one GAM page for about 4 GB of file size. 

   Shared global allocation map (SGAM)  page   s      track information about mixed extents. Similar to  GAM  
pages, it is a bitmap with one bit per extent. The bit has a value of one if the corresponding extent is a mixed 
extent and has at least one free page available. Otherwise, the bit is set to zero. Like a  GAM  page, an  SGAM  page 
tracks about 64,000 extents, or almost 4 GB of data. 

 SQL Server can determine the allocation status of the extent by looking at the corresponding bits in the 
 GAM  and  SGAM  pages. Table  1-2  shows the possible combinations of the bits.  

   Table 1-2.    Allocation Status of the Extents   

 Status  SGAM bit  GAM bit 

 Free, not in use  0  1 

 Mixed extent with at least one free page available  1  0 

 Uniform extent or full mixed extent  0  0 

 When SQL Server needs to allocate a new uniform extent, it can use any extent where a bit in the 
 GAM  page has the value of one. When SQL Server needs to find a page in a mixed extent, it searches both 
allocation maps looking for the extent with a bit value of one in an  SGAM  page and the corresponding zero bit 
in a  GAM  page. If there are no such extents available, SQL Server allocates the new free extent based on the 
 GAM  page, and it sets the corresponding bit to one in the  SGAM  page. 

 Even though mixed extents can save an insignificant amount of space in the database, they require SQL 
Server to perform more modifications of allocation map pages, which may become a source of contention in 
a busy system. It is especially critical for  tempdb  databases where small objects are usually created at a very 
fast rate. 



CHAPTER 1 ■ DATA STORAGE INTERNALS

20

 SQL Server 2016 allows you to control mixed extents’ space allocation on a per-database level by setting 
the  MIXED_PAGE_ALLOCATION  database option. By default, it is enabled for the user databases and disabled 
for  tempdb . This configuration should be sufficient in a majority of the cases. 

 In SQL Server prior to 2016, you can disable mixed extents’ space allocation on an entire instance by 
using trace flag  T1118 . Setting this flag can significantly reduce allocation map – pages contention on the busy 
 OLTP servers  , especially for the  tempdb  database.  I recommend you set this flag as a startup parameter on 
every SQL Server instance.  

 Every database file has its own chain of  GAM  and  SGAM  pages. The first  GAM  page is always the third page in 
the data file (page number 2). The first  SGAM  page is always the fourth page in the data file (page number 3). 
The next  GAM  and  SGAM  pages appear every 511,230 pages in the data files, which allows SQL Server to navigate 
through them quickly when needed. 

 SQL Server tracks the pages and extents used by the different types of pages ( IN_ROW_DATA ,  ROW_
OVERFLOW , and  LOB  pages) that belong to the object with another set of the allocation map pages, called 
the   index allocation map (IAM)   .       Every table/index has its own set of  IAM  pages, which are combined into 
separate linked lists called  IAM chains . Each IAM chain covers its own  allocation unit — IN_ROW_DATA ,  ROW_
OVERFLOW_DATA , and  LOB_DATA . 

 Each  IAM  page in the chain covers a particular  GAM  interval. The IAM page represents the bitmap, where 
each bit indicates if a corresponding extent stores the data that belongs to a particular allocation unit for a 
particular object. In addition, the first  IAM  page for the object stores the actual page addresses for the first 
eight object pages, which are stored in mixed extents. 

 Figure  1-15  shows a simplified version of the  allocation map   pages’ bitmaps.  

  Figure 1-15.     Allocation map pages            

 ■   Note   Partitioned tables and indexes have separate IAM chains for every partition. We will discuss 
partitioned tables in greater detail in Chapter   16    , “Data Partitioning.”  

 There is another type of allocation map page called  page free space (PFS)  .  Despite the name,  PFS  pages 
track a few different things. We can call  PFS  as a byte mask, where every byte stores information about a 
specific page, as shown in Figure  1-16 .  

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
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 The first three bits in the byte indicate the percentage of used space on the page. SQL Server tracks the 
used space for row-overflow and  LOB  data, as well as for in-row data in the heap tables, which we will discuss 
in the next chapter. These are the only cases in which the amount of free space on the page matters. 

 When you delete a data row from the table, SQL Server does not remove it from the data page, but rather 
marks the row as deleted. Bit 3 indicates whether the page has logically deleted (ghosted) rows. We will talk 
about the deletion process later in this chapter. 

 Bit 4 indicates if the page is an  IAM  page. Bit 5 indicates whether or not the page is in the mixed extent. 
Finally, bit 6 indicates if the page is allocated. 

 Every  PFS  page tracks 8,088 pages, or about 64 MB of data space. It is always the second page (page 1) in 
the file and every 8,088 pages thereafter. 

 There are two more types of allocation map pages. The seventh page (page 6) in the file is called a 
  differential changed map (DCM)  .       These pages keep track of extents that have been modified since the last 
 FULL  database backup. SQL Server uses  DCM  pages when it performs  DIFFERENTIAL  backups. 

 The last allocation map is called a   bulk changed map (BCM) .      It is the eighth page (page 7) in the file, 
and it indicates which extents have been modified in minimally logged operations since the last transaction 
log backup.  BCM  pages are used only with a  BULK-LOGGED  database recovery model. 

 ■   Note    We will discuss different types of backups and recovery models in Part VI of this book.  

 Both  DCM  and  BCM  pages are bitmasks that cover 511,230 pages in the data file.  

      Data Modifications    
 SQL Server does not read or modify data rows directly on the disk. Every time you access data, SQL Server 
reads it into memory. 

 Let’s look at what happens during data modifications. Figure  1-17  shows the initial state of the database 
before an update operation. There is a memory cache, called a  buffer pool , that caches some of the data pages.  

  Figure 1-16.    Page status byte in  PFS page            
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 Let’s assume that you want to update the data row from the page (1:28992). This page is not in the buffer 
pool, and SQL Server needs to read the data page from the disk. 

 When the page is in memory, SQL Server updates the data row. This process includes two different steps. 
First, SQL Server generates a new transaction log record and  synchronously  writes it to the transaction 
log file. Next, it modifies the data row and marks the data page as modified (dirty). Figure  1-18  illustrates 
this point.  

  Figure 1-17.    Data modification: Initial stage       

  Figure 1-18.    Data modification: Modifying data       

 Even though the new version of the data row is not yet saved in the data file, the transaction log record 
contains enough information to reconstruct (redo) the change if needed. 

 Finally, at some point, SQL Server  asynchronously  saves the dirty data pages into the data file and a 
special log record into the transaction log. This process is called a   checkpoint   . Figure  1-19  illustrates the 
checkpoint process.  
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 The insert process works in a similar manner. SQL Server reads the data page where the new data row 
needs to be inserted into the buffer pool, or it allocates a new extent/page if needed. After that, SQL Server 
synchronously saves the transaction log record, inserts a row into the page, and asynchronously saves the 
data page to the disk. 

 The same process transpires with deletions. As already mentioned, when you delete a row, SQL Server 
does not physically remove the row from the page. Rather, it flags deleted rows as ghosted (deleted) in the 
status bits. This speeds up deletion and allows SQL Server to undo it quickly if necessary. 

 The deletion process also sets a flag in the  PFS  page indicating that there is a ghosted row on the page. 
SQL Server removes ghosted rows in the background through a task called  ghost    cleanup   . 

 There is another SQL Server process called  lazy writer  that can save dirty pages on disk. As the opposite 
to checkpoint, which saves dirty data pages by keeping them in the buffer pool, lazy writer processes the 
 least recently used  data pages (SQL Server tracks buffer pool page usage internally), releasing them from 
memory. It releases both dirty and clean pages, saving dirty data pages on disk during the process. As you 
can guess, lazy writer runs in case of memory pressure or when SQL Server needs to bring more data pages 
to the buffer pool. 

 There are two key points that you need to remember. First, when SQL Server processes DML queries 
( SELECT ,  INSERT ,  UPDATE ,  DELETE , and  MERGE ), it never works with the data without first loading the data 
pages into the buffer pool. Second, when you modify the data, SQL Server synchronously writes log records 
to the transaction log. The modified data pages are saved to the data files asynchronously in the background.   

     Much Ado about  Data Row Size      
 As you already know, SQL Server is a very I/O-intensive application. SQL Server can generate an enormous 
amount of I/O activity, especially when it deals with large databases accessed by a large number of 
concurrent users. 

 There are many factors that affect the performance of queries, and the number of I/O operations 
involved is at the top of the list; that is, the more I/O operations a query needs to perform, the more data 
pages it needs to read, and the slower it gets. 

 The size of a data row affects how many rows will fit in a data page. Large data rows require more pages 
to store the data and, as a result, increase the number of I/O operations during scans. Moreover, objects will 
use more memory in the buffer pool. 

 Let’s look at the following example and create two tables, as shown in Listing  1-16 . The first table,  dbo.
LargeRows , uses a  char(2000)  fixed-length data type to store the data. As a result, you can fit only four rows 
per data page, regardless of the size of  Col  data. The second table,  dbo.SmallRows , uses a  varchar(2000)  
variable-length data type. Let’s populate both of the tables with the same data. 

  Figure 1-19.    Data modification: Checkpoint       

 



CHAPTER 1 ■ DATA STORAGE INTERNALS

24

     Listing 1-16.    Data row size and performance:  Table creation     

  create table dbo.LargeRows 
 ( 
     ID int not null, 
     Col char(2000) null 
 ); 

   create table dbo.SmallRows 
 ( 
     ID int not null, 
     Col varchar(2000)  null   
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) – 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.LargeRows(ID, Col) 
     select ID, 'Placeholder' from Ids; 

   insert into dbo.SmallRows(ID, Col) 
     select ID, 'Placeholder' from dbo.LargeRows; 

    Now, let’s run the selects that scan the  data   and compare the number of I/O operations and execution 
times. You can see the code in Listing  1-17 . The results I got on my computer are shown in Table  1-3 .  

     Listing 1-17.    Data row size and performance: SELECT  statements     

 select count(*) from dbo.LargeRows; 
 select count(*) from dbo.SmallRows; 

   Table 1-3.    Number of Reads and Execution Times of the Queries   

 Number of Reads  Execution Time 

  select count(*) from dbo.SmallRows   227  5 ms 

  select count(*) from dbo.LargeRows   16,384  31 ms 

   As you can see, SQL Server needs to perform about 70 times more reads while scanning  dbo.LargeRows  
data, which leads to the longer execution time. 

 You can improve the performance of the system by reducing the size of the data rows. One of the ways to 
do this is by using the smallest data type that covers the domain values when you create tables. For example:   

•    Use  bit  instead of  tinyint ,  smallint,  or  int  to store Boolean values. The  bit  data 
type uses one byte of storage space per eight columns.  
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http://www.allitebooks.org


CHAPTER 1 ■ DATA STORAGE INTERNALS

25

•   Use the appropriate date/time data type based on the precision you need. For 
example, an order-entry system can use  smalldatetime  (four bytes of storage space) 
or  datetime2(0)  (six bytes of storage space) rather than  datetime  (eight bytes of 
storage space) to store information on when an order was placed into the system 
when one-minute or one-second precision is enough.  

•   Use  decimal  or  real  rather than  float  whenever possible. Similarly, use  money  or 
 smallmoney  data types rather than  float  to store monetary values.  

•   Do not use large fixed-length char/binary data types unless the data is always 
populated and static in size.    

 As an example, let’s look at Table  1-4 , which shows two different designs for a table that collects 
location information.  

   Table 1-4.    Table That Collects Location  Information     

  create table dbo.Locations  
  (  
  ATime datetime not null, -- 8 bytes  
  Latitude float not null, -- 8 bytes  
  Longitude float not null, -- 8 bytes  
  IsGps int not null, -- 4 bytes  
  IsStopped int not null, -- 4 bytes  
  NumberOfSatellites int not null, -- 4 bytes  
  )  

  create table dbo.Locations2  
  (  
  ATime datetime2(0) not null, -- 6 bytes  
  Latitude decimal(9,6) not null, -- 5 bytes  
  Longitude decimal(9,6) not null, -- 5 bytes  
  IsGps bit not null, -- 1 byte  
  IsStopped bit not null, -- 0 bytes  
  NumberOfSatellites tinyint not null, -- 1 byte  
  )  

  Total: 36 bytes    Total: 18 bytes  

 Table  dbo.Locations2  uses 18  bytes   less storage space per data row. This does not appear particularly 
impressive in the scope of a single row; however, it quickly adds up. If a system collects 1,000,000 locations 
daily, 18 bytes per row produces about 18 MB of space savings per day — and 6.11 GB per year. In addition 
to the database space, it affects buffer pool memory usage, backup file size, network bandwidth, and a few 
other things. 

 It is especially important for databases in the cloud, where an excessive amount of data often forces 
you to use higher-tier virtual machines and cloud services and upgrade to premium storage. All of that can 
significantly increase your monthly service costs. 

 At the same time, you need to be careful with such an approach and not be too cheap. For example, 
choosing  smallint  as the data  type   for the  CustomerId  column is not a wise step. Even though 32,768 (or 
even 65,536) customers look good enough when you just start the development of a new system, the cost of 
code refactoring and changing the data type from  smallint  to  int  could be very high in the future.  

     Table Alteration 
  Let’s look at what happens when you are altering a table. There are three different ways that SQL Server can 
proceed, as follows:    

    1.    Alteration requires changing the metadata only. Examples of such an alteration 
include dropping a column, changing a not nullable column to a nullable one, or 
adding a nullable column to the table.  
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    2.    Alteration requires changing the metadata only, but SQL Server needs to scan the 
table data to make sure it conforms to the new definition. You can think about 
changing a nullable column to be not nullable, as an example. SQL Server needs 
to scan all data rows in the table to make sure that there are no null values stored 
in a particular column before changing the table metadata. Another example is 
changing a column data type to one with a smaller scope of domain values. If you 
change an  int  column to  smallint , SQL Server needs to check if there are any 
rows with values outside of the  smallint  boundaries.  

    3.    Alteration requires changing every data row in addition to the metadata. An 
example of such an operation is changing a column data type in a way that 
requires either a different storage format or a type conversion. For example, 
when you change a fixed-length  char  column to  varchar , SQL Server needs to 
move the data from the fixed- to the variable-length section of the row. Another 
example is when changing  char  data type to  int . This operation works as long as 
all  char  values can be converted to  int , but SQL Server must physically update 
every data row in the table converting the data.     

 It is worth noting that table-locking behavior during alteration is version and edition specific. For 
example, the Enterprise Edition of SQL Server 2012 allows adding a new  NOT NULL  column, instantly 
storing the information at the metadata level without changing every row in the table. As another example, 
SQL Server 2016 adds the option of altering columns and adding and dropping primary-key and unique 
constraints online using the same technique as an online index rebuild under the hood. 

 ■   Note    We will discuss SQL Server locking and the concurrency model in greater detail in Part III of the book.  

 Unfortunately, table alteration never decreases the size of a data row. When you drop a column from a 
table, SQL Server does not reclaim the space that the column used. 

 When you change the data type to decrease the data length, for example from  int  to  smallint , SQL 
Server continues to use same amount of storage space as before while checking that row values conform to 
the new data-type domain values. 

 When you change the data type to increase the data length, for example from  int  to  bigint , SQL Server 
adds the new column under the hood and copies the original data to the new column in all data rows, 
leaving the space used by the old column intact. 

 Let’s look at the following example. Listing  1-18  creates a table and checks the column offsets on the table. 

     Listing 1-18.    Table alteration: Table creation and original column offsets check   

  create table dbo.AlterDemo 
 ( 
     ID int not null, 
     Col1 int null, 
     Col2 bigint null, 
     Col3 char(10) null, 
     Col4 tinyint null 
 ); 

   select 
     c.column_id, c.Name, ipc.leaf_offset as [Offset in Row] 
     ,ipc.max_inrow_length as [Max Length], ipc.system_type_id as [Column Type] 
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 from 
     sys.system_internals_partition_columns ipc join sys.partitions p on 
         ipc.partition_id = p.partition_id 
     join sys.columns c on 
         c.column_id = ipc.partition_column_id and 
         c.object_id = p.object_id 
 where p.object_id = object_id(N'dbo.AlterDemo') 
 order by c.column_id; 

    Figure  1-20  shows the results of the query. All columns in the table are fixed length. The  Offset in Row  
column indicates the starting offset of the data column in the row. The  Max Length  column specifies how 
many bytes of data the column uses. Finally, the  Column Type  column shows the system data type of the 
column.  

  Figure 1-20.    Table alteration: Column offsets before table alteration       

  Figure 1-21.    Table alteration: Column offsets after table alteration       

 Now, let’s perform a few alterations, as shown in Listing  1-19 . 

     Listing 1-19.    Table alteration: Altering the table   

 alter table dbo.AlterDemo drop column Col1; 
 alter table dbo.AlterDemo alter column Col2 tinyint; 
 alter table dbo.AlterDemo alter column Col3 char(1); 
 alter table dbo.AlterDemo alter column Col4 int; 

   If you check the column offsets again, you’ll see the results shown in Figure  1-21 .  
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 Even though we dropped the  Col1  column, the offsets of the  Col2  and  Col3  columns have not been 
changed. Moreover, both the  Col2  and  Col3  columns require just one byte to store the data, although it does 
not affect the offsets of either. 

 Finally, the  Col4  column offset has been changed. The column data length has been increased, and SQL 
Server created the new column to accommodate the new data type values. 

 Before the alterations, a row needed 27 bytes to store the data. Alteration increased the required storage 
space to 31 bytes even though the actual data size is just 10 bytes. 21 bytes of storage space per row are 
wasted. 

 The only way to reclaim the space is by rebuilding a heap table or clustered index, which we will discuss 
in Chapter   6    . 

 If you rebuilt the table with the  ALTER TABLE dbo.AlterDemo REBUILD  command and checked the 
column offsets again, you would see the results shown in Figure  1-22 .  

  Figure 1-22.    Table alteration: Column offsets after table rebuild       

 As you can see, the table rebuild reclaims the unused space from the rows. 
 Finally, table alteration requires SQL Server to obtain a schema modification (SCH-M) lock on the 

table. It makes the table inaccessible by another session for the duration of the alteration. We will talk about 
schema locks in detail in Chapter   23    , “Schema Locks.”   

     Summary 
 SQL Server stores data in databases that consist of one or more transaction log files and one or more data 
files. Data files are combined into filegroups. Filegroups abstract the database file structure from database 
objects, which are logically stored in the filegroups rather than in database files. You should consider 
creating multiple data files for any filegroups that store volatile data. 

 SQL Server always zeros out transaction logs during a database restore and log file auto-growth. By 
default, it also zeros out data files unless instant file initialization is enabled. Instant file initialization 
significantly decreases database restore time and makes data file auto-growth instant. However, there is a 
small security risk associated with instant file initialization, as the uninitialized part of the database may 
contain data from previously deleted OS files. Nevertheless, it is recommended that you enable instant file 
initialization if such a risk is acceptable. 

 SQL Server stores information on 8,000 data pages combined into extents. There are two types of 
extents. Mixed extents store data from different objects. Uniform extents store data that belongs to a single 
object. SQL Server stores the first eight object pages in mixed extents. After that, only uniform extents are 
used during object space allocation. You should consider enabling trace flag T1118 to prevent mixed extents 
space allocation and reduce allocation map pages contention. 

 SQL Server uses special map pages to track allocations in the file. There are several allocation map 
types.  GAM  pages track which extents are allocated.  SGAM  pages track available mixed extents.  IAM  pages track 
extents that are used by the allocation units on the object (partition) level.  PFS  stores several page attributes, 
including free space available on the page, in heap tables and in row-overflow and LOB pages. 
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 SQL Server stores actual data in data rows. There are two different kinds of data types available. Fixed-
length data types always use the same storage space regardless of the value, even when it is NULL. Variable-
length data storage uses the actual data value size. 

 The fixed-length part of the row and internal overhead must fit into a single data page. Variable-length 
data can be stored in separate data pages, such as row-overflow and LOB pages, depending on the actual 
data size and data type. 

 SQL Server reads the data pages into a memory cache called the buffer pool. When data is modified, 
SQL Server synchronously writes the log record into the transaction log. It saves the modified data pages 
asynchronously during the checkpoint and lazy writer processes. 

 SQL Server is a very I/O-intensive application, and reducing the number of I/O operations helps to 
improve the performance of systems. It is beneficial to reduce the size of data rows by using optimal data 
types. This allows you to put more rows in the data page and decreases the number of data pages to be 
processed during scan operations. 

 You need to be careful when altering tables. This process never decreases the size of rows. The unused 
space from the rows can be reclaimed by rebuilding a table or clustered index.      
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    CHAPTER 2   

 Tables and Indexes: Internal 
Structure and Access Methods                          

 SQL Server stores data in tables and indexes. They represent a collection of data pages with rows that belong 
to a single entity or object. 

 By default, the data in tables is unsorted. You can store it in sorted order by defining a clustered index 
on the table. Moreover, you can create nonclustered indexes that persist another copy of the data from the 
index columns sorted in a different order. 

 In this chapter, we will talk about the internal structure of the indexes, cover how SQL Server uses them, 
and discuss how to write queries in a way that efficiently utilizes them. 

      Heap Tables   
  Heap tables  are tables without a clustered index. The data in heap tables is unsorted. SQL Server does not 
guarantee, nor does it maintain, a sorting order of the data in heap tables. 

 When you insert data into heap tables, SQL Server tries to fill pages as much as possible, although it 
does not analyze the actual free space available on a page. It uses the   page free space (PFS)    allocation  map 
  instead. SQL Server errs on the side of caution and uses the low value from the  PFS  free space percentage tier 
during the estimation. 

 For example, if a data page stores 4,100 bytes of data, and as result it has 3,960 bytes of free space 
available,  PFS  would indicate that the page is 51–80 percent full. SQL Server would not put a new row on 
the page if its size exceeds 20 percent (8,060 bytes * 0.2 = 1,612 bytes) of the page size. Let’s examine that 
behavior and create the table with the code shown in Listing  2-1 . 

      Listing 2-1.    Inserting data into heap tables: Creating the  table     

  create table dbo.Heap 
 ( 
     Val varchar(8000) not null 
 ); 

   ;with CTE(ID,Val) 
 as 
 ( 
     select 1, replicate('0',4089) 
     union all 
     select ID + 1, Val from CTE where ID < 20 



CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

32

 ) 
 insert into dbo.Heap 
     select Val from CTE; 

   select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.Heap'),0,null,'DETAILED'); 

    The following is the output of the code from Listing  2-1 : 

   Result: 1 row per page. 4,100 bytes are used. 3,960 bytes are available per page 

 page_count          avg_record_size_in_bytes           avg_page_space_used_in_percent 
 -----------         -------------------------          ------------------------------- 
 20                  4100                               50.6548060291574   

 At this point, the table stores 20 rows of 4,100 bytes each. SQL Server allocates 20 data pages—one page 
per row—with 3,960 bytes available.  PFS  would indicate that pages are 51–80 percent full. 

 The code shown in Listing  2-2  inserts a small 111-byte row, which is about 1.4 percent of the page size. 
As a result, SQL Server knows that the row would fit into one of the existing pages (they all have at least 20 
percent of free space available), and a new page should not be allocated. 

      Listing 2-2.    Inserting data into heap tables: Inserting a small  row     

  insert into dbo.Heap(Val) values(replicate('1',100)); 

   select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.Heap'),0,null,'DETAILED'); 

    The following is the output of the code from Listing  2-2 : 

   Result: 100 bytes row has been inserted into one of existing pages (100 bytes = ~1.4% of 
the page size) 

 page_count          avg_record_size_in_bytes           avg_page_space_used_in_percent 
 -----------         -------------------------          -------------------------------- 
 20                  3910.047                           50.7246108228317   

 Lastly, a third insert statement, shown in Listing  2-3 , needs 2,011 bytes for the row, which is about 25 
percent of the page size. SQL Server does not know if any of the existing pages have enough free space to 
accommodate the row, and, as a result, it allocates a new page. You can see that SQL Server does not access 
existing pages by checking the actual free space, and it uses  PFS  data for the estimation. 
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      Listing 2-3.    Inserting data into heap tables: Inserting a large  row     

  insert into dbo.Heap(Val) values(replicate('2',2000)); 

   select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.Heap'),0,null,'DETAILED'); 

    The following is the output of the code from Listing  2-3 : 

   Result: New page has been allocated for 2000 bytes row (2000 bytes = ~25% of the page size) 

 page_count          avg_record_size_in_bytes           avg_page_space_used_in_percent 
 -----------         -------------------------          ------------------------------- 
 21                  3823.727                           49.4922782307882   

 This behavior leads to the situation where SQL Server unnecessarily allocates new data pages, leaving 
large amounts of free space unused. It is not always a problem when the size of rows vary—in those cases, 
SQL Server eventually fills empty spaces with the smaller rows. However, especially in cases when all rows 
are relatively large, you can end up with large amounts of unused space on the data pages. 

 When selecting data from the heap table, SQL Server uses an  index allocation map (IAM)  to  find   the 
pages and extents that need to be scanned. It analyzes what extents belong to the table and processes them 
based on their allocation order rather than on the order in which the data was inserted. Figure  2-1  illustrates 
this point.  

  Figure 2-1.    Selecting data from the heap table       

 When you update a row in the heap table, SQL Server tries to accommodate it on the same page. If there 
is no free space available, SQL Server moves the new version of the row to another page and replaces the old 
row with a special 16-byte row called a   forwarding pointer .   The new version of the row is called  forwarded 
row . Figure  2-2  illustrates this point.  
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  There are two main reasons why forwarding pointers are used. First, they prevent updates of 
nonclustered index keys that reference the row. We will talk about nonclustered indexes in more detail later 
in this chapter. 

 In addition, forwarding pointers help minimize the number of duplicated reads; that is, situations in 
which a single row is read multiple times during a table scan. Let’s look at Figure  2-2  as an example of this 
and assume that SQL Server scans the pages in left-to-right order. Let’s further assume that the row in page 
3 was modified after the page was read at the time when SQL Server was reading page 4. The new version of 
the row would be moved to page 5, which has yet to be processed. Without forwarding pointers, SQL Server 
would not know that the old version of the row had already been read, and it would read it again during the 
page 5 scan. With forwarding pointers, SQL Server would ignore the forwarded rows — they have a bit set in 
the  Status Bits A  byte in the data row. 

 Although forwarding pointers help minimize duplicated reads, they introduce additional read 
operations at the same time. SQL Server follows the forwarding pointers and reads the new versions of the 
rows at the time it encounters them. That behavior can introduce an excessive number of I/O operations. 

 Let’s look at the following example, create the table, and insert three rows with the code shown in 
Listing  2-4 . 

      Listing 2-4.    Forwarding pointers and IO: Table creation and three rows inserted   

  create table dbo.ForwardingPointers 
 ( 
     ID int not null, 
     Val varchar(8000) null 
 ); 

   insert into dbo.ForwardingPointers(ID,Val) 
 values(1,null),(2,replicate('2',7800)),(3,null); 

   select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent 
    ,forwarded_record_count 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.ForwardingPointers'),0
    ,null,'DETAILED'); 

   set statistics io on 
 select count(*) from dbo.ForwardingPointers;    

  Figure 2-2.     Forwarding pointers         
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 The following is the output of the code from Listing  2-4 : 

   page_count    avg_record_size_in_bytes     avg_page_space_used_in_percent     forwarded_record_count 
 ---------    ----------------------    ---------------------------     -------------------- 
 1            2612.333                  98.8742278230788                0 

 Table 'ForwardingPointers'. Scan count 1, logical reads 1   

 As you can see in Figure  2-3 , all three rows fit into the single page, and SQL Server needs to read just 
that page when it scans the table.  

  Figure 2-3.    Forwarding pointers and I/O: Data pages after table creation       

 Now, let’s update two of the table rows by increasing their size. The new versions of the rows will not 
fit into the page anymore, which introduces the allocation of two new pages and two forwarding pointers. 
Listing  2-5  shows the code for this. 

      Listing 2-5.    Forwarding pointers and I/O: Increasing size of the rows   

  update dbo.ForwardingPointers set Val = replicate('1',5000) where ID = 1; 
 update dbo.ForwardingPointers set Val = replicate('3',5000) where ID = 3; 

   select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent, forwarded_record_count 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.ForwardingPointers'),0,null
    ,'DETAILED'); 

   set statistics io on 
 select count(*) from dbo.ForwardingPointers    

 The following is the output of the code from Listing  2-5 : 

   page_count    avg_record_size_in_bytes     avg_page_space_used_in_percent     forwarded_record_count 
 ---------    ---------------------     ----------------------------     -------------------- 
 3            3577.4                    73.6800963676798                 2 

 Table 'ForwardingPointers'. Scan count 1, logical reads 5   

 When SQL Server reads the forwarding pointer rows from page 1, it follows them and reads pages 2 
and 3 immediately. After that, SQL Server reads those pages one more time during the regular  IAM  scan 
process. As a result, we have five read operations, even though our table has just three data pages. Figure  2-4  
illustrates this point.  
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  Figure 2-4.    Forwarding pointers and I/O: Reading data when forwarding pointers exist       

 As you can see, the large number of forwarding pointers leads to extra I/O operations and significantly 
reduces the performance of the queries accessing the data. Companion materials for this book include the 
script that demonstrates this problem in a large scope with a table that includes a large amount of data. 

 When the size of the forwarded row is reduced by another update and the data page with forwarding 
pointer has enough space to accommodate the updated version of the row, SQL Server may move it back to 
its original data page and remove the forwarding pointer row. Nevertheless, the only reliable way to get rid 
of all of the forwarding pointers is by rebuilding the heap table. You can do that by using an  ALTER TABLE 
REBUILD  statement. 

 Heap tables can be useful in staging environments, where you want to import a large amount of data 
into the system as fast as possible. Inserting data into heap tables can often be faster than inserting it into 
tables with clustered indexes. Nevertheless, during a regular workload, tables with clustered indexes usually 
outperform heap tables, which have suboptimal space control and extra I/O operations introduced by 
forwarding pointers.   

      Clustered Indexes   
 A clustered index  dictates   the physical order of the data in a table, which is sorted according to the clustered 
index key. The table can have only one clustered index defined. 

 Let’s assume that you want to create a clustered index on the heap table with the data. As a first step, 
which is shown in Figure  2-5 , SQL Server creates another copy of the data that is then sorted based on the 
value of the clustered key. The data pages are linked in a double-linked list where every page contains 
pointers to the next and previous pages in the chain. This list is called the  leaf level  of the index, and it 
contains the actual table data.  
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 ■   Note    The sort order on the page is controlled by a slot array. Actual data on the page is unsorted.  

 When the leaf level consists of multiple pages, SQL Server starts to build an  intermediate level  of the 
index, as shown in Figure  2-6 .  

  Figure 2-5.    Clustered index structure:  Leaf level         

  Figure 2-6.    Clustered index structure: Intermediate and leaf levels       

 The  intermediate level   stores one row per leaf-level page. It stores two pieces of information: the 
physical address and the minimum value of the index key from the page it references. The only exception is 
the very first row on the first page, where SQL Server stores  NULL  rather than the minimum index key value. 
With such optimization, SQL Server does not need to update non-leaf-level rows when you insert the row 
with the lowest key value in the table. 

 The pages on the intermediate levels are also linked to the double-linked list. SQL Server adds more 
and more intermediate levels until there is a level that includes just the single page. This level is called the 
  root level ,   and it becomes the entry point to the index, as shown in Figure  2-7 .  
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 As you can see, the index always has one leaf level, one root level, and zero or more intermediate levels. 
The only exception is when the index data fits into a single page. In that case, SQL Server does not create the 
separate root-level page, and the index consists of just the single leaf-level page. 

 The number of levels in the index largely depends on the row and index key sizes. For example, the 
index on the 4-byte  integer  column will require 13 bytes per row on the intermediate and root levels. Those 
13 bytes consist of a 2-byte slot-array entry, a 4-byte index-key value, a 6-byte page pointer, and a 1-byte row 
overhead, which is adequate because the index key does not contain variable-length and NULL columns. 

 As a result, you can accommodate 8,060 bytes / 13 bytes per row = 620 rows per page. This means that, 
with the one intermediate level, you can store information about up to 620 * 620 = 384,400 leaf-level pages. 
If your data row size is 200 bytes, you can store 40 rows per leaf-level page and up to 15,376,000 rows in 
the index with just three levels. Adding another intermediate level to the index would essentially cover all 
possible integer values. 

 ■   Note    In real life, index fragmentation would reduce those numbers. We will talk about index fragmentation 
in Chapter   6    .  

 There are three different ways in which SQL Server can read data from the index. The first one is 
by an  ordered scan.  Let’s assume that we want to run the  SELECT Name FROM dbo.Customers ORDER BY 
CustomerId  query. The data on the leaf level of the index is already sorted based on the  CustomerId  column 
value. As a result, SQL Server can scan the leaf level of the index from the first to the last page and return the 
rows in the order in which they were stored. 

 SQL Server starts with the root page of the index and reads the first row from there. That row references 
the intermediate page with the minimum key value from the table. SQL Server reads that page and repeats 
the process until it finds the first page on the leaf level. Then, SQL Server starts to read rows one by one, 
moving through the linked list of the pages until all rows have been read. Figure  2-8  illustrates this process.  

  Figure 2-7.    Clustered index structure:  Root level         
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 The execution plan for the preceding query shows the  Clustered Index Scan  operator with the  Ordered  
property set to  true,  as shown in Figure  2-9 .  

  Figure 2-8.    Ordered index scan       

  Figure 2-9.    Ordered index scan execution  plan         

 It is worth mentioning that the  order by  clause is not required for an ordered scan to be triggered. 
An ordered scan just means that SQL Server reads the data based on the order of the index key. 

 SQL Server can navigate through indexes in both directions, forward and backward. However, there is 
one important aspect that you must keep in mind: SQL Server does not use parallelism during backward 
index scans. 
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 ■   Tip    You can check scan direction by examining the  INDEX SCAN  or  INDEX SEEK  operator properties in 
the execution plan. Keep in mind, however, that Management Studio does not display these properties in the 
graphical representation of the execution plan. You need to open the Properties window to see it by selecting the 
operator in the execution plan and choosing the  View/Properties Window  menu item or by pressing the F4 key.  

 The Enterprise Edition of SQL Server has an optimization feature called   merry-go-round scan    that 
allows multiple tasks to share the same index scan. Let’s assume that you have session S1, which is scanning 
the index. At some point in the middle of the scan, another session, S2, runs a query that needs to scan the 
same index. With a merry-go-round scan, S2 joins S1 at its current scan location. SQL Server reads each page 
only once, passing rows to both sessions. 

 When the S1 scan reaches the end of the index, S2 starts scanning data from the beginning of the index 
until the point where the S2 scan started. A merry-go-round scan is another example of why you cannot rely 
on the order of the index keys and why you should always specify an  ORDER BY  clause when it matters. 

 The next access method after the ordered scan is called an   allocation order scan .   SQL Server accesses 
the table data through the IAM pages, similar to how it does so with heap tables. The  SELECT Name FROM 
dbo.Customers WITH (NOLOCK)  query and Figure  2-10  illustrate this method. Figure  2-11  shows the query 
execution plan.   

  Figure 2-10.    Allocation order scan       
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  Figure 2-11.    Allocation order scan execution plan       

  Figure 2-12.    Index  seek         

 Unfortunately, it is not easy to detect when SQL Server uses an allocation order scan. Even though the 
 Ordered  property in the execution plan shows  false , it indicates that SQL Server does not care whether the 
rows were read in the order of the index key, not that an allocation order scan was used. 

 An  allocation order scan   can be faster for scanning large tables, although it has a higher startup cost. 
SQL Server does not use this access method when the table is small. Another important consideration is 
data consistency. SQL Server does not use forwarding pointers in tables that have a clustered index, and an 
allocation order scan can produce inconsistent results. Rows can be skipped or read multiple times due to 
the data movement caused by page splits. As a result, SQL Server usually avoids using allocation order scans 
unless it reads the data in  READ UNCOMMITTED  or  SERIALIZABLE  transaction-isolation levels. 

 ■   Note   We will talk about page splits and fragmentation in Chapter   6    , “Index Fragmentation,” and discuss 
locking and data consistency in Part III, “Locking, Blocking, and Concurrency.”  

 The last index access method is called  index seek . The  SELECT Name FROM dbo.Customers WHERE 
CustomerId BETWEEN 4 AND 7  query and Figure  2-12  illustrate the operation.  
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 In order to read the range of rows from the table, SQL Server needs to find the row with the minimum 
value of the key from the range, which is 4. SQL Server starts with the root page, where the second row 
references the page with the minimum key value of 350. It is greater than the key value that we are looking for 
(4), and SQL Server reads the intermediate-level data page (1:170) referenced by the first row on the root page. 

 Similarly, the intermediate page leads SQL Server to the first leaf-level page (1:176). SQL Server reads 
that page, then it reads the rows with CustomerIds equal to 4 and 5, and, finally, it reads the two remaining 
rows from the second page. 

 The execution plan is shown in Figure  2-13 .  

  Figure 2-13.    Index seek execution  plan         

 As you can guess, index seek is more efficient than index scan, because SQL Server processes just the 
subset of rows and data pages rather than scanning the entire table. 

 Technically speaking, there are two kinds of index seek operations. The first is called a  singleton lookup , 
or sometimes  point-lookup , where SQL Server seeks and returns a single row. You can think about  WHERE 
CustomerId = 2  predicate as an example. The other type of index seek operation is called a  range scan , and 
it requires SQL Server to find the lowest or highest value of the key and scan (either forward or backward) the 
set of rows until it reaches the end of scan range. The predicate  WHERE CustomerId BETWEEN 4 AND 7  leads 
to the range scan. Both cases are shown as  INDEX SEEK  operations in the execution plans. 

 As you can guess, it is entirely possible for range scans to force SQL Server to process a large number or 
even all data pages from the index. For example, if you changed the query to use a  WHERE CustomerId > 0  
predicate, SQL Server would read all rows/pages, even though you would have an  Index Seek  operator 
displayed in the execution plan. You must keep this behavior in mind and always analyze the efficiency of 
range scans during query performance tuning. 

 There is a concept in relational databases called   SARGable predicates ,   which stands for  S earch 
 Arg ument  able . The predicate is SARGable if SQL Server can utilize an index seek operation, if an index 
exists. In a nutshell, predicates are SARGable when SQL Server can isolate the single value or range of index 
key values to process, thus limiting the search during predicate evaluation. Obviously, it is beneficial to write 
queries using SARGable predicates and utilize index seek whenever possible. 

 SARGable predicates include the following  operators:    = ,  > ,  >= ,  < ,  <= ,  IN ,  BETWEEN , and  LIKE  (in case of prefix 
matching). Non-SARGable operators include  NOT ,  <> ,  LIKE  (in case of non-prefix matching), and  NOT IN . 

 Another circumstance for making predicates non-SARGable is using functions or mathematical 
calculations against the table columns. SQL Server has to call the function or perform the calculation for 
every row it processes. Fortunately, in some of cases you can refactor the queries to make such predicates 
SARGable. Table  2-1  shows a few examples of this.  
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   Table 2-1.    Examples of Refactoring Non-SARGable Predicates into SARGable Ones   

 Operation  Non-SARGable implementation  SARGable implementation 

 Mathematical calculations   Column - 1 = @Value    Column = @Value + 1  

  ABS(Column) = 1    Column IN (-1, 1)  

 Date manipulation   CAST(Column as date) = @Date 
(in SQL Server prior 2008)  

  convert(datetime, convert
(varchar(10),Column,121))  

  Column >= @Date and  
  Column < DATEADD(day,1,@Date)  

  DATEPART(year,Column) = @Year    Column >= @Year and  
  Column < DATEADD(year,1,@Year)  

  DATEADD(day,7,Column) > 
    GETDATE()  

  Column >  
      DATEADD(day,-7,GETDATE())  

 Prefix search   LEFT(Column,3) = 'ABC'    Column LIKE 'ABC%'  

 Substring search   Column LIKE '%ABC%'    Use Full-Text Search or other 
technologies  

 Another important factor that you must keep in mind is  type conversion . In some cases, you can make 
predicates non-SARGable by using incorrect data types. Let’s create a table with a  varchar  column and 
populate it with some data, as shown in Listing  2-6 . 

     Listing 2-6.    SARG predicates and data types: Test table  creation     

  create table dbo.Data 
 ( 
     VarcharKey varchar(10) not null, 
     Placeholder char(200) 
 ); 

   create unique clustered index IDX_Data_VarcharKey 
 on dbo.Data(VarcharKey); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Data(VarcharKey) 
     select convert(varchar(10),ID) from IDs;    

 The clustered index key column is defined as  varchar  ,  even though it stores integer values. Now, let’s 
run two selects, as shown in Listing  2-7 , and look at the execution plans. 
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     Listing 2-7.    SARG predicates and data types: Select with  integer parameter     

  declare 
     @IntParam int = '200' 

   select * from dbo.Data where VarcharKey = @IntParam; 
 select * from dbo.Data where VarcharKey = convert(varchar(10),@IntParam);    

 As you can see in Figure  2-14 , in the case of the integer parameter, SQL Server scans the clustered 
index, converting  varchar  to an integer for every row. In the second case, SQL Server converts the integer 
parameter to a  varchar  at the beginning and utilizes a much more efficient  clustered index seek  operation.  

  Figure 2-14.    SARG predicates and data types: Execution plans with  integer parameter         

 ■   Tip    Pay attention to the column data types in the join predicates. Implicit or explicit data type conversions 
can significantly decrease the performance of the queries.  

 You will observe very similar behavior in the case of unicode string parameters. Let’s run the queries 
shown in Listing  2-8 . Figure  2-15  shows the execution plans for the statements.  

      Listing 2-8.    SARG predicates and data types: Select with string parameter   

 select * from dbo.Data where VarcharKey = '200'; 
 select * from dbo.Data where VarcharKey = N'200'; -- unicode parameter 
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 As you can see, a unicode string parameter is non-SARGable for  varchar  columns. This is a much 
bigger issue than it appears to be. While you rarely write queries in this way, as shown in Listing  2-8 , 
most application development environments nowadays treat strings as unicode. As a result, SQL Server 
client libraries generate unicode ( nvarchar ) parameters for string objects unless the parameter data 
type is explicitly specified as  varchar . This makes the predicates non-SARGable, and it can lead to major 
performance hits due to unnecessary scans, even when  varchar  columns are indexed. 

 ■   Important   Always specify parameter data types in client applications. For example, in ADO.Net, use 
 Parameters.Add("@ParamName",SqlDbType.Varchar, <Size>).Value = stringVariable  instead of 
 Parameters.Add("@ParamName").Value = stringVariable  overload. Use mapping in ORM frameworks to 
explicitly specify non-unicode attributes in the classes.  

 It is also worth mentioning that  varchar  parameters are SARGable for  nvarchar  unicode data columns.  

      Composite Indexes   
 Indexes with multiple key columns are called  composite (or compound) indexes . The data in the composite 
indexes is sorted on a per-column basis from leftmost to rightmost columns. Figure  2-16  shows the structure 
of a  composite index.     

  Figure 2-15.    SARG predicates and data types: Execution plans with  string parameter          
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 The SARGability of a composite index depends on the SARGability of the predicates on the leftmost 
index columns. Table  2-2  shows examples of SARGable and non-SARGable predicates using the index from 
Figure  2-16  as the example.   

  Figure 2-16.    Composite index structure       

   Table 2-2.    SARGable and Non-SARGable Predicates on a Composite Index   

 SARGable predicates  Non-SARGable predicates 

  LastName = 'Clark' and FirstName = 'Steve'    LastName <> 'Clark' and FirstName = 'Steve'  

  LastName = 'Clark' and FirstName <> 'Steve'    LastName LIKE '%ar%' and FirstName = 'Steve'  

  LastName = 'Clark'    FirstName = 'Steve'  

  LastName LIKE 'Cl%'  

      Nonclustered Indexes   
 While a clustered  index   specifies how data rows are sorted in a table, nonclustered indexes define a separate 
sorting order for a column or set of columns and persist them as a separate data structure. 

 You can think about a book as an example. Page numbers would represent the book’s  clustered index . 
The index at the end of the book shows the list of terms from the book in alphabetical order. Each term 
references the page numbers where the term is mentioned. The index represents the  nonclustered index  of 
the terms. 

 When you need to find a term in the book, you can look it up in the index. It is a fast and efficient 
operation, because terms are sorted in alphabetical order. Next, you can quickly find the pages on which the 
terms are mentioned using the page numbers specified there. Without the index, the only choice would be 
reading all of the pages in the book one by one until all references to the term were found. 

 The nonclustered index structure is very similar to the clustered index structure. Let’s create a 
nonclustered index on the  Name  column from the  Customers  table with a  CREATE NONCLUSTERED INDEX IDX_
NCI ON dbo.Customers(Name)  statement. Figure  2-17  shows the structures of both indexes.  
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 The leaf level of the nonclustered index is sorted based on the value of the index key— Name  in our case. 
Every row on the leaf level includes the key value and  row-id . For heap tables,  row-id  is the physical location 
of the row, defined as  file:page:slot , and has the size of eight bytes. 

 ■   Note   Another reason why SQL Server uses forwarding pointers in heap tables is to prevent the updating of 
nonclustered index rows when the original row in the heap table has been moved to another data page after the 
update. Nonclustered indexes keep the old row-id, which references the forwarding pointer row.  

 For tables with a clustered index,  row-id  represents the value of the clustered index key of the row. 

 ■   Important   This is a very important point to remember. Nonclustered indexes do not store information about 
physical row location when a table has a clustered index. They store the value of the clustered index key instead.  

 Like clustered indexes, the intermediate and root levels of nonclustered indexes store one row per page 
from the level they reference. That row consists of the physical address and the minimum value of the key 
from the page. In addition, for non-unique indexes, it also stores the row-id of such a row. 

 ■   Note   It is important to define a nonclustered index as unique when the data is unique. Intermediate- and 
root-level rows of unique indexes are more compact, because SQL Server does not maintain the row-id there. 
Moreover, the uniqueness of the index helps Query Optimizer generate more efficient execution plans.  

 SQL Server 2016 allows you to define nonclustered indexes with a key size up to 1,700 bytes. Previous 
versions of SQL Server limit that to 900 bytes. The maximum clustered index key size is 900 bytes in all versions. 
SQL Server allows the creation of indexes with a key size that can potentially exceed this limit because of 
variable-length columns, although you would not be able to insert such rows into a table. Listing  2-9  shows an 
example of this (you need to use the 900-bytes threshold if you run it on SQL Server 2014 or below) 

  Figure 2-17.    Clustered and nonclustered index  structures         
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     Listing 2-9.    1700-bytes limitation on the index  key size     

  create table dbo.LargeKeys 
 ( 
     Col1 varchar(1000) not null, 
     Col2 varchar(1000) not null 
 ); 

   -- Success with the warning 
 create nonclustered index IDX_NCI on dbo.LargeKeys(Col1,Col2); 

    Warning:  
  Warning! The maximum key length is 1700 bytes. The index 'IDX_NCI' has a maximum length of 
2000 bytes. For some combination of large values, the insert/update operation will fail.  

   -- Success: 
 insert into dbo.LargeKeys(Col1, Col2) values('Small','Small'); 

   -- Failure: 
 insert into dbo.LargeKeys(Col1, Col2) values(replicate('A',900),replicate('B',900)); 

    Error:  
  Msg 1946, Level 16, State 3, Line 4  
  Operation failed. The index entry of length 1800 bytes for the index 'IDX_NCI' exceeds the 
maximum length of 1700 bytes.     

 Let’s look at how SQL Server uses nonclustered indexes, assuming that you run the following query: 
 SELECT * FROM dbo.Customers WHERE Name = 'Boris'  

 As shown in the first step in Figure  2-18 , SQL Server starts with the root page of the nonclustered index. 
   The key value  Boris  is less than  Dan,  and SQL Server goes to the intermediate page referenced from the first 
row in the root-level page.  

  Figure 2-18.    Nonclustered index usage: Step 1       
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 The second row of the intermediate page indicates that the minimum key value on the page is  Boris , 
although the index had not been defined as unique and SQL Server does not know if there are other  Boris  
rows stored on the first page. As a result, it goes to the first leaf page of the index and finds the row with the 
key value  Boris  and a row-id equal to 7 there. 

 In our case, the nonclustered index does not have any data besides  CustomerId  and  Name,  and SQL 
Server needs to traverse the clustered index tree and obtain the data from other columns from there. This 
operation is called  key lookup . 

 In the next step, shown in Figure  2-19 , SQL Server comes back to the nonclustered index and reads 
the second page from the  leaf level.   It finds another row with the key value  Boris  and row-id 93712, and it 
performs a key lookup again.  

  Figure 2-19.    Nonclustered index usage: Step  2         

 As you can see, SQL Server had to read the data pages ten times, even though the query returned just 
two rows. The number of I/O operations can be calculated based on the following formula:  (number of 
levels in nonclustered index) + (number of pages read from the leaf level of nonclustered 
index) + (number of rows found) * (number of levels in clustered index).  As you can guess, 
a large  number of rows found  and, therefore, a large number of key lookup operations, lead to a large 
number of I/O operations, which makes nonclustered index usage inefficient. 

 There is another important factor contributing to nonclustered index inefficiency.  Key lookups   read the 
data from different places in the data files. Even though data pages from root and intermediate index levels 
are often cached and introduce just logical reads, accessing leaf-level pages leads to random physical I/O 
activity. In contrast, index scans trigger sequential I/O activity, which is more efficient than random I/O, 
especially in the case of magnetic hard drives. 
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 KEY LOOKUPS VS. RID LOOKUPS

 Nonclustered indexes defined on heap tables reference the actual location of the rows in the data file. 
SQL Server uses the  RID lookup  operation to obtain the data row from the heap. In theory, RID lookup 
seems to be more efficient than key lookup, because it can read the row directly without traversing the 
root and intermediate levels of the clustered index. 

 In reality, however, the performance impact of reading non-leaf clustered index data pages is relatively 
small. Those pages are usually cached in the buffer pool and do not introduce physical I/O to access. 
Logical reads still introduce some overhead; however, it is usually insignificant compared to physical I/O 
and disk access. Moreover, forwarding pointers in the heap tables can introduce multiple physical reads 
during a single RID lookup operation, which would impact its performance.  

 As a result, SQL Server is very conservative in choosing nonclustered indexes when it expects that a 
large number of key or RID lookup operations will be required. To illustrate this, let’s create a table and 
populate it with the data shown in Listing  2-10 . 

      Listing 2-10.    Nonclustered index usage: Creating a test  table      

  create table dbo.Books 
 ( 
     BookId int identity(1,1) not null, 
     Title nvarchar(256) not null, 
     -- International Standard Book Number 
     ISBN char(14) not null, 
     Placeholder char(150) null 
 ); 

   create unique clustered index IDX_Books_BookId on dbo.Books(BookId); 

   -- 1,252,000 rows 
 ;with Prefix(Prefix) 
 as 
 ( 
     select 100 
     union all 
     select Prefix + 1 
     from Prefix 
     where Prefix < 600 
 ) 
 ,Postfix(Postfix) 
 as 
 ( 
     select 100000001 
     union all 
     select Postfix + 1 
     from Postfix 
     where Postfix < 100002500 
 ) 
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 insert into dbo.Books(ISBN, Title) 
     select 
         convert(char(3), Prefix) + '-0' + convert(char(9),Postfix) 
         ,'Title for ISBN' + convert(char(3), Prefix) + '-0' + convert(char(9),Postfix) 
     from Prefix cross join Postfix 
 option (maxrecursion 0); 

   create nonclustered index IDX_Books_ISBN on dbo.Books(ISBN);    

 At this point, the table has 1,252,000 rows. The  ISBN  column is populated with data in the following 
format:  <Prefix>-<Postfix>  with prefixes from 100 to 600 and 2,500 postfixes each. 

 Let’s try to select the data for one of the prefixes, as shown in Listing  2-11 . 

     Listing 2-11.    Nonclustered index usage: Selecting data for a single prefix   

 -- 2,500 rows 
 select * from dbo.Books where ISBN like '210%'   

 As you can see in Figure  2-20 , SQL Server decided to use a  nonclustered index seek  with a key lookup 
as the execution plan. Selecting 2,500 rows introduces 7,676 logical reads. The clustered index  IDX_Books_
BookId  has three levels, which leads to 7,500 reads during key lookup operations.    The remaining 176 reads 
were performed on the nonclustered index when SQL Server traversed the index tree and read pages during 
a range scan operation.  

  Figure 2-20.    Selecting data for the single prefix: Execution plan       

 For the next step, let’s select the data for five different prefixes. We will run two different selects. In the 
first one, we will give SQL Server the ability to choose the execution plan it wishes. In the second select, 
we will force the use of a nonclustered index with the  index  hint. The code to accomplish this is shown in 
Listing  2-12 . Figure  2-21  shows the execution plans.  

     Listing 2-12.    Nonclustered index usage: Selecting data for five prefixes   

 -- 12,500 rows 
 select * from dbo.Books where ISBN like '21[0-4]%' 
 select * from dbo.Books with (index = IDX_BOOKS_ISBN) where ISBN like '21[0-4]%'   
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 As you can see, in our case selecting 12,500 rows using a nonclustered index seek introduced more 
logical reads when compared to scanning the entire table. It is worth mentioning that 12,500 rows are less 
than 1 percent of the total number of rows in the table.  This threshold varies, although it is very low . We will 
discuss how SQL Server performs such an estimation in the next chapter. 

 ■   Important   SQL Server does not use nonclustered indexes if it estimates that a large number of key or RID 
lookup operations will be required.  

 Nonclustered indexes help improve the performance of queries, although this comes at its own price. 
They maintain a copy of the data from the index columns. When columns are updated, SQL Server needs to 
update them in the every index in which they are included. 

 Even though SQL Server allows the creation of either 250 or 999 nonclustered indexes per table, 
depending on the version, it is not a good idea to create a lot of them. We will talk about indexing strategies 
in Chapter   7    , “Designing and Tuning the Indexes.”   

     Summary 
 Clustered indexes define the sorting order for data in a table. Nonclustered indexes store a copy of the data 
for a subset of table columns sorted in the order in which the key columns are defined. 

 Both clustered and nonclustered indexes are stored in a multiple-level tree-like structure called a 
 B-Tree . Data pages on each level are linked in a double-linked list. 

  Figure 2-21.    Selecting data for five prefixes: Execution plans       
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 The leaf level of the clustered index stores the actual table data. The intermediate- and root-level pages 
store one row per page from the next level. Every row includes the physical address and minimum value of 
the key from the page that it references. 

 The leaf level of a nonclustered index stores the data from the index columns and row-id. For tables 
with a clustered index, row-id is the clustered key value of the row. Then intermediate and root levels of a 
nonclustered index are similar to those of a clustered index, although when the index is not unique, those 
rows store row-id in addition to the minimum index key value. It is beneficial to define indexes as unique, 
as it makes the intermediate and root levels more compact. Moreover, uniqueness helps Query Optimizer 
generate more efficient execution plans. 

 SQL Server needs to traverse the clustered index tree to obtain any data from the columns that are not 
part of the nonclustered index. Those operations, called  key lookups , are expensive in terms of I/O. SQL 
Server does not use nonclustered indexes if it expects that a large number of key or RID lookup operations 
will be required. 

 Tables with a clustered index usually outperform heap tables. It is thus beneficial to define a clustered 
index on tables in most cases. 

 SQL Server can utilize indexes in two separate ways. The first way is an  index scan  operation, where it 
reads every page from the index. The second one is an  index seek  operation, where SQL Server processes just 
a subset of the index pages. It is beneficial to use SARGable predicates in queries, which allows SQL Server to 
perform index seek operations by exactly matching the row or range of rows in the index. 

 You should avoid calculations and/or function calls against data columns, because it makes predicates 
non-SARGable. You should also take care to use the correct data types for parameters, especially when 
dealing with unicode and non-unicode strings.     
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    CHAPTER 3   

 Statistics                          

  SQL Server Query Optimizer   uses a  cost-based model   when choosing an execution plan for queries. It 
estimates the costs of the different execution plans and chooses the one with the lowest cost. Remember, 
however, that SQL Server does not search for the  best  execution plan available for the query, as evaluating all 
possible alternatives is time consuming and expensive in terms of the CPU. The goal of Query Optimizer is 
finding a  good enough  execution plan,  fast enough . 

  Cardinality estimation   (estimation of the number of rows that need to be processed at each step of 
query execution) is one of the most important factors in  query optimization  . This number affects the choice 
of join strategies, amount of memory (memory grant) required for query execution, and quite a few other 
things. 

 The choice of indexes to use while accessing the data is among those factors. As you will remember, key 
and RID lookup operations are expensive in terms of I/O, and SQL Server does not use nonclustered indexes 
when it estimates that a large number of these operations will be required. SQL Server maintains statistics 
on indexes — and in some cases on columns — which help in performing such estimations. 

     Introduction to SQL Server Statistics 
  SQL Server statistics  are system objects that contain information about  data distribution   in the index key 
values and, sometimes, in regular column values. Statistics can be created on any data type that supports 
comparison operations, such as  > ,  < ,  = , and so on. 

 Let’s examine the  IDX_BOOKS_ISBN  index statistics from the  dbo.Books  table we created in Listing 2-15 
in the previous chapter. You can do this by using the  DBCC SHOW_STATISTICS ('dbo.Books',IDX_BOOKS_ISBN ) 
command. The results are shown in Figure  3-1 .  
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 As you can see, the   DBCC SHOW_STATISTICS  command   returns three result sets. The first one contains 
general metadata information about the statistics, such as name, update date, number of rows in the index 
at the time when the statistics were updated, and so on. The  Steps  column in the first result set indicates 
the number of steps/values in the histogram (more about this later). The  Density  value is not used by Query 
Optimizer and is displayed for backward-compatibility purposes only. 

 The second result set, called   density vector      , contains information about density for the combination 
of key values from the statistics (index). It is calculated based on a  1 / number of distinct values  
formula, and it indicates how many rows, on average, each combination of key values has. Even though the 
 IDX_Books_ISBN  index has just one key column  ISBN  defined, it also includes a clustered index key as part 
of the index row. Our table has 1,252,500 unique ISBN values, and the density for the  ISBN  column is  1.0 / 
1,252,500 = 7.984032E-07 . All combinations of the  (ISBN, BookId)  columns are also unique and have the 
same density. 

 The last result set is called the  histogram . Every record in the histogram, called a  histogram step , 
includes the sample key value in the leftmost column of the statistics (index) and information about the 
data distribution in the range of values from the preceding to the current  RANGE_HI_KEY  value. Let’s examine 
 histogram columns   in greater depth.

   The  RANGE_HI_KEY  column stores the sample value of the key. This value is the 
upper-bound key value for the range defined by the histogram step. For example, 
record (step) #3 with  RANGE_HI_KEY = '104-0100002488'  in the histogram from 
Figure  3-1  stores information about the interval from  ISBN > '101-0100001796'  
to  ISBN <= '104-0100002488' .  

  The  RANGE_ROWS  column estimates the number of rows within the interval. In our 
case, the interval defined by record (step) #3 has 8,191 rows.  

   EQ_ROWS  indicates how many rows have a key value equal to the  RANGE_HI_KEY  
upper-bound value. In our case, there is only one row with  ISBN = '104-0100002488' .  

   DISTINCT_RANGE_ROWS  indicates how many distinct values of the keys are 
within the interval. In our case, all of the values of the keys are unique, 
so  DISTINCT_RANGE_ROWS = RANGE_ROWS .  

  Figure 3-1.    DBCC SHOW_STATISTICS  output         
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   AVG_RANGE_ROWS  indicates the average number of rows per distinct key 
value in the interval. In our case, all of the values of the keys are unique, 
so  AVG_RANGE_ROWS = 1 .    

 Let’s insert a set of duplicate  ISBN  values into the index with the code shown in Listing  3-1 . 

     Listing 3-1.    Inserting duplicate ISBN values into the  index  .   

  ;with Prefix(Prefix) 
 as ( select Num from (values(104),(104),(104),(104),(104)) Num(Num) ) 
 ,Postfix(Postfix) 
 as 
 ( 
     select 100000001 
     union all 
     select Postfix + 1 from Postfix where Postfix < 100002500 
 ) 
 insert into dbo.Books(ISBN, Title) 
     select 
         convert(char(3), Prefix) + '-0' + convert(char(9),Postfix) 
         ,'Title for ISBN' + convert(char(3), Prefix) + '-0' + convert(char(9),Postfix) 
     from Prefix cross join Postfix 
 option (maxrecursion 0); 

   -- Updating the statistics 
 update statistics dbo.Books IDX_Books_ISBN with fullscan; 

    Now, if you run the  DBCC SHOW_STATISTICS ('dbo.Books',IDX_BOOKS_ISBN )  command   again, you will 
see the results shown in Figure  3-2 .  

  Figure 3-2.    DBCC SHOW_STATISTICS  output         
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  ISBN  values with the prefix 104 now have duplicates, and this affects the histogram. It is also worth 
mentioning that the density information in the second result set is also changed. The density for  ISBN s with 
duplicate values is higher than for the combination of  (ISBN, BookId)  columns, which is still unique. 

 Let’s run the  SELECT BookId, Title FROM dbo.Books WHERE ISBN LIKE ‘114%’  statement and check 
the execution plan, as shown in Figure  3-3 .  

  Figure 3-3.    Execution plan of the  query         

 There are two important properties that most  execution plan operators   have.  Actual Number of Rows  
indicates how many rows were processed during operator execution.  Estimated Number of Rows  indicates 
the number of rows SQL Server estimated for that operator during the  Query Optimization stage  . In our 
case, SQL Server estimates that there are 2,625 rows with  ISBN s starting with 114. If you look at the histogram 
shown in Figure  3-2 , you will see that step 10 stores the information about data distribution for the  ISBN  
interval that includes the values that you are selecting. Even with linear approximation, you can estimate the 
number of rows to be close to what SQL Server determined. 

 There are two very important things to remember about statistics.

    1.    The histogram stores information about data distribution for the leftmost 
statistics (index) column only. There is information about the multi-column 
density of the key values in statistics, but that is it. All other information in the 
histogram relates to data distribution for the leftmost statistics column only.  

    2.    SQL Server retains at most 200 steps in the histogram, regardless of the size of 
the table and if the table is partitioned. The intervals covered by each histogram 
step increase as the table grows. This leads to less accurate statistics in the case of 
large tables.     

 In the case of composite indexes, when all columns from the index are used as predicates in all queries, 
it is beneficial to define a column with lower density/higher percentage of unique values as the leftmost 
column of the index. This will allow SQL Server to better utilize the data distribution information from 
the statistics. You should consider the SARGability of the predicates, however. For example, if all queries 
are using  FirstName=@FirstName  and  LastName=@LastName  predicates in the  where  clause, it is better to 
have  LastName  as the leftmost column in the index. Nonetheless, this is not the case for predicates like 
 FirstName=@FirstName  and  LastName<>@LastName , where  LastName  is not SARGable.  

     Column-Level Statistics 
 In addition to index-level statistics, you can create separate column-level statistics. Moreover, in some cases 
SQL Server creates such statistics automatically. 

 Let’s take a look at an example and create a table and populate it with the data shown in Listing  3-2 . 
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      Listing 3-2.    Column-level statistics: Table  creation     

  create table dbo.Customers 
 ( 
     CustomerId int not null identity(1,1), 
     FirstName  nvarchar(64) not null, 
     LastName nvarchar(128) not null, 
     Phone varchar(32) null, 
     Placeholder char(200) null 
 ); 

   create unique clustered index IDX_Customers_CustomerId 
 on dbo.Customers(CustomerId) 
 go 

   -- Inserting cross-joined data for all first and last names 50 times 
 -- using GO 50 command in Management Studio 
 ;with FirstNames(FirstName) 
 as 
 ( 
     select Names.Name 
     from  ( values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),('Brian'),

('Cristopher'),('Cathy') 
         , ('Daniel'),('Donny'),('Edward'),('Eddy'),('Emy'),('Frank'),('George'),

('Harry'),('Henry') 
         , ('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),('Kathy'),('Kim'),('Larry'),

('Mary'),('Max') 
         , ('Nancy'),('Olivia'),('Olga'),('Peter'),('Patrick'),('Robert'),('Ron'),

('Steve'),('Shawn') 
         ,('Tom'),('Timothy'),('Uri'),('Vincent') ) Names(Name) 
 ) 
 ,LastNames(LastName) 
 as 
 ( 
     select Names.Name 
     from ( values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),('Davis'),('Miller') 
         ,('Wilson'), ('Moore'),('Taylor'),('Anderson'),('Jackson'),('White'),('Harris') ) 
Names(Name) 
 ) 
 insert into dbo.Customers(LastName, FirstName) 
     select LastName, FirstName from FirstNames cross join LastNames 
 go 50 

   insert into dbo.Customers(LastName, FirstName) values('Isakov','Victor') 
 go 

   create nonclustered index IDX_Customers_LastName_FirstName 
 on dbo.Customers(LastName, FirstName); 

    Every combination of first and last names specified in the first  INSERT  statement has been inserted into 
the table 50 times. In addition, there is one row, with the first name  Victor , inserted by the second  INSERT  
statement. 
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 Now, let’s assume that you want to run a query that selects the data based on the  FirstName  parameter 
only. That predicate is not SARGable for the  IDX_Customers_LastName_FirstName  index because there is no 
SARGable predicate on the  LastName  column, which is the leftmost column in the index. 

 SQL Server offers two different options on how to execute the query. The first option is to perform a 
 clustered index scan . The second option is to use a  nonclustered index    scan    while doing a  key lookup  for every 
row of the nonclustered index where the  FirstName  value matches the parameter. 

 The nonclustered index row size is much smaller than that of the clustered index. It uses fewer data 
pages, and a scan of the nonclustered index would be more efficient as compared to a clustered index 
scan, owing to the fewer I/O reads that it performs. At the same time, the plan with a nonclustered index 
scan would be less efficient than a clustered index scan when the table has a large number of rows with a 
particular  FirstName  and a large number of key lookups is required. Unfortunately, the histogram for the 
 IDX_Customers_LastName_FirstName  index stores the data distribution for the  LastName  column only, and 
SQL Server does not know about the  FirstName  data distribution . 

 Let’s run the two selects shown in Listing  3-3  and examine the execution plans in Figure  3-4 .  

     Listing 3-3.    Column-level statistics:  Querying data     

  select CustomerId, FirstName, LastName, Phone 
 from dbo.Customers 
 where FirstName = 'Brian'; 

   select CustomerId, FirstName, LastName, Phone 
 from dbo.Customers 
 where FirstName = 'Victor'; 

  Figure 3-4.    Column-level statistics:  Execution plans         

    As you can see, SQL Server decides to use a clustered index scan for the first select, which returns 700 
rows, and a nonclustered index scan for the second select, which returns a single row. 

 Now, let’s query the  sys.stats  catalog view and check the table’s statistics. The code for this is shown in 
Listing  3-4 . Alternatively, you can explore the  Statistics  node of the  dbo.Customers  table in Management Studio. 
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     Listing 3-4.    Column-level statistics: Querying  sys.stats view     

 select  stats_id, name, auto_created 
 from sys.stats 
 where object_id = object_id(N'dbo.Customers') 

   The query returned three rows, as shown in Figure  3-5 .  

  Figure 3-5.    Column-level statistics:  Result of the query         

  Figure 3-6.    Column-level statistics: Auto-created statistics on the FirstName  column         

 The first two rows correspond to the clustered and nonclustered indexes from the table. The last 
one, with the name that starts with the  _WA  prefix, displays column-level statistics, which were created 
automatically when SQL Server optimized our queries. It is worth noting that SQL Server does not drop 
those column-level statistics automatically after they are created. 

 ■   Tip    Consider renaming auto-created  _WA  statistics to simplify database management.  

 Let’s examine it with the  DBCC SHOW_STATISTICS ('dbo.Customers', _WA_Sys_00000002_276EDEB3 ) 
 command  . As you can see in Figure  3-6 , it stores information about the data distribution for the  FirstName  
column. As a result, SQL Server can estimate the number of rows for first names, which we used as 
parameters, and generate different execution plans for each parameter value.  
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 You can manually create statistics on a column or on multiple columns with the   CREATE STATISTICS  
command  . Statistics created on multiple columns are similar to statistics created on composite indexes. 
They include information about multi-column density, although the histogram retains data distribution 
information for the leftmost column only. 

 There is overhead associated with column-level statistics maintenance, although it is much smaller 
than that of an index, which needs to be updated every time data modifications occur. In some cases, when 
particular queries do not run very often, you can elect to create column-level statistics rather than an index. 
Column-level statistics help  Query Optimizer   find better execution plans, even though those execution plans 
are suboptimal due to the index scans involved. At the same time, statistics do not add overhead during data 
modification operations, and they help you avoid index maintenance. This approach works only for rarely 
executed queries, however. You need to create indexes to optimize queries that run often. 

 Finally, do not forget to re-evaluate and drop redundant column-level  statistics   when you add the new 
indexes to the table.  

     Statistics and Execution Plans 
 SQL Server creates and updates statistics automatically by default. There are two options on the database 
level that control such behavior:

    1.     Auto Create Statistics  controls whether or not the optimizer creates column-level 
statistics automatically. This option does not affect index-level statistics, which are 
always created. The  Auto Create Statistics database option   is enabled by default.  

    2.    When the  Auto Update Statistics  database option is enabled, SQL Server checks 
if statistics are outdated every time it compiles or executes a query and updates 
them if needed. The  Auto Update Statistics database option   is also enabled by 
default.     

 ■   Tip   You can control the auto update behavior of statistics on the index level by using the  STATISTICS_
NORECOMPUTE  index option. By default, this option is set to OFF, which means that statistics are automatically 
updated. Another way to change auto update behavior at the index or table levels is by using the  sp_autostats  
system stored procedure.  

 SQL Server determines if statistics are outdated based on the number of changes performed by the 
 INSERT ,  UPDATE ,  DELETE , and  MERGE  statements that affect the statistics columns. SQL Server counts how 
many times the statistics columns were changed, rather than the number of changed rows. For example, if 
you change the same row 100 times, it would be counted as 100 changes rather than as 1 change. 

 There are three different scenarios, called   statistics update thresholds       ,  also sometimes known as 
  statistics recompilation thresholds    ,  in which SQL Server marks statistics as outdated.

    1.    When a table is empty, SQL Server outdates statistics when you add data to the 
table.  

    2.    When a table has less than 500 rows, SQL Server outdates statistics after every 
500 changes of the statistics columns.  

    3.     Prior to SQL Server 2016 and in SQL Server 2016 with database compatibility 
level < 130:  When a table has 500 or more rows, SQL Server outdates statistics 
after every 500 + (20% of total number of rows in the table) changes of the 
statistics columns. 
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  In SQL Server 2016 with database compatibility level = 130:  Statistics update 
threshold on large tables becomes dynamic and depends on the size of the table. 
The more rows the table has, the lower the threshold is. On large tables with 
millions or even billions of rows, the statistics update threshold can be just a 
fraction of a percentage of the total number of rows in the table. This behavior 
can also be enabled with the trace flag  T2371  in SQL Server 2008R2 SP1 and 
above.     

 Table  3-1  summarizes statistics update threshold  behavior   in different versions of SQL Server.  

   Table 3-1.    Statistics Update Threshold and SQL Server  Versions     

 Prior to SQL Server 2016  SQL Server 2016 with 
Database Compatibility 
Level < 130 

 SQL Server 2016 with 
Database Compatibility 
Level = 130 

 Default behavior  Static (~20%) threshold  Static (~20%) threshold  Dynamic threshold 

  T2371   Dynamic threshold in SQL 
Server 2008R2 SP1 and above 

 Dynamic threshold  Dynamic threshold 
(trace flag is ignored) 

 That leads us to a very important conclusion. With the static statistics update threshold, the number 
of changes to statistics columns required to trigger a statistics update is proportional to the table size. The 
larger the table, the less often statistics are automatically updated. For example, in the case of a table with 
1 billion rows, you would need to perform about 200 million changes to statistics columns to make the 
statistics outdated.  It is recommended to use dynamic update threshold when possible.  

 Let’s look at how that behavior affects our systems and  execution plans  .  At this point, the table  dbo.
Books  has 1,265,000 rows. Let’s add 250,000 rows to the table with the prefix 999, as shown in Listing  3-5 . In 
this example, I am using SQL Server 2012 without  T2371  enabled. You can see the different results if you run 
it with the dynamic statistics update threshold enabled. Moreover, the new  cardinality estimator   introduced 
in SQL Server 2014 can also change the behavior. We will discuss it later in the chapter. 

     Listing 3-5.    Adding rows to dbo.Books   

 ;with Postfix(Postfix) 
 as 
 ( 
     select 100000001 
     union all 
     select Postfix + 1 
     from Postfix 
     where Postfix < 100250000 
 ) 
 insert into dbo.Books(ISBN, Title) 
     select 
         '999-0' + convert(char(9),Postfix) 
         ,'Title for ISBN 999-0' + convert(char(9),Postfix) 
     from Postfix 
 option (maxrecursion 0);                                         

   Now, let’s run the  SELECT * FROM dbo.Books WHERE ISBN LIKE '999%'  query that selects all of the 
rows with such a prefix. 
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 If you examine the execution plan of the query, shown in Figure  3-7 , you will see nonclustered index 
seek and key lookup operations, even though they are inefficient in cases where you need to select almost 
20 percent of the rows from the table.  

  Figure 3-8.    IDX_BOOKS_ISBN  statistics         

  Figure 3-7.    Execution plan for the query selecting rows with the 999 prefix       

 You will also notice in Figure  3-7  that there is a huge discrepancy between the estimated and actual 
number of rows for the Index Seek operator. SQL Server estimated that there are only 31.4 rows with prefix 
999 in the table, even though there are 250,000 rows with such a prefix. As a result, a highly inefficient plan is 
generated. 

 Let’s look at the  IDX_BOOKS_ISBN   statistics   by running the  DBCC SHOW_STATISTICS ('dbo.Books', IDX_
BOOKS_ISBN)  command. The output is shown in Figure  3-8 . As you can see, even though we inserted 250,000 
rows into the table, statistics were not updated, and there is no data in the histogram for the prefix 999. The 
number of rows in the first result set corresponds to the number of rows in the table during the last statistics 
update. It does not include the 250,000 rows just inserted.  

 Let’s now update statistics using the  UPDATE STATISTICS dbo.Books IDX_Books_ISBN WITH FULLSCAN  
command, and then run the  SELECT * FROM dbo.Books WHERE ISBN LIKE '999%'  query again. The 
 execution plan   for the query is shown in Figure  3-9 . The estimated number of rows is now correct, and SQL 
Server ended up with a much more efficient execution plan that uses a clustered index scan with about 17 
times fewer I/O reads than before.  
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 As you can see, incorrect cardinality estimations can lead to highly inefficient execution plans. Outdated 
statistics are, perhaps, one of the most common reasons for incorrect cardinality estimations.  You can 
pinpoint some of these cases by examining the estimated and actual number of rows in the execution 
plans. A big discrepancy between these two values often indicates that statistics are incorrect.  Updating 
statistics can solve this problem and generate more efficient execution plans.   

     Statistics and Query Memory Grants 
 SQL Server queries need memory for execution. Different operators in the execution plans have different 
 memory requirements  . For example, the Index Scan operator fetches rows one by one and does not need to 
store multiple rows in memory. Other operators — for example, the Sort operator — need access to the entire 
rowset before it starts execution. 

 SQL Server tries to estimate the amount of memory (memory grant) required for a query and its 
operators based on row size and cardinality estimation. It is important that the memory grant is correct. 
Underestimations and overestimations both introduce inefficiencies.  Overestimations   waste SQL Server 
memory. Moreover, it may take longer to allocate a large memory grant on busy servers. 

 Underestimations, on the other hand, can lead to a situation in which some operators in the execution 
plan do not have enough memory. If the Sort operator does not have enough memory for an in-memory 
sort, SQL Server spills the rowset to  tempdb  and sorts the data there. A similar situation occurs with hash 
tables. SQL Server uses  tempdb  if needed. In either case, using  tempdb  can significantly decrease the 
performance of an operation, and of a query in general. 

 Let’s look at an example and create a table, populating it with some data. Listing  3-6  creates the table 
 dbo.MemoryGrantDemo  and populates it with 65,536 rows. The  Col  column stores values from 0 to 99, with 
either 655 or 656 rows per value. There is a nonclustered index on the  Col  column, which is created at the 
end of the script. As a result, statistics on that index are accurate, and SQL Server would be able to estimate 
correctly the number of rows per each  Col  value in the table. 

     Listing 3-6.    Cardinality estimation and memory grants:  Table creation     

  create table dbo.MemoryGrantDemo 
 ( 
     ID int not null, 
     Col int not null, 
     Placeholder char(8000) 
 ); 

   create unique clustered index IDX_MemoryGrantDemo_ID 
 on dbo.MemoryGrantDemo(ID); 

  Figure 3-9.     Execution plan   for the query selecting rows with the 999 prefix after a statistics update       
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   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.MemoryGrantDemo(ID,Col,Placeholder) 
     select ID, ID % 100, convert(char(100),ID) from IDs; 

   create nonclustered index IDX_MemoryGrantDemo_Col 
 on dbo.MemoryGrantDemo(Col); 

    As a next step, shown in Listing  3-7 , we add 656 new rows to the table, with  Col=1000 . This is just 1 
percent of the total table data, and, as a result, the statistics are not going to be outdated. As you already 
know, the histogram would not have any information about the  Col=1000  value. 

     Listing 3-7.    Cardinality estimation and memory grants: Adding 656  rows     

 ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.MemoryGrantDemo(ID,Col,Placeholder) 
     select 100000 + ID, 1000, convert(char(100),ID) 
     from IDs 
     where ID <= 656; 

   Now, let’s try to run two queries that select data with the predicate on the  Col  column using the 
 execution plan   with a Sort operator. The code for doing this is shown in Listing  3-8 . I am using a variable as 
a way to suppress the result set from being returned to the client. I am running this code in SQL Server 2012. 
The new cardinality estimator introduced in SQL Server 2014 would lead to different estimations in this case, 
as we will discuss later in the chapter. 

     Listing 3-8.    Cardinality estimation and memory grants: Selecting  data     

  declare 
     @Dummy int 

   set statistics time on 
 select @Dummy = ID from dbo.MemoryGrantDemo where Col = 1 order by Placeholder; 
 select @Dummy = ID from dbo.MemoryGrantDemo where Col = 1000 order by Placeholder; 
 set statistics time off 

     Query Optimizer   will be able to correctly estimate the number of rows with  Col=1 . However, this is not 
the case for the  Col=1000  predicate. Look at the execution plans shown in Figure  3-10 .  
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 Even though the execution plans look very similar, the cardinality estimations and memory grants are 
different. Another difference is that the Sort operator icon in the second query has an exclamation mark. 
If you look at the operator properties, you will see a warning, which indicates that this operation spilled to 
 tempdb . 

 The execution time of the queries on my computer is as follows: 

    SQL Server Execution Times: 
    CPU time = 0 ms,  elapsed time = 17 ms. 

   SQL Server Execution Times: 
    CPU time = 16 ms,  elapsed time = 88 ms. 

    As you can see, the second query with the incorrect memory grant and  tempdb  spill is about five times 
slower than the first one, which performs an in-memory sort. 

 You can also monitor  tempdb  spills with Extended Events and SQL Profiler by capturing the Sort 
Warning and Hash Warning events. Moreover, SQL Server 2016, SQL Server 2014 SP2, and SQL Server 2012 
SP3 display additional information related to spills in the execution plans. It includes the number of data 
pages involved in the spill and number of spilled threads in parallel execution plans, along with memory 
grant information. This is extremely useful when you need to estimate the performance impact that spills 
introduce. 

 ■   Note   We will discuss memory grants in more detail in Chapter   25    , “Query Optimization and Execution,” 
and Chapter   28    , “System Troubleshooting.”   

  Figure 3-10.    Cardinality estimation and memory grants:  Execution plans         

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_25
http://dx.doi.org/10.1007/978-1-4842-1964-5_28
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     Statistics  Maintenance   
 As I already mentioned, SQL Server updates statistics automatically by default. This behavior is usually 
acceptable for small tables; however, you should not rely on automatic statistics updates in the case of large 
tables with millions or billions of rows unless you are using SQL Server 2016 with a database compatibility 
level of 130 or with trace flag  T2371  enabled. The number of changes required in order to trigger a statistics 
update by the 20 percent statistics update threshold would be very high, and, as a result, an update would 
not be triggered often enough. 

 It is recommended that you update statistics manually in that case. You must analyze the size of the table, 
data modification patterns, and system availability when picking an optimal statistics maintenance strategy. 
For example, you can decide to update statistics on critical tables on a nightly basis if the system does not have 
a heavy load outside of business hours. Do not forget that statistics and/or index maintenance add additional 
load to SQL Server. You must analyze how it affects other databases on the same server and/or disk arrays. 

 Another important factor to consider while designing a statistics maintenance strategy is how data is 
modified. You need to update statistics more often in the case of indexes with ever-increasing or decreasing 
key values, such as when the leftmost columns in the index are defined as identity or populated with 
sequence objects. As you have seen, SQL Server hugely underestimates the number of rows if specific key 
values are outside of the histogram. This behavior may be different in SQL Server 2014 through 2016, as we 
will see later in this chapter. 

 You can update statistics by using the  UPDATE STATISTICS  command. When SQL Server updates 
statistics, it reads a sample of the data rather than scanning the entire index. You can change that behavior 
by using the  FULLSCAN  option, which forces SQL Server to read and analyze all of the data from the index. As 
you may guess, that option provides the most accurate results, although it can introduce heavy I/O activity in 
the case of large tables. 

 ■   Note   SQL Server updates statistics when you rebuild the index. We will talk about index maintenance in 
greater detail in Chapter   6    , “Index Fragmentation.”  

 You can update all of the statistics in the database by using the  sp_updatestats  system stored 
procedure. It is recommended you use this stored procedure and update all of the statistics in the database 
after you upgrade it to a new version of SQL Server. You should run this along with the  DBCC UPDATEUSAGE  
stored procedure, which corrects incorrect page- and row-count information in the catalog views. 

 There is  a    sys.dm_db_stats_properties  DMV, which shows you the number of modifications made to 
statistics columns since the last statistics update. The code, which utilizes that DMV, is shown in Listing  3-9 . 

     Listing 3-9.    Using sys.dm_db_stats_properties   

 select 
     s.stats_id as [Stat ID], sc.name + '.' + t.name as [Table], s.name as [Statistics] 
     ,p.last_updated, p.rows, p.rows_sampled, p.modification_counter as [Mod Count] 
 from 
     sys.stats s join sys.tables t on 
         s.object_id = t.object_id 
     join sys.schemas sc on 
         t.schema_id = sc.schema_id 
     outer apply 
         sys.dm_db_stats_properties(t.object_id,s.stats_id) p 
 where 
     sc.name = 'dbo' and t.name = 'Books'; 

http://dx.doi.org/10.1007/978-1-4842-1964-5_6
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   The result of the query, shown in Figure  3-11 , indicates that there were 250,000 modifications made 
to the statistics columns since the last statistics update. You can build a statistics maintenance routine that 
regularly checks the  sys.dm_db_stats_properties  DMV and rebuilds statistics with large  modification_
counter  values.  

  Figure 3-11.     Sys.dm_db_stats_properties output         

 Another statistics-related database option is  Auto Update Statistics Asynchronously . By default, when 
SQL Server detects that statistics are outdated, it pauses query execution, synchronously updates statistics, 
and generates a new execution plan after the statistics update is complete. With an asynchronous statistics 
update, SQL Server executes the query using the old execution plan, which is based on outdated statistics, 
while updating statistics in the background asynchronously. It is recommended that you keep to the 
synchronous statistics update unless the system has a very short query timeout, in which case a synchronous 
statistics update can timeout the queries. 

 Finally, SQL Server does not drop column-level  statistics   automatically when you create new indexes. 
You should drop redundant column-level statistics objects manually.  

     New Cardinality Estimator (SQL Server 2014–2016) 
 As you already know, the quality of  query optimization   depends on accurate cardinality estimations. SQL 
Server must correctly estimate the number of rows in each step of query execution in order to generate 
an efficient execution plan. The cardinality estimation model used in SQL Server 2005-2012 was initially 
developed for SQL Server 7.0 and released in 1998. Obviously, there were some minor improvements and 
changes in the newer versions of SQL Server; however, conceptually, the model remains the same. 

 There are four major assumptions used in the model, including:

     Uniformity     : This model assumes uniform data distribution in the absence of 
statistical information. For example, inside histogram steps, it is assumed that all 
key values are to be distributed evenly and uniformly.  

    Independence     : This model assumes that attributes in the entities are independent 
of each other. For example, when a query has several predicates against different 
columns of the same table, it assumes that the columns are not related in any way.  

   Simple    Containment     : This model assumes that users query for the data that exists 
in the tables. For example, when you join two tables, in the absence of statistical 
information, the model assumes that all distinct values from one table exist in the 
other. The selectivity of the join operator in this model is based on the selectivity 
of the join predicates.  

    Inclusion     : This model assumes that when an attribute is compared to a constant, 
there is always a match.    
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 Even though such assumptions provide acceptable results in many cases, they are not always correct. 
Unfortunately, the original implementation of the model makes it very hard to refactor, which led to a 
decision to redesign it in SQL Server 2014. The new cardinality estimator uses a different code set that is 
much easier to support and has several different assumptions in the model, including:

     Correlation     : The new model assumes a correlation between the predicates in 
the queries; this resembles more cases in real-life querying as compared to the 
 Independence assumption model  .  

   Base    Containment     : This model assumes that users may query for data that does 
not exist in the tables. It factors the base table’s histograms into join operations in 
addition to the selectivity of join predicates.    

 In SQL Server 2014 and 2016, you can choose the cardinality estimation model on a per-database level 
with the setting for database compatibility level, or on a server, session, or even query level with the use of 
trace flags. Moreover, the new cardinality estimator in SQL Server 2016 allows you to choose between SQL 
Server 2014 and 2016 implementations. 

 ■   Note    You can see the version of the cardinality estimation model by analyzing the 
 CardinalityEstimationModelVersion  property of the root element in the execution plan. It can have the 
values of 70, 120, and 130, which correspond to legacy, SQL Server 2014, and 2016 implementations.  

 Table  3-2  illustrates the cardinality estimator model choice in SQL Server 2014 and 2016 based on the 
 database compatibility level and trace flags    T2312 / T9481 . These trace flags can be used on both the server 
and query levels. As a reminder, database compatibility models of 120 and 130 correspond to SQL Server 
2014 and 2016 respectively.  

   Table 3-2.    Cardinality Estimator Model Choice in  SQL Server 2014 – 2016     

 Database Compatibility 
Level < 120 

 Database Compatibility 
Level = 120 

 Database Compatibility 
Level = 130 

 Default behavior  70  120 in both SQL Server 
2014 and 2016 

 130 

  T2312   120 in both SQL Server 
2014 and 2016 

 120 in both SQL Server 
2014 and 2016 

 130 

  T9481   70  70  70 

 A new feature of SQL Server 2016,   database scoped configuration , allows   you to override the cardinality 
estimator model’s choice based on the database compatibility level. You can enable the legacy estimator by 
using the  ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = ON  statement. 
Table  3-3  shows the choice of the model when the  LEGACY_CARDINALITY_ESTIMATION  database scoped 
configuration is enabled.  
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 One of the key difference between legacy and new cardinality estimators is how they handle multi-
statement table-valued functions. The legacy cardinality estimator always expects a function to return a 
single row. Both the 120 and 130 estimators expect 100 rows. Neither of the models are correct; however, 
in many cases an estimation of 100 rows would work better when multi-statement table-valued functions 
return a large amount of data. We will discuss  user-defined functions   in detail in Chapter   11    . 

 Let’s examine a few different examples and compare the behavior of the legacy and new cardinality 
estimators. 

      Comparing Cardinality Estimators:  Up-to-Date Statistics   
 As a first test, let’s check out how both models perform estimations when statistics are up to date. Listing  3-10  
constructs a test table, populates it with some data, and creates clustered and nonclustered indexes on 
the table. 

     Listing 3-10.    Comparing cardinality estimators: Test table creation   

  create table dbo.CETest 
 ( 
     ID int not null, 
     ADate date not null, 
     Placeholder char(10) 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.CETest(ID,ADate) 
     select ID,dateadd(day,abs(checksum(newid())) % 365,'2016-06-01') from IDs; 

   create unique clustered index IDX_CETest_ID on dbo.CETest(ID); 
 create nonclustered index IDX_CETest_ADate on dbo.CETest(ADate); 

    If you examined nonclustered index statistics with the  DBCC SHOW_STATISTICS('dbo.CETest', IDX_
CETest_ADate)  command, you would see results similar to those shown in Figure  3-12 . Actual histogram 
values may be different when you run the script, because the  ADate  values were generated randomly. Ignore 
the highlights in the figure for now, though I will refer to them later.  

   Table 3-3.    Cardinality Estimator Model Choice in SQL Server 2016 When  LEGACY_CARDINALITY_
ESTIMATION=ON     

 Database Compatibility 
Level < 120 

 Database Compatibility 
Level = 120 

 Database Compatibility 
Level = 130 

 Default behavior  70  70  70 

  T2312   70  120  130 

  T9481   70  70  70 

http://dx.doi.org/10.1007/978-1-4842-1964-5_11
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  Figure 3-12.    IDX_CETest_AData statistics       

 As you can see, the table has 65,536 rows. Let’s test cardinality estimations in cases where we use a 
predicate for a value that is a key in one of the histogram’s steps. The query is shown in Listing  3-11 . I will run 
it in compatibility levels of 110, 120, and 130 and compare the results of all models. 

       Listing 3-11.    Up-to-date statistics: Selecting data for a value that is a key in the histogram step   

  alter database SQLServerInternals set compatibility_level = 110 /* 120; 130 */ 
 go 

   select ID, ADate, Placeholder 
 from dbo.CETest with (index=IDX_CETest_ADate) 
 where ADate = '2016-06-07'; 

    As you can see in Figure  3-13 , the results are the same in all cases. SQL Server uses a value from the 
 EQ_ROWS  column from the fifth histogram step for the estimation.  

  Figure 3-13.    Up-to-date statistics: Cardinality estimations for a value that is a key in the histogram step       
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 Now, let’s run a query that selects data for  ADate = '2016-06-11' , which is not present in the histogram 
as a key. The results shown in Figure  3-14  are the same for all models. SQL Server uses the  AVG_RANGE_ROWS  
column value from the eighth histogram step for the estimation.  

  Figure 3-14.    Up-to-date statistics: Cardinality estimations for a value that is not a key in the histogram step.       

  Figure 3-15.    Up-to-date statistics: Cardinality estimations for an unknown value       

 Finally, let’s run a parameterized query, as shown in Listing  3-12 , using a local variable as the 
predicate. In this case, SQL Server uses average selectivity in the index and estimates the number of rows 
by multiplying the density of the key by the total number of rows in the index:  0.002739726 * 65536 = 
179.551 . All models produce the same result, as shown in Figure  3-15 .  

      Listing 3-12.    Up-to-date statistics: Selecting data for unknown value   

  declare 
     @D date = '2016-06-07'; 

   select ID, ADate, Placeholder 
 from dbo.CETest with (index=IDX_CETest_ADate) 
 where ADate = @D; 

    As you can see, when the statistics are up to date, all models provide the same results.   

      Comparing Cardinality Estimators:  Outdated Statistics   
 Unfortunately, in systems with non-static data, data modifications always outdate the statistics. Let’s look 
at how this affects cardinality estimations by inserting 6,554 new rows in the table, which is 10 percent of 
the total number of rows. Listing  3-13  shows the code for achieving this. I am also disabling the automatic 
statistics update option in the database to avoid a statistics update resulting from the dynamic statistics 
update threshold being met in compatibility level 130. Do not forget to re-enable it later when you are 
working with other demo scripts from the companion materials of this book. 
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     Listing 3-13.    Comparing cardinality estimators: Adding new rows   

  alter database SQLServerInternals set auto_update_statistics off 
 go 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.CETest(ID,ADate) 
     select ID + 65536,dateadd(day,abs(checksum(newid())) % 365,'2016-06-01') 
     from IDs 
     where ID <= 6554; 

    Now, let’s repeat our tests. Figure  3-16  illustrates the cardinality estimation for the query from Listing  3-11 , 
where the value is present as a key in the histogram step. As you can see, all models estimated 191.401 rows, 
which is 10 percent more than previously. SQL Server compares the number of rows in the table with the 
original  Rows  value in the statistics and adjusts the value from the  EQ_ROWS  column in the fifth histogram step 
accordingly.  

  Figure 3-16.    Outdated statistics: Cardinality estimations for a value that is a key in the histogram step       

  Figure 3-17.    Outdated statistics: Cardinality estimations for a value that is not a key in the histogram step       

 Figure  3-17  shows the cardinality estimations for the query from Listing  3-11 , where the value is not a 
key in the histogram step. You can see the difference here. The new models take the 10 percent difference in 
the row count into consideration, similar to the previous example. The legacy 70 model, on the other hand, 
still uses the  AVG_RANGE_ROWS  value from the histogram step, even though the number of rows in the table 
does not match the number of rows kept in the statistics.  
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 The same thing happens with the parameterized query from Listing  3-12 . The new models adjust the 
estimation based on the row-count differences, while the legacy model ignores them. Figure  3-18  illustrates 
these estimations.  

  Figure 3-18.    Outdated statistics: Cardinality estimations for an unknown value       

 Both approaches have their pros and cons. The new models produce better results when new data has 
been evenly distributed in the index. This is exactly what happened in our case when  ADate  values were 
randomly generated. Alternatively, the legacy model works better in cases of uneven distribution of new 
values when the distribution of old values did not change. You can think about indexes with ever-increasing 
key values as an example.   

      Comparing Cardinality Estimators: Indexes with  Ever-Increasing 
Key Values   
 The next test compares the behavior of cardinality estimators when the value is outside of the histogram 
range. This often happens in cases of indexes with ever-increasing key values, such as those on the identity 
or sequence columns. Right now, we have such a situation with the  IDX_CETest_ID  index. Index statistics 
were not updated after we inserted new rows, as shown in Figure  3-19 .  

  Figure 3-19.    Indexes with ever-increasing keys: Histogram       

 Listing  3-14  shows the queries that select data for certain parameters, which are not present in the 
histogram. Figure  3-20  shows the cardinality estimations.  

     Listing 3-14.    Indexes with ever-increasing key values: Test query   

 select top 10 ID, ADate 
 from dbo.CETest 
 where ID between 66000 and 67000 
 order by PlaceHolder; 
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   As you can see, the legacy model estimated just the single row while the new models performed the 
estimation based on the average data distribution in the index. The new models provide better results and 
let you avoid frequent manual statistics updates for indexes with ever-increasing key values.   

     Comparing Cardinality Estimators:  Joins   
 Let’s look at how both models handle joins and create another table, as shown in Listing  3-15 . The table 
has a single  ID  column populated with data from the  dbo.CETest  table, referencing it with a foreign key 
constraint, which we will discuss in greater depth in Chapter   8    . 

     Listing 3-15.    Cardinality estimators and joins: Creating another table   

  create table dbo.CETestRef 
 ( 
     ID int not null 
         constraint FK_CTTestRef_CTTest foreign key references dbo.CETest(ID) 
 ); 

   insert into dbo.CETestRef(ID) -- 72,090 rows 
     select ID from dbo.CETest; 

   create unique clustered index IDX_CETestRef_ID on dbo.CETestRef(ID); 

    As a first step, let’s run the query with a join, as shown in Listing  3-16 . This query returns data from the 
 dbo.CETestRef  table only. A foreign key constraint guarantees that every row in the  dbo.CETestRef  table 
has a corresponding row in the  dbo.CETest  table; therefore, SQL Server can eliminate the join from the 
execution plan. We will discuss join elimination in detail in Chapter   10    . 

     Listing 3-16.    Cardinality estimators and joins: Test query 1   

 select d.ID 
 from dbo.CETestRef d join dbo.CETest m on 
     d.ID = m.ID 

   Figure  3-21  shows the cardinality estimations for the query. As you can see, both models work the same, 
correctly estimating the number of rows.  

  Figure 3-20.    Cardinality estimations for indexes with ever-increasing keys       
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 Let’s change our query and add a column from the referenced table to the result set. The code for doing 
this is shown in Listing  3-17 . 

     Listing 3-17.    Cardinality estimators and joins: Test query 2   

 select d.ID, m.ID 
 from dbo.CETestRef d join dbo.CETest m on 
     d.ID = m.ID 

   Even though a foreign key constraint guarantees that the number of rows in the result set will match the 
number of rows in the  CETestRef  table, the legacy cardinality estimator does not take it into consideration 
and therefore underestimates the number of rows. The new cardinality estimators do a better job, providing 
the correct result. Figure  3-22  illustrates the latter, showing the estimations for the  Join  operator.  

  Figure 3-21.    Cardinality estimations with join elimination       

  Figure 3-22.    Cardinality estimations with join       

 It is worth mentioning that the new  models   do not always provide a 100 percent correct estimation 
when joins are involved. Nevertheless, the results are generally better than with the legacy model.  

       Comparing Cardinality Estimators:  Multiple Predicates   
 The new cardinality estimation model removes the Independence assumption, and it expects some level 
of correlation between entities’ attributes. It performs estimations differently when queries have multiple 
predicates that involve multiple columns in the table. Listing  3-18  shows an example of such a query. 
Figure  3-23  shows the cardinality estimations for both models.  

     Listing 3-18.    Query with  multiple predicates     

 select ID, ADate 
 from dbo.CETest 
 where 
     ID between 20000 and 30000 and 
     ADate between '2017-01-01' and '2017-02-01'; 
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   The legacy cardinality estimator assumes the independence of predicates and uses the following formula: 

   (Selectivity of first predicate * Selectivity of second predicate) * (Total number of rows 
in table) = (Estimated number of rows for first predicate * Estimated number of rows for 
second predicate) / (Total number of rows in the table). 

   The new cardinality estimator expects some correlation between predicates, and it uses another 
approach called an  exponential backoff algorithm , which is as follows: 

   (Selectivity of most selective predicate) * SQRT(Selectivity of next most selective 
predicate) * (Total number of rows in table). 

   This change fits entirely into the “It depends” category. The legacy cardinality estimator works better 
when there is no correlation between attributes/predicates, as demonstrated in our example. The new 
cardinality estimator provides better results in cases of correlation. We will look at such an example in the 
“Filtered Statistics” section of the next chapter.  

     Choosing the Model 
 As you can see, the legacy (70) cardinality estimator behaves very differently from the new cardinality 
estimator (120) introduced in SQL Server 2014. The differences between SQL Server 2014 (120) and SQL 
Server 2016 (130) models are less noticeable. There are several areas where SQL Server 2016 has some 
enhancements. Most notably, it better handles the estimations for ever-increasing indexes and better 
utilizes density information from multi-column statistics. However, you should consider the 130 model as an 
enhancement over the 120 model rather than an entirely new implementation. 

 As a general rule, you should always choose the most recent model for a new development. Upgrades, 
on the other hand, are more complicated. Even though the new cardinality estimation model could provide 
better results in systems with modern workloads, there is always the possibility of performance regression 
resulting from the different execution plans. It is impossible to build a model that covers all possible 
workloads and data distributions, and you should carefully test the system after upgrading. 

 In SQL Server 2016, you can utilize a new component called  Query Store , which captures and persists 
execution statistics and plans in the system. This can dramatically simplify the testing process, allowing you 
to quickly pinpoint performance regressions. Obviously, you need to have a representative workload and 
data distribution during testing. We will discuss Query Store in greater depth in Chapter   29    . 

 Of course, nothing prevents you from using the legacy cardinality estimator after the upgrade. 
However, you should expect that the majority of future enhancements and improvements in the product 
will belong to the new model. The legacy cardinality estimator would not disappear from SQL Server; 
however, I seriously doubt that Microsoft will continue to invest a significant amount of time and 
resources into the old model.     

  Figure 3-23.    Cardinality estimations with multiple predicates       
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     Query Optimizer Hotfixes and Trace Flag  T4199   
 The complexity of Query Optimizer and the massive customer base of the product introduce supportability 
issues. It is impossible to test hotfixes and improvements in every possible scenario and workload, and, 
therefore, there is always the possibility of performance issues introduced by any changes in query 
optimization algorithms. 

 The situation is changing along with the adoption of the Clouds. SQL databases in Microsoft Azure 
share a code base with the boxed version. SQL Server, along with other Microsoft products, follows a  cloud-
first  model where features are deployed to the Clouds long before they appear in the boxed products. It 
allows Microsoft to test the function across millions of SQL databases, collecting telemetry from various 
production workloads and fixing any issues before RTM release. All of this greatly improves the quality of 
and reduces the number of bugs in the product. 

 Historically, Microsoft has been very cautious about shipping hotfixes and changes in Query Optimizer. 
They had been disabled by default and had to be enabled by using the individual trace flags associated 
with them. Another trace flag , T4199,  combines many of those hotfixes — which were recommended to be 
enabled in most systems – under a single flag. Nevertheless, the majority of installations do not have those 
trace flags enabled and would not benefit from all improvements in the product. 

 As of SQL Server 2016, hotfix-distribution policy is controlled by the database compatibility level rather 
than by trace flags. Setting the database compatibility level to 130 enables all Query Optimizer hotfixes and 
enhancements similar to trace flag  T4199 . That flag, in turn, enables the hotfixes introduced after the SQL 
Server 2016 RTM release, as is illustrated in Table  3-4 .  

   Table 3-4.    Database Compatibility Level and Hotfixes in SQL Server 2016   

 Compatibility Level  TF4199  Hotfixes Released Before 
SQL Server 2016 RTM 

 Hotfixes Released After 
SQL Server 2016 RTM 

 <= 120  Off  Disabled  Disabled 

 <= 120  On  Enabled  Disabled 

 130  Off  Enabled  Disabled 

 130  On  Enabled  Enabled 

 You should rely on the same behavior in future releases of SQL Server. Setting the database compatibility 
level to the product version will enable all hotfixes and enhancements from the previous versions of SQL 
Server. Trace flag  T4199  would enable all hotfixes introduced in the current SQL Server version after the 
RTM release. 

 This behavior would lead to a situation in which trace flag  T4199  would control different sets of hotfixes 
in different versions of SQL Server in the future. It can be safer to rely on database compatibility level rather 
than on the trace flag after you  perform   the SQL Server 2016 upgrade, switching to the legacy cardinality 
estimator using the  LEGACY_CARDINALITY_ESTIMATOR  database setting if needed. 

 ■   Note    You can read more about the Query Optimizing Servicing Model at    https://support.microsoft.
com/en-us/kb/974006     .   

https://support.microsoft.com/en-us/kb/974006
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     Summary 
 Correct cardinality estimation is one of the most important factors that allows the Query Optimizer to 
generate efficient execution plans. Cardinality estimation affects the choice of indexes, join strategies, and 
other parameters. 

 SQL Server uses statistics to perform cardinality estimations. The vital part of statistics is the histogram, 
which stores information about data distribution in the leftmost statistics column. Every step in the 
histogram contains a sample statistics-column value and information about what happens in the histogram 
step, such as how many rows are in the interval, how many unique key values there are, and so on. 

 SQL Server creates statistics for every index defined in the system. In addition, you can create column-
level statistics on individual or multiple columns in the table. SQL Server creates column-level statistics 
automatically if the database has the Auto Create Statistics option enabled. 

 Statistics have a few limitations. There are at most 200 steps (key value intervals) stored in the 
histogram. As a result, the histogram’s steps cover larger key value intervals as the table grows. This leads to 
larger approximations within the intervals and less accurate cardinality estimations on tables with millions 
or billions of rows. Moreover, the histogram stores information about data distribution for the leftmost 
statistics column only. There is no information about other columns in the statistics or index aside from 
multi-column density. 

 SQL Server tracks the number of changes made in statistics columns. By default, SQL Server outdates 
and updates statistics after that number exceeds about 20 percent of the total number of rows in the table. As 
a result, statistics are rarely updated automatically on large tables. You need to consider updating statistics 
on large tables manually based on a schedule. 

 In SQL Server 2016, with database compatibility level 130, the statistics update threshold is dynamic 
and based on the size of the table, which makes statistics on large tables more accurate. You can use trace 
flag  T2371  in previous versions of SQL Server, or with database compatibility level lower than 130. It is 
recommended that you set this trace flag in the majority of systems. 

 You should also update statistics on ever-increasing or ever-decreasing indexes more often, as SQL 
Server tends to underestimate the number of rows when the parameters are outside of the histogram, unless 
you are using the new cardinality estimation model introduced in SQL Server 2014. 

 The new cardinality estimation model is enabled in SQL Server 2014 and 2016 for databases with a 
compatibility level of 120 or 130. This model addresses a few common issues, such as estimations for ever-
increasing indexes when statistics are not up to date; however, it may introduce plan regressions in some 
cases. You should carefully test existing systems before enabling the new cardinality estimation model after 
upgrading SQL Server.     
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    CHAPTER 4   

 Special Indexing and Storage 
Features                          

 This chapter discusses several storage- and indexing-related features available in SQL Server. It covers 
indexes with included columns, filtered indexes and statistics, data compression, and sparse columns. 

     Indexes with Included Columns 
 As you already know, SQL Server rarely uses nonclustered indexes when it expects that a large number of 
 Key  or  RID    lookups    is required. Those operations usually lead to a large number of reads, both logical and 
physical. 

 With key lookup operations, SQL Server accesses multiple data pages from different levels in a  clustered 
index   every time it needs to obtain a single row. Even though root and intermediate index levels are usually 
cached in the buffer pool, access to leaf-level pages produces random, and often physical, I/O reads, which 
are slow, especially in the case of magnetic disk drives. 

 This is also true for  heap tables  . Even though the row-id in a nonclustered index stores the physical 
location of the row from the heap table, and RID lookup operations do not need to traverse the clustered 
index tree, they still introduce random I/O. Moreover, forwarding pointers can lead to extra reads if a row has 
been updated and moved to another page. 

 The existence of key or RID  lookups   is the crucial factor here. Rows in a nonclustered index are smaller 
than those in a clustered index.  Nonclustered indexes   use fewer data pages and, therefore, are more 
efficient. SQL Server uses nonclustered indexes even when it expects that a large number of rows need to be 
selected, as long as key or RID lookups are not required. 

 As you will recall,  nonclustered indexes   store data from the index key columns and row-id. For tables 
with clustered indexes, the row-id is the clustered key value of the index row. The values in all indexes are 
the same: when you update the row, SQL Server synchronously updates all indexes. 

 SQL Server does not need to perform key or RID lookups when all of the data a query needs exists in a 
nonclustered index. Those indexes are called   covering indexes  as      they provide all of the information that a 
query needs, and they are essentially covering the query. 

 Making nonclustered indexes covering ones is one of the most commonly used  query optimization 
techniques  . In the past, the only way to achieve this was to add columns, referenced by the queries, as the 
rightmost index key columns. Even though this method generally worked, it had a few disadvantages. 

 First, SQL Server stores sorted index rows based on index key values. An update of the  index key 
columns   can lead to a situation where a row needs to be moved to a different place in the index, which 
increases the I/O and transaction log load, as well as fragmentation. 

 Second, new columns increase the size of the index key, which can potentially increase the number of 
levels in the index, making it less efficient. 
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 Finally, a nonclustered index key cannot exceed 900 or 1,700 bytes, depending on the SQL Server 
version. As a result, you cannot add a large amount of data or LOB columns to the index. Even though 
making a large index row is not necessarily a good idea, it could be helpful in some cases. 

 SQL Server 2005 introduced a new way of making  covering indexes   by storing columns in the index 
without adding them to the index key. The data from these columns are stored on the leaf level only and do 
not affect the sorting order of the index rows. As a result, SQL Server does not need to move rows to different 
places in the index when included columns are modified. Included columns are not counted toward the 
900/1,700 bytes index key size limit, and you can even store LOB columns if absolutely needed. 

 Figure  4-1  illustrates the structure of an index with included columns, defined as  CREATE INDEX IDX_
Customers_Name ON dbo.Customers(Name) INCLUDE(DateOfBirth)  on the table, which has  CustomerId  as 
the clustered index.  

  Figure 4-1.    Structure of an index with included  columns         

 Let’s look at how an index with included columns can help us with query optimization. We will use 
table  dbo.Customers , which we created and populated with data in Listing 3-3 in the previous chapter. 
That table has a clustered index on the  CustomerId  column and a composite nonclustered index on the 
 (LastName, FirstName)  columns. 

 Let’s select data for a customer with last name  Smith . We will run two queries. In the first case, we will 
allow SQL Server to choose the execution plan by itself. In the second case, we will force SQL Server to use 
a nonclustered index via an index hint. The code to do this is shown in Listing  4-1 . Figure  4-2  shows the 
 execution plans   for the queries.  

     Listing 4-1.    Selecting data for a  customer   with the last name 'Smith'   

  select CustomerId, LastName, FirstName, Phone 
 from dbo.Customers 
 where LastName = 'Smith'; 
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   select CustomerId, LastName, FirstName, Phone 
 from dbo.Customers with (Index=IDX_Customers_LastName_FirstName) 
 where LastName = 'Smith'; 

  Figure 4-2.    Execution plans for the  queries         

    As you can see, SQL Server correctly estimated the number of rows with  LastName = 'Smith' , and it 
decided to use a clustered index scan instead of a nonclustered index seek. A   nonclustered index seek  and 
key lookups   introduce seven times more reads to obtain the data. 

 The query selects four columns from the  table  :  CustomerId ,  LastName ,  FirstName , and  Phone. 
LastName  and  FirstName  are key columns in the nonclustered index key.  CustomerId  is the clustered 
index key, which makes it the row-id in the nonclustered index. The only column that is not present in the 
nonclustered index is  Phone . You can confirm it by looking at the output list in the key lookup operator 
properties in the execution plan. 

 Let’s make our index a covering one by including the  Phone  column there and then seeing how it affects 
the execution plan. The code to achieve this is shown in Listing  4-2 . Figure  4-3  shows the new  execution plan  .  

     Listing 4-2.    Creating a covering index and running the query a second  time     

  create nonclustered index IDX_Customers_LastName_FirstName_PhoneIncluded 
 on dbo.Customers(LastName, FirstName) 
 include(Phone); 

   select CustomerId, LastName, FirstName, Phone 
 from dbo.Customers 
 where LastName = 'Smith'; 

 



CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

84

   Table 4-1.    Number of Logical Reads with Different Execution  Plans     

 Clustered Index Scan  Nonclustered Index Seek without 
covering index 

 Nonclustered Index Seek with 
covering index 

 853 logical reads  6,146 logical reads  12 logical reads 

  Figure 4-3.    Execution plan with covering  index         

    The new index has all of the required columns and, therefore, a key lookup is no longer needed. This 
leads to a much more efficient execution plan. Table  4-1  shows the number of logical reads in all three cases.  

 ■   Note    The new covering index,  IDX_LastName_FirstName_PhoneIncluded , makes the original 
nonclustered index,  IDX_LastName_FirstName , redundant. We will discuss index consolidation in greater detail 
in Chapter   7    , “Designing and Tuning the Indexes.”  

 Although covering indexes are a great tool that can help optimize queries, they come at a cost. Every 
column in the index increases its leaf-level row size and the number of data pages it uses on disk and in 
memory. That introduces additional overhead during  index maintenance   and increases the database size. 
Moreover, queries need to read more pages when scanning all or part of the index. Covering indexes do 
not necessarily introduce a noticeable performance impact during small range scans, when reading a few 
extra pages is far more efficient as compared to using key lookups. However, they could negatively affect the 
performance of queries that scan a large number of data pages or the entire index. 

 By adding a column to nonclustered indexes, you store the data in multiple places. This improves the 
performance of queries that select the data. However, during updates, SQL Server needs to change the rows 
in every index where updated columns are present. 

 Let’s look at the example and run two   UPDATE  statements  , as shown in Listing  4-3 . The first statement 
modifies the  Placeholder  column, which is not included in any nonclustered index. The second statement 
modifies the  Phone  column, which is included in the  IDX_Customers_LastName_FirstName_PhoneIncluded  
index. 

     Listing 4-3.    Updating data in dbo.Customers  table     

 update dbo.Customers set Placeholder = 'Placeholder' where CustomerId = 1; 
 update dbo.Customers set Phone = '505-123-4567' where CustomerId = 1; 

   As you can see in Figure  4-4 , the execution plan of the second  UPDATE   statement   requires SQL Server to 
update data in both the clustered and nonclustered indexes.  

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_7
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 That behavior reduces the performance of  data-modification queries  , introducing additional locking in 
the system and contributing to index fragmentation. You need to be careful and consider the pros and cons 
of making an index a covering one on a case-by-case basis. 

 ■   Note    We will discuss locking in detail in Part III, “Locking, Blocking, and Concurrency.”  

 It is important to know when to add a column to the index key and when to make it an included 
column. While in both cases the column is present on the leaf level of the index, predicates on included 
columns are not SARGable. Let’s compare two indexes, as shown in Listing  4-4 . 

     Listing 4-4.    Included versus key columns:  Index creation     

  drop index IDX_Customers_LastName_FirstName_PhoneIncluded on dbo.Customers; 
 drop index IDX_Customers_LastName_FirstName on dbo.Customers; 

   create index IDX_Key on dbo.Customers(LastName, FirstName); 
 create index IDX_Include on dbo.Customers(LastName) include(FirstName); 

    The data in the  IDX_Key  index is sorted based first on  LastName  and then on  FirstName . The data in 
 IDX_Include  is sorted based on  LastName  only.  FirstName  does not affect the sorting order in the index at all. 

  LastName  is SARGable in both indexes. Both indexes support  Index Seek  while searching for a particular 
 LastName  value. There is no difference in performance when  LastName  is the only predicate in the query. 
Listing  4-5  and Figure  4-5  illustrate this point.  

     Listing 4-5.    Included versus key columns:  Selecting by LastName only     

  select CustomerId, LastName, FirstName 
 from dbo.Customers  with (index = IDX_Key) 
 where LastName = 'Smith'; 

   select CustomerId, LastName, FirstName 
 from dbo.Customers  with (index = IDX_Include) 
 where LastName = 'Smith'; 

  Figure 4-4.    Execution plans for UPDATE statements       
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  Figure 4-5.    Included versus key columns:  Selecting by LastName only         

    Nonetheless, the situation changes when you add the  FirstName  predicate to the queries. With 
the  IDX_Key  index, a query is able to do an  index seek  using both  LastName  and  FirstName  as seek 
predicates. This would not be possible with the  IDX_Include  index. SQL Server needs to scan all rows 
with a specific  LastName  and check the predicate on the  FirstName  column. Listing  4-6  and Figure  4-6  
illustrate this point.  

     Listing 4-6.    Included versus key columns:  Selecting by LastName and FirstName     

  select CustomerId, LastName, FirstName 
 from dbo.Customers  with (index = IDX_Key) 
 where LastName = 'Smith' and FirstName = 'Andrew'; 

   select CustomerId, LastName, FirstName 
 from dbo.Customers  with (index = IDX_Include) 
 where LastName = 'Smith' and FirstName = 'Andrew'; 

  Figure 4-6.    Included versus key columns:  Selecting by LastName and FirstName         
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    As you can see, it is better to add a column as the key column if you expect to use SARGable predicates 
against that column. Otherwise, it is better to add a column as an included column, make the non-leaf index 
levels smaller, and avoid the overhead of maintaining the sorting on extra columns. 

 Finally, it is impossible to avoid mentioning the   SELECT *  pattern   when we talk about covering indexes. 
 SELECT *  returns the data for all columns in the table, which essentially prevents you from creating covering 
indexes to optimize it. You should not use  SELECT *  in the code.  

     Filtered Indexes 
  Filtered indexes , introduced in SQL Server 2008, allow you to index only a subset of the data. That reduces 
the index size and the maintenance  overhead  . 

 Consider a table with some data that needs to be processed. This table can have a  Processed bit  
column, which indicates the row status. Listing  4-7  shows a possible table structure. 

     Listing 4-7.    Filtered indexes:  Table creation     

  create table dbo.Data 
 ( 
         RecId int not null, 
         Processed bit not null, 
         /* Other Columns */ 
 ); 

   create unique clustered index IDX_Data_RecId on dbo.Data(RecId); 

    Let’s assume that you have a backend process that loads unprocessed data based on the query shown 
in Listing  4-8 . 

     Listing 4-8.    Filtered indexes:  Query that reads unprocessed data     

 select top 1000 RecId, /* Other Columns */ 
 from dbo.Data 
 where Processed = 0 
 order by RecId; 

   This query can benefit from the following index:  CREATE NONCLUSTERED INDEX IDX_Data_Processed_
RecId ON dbo.Data(Processed, RecId) . However, all index rows with a key value of  Processed=1  would be 
useless. They will increase the index’s size, waste storage space, and introduce additional overhead during 
 index maintenance  .   

 Filtered indexes solve that problem by allowing you to index just unprocessed rows, making the index 
small and efficient. Listing  4-9  illustrates this concept. 
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     Listing 4-9.    Filtered indexes: Filtered index   

 create nonclustered index IDX_Data_Unprocessed_Filtered 
 on dbo.Data(RecId) 
 include(Processed) 
  where Processed = 0;  

 ■     Important   The SQL Server Query Optimizer has a design limitation that can lead to suboptimal execution 
plans when columns from the filter are not present in leaf-level index rows. Always add all columns from the 
filter to the index, as either key or included columns.  

 Filtered indexes have a few  limitations  . Only simple filters are supported. You cannot use a logical  OR  
operator, and you cannot reference functions and calculated columns. 

 Another important limitation of filtered indexes relates to plan caching. SQL Server could not use 
a filtered index when the execution plan needs to be cached and the index cannot be used with some 
combination of parameter values. For example, the  IDX_Data_Unprocessed_Filtered  index could not be 
used with the parameterized query shown in Listing  4-10 , even if  @Processed=0  at the time of compilation. 

     Listing 4-10.    Filtered indexes:  Parameterized query     

 select top 1000 RecId, /* Other Columns */ 
 from dbo.Data 
 where Processed = @Processed 
 order by RecId; 

   SQL Server cannot cache the plan, which is using a filtered index, because this plan would be incorrect 
for the calls with  @Processed=1 . The solution here is to use a statement-level recompile with  option 
(recompile) , use dynamic SQL, or add an  IF  statement, as shown in Listing  4-11 . 

     Listing 4-11.    Filtered indexes: Rewriting a parameterized query with an  IF statement     

 if @Processed = 0 
         select top 1000 RecId, /* Other Columns */ 
         from dbo.Data 
         where Processed = 0 
         order by RecId; 
 else 
         select top 1000 RecId, /* Other Columns */ 
         from dbo.Data 
         where Processed = 1 
         order by RecId; 

 ■     Note    We will discuss plan caching in greater depth in Chapter   26    , “Plan Caching.”  

http://dx.doi.org/10.1007/978-1-4842-1964-5_26
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 Another very important aspect that you need to remember when dealing with filtered indexes is how 
SQL Server updates statistics on them. Unfortunately, SQL Server does not count the modifications of 
columns from the filter toward the  statistics update threshold  . As an example, let’s populate the  dbo.Data  
table with some data and then update statistics after that. The code for doing this is shown in Listing  4-12 . 

     Listing 4-12.    Filtered indexes:  Inserting data and updating statistics     

  ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 CROSS JOIN N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 CROSS JOIN N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 CROSS JOIN N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 CROSS JOIN N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.Data(RecId, Processed) 
         select ID, 0 from Ids; 

   update statistics dbo.Data; 

    At this point, the  dbo.Data  table has 65,536 rows. Let’s update all of the data in the table and set 
 Processed = 1 . After that, we will look at the statistics’ column modification count. The code to do this is 
shown in Listing  4-13 . 

     Listing 4-13.    Filtered indexes:  Updating data     

  update dbo.Data set Processed = 1; 

   select 
         s.stats_id as [Stat ID], sc.name + '.' + t.name as [Table], s.name as [Statistics] 
         ,p.last_updated, p.rows,p .rows_sampled, p.modification_counter as [Mod Count] 
 from 
         sys.stats s join sys.tables t on 
                 s.object_id = t.object_id 
         join sys.schemas sc on 
                 t.schema_id = sc.schema_id 
         outer apply 
                 sys.dm_db_stats_properties(t.object_id,s.stats_id) p 
 where 
         sc.name = 'dbo' and t.name = 'Data' 

    As you can see in Figure  4-7 , the  modification count   for the filtered index column shows zero. Moreover, 
the number of rows in the index is still 65,536, even though all rows in the table are now processed.  

  Figure 4-7.    Filtered indexes:  Statistics information         
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 If you look at the histogram shown in Figure  4-8 , you will see that it contains the old data distribution 
information.  

  Figure 4-8.    Filtered indexes:  Statistics histogram         

 This behavior can lead to  incorrect cardinality estimation and suboptimal execution plans  . You should 
regularly update statistics on filtered indexes when the filter columns are volatile and are not included in the 
index key. On the positive side, filtered indexes are usually small, and index maintenance introduces less 
overhead than with regular indexes. 

 Another area where filtered indexes are very useful is in supporting uniqueness on a subset of values. As 
a practical example, think about a table with   SSN  (Social Security Number)      as the optional nullable column. 
This scenario usually requires you to maintain the uniqueness of the provided SSN values. You cannot use 
a unique nonclustered index for such a purpose, however. SQL Server treats  NULL  as the regular value and 
does not allow you to store more than one row with a non-specified SSN. Fortunately, a unique filtered index 
does the trick. Listing  4-14  shows such an approach. 

     Listing 4-14.    Supporting uniqueness on a subset of values       

  create table dbo.Customers 
 ( 
         CustomerId int not null, 
         SSN varchar(11) null, 
         /* Other Columns */ 
 ); 

   create unique index IDX_Customers_SSN on dbo.Customers(SSN) 
 where SSN is not null; 

         Filtered Statistics 
 One of the assumptions with the legacy cardinality estimator (70) is the  independence   of query predicates 
from each other. To illustrate this concept, let’s look at the code shown in Listing  4-15 . This table stores 
information about articles, and it has a few attributes, such as  Color  and  Size . 

     Listing 4-15.    Cardinality estimation with  multiple predicates     

  create table dbo.Articles 
 ( 
        ArticleId int not null, 
        Name nvarchar(64) not null, 
        Description nvarchar(max) null, 
        Color nvarchar(32) null, 
        Size smallint null 
 ); 

   select ArticleId, Name from dbo.Articles where Color = 'Red' and Size = 3 
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    When you filter data based on both attributes,  Query Optimizer   correctly assumes that only a subset 
of the rows will be red in color. Moreover, only some of the red articles will have a size equal to three. As a 
result, it expects that the total number of rows with both predicates applied will be lower than with either of 
the single predicates applied. 

 While this approach works fine in some cases, it would introduce an incorrect cardinality estimation 
in the case of highly correlated predicates. Let’s look at another example and create a table that stores 
information about cars, including their make and model. Listing  4-16  creates this table and populates it with 
some data. As a final step, it creates  column-level statistics   on both columns. 

     Listing 4-16.    Correlated predicates:  Table creation     

  create table dbo.Cars 
 ( 
        ID int not null identity(1,1), 
        Make varchar(32) not null, 
        Model varchar(32) not null 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4) 
 ,Models(Model) 
 as 
 ( 
     select Models.Model 
      from  ( values('Yaris'),('Corolla'),('Matrix'),('Camry'),('Avalon'),('Sienna')

,('Tacoma'),('Tundra'),('RAV4'),('Venza'),('Highlander'),('FJ Cruiser'),('4Runner')
,('Sequoia'),('Land Cruiser'),('Prius') ) Models(Model) 

 ) 
 insert into dbo.Cars(Make,Model) 
     select 'Toyota', Model from Models cross join IDs; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4) 
 ,Models(Model) 
 as 
 ( 
     select Models.Model 
     from (  values('Accord'),('Civic'),('CR-V'),('Crosstour'),('CR-Z'),('FCX Clarity') 
         ,('Fit'),('Insight'),('Odyssey'),('Pilot'),('Ridgeline') ) Models(Model) 
 ) 
 insert into dbo.Cars(Make,Model) 
     select 'Honda', Model from Models cross join IDs; 

   create statistics stat_Cars_Make on dbo.Cars(Make); 
 create statistics stat_Cars_Model on dbo.Cars(Model); 
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    SQL Server correctly  estimates   cardinality when you run queries with a single predicate, as shown in 
Listing  4-17  and Figure  4-9 .  

     Listing 4-17.    Correlated predicates:  Cardinality estimations with single predicates     

 select count(*) from dbo.Cars where Make = 'Toyota'; 
 select count(*) from dbo.Cars where Model = 'Corolla'; 

  Figure 4-9.    Cardinality estimations with a single  predicate         

   However, cardinality estimations would be incorrect when both predicates are specified. Figure  4-10  
illustrates cardinality estimation for the query:  SELECT COUNT(*) FROM dbo.Cars WHERE Make='Toyota' 
and Model='Corolla'  when the legacy cardinality estimator is used.  

  Figure 4-10.    Cardinality estimation with correlated predicates (legacy cardinality estimator)          

 The legacy cardinality estimator (70) assumes the independence of predicates and uses the following 
formula: 

   (Selectivity of first predicate * Selectivity of second predicate) * (Total number of rows 
in table) = (Estimated number of rows for first predicate * Estimated number of rows for 
second predicate) / (Total number of rows in the table) = (4096 * 256) / 6912 = 151.704 

   The new cardinality  estimator   (120), introduced in SQL Server 2014, takes a different approach and 
assumes some correlation between predicates. It uses the following formula: 

   (Selectivity of most selective predicate) * SQRT(selectivity of next most selective 
predicate) = (256 / 6912) * SQRT(4096 / 6912) * 6912 = 256 * SQRT(4096 / 6912) = 197.069 

   Even though this formula provides better results in this case, it is still incorrect, as shown in Figure  4-11 .  
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 One solution to this problem is the use of filtered column-level statistics. These could improve 
cardinality estimation in the case of correlated predicates. Listing  4-18  creates filtered statistics on the  Model  
column for all cars made by Toyota. 

     Listing 4-18.    Correlated predicates: Creating  filtered statistics     

 create statistics stat_Cars_Toyota_Models 
 on dbo.Cars(Model) 
 where Make='Toyota' 

   Now, if you run the  SELECT  statement again, you will get a correct cardinality estimation, as shown in 
Figure  4-12 .  

  Figure 4-11.    Cardinality estimation with correlated predicates (new cardinality estimator)          

  Figure 4-12.    Cardinality estimation with  filtered statistics         

 The limitations of  filtered statistics   are similar to those of filtered indexes. SQL Server would not use 
this feature for cardinality estimation in the case of cached plans when there is the possibility that filtered 
statistics would not be applicable for all possible parameter choices. One of the cases where this happens 
is  autoparameterization  , which is when SQL Server replaces constant values in the  WHERE  clause of a query 
with parameters; that is, SQL Server would not use statistics if it autoparameterizes the predicate on the 
 Model  column in the preceding query. A statement-level recompile can help you to avoid such a situation. 
Moreover, SQL Server does not count the modifications of filter columns toward the statistics-modification 
threshold, which thus requires you to update statistics manually in some cases.  

     Calculated Columns 
 SQL Server allows you to define calculated columns in a table using expressions or system and scalar user-
defined  functions  . Listing  4-19  shows an example of a table with two calculated columns. 
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      Listing 4-19.    Table with two calculated columns   

 create table dbo.Customers 
 ( 
        CustomerId int not null, 
        SSN char(11) not null, 
        Phone varchar(32) null, 
        SSNLastFour as (right(SSN,4)), 
        PhoneAreaCode as (dbo.ExtractAreaCode(Phone)), 
        /* Other Columns */ 
 ); 

   SQL Server calculates the value of the calculated column when queries reference it. This can introduce 
some performance impact in the case of complex calculations, especially when a calculated column is 
referenced in the   WHERE  clause   of a query. You can avoid this by making the calculated columns  PERSISTED . 
In that case, SQL Server persists the calculated values, storing them in data rows similar to regular columns. 
While this approach improves the performance of queries that read data by removing any on-the-fly 
calculations, it reduces the performance of data modifications and increases the size of the rows. 

  User-defined functions (UDF)      allow the implementation of very complex calculations. However, they 
can significantly reduce the performance of queries. Let’s look at an example and create a table with 65,536 
rows, as shown in Listing  4-20 . We will use this table as the source of the data. 

     Listing 4-20.    Calculated columns and UDF: Creating a table with  data     

  create table dbo.InputData ( ID int not null ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.InputData(ID) 
        select Num from Nums; 

    For the next step, let’s create two other tables with calculated columns. One of the tables persists 
calculated column data while the other table does not. The code to accomplish this is shown in Listing  4-21 . 

     Listing 4-21.    Calculated columns and UDF:  Creating test tables     

  create function dbo.SameWithID(@ID int) 
 returns int 
 with schemabinding 
 as 
 begin 
        return @ID; 
 end 
 go 
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   create table dbo.NonPersistedColumn 
 ( 
        ID int not null, 
        NonPersistedColumn as (dbo.SameWithID(ID)) 
 ); 

   create table dbo.PersistedColumn 
 ( 
        ID int not null, 
        PersistedColumn as (dbo.SameWithID(ID)) persisted 
 ); 

    In the first test, let’s measure the performance impact of the persisted calculated column during a 
 batch-insert operation  . The code for this is shown in Listing  4-22 . 

     Listing 4-22.    Calculated columns and UDF: Comparing the performance of  batch-insert operations     

  insert into dbo.NonPersistedColumn(ID) 
        select ID from dbo.InputData; 

   insert into dbo.PersistedColumn(ID) 
        select ID from dbo.InputData; 

    The execution time on my computer is shown in Table  4-2 .  

   Table 4-2.     Batch-Insert Performance     

 dbo.NonPersistedColumn  dbo.PersistedColumn 

 100 ms  449ms 

 As a next step, let’s compare the performance of the queries, which reference the persisted and 
non-persisted calculated columns during the  SELECT  operation, using the code shown in Listing  4-23 . 

     Listing 4-23.    Calculated columns and UDF: Comparing the performance of  SELECT operations     

  select count(*) 
 from dbo.NonPersistedColumn 
 where NonPersistedColumn = 42; 

   select count(*) 
 from dbo.PersistedColumn 
 where PersistedColumn = 42; 

    In the case of the non-persisted calculated column, SQL Server calls the user-defined function to 
evaluate the predicate on every row, which significantly increases the execution time, as shown in Table  4-3 .  

   Table 4-3.    Select  Performance   with Warm Cache   

 dbo.PersistedColumn  dbo.NonPersistedColumn 

 7 ms  218ms 
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 The  noticeable performance impact   is mainly related to the user-defined function call’s overhead. 
However, you would still have a performance impact because of the calculations, granted of a smaller scope, 
even if user-defined functions were not used. 

 ■   Note    We will discuss user-defined functions and their performance implications in greater depth in 
Chapter   11    , “User-Defined Functions.”  

 Calculated columns that use user-defined functions prevent Query Optimizer from generating parallel 
execution plans even when queries do not reference them. This is one of the design limitations of  Query 
Optimizer  . We can see this behavior if we run the query shown in Listing  4-24 . The code uses undocumented 
trace flag  T8649 , which forces SQL Server to produce a parallel execution plan if it is possible. As usual, be 
careful with undocumented trace flags and do not use them in production. 

     Listing 4-24.    Calculated columns and  parallel execution plans     

 select count(*) from dbo.NonPersistedColumn option (querytraceon 8649); 
 select count(*) from dbo.PersistedColumn option (querytraceon 8649); 
 select count(*) from dbo.InputData option (querytraceon 8649); 

   As you can see in Figure  4-13 , the only time SQL Server is able to generate a parallel execution  plan   is 
in the table without a calculated column. It is worth mentioning that SQL Server is able to generate parallel 
execution plans for tables with calculated columns, as long as they are not calculated with user-defined 
functions.  

  Figure 4-13.    Calculated columns and  parallel execution plans         

 You can create indexes on calculated columns even when those columns are not persisted. This is 
a great option when the main use case for a calculated column is to support index seek operations. One 
such example is searching by the last four digits in an SSN. You can create a nonclustered index on the 
 SSNLastFour  calculated column in the  dbo.Customers  table (shown in Listing  4-19 ) without making the 
calculated column persisted. Such an approach saves storage space for data. 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_11


CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

97

 The code shown in Listing  4-25  creates an index on a  non-persisted calculated column   and references 
this column in the query. 

     Listing 4-25.    Indexing a  non-persisted calculated column     

  create unique nonclustered index IDX_Customers_SSNLastFour 
 on dbo.Customers(SSNLastFour); 

   select CustomerId, SSN 
 from dbo.Customers 
 where SSNLastFour = '1234';   

    Figure  4-14  shows the execution plan for the  SELECT  statement. As you can see, SQL Server is able to use 
the  nonclustered index  .  

  Figure 4-14.    Execution plan that utilizes a nonclustered index on a non-persisted calculated  column         

 It is important to decide where to calculate data. Even though calculated columns are convenient for 
developers, they add load to SQL Server during calculations. This decision is even more important in cases 
where applications use ORM frameworks and load calculated columns as attributes of the entities. This 
scenario increases the chance that calculated columns will be referenced and calculated, even when they 
are not needed for some of the use cases. 

 You also need to remember that a typical system includes multiple application servers with only one 
active database server serving all of the data. It is usually simpler and cheaper to scale out application 
servers than it is to upgrade the  database server  . 

 Calculating data at the application server or client level reduces the load on SQL Server. However, if the 
system does not have dedicated data-access and/or business-logic tiers, it could lead to supportability issues 
when a calculation needs to be done in multiple places in the code. As usual, the decision falls into the “It 
Depends” category, and you need to evaluate the pros and cons of every approach.  

     Data Compression 
 The Enterprise Edition of SQL Server 2008 and above allows you to reduce the size of tables by implementing 
data compression. There are two types of data compression available:  row  and  page. Row compression  
reduces the size of rows by using a different row format, which eliminates the unused storage space 
from fixed-length data.  Page compression  works on the data-page scope, and it removes duplicated byte 
sequences from a page. 
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 Data pages in the buffer pool store data in the same format as data is stored on disk. Compression is 
implemented transparently to other SQL Server features; that is, SQL Server components that access data do 
not know if compression is used or not. 

 Even though data compression allows you to put more rows into data pages, it does not increase the 
amount of data that a row can store. The 8,060 bytes maximum row size limitation still applies, regardless of 
the compression settings. SQL Server guarantees that the disabling of data compression will always succeed 
and, therefore, an uncompressed row must always fit on a data page. 

 Let’s examine how both compression types are implemented. 

     Row Compression 
 As you should remember, the regular row format, called   FixedVar      , stores fixed- and variable-length data in 
different sections of the row. The benefit of such an approach is fast access to column data. Fixed-length 
columns always have the same in-row offset. The offset of variable-length column data can also be easily 
obtained based on the offset array information. 

 This fast access, however, comes at a cost. Fixed-length columns always use the same storage space 
based on the largest possible value of the data type. For example, the  int  data type always uses four bytes, 
even when it stores 0 or  NULL  values. 

 Unfortunately, unused space quickly adds up. One unused byte leads to almost 350 MB of unused space 
per year in a table that collects one million rows per day. The table uses more space on disk and in the buffer 
pool, which increases the number of required I/O operations and negatively affects the performance of the 
system. 

 Row compression addresses this problem by implementing another row format, called  CD , which 
stands for  column    descriptor   . With this format, every row stores the column and data description 
information for the row using the exact amount of storage space required for the value. Figure  4-15  illustrates 
the CD row format.  

  Figure 4-15.     CD row format         

 Similar to the FixedVar row format, data in the CD format is separated into two different sections:   Short 
Data Region  and  Long Data Region   . However, the separation is based on the size of the data rather than on 
the data type. The Short Data Region stores data up to 8 bytes in size. Larger values are stored in the Long 
Data Region. Let’s look at the row format in depth. 

 The  Header  byte is a bitmask, which is similar to the  Status Bits A  byte in the FixedVar row format. 
It consists of various bits representing the properties of the row, such as if it is an index row, if it has a 
versioning tag, if the row was deleted, and a few other attributes. 
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 The  CD region  stores information about the column data in the row. It starts with either one or two 
bytes indicating the number of columns in the CD array. The first bit in the first byte indicates if there are 
more than 127 columns, in which case two bytes are needed to store the number of columns. It is followed 
by the   CD array    itself. Each element in the array stores information about one of the columns, and it uses 
four bits to store one of the following  values  :

    0 (0x0)  indicates that the corresponding column is  NULL   

   1 (0x1)  indicates that the corresponding column stores an empty value for the 
data type. For example, an empty value for  int  columns would be 0. Empty 
columns do not use space in either the Short or the Long Data Region sections.  

   2 (0x2)  indicates that the corresponding column is a 1-byte short value.  

   3 (0x3)  indicates that the corresponding column is a 2-byte short value.  

   4 (0x4)  indicates that the corresponding column is a 3-byte short value.  

   5 (0x5)  indicates that the corresponding column is a 4-byte short value.  

   6 (0x6)  indicates that the corresponding column is a 5-byte short value.  

   7 (0x7)  indicates that the corresponding column is a 6-byte short value.  

   8 (0x8)  indicates that the corresponding column is a 7-byte short value.  

   9 (0x9)  indicates that the corresponding column is an 8-byte short value.  

   10 (0xA)  indicates that the corresponding column has more than an 8-byte value 
and is stored in Long Data Region.  

   11 (0xB)  indicates that the corresponding column is a  bit  column with the value 
of one. Such a column does not use space in the Short Data Region.    

 Offsets for column data in the  Short Data Region   can be calculated based on the CD region information. 
However, that calculation could be expensive when there is a large number of columns. SQL Server 
optimizes it by storing a series of 30-column clusters at the beginning of the Short Column Data region. For 
example, if the Short Data Region has 70 columns, SQL Server stores an array with two  one-byte elements  . 
The first element/byte stores the size of the first 30-column cluster. The second element/byte stores the size 
of the second 30-column cluster. An array is not stored if the row has less than 30 columns. 

 Figure  4-16  illustrates such an example. The value 10 (0xA) in the CD array indicates that the column 
stores long data, and therefore the actual Short Data Region column cluster can include less than 30 
values—18, 16, and 4 in this example.  

  Figure 4-16.    Example of CD and  Short Data Regions data         
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 The  Long Data Region   starts with an offset array, which is similar to a variable-length offset array in the 
FixedVar row format. 

 The first byte is a bitmask with two meaningful bits. The first one is always 1, which tells SQL Server that 
the offset array uses two-byte values. The second bit indicates if the row has any complex columns that store 
data off-row. 

 The next two bytes store the number of columns in the array to follow. 
 The most significant bit in the first byte of each element in the offset array indicates if it is a complex 

column. Other bits store the ending offset of the column. 
 Similar to the Short Data Region, SQL Server optimizes access to the trailing columns by storing an 

array with a number of long data columns in each 30-column cluster. Figure  4-17  illustrates the  Long Data 
Region   for the same row shown in Figure  4-16 .  

 Let’s examine the actual row data and create a table, as shown in Listing  4-26 . 

     Listing 4-26.    Row compression:  Creating a table     

  create table dbo.RowCompressionData 
 ( 
        Int1 int, 
        Int2 int, 
        Int3 int, 
        VarChar1 varchar(1000), 
        VarChar2 varchar(1000), 
        Bit1 bit, 
        Bit2 bit, 
        Char1 char(1000), 
        Char2 char(1000), 
        Char3 char(1000) 
 ) 
 with (data_compression=row); 

   insert into dbo.RowCompressionData 
 values 
        (0 /*Int1*/, 2147483647 /*Int2*/, null /*Int3*/, 'aaa'/*VarChar1*/ 
        ,replicate('b',1000) /*VarChar2*/, 0 /*BitCol1*/, 1 /*BitCol2*/, null /*Char1*/ 
        ,replicate('c',1000) /*Char2*/, 'dddddddddd' /*Char3*/); 

    Listing  4-27  shows the partial   DBCC PAGE  command results  . You can use the same technique, described 
in Chapter   1    , to obtain a page number for the row. 

  Figure 4-17.    Example of  Long Data Region data         

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_1
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     Listing 4-27.    Row compression: DBCC PAGE  results     

  Slot 0 Offset 0x60 Length 2033 
 Record Type = (COMPRESSED) PRIMARY_RECORD                                 
 Record attributes = LONG DATA REGION 
 Record size = 2033                   
 CD Array 
 CD array entry=Column 1 (cluster 0, CD array offset 0): 0x01 (EMPTY)   
 CD array entry=Column 2 (cluster 0, CD array offset 0): 0x05 (FOUR_BYTE_SHORT) 
 CD array entry=Column 3 (cluster 0, CD array offset 1): 0x00 (NULL)     
 CD array entry=Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT) 
 CD array entry=Column 5 (cluster 0, CD array offset 2): 0x0a (LONG)     
 CD array entry=Column 6 (cluster 0, CD array offset 2): 0x01 (EMPTY)   
 CD array entry=Column 7 (cluster 0, CD array offset 3): 0x0b (BIT_COLUMN) 
 CD array entry=Column 8 (cluster 0, CD array offset 3): 0x00 (NULL)     
 CD array entry=Column 9 (cluster 0, CD array offset 4): 0x0a (LONG)     
 CD array entry=Column 10 (cluster 0, CD array offset 4): 0x0a (LONG)   

   Record Memory Dump 
 0EA4A060:   210a5140 1a0baaff ffffff61 61610103 00e803d0  !.Q@..ªÿÿÿÿaaa…è.Ð 
 0EA4A074:   07da0762 62626262 62626262 62626262 62626262  .Ú.bbbbbbbbbbbbbbbbb 
 <SKIPPED> 
 0EA4A448:   62626262 62626262 62626262 62626262 62626262  bbbbbbbbbbbbbbbbbbbb 
 0EA4A45C:   62626263 63636363 63636363 63636363 63636363  bbbccccccccccccccccc 
 0EA4A470:   63636363 63636363 63636363 63636363 63636363  cccccccccccccccccccc 
 <SKIPPED> 
 0EA4A830:   63636363 63636363 63636363 63636363 63636363  cccccccccccccccccccc 
 0EA4A844:   63636364 64646464 64646464 64                 cccdddddddddd 

   Slot 0 Column 1 Offset 0x0 Length 4 Length (physical) 0 
 Int1 = 0                             
 Slot 0 Column 2 Offset 0x7 Length 4 Length (physical) 4 
 Int2 = 2147483647                   
 Slot 0 Column 3 Offset 0x0 Length 0 Length (physical) 0 
 Int3 = [NULL]                       
 Slot 0 Column 4 Offset 0xb Length 3 Length (physical) 3 
 VarChar1 = aaa                       
 Slot 0 Column 5 Offset 0x17 Length 1000 Length (physical) 1000 
 VarChar2 = bbbbbbbbbbbbbbbbbbbbbbbbbbbbb <SKIPPED> 
 Slot 0 Column 6 Offset (see CD array entry) Length 1 
 Bit1 = 0                             
 Slot 0 Column 7 Offset (see CD array entry) Length  1   
 Bit2 = 1                             
 Slot 0 Column 8 Offset 0x0 Length 0 Length (physical) 0 
 Char1 = [NULL]                       
 Slot 0 Column 9 Offset 0x3ff Length 1000 Length (physical) 1000 
 Char2 = cccccccccccccccccccccccccccccccc <SKIPPED> 
 Slot 0 Column 10 Offset 0x7e7 Length 1000 Length (physical) 10 
 Char3 = dddddddddd                                               
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    Figure  4-18  illustrates the data in the row. Keep in mind that multi-byte values are stored in 
 byte-swapped order  , similar to with the FixedVar format. Moreover, four-bit sections in the CD array are 
also swapped within each byte.  

  Figure 4-18.    Row compression:  Row data         

 There is one very important catch, however. In some cases, compression can increase the size of the 
row. Consider a situation where you have a table with multiple  fixed-length columns   that utilize all storage 
space according to the data type. Consider  tinyint  columns that store non-zero values,  smallint  columns 
that store two-byte values, or  datetime  columns that always use eight bytes. Those columns would not 
benefit from row compression, and, in fact, row compression would use an extra four bits per column in the 
CD array, which you do not have with the FixedVar format. Fortunately, those cases are relatively rare, and 
row compression usually introduces significant space savings. 

 Finally, it is worth repeating that default type values—for example, zeroes for  int  and  bit  data types—
do not use storage space outside of the four bits in the CD region.  

     Page Compression 
  Page compression  works differently than row compression does. It is applied to the entire page, but only after 
the page is full and only when the compression saves a significant amount of space on the page. Moreover, 
SQL Server does not use page compression on  non-leaf index levels  —those are compressed with row 
compression when page compression is used. 

 Page compression consists of three different  stages  . First, SQL Server performs row compression 
on the rows. Next, it performs   prefix compression    on the column level by locating and reusing the most 
common prefix, which reduces the data size for values in that column. Finally, SQL Server does a   dictionary 
compression    by removing all of the duplicates in the data across all columns. Let’s examine prefix and 
dictionary compressions in depth. 

 As a first step, SQL Server detects the most common prefix in a column’s data and finds the longest 
value that is using such a prefix. This value is called the   anchor value   . All other rows on the page store the 
difference between their values and the anchor values, rather than the actual values. 

 Let’s look at an example, assuming that we have a four-column table with the data shown in Table  4-4 .  

   Table 4-4.    Page Compression:  Original Data     

 Column 1  Column 2  Column 3  Column 4 

 PALETTE  CAN  NULL  PONY 

 PAL  BALL  MILL  HORSE 

 POX  BILL  MALL  TIGER 

 PILL  BOX  MAN  BUNNY 
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 For the first column, the most common prefix is  P ; therefore  PALETTE  is the  anchor value  . SQL Server 
stores the anchor value as an empty not null string ( <><>  is used to indicate anchor values in the tables that 
follow). All other values are stored based on the prefix. For example, the value  PILL  is stored as  <1><ILL> , 
indicating that it should use one letter from the anchor value as the prefix followed by  ILL . The value  PAL  is 
stored as  <3><> , indicating that it uses three letters from the anchor value only. If no usable prefix is found, 
SQL Server does not store the anchor value and all data is stored as is. 

 Table  4-5  illustrates page data after prefix compression has been applied.  

   Table 4-5.    Page Compression:  Data After Prefix Compression     

 Column 1  Column 2  Column 3  Column 4 

 Anchor value  PALETTE  BALL  MALL  NULL 

 <><>  <><CAN>  NULL  PONY 

 <3><>  <><>  <1><ILL>  HORSE 

 <1><OX>  <1><ILL>  <><>  TIGER 

 <1><ILL>  <1><OX>  <2><N>  BUNNY 

   Table 4-6.    Page Compression:  Data After Dictionary Compression     

 Column 1  Column 2  Column 3  Column 4 

 Dictionary Entities: [D1]: <1><OX>; [D2]:<1><ILL> 

 <><>  <><CAN>  NULL  PONY 

 <3><>  <><>  [D2]  HORSE 

 {D1]  [D2]  <><>  TIGER 

 [D2]  [D1]  <2><N>  BUNNY 

  Figure 4-19.    Compression information record  format         

 During dictionary compression, SQL Server detects the same patterns across all data on the page and 
replaces them with dictionary  entries  , as shown in Table  4-6 . This process is type-agnostic and works with 
byte sequences. The row is still using the CD data format. The CD array stores a value of 13 (0xC) to indicate 
that the row value has been replaced with a dictionary entry.  

 Both anchor and dictionary values are optional. SQL Server does not create either or both of them if the 
data patterns do not repeat often enough. 

 When a page is compressed, SQL Server adds another hidden row, called the   compression information 
(CI) record   , right after the page header. Figure  4-19  illustrates its format. 
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   A  Header  is a bitmask that indicates the CI record version and if it has an anchor 
record and/or dictionary entry present.  

  The  PageModCount  indicates the number of changes on the page after it has 
been compressed. SQL Server tries to recompress the page and rebuild the 
CI records either after 25 modifications or when the number of modifications 
exceeds 25 percent of the number of rows on the page.  

   Offsets  is an array that stores the beginning and ending offsets of the anchor 
record and/or dictionary entry in the CI record.  

  The  Anchor  Record is another row in CD format, with each column representing 
the anchor value for a particular table column.  

  The  Dictionary  stores an array of dictionary entries and consists of three parts: 
number of entries, their offsets, and actual values.    

 As already mentioned, SQL Server stores the data in page-compressed format only when the page 
is full and compression leads to significant space savings. When a page is full, SQL Server performs 
compression and evaluates if the newly compressed page can store either five more rows or 25 percent 
more rows than before the compression. If that is the case, then page compression is retained and SQL 
Server stores the data in page-compressed format. Otherwise, the page compression is discarded and data 
is stored in row-compressed format. 

 The same process occurs when   PageModCount    in the CI record exceeds the threshold. SQL Server tries to 
recompress a page, evaluating the space savings and either keeping or discarding results. 

 ■   Note    You can see page-compression statistics in the  page_compression_attempt_count  and  page_
compression_success_count columns  in the  sys.dm_db_index_operational_stats  DMF.  

 Finally, neither  transaction log   records for data modifications nor the version store in  tempdb  supports 
page compression. SQL Server needs to decompress the page and remove anchor and dictionary records 
every time a row needs to be placed in the version store or written to the transaction log. This can introduce 
an additional performance impact when optimistic isolation levels or  AFTER  triggers are used, or when 
compressed data is frequently modified. 

 ■   Note    We will discuss the version store in more detail in Chapter   9    , “Triggers,” and Chapter   21    , “Optimistic 
Isolation Levels.” Transaction log internals are covered in Chapter   30    , “Transaction Log Internals.”   

      Performance Considerations   
 Data compression can significantly reduce the storage space needed for data at the cost of extra CPU 
load. SQL Server needs more time to access row data regardless of the compression type used. It does not 
necessarily mean that the query execution time will increase, as in many cases queries will work even faster 
due to fewer data pages to scan and less I/O reads to perform. However, the performance of batch data 
modifications and index-maintenance routines could be negatively affected. 

 Let’s do some tests and check out how data compression affects the storage size and execution time 
of queries. I am using data from one of the production tables with a decent number of fixed- and variable-
length columns. Obviously, different table schema and data distribution will lead to slightly different results. 
However, in most cases, you would see similar patterns. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_9
http://dx.doi.org/10.1007/978-1-4842-1964-5_21
http://dx.doi.org/10.1007/978-1-4842-1964-5_30
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 To begin the tests, I created three different heap tables and inserted one million rows into each of 
them. After that, I created clustered indexes with different compression settings and  FILLFACTOR=100 . This 
workflow led to fully populated data pages and zero index fragmentation. 

 During the first test, I ran  SELECT  statements to scan all of the clustered indexes accessing some row 
data. The second test updated every row in the tables, changing the value of the fixed-length column in a 
way that did not increase the row size. The third test inserted another batch of one million rows into the 
tables. Finally, I rebuilt all of the clustered indexes. 

 You can see the  execution statistics   in Table  4-7 . All tests ran with a warm cache, with the data pages 
cached in the buffer pool. Cold cache could reduce the difference in execution times for the queries against 
compressed and non-compressed data, because queries against compressed data perform less physical I/O.  

   Table 4-7.    Data Compression, Storage Space, and  Performance     

 Size 

 (MB) 

 Avg. Row Size 

 (bytes) 

 SELECT 

 Elapsed 
Time (ms) 

 UPDATE 

 Elapsed 
Time (ms) 

 INSERT 

 Elapsed 
Time (ms) 

 INDEX REBUILD 

 Elapsed 
Time (ms) 

 No Compression  285  287  298  3,745  12,596  21,537 

 Row Compression  181  183  224  12,618  17,808  33,074 

 Page Compression  94  81  267  36,690  39,121  76,694 

 All statements were forced to run on a single CPU by using a  MAXDOP 1  query hint. Using parallelism 
would decrease the query execution times; however, it would also add the overhead of parallelism 
 management   during query execution. We will discuss such overhead later in this book. 

 As you can see, data compression improved the performance of the queries that read and scan the data, 
even without physical I/O involved. This leads us to conclude that reading compressed data adds very little 
overhead to the system. However, compression decreased the performance of data modifications; therefore, 
it is expensive to compress data, especially when using page compression. 

 CPU overhead, however, is not the only factor to consider. Compression reduces the size of rows and the 
number of data pages required to store them. Compressed indexes use less space in the buffer pool, which 
allows you to cache more data in the system. Compression can significantly reduce the amount of physical 
I/O and improve system performance as a result of such caching, even with all the data modification 
overhead involved. Furthermore, data compression reduces the size of the database and thus the size of 
backup files and their storage costs. 

 Obviously, it is impossible to provide generic  advice   when it comes to using data compression. In some 
cases, especially with heavily CPU-bound servers, compression can degrade system performance. However, 
in most cases, compression will benefit the systems. Row compression is usually a good choice when the 
data is volatile. Page compression, on the other hand, is better suited for static data. You should analyze each 
case individually, however, taking CPU and I/O load, data-modification patterns, and various other factors 
into account. 

 You should also estimate how much space compression actually saves you. There is no reason to be 
compressing the data if the space savings is minimal. Row compression reduces the storage space used 
by fixed-length data. It does not help much with variable-length data storage space. The results of page 
compression depend on the data itself rather than on data types. Finally, both data compression methods 
work with in-row data only, and they will not compress data stored in row-overflow and LOB pages. 

 As a rule of thumb, I usually enable row compression for all volatile indexes when it introduces space savings, 
and page compression for indexes with static data. I also consider enabling page compression even when data 
is volatile when the size of the active data in the system exceeds the amount of available memory. As I already 
mentioned, compression allows SQL Server to cache more data in the buffer pool, thus reducing physical I/O 
activity and improving the performance of the system even with all the data modification overhead involved. 
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 ■   Tip    Data compression can be useful when you deal with third-party systems with an excessive use of 
fixed-length data types. For example, some independent software vendors use the fixed-length  char  data type 
to store text information. Implementing data compression here significantly reduces table storage space and 
improves system performance transparently to the applications.  

 You can estimate the space savings of row and page compression by using the  sp_estimate_data_
compression_savings  stored procedure. This procedure copies a sample of the data to  tempdb  and applies 
the desired data compression method, estimating the space savings. Obviously, it can produce incorrect 
results if data is distributed unevenly. I am including the script that estimates the compression space saving 
for all indexes in the database to the companion materials for the book. 

 You can apply different data compression methods on a per-index basis. In the case of partitioned 
 tables  , compression can be applied on a per-partition basis. For example, you may decide to use row 
compression or no compression at all for partitions with volatile operational data and page compression for 
static archived data. 

 ■   Note   We will talk about partitioned tables and other data-partition techniques in Chapter   16    , “Data 
Partitioning.”    

     Sparse Columns 
  Sparse columns , introduced in SQL Server 2008, have a special storage format optimized for the storage of 
 NULL  values. As you will remember, without data compression, fixed-length columns always use the same 
storage space, even when they store  NULL  values. Variable-length columns use an amount of space based on 
the size of the value, along with an extra two bytes found in the variable-length offset array. 

 When a column is defined as  sparse , it does not use any storage space when it is  NULL , at the cost of 
extra storage overhead in cases of  NOT NULL  values. This storage overhead is four bytes for fixed-length data 
types and two bytes for variable-length data  types  . 

 ■   Caution   Even though  NULL  fixed-length data types do not use storage space when defined as sparse, you 
should not interchange them with variable-length data types. A sparse  char  column would be stored in-row 
when it is  NOT NULL  and contribute toward the 8,060 maximum row size limit. Alternatively, a sparse  varchar  
column could be stored in a row-overflow page if needed.  

 Sparse column data is stored in a special part of the row called the   sparse vector      . I am not going to dive 
into the sparse vector internal storage format, but I want to mention that it is located after the variable-
length portion of the row. Moreover, the sparse vector adds extra storage overhead, which increases size of 
the row and counts toward the 8,060-byte limit. 

 Table  4-8  shows the required  storage space   used by data types for a regular nonsparse column and for 
a sparse column that stores a  NOT NULL  value. It also shows the minimum percentage of rows that must have 
 NULL  values to achieve a net space savings of 40 percent.  

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
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   Table 4-8.    Space Used by Nonsparse and  Sparse Columns     

 Data Type  Nonsparse storage 
space (bytes) 

 Sparse storage space 
when not null (bytes) 

 NULL percentage 

 Bit  0.125  4.125  98% 

 Tinyint  1  5  86% 

 Smallint  2  6  76% 

 Date  3  7  69% 

 time(0)  3  7  69% 

 Int  4  8  64% 

 Real  4  8  64% 

 Smallmoney  4  8  64% 

 Smalldatetime  4  8  64% 

 time(7)  5  9  60% 

 decimal/numeric(1,s)  5  9  60% 

 datetime2(0)  6  10  57% 

 Bigint  8  12  52% 

 Float  8  12  52% 

 Money  8  12  52% 

 Datetime  8  12  52% 

 datetime2(7)  8  12  52% 

 datetimeoffset(0)  8  12  52% 

 datetimeoffset(7)  10  14  49% 

 Uniqueidentifier  16  20  43% 

 decimal/numeric(38,s)  17  21  42% 

 Variable-length  types    2 + avg data size  4 + avg data size  60% 

 Sparse columns allow the creation of wide tables with up to 30,000 columns. Some systems—for 
example, Microsoft SharePoint—use wide tables to store semistructured data. 

 Think about a table that stores different types of  documents  , as an example. Each document type has its 
own set of attributes/columns defined. Some attributes, such as  Document Number  and  Creation Date, e xist 
in every document type, while other are unique for a specific type. 

 If you decided to keep all documents in a single table, you could define common  attributes   as 
regular nonsparse columns and document-type-related attributes as sparse columns. That approach can 
significantly reduce table row size in cases where a large number of attributes store  NULL  values. 

 It is worth mentioning that you can choose other design solutions besides wide tables in such 
situations. You may consider storing different  document types   in separate tables, with another table used 
to store common  document attributes  . Alternatively, you could use XML to store some of the attributes or 
unpivot them into another name/value pairs table. Every approach has its pros and cons based on business 
and functional requirements. 

 There is still a limitation of a maximum of 1,024 nonsparse columns per table. Moreover, the in-row part 
of the row must not exceed 8,060 bytes. 
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 Managing a large number of sparse columns in the code can become cumbersome. As a workaround, 
SQL Server allows you to define a designated column called  COLUMN_SET . Think about the   COLUMN_SET  
column   as an untyped, calculated XML column that contains information about  NOT NULL  sparse columns 
from a row. 

 The   COLUMN_SET  column   changes the behavior of the  SELECT *  operation. When it is specified, SQL 
Server does not include individual sparse columns in the result set, returning a  COLUMN_SET  column instead. 
Moreover, if you add new sparse columns to a table, they would appear in the result set. 

 Listing  4-28  illustrates an example of this. The code creates two tables with sparse columns—one with 
 COLUMN_SET —and it populates them with the same data. 

     Listing 4-28.    Sparse columns:  COLUMN_SET—tables creation     

  create table dbo.SparseDemo 
 ( 
        ID int not null, 
        Col1 int sparse, 
        Col2 varchar(32) sparse, 
        Col3 int sparse 
 ); 

   create table dbo.ColumnSetDemo 
 ( 
        ID int not null, 
        Col1 int sparse, 
        Col2 varchar(32) sparse, 
        Col3 int sparse, 
        SparseColumns xml column_set for all_sparse_columns 
 ); 

   insert into dbo.SparseDemo(ID,Col1) values(1,1); 
 insert into dbo.SparseDemo(ID,Col3) values(2,2); 
 insert into dbo.SparseDemo(ID,Col1,Col2) values(3,3,'Col2'); 

   insert into dbo.ColumnSetDemo(ID,Col1,Col2,Col3) 
        select ID,Col1,Col2,Col3 from dbo.SparseDemo; 

    As a next step, let’s select data from those tables using the  SELECT *   operator  , as shown in Listing  4-29 . 

     Listing 4-29.    Sparse columns: COLUMN_SET—select *      

 select 'SparseDemo' as [Table], * from dbo.SparseDemo; 
 select 'ColumnSetDemo' as [Table], * from dbo.ColumnSetDemo; 

   Figure  4-20  shows the results. As you can see, when you select data from the second table, there are no 
individual sparse columns in the result set.  
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  Figure 4-20.    Sparse columns:  COLUMN_SET and select *         

 You can insert or update sparse columns through the  COLUMN_SET  column. Listing  4-30  shows an 
example of this, and Figure  4-21  shows the result of the execution.  

     Listing 4-30.    Sparse columns: Using  COLUMN_SET to manipulate data     

  insert into dbo.ColumnSetDemo(ID, SparseColumns) 
 values(4, '<col1>4</col1><col2>Insert data through column_set</col2>'); 

   update dbo.ColumnSetDemo 
 set SparseColumns = '<col2>Update data through column_set</col2>' 
 where ID = 3; 

   select ID, Col1, Col2, Col3 from dbo.ColumnSetDemo where ID in (3,4); 

  Figure 4-21.    Sparse columns: Using  COLUMN_SET to manipulate data         

    Working with sparse columns through  COLUMN_SET  can simplify development and database 
administration, especially when the table schema is changing due to business or functional requirements. 

 ■   Note    There is a set of restrictions related to the  COLUMN_SET  column. Read this document for more details: 
   http://technet.microsoft.com/en-us/library/cc280521.aspx     .  

 Regular indexes are inefficient with sparse columns due to the large number of  NULL  values. You should 
use filtered indexes instead. Even a large number of filtered indexes might be acceptable and would not 
introduce noticeable  data-modification and -maintenance overhead   in cases where a very small subset of 
the rows is being indexed. 

 Microsoft suggests implementing sparse columns in cases where the net space savings would be at least 
20 to 40 percent as compared to a  nonsparse implementation  . Sparse columns, however, have a cost. Some 
SQL features, such as replication, change tracking, and change data capture, are limited when dealing with 
sparse columns and/or column sets. Moreover, tables with sparse columns cannot be compressed. 

 

 

http://technet.microsoft.com/en-us/library/cc280521.aspx
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 You need to monitor the data when dealing with sparse columns. The percentage of  NULL  values in the 
columns could change over time, which makes sparse columns inefficient. 

 With the Enterprise Edition of SQL Server, I prefer to use  data compression   rather than sparse columns 
when the goal is to reduce the amount of storage space used by fixed-length columns that store mostly  NULL  
values. Data compression decreases storage space like sparse columns in that use case and, at the same 
time, is transparent to other SQL Server features.  

     Summary 
 SQL Server does not use nonclustered indexes in cases where it expects a large number of key or RID lookup 
operations to be required. You can eliminate these operations by adding columns to the index and making it 
covering for the queries. This approach is a great optimization technique that can dramatically improve the 
performance of the system. 

 Adding included columns to the index, however, increases the size of leaf-level rows, which would 
negatively affect the performance of the queries that scan data. It would also introduce additional index-
maintenance overhead, slow down data-modification operations, and increase locking in the system. 

 Filtered indexes allow you to reduce index storage size and maintenance costs by indexing just a subset 
of the data. SQL Server has a few design limitations associated with filtered indexes. Even though it is not a 
requirement, you should make all columns from the filters part of the leaf-level index rows so as to prevent 
the generation of suboptimal execution plans. 

 Modifications of the columns from the filter do not increment the statistics’ column modification 
counter, which can make the statistics inaccurate. You need to factor that behavior into your statistics 
maintenance strategy for the system. 

 Filtered statistics allow you to improve cardinality estimations in the case of highly correlated predicates 
in the queries. They have all of the limitations of filtered indexes, however. 

 The Enterprise Edition of SQL Server supports two different data compression methods. Row 
compression reduces data row size by removing unused storage space from rows. Page compression 
removes duplicated sequences of bytes from data pages. 

 Data compression can significantly reduce table storage space at the cost of extra CPU load, especially 
when data is modified. However, compressed data uses less space in the buffer pool and requires fewer I/O 
operations, which can improve the performance of the system. Row compression could be a good choice even 
with volatile data on non-heavily-CPU-bound systems. Page compression is a good choice for static data. 

 Sparse columns allow you to reduce row size when some columns store primarily  NULL  values. Sparse 
columns do not use storage space while storing  NULL  values at the cost of the extra storage space required for 
 NOT NULL  values. 

 Although sparse columns allow the creation of wide tables with thousands of columns, you should be 
careful with them. There is still the 8,060-byte in-row data size limit, which can prevent you from inserting 
or updating some rows. Moreover, wide tables usually introduce development and administrative overhead 
when frequent schema alteration is required. 

 Finally, you should monitor the data stored in sparse columns, making sure that the percentage of  NOT 
NULL  data is not increasing, which would make sparse storage less efficient than nonsparse storage.     
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    CHAPTER 5   

 SQL Server 2016 Features 

 Dmitri Korotkevitch with Thomas Grohser                          

 This chapter provides an overview of several new SQL Server 2016 features, such as temporal tables, stretch 
databases, row-level security, dynamic data masking, and Always Encrypted. 

      Temporal Tables   
 The majority of systems nowadays deal with data that changes over time. New data is collected and inserted 
into the system, old data is purged, and catalog entities are modified. 

 There are two requirements that often exist in systems. The first is keeping an audit trail of any data 
changes, providing information on  who  changed  what  and  when  it happened. There are many ways to build 
this solution based on existing technologies, such as SQL Audit, change tracking, and change data capture .  It 
is also very common to see custom implementations based on triggers. 

 Unfortunately, in some cases, keeping an audit trail of the changes is not enough. Some systems — for 
example, inventory management or financial portfolio management solutions — need to be able to access a 
 snapshot  of the data at any given point in time. It is possible to reconstruct such snapshots from audit trail 
tables; however, it is a complex task prone to errors, especially if multiple related tables are involved. 

   System-versioned temporal tables    are the new type of user table that helps to implement those 
requirements. They are designed to keep a full history of data changes and allow easy point-in-time analysis. 

 

SYSTEM-VERSIONED AND APPLICATION-VERSIONED 

TEMPORAL TABLES

 ANSI SQL 2011 defines two types of temporal  tables  .  System-versioned temporal tables  keep a history 
of data changes based on the time when those changes occurred in the system. They provide you with 
a snapshot of the data that existed in the  database      at a particular time.  Application-versioned temporal 
tables , on the other hand, provide you with a data snapshot that is valid from a business standpoint. 

 Consider the insurance system as an example. Each insurance policy has effective dates that define 
when the policy started and expired, or will expire. Application-versioned temporal tables could help to 
identify the policies that were active at a particular time. System-versioned temporal tables could help 
to find the policy data rows that were present in the database at a particular time, regardless of whether 
those policies were active or not. 

 Unfortunately, SQL Server 2016 RTM does not support application-versioned temporal tables.  
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 In a nutshell, each system-versioned temporal table consists of two tables — the  current table  with the 
current data, and a  history table  that stores old versions of the rows. Every time you modify or delete data in 
the current table, SQL Server adds an original version of those rows to the history table. 

 A current table should always have a primary key defined. Moreover, both current and history tables 
should have two  datetime2  columns, called  period columns , that indicate the lifetime of the row. SQL Server 
populates these columns automatically based on transaction start time when the new versions of the rows 
were created. When a row has been modified several times in one transaction, SQL Server does not preserve 
uncommitted intermediary row versions in the history table. 

 It is worth repeating that period columns always store transaction start time rather than time of the 
actual DML operation. This provides you point-in-time consistency when a transaction modifies several 
related entities; for example,  Orders  and   OrderLineItems   . It opens the door to another phenomenon, 
however, which we will discuss later in the chapter. 

 There are three ways in which you can create history tables. First, you can allow SQL Server to generate 
an anonymous history table by omitting its name during temporal table creation. SQL Server then creates a 
history table, auto-generating its name. Alternatively, you can specify the history table's name and schema 
and allow SQL Server to create the corresponding table. 

 In both of those cases, SQL Server places the history tables in a default filegroup, creating non-unique 
clustered indexes on the two  datetime2  columns that control row  lifetime      . It does not create any other 
indexes on the table. 

 ■   Important   In both the Enterprise and Developer Editions, history tables use page compression by default. 
You will be unable to restore the database in lower editions of SQL Server unless you rebuild the index 
removing the data compression.  

 Lastly, you can assign an existing table to become a history table for the temporal table, assuming that 
table schemas are compatible. As you can guess, this approach provides you with the most flexibility in 
configuration. 

 Listing  5-1  shows the code that creates a temporal table by specifying the  history  table schema and table 
name. It has new temporal table – related language constructs in bold-face font. 

     Listing 5-1.    Creating a temporal table   

  create table dbo.Employees 
 ( 
     EmployeeId int not null, 
     FullName nvarchar(128) not null, 
     Position nvarchar(128) not null, 
     Salary money not null, 
     SysStartTime datetime2  generated always as row start not null , 
     SysEndTime datetime2  generated always as row end not null , 
     constraint PK_Employees 
     primary key clustered(EmployeeId) 
      period for system_time(SysStartTime, SysEndTime)  
 ) 
  with  
  (  
      system_versioning = on (history_table = dbo.EmployeesHistory)  
  );  

   create nonclustered index IDX_Employees_FullName 
 on dbo.Employees(FullName); 
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    Figure  5-1  illustrates both current and history tables in SSMS and also shows the properties of the 
clustered index defined on the history table.  

  Figure 5-1.    Temporal table in SSMS       

 Current and history tables are, obviously,  logically  linked to each other and would have a matching 
set of columns. There are no dependencies, however, on the  physical  storage and  indexing      . The tables can 
each have a different set of indexes, being located in separate filegroups and even using different storage 
technologies. For example, it is possible to use a clustered columnstore index for the history data while 
keeping row-based storage in the current table. 

 History tables, however, cannot have unique indexes or foreign key and table constraints, nor can they 
participate in change tracking, change data capture, or transactional or merge replications. You should treat 
history tables the same way as you treat regular tables during index and statistics maintenance, which we 
will discuss in the next chapter. 

 When you alter the schema of the current table, the changes are propagated to the history table. 
You cannot drop the temporal table, however, until you stop system versioning with   ALTER TABLE SET 
(SYSTEM_VERSIONING = OFF)  command  . This command converts a temporal table to two regular tables in 
the database. 

 When you update or delete data in the current table, SQL Server copies the affected rows to the history 
table. Figure  5-2  illustrates the execution plan of the  DELETE FROM dbo.Employees WHERE EmployeeId = 
@EmployeeId  statement with a  clustered index insert  to the history table. On a side note, SQL Server does not 
store the current version of the row in the history table, and, therefore, the  INSERT  statement does not insert 
data there.  

  Figure 5-2.    Execution plan of  DELETE statement         
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 When you select the data from temporal table, SQL Server accesses either one or both tables depending 
on the query. Let's look at a few examples, and as a first step, let's populate the  dbo.Employees   table      with 
some data, as shown in Listing  5-2 . Figure  5-3  shows the output of the  SELECT  statements from the code. It is 
important to note that SQL Server uses UTC time when it generates period column values.  

      Listing 5-2.    Populating temporal table with data   

  insert into dbo.Employees(EmployeeId, FullName, Position, Salary) 
 values 
     (1,'John Doe','Database Administrator',85000), 
     (2,'David Black','Sr. Software Developer',95000), 
     (3,'Mike White','QA Engineer',75000); 

   waitfor delay '00:01:00.000'; 

   update dbo.Employees set Salary = 85500 where EmployeeID = 1; 
 delete from dbo.Employees where EmployeeId = 2; 

   select 'dbo.Employees' as [Table], * from dbo.Employees; 
 select 'dbo.EmployeesHistory' as [Table], * from dbo.EmployeesHistory; 

    You can query the history data directly; however, you should remember that it does not contain the 
 current  version of the rows. Figure  5-3  just illustrated that — there was just one old row for  John Doe  and no 
data for  Mike White  in the  dbo.EmployeesHistory  table. 

  Figure 5-3.    The data in the tables       

  Figure 5-4.    Querying temporal table without FOR SYSTEM_TIME clause       

 By default, when you query the current table, the query works with the current snapshot of the data, 
similar to how regular tables work, and it does not access history data. Figure  5-4  illustrates that.  

 You can access history data by specifying the  FOR SYSTEM_TIME  clause of the  SELECT . There are several 
possible options. 
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 The   FOR SYSTEM_TIME AS OF <time>  option         returns a snapshot of the data that corresponds to a 
particular point in time in the system. SQL Server combines data from both tables when it executes the 
 SELECT . Figure  5-5  illustrates the output and execution plan of the  SELECT * FROM dbo.Employees FOR 
SYSTEM_TIME AS OF '2016-07-09T17:57:00'  statement. As you can see, the data represents the state after 
the initial insert and before the data modifications seen in Listing  5-2 .  

  Figure 5-5.    Querying temporal table: FOR SYSTEM_TIME AS OF       

 As you can see in Figure  5-5 , SQL Server adds the predicates on period columns in both tables. You 
should add indexes on these columns when you use the   FOR SYSTEM_TIME  option   in the queries. 

  FOR SYSTEM_TIME FROM <starttime> TO <endtime>  and  FOR SYSTEM_TIME BETWEEN <starttime> 
AND <endtime>  clauses return you all versions of the rows that existed in a specific time interval. The 
difference between them is that  FOR SYSTEM_TIME FROM  excludes the  <endtime>  from the output while  FOR 
SYSTEM_TIME BETWEEN  includes it. Figure  5-6  illustrates that.  

  Figure 5-6.    Querying temporal table: FOR SYSTEM_TIME FROM and FOR SYSTEM_TIME BETWEEN       
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 The   FOR SYSTEM_TIME CONTAINED     IN  option returns you all versions of the rows that were valid in a 
specific time interval. It does not include any current versions and should work only with the history table. 

 Figure  5-7  illustrates the execution plan of a query with the  FOR SYSTEM_TIME CONTAINED IN  clause. 
Even though it includes a clustered index scan operator on the current table, the filter operator prevents it 
from being executed.  

  Figure 5-7.    Querying temporal table: FOR SYSTEM_TIME CONTAINED IN       

 Finally,   FOR SYSTEM_TIME ALL    concatenates data from both tables and returns it to the client. This can 
be useful when you need to access all versions of the rows — both current and all previous ones; for example, 
when you analyze trends over time. Figure  5-8  illustrates that.  
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 I would like to reiterate one very important point. Accessing temporal data with the   FOR SYSTEM_TIME  
clause         adds predicates on the period columns in both the current and history tables. You need to factor that 
into the indexing strategy for the system. 

 There is another phenomenon you need to be aware of when dealing with queries that access temporal 
data. As I already mentioned, SQL Server populates period columns with a time that corresponds to the start 
time of the transaction that inserted, updated, or deleted the data. Therefore, temporal queries can return 
data that have not yet been committed at a specific point in time. 

 Consider a situation in which you have a transaction that started at time  TStart  and committed at time 
 TEnd . The data modifications done by this transaction will be invisible to other sessions unless they are using 
the   READ UNCOMMITTED  transaction isolation   level. Depending on the isolation level, those sessions will either 
be blocked or read snapshot of the data at the  TStart  time. 

 However, if you query temporal data using the  FOR SYSTEM_TIME  clause, SQL Server filters data based 
on period columns, which contain the  TStart  rather than the  TEnd  timestamp, which can lead to incorrect 
results. 

 ■   Note    We will discuss transaction isolation level and concurrency in Part V of the book. 

 You can read more about temporal tables at    https://msdn.microsoft.com/en-us/library/dn935015.aspx        

  Figure 5-8.    Querying temporal table: FOR SYSTEM_TIME ALL       

 

https://msdn.microsoft.com/en-us/library/dn935015.aspx
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      Stretch Database  s 
 It has become common for systems to collect a large amount of data and retain it in the database for a 
long time. In many cases, old data is rarely accessed by the users; it is just retained due to compliance and 
regulations or for other purposes. Properly designed databases would partition the data, separating current 
and old data from each other; however, there are many implementations in which everything is stored in a 
single, non-partitioned table. 

 There are many challenges with this implementation. It makes performance tuning and database 
maintenance more difficult. It complicates high availability and disaster recovery planning, and it also 
increases hardware and storage costs. A new SQL Server 2016 feature, the  stretch database , can address some 
of these challenges by storing part of the data in Microsoft Azure SQL Database, accessing it transparently to 
the applications. 

 Conceptually, a stretch database is similar to a linked server setup, with a set of internal processes that 
move data between the servers in the background. You can migrate either an entire table or just subset of the 
table data by specifying an inline table- valued    filter function , which controls what rows need to be moved. 
The queries continue to work with the local database, and SQL Server transparently accesses a remote 
portion of the data in Microsoft Azure by running remote queries when needed. 

 One caveat of this technology is the requirement to have connectivity between the servers. Without 
connectivity, the queries — which access remote data — would fail. You should remember this behavior when 
you choose to use the feature. 

 Figure  5-9  provides a high-level overview of stretch database implementation. When data is migrated, 
SQL Server temporarily retains a copy of migrated rows in the local internal-staging tables, ensuring that the 
data can be reconciled if you restore local or  Azure SQL database backups  . By default, the data is retained for 
eight hours, which corresponds to SQL Azure's automatic backup schedule. You can increase this time with 
the  sys.sp_rda_set_rpo_duration  stored procedure. Keep in mind, however, that a longer retention time 
increases the size of the staging tables in the local database.  

  Figure 5-9.    Stretch database overview       
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 When you back up the stretch-enabled database, SQL Server creates a  shallow backup . It only contains 
the local data and rows eligible for the migration at the time when the backup runs. The remote portion of 
the data in Azure SQL Database is protected by automatic, geo-redundant storage snapshot backups that 
run every eight hours and are retained for seven days, providing you with a range of restore points. We will 
discuss Azure storage snapshot backups in Chapter   31    . 

 After you restore the stretch-enabled  database  , you need to re-establish the connection between the 
local and Azure databases with the  sys.sp_rda_reauthorize_db  stored procedure. You can perform a point-
in-time restoration of the SQL database from the Azure portal, where storage backups are maintained for 
seven days. 

     Configuring  Stretch Database   
 Before you can start using stretching, it has to be enabled on both the server and database levels. Perhaps the 
easiest way to perform the initial setup is using the  Enable Database for Stretch  wizard in SSMS. This wizard 
configures both server- and database-level stretching and also allows you to choose the tables to stretch. 

 Alternatively, you can use T-SQL to configure it. You can enable stretching on the server level by 
running the  EXEC SP_CONFIGURE 'remote data archive', '1'  command, which requires  sysadmin  or 
 serveradmin  permissions. 

 Listing  5-3  illustrates how you can enable stretching on the database using the existing Microsoft Azure 
SQL Server as the target. This action requires  CONTROL DATABASE  permission to execute. 

     Listing 5-3.    Enable stretch database on the database level   

  -- Creating the Master Key 
 create master key encryption by password='Strong Password'; 

   -- Creating the Database Scoped Credentials with SQL Server Login Info 
 create database scoped credential SQLServerLoginInfo 
 with 
     identity = 'my_azure_sql_server_login_name' 
     ,secret = 'my_password'; 

   -- Enabling Stretching for the database 
 alter database MyDatabase 
 set remote_data_archive = on 
 ( 
     server = 'myserver.database.windows.net' 
     ,credential = SQLServerLoginInfo 
 ); 

    After the feature is enabled, you can choose the tables to stretch. The  Stretch Database Advisor  tool, 
which is included in  SQL Server 2016 Upgrade Advisor,  can help you to identify the tables that can most 
benefit from the technology, along with any blocking issues that can prevent stretching. 

 There are quite a few such blocking issues in SQL Server 2016 RTM. For example, a table cannot have 
 DEFAULT  and  CHECK   constraints   nor be referenced by foreign keys. The table cannot use  XML ,  text ,  ntext , 
 image ,  timestamp ,  sql_variant , or  CLR  data types, nor be included in the indexed views. 

 There are other limitations after stretch is enabled. The most notable is that SQL Server does not 
enforce  UNIQUE  and  PRIMARY KEY  constraints nor allow you to  UPDATE  and  DELETE  migrated data. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_31
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 ■   Note   You can read about the Stretch Database Advisor tool at    https://msdn.microsoft.com/en-us/
library/dn935004.aspx     . The full list of limitations is available at    https://msdn.microsoft.com/en-us/
library/mt605114.aspx       

 When a table is stretch-compatible, you can stretch it by using the  ALTER TABLE SET (REMOTE_DATA_
ARCHIVE = ON)  command or through the  Stretch  task in SSMS. As I already mentioned, you can migrate 
either the entire table or a subset of the table data. The latter case requires you to specify the filter function 
that controls which rows need to be migrated. When the filter function is provided, SQL Server applies it to 
the rows in the table using the  CROSS APPLY  operator. The row is eligible for migration when the function 
returns a non-empty result set. 

 Listing  5-4  illustrates both methods. It shows  ALTER TABLE  statements that migrate the entire  dbo.
AppLogs  table and a subset of the data from the  dbo.Orders  table. The  migration_state  option controls the 
direction of migration. It can have one of three values:  OUTBOUND  (data is moved from the local database to 
Azure),  INBOUND  (data is moved back from Azure to the local database), and  PAUSED . 

      Listing 5-4.    Enable stretch for the tables   

  alter table dbo.AppLogs 
 set (remote_data_archive = on (migration_state = outbound)); 

   create function dbo.fnOrdersOlderThanJan2016(@OrderDate datetime2(0)) 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as is_migrating 
     where @OrderDate < convert(datetime2(0), '1/1/2016', 101) 
 ) 
 go 

   alter table dbo.Orders set 
 ( 
     remote_data_archive = on 
     ( 
         filter_predicate = dbo.fnOrdersOlderThanJan2016(OrderDate), 
         migration_state = outbound 
     ) 
 ); 

    As you can guess, the filter functions should be  deterministic  and should not depend on the data outside 
of the row it is evaluating. You cannot perform any data access from there. Moreover, only the primitive 
predicates and conditions, such as  AND  and  OR  predicates,  IN ,  IS NULL, IS NOT NULL , and comparison 
operators are supported. All of this guarantees that a function always returns the same result for the same set 
of parameter  values  . 

 You can change the filter function by altering the table. However, the new function should provide  less 
restrictive  results and allow you to migrate more rows than before. 

 Listing  5-5  illustrates the function  dbo.fnOrdersOlderThanFeb2016 , which can replace the  dbo.
fnOrdersOlderThanJan2016  function defined in Listing  5-4 . It also shows the   ALTER TABLE  statement   that 
replaces the filter function. This code shows an example of the sliding window scenario implementation 
with stretch databases. 

https://msdn.microsoft.com/en-us/library/dn935004.aspx
https://msdn.microsoft.com/en-us/library/dn935004.aspx
https://msdn.microsoft.com/en-us/library/mt605114.aspx
https://msdn.microsoft.com/en-us/library/mt605114.aspx
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      Listing 5-5.    Replacing the filter function   

  create function dbo.fnOrdersOlderThanFeb2016(@OrderDate datetime2(0)) 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as is_migrating 
     where @OrderDate < convert(datetime2(0), '2/1/2016', 101) 
 ) 
 go 

   alter table dbo.Orders set 
 ( 
     remote_data_archive = on 
     ( 
         filter_predicate = dbo.fnOrdersOlderThanFeb2016(OrderDate), 
         migration_state = outbound 
     ) 
 ); 

    As another example, Listing  5-6  illustrates a function that cannot be used as replacement of the original 
filter  function  . It adds the predicate  @Completed  parameter and, therefore, is more restrictive than the 
original. Thus, some of the rows that have already been migrated are not eligible for migration anymore, 
which is not allowed. 

     Listing 5-6.    More restrictive filter function   

 create function dbo.fnInvalid(@OrderDate datetime2(0), @Completed bit) 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as is_migrating 
     where 
         (@Completed = 1) and 
         @OrderDate < convert(datetime2(0), '2/1/2016', 101) 
 ) 

        Querying  Stretch Databases   
 Even though stretch databases are transparent to client applications, they do not guarantee that query 
performance will remain the same. In some cases, stretching can improve performance by reducing the 
amount of data to scan locally and/or running scans in parallel on both servers. In other cases, they could 
hurt performance due to network latency and cross-server joins. 

 If you have ever worked with linked servers, you should be aware of potential performance issues with 
the technology. The distributed queries work great when predicates can be evaluated remotely and servers 
do not need to push a large amount of data over the network. Otherwise, the large amount of network traffic 
and remote calls can greatly affect performance. There is also the connectivity aspect of the technology. The 
distributed queries would fail if there were no connectivity between the servers. 
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 All of that remains true for stretch databases. Let's look at several examples related to performance and 
data access. 

 Listing  5-7  shows the code that creates the  dbo.Customers  and  dbo.Orders  tables and populates them 
with some data. It also assumes that we enabled stretching for the  dbo.Orders  table by running the  code   
from Listing  5-5  and migrated all orders older than February 2016 to Microsoft Azure. 

     Listing 5-7.    Querying stretch databases: Table creation   

  create table dbo.Customers 
 ( 
     CustomerId int identity(1,1) not null, 
     Name nvarchar(32) not null, 
     PostalCode char(5) not null, 
     constraint PK_Customers primary key clustered(CustomerId) 
 ); 

   create table dbo.Orders 
 ( 
     OrderId int not null, 
     CustomerID int not null, 
     OrderDate datetime2(0) not null, 
     Amount money not null, 
     Completed bit not null, 
     constraint PK_Orders primary key clustered(OrderId) 
 ); 

   create nonclustered index IDX_Orders_CustomerId on dbo.Orders(CustomerId); 
 create nonclustered index IDX_Orders_OrderDate on dbo.Orders(OrderDate); 

   -- 65,536 customers total. 256 customers per Postal Code 
 ;with N1(C) as (select 0 union all select 0) -- 2 rows     
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows     
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows     
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows     
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)     
 insert into dbo.Customers(Name, PostalCode)             
     select 'Customer ' + convert(varchar(32),i1.ID * i2.Id) 
            ,convert(char(5),10000 + i2.ID) 
     from IDs i1 cross join IDs i2; 

   declare 
     @StartDate datetime2(0) = '2016-09-01'; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows     
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows     
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows     
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows     
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows     
 ,N6(C) as (select 0 from N5 as T1 cross join N3 as T2) -- 1,048,576 rows   
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6) 
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 insert into dbo.Orders(OrderId, CustomerId, Amount, OrderDate, Completed)             
     select ID, ID % 65536 + 1, Id % 50, dateadd(day,-ID % 365, getDate()), 0 
     from IDs; 

   /* Enable Stretching for dbo.Orders table with Listing 5-5 code */ 

    First, let's run a query that calculates how many orders were submitted in January and February of 2016. 
That code is shown in Listing  5-8 . 

     Listing 5-8.    Querying stretch databases: Counting total number of orders   

 select count(*) as [Order Count] 
 from dbo.Orders o 
 where o.OrderDate >= '2016-01-01' and o.OrderDate < '2016-03-01'; 

   Figure  5-10  illustrates a partial  execution   plan for the query. As you can see, SQL Server performed 
 COUNT()  aggregation remotely, and the remote query returned just a single row to the local server.  

  Figure 5-10.    Execution plan: Counting total number of orders       

 Now, let's run a query that calculates the total sales on a per-customer basis, as shown in Listing  5-9 . 

     Listing 5-9.    Querying stretch databases: Total sales on per-customer basis   

 select c.Name, sum(o.Amount) as [Total Sales] 
 from dbo.Customers c join dbo.Orders o on 
     c.CustomerId = o.CustomerId 
 group by c.Name 

   Figure  5-11  shows the execution plan and execution time of the query. As you can see, SQL Server 
decides to bring all the remote data over the network and perform  aggregation   locally. You can also see a 
cardinality estimation error, even though statistics were up to date on both servers. It happened because of 
the extra internal predicates which remote SQL Server added to the query.  
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 Finally, let's add the predicate to the previous query, filtering customers by the postal code. This query 
is shown in Listing  5-10 . 

     Listing 5-10.    Querying stretch databases: Filter by PostalCode   

 select c.Name, sum(o.Amount) as [Total Sales] 
 from dbo.Customers c join dbo.Orders o on 
     c.CustomerId = o.CustomerId 
 where c.PostalCode = '10050' 
 group by c.Name 

   As you can see in Figure  5-12 , the shape of the execution plan has changed. SQL Server runs multiple 
remote queries, selecting data for the individual customers with a  nested loop  operator. Even though this 
approach reduced the number of rows transmitted over the network, the overhead of multiple remote calls 
led to a significantly longer execution time.  

  Figure 5-11.    Execution plan: Total sales on per-customer basis       

  Figure 5-12.    Execution plan: Filtering by PostalCode       

 All of these queries did not have the predicate on the  OrderDate  column, and, therefore, SQL Server 
had to access both local and remote data. Adding such a predicate would allow SQL Server to eliminate 
unnecessary remote-server access. For example, if you run the   SELECT COUNT(*) FROM dbo.Orders     WHERE 
OrderDate >= '2016-05-01'  statement, you would have the execution plan, which does not access the 
remote server, shown in Figure  5-13 .  
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 Parameterization and autoparameterization, however, can still lead to a situation in which the query 
has to access the remote server when the plan is cached. While it would not necessarily introduce a huge 
performance impact — the remote query could just evaluate the predicate value without performing any data 
access — the query would fail if there were no connectivity between the servers. 

 You should keep these performance and connectivity  implications   in mind when you decide to stretch 
the data. In many cases, it is safer to partition the data to separate tables, stretching the entire  History  table 
rather than migrating a subset of data from the single table. This approach, however, requires code changes 
and defeats purpose of the transparency of the technology to client applications. 

 ■   Note    We will discuss data partitioning in more detail in Chapter   16     and plan caching in Chapter   26    .  

 Finally, it is worth repeating that, by default, SQL Server does not allow you to specify the data location 
when you query stretch-enabled  table  . Nor does it allow you to update or delete remote data after rows have 
been migrated. There is the table hint —WITH (REMOTE_DATA_ARCHIVE_OVERRIDE)— which allows the members 
of the  db_owner  role to change the scope of the queries. This hint can have one of the three values:

    LOCAL_ONLY  - runs the query against local data only  

   REMOTE_ONLY  - runs the query against remote data only  

   STAGE_ONLY  - runs the query against staged data (the rows that temporarily 
persisted in the local database after they were migrated to Azure)    

 This hint can be used with  SELECT ,  UPDATE , and  DELETE  queries and allows you to modify and delete 
remote data. Be careful, however, if you need to modify remote data in the scope of the active transaction. 
This operation can take a considerable amount of time, and can even fail if SQL Server cannot access the 
remote database. It is better to implement data modifications asynchronously using Service Broker or other 
queue-based technologies.  

     Stretch Database  Pricing   
 Stretch database is an exciting feature that can be helpful in many scenarios. Unfortunately, it is expensive. 

 The cost of using stretch database consists of two parts — compute and storage. Essentially, you are 
choosing the performance tier of Microsoft Azure SQL Database and also paying for the storage of the 
database files and backups. 

 The pricing in Microsoft Azure can change at any time, but as of September 2016, the lowest compute 
tier with 100 DSU (Database Stretch Units) is priced at $1,860 per month. The storage cost is $164 per 1TB of 
storage per month. In reality, it means that you have to pay more than $2,000 per month to store 1 TB of data 
remotely using the lowest compute tier. 

  Figure 5-13.    Execution plan: Predicate on OrderDate column       

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
http://dx.doi.org/10.1007/978-1-4842-1964-5_26
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 You should factor that cost into your analysis. In many cases, implementing data partitioning and tiered 
storage is a more cost-effective solution in the long term, especially if you are using the Enterprise Edition of 
SQL Server. We will discuss such implementation in Chapter   16    . 

 ■   Note    You can read more about stretch database setup, maintenance, and monitoring at    https://msdn.
microsoft.com/en-us/library/dn935011.aspx         

     Row-Level Security 
  Row-level security   limits read and write access to some of the rows in tables on a per-user basis. As the 
opposite to regular  SELECT ,  INSERT ,  UPDATE , and  DELETE  permissions that work on the scope of entire table, 
row-level security helps to implement a security model that takes row data into consideration. For example, 
in client - management systems, you can use row-level security to limit regular users' access to a subset of the 
clients while allowing the regional managers to see all clients from the region. Another common use case is 
security in a multi-tenant setup when tenants' data should be invisible to the other tenants in the system. 

 To implement row-level security, you have to write an inline table-valued function, which is called a 
 policy function . This function returns a single-row result set for the rows that should be visible to the user. As 
the next step, you should create a  security policy  that binds that function to the table. 

 Let's look at an example and assume that we want to implement a simple client-management system. 
The code shown in Listing  5-11  creates several users in the database and a table with a few rows. 

     Listing 5-11.    Row-level security: Set up users and table for row-level security   

  create user ClientManager1 without login; 
 create user RegionalManager without login; 
 create schema Client; 
 go 

   create table Client.Client1 
 ( 
     ClientID int not null, 
     ClientManager sysname not null, 
     Revenue money not null, 
     OtherInfo nvarchar(100) not null 
 ); 

   grant select on Client.Client1 to ClientManager1, RegionalManager; 

   insert into Client.Client1 values 
     (1, 'ClientManager1', 100000, 'abc') 
     ,(2, 'ClientManager1', 200000, 'def') 
     ,(3, 'ClientManager2', 300000, 'ghi') 
     ,(4, 'ClientManager2', 400000, 'jkl') 
     ,(5, 'ClientManager3', 500000, 'mno'); 

    With the current implementation, every user can see all data in the table. You can test it by 
impersonating the users with the  EXECUTE AS  command, as shown in Listing  5-12 . 

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
https://msdn.microsoft.com/en-us/library/dn935011.aspx
https://msdn.microsoft.com/en-us/library/dn935011.aspx
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        Listing 5-12.    Row-level security: Select data impersonating user   

 execute as user = 'ClientManager1'; 
 select * from Client.Client1; 
 revert; 

   As you can see in Figure  5-14 , the query  returns   all rows, which is expected at this point. The execution 
plan is a simple full  table scan .  

  Figure 5-14.    Row-level security: Data and execution plan without RLS applied       

 Let's set up row-level security and, as the first step, create a policy function that determines if a row can 
be seen by a user. In the example shown in Listing  5-13 , the function is very simple. It takes one argument —
 the manager name—and compares it to the user that executes the query. Obviously, in a real-world scenario, 
it would be better to check Active Directory group memberships instead. 

 The function must return a row (the value and column name do not matter) if a table row should 
be made visible to the current user. It is also worth noting that the security function defined with the 
 SCHEMABINDING  clause does not require users to have  SELECT  permissions for the tables accessed from within 
the function. Alternatively, functions defined without the  SCHEMABINDING  clause will require the user to have 
those permissions. 

     Listing 5-13.    Row-level security: Security policy function   

 create function Client.fn_LimitToManager(@Manager as sysname) 
 returns table 
 with schemabinding 
 as 
 return 
 ( select 1 AS fn_LimitToManagerResult 
   where @Manager = user_name() or user_name() = 'RegionalManager' ) 

   The final step is creating the security  policy   that ties the function and the table together. You can see the 
syntax of the command in Listing  5-14 . The  FILTER  predicate in the security policy specifies the function that 
is responsible for the read access to the data. The  BLOCK  predicate, which we will discuss later in the chapter, 
controls write access to the data. 

     Listing 5-14.    Row-level security: Security policy   

 create security policy LimitMgrFilter 
 add filter predicate Client.fn_LimitToManager(ClientManager) 
 on Client.Client1 
 with (state = on) 
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   If you run the code from Listing  5-12  again, you should see that the query returns just two rows that are 
managed by  ClientManager1 , as shown in Figure  5-15 .  

  Figure 5-16.    Execution plan with row-level security applied       

  Figure 5-15.    Row-level security: Data after RLS has been applied       

      Performance Impact   
 As you can guess, row-level security introduces performance overhead, which depends on the 
implementation of the policy function. Figure  5-16  shows the execution plan of the query from Listing  5-12  
after the security policy has been applied. You can see an additional  Filter  operator that corresponds to the 
policy function.  

 Let's change our example to use a lookup table that stores client/manager relations, as shown in Listing  5-15 . 
As the last step, the code will run a   SELECT  statement      impersonating the user, similar to in Listing  5-12 . 

       Listing 5-15.    Row-level security: Reference table in security policy function   

  create table Client.ClientManager 
 ( 
     ID int not null 
         constraint PK_ClientManager primary key clustered, 
     ManagerName nvarchar(100) not null, 
     isRegionalManager bit not null 
 ); 

   insert into Client.ClientManager values 
     (1,'ClientManager1',0), (2,'ClientManager2',0) 
     ,(3,'ClientManager3',0), (4,'RegionalManager',1); 

   create table Client.Client2 
 ( 
     ClientID int not null, 
     ClientManagerID int not null 
         constraint FK_Client2_ClientManager 
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         foreign key references Client.CLientManager(ID), 
     ClientName nvarchar(64) not null, 
     CreditLimit money not null, 
     IsVIP bit not null 
         constraint DEF_Client2_IsVIP default 0 
 ); 

   grant select on Client.Client2 to ClientManager1, RegionalManager; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select ROW_NUMBER() over (order by (select null)) from N5) 
 insert into Client.Client2(ClientID, ClientManagerID, ClientName, CreditLimit, IsVip) 
     select ID, ID % 3 + 1, convert(nvarchar(6),ID), 100000, abs(sign(ID % 10) - 1) 
     from IDS 
 go 

   create function Client.fn_LimitToManager2(@ManagerID AS int) 
 returns table 
 with schemabinding 
 as 
 return 
 ( select 1 as fn_LimitToManagerResult 
   from Client.ClientManager 
   where ManagerName = user_name() 
     and ((ID = @ManagerID) or (isRegionalManager = 1)) ) 
 go 

   create security policy LimitMgrFilter2 
 add filter predicate Client.fn_LimitToManager2(ClientManagerID) 
 on Client.Client2 
 with (state = on); 
 go 

   -- Getting data while impersonating the user 
 execute as user = 'ClientManager1'; 
 select * from Client.Client2; 
 revert; 

    As you can see in the execution plan shown in Figure  5-17 , row-level security added the nested loop join 
to the execution plan, performing a clustered index scan on each execution. As you can guess, this would 
significantly affect the performance of the query.  



CHAPTER 5 ■ SQL SERVER 2016 FEATURES

130

 The  performance impact   of row-level security depends on the complexity of the policy function, which 
is applied to every row in the result set. You should make policy functions as simple as possible, limiting 
data access whenever it is possible. In cases where data access is required, you need to make sure that it 
is optimized. For example, adding the index with  CREATE INDEX IDX_ClientManager_ManagerName ON 
Client.ClientManager(ManagerName) INCLUDE(IsRegionalManager)  would eliminate the clustered index 
scan and would lead to the execution plan shown in Figure  5-18 .  

  Figure 5-18.    Execution plan with lookup table after index creation       

  Figure 5-17.    Execution plan with lookup table       

 In some cases, when the security model is relatively static, you can consider storing some information 
in the session context, populating it on the login phase. A policy function could get the information from 
there using the  session_context()  function rather than performing  data   access. You will see an example of 
how to use session context in Chapter   9    . 

 Other useful functions that can help you to eliminate data access are the following:  user_name() ,  suser_
name() ,  suser_sname() ,  original_login() ,  is_member('domain\group') ,  is_rolemember('rolename', 
original_login()) ,  is_srvrolemember('serverrolename', original_login() ,  app_name() ,  program_
name() ,  platform() ,  session_user() ,  sessionproperty() ,  database_principal_id() , and  @@SPID .  

     Blocking Modifications 
 Row-level security can be used to prevent users from modifying data on the row level. In this case, the 
security policy should have the   BLOCK  predicate   instead of or in addition to a  FILTER  predicate. The 
predicates work together — the rows filtered out by the  FILTER  predicate are invisible to the user and, 
therefore, it is impossible to update or delete those rows, with or without the  BLOCK  predicate specified. The 
 FILTER  predicate, however, would not prevent users from inserting data that violates the predicate condition, 
and you need to use the  BLOCK  predicate to avoid it. 

 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_9
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 You can specify  BLOCK  predicates for  BEFORE INSERT ,  AFTER INSERT ,  BEFORE UPDATE, AFTER UPDATE , 
and  BEFORE DELETE  operations.  BEFORE  predicates are useful when you want to prevent data modifications 
for some rows.  AFTER  predicates help to block operations when the values violate the predicate. 

 Listing  5-16  shows such an example. The  BEFORE UPDATE  predicate prevents the update of VIP clients 
( IsVIP=1 ) for non-regional managers. The  AFTER UPDATE  predicate disallows non-regional managers to set 
the  CreditLimit  value above 100,000. The script also grants  UPDATE  permission on the table and denies the 
right to update the  ClientManagerId  value to both users. 

      Listing 5-16.    Row-level security: BLOCK predicates   

  /* Checking if user is the Regional Manager */ 
 create function Client.fn_CurrentUserIsRegionalManager() 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as Result 
     from Client.ClientManager 
     where ManagerName = user_name() and IsRegionalManager = 1 
 ) 
 go 

   create function Client.fn_checkCanUpdateVIP(@IsVIP bit) 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as CanUpdateClient 
     where 
         case 
             when @IsVip = 0 then 1 
             else (select Result from Client.fn_CurrentUserIsRegionalManager()) 
         end = 1 
 ) 
 go 

   create function Client.fn_checkCanUpdateCreditLimit(@CreditLimit money) 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as CanUpdateClient 
     where 
         case 
             when @CreditLimit <= 100000 then 1 
             else (select Result from Client.fn_CurrentUserIsRegionalManager()) 
         end = 1 
 ) 
 go 
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   alter security policy LimitMgrFilter2 
 add block predicate Client.fn_checkCanUpdateVIP(IsVip)    on Client.Client2 before update, 
 add block predicate Client.fn_checkCanUpdateCreditLimit(CreditLimit) on Client.Client2 after update; 

   grant update on Client.Client2 to ClientManager1, RegionalManager; 
 deny update Client.Client2(ClientManager) to ClientManager1, RegionalManager; 

    As you have probably noticed, the predicates in Listing  5-15  do not validate the client ownership for 
non-regional manager users. That validation is done by the  FILTER  predicate, which will make those rows 
invisible and, therefore, exclude them from the update. 

 Finally, there is one other important thing to remember about  BEFORE UPDATE  and  AFTER UPDATE    BLOCK  
predicates  . SQL Server does not evaluate them unless you update the columns that are used as parameters 
in the policy function. For example, the implementation in Listing  5-15  would not prevent non-regional 
manager users from updating the  ClientName  of VIP clients. You can either add extra parameters to the 
function, as shown in Listing  5-17 , or rely on triggers to address the problem. 

     Listing 5-17.    Row-level security: Adding extra columns to BLOCK predicates (partial)   

  create function Client.fn_checkCanUpdateVIP(@IsVIP bit, @ClientName nvarchar(64)) 
 returns table 
 with schemabinding 
 as 
 return 
 ( 
     select 1 as CanUpdateClient 
     where 
         case 
             when @IsVip = 0 then 1 
             else (select Result from Client.fn_CurrentUserIsRegionalManager()) 
         end = 1 
 ) 
 go 

   alter security policy LimitMgrFilter2 
 add block predicate Client.fn_checkCanUpdateVIP(IsVip,ClientName) on Client.Client2 before update, 

 ■      Note   You can read more about row-level security at    https://msdn.microsoft.com/en-us/library/
dn765131.aspx         

     Always Encrypted 
 Always  Encrypted   is the new SQL Server 2016 Enterprise Edition feature that allows you to encrypt both 
 data-at-rest  and  data-in-transit  in the system on a per-column basis. Always Encrypted has two key 
differences when compared to other similar technologies. 

 First, it performs encryption and decryption of the data  almost  transparently to the client applications, and 
data-in-transit encryption does not rely on transport security, such as SSL or TLS. Second, and more important, 
it allows you to implement a true  separation of duties  between security administrators, who manage security 
keys in the key store, and database administrators, who manage  metadata   about security keys in the database. 
With this separation, neither role would be able to decrypt sensitive data in the system. 

https://msdn.microsoft.com/en-us/library/dn765131.aspx
https://msdn.microsoft.com/en-us/library/dn765131.aspx
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     Always Encrypted Overview 
 Always Encrypted uses two types of keys to protect data. The  column encryption key  (CEK) encrypts the data 
in the database. The  column master key  (CMK) encrypts the column encryption keys. The encrypted CEKs 
are stored in the database, while the CMKs are stored in a trusted key store, such as Windows Certificate 
Store, Azure Key Vault, or Hardware Security Modules. It is also possible to implement a custom key store, if 
necessary. 

 The data in the database is always stored encrypted using the  AEAD_AES_256_CBC_HMAC_SHA_256  
algorithm, and it is never decrypted by SQL Server. All decryption is done by the client application, which 
needs to use an Always Encrypted – enabled client driver. As of August 2016, Always Encrypted is supported 
by the Microsoft .Net 4.6, Microsoft JDBC 6.0, and Windows ODBC 13.1 SQL Server drivers. This list may 
change in the future. 

 The application needs to specify that it can handle Always Encrypted in the connection string using the 
 Column Encryption Setting  property. When SQL Server sends encrypted data back to such applications, 
it attaches an encrypted CEK and the location of the CMK to the result set. The client driver communicates 
with the key store and gets the CMK, which is used to decrypt the CEK and column data. 

 A similar process happens with parameterized queries. The driver collaborates with SQL Server in 
determining what parameters should be encrypted. It obtains the CEK and the location of the CMK from 
SQL Server, gets the CMK from the key store, and encrypts the parameter values before sending a query to 
SQL Server. All encryption and decryption is done transparently to the client applications, and data is never 
transmitted over the wire unencrypted. It is also worth noting that the driver uses the local cache to store 
decrypted column encryption keys so as to reduce the number of round trips made to the key store. 

 Figure  5-19  illustrates the Always Encrypted components.  

  Figure 5-19.    Always Encrypted workflow       

 Communication with the  server   adds extra round trips and network traffic. Figure  5-20  shows the calls 
performed by a client application while running the query against a table with an encrypted  ClientName  
column. As you can see, the driver called the  sp_describe_parameter_encryption  stored procedure, which 
provides the information about the encrypted column.  
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 Always Encrypted supports two different types of encryption.  Deterministic encryption  always generates 
the same encrypted value for any given unencrypted value, which allows you to create indexes on encrypted 
columns and utilize them for point-lookup searches, equality joins, and grouping. However, deterministic 
encryption increases security risks by allowing unauthorized users to examine patterns in encrypted data 
and guess their values. Deterministic encryption is not the best choice if the number of possible encrypted 
values is relatively small. 

 The second type of encryption,  randomized encryption , generates random values during each 
encryption. It is more secure than deterministic encryption; however, it prevents searching, grouping, and 
joining on encrypted columns. 

 There are several other limitations associated with Always Encrypted. The most notable are:

   The following data types cannot be encrypted:  xml ,  timestamp/rowversion , 
 image ,  (n)text ,  sql_variant ,  hierarchyid ,  geography ,  geometry  and user-
defined types  

  Text columns ( (n)char  and  (n)varchar ) must have binary  BIN2  collation in 
order to be encrypted.  

  Encrypted columns cannot have  DEFAULT  or  CHECK  constraints.  

  Columns that use randomized encryption cannot be indexed, be defined as 
 UNIQUE , or participate in  PRIMARY KEY  or  FOREIGN KEY  constraints.    

 ■   Note   You can see a full list of limitations at    https://msdn.microsoft.com/en-us/library/mt163865.aspx       

 As you can guess, encrypted  values   require extra storage space. The storage overhead is pretty significant, 
especially for the smaller data types. All data types that use less than 16 bytes of storage in plain text will use 
65 bytes when encrypted. For the data that use 16 or more bytes, the storage space can be calculated based 
on the following formula:  1 + 32 + 16 + (FLOOR(DATALENGTH(plain_text_length)/16) + 1) * 16 . 
For example, a 16-byte  uniqueidentifier  value will use 81 bytes when encrypted. Obviously, you should 
remember the 8,060-byte row-size limitation for  IN_ROW  data if you decide to encrypt a wide table.  

      Programmability   
 As I already mentioned, Always Encrypted works  almost  transparently to the application. All encryption 
and decryption is done by the driver, and you just need to enable Always Encrypted by setting the  Column 
Encryption Setting=enabled  property in the connection string. 

 There is a catch, however. Once data is encrypted, SQL Server is unable to decrypt it to perform any 
operations that require decrypted data. Consider the  dbo.Employees  table with an encrypted  Salary  column 
as an example. SQL Server would be unable to execute the  SELECT * FROM dbo.Employees WHERE Salary 
>= @Salary  statement because it is unable to decrypt the  Salary  column's data to evaluate the predicate. 
Similarly, SQL Server would be unable to perform a substring search using the  LIKE  operator or calculate the 
length of an encrypted string column with the  LEN  function. All of these queries would fail, and you would 
need to change the client application and implement all of the logic there after the data is decrypted. In 
many cases, this will also require the client application to bring more data over the network. 

  Figure 5-20.    Client/SQL Server communication with Always Encrypted enabled       

 

https://msdn.microsoft.com/en-us/library/mt163865.aspx
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 The columns encrypted with randomized encryption cannot be used in any predicates, join conditions, 
or grouping. Randomized encryption generates different values for the same input and, therefore, SQL 
Server cannot compare the data without decrypting it. Deterministic encryption, on the other hand, 
guarantees the same encrypted  value   for the same input, and SQL Server can perform equality comparisons 
of encrypted data, which allows you to reference columns with deterministic encryption in point-lookup 
searches, equality joins, and grouping. You can also index columns with deterministic encryption to 
optimize those use cases. 

 Equality comparison is the only operation supported by deterministic encryption. For example, the 
query with the  Salary = @Salary  predicate would work with deterministic encryption, while the  Salary >= 
@Salary  predicate would fail the query regardless of encryption type. 

 Always Encrypted does not support ad-hoc non-parameterized queries, and it also requires you to use 
parameters when inserting data or updating encrypted columns. You should also use parameters in equality 
search predicates against columns with deterministic encryption. Even though these requirements look like 
limitations, removing ad-hoc workload reduces the plan's cache-memory consumption and could improve 
the performance of the system. Nevertheless, it may require code changes in the client application.  

      Security Considerations   and Key Management 
 It is always important to choose the right tool for the job, and Always Encrypted has one key difference 
when compared to other SQL Server encryption technologies. It is the only technology that allows you 
to implement the  separation of duties  security concept, separating the roles of security and database 
administrators in a business. When this separation is not required, it is entirely possible that other SQL 
Server technologies would be the better solution. For example, it can be easier to encrypt data-at-rest with 
 transparent data encryption  (TDE) and/or  column-level encryption  using SSL/TLS for transport security. 

 Moreover, implementing a separation of duties is never limited to the technical implementation. It 
requires businesses to define and adopt formal policies and processes, with technology just supporting 
them. For example, one of the prerequisites to Always Encrypted implementation is defining the key 
management process, which outlines how security keys need to be generated, stored, backed up, and 
rotated. 

 As a general rule, security administrators should generate CMK and CEK on a computer separate from 
SQL Server. This will prevent a rogue administrator of a computer that is hosting Always Encrypted data 
from accessing the keys on disk or in computer memory. It is also important to back up the keys after they 
are generated and store those backups in a safe physical location. 

 Key rotation is another important factor in security. Always Encrypted allows you to rotate both CMK 
and CEK, either in SSMS or with T-SQL. Rotation of CMK decrypts all CEK with the old key and encrypts 
them with the new key. This is a very fast operation. Rotation of CEK, on the other hand, will require you to 
decrypt and encrypt all table  data  , which can be very time consuming on large tables. 

 Finally, it is important to remember that with Always Encrypted, the data is decrypted on the driver 
level and is stored in memory in plain text. Some security standards and regulations require the application 
to keep certain data encrypted even in memory. For example,  payment card industry  (PCI) standards require 
you to keep all credit card numbers encrypted all the time. You should combine Always Encrypted with 
other technologies when this is the case. 

 ■   Note    You can see read more about Always Encrypted and how to configure and use it at    https://msdn.
microsoft.com/en-us/library/mt163865.aspx         

https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx
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      Dynamic Data Masking   
 Dynamic data masking allows you to hide the content of sensitive columns by masking it in the result sets. It 
allows you to obfuscate either entire column data or just part of the value; for example, allowing users to see 
the last four digits of a credit card number or Social Security number. 

 Dynamic data masking works on a per-column level and is controlled by the  UNMASK  permission. Users 
with such permission will see unmasked data in the result set, while users without that permission will see 
obfuscated data. For example, you can grant  UNMASK  permission on the  CreditCardNumber  column to the 
 Accounting  group, who will see the unmasked value. The  Call Center  group, on the other hand, should not 
have this permission and would see the masked value instead. 

 The masking rule is controlled by the  masking function . SQL Server 2016 RTM supports four masking 
functions, specified next. It is worth noting that  NULL  values will always be displayed as  NULL .

     default()    returns the default value for the data type. For example, the function 
uses  0  for numeric data types and  1900-01-01  for date and time information. For 
the text data, it replaces the text with  XXXX  characters.  

   email()  masks the value of the email address by showing the first actual letter 
from the email, replacing everything else with  xxx@XXXX.com . For example, a 
 tg@grohser.at  email address will be replaced with a  txxx@XXXX.com  value.  

    random()    works only with numeric datatypes ( int ,  float ,  money , …) and replaces 
data with a random value from the interval specified as a parameter of the 
function.  

    partial()    is the most flexible function, allowing you to define a custom string 
that is used for masking. It takes three parameters, such as  prefix ,  padding , 
and  suffix. Prefix  and  suffix  are integer values that define the number 
of characters at the beginning and end of the text that are populated from the 
original value. The optional  padding  value controls the masking pattern.    

 Listing  5-18  shows  dynamic data masking in action  . The code creates a table with several columns 
masked with different masking functions. Then, it performs two  SELECT  queries in context of the users both 
with and without  UNMASK  permissions. 

     Listing 5-18.    Dynamic data masking in action   

  create table dbo.Consultants   
 ( 
     ID int not null, 
     FirstName varchar(32) 
         masked with (function='partial(1,"XXXXXXXX",0)') not null, 
     LastName varchar(32) not null, 
     DateOfBirth date 
         masked with (function='default()') not null, 
     SSN char(12) 
         masked with (function='partial(0,"XXX-XXX-",4)') not null, 
     EMail nvarchar(255) 
         masked with (function='email()') not null, 
     SpendingLimit money 
     masked with (function='random(500,1000)') not null 
 ); 
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   insert into dbo.Consultants(ID,FirstName,LastName,DateOfBirth,SSN,Email,SpendingLimit) 
 values 
     (1,'Thomas','Grohser','1/1/1980','123-456-7890','tg@grohser.com',10000) 
     ,(2,'Dmitri','Korotkevitch','1/1/2010','234-567-8901','dk@aboutsqlserver.com',10000); 

   create user NonPrivUser without login; 
 grant select on dbo.Consultants to NonPrivUser; 
 go 

   -- Running as db_owner who can UNMASK the data 
 select * from dbo.Consultants; 

   -- Running as non-privilege user without UNMASK permission 
 execute as user = 'NonPrivUser'; 
 select * from dbo.Consultants 
 revert; 

    Figure  5-21  shows the  output   of both queries. The result sets represent unmasked and masked data 
respectively.  

  Figure 5-21.    Dynamic data masking in action       

  Figure 5-22.    Execution plan of the query with dynamic data masking       

     Performance and  Security Considerations   
 When data needs to be obfuscated, SQL Server applies the masking after the data-access operators, usually 
using  compute scalar . Figure  5-22  shows the execution plan of the  SELECT  query from Listing  5-16 .  
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 As you can guess, this implementation introduces relatively little performance impact; however, it leads 
to security issues. The predicates are evaluated against non-masked data, and a malicious person who has 
the ability to execute queries against the table could obtain the values by performing a brute-force attack. 

 Listing  5-19  demonstrates how an attacker could guess the value of the  SpendingLimit  column in 
the  dbo.Consultants  table. SQL Server performs the join based on the unmasked value, which allows the 
attacker to capture them. Figure  5-23  shows the output from the attack.  

     Listing 5-19.     Brute-force attack   on the masked data   

  execute as user = 'NonPrivUser'; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows     
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows     
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows     
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows     
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows   
 ,PossibleValues(SpendingLimit) 
 as (select row_number() over (order by (select null)) from N5)     
 select c.ID, p.SpendingLimit, c.SpendingLimit as MaskedLimit 
 from dbo.Consultants c join PossibleValues p on 
     c.SpendingLimit >= p.SpendingLimit - 1 and 
     c.SpendingLimit < p.SpendingLimit; 

   revert; 

  Figure 5-23.    Result of the attack       

    Unfortunately, a similar  approach   can be taken with any data types that can be casted to text. The attack 
can be implemented on a per-character basis, as shown in Listing  5-20 . The code splits the data from the 
masked columns into individual characters and joins them with a result set that represents all possible ASCII 
characters. The query in Listing  5-20  reveals the  DateOfBirth  and first 24 characters of the  Email  columns; 
however, it could easily be adopted to deal with longer strings. Figure  5-24  shows the result of the query.  

      Listing 5-20.    Per-character basis brute-force attack   

  execute as user = 'NonPrivUser'; 

   ;with N(n) 
 as 
 ( 
     select n 
     from (values (0),(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13),(14),(15)) n(n) 
 ) 
 ,C(c) 
 as 
 ( 
     select char(n1.n * 16 + n2.n) from n as n1 cross join n as  n2    
 ) 
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 select 
     d.id, 
     bd1.c+bd2.c+bd3.c+bd4.c+'/'+bd5.c+bd6.c+'/'+bd7.c+bd8.c as DateOfBirth, 
     email1.c+email2.c+email3.c+email4.c+email5.c+email6.c+ 
     isnull(email7.c,'')+isnull(email8.c, '')+isnull(email9.c, '')+ 
         isnull(email10.c, '')+isnull(email11.c, '')+isnull(email12.c, '')+ 
         isnull(email13.c, '')+isnull(email14.c, '')+isnull(email15.c, '')+ 
         isnull(email16.c, '')+isnull(email17.c, '')+isnull(email18.c, '')+ 
         isnull(email19.c, '')+isnull(email20.c, '')+isnull(email21.c, '')+ 
         isnull(email22.c, '')+isnull(email23.c, '')+isnull(email24.c, '') as Email 
 from dbo.Consultants d 
     left join c bd1 on ascii(substring(cast(d.DateOfBirth as varchar),1,1))=ascii(bd1.c) 
     left join c bd2 on ascii(substring(cast(d.DateOfBirth as varchar),2,1))=ascii(bd2.c) 
     left join c bd3 on ascii(substring(cast(d.DateOfBirth as varchar),3,1))=ascii(bd3.c) 
     left join c bd4 on ascii(substring(cast(d.DateOfBirth as varchar),4,1))=ascii(bd4.c) 
     left join c bd5 on ascii(substring(cast(d.DateOfBirth as varchar),6,1))=ascii(bd5.c) 
     left join c bd6 on ascii(substring(cast(d.DateOfBirth as varchar),7,1))=ascii(bd6.c) 
     left join c bd7 on ascii(substring(cast(d.DateOfBirth as varchar),9,1))=ascii(bd7.c) 
     left join c bd8 on ascii(substring(cast(d.DateOfBirth as varchar),10,1))=ascii(bd8.c) 
     left join c email1 on ascii(substring(d.EMail, 1, 1)) = ascii(email1.c) 
     left join c email2 on ascii(substring(d.EMail, 2, 1)) = ascii(email2.c) 
     left join c email3 on ascii(substring(d.EMail, 3, 1)) = ascii(email3.c) 
     left join c email4 on ascii(substring(d.EMail, 4, 1)) = ascii(email4.c) 
     left join c email5 on ascii(substring(d.EMail, 5, 1)) = ascii(email5.c) 
     left join c email6 on ascii(substring(d.EMail, 6, 1)) = ascii(email6.c) 
     left join c email7 on ascii(substring(d.EMail, 7, 1)) = ascii(email7.c) 
     left join c email8 on ascii(substring(d.EMail, 8, 1)) = ascii(email8.c) 
     left join c email9 on ascii(substring(d.EMail, 9, 1)) = ascii(email9.c) 
     left join c email10 on ascii(substring(d.EMail, 10, 1)) = ascii(email10.c) 
     left join c email11 on ascii(substring(d.EMail, 11, 1)) = ascii(email11.c) 
     left join c email12 on ascii(substring(d.EMail, 12, 1)) = ascii(email12.c) 
     left join c email13 on ascii(substring(d.EMail, 13, 1)) = ascii(email13.c) 
     left join c email14 on ascii(substring(d.EMail, 14, 1)) = ascii(email14.c) 
     left join c email15 on ascii(substring(d.EMail, 15, 1)) = ascii(email15.c) 
     left join c email16 on ascii(substring(d.EMail, 16, 1)) = ascii(email16.c) 
     left join c email17 on ascii(substring(d.EMail, 17, 1)) = ascii(email17.c) 
     left join c email18 on ascii(substring(d.EMail, 18, 1)) = ascii(email18.c) 
     left join c email19 on ascii(substring(d.EMail, 19, 1)) = ascii(email19.c) 
     left join c email20 on ascii(substring(d.EMail, 20, 1)) = ascii(email20.c) 
     left join c email21 on ascii(substring(d.EMail, 21, 1)) = ascii(email21.c) 
     left join c email22 on ascii(substring(d.EMail, 22, 1)) = ascii(email22.c) 
     left join c email23 on ascii(substring(d.EMail, 23, 1)) = ascii(email23.c) 
     left join c email24 on ascii(substring(d.EMail, 24, 1)) = ascii(email24.c) 
 revert; 

  Figure 5-24.    Result of the attack       
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    You can mitigate this risk by denying users   SELECT  permission      on the table with masked data and 
using stored procedures for data access. This approach, however, will require code changes in the client 
application.   

     Combining Security Features 
 The new SQL Server 2016 security features can help you to address some of the security challenges in 
your system. However, they should be used together with the other  classic  security techniques. You should 
combine them with other SQL Server security features, following the  least required privilege  principle and 
giving users the  minimally required  permissions on the column, object, database, and server levels. 

 This is especially important with row-level security and dynamic data masking. These features should 
be considered as  application security  features. They help to implement application security; however, they 
do not protect the data in the database. It is possible to break them as long as a malicious user has the ability 
to execute ad-hoc queries against the table. 

 You can also combine the features. For example, it is possible to combine row-level security with 
Always Encrypted and/or with dynamic data masking. Obviously, you cannot combine Always Encrypted 
and dynamic data masking on the same columns, and you need to implement the masking manually in the 
application if this is required. 

 Finally, all three new security features work well with transparent database encryption (TDE) and 
backup encryption. It is beneficial to use TDE and backup encryption together with Always Encrypted when 
security is the concern. It will allow you to protect all data in the database rather than encrypting the data on 
a per-column basis as Always Encrypted does.  

     Summary 
 System-versioned temporal tables maintain a history of the data changes in a table. They consist of two 
tables:  current , with the current data, and  history , which stores previous versions of the rows. Every time 
rows from the current table are updated or deleted, previous versions of the rows are copied to the history 
table. You can access a point-in-time snapshot using the  FOR SYSTEM_TIME  clause in  SELECT  queries. 

 Both current and history tables should have two  datetime2  period columns that indicate the lifetime of 
the row. SQL Server adds predicates on period columns when you use the  FOR SYSTEM_TIME  clause, which 
you should factor into the index design of the system. 

 Stretch databases allow you to store some of the database data in SQL Database in Microsoft Azure 
transparently to the client applications. You can migrate either entire tables or a subset of the table data 
by specifying a filter function. Stretch databases work the same way as linked servers do and have similar 
connectivity requirements and performance implications. 

 SQL Server 2016 comes with three new security features. Row-level security allows you to control 
the visibility of data on a per-user basis. This solution can help to improve security in multi-tenant 
environments. Dynamic data masking allows you to mask the values in particular columns in result 
sets. Finally, Always Encrypted provides you with the ability to encrypt the data in particular columns 
by implementing a separation of duties security concept and preventing database administrators from 
accessing sensitive data. 

 You should use the new security features together with the classic SQL Server security features, such as 
column and object permissions, TDE, and others, when tightening security in the system.     
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    CHAPTER 6   

 Index Fragmentation                          

 Index fragmentation is, perhaps, one of those rare topics that does not entirely belong to the “It Depends” 
category. Most database professionals agree that fragmentation negatively affects the system. While that is 
correct, it is still important to understand the downside of index fragmentation and analyze how your system 
is affected by it. 

 In this chapter, we will talk about internal and external index fragmentation in SQL Server, what code 
and design patterns increase fragmentation, and what factors must be taken into account when designing an 
index maintenance strategy. 

     Types of Fragmentation 
 As you will remember, SQL Server stores data on data pages that are combined into eight-page extents on a 
per-object allocation unit basis. For the index in-row pages, every data page has pointers to the previous and 
next pages based on the index key sorting order. 

 SQL Server neither reads nor modifies data directly on the disk. A data page needs to be in memory to 
be accessible. Every time SQL Server accesses the data page in memory, it issues a logical read operation. 
When the data page is not in memory, SQL Server performs a physical read, which leads to the physical disk 
access. 

 ■   Note    You can find the number of I/O operations performed by a query on a per-table basis by enabling  I/O 
statistics   using the  set statistics io on  command. An excessive number of logical reads often indicates 
suboptimal execution plans due to missing indexes and/or suboptimal join strategies selected because 
of incorrect cardinality estimation. However, you should not use that number as the only criteria during 
optimization and should take other factors into account, such as resource usage, parallelism, and related 
operators in the execution plan.  

 Both logical and physical reads affect the performance of queries. Even though logical reads are very 
fast, they are not instantaneous. SQL Server burns  CPU cycles   while accessing data pages in memory, and 
physical I/O operations are slow. Even with a fast disk subsystem, latency quickly adds up with a large 
number of physical reads. 



CHAPTER 6 ■ INDEX FRAGMENTATION

142

 One of the optimization techniques that SQL Server uses to reduce the number of physical reads is 
called  read-ahead . With this technique, SQL Server determines if  leaf-level pages   reside continuously on 
the disk based on intermediate index level information and reads multiple pages as part of a single read 
operation from the data file. This increases the chance that the following read requests would reference 
data pages, which are already cached in memory, and it minimizes the number of physical reads required. 
Figure  6-1  illustrates this situation, and it shows two adjacent extents with all data pages fully populated 
with data.  

 Let’s see what happens when you insert a new row into the index. As you will remember, the data in 
clustered and nonclustered indexes is sorted based on the value of the index key, and SQL Server knows the 
data page into which the row must be inserted. If the data page has enough free space to accommodate a 
new row, that would be it — SQL Server just inserts the new row there. However, if the data page does not have 
enough free space, the following happens:    

    1.    A new data page and, if needed, a new extent are allocated.  

    2.    Some data from the old data page is moved to the newly allocated page.  

    3.    Previous- and next-page pointers are updated in order to maintain a logical 
sorting order in the index.     

 This process is called  page split . Figure  6-2  illustrates the data layout when this happens. It is worth 
mentioning that a page split can happen when you update an existing row, thereby increasing its size, and 
the data page does not have enough space to accommodate a new, larger version of the row.  

  Figure 6-1.     Logical and physical reads         

  Figure 6-2.    Page split and  fragmentation         
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 At this point, you have index fragmentation of two kinds: internal and external.   External fragmentation  
  means that the logical order of the pages does not match their physical order, and/or logically subsequent 
pages are not located in the same or adjacent extents. Such fragmentation forces SQL Server to jump 
around reading the data from the disk, which makes read-ahead less efficient and increases the number of 
physical reads required. Moreover, it increases random disk I/O, which is far less efficient when compared to 
sequential I/O, especially in the case of magnetic hard drives. 

   Internal fragmentation ,   on the other hand, means that data pages in the index have an excessive 
amount of free space. As a result, the index uses more data pages to store data, which increases the number 
of logical reads during query execution. In addition, SQL Server uses more memory in the buffer pool to 
cache index pages. 

 A small degree of internal fragmentation is not necessarily bad. It reduces page splits during insert and 
update operations when data is inserted into or updated from different parts of the index. Nonetheless, 
a large degree of internal fragmentation wastes index space and reduces the performance of the system. 
Moreover, for indexes with ever-increasing keys — for example, on identity columns — internal fragmentation is 
not desirable because the data is always inserted at the end of the index. 

 There is a  data-management function  ,  sys.dm_db_index_physical_stats , that you can use to analyze 
fragmentation in the system. The three most important columns from the result set are the following:

    avg_page_space_used_in_percent  shows the average percentage  of   the 
data storage space used on the page. This value shows you the internal index 
fragmentation.  

   avg_fragmentation_in_percent  provides you with information about 
external index fragmentation. For tables with clustered indexes, it indicates 
the percentage of out-of-order pages, where the next physical page allocated in 
the index is different from the page referenced by the next-page pointer of the 
current page. For heap tables, it indicates the percentage of out-of-order extents, 
where extents are not residing continuously in data files.  

   fragment_count  indicates how many continuous data fragments the index has. 
Every fragment constitutes the group of extents adjacent to each other. Adjacent 
data increases the chances that SQL Server will use sequential I/O and read-
ahead while accessing the data.    

  Sys.dm_db_index_physical_stats  can analyze data in three different modes:  LIMITED ,  SAMPLED , and 
 DETAILED , which you need to specify as a parameter of the function. In  LIMITED  mode, SQL Server uses non-
leaf index pages to analyze the data. It is the fastest mode, although it does not provide information about 
internal fragmentation. 

 In   DETAILED  mode  ,    SQL Server scans the entire index. As you can guess, this mode provides the most 
accurate results, although it is the most I/O-intensive method. 

 In   SAMPLED  mode  ,    SQL Server returns statistics based on a one percent data sample from the table when 
it has 10,000 or more data pages. It reads every hundredth page from the leaf level during execution. For 
tables with less than 10,000 data pages, SQL Server scans the entire index using  DETAILED  mode instead. 

 ■   Note    Check out the Books Online article at    http://technet.microsoft.com/en-us/library/ms188917.
aspx      for more details about  sys.dm_db_index_physical_stats .  

http://technet.microsoft.com/en-us/library/ms188917.aspx
http://technet.microsoft.com/en-us/library/ms188917.aspx
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 Page split is not limited to single-page allocation and data movement. Let’s look at an example, create 
the table, and populate it with some data, as shown in Listing  6-1 . 

      Listing 6-1.    Multiple page splits: Table  creation     

  create table dbo.PageSplitDemo 
 ( 
     ID int not null, 
     Data varchar(8000) null 
 ); 

   create unique clustered index IDX_PageSplitDemo_ID 
 on dbo.PageSplitDemo(ID); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.PageSplitDemo(ID) 
     select ID * 2 from Ids where ID <= 620 

   select page_count, avg_page_space_used_in_percent 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.PageSplitDemo'),1,null
    ,'DETAILED'); 

    The following is the output from the code shown in Listing 5-1. As you can see, there is the single data 
page, which is almost full. 

   page_count          avg_page_space_used_in_percent 
 ----------------    --------------------------------------------- 
 1                   99.5552260934025 

   As a next step, let’s insert a large row into the table with the code from Listing  6-2 . 

       Listing 6-2.    Multiple page splits: Insert a large row into the table   

  insert into dbo.PageSplitDemo(ID,Data) values(101,replicate('a',8000)); 

   select page_count, avg_page_space_used_in_percent 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.PageSplitDemo'),1,null
    ,'DETAILED'); 

    The following is the output of the code in Listing  6-2  if you ran it using SQL Server prior to SQL Server 
2012. As you can see, SQL Server had to allocate seven new leaf-level data pages to accommodate a new data 
row and to preserve the logical sorting order in the index. 

 The process worked in the following way. SQL Server kept 50 rows with  ID<=100  on the original page, 
trying to fit new ( ID=101 ) and remaining ( ID>=102 ) rows into the newly allocated data page. They did not fit 
into the single page, and SQL Server continued to allocate pages, splitting rows by half until they finally fit. 
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 It is also worth mentioning that SQL Server had to create the root level in the index. 

   page_count          avg_page_space_used_in_percent 
 ----------------    --------------------------------------------- 
 8                   24.8038670620213 
 1                   1.26019273535953 

   Fortunately, the  page-split algorithm   has been dramatically improved in SQL Server 2012. The following 
is the output of the code in Listing  6-2  if you run it using SQL Server 2012 or above. When SQL Server 
detected that the data did not fit into the newly allocated page, it allocated another (third) page, put the new 
( ID=101 ) row into one of the pages and all of the remaining rows ( ID >= 102 ) into another one. Therefore, 
with SQL Server 2012-2016, page split introduces at most two new page allocations. 

   page_count          avg_page_space_used_in_percent 
 ----------------    --------------------------------------------- 
 3                   99.5552260934025 
 1                   0.457128737336299  

         FILLFACTOR   and  PAD_INDEX   
 Every index in SQL Server has a   FILLFACTOR  option,      which allows you to reserve some space on the leaf-level 
index data pages. Setting  FILLFACTOR  to something less than 100, which is the default value, increases the 
chances that data pages will have enough free space to accommodate the newly inserted or updated data 
rows without having a page split involved. This option can be set on both the server and individual index 
levels. SQL Server uses the server-level  FILLFACTOR  when the index does not have  FILLFACTOR  explicitly 
specified. 

 SQL Server maintains  FILLFACTOR  only when creating or rebuilding the index. It still fills pages up to 100 
percent during normal workload, splitting pages when needed. 

 Another important factor to keep in mind is that by reducing  FILLFACTOR , you decrease external index 
fragmentation and the number of page splits by increasing internal index fragmentation. The index will have 
more data pages, which will negatively affect the performance of scan operations. Moreover, SQL Server will 
use more memory in the buffer pool to accommodate the increased number of index pages. 

 There is no recommended setting for   FILLFACTOR .   You need to fine-tune it by gradually decreasing its 
value and monitoring how it affects fragmentation with the  sys.dm_db_index_physical_stats  function. 
You can start with  FILLFACTOR = 100  and decrease it by 5 percent increments by rebuilding the index with 
a new  FILLFACTOR  until you find the optimal value that has the lowest degree of both internal and external 
fragmentation. Obviously, you need to perform that analysis under a production workload and allow 
fragmentation to build up in between measurements. 

 In SQL Server 2012 or above, you can monitor page split operations in real time using Extended Events. 
It allows you to fine-tune  FILLFACTOR  by analyzing how different   FILLFACTOR       values affect the number of 
page splits in the index. The Extended Events chapter of this book shows such an example. 

 It is recommended that you keep  FILLFACTOR  close to 100 with indexes that have ever-increasing key 
values. All inserts into those indexes come at the end of the index, and existing data pages do not benefit 
from the reserved free space unless you are updating data and increasing row size afterward. 

 Finally, there is another index option,   PAD_INDEX ,   which controls whether  FILLFACTOR  is maintained in 
non-leaf index pages. It is OFF by default and rarely needs to be enabled.  
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     Index Maintenance 
 SQL Server supports two methods of index maintenance that reduce fragmentation: index reorganize and 
index rebuild. 

  Index    reorganize ,   which is often called index defragmentation, reorders leaf-level data pages into their 
logical order and also tries to compact pages by reducing their internal fragmentation. This is an online 
operation that can be interrupted at any time without forgoing the operation’s progress up to the point of 
interruption. You can reorganize indexes with the  ALTER INDEX REORGANIZE  command. 

 ■   Tip    SQL Server does not deallocate empty LOB data pages from the database.  ALTER INDEX REORGANIZE  
compacts (deallocates) those pages by default. It is beneficial to reorganize the indexes when large amounts of 
LOB data have been deleted or LOB columns have been dropped.  

 An  index    rebuild  operation,   which can be done with the  ALTER INDEX REBUILD  command, removes 
external fragmentation by creating another index as a replacement of the old, fragmented one. By default, 
this is an offline operation, and SQL Server acquires and holds a schema modification (Sch-M) table lock for 
the duration of the operation, which prevents any other sessions from accessing the table. We will discuss 
the SQL Server concurrency model in greater detail in Part III of this book. 

 The Enterprise Edition of SQL Server can perform an online index rebuild. This operation uses row 
versioning under the hood, and it allows other sessions to modify data while the index rebuild is still in 
process. 

 ■   Note    An online index rebuild still acquires a schema-modification (SCH-M) lock during the final phase of 
execution. Even though this lock is held for a very short time, it can increase locking and blocking in very active 
OLTP systems. SQL Server 2014 introduced the concept of low-priority locks, which can help in this situation. 
We will discuss low-priority locks in detail in Chapter   23    , “Schema Locks.”  

 Index rebuild achieves better results than index reorganize, although it is an  all or nothing  operation; that 
is, SQL Server rolls back the entire operation if the index rebuild is interrupted. You should also have enough 
free space in the database to accommodate another copy of the data generated during the index rebuild stage. 

 Finally, index rebuild updates statistics, while index reorganize does not. You need to factor this 
behavior into the statistics-maintenance strategy in your system if an automatic statistics update is not 
optimal in the case of large tables.  

     Designing an Index Maintenance  Strategy   
 Microsoft suggests performing an index rebuild when the external index fragmentation ( avg_
fragmentation_in_percent value  in  sys.dm_dm_index_physical_stats ) exceeds 30 percent, and an 
index reorganize when fragmentation is between 5 and 30 percent. While this may work as general advice, 
it is important to analyze how badly the system is affected by fragmentation when designing your index 
maintenance strategy. 

 Index fragmentation hurts most during index scans, when SQL Server needs to read large amounts of 
data from the disk. Highly tuned OLTP systems, which primarily use small range scans and point lookups, 
are usually affected less by fragmentation. It does not really matter where data resides on the disk if a query 

http://dx.doi.org/10.1007/978-1-4842-1964-5_23
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needs to traverse the index tree and read just a handful of data pages. Moreover, when the data is already 
cached in the buffer pool, external fragmentation hardly matters at all. 

 Database file placement is another factor that you need to take into account. One of the reasons why 
you want to reduce external fragmentation is for sequential I/O performance, which, in the case of magnetic 
hard drives, is usually an order of magnitude better than random I/O performance. However, if multiple 
database files share the same disk array, it hardly matters. Simultaneous I/O activity generated by multiple 
active databases  randomizes  all I/O activity on the disk array, making external fragmentation less critical. 

 Nevertheless, internal fragmentation is still a problem. Indexes use more memory, and queries need to 
scan more data pages, when data pages have large amounts of unused space. This negatively affects system 
performance, whether data pages are cached or not. 

 Another important  factor   is system workload. Index maintenance adds its load to SQL Server, and 
it is better to perform index maintenance at a time of low activity. Keep in mind that index maintenance 
overhead is not limited to the single database, and you need to analyze how it affects other databases 
residing on the same server and/or disk array. 

 Both index rebuild and reorganize introduce heavy transaction log activity and generate a large number 
of log records. This affects the size of the transaction log backup, and it can produce an enormous amount 
of network traffic if the system uses transaction log – based High Availability technologies, such as AlwaysOn 
Availability Groups, database mirroring, log shipping, and replication. It can also affect the availability of the 
system if failover to another node occurs during the operation. 

 ■   Note    We will discuss High Availability strategies in greater detail in Chapter   32    , “Designing a High 
Availability Strategy.”  

 It is important to consider index maintenance overhead on busy servers that work around the clock. 
In some cases, it is better to reduce the frequency of index maintenance routines, keeping some level of 
fragmentation in the system. However, you should always perform index maintenance if such overhead is 
not an issue. For example, for systems with low activity outside of business hours, there is no reason not to 
perform index maintenance at night or on weekends. 

 The version and edition of SQL Server in use dictates its ability to perform an index maintenance 
operation online. Table  6-1  shows what options are available based on the version and edition of SQL Server. 
It also shows partition-level index rebuild options, which can be beneficial with partitioned tables. We will 
discuss them in detail in Chapter   16    .  

   Table 6-1.    Index Maintenance Options Based on SQL Server Version and Edition   

 SQL Server Version 
and Edition 

 Index 
Reorganize 

 Index Rebuild 
(index has LOB 
columns) 

 Index Rebuild 
 (index does not 
have LOB columns) 

 Partition-Level Index 
Rebuild 

 SQL Server 2005-2016 
non-Enterprise edition 

 Online  Offline only  Offline only  N/A 

 SQL Server 2005-2008R2 
Enterprise edition 

 Online  Offline only  Offline or Online  Offline only 

 SQL Server 2012 
Enterprise Edition 

 Online  Offline or Online  Offline or Online  Offline only 

 SQL Server 2014-2016 
Enterprise Edition 

 Online  Offline or Online  Offline or Online  Offline or Online 

http://dx.doi.org/10.1007/978-1-4842-1964-5_32
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 ■   Note    Be careful with SQL Server maintenance plans. They tend to perform index maintenance on all 
indexes, even when it is not required.  

 ■   Tip    Ola Hallengren’s free database-maintenance  script   is a great solution that analyzes fragmentation 
level on a per-index basis, and it performs index rebuild/reorganize only when needed. It is available for 
download at    http://ola.hallengren.com/     .  

 With all that being said, the best way to reduce fragmentation is to avoid creating patterns in the 
database design and code that lead to such conditions.  

     Patterns That Increase Fragmentation 
 One of the most common cases that leads to fragmentation is indexing complete random values, such 
as unique identifiers generated with  NEWID()  or byte sequences generated with   HASHBYTE()  functions. 
     Values generated with these functions are randomly inserted into different parts of the index, which causes 
excessive page splits and fragmentation. You should avoid using such indexes if it is at all possible. 

 ■   Note    We will discuss the performance implications of indexes on random values in the next chapter.  

 Another common pattern that contributes to index fragmentation is increasing the size of the row 
during an update; for example, when a system collects data and performs post-processing of some kind, 
populating additional attributes/columns in a data row. This increases the size of the row, which triggers a 
page split if the page does not have enough space to accommodate it. 

 As an example, let’s think about a table that stores GPS location information, which includes both 
geographic coordinates and the address of the location. Let’s assume that the address is populated during 
post-processing, after the location information has already been inserted into the system. Listing  6-3  shows 
the code that creates the table and populates it with some data. 

     Listing 6-3.    Patterns that lead to fragmentation:  Table creation        

  create table dbo.Positions 
 ( 
     DeviceId int not null, 
     ATime datetime2(0) not null, 
     Latitude decimal(9,6) not null, 
     Longitude decimal(9,6) not null, 
     Address nvarchar(200) null, 
     Placeholder char(100) null, 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 

http://ola.hallengren.com/
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 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.Positions(DeviceId, ATime, Latitude, Longitude) 
     select 
         ID % 100 /*DeviceId*/ 
         ,dateadd(minute, -(ID % 657), getutcdate()) /*ATime*/ 
         ,0 /*Latitude - just dummy value*/ 
         ,0 /*Longitude - just dummy value*/ 
     from IDs; 

   create unique clustered index IDX_Postitions_DeviceId_ATime 
 on dbo.Positions(DeviceId, ATime); 

   select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent 
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Positions'),1,null,'DETAILED') 

    At this point, the table has 65,536 rows. A clustered index is created as the last stage during execution. 
As a result, there is no fragmentation on the index. Figure  6-3  illustrates this point.  

  Figure 6-3.    Fragmentation after  table creation            

 Let’s run the code that populates the address information. This code, shown in Listing  6-4 , emulates 
post-processing. 

     Listing 6-4.    Patterns that lead to fragmentation:  Post-processing        

  update dbo.Positions set Address = N'Position address'; 

   select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent 
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Positions'),1,null,'DETAILED') 
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    Figure  6-4  shows the index fragmentation. Post-processing doubled the number of leaf-level pages of 
the index, making it heavily fragmented both internally and externally.  

 As you may guess, you can avoid this situation by populating the address information during the insert 
stage. This option, however, is not always available. 

 Another option is that you can reserve the space in the row during the insert stage by populating the 
address with a default value, preallocating the space. Let’s find out how much space is used by the address 
information with the code shown in Listing  6-5 . Figure  6-5  shows the result.  

     Listing 6-5.    Patterns that lead to fragmentation: Calculating average address size   

 select avg(datalength(Address)) as [Avg Address Size] from dbo.Positions 

   Average address size is 32 bytes, which is 16 Unicode characters. You can populate it with a string of 16 
space characters during the insert stage, which would reserve the required space in the row. The code in 
Listing  6-6  demonstrates this approach. 

     Listing 6-6.    Patterns that lead to fragmentation: Populating address with 16 space characters during insert  stage        

  truncate table dbo.Positions 
 go 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.Positions(DeviceId, ATime, Latitude, Longitude, Address) 
     select 
         ID % 100 /*DeviceId*/ 
         ,dateadd(minute, -(ID % 657), getutcdate()) /*ATime*/ 
         ,0 /*Latitude - just dummy value*/ 
         ,0 /*Longitude - just dummy value*/ 
         ,replicate(N' ',16) /*Address - adding string of 16 space characters*/ 
     from IDs; 

  Figure 6-4.    Fragmentation after  post-processing            

  Figure 6-5.    Fragmentation after  post-processing            
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   create unique clustered index IDX_Postitions_DeviceId_ATime 
 on dbo.Positions(DeviceId, ATime); 

   update dbo.Positions set Address = N'Position address';       

   select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent 
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'Positions'),1,null,'DETAILED') 

    Even though you update the address information during post-processing, it does not increase the size of 
the data rows. As a result, there is no fragmentation in the table, as shown in Figure  6-6 .  

 Unfortunately, in some cases you cannot pre-populate some of the columns in the insert stage because 
of the business or functional requirements of the system. As a workaround, you can create a variable-length 
column in the table and use it as a placeholder to reserve the space. Listing  6-7  shows such an approach. 

     Listing 6-7.    Patterns that lead to fragmentation: Using a placeholder column to reserve the  space        

  drop table dbo.Positions 
 go 

   create table dbo.Positions 
 ( 
     DeviceId int not null, 
     ATime datetime2(0) not null, 
     Latitude decimal(9,6) not null, 
     Longitude decimal(9,6) not null, 
     Address nvarchar(200) null, 
     Placeholder char(100) null, 
      Dummy varbinary(32)  
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.Positions(DeviceId, ATime, Latitude, Longitude, Dummy) 
     select 

  Figure 6-6.    Fragmentation when row has been pre-populated with 16 space characters for the address during 
the insert  stage            
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         ID % 100 /*DeviceId*/ 
         ,dateadd(minute, -(ID % 657), getutcdate()) /*ATime*/ 
         ,0 /*Latitude - just dummy value*/ 
         ,0 /*Longitude - just dummy value*/ 
         ,convert(varbinary(32),replicate('0',32)) /* Reserving the space*/ 
     from IDs; 

   create unique clustered index IDX_Postitions_DeviceId_ATime 
 on dbo.Positions(DeviceId, ATime); 

   update dbo.Positions 
 set 
     Address = N'Position address' 
     ,Dummy = null; 

   select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent 
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'Positions'),1,null,'DETAILED') 

    Row size during post-processing remains the same. Even though it adds 32 bytes to the  Address  
column, it also decreases the row size for the same 32 bytes by setting the  Dummy  column to  null . Figure  6-7  
illustrates the fragmentation after the execution of the code.  

 It is worth mentioning that the efficiency of such a method depends on several  factors.      First, it would 
be difficult to predict the amount of space to reserve when the row size increase varies significantly. You can 
decide to err on the side of caution if this is the case. Keep in mind that even though overestimation reduces 
external fragmentation, it increases internal fragmentation and leaves unused space on the data pages. 

 Another factor is how fragmentation is introduced. That method works best with ever-increasing 
indexes, when insert fragmentation is minimal. It is less efficient when page splits and fragmentation occur 
during the insert stage; for example, when indexes on the uniqueidentifier column are populated with the 
 NEWID()  value. 

 Finally, even though using placeholders reduces fragmentation, it does not replace, but rather works in 
parallel with, other index maintenance routines. 

 Unfortunately, situations where row size increases during an update are much more common than it 
might appear at first. SQL Server uses row versioning to support some of its features. With row versioning, 
SQL Server stores one or more old versions of the row in a special part of   tempdb       called the  version store . 
It also adds a 14-byte version tag to the rows in the data file to reference rows from the version store. That 
14-byte version tag is added when a row is modified and, in a nutshell, it increases the row size in a manner 
that is similar to what you just saw in the post-processing example. The version tag stays in the rows until the 
index is rebuilt. 

  Figure 6-7.    Fragmentation when a  placeholder column was used            
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 The two most common SQL Server features that rely on row versioning are optimistic transaction 
isolation levels and  AFTER  triggers. Both features contribute to index fragmentation, and they need to be 
taken into account when you design an index maintenance strategy. We will discuss both triggers and 
optimistic transaction isolation levels later in this book. 

 ■   Best Practice   Do not use  FILLFACTOR=100  in cases where the database is using optimistic transaction 
isolation levels and/or if the table has  AFTER UPDATE  or  AFTER DELETE  triggers defined. It helps to reduce index 
fragmentation introduced by row versioning during data modifications.  

 Finally, database shrink greatly contributes to external fragmentation because of the way in which it 
is implemented. The   DBCC SHRINK  command      locates the highest page allocated in a file based on the GAM 
allocation map, and it moves it as far forward as possible without considering to which object that page 
belongs. It is recommended that you avoid shrink unless absolutely necessary. 

 It is better to reorganize rather than rebuild indexes after a shrink operation is completed. An index 
rebuild creates another copy of the index, which increases the size of the data file and defeats the purpose of 
the shrink. 

 As an alternative to the shrink process, you can create a new filegroup and recreate indexes by moving 
objects there. After that, the old and empty filegroup can be dropped. This approach reduces the size of the 
database in a way similar to a shrink operation without introducing fragmentation.  

     Summary 
 There are two types of index fragmentation in SQL Server. External fragmentation occurs when logically 
subsequent data pages are not located in the same or adjacent extents. Such fragmentation affects the 
performance of scan operations that require physical I/O reads. 

 External fragmentation has a much lesser effect on the performance of index seek operations when just 
a handful of rows and data pages need to be read. Moreover, it does not affect performance when data pages 
are cached in the buffer pool. 

 Internal fragmentation occurs when leaf-level data pages in the index have free space. As a result, the 
index uses more data pages to store data on disk and in memory. Internal fragmentation negatively affects 
the performance of scan operations, even when data pages are cached, due to the extra data pages that need 
to be processed. 

 A small degree of internal fragmentation can speed up insert and update operations and reduce 
the number of page splits. You can reserve some space in leaf-level index pages during index creation or 
index rebuild by specifying the   FILLFACTOR    property. It is recommended that you fine-tune  FILLFACTOR  
by gradually decreasing its value and monitoring how it affects fragmentation in the system. You can also 
monitor page split operations with Extended Events if you are using SQL Server 2012 or above. 

 The  sys.dm_db_index_physical_stats  data management function allows you to monitor both 
internal and external fragmentation. There are two ways to reduce index fragmentation. The   ALTER INDEX 
REORGANIZE  command   reorders index leaf pages. This is an online operation that can be cancelled at any 
time without losing its progress. The  ALTER INDEX REBUILD  command replaces an old fragmented index 
with a new copy. By default, it is an offline operation, although the Enterprise Edition of SQL Server can 
rebuild indexes online. 
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 You must consider multiple factors when designing index maintenance strategies, such as system 
workload and availability, the version and edition of SQL Server being used, and any High Availability 
technologies used in the system. You should also analyze how fragmentation affects the system. Index 
maintenance is very resource-intensive, and, in some cases, the overhead it introduces exceeds the benefits 
it provides. 

 The best way to minimize fragmentation, however, is by eliminating its root cause. Consider avoiding 
situations where the row size increases during updates, and do not shrink data files, do not use  AFTER  
triggers, and avoid indexes on the  uniqueidentifier  or  hashbyte  columns that are populated with random 
values.     
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    CHAPTER 7   

 Designing and Tuning the Indexes                          

 It is impossible to define an indexing strategy that will work everywhere. Every system is unique and requires 
its own indexing approach based on workload, business requirements, and quite a few other factors. 
However, there are several design considerations and guidelines that can be applied in every system. 

 The same is true when we are optimizing existing systems. While optimization is an iterative process 
that is unique in every case, there is a set of techniques that can be used to detect inefficiencies in every 
database system. 

 In this chapter, we will cover a few important factors that you will need to keep in mind when designing 
new indexes and optimizing existing systems. 

      Clustered Index Design   Considerations 
 Every time you change the value of a clustered index key, two things happen.    First, SQL Server moves the 
row to a different place in the clustered index page chain and in the data files. Second, it updates the  row-id , 
which is the clustered index key. The row-id is stored and needs to be updated in all nonclustered indexes. 
That can be expensive in terms of I/O, especially in the case of batch updates. Moreover, it can increase the 
fragmentation of the clustered index and, in cases of row-id size increase, of the nonclustered indexes. Thus, 
it is better to have a  static  clustered index where key values do not change. 

 All nonclustered indexes use a clustered index key as the row-id .  A too-wide clustered index key 
increases the size of nonclustered index rows and requires more space to store them. As a result, SQL Server 
needs to process more data pages during index- or range-scan operations, which makes the index less 
efficient. 

 In cases of non-unique nonclustered indexes, the row-id is also stored at non-leaf index levels, which, 
in turn, reduces the number of index records per page and can lead to extra intermediate levels in the index. 
Even though non-leaf index levels are usually cached in memory, this introduces additional logical reads 
every time SQL Server traverses the nonclustered index B-Tree. 

 Finally, larger nonclustered indexes use more space in the buffer pool and introduce more overhead 
during index maintenance. Obviously, it is impossible to provide a generic threshold value that defines the 
maximum acceptable size of a key that can be applied to any table. However, as a general rule, it is better  to 
  have a  narrow  clustered index key, with the index key as small as possible. 

 It is also beneficial to have the clustered index be defined as  unique . The reason this is important is not 
obvious. Consider a scenario in which a table does not have a unique clustered index and you want to run a 
query that uses a  nonclustered index seek  in the execution plan. In this case, if the row-id in the nonclustered 
index were not unique, SQL Server would not know what clustered index row to choose during the key 
lookup operation. 

  SQL Server   solves such problems by adding another nullable integer column called  uniquifier  to non-
unique  clustered indexes.   SQL Server populates uniquifiers with  NULL  for the first occurrence of the key 
value, autoincrementing it for each subsequent duplicate inserted into the table. 
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 ■   Note    The number of possible duplicates per clustered index key value is limited by integer domain values. 
You cannot have more than 2,147,483,648 rows with the same clustered index key. This is a theoretical limit, 
and it is clearly a bad idea to create indexes with such poor selectivity.  

 Let’s look at the overhead introduced by uniquifiers in non-unique clustered indexes. The code shown 
in Listing  7-1  creates three different tables of the same structure and populates them with 65,536 rows each. 
Table  dbo.UniqueCI  is the only table with a unique clustered index defined. Table  dbo.NonUniqueCINoDups  
does not have any duplicated key values. Finally, table  dbo.NonUniqueCDups  has a large number of 
duplicates in the index.    

     Listing 7-1.    Nonunique clustered index: Table creation   

  create table dbo.UniqueCI 
 ( 
     KeyValue int not null, 
     ID int not null, 
     Data char(986) null, 
     VarData varchar(32) not null 
         constraint DEF_UniqueCI_VarData 
         default 'Data' 
 ); 

   create unique clustered index IDX_UniqueCI_KeyValue 
 on dbo.UniqueCI(KeyValue); 

   create table dbo.NonUniqueCINoDups 
 ( 
     KeyValue int not null, 
     ID int not null, 
     Data char(986) null, 
     VarData varchar(32) not null 
         constraint DEF_NonUniqueCINoDups_VarData 
         default 'Data' 
 ); 

   create /*unique*/ clustered index IDX_NonUniqueCINoDups_KeyValue 
 on dbo.NonUniqueCINoDups(KeyValue); 

   create table dbo.NonUniqueCIDups 
 ( 
     KeyValue int not null, 
     ID int not null, 
     Data char(986) null, 
     VarData varchar(32) not null 
         constraint DEF_NonUniqueCIDups_VarData 
         default 'Data' 
 ); 

   create /*unique*/ clustered index IDX_NonUniqueCIDups_KeyValue 
 on dbo.NonUniqueCIDups(KeyValue); 



CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

157

   -- Populating data 
 ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.UniqueCI(KeyValue, ID) 
     select ID, ID from IDs; 

   insert into dbo.NonUniqueCINoDups(KeyValue, ID) 
     select KeyValue, ID from dbo.UniqueCI; 

   insert into dbo.NonUniqueCIDups(KeyValue, ID) 
     select KeyValue % 10, ID from dbo.UniqueCI; 

    Now, let’s look at the clustered indexes’ physical statistics for each table. The code for this is shown in 
Listing  7-2 , and the results are shown in Figure  7-1 .     

     Listing 7-2.     Nonunique clustered index  : Checking clustered indexes’ row sizes   

  select index_level, page_count, min_record_size_in_bytes as [min row size] 
     ,max_record_size_in_bytes as [max row size] 
     ,avg_record_size_in_bytes as [avg row size] 
 from 
      sys.dm_db_index_physical_stats(db_id(), object_id(N'dbo.UniqueCI'), 1, null ,'DETAILED'); 

   select index_level, page_count, min_record_size_in_bytes as [min row size] 
     ,max_record_size_in_bytes as [max row size] 
     , avg_record_size_in_bytes as [avg row size] 
 from 
      sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCINoDups'), 1, null 

,'DETAILED'); 

   select index_level, page_count, min_record_size_in_bytes as [min row size] 
     ,max_record_size_in_bytes as [max row size] 
     ,avg_record_size_in_bytes as [avg row size] 
 from 
      sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCIDups'), 1, null 

,'DETAILED'); 
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    Even though there are no duplicated key values in the  dbo.NonUniqueCINoDups  table, there are still two 
extra bytes added to the row. SQL Server stores a uniquifier in the variable-length section of the data, and 
those two bytes are added by yet another entry in a variable-length data offset array.  

 In the case, when a clustered index has duplicate values, uniquifiers add yet another four bytes, which 
makes for an overhead of six bytes total. 

 It is worth mentioning that in some edge cases, the extra storage space used by the uniquifier can 
reduce the number of rows that can fit onto the data page. Our example demonstrates such a condition. As 
you can see,  dbo.UniqueCI  uses about 15 percent fewer data pages than the other two tables. 

 Now, let’s see how the uniquifier affects nonclustered indexes. The code shown in Listing  7-3  creates 
nonclustered indexes in all three tables. Figure  7-2  shows the physical statistics for those indexes.     

     Listing 7-3.     Nonunique clustered index  : Checking nonclustered indexes’ row size   

  create nonclustered index IDX_UniqueCI_ID 
 on dbo.UniqueCI(ID); 

   create nonclustered index IDX_NonUniqueCINoDups_ID 
 on dbo.NonUniqueCINoDups(ID); 

   create nonclustered index IDX_NonUniqueCIDups_ID 
 on dbo.NonUniqueCIDups(ID); 

   select index_level, page_count, min_record_size_in_bytes as [min row size] 
     ,max_record_size_in_bytes as [max row size] 
     ,avg_record_size_in_bytes as [avg row size] 
 from 
     sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.UniqueCI'), 2, null 

,'DETAILED'); 

   select index_level, page_count, min_record_size_in_bytes as [min row size] 
     ,max_record_size_in_bytes as [max row size] 
     ,avg_record_size_in_bytes as [avg row size] 

  Figure 7-1.    Nonunique clustered index: Clustered indexes’ row size       
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 from 
     sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCINoDups'), 2, null 

,'DETAILED'); 

   select index_level, page_count, min_record_size_in_bytes as [min row size] 
     ,max_record_size_in_bytes as [max row size] 
     ,avg_record_size_in_bytes as [avg row size] 
 from 
     sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCIDups'), 2, null 

,'DETAILED'); 

    There is no overhead in the nonclustered index in the  dbo.NonUniqueCINoDups  table. As you will recall, 
SQL Server does not store offset information in a variable-length offset array for trailing columns storing 
 NULL  data. Nonetheless, the uniquifier introduces eight bytes of overhead in the  dbo.NonUniqueCIDups  table. 
Those eight bytes consist of a four-byte uniquifier value, a two-byte variable-length data offset array entry, 
and a two-byte entry storing the number of variable-length columns in the row. 

 We can summarize the storage overhead of the uniquifier in the following way. For the rows that have 
a uniquifier as  NULL , there is a two-byte overhead if the index has at least one variable-length column that 
stores a  NOT NULL  value. That overhead comes from the variable-length offset array entry for the  uniquifier  
column. There is no overhead otherwise. 

 In cases where the uniquifier is populated, the overhead is six bytes if there are variable-length columns 
that store  NOT NULL  values. Otherwise, the overhead is eight bytes. 

 ■   Tip    If you expect a large number of duplicates in the clustered index values, you can add an integer 
 identity  column as the rightmost column to the index, thereby making it unique. This adds a four-byte 
predictable storage overhead to every row as compared to an unpredictable  up to  eight-byte storage overhead 
introduced by uniquifiers. This can also improve the performance of individual lookup operations when you 
reference the row by all of its clustered index columns.  

  Figure 7-2.    Nonunique clustered index: Nonclustered indexes’ row size       
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 It is  beneficial   to design clustered indexes in a way that minimizes index fragmentation caused by 
inserting new rows. One of the methods to accomplish this is by making clustered index values  ever 
increasing . The index on the  identity  column is one such example. Another example is a  datetime  column 
populated with the current system time at the moment of insertion. 

 There are two  potential issues   with ever-increasing indexes, however. The first relates to statistics. As 
you learned in Chapter   3    , the legacy cardinality estimator in SQL Server underestimates cardinality when 
parameter values are not present in the histogram. You should factor such behavior into your statistics 
maintenance strategy for the system, unless you are using the new SQL Server 2014-2016 cardinality 
estimators, which assume that data outside of the histogram has distributions similar to those of other data 
in the table. 

 The next problem is more complicated. With ever-increasing indexes, the data is always inserted at the 
end of the index. On the one hand, it prevents page splits and reduces fragmentation. On the other hand, it 
can lead to   hot spots ,   which are serialization delays that occur when multiple sessions are trying to modify 
the same data page and/or allocate new pages or extents. SQL Server does not allow multiple sessions to 
update the same data structures, and instead serializes those operations. 

 Hot spots are usually not an issue unless a system collects data at a very high rate and the index 
handles hundreds of inserts per second. We will discuss how to detect such an issue in Chapter   27    , “System 
Troubleshooting.” 

 Finally, if a system has a set of frequently executed and important queries, it might be beneficial to 
consider a clustered index, which optimizes them. This eliminates expensive  key lookup  operations and 
improves the performance of the system. 

 Even though such queries can be optimized by using covering nonclustered indexes, it is not always the 
ideal solution. In some cases, it requires you to create very wide nonclustered indexes, which will use up a 
lot of storage space both on disk and in the buffer pool. 

 Another important factor is how often columns are modified. Adding frequently modified columns to 
nonclustered indexes requires SQL Server to change data in multiple places, which negatively affects the 
update performance of the system and increases blocking. 

 With all that being said, it is not always possible to design clustered indexes that will satisfy all of these 
guidelines. Moreover, you should not consider these guidelines to be absolute requirements. You should 
analyze the system, business requirements, workload, and queries and choose clustered indexes that would 
benefit you, even if they violate some of those guidelines. 

     Identities, Sequences, and Uniqueidentifiers 
 People often choose identities, sequences, and uniqueidentifiers as clustered index keys. As always, that 
approach has its own set of pros and cons. 

  Clustered indexes   defined on such columns are  unique ,  static,  and  narrow . Moreover, identities and 
sequences are ever increasing, which reduces index fragmentation. One of the ideal use cases for them is 
catalog entity tables. You can think about tables, which store lists of customers, articles, or devices, as an 
example. Those tables store thousands, or maybe even a few million, rows, although the data is relatively 
static, and, as a result, hot spots are not an issue. Moreover, such tables are usually referenced by foreign 
keys and used in joins. Indexes on  integer  or  bigint  columns are very compact and efficient, which will 
improve the performance of queries. 

 ■   Note    We will discuss foreign key constraints in greater detail in Chapter   8    , “Constraints.”  

http://dx.doi.org/10.1007/978-1-4842-1964-5_3
http://dx.doi.org/10.1007/978-1-4842-1964-5_27
http://dx.doi.org/10.1007/978-1-4842-1964-5_8
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  Clustered indexes   on  identity  or  sequence  columns are less efficient in the case of transactional tables, 
which collect large amounts of data at a very high rate, due to the potential hot spots they introduce. 

  Uniqueidentifiers,   on the other hand, are rarely a good choice for indexes, both clustered and 
nonclustered. Random values generated with the  NEWID()  function greatly increase index fragmentation. 
Moreover, indexes on uniqueidentifiers decrease the performance of batch operations. Let’s look at an 
example and create two tables: one with clustered indexes on  identity  columns and one with clustered 
indexes on  uniqueidentifier  columns. In the next step, we will insert 65,536 rows into both tables. You can 
see the code for doing this in Listing  7-4 .    

     Listing 7-4.    Uniqueidentifiers: Table creation   

  create table dbo.IdentityCI 
 ( 
     ID int not null identity(1,1), 
     Val int not null, 
     Placeholder char(100) null 
 ); 

   create unique clustered index IDX_IdentityCI_ID 
 on dbo.IdentityCI(ID); 

   create table dbo.UniqueidentifierCI 
 ( 
     ID uniqueidentifier not null 
         constraint DEF_UniqueidentifierCI_ID 
         default newid(),   
     Val int not null, 
     Placeholder char(100) null, 
 ); 

   create unique clustered index IDX_UniqueidentifierCI_ID 
 on dbo.UniqueidentifierCI(ID) 
 go 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.IdentityCI(Val) 
     select ID from IDs; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.UniqueidentifierCI(Val) 
     select ID from IDs; 
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    The execution time on my computer and number of reads are shown in Table  7-1 . Figure  7-3  shows 
execution plans for both queries.      

  Figure 7-3.    Inserting data into the tables: Execution plans       

   Table 7-1.    Inserting Data into the Tables: Execution Statistics   

 Number of Reads  Execution Time (ms) 

 Identity  158,438  173 ms 

 Uniqueidentifier  181,879  256 ms 

 As you can see, there is another sort operator in the case of the index on the  uniqueidentifier  column. 
SQL Server sorts randomly generated  uniqueidentifier  values before the insert, which decreases the 
performance of the query. 

 Let’s insert another batch of rows into the table and check index fragmentation. The code for doing this 
is shown in Listing  7-5 . Figure  7-4  shows the results of the queries.     

     Listing 7-5.     Uniqueidentifiers  : Inserting rows and checking fragmentation   

  ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.IdentityCI(Val) 
     select ID from IDs; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
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 insert into dbo.UniqueidentifierCI(Val) 
     select ID from IDs; 

   select page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent 
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.IdentityCI'),1,null,'DETAILED'); 

   select page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent 
 from  sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.UniqueidentifierCI'),1,null

,'DETAILED'); 

  Figure 7-4.    Fragmentation of the indexes       

    As you can see, the index on the  uniqueidentifier  column is heavily fragmented, and it uses about 40 
percent more data pages as compared to the index on the  identity  column. 

 A batch insert into the index on the  uniqueidentifier  column inserts data at different places in 
the data file, which leads to heavy, random physical I/O in the case of large tables. This can significantly 
decrease the performance of the operation. 

 PERSONAL EXPERIENCE

 Some time ago, I had been involved in the optimization of a system that had a 250 GB table with 
one clustered and three nonclustered indexes. One of the nonclustered indexes was the index on the 
 uniqueidentifier  column. By removing this index, we were able to speed up a batch insert of 50,000 
rows from 45 seconds down to 7 seconds.  

 There are two common use cases for when you would  want   to create indexes on  uniqueidentifier  
columns. The first one is for supporting the uniqueness of values across multiple databases. Think about a 
distributed system where rows can be inserted into every database. Developers often use uniqueidentifiers 
to make sure that every key value is unique system wide. 

 The key element in such an implementation is how key values were generated. As you have already 
seen, the random values generated with the  NEWID()  function or in the client code negatively affect system 
performance. However, you can use the  NEWSEQUENTIALID()  function, which generates unique and  generally  
ever-increasing values (SQL Server resets their base value from time to time). Indexes on  uniqueidentifier  
columns generated with the  NEWSEQUENTIALID()  function are similar to indexes on  identity  and  sequence  
columns; however, you should remember that the  uniqueidentifier  data type uses 16 bytes of storage 
space, compared to the 4-byte  int  or 8-byte  bigint  data types. 
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 As an alternative solution, you may consider creating a composite index with two columns 
 (InstallationId, Unique_Id_Within_Installation).  The combination of these two columns guarantees 
uniqueness across multiple installations and databases and uses less storage space than uniqueidentifiers 
do. You can use an integer identity or sequence to generate the  Unique_Id_Within_Installation  value, 
which will reduce the fragmentation of the index. 

 In cases where you need to generate unique key values across all entities in the database, you can 
consider using a single sequence object across all entities. This approach fulfils the requirement but uses a 
smaller data type than  uniqueidentifiers . 

 Another common use case is security, where a uniqueidentifier value is used as a security token or a 
random object ID. Unfortunately, you cannot use the   NEWSEQUENTIALID()  function   in this scenario, because 
it is possible to guess the next value returned by that function. 

 One possible improvement in this scenario is creating a calculated column using the  CHECKSUM()  
function, indexing it afterward without creating the index on the  uniqueidentifier  column. The code is 
shown in Listing  7-6 .    

     Listing 7-6.    Using CHECKSUM(): Table structure   

  create table dbo.Articles 
 ( 
     ArticleId int not null identity(1,1), 
     ExternalId uniqueidentifier not null 
         constraint DEF_Articles_ExternalId 
         default newid(), 
     ExternalIdCheckSum as checksum(ExternalId), 
     /* Other Columns */ 
 ); 

   create unique clustered index IDX_Articles_ArticleId 
 on dbo.Articles(ArticleId); 

   create nonclustered index IDX_Articles_ExternalIdCheckSum 
 on dbo.Articles(ExternalIdCheckSum); 

 ■      Tip    You can index a calculated column without persisting it.  

 Even though the  IDX_Articles_ExternalIdCheckSum  index is going to be heavily fragmented, it will be 
more compact as compared to the index on the  uniqueidentifier  column (a 4-byte key versus 16 bytes). 
It also improves the performance of batch operations because of faster sorting, which also requires less 
memory to proceed. 

 One thing that you must keep in mind is that the result of the  CHECKSUM()  function is not guaranteed to 
be unique. You should include both predicates to the queries, as shown in Listing  7-7 . 

     Listing 7-7.    Using CHECKSUM(): Selecting data   

 select ArticleId /* Other Columns */ 
 from dbo.Articles 
 where checksum(@ExternalId) = ExternalIdCheckSum and ExternalId = @ExternalId 
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 ■     Tip    You can use the same technique in cases where you need to index string columns larger than 
900/1,700 bytes, which is the maximum size of a nonclustered index key. Even though such an index would not 
support  range scan  operations, it could be used for  point lookups .    

     Nonclustered Index Design Considerations 
 It is hard to find the tipping point where joining multiple nonclustered indexes is more efficient than using 
single nonclustered   index     seek  and  key lookup  operations. When index selectivity is high and SQL Server 
estimates a small number of rows will be returned by the index seek operation, the key lookup cost would 
be relatively low. In such cases, there is no reason to use another nonclustered  index  . Alternatively, when 
index selectivity is low, index seek returns a large number of rows, and SQL Server typically would not use it 
because it is not efficient. 

 Let’s look at an example where we will create a table and populate it with 1,048,576 rows.  Col1  stores 
50 different values in the column,  Col2  stores 150 values, and  Col3  stores 200 values. Finally, we will create 
three different nonclustered indexes on the table. The code for doing this is shown in Listing  7-8 . 

     Listing 7-8.     Multiple nonclustered indexes  : Table creation   

  create table dbo.IndexIntersection 
 ( 
     Id int not null, 
     Placeholder char(100), 
     Col1 int not null, 
     Col2 int not null, 
     Col3 int not null 
 ); 

   create unique clustered index IDX_IndexIntersection_ID 
 on dbo.IndexIntersection(ID);     

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,N6(C) as (select 0 from N3 as T1 cross join N5 as T2) -- 1,048,576 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6) 
 insert into dbo.IndexIntersection(ID, Col1, Col2, Col3) 
     select ID, ID % 50, ID % 150, ID % 200 from IDs; 

   create nonclustered index IDX_IndexIntersection_Col1 
 on dbo.IndexIntersection(Col1);   
 create nonclustered index IDX_IndexIntersection_Col2 
 on dbo.IndexIntersection(Col2);   
 create nonclustered index IDX_IndexIntersection_Col3 
 on dbo.IndexIntersection(Col3); 
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    For the next step, let’s look at the execution plan of a query that selects data from the table using three 
predicates in the  where  clause. Each predicate can use an index seek operation on an individual index. The 
code for doing this is shown in Listing  7-9 , and the execution plan is shown in Figure  7-5 .    As a side note, 
you might see a different execution plan and cardinality estimations in your environment based on the SQL 
Server version and service pack you have installed.  

      Listing 7-9.    Multiple nonclustered indexes: Selecting data   

 select ID 
 from dbo.IndexIntersection 
 where Col1 = 42 and Col2 = 43 and Col3 = 44; 

  Figure 7-5.    Multiple nonclustered indexes: Execution plan with index intersection       

   There are a couple of things worth mentioning here. Even though there is another nonclustered index 
on  Col1 , and all indexes include an  ID  column, which is row-id, SQL Server elects to use a key lookup rather 
than perform a third index seek operation. There are 20,971 rows in the table with  Col1=42 , which makes a 
key lookup the better choice. 

 Another important factor is the  cardinality estimations.   Even though SQL Server correctly estimates 
cardinality for both index seek operations, the estimation after the join operator is incorrect. SQL Server 
does not have any data about the correlation of column values in the table, which can lead to cardinality 
estimation errors and, potentially, suboptimal execution plans. 

 Let’s add another covering index, which will include all three columns from the  where  clause, and run 
the query from Listing  7-9  again. The code creates the index shown in Listing  7-10 . The execution plan is 
shown in Figure  7-6 .      

 ■   Note    The new index with the two included columns makes the  IDX_IndexIntersection_Col1  index 
redundant. We will discuss this situation later in this chapter.  

     Listing 7-10.     Multiple nonclustered indexes  : Adding a covering index   

 create nonclustered index IDX_IndexIntersection_Col3_Included 
 on dbo.IndexIntersection(Col3) 
 include (Col1, Col2) 
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   The CPU time and the number of reads are shown in Table  7-2 .  

 Even though the number of reads is not very different in both cases, the CPU time of the query with 
index intersection is much higher than that for the query with a covering index. 

 A design with multiple narrow,  nonclustered indexes,   which lead to index intersection, can still help, 
especially in the case of a data warehouse workload where queries need to scan and aggregate a large 
amount of data. They are less efficient, however, when compared to covering indexes. It is usually better to 
create a small set of wide indexes with multiple columns included rather than a large number of narrow, 
perhaps single-column, indexes. 

 While ideal indexes would cover the queries, it is not a requirement. A small number of key lookup 
operations is perfectly acceptable. Ideally, SQL Server would perform a nonclustered index seek, filtering 
out rows even further by evaluating other predicates against included columns from the index. This would 
reduce the number of key lookups required. The key here is evaluating the query predicates against the 
data from nonclustered indexes rather than after the key lookup stage. You can achieve this by including 
predicate columns in the index. 

 It is impossible to advise you about how many indexes per table you should create. Moreover, it is 
different for systems with OLTP, data warehouse, or mixed workloads. In any case, that number fits into the 
“It Depends” category. 

  In OLTP systems,   where data is highly volatile, you should have the  minimally required  set of indexes. 
While it is important to have enough indexes to provide sufficient query performance in the system, you 
must consider the data modification overhead introduced by them. In some cases, it is preferable to live with 
suboptimal performance of rarely executed queries rather than live with the overhead during every data 
modification operation. 

 In data warehouse environments,    you can create a large number of indexes and/or indexed views, 
especially when data is relatively static and is refreshed based on a given schedule. In some cases, you can 
achieve better update performance by dropping indexes before and recreating them after the update. It is 
also worth mentioning that in dedicated data warehouse systems, you will usually get significantly better 
performance by using columnstore indexes. 

 ■   Note    We will discuss indexed views in Chapter   9    , “Views.” Columnstore indexes are covered in Part VIII of 
the book.  

  Figure 7-6.    Multiple nonclustered indexes: Execution plan with covering index       

   Table 7-2.    Index Intersection Versus Covering Index   

 Number of Reads  CPU Time (ms) 

 Index Intersection  29  9 ms 

 Covering Index  18  1 ms 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_9
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 Working  in mixed-workload environments   is always a challenge. I tend to optimize them for OLTP 
activity, which is usually customer facing and thus more critical. However, you always need to keep 
reporting/data warehouse aspects in mind when dealing with such systems. It is not uncommon to design a 
set of tables to store aggregated data and then use them for reporting and analysis purposes, or to use data 
partitioning that combines row-based and column-based storage for a different type of data. We will discuss 
the latter scenario in Chapter   16     of this book. 

 Finally, remember to define indexes as unique whenever possible. Unique nonclustered indexes are 
more compact because they do not store row-id on non-leaf levels. Moreover, uniqueness helps the Query 
Optimizer to generate more efficient execution plans.  

      Optimizing and Tuning Indexes 
  System optimization and performance tuning   is an iterative, never-ending process, especially in cases where 
a system is in development. New features and functions often require you to re-evaluate and refactor the 
code and change the indexes in the system. 

 While index tuning is an essential part of system optimization, it is hardly the only area on which you 
must focus. There are plenty of other factors besides bad or missing indexes that can lead to suboptimal 
performance. You must analyze the entire stack, which includes the hardware, operating system, SQL Server, 
and database configurations, when troubleshooting your systems. 

 ■   Note    We will talk about system troubleshooting in greater detail in Chapter   27    , “System Troubleshooting.”  

 Index tuning of existing systems may require a slightly different approach as compared to the 
development of new systems. With new development, it often makes sense to postpone index tuning until 
the later stages when the database schema and queries are more or less finalized. This approach helps to 
avoid spending time on optimizations that become obsolete due to code refactoring. This is especially true 
in the case of agile development environments, where such refactoring is routinely done at every iteration. 

 You should still create the minimally required set of indexes at the very beginning of new development. 
This includes primary key constraints and indexes and/or constraints to support uniqueness and referential 
integrity in the system. However, all further index tuning can be postponed until the later development 
stages. 

 There are two  must have  elements during the index tuning of new systems. First, the database should 
store enough data, ideally with data distribution similar to that expected in production. Second, you should 
be able to simulate workload, which helps to pinpoint the most common queries and inefficiencies in the 
system. 

 Optimization of existing systems requires a slightly different approach. Obviously, in some cases you 
must fix critical production issues, and there is no alternative but to add or adjust indexes quickly. However, 
as a general rule, you should perform index analysis and consolidation, remove unused and inefficient 
indexes, and sometimes refactor the queries before adding new indexes to the system. Let’s look at all these 
steps in detail.  

      Detecting Unused and Inefficient Indexes 
 Indexes improve the performance of read operations.    The term  read  is a bit confusing in the database world, 
however. Every DML query, such as  SELECT ,  INSERT ,  UPDATE, DELETE , or  MERGE , reads the data. For example, 
when you delete a row from a table, SQL Server reads a handful of pages, locating that row in every index. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
http://dx.doi.org/10.1007/978-1-4842-1964-5_27
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 ■   Note    Every database system, including the ones with highly volatile data, handles many more reads than 
writes.  

 At the same time, indexes introduce overhead during data modifications. Rows need to be inserted into 
or deleted from every index. Columns must be updated in every index where they are present. Obviously, we 
want to reduce such overhead and drop indexes that are not used very often. 

 SQL Server tracks index usage statistics internally and exposes it through the  sys.dm_db_index_usage_
stats  and  sys.dm_db_index_operation_stats  DMOs. 

 The first data management view —sys.dm_db_index_usage_stats— provides information about different 
types of index operations and the time when such an operation was last performed. Let’s look at an example 
and create a table, populate it with some data, and look at index usage statistics. The code for doing this is 
shown in Listing  7-11 . 

     Listing 7-11.    Index-usage statistics: Table creation   

  create table dbo.UsageDemo 
 ( 
     ID int not null, 
     Col1 int not null, 
     Col2 int not null, 
     Placeholder char(8000) null 
 ); 

   create unique clustered index IDX_CI on dbo.UsageDemo(ID); 
 create unique nonclustered index IDX_NCI1 on dbo.UsageDemo(Col1); 
 create unique nonclustered index IDX_NCI2 on dbo.UsageDemo(Col2); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N3) 
 insert into dbo.UsageDemo(ID, Col1, Col2) 
     select ID, ID, ID from IDs; 

   select 
     s.Name + N'.' + t.name as [Table] ,i.name as [Index] 
     ,ius.user_seeks as [Seeks], ius.user_scans as [Scans] 
     ,ius.user_lookups as [Lookups] 
     ,ius.user_seeks + ius.user_scans + ius.user_lookups as [Reads] 
     ,ius.user_updates as [Updates], ius.last_user_seek as [Last Seek] 
     ,ius.last_user_scan as [Last Scan], ius.last_user_lookup as [Last Lookup] 
     ,ius.last_user_update as [Last Update] 
 from 
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     sys.tables t join sys.indexes i on 
         t.object_id = i.object_id 
     join sys.schemas s on 
         t.schema_id = s.schema_id 
     left outer join sys.dm_db_index_usage_stats ius on 
         ius.database_id = db_id() and 
         ius.object_id = i.object_id and 
         ius.index_id = i.index_id 
 where 
     s.name = N'dbo' and t.name = N'UsageDemo' 
 order by 
     s.name, t.name, i.index_id 

    The  user_seeks ,  user_scans , and  user_lookups  columns in  sys.dm_db_index_usage_stats  indicate 
how many times the index was used for index seek, index scan, and key lookup operations respectively. 
 User_updates  indicates the number of inserts, updates, and deletes the index handled. The  sys.dm_
index_usage_stats  DMV also returns statistics about index usage by the system as well as the last time the 
operation occurred. 

 As you can see in Figure  7-7 , both clustered and nonclustered indexes were updated once, which is the 
 INSERT  statement in our case. Neither of the indexes were used for any type of read activity.  

 One thing worth mentioning is that we are using an outer join in the select. The  sys.dm_db_index_
usage_stats  and  sys.dm_index_operation_stats  DMOs do not return any information about the index if it 
has not been used since statistics counters were reset. 

 ■   Important   Index usage statistics reset on SQL Server restarts. Moreover, they clear whenever the database 
is detached or shut down when the  AUTO_CLOSE  database property is enabled. Moreover, SQL Server 2012 and 
2014 have a bug that resets statistics when the index is rebuilt. This bug is fixed in SQL Server 2012 SP3 CU3, 
SQL Server 2014 SP2, and SQL Server 2016.  

 You must keep this behavior in mind during index analysis. It is not uncommon to have indexes to 
support queries that execute on a given schedule. As an example, you can think about an index that supports 
a payroll process running on a bi-weekly or monthly basis. Index statistics information could indicate that 
the index has not been used for reads if SQL Server was recently restarted or, in the case of SQL Server 2012 
RTM–SP3 CU2 and SQL Server 2014 RTM and SP1, if the index was recently rebuilt. 

 ■   Tip    You can consider creating and dropping such an index on a schedule in order to avoid update 
overhead in between-process executions.  

  Figure 7-7.    Index usage statistics after table creation       
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 Now, let’s run a few queries against the  dbo.UsageDemo  table, as shown in Listing  7-12 . 

     Listing 7-12.    Index usage statistics: Queries   

  -- Query 1: CI Seek (Point lookup) 
 select Placeholder from dbo.UsageDemo where ID = 5; 

   -- Query 2: CI Seek (Range Scan) 
 select count(*) 
 from dbo.UsageDemo with (index=IDX_CI) 
 where ID between 2 and 6; 

   -- Query 3: CI Scan 
 select count(*) from dbo.UsageDemo with (index=IDX_CI); 

   -- Query 4: NCI Seek (Point Lookup + Key Lookup) 
 select Placeholder from dbo.UsageDemo where Col1 = 5; 

   -- Query 5: NCI Seek (Range Scan - all data from the table) 
 select count(*) from dbo.UsageDemo where Col1 > -1; 

   -- Query 6: NCI Seek (Range Scan + Key Lookup) 
 select sum(Col2) 
 from dbo.UsageDemo with (index = IDX_NCI1) 
 where Col1 between 1 and 5; 

   -- Queries 7-8: Updates 
 update dbo.UsageDemo set Col2 = -3 where Col1 = 3; 
 update dbo.UsageDemo set Col2 = -4 where Col1 = 4; 

    If you run the  SELECT , which displays index usage statistics, again, you would see the results shown in 
Figure  7-8 .  

 There are a couple of important things to note here. First,  sys.dm_db_index_usage_stats  returns how 
many times the corresponding operations appear in the execution plan. For example, there are only four 
lookup operations returned for the  IDX_CI  index, which indicates that there were four queries with the key 
lookup operation in the execution plan, regardless of how many key lookups were actually performed during 
query execution. 

 Second, the  sys.dm_db_index_usage_stats  DMV counts both point lookups and range scans as seeks, 
which corresponds to the index seek operator. This could mask a situation in which an index seek performs 
range scans on a large number of rows. For example, the fifth query in our example scanned all rows from 
the  IDX_NCI1  index, although it was counted as  Seek  rather than  Scan . 

  Figure 7-8.    Index usage statistics after several queries       
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 When you do such an analysis in production systems, you can consider removing indexes that handle 
more updates than reads, similar to  IDX_NCI2  from our example. In some cases, it is also beneficial not to 
count scan operations toward reads, especially in OLTP environments, where queries that perform index 
scans should usually be optimized. 

 While  sys.dm_db_index_usage  provides a good high-level overview of index usage based on operations 
from the execution plan,  sys.dm_db_index_operation_stats  dives deeper and provides detailed level I/O, 
access methods, and locking statistics for the indexes. 

 The key difference between two DMOs is how they collect data.  Sys.dm_db_index_usage_stats  tracks 
how many times an operation appeared in the execution plan. Alternatively,  sys.dm_db_index_operation_
stats  tracks operations at the row level. In our key lookup example,  sys.dm_db_index_operation_stats  
would report eight operations rather than four. 

 Even though  sys.dm_db_index_operation_stats  provides very detailed information about index 
usage, I/O, and locking overhead, it could become overwhelming, especially during the initial performance-
tuning stage. It is usually easier to do an initial analysis with  sys.dm_db_index_usage_stats  and then use 
 sys.dm_db_index_operation_stats  later when fine-tuning the system. 

 ■   Note    You can read more about  sys.dm_db_index_operation_stats  DMF at Books Online: 
   http://technet.microsoft.com/en-us/library/ms174281.aspx       

 ■   Important   Make sure that usage statistics collect enough information representing typical system 
workload before performing an analysis.    

      Index Consolidation 
 As we discussed in Chapter   2    , “Tables and Indexes: Internal Structure and Access Methods,” SQL Server 
can use a composite index for an index seek operation as long as a query has a SARGable predicate on the 
leftmost query column.     

 Let’s look at the table shown in Listing  7-13 . There are two nonclustered indexes,  IDX_Employee_
LastName_FirstName  and  IDX_Employee_LastName , which each have a  LastName  column defined as the 
leftmost column. The first index,  IDX_Employee_LastName_FirstName , can be used for an index seek 
operation as long as there is a SARGable predicate on the  LastName  column, even when a query does not 
have a predicate on the  FirstName  column. Thus, the  IDX_Employee_LastName  index is redundant. 

     Listing 7-13.    Example of redundant indexes   

  create table dbo.Employee 
 ( 
     EmployeeId int not null, 
     LastName nvarchar(64) not null, 
     FirstName nvarchar(64) not null, 
     DateOfBirth date not null, 
     Phone varchar(20) nul 
 ); 

http://technet.microsoft.com/en-us/library/ms174281.aspx
http://dx.doi.org/10.1007/978-1-4842-1964-5_2
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   create unique clustered index IDX_Employee_EmployeeId 
 on dbo.Employee(EmployeeId); 

   create nonclustered index IDX_Employee_LastName_FirstName 
 on dbo.Employee(LastName, FirstName); 

   create nonclustered index IDX_Employee_LastName 
 on dbo.Employee(LastName); 

    As a general rule, you can remove redundant indexes from the system. Although such indexes can 
be slightly more efficient during scans due to their compact size, update overhead usually outweighs this 
benefit. 

 Obviously, there are always exceptions to the rule. Consider a Shopping Cart system that allows for 
searching for products by part of their name. There are several ways to implement this feature, though 
when the table is small enough, an index scan operation performed on the nonclustered index on the 
 Name  column may provide acceptable performance. In such a scenario, you want to have the index be as 
compact as possible to reduce its size and the number of reads required during a scan operation. Thus, you 
might consider keeping a separate nonclustered index on the  Name  column, even when this index can be 
consolidated with other ones. 

 The script shown in Listing  7-14  returns information about potentially redundant indexes with the same 
leftmost column defined. Figure  7-9  shows the result of the execution.  

     Listing 7-14.    Detecting potentially redundant indexes   

 select 
     s.Name + N'.' + t.name as [Table] 
     ,i1.index_id as [Index1 ID], i1.name as [Index1 Name] 
     ,dupIdx.index_id as [Index2 ID], dupIdx.name as [Index2 Name] 
     ,c.name as [Column] 
 from 
     sys.tables t join sys.indexes i1 on 
         t.object_id = i1.object_id 
     join sys.index_columns ic1 on 
         ic1.object_id = i1.object_id and 
         ic1.index_id = i1.index_id and 
         ic1.index_column_id = 1   
     join sys.columns c on 
         c.object_id = ic1.object_id and 
         c.column_id = ic1.column_id       
     join sys.schemas s on 
         t.schema_id = s.schema_id 
         cross apply 
         ( 
             select i2.index_id, i2.name 
             from 
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                 sys.indexes i2 join sys.index_columns ic2 on       
                     ic2.object_id = i2.object_id and 
                     ic2.index_id = i2.index_id and 
                     ic2.index_column_id = 1   
             where 
                 i2.object_id = i1.object_id and 
                 i2.index_id > i1.index_id and 
                 ic2.column_id = ic1.column_id 
         ) dupIdx     
 order by 
     s.name, t.name, i1.index_id   

   After you detect potentially redundant indexes, you should analyze all of them on a case-by-case 
basis. In some instances, consolidation is trivial. For example, if a system has two indexes,  IDX1(LastName, 
FirstName) include (Phone)  and  IDX2(LastName) include(DateOfBirth) , you can consolidate them as 
 IDX3(LastName, FirstName) include(DateOfBirth, Phone) . 

 In the other cases, consolidation requires further analysis. For example, if a system has two indexes, 
 IDX1(OrderDate, WarehouseId)  and  IDX2(OrderDate, OrderStatus) , you have three options. You 
can consolidate it as  IDX3(OrderDate, WarehouseId) include(OrderStatus ) or as  IDX4(OrderDate, 
OrderStatus) include(WarehouseId) . Finally, you can leave both indexes in place. The decision primarily 
depends on the selectivity of the leftmost column and index usage statistics. 

 ■   Tip    The  sys.dm_db_index_operation_stats  function provides information about index usage at the row 
level. Moreover, it tracks the number of point lookups separately from range scans. It is beneficial to use this 
function when analyzing index consolidation options.  

 Finally, you should remember that the goal of index consolidation is removing  redundant  and 
 unnecessary  indexes. While reducing index update overhead is important, it is safer to keep an unnecessary 
index than it is to drop a  necessary  one. You should always err on the side of caution during this process.   

      Detecting Suboptimal Queries 
 There are plenty of ways to detect suboptimal queries using both standard SQL Server and third-party tools. 
There are two main metrics to analyze when detecting suboptimal queries: number of I/O operations and 
CPU time of the query.     

 Having a large number of  I/O operations   is often a sign of suboptimal or missing indexes, especially in 
OLTP systems. It also affects query CPU time—the more data that needs to be processed, the more CPU time 
that needs to be consumed doing it. However, the opposite is not always true. There are plenty of factors 
besides I/O that can contribute to high CPU time. The most common ones are multi-statement user-defined 
functions; imperative code; and calculations. 

  Figure 7-9.     Potentially redundant indexes         
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 ■   Note    We will discuss user-defined functions in more detail in Chapter   10    , “Functions.”  

 SQL Profiler is, perhaps, the most commonly used tool to detect suboptimal queries. You can set up a 
SQL trace to capture a  SQL:Stmt Completed  event and filter it by the  Reads ,  CPU , or  Duration  columns. 

 There is a difference between CPU time and duration, however. The  CPU  column indicates how much 
CPU time a query uses. The  Duration  column stores total query execution time. With parallel execution 
plans, the CPU time consists of the time spent by all CPUs and could exceed the duration. High duration, 
however, does not necessarily indicate high CPU time, as blocking and I/O latency affect the execution time 
of the query. 

 Starting with SQL Server 2008, it is better to use Extended Events rather than SQL Profiler. Extended 
Events are more flexible and introduce less overhead as compared to SQL traces. 

 ■   Note    We will discuss Extended Events in greater detail in Chapter   28    , “Extended Events.”  

  SQL Server   tracks execution statistics for queries and exposes them via the  sys.dm_exec_query_stats  
DMV. Querying this DMV is, perhaps, the easiest way to find the most expensive queries in the system. 
Listing  7-15  shows an example of a query that returns information about the fifty most expensive queries in a 
system in terms of the average I/O per execution. 

     Listing 7-15.    Using sys.dm_exec_query_stats   

 select top 50 
     substring(qt.text, (qs.statement_start_offset/2)+1, 
      (( 
         case qs.statement_end_offset 
             when -1 then datalength(qt.text) 
             else qs.statement_end_offset 
         end - qs.statement_start_offset)/2)+1) as [Sql] 
     ,qs.execution_count as [Exec Cnt] 
     ,(qs.total_logical_reads + qs.total_logical_writes) 
             / qs.execution_count as [Avg IO] 
     ,qp.query_plan as [Plan] 
     ,qs.total_logical_reads as [Total Reads] 
     ,qs.last_logical_reads as [Last Reads] 
     ,qs.total_logical_writes as [Total Writes] 
     ,qs.last_logical_writes as [Last Writes] 
     ,qs.total_worker_time as [Total Worker Time] 
     ,qs.last_worker_time as [Last Worker Time] 
     ,qs.total_elapsed_time/1000 as [Total Elps Time] 
     ,qs.last_elapsed_time/1000 as [Last Elps Time] 
     ,qs.creation_time as [Compile Time] 
     ,qs.last_execution_time as [Last Exec Time] 
 from 
     sys.dm_exec_query_stats qs with (nolock) 
         cross apply sys.dm_exec_sql_text(qs.sql_handle) qt 
         cross apply sys.dm_exec_query_plan(qs.plan_handle) qp 
 order by 
      [Avg IO] desc 
 option (recompile) 

http://dx.doi.org/10.1007/978-1-4842-1964-5_10
http://dx.doi.org/10.1007/978-1-4842-1964-5_28
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   The query result, shown in Figure  7-10 , helps you quickly identify optimization targets in the system. 
In our example, the second query in the result set executes very often, which makes it an ideal candidate 
for optimization, even though it is not the most expensive query in the system. Obviously, you can sort the 
results by other criteria, such as the number of executions, execution time, and so on.  

 Unfortunately,  sys.dm_exec_query_stats  returns information only about queries with execution 
plans cached. As a result, there are no statistics for those statements that use a statement-level recompile 
with  option (recompile) . Moreover,  execution_count  data can be misleading if a query was recently 
recompiled. You can correlate the  execution_count  and  creation_time  columns to detect the most 
frequently executed queries. 

 ■   Note    We will discuss plan caches in greater detail in Chapter   26    , “Plan Caching.”  

 Starting with SQL Server 2008, there is another DMV,  sys.dm_exec_procedure_stats , which returns 
similar information about stored procedures that have execution plans cached. Listing  7-16  shows a query 
that returns a list of the fifty most I/O-intensive procedures. Figure  7-11  shows the results of this query on 
one of the production servers.  

     Listing 7-16.    Using sys.dm_exec_procedure_stats   

 select top 50 
     s.name + '.' + p.name as [Procedure] 
     ,qp.query_plan as [Plan] 
     ,(ps.total_logical_reads + ps.total_logical_writes) / 
             ps.execution_count as [Avg IO] 
     ,ps.execution_count as [Exec Cnt] 
     ,ps.cached_time as [Cached] 
     ,ps.last_execution_time as [Last Exec Time] 
     ,ps.total_logical_reads as [Total Reads] 
     ,ps.last_logical_reads as [Last Reads] 
     ,ps.total_logical_writes as [Total Writes] 
     ,ps.last_logical_writes as [Last Writes] 
     ,ps.total_worker_time as [Total Worker Time]   
     ,ps.last_worker_time as [Last Worker Time]   
     ,ps.total_elapsed_time as [Total Elapsed Time] 
     ,ps.last_elapsed_time as [Last Elapsed Time] 
 from 

  Figure 7-10.    Sys.dm_exec_query_stats results       

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_26
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     sys.procedures as p with (nolock) join sys.schemas s with (nolock) on 
         p.schema_id = s.schema_id 
     join sys.dm_exec_procedure_stats as ps with (nolock) on 
         p.object_id = ps.object_id 
     outer apply sys.dm_exec_query_plan(ps.plan_handle) qp 
 order by 
      [Avg IO] desc 
 option (recompile); 

 ■     Note    We will discuss the  sys.dm_exec_query_stats  and  sys.dm_exec_procedure_stats  views in 
greater detail in Chapter   28    , “System Troubleshooting.”  

  SQL Server   collects information about missing indexes in the system and exposes it via a set of DMVs 
with names starting at  sys.dm_db_missing_index . Moreover, you can see suggestions for creating such 
indexes in the execution plans displayed in Management Studio. 

 There are two caveats when dealing with suggestions about missing indexes. First, SQL Server suggests 
the index, which only helps the particular query you are executing. It does not take update overhead, other 
queries, and existing indexes into consideration. For example, if a table already has an index that covers the 
query with the exception of one column, SQL Server suggests creating a new index rather than changing an 
existing one. 

 Moreover, suggested indexes help to improve the performance of a specific execution plan. SQL Server 
does not consider indexes that can change the execution plan shape and, for example, use a more efficient 
join type for the query. 

 ■   Important   Creating indexes strictly based on suggestions from missing indexes DMVs will lead to a large 
number of redundant and inefficient indexes in the system.  

 The quality of Database Engine Tuning Advisor (DTA) results greatly depends on the quality of the 
workload used for analysis. Good and representative workload data leads to decent results, which is much 
better than the suggestions provided by missing indexes DMVs. Make sure to capture the workload, which 
includes data modification queries in addition to select queries, if you use DTA. 

 Regardless of the quality of the tools, all of them have the same limitation: they are analyzing and 
tuning indexes based on existing database schema and code. You can often achieve much better results by 
performing database schema and code refactoring in addition to index tuning.    

  Figure 7-11.    Sys.dm_exec_procedure_stats results       

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_28


CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

178

     Summary 
 An ideal clustered index is narrow, static, and unique. Moreover, it optimizes the most important queries 
against the table and reduces fragmentation. It is often impossible to design a clustered index that 
satisfies all of the five design guidelines provided in this chapter. You should analyze the system, business 
requirements, and workload and choose the most efficient clustered indexes—even when they violate some 
of those guidelines. 

 Ever-increasing clustered indexes usually have low fragmentation because the data is inserted at 
the end of the table. A good example of such indexes are identities, sequences, and ever-incrementing 
date/time values. While such indexes may be a good choice for catalog entities with thousands or even 
millions of rows, you should consider other options in the case of huge tables with a high rate of inserts. 

  Uniqueidentifier  columns with random values are rarely good candidates for indexes due to their 
high fragmentation. You should generate the key values with the   NEWSEQUENTIALID()  function   if indexes on 
the  uniqueidentifier  data type are required. 

 SQL Server rarely uses index intersection, especially in an OLTP workload. It is usually beneficial to 
have a small set of wide, composite, nonclustered indexes with included columns rather than a large set of 
narrow one-column indexes. 

 In OLTP systems, you should create a minimally required set of indexes to avoid index update overhead. 
In data warehouse systems, the number of indexes greatly depends on the data-refresh strategy. You should 
also consider using columnstore indexes in dedicated data warehouse databases. 

 It is important to drop unused and inefficient indexes and perform index consolidation before 
adding new indexes to the system. This simplifies the optimization process and reduces data modification 
overhead. SQL Server provides index usage statistics with the  sys.dm_db_index_usage_stats  and  
sys.dm_db_index_operation_stats  DMOs. 

 You can use SQL Server Profiler, Extended Events, and DMVs, such as  sys.dm_exec_query_stats  and 
 sys.dm_exec_procedure_stats , to detect inefficient queries. Moreover, there are plenty of tools that can 
help with monitoring and index tuning. With all that being said, you should always consider query and 
database schema refactoring as an option. It often leads to much better performance improvements when 
compared to index tuning by itself.     



   PART II 

   Other Things That Matter 
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    CHAPTER 8   

 Constraints                          

 It is important to design databases in a way that makes efficient processing and querying of the data 
possible. That by itself, however, is not enough. We must make sure that the data we get from the database 
can be trusted. Think about an Order Entry system, for example. We can query the  OrderLineItems  table to 
get the information about products we sold, but we cannot trust the results unless we know that the table has 
no orphaned rows that do not belong to any orders in our system. 

 Constraints allow us to declare the data integrity and business rules for the database and have SQL 
Server enforce them. They ensure that data is  logically  correct, help us to catch bugs in the early stages of 
development, and improve the supportability and performance of the system. Let’s look at the different 
types of constraints in more detail. 

     Primary Key Constraints 
 Conceptually, database design can be separated into logical and physical design stages. During the  logical 
database design      stage, we identify the entities in systems based on business requirements, and we define the 
attributes and relations between them. After that, during the  physical database design   stage, we map those 
entities to the database tables, defining data access strategies through the indexes and design the physical 
data placement across different filegroups and storage arrays. 

 Even though the logical and physical database design stages are often mixed together, conceptually they 
are separate from each other and can even be performed by different teams, especially on large projects. 

  Primary key    constraint s      define the attribute or set of attributes that uniquely identify an object in an 
entity or in the physical database design scope; that is, a row in a table. Internally, primary key constraints 
are implemented as unique indexes. By default, SQL Server creates a primary key as a unique clustered 
index, although it is not a requirement. We can have nonclustered primary keys, or we can even have tables 
with no primary keys at all. 

 As you have probably already noticed, the first part of this book did not mention primary keys, and it 
routinely used   clustered indexes          instead. This was done on purpose. Primary keys conceptually belong to 
the logical database design domain, while clustered and nonclustered indexes are the part of the physical 
database design. 

 Database professionals, however, often mix the two by defining the clustered indexes as primary keys, 
even though, in some cases, it is incorrect from a logical design standpoint. For example, consider an Order 
Entry system with an  Orders  table with an  OrderId  identity column. This column uniquely identifies the 
order row, and it would be a perfect candidate for a primary key constraint. Whether it is a clustered or 
nonclustered primary key depends on the other factors, mainly on how we query and work with the data. In 
the end, we would have something similar to the code shown in Listing  8-1 . 
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     Listing 8-1.     Orders table        

 create table dbo.Orders 
 ( 
     OrderId int not null identity(1,1), 
     -- other columns 
     constraint PK_Orders 
     primary key clustered(OrderId) 
 ) 

   The   OrderLineItems  table      could have two key columns:  OrderId , which references the row from the 
 Orders  table, and the  OrderLineItemId  identity column. In most cases, we will work with  OrderLineItems  in 
the context of the specific  Order  and will have  OrderId  as the predicate in our queries. Therefore, the natural 
candidate for the clustered index in this table would be  (OrderId, OrderLineItemId) . It would be  logically  
incorrect, however, to define that clustered index as the primary key—the row can be uniquely identified by 
the single  OrderLineItemId  identity column, and we do not need  OrderId  for this purpose. 

 The question of whether we want to define a nonclustered primary key on   OrderLineItemId    depends 
on the other factors. From the logical design standpoint, it would be the right thing to do, especially if the 
table is referenced by the other tables with foreign key constraints, which we will discuss later in this chapter. 
This would introduce another nonclustered index, however, which we need to store and maintain. The final 
implementation might be similar to the code shown in Listing  8-2 . 

     Listing 8-2.     OrderLineItems table        

  create table dbo.OrderLineItems 
 ( 
     OrderId int not null, 
     OrderLineItemId int not null identity(1,1), 
     -- other columns 

       constraint PK_OrderLineItems 
     primary key nonclustered(OrderLineItemId) 
 ); 

   create unique clustered index IDX_OrderLineItems_OrderId_OrderLineItemId 
 on dbo.OrderLineItems(OrderId,OrderLineItemId); 

    While primary keys can be represented as unique indexes from the physical implementation 
standpoint, there is the minor difference between them. No primary key columns can be nullable. On the 
other hand, unique indexes can be created on the nullable columns and would treat  NULL  as the regular 
value. 

 One very important thing to remember is that we cannot change the definition of the primary key or, in 
fact, change the definition of any constraint without dropping and recreating it. As a result, if a primary key 
constraint is clustered, it will lead to two table rebuilds. Dropping the constraint would remove the  clustered 
index      and convert the table to a heap table. Adding a clustered primary key creates a clustered index on 
the heap table. Alternatively, changing the definition of the clustered index would lead to the single index 
rebuild. 
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 ■   Tip    Disable nonclustered indexes in case you need to drop and recreate a clustered primary key 
constraint. Enable (rebuild) them after both operations are done. This will speed up the process, because 
nonclustered indexes will be rebuilt only once after the operation is completed rather than during each step.  

 Primary keys usually benefit the system. They provide better  data integrity      and improve the 
supportability of the system. I would recommend defining the primary keys when you can afford to have the 
additional index on the primary key columns. 

 ■   Note    Some SQL Server features, such as transactional replication, require that tables have primary keys 
defined. Defining a clustered index without a primary key is not sufficient.  

 Because primary keys are implemented as regular indexes, there is no special catalog view for them. 
You can look at the  is_primary_key  column in the  sys.indexes  catalog view to determine if the index is 
defined as the primary key. 

 ■   Note    SQL Server Catalog Views allow us to obtain information about database and server metadata 
programmatically. See    http://technet.microsoft.com/en-us/library/ms174365.aspx      for more details.   

      Unique Constraints      
 Unique constraints enforce the uniqueness of the values from one or multiple attributes in the entity or, 
in the physical world, columns in the table. Similar to primary keys, unique constraints uniquely identify 
rows in a table, although they can be created on the nullable columns and would thus treat  NULL  as one of 
the possible values. Like primary keys, unique constraints belong to the logical database design and are 
implemented as unique, nonclustered indexes on the physical level. 

 The code in Listing  8-3  shows a table with two unique constraints defined: one constraint defined on 
the  SSN  column and another one on the combination of the  DepartmentCode  and  IntraDepartmentCode  
columns. 

     Listing 8-3.    Defining unique constraints   

  create table dbo.Employees 
 ( 
     EmployeeId int not null 
         constraint PK_Employees primary key clustered, 
     Name nvarchar(64) not null, 
     SSN char(9) not null     
         constraint UQ_Employees_SSN unique, 
     DepartmentCode varchar(32) not null, 
     IntraDepartmentCode varchar(32) not null, 

       constraint UQ_Employees_Codes 
     unique(DepartmentCode, IntraDepartmentCode) 
 ) 

http://technet.microsoft.com/en-us/library/ms174365.aspx
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    As you can see in Figure  8-1 , SQL Server Management Studio lists unique (and primary key) constraints 
in two different places: under both the   Key    and   Indexes  nodes  .  

 Generally, it is a good idea to have uniqueness enforced when data is unique. This helps to keep the 
data clean and avoids data integrity issues. Unique constraints can also help  Query Optimizer   to generate 
more efficient execution plans. The downside is that you will have to maintain another nonclustered 
index for every uniqueness condition you define. You need to consider the data modification and index 
maintenance overhead that are introduced when choosing to implement constraints. 

 Whether to choose a unique constraint or a unique index largely depends on personal preferences. 
Uniqueness usually comes in the form of a business requirement, and enforcing uniqueness with 
constraints can contribute to system supportability. On the other hand, unique indexes are more flexible. 
You can include columns and use those indexes for query optimization purposes in addition to uniqueness 
enforcement. You can also specify the sorting order, which can help in some rare cases. 

 It is also impossible to alter a unique constraint definition without dropping and recreating it. Even 
though dropping a constraint is a metadata operation, which does not introduce data movement, there is 
a possibility that a uniqueness rule will be violated when a constraint is dropped. Alternatively, you can 
change the unique index definition in atomary operation by using the  CREATE INDEX .. WITH (DROP_
EXISTING=ON)  statement. 

 Like primary key constraints, there is no special catalog view for unique constraints. There is the 
column  is_unique_constraint  in the  sys.indexes  catalog view, which shows if an index is created as a 
unique constraint.  

     Foreign Key Constraints 
  Foreign key constraints  identify and enforce relations between entities/tables. Think about our  Orders  and 
 OrderLineItems  tables example. Every  OrderLineItems  row belongs to a corresponding  Orders  row and 
cannot exist by itself. These kinds of relations are enforced with foreign key constraints. 

 Like other constraints, foreign keys enforce data integrity. It is always easier to deal with clean and 
correct data rather than cleaning up data on the fly. In addition, during the development and testing stages, 
foreign keys help catch a good number of bugs related to incorrect data processing. 

  Figure 8-1.    Unique constraints in SQL Server Management Studio       
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 However, foreign keys come with a price. Every time you insert data into the   referencing  table     , you 
need to check to see if there are corresponding rows in the  referenced  table. Let’s look at the example using 
the same  Orders  and  OrderLineItems  tables we created earlier in this chapter. When you insert a row into 
the  OrderLineItems  table without any foreign keys defined, the query needs to perform only one clustered 
index insert operation, as shown in Figure  8-2 .  

 Now, let’s add a foreign key constraint to the table. Listing  8-4  shows the   ALTER TABLE  statement     , which 
performs this task. 

     Listing 8-4.    Adding a foreign key constraint to the OrderLineItems  table        

 alter table dbo.OrderLineItems with check 
 add constraint FK_OrderLineItems_Orders 
 foreign key(OrderId) 
 references dbo.Orders(OrderId) 

   When you run the insert again, you will see that the execution plan changes, as shown in Figure  8-3 .  

 As you can see, the plan now includes a clustered index seek operation on the  referenced  ( Orders ) table. 
SQL Server needs to validate the foreign key constraint and make sure that there is a corresponding order 
row for the line item that you are inserting. 

 Now, let’s see what happens when you delete the row from the   Orders  table  . As you see in Figure  8-4 , 
our execution plan now includes a clustered index seek on the  referencing  ( OrderLineItems ) table. SQL 
Server needs to check to see if there are any line-item rows that reference the row you are deleting. If there 
are any such line-item rows, SQL Server either aborts the deletion or performs some cascade actions, 
depending on the rules of the foreign key constraint.  

  Figure 8-2.    Inserting a row into the  referencing table   with no foreign key constraint  defined         

  Figure 8-3.    Inserting a  row      into the referencing table with a foreign key constraint defined       
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 Let’s add an   ON DELETE CASCADE  action      to the foreign-key constraint, as shown in Listing  8-5 . Now 
when you delete the row from the  Orders  table, SQL Server needs to find and delete the referencing rows 
from the  OrderLineItems  table. The execution plan is shown in Figure  8-5 .  

     Listing 8-5.    Replacing the constraint with  ON DELETE CASCADE action        

  alter table dbo.OrderLineItems drop constraint FK_OrderLineItems_Orders; 

   alter table dbo.OrderLineItems with check 
 add constraint FK_OrderLineItems_Orders 
 foreign key(OrderId) 
 references dbo.Orders(OrderId) 
 on delete cascade; 

  Figure 8-4.     Deleting a row      from the referenced table (no cascade actions)       

  Figure 8-5.    Deleting a row from the referenced table ( ON DELETE CASCADE action)            

    There is one very important thing to remember: when you create the foreign key constraint, SQL Server 
requires you to have a unique index on the  referenced  ( OrderId ) column in the  referenced  ( Orders ) table. 
However, there is no requirement to have a similar index on the  referencing  ( OrderLineItems ) table. If you 
do not have such an index, any referential integrity checks on the referencing tables will introduce the scan 
operation. In order to prove this, let’s drop the clustered index on the  OrderLineItems  table using the  DROP 
INDEX IDX_OrderLineItems_OrderId_OrderLineItemId ON dbo.OrderLineItems  statement. 

 Now, when you run the deletion again, you will see the execution plan, as shown in Figure  8-6 .  
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 Missing indexes on the referencing columns could have a huge performance impact in the case of large 
tables. This would introduce excessive and unnecessary I/O load and contribute to blocking. Also, besides 
referential integrity support, those indexes can be helpful during join operations between the tables. With 
very rare exceptions, you should create those indexes when you create the foreign key constraints. 

 In some cases, foreign key constraints can help the  Query Optimizer     . They can help eliminate 
unnecessary joins, especially when views are involved, as well as improve the performance of some queries 
in data warehouse environments. 

 ■   Note    We will discuss join elimination in greater detail in Chapter   10    , “Views.”  

 Unfortunately, foreign keys are incompatible with some SQL Server features. For example, when a table 
is partitioned and referenced by a foreign key, you cannot alter the table and switch the partition to another 
table. You can still have the table partitioned, however, if a partition switch is not involved. Another example 
is table truncation. You cannot truncate a table when it is referenced by foreign keys. 

  Defining   foreign  key   constraints is usually a good thing, assuming, of course, that you are OK with the 
extra indexes and that the system can handle the slight performance overhead introduced by index seek 
operations during referential integrity checks. In  OLTP systems  , I recommend that you always create foreign 
keys when referencing catalog entities where the amount of data is relatively small and static. For example, 
an order-entry system’s catalog entities would include  Articles ,  Customers ,  Warehouses , and so forth. You 
need to be careful, however, when dealing with transactional entities that store billions of rows and handle 
thousands of inserts per second. I would still use foreign keys whenever possible, though I would analyze the 
performance implications on a case-by-case basis. 

 There are a couple of catalog views,  sys.foreign_   keys       and  sys.foreign_key_   columns      , that provide 
information concerning any foreign key constraints that are defined in the database.  

  Figure 8-6.    Deleting the  row      from the referenced table without an index specified on the referencing column       

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_10
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     Check Constraints 
     Check constraints  enforce domain integrity by limiting the values that you can put into the column or into 
multiple columns in the row. They specify a logical expression that is evaluated every time a row is inserted 
or when corresponding columns are modified, and they fail the operation when an expression is evaluated 
as  FALSE . 

 Look at the example shown in Listing  8-6 . 

     Listing 8-6.    Check constaints:  Table creation     

  create table dbo.Accounts 
 ( 
     AccountId int not null identity(1,1), 
     AccountType varchar(32) not null, 
     CreditLimit money null, 

       constraint CHK_Accounts_AccountType 
     check (AccountType in ('Checking','Saving','Credit Card')), 

       constraint CHK_Accounts_CreditLimit_For_CC 
     check ((AccountType <> 'Credit Card') or (CreditLimit > 0)) 
 ) 

    There are two check constraints specified. The first one,   CHK_Accounts_AccountType   , enforces the 
rule that  AccountType  needs to belong to one of three values. The second one is more complex. It enforces 
the rule that, for credit card accounts, there should be a positive   CreditLimit    provided. One key point to 
remember is that data is rejected only when a constraint expression is evaluated as  FALSE .  NULL  results are 
accepted. For example, the  INSERT  statement shown in Listing  8-7  works just fine. 

     Listing 8-7.    Check constaints: Inserting a NULL  value     

 insert into dbo.Accounts(AccountType, CreditLimit) 
 values('Credit Card',null) 

   The main purpose of check constraints is to enforce data integrity, although they can, in some cases, 
help Query Optimizer and simplify execution plans. Assume that you have two tables: one that contains 
positive numbers and another one that contains negative numbers, as shown in Listing  8-8 . 

     Listing 8-8.    Check constaints:  PositiveNumbers and NegativeNumbers tables creation     

  create table dbo.PositiveNumbers 
 ( PositiveNumber int not null ); 

   create table dbo.NegativeNumbers 
 ( NegativeNumber int not null ); 

   insert into dbo.PositiveNumbers(PositiveNumber) values(1); 
 insert into dbo.NegativeNumbers(NegativeNumber) values(-1); 

    Now, let’s run a  SELECT  that joins the data from those two tables. You can see the  SELECT  statement in 
Listing  8-9  and the execution plan in Figure  8-7 .  
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     Listing 8-9.    Check constaints: Two  tables   joined without check constraints created   

 select * 
 from dbo.PositiveNumbers e join dbo.NegativeNumbers o on 
         e.PositiveNumber = o.NegativeNumber 

   As you can see, SQL Server scans and joins the two tables. That makes sense. Even if we had named 
our tables in a very specific way, nothing would prevent us from inserting positive values into the 
 NegativeNumbers  table and vice versa. Now, let’s add the check constraints that enforce the rules. You can 
see the  ALTER TABLE  statements in Listing  8-10 . 

     Listing 8-10.    Check constaints: Adding check constraints to the  table     

  alter table dbo.PositiveNumbers 
 add constraint CHK_IsNumberPositive 
 check (PositiveNumber > 0); 

   alter table dbo.NegativeNumbers 
 add constraint CHK_IsNumberNegative 
 check (NegativeNumber < 0); 

    If you run the select again, you will see a different execution plan, as shown in Figure  8-8 .  

 SQL Server evaluated the check constraints, determined that they were mutually exclusive, and 
removed any unnecessary joins. 

 ■   Note    One very important situation where you must define check constraints is in the case of partitioned 
views. Check constraints prevent access to unnecessary tables and greatly improve the performance of queries. 
We will discuss partitioning views in greater detail in Chapter   16    , “Data Partitioning.”  

  Figure 8-7.     Execution plan without    check constraints         

  Figure 8-8.    Execution plan with  check constraints         
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 Obviously, check constraints introduce overhead during data modifications, especially when you 
are calling the functions from the constraints. They can significantly decrease the performance of batch 
operations that insert or update data. 

 Let’s create a table and insert 65,536 rows into it without using check constraints. The code is shown in 
Listing  8-11 . 

     Listing 8-11.    Check constaints:  CheckConstraintTest table creation     

  create table dbo.CheckConstraintTest 
 ( Value varchar(32) not null ); 

   with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.CheckConstraintTest(Value) 
     select 'ABC' from IDs; 

    You can see the part of the execution plan that inserts data into the table in Figure  8-9 .  

 On my computer, the execution time is as follows: 

   SQL Server Execution Times: 
    CPU time = 78 ms,  elapsed time = 87 ms. 

   Let’s add a check constraint to the table and see how it affects the performance of the  INSERT  operation. 
The code is shown in Listing  8-12 . 

     Listing 8-12.    Check constaints: Adding a check constraint to the  CheckConstraintTest table     

 alter table dbo.CheckConstraintTest with check 
 add constraint CHK_CheckConstraintTest_Value 
 check (Value = 'ABC') 

   As you can see in Figure  8-10 , there are two additional operations in the plan introduced by the check 
constraint, which leads to a longer execution time.  

  Figure 8-9.    Part of the execution plan: Insert without check constraints       
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 On my computer, the execution time is as follows: 

   SQL Server Execution Times: 
    CPU time = 93 ms,  elapsed time = 118 ms. 

   Now, let’s see what happens when we call a system function from the check constraint. Let’s change the 
constraint definition, as shown in Listing  8-13 . 

     Listing 8-13.    Check constaints: Replacing check constraints with one that calls a  system function     

  alter table dbo.CheckConstraintTest 
 drop constraint CHK_CheckConstraintTest_Value; 

   alter table dbo.CheckConstraintTest with check 
 add constraint CHK_CheckConstraintTest_Value 
 check (Right(Value, 1) = 'C'); 

    After we run our insert again, the execution time is as follows: 

   SQL Server Execution Times: 
    CPU time = 109 ms,  elapsed time = 131 ms. 

   While system functions do not necessarily introduce huge overhead in terms of CPU load and execution 
time, user-defined functions (UDFs) are a different story. Let’s create a simple UDF and see how it affects 
performance. The code is shown in Listing  8-14 . 

     Listing 8-14.    Check constaints: Replacing a check constraint with one that calls a  UDF function     

  create function dbo.DummyCheck(@Value varchar(32)) 
 returns bit 
 with schemabinding 
 as 
     return (1); 
 go 

   alter table dbo.CheckConstraintTest 
 drop constraint CHK_CheckConstraintTest_Value; 

   alter table dbo.CheckConstraintTest 
 add constraint CHK_CheckConstraintTest_Value 
 check (dbo.DummyCheck(Value) = 1); 

  Figure 8-10.    Part of the execution plan: insert with check constraint       
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    When we run the same  INSERT  again, the execution time is as follows: 

   SQL Server Execution Times: 
    CPU time = 375 ms,  elapsed time = 475 ms. 

   As you can see, it now takes five times as long to run as when the table did not have a check constraint 
specified. 

 ■   Note    We will discuss the performance implications of user-defined functions in greater detail in Chapter   11    , 
“Functions.”  

 As with other constraint types, check constraints help us to enforce  data integrity   and, in some cases, 
lead to better execution plans. It is a good idea to use them as long as you can live with the overhead that 
they introduce during data modification. You can get information about check constraints from the   sys.
check_constraints  catalog view  .  

     Wrapping Up 
 One other important thing that you need to keep in mind when dealing with foreign key and check 
constraints is whether the constraints are trusted. When a constraint is not trusted, SQL Server will not 
guarantee that all data in the table complies with the constraint rule. Moreover, SQL Server does not take 
untrusted constraints into consideration during the query optimization stage. You can see if a constraint is 
trusted by examining the  is_not_trusted  column in the corresponding catalog view. 

 SQL Server validates constraints during data modifications regardless of whether they are trusted or 
not. Having an untrusted constraint does not mean that SQL Server permits violations of it. It means that old 
data was not validated at the moment the constraint was created. 

 ■   Note    In some cases, SQL Server can still benefit from untrusted foreign key constraints. They can trigger 
the  Query Optimizer      to explore additional join strategies (star join extensions) when the table structure belongs 
to a star or snowflake schema in data warehouse environments.  

 You can control if a constraint is created as trusted by using the  WITH CHECK  /  WITH NOCHECK  parameters 
of the  ALTER TABLE  statement. By using the  WITH CHECK  condition, you force SQL Server to validate whether 
existing data complies with a constraint rule, which would lead to a table scan. The problem here is that 
such an operation requires a schema modification (Sch-M) lock, which makes the table inaccessible to 
other sessions. Such a scan can be very time consuming on large tables. Alternatively, creating untrusted 
constraints with the  WITH NOCHECK  condition is a metadata operation. 

 ■   Note    We will talk about schema locks in greater detail in Chapter   23    , “Schema Locks.”  

 Finally, you always need to name constraints explicitly, even if it is not a requirement, as it is 
inconvenient to deal with auto-generated names. With auto-generated names, you need to query the 
catalog views every time you access constraints programmatically. The use of auto-generated names also 
reduces the supportability of a system. For example, it is very hard to know what a constraint with the name 
 CK__A__3E52440B  does without diving deeper into the details. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_11
http://dx.doi.org/10.1007/978-1-4842-1964-5_23
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 I recommend that you choose a naming convention that works best for you and use it across the 
system. Details do not really matter, as long as it is consistent and ideally provides information about 
the rules for which the constraints are responsible. In my systems, I am using  DEF_<Table>_<Column>  
for the default constraints ,   CHK_<Table>_<Column_Or_Description>  for the check constraints, 
 UQ_<TableName>_<ColNames>  for the unique constraints, and  <FK>_<ReferencingTable>_<ReferencedTab
le>  for the foreign key constraints. This notation helps me to understand what constraints are doing simply 
by glancing at their names. 

 Constraints are a very powerful tool that helps to keep the data clean and improves the supportability 
and performance of the system. Use them wisely.  

     Summary 
 Primary key  constraints      define the column or set of columns that uniquely identify a row in a table. 
Internally, primary key constraints are implemented as unique indexes and can be either clustered or 
nonclustered. 

 Foreign key constraints define the relationships between tables in the system. They help to improve 
data quality in the database; however, they introduce some overhead during referential integrity checks. It is 
important to define the index on the referencing column in the referencing table whenever it is possible. 

 Check constraints enforce domain integrity by limiting the values that you can put into the column or 
into multiple columns in the row. As with foreign key constraints, they help to improve data quality in the 
system at the cost of validation overhead during data modifications. You should consider this overhead, 
especially in cases when you are using user-defined functions to validate the constraint. 

 Foreign key and check constraints can be either trusted or untrusted. SQL Server does not validate 
untrusted constraints at the creation stage; however, it performs validation after the constraint has been 
created. In most cases, Query Optimizer does not rely on untrusted constraints during query optimization.     
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    CHAPTER 9   

 Triggers                          

  Triggers   define the code that runs in response to specific events. There are three types of triggers available in 
SQL Server, as follows:

    1.     DML triggers   fire when data modification occurs. You can use DML triggers 
in cases where you need to enforce specific business rules during data 
modifications and the system does not have a dedicated data access tier 
implemented. You can think about audit-trail functional, which captures who 
changed the data in the table, as an example. When a system has multiple 
applications working with the database directly, an audit-trail implementation 
based on triggers is the simplest one.  

    2.     DDL triggers   fire in response to events that change database and server objects. 
You can use DDL triggers to prevent or audit those changes; for example, 
dropping tables, altering stored procedures, or creating new logins.  

    3.     Logon triggers   fire during the user login process. You can use triggers for audit 
purposes, as well as to prevent users from logging in to the system when needed.     

     DML Triggers 
 DML triggers allow you to define the code that will be executed during data modification operations, such 
as  INSERT ,  UPDATE ,  DELETE , or  MERGE . There are two types of DML triggers:  INSTEAD OF  and   AFTER  triggers  . 
 INSTEAD    OF       triggers run as a  replacement  of the actual data modification operation on a table or view. With 
these types of triggers, you can evaluate and/or implement business rules. You also need to issue the actual 
DML statement against a table if you want the data to be modified.   AFTER    triggers fire following a data 
modification operation, when the data in the table has been changed. 
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 Let’s see what happens when we insert data into a table that has triggers and constraints defined. First, 
let’s create a table using the code shown in Listing  9-1 . 

      Listing 9-1.    Inserting data into the table: Table and two triggers  creation     

  create table dbo.OrderLineItems 
 ( 
     OrderId int not null, 
     OrderLineItemId int identity(1,1) not null, 
     ProductId int not null, 
     ProductName nvarchar(64) not null, 
     CreationDate smalldatetime not null, 
         constraint DEF_OrderLineItems_CreationDate 
         default GetUtcDate(), 
     Quantity decimal(9,3) not null, 
     Price smallmoney not null, 

       constraint PK_OrderLineItems 
     primary key clustered(OrderId, OrderLineItemId), 

       constraint CHK_OrderLineItems_PositiveQuantity 
     check (Quantity > 0), 

       constraint FK_OrderLineItems_Orders 
     foreign key(OrderId) 
     references dbo.Orders(OrderId), 

       constraint FK_OrderLineItems_Products 
     foreign key(ProductId) 
     references dbo.Products(ProductId) 
 ) 
 go 

   create trigger trg_OrderLineItems_InsteadOfInsert on dbo.OrderLineItems 
 instead of insert 
 as 
 begin 
     if @@rowcount = 0 
         return; 
     set nocount on 
     if not exists(select * from inserted) 
         return; 

       insert into dbo.OrderLineItems(OrderId, ProductId, ProductName, Quantity, Price) 
         select i.OrderId, i.ProductId, p.ProductName, i.Quantity, i.Price 
         from inserted i join dbo.Products p on 
                 i.ProductId = p.ProductId; 
 end 
 go 
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   create trigger trg_OrderLineItems_AfterInsert on dbo.OrderLineItems 
 after insert 
 as 
 begin 
     if @@rowcount = 0 
         return; 
     set nocount on 
     if not exists(select * from inserted) 
         return; 

       if exists 
     ( 
         select * 
         from inserted i join dbo.Orders o on 
                 i.OrderId = o.OrderId 
         where o.Status = 'CLOSED' 
     ) 
     begin 
         raiserror('Cannot change the closed order',16,1); 
         rollback tran; 
         return; 
     end 
 end 

     The table has both primary and foreign keys as well as default and check constraints.  INSTEAD OF  and 
 AFTER  triggers are also defined. Let’s take a look at what happens when we run an  INSERT  statement against 
the table, as shown in Listing  9-2 . 

     Listing 9-2.    Inserting data into the table:  Insert statement     

 insert into dbo.OrderLineItems(OrderId, ProductId, ProductName, Quantity, Price) 
 values(@OrderId, @ProductId, @ProductName, @Quantity, @Price) 

   In the first step, SQL Server creates and populates  inserted  and  deleted  virtual tables that contain 
information about the new and old versions of the rows affected by the DML statement. These tables will 
be accessible in the  INSTEAD OF  trigger. In our case, the  inserted  table would have one row with the values 
that we provided in the  INSERT  statement and the  deleted  table would be empty, because there is no 
“old” version of the row when we insert it. We will talk about these tables later in this chapter, but for now 
let us remember one very important thing:  DML triggers have a statement scope and would be fired just 
once regardless of how many rows were affected. The virtual tables could have more than one row, and the 
implementation needs to handle that correctly.  

 In the next step, SQL Server fires the  trg_OrderLineItems_InsteadOfInsert    INSTEAD OF  trigger  . In the 
trigger, we are implementing the business logic and executing an   INSERT  statement   against the actual table. 
Our implementation of the trigger ignores the  ProductName  value provided by the original  INSERT  statement 
and replaces it with the actual product name from the  Products  table. An inner join also filters out the rows 
that do not have corresponding products in the system. Even if we enforce the same rule by foreign key 
constraint, such an implementation behaves differently. Violation of the foreign key constraint terminates 
the entire batch without inserting any rows, while a join in the trigger just filters out incorrect rows and 
inserts the correct ones. 
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 ■   Tip    Whether you should use such an approach, ignoring the incorrect rows rather than terminating the 
batch, depends on the business requirements. Although it can help in some cases, it complicates system 
troubleshooting. At a bare minimum, I suggest that you log information about the skipped rows somewhere in 
the system.  

 When the  INSTEAD    OF       trigger runs the  INSERT  statement, SQL Server performs the following tasks in the 
sequence:

    1.    It assigns the default constraint value to the  CreationDate  column.  

    2.    It validates the not null, primary key, unique, check constraints, and unique 
indexes in the table, and it terminates the statement in the case of constraint or 
uniqueness violations.  

    3.    It checks referential integrity and terminates the statement in case of foreign key 
constraint violations. Otherwise, it inserts the new rows into the table.     

 ■   Note     AFTER  triggers do not fire in the case of constraint or index-uniqueness violations.  

 Finally, we have the new  inserted  and  deleted  tables created, and the   AFTER  triggers      are fired. At this 
point, the new row has already been inserted into the table and, if we needed to roll back the changes, SQL 
Server would undo the  INSERT  operation. In the preceding example, it would be more efficient to have the 
order-status check being implemented as part of  INSTEAD OF  rather than as an  AFTER  trigger. 

 As I already mentioned, triggers run on a per-statement rather than a per-row basis. Our 
implementation needs to work correctly when  inserted  and  deleted  tables have more than one row. For 
example, the implementation in Listing  9-3  would fail with the exception that the subquery used in the  set  
operator returns more than one row if multiple rows are being updated. 

     Listing 9-3.    Triggers implementation: Incorrect  implementation     

   create trigger Trg_OrderLineItems_AfterUpdate_Incorrect on dbo.OrderLineItems 
 after update 
 as 
 begin 
     -- Some code here 
     declare 
         @OrderId int; 

       set @OrderId = (select OrderId from inserted); 
     -- Some code here 
 end 

   Error Message: 
 Msg 512, Level 16, State 1, Procedure Trg_OrderLineItems_AfterUpdate_Incorrect, Line 9 
 Subquery returned more than 1 value. This is not permitted when the subquery 
 follows =, !=, <, <= , >, >= or when the subquery is used as an expression. 
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    Alternatively, triggers would fire even if the DML statement did not change (insert, update, or delete) 
any data. In that case, both the  inserted  and the  deleted  tables would be empty. In order to create 
an efficient implementation, you need to have a few checks in the beginning of the trigger to prevent 
unnecessary code from being executed. Let’s look at our implementation again, as shown in Listing  9-4 . 

     Listing 9-4.    Trigger implementation: Preventing unnecessary code from being executed   

 create trigger trg_OrderLineItems_InsteadOfInsert on dbo.OrderLineItems 
 instead of insert 
 as 
 begin 
     if @@rowcount = 0 
         return; 
     set nocount on 
     if not exists(select * from inserted) 
         return; 
     -- Some code here 
 end 

    The first statement in the trigger— if @@   rowcount     = 0 —checks if the  INSERT  statement did, in fact, 
insert any rows. As an example, you can think about the insert/select pattern when the  SELECT  query did not 
return any data. You would like to avoid having a trigger code be executed in such cases. 

 The second statement— set nocount    on   —stops SQL Server from returning the message that displays 
the number of rows affected by the code in the trigger. Some client libraries do not handle multiple messages 
correctly. 

 The last statement— if not exists(select * from inserted)     —is trickier. While  @@rowcount  can 
help you detect when there are no rows affected by  INSERT ,  UPDATE , or  DELETE  statements, it would not work 
very well with  MERGE . That operator, introduced in SQL Server 2008, allows you to combine all three actions 
into the single statement. Triggers would fire even if there were no corresponding actions.  @@rowcount  in the 
trigger represents the total number of rows affected by the  MERGE  statement. 

 Let’s create a simple table with three triggers that displays the value of  @@rowcount  and the number of 
rows in the  inserted  and  deleted  tables. You can see this code in Listing  9-5 . It is also worth mentioning 
that it is very bad practice to return any result sets from triggers, because it could easily break client 
applications. 

      Listing 9-5.    Triggers and  MERGE statement  : Table and three triggers creation   

  create table dbo.Data(Col int not null); 

   create trigger trg_Data_AI on dbo.Data 
 after insert 
 as 
     select 
         'After Insert' as [Trigger] 
         ,@@RowCount as [RowCount] 
         ,(select count(*) from inserted) as [Inserted Cnt] 
         ,(select count(*) from deleted) as [Deleted Cnt]; 
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   create trigger trg_Data_AU on dbo.Data 
 after update 
 as 
     select 
         'After Update' as [Trigger] 
         ,@@RowCount as [RowCount] 
         ,(select count(*) from inserted) as [Inserted Cnt] 
         ,(select count(*) from deleted) as [Deleted Cnt]; 

   create trigger trg_Data_AD on dbo.Data 
 after delete 
 as 
     select 
         'After Delete' as [Trigger] 
         ,@@RowCount as [RowCount] 
         ,(select count(*) from inserted) as [Inserted Cnt] 
         ,(select count(*) from deleted) as [Deleted Cnt]; 

    Now, let’s run the  MERGE  statement, as shown in Listing  9-6 . 

     Listing 9-6.    Triggers and MERGE statement: MERGE   

 merge into dbo.Data as Target 
 using (select 1 as [Value]) as Source 
 on Target.Col = Source.Value 
 when not matched by target then 
         insert(Col) values(Source.Value) 
 when not matched by source then 
         delete 
 when matched then 
         update set Col = Source.Value; 

   Because the  dbo.Data  table is empty, the  MERGE  statement would insert one row there. Let’s look at the 
output from the triggers, as shown in Figure  9-1 .  

  Figure 9-1.    @@rowcount, inserted and deleted tables with MERGE operator       
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 As you can see, all three triggers were fired. In each of them,  @@rowcount  represented the number of 
rows affected by the  MERGE . However, with the  AFTER    UPDATE    and   AFTER DELETE  triggers  , the  inserted  and 
 deleted  tables were empty. You need to check the content of these tables in order to prevent the code in the 
trigger from being executed  if they are empty. 

 As you can guess, there is overhead associated with the triggers. At a bare minimum, SQL Server needs 
to create  inserted  and  deleted  virtual tables when triggers are present. SQL Server does not analyze 
whether there is any logic that references those tables within the trigger, and simply always creates them. 
While the overhead associated with  INSTEAD OF  triggers is not particularly large, this is not the case with 
 AFTER  triggers.  AFTER  triggers store the data from those tables in the special part of  tempdb  called the   version 
store   , keeping it until after the transaction completes. 

 ■   Note    SQL Server uses the version store to maintain multiple versions of the rows, and it supports several 
features, such as optimistic transaction isolation levels, online indexing, multiple active result sets (MARS), and 
triggers. We will talk about it in greater detail in Chapter   21    , “Optimistic Isolation Levels.”  

 While version store usage introduces additional   tempdb  load  , there is another important factor that 
you need to keep in mind. In order to maintain the links between the new and old versions of the rows, 
 AFTER UPDATE  and  AFTER DELETE  triggers add a 14-byte versioning tag pointer to the rows they modified 
or deleted, which will stay until the index has been rebuilt. That could increase the row size and introduce 
fragmentation similar to that in the insert/update pattern discussed in Chapter   6    , “Index Fragmentation.” 
Let’s look at an example and create a table with some data, as shown in Listing  9-7 . 

     Listing 9-7.    Triggers and fragmentation:  Table creation     

  create table dbo.Data 
 ( 
     ID int not null identity(1,1), 
     Value int not null, 
     LobColumn varchar(max) null, 
     constraint PK_Data 
     primary key clustered(ID) 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows 
 ,Numbers(Num) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Data(Value) 
     select Num from Numbers; 

    Now, let’s delete every other row in the table, looking at the index’s physical statistics before and after 
the deletion. The code is found in Listing  9-8 , and the results are shown in Figure  9-2 .  

http://dx.doi.org/10.1007/978-1-4842-1964-5_21
http://dx.doi.org/10.1007/978-1-4842-1964-5_6
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     Listing 9-8.    Triggers and fragmentation:  Physical index stats before and after deletion     

  select 
     alloc_unit_type_desc as [AllocUnit], index_level,page_count, 
     ,avg_page_space_used_in_percent as [SpaceUsed] 
     ,avg_fragmentation_in_percent as [Frag %] 
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Data'),1,null,'DETAILED'); 

   delete from dbo.Data where ID % 2 = 0; 

   select 
     alloc_unit_type_desc as [AllocUnit], index_level,page_count, 
     ,avg_page_space_used_in_percent as [SpaceUsed] 
     ,avg_fragmentation_in_percent as [Frag %] 
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Data'),1,null,'DETAILED'); 

  Figure 9-2.     Clustered index physical statistics   after DELETE statement without  AFTER DELETE trigger         

    As you should remember, the   DELETE  operation   does not physically remove the row from the page; it 
just marks it as a ghost row. In our example, the only thing that was changed is the amount of free space on 
the pages. 

 Now, let’s truncate the table and populate it with the same data as before with the code shown in 
Listing  9-9 . 

     Listing 9-9.    Triggers and fragmentation:  Populating table with data     

  truncate table dbo.Data; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows 
 ,Numbers(Num) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Data(Value) 
     select Num from Numbers; 
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    Next, let’s create the empty AFTER DELETE trigger on the table, as shown in Listing  9-10 . 

     Listing 9-10.    Triggers and fragmentation:  Trigger creation     

 create trigger trg_Data_AfterDelete 
 on dbo.data 
 after delete 
 as     
     return; 

   If you run the same deletion statement as you did previously, you will see the results shown in Figure  9-3 .  

  Figure 9-3.     Clustered index physical statistics   after DELETE statement with  AFTER DELETE trigger         

 Versioning tags increased the size of the rows and led to massive page splits and fragmentation during 
 DELETE  operations. Moreover, in the end, we almost doubled the number of pages in the index. 

 ■   Note    In some cases, when there is only in-row allocation involved (for example, when a table does not 
have either LOB columns or variable-length columns, which can potentially require it to store data in the row-
overflow pages), SQL Server optimizes that behavior and does not add 14 bytes of versioning tags to the rows.  

 Triggers are always running during the same transaction as the statement that fired them. We need 
to make trigger execution time as short as possible to minimize the duration of locks being held. In the 
event a trigger contains complex logic that can be executed outside of the transaction, you can consider 
implementing that logic using Service Broker. The trigger can send Service Broker a message, and Service 
Broker in turn can execute an activation procedure that implements the logic. 

 ■   Note    Coverage of Service Broker is outside of the scope of this book. You can read about it at    https://
msdn.microsoft.com/en-us/library/bb522893.aspx      .    

 

https://msdn.microsoft.com/en-us/library/bb522893.aspx
https://msdn.microsoft.com/en-us/library/bb522893.aspx
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     DDL Triggers 
  DDL triggers   allow you to define the code that executes in response to various DDL events, such as the 
creation, alteration, or deletion of database objects; changing permissions; and updating statistics. You 
can use these triggers for audit purposes, as well as to restrict some operations on database schemas. For 
example, the trigger shown in Listing  9-11  would prevent the accidental altering or dropping of a table, and it 
could be used as a safety feature in a production environment. 

     Listing 9-11.    DDL Triggers: Preventing the altering and dropping of  tables   in production   

 create trigger trg_PreventAlterDropTable on database 
 for alter_table, drop_table 
 as 
 begin 
     print 'Table cannot be altered or dropped with trgPreventAlterDropTable trigger enabled' ; 
     rollback; 
 end 

   While this approach helps with keeping tables and their schemas intact, it introduces one potential 
problem. DDL triggers fire  after  an operation is completed. As a result, using our example, if you have the 
session altering the table, SQL Server would perform the alteration before the trigger fires and then would 
roll back all of the changes. 

 Let’s prove it now. As a first step, let’s alter the trigger to capture information about the table structure 
during execution and then display a list of the columns in the table when it fires. You can see the code that 
does this in Listing  9-12 . 

     Listing 9-12.    DDL triggers: Trigger  code     

  alter trigger trg_PreventAlterDropTable on database 
 for alter_table 
 as 
 begin 
     declare 
         @objName nvarchar(257) =   
             eventdata().value('/EVENT_INSTANCE[1]/SchemaName[1]','nvarchar(128)') + 
                 '.' + eventdata().value('/EVENT_INSTANCE[1]/ObjectName[1]','nvarchar(128)'); 

       select column_id, name 
     from sys.columns 
     where object_id = object_id(@objName); 

       print 'Table cannot be altered or dropped with trgPreventAlterDropTable trigger enabled' 
     rollback; 
 end 
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    Now, let’s run the  ALTER TABLE  statement that adds a persistent computed column to the table, 
capturing I/O statistics during the execution. You can see the code for doing this in Listing  9-13 . 

     Listing 9-13.    DDL triggers:  ALTER TABLE statement     

 set statistics io on;   
 alter table Delivery.Addresses add NewColumn as AddressId persisted; 

   This alteration adds another column to every data row in the table. We can see the results in Figure  9-4 .  

  Figure 9-4.    Table structure in DDL trigger with I/O  statistics   of the operation       

 As you can see, when the trigger fires, the table has already been altered and a new column called 
 NewColumn  has been created. As a result, when the trigger rolls back the transaction, SQL Server needs to 
undo the table alteration. This process can be very inefficient, especially with large tables. 

 As you have already seen, we are using the  EVENTDATA()   function   from within the trigger to get 
information about the DDL event. This function returns an xml value that contains information about the 
type of event, session and DDL command, affected object, as well as other attributes. For instance, in our 
example, you would get the following  XML code  : 

   <EVENT_INSTANCE> 
     <EventType>ALTER_TABLE</EventType> 
     <PostTime>2015-11-28T12:26:44.453</PostTime> 
     <SPID>54</SPID> 
     <ServerName>SQL2016</ServerName> 
     <LoginName>SQL2016\Administrator</LoginName> 
     <UserName>dbo</UserName> 
     <DatabaseName>SqlServerInternals</DatabaseName> 
     <SchemaName>Delivery</SchemaName> 
     <ObjectName>Addresses</ObjectName> 
     <ObjectType>TABLE</ObjectType> 
     <AlterTableActionList> 
         <Create> 
             <Columns> 
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                 <Name>NewColumn</Name> 
             </Columns> 
         </Create> 
     </AlterTableActionList> 
     <TSQLCommand> 
         <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" 
                 ANSI_PADDING="ON" QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" /> 
         <CommandText>alter table Delivery.Addresses add NewColumn as AddressId persisted</
CommandText> 
     </TSQLCommand> 
 </EVENT_INSTANCE> 

   DDL triggers can be created on either the server or database scope. Some of the DDL events —   CREATE_
DATABASE   , for example — would require the trigger to have a server scope. Other events —ALTER_TABLE , for 
example — could use either of them. When such a trigger is created on the server scope, it would fire in the 
instance of the corresponding event in any database on the server. 

 In SQL Server Management Studio, database-level DDL triggers can be found under the 
 Programmability  node in the database. Server-level DDL triggers are displayed under the   Server Objects  
node  . You can also use   sys.triggers    and   sys.server_triggers    catalog views to find them with T-SQL.  

     Logon Triggers 
 Logon triggers fire after a user is successfully authenticated on the server, but before the session has been 
established. Some of the scenarios in which you can use logon triggers are to prevent the same user from 
opening multiple database connections or to restrict access to the system based on some custom criteria. 
The trigger in Listing  9-14  prevents the   HRLogin    login from accessing the system outside of business hours. 

     Listing 9-14.    Logon trigger   

  create trigger trg_Logon_BusinessHoursOnly 
 on all server 
 for logon 
 as 
 begin 
     declare 
         @currTime datetime = current_timestamp; 

       if original_login() = 'HRLogin' and 
          (    -- Check if today is weekend 
                     ((@@datefirst + datepart(dw, @currTime)) % 7 in (0,1)) or 
                     (cast(@currTime as time) >= '18:00:00') or 
                     (cast(@currTime as time) < '8:00:00') 
         ) 
             rollback; 
 end 
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    Like DDL triggers, there is an  EVENTDATA  function that returns XML with additional information about a 
logon event. An example of this  XML code   follows here: 

   <EVENT_INSTANCE> 
     <EventType>LOGON</EventType> 
     <PostTime>2016-11-18T17:55:40.090</PostTime> 
     <SPID>55</SPID> 
     <ServerName>SQL2016</ServerName> 
     <LoginName>SQL2016\Administrator</LoginName> 
     <LoginType>Windows (NT) Login</LoginType> 
     <SID>sid</SID> 
     <ClientHost>&lt;local machine&gt;</ClientHost> 
     <IsPooled>0</IsPooled> 
 </EVENT_INSTANCE> 

   You need to make sure that the logon trigger executes as fast as possible to prevent possible connection 
timeouts. You need to be very careful if the trigger is accessing external resources where response time is not 
guaranteed. Think about a CLR function that performs additional authentication against a corporate Active 
Directory, as an example. That function needs to set a short timeout for AD queries and correctly handle 
possible exceptions. Otherwise, nobody would be able to log in to SQL Server.  

     UPDATE() and COLUMNS_UPDATED() Functions 
  The   UPDATE  and  COLUMNS_UPDATED  functions   allow you to check if specific columns were affected by  INSERT  
or  UPDATE  operations. 

 The  UPDATE  function accepts a column name as the parameter and returns a Boolean value that shows 
if the column was affected by the statement that fired the trigger. For  INSERT  operations, it always returns 
 TRUE . For  UPDATE  operations, it would return  TRUE  if an attempt was made or, more specifically, if a column 
were present in the list of columns that needed to be updated,  regardless of whether it changed the value 
or not.  For example, in Listing  9-15 , the  UPDATE  statement does not change the value of column  C  in the row. 
However, the  UPDATE(C)  function in the trigger returns  TRUE  because column  C  was included in the list of the 
columns in the  UPDATE  statement. 

     Listing 9-15.     UPDATE() function   behavior   

  create trigger trg_T_AU 
 on dbo.T 
 after update 
 as 
 begin 
     -- Some code here 
     if update(C) 
         -- Some code here 
 end 
 go 

   declare @V int = null; 
 update T set C = IsNull(@V, C) where ID = 1; 
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    Listing  9-16  shows an example of a trigger that recalculates the order total when a line-item price or 
quantity changes. 

     Listing 9-16.     UPDATE() function   implementation example   

 create trigger trg_OrderLineItems_AfterUpdate 
 on dbo.OrderLineItems 
 after update 
 as 
 begin 
     -- Some code here 
     if update(Quantity) or update(Price) 
     begin 
         -- recalculating order total 
         update o 
         set     
             o.Total = 
                     (   select sum(li.Price * li.Quantity) 
                         from dbo.OrderLineItems li 
                         where li.OrderId = o.OrderId  ) 
         from dbo.Orders o 
         where o.OrderId in (select OrderId from inserted); 
     end; 
     -- Some code here 
 end 

   The   COLUMNS_UPDATED  function   returns the  varbinary  value, which represents a bitmask where each bit 
is set to 1 in case the column was affected by the statement. The order of the bits, from least significant to the 
most significant, corresponds to the  column_id  value from the  sys.columns  catalog view. 

 Assuming that the  column_id  for the  Quantity  column is 4 and the  column_id  for the  Price  column is 5, 
we can replace the  if  operator with the following bitmask comparison:  if columns_updated() & 24 <> 0 . 

 The integer value 24 represents the binary value 11000. The result of the bitwise  &  (and) operator would 
not be equal to 0 if either of the corresponding bits returned by the  columns_updated  function were set to  1.  

      Nested   and  Recursive      Triggers 
  Both DDL and DML triggers are nested when their actions fire triggers in other tables. For example, you 
can have an  AFTER UPDATE  trigger on Table A that updates Table B, which has its own   AFTER UPDATE  trigger   
defined. When nested triggers are enabled, the trigger on Table B would be fired. You can control that 
behavior by setting the  nested trigger  server configuration option. The code in Listing  9-17  disables the 
nested triggers execution. 

     Listing 9-17.    Disabling nested triggers   

 EXEC sp_configure 'show advanced options', 1; 
 GO 
 RECONFIGURE ; 
 GO 
 EXEC sp_configure 'nested triggers', 0 ; 
 GO 
 RECONFIGURE; 
 GO 
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   By default, nested triggers execution is enabled. In the case of infinite loops, SQL Server terminates the 
execution and rolls back the transaction when the nesting level exceeds 32. 

 Another database option,  recursive_triggers , controls if an  AFTER   trigger   can fire itself. There are 
two types of recursion. With  direct recursion , the trigger fires itself by performing the same action against 
the table where it has been defined; for example, when an   AFTER UPDATE  trigger   updates the same table. By 
default, direct recursion is disabled.  Indirect recursion , on the other hand, happens when Table A performs 
the action that fires the trigger in Table B, and the trigger on Table B performs the action that fires the same 
trigger on Table A. To prevent indirect recursion from happening, we need to disable the  nested triggers  
configuration option on the server level.  

 ■   Caution    You need to be careful about changing the nested triggers or recursive triggers options. 
Developers often rely on default trigger behavior, and you can break existing systems by changing those 
options.   

     First and Last Triggers 
 In a situation where a table has multiple   AFTER  triggers  , you can specify what triggers are firing first and last 
by using the   sp_settriggerorder  system   stored procedure. For example, the code in Listing  9-18  makes 
 trg_Data_AUAudit  the first trigger in the execution. 

     Listing 9-18.    Specifying triggers’ execution order   

 sp_settriggerorder @triggername = ' trg_Data_AUAudit', @order = 'first'
    ,@stmttype = 'UPDATE' 

   Each action— INSERT ,  UPDATE,  and  DELETE —can have its own first and last triggers specified. The value 
will be cleared when the trigger is altered. 

 You cannot control the order in which triggers fire in any other way.  

     CONTEXT_INFO and SESSION_ CONTEXT   
  Every session has up to 128 bytes of binary data value, called context information, associated with it. That 
value has the session scope, and it can be used when you need to pass some parameters to or from triggers. 
You can set the value with the  SET CONTEXT_INFO  statement and retrieve it with the   CONTEXT_INFO  function  . 

 As an example, let’s modify the DDL trigger  trg_PreventAlterDropTable  to allow table alteration when 
the context information contains the string  ALLOW_TABLE_ALTERATION . The code for doing this is shown in 
Listing  9-19 . 
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     Listing 9-19.    CONTEXT_INFO: Trigger code   

 create trigger trg_PreventAlterDropTable on database 
 for alter_table 
 as 
 begin 
     if isnull(convert(varchar(22),context_info()),'') <> 'ALLOW_TABLE_ALTERATION' 
     begin 
         print 'Table alteration is not allowed in such context'; 
         rollback; 
     end 
 end 

   To be able to alter the table, the session needs to set  CONTEXT_INFO , as shown in Listing  9-20 . 

     Listing 9-20.    CONTEXT_INFO: Setting CONTEXT_INFO value   

  declare 
         @CI varbinary(128) = convert(varbinary(22),'ALLOW_TABLE_ALTERATION'); 
 set context_info @CI 

   alter table Delivery.Addresses add NewColumn int null 

    Context binary data is also exposed through the  CONTEXT_INFO  column in the  sys.dm_exec_request , 
 sys.dm_exec_sessions , and  sys.processes  system views. 

 SQL Server 2016 introduced the concept of session-specific storage called  session context , which allows 
each session to store up to 256 KB of data in key-value pairs. As you can guess, session context is much more 
flexible and easier to work with compared to context information. 

 Listing  9-21  illustrates an example of a DDL trigger that allows table alterations based on the session-
context data. 

     Listing 9-21.    Session context: Trigger code   

  create table dbo.AlterationEvents 
 ( 
     OnDate datetime2(7) not null 
         constraint DEF_AlterationEvents_OnDate 
         default sysutcdatetime(), 
     Succeed bit not null, 
     RequestedBy varchar(255) not null, 
     Description varchar(8000) not null, 

       constraint PK_AlterationEvents 
     primary key clustered(OnDate) 
 ) 
 go 



CHAPTER 9 ■ TRIGGERS

211

   create trigger trg_PreventAlterDropTable_WithAudit on database 
 for alter_table 
 as 
 begin 
     set nocount on 
     declare 
         @AlterationAllowed bit = 1 
         ,@RequestedBy varchar(255) 
         ,@Description varchar(8000) 

       select 
         @AlterationAllowed = convert(bit,session_context(N'AlterationAllowed')) 
         ,@RequestedBy = convert(varchar(255),session_context(N'RequestedBy')) 
         ,@Description = convert(varchar(255),session_context(N'Description')); 

       if ( @AlterationAllowed != 1) or (IsNull(@RequestedBy,'') = '') or 
(IsNull(@Description,'') = '') 

     begin 
         set @AlterationAllowed = 0; 
         print 'Table alteration is not allowed in such context'; 
         rollback; 
     end; 

       insert into dbo.AlterationEvents(Succeed,RequestedBy,Description) 
     valu es(@AlterationAllowed,IsNull(@RequestedBy,'Not Provided')

,IsNull(@Description,'Not Provided')); 
 end 

    Listing  9-22  shows the code that populates the session context with values that allow for performing the 
alteration. 

     Listing 9-22.    Session context: Populating session-context data   

  exec sp_set_session_context @key = N'AlterationAllowed', @value = 1, @read_only = 0 
 exec sp_set_session_context @key = N'RequestedBy', @value = 'Developers', @read_only = 0 
 exec  sp_set_session_context @key = N'Description', @value = 'Client App v1.0.1 Support'

,@read_only = 0 

   alter table dbo.Config add SyncURL nvarchar(1024) not null; 

 ■      Note    You can read more about session context at    https://msdn.microsoft.com/en-us/library/
mt605113.aspx         

https://msdn.microsoft.com/en-us/library/mt605113.aspx
https://msdn.microsoft.com/en-us/library/mt605113.aspx
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     Summary 
 Triggers can help in certain scenarios. DDL triggers can validate and prevent unwanted metadata changes 
in the system. Logon triggers can help implement custom authentication. DML triggers can help centralize 
some logic in the code, especially when there is no dedicated data access tier in the system. One example 
is the implementation of an audit-trail function when you want to capture information about users who 
change data. While there are other approaches to implementing such tasks, trigger-based implementation 
can be the simplest. 

 Unfortunately, triggers come at a high cost.  AFTER  DML triggers introduce overhead related to 
the maintenance of  inserted  and  deleted  virtual tables. This leads to extra  tempdb  load and index 
fragmentation . INSTEAD OF  triggers could lead to system supportability issues. It is easy to forget or 
overlook the logic implemented in such triggers. 

 DDL triggers run after schema changes are done. While you can roll back those changes from within the 
triggers, such operations can be very expensive in terms of I/O, CPU, and transaction log activity, especially 
with large tables. 

 Finally, logon triggers can prevent users from logging into the system when incorrectly implemented 
due to bugs in the logic or connection timeouts introduced by long execution times, especially when those 
triggers access external resources. 

 Triggers always run in the context of a transaction. Any active locks — that is, data and schema — will be 
held while a trigger is running and until the transaction is completed. You need to make your triggers as 
quick and efficient as possible and avoid any actions that could potentially take a long time. For example, 
it is a bad idea to implement an audit-trail function that uses an external (linked) server for the logging. If 
that server goes down, it will take a long time for a connection attempt to timeout. In addition, if you did not 
handle the exception properly, it would roll back the original transaction. 

 Keeping all of these implications in mind, you need to be very careful when dealing with triggers. It is 
better to avoid them unless absolutely necessary.     
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    CHAPTER 10   

 Views                          

 Views represent virtual tables defined by underlying queries, and they add another layer of abstraction to the 
system. Views hide implementation details and can present queries with complex joins and aggregation as 
a single table. Moreover, views can be used to restrict access to the data and provide just a subset of the rows 
and columns to users. 

 There are two different kinds of views available in SQL Server: regular views and indexed (materialized) 
views. Let’s look at them in detail. 

      Views   
  Regular views  are just the metadata. When you reference a view in your queries, SQL Server replaces it with 
the query from the view definition, then optimizes and executes the statement, as the view is not actually 
present. Views work in a way similar to the  #define  macro in the C programming language, where a pre-
processor replaces the macro with its definition during compilation. 

 There are two main benefits provided by views. First, they simplify security administration in the 
system. You can use views as another security layer and grant users permissions on the views rather than on 
the actual tables. Moreover, views can provide users with only a subset of the data, filtering out of some rows 
and columns from the original tables. 

 Consider a situation where you have a table that contains information about a company’s employees, 
which has both private and public attributes. The code that creates this table is shown in Listing  10-1 . 

     Listing 10-1.    Views and security:  Table creation     

  create table dbo.Employees 
 ( 
     EmployeeId int not null, 
     Name nvarchar(100) not null, 
     Position nvarchar(100) not null, 
     Email nvarchar(256) not null, 
     DateOfBirth date not null, 
     SSN varchar(10) not null, 
     Salary money not null, 
      -- specifies if employee info needs to be listed in the intranet 

PublishProfile bit not null,  

       constraint PK_Employee 
     primary key clustered(EmployeeID) 
 ) 
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    Let’s assume that you have a system that displays the company directory on the company intranet. You 
can define the view that selects public information from the table, filtering out the employees who do not 
want their profiles to be published, and then grant users  SELECT  permission on the view rather than on the 
table. You can see this code in Listing  10-2 . 

     Listing 10-2.    Views and security:  View creation     

  create view dbo.vPublicEmployeeProfiles(EmployeeId, Name, Position, Email) 
 as 
     select EmployeeId, Name, Position, Email 
     from dbo.Employees 
     where PublishProfile = 1 
 go 

   grant select on object::dbo.vPublicEmployeeProfiles to [IntranetUsers]; 

    While you can accomplish this task without a view by using column-level permissions and an 
additional filter in the queries, the view approach is simpler to develop and maintain. 

 ■   Note    In SQL Server 2016, you can use row-level security to exclude rows from result sets.  

 Another benefit of views is that they abstract the database schema from the client applications. You can 
alter the database schema, keeping it transparent to the applications, by altering the views and changing the 
underlying queries. It is then transparent to the client applications as long as the view’s interface remains the 
same. 

 In addition, you can hide complex implementation details and table joins and use views as a simple 
interface to client applications. This approach is a bit dangerous, however. It could lead to unnecessary and 
unexpected performance overhead in the system. You should also avoid creating nested views that reference 
other views in underlying queries because of optimization challenges and performance issues they could 
introduce. 

 Let’s look at a few examples and assume that we have an order-entry system with two tables:  dbo.
Orders  and  dbo.Clients . The code to create these tables is shown in Listing  10-3 . 

     Listing 10-3.    Views and joins: Tables  creation     

  create table dbo.Clients 
 ( 
     ClientId int not null, 
     ClientName varchar(32), 
     constraint PK_Clients 
     primary key clustered(ClientId) 
 ); 
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   create table dbo.Orders 
 ( 
     OrderId int not null identity(1,1), 
     Clientid int not null, 
     OrderDate datetime not null, 
     OrderNumber varchar(32) not null, 
     Amount smallmoney not null, 
     constraint PK_Orders 
     primary key clustered(OrderId) 
 ); 

    Let’s create a view that returns order information, including client names, as shown in Listing  10-4 . 

     Listing 10-4.    Views and joins:  vOrders view creation     

 create view dbo.vOrders(OrderId, Clientid, OrderDate, OrderNumber, Amount, ClientName) 
 as 
     select o.OrderId, o.ClientId, o.OrderDate, o.OrderNumber, o.Amount, c.ClientName 
     from dbo.Orders o join dbo.Clients c on 
             o.Clientid = c.ClientId; 

   This implementation is very convenient for developers. By referencing the view, they have complete 
information about the orders without worrying about the underlying join. When a client application wants 
to select a specific order, it could issue a  SELECT , as shown in Listing  10-5 , and get an execution plan, as 
shown in Figure  10-1 .  

      Listing 10-5.    Views and joins: Selecting all columns from vOrders  view     

 select OrderId, Clientid, ClientName, OrderDate, OrderNumber, Amount 
 from dbo.vOrders 
 where OrderId = @OrderId 

   This is exactly what you were expecting. SQL Server replaces the view with an underlying query that 
selects data from the  dbo.Orders  table, joining it with the data from the  dbo.Clients  table. However, if you 
run a query that returns columns only from the  dbo.Orders  table, as shown in Listing  10-6 , you would have 
an unexpected execution plan, as shown in Figure  10-2 .  

  Figure 10-1.    Execution plan when selecting all columns from the view       
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      Listing 10-6.    Views and joins: Selecting columns from the Orders table using vOrders view   

 select OrderId, OrderNumber, Amount 
 from dbo.vOrders 
 where OrderId = @OrderId 

   As you can see, SQL Server still does the join, even if you do not need  ClientName  column data. It makes 
sense; you are using an inner join in the view, and SQL Server needs to exclude the rows from the  dbo.
Orders  table that do not have corresponding rows in the  dbo.Clients  table. 

 There are two options for how you can address this and eliminate the unnecessary join from the 
execution plan. The first is to use an outer join rather than the inner one, as shown in Listing  10-7 .  

     Listing 10-7.    Views and joins: vOrders2 view  creation        

 create view dbo.vOrders2(OrderId, Clientid, OrderDate, OrderNumber, Amount, ClientName) 
 as 
     select o.OrderId, o.ClientId, o.OrderDate, o.OrderNumber, o.Amount, c.ClientName 
     from dbo.Orders o  left outer join  dbo.Clients c on 
             o.Clientid = c.ClientId; 

   Now, if you run the  SELECT  statement, as shown in Listing  10-8 , you would have an execution plan 
without an inner join, as shown in Figure  10-3 .  

     Listing 10-8.    Views and joins: Selecting columns from the Orders table using vOrders2 view   

 select OrderId, OrderNumber, Amount 
 from dbo.vOrders2 
 where OrderId = @OrderId 

  Figure 10-2.    Execution plan when selecting columns that belong to the Orders table only       

  Figure 10-3.    Execution plan with left outer join       
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   While it does the trick, outer joins restrict the choices available to the Query Optimizer when generating 
execution plans. Another thing to keep in mind is that you changed the behavior of the view. If you can now 
have orders that do not belong to clients in the system, then the new implementation would not exclude 
them from the result set. This can introduce side effects and break other code that references the view and 
relies on the old behavior of the inner join. You must analyze the data and subject area before implementing 
join elimination using outer joins. 

 A better option is adding a foreign key constraint to the  dbo.Orders  table, as shown in Listing  10-9 . 

       Listing 10-9.    Views and joins: Adding a foreign-key  constraint        

 alter table dbo.Orders with check 
 add constraint FK_Orders_Clients 
 foreign key(ClientId) 
 references dbo.Clients(ClientId) 

   A trusted foreign key constraint guarantees that every order has a corresponding client row. As a result, 
SQL Server can eliminate the join from the plan. Figure  10-4  shows the execution plan if you query the  dbo.
vOrders  view using the code from Listing  10-6 , which selects data from the  dbo.Orders  table only.  

  Figure 10-4.    Execution plan with inner join when foreign-key constraint is present       

 Unfortunately, there is no guarantee that SQL Server will eliminate all unnecessary joins, especially in 
very complex cases with many tables involved. Moreover, SQL Server does not eliminate joins if the foreign 
key constraints include more than one column. 

 Now, let’s review a situation where a system collects location information for devices that belong to 
multiple companies. The code that creates the tables is shown in Listing  10-10 . 

     Listing 10-10.    Join elimination and multi-column foreign key constraints: Table creation   

  create table dbo.Devices 
 ( 
     CompanyId int not null, 
     DeviceId int not null, 
     DeviceName nvarchar(64) not null, 
 ); 

   create unique clustered index IDX_Devices_CompanyId_DeviceId 
 on dbo.Devices(CompanyId, DeviceId); 

   create table dbo.Positions 
 ( 
     CompanyId int not null, 
     OnTime datetime2(0) not null, 
     RecId bigint not null, 
     DeviceId int not null, 
     Latitude decimal(9,6) not null, 
     Longitute decimal(9,6) not null, 
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        constraint FK_Positions_Devices  
      foreign key(CompanyId, DeviceId)  
      references dbo.Devices(CompanyId, DeviceId)  
 ); 

   create unique clustered index IDX_Positions_CompanyId_OnTime_RecId 
 on dbo.Positions(CompanyId, OnTime, RecId); 

   create nonclustered index IDX_Positions_CompanyId_DeviceId_OnTime 
 on dbo.Positions(CompanyId, DeviceId, OnTime); 

    Let’s create a view that joins these tables, as shown in Listing  10-11 . 

     Listing 10-11.    Join elimination and multi-column foreign key constraints: View creation   

 create view dbo.vPositions(CompanyId, OnTime, RecId, DeviceId, DeviceName, Latitude, 
Longitude) 
 as 
     select p.CompanyId, p.OnTime, p.RecId, p.DeviceId, d.DeviceName, p.Latitude, p.Longitude 
     from dbo.Positions p join dbo.Devices d on 
             p.CompanyId = d.CompanyId and p.DeviceId = d.DeviceId; 

   Now, let’s run the  SELECT  shown in Listing  10-12 . This returns the columns from the  dbo.Positions  
table only and produces the execution plan shown in Figure  10-5 .  

     Listing 10-12.    Join elimination and multi-column foreign key constraints: Select from vPositions view   

 select OnTime, DeviceId, Latitude, Longitude 
 from dbo.vPositions 
 where CompanyId = @CompanyId and OnTime between @StartTime and @StopTime 

  Figure 10-5.    Execution plan with multi-column foreign key constraints       

   Even with a foreign key constraint in place, you still have the join. SQL Server does not perform join 
elimination when a foreign key constraint has more than one column. Unfortunately, there is very little 
you can do in such a situation to perform join elimination. You can use the approach with the outer join, 
although it is worth considering querying the tables directly rather than using views in such a scenario. 
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 Finally, SQL Server does not perform join elimination, even with single-column foreign key constraints, 
when tables are created in  tempdb . You need to keep this in mind if you use  tempdb  as the staging area for the 
ETL processes when you load data from external sources and do some processing and data transformation 
before inserting the data into a user database.    

     Indexed (Materialized)  Views   
 As opposed to views, which are just metadata,  indexed views  materialize the data from the view queries, 
storing it in the database in a way similar to tables. Then, every time the base tables are updated, SQL Server 
synchronously refreshes the data in the indexed views, thus keeping them up to date. 

 In order to define an indexed view,    you need to create a regular view using the  schemabinding  option. 
This option  binds  the view and underlying tables, and it prevents any alteration of the tables that affects the 
view. 

 Next, you need to create a unique clustered index on the view. At this point, SQL Server  materializes  the 
view data in the database. You can also create nonclustered indexes if needed, after the clustered index has 
been created. When indexes are defined as unique, SQL Server enforces the rule and fails any modification 
of the base tables if there is a uniqueness violation. You can rely on this behavior to support uniqueness on 
a subset of the values in SQL Server 2005, or in complex cases, which are not supported by filtered indexes. 
One such example is the filter that includes  OR  conditions. 

 There are plenty of requirements and restrictions in order for a view to be indexable. To name just a few, 
a view cannot have subqueries, semi or outer joins, reference LOB columns, or have  UNION ,  DISTINCT,  or 
 TOP  specified. There are also restrictions on the  aggregate functions      that can be used with a view. Finally, a 
view needs to be created with specific  SET  options, and it can reference only deterministic functions, which 
always return the same result when they are called with a specific set of parameter values. 

 ■   Note    Look at Books Online at    http://technet.microsoft.com/en-us/library/ms191432.aspx      for a 
complete list of requirements and restrictions.  

 ■   Tip    You can use the function  OBJECTPROPERTY  with parameter  IsIndexable  to determine if you can create 
a clustered index on the view. The following select returns 1 if the view  vPositions  is indexable: 

   SELECT OBJECTPROPERTY (OBJECT_ID(N'dbo.vPositions','IsIndexable') 

    One instance where an indexed view is useful is for the optimization of queries that include joins and 
aggregations on large tables. Let’s look at this situation, assuming that you have the  dbo.OrderLineItems  
and  dbo.Products  tables in the system. The code that creates these tables is shown in Listing  10-13 . 

     Listing 10-13.    Indexed views:  Table creation     

  create table dbo.Products 
 ( 
     ProductID int not null identity(1,1), 
     Name nvarchar(100) not null, 
     constraint PK_Product 
     primary key clustered(ProductID) 
 ); 

http://technet.microsoft.com/en-us/library/ms191432.aspx
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   create table dbo.OrderLineItems 
 ( 
     OrderId int not null, 
     OrderLineItemId int not null identity(1,1), 
     Quantity decimal(9,3) not null, 
     Price smallmoney not null, 
     ProductId int not null, 

       constraint PK_OrderLineItems 
     primary key clustered(OrderId,OrderLineItemId), 

       constraint FK_OrderLineItems_Products 
     foreign key(ProductId) 
     references dbo.Products(ProductId) 
 ); 

   create index IDX_OrderLineItems_ProductId on dbo.OrderLineItems(ProductId); 

    Now, let’s imagine a dashboard that displays information about the ten most popular products sold to 
date. The dashboard can use the query shown in Listing  10-14 . 

     Listing 10-14.    Indexed views:  Dashboard query     

 select top 10 p.ProductId, p.name as ProductName, sum(o.Quantity) as TotalQuantity 
 from 
     dbo.OrderLineItems o join dbo.Products p on 
         o.ProductId = p.ProductId 
 group by 
         p.ProductId, p.Name   
 order by 
         TotalQuantity desc 

   If you were to run this dashboard query in the system, you would receive the execution plan shown in 
Figure  10-6 .  

  Figure 10-6.    Execution plan of a query that selects the top 10 most popular products       
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 As you can see, this plan scans and aggregates the data from the  dbo.OrderLineItems  table, which 
is expensive in terms of I/O and CPU. Alternatively, you can create an indexed view that does the same 
aggregation and materializes the results in the database. The code to create this view is shown in Listing  10-
15 . On a side note, one of the requirements for indexed views is the presence of a  COUNT_BIG(*)  aggregation 
when the  GROUP BY  clause is present. 

       Listing 10-15.    Indexed views: Indexed view  creation     

  create view dbo.vProductSaleStats(ProductId, ProductName, TotalQuantity, Cnt) 
 with schemabinding 
 as 
     select p.ProductId, p.Name, sum(o.Quantity), count_big(*) 
     from dbo.OrderLineItems o join dbo.Products p on 
             o.ProductId = p.ProductId 
     group by 
             p.ProductId, p.Name   
 go 

   create unique clustered index IDX_vProductSaleStats_ProductId 
 on dbo.vProductSaleStats(ProductId); 

   create nonclustered index IDX_vClientOrderTotal_TotalQuantity 
 on dbo.vProductSaleStats(TotalQuantity desc) 
 include(ProductName); 

    The code in Listing  10-15  creates a unique clustered index on the  ProductId  column as well as a 
nonclustered index on the  TotalQuantity  column. 

 Now you can select data directly from the view, as shown in Listing  10-16 . 

     Listing 10-16.    Indexed views: Selecting data from the indexed  view     

 select top 10 ProductId, ProductName, TotalQuantity   
 from dbo.vProductSaleStats 
 order by TotalQuantity desc 

    The execution plan shown in Figure  10-7  is much more efficient.  

  Figure 10-7.    Execution plan of a query that selects the top 10 most popular products utilizing an indexed view       
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 The part of the plan in the highlighted area is responsible for indexed view maintenance. This portion of 
the plan could introduce a lot of overhead when data in the table is highly volatile, which leads us to a very 
important conclusion:  indexed views work best when the benefits we get while selecting the data exceed the 
overhead of maintaining the view during data modifications.  Simply said, indexed views are most beneficial 
when the underlying data is relatively static. Think about data warehouse systems where a typical workload 
requires a lot of joins and aggregations and the data is updating infrequently, perhaps based on some 
schedule, as an example. 

 ■   Tip    Always test the performance of the batch data update when there is an indexed view referencing 
a table. In some cases, it would be faster to drop and recreate the view rather than keeping it during such 
operations.  

 In an  OLTP system  ,    you need to consider carefully the pros and cons of indexed views on a case-by-
case basis. It is better to avoid indexed views if the underlying data is too volatile. The preceding view we 
created is an example of what should  not  be done in systems where data—in this case, data in the  dbo.
OrderLineItems  table — is constantly changing. 

 Another area where indexed views can be beneficial is in join optimization. One system I dealt with 
had a hierarchical security model with five levels. There were five different tables, and each of them stored 
information about specific permissions for every level in the hierarchy. Almost every request in the system 
checked permissions by joining the data from those tables. I optimized that part of the system by creating 
an indexed view that performed a five-table join so that every request performed just a single index seek 
operation against the indexed view. Even though it was an OLTP system, the data in the underlying tables 
was relatively static, and the benefits achieved exceeded the overhead of the indexed view maintenance. 

  Figure 10-8.    Execution plan of a query that inserts data into OrderLineItems  table         

 As always, “there ain’t no such thing as a free lunch.” Now, SQL Server needs to maintain the view. Each 
time you insert or delete the  dbo.OrderLineItem  row or, perhaps, modify the quantity or product there, SQL 
Server needs to update the data in the indexed view in addition to in the main table. 

 Let’s look at the execution plan of the  INSERT  operation, as shown in Figure  10-8 .  
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 While indexed views can be created in every edition of SQL Server, their behavior is indeed edition-
specific. Non-Enterprise editions of SQL Server need to reference a view directly in queries using the  WITH 
(NOEXPAND)  hint in order to use data from the indexed view. Without the hint, SQL Server expands the 
indexed view definition and replaces it with an underlying query similar to regular views. Enterprise and 
Developer editions do not require such hints. SQL Server can utilize indexed views even when you do not 
reference them in the query. 

 Now, let’s return to our previous example. In Enterprise Edition, when you run the query shown in 
Listing  10-17 , you would still get an execution plan that utilizes it, as shown in Figure  10-9 .  

     Listing 10-17.    Indexed views: Dashboard query   

 select top 10 p.ProductId, p.name as ProductName, sum(o.Quantity) as  TotalQuantity   
 from 
     dbo.OrderLineItems o join dbo.Products p on 
         o.ProductId = p.ProductId 
 group by 
     p.ProductId, p.Name   
 order by 
     TotalQuantity desc 

  Figure 10-10.    Execution plan of the query (Enterprise or Developer editions)       

  Figure 10-9.    Execution plan of a query that does not reference the indexed view (Enterprise or Developer 
editions)       

   In fact, the Enterprise Edition of SQL Server can use indexed views for any queries, regardless of how 
close they are to the view definition. For example, let’s run a query that selects a list of all of the products 
ever sold in the system. This query is shown in Listing  10-18 . 

     Listing 10-18.     Indexed views  : Query that returns a list of all of the products ever sold in the system   

 select p.ProductId, p.Name 
 from dbo.Products p 
 where 
         exists ( select * 
                  from dbo.OrderLineItems o 
                  where p.ProductId = o.ProductId ) 

   SQL Server recognizes that it would be cheaper to scan the indexed view rather than perform the join 
between two tables, and it generates a plan, as shown in Figure  10-10 .  
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 In some cases, you can use such behavior if you need to optimize systems where you cannot change the 
database schema and queries. If you are working with Enterprise Edition, you can create the indexed views, 
and the optimizer would start using them for some of the queries, even when those queries do not reference 
the views directly. Obviously, you need to carefully consider the indexed view maintenance overhead that 
you would introduce with such an approach.  

     Partitioned Views 
  Partitioned views  combine data via a  UNION    ALL       of multiple tables stored on the same or different database 
servers. One of the common use cases for such an implementation is data partitioning; that is, when you 
split data among multiple tables based on some criteria — for example, how recent it is — and then combine the 
data from all the tables via the partitioned view. 

 Another case is   data sharding   , which is when you separate (shard) data between multiple servers 
based on some criteria. For example, a large, Web-based shopping-cart system can shard data based on the 
geographic locations of the customers. In such cases, partitioned views can combine the data from all shards 
and use it for analysis and reporting purposes. 

 ■   Note    We will discuss partitioned views in greater detail in Chapter   16    , “Data Partitioning.”   

      Updatable Views   
 Client applications can modify data in underlying tables through a view. It can reference the view in DML 
statements, although there is a set of requirements to be met. To name just a few, all modifications must 
reference columns from only one base table. Those columns should be physical columns and should not 
participate in calculations and aggregations. 

 ■   Note    You can see the full list of requirements in Books Online at    http://technet.microsoft.com/en-
us/library/ms187956.aspx     .  

 These restrictions are the biggest downside of this approach. One of the reasons we are using views is 
to add another layer of abstraction that hides the implementation details. By doing updates directly against 
views, we are limited in how we can alter them. If our changes violate some of the requirements for making 
the view updatable, the DML statements issued by the client applications would fail. 

 Another way to make a view updatable is by defining an   INSTEAD OF  trigger.      While this gives us the 
flexibility to re-factor views in the manner we want, this approach is usually slower than directly updating 
the underlying tables. It also makes the system harder to support and maintain; you must remember that 
data in tables can be modified through views. 

 Finally, you can create the view with the   CHECK OPTION  parameter.      When this option is specified, SQL 
Server checks if the data inserted or updated through the view conforms to criteria set in the view’s  SELECT  
statement. It guarantees that the rows will be visible through the view after the transaction is committed. For 
example, look at the table and view defined in Listing  10-19 . 

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
http://technet.microsoft.com/en-us/library/ms187956.aspx
http://technet.microsoft.com/en-us/library/ms187956.aspx
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     Listing 10-19.    CHECK OPTION: Table and view creation   

  create table dbo.Numbers(Number int) 
 go 

   create view dbo.PositiveNumbers(Number) 
 as 
     select Number 
     from dbo.Numbers 
     where Number > 0 
 with check option 
 go 

    Either of the statements shown in Listing  10-20  would fail because they violate the criteria  Number > 0  
specified in the view query. 

     Listing 10-20.    CHECK OPTION:  Failed statements     

 insert into dbo.PositiveNumbers(Number) values(-1) 
 update dbo.PositiveNumbers set Number = -1 where Number = 1 

   You should consider creating a view with  CHECK OPTION  when the view is being used to prevent access 
to a subset of the data and when client applications update the data through the view. Client applications 
would not be able to modify data outside of the allowed scope.  

     Summary 
 Views are a powerful and useful tool that can help in several different situations. Regular views can provide 
a layer of abstraction from both the security and implementation standpoints. Indexed views can help with 
system optimization, and they reduce the number of joins and aggregations that need to be performed. 

 As with other SQL Server objects, views come at a cost. Regular views can negatively affect performance 
by introducing unnecessary joins. Indexed views introduce overhead during data modifications, and you 
need to maintain their indexes in a manner similar to that for those defined on regular tables. You need to 
keep these factors in mind when designing views. 

 Views are generally better suited to reading data. Updating data through views is a questionable 
practice. Using  INSTEAD OF  triggers is usually slower than directly updating the underlying tables. 
Without triggers, there are restrictions that you have to follow to make views updatable. Changing the 
implementation of the views could lead to side effects and break client applications. 

 As with the other database objects, you need to consider the pros and cons of views, especially 
when you design the dedicated data access tier. Another option you have at your disposal is using stored 
procedures. Even though views are generally simpler to use in client applications, you can add another 
filter predicate on the client side, for example, without changing anything in the view definition, and 
stored procedures provide more flexibility and control over implementation during the development and 
optimization stages.     
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    CHAPTER 11   

 User-Defined Functions                          

 This chapter discusses multi-statement and inline user-defined functions. It analyzes how SQL Server 
executes multi-statement functions and the performance impact they introduce. After that, this chapter 
demonstrates a technique that can help address those performance issues by converting multi-statement 
functions into inline ones. 

     Much Ado About Code Reuse 
 One of the first things that developers learn about in their career is the benefits of code reuse. Encapsulating 
and reusing code into separate libraries speeds up the development and testing process and reduces the 
number of bugs in the system. 

 Unfortunately, this approach does not always work well in the case of T-SQL. From a development and 
testing standpoint, code reuse definitely helps. However, from a performance standpoint, it could introduce 
unnecessary overhead when implemented incorrectly. One such example is a “one size fits all” approach 
where developers create a single stored procedure or function and then use it to support different use cases. 
For example, consider a system with two tables —dbo.Orders  and  dbo.Clients— as shown in Listing  11-1 . 

     Listing 11-1.    Code reuse:  Table creation     

  create table dbo.Clients 
 ( 
     ClientId int not null, 
     ClientName varchar(32), 

       constraint PK_Clients 
     primary key clustered(ClientId) 
 ); 

   create table dbo.Orders 
 ( 
     OrderId int not null identity(1,1), 
     Clientid int not null, 
     OrderDate datetime not null, 
     OrderNumber varchar(32) not null, 
     Amount smallmoney not null, 
     IsActive bit not null, 
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       constraint PK_Orders 
     primary key clustered(OrderId) 
 ); 

   create index IDX_Orders_OrderNumber 
 on dbo.Orders(OrderNumber) 
 include(IsActive, Amount) 
 where IsActive = 1; 

    Let’s assume that the system has a stored procedures – based data access tier, and one of these 
procedures provides information about all of the active orders in the system. The stored procedure code is 
shown in Listing  11-2 . 

       Listing 11-2.    Code reuse: Stored procedure that returns a list of active orders in the  system        

 create proc dbo.usp_Orders_GetActiveOrders 
 as 
     select o.OrderId, o.ClientId, c.ClientName, o.OrderDate, o.OrderNumber, o.Amount 
     from dbo.Orders o join dbo.Clients c on 
             o.Clientid = c.ClientId 
     where IsActive = 1; 

   A client application can call this stored procedure whenever an order list is needed. For example, it 
can have a page that displays the list with all order attributes as well as a drop-down control that shows only 
order numbers and amounts. In both cases, the same stored procedure can be used — applications just need 
to ignore any unnecessary columns in the output while populating the drop-down list. 

 While this approach helps us to reuse the code, it also reuses the execution plan. When we run the 
stored procedure, we will get the plan, as shown in Figure  11-1 .  

  Figure 11-1.    Execution plan of the dbo.usp_Orders_GetActiveOrders stored procedure       

 This execution plan would be used in both cases. However, the drop-down control does not need all of 
the order attributes or the client information, and it can get the required information with the query shown 
in Listing  11-3 . 
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     Listing 11-3.    Code reuse: Select that returns the information required for drop-down control   

 select OrderId, OrderNumber, Amount 
 from dbo.Orders 
 where IsActive = 1 

   Such a query would have a much more efficient execution plan without the join operator, as shown in 
Figure  11-2 .  

  Figure 11-2.    Execution plan of query that returns order numbers and amounts for the drop-down control       

 As you can see, by reusing the same stored procedure, we introduced a suboptimal execution plan with 
an unnecessary join and a  clustered index scan  as opposed to a filtered, nonclustered index scan for one of 
our use cases. We could also have very similar problems with user-defined functions, which we are going to 
discuss in this chapter. 

 There are three types of user-defined functions available in SQL Server:  scalar ,  multi-statement 
table-valued,  and  inline table-valued . However, I would rather use a different classification based on their 
execution behavior and impact; that is,  multi-statement  and  inline  functions.    

      Multi-Statement Functions   
 The code in a  multi-statement function  starts with a  BEGIN  and ends with an  END  keyword. It does not 
matter how many statements they have; that is, functions with a single  RETURN  statement are considered 
multi-statement as long as the  BEGIN  and  END  keywords are present. 

 There are two different types of multi-statement functions. The first is the   scalar  function  , which returns 
a single scalar value. The second type is the  table-valued  function, which builds and returns a table result set 
that can be used anywhere in the statement. 

 Unfortunately, multi-statement function calls are expensive and introduce significant CPU overhead. 
Let’s populate the  dbo.Orders  table that we already defined with 100,000 rows and create a scalar function 
that truncates the time part of the  OrderDate  column. The function code is shown in Listing  11-4 . 

     Listing 11-4.    Multi-statement functions overhead: Scalar function  creation           

 create function dbo.udfDateOnly(@Value datetime) 
 returns datetime 
 with schemabinding 
 as 
 begin 
     return (convert(datetime,convert(varchar(10),@Value,121))); 
 end 

   This function accepts the  datetime  parameter and converts it to a  varchar  in a way that truncates the 
time part of the value. As a final step, it converts that  varchar  back to  datetime  ,  and it returns that value to 
the caller. This implementation is terribly inefficient. It introduces the overhead of both the function call and 
the type conversions. However, we often see it in various production systems. 
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 Now, let’s run the statement shown in Listing  11-5 . This query counts the number of orders with an 
 OrderDate  of March 1, 2013. 

      Listing 11-5.    Multi-statement functions overhead: Select that uses scalar function   

 select count(*) 
 from dbo.Orders 
 where dbo.udfDateOnly(OrderDate) =  '2013-03-01' 

   The execution time on my computer is as follows: 

   SQL Server Execution Times: 
    CPU time = 468 ms,  elapsed time = 509 ms 

   For the next step, let’s try to perform a type conversion without the scalar function, as shown in 
Listing  11-6 . 

      Listing 11-6.    Multi-statement functions overhead: Select  without scalar function        

 select count(*) 
 from dbo.Orders 
 where convert(datetime,convert(varchar(10),OrderDate,121))) =  '2013-03-01' 

   The execution time for this query is as follows: 

   SQL Server Execution Times: 
    CPU time = 75 ms,  elapsed time = 82 ms. 

   You can see that the statement runs six times faster without any multi-statement call overhead involved, 
although there is a better way to write this query. You can check if  OrderDate  is within the date interval, as 
shown in Listing  11-7 . 

      Listing 11-7.    Multi-statement functions overhead: Select without  type conversion        

 select count(*) 
 from dbo.Orders 
 where OrderDate >=  '2013-03-01' and OrderDate < '2013-03-02' 

   This approach cuts execution time to the following: 

   SQL Server Execution Times: 
    CPU time = 0 ms,  elapsed time = 5 ms. 

   As you can see, user-defined multi-statement function and type conversion operations, which can be 
considered as system functions, introduce huge overhead and significantly increase query execution time. 
However, you would hardly notice it in the execution plans. Figure  11-3  shows the execution plan for the 
queries that use user-defined functions (Listing  11-5 ) and date interval (Listing  11-7 ).         
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 A user-defined function adds the  filter  operator to the execution plan.       However, the costs for both 
operator and query are way off base. 

 If you run SQL Server Profiler and capture the  SP:Starting  event, you would see the screen shown in 
Figure  11-4 . As you can see, SQL Server calls the function 100,000 times—once for every row.  

  Figure 11-3.    Execution plans with and without a  scalar user-defined function         

  Figure 11-4.    SQL trace with SP:Starting  event            

 Another important factor is that  multi-statement functions   make the predicates non-SARGable. Let’s 
add an index on the  OrderDate  column with the  CREATE NONCLUSTERED INDEX IDX_Orders_OrderDate ON 
dbo.Orders(OrderDate)  statement and then check the execution plans of the queries. 
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 As you can see in Figure  11-5 , both queries are now using a nonclustered index. However, the first query 
scans the entire index and calls the function for every row within it, while the second query performs an 
 index seek  operation.  

  Figure 11-5.    Execution plans of the queries with a non-clustered index on the OrderDate  column            

 There are also some limitations on how the Query Optimizer works with multi-statement functions. 
First, it does not factor function-execution overhead into the plan. As you already saw in Figure  11-4 , there is 
an additional filter operator in the execution plan, although SQL Server expects this operator to have a very 
low cost, which is not even close to the real overhead it introduces. Moreover, SQL Server does not factor the 
cost of the operators within the function into the execution plan cost of the calling query. 

 To illustrate this behavior, let’s create a function that returns the number of orders for a specific client 
based on the  ClientId  provided as the parameter. This function is shown in Listing  11-8 . 

     Listing 11-8.    Multi-statement function costs and estimates: Function  creation        

 create function dbo.ClientOrderCount(@ClientId int) 
 returns int 
 with schemabinding 
 as 
 begin 
     return 
     ( 
         select count(*) 
         from dbo.Orders 
         where ClientId = @ClientId 
     ) 
 end 

   Now, let’s call this function with the  SELECT dbo.ClientOrderCount(1)  statement and look at the 
execution plan, shown in Figure  11-6 .  
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 As you can see, SQL Server displays the execution plans for two queries. There are no indexes on the 
 ClientId  column, and the function needs to perform a clustered index scan on the  dbo.Orders  table even 
though the Query Optimizer does not factor the estimated cost of the function into the outer query cost. 

 Another very important limitation is that with the legacy cardinality estimator (70) Query Optimizer 
always estimates that a multi-statement table-valued function returns just a single row, regardless of the 
statistics available. New cardinality estimator models (120 and 130) in SQL Server 2014 and 2016 always 
estimate that a multi-statement table-valued function returns 100 rows. 

 To demonstrate this, let’s create a nonclustered index on the  ClientId  column with the  CREATE 
NONCLUSTERED INDEX IDX_Orders_ClientId ON dbo.Orders(ClientId)  statement in the database that 
uses the legacy cardinality estimator. 

 In this demo, we have 100 clients in the system with 1,000 orders per client. As you should remember, a 
statistics histogram retains 200 steps, so it would store information for every  ClientId . You can confirm this 
by running the  DBCC SHOW_STATISTICS('dbo.Orders', 'IDX_Orders_ClientId')  command. The partial 
output is shown in Figure  11-7 .  

  Figure 11-6.    Estimated execution plan for the multi-statement  function            

  Figure 11-7.    Index IDX_Orders_ClientId histogram       

 Now, let’s create a multi-statement table-valued function that returns the order information for a 
specific client and call it in the single-client scope. The code for accomplishing this is shown in Listing  11-9 . 

 

 



CHAPTER 11 ■ USER-DEFINED FUNCTIONS

234

     Listing 11-9.    Multi-statement function costs and estimates: Function that returns orders for the clientid 
 provided        

  create function dbo.udfClientOrders(@ClientId int) 
 returns @Orders table 
 ( 
     OrderId int not null, 
     OrderDate datetime not null, 
     OrderNumber varchar(32) not null, 
     Amount smallmoney not null 
 ) 
 with schemabinding 
 as 
 begin 
     insert into @Orders(OrderId, OrderDate, OrderNumber, Amount) 
         select OrderId, OrderDate, OrderNumber, Amount 
         from dbo.Orders 
         where ClientId = @ClientId 
     return 
 end 
 go 

   select c.ClientName, o.OrderId, o.OrderDate, o.OrderNumber, o.Amount 
 from dbo.Clients c cross apply dbo.udfClientOrders(c.ClientId) o 
 where c.ClientId = 1 

 ■      Note    The  APPLY  operator invokes a table-valued function for every row from the outer table. The table-
valued function can accept values from the row as parameters. SQL Server joins the row from the outer table 
with every row from the function output, similar to a two-table join.  CROSS APPLY  works in a manner similar to 
the inner join. Thus, if the function does not return any rows, the row from the outer table would be excluded 
from the output.  OUTER APPLY  works in a way similar to the outer join.  

 Even though there is enough statistical information to estimate the number of orders correctly for 
the client with  ClientId=1 , the estimated number of rows is incorrect. Figure  11-8  demonstrates this. This 
behavior can lead to a highly inefficient execution plan when functions return a large number of rows. It is 
also worth mentioning that the new cardinality estimator in SQL Server 2014 and 2016 would estimate 100 
rows in this example, which is also incorrect.  

  Figure 11-8.    Execution plan of query with multi-statement table-valued function (legacy cardinality 
estimator)             
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 You should remember this limitation and avoid using multi-statement table-valued functions when 
cardinality estimation errors can lead to inefficient plans. A common scenario is when functions are 
involved in joins. In many cases, you will get better results by storing the function result set in a temporary 
table, using that in the joins instead, as we will discuss in Chapter   13    . 

 As you probably noticed, all of the functions were created with the  schemabinding  option. While it 
is not required, specifying this option can help in several ways. It  binds  the function with the objects they 
reference, and it prevents any metadata changes that could potentially break the code. Moreover, when the 
function does not access the data,  schemabinding  forces SQL Server to analyze the function body. 
SQL Server will know that the function does not access any data, which helps to generate more efficient 
execution plans. We will look at this situation in detail in Chapter   25    , “Query Optimization and Execution.”  

      Inline Table-Valued Functions   
  Inline table-valued functions  work in a manner that is completely different from multi-statement functions. 
Sometimes, these functions are even named  parameterized views . This definition makes a lot of sense. As 
opposed to multi-statement functions, which execute as separate code blocks, SQL Server expands and 
embeds inline table-valued functions into the actual queries, similar to regular views, and it optimizes their 
statements as part of the queries. As a result, there are no separate calls of the function and you don’t have to 
deal with its associated overhead. 

 Let’s rewrite our multi-statement table-valued function to be an inline table-valued function, as shown 
in Listing  11-10 . Then we will examine the execution plan, shown in Figure  11-9 .  

     Listing 11-10.    Inline table-valued functions: Function that returns orders for the clientid  provided        

  create function dbo.udfClientOrdersInline(@ClientId int) 
 returns table 
 as 
 return 
 ( 
     select OrderId, OrderDate, OrderNumber, Amount 
     from dbo.Orders 
     where ClientId = @ClientId 
 ) 
 go 

   select c.ClientName, o.OrderId, o.OrderDate, o.OrderNumber, o.Amount 
 from dbo.Clients c cross apply dbo.udfClientOrdersInline(c.ClientId) o 
 where c.ClientId = 1; 

  Figure 11-9.    Execution plan of query with an inline table-valued function       

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_13
http://dx.doi.org/10.1007/978-1-4842-1964-5_25
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    As you can see, there is no reference to the function in the execution plan, and now the estimated 
number of rows is correct. In fact, you will get exactly the same execution plan if you do not use the inline 
table-valued function at all. Listing  11-11  and Figure  11-10  illustrate this point.  

     Listing 11-11.    Inline table-valued functions: Select statement without inline table-valued  function         

 select c.ClientName, o.OrderId, o.OrderDate, o.OrderNumber, o.Amount 
 from dbo.Clients c join dbo.Orders o on 
         c.ClientId = o.Clientid 
 where c.ClientId = 1 

  Figure 11-10.    Execution plan of query without an inline table-valued function       

 ■     Note    Code reuse based on inline table-valued functions may be acceptable in some cases. SQL Server 
expands and optimizes those functions with outer statements and can eliminate unnecessary overhead and 
joins. Remember, however, the join elimination issues we discussed in the previous chapter.  

 While inline table-valued functions can help us encapsulate and reuse code without unnecessary side 
effects, they cannot include more than one statement. Fortunately, in some cases you can re-factor the code 
and convert multi-statement functions into inline table-valued functions. 

 As a general rule, scalar functions can be replaced with inline table-valued functions that return a one-
row table with a single column. As an example, look at the implementation of the  dbo.udfDateOnly  function. 
You can convert it to an inline table-valued function, as shown in Table  11-1 .  
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 If you run the  SELECT  with an inline table-valued function, the execution plan shown in Figure  11-11  
would still use an index scan operator instead of an index seek. Even with an inline table-valued function, 
you cannot make the predicate SARGable due to the  convert  system function calls.  

   Table 11-1.    Converting Multi-Statement Scalar to Inline Table-Valued  Function        

 Multi-statement scalar function  Inline table-valued function 

  cr eate function dbo.udfDateOnly
(@Value datetime)  

  returns datetime  
  with schemabinding  
  as  
  begin  
    return  
      co nvert(datetime,

convert(varchar(10),@Value,121))  
  end  

  cr eate function dbo.udfDateOnlyInline
(@Value datetime)  

  returns table  
  as  
  return  
  (  
    select  
      co nvert(datetime,

convert(varchar(10),@Value,121))  
    as [OrderDate]  
  )  

  select count(*)  
  from dbo.Orders  
  where 
  dbo.udfDateOnly(OrderDate) = '2013-03-01'  

  select count(*)  
  from dbo.Orders o cross apply  
    dbo.udfDateOnlyInline(o.OrderDate) udf  
  where udf.OrderDate = '2013-03-01'  

  Figure 11-11.    Execution plan of query with inline table-valued function       

 If you compare the execution plan shown in Figure  11-11  with the plan that uses a multi-statement 
scalar function, as shown in Figure  11-5 , you will observe that there is no filter operator in Figure  11-11 . SQL 
Server checks the predicate as part of the index scan operator. This behavior is the same in the query from 
Listing  11-6 . 

 The execution time on my computer is as follows: 

   SQL Server Execution Times: 
    CPU time = 78 ms,  elapsed time = 84 ms. 

   While it is still far from being optimal due to the scan performed, these numbers are much better than 
what we had with the multi-statement function call. 

 Of course, it is much trickier when the function consists of multiple statements. Fortunately, in some cases 
you can be creative and re-factor those functions to be inline ones. An  IF  statement can often be replaced with 
a   CASE  operator,      and Common Table Expressions can sometimes take care of procedural style code. 

 As an example, let’s look at a multi-statement function that accepts geographic location as the input 
parameter and returns a table with information about nearby  points of interest (POI)  . This table includes 
information about the first POI in alphabetical order by name, as well as an optional XML column that 
contains the list of all POI IDs to which that location belongs. In the database, each POI is specified by a pair 
of min and max latitudes and longitudes. Listing  11-12  shows the implementation of the multi-statement 
table-valued function. 
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          Listing 11-12.    Converting multi-statement to inline functions: Multi-statement function  implementation        

  create function dbo.GetPOIInfo(@Lat decimal(9,6), @Lon decimal(9,6), @ReturnList bit) 
 returns @Result table 
 ( 
     POIID int not null, 
     POIName nvarchar(64) not null, 
     IDList xml null 
 ) 
 as 
 begin 
     declare 
         @POIID int, @POIName nvarchar(64), @IDList xml 

       select top 1 @POIID = POIID, @POIName = Name 
     from dbo.POI 
     where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon 
     order by Name; 

       if @@rowcount > 0 
     begin 
         if @ReturnList = 1   
             select @IDList = 
             ( 
                 select POIID as [@POIID] 
                 from dbo.POI 
                 where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon 
                 for xml path('POI'), root('POIS') 
             ); 
         insert into @Result(POIID, POIName, IDList) values(@POIID, @POIName, @IDList); 
     end 
     return; 
 end 

    As you can see, there are two separate queries against the table in the implementation. If you want 
to convert this function to an inline table-valued function, you can run the queries as two CTEs, or as 
subselects and then cross-join their results. The  If @ReturnList = 1  statement can be replaced with the 
 CASE  operator, as you can see in the implementation shown in Listing  11-13 .    

     Listing 11-13.    Converting multi-statement to inline functions: Inline function implementation   

   create function dbo.GetPOIInfoInline(@Lat decimal(9,6), @Lon decimal(9,6), @ReturnList bit) 
 returns table 
 as 
 return 
 ( 
     with TopPOI(POIID, POIName) 
     as 
     (   
         select top 1 POIID, Name 
         from dbo.POI 
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         where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon 
         order by Name 
     ) 
     ,IDList(IDList) 
     as 
     (   
         select 
             case 
                 when @ReturnList = 1 
                 then 
                   ( select POIID as [@POIID] 
                     from dbo.POI 
                     where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon 
                     for xml path('POI'), root('POIS'), type ) 
                 else null 
             end             
     ) 
     select TopPOI.POIID, TopPOI.POIName, IDList.IDList 
     from TopPOI cross join IDList 
 ) 

   There is a very important difference between the two implementations, however. The multi-statement 
function will not run the second  SELECT , which generates the XML, when the first query does not return 
any rows. There is no reason for it to do so: location does not belong to any POI. Alternatively, inline 
implementation would always run the two queries. It could even degrade performance when the location 
does not belong to a POI, and the underlying query against the POI table is expensive. It would be better to 
split the function into two separate ones,  GetPOINameInline  and  GetPOIIDListInline ,          and re-factor the 
outer queries in the manner shown in Listing  11-14 . 

     Listing 11-14.    Converting multi-statement to inline functions: Re-factoring of the outer query   

 from 
     dbo.Locations l 
         outer apply dbo.GetPOINameInline(l.Latitude, l.Longitude) pn 
         outer apply 
         ( 
             select 
                 case 
                     when @ReturnList = 1 and pn.POIID is not null 
                     then ( select IDList from dbo.GetPOIIDListInline(l.latitude,l.longitude) ) 
                     else null 
                 end 
         ) pids                   

   A  CASE  statement in the second  OUTER APPLY  operator guarantees that the second function will be 
executed only when the  dbo.GetPOINameInline  function returns the data ( pn.POIID is not null ); that is, 
there is at least one POI for the location. 
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 ■   Note    You can see other examples of converting complex multi-statement functions to inline table-valued 
functions in Chapter   14    , “CLR,” and in the companion materials of the book.   

     Summary 
 While encapsulation and code reuse are great processes that can simplify and reduce the cost of 
development, they are not always well suited for T-SQL code. Generalization of an implementation in order 
to support multiple use cases within a single method can lead to suboptimal execution plans in some cases. 
This is especially true for multi-statement functions, both scalar and table-valued. There is large overhead 
associated with their calls, which in turn introduces serious performance issues when functions are called 
for a large number of rows. Moreover, SQL Server does not expand them to the referenced queries, and 
it always estimates that table-valued functions will return a single row when using the legacy cardinality 
estimator or 100 rows with the new cardinality estimator in SQL Server 2014 and 2016. 

 Predicates that include multi-statement functions are always non-SARGable, regardless of the indexes 
defined on the table. This can lead to suboptimal execution plans for the queries and extra CPU load due to 
the function calls. You need to keep all of these factors in mind when creating multi-statement functions. 

 On the other hand, inline table-valued functions are expanded to the outer queries, similar to regular 
views. They do not have the same overhead as multi-statement functions and are optimized as part of the 
queries. You should re-factor multi-statement functions to inline table-valued functions whenever possible.     

http://dx.doi.org/10.1007/978-1-4842-1964-5_14
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    CHAPTER 12   

 XML and JSON                          

 We are living in a world full of information. Businesses are constantly collecting large amounts of data from 
multiple sources, processing it, and exchanging it with other systems. XML and its popular alternative JSON 
have become the de-facto standards for information exchange. They work across different platforms and are 
supported in every development platform that exists today. 

 Moreover, not all data easily fits into a structured relational data model. For example, we can think 
about an  Internet of Things (IoT) system   that collects metrics from different types of sensors. Some sensors 
might provide information about temperature, while others could supply humidity data. Although there are 
several ways to store such data in a database, XML and JSON are definitely options worth considering. 

 In this chapter, we will talk about the XML and JSON  data types  , system design considerations, and a 
few methods that can help to improve system performance while working with XML data in SQL Server. 

     To Use or Not to Use XML or JSON? That Is the Question! 
 One of the key questions you will need to answer when dealing with XML and JSON data in a database is 
what use cases you need to support. Although both technologies, XML and JSON, give you the flexibility 
to deal with semi-structured data, they come at a price. XQuery is CPU-intensive, and it does not provide 
performance on par with queries against relational data. You can overcome some of these limitations by 
creating XML indexes, which internally shred XML data into the relational format, but these indexes require 
a lot of storage space — often several times more than the XML data itself. 

 JSON, on the other hand, adds less overhead to CPU, but its support in SQL Server is rather limited. It is 
not supported in SQL Server prior 2016, and it requires a database compatibility level of 130 for all features 
to be enabled. Moreover, SQL Server does not support the native JSON data type, and you have to store it as 
a string. Nor does SQL Server allow you to index JSON data. You can create calculated persisted columns for 
some JSON properties and index them afterward; however, it is impossible to automatically shred JSON data 
into the relational format as XML indexes do. 

 In cases where the only requirement is keeping the XML data without any further processing, the best 
approach is to store it as regular BLOB in the   varbinary(max)  column     . This allows reconstruction of the 
original document without any encoding-related issues being introduced by   varchar / nvarchar  data   types. 
The XML data type is not a good choice, as it does not preserve the original document. Even when it is 
acceptable, there is overhead associated with parsing the XML data that you would prefer to avoid. 

 If you decide to store XML data in a binary format, consider putting it into a separate table with a 
one-to-one relationship to the main table. This helps to reduce the row size in the main table and would 
improve the performance of the system in many scenarios. You can also compress it either in the client 
code or by using the  COMPRESS  and  DECOMPRESS  functions in SQL Server 2016, or by building CLR-based 
compression in the earlier versions of SQL Server. Compression can also help to reduce the size of the large 
JSON fragments in the database. 
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 When you need to work with XML or JSON data in SQL Server, you have a few choices. If the data 
fits into a structured relational model, you will get the best performance by shredding and storing it in a 
relational table format. For example, you can shred and store XML or similar JSON data, as shown in 
Listing  12-1 , into two tables,  Orders  and  OrderLineItems . 

      Listing 12-1.    XML that fits into a relation model   

 <Order OrderId="42" OrderTotal="49.96"> 
   <CustomerId>123</CustomerId> 
   <OrderNum>10025</OrderNum> 
   <OrderDate>2016-07-15T10:05:20</OrderDate> 
   <OrderLineItems> 
     <OrderLineItem> 
       <ArticleId>250</ArticleId> 
       <Quantity>3</Quantity> 
       <Price>9.99</Price> 
     </OrderLineItem> 
     <OrderLineItem> 
       <ArticleId>404</ArticleId> 
       <Quantity>1</Quantity> 
       <Price>19.99</Price> 
     </OrderLineItem> 
   </OrderLineItems> 
 </Order> 

   In some cases, when the data is semi-structured, you can shred the structured part into non-XML/
non-JSON columns, retaining the semi-structured part as XML/JSON. Listing  12-2  shows an example of this. 
In this case, you can consider shredding and keeping location-related information in the non-XML columns 
and keeping  DeviceData  information as XML. 

     Listing 12-2.     Semistructured   XML   

 <Locations> 
   <Location DeviceId="321432345" Timestamp="2016-07-10T09:01:03"> 
     <Latitude>47.609102</Latitude> 
     <Longitude>-122.321503</Longitude> 
     <DeviceData> 
       <Ignition>1</Ignition> 
       <Sensor1>0</Sensor1> 
       <Sensor2>1</Sensor2> 
     </DeviceData> 
   </Location> 
   <Location DeviceId="1563287" Timestamp="2016-07-10T09:02:00"> 
     <Latitude>47.610611</Latitude> 
     <Longitude>-122.201202</Longitude> 
     <DeviceData> 
       <Speed>56</Speed> 
       <Temperature>29</Temperature> 
     </DeviceData> 
   </Location> 
 </Locations> 



CHAPTER 12 ■ XML AND JSON

243

   Using  sparse columns   is another option. You can create a wide table with a large number of sparse 
columns that represent all possible attributes from the XML/JSON data without introducing the storage 
overhead associated with the storage of  NULL  values. 

 You can shred the XML/JSON in the code at the time that you insert or update the data. Alternatively, 
you can create a set of scalar user-defined functions that extract the data from XML/JSON and store it in the 
persisted calculated columns. Both approaches have their pros and cons. With the first approach, you need 
to shred the XML data and update the columns every time the XML/JSON data is updated, potentially in 
different places in the code. The second approach, on the other hand, can lead to some performance issues. 
User-defined functions, which shred the data into calculated columns, would prevent parallel execution 
plans for any queries that are referencing the table, even when calculated columns are not used. Moreover, 
in some cases, when you reference calculated columns, SQL Server recalculates their values rather than use 
persisted fields. 

 Although XML and JSON data add flexibility to our data model, they affect the performance of the 
system. You must always keep this in mind when designing solutions.  

     XML Data Type 
 An XML data type stores data in an internal format using UTF-16 encoding with some compression involved, 
and it does not preserve the original XML document. Listing  12-3  shows an example of this. 

     Listing 12-3.    XML data type does not preserve original XML document   

 select cast( 
 N'<script> 
 <![CDATA[ 
 function max(a,b) 
 { 
     if (a <= b) then { return b; } else { return a; } 
 }]]> 
 </script>' as xml) 

    Result:  

    <script> 

   function max(a,b) 
 { 
     if (a &lt;= b) then { return b; } else { return a; } 
 } 

   </script> 

    As you can see, there is no CDATA section in the output, and the  <  character has been replaced with 
character entity & lt; . 

 The total storage space used by the XML data type varies. Even with compression, it can exceed the 
raw text size when the original text uses UTF-8 encoding. However, with UTF-16 data, XML could save some 
space compared to the text representation. 

 There are two types of XML data available in SQL Server:  untyped  and  typed . Untyped XML can store 
data as long as it is in a valid format, while typed XML is bound by the XML schema. You can create an XML 
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schema with a  CREATE XML SCHEMA COLLECTION  statement and assign it to a column, parameter, or variable 
of the XML data type. 

 Typed XML allows SQL Server to take advantage of the data-type information from the XML nodes. 
Although it improves XQuery performance, it also introduces overhead from schema validation when data 
is inserted or modified. Usually, you like to have XML typed in cases where the data conforms to a specific 
XML schema and you can afford such overhead. 

 The XML schema is stored in the system tables in an internal format. As with regular XML data, SQL 
Server does not persist the original schema definition. You need to store it separately, perhaps as a BLOB, in 
case you need to reconstruct it in the future. 

 As I already mentioned, you can create indexes on XML data. There are two kinds of XML indexes: 
 primary  and  secondary .  Primary XML indexes   shred the XML data into a relational format, and they have 
either one or two rows for each XML node.  Secondary XML indexes   are nonclustered indexes defined in 
the relational table that stores the primary XML index data. They can help with the performance of some 
operations against XML data. 

 Now, let’s create the table shown in Listing  12-4 . We will insert one row of data using the XML from 
Listing  12-1 . 

     Listing 12-4.    Primary XML index on untyped XML   

  create table dbo.XmlDemo 
 ( 
     ID int not null identity(1,1), 
     XMLData xml not null, 
     constraint PK_XmlDemo primary key clustered(ID) 
 ); 

   insert into dbo.XMLDemo(XMLData) 
 values(/*XML From Listing 12-1*/); 

   create primary xml index XML_Primary_XmlDemo 
 on dbo.XmlDemo(XMLData); 

    Next, let’s look at the internal structure of the  primary XML index  . You can find the name of the internal 
table that stores the index by querying the  sys.internal_tables  view. You will see results similar to the 
ones shown in Figure  12-1 .  

  Figure 12-1.     Sys.internal_tables content         

 



CHAPTER 12 ■ XML AND JSON

245

 As you can see, one row of data from the original table produced twenty-five rows in the primary XML 
index, with twelve columns each. The clustered index of the primary XML index consists of the primary key 
in the original table ( pk1  column in the output) and the internal node ID ( id  column in the output). The  HID  
column, which stands for  hierarchy ID , contains a reverse path to the node in the binary format. 

 It is also worth mentioning that the primary XML index requires tables to have a clustered primary key 
defined. Neither a unique clustered index nor a nonclustered primary key will work. 

 Now, let’s create a schema collection and construct the table using typed XML. The code for 
accomplishing this is shown in Listing  12-5 . 

     Listing 12-5.    Primary XML index on typed XML   

  create xml schema collection XmlDemoCollection as 
 N'<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
   <xs:element name="Order"> 
     <xs:complexType> 
       <xs:sequence> 
         <xs:element type="xs:int" name="CustomerId"/> 
         <xs:element type="xs:string" name="OrderNum"/> 
         <xs:element type="xs:dateTime" name="OrderDate"/> 
         <xs:element name="OrderLineItems"> 
           <xs:complexType> 
             <xs:sequence> 
               <xs:element name="OrderLineItem" maxOccurs="unbounded" minOccurs="0"> 
                 <xs:complexType> 
                   <xs:sequence> 
                     <xs:element type="xs:short" name="ArticleId"/> 
                     <xs:element type="xs:int" name="Quantity"/> 
                     <xs:element type="xs:float" name="Price"/> 
                   </xs:sequence> 
                 </xs:complexType> 
               </xs:element> 
             </xs:sequence> 
           </xs:complexType> 
         </xs:element> 
       </xs:sequence> 
       <xs:attribute type="xs:int" name="OrderId"/> 

  Figure 12-2.    Primary XML index data (untyped XML)       

 Now, if you query the data from the primary XML index table, you will see the results shown in 
Figure  12-2 . You need to connect through a dedicated admin connection to be able to do this.  
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       <xs:attribute type="xs:float" name="OrderTotal"/> 
     </xs:complexType> 
   </xs:element> 
 </xs:schema>'; 

   create table dbo.XmlTypedDemo 
 ( 
     ID int not null identity(1,1), 
     XMLData xml (document xmldemocollection) not null, 
     constraint PK_XmlTypedDemo primary key clustered(ID) 
 ); 

   insert into dbo.XMLTypedDemo(XMLData) 
 values(/*XML From Listing 12-1*/); 

   create primary xml index XML_Primary_XmlTypedDemo 
 on dbo.XmlDemo(XMLData); 

    Now, let’s look at the primary XML index for the typed XML, shown in Figure  12-3 .  

  Figure 12-3.    Primary XML index data (typed XML)       

 As you can see, the primary XML index now has just sixteen rows — a single row for each XML node in the 
original data. It also has type information specified for every node ( tid  column). 

 Let’s compare the storage space required for element- and attribute-centric XML for both the typed and 
untyped XML. Let’s create two XML schema collections and four tables with primary XML indexes. Then, we 
will populate these tables with 65,536 rows of data. The code in Listing  12-6  shows all of these steps. 

     Listing 12-6.    Comparing storage space required for both typed and untyped XML   

  create xml schema collection ElementCentricSchema as 
 '<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
         xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
   <xs:element name="Order"> 
     <xs:complexType> 
       <xs:sequence> 
         <xs:element type="xs:int" name="OrderId"/> 
         <xs:element type="xs:float" name="OrderTotal"/> 
         <xs:element type="xs:int" name="CustomerId"/> 
         <xs:element type="xs:string" name="OrderNum"/> 
         <xs:element type="xs:dateTime" name="OrderDate"/> 
         <xs:element name="OrderLineItems"> 
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           <xs:complexType> 
             <xs:sequence> 
               <xs:element name="OrderLineItem" maxOccurs="unbounded" minOccurs="0"> 
                 <xs:complexType> 
                   <xs:sequence> 
                     <xs:element type="xs:int" name="ArticleId"/> 
                     <xs:element type="xs:int" name="Quantity"/> 
                     <xs:element type="xs:float" name="Price"/> 
                   </xs:sequence> 
                 </xs:complexType> 
               </xs:element> 
             </xs:sequence> 
           </xs:complexType> 
         </xs:element> 
       </xs:sequence> 
     </xs:complexType> 
   </xs:element> 
 </xs:schema>'; 

   create xml schema collection AttributeCentricSchema as 
 '<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
         xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
   <xs:element name="Order"> 
     <xs:complexType> 
       <xs:sequence> 
         <xs:element name="OrderLineItem" maxOccurs="unbounded" minOccurs="0"> 
           <xs:complexType> 
             <xs:simpleContent> 
               <xs:extension base="xs:string"> 
                 <xs:attribute type="xs:int" name="ArticleId" use="optional"/> 
                 <xs:attribute type="xs:int" name="Quantity" use="optional"/> 
                 <xs:attribute type="xs:float" name="Price" use="optional"/> 
               </xs:extension> 
             </xs:simpleContent> 
           </xs:complexType> 
         </xs:element> 
       </xs:sequence> 
       <xs:attribute type="xs:int" name="OrderId"/> 
       <xs:attribute type="xs:float" name="OrderTotal"/> 
       <xs:attribute type="xs:int" name="CustomerId"/> 
       <xs:attribute type="xs:string" name="OrderNum"/> 
       <xs:attribute type="xs:dateTime" name="OrderDate"/> 
     </xs:complexType> 
   </xs:element> 
 </xs:schema>'; 

   create table dbo.ElementCentricUntyped 
 ( 
     ID int not null identity(1,1), 
     XMLData xml not null, 
     constraint PK_ElementCentricUntyped primary key clustered(ID) 
 ); 
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   create primary xml index XML_Primary_ElementCentricUntyped 
 on dbo.ElementCentricUntyped(XMLData); 

   create table dbo.ElementCentricTyped 
 ( 
     ID int not null identity(1,1), 
     XMLData xml (document ElementCentricSchema) not null, 
     constraint PK_ElementCentricTyped primary key clustered(ID) 
 ); 

   create primary xml index XML_Primary_ElementCentricTyped 
 on dbo.ElementCentricTyped(XMLData); 

   create table dbo.AttributeCentricUntyped 
 ( 
     ID int not null identity(1,1), 
     XMLData xml not null, 
     constraint PK_AttributeCentricUntyped primary key clustered(ID) 
 ); 

   create primary xml index XML_Primary_AttributeCentricUntyped 
 on dbo.AttributeCentricUntyped(XMLData); 

   create table dbo.AttributeCentricTyped 
 ( 
     ID int not null identity(1,1), 
     XMLData xml (document AttributeCentricSchema) not null, 
     constraint PK_AttributeCentricTyped primary key clustered(ID) 
 ); 

   create primary xml index XML_Primary_AttributeCentricTyped 
 on dbo.AttributeCentricTyped(XMLData); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 CROSS JOIN N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 CROSS JOIN N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 CROSS JOIN N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 CROSS JOIN N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.ElementCentricUntyped(XMLData) 
 select ' 
 <Order> 
   <OrderId>42</OrderId> 
   <OrderTotal>49.96</OrderTotal> 
   <CustomerId>123</CustomerId> 
   <OrderNum>10025</OrderNum> 
   <OrderDate>2016-07-15T10:05:20</OrderDate> 
   <OrderLineItems> 
     <OrderLineItem> 
       <ArticleId>250</ArticleId> 
       <Quantity>3</Quantity> 
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       <Price>9.99</Price> 
     </OrderLineItem> 
     <OrderLineItem> 
       <ArticleId>404</ArticleId> 
       <Quantity>1</Quantity> 
       <Price>19.99</Price> 
     </OrderLineItem> 
   </OrderLineItems> 
 </Order>' 
 from Ids; 

   insert into dbo.ElementCentricTyped(XMLData) 
     select XMLData from dbo.ElementCentricUntyped; 

   with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 CROSS JOIN N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 CROSS JOIN N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 CROSS JOIN N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 CROSS JOIN N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5) 
 insert into dbo.AttributeCentricUntyped(XMLData) 
 select 
 N'<Order OrderId="42" OrderTotal="49.96" CustomerId="123" 
         OrderNum="10025" OrderDate="2016-07-15T10:05:20"> 
   <OrderLineItem ArticleId="250" Quantity="3" Price="9.99"/> 
   <OrderLineItem ArticleId="404" Quantity="1" Price="19.99"/> 
 </Order>' 
 from Ids; 

   insert into dbo.AttributeCentricTyped(XMLData) 
     select XMLData from dbo.AttributeCentricUntyped; 

    When we compare the storage space used by all four tables, we see the results shown in Table  12-1 .  

   Table 12-1.    Typed and Untyped XML Storage Requirements   

 Clustered 
Index Size (KB) 

 Primary XML 
Index Size (KB) 

 Total Size (KB) 

 Untyped Element-Centric XML  28,906  90,956  119,862 

 Typed Element-Centric XML  45,760  52,595  99,355 

 Untyped Attribute-Centric XML  26,021  57,390  83,411 

 Typed Attribute-Centric XML  36,338  54,105  90,443 

 As you can see, typed XML uses more space in the clustered index of the table because of the extra 
information stored in the XML data type column. At the same time, adding type information to element-
centric XML can significantly reduce the size of the primary XML index. Unfortunately, even in a best-case 
scenario, XML indexes require a large amount of storage space that exceeds the storage space required by 
the XML data type itself. 
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 ■   Note    The actual size of the primary XML index depends on the number of nodes and the data types in the 
XML data.  

  Secondary XML indexes  are nonclustered indexes in a table and are represented by the primary XML 
index. Look at Table  12-2 , which demonstrates a simplified version of some of the data from the primary 
XML index table from Figure  12-3 .  

   Table 12-2.    Primary XML index simplified   

 PK  ID  NodeId  Type  Value  HID 

 1  1  1 (Order)  Null  Null 

 1  1.1  2 (OrderId)  xs:int  42  #@OrderId#Order 

 1  1.5  3 (OrderLineItems)  SectionT  Null  #OrderLineItems#Order 

 1  1.5.1  4 (OrderLineItem)  SectionT  Null  #OrderLineItem 
#OrderLineItems#Order 

 1  1.5.1.1  5 (ArticleId)  xs:int  250  #ArticleId #OrderLineItem 
#OrderLineItems#Order 

 The  VALUE  secondary XML index is a  nonclustered index   with two columns:  Value  and  HID . As you can 
guess, the best use case for such indexes is when you want to locate rows based on the values and optional 
paths to the nodes. In our example, the  VALUE  secondary XML index would be beneficial if you wanted to 
find all of the orders that have a line item with a specific  ArticleID . 

 The  PATH  secondary XML index has two columns:   HID  and  Value   . Like the  VALUE  index, the  PATH  index 
can be used to find all of the rows with a particular value in a particular path, although there are a couple 
of differences between these indexes. The  VALUE  index can be used to find an XML element or attribute 
with a specific value anywhere within the XML without referencing the path. The  PATH  index, on the other 
hand, is not a good choice for such a use case. The  PATH  index, however, is useful when you are checking 
the existence of an element based on a particular path. For instance, the  PATH  index is advantageous if you 
have an optional nullable node called  Comments  and you want to select all of the orders where that node is 
present. Moreover, the  PATH  index is useful when you are using the  //  shortcut in the path. For example, 
 Order//ArticleId  looks for an  ArticleId  element anywhere within the  Order  node.  HID  stores the inverted 
path and, as a result, SQL Server can perform a prefix lookup on the index when dealing with such queries. 

 The  PROPERTY  secondary XML index has three columns:  PK ,  HID  ,  and  Value . This index is useful when 
you already know the row to which the XML belongs, and you want to get the value and potential node 
information for a specific path. 

 SQL Server 2012 and above supports selective XML indexes that allow you to index a subset of the 
XML nodes. These indexes help you to preserve the storage space when the majority of queries deal with a 
subset of the XML data. For more information about selective XML indexes, check out this link:   http://msdn.
microsoft.com/en-us/library/jj670108.aspx    . 

     Working with XML Data 
 The XQuery implementation in SQL Server utilizes a relation engine. Although XQuery uses its own parser 
and performs its own algebrarization during the query compilation stage, the results are combined and 
optimized together with the DML portion of the query, then embedded into a single execution plan. 

http://msdn.microsoft.com/en-us/library/jj670108.aspx
http://msdn.microsoft.com/en-us/library/jj670108.aspx
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 ■   Note    The algebrarization stage is responsible for name resolution, type derivation, and binding and 
converting XML operators into a relational-operators tree that can be further used by the Query Optimizer.  

 When XML indexes are present, SQL Server always retrieves the data from them. Otherwise, it uses 
table-valued functions to shred the XML data into a relational format. In both cases, the database engine 
works with a relational representation of the XML data while optimizing and executing the queries. 

 The XML data type in SQL Server supports five different methods. Four of them— value ,  exist ,  query , and 
 nodes —can be used to access and transform the data. The last one,  modify , uses XML DML to modify the data. 

   value() Method 
 The   value()  method   returns a  sc  alar value from the XML instance. XPath is an expression that defines 
the path to the value, and it should statically represent the singleton by referencing the single element or 
attribute from the XML. 

 The code shown in Listing  12-7  provides examples of singletons in untyped XML. 

     Listing 12-7.    XPath referencing singletons in untyped XML   

  declare 
     @X xml = 
 '<Order OrderId="42" OrderTotal="49.96"> 
   <Customer Id="123"/> 
   <OrderLineItems> 
     <OrderLineItem> 
       <ArticleId>250</ArticleId> 
       <Quantity>3</Quantity> 
       <Price>9.99</Price> 
     </OrderLineItem> 
   </OrderLineItems> 
 </Order>’ 

    -- SUCCESS: Get @Id from the first customer from first order  
 select @X.value('/Order[1]/Customer[1]/@Id','int') 

    -- ERROR: Not a singleton; XML can include information about multiple orders and/or customers  
 select @X.value('/Order/Customer/@Id','int') 

    -- SUCCESS: Get first ArticleId from the first order from the first line item  
 select @X.value('/Order[1]/OrderLineItems[1]/OrderLineItem[1]/ArticleId[1]','int') 

    -- ERROR: Not a singleton; SQL Server does not know that ArticleId is an element rather than 
a section  
 select @X.value('/Order[1]/OrderLineItems[1]/OrderLineItem[1]/ArticleId','int') 

 ■      Note    The XML schema helps SQL Server detect if XPath references the singleton without specifying 
indexes/ordinals in the path expressions.  
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 A key  XQuery concept   is called the  atomization of nodes . When an XPath expression identifies an 
element in the untyped XML, XQuery does not know if that element is a section or if it has any child nodes. 
As a result, it tries to parse and concatenate the values from all XML child nodes from the section by adding 
another table-valued function to the execution plan. Doing so could introduce a noticeable performance hit 
to the query. As a workaround, use the XQuery function  text() , which returns a text representation of the 
element and eliminates the table-valued function call. 

 Listing  12-8  shows an example of such behavior, and Figure  12-4  shows the execution plan of the two calls.  

     Listing 12-8.    Atomization of nodes overhead   

  declare 
     @X xml = 
 '<Order OrderId="42" OrderTotal="49.96"> 
   <CustomerId>123</CustomerId> 
   <OrderNum>10025</OrderNum> 
   <OrderDate>2016-07-15T10:05:20</OrderDate> 
   <OrderLineItems> 
     <OrderLineItem> 
       <ArticleId>250</ArticleId> 
       <Quantity>3</Quantity> 
       <Price>9.99</Price> 
     </OrderLineItem> 
     <OrderLineItem> 
       <ArticleId>404</ArticleId> 
       <Quantity>1</Quantity> 
       <Price>19.99</Price> 
     </OrderLineItem> 
   </OrderLineItems> 
 </Order>' 

   select @X.value('(/Order/CustomerId)[1]','int') 
 select @X.value('(/Order/CustomerId/text())[1]','int') 

  Figure 12-4.    Atomization of nodes overhead       

    Atomization of nodes occurs only when an XML instance is untyped. Let’s see what happens with typed 
XML data, as shown in Listing  12-9  and Figure  12-5 .  
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  Figure 12-5.    Typed XML and atomization of nodes       

     Listing 12-9.    Typed XML data and atomization of nodes   

  declare 
     @X xml (document ElementCentricSchema) = 
 '<Order> 
   <OrderId>42</OrderId> 
   <OrderTotal>49.96</OrderTotal> 
   <CustomerId>123</CustomerId> 
   <OrderNum>10025</OrderNum> 
   <OrderDate>2016-07-15T10:05:20</OrderDate> 
   <OrderLineItems> 
     <OrderLineItem> 
       <ArticleId>250</ArticleId> 
       <Quantity>3</Quantity> 
       <Price>9.99</Price> 
     </OrderLineItem> 
     <OrderLineItem> 
       <ArticleId>404</ArticleId> 
       <Quantity>1</Quantity> 
       <Price>19.99</Price> 
     </OrderLineItem> 
   </OrderLineItems> 
 </Order>' 

   select @X.value('(/Order/CustomerId)[1]','int') 

    As you can see, there is no atomization of nodes overhead. SQL Server knows that  CustomerId  is an 
integer rather than a section. This is another benefit of preserving XML type information with XML schema 
collections. 

 Finally, let’s check out what happens when we have a primary XML index defined and we run the 
same method against one of the rows from the  ElementCentricTyped  table, as shown in Listing  12-10 . The 
execution plan is then shown in Figure  12-6 .  

     Listing 12-10.    Calling the XML data type method when XML index is present   

 select XmlData.value('(/Order/CustomerId)[1]','int') 
 from dbo.ElementCentricTyped 
 where ID = 1 
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   As you can see, SQL Server retrieves the data from the primary XML index rather than using a 
table-valued function.  

   exists() Method 
 The  exist()   method      returns 1 when XQuery/XPath returns non-empty results. Although you can use this 
method when you need to check for the existence of an XML node, the typical use case for such a method is 
to check for the existence of an element or attribute with a specific value. 

 This method usually outperforms the approach that shreds the XML using the  value()  method and 
compares the results afterward. This happens because you are evaluating the XPath predicate in the XML 
Reader rather than doing an evaluation after you shred the XML. You can also use the  sql:column()     and 
 sql:variable()        functions to pass the values from the variable or table column to the XPath predicate. 

 Another important factor is that the  exist()  method can utilize a secondary  FOR VALUE  XML index, 
while the  value()  method does not use it. 

 Now, let’s create that index and compare the performance of the two methods. The code for 
accomplishing this is shown in Listing  12-11 , and the execution plans are shown in Figure  12-7 .  

     Listing 12-11.    Comparing exist() and value() methods   

  create xml index XML_Value on dbo.ElementCentricUntyped(XMLData) 
 using xml index XML_Primary_ElementCentricUntyped for value; 

   select count(*) 
 from dbo.ElementCentricUntyped 
 where XmlData.exist('/Order/OrderNum/text()[.="10025"]') = 1; 

   select count(*) 
 from dbo.ElementCentricUntyped 
 where XmlData.value('(/Order/OrderNum/text())[1]','varchar(32)') = '10025'; 

  Figure 12-6.    Execution plan when the XML index is present       
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    In cases where there is no  FOR VALUE  secondary XML index present, however, the   value()  method   
may be more efficient than the  exist()  method. There is one more caveat. XQuery compares string data as 
unicode case-sensitive strings, and it does not take database collation into consideration. Consequently, you 
can have different results when you perform a comparison within the  XQuery  value()  method  . The code 
shown in Listing  12-12  demonstrates an example of such behavior. 

     Listing 12-12.    String comparison within XQuery   

  declare 
   @X xml = '<Order OrderNum="Order1"><OrderId>1</OrderId></Order>' 
   ,@V varchar(32) = 'ORDER1' 

   select 'exist(): found' as [Result] 
 where @X.exist('/Order/@OrderNum[.=sql:variable("@V")]') = 1 

   select 'value(): found' as [Result] 
 where @X.value('/Order[1]/@OrderNum','varchar(16)') = @V 

    As you can see in Figure  12-8 , the   exist()  method   compares the  OrderNum  attribute and the  @V  variable 
with case sensitivity, and it produces a different comparison result in T-SQL when case-insensitive collation 
is used.  

  Figure 12-7.    Comparing the exist() and value() methods       

  Figure 12-8.    String comparison within XQuery       

 As with the   value()  method  , the atomization of nodes rule applies to the  exist()  method. It is also 
better to move the node path to the outside of the predicate part, referencing it with the  current node  ' . ' 
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symbol when dealing with untyped XML. This helps to avoid type casting, which introduces an additional 
UDX operator that implements XQuery/XPath operations, to the execution plan. 

 The code shown in Listing  12-13  executes three queries. The first query references the element within 
the predicate, and it performs atomization of nodes, which leads to an additional call to the table-valued XML 
Reader function. The second query does not perform atomization of nodes, although it performs comparison 
casting of the values to  xs:int . This adds the UDX operator to the execution plan. The last query compares 
values as strings, which is the most efficient method. Again, keep in mind that string comparison uses 
unicode, case-sensitive comparison rules. Figure  12-9  shows the execution plans for all three queries.  

     Listing 12-13.    Atomization of nodes and type casting   

  declare 
    @X xml = '<Order OrderNum="Order1"><OrderId>1</OrderId></Order>' 

   select 'Atomization of nodes' 
 where @X.exist('/Order[OrderId=1]') = 1; 

   select 'No text() function' 
 where @X.exist('/Order/OrderId[.=1]') = 1; 

   select 'With text() function' 
 where @X.exist('/Order/OrderId/text()[.=1]') = 1; 

  Figure 12-9.    Atomization of nodes and type casting       
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       query() Method 
 The  query()   method      returns the untyped XML specified by that query. You can use this method to obtain 
part of the original XML or to transform it to another XML. The code shown in Listing  12-14  demonstrates 
both use cases. The results are shown in Figure  12-10 .  

     Listing 12-14.    The query() method   

  declare 
     @X xml = 
 N'<Order OrderId="42" OrderTotal="49.96"> 
     <CustomerId>123</CustomerId> 
     <OrderNum>10025</OrderNum> 
 </Order>' 

   select 
     @X.query('/Order/CustomerId') as [Part of XML] 
     ,@X.query('<Customer Id="{/Order/CustomerId/text()}"/>') as [Transform] 

  Figure 12-10.    The query() method       

       nodes() Method 
 The  nodes()   method      shreds XML into relational data. It returns a row set, with rows representing the nodes 
identified by the path expression. Furthermore, you can use other XML methods —value() , for example — to 
shred those rows into individual elements and attributes. 

 The code shown in Listing  12-15  shows how you can access the individual nodes from the row set and 
shred them into individual values. You can see the results in Figure  12-11 .  

     Listing 12-15.    The  nodes() method     

  declare 
     @X xml = 
 '<Order OrderId="42" OrderTotal="49.96"> 
   <CustomerId>123</CustomerId> 
   <OrderNum>10025</OrderNum> 
   <OrderDate>2016-07-15T10:05:20</OrderDate> 
   <OrderLineItems> 
     <OrderLineItem> 
       <ArticleId>250</ArticleId> 
       <Quantity>3</Quantity> 
       <Price>9.99</Price> 
     </OrderLineItem> 
     <OrderLineItem> 
       <ArticleId>404</ArticleId> 
       <Quantity>1</Quantity> 
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       <Price>19.99</Price> 
     </OrderLineItem> 
   </OrderLineItems> 
 </Order>' 

   select 
     t.c.query('.') as [Raw Node] 
     ,t.c.value('(ArticleId/text())[1]','int') as [ArticleId] 
 from @X.nodes('/Order/OrderLineItems/OrderLineItem') as t(c) 

  Figure 12-11.    The nodes() method       

    When you use the   nodes()  method   with the XML column from the table, you must use the  APPLY  
operator. You can see an example of this in Listing  12-16 . 

     Listing 12-16.    Using the nodes() method with the APPLY operator   

 select 
     t.ID 
     ,sum(Items.Item.value('(Quantity/text())[1]','int') * 
         Items.Item.value('(Price/text())[1]','float')) as [Total] 
 from 
     dbo.ElementCentricUntyped t cross apply 
         t.XMLData.nodes('/Order/OrderLineItems/OrderLineItem') 
             as Items(Item)     
 group by 
     t.ID 

   You should avoid referencing parent nodes with descendant axes in path expressions; rather, you 
should use a drill-down approach with multiple  nodes()  methods instead. 

 Now, let’s compare the two approaches. Assume that you have XML that contains information about 
multiple orders, as shown in Listing  12-17 . 

     Listing 12-17.     Drill-down approach     : XML   

 declare 
     @X xml = 
 N'<Orders> 
     <Order OrderId="42" CustomerId="123" OrderNum="10025"> 
         <OrderLineItem ArticleId="250" Quantity="3" Price="9.99"/> 
         <OrderLineItem ArticleId="404" Quantity="1" Price="19.99"/> 
     </Order> 
     <Order OrderId="54" CustomerId="234" OrderNum="10025"> 
         <OrderLineItem ArticleId="15" Quantity="1" Price="14.99"/> 
         <OrderLineItem ArticleId="121" Quantity="2" Price="6.99"/> 
     </Order> 
 </Orders>' 
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   Assume that you want to achieve a result set that includes  OrderId ,  CustomerId ,  ArticleId ,  Quantity , 
and  Price  columns. The first approach uses the  nodes()  method to shred the  OrderLineItems  node, and it 
will access  CustomerId  and  OrderId  from there using descendant axes. The second approach will use two 
 nodes()  methods: one to shred the individual  Order  nodes and a second to shred  OrderLineItems  from 
those nodes. The code needed to accomplish both approaches is shown in Listing  12-18 . 

     Listing 12-18.     Drill-down approach  : Queries   

  select 
     LineItems.Item.value('../@OrderId','int') as [OrderId] 
     ,LineItems.Item.value('../@OrderNum','varchar(32)') as [OrderNum] 
     ,LineItems.Item.value('@ArticleId','int') as [ArticleId] 
     ,LineItems.Item.value('@Quantity','int') as [Quantity] 
     ,LineItems.Item.value('@Price','float') as [Price] 
 from 
     @X.nodes('/Orders/Order/OrderLineItem') as LineItems(Item); 

   select 
     Orders.Ord.value('@OrderId','int') as [OrderId] 
     ,Orders.Ord.value('@OrderNum','varchar(32)') as [CustomerId] 
     ,LineItems.Item.value('@ArticleId','int') as [ArticleId] 
     ,LineItems.Item.value('@Quantity','int') as [Quantity] 
     ,LineItems.Item.value('@Price','float') as [Price] 
 from 
     @X.nodes('/Orders/Order') as Orders(Ord) cross apply 
         Orders.Ord.nodes('OrderLineItem') as LineItems(Item) 

    Figure  12-12  shows the execution plans for the queries. Descendant axes introduce an additional pair of 
XML Readers in the execution plan, which significantly degrades the performance of the queries.   
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   modify() Method 
 Finally, the  modify()   method      allows you to modify XML data by using the  XML data modification language 
(XML DML) . I am not going to cover the DML XML syntax in depth. You can find detailed information about 
XML DML in Books Online at   http://msdn.microsoft.com/en-us/library/ms177454.aspx    . 

 All of the XQuery/XPath performance considerations discussed previously apply here as well.   

      OPENXML      
  OPENXML  is another way of dealing with XML data in SQL Server. It utilizes the MSXML parser ( Msxmlsql.dll ), 
and it keeps documents in the memory cache, which can utilize up to one-eighth of SQL Server’s memory. 

 All XML documents need to be parsed individually using the  sp_xml_preparedocument  stored 
procedure. As a result, you cannot use OPENXML to process XML data from multiple table rows. For single 
XML documents, OPENXML outperforms XQuery, although OPENXML’s memory-usage pattern makes 
it a dangerous choice. You can lose a large amount of SQL Server memory if your code does not remove 
documents from the cache by using the  sp_xml_removedocument  stored procedure. I suggest avoiding 
OPENXML unless the performance of XQuery is insufficient for the task to be performed. For more information 
about OPENXML, read this article:   http://msdn.microsoft.com/en-us/library/ms186918.aspx     .   

  Figure 12-12.    Drill-down approach: Execution plans       

 

http://msdn.microsoft.com/en-us/library/ms177454.aspx
http://msdn.microsoft.com/en-us/library/ms186918.aspx
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     SELECT FOR XML 
 You can retrieve the results of the  SELECT  query in XML format by using the  FOR XML  clause. There are four 
modes that control the shape of the generated XML:  RAW ,  AUTO ,  EXPLICIT , and  PATH . I recommend that you 
use the  PATH  mode when you need to generate XML for a complex shape. The code shown in Listing  12-19  
demonstrates using  FOR XML PATH  to accomplish this. 

      Listing 12-19.    Using FOR XML PATH   

  declare 
     @Orders table 
     ( 
         OrderId int not null primary key, 
         CustomerId int not null, 
         OrderNum varchar(32) not null, 
         OrderDate date not null 
     ) 
 declare 
     @OrderLineItems table 
     ( 
         OrderId int not null, 
         ArticleId int not null, 
         Quantity int not null, 
         Price money not null, 
         primary key(OrderId, ArticleId) 
     ) 

   insert into @Orders(OrderId, CustomerId, OrderNum, OrderDate) 
 values 
     (42,123,'10025','2016-07-15T10:05:20'), 
     (54,25,'10032','2016-07-15T11:21:00') 

   insert into @OrderLineItems(OrderId, ArticleId, Quantity, Price) 
 values 
     (42,250,3,9.99), (42,404,1,19.99), 
     (54,15,1,14.99), (54,121,2,6.99) 

   select 
     o.OrderId as [@OrderId] 
     ,o.OrderNum as [OrderNum] 
     ,o.CustomerId as [CustomerId] 
     ,o.OrderDate as [OrderDate] 
     ,( select   
             i.ArticleId as [@ArticleId] 
             ,i.Quantity as [@Quantity] 
             ,i.Price as [@Price] 
         from @OrderLineItems i 
         where i.OrderId = o.OrderId 
         for xml path('OrderLineItem'),root('OrderLineItems'), type ) 
 from @Orders o 
 for xml path('Order'),root('Orders'); 
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   -- RESULT: 
 <Orders> 
   <Order OrderId="42"> 
     <OrderNum>10025</OrderNum> 
     <CustomerId>123</CustomerId> 
     <OrderDate>2016-07-15</OrderDate> 
     <OrderLineItems> 
       <OrderLineItem ArticleId="250" Quantity="3" Price="9.99" /> 
       <OrderLineItem ArticleId="404" Quantity="1" Price="19.99" /> 
     </OrderLineItems> 
   </Order> 
   <Order OrderId="54"> 
     <OrderNum>10032</OrderNum> 
     <CustomerId>25</CustomerId> 
     <OrderDate>2016-07-15</OrderDate> 
     <OrderLineItems> 
       <OrderLineItem ArticleId="15" Quantity="1" Price="14.99" /> 
       <OrderLineItem ArticleId="121" Quantity="2" Price="6.99" /> 
     </OrderLineItems> 
   </Order> 
 </Orders> 

    You can use a  FOR XML PATH  clause to generate a delimiter-separated list of values. The code shown in 
Listing  12-20  generates a comma-separated list of  RecId  values from the table. 

      Listing 12-20.    Generating comma-separated list of values with FOR XML PATH   

 select LEFT(Data,LEN(Data) - 1) -- removing right-most comma 
 from 
     ( select convert(varchar(max),   
         ( select RecId as [text()], ',' as [text()] 
           from dbo.Data 
           for XML PATH('') ) ) as Data 
     ) List 

   This approach is very fast compared to using regular string concatenation in the code. You need to be 
careful, however, as SQL Server replaces characters with character entities when needed. For example, it 
would replace the  <  character with  &lt;  if it is present. 

 For more information about the  FOR XML  clause and the shape of the XML it generates, read this article: 
  http://msdn.microsoft.com/en-us/library/ms178107.aspx    .   

     Working with JSON Data (SQL Server 2016) 
 SQL Server 2016 provides several methods that help when working with JSON data. There is no native JSON 
data type, and you need to store JSON data as text in the database. However, you can select data in JSON 
format using the  SELECT FOR JSON  operator, shred JSON data into row sets using the  OPENJSON  table-valued 
function, and manipulate JSON data with several built-in functions. 

 The choice between XML and JSON depends on many factors. Even though both technologies 
allow you to work with semi-structured data, they are different. XML, which stands for   eXtensive Markup 
Language   , is the  language  that allows you to describe, validate, and manipulate data. A properly constructed 
XML document is self-contained and self-explanatory, and it can be strongly typed through the XML 

http://msdn.microsoft.com/en-us/library/ms178107.aspx
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schema. Finally, XQuery and XPath provide you with very powerful querying capabilities, and XLS allows 
you to transform one XML type to another. 

 JSON, on the other hand, stands for   JavaScript Object Notation   . It is not a language, but rather a data 
format optimized for data communication between the systems. It is easier to read, is lighter compared 
to XML, and is faster to shred and parse. It is not intended, however, for complex data manipulation and 
transformation. 

 XML support in SQL Server is much more robust. You can enforce strong typing with the XML schema 
and manipulate it with XQuery. You can also index it to improve the performance of the queries that deal 
with XML data. It is the better choice when you expect to query or modify semi-structured data in T-SQL 
and/or when you can benefit from XML indexes in the queries. 

 In contrast, SQL Server 2016 JSON support is rather limited. It is impossible to validate the JSON 
schema or index JSON data. It could be a good choice when you do not need to enforce a specific JSON 
schema nor expect to shred or parse a large amount of JSON data in the database. 

 Let’s look at JSON support in SQL Server 2016. 

     SELECT FOR JSON 
 You can format query results in JSON format by using the  FOR JSON  clause and using either  AUTO  or  PATH  
mode. In  AUTO  mode, the JSON output is formatted based on the structure of the  SELECT  statement.  PATH  
mode, on the other hand, gives you full control over the output format. 

 There are three additional options that control the formatting, as follows:

    ROOT  adds the top-level element to JSON output.  

   INCLUDE_NULL_VALUES  allows you to add  NULL  properties to the output. By 
default,  NULL  values are omitted.  

   WITHOUT_ARRAY_WRAPPER  removes array square brackets from enclosing the 
output.    

 Listing  12-21  shows an example of the  SELECT FOR JSON AUTO  operator. It is using the  @Orders  and 
 @OrderLineItems  table variables defined in Listing  12-19 . 

     Listing 12-21.    Using SELECT FOR JSON AUTO   

  select 
     o.OrderId as [OrderId] 
     ,o.OrderNum as [OrderNum] 
     ,o.CustomerId as [CustomerId] 
     ,o.OrderDate as [OrderDate] 
     ,( 
         select 
             i.ArticleId as [ArticleId] 
             ,i.Quantity as [Quantity] 
             ,i.Price as [Price] 
         from @OrderLineItems i 
         where i.OrderId = o.OrderId 
         for json auto 
     ) as LineItems 
 from @Orders o 
 for json auto 
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   -- Partial RESULT: 
 [ 
     { 
         "OrderId":42, 
         "OrderNum":"10025", 
         "CustomerId":123, 
         "OrderDate":"2016-07-15", 
         "LineItems": 
         [ 
             { 
                 "ArticleId":250, 
                 "Quantity":3, 
                 "Price":9.9900 
             }, 
             { 
                 "ArticleId":404, 
                 "Quantity":1, 
                 "Price":19.9900 
             } 
         ] 
     }, 
     { 
         "OrderId":54, 
         -- Skipped 
     } 
 ] 

    Similar to  SELECT FOR XML PATH ,  SELECT FOR JSON PATH  provides you with full control over the shape 
of the generated JSON. You can read more about it at    https://msdn.microsoft.com/en-us/library/
dn921882.aspx     .  

     Built-In Functions 
 SQL Server 2016 provides several functions that work with JSON data, as follows:

    ISJSON  tests whether a string contains valid JSON. You can use this function in 
the  CHECK  constraint if you need to enforce that the column stores valid JSON 
data.  

   JSON_VALUE  extracts a scalar value from a JSON string. You can use this function 
to extract JSON properties to persisted calculated columns and index them 
afterward.  

   JSON_QUERY  extracts an object or array from a JSON string.  

   JSON_MODIFY  updates the value of a property in a JSON string and returns a 
modified JSON string.    

 Listing  12-22  shows those functions in action. 

https://msdn.microsoft.com/en-us/library/dn921882.aspx
https://msdn.microsoft.com/en-us/library/dn921882.aspx
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     Listing 12-22.    Using  built-in functions     

  declare 
     @Data nvarchar(max) = N' 
 { 
     "Book":{ 
         "Title":"Pro SQL Server Internals 2nd Edition", 
         “ISBN":"978-1484219638", 
         "Author": { 
             "Name":"Dmitri Korotkevitch", 
             "Blog":"http://aboutsqlserver.com" 
         } 
     } 
 }' 

   select 
     isjson(@Data) as [Is JSON] 
     ,json_value(@Data,'$.Book.Title') as [Title] 
     ,json_query(@Data,'$.Book.Author') as [Author in JSON] 
     ,json_modify(@Data,'$.Book.Year',2016) as [Modified JSON]; 

    You can read more about this at    https://msdn.microsoft.com/en-us/library/dn921890.aspx     .  

      OPENJSON   
 The  OPENJSON  table-valued function allows you to shred JSON values into a row set. It is available only in 
databases that have a compatibility level of 130. You can call this function with or without an explicit schema 
definition for the output provided by the  WITH  clause. 

 Listing  12-23  shows an example that shreds the JSON data generated in Listing  12-20 . 

     Listing 12-23.    Using OPENJSON   

  declare 
     @Data varchar(max) = '/* JSON FROM LISTING 12-20 */' 

   select 
     Orders.OrderId, Orders.CustomerId, Orders.OrderNum 
     ,Orders.OrderDate, Orders.LineItems 
     ,sum(Items.Quantity * Items.Price) as Total 
 from 
     openjson(@Data,'$') 
     with 
     ( 
         OrderId int '$.OrderId', 
         CustomerId int '$.CustomerId', 
         OrderNum varchar(32) '$.OrderNum', 
         OrderDate date '$.OrderDate', 
         LineItems nvarchar(max) '$.LineItems' as json 
     ) as Orders 

https://msdn.microsoft.com/en-us/library/dn921890.aspx
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     cross apply 
        openjson(Orders.LineItems,'$') 
        with 
        ( 
            Quantity int '$.Quantity', 
            Price float '$.Price' 
        ) as Items 
 group by 
     Orders.OrderId, Orders.CustomerId, Orders.OrderNum 
     ,Orders.OrderDate, Orders.LineItems 

    Figure  12-13  illustrates the output of this query. As you can see, the  LineItems  column from the first 
result set is in JSON format, which is then shredded by the second  OPENJSON  function.  

  Figure 12-14.    OPENJSON: Execution plan of the query       

  Figure 12-13.    OPENJSON: Output of the query       

 Figure  12-14  shows a partial execution plan for the query. As you can see, SQL Server estimates fifty 
rows in the output for the  OPENJSON  function. This value is hardcoded, and it does not change, even if you 
enable the legacy cardinality estimator in the database. You should be aware of this behavior if you expect a 
large number of rows in the output.  

 You can use JSON to pass a batch of rows from client applications, shredding it with the  OPENJSON  
function afterward. It is less efficient as compared to table-valued parameters; however, it can be used if 
the SQL Client library does not support table-valued parameters. We will compare the performance of this 
approach with other methods in the next chapter. 

 You can read more about it at    https://msdn.microsoft.com/en-us/library/mt629158.aspx     .   

 

 

https://msdn.microsoft.com/en-us/library/mt629158.aspx
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     Summary 
 While XML and JSON add flexibility to data models, it comes at a high cost. Queries against XML data are 
slower and more CPU-intensive than queries against relational data. You can improve XQuery performance 
with XML indexes, although they require a large amount of storage space—often several times larger than 
that of the XML data itself. JSON data manipulation adds less overhead to the CPU; however, it is supported 
in SQL Server 2016 only, and support is rather limited. SQL Server 2016 does not provide a native JSON data 
type nor allow the indexing of JSON data. 

 It is recommended that you create a primary XML index when the XML data is relatively static and 
index maintenance does not introduce a lot of overhead, XML data is queried often enough, and you will 
have enough storage space to accommodate the index. Secondary XML indexes, which are nonclustered 
indexes on the primary XML index’s internal table, can be useful for optimizing specific query patterns in 
the code. 

 You can make XML typed by specifying that the XML conforms to a specific XML schema collection. 
Queries against typed XML are usually more efficient. Typed XML requires more storage space because 
the XML data type preserves type information, even though it reduces the size of the primary XML index, 
especially in the case of element-centric XML. You need to consider the overhead of the schema validation 
before making typed XML. 

 There are several rules that you must follow when designing efficient XQuery and XPath expressions. 
One of the biggest performance hits with untyped XML is the atomization of nodes. This introduces 
additional calls to the XML Reader’s table-valued functions. Moreover, descendent axes in the path, 
expressions at the middle of the path, and type casts also negatively affect XQuery performance. 

 You must avoid property-container design patterns where you store name/value pairs, such as 
 <props><name>color</name> <value>black</value></props>,  unless they are absolutely needed. The 
reason for this is that property-container design patterns usually introduce expressions in the middle of the 
path when you access the data stored in the  values  elements of such XML. 

 The most important decisions are made during the design stage. You must evaluate whether XML or 
JSON needs to be used, and then you must define what data should be stored in the XML or JSON formats. 
When data conforms to a relational model, you will achieve better performance by shredding all or part of 
the data and retaining the separate elements and attributes as regular non-XML/non-JSON columns. While 
it is great to have flexibility in your system, you must remember that nothing is free, and flexibility comes at 
the cost of performance.     
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    CHAPTER 13   

 Temporary Objects and TempDB                          

 Temporary  objects   are an essential part of SQL Server. SQL Server will sometimes create them during query 
execution to store working tables and intermediate result sets. At other times, they are created by developers. 

 In this chapter, we will discuss a few different types of temporary objects that can be created by users: 
local and global temporary tables, table variables, user-defined table types, and table-valued parameters. 
We will also talk about  tempdb  and ways to optimize its performance. 

     Temporary Tables 
 We create   temporary tables    to store short-term information, such as intermediate results and temporary data 
during data processing. Temporary tables live in  tempdb , and they behave very similarly to regular tables. 
There are a few minor differences, however, which we will discuss later in this chapter. 

 There are two kinds of temporary tables: local and global.   Local temporary tables    are named starting 
with the  #  symbol, and they are visible only in the session in which they were created and in the modules 
called from that session. When multiple sessions simultaneously create local temporary tables with the same 
name, each session will have its own instance of the table. 

 When you create a temporary table in a stored procedure, for example, you are able to access it in that 
specific stored procedure as well as in the stored procedures that you call from that stored procedure. 

 ■   Caution   You can access a temporary table created in a stored procedure from the triggers defined in some 
tables if the stored procedure performs the action that fires those triggers. However, this is clearly a bad idea, 
as the data modification operation will fail if a temporary table has not been created.  

  Listing  13-1  provides an example that demonstrates a temporary table scope. 

     Listing 13-1.    Local temporary table  scope and visibility     

  create table #SessionScope(C1 int not null) 
 go 

   create proc dbo.P1 
 as 
 begin 
     -- Success: #SessionScope is visible because it's created 
     -- in the session scope 
     select * from #SessionScope 
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       -- Results depends on how P1 is called 
     select * from #P2Scope 
 end 
 go 

   create proc dbo.P2 
 as 
 begin 
     create table #P2Scope(ID int) 

       -- Success: #SessionScope is visible because it's created 
     -- in the session scope 
     select * from #SessionScope; 

       -- Success - P1 is called from P2 so table #P2Scope is visible there 
     exec dbo.P1; 

       -- Success #P2Scope is visible from dynamic SQL called from within P2 
     exec sp_executesql N'select * from #P2Scope'; 
 end 
 go 

   -- Success: #SessionScope is visible because it's created in the session scope 
 select * from #SessionScope; 

   -- Success 
 exec dbo.P2; 

   -- Error: Invalid object name '#P2Scope' 
 exec dbo.P1; 

     The temporary table  #SessionScope  is created on the connection/session level. This table is visible and 
accessible from anywhere within the session. Another temporary table,  #P2Scope  ,  is created in the stored 
procedure  dbo.P2 . This table would be visible in the stored procedure (after it has been created) as well as in 
the other stored procedures and dynamic SQL called from  dbo.P2 . Finally, as you can see, stored procedure 
 dbo.P1  references both the  #SessionScope  and  #P2Scope  tables. As a result, that stored procedure works just 
fine when it is called from the  dbo.P2  stored procedure, although it would fail when called from anywhere 
else if the temporary table  #P2Scope  has not been created. 

 You can drop temporary tables using the   DROP TABLE  statement  . Alternatively, SQL Server will drop 
them when the session has disconnected or after finishing the execution of the module in which they 
were created. In the preceding example, the  #SessionScope  table would be dropped when the session 
disconnected and  #P2Scope  would be dropped after the  dbo.P2  stored procedure finished execution. 

   Global temporary tables       are created with names that start with  ##  symbols, and they are visible to 
all sessions. They are dropped after the session in which they were created disconnects  and  when other 
sessions stop referencing them. 

 Neither global nor local temporary tables can have triggers defined, nor can they participate in views. 
Nonetheless, like regular tables, you can create clustered and nonclustered indexes and define constraints 
in them. 

 SQL Server maintains statistics on the indexes defined in temporary tables in a manner similar to 
regular tables. Temporary tables have an additional statistics update threshold of six changes to the leftmost 
statistics column, which regular tables do not have. A  KEEP PLAN  query hint lets us prevent a statistics update 
based on that threshold and match a regular table’s behavior. 
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 Temporary tables are often used to simplify large and complex queries by splitting them into smaller 
and simpler ones. This helps the Query Optimizer find a better execution plan in a few ways. First, simpler 
queries usually have a smaller number of possible execution plans. This reduces the search area for Query 
Optimizer, and it improves the chances of finding a better execution plan. In addition, simpler queries 
usually have better cardinality estimations, because the number of errors tends to grow quickly when more 
and more operators appear in the plan. Moreover, statistics kept by temporary tables allow Query Optimizer 
to use actual cardinality data rather than relying on those often-incorrect estimates. 

 Let’s look at one such example. In the first step, shown in Listing  13-2 , we create a table and populate it 
with data. 

     Listing 13-2.    Using temporary tables to optimize queries:  Table creation     

  create table dbo.Orders 
 ( 
     OrderId int not null, 
     CustomerId int not null, 
     Amount money not null, 
     Placeholder char(100), 

       constraint PK_Orders 
     primary key clustered(OrderId) 
 ); 

   create index IDX_Orders_CustomerId on dbo.Orders(CustomerId); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Orders(OrderId, CustomerId, Amount) 
     select ID, ID % 250 + 1, Id % 50 from IDs; 

    At this point, the table has 65,536  order  rows evenly distributed across 250 customers. In the next step, 
let’s create a multi-statement table-valued function that accepts a comma-separated list of ID values as the 
parameter and returns a table with individual ID values in the rows. One possible implementation of such a 
function is shown in Listing  13-3 . 

     Listing 13-3.    Using temporary tables to optimize queries:  Function creation     

  create function dbo.ParseIDList(@List varchar(8000)) 
 returns @IDList table 
 ( 
     ID int 
 ) 
 as 
 begin 
     if (IsNull(@List,'') = '') 
         return; 
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       if (right(@List,1) <> ',') 
         select @List += ','; 

       ;with CTE(F, L) 
     as 
     ( 
         select 1, charindex(',',@List) 
         union all 
         select L + 1, charindex(',',@List,L + 1) 
         from CTE 
         where charindex(',',@List,L + 1) <> 0 
     ) 
     insert into @IDList(ID) 
         select distinct convert(int,substring(@List,F,L-F)) 
     from CTE 
     option (maxrecursion 0); 

       return; 
 end 

     Now, let’s run a   SELECT  statement   that calculates the total amount for all orders for all customers. We 
will build a comma-separated list of values from 1 to 250 and use a  dbo.ParseIDList  function to parse it. We 
will join the  dbo.Orders  table with the function, as shown in Listing  13-4 , and then examine the execution 
plan, shown in Figure  13-1 .  

     Listing 13-4.    Using temporary tables to optimize queries: Joining the Orders table with a  multi-statement 
table-valued function     

  declare 
     @List varchar(8000) 

   -- Populate @List with comma-separated list of integers 
 -- from 1 to 250 
 ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 

  Figure 13-1.    Execution plan for the query that joins a table and a function (Legacy cardinality estimator)       
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 ,IDs(ID) as (select row_number() over (order by (select null)) from N4) 
 select @List = convert(varchar(8000), 
     ( select ID as [text()], ',' as [text()] 
       from IDs 
       where ID <= 250 
       for xml path('')  )); 

   select sum(o.Amount) 
 from dbo.Orders o join dbo.ParseIDList(@List) l on 
         o.CustomerID = l.ID; 

     As you know, legacy cardinality estimator always estimates that multi-statement table-valued functions 
return just one row. This would lead to a very inefficient execution plan in our example. 

 The  I/O statistics and execution time   on my computer produced the following results: 

    Table 'Orders'. Scan count 250, logical reads 201295 
 Table '#25869641'. Scan count 1, logical reads 1 

    SQL Server Execution Times: 
    CPU time = 249 ms,  elapsed time = 239 ms. 

    Now, let’s change our  approach   and populate a temporary table with the values returned by the  dbo.
ParseIDList  function, as shown in Listing  13-5 . 

     Listing 13-5.    Using temporary tables to optimize queries: Temporary table approach   

  declare 
     @List varchar(8000) 

   -- Populate @List with comma-separated list of integers 
 -- from 1 to 250 
 ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4) 
 select @List = convert(varchar(8000), 
     ( select ID as [text()], ',' as [text()] 
       from IDs 
       where ID <= 250 
       for xml path('')  )); 

   create table #Customers(ID int not null primary key); 
 insert into #Customers(ID) 
     select ID from dbo.ParseIDList(@List); 

   select sum(o.Amount) 
 from dbo.Orders o join #Customers c on 
         o.CustomerID = c.ID; 

   drop table #Customers; 
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    As you can see in Figure  13-2 , SQL Server estimates the number of IDs correctly, and, as a result, you 
end up with a much more efficient  execution plan  .  

  Figure 13-2.    Execution plan for a query that uses temporary table       

 The  I/O statistics and execution time   on my computer are as follows: 

    SQL Server Execution Times: 
    CPU time = 0 ms,  elapsed time = 1 ms. 
 Table '#Customers__________00000000001D'. Scan count 0, logical reads 501 
 Table '#25869641'. Scan count 1, logical reads 1 

    SQL Server Execution Times: 
    CPU time = 0 ms,  elapsed time = 6 ms. 
 Table 'Orders'. Scan count 1, logical reads 1029 
 Table '#Customers__________00000000001D'. Scan count 1, logical reads 2 

    You can see that with the temporary table, our query is more than 30 times faster and uses two orders of 
magnitude less I/O compared to the query that used a multi-statement table-valued function. 

 Obviously, there is overhead associated with temporary tables, especially in cases when you insert a 
large amount of data. In some cases, such overhead would degrade the performance of the queries, even 
with the more efficient execution plans that were generated. For example, if in a majority of cases you 
calculated the total orders amount for a single or for very few customers, the approach with the temporary 
table would be slower than without it. You would end up with similar execution plans, but you would have 
to deal with the overhead from creating and populating the temporary table. On the other hand, you may 
decide to live with such overhead rather than having to deal with the poor performance that results on the 
rare occasions you run the query for a large list of customers. 

 Both the creation and the deletion of temporary tables require access to and modifications of the 
allocation map pages, such as IAM, SGAM, and PFS, as well as of the system tables. While the same actions 
occur during the creation of regular tables in users’ databases, the system rarely creates and drops users’ 
tables at a high rate. Temporary tables, on the other hand, can be created and dropped quite frequently. On 
busy systems, this can lead to contention when multiple sessions are trying to modify allocation map pages. 

 ■   Note   We will talk about how to detect such contention in Part V of this book, “Practical Troubleshooting.”  

 In order to improve performance, SQL Server introduces the concept of  temporary objects caching . This 
term is a bit confusing. It relates to temporary object allocation rather than data pages, which are cached in a 
buffer pool, similar to regular tables. 
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 In a nutshell, with temporary objects caching, instead of dropping the table, SQL Server truncates it, 
keeping two pages per index pre-allocated: one IAM and one data page. The next time the table is created, 
SQL Server will reuse these pages, which helps reduce the number of modifications required in the 
allocation map pages. 

 Let’s look at the example shown in Listing  13-6 . In the first step, let’s define the stored procedure that 
creates and drops the temporary table. 

     Listing 13-6.     Temporary objects caching  : Stored procedure   

 create proc dbo.TempTableCaching 
 as 
     create table #T(C int not null primary key); 
     drop table #T; 

    In the next step, let’s run the stored procedure and examine the transaction log activity it generates. You 
can see the code for doing this in Listing  13-7 . 

      Listing 13-7.    Temporary objects caching: Running the  stored procedure     

 checkpoint; 
 go 
 exec dbo.TempTableCaching; 
 go 
 select Operation, Context, AllocUnitName, [Transaction Name], [Description] 
 from sys.fn_dblog(null, null); 

   When you run this code for the first time, you will see results similar to those in Figure  13-3 .   

  Figure 13-3.    Log activity when a temporary table has not been cached       

  As you can see, the first stored procedure call produced 51 log records. Forty of them (the highlighted 
portion) relate to the update of the allocation map pages and system tables during temporary table creation. 
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 If you run the code from Listing  13-7  a second time, you will see a different picture, as shown in 
Figure  13-4 .   

  Figure 13-4.     Log activity   when the temporary table has been cached       

 This time, as the temporary table has been cached, table creation introduces just a few log records, all of 
which are against the system table with no allocation map pages involved. 

 SQL Server does not cache IAM or data pages for global temporary tables, nor does it cache local 
temporary tables created in the session scope. Only the temporary tables created within stored procedures 
and triggers are cached. 

 There are also a few  requirements   for the table and code, including the following:

•    The table needs to be smaller than eight megabytes. Large tables are not cached.  

•   There are no DDL statements that change the table structure. Any schema 
modification statements in the code, with the exception of  DROP TABLE  ,  will prevent 
temporary objects caching. However, you can create indexes on the table and, as 
mentioned previously, SQL Server will cache them.  

•   There are no  named  constraints defined in the table. Unnamed constraints will not 
prevent the caching.    

 As you can see, it is very easy to follow the guidelines that make temporary tables cacheable. This can 
significantly improve performance and reduce the contention on  tempdb  allocation map pages on busy systems.  

      Table Variables 
 Despite the myth that table variables are in-memory objects, they are actually created and live in  tempdb , 
similar to regular temporary tables. You can think about them as lightweight temporary tables, although 
their lightness comes with a set of limitations and restrictions. 

 ■   Note   In-Memory OLTP technology introduced in SQL Server 2014 allows you to create  memory-optimized 
table variables . Those objects live only in memory and do not use  tempdb . We will discuss In-Memory OLTP in 
Part VIII of this book.  
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 The first major difference between temporary tables and table variables is the scope. Table variables 
live only within the batch in which they were created. They are not accessible from outside of the batch, as 
opposed to temporary tables. For example, when you define a table variable in a stored procedure, you are 
not able to reference it from the dynamic SQL nor from other stored procedures called from the original one. 

 You cannot create indexes on  table variables  , with the exception of primary key and unique constraints. 

 ■   Important   SQL Server does not maintain any statistics on table variables, and it always estimates that a 
table variable has just a single row, unless a statement-level recompile is used.  

 Look at the example shown in Listing  13-8 . Here, we create a temporary table and table variable, 
populate it with some data, and check SQL Server’s cardinality estimations. 

     Listing 13-8.    Cardinality estimation for temporary tables and table variables   

  declare 
     @TTV table(ID int not null primary key) 

   create table #TT(ID int not null primary key); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4) 
 insert into #TT(ID) 
     select ID from IDs; 

   insert into @TTV(ID) 
     select ID from #TT; 

   select count(*) from #TT; 
 select count(*) from @TTV; 
 select count(*) from @TTV option (recompile); 

    As you can see in Figure  13-5 , unless you are using a statement-level recompile, SQL Server estimates 
that a table variable has only one row. Cardinality estimation errors often progress quickly through the 
execution plan, and this can lead to highly inefficient plans when table variables are used. A statement-level 
recompile provides the Query Optimizer with information about the total number of rows, although no 
statistics are kept and the Query Optimizer knows nothing about data distribution in the table variable.  
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  Figure 13-5.    Cardinality estimation for temporary tables and table variables       
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 Now, let’s change our previous example and add a  where ID > 0  clause to all three selects. All ID values 
in both tables are positive. When you run these queries, you will receive the cardinality estimations shown in 
Figure  13-6 .   

  Regular temporary tables maintain statistics on indexes, and, as a result, SQL Server was able to access 
the histogram and estimate the number of rows in the first  SELECT  correctly. As previously, without a 
statement-level recompile it is assumed that the table variable has only a single row. Nevertheless, even with 
a statement-level recompile, the estimations were way off. There are no statistics, and SQL Server assumes 
that the  greater  operator will return one-third of the rows from the table, which is incorrect in our case. 

 Another difference between temporary tables and table variables is how they handle transactions. 
Temporary tables are fully transaction-aware, similar to regular tables. Table variables, on the other hand, 
support only statement-level rollbacks. Any statement-level errors — for example, “key violation” — would roll 
back the statement, although explicit transaction rollback keeps the table variable data intact. 

 Let’s look at a couple of examples. In the first example, we will produce a   primary key violation    error 
during the  INSERT  operation. The code for this is shown in Listing  13-9 . 

  Figure 13-6.    Cardinality estimations for temporary tables and table variables       
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     Listing 13-9.    Temporary table variables:  Statement-level rollback     

  declare 
     @T table(ID int not null primary key) 

   -- Success 
 insert into @T(ID) values(1); 

   -- Error: primary key violation 
 insert into @T(ID) values(2),(3),(3); 

   -- 1 row 
 select * from @T; 

    As you can see in Figure  13-7 , the second  INSERT  statement did not add rows to the table.   

  Figure 13-7.    Table variables: Statement-level rollback       

 Now, let’s examine what happens when we roll back an  explicit transaction  . The code for doing this is 
shown in Listing  13-10 . 

     Listing 13-10.    Table variables: Explicit transactions   

 declare 
     @Errors table 
     ( 
         RecId int not null primary key, 
         [Error] nvarchar(512) not null 
     ) 
 begin tran 
     -- Insert error information 
     insert into @Errors(RecId, [Error]) 
     values 
         (11,'Price mistake'),   
         (42,'Insufficient stock'); 
 rollback 
 /* Do something with errors */ 
 select RecId, [Error] from @Errors; 

   As you can see in Figure  13-8 , the explicit rollback statement did not affect the table variable data. You 
can benefit from such behavior when you need to collect some error or log information that you want to 
persist even after the transaction has been rolled back.  
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 ■   Caution   While table variables can outperform temporary tables in some cases because of their lower 
overhead, you need to be extremely careful with them, especially when you store large amounts of data in the 
table variable. The single-row cardinality estimation rule and missing statistics can produce highly inefficient 
plans with a large number of rows involved. A statement-level recompile can help address some cardinality 
estimation issues, although it will not help when the data distribution needs to be analyzed.  

 As a general rule of  thumb  , it is safer to use temporary tables than table variables when you need to join 
them with other tables. With single-row cardinality estimation, Query Optimizer usually chooses a  nested 
loop  when a table variable is present in the join. This join type is highly inefficient in cases where there is a 
large amount of data stored in both join inputs. 

 Table variables are a good choice when you need to deal with a large number of rows and no joins with 
other tables are involved. For example, you can think about a stored procedure where you stage the data, do 
some processing, and return the data to the client. If there is no other choice but to scan the entire table, you 
will have the same execution plan regardless of what object types are used. In these cases, table variables can 
outperform temporary tables.  Nevertheless, temporary tables are the safer choice in the majority of cases.  

 Finally, table variables are cached in the same way as temporary tables are.  

       User-Defined Table Types and Table-Valued Parameters 
 You can define table types in the database. When you declare the variable of the table type in the code, it 
works the same way as with table variables. 

 Alternatively, you can pass the variables of the table types, called   table-valued parameters (TVPs)      , to 
T-SQL modules. While table-valued parameters are implemented as table variables under the hood, they are 
actually read-only. You cannot insert, update, or delete data in table-valued parameters. 

 The code in Listing  13-11  shows how you can use table-valued parameters. It creates the table type  
dbo.tvpErrors  ,  a stored procedure with a table-valued parameter, and shows the examples how to pass that 
parameter to a stored procedure and dynamic SQL. 

     Listing 13-11.    Table-valued parameters   

  create type dbo.tvpErrors as table 
 ( 
     RecId int not null primary key, 
     [Error] nvarchar(512) not null, 
 ) 
 go 

   create proc dbo.TvpDemo 
 ( 
     @Errors dbo.tvpErrors readonly 
 )   

  Figure 13-8.    Table variables: Explicit transactions       
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 as 
     select RecId, [Error] from @Errors; 

       exec sp_executesql 
         N'select RecId, [Error] from @Err' 
         ,N'@Err dbo.tvpErrors readonly' 
         ,@Err = @Errors; 
 go 

   declare 
     @Errors dbo.tvpErrors 

   insert into @Errors(RecId, [Error]) 
 values 
     (11,'Price mistake'),   
     (42,'Insufficient stock') 

   exec dbo.TvpDemo @Errors 

      As you can see, you need to mention explicitly that the table-valued parameter is read-only in both the 
stored procedure and the dynamic SQL parameter lists. 

 Table-valued parameters are one of the fastest ways to pass a batch of rows from a client application to 
a T-SQL routine. Table-valued parameters are an order of magnitude faster than separate DML statements, 
and, in some cases, they can even outperform bulk operations. 

 Now, let’s run a few tests comparing the performance of inserting the data into the table using 
different methods and different batch sizes. As a first step, let’s create a table to store the data, as shown in 
Listing  13-12 . The actual table used in the tests has 21 data columns. A few data columns are omitted in 
the listings in order to save space. The actual test application and all the scripts are included in the book 
companion materials. 

     Listing 13-12.    Inserting a batch of rows:  Table creation     

  create table dbo.Data 
 ( 
     ID int not null, 
     Col1 varchar(20) not null, 
     Col2 varchar(20) not null, 
     /* Seventeen more columns Col3 - Col19 */ 
     Col20 varchar(20) not null, 

       constraint PK_DataRecords 
     primary key clustered(ID) 
 ) 

     The first method calls the separate  INSERT  statements from within the transaction. The .Net code to do 
this is shown in Listing  13-13 . It is worth mentioning that the only purpose of this code is to generate dummy 
data and to test the performance of the different methods that insert data into the database. 
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     Listing 13-13.    Inserting a batch of rows: Using  separate inserts     

 using (SqlConnection conn = GetConnection()) 
 { 
     /* Generating SqlCommand and parameters */ 
     SqlCommand cmd = new SqlCommand( 
         @"insert into dbo.Data(ID,Col1,Col2,/*…*/Col20) 
           values(@ID,@Col1,@Col2,/*…*/@Col20)",conn); 
     cmd.Parameters.Add("@ID", SqlDbType.Int); 
     for (int i = 1; i <= 20; i++) 
         cmd.Parameters.Add("@Col" + i.ToString(), SqlDbType.VarChar, 20); 
     /* Running individual insert statements in the loop 
        within explicit transaction */ 
     using (SqlTransaction tran = 
         conn.BeginTransaction(IsolationLevel.ReadCommitted)) 
     { 
         try 
         { 
             cmd.Transaction = tran; 
             for (int i = 0; i < packetSize; i++) 
                 cmd.Parameters[0].Value = i; 
             for (int p = 1; p <= 20; p++) 
                 cmd.Parameters[p].Value = "Parameter: " + p.ToString(); 
             cmd.ExecuteNonQuery(); 
         } 
         tran.Commit(); 
     } 
     catch (Exception ex) 
     { 
         tran.Rollback(); 
     } 
 } 

    The second method sends the entire batch at once in an element-centric XML format, using a stored 
procedure to parse it. The .Net code is omitted, and the stored procedure is shown in Listing  13-14 . 

     Listing 13-14.    Inserting a batch of rows: Using  element-centric XML     

 create proc dbo.InsertDataXmlElementCentric 
 ( 
     @Data xml 
 ) 
 as 
 -- @Data is in the following format: 
 -- <Rows><R><ID>{0}</ID><C1>{1}</C1><C2>{2}</C2>..<C20>{20}</C20></R></Rows> 
     insert into dbo.Data(ID,Col1,Col2,/*…*/ Col20) 
         select 
             rows.n.value('(ID/text())[1]', 'int') 
             ,rows.n.value('(C1/text())[1]', 'varchar(20)') 
             ,rows.n.value('(C2/text())[1]', 'varchar(20)') 
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             /* other 17 columns */ 
             ,rows.n.value('(C20/text())[1]', 'varchar(20)') 
         from 
             @Data.nodes('//Rows/R') rows(n) 

    The third method is very similar to the second, but it uses attribute-centric XML instead. The code for 
this is shown in Listing  13-15 . 

     Listing 13-15.    Inserting a batch of rows: Using  attribute-centric XML     

 create proc dbo.InsertDataXmlAttributeCentric 
 ( 
     @Data xml 
 ) 
 as 
 -- @Data is in the following format: 
 -- <Rows><R ID="{0}" C1="{1}" C2="{2}"..C20="{20}"/></Rows> 
     insert into dbo.Data(ID,Col1,Col2,/*…*/Col20) 
         select 
             rows.n.value('@ID', 'int') 
             ,rows.n.value('@C1', 'varchar(20)') 
             ,rows.n.value('@C2', 'varchar(20)') 
             /* other 17 columns */ 
             ,rows.n.value('@C20', 'varchar(20)') 
         from 
             @Data.nodes('//Rows/R') rows(n) 

    The fourth method uses a  SqlBulkCopy  .Net class with  DataTable  as the source using row-level locks. 
The code for this is shown in Listing  13-16 . 

     Listing 13-16.    Inserting a batch of rows: Using  SqlBulkCopy .Net class     

 using (SqlConnection conn = GetConnection()) 
 { 
     /* Creating and populating DataTable object with dummy data */ 
     DataTable tbl = new DataTable(); 
     tbl.Columns.Add("ID", typeof(Int32)); 
     for (int i = 1; i <= 20; i++) 
         tbl.Columns.Add("Col" + i.ToString(), typeof(string)); 
     for (int i = 0; i < packetSize; i++) 
         tbl.Rows.Add(i, "Parameter: 1", /* Other columns */ "Parameter: 20"); 
     /* Saving data into the database */ 
     using (SqlBulkCopy bc = new SqlBulkCopy(conn)) 
     { 
         bc.BatchSize = packetSize; 
         bc.DestinationTableName = "dbo.Data"; 
         bc.WriteToServer(tbl); 
     } 
 } 
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    The next method uses table-valued parameters. Listing  13-17  shows the T-SQL code and Listing  13-18  
shows the .Net part of the implementation. 

     Listing 13-17.    Inserting a batch of rows:  Table-valued parameters T-SQL code     

  create type dbo.tvpData as table 
 ( 
     ID int not null primary key, 
     Col1 varchar(20) not null, 
     Col2 varchar(20) not null, 
     /* Seventeen more columns: Col3 - Col19 */ 
     Col20 varchar(20) not null 
 ) 
 Go 

   create proc dbo.InsertDataTVP 
 ( 
     @Data dbo.tvpData readonly 
 ) 
 as 
     insert into dbo.Data(ID,Col1,Col2,/*…*/Col20) 
         select ID,Col1,Col2,/*…*/Col20 
         from @Data; 

         Listing 13-18.    Inserting a batch of rows:  Table-valued parameters .Net code     

 using (SqlConnection conn = GetConnection()) 
 { 
     DataTable tbl = new DataTable(); 
     tbl.Columns.Add("ID", typeof(Int32)); 
     for (int i = 1; i <= 20; i++) 
         tbl.Columns.Add("Col" + i.ToString(), typeof(string)); 
     for (int i = 0; i < packetSize; i++) 
         tbl.Rows.Add(i, "Parameter: 1", /* Other columns */ "Parameter: 20"); 
     /* Calling SP with TVP parameter */ 
     SqlCommand cmd = new SqlCommand("dbo.InsertDataTVP", conn); 
     cmd.Parameters.Add("@Data", SqlDbType.Structured); 
     cmd.Parameters[0].TypeName = "dbo.tvpData"; 
     cmd.Parameters[0].Value = table; 
     cmd.ExecuteNonQuery(); 
 } 

   Finally, the last method will pass the batch of rows in JSON format using the  OPENJSON  function to shred 
it. As you will remember, this method works only in SQL Server 2016 and requires the database to have a 
compatibility level of 130. Listing  13-19  illustrates the stored procedure that imports the data. 
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     Listing 13-19.    Inserting a batch of rows: Using JSON and the OPENJSON  function     

 create proc dbo.InsertDataRecordsJSON 
 ( 
     @Data nvarchar(max) 
 ) 
 as 
     insert into dbo.Data(ID,Col1,Col2,/*…*/Col20) 
         select ID,Col1,Col2,/*…*/Col20 
         from openjson(@Data,'$') 
         with ( 
             ID int '$.ID', 
             Col1 varchar(20) '$.F1', 
             Col2 varchar(20) '$.F2', 
             /* Col3 - Col19 */ 
             Col20 varchar(20) '$.F20' ); 

   I ran two series of tests measuring average execution time for the different methods and different batch 
sizes in SQL Server 2016 RTM. In the first test, the application ran on the same server as SQL Server. On the 
second test, the application connected to SQL Server over a network. You can see the  execution time   for 
these two tests in milliseconds in Tables  13-1  and  13-2 .   

   Table 13-2.    Execution Time When the Application Was Run Remotely (in Milliseconds)   

 Rows  Separate 
inserts 

 Element-centric 
XML 

 Attribute-centric 
XML 

 SQLBulkCopy  Table-valued 
parameters 

 JSON 

 1,000  421  565  303  35  19  73 

 5,000  2,089  2,561  1,478  108  97  339 

 10,000  4,302  5,203  2,964  218  184  659 

 100,000  43,644  52,860  28,534  2,275  1,998  6,491 

   Table 13-1.    Execution Time When the Application Was Run Locally (in Milliseconds)   

 Rows  Separate 
inserts 

 Element-centric 
XML 

 Attribute-centric 
XML 

 SQLBulkCopy  Table-valued 
parameters 

 JSON 

 1,000  176  535  300  28  18  68 

 5,000  883  2,525  1,409  105  89  320 

 10,000  1,844  5,365  2,892  214  179  612 

 100,000  18,199  51,030  29,125  2,219  1,946  6,479 

 The performance of the separate  INSERT  statements greatly depends on network speed. This approach 
introduces a lot of network activity, and it does not perform well, especially with slow networks. The 
performance of the other methods do not depend greatly on the network. 

 As expected, the performance of attribute-centric XML is better than that of element-centric XML. 
It will also outperform separate inserts with the large batches—even with no network overhead involved. 
It is worth mentioning that the performance of XML implementations greatly depends on the data schema. 
Every XML element adds another operator to the execution plan, which slows XML parsing. 



CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

287

  SQLBulkCopy  and table-valued parameters are by far the fastest methods. Table-valued parameters were 
slightly more efficient in my test; however, the variation in performance is negligible and would depend on 
SQL Server version and  tempdb  performance. 

 Lastly,  OPENJSON  implementation in SQL Server 2016 outperforms individual  INSERT  statements and 
the XML approaches. Even though it is still slower as compared to table-valued parameters and 
 SQLBulkCopy , it could be a good choice in some cases if SQL Client library does not support TVPs. 

 ■   Note   In-Memory OLTP allows you to use  memory-optimized table-valued parameters , which are faster 
than their on-disk counterparts, especially with large batches of data. We will discuss them in Chapter   37    , 
“In-Memory OLTP Programmability.”  

 When you work with table-valued parameters in the client code, you need to assign a   DataTable  object   
to a corresponding  SqlParameter  object. The  DataTable  object should match the corresponding table-type 
definition from both the schema and data standpoints. The  DataTable  object should have the same number 
of columns, and these columns should have the same names and be in the same order as in the table type 
defined in the database. They also need to support type conversions between the corresponding .Net and 
SQL data types. 

 Data in the table needs to conform to the table type’s primary and unique constraints, and it should not 
exceed the defined column sizes and T-SQL data type’s domain values. 

 Finally, table types should not have  sql_variant  columns. Unfortunately, the .Net SQL client does 
not work with these correctly, and it raises exceptions during the call when the table-valued type has a 
 sql_variant  column defined.  

     Regular Tables in TempDB 
 You can create regular tables in  tempdb , either directly or through the  model  database. User tables in  tempdb  
are visible in all sessions. 

  Tempdb  is recreated every time SQL Server restarts, and, because of this, it does not need to support 
crash recovery. As a result,  tempdb  uses the   SIMPLE  recovery model     , and it has some additional logging 
optimizations, which make it more efficient than logging into the user’s databases. 

 ■   Note   We will discuss recovery models and the differences in logging between  tempdb  and user databases 
in Chapter   30    , “Transaction Log Internals.”  

  Tempdb  could be an option to be the staging area for  ETL processes     , where you need to load and process 
a large amount of data as fast as possible with minimum logging overhead. You can use temporary tables 
when the process is done as a single session; however, you need to use regular tables in more complex cases. 

 While  tempdb  can help with staging-area performance, client applications need to handle situations 
where  tempdb  is recreated and the tables with the data are gone. This may occur if SQL Server restarts or fails 
over to another node. 

 To make the situation even worse, this can happen transparently to the client applications in some 
cases. Applications need to handle these situations either by checking for the existence of the staging tables 
or, if you are creating tables automatically, persisting the state information somewhere else. 

 Let’s assume that we have a table called  dbo.ETLStatuses  that contains information about the ETL 
process statuses. There are a couple of ways that you can create such a table. One is using a  model  database. 
All objects created in a  model  database are copied to  tempdb  during SQL Server startup. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_37
http://dx.doi.org/10.1007/978-1-4842-1964-5_30
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 ■   Caution   All objects created in a  model  database will be copied into the user databases that are created 
afterward.  

   Alternatively, you can create objects in  tempdb  using a  stored procedure      that executes upon SQL Server 
startup. Listing  13-20  shows such an example. 

     Listing 13-20.    Creating a table in tempdb with a startup stored procedure   

  use master; 
 go 

   -- Enable scan for startup procs 
 exec sp_configure 'show advanced option', '1'; 
 reconfigure; 
 exec sp_configure 'scan for startup procs', '1'; 
 reconfigure; 
 go 

   create proc dbo.CreateETLStatusesTable 
 as 
     create table tempdb.dbo.ETLStatuses 
     ( 
         ProcessId int not null, 
         ActivityTime datetime not null, 
         StageNo smallint not null, 
         [Status] varchar(16) not null, 

           constraint PK_ETLStatuses 
         primary key clustered (ProcessID) 
     ) 
 go 

   -- Mark procedure to run on SQL Server Startup 
 exec sp_procoption N'CreateETLStatusesTable', 'startup', 'on'; 

    Listing  13-21  shows a possible implementation of the procedure that performs one of the stages of ETL 
processing by using the  dbo.ETLStatuses  table to validate process-state information. 

     Listing 13-21.    Example of ETL stored procedure   

  -- Either defined in user db or in tempdb 
 create proc dbo.ETL_Process1Stage2 
 as 
 begin 
 -- Returns 
 -- 0: Success 
 -- -1: ETL tables do not exist – something is wrong 
 -- -2: ETLStatuses table does not have the record for the process 
 -- -3: Invalid stage 
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     set xact_abort on 
     declare 
         @StageNo smallint 
         ,@Status varchar(16) 

       if  object_id(N’tempdb.dbo.ETLStatuses’) is null or 
         object_id(N’tempdb.dbo.ETLData’) is null   
             return -1; 

       select @StageNo = StageNo, @Status = [Status] 
     from tempdb.dbo.ETLStatuses 
     where ProcessId = 1; 
     if @@rowcount = 0 
         return -2; 

       if @StageNo <> 1 or @Status <> ‘COMPLETED’ 
         return -3; 

       -- This implementation rolls back all the changes in case of the error 
     -- and throw the exception to the client application. 
     begin tran 
         update tempdb.dbo.ETLStatuses 
         set ActivityTime = getutcdate(), StageNo = 2, [Status] = ‘STARTED’ 
         where ProcessId = 1; 

           /* Do Some Processing */ 

           update tempdb.dbo.ETLStatuses 
         set ActivityTime = getutcdate(), [Status] = ‘COMPLETED’ 
         where ProcessId = 1; 
     commit 
     return 0; 
 end 

    Of course, there are other ways to accomplish the same task. However, the key point here is the need to 
make your code aware of the situation when  tempdb  is recreated and the staged data is gone.    

       Optimizing TempDB Performance 
   Tempdb       is usually one of the busiest databases on the server. In addition to temporary objects created by 
users, SQL Server uses this database to store internal result sets during query executions, version store, 
internal temporary tables for sorting, hashing, and database consistency checking, and so forth.  Tempdb  
performance is a crucial component in overall server health and performance. Thus, in most cases, you 
should put  tempdb  on the fastest disk array that you have available. 

 In cases where you are using Standard Edition on the servers that have more memory that SQL Server 
can utilize, it is possible to create RAM drive and put  tempdb  there. Make sure that the RAM drive has enough 
space to accommodate  tempdb  growth in that case. In Enterprise Edition, however, it is better to leave the 
memory to SQL Server and place  tempdb  on the fastest disk array instead. 
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 Redundancy of the array is another issue. On one hand, you do not need to worry much about the data 
that you are storing in  tempdb . On the other hand, if the  tempdb  disk array goes down, SQL Server becomes 
unavailable. As a general rule then, you would like to have disk array redundancy. 

 Although, in some cases, when  tempdb  performance becomes a bottleneck and your High Availability 
strategy supports the simultaneous failure of two or more nodes, and furthermore there are spare parts 
available and there is a process in place that allows you to bring the failed node(s) online quickly, you 
could consider making the  tempdb  disk array non-redundant. This is a dangerous route, however, and you 
need to consider the pros and cons of this decision very carefully, avoiding unnecessary failovers whenever 
it is possible. 

 There is a trace flag,  T1118 , that prevents SQL Server from using mixed extents for space allocation. 
By allocating uniform extents only, you reduce the number of changes required in the allocation map pages 
during object creation. Moreover, even if temporary objects caching keeps only one data page cached, that 
page would belong to its own free uniform extent. As a result, SQL Server does not need to search, and 
potentially allocate, the mixed extents with free pages that are available during the allocation of pages two 
to eight of the table. Those pages can be stored in the same uniform extent in which the first cached data 
page belongs. 

 The bottom line is that trace flag  T1118  can significantly reduce allocation map pages contention in 
 tempdb . This trace flag should be enabled in every SQL Server instance prior to SQL Server 2016; that is, there 
is no downside to doing this. 

 SQL Server 2016, on the other hand, does not use mixed extents allocation in  tempdb , even without 
 T1118  enabled. Thus, this trace flag is not required in SQL Server 2016. 

 Another way to reduce contention is by creating multiple  tempdb  data files. Every data file has its own 
set of allocation map pages, and, as a result, allocations are spread across these files and pages. This reduces 
the chances of contention, because fewer threads are then competing simultaneously for access to the same 
allocation map pages. 

 There is no generic rule that defines the optimal number of  tempdb  data files—everything depends on the 
actual system workload and behavior. The old guidance — to have the number of data files equal the number 
of logical processors — is no longer the best advice. While that approach still works, an extremely large number 
of data files could degrade the performance of the system due to the file-management overhead. 

 Having multiple data files can also degrade the performance of  tempdb  spills when SQL Server uses 
 tempdb  to store internal record sets during  Sort  and  Hash  operations. As a general rule, you would need to 
perform query optimization to reduce spills in the system; however, if it is impossible, you can consider 
using the  -E  SQL Server startup parameter, which increases the number of extents allocated in each data file 
in a proportional fill algorithm. Use this startup parameter with care and as a last resort and validate how it 
affects your workload. We will discuss spills in detail in Chapter   25    . 

 The Microsoft CSS team performed a stress test of  tempdb  performance using a server with 64 logical 
processors running under a heavy load with 500 connections that create, populate, and drop temporary 
tables into the loop. Table  13-3  displays the execution time based on the number of files in  tempdb  and a 
trace flag  T1118  configuration.  

   Table 13-3.    Execution time based on the number of data files in tempdb   

 1 data file  8 data files  32 data files  64 data files 

 Without  T1118   1,080 seconds  45 seconds  17 seconds  15 seconds 

 With  T1118   525 seconds  38 seconds  15 seconds  15 seconds 

http://dx.doi.org/10.1007/978-1-4842-1964-5_25
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 As you can see, creating more than one data file dramatically improved  tempdb  performance, although 
it stabilized at some point. For instance, there was only a marginal difference in performance between the 
scenarios with 32 and 64 data file. 

 In general, you should start with a number of files equal to the number of logical processors in case the 
system has eight or fewer logical processors. Otherwise, start with eight data files and add them in groups 
of four in case there is still contention in the system. Make sure that the files are created with the same 
initial size and same auto-growth parameters, with growth size set in megabytes rather than by percentage. 
This helps you to avoid situations where files grow disproportionately, causing some files to process more 
allocations than others do. 

 SQL Server 2016 simultaneously grows all  tempdb  data files whenever any single data file needs to be 
grown. This reduces the chance that  tempdb  data files would grow unevenly and would have disproportional 
allocations. You should still make sure that all files have identical auto-growth parameters specified. 

 You can enable the same auto-growth behavior in previous versions of SQL Server by using trace flag 
 T1117 . Keep in mind, however, that this behavior will be applied server-wide and affect user databases. 
All data files in the filegroup will grow together at the time of an auto-growth event. 

 It is also beneficial to apply the latest SQL Server service packs and cumulative updates to the system. 
Microsoft constantly optimizes  tempdb  performance and reduces  tempdb  disk activity in the various use cases. 

 Of course, the best method of optimizing  tempdb  performance is to reduce unnecessary activity. You 
can re-factor your code to avoid the unnecessary usage of temporary tables, avoid sending extra load to the 
version store because of triggers or unnecessary optimistic transaction isolation levels, reduce the number 
of internal working tables created by SQL Server by optimizing the queries and simplifying execution plans, 
and so on. The less unnecessary activity  tempdb  has, the better it performs.    

     Summary 
 There are many different object types that can be created by users in  tempdb . Temporary tables behave 
similarly to regular tables. They can be used to store intermediate data during processing. In some cases, 
you can split complex queries into smaller ones by keeping intermediate results in temporary tables. While 
this introduces the overhead of creating and populating the temporary tables, it can help Query Optimizer to 
generate simpler and more efficient execution plans. 

 Table variables are a lightweight version of temporary tables. While they can outperform temporary 
tables in some cases, they have a set of restrictions and limitations. These limitations can introduce 
suboptimal execution plans, especially when you join table variables with other tables. 

 Table-valued parameters allow you to pass row sets as parameters to stored procedures and functions. 
They are the one of the fastest ways to pass batches of rows from client applications to T-SQL routines. 

 The user’s table in  tempdb  can be used as the staging area for data during ETL processes. This approach 
can outperform the staging tables in the user databases due to the more efficient logging in  tempdb . 
However, client applications need to handle the situations when those tables and/or data disappear after a 
SQL Server restart or failover to another node. 

 As opposed to regular tables in the user’s database, temporary objects can be created at a very high rate 
and can introduce allocation map page and system object contention in  tempdb . You should create multiple 
 tempdb  data files and, in SQL Server 2014 and below, use trace flag  T1118  to reduce contention. 

 Finally, you should utilize temporary objects caching, which reduces contention even further. You need 
to avoid named constraints in temporary tables, and do not alter them to make them cacheable.     
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    CHAPTER 14   

 CLR                          

 There are several different programming paradigms that exist nowadays. Some languages, such as SQL or 
XQuery, are  declarative . They define  what  needs to be done without specifying  how  it needs to be achieved. 
Other languages, such as C# or Java, are  imperative . This model requires specifying an exact, step-by-step 
control flow of the execution, defining  how  to achieve the results. 

 As an example, think about a scenario where you need to read all of the data that belongs to a specific 
customer. In the declarative model implemented in SQL, you would use the  where  clause with the predicate 
on the  CustomerId  column. In the imperative model, you would process all records, one by one, comparing 
 CustomerId  using the  IF  operator. 

 SQL is a declarative language, and it has been optimized for set-based declarative logic. Even though 
Transact SQL has a set of constructs that allows us to develop imperative code, the constructs are not very 
efficient. Moreover, the T-SQL language is very limited compared to modern imperative development 
languages. The Common Language Runtime (CLR) helps address some of these challenges by providing the 
execution environment for .Net code within SQL Server, and it allows us to develop various database objects 
using .Net programming languages. 

 Implementation of imperative, procedural-style code in CLR is usually more efficient than in T-SQL. 
Moreover, CLR outperforms T-SQL in computation-intensive areas, such as mathematical calculation, string 
manipulation, serialization, byte-level manipulation on large objects, and others. 

 Covering all aspects of CLR development easily merits a book by itself. This chapter provides an 
overview of CLR integration in SQL Server, discusses several security-related questions, and compares the 
performance of T-SQL and CLR routines in a few different areas. 

     CLR Integration Overview 
 SQL Server loads the .Net runtime environment inside its own process, and it manages memory and other 
resources there. It has full control over the environment, and it can shut down .Net application domains if needed. 

 ■   Note    Application domain  is the key concept in .Net, and it represents the isolated environment where .Net 
code is executed. It provides a similar level of isolation for Windows processes in native Windows code.  

 CLR code is compiled into assembly DLLs, which are stored within the database. You can register and 
catalog assemblies there using the   CREATE ASSEMBLY  statement,   specifying either the path to the file or a 
binary sequence of assembly bits that represent assembly code. SQL Server then loads the assembly into a 
separate application domain for validation and checks that the DLL or assembly bits represent compiled 
.Net code. In addition, SQL Server performs code verification to ensure that the assembly does not perform 
unauthorized actions. 



CHAPTER 14 ■ CLR

294

 Assemblies belong to one of three different security categories, called  permission sets . You need to 
specify the corresponding permission set as part of the  CREATE ASSEMBLY  statement. The categories are as 
follows:

     SAFE :   This code is fully reliable, and it works in-process only. Only a subset 
of the standard .Net libraries and classes can be used here. This is the default 
permission set for assemblies and the only permission set supported in Microsoft 
Azure SQL databases.  

    EXTERNAL_ACCESS :   This code can perform some out-of-process calls that access 
external resources, such as the file system, registry, web services, and Windows 
event log. Similar to SAFE assemblies, only a subset of .Net libraries and classes 
can be used. The code is also guaranteed to be reliable.  

    UNSAFE :   There are no restrictions in unsafe CLR code. It can do out-of-process 
calls, utilize almost all .Net libraries, start its own threads, and perform other 
actions that can lead to unreliable code.    

 When you run CLR code, SQL Server creates a separate application domain on a database and 
assembly-owner basis. For example, if you have user  Mary  as the owner of assembly  A1  and user  Bob  as the 
owner of assemblies  A2  and  A3 , you would have two application domains where CLR code is running—one 
for Bob’s and another for Mary’s assemblies — regardless of how many users are calling CLR routines. 

 SQL Server can shut down an entire application domain when unhandled exceptions occur. This would 
affect the other sessions that are running CLR code in that domain. Conditions that can lead to this situation 
usually occur only with  UNSAFE  permission sets, and you need to be extremely careful when dealing with 
exception handling there. 

 You can troubleshoot CLR routine performance in a manner similar to that of T-SQL code.    Profiler 
events (and corresponding Extended Events), such as  SQL:Batch Starting ,  Completed ,  SP:Starting , 
 Completed ,  StmtStarting , and  StmtCompleted , monitor the execution of both T-SQL and CLR code. 

  Data-management views (DMVs),   such as  sys.dm_exec_query_stats ,  sys.dm_exec_requests , and 
s ys.dm_os_memory_* , work the same way. 

 ■   Note   We will talk about performance troubleshooting with these DMVs in Part V of this book, “Practical 
Troubleshooting.”  

 The performance counter  SQL Server:CLR\CLR Execution  shows the total time spent in CLR execution. 
 SQL Server T-SQL threads use cooperative non-preemptive scheduling and yields voluntarily. Managed 

CLR threads, on the other hand, use preemptive scheduling and rely on the host to interrupt them. Even if 
SQL Server had the ability to detect and interrupt non-yielding threads, runaway CLR code could affect the 
performance of the system to a much higher degree than T-SQL could. You must avoid such conditions and 
have CLR voluntarily yield from time to time by calling the   System.Threading.Thread.Sleep(0)  method   in 
the CLR code. 

 You can identify the sessions that are running non-yielding CLR code with the  sys.dm_clr_tasks  DMV, 
as shown in Listing  14-1 . 
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     Listing 14-1.    Identifying sessions with non-yielding CLR  code     

 select 
     er.session_id, ct.forced_yield_count, 
     w.task_address, w.[state], w.last_wait_type, ct.state 
 from 
     sys.dm_clr_tasks ct with (nolock) join 
         sys.dm_os_workers w with (nolock) on 
             ct.sos_task_address = w.task_address 
     join sys.dm_exec_requests er with (nolock) on 
             w.task_address = er.task_address 
 where 
     ct.type = 'E_TYPE_USER'   

   The results shown in Figure  14-1  include information about currently running CLR tasks. The  forced_
yield_count  column indicates how many times the scheduler forced CLR code to yield.   

  Figure 14-1.    Identifying the sessions with non-yielding CLR code       

     Security  Considerations   
 SQL Server has CLR integration disabled by default. Although this would not prevent you from deploying the 
database with assemblies and CLR objects, you would not be able to call CLR routines until CLR is enabled 
on the server level. You can enable CLR with the code shown in Listing  14-2 . 

     Listing 14-2.    Enabling CLR  integration     

 sp_configure 'show advanced options', 1; 
 reconfigure; 
 go 
 sp_configure 'clr enabled', 1; 
 reconfigure; 
 go 
 sp_configure 'show advanced options', 0; 
 reconfigure; 
 go 

   The requirement to have CLR enabled on the server level can lead to roadblocks for  independent 
software vendors (ISV)         who are trying to deploy their systems in Enterprise environments. Database and 
security administrators in such environments often oppose such requirements when dealing with ISVs. 

 It is also worth mentioning that system-level CLR code is always enabled. You can use system CLR 
types, such as  HierarchyId ,  Geometry , and  Geography , regardless of the configuration setting. We will 
discuss these types in detail in the next chapter. 

   CLR objects that access data break the ownership chaining in a manner similar to dynamic SQL. 
This leads to additional security-management overhead in the system. Let’s look at the example shown in 
Listing  14-3  and Listing  14-4 .        
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     Listing 14-3.    Ownership chaining: CLR part   

  [Microsoft.SqlServer.Server.SqlFunction(DataAccess = DataAccessKind.Read)] 
 public static SqlMoney GetOrderTotalCLR(SqlInt32 orderId) 
 { 
       using (SqlConnection conn = new SqlConnection("context connection=true")) 
       { 
             conn.Open(); 
             SqlCommand cmd = new SqlCommand( 
 @"select @Result = sum(Quantity * Price)   
 from dbo.OrderLineItems 
 where OrderId = @OrderId", conn); 

               cmd.Parameters.Add("@OrderId", SqlDbType.Int).Value = orderId; 
             cmd.Parameters.Add("@Result", SqlDbType.Float).Direction = ParameterDirection.Output; 
             cmd.ExecuteNonQuery(); 
             return new SqlMoney((double)cmd.Parameters[1].Value); 
       } 
 } 

         Listing 14-4.    Ownership chaining: T-SQL part   

  create function dbo.GetOrderTotal(@OrderId int) 
 returns money 
 as 
       return 
       ( 
             select sum(Quantity * Price) as Total 
             from dbo.OrderLineItems 
             where OrderId = @OrderId 
       ) 
 go 

   create view dbo.vOrdersTSQL(OrderId, OrderTotal) 
 as 
       select o.OrderId, dbo.GetOrderTotal(o.OrderId) 
       from dbo.Orders o 
 go 

   create view dbo.vOrdersCLR(OrderId, OrderTotal) 
 as 
       select o.OrderId, dbo.GetOrderTotalCLR(o.OrderId) 
       from dbo.Orders o 
 go 

   grant select on object::dbo.vOrdersTSQL to [Bob]; 
 grant select on object::dbo.vOrdersCLR to [Bob]; 
 go 

   execute as user='Bob'; 
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   -- Success 
 select * from dbo.vOrdersTSQL; 

   -- Failure - Bob needs to have SELECT permission on dbo.OrderLineItems table 
 select * from dbo.vOrdersCLR; 

    In Listing  14-4 , we created two views,  dbo.vOrdersTSQL  and  dbo.vOrdersCLR , which  utilize      T-SQL and 
CLR user-defined functions. Both functions select data from the  dbo.OrderLineItems  table. 

 When user  Bob  queries the  dbo.vOrdersTSQL  view, it works just fine. SQL Server does not require  Bob  
to have  SELECT  permission on the tables referenced by the view as long as he has  SELECT  permission on the 
view itself, and both the view and the table have the same owner. This is an example of  ownership chaining . 

 However,  Bob  would not be able to query the  dbo.vOrdersCLR  view, as ownership chaining would not 
work in the CLR routines, and he needs to have  SELECT  permission on the  dbo.OrderLineItems  table in 
order for the  dbo.GetOrderTotalCLR  method to work. 

 When CLR code accesses external resources, it is done in the context of a SQL Server startup account, 
and it could require that additional privileges be granted. You can work around such requirements by using 
impersonation in the .Net code, although it would work only when Windows Authentication is used. 

 Finally,  EXTERNAL_ACCESS  or  UNSAFE  assemblies must be signed with the same key as the SQL Server 
login, which has  EXTERNAL ACCESS  or  UNSAFE  permission granted. Let’s look at how you can do that  . 

 As a first step, as shown in Figure  14-2 , you need to generate a  key pair  file. Visual Studio and Windows 
SDK have the utility  sn.exe  that you can use.  

  Figure 14-2.    Generating key pair file with sn. exe            

 You should specify the generated file in the CLR project properties, as shown in Figures  14-3  and  14-4 .         
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 After that, you can create an asymmetric  key      from the key pair file and create a login with corresponding 
permissions, as shown in Listing  14-5 . 

     Listing 14-5.    Creating a login with EXTERNAL ACCESS permissions from the key pair file   

  use master 
 go 

   -- Creating master key if it does not exist 
 if not exists 
 ( 
     select * 

  Figure 14-3.    Signing CLR project: Step 1       

  Figure 14-4.    Signing CLR project: Step 2       
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     from sys.symmetric_keys 
     where name = '##MS_DatabaseMasterKey##' 
 ) 
     create master key encryption by password = '$tr0ngPas$word1'; 
 go 

   create asymmetric key KeyExternalAccess from file = 'c:\SQL\CLRSecurity\CLRSecurityKey.snk'; 
 create login CLRExtAccessLogin from asymmetric key KeyExternalAccess; 
 grant external access assembly to CLRExtAccessLogin; 

    You should now be able to successfully register the signed assembly that requires the  EXTERNAL_ACCESS  
permission set. 

 ■   Note   An alternative option for registering the assembly with the  EXTERNAL_ACCESS  or  UNSAFE  permission 
set is to mark the hosting database as  TRUSTWORTHY . However, this action violates security best practices.  

 All of these security requirements must be taken into consideration when you decide to start using CLR 
integration in your systems, especially if you are an independent software vendor (ISV) and you are planning 
to deploy the software to a large number of customers.  

     Performance Considerations 
 It is not easy to compare the performance of CLR and T-SQL routines. The technologies are different in 
nature, and they should be used for different tasks. T-SQL is an interpreted language, which is optimized 
for set-based logic and data access. CLR, on the other hand, produces compiled code that works best with 
imperative logic. 

 Even with imperative code, you need to decide if you want to implement it in CLR or on the client side, 
perhaps running on application servers. CLR works within the SQL Server process. While on one hand it 
eliminates network traffic and can provide you with the best performance due to its “closeness” to the data as 
compared to code running on the application server, on the other hand CLR adds to the load of SQL Server. It 
could be easier and cheaper to add more application servers rather than upgrading the SQL Server box. 

 There are some cases, however, where you must use CLR code. One example is on queries that perform 
RegEx (regular expression) evaluation as part of the  where  clause. It would be inefficient to move such an 
evaluation to the client code, and there is no regular expressions support in SQL Server. CLR is your only 
option in this instance. In other cases, however, when imperative logic can be moved to application servers, 
you should consider such an option, especially when those servers reside close to SQL Server and network 
latency and throughput is not an issue. 

 In this section, we will compare the performance of CLR and T-SQL in a few different areas. Similar to 
other SQL Server technologies, the choice between CLR and T-SQL fits into the “It depends” category. 

 Before we begin, let’s look at Table  14-1  and compare the objects supported by both technologies.      
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 ■   Note   Even though you can create T-SQL types with  CREATE TYPE  statements, T-SQL user-defined types 
are delivered from scalar T-SQL types. CLR user-defined types, on the other hand, are .Net classes that can 
have multiple attributes and/or methods. We will discuss T-SQL and CLR user-defined types in greater depth in 
Chapter   15    , “CLR Types.”  

 CLR lets you create user-defined aggregates and complex types, which cannot be done with T-SQL. 
User-defined aggregates are a great way to expand the standard SQL Server function library and, as you will 
see later in this chapter, can provide very good performance when compared to T-SQL code. User-defined 
types can also help in some cases. 

 Let’s create a simple table and populate it with some data, as shown in Listing  14-6 . 

     Listing 14-6.     Test table creation     

  create table dbo.Numbers 
 ( 
     Num int not null, 
     constraint PK_Numbers 
     primary key clustered(Num) 
 ); 

   ;with N1(C) as (select 0 union all select 0) 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) 
 ,N6(C) as (select 0 from N4 as T1 cross join N4 as T2 cross join N2 as T3) -- 262,144 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N6) 
 insert into dbo.Numbers(Num) 
     select Num from Nums; 

    The invocation of the T-SQL scalar function introduces higher overhead when compared to its CLR 
counterpart. Let’s prove that with a test where we will use functions that accept an integer value as a 
parameter and return 1 when this value is even. The CLR implementation is shown in Listing  14-7 .     

   Table 14-1.    CLR and T-SQL Object Types   

 T-SQL  CLR 

 Scalar user-defined functions  Yes  Yes 

 Multi-statement table-valued user-defined functions  Yes  Yes 

 Inline table-valued user defined functions  Yes  No 

 Stored procedures  Yes  Yes 

 Triggers  Yes  Yes 

 User-defined aggregates  No  Yes 

 User-defined types  No  Yes 

http://dx.doi.org/10.1007/978-1-4842-1964-5_15
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     Listing 14-7.    Invocation overhead: CLR  functions     

  [Microsoft.SqlServer.Server.SqlFunction( 
     IsDeterministic=true, 
     IsPrecise=true, 
      DataAccess=DataAccessKind.None ) ] 
 public static SqlInt32 EvenNumberCLR(SqlInt32 num) 
 {  return new SqlInt32((num % 2 == 0) ? 1 : 0);  } 

   [Microsoft.SqlServer.Server.SqlFunction( 
     IsDeterministic=true, 
     IsPrecise=true, 
      DataAccess=DataAccessKind.Read ) ] 
 public static SqlInt32 EvenNumberCLRWithDataAccess(SqlInt32 num) 
 {  return new SqlInt32((num % 2 == 0) ? 1 : 0);   } 

    There is a set of attributes specified for each function. These attributes describe the function behavior, 
and they can help Query Optimizer generate a more efficient execution plan. 

 In our case, there are three attributes specified.  IsDeterministic  tells if the function is deterministic, 
and it always returns the same result for specific parameter values and database states. Our function is 
deterministic—even numbers are always even. As a counter example, you can think about the   getdate()  
system   function,    which is not deterministic—results will be different every time it is called. 

  IsPrecise  describes if functions involve imprecise calculations; for example, using floating-point 
operations. 

 Finally, the  DataAccess  attribute indicates if a function performs any data access. If this is the case, SQL 
Server calls the function in a different context that will allow it to access the data in the database. Setting up 
such a context introduces additional overhead during the function call, which you will see in our tests. 

 T-SQL implementation of those functions is shown in Listing  14-8 . 

     Listing 14-8.    Invocation overhead: T-SQL functions   

  create function dbo.EvenNumber(@Num int) 
 returns int 
 with schemabinding 
 as 
     return (case when @Num % 2 = 0 then 1 else 0 end); 

   create function dbo.EvenNumberInline(@Num int) 
 returns table 
 as 
 return 
 ( 
     select (case when @Num % 2 = 0 then 1 else 0 end) as Result 
 ); 

    Let’s use scalar and inline table-valued functions in our test and measure average execution time for the 
statements shown in Listing  14-9 . The results in my environment are shown in Table  14-2 .  
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     Listing 14-9.    Invocation overhead: Test statements   

  -- CLR UDF - no data access context 
 select count(*) 
 from dbo.Numbers 
 where dbo.EvenNumberCLR(Num) = 1 

   -- CLR UDF - data access context 
 select count(*) 
 from dbo.Numbers 
 where dbo.EvenNumberCLRWithDataAccess(Num) = 1 

   -- TSQL - Scalar  UDF   
 select count(*) 
 from dbo.Numbers 
 where dbo.EvenNumber(Num) = 1; 

   -- TSQL - Multi-statement  UDF   
 select count(*) 
 from 
     dbo.Numbers n cross apply 
         dbo.EvenNumberInline(n.Num) e 
 where 
     e.Result = 1;   

   Table 14-2.    Invocation Overhead of T-SQL and CLR Routines:  Execution Time     

 CLR UDF 

 No data-access context 

 CLR UDF 

 With data-access context 

 T-SQL 

 Scalar UDF 

 T-SQL Inline 

 Multi-statement 

 167 ms  246 ms  675 ms  18 ms 

    Each statement performs a  clustered index scan  of the  dbo.Numbers  table and checks if the  Num  column 
is even for every row of the table. For CLR and T-SQL scalar user-defined functions, that would introduce the 
function calls. Inline table-valued functions, on the other hand, perform the calculation inline. 

 As you can see, a CLR UDF without a data access context runs about four times faster when compared 
to the T-SQL scalar function. Even with data access context overhead, the CLR implementation is still faster 
than T-SQL scalar UDF, although in this particular example the best performance can be achieved if we stop 
using functions at all rather than converting them to CLR. The overhead of the function call is much higher 
than with inline calculations. 

 While you should always think about code re-factoring as an option, there are instances when CLR will 
outperform inline T-SQL implementation even with all of the overhead involved. The two most common 
areas for this are mathematical calculations and string manipulations. 

 Let’s test the performance of a function that calculates the distance between two points defined 
by latitude and longitude coordinates. The CLR implementation is shown in Listing  14-10 . The T-SQL 
implementation is shown in Listing  14-11 . We will test two  T-SQL approaches  : scalar and  inline table-valued 
functions.       
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      Listing 14-10.    Calculating the distance between two points: CLR function   

  [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic=true, IsPrecise=false, 
DataAccess=DataAccessKind.None) ] 
 public static SqlDouble CalcDistanceCLR 
         (SqlDouble fromLat, SqlDouble fromLon, SqlDouble toLat, SqlDouble toLon) 
 { 
     double fromLatR =  Math.PI / 180 * fromLat.Value; 
     double fromLonR = Math.PI / 180 * fromLon.Value; 
     double toLatR = Math.PI / 180 * toLat.Value; 
     double toLonR = Math.PI / 180 * toLon.Value; 

       return new SqlDouble( 
         2 * Math.Asin( 
             Math.Sqrt( 
                 Math.Pow(Math.Sin((fromLatR - toLatR) / 2.0),2) + 
                     ( Math.Cos(fromLatR) * Math.Cos(toLatR) * Math.Pow(Math.Sin((fromLonR - 

toLonR) / 2.0),2) ) 
             ) 
         ) * 20001600.0 / Math.PI 
     ); 
 } 

        Listing 14-11.    Calculating the distance between two points: T-SQL functions   

  create function dbo.CalcDistance 
         (@FromLat decimal(9,6), @FromLon decimal(9,6),@ToLat decimal(9,6), @ToLon 
decimal(9,6)) 
 returns float 
 with schemabinding 
 as 
     declare 
         @Dist float 
         ,@FromLatR float = radians(@FromLat) 
         ,@FromLonR float = radians(@FromLon) 
         ,@ToLatR float = radians(@ToLat) 
         ,@ToLonR float = radians(@ToLon) 

       set @Dist = 
         2 * asin( 
             sqrt( 
                 power(sin( (@FromLatR - @ToLatR) / 2.), 2) + 
                     ( cos(@FromLatR) * cos(@ToLatR) * power(sin((@FromLonR - @ToLonR) / 2.0), 2)) 
             ) 
         ) * 20001600. / pi(); 
     return @Dist; 

   create function dbo.CalcDistanceInline 
         (@FromLat decimal(9,6), @FromLon decimal(9,6),@ToLat decimal(9,6), @ToLon 
decimal(9,6)) 
 returns table 
 as 
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 return 
 ( 
     with Rads(FromLatR, FromLonR, ToLatR, ToLonR) 
     as 
     ( 
         select radians(@FromLat), radians(@FromLon), radians(@ToLat), radians(@ToLon) 
     ) 
     select 
         2 * asin( 
             sqrt( 
                 power(sin((FromLatR - ToLatR) / 2.), 2) + 
                          ( cos(FromLatR) * cos(ToLatR) * power(sin((FromLonR - ToLonR) / 

2.0),2)) 
             ) 
         ) * 20001600. / pi() as Distance 
     from Rads 
 ); 

    When you compare the results of the calculations for 262,144 rows, as shown in Table  14-3 , you can see 
that CLR UDF performs almost two times faster than the inline table-valued function and more than five 
times faster than the T-SQL scalar UDF.  

   Table 14-3.    Calculating Distance Between Two Points: Execution Time   

 CLR UDF  TSQL Scalar UDF  TSQL Inline Table-Valued function 

 347 ms  1,955 ms  721 ms 

 Now, let’s look at data access performance. The first test compares the execution time of the separate 
DML statements from the T-SQL and CLR  stored procedures.   In this test, I created procedures that 
calculate the number of rows in the  dbo.Numbers  table for a specific range of numbers. The T-SQL and CLR 
implementations are shown in Listings  14-12  and  14-13  respectively. 

     Listing 14-12.    Data access performance: T-SQL procedure (individual statements)   

 create proc dbo.ExistInInterval(@MinNum int, @MaxNum int, @RowCount int output) 
 as 
     set @RowCount = 0; 
     while @MinNum <= @MaxNum     
     begin 
         if exists( select * from dbo.Numbers where Num = @MinNum ) 
             set @RowCount += 1 
         set @MinNum += 1 
     end; 
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       Listing 14-13.     Data access performance  : CLR procedure (individual statements)   

 [Microsoft.SqlServer.Server.SqlProcedure] 
 public static void ExistInIntervalCLR(SqlInt32 minNum, SqlInt32 maxNum, out SqlInt32 rowCnt) 
 { 
     int result = 0; 
     using (SqlConnection conn = new SqlConnection("context connection=true"))    
     { 
         conn.Open(); 
         SqlCommand cmd = new SqlCommand 
              ("select Num from dbo.Numbers where Num between @minNum and @maxNum", conn); 
         cmd.Parameters.Add("@Result", SqlDbType.Int).Direction = ParameterDirection.Output; 
         cmd.Parameters.Add("@Number", SqlDbType.Int); 
         for (int i = minNum.Value; i <= maxNum.Value; i++) 
         { 
             cmd.Parameters[1].Value = i; 
             cmd.ExecuteNonQuery(); 
             result += (int)cmd.Parameters[0].Value; 
             System.Threading.Thread.Sleep(0); 
         } 
     } 
     rowCnt = new SqlInt32(result); 
 } 

   Table  14-4  shows the average execution time for stored procedure calls that lead to 50,000 individual 
 SELECT  statements. As you can see, data access using CLR code works about five times slower than data 
access using T-SQL.  

   Table 14-4.    Data Access Performance (Individual Statements): Execution Time   

 T-SQL Stored Procedure  CLR Stored Procedure 

 410 ms  2,330 ms 

 You need to keep this in mind when designing user-defined functions that need to access data from 
the database. While CLR is more efficient than T-SQL in terms of invocation, data access code will work 
significantly slower. You need to test both implementations to figure out which solution is more efficient for 
your purposes. Moreover, you need to consider code re-factoring and removing UDF from the queries as 
another possibility. 

 In the next step, let’s look at the performance of the .Net  SqlDataReader  class and compare it to cursor 
implementation in T-SQL. You can see the CLR code in Listing  14-14  and the T-SQL implementation in 
Listing  14-15 .    

      Listing 14-14.    Data access performance: CLR procedure (SQL Reader)   

 [Microsoft.SqlServer.Server.SqlProcedure] 
 public static void ExistInIntervalReaderCLR 
         ( SqlInt32 minNum, SqlInt32 maxNum, out SqlInt32 rowCnt ) 
 { 
     int result = 0; 
     using (SqlConnection conn = new SqlConnection("context connection=true")) 
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     { 
         conn.Open(); 
         SqlCommand cmd = new SqlCommand 
              ("select Num from dbo.Numbers where Num between @MinNum and @MaxNum", conn); 
         cmd.Parameters.Add("@MinNum", SqlDbType.Int).Value = minNum; 
         cmd.Parameters.Add("@MaxNum", SqlDbType.Int).Value = maxNum; 
         using (SqlDataReader reader = cmd.ExecuteReader()) 
         { 
             while (reader.Read()) 
             { 
                 result++; 
                 // Yielding every 500 rows 
                 if (result % 500 == 0) System.Threading.Thread.Sleep(0); 
             } 
         }         
     } 
     rowCnt = new SqlInt32(result); 
 } 

       Listing 14-15.    Data access performance: T-SQL procedure (Cursor)   

  create proc dbo.ExistInIntervalCursor(@MinNum int, @MaxNum int, @RowCount int output) 
 as 
     declare 
         @Num int   
     declare 
         curWork cursor fast_forward 
         for 
             select Num 
             from dbo.Numbers 
             where Num between @MinNum and @MaxNum 

       set @RowCount = 0; 
     open curWork; 
     fetch next from curWork into @Num; 
     while @@fetch_status = 0 
     begin 
         set @RowCount += 1; 
         fetch next from curWork into @Num; 
     end   
     close curWork; 
     deallocate curWork; 

    As you can see in Table  14-5 , row-by-row processing using  SqlDataReader  is much more efficient than 
using the T-SQL cursor.    

   Table 14-5.    Data Access Performance (SQLReader Versus Cursor): Execution Time   

 T-SQL Stored Procedure  CLR Stored Procedure 

 556 ms  116 ms 
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 Finally, let’s look at the performance of CLR aggregates. We will use an aggregate that concatenates the 
values into a comma-separated string. The code for doing this is shown in Listing  14-16 . 

     Listing 14-16.    CLR  aggregate     

  [Serializable] 
 [SqlUserDefinedAggregate( 
     Format.UserDefined, IsInvariantToNulls=true, IsInvariantToDuplicates=false, 
     IsInvariantToOrder=false, MaxByteSize=-1) ] 
 public class Concatenate : IBinarySerialize 
 { 
     // The buffer for the intermediate results 
     private StringBuilder intermediateResult; 

       // Initializes the buffer 
     public void Init() { this.intermediateResult = new StringBuilder(); } 

       // Accumulate the next value if not null 
     public void Accumulate(SqlString value) 
     { 
         if (value.IsNull) 
             return; 
         this.intermediateResult.Append(value.Value).Append(','); 
     } 

       // Merges the partially completed aggregates 
     public void Merge(Concatenate other) 
     { this.intermediateResult.Append(other.intermediateResult);    } 

       // Called at the end of aggregation 
     public SqlString Terminate() 
     { 
         string output = string.Empty; 
         if (this.intermediateResult != null && this.intermediateResult.Length > 0) 
         { // Deleting the trailing comma 
             output = this.intermediateResult.ToString(0, this.intermediateResult.Length - 1); 
         } 
         return new SqlString(output); 
     } 

       // Deserializing data 
     public void Read(BinaryReader r) 
     { intermediateResult = new StringBuilder(r.ReadString()); } 

       // Serializing data 
     public void Write(BinaryWriter w) 
     { w.Write(this.intermediateResult.ToString()); } 
 } 
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    As with user-defined functions, it is extremely important to set the attributes that tell Query Optimizer 
about CLR aggregate behavior and implementation. This helps generate more efficient execution plans 
and prevents incorrect results due to optimization. It is also important to specify the  MaxByteSize  attribute 
that defines the maximum size of the aggregate output. In our case, we set it to  -1 , which means that the 
aggregate can hold up to 2 GB of data. 

 Let’s compare the performance of two different T-SQL implementations. In the first one, I will use a SQL 
variable to hold intermediate results. This approach implements imperative row-by-row processing under 
the hood. The second method utilizes the  FOR XML PATH  technique that we discussed in Chapter   13    . The 
code is shown in Listing  14-17 . 

      Listing 14-17.    String concatenation: T-SQL  implementation     

  -- Using SQL Variable 
 declare 
     @V nvarchar(max) = N'' 
     ,@MaxNum int -- test batch size 

   select @V = @V + convert(nvarchar(32), Num) + ',' 
 from dbo.Numbers 
 where Num <= @MaxNum; 

   -- removing trailing comma 
 select @V = case when @V = '' then '' else left(@V,len(@V) - 1) end; 

   -- display results 
 select @v; 

   -- FOR XML PATH 
 select case when Result is null then '' else left(Result,len(Result) - 1) end 
 from 
     ( 
         select convert(nvarchar(max), 
              ( 
                 select Num as [text()], ',' as [text()] 
                 from dbo.Numbers 
                 where Num <= @MaxNum 
                 for xml path('') 
             )) as Result 
     ) r 

    Table  14-6  shows the average execution time when we concatenate different numbers of rows.  

   Table 14-6.    String Concatenation: Execution Time   

 CLR Aggregate  SQL Variable  FOR XML PATH 

 1,000 rows  3 ms  1 ms  <1 ms 

 10,000 rows  12 ms  129 ms  3 ms 

 25,000 rows  33 ms  840 ms  6 ms 

 50,000 rows  63 ms  37,182 ms  21 ms 

 100,000 rows  146 ms  535,040 ms  43 ms 

http://dx.doi.org/10.1007/978-1-4842-1964-5_13
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 As you can see, CLR aggregate has a slightly higher startup cost when compared to the T-SQL variable 
approach, although that quickly disappears on larger row sets. The performance of both the CLR aggregate 
and the  FOR XML PATH  methods linearly depends on the number of rows, while the performance of the SQL 
variable approach degrades exponentially. SQL Server needs to initiate a new instance of the string every 
time it concatenates a new value, and it does not work efficiently, especially when the string becomes large. 
Finally, the  FOR XML PATH  approach is the most efficient regardless of the number of the rows concatenated. 

 The key point is that you always need to look at the options available to replace imperative code 
with declarative set-based logic. While CLR usually outperforms imperative T-SQL code, set-based logic 
outperforms both of them. 

 As you can see, each technology—T-SQL and CLR—has its own strengths and weaknesses. CLR is better 
at handling imperative code and complex calculations, and it has a much lower invocation cost for user-
defined functions. T-SQL, on the other hand, outperforms CLR in the data-access area with the exception of 
row-by-row processing, where the .Net  SqlDataReader  class is faster than T-SQL cursors.   

     Summary 
 CLR code adds flexibility to SQL Server. It helps improve the performance of functions that require complex 
calculations and expands the standard function library by adding new methods. It lets you access external 
resources from within the database code. 

 CLR code, however, comes at a performance and security cost. CLR code runs within the SQL Server 
process, which adds an extra load and can introduce significant performance issues when coded incorrectly. 
Moreover, CLR introduces security challenges. It needs to be enabled on the server level, which violates 
security best practices. It also breaks ownership chaining, which will require using special care with 
permissions. 

 Keeping all of this in mind, you should always evaluate other options before using CLR code. You 
need to consider moving imperative logic to the client application and/or re-factoring your queries to use 
declarative set-based logic whenever possible. 

 As with the other technologies available within SQL Server, the question: “What is better: T-SQL or 
CLR?” has no right answer. Different use cases require different solutions, and it is always beneficial to 
evaluate and test all of the available options during the decision-making stage.     
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    CHAPTER 15   

 CLR Types                          

 CLR types make up another area of Common Language Runtime (CLR) integration with SQL Server. User-
defined CLR types allow us to expand the standard type library by developing .Net classes and registering 
them in the database. Standard CLR types, such as  Geometry ,  Geography , and  HierarchyId , provide built-in 
support for spatial and hierarchical data. You will learn about both user-defined and system CLR types in 
this chapter. 

     User-Defined CLR Types 
 SQL Server has supported user-defined types (UDT) for years.    Historically, T-SQL-based user-defined types 
were used to enforce type consistency. For example, when you needed to persist U.S. postal addresses in a 
several tables, you could create a user-defined type to store state information using the following statement: 
 CREATE TYPE dbo.PostalState FROM char(2) NOT NULL.  

 Now you can use  dbo.PostalState  as a data type that defines table columns, parameters, and SQL 
variables. This guarantees that every reference to the postal state in the database has exactly the same 
format: a non-nullable, two-character string. 

 This approach has a few downsides, though. SQL Server does not permit the alteration of type 
definitions. If, at any point in time, you need to make  dbo.PostalState  nullable or, perhaps, allow full 
state names rather than abbreviations, the only option is to drop and recreate the type. Moreover, you must 
remove any references to that type in the database in order to do that. 

 ■   Tip    You can alter the type of the column to the base data type used by the UDT. This is a metadata-only 
operation.  

 T-SQL user-defined types are always delivered from a scalar T-SQL type. For example, you cannot create 
a T-SQL user-defined data type called   Address    that includes multiple attributes. Nor can you define check 
constraints on the type level. Constraints can still be defined individually on the column level, although such 
an approach is less convenient. Keeping all of this in mind, we can conclude that T-SQL user-defined types 
have very limited use in SQL Server. 

 ■   Note    You can perform validation on the type level by binding the rule object to the UDT. It is not 
recommended, however, as rules are deprecated and will be removed in a future version of SQL Server.  
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 CLR user-defined types, on the other hand, address some of these issues. They allow you to create 
complex types with multiple attributes/properties, define data-validation rules for the type, and implement 
methods that you can use to enhance the functionality of the type. 

  As an example, let’s look at the implementation of a type that represents a simplified version of a U.S. 
postal address. The code for this is shown in Listing  15-1 .    

     Listing 15-1.    CLR user-defined type   

  [Serializable] 
 [Microsoft.SqlServer.Server.SqlUserDefinedType( 
     Format.UserDefined, 
     ValidationMethodName = "ValidateAddress", 
     MaxByteSize=8000) ] 
 public struct USPostalAddress : INullable, IBinarySerialize 
 { 
     // Needs to be sorted to support BinarySearch 
     private static readonly List<string> _validStates = new List<string> 
     { 
         "AK","AL","AR","AZ","CA","CO","CT","DC","DE","FL","GA","HI","IA" 
         ,"ID","IL","IN","KS","KY","LA","MA","MD","ME","MI","MN","MO","MS" 
         ,"MT","NC","ND","NE","NH","NJ","NM","NV","NY","OH","OK","OR","PA" 
         ,"PR","RI","SC","SD","TN","TX","UT","VA","VT","WA","WI","WV","WY" 
     }; 

       private bool _null; 
     private string _address; 
     private string _city; 
     private string _state; 
     private string _zipCode; 

       public bool IsNull { get { return _null; } } 

       public string Address 
     { 
         [SqlMethod(IsDeterministic = true, IsPrecise = true)] 
         get { return _address; } 
     } 

       public string City 
     { 
         [SqlMethod(IsDeterministic = true, IsPrecise = true)] 
         get { return _city; } 
     } 

       public string State 
     { 
         [SqlMethod(IsDeterministic = true, IsPrecise=true)] 
         get { return _state; } 
     } 
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       public string ZipCode 
     { 
         [SqlMethod(IsDeterministic = true, IsPrecise = true)] 
         get { return _zipCode; } 
     } 

       public override string ToString()    
     { return String.Format("{0}, {1}, {2}, {3}", _address, _city, _state, _zipCode); } 

       // The static representation of Null object 
     public static USPostalAddress Null 
     { 
         get 
         { 
             USPostalAddress h = new USPostalAddress(); 
             h._null = true; 
             return h; 
         } 
     } 

       // Validation that Address information is correct 
     private bool ValidateAddress() 
     { 
         // Check that all attributes are specified and state is valid 
         return 
             !(  String.IsNullOrEmpty(_address) || String.IsNullOrEmpty(_city) || 
                 String.IsNullOrEmpty(_state) || String.IsNullOrEmpty(_zipCode) || 
                 _validStates.BinarySearch(_state.ToUpper()) == -1 ); 
     } 

       // Creating object from the string 
     public static USPostalAddress Parse(SqlString s)    
     { 
         if (s.IsNull) return Null; 
         USPostalAddress u = new USPostalAddress(); 
         string[] parts = s.Value.Split(",".ToCharArray()); 
         if (parts.Length != 4) 
              throw new ArgumentException("Incorrect format. Should be <Address>, <City>, 

<State>, <ZipCode>"); 
         u._address = parts[0].Trim(); 
         u._city = parts[1].Trim(); 
         u._state = parts[2].Trim(); 
         u._zipCode = parts[3].Trim(); 
         if (!u.ValidateAddress()) 
              throw new ArgumentException("Incorrect format. Attributes are empty or State is 

incorrect"); 
         return u; 
     } 

       // Example of the class method     
      [SqlMethod(OnNullCall = false, IsDeterministic = true, DataAccess=DataAccessKind.None)] 
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     public double CalculateShippingCost(USPostalAddress destination) 
     { 
         // Calculating shipping cost between two addresses 
         return (destination.State == this.State)?15.0:25.0; 
     } 

       // IBinarySerializer.Read 
     public void Read(System.IO.BinaryReader r)    
     { 
         _address = r.ReadString(); 
         _city = r.ReadString(); 
         _state = r.ReadString(); 
         _zipCode = r.ReadString();         
     } 

       // IBinarySerializer.Write 
     public void Write(System.IO.BinaryWriter w)    
     { 
         w.Write(_address); 
         w.Write(_city); 
         w.Write(_state); 
         w.Write(_zipCode); 
     } 
 } 

     As you can see, the type includes four different public attributes/properties ( Street ,  City ,  State , 
and  ZIPCode ) and several methods. Some of the methods ( ToString ,  Parse ,  Read , and  Write ) are required 
to support type creation and serialization. Another ( CalculateShippingCost ) is an example of a type 
functionality enhancement. 

 In the database, you can use this type when defining table columns, variables, and parameters. 
Listing  15-2  and Figure  15-1  show an example of this.  

     Listing 15-2.    CLR user-defined type  usage     

  declare 
     @MicrosoftAddr dbo.USPostalAddress = 'One Microsoft Way, Redmond, WA, 98052' 
     ,@GoogleAddr dbo.USPostalAddress = '1600 Amphitheatre Pkwy, Mountain View, CA, 94043' 

   select 
     @MicrosoftAddr as [Raw Data] 
     ,@MicrosoftAddr.ToString() as [Text Data] 
     ,@MicrosoftAddr.Address as [Address] 
     ,@MicrosoftAddr.CalculateShippingCost(@GoogleAddr) as [ShippingCost] 

  Figure 15-1.    CLR user-defined type usage       

 



CHAPTER 15 ■ CLR TYPES

315

    CLR user-defined types let you easily expand the SQL Server type library with your own types, 
developed and used in an object-oriented manner. It sounds too good to be true from a development 
standpoint, and, unfortunately, there are a few caveats about which you need to be aware. 

 As I already mentioned, SQL Server does not let you alter a type after you create it. You can redeploy 
a new version of the assembly with the  ALTER ASSEMBLY  command. This allows you to change the 
implementation of the methods and/or fix any bugs in the implementation, although you would not be able 
to change the interface of existing methods, nor would you be able to utilize new public methods unless you 
drop and re-create the type. This requires removing all type references from the database code. 

 All of this means that you must perform the following set of actions to  re-deploy the type:  

    1.    Remove all type references from the T-SQL code.  

    2.    Persist all data from the columns of that type somewhere else, either by 
shredding type attributes to a relational format or casting them to  varbinary . You 
need to be careful with the latter approach and make sure that the new version of 
the type object can be deserialized from the old object’s binary data.  

    3.    Drop all columns of that type.  

    4.    Drop type, redeploy assembly, and create type again.  

    5.    Recreate the columns and re-populate them with the data.  

    6.    Rebuild the indexes, reclaiming the space from the old columns and reducing 
fragmentation.  

    7.    Recreate T-SQL code that references the type.        

 As you can see, this introduces a large amount of maintenance overhead, and it can lead to prolonged 
system downtimes. 

 Performance is another very important aspect to consider. SQL Server stores CLR types in binary 
format. Every time you access attributes or methods of a CLR type, SQL Server deserializes the object and 
calls the CLR method, which leads to overhead similar to what you saw in Chapter   14    . 

 Let’s run some tests and create two tables with address information: one using regular T-SQL data types 
and another using a  dbo.USPostalAddress  CLR user-defined type. You can see the code for doing this in 
Listing  15-3 . 

     Listing 15-3.    UDT performance:  Table creation     

  create table dbo.Addresses 
 ( 
     ID int not null identity(1,1), 
     Address varchar(128) not null, 
     City varchar(64) not null, 
     State char(2) not null, 
     ZipCode varchar(10) not null, 

       constraint CHK_Address_State check 
     (  S tate in ( 'AK','AL','AR','AZ','CA','CO','CT','DC','DE','FL','GA','HI','IA','ID'

,'IL','IN','KS','KY','LA','MA','MD','ME','MI','MN','MO','MS','MT','NC','ND','NE','NH'
,'NJ','NM','NV','NY','OH','OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VA'
,'VT','WA','WI','WV','WY') ), 

     constraint PK_Addresses primary key clustered(ID) 
 ); 

http://dx.doi.org/10.1007/978-1-4842-1964-5_14
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   create table dbo.AddressesCLR 
 ( 
     ID int not null identity(1,1), 
     Address dbo.USPostalAddress not null, 
     constraint PK_AddressesCLR primary key clustered(ID) 
 ); 

   ;with Streets(Street)    
 as 
 ( 
     select v.v 
     from (values('Street 1'),('Street 2'),('Street 3'),('Street 4'),('Street 5') 
                 ,('Street 6'),('Street 7'),('Street 8'),('Street 9'),('Street 10')) v(v) 
 ) 
 ,Cities(City) 
 as 
 ( 
     select v.v 
     from (values('City 1'),('City 2'),('City 3'),('City 4'),('City 5') 
                 ,('City 6'),('City 7'),('City 8'),('City 9'),('City 10')) v(v) 
 ) 
 ,ZipCodes(Zip) 
 as 
 ( 
     select v.v 
     from (values('99991'),('99992'),('99993'),('99994'),('99995') 
                 ,('99996'),('99997'),('99998'),('99999'),('99990')) v(v) 
 ) 
 ,States(state) 
 as 
 ( 
     select v.v 
     f rom (values('AL'),('AK'),('AZ'),('AR'),('CA'),('CO'),('CT'),('DE'),('FL'),('GA'),('HI')

,('ID'),('IL'),('IN'),('IA'),('KS'),('KY'),('LA'),('ME'),('MD'),('MA'),('MI'),('MN')
,('MS'),('MO'),('MT'),('NE'),('NV'),('NH'),('NJ'),('NM'),('NY'),('NC'),('ND'),('OH')
,('OK'),('OR'),('PA'),('RI'),('SC'),('SD'),('TN'),('TX'),('UT'),('VT'),('VA'),('WA')
,('WV'),('WI'),('WY'),('DC'),('PR')) v(v) 

 ) 
 insert into dbo.Addresses(Address,City,State,ZipCode) 
     select Street,City,State,Zip 
     from Streets cross join Cities cross join States cross join ZipCodes;    

   insert into dbo.AddressesCLR(Address) 
     select Address + ', ' + City + ', ' + State + ', ' + ZipCode from dbo.Addresses; 

    Now, let’s run a test and look at the performance of the queries against both tables. We will use the 
queries shown in Listing  15-4 .    
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      Listing 15-4.    UDT performance: Querying the data   

  select State, count(*) 
 from dbo.Addresses 
 group by State 

   select Address.State, count(*) 
 from dbo.AddressesCLR 
 group by Address.State 

    As you can see in Figure  15-2 , the second  SELECT  introduces a CLR method call for every row, and this 
significantly affects the performance of the query. You can see information about the call in the  compute 
scalar  operator properties, as shown in Figure  15-3 .      

  Figure 15-2.    UDT performance: Querying the data       

  Figure 15-3.    UDT performance:  Computer scalar operator properties         
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 Some of the performance issues can be addressed with persisted calculated columns, which can even 
be indexed if needed. Let’s test this by adding a  State  column to the  dbo.AddressesCLR  table and creating 
indexes in both tables. The code for doing this is shown in Listing  15-5 . 

     Listing 15-5.    UDT performance: Adding a persisted calculated  column     

  alter table dbo.AddressesCLR add State as Address.State persisted; 
 -- Rebuild the index to reduce the fragmentation caused by alteration 
 alter index PK_AddressesCLR on dbo.AddressesCLR rebuild; 

   create index IDX_AddressesCLR_State on dbo.AddressesCLR(State); 
 create index IDX_Addresses_State on dbo.Addresses(State); 

    Now, if you run the queries from Listing  15-4  again, you will see the results shown in Figure  15-4 . There 
is still a compute scalar operator in the second execution plan, although this time it is not related to the CLR 
method call, and it is used as a column-reference  placeholder,   as shown in Figure  15-5 .   

  Figure 15-4.    UDT performance: Persisted calculated column       

  Figure 15-5.    UDT performance: Computer scalar operator with calculated  column         
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 Although persisted calculated columns can help with performance, they increase the size of the rows. 
You are storing the same information several times, once as part of a UDT binary value and also in clustered 
and potentially nonclustered indexes. These columns also introduce additional overhead for maintaining 
calculated columns when UDT data is frequently modified. 

 Keeping supportability and performance aspects in mind, you should be very careful when introducing 
CLR user-defined types in your systems. The public methods of the type should be finalized before initial 
deployment, and the code must be carefully tested. This will help you to avoid situations where the type 
needs to be redeployed. 

 In addition, you need to minimize the number of CLR calls by creating and possibly indexing persisted 
calculated columns, which store the values of UDT properties and methods that are frequently called from 
the queries.  

      Spatial Data Types   
 SQL Server supports two data types to store spatial information:  geometry  and  geography .   Geometry  
     supports planar, or Euclidean, flat-earth data.   Geography       supports ellipsoidal round-earth surfaces. Both 
data types can be used to store location information, such as GPS latitude and longitude coordinates. The 
 geography  data type considers the Earth’s roundness and provides slightly better accuracy, although it has 
stricter requirements for the data. For example, data must fit in a single hemisphere, and polygons must be 
defined in a specific ring orientation. Client applications need to be aware of these requirements and handle 
them correctly in the code. 

 Storing location information in a  geometry  data type introduces its own class of problems. It works fine 
and often has better performance than a  geography  data type when you need to find out if a location belongs 
to a specific area or if areas are intersecting. However, you cannot calculate the distance between points: the 
unit of measure for the result is in decimal degrees, which are useless on a non-flat surface. 

 ■   Note    Coverage of spatial data type methods is outside of the scope of this book. If you are interested in 
learning more about this, check out this site for more details:    http://msdn.microsoft.com/en-us/library/
bb933790.aspx      .   

 Although spatial data types provide a rich set of methods with which to work with data, you must 
consider performance aspects when dealing with them. Spatial data types are CLR-based; however, SQL 
Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016 RTM allow you to use native implementation for 
some spatial methods, which can significantly improve performance in some scenarios. You should use the 
trace flags  T6533  and  T6534  to enable native implementation in SQL Server 2012 SP3 and SQL Server 2014 
SP2. In SQL Server 2016, native implementation is enabled by default. 

 Let’s compare the performance of the methods that calculate the distance between two points. A typical 
use case for such a scenario is a search for a point of interest ( POI  ) close to a specific location. As a first step, 
let’s create three different tables that store POI information. 

 The first table,  dbo.Locations , stores coordinates using the  decimal(9,6)  data type. The two other 
tables use a  geography  data type. Finally, the table  dbo.LocationsGeoIndexed  has a  Location  column 
indexed with a special type of index called a   spatial index .   These indexes help improve the performance 
of some operations, such as distance calculations or ones that check to see if objects intersect. The code is 
shown in Listing  15-6 . 

http://msdn.microsoft.com/en-us/library/bb933790.aspx
http://msdn.microsoft.com/en-us/library/bb933790.aspx
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       Listing 15-6.    POI Lookup: Creating test  tables     

  create table dbo.Locations 
 ( 
     Id int not null identity(1,1), 
     Latitude decimal(9,6) not null, 
     Longitude decimal(9,6) not null, 
     constraint PK_Locations primary key clustered(Id) 
 ); 

   create table dbo.LocationsGeo 
 ( 
     Id int not null identity(1,1), 
     Location geography not null, 
     constraint PK_LocationsGeo primary key clustered(Id) 
 );   

   create table dbo.LocationsGeoIndexed 
 ( 
     Id int not null identity(1,1), 
     Location geography not null, 
     constraint PK_LocationsGeoIndexed primary key clustered(Id) 
 ); 

   -- 241,402 rows 
 ;with Latitudes(Lat) 
 as 
 ( 
     select convert(float,40.0) 
     union all 
     select convert(float,Lat + 0.01) 
     from Latitudes 
     where Lat < 48 
 ) 
 ,Longitudes(Lon) 
 as 
 ( 
     select convert(float,-120.0) 
     union all 
     select Lon - 0.01 
     from Longitudes 
     where Lon > -123 
 ) 
 insert into dbo.Locations(Latitude, Longitude) 
     select Latitudes.Lat, Longitudes.Lon 
     from Latitudes cross join Longitudes 
 option (maxrecursion 0); 

   insert into dbo.LocationsGeo(Location) 
     select geography::Point(Latitude, Longitude, 4326) 
     from dbo.Locations; 
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   insert into dbo.LocationsGeoIndexed(Location) 
     select Location 
     from dbo.LocationsGeo; 

   create spatial index Idx_LocationsGeoIndexed_Spatial 
 on dbo.LocationsGeoIndexed(Location); 

 ■      Tip    We store location information in relational format using the  decimal(9,6)  data type rather than 
 float . Decimal data types use six bytes less storage space per pair of values, and they provide accuracy that 
exceeds that of commercial-grade GPS receivers.  

 The storage space used by the tables from Listing  15-6  is shown in Table  15-1 .  

   Table 15-1.    Storage Space Used by the Tables in Listing  15-6    

 dbo.Locations  dbo.LocationsGeo  dbo.LocationsGeoIndexed 

 5,488 KB  9,368 KB  13,936 KB 

 As you can see, the binary representation of the spatial type uses more space than the relational format. 
As expected, the spatial index requires additional space, although the overhead is not nearly as much as the 
overhead produced by the XML indexes that you saw in Chapter   12    , “XML and JSON.” 

 Let’s run tests that measure the performance of queries that calculate the number of locations within 
one mile of Seattle’s city center. In the  dbo.Locations  table, we will use the   dbo.CalcDistanceCLR  function, 
  which was defined in Chapter   14    . For the two other tables, we will call the spatial method  STDistance , both 
with and without native implementation enabled via trace flags. The test code to accomplish this is shown in 
Listing  15-7 . The query execution plans are shown in Figure  15-6 .     

     Listing 15-7.    POI Lookup: Test queries   

  /* In SQL Server 2012 SP3 and SQL Server 2014 SP2 use T6533 and T6534 to enable native 
implementation */ 
 declare 
     @Lat decimal(9,6) = 47.620309 
     ,@Lon decimal(9,6) = -122.349563 

   declare 
     @G geography = geography::Point(@Lat,@Lon,4326) 

   select ID 
 from dbo.Locations 
 where dbo.CalcDistanceCLR(Latitude, Longitude, @Lat, @Lon) < 1609; 

   select ID 
 from dbo.LocationsGeo 
 where Location.STDistance(@G) < 1609; 

   select ID 
 from dbo.LocationsGeoIndexed 
 where Location.STDistance(@G) < 1609; 

http://dx.doi.org/10.1007/978-1-4842-1964-5_12
http://dx.doi.org/10.1007/978-1-4842-1964-5_14
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    The first and second queries perform  clustered index scans  and calculate the distance for every row of 
the tables. The last query uses a spatial index to look up such rows. You can see the execution times for the 
queries in my environment in Table  15-2 .  

  Figure 15-6.    POI Lookup:  Execution plans         

   Table 15-2.    POI Lookup: Execution Time   

 dbo.Locations  dbo.LocationsGeo  dbo.LocationsGeoIndexed 

 SQL Server 2014 SP1  245 ms  9,477 ms  42 ms 

 SQL Server 2014 SP2 
without  T6533  and  T6534  

 245 ms  9,652 ms  15 ms 

 SQL Server 2014 SP2 
with  T6533  and  T6534  

 245 ms  224 ms  15 ms 

 SQL Server 2016  241 ms  222 ms  12 ms 

    As you can see, the spatial index greatly benefits the query. It is also worth mentioning that without 
the index, the performance of the  CalcDistanceCLR  method is significantly better compared to the 
 STDistance  method when native implementation is not enabled. 

 Although the spatial index greatly improves performance, it has its own limitations. It works within 
the scope of the entire table, and all other predicates are evaluated after spatial index operations. This can 
introduce suboptimal plans in some cases. 

 As an example, let’s look at a use case for when we store POI information on a customer-by-customer 
basis, as shown in Listing  15-8 . It is worth noting that this code will take a significant amount of time to 
execute and will produce a large amount of transaction log records. 
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     Listing 15-8.    Customer-based POI lookup:  Table creation      

  create table dbo.LocationsGeo2 
 ( 
     CompanyId int not null, 
     Id int not null identity(1,1), 
     Location geography not null, 
     constraint PK_LocationsGeo2 
     primary key clustered(CompanyId,Id) 
 ); 

   -- 12,070,100 rows; 50 companies; 241,402 rows per company 
 ;with Companies(CID) 
 as 
 ( 
     select 1 
     union all 
     select CID + 1 from Companies where CID < 50 
 ) 
 insert into dbo.LocationsGeo2(CompanyId,Location) 
     select c.CID, l.Location 
     from dbo.LocationsGeo l cross join Companies c; 

   create spatial index Idx_LocationsGeo2_Spatial 
 on dbo.LocationsGeo2(Location); 

    In this case, when we perform a POI lookup for a specific company, the  CompanyId  column must be 
included as the predicate to the queries. SQL Server has two choices on how to proceed. The first choice 
is a  clustered index seek  based on the  CompanyId  value’s calling the   STDistance  method   for every POI that 
belongs to the company. The second choice is to use a spatial index, find all POIs within the specified 
distance regardless of the company to which they belong, and, finally, join it with the clustered index data. 
Let’s run the queries shown in Listing  15-9 . 

     Listing 15-9.    Customer-based POI lookup: Test  queries     

  declare 
     @Lat decimal(9,6) = 47.620309 
     ,@Lon decimal(9,6) = -122.349563 
     ,@CompanyId int = 15 

   declare 
     @g geography = geography::Point(@Lat,@Lon,4326) 

   select count(*) 
 from dbo.LocationsGeo2 with (index= PK_LocationsGeo2) 
 where Location.STDistance(@g) < 1609 and CompanyId = @CompanyId; 

   select count(*) 
 from dbo.LocationsGeo2 with (index=Idx_LocationsGeo2_Spatial) 
 where Location.STDistance(@g) < 1609 and CompanyId = @CompanyId; 
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    Neither method is efficient when a table stores a large amount of data for a sizable number of 
companies. The execution plan of the first query utilizing a clustered index seek shows that it performed the 
 STDistance  call 241,402 times, or once for every company POI. The execution plan is shown in Figure  15-7 .     

  Figure 15-7.    Customer-based POI lookup: Execution plan for the first query       

  Figure 15-8.    Customer-based POI ‘ookup: Execution plan for the second query       

 The execution plan for the second query, which is shown in Figure  15-8 , indicates that the spatial index 
lookup returned 550 rows; that is, all POI in the area, regardless of to which company they belong. SQL 
Server then had to join the rows with the clustered index before evaluating the  CompanyId  predicate.  

  One of the ways to solve such a problem is called the   bounding box  approach.   This method lets us 
minimize the number of calculations by filtering out POIs that are outside of the area of interest. 

 As you can see in Figure  15-9 , all points that we need to select reside in the circle, with the location at 
the center point and radius specified by the distance. The only points that we need to evaluate reside within 
the box that surrounds the circle.  

  Figure 15-9.    Customer-based POI lookup: Bounding box       
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 We can calculate the coordinates of the corner points of the box, persist them in the table, and use a 
regular nonclustered index to pre-filter the data. This lets us minimize the number of expensive distance 
calculations to be performed. 

 The calculation of the bounding box’s corner points can be done with a CLR table-valued function, as 
shown in Listing  15-10 . Listing  15-11  shows the T-SQL code that alters the table and creates a nonclustered 
index there. 

     Listing 15-10.    Customer-based POI lookup: Calculating bounding-box coordinates   

  private struct BoundingBox 
 { 
     public double minLat; 
     public double maxLat; 
     public double minLon; 
     public double maxLon; 
 } 

   private static void CircleBoundingBox_FillValues( 
     object obj, out SqlDouble MinLat, out SqlDouble MaxLat, 
     out SqlDouble MinLon, out SqlDouble MaxLon) 
 { 
     BoundingBox box = (BoundingBox)obj; 
     MinLat = new SqlDouble(box.minLat); 
     MaxLat = new SqlDouble(box.maxLat); 
     MinLon = new SqlDouble(box.minLon); 
     MaxLon = new SqlDouble(box.maxLon); 
 } 

   [Microsoft.SqlServer.Server.SqlFunction( 
     DataAccess = DataAccessKind.None, IsDeterministic = true, IsPrecise = false, 
     SystemDataAccess = SystemDataAccessKind.None, 
     FillRowMethodName = "CircleBoundingBox_FillValues", 
     TableDefinition = "MinLat float, MaxLat float, MinLon float, MaxLon float") ] 
 public static IEnumerable CalcCircleBoundingBox(SqlDouble lat, SqlDouble lon, SqlInt32 
distance) 
 { 
     if (lat.IsNull || lon.IsNull || distance.IsNull) return null; 

       BoundingBox[] box = new BoundingBox[1]; 
     double latR =  Math.PI / 180 * lat.Value; 
     double lonR = Math.PI / 180 * lon.Value; 
     double rad45 = 0.785398163397448300;  // RADIANS(45.) 
     double rad135 = 2.356194490192344800; // RADIANS(135.) 
     double rad225 = 3.926990816987241400; // RADIANS(225.) 
     double rad315 = 5.497787143782137900; // RADIANS(315.) 
     double distR = distance.Value * 1.4142135623731 * Math.PI / 20001600.0; 
      doub le l atR45 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) * 

Math.Sin(distR) * Math.Cos(rad45)); 
      double l atR135 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) * 

Math.Sin(distR) * Math.Cos(rad135)); 
      double l atR225 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) * 

Math.Sin(distR) * Math.Cos(rad225)); 
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      double l atR315 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) * 
Math.Sin(distR) * Math.Cos(rad315)); 

     double dLonR45 = Math.Atan2(Math.Sin(rad45) * Math.Sin(distR) * Math.Cos(latR), 
             Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR45)); 
     double dLonR135 = Math.Atan2(Math.Sin(rad135) * Math.Sin(distR) * Math.Cos(latR), 
             Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR135)); 
     double dLonR225 = Math.Atan2(Math.Sin(rad225) * Math.Sin(distR) * Math.Cos(latR), 
             Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR225)); 
     double dLonR315 = Math.Atan2(Math.Sin(rad315) * Math.Sin(distR) * Math.Cos(latR), 
             Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR315)); 
     double lat45 = latR45 * 180.0 / Math.PI; 
     double lat225 = latR225 * 180.0 / Math.PI; 
     double lon45 = (((lonR - dLonR45 + Math.PI) % (2 * Math.PI)) - Math.PI) * 180.0 / Math.PI; 
     double lon135 = (((lonR - dLonR135 + Math.PI) % (2 * Math.PI)) - Math.PI) *180.0 / Math.PI; 
     double lon225 = (((lonR - dLonR225 + Math.PI) % (2 * Math.PI)) - Math.PI) *180.0 / Math.PI; 
     double lon315 = (((lonR - dLonR315 + Math.PI) % (2 * Math.PI)) - Math.PI) *180.0 / Math.PI; 

       box[0].minLat = Math.Min(lat45, lat225); 
     box[0].maxLat = Math.Max(lat45, lat225); 
     box[0].minLon = Math.Min(Math.Min(lon45, lon135), Math.Min(lon225,lon315)); 
     box[0].maxLon = Math.Max(Math.Max(lon45, lon135), Math.Max(lon225, lon315)); 
     return box; 
 } 

         Listing 15-11.    Customer-based POI lookup: Altering the  table     

  alter table dbo.LocationsGeo2 add MinLat decimal(9,6); 
 alter table dbo.LocationsGeo2 add MaxLat decimal(9,6); 
 alter table dbo.LocationsGeo2 add MinLon decimal(9,6); 
 alter table dbo.LocationsGeo2 add MaxLon decimal(9,6); 

   update t 
 set 
     t.MinLat = b.MinLat 
     ,t.MinLon = b.MinLon 
     ,t.MaxLat = b.MaxLat 
     ,t.MaxLon = b.MaxLon 
 from 
     dbo.LocationsGeo2 t cross apply 
         dbo.CalcCircleBoundingBox(t.Location.Lat,t.Location.Long,1609) b; 

   create index IDX_LocationsGeo2_BoundingBox 
 on dbo.LocationsGeo2(CompanyId, MinLon, MaxLon) 
 include (MinLat, MaxLat); 

    Now, you can change the query to utilize the bounding box. This query is shown in Listing  15-12 . The 
corresponding execution plan is shown in Figure  15-10 .  
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     Listing 15-12.    Customer-based POI lookup: Query utilizing  bounding box     

  declare 
     @Lat decimal(9,6) = 47.620309 
     ,@Lon decimal(9,6) = -122.349563 
     ,@CompanyId int = 15 

   declare 
     @g geography = geography::Point(@Lat,@Lon,4326) 

   select count(*) 
 from dbo.LocationsGeo2 
 where 
     Location.STDistance(@g) < 1609 and 
     CompanyId = @CompanyId and 
     @Lat between MinLat and MaxLat and 
     @Lon between MinLon and MaxLon; 

  Figure 15-10.    Customer-based POI lookup: Execution plan (bounding-box approach)       

   Table 15-3.    Customer-Based POI Lookup:  Execution Times     

 Clustered Index Seek  Spatial Index  Bounding Box 

 SQL Server 2014 SP1  9,923 ms  55 ms  13 ms 

 SQL Server 2014 SP2 
without  T6533  and  T6534  

 10,337 ms  19 ms  10 ms 

 SQL Server 2014 SP2 
with  T6533  and  T6534  

 231 ms  18 ms  10 ms 

 SQL Server 2016  222 ms  16 ms  5 ms 

    As you can see, the last query calculated the distance 15 times. This is a significant improvement 
over the 241,402 calculations in the original query. The execution times in my environment are shown in 
Table  15-3 .  

 As you can see, the bounding box outperforms both the clustered index seek and the spatial 
index lookup, even with native implementation enabled. Obviously, this would be the case only when 
the bounding box reduced the number of the calculations to a degree that offset the overhead of the 
 nonclustered index seek  and  key lookup  operations. It is also worth mentioning that you do not need a spatial 
index with such an approach. 
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 You can also use a bounding box for other use cases; for example, when you are checking to see if 
a position belongs to the area defined by a polygon. The bounding box corner coordinates should store 
the minimum and maximum latitude and longitude coordinates of the polygon’s corner points. Like the 
distance calculation, you would filter out the locations outside of the box before performing an expensive 
spatial method call that validates whether the point is within the polygon area.  

     HierarchyId 
 The  HierarchyId  data type helps you work with hierarchical data structures. It is optimized to represent 
trees, which are the most common type of hierarchical data. 

 ■   Note    Coverage of  HierarchyId  data-type methods is beyond the scope of this book. You can learn more 
about the  HierarchyId  data type at    http://technet.microsoft.com/en-us/library/bb677173.aspx     .  

 There are several techniques that allow us to store hierarchical information in a database. Let’s look at 
the most common ones, as follows:

     Adjacency list.       This is perhaps the most commonly used technique. It persists 
the reference to the parent node in every child node. Such a structure is shown in 
Figure  15-11  and Listing  15-13 .     

  Figure 15-11.     Adjacency list            

     Listing 15-13.    Adjancency list DDL   

  create table dbo.OrgChart 
 ( 
     ID int not null, 
     Name nvarchar(64) not null, 
     Title nvarchar(64) not null, 
     ParentID int null, 

       constraint PK_OrgChart primary key clustered(ID), 

 

http://technet.microsoft.com/en-us/library/bb677173.aspx
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       constraint FK_OrgChart_OrgChart 
     foreign key(ParentId) 
     references dbo.OrgChart(ID) 
 ) 

       Closure table.       This is similar to an adjacency list; however, the parent-child 
relationship is stored separately. Figure  15-12  and Listing  15-14  show an example 
of a Closure Table.     

  Figure 15-12.    Closure table       

     Listing 15-14.     Closure table DDL        

  create table dbo.OrgChart 
 ( 
     ID int not null, 
     Name nvarchar(64) not null, 
     Title nvarchar(64) not null, 

       constraint PK_OrgChart primary key clustered(ID), 
 ); 

   create table dbo.OrgTree 
 ( 
     ParentId int not null, 
     ChildId int not null, 

       constraint PK_OrgTree primary key clustered(ParentId, ChildId), 

       constraint FK_OrgTree_OrgChart_Parent 
     foreign key(ParentId) 
     references dbo.OrgChart(ID), 

       constraint FK_OrgTree_OrgChart_Child 
     foreign key(ChildId) 
     references dbo.OrgChart(ID) 
 ); 
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       Nested sets  .       With nested sets, every node contains two values, called  left  and 
 right bowers . Child node bower values are within the interval of the parent 
node bowers. As a result, when you need to find all of the children of the parent, 
you can select all nodes with left and right bower values in between the parent 
values. Figure  15-13  and Listing  15-15  show an example of nested sets.     

  Figure 15-13.    Nested sets       

     Listing 15-15.    Nested sets DDL   

  create table dbo.OrgChart 
 ( 
     ID int not null, 
     Name nvarchar(64) not null, 
     Title nvarchar(64) not null, 
     LeftBower float not null, 
     RightBower float not null, 

       constraint PK_OrgChart primary key clustered(ID), 
 ); 

       Materialized path .      This persists the hierarchical path in every node by concatenating 
information about the parents up to the root of the hierarchy. As a result, you can 
find all child nodes by performing a prefix lookup based on the parent path. Some 
implementations store actual key values of the nodes in the path, while others store 
the relative position of the node in the hierarchy. Figure  15-14  shows an example of 
the latter. Listing  15-16  shows one possible implementation of such a method.     
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     Listing 15-16.     Materialized path DDL        

  create table dbo.OrgChart 
 ( 
     ID int not null, 
     Name nvarchar(64) not null, 
     Title nvarchar(64) not null, 
     Path varchar(256) not null, 

       constraint PK_OrgChart primary key clustered(ID), 
 ); 

    Each hierarchy approach has its own strengths and weaknesses. Adjacency lists and closure tables 
are easy to maintain; adding new members to or removing them from the hierarchy, as well as subtree 
movement, affects a single or very small number of the nodes. However, querying those structures often 
requires recursive or imperative code. 

 In contrast, nested sets and materialized paths are very easy to query, although hierarchy maintenance 
is expensive. For example, if you move the subtree to a different parent, you must update the corresponding 
bower or path values for each child in the subtree. 

 The  HierarchyId  type uses the materialized path technique, persisting relative path information in 
a way similar to the example shown in Figure  15-14 . The path information is stored in binary format. The 
actual storage space varies and depends on a few factors. For starters, each level in the hierarchy adds an 
additional node to the path and increases its size. 

 Another important factor is how a new  HierarchyId  value is generated. As already mentioned, 
 HierarchyId  stores the relative positions of the nodes rather than their absolute key values. As a result, if 
you need to add a new child node at the node rightmost to the parent, you can increment the value from 
the former rightmost node. However, if you need to add the node in between two existing nodes, that would 
require persisting additional information in the path. Figure  15-15  shows an example of this.    

  Figure 15-14.    Materialized (hierarchical) path       
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 Let’s test how  HierarchyId  generation affects the path size by creating the table shown in Listing  15-17 . 

     Listing 15-17.    HierarchyId: Test table   

 create table dbo.HierarchyTest 
 ( 
     ID hierarchyid not null, 
     Level tinyint not null 
 ) 

   The code shown in Listings  15-18  and  15-19  creates an eight-level hierarchy with eight children per 
node. We will compare the average data size of  HierarchyId  data when children nodes are inserted as the 
rightmost nodes (Listing  15-18 ) and when they are inserted in between existing nodes (Listing  15-19 ). 

      Listing 15-18.    HierarchyId: Adding children nodes as rightmost nodes   

  declare 
     @MaxLevels int = 8 
     ,@ItemPerLevel int = 8 
     ,@Level int = 2 

   insert into dbo.HierarchyTest(ID, Level) values(hierarchyid::GetRoot(), 1); 

   while @Level <= @MaxLevels 
 begin 
     ;with CTE(ID, Child, Num) 
     as 
      ( 
         select ID, ID.GetDescendant(null,null), 1 
         from dbo.HierarchyTest 
         where Level = @Level - 1 
         union all 
         select ID, ID.GetDescendant(Child,null), Num + 1 
         from CTE   
         where Num < @ItemPerLevel 
     ) 

  Figure 15-15.    Inserting  data            
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     insert into dbo.HierarchyTest(ID, Level) 
         select Child, @Level from CTE 
     option (maxrecursion 0); 
     set @Level += 1; 
 end; 

   select avg(datalength(ID)) from dbo.HierarchyTest; 

    Result:  
  -----------  
  5  

         Listing 15-19.    HierarchyId: Adding children nodes in between existing nodes   

  truncate table dbo.HierarchyTest 
 go 

   declare 
     @MaxLevels int = 8 
     ,@ItemPerLevel int = 8 
     ,@Level int = 2 

   insert into dbo.HierarchyTest(ID, Level) values(hierarchyid::GetRoot(), 1); 

   while @Level <= @MaxLevels 
 begin 
     ;with CTE(ID, Child, PrevChild, Num) 
     as 
     ( 
         select ID, ID.GetDescendant(null,null), convert(hierarchyid,null), 1 
         from dbo.HierarchyTest 
         where Level = @Level - 1 
         union all 
         select ID, 
             case 
                 when PrevChild < Child 
                 then ID.GetDescendant(PrevChild, Child) 
                 else ID.GetDescendant(Child, PrevChild) 
             end, Child, Num + 1 
         from CTE   
         where Num < @ItemPerLevel 
     ) 
     insert into dbo.HierarchyTest(ID, Level) 
         select Child, @Level from CTE 
     option (maxrecursion 0); 
     set @Level += 1; 
 end; 

   select avg(datalength(ID)) from dbo.HierarchyTest; 

    Result:  
  -----------  
  11  
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    As you can see, adding children in between existing nodes in the hierarchy more than doubled the size 
of the path stored. 

 ■   Note    The  HierarchyId  data type has an additional two bytes of overhead stored in the variable-length 
offset array in every row.  

 The key point that you need to remember is that the  HierarchyId  data type persists a hierarchical 
path, and it provides a set of methods that help when working with hierarchical data.  It does not enforce the 
correctness of the hierarchy stored in a table, nor the uniqueness of the values. It is your responsibility to enforce 
it in the code.  

 The maintenance of hierarchical data is expensive. Changing the path for the node with the children 
requires an update of the path in every child node. This leads to the update of multiple rows in the table. 
Moreover, the  HierarchyId  column is usually indexed, which introduces physical data movement and 
additional index fragmentation, especially when the  HierarchyId  column is part of a clustered index. You 
need to keep this in mind when designing an index maintenance strategy for tables with  HierarchyId  
columns when the data is volatile  .  

     Summary 
 User-defined CLR data types allow us to expand the standard SQL Server type library. Unfortunately, 
this flexibility has a price. CLR data types are stored in the database in binary format, and accessing the 
object properties and methods leads to deserialization and CLR method calls. This can introduce serious 
performance issues when those calls are done for a large number of rows. 

 You can reduce the number of CLR calls by adding persisted calculated columns that store the results 
of frequently accessed properties and methods. At the same time, this increases the size of the rows and 
introduces overhead when data is modified. 

 Another important aspect is maintainability. SQL Server does not support the  ALTER TYPE  operation. 
It is impossible to change the interface of existing methods or utilize new methods of the type until it is 
dropped and recreated. 

  Geometry  and  geography  types help us work with spatial data. They provide a rich set of methods used 
to manipulate the data, although these methods are usually expensive and can lead to poor performance 
when called for a large number of rows. SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016 
allow you to use the native implementation for some of the methods, which can significantly improve the 
performance of spatial calls. It is enabled by default in SQL Server 2016. In SQL Server 2012 SP3 and SQL 
Server 2014 SP2, you can enable it with trace flags  T6533  and  T6534.  

 Spatial indexes can address some performance issues, although they work within the scope of the 
entire table. All further predicate evaluation is done at later execution stages. This leads to suboptimal 
performance when spatial operations are done on subsets of the data. You can use a bounding-box approach 
to address this issue, filtering out the unneeded rows prior to calling spatial methods. 

  HierarchyId  types provide built-in support for hierarchical data. Although it has excellent query 
performance, hierarchy maintenance is expensive. Every change in the hierarchy requires an update of the 
hierarchical path in every child node. You must consider such overhead when data is volatile. 

  HierarchyId  types do not enforce the correctness of the hierarchical structure. That must be done in 
the code. You should also avoid inserting new nodes in between existing ones, as this increases the size of 
the path stored. 

 Finally, support of system- and user-defined CLR types is not consistent across different development 
platforms. You need to make sure that client applications can utilize them before making the decision to 
use them. Alternatively, you can hide those types behind the data-access tier with T-SQL stored procedures 
when it is possible and feasible.     
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    CHAPTER 16   

 Data Partitioning                          

 The amount of data stored in relational databases is growing exponentially every year. Customers are 
collecting more data, and they are processing and retaining it for a longer amount of time. We, as database 
professionals, are working with databases that have become larger over time. 

 From a development standpoint, database size is not that critical. Non-optimized queries time out 
regardless of the database size. However, from a database-administration standpoint, the management 
of large databases introduces additional challenges. Data partitioning helps to address some of these 
challenges. 

 In this chapter, we will discuss the reasons we want to partition data, and we will cover the different 
techniques of data partitioning what are available in SQL Server. We will focus on practical implementation 
scenarios and typical data partitioning use cases in SQL Server. 

     Reasons to Partition Data 
 Let’s assume that our system stores data in a large non-partitioned table. This approach dramatically 
simplifies development. All data is in the same place, and you can read the data from and write the data to 
the same table. With such a design, however, all of the data is stored in the same location. The table resides 
in a single filegroup, which consists of one or multiple files stored on the same disk array. Even though, 
technically speaking, you could spread indexes across different filegroups or data files across different disk 
arrays, it introduces additional database management challenges, reduces the recoverability of data in case 
of a disaster, and rarely helps with performance. 

 At the same time, in almost every system, data, which is stored in large tables, can be separated into 
two different categories:  operational  and  historical .    The first category consists of the data for the current 
operational period of the company and handles most of the customers' requests in the table. Historical 
data, on the other hand, belongs to the older operational periods, which the system must retain for various 
reasons, such as regulations and business requirements, among others. 

 Most activity in the table is performed against operational data, even though it can be very small 
compared to the total table size.    Obviously, it would be beneficial to store operational data on a fast and 
expensive disk array. Historical data, on the other hand, does not need such I/O performance. 

 When data is not partitioned, you cannot separate it between disk arrays. You either have to pay extra 
for the fast storage you do not need or compromise and buy larger but slower storage. 

 It is also common for operational and historical data to have different workloads. Operational data 
usually supports OLTP transactions from the customer-facing part of the system. Historical data is mainly 
used for analysis and reporting. These two workloads produce different sets of queries, which would benefit 
from a different set of indexes and, sometimes, even from different storage formats. For example, operational 
data can benefit from In-Memory OLTP while historical data can utilize columnstore indexes. 
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 Unfortunately, it is almost impossible to index a subset of the data in a table. Even though you can use 
filtered indexes and/or indexed views, both approaches have several limitations. In most cases, you have 
to create a set of indexes covering both workloads in the table scope. This requires additional storage space 
and introduces update overhead for operational activity in the system. Moreover, volatile operational data 
requires different and more frequent index maintenance as compared to static historical data, which is 
impossible to implement in such a case. 

 ■   Note   SQL Server 2016 allows you to create filtered columnstore indexes that help speed up analysis and 
reporting queries against historical data. We will discuss them in detail in Part VII of the book.  

 Data compression is another important factor to consider.    Static historical data would usually benefit 
from, page compression, which can significantly reduce the storage space required. Moreover, it could 
improve the performance of queries against historical data in non-CPU-bound systems by reducing the 
number of I/O operations required to read the data. At the same time, page compression introduces 
unnecessary CPU overhead when the data is volatile. 

 ■   Tip   In some cases, it is beneficial to use page compression even with volatile operational data when it 
saves a significant amount of space and the system works under a heavy I/O load. As usual, you should test and 
monitor how it affects the system.  

 Unfortunately, it is impossible to compress only part of the data in a table. You would either have to 
compress the entire table, which would introduce CPU overhead on operational data, or keep the historical 
data uncompressed at additional storage and I/O cost. 

 In cases of read-only historical data, it could be beneficial to exclude it from full database backups. 
This would reduce the size of the backup file, I/O, and network load during backup operations. Regrettably, 
partial database backups work on the filegroup level, which makes it impossible when the data is not 
partitioned. 

 The Enterprise Edition of SQL Server supports piecemeal restore, which allows you to restore the 
database and bring it online on a filegroup-by-filegroup basis. It is great to have a Disaster Recovery strategy 
that allows you to restore operational data and make it available to customers separately from the historical 
data. This could significantly reduce the disaster recovery time for large databases. 

 Unfortunately, such a design requires the separation of operational and historical data between 
different filegroups, which is impossible when the data is not partitioned. 

 ■   Note   We will discuss backup and disaster-recovery strategies in greater detail in Chapter   31    , “Designing a 
Backup Strategy.”  

 Another important factor is  statistics.   As you will remember, the statistics histogram stores a maximum 
of 200 steps, regardless of the table size. As a result, the histogram steps on large tables must cover a bigger 
interval of key values. It makes the statistics and cardinality estimation less accurate, and it can lead to 
suboptimal execution plans, in the case of large tables. Moreover, unless you are using databases with a 
compatibility level of 130 in SQL Server 2016 or have trace flag  T2371  enabled, SQL Server does not outdate 
statistics unless you have changed statistics columns in about 20 percent of the total number of rows in the 
table. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_31
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 That list is by no means complete, and there are other factors as to why data partitioning is beneficial, 
although any of the aforementioned reasons is enough to start considering it.  

     When to Partition? 
 Database professionals often assume that data partitioning is required only  for    very large databases (VLDB)  . 
Even though database size definitely matters, it is hardly the only factor to consider. 

   Service Level Agreement (SLA)       is one of the key elements in the decision to partition or not. When a 
system has an availability-based SLA clause, data partitioning becomes essential. The duration of possible 
downtime depends on how quickly you can recover a database and restore it from a backup after disaster. 
That time depends on the total size of the essential filegroups that need to be online for the system to 
be functional. Data partitioning is the only approach that allows you to separate data between different 
filegroups and use a piecemeal restore to minimize downtime. 

 A performance-based SLA clause is another important factor. Data partitioning can help address some 
of the challenges of performance tuning. For example, by partitioning data between multiple tables, you will 
improve the accuracy of statistics and can use different indexing strategies for historical and operational 
data. Moreover, data partitioning allows you to implement a  tiered storage  approach and put the operational 
part of the data on faster disks, which improves the performance of the system.    We will discuss tiered storage 
in greater detail later in this chapter. 

 The key point to remember is that you should not rely on database size as the only criteria for 
partitioning. Consider data partitioning merely to be a tool that helps you address some of the challenges. 
This tool can be useful regardless of database size. 

 Nevertheless, data partitioning comes at a cost. It changes the execution plans of queries and often 
requires code re-factoring. You need to keep this in mind, especially in the case of new development. 
When you expect a system to collect a large amount of data in the future, it is often better to implement 
data partitioning at a very early development stage. Even though data partitioning introduces development 
overhead, such overhead may be much smaller than that which is involved in code re-factoring and the re-
testing of a production system with large amount of data. 

 Finally, it is often very hard if not impossible to partition the data while keeping the database online and 
available to users. Moving large amount of data around can be time consuming and can lead to long downtime. 
This is another argument for implementing data partitioning during the initial stage of development.  

     Data Partitioning Techniques 
 There are two data partitioning techniques available in SQL Server:  partitioned tables  and  partitioned views . 
We will look at them in detail in this section. 

 It is impossible to avoid mentioning SQL Server 2016’s stretch databases in the context of data 
partitioning. Even though they allow us to address some of the VLDB administration challenges and reduce 
the storage cost and disaster recovery time, I would consider them to be a different technique than  classic  
data partitioning. Stretch databases allow you to  transparently  build distributed database systems by moving 
part of the data into the Cloud rather than partition the data in one central place. As we already discussed 
in Chapter   5    , this approach comes with a set of benefits and downsides, which you need to analyze when 
choosing the technology to use in your system. 

 ■   Note   In this chapter, we will use an order entry system that stores order information for two and a 
half years as our example. Let’s assume that we want to partition the data on a monthly basis and that our 
operational period consists of two months: May and June 2016.  

http://dx.doi.org/10.1007/978-1-4842-1964-5_5
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     Partitioned Tables 
 Table partitioning is an Enterprise Edition feature  that   was introduced in SQL Server 2005. You can think of 
partitioned tables as logical tables that consist of multiple individual internal physical tables — partitions. This 
terminology— logical  and  physical  table—is not standard, although it describes it perfectly. 

 Every table in SQL Server is partitioned. When a table is not partitioned by the user, SQL Server treats it 
as a single-partition table internally. 

 SQL Server tracks allocation units, such as  IN-ROW ,  ROW-OVERFLOW , and  LOB  data, separately for each 
partition. For example, a table with 10 partitions would have 30 different  IAM  chains per data file—one per 
allocation unit per partition. 

 There are two additional  database objects   that are used together with table partitioning. A  partition 
function  specifies boundary values, which are the criteria on how data needs to be partitioned. A  partition 
scheme  specifies the filegroups in which physical partition tables are stored. 

 Listing  16-1  shows the code that creates partitioned table  dbo.OrdersPT , with the data partitioned on a 
monthly basis. This code assumes that the database has four different filegroups:  FG2014  and  FG2015  store 
data for years 2014 and 2015, respectively.  FG2016  stores data for the first four months of 2016. Finally, the 
 FASTSTORAGE  filegroup stores operational data starting from May 2016. 

      Listing 16-1.    Creating a partitioned table   

  create partition function pfOrders(datetime2(0)) 
 as range right for values 
 ('2014-02-01', '2014-03-01','2014-04-01','2014-05-01','2014-06-01','2014-07-01' 
 ,'2014-08-01','2014-09-01','2014-10-01','2014-11-01','2014-12-01','2015-01-01' 
 ,'2015-02-01','2015-03-01','2015-04-01','2015-05-01','2015-06-01','2015-07-01' 
 ,'2015-08-01','2015-09-01','2015-10-01','2015-11-01','2015-12-01','2016-01-01' 
 ,'2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01'); 

   create partition scheme psOrders 
 as partition pfOrders 
 to (FG2014 /* FileGroup to store data <'2014-02-01' */ 
 ,FG2014 /* FileGroup to store data >='2014-02-01' and <'2014-03-01' */ 
 ,FG2014,FG2014,FG2014,FG2014,FG2014 
 ,FG2014,FG2014,FG2014,FG2014,FG2014 
 ,FG2015 /* FileGroup to store data >='2015-01-01' and <'2015-02-01' */ 
 ,FG2015,FG2015,FG2015,FG2015,FG2015 
 ,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015 
 ,FG2016 /* FileGroup to store data >='2016-01-01' and <'2016-02-01' */ 
 ,FG2016,FG2016,FG2016 
 ,FASTSTORAGE /* FileGroup to store data >='2016-05-01' and <'2016-06-01' */ 
 ,FASTSTORAGE /* FileGroup to store data >='2016-06-01' and <'2016-07-01' */ 
 ,FASTSTORAGE /* FileGroup to store data >='2016-07-01' */ ); 

   create table dbo.OrdersPT 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
 ); 
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   create unique clustered index IDX_OrdersPT_OrderDate_OrderId 
 on dbo.OrdersPT(OrderDate, OrderId) 
 with 
 ( 
     data_compression = page on partitions(1 to 28), 
     data_compression = row on partitions(29 to 31) 
 ) 
  on psOrders(OrderDate);  

   create nonclustered index IDX_OrdersPT_CustomerId 
 on dbo.OrdersPT(CustomerId) 
 with 
 ( 
     data_compression = page on partitions(1 to 28), 
     data_compression = row on partitions(29 to 31) 
 ) 
  on psOrders(OrderDate);  

    You control how boundary values are stored by specifying either the  RANGE LEFT  or  RANGE RIGHT  
parameter of the partition function. In our example, we are using the  RANGE RIGHT  parameter, which 
indicates that the boundary value is stored on the right partition. With this option, if 2014-02-01 is the first 
boundary value, the leftmost partition stores the data that is prior to that date. All values that are equal to the 
boundary value are stored in the partition that is second from the left. Alternatively, if we used the 
 RANGE LEFT  parameter, the boundary value data would be stored in the left partition. 

 Figure  16-1  shows the physical data layout of the  dbo.OrdersPT  table.  

  Figure 16-1.    Data layout of the dbo.OrdersPT table       
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 Each partition can reside in its own filegroup and have its own data compression method. However, all 
partitions have exactly the same schema and set of indexes that are controlled by the logical table. Moreover, 
SQL Server does not maintain individual statistics at the partition level. There is a single 200-step histogram 
on the index, regardless of whether it is partitioned or not. 

 SQL Server 2014 and 2016 introduce the concept of  incremental statistics , which allows you to create 
per-partition statistics. When you enable it, SQL Server starts to track the number of statistics column 
updates at the partition level and marks statistics as outdates when it exceeds the threshold on an individual 
partition. Subsequent statistics updates would refresh statistics on the individual partition rather than on 
entire table. This behavior needs to be enabled with the  statistics_incremental  index and  incremental  
statistics options respectively. 

 Even through incremental statistics improve statistics maintenance on partitioned tables, the histogram 
is still limited to 200 steps for the entire index, regardless of whether incremental statistics are enabled or not. 

 Table partitioning can be implemented in a transparent manner to the client applications. The code 
continues to reference the logical table while SQL Server manages the internal data layout under the hood. 
There are still some cases, however, when you need to reference individual partitions during the query-
optimization stage. We will talk about these cases later in the chapter. 

 You can create new ( split ) or drop existing ( merge ) partitions by altering the partition scheme and 
functions. The code in Listing  16-2  merges the two leftmost and splits the rightmost partitions in the  dbo.
OrdersPT  table. After the split, the leftmost partition will store the data with an  OrderDate  before March 1, 
2014, and the two rightmost partitions of the table will store data with an  OrderDate  for July 2016, equal to or 
greater than 2016-08-01, respectively.     

     Listing 16-2.    Splitting and merging partitions   

  /* Merging two leftmost partitions */ 
 alter partition function pfOrders() merge range('2014-02-01'); 

   /* Splitting rightmost partition */ 
 -- Step 1: Altering partition scheme - specifying FileGroup 
 -- where new partition needs to be stored 
 alter partition scheme psOrders next used [FASTSTORAGE]; 

   -- Step 2: Splitting partition function 
 alter partition function pfOrders() split range('2016-08-01'); 

    One of the most powerful features of table partitioning is the ability to switch  partitions   between tables. 
That dramatically simplifies the implementation of some operations, such as purging old data or importing 
data into the table. We will discuss implementing data purge and sliding window patterns later in this 
chapter. 

 Listing  16-3  shows you how to import new data into the table  dbo.MainData  by switching in another 
staging table,  dbo.StagingData , as the new partition. This approach is very useful when you need to import 
data from external sources into the table. Even though you can insert data directly into the table, a partition 
switch is a metadata operation, which allows you to minimize locking during the import process.    

     Listing 16-3.    Switching a staging table as the new partition   

  create partition function pfMainData(datetime) 
 as range right for values 
 ('2016-02-01', '2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01' 
 ,'2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01'); 
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   create partition scheme psMainData 
 as partition pfMainData 
 all to (FG2016); 

   /* Even though we have 12 partitions - one per month, let's assume that only 
 January–April data is populated. E.g., we are in the middle of the year */ 
 create table dbo.MainData 
 ( 
     ADate datetime not null, 
     ID bigint not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint PK_MainData 
     primary key clustered(ADate, ID) 
     on psMainData(ADate) 
 ); 

   create nonclustered index IDX_MainData_CustomerId 
 on dbo.MainData(CustomerId) 
 on psMainData(ADate); 

   create table dbo.StagingData 
 ( 
     ADate datetime not null, 
     ID bigint not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint PK_StagingData 
     primary key clustered(ADate, ID), 

       constraint CHK_StagingData 
     check(ADate >= '2016-05-01' and ADate < '2016-06-01') 
 ) on [FG2016]; 

   create nonclustered index IDX_StagingData_CustomerId 
 on dbo.StagingData(CustomerId) 
 on [FG2016]; 

   /* Switching partition */ 
 alter table dbo.StagingData 
 switch to dbo.MainData 
 partition 5; 

    Both tables must have exactly the same schema and indexes. The staging table should be placed in the 
same filegroup as the destination partition in the partitioned table. Finally, the staging table must have a 
 CHECK  constraint, which prevents values from outside of the partition boundaries. 

 As you probably noticed, all nonclustered indexes have been partitioned in the same way as clustered 
indexes. Such indexes are called   aligned indexes   .    Even though there is no requirement to keep indexes 
aligned, SQL Server would not be able to switch partitions when a table has non-aligned, nonclustered 
indexes defined. 
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 Finally, the  partition switch operation   does not work if a table is referenced by foreign key constraints 
defined in other tables. Nevertheless, a partition switch is allowed when the table itself has foreign key 
constraints referencing other tables.  

     Partitioned Views 
 Unlike partitioned tables, partitioned views work in every edition of SQL Server. In such schemas, you create 
individual tables and combine data from all of them via a partitioned view using the  union all  operator.     

 ■   Note   SQL Server allows you to define partitioned views by combining data from multiple databases or even 
SQL Server instances. The latter case is called a  distributed partitioned view.  The coverage of such scenarios 
is outside of the scope of this book. However, they behave similarly to partitioned views defined in a single-
database scope.  

 Listing  16-4  shows an example of data partitioning of the  Orders  entity using a partitioned view 
approach. 

     Listing 16-4.    Creating partitioned views   

  create table dbo.Orders2014_01 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint PK_Orders2014_01 
     primary key clustered(OrderId), 

       constraint CHK_Orders2014_01 
     check (OrderDate >= '2014-01-01' and OrderDate < '2014-02-01') 
 ) on [FG2014]; 

   create nonclustered index IDX_Orders2014_01_CustomerId 
 on dbo.Orders2014_01(CustomerId) 
 on [FG2014]; 

   create table dbo.Orders2014_02 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint PK_Orders2014_02 
     primary key clustered(OrderId) 
     with (data_compression=page), 
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       constraint CHK_Orders2014_02 
     check (OrderDate >= '2014-02-01' and OrderDate < '2014-03-01') 
 ) on [FG2014]; 

   create nonclustered index IDX_Orders2014_02_CustomerId 
 on dbo.Orders2014_02(CustomerId) 
 with (data_compression=page) 
 on [FG2014]; 

   /* Other tables */ 

   create table dbo.Orders2016_06 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint PK_Orders2016_06 
     primary key clustered(OrderId) 
     with (data_compression=row), 

       constraint CHK_Orders2016_06 
     check (OrderDate >= '2016-06-01' and OrderDate < '2016-07-01') 
 ) on [FASTSTORAGE]; 

   create nonclustered index IDX_Orders2016_04_CustomerId 
 on dbo.Orders2016_06(CustomerId) 
 with (data_compression=row) 
 on [FASTSTORAGE] 
 go 

   create view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other 
Columns*/) 
 with schemabinding 
 as 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2014_01 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2014_02 
     /* union all -- Other tables */ 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2016_06; 

    Figure  16-2  shows the physical data layout of the tables.  
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 As you can see,    different tables can be placed into different filegroups, which can even be marked as 
read-only if needed. Each table can have its own set of indexes and maintain individual, more accurate 
statistics. Moreover, each table can have its own schema. This is beneficial if operational activities require 
tables to have additional columns — for data processing, for example — which you can drop afterward. The 
difference in schemas can be abstracted on the partitioned view level. 

 ■   Tip    You can combine In-Memory OLTP memory-optimized tables, columnstore-based tables, and regular 
on-disk B-Tree tables in the same partitioned view. This can help to improve the performance of the systems 
with the mixed workload.  

 It is extremely important to have  CHECK  constraints defined in each table. These constraints help SQL 
Server avoid accessing unnecessary tables while querying the data. Listing  16-5  shows an example of queries 
against a partitioned view.     

     Listing 16-5.    Queries against partitioned view   

 select count(*) from dbo.Orders; 
 select count(*) from dbo.Orders where OrderDate = '2016-06-03' 

   As you can see in Figure  16-3 , the first query requires SQL Server to access all of the tables from the 
partitioned view. Alternatively, the second query has  OrderDate  as a parameter, which allows SQL Server to 
pinpoint the single table that needs to be queried.  

  Figure 16-2.    Data layout with a partitioned-view approach       
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 You should always add predicates, which reduce the number of tables to be processed by the queries. 
Let’s look at a practical example and, as a first step, create another entity called  OrderLineItems  .  Obviously, 
you would like to partition it in the same way as the  Orders  entity; that is, on a monthly basis. 

 ■   Tip    You should partition related entities and place them in filegroups in a way that supports piecemeal 
restore and that allows you to bring entities online together.  

 Listing  16-6  shows the code that creates the set of tables and the partitioned view. Even though the 
 OrderDate  column is redundant in the  OrderLineItems  tables, you need to add it to all of the tables in order 
to create a consistent partitioning layout with the  Orders  tables.    

     Listing 16-6.    OrderLineItems partition view   

  create table dbo.OrderLineItems2014_01 
 ( 
     OrderId int not null, 
     OrderLineItemId int not null, 
     OrderDate datetime2(0) not null, 
     ArticleId int not null, 
     Quantity decimal(9,3) not null, 
     Price money not null, 
     /* Other Columns */ 

       constraint CHK_OrderLineItems2014_01 
     check (OrderDate >= '2014-01-01' and OrderDate < '2014-02-01'), 

       constraint FK_OrderLineItems_Orders_2014_01 
     foreign key(OrderId) 
     references dbo.Orders2014_01(OrderId), 

  Figure 16-3.    Execution plans of the queries against a partitioned view       
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       constraint FK_OrderLineItems2014_01_Articles 
     foreign key(ArticleId) 
     references dbo.Articles(ArticleId) 
 ); 

   create unique clustered index IDX_Orders2014_01_OrderId_OrderLineItemId 
 on dbo.OrderLineItems2014_01(OrderId, OrderLineItemId) 
 on [FG2014]; 

   create nonclustered index IDX_Orders2014_01_ArticleId 
 on dbo.OrderLineItems2014_01(ArticleId) 
 on [FG2014]; 

   /* Other tables */ 

   create view dbo.OrderLineItems(OrderId, OrderLineItemId, OrderDate, ArticleId, Quantity, 
Price) 
 with schemabinding 
 as 
     select OrderId, OrderLineItemId, OrderDate, ArticleId, Quantity, Price 
     from dbo.OrderLineItems2014_01 
     /*union all other tables*/ 
     union all 
     select OrderId, OrderLineItemId, OrderDate, ArticleId, Quantity, Price 
     from dbo.OrderLineItems2016_06; 

    Let’s assume that you have a query that returns a list of orders that includes a particular item bought by 
a specific customer in January 2016. The typical implementation of such a query is shown in Listing  16-7 . 

     Listing 16-7.    Selecting a list of customer orders with a specific item: Non-optimized version   

 select o.OrderId, o.OrderNum, o.OrderDate, i.Quantity, i.Price 
 from dbo.Orders o join dbo.OrderLineItems i on 
         o.OrderId = i.OrderId 
 where 
        o.OrderDate >= '2016-01-01' and 
        o.OrderDate < '2016-02-01' and 
        o.CustomerId = @CustomerId and 
        i.ArticleId = @ArticleId 

   As you can see in Figure  16-4 , SQL Server has to perform an  index seek  in every  OrderLineItems  table 
while searching for line-item records. Query Optimizer is not aware that all required rows are stored in the 
 dbo.OrderLineItems2016_01  table.     
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 You can optimize this query by adding another join predicate on the  OrderDate  column, as shown in 
Listing  16-8 .  CHECK  constraints allow Query Optimizer to eliminate access to tables that cannot store data for 
a particular month. The execution plan is shown in Figure  16-5 .  

     Listing 16-8.    Selecting a list of customer orders with a specific item: Optimized version   

 select o.OrderId, o.OrderNum, o.OrderDate, i.Quantity, i.Price 
 from dbo.Orders o join dbo.OrderLineItems i on 
         o.OrderId = i.OrderId and  o.OrderDate = i.OrderDate  
 where 
         o.OrderDate >= '2016-01-01' and 
         o.OrderDate < '2016-02-01' and 
         o.CustomerId = @CustomerId and 
         i.ArticleId = @ArticleId 

  Figure 16-4.    Execution plan of a non-optimized query       

  Figure 16-5.    Execution plan of an optimized query       

   Unfortunately, in most cases using partitioned views requires modifications of the client code, 
especially when you update the data. In some cases, you can update the data directly through the view; 
however, partitioned views have a few restrictions in order to be updateable. For example, tables from the 
view should have a  CHECK  constraint that defines the partitioning criteria, and a column from that constraint 
must be part of the primary key. 
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 Another important requirement is that the view should deliver all columns from the tables and that is 
it; no calculated columns are allowed. With such a requirement, you are unable to have tables with different 
schemas abstracting the difference on the view level. 

 Even when all requirements are met and an updateable view can be created, there is still a 
supportability issue. You should be extremely careful when altering the view in order to avoid a situation 
where alteration accidentally breaks the client code. 

 Another way to make the view updateable is by defining an  INSTEAD OF  trigger on the view. However, 
such an approach will often perform less efficiently than updating the base tables directly from the client 
code. Moreover, with the client code, you can update different tables simultaneously from the different 
threads, which could improve the performance of batch operations.  

     Comparing Partitioned Tables and Partitioned Views 
 Table  16-1  compares partitioned tables and partitioned views in further detail.        

   Table 16-1.    Comparison of Partitioned Tables and Partitioned Views   

 Partitioned Tables  Partitioned Views 

 Enterprise and Developer editions only  All editions 

 Maximum 1,000 or 15,000 partitions depending 
on SQL Server version 

 Maximum 255 tables/partitions 

 Same table schema and indexes across all 
partitions 

 Every table/partition can have its own schema and 
set of indexes 

 Statistics kept at the table level  Separate statistics per table/partition 

 No partition-level online index rebuild prior to 
SQL Server 2014 

 Online index rebuild of the table/partition with 
Enterprise Edition of SQL Server 

 Transparent to client code (some query re-
factoring may be required) 

 Usually requires changes in the client code 

 Transparent for replication  Requires changes in publications when a new table/
partition is created and/or an existing table/partition 
is dropped 

 As you can see, partitioned views are more flexible as compared to partitioned tables. Partitioned views 
work in every edition of SQL Server, which is important for Independent Software Vendors ( ISVs  ) who are 
deploying systems to multiple customers with different editions of SQL Server. However, partitioned views 
are harder to implement, and they often require significant code re-factoring in existing systems. 

 System supportability is another factor. Consider a situation where you need to change the schema of 
the entity. With partitioned tables, the main logical table controls the schema and only one  ALTER TABLE  
statement is required. Partitioned views, on the other hand, require multiple  ALTER TABLE  statements—one 
per underlying table. 

 This is not necessarily a bad thing, though. With multiple  ALTER TABLE  statements, you acquire schema 
modification (SCH-M) locks at the individual table level, which can reduce the time the lock is held and 
access to the table is blocked. We will discuss schema locks in greater detail in Chapter   23    , “Schema Locks.” 

 Sometimes you can abstract schema changes at the partitioned view level, which allows you to avoid 
altering some tables. Think about adding a  NOT NULL  column with a default constraint, as an example. In 
SQL Server 2005-2008R2, this operation would modify every data row in the table and keep the schema 
modification (SCH-M) lock held for the duration of the operation. It also generates a large amount of 
transaction log activity. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_23
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 In the case of partitioned views, you can alter only operational data tables by using a constant with 
historical data tables in the view. Listing  16-9  illustrates such an approach. Keep in mind that such an 
approach prevents a partitioned view from being updateable. 

     Listing 16-9.    Abstracting schema changes in the partitioned view   

  alter table dbo.Orders2016_06 
 add IsReviewed bit not null 
     constraint DEF_Orders2016_06_IsReviewed 
     default 0; 

   alter view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId, IsReviewed) 
 with schemabinding 
 as 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId,  0 as [IsReviewed]  
     from dbo.Orders2014_01 
     /* union all -- Other tables */ 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId,  IsReviewed  
     from dbo.Orders2016_06; 

         Using Partitioned Tables and Views Together 
 You can improve the supportability of a system and reduce the number of required tables by using 
partitioned tables and partitioned views together. With such an approach, you are storing historical data 
in one or more partitioned tables and operational data in regular table(s), combining all of them into a 
partitioned view.        

 Listing  16-10  shows such an example. There are three partitioned tables,  dbo.Orders2014 ,  dbo.
Orders2015 , and  dbo.Orders2016 , which store historical data that is partitioned on a monthly basis. There 
are also two regular tables storing operational data:  dbo.Orders2016_05  and  dbo.Orders2016_06 . 

     Listing 16-10.    Using partitioned tables and views together   

  create partition function pfOrders2014(datetime2(0)) 
 as range right for values 
 ('2014-02-01', '2014-03-01','2014-04-01','2014-05-01','2014-06-01','2014-07-01' 
 ,'2014-08-01','2014-09-01','2014-10-01','2014-11-01','2014-12-01'); 

   create partition scheme psOrders2014 
 as partition pfOrders2014 
 all to ([FG2014]); 

   create table dbo.Orders2014 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint CHK_Orders2014 
     check(OrderDate >= '2014-01-01' and OrderDate < '2015-01-01') 
 ); 
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   create unique clustered index IDX_Orders2014_OrderDate_OrderId 
 on dbo.Orders2014(OrderDate, OrderId) 
 with (data_compression = page) 
 on psOrders2014(OrderDate); 

   create nonclustered index IDX_Orders2014_CustomerId 
 on dbo.Orders2014(CustomerId) 
 with (data_compression = page) 
 on psOrders2014(OrderDate); 
 go 

   /* dbo.Orders2015 table definition – skipped */ 

   create partition function pfOrders2016(datetime2(0)) 
 as range right for values 
 ('2016-02-01', '2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01' 
 ,'2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01'); 

   create partition scheme psOrders2016 
 as partition pfOrders2016 
 all to ([FG2016]); 

   create table dbo.Orders2016 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
      constraint CHK_Orders2016  
      check(OrderDate >= '2016-01-01' and OrderDate < '2016-05-01')  
 ); 

   create unique clustered index IDX_Orders2016_OrderDate_OrderId 
 on dbo.Orders2016(OrderDate, OrderId) 
 with (data_compression = page) 
 on psOrders2016(OrderDate); 

   create nonclustered index IDX_Orders2016_CustomerId 
 on dbo.Orders2016(CustomerId) 
 with (data_compression = page) 
 on psOrders2016(OrderDate); 

   create table dbo.Orders2016_05 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
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     /* Other Columns */ 
     constraint CHK_Orders2016_05 
     check(OrderDate >= '2016-05-01' and OrderDate < '2016-06-01') 
 ); 

   create unique clustered index IDX_Orders2016_05_OrderDate_OrderId 
 on dbo.Orders2016_05(OrderDate, OrderId) 
 with (data_compression = row) 
 on [FASTSTORAGE]; 

   create nonclustered index IDX_Orders2016_05_CustomerId 
 on dbo.Orders2016_05(CustomerId) 
 with (data_compression = row) 
 on [FASTSTORAGE] 

   /* dbo.Orders2016_06 table definition */ 

   create view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other 
Columns*/) 
 with schemabinding 
 as 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2014 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2015 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2016 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2016_05 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.Orders2016_06; 

    It is worth mentioning that table  dbo.Orders2016  is partitioned on a monthly basis up to the end of the 
year, even though it stores data up to the operational period, which starts in May.  CHECK  constraints in that 
table indicate this. 

 The data layout is shown in Figure  16-6 .  



CHAPTER 16 ■ DATA PARTITIONING

352

 As you can see, such an approach dramatically reduces the number of tables as compared to a 
partitioned views implementation, keeping the flexibility of partitioned views intact.   

     Tiered Storage 
 One of the key benefits of  data partitioning   is the reduction of storage costs in the system.    You can achieve 
this in two different ways. First, you can reduce the size of the data by using data compression on the 
historical part of the data. Moreover, and more important, you can separate data between different storage 
arrays in the system. 

 It is very common to have different performance and availability requirements for different data in 
the system. In our example, it is possible to have 99.99 percent availability and 20 ms latency SLAs defined 
for operational data. However, for the older historical data, the requirements could be quite different. For 
example, orders from 2014 must be retained in the system without any performance requirements, and the 
availability SLA is much lower than it is for operational data. 

 You can design a data layout and storage subsystem based on these requirements. Figure  16-7  illustrates 
one possible solution. You can use a fast, SSD-based RAID-10 array for the  FASTSTORAGE  filegroup, which 
contains operational data. Data for January-April 2016 is relatively static, and it could be stored on the slower 
RAID-5 array using 15,000 RPM disks. Finally, you can use slow and cheap 5,400 RPM disks in the RAID-1 
array for the data from the years 2015 and 2014.  

  Figure 16-6.    Using partitioned tables and views together: Data layout       
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   Tiered storage    can significantly reduce the storage costs of the system. Finally, it is also much easier to 
get an approved budget allocation to buy a lower capacity, faster disk array due to its lower cost. 

 The key question with tiered storage design is how to move data between different tiers when the 
operational period changes, all while keeping the system online and available to customers. Let’s look at the 
available options in greater detail. 

     Moving Non-Partitioned Tables Between Filegroups 
 You can move a non-partitioned table to another filegroup by rebuilding all of the indexes, using the new 
filegroup as the destination. This operation can be done online in  the   Enterprise Edition of SQL Server with 
the  CREATE INDEX WITH (ONLINE=ON, DROP_EXISTING=ON)  command. Other sessions can access the table 
during the online index rebuild. Therefore, the system is available to customers. 

 ■   Note   Online index rebuild acquires schema modification (SCH-M) lock during the final phase of execution. 
Even though this lock is held for a very short time, it can increase locking and blocking in very active OLTP 
systems. SQL Server 2014 introduces the concept of low-priority locks, which can be used to improve system 
concurrency during online index rebuild operations. We will discuss them in detail in Chapter   23    , “Schema Locks.”  

 Unfortunately, there  are   two caveats associated with online index rebuilds. First, even with Enterprise 
Edition, SQL Server 2005-2008R2 does not support an online index rebuild if an index has large object (LOB) 
columns defined, such as  (n)text ,  image ,  (n)varchar(max) ,  varbinary(max) ,  xml , and several others. 

 The second issue is more complicated. Index rebuild does not move  LOB_DATA  allocation units to the 
new filegroup. Let’s look at an example and create a table that has an LOB column on the  FG1  filegroup. 
Listing  16-11  shows the code for this. 

     Listing 16-11.    Moving a table with an LOB column to a different filegroup: Table creation   

  create table dbo.RegularTable 
 ( 
     OrderDate date not null, 
     OrderId int not null identity(1,1), 
     OrderNum varchar(32) not null, 
     LobColumn varchar(max) null, 
     Placeholder char(50) null, 
 ) textimage_on [FG1]; 

  Figure 16-7.    Tiered storage       
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   create unique clustered index IDX_RegularTable_OrderDate_OrderId 
 on dbo.RegularTable(OrderDate, OrderId) 
 on [FG1]; 

    As a next step, let’s check that all allocation units reside in the  FG1  filegroup. The code for this is shown 
in Listing  16-12 . You can see the result of the query in Figure  16-8 .     

      Listing 16-12.    Moving a table with an LOB column to a different filegroup: Checking allocation units’ 
placement   

 select 
     p.partition_number as [Partition] 
     ,object_name(p.object_id) as [Table] 
     ,filegroup_name(a.data_space_id) as [FileGroup] 
     ,a.type_desc as [Allocation Unit] 
 from 
     sys.partitions p join sys.allocation_units a on 
         p.partition_id = a.container_id 
 where 
     p.object_id = object_id('dbo.RegularTable') 
 order by 
     p.partition_number 

  Figure 16-8.    Allocation units’ placement after table creation       

   Now, let’s rebuild the clustered index, moving the data to the  FG2  filegroup. The code for doing this is 
shown in Listing  16-13 . 

     Listing 16-13.    Rebuilding the index by moving data to a different filegroup   

 create unique clustered index IDX_RegularTable_OrderDate_OrderId 
 on dbo.RegularTable(OrderDate, OrderId) 
 with (drop_existing=on, online=on) 
 on [FG2] 

   Now, if you run the query from Listing  16-12  again, you will see the results shown in Figure  16-9 . As you 
can see, the index rebuild moved  IN_ROW_DATA  and  ROW_OVERFLOW_DATA  allocation units to the new filegroup, 
keeping  LOB_DATA  intact.  
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 Fortunately, there is a workaround available. You can move  LOB_DATA  allocation units to another 
filegroup by performing an online index rebuild that uses a partition scheme rather than a filegroup as the 
destination.     

 Listing  16-14  shows such an approach. As a first step, you need to create a partition function with one 
boundary value and two partitions in such a way that leaves one partition empty. After that, you need to 
create a partition scheme using a destination filegroup for both partitions and then perform an index rebuild 
into this partition scheme. Finally, you need to merge both partitions by altering the partition function. This 
is a quick metadata operation because one of the partitions is empty. 

      Listing 16-14.    Rebuilding an index in a partition scheme   

  create partition function pfRegularTable(date) 
 as range right for values ('2100-01-01'); 

   create partition scheme psRegularTable 
 as partition pfRegularTable 
 all to ([FG2]); 

   create unique clustered index IDX_RegularTable_OrderDate_OrderId 
 on dbo.RegularTable(OrderDate, OrderId) 
 with (drop_existing=on, online=on) 
 on psRegularTable(OrderDate); 

   alter partition function pfRegularTable() 
 merge range('2100-01-01'); 

    Figure  16-10  shows the allocation units’ placement after the index rebuild.  

  Figure 16-9.    Allocation units’ placement after index rebuild       

  Figure 16-10.    Allocation units’ placement after rebuilding the index in a partition scheme       

 Obviously, this method requires the Enterprise Edition of SQL Server. It also would require SQL Server 
2012 or above to work as an online operation because of the LOB columns involved. 

 Without the Enterprise Edition of SQL Server, your only option for moving  LOB_DATA  allocation units is 
to create a new table in the destination filegroup and then copy the data to it from the original table.  
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     Moving Partitions Between Filegroups 
 You can move a single partition from a partitioned table to another filegroup by altering the partition 
scheme and function. Altering the partition scheme marks the filegroup in which the newly created partition 
must be placed.    Splitting and merging the partition function triggers the data movement.    

 The way that data is moved between partitions during  SPLIT RANGE  and  MERGE RANGE  operations 
depends on the  RANGE LEFT  and  RANGE RIGHT  parameters of the partition function. Let’s look at an example 
that assumes you have a database with four filegroups:  FG1 ,  FG2 ,  FG3 , and  FG4 . You have a partition function 
in the database that uses  RANGE LEFT  values, as shown in Listing  16-15 . 

     Listing 16-15.    RANGE LEFT partition function   

  create partition function pfLeft(int) as range left for values (10,20); 

   create partition scheme psLeft 
 as partition pfLeft 
 to ([FG1],[FG2],[FG3]); 

   alter partition scheme psLeft next used [FG4]; 

    In a  RANGE LEFT  partition function, the boundary values represent the highest value in a partition. 
When you split a  RANGE LEFT  partition, the new partition with the highest new boundary value is moved to 
the  NEXT USED  filegroup.     

 Table  16-2  shows a partition and filegroup layout for the various  SPLIT  operations.  

 Now, let’s look at what happens when you have a  RANGE RIGHT  partition function with the same 
boundary values, as defined in Listing  16-16 . 

     Listing 16-16.     RANGE RIGHT  partition function   

  create partition function pfRight(int) as range right for values (10,20); 

   create partition scheme psRight 
 as partition pfRight 
 to ([FG1],[FG2],[FG3]); 

   alter partition scheme psRight next used [FG4]; 

    In a   RANGE RIGHT  partition function,   the boundary values represent the lowest value in a partition. 
When you split a  RANGE RIGHT  partition, the new partition with the new lowest boundary value is moved to 
the  NEXT USED  filegroup. 

   Table 16-2.     RANGE LEFT  Partition Function and  SPLIT  Operations   

 FG1  FG2  FG3  FG4 

 Original  {min..10}  {11..20}  {21..max} 

 SPLIT RANGE(0)  {1..10}  {11..20}  {21..max}  {min..0} 

 SPLIT RANGE(15)  {min..10}  {16..20}  {21..max}  {11..15} 

 SPLIT RANGE(30)  {min..10}  {11..20}  {31..max}  {21..30} 
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   Table 16-5.     RANGE LEFT  Partition Function and  MERGE  Operations   

 FG1  FG2  FG3  FG4 

 Original  {min..10}  {11..20}  {21..30}  {31..max} 

 MERGE RANGE(10)  {min..20}  {21..30}  {31..max} 

 MERGE RANGE(20)  {min..10}  {11..30}  {31..max} 

 MERGE RANGE(30)  {min..10}  {11..20}  {21..max} 

   Table 16-4.     RANGE RIGHT  Partition Function and  MERGE  Operations   

 FG1  FG2  FG3  FG4 

 Original  {min..9}  {10..19}  {20..29}  {30..max} 

 MERGE RANGE(10)  {min.. 19}  {20..29}  {30..max} 

 MERGE RANGE(20)  {min..9}  {10..29}  {30..max} 

 MERGE RANGE(30)  {min..9}  {10..19}  {20..max} 

 Table  16-3  shows a partition and filegroup layout for the various  SPLIT  operations.  

   Table 16-3.     RANGE RIGHT  Partition Function and  SPLIT  Operations   

 FG1  FG2  FG3  FG4 

 Original  {min..9}  {10..19}  {20..max} 

 SPLIT RANGE(0)  {min.. -1}  {10..19}  {20..max}  {0..9} 

 SPLIT RANGE(15)  {min..9}  {10..14}  {20..max}  {15..19} 

 SPLIT RANGE(30)  {min..9}  {10..19}  {20..29}  {30..max} 

 Now, let’s look at a  MERGE  operation that assumes you have partition functions with the boundary values 
of (10, 20, 30). For a  RANGE RIGHT  partition function, the data from the right partition is moved to the left 
partition filegroup. Table  16-4  illustrates this point.  

 Conversely, with a  RANGE LEFT  partition function, the data from the left partition is moved to the right 
partition filegroup, as shown in Table  16-5 .     

 When you move a partition to a different filegroup, you should choose a boundary value at which to 
 SPLIT  and  MERGE  the partition function. For example, if you want to move a partition that stores May 2016 
data in the  dbo.OrdersPT  table from the  FASTSTORAGE  to the  FG2016  filegroup, you need to  MERGE  and  SPLIT  
a boundary value of 2016-05-01. The partition function is defined as  RANGE RIGHT , and, as a result, the  MERGE  
operation moves May 2016 data to the partition containing the April 2016 data, which resides on the  FG2016  
filegroup. Afterward, the  SPLIT  operation would move the May 2016 data to the filegroup you specified as 
 NEXT USED  by altering the partition scheme. 

 You can see the code to accomplish this in Listing  16-17 . As a reminder, the  dbo.OrdersPT  table was 
created in Listing  16-1 . 
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     Listing 16-17.    Moving data for a single partition   

  -- Moving May 2016 partition data to April 2016 filegroup 
 alter partition function pfOrders() merge range ('2016-05-01'); 

   -- Marking that next used filegroup 
 alter partition scheme psOrders next used [FG2016]; 

   -- Creating new partition for May 2016 moving it to FG2016 
 alter partition function pfOrders() split range ('2016-05-01'); 

    Even though the code is very simple, there are a couple of problems with such an approach. First, the 
data is moved twice when you  MERGE  and  SPLIT  a partition function. Another problem is that SQL Server 
acquires and holds a schema modification (SCH-M) lock for the duration of the data movement, which 
prevents other sessions from accessing the table. 

 There is no easy workaround for the problem of keeping the table online during data movement. One of 
the options, shown in Listing  16-18 , is to rebuild the indexes using a different partition scheme. Even though 
this operation can be performed online, it introduces huge I/O and transaction log overhead because you 
are rebuilding indexes for the entire table rather than moving a single partition. Moreover, this operation will 
not work online in SQL Server 2005-2008R2 if the table has LOB columns. 

     Listing 16-18.    Moving data for a single partition   

  create partition scheme psOrders2 
 as partition pfOrders 
 to (FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014 
 ,FG2014,FG2014,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015 
 ,FG2015,FG2015,FG2015,FG2016,FG2016,FG2016,FG2016,FASTSTORAGE,FASTSTORAGE); 

   create unique clustered index IDX_OrdersPT_OrderDate_OrderId 
 on dbo.OrdersPT(OrderDate, OrderId) 
 with 
 ( 
     data_compression = page on partitions(1 to 28), 
     data_compression = none on partitions(29 to 31), 
     drop_existing = on, online = on 
 ) 
 on psOrders2(OrderDate); 

   create nonclustered index IDX_OrdersPT_CustomerId 
 on dbo.OrdersPT(CustomerId) 
 with 
 ( 
     data_compression = page on partitions(1 to 28), 
     data_compression = none on partitions(29 to 31), 
     drop_existing = on, online = on 
 ) 
 on psOrders2(OrderDate); 

    Another workaround would be to switch the partition to a staging table, moving that table to a new 
filegroup with an online index rebuild, and then switching the table back to being the partition to the 
original table. This method requires some planning and additional code to make it transparent to the client 
applications. 
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 Let’s look more closely at this approach. One of the key elements here is the view, which works as 
another layer of abstraction for the client code, hiding the staging table during the data movement process. 

 Let’s create a table that stores data for the year 2016 and is partitioned on a monthly basis. The table 
stores the data up to April in the  FG1  filegroup, using  FG2  afterward. You can see the code for doing this in 
Listing  16-19 . 

     Listing 16-19.    Using a temporary table to move partition data: Table and view creation   

  create partition function pfOrders(datetime2(0)) 
 as range right for values 
 ('2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01'); 

   create partition scheme psOrders 
 as partition pfOrders 
 to (FG1,FG1,FG1,FG1,FG2,FG2,FG2); 

   create table dbo.tblOrders 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
 ); 

   create unique clustered index IDX_tblOrders_OrderDate_OrderId 
 on dbo.tblOrders(OrderDate, OrderId) 
 on psOrders(OrderDate); 

   create nonclustered index IDX_tblOrders_CustomerId 
 on dbo.tblOrders(CustomerId) 
 on psOrders(OrderDate); 
 go 

   create view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other 
Columns*/) 
 with schemabinding 
 as 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.tblOrders; 

    As you can see, the script creates an updateable  dbo.Orders  view in addition to the table. All access to 
the data should be done through that view. 

 Let’s assume that you want to move May 2016 data to the  FG1  filegroup. As a first step, you need to create 
a staging table and switch May’s partition to be located there. The table must reside in the  FG2  filegroup and 
have a  CHECK  constraint defined. The code for accomplishing this is shown in Listing  16-20 . 
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     Listing 16-20.    Using a temporary table to move partition data: Switching the partition to the staging table   

  create table dbo.tblOrdersStage 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
     constraint CHK_tblOrdersStage 
     check(OrderDate >= '2016-05-01' and OrderDate < '2016-06-01') 
 ); 

   create unique clustered index IDX_tblOrdersStage_OrderDate_OrderId 
 on dbo.tblOrdersStage(OrderDate, OrderId) 
 on [FG2]; 

   create nonclustered index IDX_tblOrdersStage_CustomerId 
 on dbo.tblOrdersStage(CustomerId) 
 on [FG2]; 

   alter table dbo.tblOrders switch partition 5 to dbo.tblOrdersStage; 

    Now you have data in two different tables, and you need to alter the view, making it partitioned. That 
change allows client applications to read the data transparently from both tables. However, it would prevent 
the view from being updateable. The simplest way to address this is to create  INSTEAD OF  triggers on the 
view.     

 You can see the code for doing this in Listing  16-21 . It shows only one  INSTEAD OF INSERT  trigger 
statement in order to save space in this book. 

     Listing 16-21.    Using a temporary table to move partition data: Altering the view   

  alter view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other 
Columns*/) 
 with schemabinding 
 as 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.tblOrders 
     union all 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.tblOrdersStage 
 go 

   create trigger dbo.trgOrdersView_Ins 
 on dbo.Orders 
 instead of insert 
 as 
     if @@rowcount = 0 return 
     set nocount on 
     if not exists(select * from inserted) 
         return 
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     insert into dbo.tblOrders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId) 
         select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId 
         from inserted 
         where OrderDate < '2016-05-01' or OrderDate >= '2016-06-01'; 

       insert into dbo.tblOrdersStage(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId) 
         select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId 
         from inserted 
         where OrderDate >= '2016-05-01' and OrderDate < '2016-06-01'; 

    You can now move the staging table to the  FG1  filegroup by performing an index rebuild, as shown in 
Listing  16-22 . It is worth repeating that if the table has LOB columns, it cannot work as an online operation 
in SQL Server 2005-2008R2. Moreover, you will need to use a workaround and rebuild the indexes to the new 
partition scheme to move the  LOB_DATA  allocation units, as was shown earlier in Listing  16-14 . 

     Listing 16-22.    Using a temporary table to move partition data: Moving the staging table   

  create unique clustered index IDX_tblOrdersStage_OrderDate_OrderId 
 on dbo.tblOrdersStage(OrderDate, OrderId) 
 with (drop_existing=on, online=on) 
 on [FG1]; 

   create nonclustered index IDX_tblOrdersStage_CustomerId 
 on dbo.tblOrdersStage(CustomerId) 
 with (drop_existing=on, online=on) 
 on [FG1]; 

    As the final step, you need to move the  dbo.tblOrders  table’s May data partition to the  FG1  filegroup by 
merging and splitting the partition function. The partition is empty, and a schema modification (SCH- M  ) 
lock will not be held for a long time. After that, you can switch the staging table back to being a partition to the 
 dbo.tblOrders  table, drop the trigger, and alter the view again. The code for doing this is shown in Listing  16-23 . 

     Listing 16-23.    Using a temporary table to move partition data: Moving the staging table   

  alter partition function pfOrders() merge range ('2016-05-01'); 

   alter partition scheme psOrders next used [FG1]; 

   alter partition function pfOrders() split range ('2016-05-01'); 

   alter table dbo.tblOrdersStage switch to dbo.tblOrders partition 5; 

   drop trigger dbo.trgOrdersView_Ins; 

   alter view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/) 
 with schemabinding 
 as 
     select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/ 
     from dbo.tblOrders; 

    The same technique would work if you needed to archive data into another table. You could switch the 
staging table to be a partition there, as long as the table schemas and indexes were the same.  



CHAPTER 16 ■ DATA PARTITIONING

362

     Moving Data Files Between Disk Arrays 
 As you can see, there are plenty of limitations that can prevent online cross-filegroup data movement, even 
in the Enterprise Edition of SQL Server. It is simply impossible to do this in the non-Enterprise editions, 
which do not support online index rebuilds at all.     

 Fortunately, there is still a workaround that allows you to build tiered storage, regardless of those 
limitations. You can keep the objects in the same filegroups by moving the filegroup database files to 
different disk arrays. 

 There are two ways to implement this. First, you can manually copy the data files and alter the database 
to specify their new locations. Unfortunately, this approach requires system downtime for the duration of 
the file copy operation, which can take a long time with large amount of data unless the system is using 
database mirroring as High Availability technology. When this is the case, you can move database files using 
the following set of actions:

    1.    Modify file paths using the  ALTER DATABASE MODIFY FILE (FILENAME=...)  
commands on the secondary (mirror) server. This is a metadata operation, which 
changes files’ locations in the system catalogs.  

    2.    Shut down secondary (mirror) instance and copy database files to the new 
locations.  

    3.    Start secondary (mirror) instance and perform failover, making it primary 
(principal) server.  

    4.    Repeat the process on the former primary (principal) and now secondary 
(mirror) server.     

 Even though this approach is almost transparent to the client applications, it requires you to shut down 
entire SQL Server instances and perform failover operations. There is also the possibility of data loss if the 
primary (principal) server crashes when the secondary (mirror) server is offline. 

 There is another method that allows you to move the data online by adding new files to the filegroup 
and shrinking the original files with the  DBCC SHRINKFILE(EMPTYFILE)  command. SQL Server moves the 
data between files transparently to the client applications, keeping the system online, no matter the edition 
of SQL Server. 

 Listing  16-24  shows the code for moving data files from filegroup  FG2015  to disk  S: . It assumes that the 
filegroup has two files with the logical names  Orders2015_01  and  Orders2015_02  before the execution.     

      Listing 16-24.    Moving data files between disk arrays   

  use master 
 go 

   alter database OrderEntryDB 
 add file ( name = N'Orders2015_03', filename = N'S:\Orders2015_03.ndf' ) 
 to filegroup [FG1]; 

   alter database OrderEntryDB 
 add file ( name = N'Orders2015_04', filename = N'S:\Orders2015_04.ndf' ) 
 to filegroup [FG1]; 
 go 

   use OrderEntryDb 
 go 
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   -- Preventing the second OLD file to grow 
 -- This stops movement of the data between OLD data files 
 declare 
     @MaxFileSizeMB int 
     ,@SQL nvarchar(max) 

   -- Obtaining the current file size 
 select @MaxFileSizeMB = size / 128 + 1 
 from sys.database_files 
 where name = 'Orders2015_02'; 

   set @SQL = N'alter database OrderEntryDb 
 modify file(name=N''Orders2015_02'',maxsize=' + 
     convert(nvarchar(32),@MaxFileSizeMB) + N'MB);'; 

   exec sp_executesql @SQL; 

   -- Step 1: Shrinking and removing first old file 
 dbcc shrinkfile(Orders2015_01, emptyfile); 
 alter database OrderEntryDb remove file Orders2015_01; 

   -- Step 2: Shrinking and removing second old file 
 dbcc shrinkfile(Orders2015_02, emptyfile); 
 alter database OrderEntryDb remove file Orders2015_02; 

 ■      Important   Make sure to create new files with the same initial size and auto-growth parameters, with 
growth size specified in MB. This helps SQL Server evenly distribute data across data files.  

 When you empty a file with the  DBCC SHRINKFILE  command, it distributes the data across all other files 
in the filegroup, including files that you will empty and remove in the next steps. You can avoid this overhead 
by restricting maximum file size and preventing the auto-growth of the files you are going to remove, as was 
shown in Listing  16-24 . 

 Unfortunately, this approach introduces index fragmentation. The data in the new data files would be 
heavily fragmented after the   DBCC SHRINKFILE  operation.   You should perform index maintenance after the 
data has been moved. 

 ■   Tip   Index  REORGANIZE  could be a better choice than  REBUILD  in this case.  REORGANIZE  is an online 
operation, which would not block access to the table. Moreover, it would not increase the size of the data files.  

 Both  DBCC SHRINKFILE  and index maintenance introduce a huge amount of transaction log activity. You 
need to remember this behavior and perform regular log backups to allow the transaction log to truncate. 

 ■   Note   We will discuss transaction log management in greater depth in Chapter   30    , “Transaction Log 
Internals.”  

http://dx.doi.org/10.1007/978-1-4842-1964-5_30
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 Finally, it is worth noting that this technique would not work for the movement of the primary (MDF) 
data file in the database. SQL Server does not allow you to remove this file from the database. It is another 
reason why it is better to avoid storing any user objects in the  primary  filegroup. 

 ■   Tip   You can still run the  DBCC SHRINKFILE(EMPTYFILE)  command on the primary (MDF) data file. It would 
move the majority of the data to other files in the  primary  filegroup and fail during the final stage of the execution.  

 You can monitor the progress of the  SHRINK  operation by using the script shown in Listing  16-25 . This 
script shows you the currently allocated file size and amount of free space for each of the database files.    

     Listing 16-25.    Monitoring the size of the database files   

 select 
     name as [FileName], physical_name as [Path], size / 128.0 as [CurrentSizeMB] 
     ,size / 128.0 - convert(int,fileproperty(name,'SpaceUsed')) / 128.0 as [FreeSpaceMb] 
 from sys.database_files 

        Tiered Storage in Action 
 Table  16-6  shows the available online data movement options for different database objects based on the 
version and edition of SQL Server in use.     

   Table 16-6.    Online Data Movement of Database Objects Based on the SQL Server Version and Edition   

 Moving Partition to 
Different Filegroup 

 Moving Table with 
LOB Columns to 
Different Filegroup 

 Moving Table without 
LOB Columns to 
Different Filegroup 

 Moving Data to 
Different Disk Array 

 SQL Server 
2012-2016 
Enterprise 
Edition 

 Straightforward 
approach held 
schema modification 
(SCH-M) lock. Can 
be implemented with 
staging table and 
partitioned view 
 (Subject of LOB 
column offline index 
rebuild limitation in 
SQL Server 2005-
2008R2) 

 Supported  Supported  Supported in every 
edition 
 (Introduces 
fragmentation and 
overhead)  SQL Server 

2005-2008R2 
Enterprise 
Edition 

 Not Supported  Supported 

 Non-Enterprise 
Edition 

 N/A  Not Supported  Not Supported 

 As you can see, it is generally easier to implement online data movement using non-partitioned rather 
than partitioned tables. This makes the approach that we discussed in the “Using Partitioned Tables and 
Views Together” section of this chapter one of the most optimal solutions. With such an approach, you are 
using non-partitioned tables to store operational data, keeping the historical data in partitioned tables, as 
was shown in Figure  16-6 . 
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  Figure 16-12.    Tiered storage in action: Further steps       

 Let’s look at the process of changing the operational period in more depth, assuming that you need to 
archive May 2016 data and extend the operational period to July 2016. 

 In the first step shown in Figure  16-11 , you move the  dbo.Orders2016_05  table from  FASTSTORAGE  to the 
 FG2016  filegroup.      

  Figure 16-11.    Tiered storage in action: Moving the  dbo.Orders2016_05  table       

 After that, you switch the  dbo.Orders2016_05  table into the partition of the  dbo.Orders2016  table, 
creating a new  dbo.Orders2016_07  table in the  FASTSTORAGE  filegroup and recreating the partitioned view. 
You can see these steps demonstrated in Figure  16-12 .  
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 All of these operations can be done online with the Enterprise Edition of SQL Server 2012 and above. 
They can also be done online with SQL Server 2005-2008R2, as long as the tables do not contain LOB 
columns. 

 There is still the possibility of a lengthy hold of the schema modification (SCH-M) lock at the time when 
you switch  dbo.Orders2016_05  into the  dbo.Orders2016  table. One of the things you need to do during this 
process is to change the  CHECK  constraint on the  dbo.Orders2016  table to indicate that the table now stores 
May 2016 data. Unfortunately, SQL Server always scans one of the indexes in the table to validate  CHECK  
constraints and holds the schema modification (SCH-M) lock during the scan. 

 One of the ways to work around such a problem is  to   create multiple  CHECK  constraints at the  CREATE 
TABLE  stage and drop them later. In the example shown in Listing  16-26 , we create twelve  CHECK  constraints 
in the  dbo.Orders2016  table. Every time we switch the operational table as the partition, we drop a 
constraint, a metadata operation, rather than create a new one. 

     Listing 16-26.    Creating multiple  CHECK  constraints on a table   

  create table dbo.Orders2016 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 

       constraint CHK_Orders2016_01 check(OrderDate >= '2016-01-01' and OrderDate < '2016-02-01'), 
     constraint CHK_Orders2016_02 check(OrderDate >= '2016-01-01' and OrderDate < '2016-03-01'), 
     constraint CHK_Orders2016_03 check(OrderDate >= '2016-01-01' and OrderDate < '2016-04-01'), 
     constraint CHK_Orders2016_04 check(OrderDate >= '2016-01-01' and OrderDate < '2016-05-01'), 
     constraint CHK_Orders2016_05 check(OrderDate >= '2016-01-01' and OrderDate < '2016-06-01'), 
     constraint CHK_Orders2016_06 check(OrderDate >= '2016-01-01' and OrderDate < '2016-07-01'), 
     constraint CHK_Orders2016_07 check(OrderDate >= '2016-01-01' and OrderDate < '2016-08-01'), 
     constraint CHK_Orders2016_08 check(OrderDate >= '2016-01-01' and OrderDate < '2016-09-01'), 
     constraint CHK_Orders2016_09 check(OrderDate >= '2016-01-01' and OrderDate < '2016-10-01'), 
     constraint CHK_Orders2016_10 check(OrderDate >= '2016-01-01' and OrderDate < '2016-11-01'), 
     constraint CHK_Orders2016_11 check(OrderDate >= '2016-01-01' and OrderDate < '2016-12-01'), 
     constraint CHK_Orders2016    check(OrderDate >= '2016-01-01' and OrderDate < '2017-01-01') 
 ) 
 on [FG2016] 

    SQL Server evaluates all constraints during optimization and picks the most restrictive one. 

 ■   Note    Even though SQL Server does not prevent you from creating hundreds or even thousands of 
 CHECK  constraints per table, you should be careful about doing just that. An extremely large number of  CHECK  
constraints slows down query optimization. Moreover, in some cases optimization can fail due to stack size 
limitations. With all that being said, such an approach works fine with a non-excessive number of constraints.   
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     Tiered Storage and High Availability Technologies 
 Even though we will  discuss   High Availability (HA) technologies in greater depth in Chapter   32    , it is 
important to mention their compatibility with tiered storage and data movement in this chapter. There are 
two different factors to consider: database files and filegroups management, and data movement overhead. 
Neither of them affects the SQL Server failover cluster, where you have a single copy of the database. 
However, such is not the case for transaction log – based HA technologies, such as AlwaysOn Availability 
Groups, database mirroring, and log shipping. 

 Neither of the High Availability technologies prevents you from creating database files. However, with 
transaction log – based HA technologies, you should maintain exactly the same folder and disk structure on 
all nodes, and SQL Server must be able to create new files in the same path everywhere. Otherwise, HA data 
flow would be suspended. 

 Another important factor is the overhead introduced by the index rebuild or  DBCC SHRINKFILE  
commands. They are very I/O intensive and generate a huge amount of transaction log records. All of these 
records need to be transmitted to secondary nodes, which could saturate the network. 

 There is one lesser-known problem, though. Transaction log – based HA technologies work with 
transaction log records only. There is a set of threads, called   REDO threads   , which  asynchronously  replay 
transaction log records and apply changes in the data files on the secondary nodes. Even with synchronous 
synchronization, available in AlwaysOn Availability Groups and database mirroring, SQL Server 
 synchronously  saves (hardens) the log record in transaction logs only. The  REDO threads   apply changes in 
the database files  asynchronously . 

 The performance of REDO threads is the limiting factor here. Data movement could generate 
transaction log records faster than REDO threads can apply the changes in the data files. It is not uncommon 
for the REDO process to require minutes or even hours to catch up. This could lead to extended system 
downtimes in the case of failover, because the database in the new primary node stays in a recovery state 
until the REDO stage is done. 

 You should also be careful if you are using readable secondaries with AlwaysOn Availability Groups. 
Even though the data is available during the REDO process, it is not up to date, and queries against primary 
and secondary nodes will return different results. 

 ■   Note    Any type of heavy transaction log activity can introduce such a problem with readable secondaries.  

 You should be careful implementing tiered storage when transaction log – based HA technologies are in 
use. You should factor potential downtime during failover into availability SLA and minimize it by moving 
data on an index-by-index basis, allowing the secondaries to catch up in between operations. You should 
also prevent read-only access to secondaries during data movement.   

     Implementing Sliding Window Scenario and Data Purge 
 OLTP systems are often required to keep data for a specific length of time. For example, an order entry 
system could keep orders for a year and have a process that is run the first day of every month to delete older 
orders. With this implementation,    called a   sliding window  scenario  , you have a window on the data that 
 slides  and purges the oldest data based on a given schedule. 

 The only way to implement a sliding window scenario  with non-partitioned data   is by purging the 
data with  DELETE  statements. This approach introduces huge I/O and transaction log overhead. Moreover, 
it could contribute to concurrency and blocking issues in the system. Fortunately, data partitioning 
dramatically simplifies this task, making the purge a metadata-only operation. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_32
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 When you implement a sliding window scenario, you usually partition the data based on the purge 
interval. Even though it is not a requirement, it helps you to keep the purge process on a metadata level. As 
an example, in the order entry system just described you could partition the data on a monthly basis. 

 In the case of partitioned views, the purge process is simple. You need to drop the oldest table, create 
another table for the  next partition period  data, and then recreate the partitioned view. It is essential to have 
the next partition period table predefined to make sure that there is always a place where the data can be 
inserted. 

 Partitioned table implementation is similar. You can purge old data by switching the corresponding 
partition to a temporary table, which you can truncate afterward. For the next month’s data, you need to use 
the split partition function. 

 There is a catch, though. In order to keep the operation on a metadata level and reduce the time 
that the schema modification (SCH-M) lock is held, you should keep the rightmost partition empty. This 
prevents SQL Server from moving data during the split process, which can be very time consuming in case 
with large tables. 

 ■   Note   Even a metadata-level partition switch can lead to locking and blocking in very active OLTP 
systems. SQL Server 2014 introduces the concept of low-priority locks, which can be used to improve system 
concurrency during such operations. We will discuss them in detail in Chapter   23    , “Schema Locks.”  

 Let’s look at an example, assuming that it is now June 2016 and the purge process will run on July 1st. 
As you can see in Listing  16-27 , the partition function  pfOrderData  has boundary values of 2016-07-01 
and 2016-08-01. These values predefine two partitions: one for the July 2016 data and an empty rightmost 
partition that you would split during the purge process. 

 It is important to have both partitions predefined. The data will be inserted into the July 2016 partition 
as of midnight of July 1st, before the purge process is running. The empty rightmost partition guarantees that 
the partition split during the purge process will be done at the metadata level. 

 There is also a  dbo.OrderDataTmp  table created in the script, which we will use as the destination for the 
partition switch and purge. That table must reside in the same filegroup with the leftmost partition and have 
the same schema and indexes defined.    

     Listing 16-27.    Sliding window scenario: Object creation   

  create partition function pfOrderData(datetime2(0)) 
 as range right for values 
 ('2015-07-01','2015-08-01','2015-09-01','2015-10-01','2015-11-01','2015-12-01' 
 ,'2016-01-01','2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01' 
 ,'2016-07-01','2016-08-01' /* One extra empty partition */ ); 

   create partition scheme psOrderData as partition pfOrderData all to ([FG1]); 

   create table dbo.OrderData 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
 ); 

http://dx.doi.org/10.1007/978-1-4842-1964-5_23
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   create unique clustered index IDX_OrderData_OrderDate_OrderId 
 on dbo.OrderData(OrderDate, OrderId) 
 on psOrderData(OrderDate); 

   create nonclustered index IDX_OrderData_CustomerId 
 on dbo.OrderData(CustomerId) 
 on psOrderData(OrderDate); 

   create table dbo.OrderDataTmp 
 ( 
     OrderId int not null, 
     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     OrderTotal money not null, 
     CustomerId int not null, 
     /* Other Columns */ 
 ); 

   create unique clustered index IDX_OrderDataTmp_OrderDate_OrderId 
 on dbo.OrderDataTmp(OrderDate, OrderId) 
 on [FG1]; 

   create nonclustered index IDX_OrderDataTmp_CustomerId 
 on dbo.OrderDataTmp(CustomerId) 
 on [FG1]; 

    The purge process is shown in Listing  16-28 . It switches the leftmost partition to the temporary table 
and splits the rightmost partition, creating a new empty partition for next month’s run.    

     Listing 16-28.    Sliding window scenario: Purge process   

  -- Purging old partition 
 alter table dbo.OrderData switch partition 1 to dbo.OrderDataTmp; 
 truncate table dbo.OrderDataTmp; 

   -- Creating new partition 
 alter partition scheme psOrderData next used [FG1]; 
 alter partition function pfOrderData() split range('2016-09-01'); 

         Potential Issues 
 Despite all of the benefits that data partitioning delivers, they do come at a cost. First, SQL Server requires 
a partitioned column to be a part of the clustered index key in the partitioned table.    This, in turn, adds that 
column to the row-id and increases the row size in every nonclustered index. For example, in a table that 
stores 365 million rows, a  datetime -partitioned column adds 2.7 GB per nonclustered index, not counting 
fragmentation overhead and non-leaf-level storage space. 



CHAPTER 16 ■ DATA PARTITIONING

370

 ■   Tip    Always choose the most storage-efficient data type based on the business requirements. In the 
previous example, you can use  smalldatetime  (four bytes) or  datetime2(0)  (six bytes) instead of  datetime  
(eight bytes) if one-minute or one-second precisions are acceptable.  

 Even though you can mitigate this space increase in some cases by implementing data compression on 
the historical data, the row-id size increase can add new non-leaf levels to the indexes as well as extra reads 
when SQL Server traverses index B-trees. 

 Uniqueness support is another issue.    You cannot create a unique constraint or index on a partitioned 
view. With partitioned tables, SQL Server requires a partitioned column to be part of aligned unique 
nonclustered indexes. This enforces uniqueness only in the single-partition scope. Although you could 
define non-aligned unique indexes, it would prevent you from using a partition switch, which is one of the 
greatest benefits of partitioned tables. 

 Unfortunately, there is no easy solution for this problem. In cases where you need to support 
uniqueness across multiple data partitions, you have to implement complex code, often using a 
 SERIALIZEABLE  transaction isolation level, and this can introduce blocking issues in the system. We will 
discuss transaction isolation levels in greater depth in Chapter   17    , “Lock Types.” 

 Ultimately, the biggest problem with data partitioning is that it changes the execution plans of the 
queries. It can introduce suboptimal performance for some queries, which worked just fine when the data 
had not been partitioned. 

 Let’s look at one such example and create a non-partitioned table, then populate it with some random 
data, as shown in Listing  16-29 .     

     Listing 16-29.    Potential issues with data partitioning: Creating a non-partitioned table   

  create table dbo.Data 
 ( 
     Id int not null, 
     DateCreated datetime not null 
         constraint DEF_Data_DateCreated default getutcdate(), 
     DateModified datetime not null 
         constraint DEF_Data_DateModified default getutcdate(), 
     Placeholder char(500) null 
 ); 

   create unique clustered index IDX_Data_Id 
 on dbo.Data(DateCreated, Id); 

   create unique nonclustered index IDX_Data_DateModified_Id 
 on dbo.Data(DateModified, Id); 

   declare @StartDate datetime = '2016-01-01'; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,N6(C) as (select 0 from N5 as T1 cross join N2 as T2 cross join N1 as T3) -- 524,288 rows 
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N6) 
 insert into dbo.Data(ID, DateCreated, DateModified) 

http://dx.doi.org/10.1007/978-1-4842-1964-5_17
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     select ID, dateadd(second,35 * Id,@StartDate), 
         case 
             when ID % 10 = 0 
              then  dateadd(second, 24 * 60 * 60 * (ID % 31) + 11200 + ID % 59 + 35 * ID, 

@StartDate) 
             else dateadd(second,35 * ID,@StartDate) 
         end 
     from IDs; 

    Let’s assume that we have a process that reads modified data from the table and exports it somewhere. 
While there are a few different ways to implement such a task, perhaps the simplest method is to use a query, 
as shown in Listing  16-30 , with the   @DateModified  parameter   representing the most recent  DateModified  
value from the previous record set read.     

      Listing 16-30.    Potential issues with data partitioning: Reading modified data   

 select top (@Top) Id, DateCreated, DateModified, PlaceHolder 
 from dbo.Data 
 where DateModified > @LastDateModified 
 order by DateModified, Id 

   The execution plan of the query, which selects 100 rows, is shown in Figure  16-13 . The plan is very 
efficient, and it utilizes a  nonclustered index seek  with a range scan. SQL Server finds the first row with a 
 DateModified  value that exceeds  @LastDateModified  and then scans the index, selecting the first 100 rows 
from there.  

  Figure 16-13.    Execution plan with non-partitioned table       

 Now, let’s partition the table on a monthly basis, as shown in Listing  16-31 . 

     Listing 16-31.    Potential issues with data partitioning: Partitioning the table   

  create partition function pfData(datetime) 
 as range right for values 
 ('2016-02-01', '2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01','2016-08-01'); 

   create partition scheme psData as partition pfData all to ([FG1]); 

   create unique clustered index IDX_Data_DateCreated_Id 
 on dbo.Data(DateCreated,ID) 
 on psData(DateCreated); 
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   create unique nonclustered index IDX_Data_DateModified_Id_DateCreated 
 on dbo.Data(DateModified, ID, DateCreated) 
 on psData(DateCreated); 

    If you run the code from Listing  16-30  again, the execution plan would change, as shown in 
Figure  16-14 . As you can see, SQL Server decides to use a  clustered index scan , which dramatically 
decreases the performance of the query.     

  Figure 16-15.    Execution plan with index hint       

  Figure 16-14.    Execution plan with partitioned table       

 The root cause of the problem is related to the fact that the data in clustered and nonclustered indexes 
are now sorted on a partition-by-partition basis rather than across the entire table. You can think about 
each partition as an individual table with its own set of data and indexes. SQL Server decides that, in such a 
situation, a clustered index scan is the cheapest option with which to proceed. 

 Let’s look at what happens if you force SQL Server to use a nonclustered index with an index hint, as 
shown in Listing  16-32 . 

     Listing 16-32.    Potential issues with data partitioning: Using a nonclustered index with a hint   

  declare 
     @LastDateModified datetime = '2016-05-25' 

   select top 100 Id, DateCreated, DateModified, PlaceHolder 
 from dbo.Data with (index=IDX_Data_DateModified_Id_DateCreated) 
 where DateModified > @LastDateModified 
 order by DateModified, Id 

    As you can see in Figure  16-15 , the execution plan is even less efficient than before. SQL Server located 
and read all of the rows with a  DateModified  greater than @ LastDateModified  from every partition, and it 
performed a  key lookup  operation for all of them, sorting the data afterward.      
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 There is no easy way to fix the problem. You can use non-aligned nonclustered indexes, which are 
not partitioned. Unfortunately, you cannot use a partition switch in such cases, nor perform a piecemeal 
database restore, making subsets of the data available to customers. Thus, the only option you have is code 
re-factoring. 

 ■   Tip    You can drop a non-aligned nonclustered index before a partition switch and recreate it after the 
switch is done.  

 The   $PARTITION  system function   returns a partition number for the value provided as a parameter. 
You can use this function in a  where  clause in the query, which eliminates other partitions and produces 
execution plans similar to the queries against non-partitioned tables. You can see the query, which reads 
modified rows from partition 5, in Listing  16-33 . 

     Listing 16-33.    Potential issues with data partitioning: Selecting data from a single partition   

  declare 
     @LastDateModified datetime = '2016-05-25' 

   select top 100 Id, DateCreated, DateModified, PlaceHolder 
 from dbo.Data with (index=IDX_Data_DateModified_Id_DateCreated) 
 where 
     DateModified > @LastDateModified and 
      $partition.pfData(DateCreated) = 5    
 order by DateModified, Id 

    As you can see in Figure  16-16 , the execution plan is very similar to the query that read modified data 
from the non-partitioned table.  

  Figure 16-16.    Execution plan for the query: Selecting data from a single partition       

 In some cases, you can use this behavior to optimize queries against partitioned tables. In our case, you 
can have the following algorithm:

    1.    Read the top 100 modified rows from every partition using the  $PARTITION  
function, limiting execution to the single-partition scope.  

    2.    Sort the rows read in the previous step and select the top 100 rows across all 
partitions.  

    3.    Select data from the clustered index for the 100 rows returned by the previous 
step.     
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 The first step of the algorithm requires you to know the number of partitions in the table. You can use 
 sys.partition_range_values DMV  to find the number of boundary values in the partition function, which is 
one less than the number of partitions in the table. 

 The code in Listing  16-34  shows an optimized version of the query.  Partitions  CTE returns the 
numbers that correspond to the partition numbers in the table, which are used as filters in the  CROSS APPLY  
operator of the  Steps1and2  CTE. The  CROSS APPLY  operator implements the first step of the algorithm. The 
 SELECT  in the  CROSS APPLY  executes once per partition.     

 The outer select statement in the  Steps1and2  CTE sorts the data returned by the  CROSS APPLY  operator 
across all partitions, which is the second step in the algorithm. 

 Finally, the last  SELECT  outside of the CTE is the third step in the algorithm. 

     Listing 16-34.    Potential issues with data partitioning: Optimized query   

  declare 
     @LastDateModified datetime = '2016-05-25' 
     ,@BoundaryValuesCount int 

   -- Getting number of boundary values in partition function 
 select @BoundaryValuesCount = max(boundary_id) 
 from sys.partition_functions pf join sys.partition_range_values prf on 
         pf.function_id = prf.function_id 
 where pf.name = 'pfData' 

   ;with Partitions(PartitionNum) 
 as 
 ( 
     select 1 
     union all 
     select PartitionNum + 1 
     from Partitions 
     where PartitionNum <= @BoundaryValuesCount 
 ) 
 ,Steps1and2(Id, DateCreated, DateModified) 
 as 
 ( 
     select top 100 PartData.ID, PartData.DateCreated, PartData.DateModified 
     from Partitions p 
         cross apply 
         ( -- Step 1 - runs once per partition 
                 select top 100 Id, DateCreated, DateModified 
                 from dbo.Data 
                 where 
                     DateModified > @LastDateModified and 
                     $Partition.pfData(DateCreated) = p.PartitionNum 
                 order by DateModified, ID 
         ) PartData 
     order by PartData.DateModified, PartData.Id 
 ) 
 -- Step 3 - CI seek as Key Lookup operation 
 select s.Id, s.DateCreated, s.DateModified, d.Placeholder 
 from Steps1and2 s join dbo.Data d on 
         d.Id = s.Id and s.DateCreated = d.DateCreated 
 order by s.DateModified, s.Id 
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    You can see the execution plan of this query in Figure  16-17 . The plan is almost as efficient as the one 
against non-partitioned tables.  

  Figure 16-17.    Execution plan of the optimized query       

 Unfortunately, SQL Server underestimates the number of executions and rows returned by recursive 
CTE. It can lead to further cardinality estimation errors and subefficient execution plans in some cases. You 
can avoid this error by using a temporary table to store partition numbers,    as shown in Listing  16-35 . 

     Listing 16-35.    Storing partition numbers in a temporary table   

  declare 
     @LastDateModified datetime = '2016-05-25', 
     @BoundaryValuesCount int 

   create table #Partitions(PartitionNum smallint not null primary key); 

   -- Getting number of boundary values in partition function 
 select @BoundaryValuesCount = max(boundary_id) 
 from sys.partition_functions pf join  sys.partition_range_values prf on 
         pf.function_id = prf.function_id 
 where pf.name = 'pfData'; 

   ;with Partitions(PartitionNum) 
 as 
 ( 
     select 1 
     union all 
     select PartitionNum + 1 
     from Partitions 
     where PartitionNum <= @BoundaryValuesCount 
 ) 
 insert into #Partitions(PartitionNum) 
     select PartitionNum from Partitions; 
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   ;with Steps1and2(Id, DateCreated, DateModified) 
 as 
 ( 
     select top 100 PartData.ID, PartData.DateCreated, PartData.DateModified 
     from #Partitions p 
         cross apply 
         ( 
             select top 100 Id, DateCreated, DateModified 
             from dbo.Data 
             where 
                     DateModified > @LastDateModified and 
                     $Partition.pfData(DateCreated) = p.PartitionNum 
             order by DateModified, ID 
         ) PartData 
     order by PartData.DateModified, PartData.Id 
 ) 
 -- Step 3 - CI seek as Key Lookup operation 
 select s.Id, s.DateCreated, s.DateModified, d.Placeholder 
 from Steps1and2 s join dbo.Data d on 
         d.Id = s.Id and s.DateCreated = d.DateCreated 
 order by s.DateModified, s.Id 

    Alternatively, if the number of partitions is static and predefined, you can hardcode it in the  Partitions  
CTE, as shown in Listing  16-36 .    

     Listing 16-36.    Hardcoding partition numbers   

  declare 
     @LastDateModified datetime = '2016-05-25' 

   ;with Partitions(PartitionNum) 
 as 
 ( 
     select v.V from (values(1),(2),(3),(4),(5),(6),(7),(8)) v(V) 
 ) 
 ,Steps1and2(Id, DateCreated, DateModified) 
 as 
 ( 
     select top 100 PartData.ID, PartData.DateCreated, PartData.DateModified 
     from Partitions p 
         cross apply 
         ( 
             select top 100 Id, DateCreated, DateModified 
             from dbo.Data 
             where 
                     DateModified > @LastDateModified and 
                     $Partition.pfData(DateCreated) = p.PartitionNum 
             order by DateModified, ID 
         ) PartData 
     order by PartData.DateModified, PartData.Id 
 ) 
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 -- Step 3 - CI seek as Key Lookup operation 
 select s.Id, s.DateCreated, s.DateModified, d.Placeholder 
 from Steps1and2 s join dbo.Data d on 
         d.Id = s.Id and s.DateCreated = d.DateCreated 
 order by s.DateModified, s.Id 

    To review, data partitioning changes the execution plans of the queries. You should carefully test 
systems in a staging environment using databases of a size and data distribution similar to that of 
production. This will help to avoid unpleasant surprises when changes are implemented on production 
servers.  

     Summary 
 Management of a large amount of data is a challenging task, especially when the data is not partitioned. 
Keeping a large amount of data in the same place is not efficient for several different reasons. It increases 
storage costs and introduces overhead due to the different workload and index management requirements 
for the various parts of the data. Moreover, it prevents piecemeal database restore, which complicates 
availability SLA compliance. 

 There are two main data partitioning techniques available in SQL Server. Partitioned tables are available 
in the Enterprise Edition of SQL Server. They allow you to partition table data into separate internal tables/
partitions, which are transparent to client applications. Each partition can be placed in its own filegroup and 
have its own data compression. However, the database schema, indexes, and statistics are the same across 
all partitions. 

 Alternatively, you can partition the data by separating it between multiple tables, combining all of them 
through a partitioned view using the  union all  operator. Every table can have its own schema and set of 
indexes and maintain its own statistics. Partitioned views are supported in all editions of SQL Server. 

 Although partitioned views are more flexible, such an implementation requires code re-factoring and 
increases the system maintenance cost because of the large number of tables involved. You can reduce that 
cost by combining partitioned tables and views together. 

 Data partitioning helps reduce storage subsystem cost by implementing tiered storage. With such 
an approach, you can place active operational data on a fast disk array while keeping old, rarely accessed 
historical data on cheaper disks. You should design a strategy that allows you to move data between different 
disk arrays when needed. Different versions and editions of SQL Server require different implementation 
approaches for this task. 

 You should be careful moving a large amount of data when transaction log – based High Availability 
technologies are in use. A large amount of transaction log records leads to a REDO process backlog on 
secondary nodes and can increase system downtime in case of a failover. Moreover, you should prevent 
queries from accessing readable secondaries in case of a backlog. 

 You can use data partitioning to improve the performance and concurrency of data import and purge 
operations. Make sure to keep the rightmost partition empty when you are implementing a sliding window 
scenario in the system. 

 Finally, data partitioning comes at a cost. In the case of partitioned tables, a partition column must be 
included in the clustered index, which increases the size of nonclustered index rows. Moreover, indexes 
are sorted within individual partitions. This can lead to suboptimal execution plans and regressions after 
partitioning has been implemented. The  $PARTITION  function can be used to access data in individual 
partitions, and this can help with optimization.     



   PART III 

   Locking, Blocking, and 
Concurrency 

        



381© Dmitri Korotkevitch 2016 
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_17

    CHAPTER 17   

 Lock Types and Transaction 
Isolation Levels                          

 The concurrency model is, perhaps, the least understood part of SQL Server internals. It can often be 
confusing; you can encounter hard-to-explain blocking issues in almost every SQL Server installation. 
Internally, however, the SQL Server concurrency model is based on several well-defined principles, which 
we are going to discuss in this part of the book. 

 This chapter starts with the key concept of  SQL Server concurrency —  locks   . It will provide an overview 
of the major lock types in SQL Server, explain their compatibility, and, finally, demonstrate how different 
transaction isolation levels affect the lifetime of the locks in the system. 

 PART III CODE

 All of the code examples in Part III of this book will rely on the  Delivery.Orders  table defined here. 
This table has a clustered primary key on the  OrderId  column with no nonclustered indexes defined. 

     create table Delivery. Orders   
  ( 
     OrderId int not null identity(1,1), 
     OrderDate smalldatetime not null, 
     OrderNum varchar(20) not null, 
     Reference varchar(64) null, 
     CustomerId int not null, 
     PickupAddressId int not null, 
     DeliveryAddressId int not null, 
     Amount smallmoney not null, 
     ModTime datetime2(0) not null, 
     Placeholder char(100) not null 

       constraint PK_Orders 
     primary key clustered(OrderId) 
 ) 
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         Transactions and ACID 
 Transactions are the units of work that read and modify data in a database and help to enforce the 
consistency and durability of the data in a system. Every transaction in a properly implemented transaction-
management system has four different characteristics known as  atomicity ,  consistency ,  isolation , and 
 durability , often referenced as  ACID .

•      Atomicity    guarantees that each transaction executes as an “all or nothing” approach. 
All changes done within a transaction are either committed or rolled back in full. 
Consider the classic example of transferring money between checking and savings 
bank accounts. That action consists of two separate operations: decreasing the 
balance of the checking account and increasing the balance of the savings account. 
Transaction atomicity guarantees that both operations either succeed or fail 
together, and a system will never be in the situation where money was deducted 
from the checking account but was never added to the savings account.  

•     Consistency    ensures that any database transaction brings the database from 
one consistent state to another and that none of the defined database rules and 
constraints are violated.  

•     Isolation    ensures that the changes done in the transaction are isolated and invisible 
to other transactions until the transaction is committed.  

•     Durability    guarantees that after a transaction is committed, all changes done by the 
transaction stay permanent and will survive a system crash. SQL Server achieves 
durability by flushing transaction log records to disk at the commit stage.    

 Isolation is, perhaps, the most complex requirement to implement. By the book, transaction isolation 
should guarantee that the concurrent execution of multiple transactions brings the system to the same 
state as if those transactions were executed serially. However, in most database systems such a rule is often 
relaxed and is controlled  by    transaction isolation levels . 

 Historically, SQL Server supports six  isolation levels  , which can be separated into two different 
categories.  Pessimistic isolation levels , such as  READ UNCOMMITTED ,  READ COMMITTED ,  REPEATABLE READ , and 
 SERIALIZABLE  rely strictly on locking.  Optimistic isolation levels  —READ COMMITTED SNAPSHOT  and  SNAPSHOT—
 utilize row versioning in addition to locking. 

 We will discuss pessimistic isolation levels in detail in this chapter and will cover optimistic isolation 
levels in Chapter   21     of this book.  

     Major Lock Types 
 SQL Server uses locking to support the isolation requirement of the transaction. The locks are acquired 
and held on the  resources , such as data rows, pages, tables (objects), databases, and others. By default, SQL 
Server uses row-level locking when acquiring locks on data rows, which minimizes possible concurrency 
issues in the system. You should remember, however, that the only guarantee SQL Server provides is 
enforcing  data isolation and consistency   based on transaction isolation levels. The locking behavior is not 
documented, and in some cases SQL Server can choose to use a lower locking granularity than row-level 
locking. Nevertheless, lock compatibility rules are always enforced, and an understanding of the locking 
model is enough to troubleshoot and address the majority of  concurrency issues   in the system. 

 Internally, SQL Server uses more than 20 different lock types. However, they can be grouped into several 
major categories based on their type and usage. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_21
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      Exclusive (X) Locks   
  Exclusive (X) locks  are acquired by  writers  —INSERT ,  UPDATE ,  DELETE , and  MERGE  statements that modify 
data. These queries acquire an exclusive (X) lock on the affected rows and hold them until the end of the 
transaction. As you can guess by the name— exclusive  means  exclusive —only one session can hold an 
exclusive (X) lock on the resource at any given point in time. This behavior enforces the most important 
concurrency rule in the system — multiple sessions cannot modify the same data simultaneously. That’s it. 
Other sessions are unable to acquire exclusive (X) locks on the row until the first transaction is completed 
and exclusive (X) lock on the modified row is released. 

 Transaction isolation levels do not affect exclusive (X) lock behavior. Exclusive (X) locks are acquired 
and held until the end of the transaction, even in  READ UNCOMMITTED  mode. The longer a transaction you 
have, the longer the exclusive (X) locks would be held.  

      Intent (I*) Locks   
 Even though row-level locking improves consistency, keeping the locks on only the row level would be bad 
from a performance standpoint. Consider a situation where a session needs to have exclusive access to 
the table — for example, during the table alteration. In this case, if only row-level locking existed, the session 
would have to scan the entire table, checking whether any row-level locks were held there. As you can 
imagine, this would be an extremely inefficient process, especially on large tables. 

 SQL Server addresses this situation by introducing the concept of  intent (I*) locks . Intent  locks   are held 
on the data page and table levels, and they indicate the existence of locks on the child objects. Let’s run 
the code from Listing  17-1  and check what locks were held after we updated one row in the table. The code 
uses  sys.dm_tran_locks   dynamic management view (DMV)  , which returns information about current lock 
requests in the system. 

     Listing 17-1.     Updating a row and checking the locks  held      

  set transaction isolation level read uncommitted 
 begin tran 
     update Delivery.Orders 
     set Reference = 'New Reference' 
     where OrderId = 100; 

       select resource_type, resource_description, 
         request_type, request_mode, request_status 
      from sys.dm_tran_locks 
     where request_session_id = @@spid; 
 commit 

    Figure  17-1  illustrates the output from this  SELECT   statement  . As you can see, SQL Server held an 
exclusive (X) lock on the row (key) and two intent exclusive (IX) locks —one each  on the page and on the 
object (table). Those intent exclusive (IX) locks indicate the existence of the exclusive (X) row-level lock 
held. Finally, there is also the shared (S) lock on the database, which we will cover later in this chapter.  
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 The  resource_description  column indicates the resources on which those locks are acquired. For the 
page, it indicates its physical location (page 944 in database file 1) and for the row (key) it indicates the hash 
value of the index key. 

 When a session needs to obtain object- or page-level  locks  , it could check the lock compatibility with 
the other locks (intent or full) held on the table or page rather than scanning the table/page and checking 
row-level locks there.  

      Update (U) Locks   
 SQL Server uses another lock type,  update (U) locks , during data modifications, acquiring them while 
searching for the rows that need to be updated. After an update (U) lock is acquired, SQL Server reads the 
row and  evaluates  if the row needs to be updated by checking the row data against query predicates. If this 
is the case, SQL Server converts update (U) to an exclusive (X) lock and performs the data modification. 
Otherwise, the update (U) lock is released. 

 Let’s look at the example and run the code seen in Listing  17-2 . 

     Listing 17-2.    Updating multiple rows using a clustered index key as the  predicate     

 begin tran 
     update Delivery.Orders 
     set Reference = 'New Reference' 
     where OrderId in (1000, 5000); 
 commit 

   Figure  17-2  illustrates how locks were acquired and released during query execution. SQL Server 
acquired an intent exclusive (IX) lock on the table and then intent update (IU) locks on the pages and update 
(U) locks on the rows, converting them to intent exclusive (IX) and exclusive (X) locks afterward. The locks 
were held until the end of the transactions and were released at the time of  COMMIT .  

  Figure 17-1.     Exclusive (X) and intent exclusive (IX) locks         
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 Update (U) locks’  behavior   depends on the execution plan. In some cases, SQL Server acquires update 
(U) locks on all rows first, converting them to exclusive (X) locks afterward. In other cases — when, for 
example, you update only one row based on the clustered index value — SQL Server can acquire an exclusive 
(X) lock without an update (U) lock being used at all. 

 The number of locks to acquire also greatly depends on the execution plan. Let’s run the  UPDATE 
Delivery.Orders SET Reference = 'Ref' WHERE OrderNum='1000'  statement, filtering data based on 
the  OrderNum  column. Figure  17-3  illustrates the locks that were acquired and released along with the total 
number of locks processed.  

  Figure 17-2.     Update (U) and exclusive (X) locks         

 



CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

386

 There are no indexes on the  OrderNum  column, and SQL Server needs to perform a  clustered index scan , 
acquiring an update (U) lock on every row from the table. More than one million locks have been acquired, 
even though the statement updated just a single row. 

 This behavior illustrates one of the  typical blocking scenarios.   Consider a situation where one of the 
sessions held an exclusive (X) lock on a single row. If another session tried to update a different row by 
running a nonoptimized  UPDATE   statement  , SQL Server would acquire an update (U) lock on every row it 
is scanning and eventually would be blocked from reading the row with the exclusive (X) lock held on it. It 
does not matter that the second session does not need to update that row; SQL Server still needs to acquire 
an update (U) lock to evaluate if the row needs to be updated.  

      Shared (S) Locks   
  Shared (S) locks  are acquired by the readers —SELECT  queries — in the system. As you can guess by the name, shared 
(S) locks are compatible with each other, and multiple sessions can hold shared (S) locks on the same resource. 

 Let’s run the code from Table  17-1  to illustrate that.  

   Table 17-1.     Shared (S) Locks     

 Session 1 (SPID=53)  Session 2 (SPID=55) 

  set transaction isolation level repeatable read  
  begin tran  
       select OrderNum 

from Delivery.Orders 
where OrderId = 500;  

  set transaction isolation level repeatable read  
  begin tran  
       select OrderNum 

from Delivery.Orders 
where OrderId = 500;  

  select request_session_id, resource_type  
  ,resource_description, request_type
,request_mode, request_status  

  from sys.dm_tran_locks;  
 commit;     commit  

  Figure 17-3.    Locks during  query execution         
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 Figure  17-4  illustrates the output from the  sys.dm_tran_locks  view. As you can see, both sessions 
acquired shared (S) locks on the database, intent shared (IS)  locks   on the table and page (1:955), and shared 
(S) locks on the row, all without blocking each other.    

     Lock Compatibility, Behavior, and Lifetime 
 Table  17-2  shows the  lock compatibility matrix  .  

 The key lock compatibility  rules   are as follows:

•    Intent (IS/IU/IX) locks are compatible with each other. Intent locks indicate the 
existence of locks on the child objects, and multiple sessions can hold intent locks on 
the object and page levels simultaneously.  

•   Exclusive (X) locks are incompatible with each other and any other lock types. 
Multiple sessions cannot update the same row simultaneously. Moreover, readers 
that acquire shared (S) locks cannot read uncommitted rows with exclusive (X) locks 
held on them.  

•   Update (U) locks are incompatible with each other as well as with exclusive (X) locks. 
Writers cannot evaluate if the row needs to be updated simultaneously nor access a 
row that has an exclusive (X) lock held.  

•   Update (U) locks are compatible with shared (S) locks. Writers can evaluate if the 
row needs to be updated without a block or being blocked by the readers. It is worth 
noting that (S)/(U) lock compatibility is the main reason why SQL Server uses update 
(U) locks internally. They reduce the blocking between readers and writers.    

  Figure 17-4.    Locks acquired by the sessions       

   Table 17-2.    Lock Compatibility Matrix (I*, S, U, X locks)      

 (IS)  (S)  (IU)  (U)  (IX)  (X) 

 (IS)  Yes  Yes  Yes  Yes  Yes  No 

 (S)  Yes   Yes   Yes   Yes   No   No  

 (IU)  Yes  Yes  Yes  No  Yes  No 

 (U)  Yes   Yes   No   No   No   No  

 (IX)  Yes  No  Yes  No  Yes  No 

 (X)  No   No   No   No   No   No  
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 As you already know, exclusive (X) lock behavior does not depend on transaction isolation level. 
 Writers always acquire exclusive (X) locks and hold them until the end of the transaction.  With the 
exception of the  SNAPSHOT  isolation level, the same is true for update (U) locks; writers use them when 
evaluating if rows need to be updated. 

 The shared (S) locks’ behavior, on the other hand, depends on transaction isolation level. 

 ■   Note    SQL Server always works with the data in transaction context. In this case, when applications do not 
start explicit transactions with  BEGIN TRAN / COMMIT  statements, SQL Server uses implicit transactions for the 
duration of the statements. Even  SELECT  statements run within their own lightweight transactions. SQL Server 
does not write them to the transaction log, although all locking and concurrency rules still apply.  

 In the  READ UNCOMMITTED  isolation level, shared (S) locks are not acquired. Therefore, readers can read 
the rows that have been modified by other sessions and have exclusive (X) locks held on them. This isolation 
level reduces the blocking in the system by eliminating conflicts between readers and writers at the cost 
of the data consistency. Readers would read the current (modified) version of the row regardless of what 
happens next — if changes would be  rolled back,   or if a row is modified multiple times. This explains why this 
isolation level is often called a   dirty read       .  

 The code in Table  17-3  illustrates this. The first session runs a  DELETE  statement, acquiring an exclusive 
(X) lock on the row. The second session runs a  SELECT  statement in  READ UNCOMMITTED  mode.  

 In the  READ UNCOMMITTED  isolation level, readers do not acquire shared (S) locks. Session 2 would not be 
blocked and would return the result set shown in Figure  17-5 . It does not include the row with  OrderId=95 , 
which has been deleted in the uncommitted transaction in the first session, even though the transaction is 
rolled back afterward.  

   Table 17-3.    Transaction Isolation Levels  and Concurrency     

 Session 1  Session 2 

  begin tran  
  delete from Delivery.Orders  
  where OrderId = 95;  

  -- Success / No Blocking  
  set transaction isolation level read uncommitted;  
  select OrderId, Amount  
 from Delivery.Orders   
  where OrderId between 94 and 96;  

 rollback;   

  Figure 17-5.    READ UNCOMMITTED and shared (S) lock  behavior         
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 It is worth noting again that exclusive (X) and update (U) locks’ behavior is not affected by transaction 
isolation level. You will have writers/writers blocking even in  READ UNCOMMITTED  mode. 

 In the  READ COMMITTED  isolation level, SQL Server acquires and releases shared (S) locks immediately 
after the row has been read. This guarantees that transactions cannot read uncommitted data from the other 
sessions. Let’s run the code from Listing  17-3 . 

      Listing 17-3.    Reading data in READ COMMITTED isolation  level     

 set transaction isolation level read committed; 
 select OrderId, Amount 
 from Delivery.Orders 
 where OrderId in (90,91); 

   Figure  17-6  illustrates how SQL Server acquires and releases the locks. As you can see, row-level locks 
are acquired and released immediately.  

 It is worth noting that in some cases, in  READ COMMITTED  mode, SQL Server can hold shared (S) locks for 
the duration of the  SELECT  statement. One such example is a query that reads  LOB  data from the table. 

 In the  REPEATABLE READ  isolation level, SQL Server acquires shared (S) locks and holds them until the 
end of transaction. This guarantees that other sessions cannot modify the data after it is read. You can see 
that behavior if you run the code from Listing  17-3 , changing the isolation level to  REPEATABLE    READ   . 

 Figure  17-7  illustrates how SQL Server acquires and releases the locks. As you can see, SQL Server 
acquires both shared (S) locks first, releasing them at the end of transaction.  

  Figure 17-6.    Shared (S) locks’ behavior in  READ COMMITTED mode         
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 In the  SERIALIZABLE  isolation level, shared (S) locks are also held until the end of transaction. However, 
SQL Server uses another variation of the locks called  range locks . Range locks (both shared and exclusive) 
protect index key ranges rather than individual rows. 

 Consider a situation where a  Delivery.Orders  table has just two rows, with  OrderId  values of 1 and 
10. In the  REPEATABLE READ  isolation level, a  SELECT  statement would acquire two row-level locks. Other 
sessions would not be able to modify those rows, but they could still insert the new row in between those 
values. In the   SERIALIZABLE  isolation level  , a  SELECT  statement would acquire a range shared (RangeS-S) 
lock, preventing other sessions from inserting any rows in between  OrderId  of 1 and 10. 

 Figure  17-8  illustrates how SQL Server acquires and releases locks in the  SERIALIZABLE  isolation level.  

 Table  17-4  summarizes how SQL Server works with shared (S) locks in pessimistic isolation levels.  

  Figure 17-8.    Shared (S) locks’ behavior in the  SERIALIZABLE isolation level         

  Figure 17-7.    Shared (S) locks’ behavior in  REPEATABLE READ mode         

 

 



CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

391

 You can control isolation levels and locking behavior on the transaction level by using the  SET 
TRANSACTION ISOLATION LEVEL  statement, or on the table level with the table locking hint. It is also possible 
to use different isolation levels in the same query on a per-table basis, as it is shown in Listing  17-4 . 

     Listing 17-4.    Controlling locking behavior with table  hints     

 select c.CustomerName, sum(o.Total) as [Total] 
 from dbo.Customers c with (READCOMMITTED) 
     join dbo.Orders o with (SERIALIZABLE) on 
         o.CustomerId = c.CustomerId 
 group by 
     c.CustomerName; 

   You can control the type of locks acquired by readers with the  (UPDLOCK)  and  (XLOCK)  table hints. 
Those hints force  SELECT  queries to use update (U) and exclusive (X) locks, respectively, rather than shared 
(S) locks. This can be useful when you need to prevent multiple  SELECT  queries from accessing the data 
simultaneously. 

 Listing  17-5  demonstrates how you can implement custom counters in the system. The  SELECT  
statement uses an exclusive (X) lock, which will block other sessions from reading the same counter row 
until the transaction is committed. 

 ■   Note    This code is shown for demonstration only, and it does not handle the situation where a specific 
counter does not exist in the table. It is better to use a  SEQUENCE  object instead.  

     Listing 17-5.     Counters table management     

  begin tran 
     select @Value = Value 
     from dbo.Counters with (XLOCK) 
     where CounterName = @CounterName; 

       update dbo.Counters 
     set Value += @ReserveCount 
     where CounterName = @CounterName; 
 commit     

   Table 17-4.    Pessimistic Transaction Isolation Levels and  Shared (S) Locks’ Behavior     

 Transaction isolation level  Table hint  Shared lock behavior 

  READ UNCOMMITTED    (NOLOCK)   (S) locks not acquired 

  READ COMMITTED  (default)   (READCOMMITTED)   (S) locks acquired and released 
immediately 

  REPEATABLE READ    (REPEATABLEREAD)   (S) locks acquired and held till 
end of transaction 

  SERIALIZABLE    (SERIALIZABLE)  or  (XLOCK)   Range locks acquired and held till 
end of transaction 
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    Another locking hint  (READPAST)  allows sessions to skip rows with incompatible locks held rather than 
being blocked. You will see an example of when such a hint is useful in Chapter   22     of this book. 

 ■   Note    For more information about table hints, go to    http://msdn.microsoft.com/en-us/library/
ms187373.aspx     .   

     Transaction Isolation Levels and Data Consistency 
 Finally, let’s analyze common data inconsistency issues that exist in multi-user environments.   

    Dirty Reads : This issue arises when a transaction reads uncommitted (dirty)  data   
from other uncommitted transactions. It is unknown if those active transactions 
would be committed or rolled back or if data is logically consistent. Think about the 
example where a user transfers money from a checking to a savings account. There 
are two physical operations with the data, decreasing checking and increasing 
savings account balances, logically combined in one transaction. If another session 
reads account balances in between the two updates, the results would be incorrect.  

  From the locking prospective, this phenomenon could occur in the  READ 
UNCOMMITTED  isolation level when sessions do not acquire shared (S) locks, 
ignoring exclusive (X) locks from the other sessions. All other pessimistic 
isolation levels use shared (S) locks and are protected from dirty reads.  

   Non-Repeatable Reads : Subsequent attempts to read the same data from within the 
same transaction return different results.    This data inconsistency issue arises when 
the other transactions modified or even deleted data between the reads. Consider 
a situation where you render a report that displays a list of orders for a specific 
customer along with some aggregated information (for example, total amount spent 
by customer on a monthly basis). If another session modifies or, perhaps, deletes the 
orders in between those queries, the result sets will be inconsistent.  

  From the locking standpoint, such a phenomenon could occur when sessions 
don’t protect/lock the data in between reads. This could happen in the  READ 
UNCOMMITTED  isolation level that does not use shared (S) locks, as well as in the 
 READ COMMITTED  isolation level, where sessions acquire and release shared 
(S) locks immediately.  REPEATABLE READ  and  SERIALIZABLE  isolation levels 
hold the shared (S) locks until the end of the transaction, which prevents data 
modifications once data is read.  

    Phantom Reads :   This phenomenon occurs when subsequent reads within the 
same transaction return new rows (the ones that the transaction did not read 
before). Think about the previous example where another session inserted a new 
order in between the queries’ execution. Only the  SERIALIZABLE  isolation level 
with range locks is free from such phenomenon.    

 Two other phenomena are related to data movement due to a change of the index key value:

    Duplicated Reads : This issue occurs when a query returns the same row multiple 
times.    Think about the query that returns the list of the orders for the specific time 
interval, scanning the index on the  OrderDate  column during the execution. If 
another query changes the  OrderDate  value, moving the row from the processed 
(scanned) to the non-processed part of the index, such a row will be read twice.  

http://dx.doi.org/10.1007/978-1-4842-1964-5_22
http://msdn.microsoft.com/en-us/library/ms187373.aspx
http://msdn.microsoft.com/en-us/library/ms187373.aspx
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  This condition is similar to non-repeatable reads and can occur when readers 
do not hold shared (S) locks after rows were read in  READ UNCOMMITTED  and  READ 
COMMITTED  isolation levels.  

   Skipped Rows : This phenomenon occurs when queries do not return some 
of the rows.    It could occur in a situation similar to the duplicated reads just 
described, where rows have been moved from the non-processed to the 
processed part of the index. Only the  SERIALIZABLE  isolation level, which locks 
the index key range interval, is free from such phenomenon.  

  Table  17-5  summarizes data inconsistency issues within different transaction isolation levels.     

   SERIALIZABLE    is the only pessimistic transaction isolation level that protects you from data 
inconsistency issues. However, this isolation level introduces major concurrency issues due to excessive 
locking in systems with volatile data. Fortunately, optimistic isolation levels, which we will discuss in 
Chapter   21    , could address inconsistency phenomena without introducing excessive blocking in the system.  

     Summary 
 SQL Server uses locking to support data-isolation and -consistency rules, using row-level locking as the 
highest degree of granularity. 

 Exclusive (X) locks are acquired by writers when data is modified. Exclusive (X) locks are always 
acquired and held until the end of transactions, regardless of the isolation level. Update (U) locks are 
acquired when writers evaluate if data needs to be modified. These locks are converted into exclusive (X) 
locks if rows need to be updated. Intent (I*) locks are acquired on the object and page levels, and they 
indicate the existence of child row – level locks of the same type. 

 With the exception of the  READ UNCOMMITED  isolation level, SQL Server acquires shared (S) locks while 
reading data in pessimistic isolation levels. Transaction isolation level controls when shared (S) locks are 
released. In the  READ COMMITTED  isolation level, these locks are released immediately after the row has been 
read. In  REPEATABLE READ  and  SERIALIZABLE  isolation levels, shared (S) locks are held until the end of the 
transaction. Moreover, in the  SERIALIZABLE  isolation level, SQL Server uses range locks, locking the ranges 
of the index keys rather than individual rows. 

 You can control transaction isolation levels with the  SET TRANSACTION ISOLATION LEVEL  statement on 
the transaction level or with table locking hints on the per-table level in the individual queries.     

   Table 17-5.    Transaction Isolation Levels and Data Inconsistency  Anomalies     

 Dirty Reads  Non-Repeatable Reads  Duplicated Reads  Phantom Reads  Skipped Rows 

  READ 
UNCOMMITTED  

 Yes  Yes  Yes  Yes  Yes 

  READ 
COMMITTED  

 No  Yes  Yes  Yes  Yes 

  REPEATABLE 
READ  

 No  No  No  Yes  Yes 

  SERIALIZABLE   No  No  No  No  No 

http://dx.doi.org/10.1007/978-1-4842-1964-5_21
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    CHAPTER 18   

 Troubleshooting Blocking Issues                          

  Blocking   is one of the most common problems encountered in systems. When blocking occurs, multiple 
queries block each other, which increases the execution time of queries and introduces timeouts. All of this 
negatively affects the user’s experience with the system. 

 This chapter provides an overview of how you can troubleshoot blocking issues in a system. 

     General Troubleshooting Approach 
 Blocking occurs when multiple sessions compete for the same resource. Even though in some cases this is the 
correct and expected behavior (for example, multiple sessions cannot update the same row simultaneously), 
more often than not it happens because of unnecessary scans due to  nonoptimized queries  . 

 Some degree of blocking always exists in systems, and it is completely normal. What is not normal, 
however, is excessive blocking. From the end user’s standpoint, excessive blocking masks itself as a general 
performance problem. The system is slow, queries are timing out, and there are  deadlocks  . With the exception 
of deadlocks, slow performance is not necessarily a sign of blocking issues; there could easily be nonoptimized 
queries by themselves. However, blocking issues can definitely contribute to a general system slowdown. 

 ■   Note    One of the easiest ways to find out if the system suffers from blocking is by looking at the lock waits 
in the wait statistics, which we will discuss in Part V of this book.  

 In a nutshell, to troubleshoot blocking issues you must follow these  steps  :

    1.    Detect the queries involved in the blocking.  

    2.    Find out why blocking occurs.  

    3.    Fix the root cause of the issue.     

 SQL Server provides you with several tools that can help you troubleshoot blocking issues in a 
system. These tools can be separated into two different  categories  . The first category consists of  dynamic 
management views (DMVs)   that you can use to troubleshoot what is happening in the system at present. 
These tools are useful when you have access to the system at the time of blocking, and you want to perform 
real-time troubleshooting. 

 The second category of tools allows you to collect information about blocking problems in the system 
and retain it for further analysis. Let’s look at both categories in detail.  
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     Troubleshooting Blocking Issues in Real Time 
 The key tool for troubleshooting real-time blocking is the  sys.dm_tran_locks  dynamic management view, 
which provides information about currently active requests to the Lock Manager. It returns you a list of 
lock requests and their status, such as  GRANT  or  WAIT , information about resources on which locks were 
requested, and several other useful attributes. 

 Table  18-1  shows you the code that leads to the blocking conditions.  

 Figure  18-1  shows the partial output from the  sys.dm_tran_locks ,  sys.dm_os_waiting_tasks , and 
 sys.dm_exec_requests  views at the time the blocking occurred. As you can see, Session 53 is waiting for a 
shared (S) lock on the row with the exclusive (X) lock held by Session 52. The   LCK_M_S  wait type   in the output 
indicates the shared (S) lock wait. We will discuss wait types in more detail in Part V of this book.  

 The information provided by the  sys.dm_tran_locks  view is a bit too cryptic to troubleshoot, and you 
need to join it with other dynamic management views, such as  sys.dm_exec_requests  and  sys.dm_os_
waiting_tasks , to gain a clearer picture. Listing  18-1  provides the required code. 

   Table 18-1.    Code That Leads to the Blocking  Conditions     

 Session 1 (SPID=52)  Session 2 (SPID=53)  Comments 

  set transaction isolation level 
read uncommitted  
  begin tran  

  delete from Delivery.Orders  
  where OrderId = 95  

 Session 1 acquires exclusive 
(X) lock on the row with 
OrderId=95 

  select OrderId, Amount  
  from Delivery.Orders with 
(readcommitted)  
  where OrderNum = ‘1000’  

 Session 2 is blocked trying 
to acquire shared (S) lock on 
the row with OrderId=95 

  rollback  

  Figure 18-1.    Output from the system views at time of blocking       
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       Listing 18-1.    Getting more information about  blocked and blocking sessions     

 select 
     tl.resource_type as [Resource Type] 
     ,db_name(tl.resource_database_id) as [DB Name] 
     ,case tl.resource_type 
          when  'OBJECT' then object_name(tl.resource_associated_entity_id

,tl.resource_database_id) 
         when 'DATABASE' then 'DB' 
         else 
             case when tl.resource_database_id = db_id() 
                 then 
                      (  select object_name(object_id, tl.resource_database_id) 
                         from sys.partitions 
                         where hobt_id = tl.resource_associated_entity_id ) 
                 else '(Run under DB context)' 
             end 
     end as [Object] 
     ,tl.resource_description as [Resource] 
     ,tl.request_session_id as [Session] 
     ,tl.request_mode as [Mode] 
     ,tl.request_status as [Status] 
     ,wt.wait_duration_ms as [Wait (ms)] 
     ,qi.sql 
     ,qi.query_plan 
 from 
      sys. dm_tran_locks tl with (nolock) left outer join 

sys.dm_os_waiting_tasks wt with (nolock) on 
             tl.lock_owner_address = wt.resource_address and tl.request_status = 'WAIT' 
     outer apply 
     ( 
         select 
             substring(s.text, (er.statement_start_offset / 2) + 1, 
                  ((  case er.statement_end_offset 
                             when -1 
                             then datalength(s.text) 
                             else er.statement_end_offset 
                       end - er.statement_start_offset) / 2) + 1) as sql 
             , qp.query_plan 
         from 
             sys.dm_exec_requests er with (nolock) 
                 cross apply sys.dm_exec_sql_text(er.sql_handle) s 
                 outer apply sys.dm_exec_query_plan(er.plan_handle) qp 
         where 
             tl.request_session_id = er.session_id 
     ) qi 
 where 
     tl.request_session_id <> @@spid 
 order by 
     tl.request_session_id 
 option (recompile) 
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    Figure  18-2  shows the results of the query. As you can see, it is much easier to understand, and it provides 
you with more-useful information, including currently running batches and their execution plans. Keep in 
mind that the  execution plans   obtained from the DMVs in this chapter do not include the actual execution 
statistics metrics, such as the actual number of rows returned by operators and the number of their execution.  

 ■   Note    You need to run the query in the context of the database involved in the blocking to correctly resolve 
the object names. Also of importance is that, for the sessions in which lock requests were granted, SQL and Query 
Plan represent the currently executed batch, rather than the batch that triggered the original locking request.  

 The  sys.dm_tran_locks  view returns one row for each active lock request in the system, which can 
lead to very large result sets when you run it on busy servers. You can reduce the amount of information and 
perform a self-join of this view based on the  resource_description  and  resource_associated_entity_id  
columns, and you can identify the sessions that compete for the same resources. Such an approach allows 
you to filter the results and only see the sessions that are involved in the blocking chains. 

 Listing  18-2  and Figure  18-3  illustrate the code and query results.  

       Listing 18-2.    Filtering out blocked and blocking session  information     

 select 
     tl1.resource_type as [Resource Type] 
     ,db_name(tl1.resource_database_id) as [DB Name] 
     ,case tl1.resource_type 
          when  'OBJECT' then object_name(tl1.resource_associated_entity_id

,tl1.resource_database_id) 
         when 'DATABASE' then 'DB' 
         else 
             case when tl1.resource_database_id = db_id() 
                 then 
                      (  select object_name(object_id, tl1.resource_database_id) 
                         from sys.partitions 
                         where hobt_id = tl1.resource_associated_entity_id ) 
                 else '(Run under DB context)' 
             end 
     end as [Object] 
     ,tl1.resource_description as [Resource] 
     ,tl1.request_session_id as [Session] 
     ,tl1.request_mode as [Mode] 
     ,tl1.request_status as [Status] 
     ,wt.wait_duration_ms as [Wait (ms)] 

  Figure 18-2.    Joining sys.dm_os_tran_locks with other  DMVs         
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     ,qi.sql 
     ,qi.query_plan 
 from 
     sys.dm_tran_locks tl1 with (nolock) join sys.dm_tran_locks tl2 with (nolock) on 
         tl1.resource_associated_entity_id = tl2.resource_associated_entity_id 
     left outer join sys.dm_os_waiting_tasks wt with (nolock) on 
         tl1.lock_owner_address = wt.resource_address and tl1.request_status = 'WAIT' 
     outer apply 
     ( 
         select 
             substring(s.text, (er.statement_start_offset / 2) + 1, 
                  ((  case er.statement_end_offset 
                             when -1 
                             then datalength(s.text) 
                             else er.statement_end_offset 
                       end - er.statement_start_offset) / 2) + 1) as sql 
             , qp.query_plan 
         from 
             sys.dm_exec_requests er with (nolock) 
                 cross apply sys.dm_exec_sql_text(er.sql_handle) s 
                 outer apply sys.dm_exec_query_plan(er.plan_handle) qp 
         where 
             tl1.request_session_id = er.session_id 
     ) qi 
 where 
     tl1.request_status <> tl2.request_status and 
     ( 
         tl1.resource_description = tl2.resource_description or 
         ( tl1.resource_description is null and tl2.resource_description is null ) 
     ) 
 option (recompile) 

    As you already know, blocking occurs when two or more sessions are competing for the same resource. 
You need to answer two questions during troubleshooting:

   Why does the  blocking  session hold the lock on the resource?  

  Why does the  blocked  session acquire the lock on the resource?    

 It is usually easier to start troubleshooting by looking at the  blocked  session, where you have the blocked 
statement and its execution plan available. In many cases, you can identify the root cause of the blocking 
by analyzing its execution plan, which you can obtain from the dynamic management views (as was just 
demonstrated) or by re-running the query. 

 Figure  18-4  shows the execution plan of the blocked query from our example.  

  Figure 18-3.     Blocked and blocking sessions         
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 As you can see from the execution plan, the blocked query is scanning the entire table looking for orders 
with the predicate on the   OrderNum  column  . The query uses a   READ COMMITTED  transaction isolation level  , 
and it acquires a shared (S) lock on every row in the table. As a result, at some point the query is blocked by 
the first  DELETE  query that holds an exclusive (X) lock on one of the rows. It is worth noting that the query 
would be blocked even if the row with the exclusive (X) lock held did not have  OrderNum=’1000’ . SQL Server 
cannot evaluate the predicate until the shared (S) lock is acquired and the row is read. 

 You can resolve the problem by optimizing the query and adding an index on the  OrderNum  column, 
which will replace the  clustered index scan  with a   nonclustered index seek  operator   in the execution plan. 
This will eliminate lock collision and blocking as long as the queries do not delete and select the same rows. 

 Even though in many instances you can detect and resolve the root cause of the blocking by analyzing 
and optimizing the  blocked  query, this is not always the case. Consider a situation where you have a session 
that updated a large number of rows in a table and thus acquired and held a large number of exclusive (X) 
locks on those rows. Other sessions that need to access those rows would be blocked, even in the case of 
efficient execution plans that do not perform unnecessary scans. The root cause of the blocking in this case 
is the  blocking  rather than the  blocked   session  . 

 Unfortunately, it is much harder to detect the statement that acquired the locks. The queries from Listings 
 18-1  and  18-2  provide you with information about currently running statements in  blocking  sessions, rather 
than intelligence about the statement that caused the blocking condition. Moreover, in some cases where 
a client application has an error and keeps an  uncommitted transaction idle  , queries do not return any 
information at all. You can see such a condition in Figures  18-2  and  18-3 , where both SQL statements and 
execution plans were  NULL . In such cases, you need to analyze what code in the blocking session has caused the 
blocking. You can use the  sys.dm_exec_sessions  view to obtain information about the host and application 
of the blocking session. When you know which statement the blocking session is currently executing, you 
can analyze the client and T-SQL code to locate the transaction to which this statement belongs. One of the 
previously executed statements in that transaction would be the one that caused the blocking condition. 

 A  blocked process report , which we are about to discuss, can also help during such troubleshooting.  

     Collecting Blocking Information for Further Analysis 
 Although  DMVs   can be very useful in providing information about the current state of the system, they 
would not help much if you did not run them at the exact same time the blocking occurred. Fortunately, SQL 
Server helps capture blocking information automatically via the  blocked process report . This report provides 
information about the blocking condition, which you may retain for further analysis. 

 There is a configuration setting called   blocked process threshold       that specifies how often SQL Server 
checks for blocking in the system and generates a report. Listing  18-3  shows the code that sets the threshold 
to ten seconds. 

  Figure 18-4.    Execution plan for the blocked  query         
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     Listing 18-3.    Specifying blocking process  threshold     

 sp_configure 'show advanced options', 1; 
 go 
 reconfigure; 
 go 
 sp_configure 'blocked process threshold', 10; -- in seconds 
 go 
 reconfigure; 
 go 

   You need to fine-tune the value of the blocked process threshold in production. It is important to avoid 
false positives and, at the same time, capture the problems. Microsoft suggests not going below five seconds 
as the minimum value, and you obviously need to set the value to less than query timeout. 

 There are a few ways to capture that report in the system. You can use SQL Trace — there is a “ Blocked 
Process Report  ”    event in the “Errors and Warnings” section, as shown in Figure  18-5 .  

 Alternatively, you can create an  Extended Event Session   using the  blocked_process_report  event, 
as shown in Figure  18-6 . This session will provide you with several additional attributes other than what is 
provided by SQL Trace.  

  Figure 18-5.    Blocked process report event in  SQL Trace         
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 ■   Note    We will discuss Extended Events in more detail in Part V of this book.  

 The blocked process report contains XML that shows information about blocking and blocked 
processes in the system (the most important of which are highlighted in boldface within Listing  18-4 ). 

      Listing 18-4.     Blocked process report XML     

 <blocked-process-report monitorLoop="224"> 
  <blocked-process>  
     <process id="process3e576c928" taskpriority="0" logused="0"  waitresource="KEY: … " 
 waittime="14102 " ownerId="…" transactionname="SELECT" lasttranstarted="…" XDES="…" 
 lockMode="S"  schedulerid="1" kpid="…" status="suspended"  spid="53"  sbid="0" ecid="0" 
priority="0" trancount="0" lastbatchstarted="…" lastbatchcompleted="…" lastattention="…" 
clientapp="…" hostname="…" hostpid="…" loginname="…"  isolationlevel="read committed (2)"  
xactid="…" currentdb="14" lockTimeout="…" clientoption1="…" clientoption2="…"> 
         <executionStack> 
              <frame line="3" stmtstart="46" sqlhandle="…"/>  
             <frame line="3" stmtstart="100" sqlhandle="…"/> 
         </executionStack> 
         <inputbuf> 
  set transaction isolation level read committed  
  select OrderId, Amount  
  from Delivery.Orders  
  where OrderNum = '1000'  
         </inputbuf> 
     </process> 
 </blocked-process> 
  <blocking-process>  

  Figure 18-6.    Capturing blocked process report with Extended  Events         
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     < process status="sleeping" spid="54"  sbid="0" ecid="0" priority="0"  trancount="1"  
lastbatchstarted="..." lastbatchcompleted="..." lastattention="..." clientapp="..." 
hostname="..." hostpid="..." loginname="..."  isolationlevel="read uncommitted (1)"  
xactid="..." currentdb="14" lockTimeout="..." clientoption1="..." clientoption2="..."> 
          <executionStack/>  
          <inputbuf>  
  set transaction isolation level read uncommitted  
  begin tran  
          delete from Delivery.Orders  
          where OrderId = 95    
          </inputbuf>  
     </process> 
 </blocking-process> 
 </blocked-process-report> 

    As with real-time troubleshooting, you should analyze both blocking and blocked processes and find the root 
cause of the problem. From the blocked-process standpoint, the most important information is the following:

     waittime :      The length of time the query is waiting, in milliseconds  

    lockMode   :    The type of lock being waited for  

    isolationlevel   :    The transaction isolation level  

    executionStack  and  inputBuf      : The query and/or the execution stack. You will see 
how to obtain the actual SQL statement involved in blocking in Listing  18-5 .    

 From the blocking-process standpoint, you must look at the following:

     status   :    Status is whether the process is  running ,  sleeping , or  suspended . In a 
situation in which the process is sleeping, there is an uncommitted transaction. 
When the process is suspended, that process either waits for the resource (for 
example, page from the disk) or there is a blocking chain involved. We will talk 
more about the SQL Server execution model in Part V of this book.  

    trancount   :  A    trancount  value greater than 1 indicates nested transactions. If the 
process status is  sleeping  at the same time, then there is a good chance that the 
client did not commit the nested transactions correctly (for example, the number of 
 commit  statements is less than the number of  begin tran  statements in the code).  

    executionStack  and  inputBuf   : As we already discussed,    in some cases you need 
to analyze what happens in the blocking process. Some common issues include 
runaway transactions (for example, missing  commit  statements in the nested 
transactions); long-running transactions with, perhaps, some UI involved; or 
excessive scans (for example, a missing index on the referencing column in 
the detail table leads to scans during a referential integrity check). Information 
about queries from the blocking session could be useful here. Remember that in 
cases of a blocked process,  executionStack  and  inputBuf  would correspond to the 
queries that were running at the moment when the blocked process report was 
generated rather than at the time of the blocking.    

 Nevertheless, in a large number of cases, blocking occurs because of unnecessary scans due to 
nonoptimized queries, and you can detect it by analyzing blocked queries. So, the next logical step is to look 
at the blocked query execution plan and detect inefficiencies. You can either run the query and check the 
execution plan or use DMVs and obtain an execution plan from  sys.dm_exec_query_stats  based on the 
 sql_handle ,  stmtStart  ,  and  stmtEnd  elements from the execution stack. Listing  18-5  and Figure  18-7  show 
the code and query output for this strategy.  
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      Listing 18-5.    Obtaining query text and execution plan   

  declare 
     @H varbinary(max) = /* Insert sql_handle from the top line of the execution stack */ 
     ,@S int =  /* Insert stmtStart from the top line of the execution stack */ 
     ,@E int = /* Insert stmtEnd from the top line of the execution stack */ 

   select 
     substring(qt.text, (qs.statement_start_offset / 2) + 1, 
         (( case qs.statement_end_offset 
                 when -1 then datalength(qt.text) 
                 else qs.statement_end_offset 
             end - qs.statement_start_offset) / 2) + 1) as sql 
     ,qp.query_plan 
     ,qs.creation_time 
     ,qs.last_execution_time 
 from 
     sys.dm_exec_query_stats qs with (nolock) 
         cross apply sys.dm_exec_sql_text(qs.sql_handle) qt 
         outer apply sys.dm_exec_query_plan(qs.plan_handle) qp 
 where 
     qs.sql_handle = @H and 
     qs.statement_start_offset = @S 
     and qs.statement_end_offset = @E 
 option (recompile) 

  Figure 18-7.    Getting information from  sys.dm_exec_query_stats         

    There are a couple of potential problems with the  sys.dm_exec_query_stats  view that you should be 
aware of. First, this view relies on the execution plan cache. You would not be able to get the execution plan if it is 
not in the cache; for example, if the query used a statement-level recompile with an  option (recompile)  clause. 

 Second, there is a chance that you will have more than one cached plan returned. In some cases, SQL 
Server keeps the execution statistics even after recompilation occurs, which could produce multiple rows in 
the result set. Moreover, you may have  multiple cached plans   when sessions use different  SET  options. There 
are two columns— creation_time  and  last_execution_time  — that can help you pinpoint the right plan. 

 This dependency on the plan cache during troubleshooting is the biggest downside of the blocked 
process report. SQL Server eventually removes old plans from the plan cache after queries are recompiled 
and/or plans are not reused. Therefore, the longer you wait with the troubleshooting, the less chance you 
have that the plan would be present in the cache. 

 One of the ways to address this issue is by building a monitoring solution based on Extended Events 
and/or Event  Notifications  . This allows you to parse the blocked process report at the time of the blocking 
and increases the chance that you will capture the right execution plan, compared to starting analysis later. 
I have included an example showing how to set up monitoring with Event Notifications in the companion 
materials of the book. 

 SQL Server 2016 allows you to collect and persist information about running queries and their 
execution plans and statistics in a new component called   Query Store      . The Query Store does not rely on the 
plan cache, and it is extremely useful during system troubleshooting. We will discuss Query Store in greater 
depth in Part V of this book.  
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     Summary 
 The process of troubleshooting blocking issues in a system requires you to detect the queries involved in the 
blocking, find the root cause of the problem, and address the issue. 

 The   sys.dm_tran_locks    data management view provides you with information about all of the active lock 
requests in the system. It can help you detect blocking situations in real time. You can join this view with other 
DMVs, such as  sys.dm_exec_requests ,  sys.dm_exec_query_stats ,  sys.dm_exec_sessions , and  sys.dm_os_
waiting_tasks , to obtain more information about the sessions and queries involved in the blocking conditions. 

 SQL Server can generate a  blocking process report  that provides you with information about blocking, 
which you can collect and retain for further analysis. You can use SQL Traces, Extended Events, and Event 
Notifications to capture it. 

 In a large number of cases, blocking occurs due to excessive scans introduced by nonoptimized queries. 
You should analyze the execution plans of both blocking and blocked queries in order to detect and optimize 
inefficiencies. 

 Another common issue that results in blocking is incorrect transaction management in the code, which 
includes runaway transactions and interaction with users in the middle of open transactions, among other things.     
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    CHAPTER 19   

 Deadlocks                          

 A  deadlock  is a special blocking case when multiple  sessions  , or sometimes multiple execution threads 
within a single session, block each other. When it happens, SQL Server terminates one of the sessions, thus 
allowing others to continue. 

 This chapter demonstrates why deadlocks occur in the system and explains how to troubleshoot and 
resolve them. 

       Classic Deadlock 
 A  classic deadlock      occurs when two or more sessions are competing for the same set of resources. Let’s look at a 
by-the-book example and assume that you have two sessions updating two rows in the table in the opposite order. 

 As the first step, session 1 updates the row  R1  and session 2 updates the row  R2 . You know that at this point 
both sessions acquire and hold  exclusive (X) locks   on the rows. You can see this happening in Figure  19-1 .  

 Next, let’s assume that session 1 wants to update the row  R2 . It will try to acquire an  exclusive (X) lock   
on  R2  and will be blocked because of the exclusive (X) lock already held by session 2. If session 2 wants to 
update  R1 , the same thing will happen — it will be blocked because of the exclusive (X) lock held by session 1. 
As you can see, at this point both sessions wait on each other and cannot continue the execution. This 
represents the classic deadlock, shown in Figure  19-2 .  

  Figure 19-1.    Classic deadlock, step 1       
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 There is the  system task    Deadlock Monitor  that wakes up every five seconds and checks if there are any 
deadlocks in the system. When a deadlock is detected, SQL Server rolls back one of the transactions. That 
releases all locks held in that transaction and allows other sessions to continue. 

 ■   Note    The Deadlock Monitor wake-up interval goes down if there are deadlocks in the system. In some 
cases, it could wake up as often as ten times per second.  

 The choice of which session is chosen as the deadlock victim depends on a few things. By default, SQL 
Server rolls back the session that uses less log space for the transaction. You can control it, up to a degree, by 
setting deadlock priority for the session with the  SET DEADLOCK_PRIORITY  command.    

       Deadlock Due to Nonoptimized Queries 
 While the classic deadlock often happens when the data is highly volatile and the same rows are being 
updated by multiple sessions, there is another common reason for deadlocks. They happen because of the 
scans introduced by nonoptimized queries. Let’s look at an example and assume that you have a process that 
updates an order row in an order entry system and, as a next step, queries how many orders the customer 
has. Let’s see what happens when two such sessions are running in parallel using the  READ COMMITTED  
transaction isolation level.        

 As a first step, two sessions run two  UPDATE  statements — one each. Both statements run fine without 
blocking involved. As you may remember, the table has a clustered index on the  OrderId  column, so you will 
have a  clustered index seek  operation in the execution plan. Figure  19-3  illustrates this step.  

  Figure 19-2.    Classic deadlock, step 2       
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 At this point, both sessions hold exclusive (X) locks on their respective updated rows. For the second 
step, the sessions each run  SELECT  statements based on the  CustomerId  filter. There are no nonclustered 
indexes on the table, so the execution plan will have a   clustered index scan  operation  . In the  READ COMMITTED  
isolation level, SQL Server acquires shared (S) locks when reading data, and, as a result, each session would 
be blocked as soon as it tried to read the row with an exclusive (X) lock held. Figure  19-4  illustrates this.  

 If you ran the query shown in Listing  19-1  at the time when both sessions were blocked and before the 
Deadlock Monitor task woke up, you would see the results shown in Figure  19-5 .  

  Figure 19-3.    Deadlock due to scans, step 1       

  Figure 19-4.    Deadlock due to scans, step 2       
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     Listing 19-1.    Lock requests at the time when both sessions were  blocked     

 select 
     tl.request_session_id as [SPID], tl.resource_type as [Resouce Type] 
     ,tl.resource_description as [Resource], tl.request_mode as [Mode] 
     ,tl.request_status as [Status], wt.blocking_session_id as [Blocked By] 
 from 
     sys.dm_tran_locks tl with (nolock) left outer join 
         sys.dm_os_waiting_tasks wt with (nolock) on 
             tl.lock_owner_address = wt.resource_address and 
             tl.request_status = 'WAIT' 
 where 
     tl.request_session_id <> @@SPID and tl.resource_type = 'KEY' 
 order by 
     tl.request_session_id 

   As you can see, the sessions block each other. It does not matter that the sessions were not going to 
include those rows in the count calculation. SQL Server is unable to evaluate the  CustomerId  predicate until 
shared (S) locks were acquired and rows were read. 

 You will have such a deadlock in any transaction isolation level where readers acquire shared (S) 
locks. It would not deadlock in the  READ UNCOMMITTED  isolation level, where shared (S) locks are not used. 
However, you can still have deadlocks in the  READ UNCOMMITTED  isolation level due to the writer’s collision. 
You can trigger it by replacing a  SELECT  statement with an  UPDATE  that introduces the scan operation in the 
previous example. 

 Query optimization helps to fix deadlocks caused by scans and nonoptimized queries. In the preceding 
case, you can solve the problem by adding a nonclustered index on the  CustomerId  column. This would 
change the  SELECT  statement plan and replace the clustered index scan with a  nonclustered index seek . As 
a result, the session would not need to read the rows that have been modified by another session and have 
incompatible locks held.    

        Key Lookup  Deadlock 
 In some cases, you can have a deadlock when multiple sessions are trying to read and  update      the same row 
simultaneously. 

 Let’s assume that you have a nonclustered index on the table, and one session wants to read the row 
using this index. If the index is not covering and the session needs some data from the clustered index, 
you would have an execution plan with the  nonclustered index seek  and  key lookup  operations. The session 
would acquire shared (S) locks on the nonclustered index row first and on the clustered index row after that. 

 Meanwhile, if you have another session that updates one of the columns that is part of the nonclustered 
index based on the clustered key value, that session would acquire exclusive (X) locks in the opposite order; 
that is, on the clustered index row first and on the nonclustered index row after that. 

  Figure 19-5.    Lock requests at the time of the  deadlock         
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 Figure  19-6  shows what happens after the first step. Both sessions successfully acquired locks on the 
rows in the  clustered and nonclustered indexes  .  

 In the next step, each session is trying to acquire a lock on the row in the other index, which would be 
blocked, as shown in Figure  19-7 .  

 If it happens in exactly the same moment, you would have a deadlock, and the session that reads the 
data would be chosen as the deadlock victim. A solution here is to make the nonclustered index covering 
and avoid the key lookup operation. 

 Unfortunately, that solution would increase the size of the leaf rows in the nonclustered index and 
introduce additional overhead during data modification and index maintenance. Alternatively, you can use 
optimistic isolation levels and switch to  READ COMMITTED SNAPSHOT  mode. We will cover this approach in 
greater detail in Chapter   21    , “Optimistic Isolation Levels.”    

      Deadlock Due to Multiple Updates of the Same Row 
 Another, similar, deadlock pattern can be introduced by multiple  updates   of the same row if the subsequent 
update accesses or changes columns in the different nonclustered indexes. This could lead to a deadlock 
situation similar to what you already saw where another session places a lock on the nonclustered index row 
in between updates. A common scenario is when an  AFTER UPDATE  trigger updates the same row. 

  Figure 19-6.     Key lookup deadlock  , step 1       

  Figure 19-7.     Key lookup deadlock  , step 2       
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 Let’s look at a situation where you have a table with clustered and nonclustered indexes and the   AFTER 
UPDATE  trigger   defined. Let’s have session 1 update a column that does not belong to the nonclustered index. 
This step is shown in Figure  19-8 . It acquires an exclusive (X) lock on the row for the clustered index only.  

 The update fires the   AFTER UPDATE  trigger  . Meanwhile, let’s assume that another session is trying to 
select the same row using the nonclustered index. This session successfully acquires a shared (S) lock on the 
nonclustered index row during the nonclustered index seek operation. However, it would be blocked when 
trying to obtain a shared (S) lock on the clustered index row during the key lookup, as shown in Figure  19-9 .   

 Finally, if the session 1 trigger tries to update the  same row   again, modifying the column that exists in 
the nonclustered index, it would be blocked by the shared (S) lock held by session 2. Figure  19-10  illustrates 
this situation.  

  Figure 19-9.    Deadlock due to multiple updates of the same row, step 2       

  Figure 19-10.    Deadlock due to multiple updates of the same row, step 3       

  Figure 19-8.    Deadlock due to multiple updates of the same row, step 1       
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  Let’s prove this with the code shown in Listing  19-2 . 

      Listing 19-2.    Multiple updates of the same  row     

  create table dbo.T1 
 ( 
     CI_Key int not null, 
     NCI_Key int not null, 
     CI_Col varchar(32), 
     NCI_Included_Col int 
 ); 

   create unique clustered index IDX_T1_CI on dbo.T1(CI_Key); 

   create nonclustered index IDX_T1_NCI 
 on dbo.T1(NCI_Key) 
 include (NCI_Included_Col); 

   insert into dbo.T1(CI_Key,NCI_Key,CI_Col,NCI_Included_Col) 
 values(1,1,'a',0), (2,2,'b',0), (3,3,'c',0), (4,4,'d',0); 

   begin tran 
     update dbo.T1 set CI_Col = 'abc' where CI_Key = 1; 

       select 
         l.re quest_session_id as [SPID], object_name(p.object_id) as [Object]

,i.name as [Index] 
             ,l.resource_type as [Lock Type], l.resource_description as [Resource] 
             ,l.request_mode as [Mode], l.request_status as [Status] 
             ,wt.blocking_session_id as [Blocked By] 
     from 
         sys.dm_tran_locks l join sys.partitions p on 
             p.hobt_id = l.resource_associated_entity_id 
         join sys.indexes i on 
             p.object_id = i.object_id and p.index_id = i.index_id 
         left outer join sys.dm_os_waiting_tasks wt with (nolock) on 
             l.lock_owner_address = wt.resource_address and 
             l.request_status = 'WAIT' 
     where 
         resource_type = 'KEY' and request_session_id = @@SPID; 

       update dbo.T1 set NCI_Included_Col = 1 where NCI_Key = 1 

       select 
         l.re quest_session_id as [SPID], object_name(p.object_id) as [Object]

,i.name as [Index] 
             ,l.resource_type as [Lock Type], l.resource_description as [Resource] 
             ,l.request_mode as [Mode], l.request_status as [Status] 
             ,wt.blocking_session_id as [Blocked By] 
     from 
         sys.dm_tran_locks l join sys.partitions p on 
             p.hobt_id = l.resource_associated_entity_id 
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         join sys.indexes i on 
             p.object_id = i.object_id and p.index_id = i.index_id 
         left outer join sys.dm_os_waiting_tasks wt with (nolock) on 
             l.lock_owner_address = wt.resource_address and 
             l.request_status = 'WAIT' 
     where 
         resource_type = 'KEY' and request_session_id = @@SPID; 
 commit 

    The code in Listing  19-2  updates the row twice. If you looked at the row-level locks held after first 
update, you would see only one lock held on the clustered index, as shown in Figure  19-11 .  

 The  second update  , which updates the column that exists in the nonclustered index, places another 
exclusive (X) there, as shown in Figure  19-12 . This proves that the lock on the nonclustered index row is not 
acquired until the index column is actually updated.   

  Now, let’s look at another session with  SPID = 55  running the  SELECT  shown in Listing  19-3  in between 
two updates, at a time when you have just one row-level lock held. 

     Listing 19-3.    The code that leads to the deadlock   

 select CI_Key, CI_Col 
 from dbo.T1 with (index = IDX_T1_NCI) 
 where NCI_Key = 1 

   As you can see in Figure  19-13 , the query successfully acquires the shared (S) lock on the nonclustered 
index row and is blocked from trying to acquire the lock on the clustered index row.  

  Figure 19-12.    Row-level locks after the second  update         

  Figure 19-13.    Row-level locks when SELECT query is  blocked         

  Figure 19-11.    Row-level locks after the first update       
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 If you now ran the second update in the original session with  SPID = 56 , it would try to acquire an 
exclusive (X) lock on the nonclustered index, and it would be blocked by the second ( SELECT ) session, as 
shown in Figure  19-14 . This leads to the deadlock condition.   

  The best method to avoid such problems is to eliminate multiple updates of the same rows. You can 
use variables or temporary tables to store preliminary data and run the single  UPDATE  statement close to the 
end of the transaction. Alternatively, you can change the code and assign some temporary value to  NCI_
Included_Col  as part of the first  UPDATE  statement, which would acquire exclusive (X) locks on both of the 
indexes.  SELECT  from the second session would be unable to acquire the lock on the nonclustered index, and 
the second update would run just fine. 

 As a last resort, you could read the row using a plan that utilizes both indexes using an   XLOCK  locking 
hint  , which will place exclusive (X) locks on both rows, as shown in Listing  19-4  and Figure  19-15 . Obviously, 
you need to consider the overhead this introduces.  

     Listing 19-4.    Obtaining  exclusive (X) locks   on the rows in both indexes   

  begin tran 
     declare 
         @Dummy varchar(32) 

       select @Dummy = CI_Col 
     from dbo.T1 with (XLOCK index=IDX_T1_NCI) 
     where NCI_Key = 1; 

       select 
         l.re quest_session_id as [SPID], object_name(p.object_id) as [Object]

,i.name as [Index] 
             ,l.resource_type as [Lock Type], l.resource_description as [Resource] 
             ,l.request_mode as [Mode], l.request_status as [Status] 
             ,wt.blocking_session_id as [Blocked By] 
     from 
         sys.dm_tran_locks l join sys.partitions p on 
             p.hobt_id = l.resource_associated_entity_id 
         join sys.indexes i on 
             p.object_id = i.object_id and p.index_id = i.index_id 
         left outer join sys.dm_os_waiting_tasks wt with (nolock) on 
             l.lock_owner_address = wt.resource_address and 
             l.request_status = 'WAIT' 
     where 
         resource_type = 'KEY' and request_session_id = @@SPID; 

       update dbo.T1 set CI_Col = 'abc' where CI_Key = 1; 

  Figure 19-14.    Row-level locks when second update is running (deadlock)          
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       /* some code */ 

       update dbo.T1 set NCI_Included_Col = 1 where NCI_Key = 1; 
 commit 

           Deadlock Troubleshooting 
 In a nutshell, deadlock troubleshooting is very similar to the blocking problems troubleshooting. You need 
to analyze the processes and queries involved in the deadlock, identify the root cause of the problem, and, 
finally, fix it. 

 Similar to the   blocking process report   , there is the  deadlock graph , which provides you with the information 
about deadlock in an XML format. There are plenty of ways to obtain the  deadlock graph  , as follows:

•    Trace Flag 1222: This trace flag saves deadlock information to the SQL Server error 
log. You can enable it for all sessions with the  DBCC TRACEON(1222,-1)  command or 
by using startup  parameter -T1222.  It is a perfectly safe method to use in production.  

•    xml_deadlock_report  Extended Event  

•    Deadlock graph  SQL Trace event. It is worth noting that SQL Profiler displays the 
graphic representation of the deadlock. The  Extract Event Data  action from the event 
context menu (right mouse click) allows you to extract an XML deadlock graph.  

•   You can create an event notification that fires when deadlock occurs.    

 Starting with SQL Server 2008, every system has the  system_health  Extended Event session enabled by 
default. This session captures basic server health information including the  xml_deadlock_report  event. 
This could be a great place to start troubleshooting if no other collection methods were enabled. 

 In SQL Server 2012 and above, you can access  system_health  session data from the  Management  node 
in Management Studio, as shown in Figure  19-16 . You could analyze the target data by searching for the 
  xml_deadlock_report  event  .  

  Figure 19-15.    Row-level locks after SELECT statement with (XLOCK)  hint         
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 ■   Note    We will discuss Extended Events in more detail in Chapter   27    .  

 An XML representation of the deadlock graph contains two different sections, as shown in Listing  19-5 . 
The sections  <process-list>  and  <resource-list>  contain information about the processes and resources 
involved in the deadlock. 

     Listing 19-5.     Deadlock graph format     

  <deadlock-list> 
       <deadlock  victim="..." > 
              <process-list>  
                   <process id="..."> 
                         ...   
                   </process> 
                   <process id="..."> 
                         ... 
                   </process> 
               </process-list>  
               <resource-list>  
                    <  information about resource involved in the deadlock  >  
                         ...  
                    </   information about resource involved in the deadlock  >  
                    <  information about resource involved in the deadlock  >  
                         ...  
                    </   information about resource involved in the deadlock  >  
               </resource-list>  
      </deadlock> 
 </deadlock-list> 

  Figure 19-16.     Accessing system_health Extended Events session         
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    Let’s trigger a deadlock in the system by using the code shown in Table  19-1 . You need to run two 
sessions in parallel, running the  UPDATE  statements first and then the   SELECT  statements  .  

  Each  <process>  node in the deadlock graph would show details for a specific process, as shown in 
Listing  19-6 . I removed the values from some of the attributes to make it easier to read. I have highlighted in 
bold the ones that are especially helpful during troubleshooting. 

  Listing 19-6.    Deadlock graph:  <Process> node     

 < process id="process3e4b29868"  taskpriority="0" logused="264"  waitresource="KEY: ..."  
waittime="..." ownerId="..." transactionname="... " lasttranstarted="..." XDES="..." 
 lockMode="S"  schedulerid="..." kpid="..." status="suspended" spid="55" sbid="..." 
ecid="..." priority="0" trancount="1" lastbatchstarted="..." lastbatchcompleted="..." 
lastattention="..." clientapp="..." hostname="..." hostpid="..." loginname="..." 
 isolationlevel="read committed (2)"  xactid="..." currentdb="..." lockTimeout="..." 
clientoption1="..." clientoption2="..."> 
      <executionStack>  
          <frame procname="adhoc" line="1" stmtstart="26" sqlhandle="...">  
              SELECT COUNT(*) [Cnt] FROM [Delivery].[Orders] WHERE [CustomerId]=@1      
          </frame>  
      </executionStack>  
      <inputbuf>  
                  select count(*) as [Cnt]  
                  from Delivery.Orders  
                  where CustomerId = 766  
              commit      
      </inputbuf>  
 </process> 

     The  id  attribute uniquely identifies the process.  Waitresource  and  lockMode  provide information about 
the lock type and the resource for which the process is waiting. In our example, you can see that the process 
is waiting for the shared (S) lock on one of the rows (keys). 

 The  Isolationlevel  attribute shows you the current transaction isolation level. Finally, 
 executionStack  and  inputBuf  allow you to find the SQL statement that was executed when the deadlock 
occurred. In some cases, especially when stored procedures are involved, you would need to use the  sys.
dm_exec_sql_text  function to get the SQL statements in the same way as we did in Listing   18-5     in the 
previous chapter. 

 The  <resource-list>  section of deadlock graph contains information about the resources involved in 
the deadlock. It is shown in Listing  19-7 . 

    Table 19-1.    Triggering Deadlock in the System   

 Session 1  Session 2 

  begin tran  
  update Delivery.Orders  
  set OrderStatusId = 1  
  where OrderId = 100001;  

  begin tran  
  update Delivery.Orders  
  set OrderStatusId = 1  
  where OrderId = 100050;  

  select count(*) as [Cnt]  
  from Delivery.Orders  
  where CustomerId = 317;  

  commit  

  select count(*) as [Cnt]  
  from Delivery.Orders  
  where CustomerId = 766;  

  commit  

http://dx.doi.org/10.1007/978-1-4842-1964-5_18#Par51
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     Listing 19-7.    Deadlock graph:  <Resource-list> node     

 <resource-list> 
     <keylock hobtid="72057594039500800" dbid="14" objectname="SqlServerInternals.
Delivery.Orders" indexname="PK_Orders" id="lock3e98b5d00" mode="X" 
associatedObjectId="72057594039500800"> 
         <owner-list> 
             <owner id="process3e6a890c8" mode="X"/> 
         </owner-list> 
         <waiter-list> 
             <waiter id="process3e4b29868" mode="S" requestType="wait"/> 
         </waiter-list> 
     </keylock> 
     <keylock hobtid="72057594039500800" dbid="14" objectname="SqlServerInternals.
Delivery.Orders" indexname="PK_Orders" id="lock3e98ba500" mode="X" 
associatedObjectId="72057594039500800"> 
         <owner-list> 
             <owner id="process3e4b29868" mode="X"/> 
         </owner-list> 
         <waiter-list> 
             <waiter id="process3e6a890c8" mode="S" requestType="wait"/> 
         </waiter-list> 
     </keylock> 
 </resource-list> 

    The name of the XML element identifies the type of  resource  .  Keylock ,  pagelock , and  objectlock  stand 
for the row-level, page, and object locks, respectively. You can also see to which objects and indexes those 
locks belong. Finally, the   owner-list  and  waiter-list  nodes   provide information about the processes 
that own and wait for the locks, along with the type of locks acquired and requested. You can correlate this 
information with the data from the  process-list  section of the graph. 

 As you have probably already guessed, the next steps are very similar to the  blocked process 
troubleshooting  ; that is, you need to pinpoint the queries involved in the deadlock and find out why 
deadlock occurred. 

 There is one important factor to consider, however. In most cases, deadlock involves more than one 
statement per session running in the same transaction. The deadlock graph provides you with information 
about the last statement only—the one that triggered the deadlock. 

 You can see the  signs  of the other statements in the  resource-list  node. It shows you that processes 
held  exclusive (X) locks   on the rows, but it does not tell you about the statements that acquired them. It is 
very useful to identify the statements involved in the deadlock while analyzing the root cause of the problem. 

 In our example, when you look at the listing shown in Table  19-1 , you would see the two statements. 
The  UPDATE  statement updates the single row—it acquires and holds an exclusive (X) lock there. You can see 
that both processes own those exclusive (X) locks in the  resource-list  node of the deadlock graph. 

 In the next step, you need to understand why  SELECT  queries are trying to obtain shared (S) locks on the 
rows with exclusive (X) locks already held. You can look at the execution plans for the  SELECT  statements from 
the  process  nodes by either running the queries or using the   sys.dm_exec_query_stats  DMV  , as was shown 
in Listing   18-5     in the previous chapter. As a result, you will get the  execution plan   shown in Figure  19-17 . The 
figure also shows the number of locks acquired during query execution.      
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 As you can see, there is a clustered index scan in the plan, which gives you enough data for analysis. 
 SELECT  queries scanned the entire table. Because both processes were using the   READ COMMITTED  isolation 
level  , the queries tried to acquire a shared (S) lock on every row from the table and were blocked by the 
exclusive (X) locks held by another session. It did not matter that those rows did not have the  CustomerId  
that the queries were looking for. In order to evaluate this predicate, queries had to read those rows, which 
required acquiring shared (S) locks on them. 

 You can solve this deadlock situation by adding a nonclustered index on the  CustomerID  column. This 
would eliminate the clustered index scan and replace it with an  index seek  operator, as shown in Figure  19-18 .  

 Instead of acquiring a shared (S) lock on every row of the table, the query would read only the rows that 
belong to a specific customer. This would dramatically reduce the number of shared (S) locks to be acquired, 
and it would prevent the query from being blocked by exclusive (X) locks on the rows that belong to different 
customers. 

 In some cases, you can have  intra-query parallelism deadlocks   — when the query with a parallel 
execution plan deadlocks itself. Fortunately, these cases are rare and are usually introduced by a bug in SQL 
Server rather than by application or database issues. You can detect these cases when a deadlock graph 
has more than two processes with the same  SPID  and when  resource-list  has an  exchangeEvent  and/or 
 threadPoll  listed as resource(s) without any lock resources associated with them. When this happens, you 
can work around the problem by reducing the degree of parallelism for the query with a  MAXDOP  hint. There 
is also the chance that the issue has already been fixed in the latest service pack or cumulative update.  

     Reducing the Chance of  Deadlocks   
 Finally, there are several practical bits of advice I can provide to help you to reduce the chance of deadlocks 
in the system, as follows:

    1.     Optimize the queries.  Scans introduced by nonoptimized queries are the most 
common causes of deadlocks. Correct indexes not only improve the performance of 
the queries, but also reduce the number of rows that need to be read and locks that 
need to be acquired, thus reducing the chance of lock collisions with other sessions.  

  Figure 19-17.     Execution plan   for the query       

  Figure 19-18.    Execution plan for query with  nonclustered index         
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    2.     Keep locks as short as possible.  As you will recall, all exclusive (X) locks are held 
until the end of the transaction. Make transactions short and try to update data 
as close to the end of the transaction as possible to reduce the chance of lock 
collision. In our example, you can change the code and swap around the  SELECT  
and  UPDATE  statements. This would solve the particular deadlock problem, 
because the transactions would not have any statements that could be blocked 
after exclusive (X) locks were acquired.  

    3.     Use the lowest transaction isolation level that provides the required data 
consistency.  This reduces the time that shared (S) locks are held. Even if you 
swapped  SELECT  and  UPDATE  statements in our example, you could still have 
a deadlock in the  REPEATABLE READ  or  SERIALIZABLE  isolation levels. With 
those isolation levels, you would have shared (S) locks held until the end of the 
transaction, and they would block  UPDATE  statements. In  READ COMMITTED  mode, 
shared (S) locks are released after a row is read and  UPDATE  statements would not 
be blocked. In some cases, you can switch to optimistic isolation levels, which we 
will discuss in Chapter   22    .  

    4.     Avoid updating the row multiple times within the same transaction when 
multiple indexes are involved.  As you saw earlier in this chapter, SQL Server 
does not place exclusive (X) locks on nonclustered index rows when index 
columns are not updated. Other sessions can place incompatible locks there and 
block subsequent updates, which would lead to deadlocks.  

    5.     Use retry logic.  Wrap critical code into  TRY..CATCH  blocks and retry the action if 
deadlock  occurs  . The error number for the exception caused by the deadlock is 
1205. The code in Listing  19-8  shows how you can implement that.     

     Listing 19-8.    Using TRY..CATCH block to retry the operation in case of  deadlock     

  -- Declare and set variable to track number of retries to try before exiting. 
 declare 
      @retry int = 5 

   -- Keep trying to update table if this task is selected as the deadlock victim. 
 while (@retry > 0) 
 begin 
      begin try 
           begin tran 
                -- some code that can lead to the deadlock 
            commit 
      end try 
      begin catch 
           -- Check error number. If deadlock victim error, then reduce retry count 
           -- for next update retry. If some other error occurred, then exit WHILE loop. 
                if (error_number() = 1205) 
                     set @retry = @retry – 1; 
                else 
                     set @retry = 0; 

                  if xact_state() <> 0 
                     rollback; 
      end catch 
 end 
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         Summary 
 With the exception of intra-query parallelism deadlocks, which are considered to be a bug in the SQL Server 
code, deadlocks occur when multiple sessions compete for the same set of resources. 

 The key element in deadlock troubleshooting is the deadlock graph, which provides information about 
the processes and resources involved in the deadlock. You can collect the deadlock graph by enabling trace 
flag  T1222 , capturing the  xml_deadlock_report  Extended Event and  Deadlock graph  SQL Trace event, 
or setting up deadlock event notification in the system. In SQL Server 2008 and above, the  xml_deadlock_
report  event is included in the  system_health  Extended Event session, which is enabled by default in every 
SQL Server installation. 

 The deadlock graph will provide you with information about the queries that triggered the deadlock. 
You should remember, however, that in the majority of cases deadlock involves multiple statements that 
acquired and held locks within the same transaction. 

 Even though deadlocks can happen for many reasons, more often than not they happen due to 
excessive locking during scans in nonoptimized queries. Query optimization can help to address them.     
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    CHAPTER 20   

 Lock Escalation                          

 Although row-level locking is great from a concurrency standpoint, it is expensive. In memory, a lock 
structure uses 64 bytes in 32-bit and 128 bytes in 64-bit operating systems. Keeping information about 
millions of row- and page-level locks would require SQL Server to allocate gigabytes of RAM to storing them. 

 SQL Server reduces the number of locks held in memory with a technique called  lock escalation , which 
we will discuss in this chapter. 

     Lock Escalation Overview 
    Once a statement acquires at least 5,000 row- and page-level locks on the same object, SQL Server tries to 
escalate, or perhaps better said, replace, those locks with a single table- or, in some cases, partition-level 
lock. The operation would succeed if no other sessions held incompatible locks on the object or partition. 

 When such an operation succeeds, SQL Server releases all row- and page-level locks held by the 
transaction on the object (or partition), keeping the object- (or partition-) level lock only. If the operation 
fails, SQL Server continues to use row-level locking and repeats escalation attempts after about every 1,250 
new locks acquired. In addition to the number of locks taken, SQL Server can escalate locks when the total 
number of locks in the instance exceeds memory or configuration thresholds. 

 ■   Note    The thresholds for number of locks, 5,000/1,250, is an approximation. The actual number of acquired 
locks that triggers lock escalation vary.  

 Let’s look at an example. The first session starts a transaction in the  REPEATABLE READ  transaction 
isolation level and runs a  SELECT  statement that counts the number of rows in the  Delivery.Orders  table. As 
you will remember, in this isolation level, SQL Server keeps shared (S) locks until the end of the transaction. 

 Let’s disable lock escalation for this table with the  ALTER TABLE SET (LOCK_ESCALATION=DISABLE)  
command (more about this later) and look at the number of locks SQL Server acquires as well as at the 
memory required to store them. We will use a  WITH (ROWLOCK)  hint to prevent the situation in which SQL 
Server  optimizes  the locking by acquiring page-level shared (S) locks instead of row-level locks. In addition, 
while the transaction is still active, let’s insert another row from a different session to demonstrate how lock 
escalation affects concurrency in the system. 

 Table  20-1  shows the code of both sessions along with the output from the  dynamic management views 
(DMVs  ). Figure  20-1  shows the  Lock Memory (KB)  system performance counter while the transaction is active.   
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 As you can see, from a concurrency standpoint, the row-level locking is perfect. Sessions do not block 
each other as long as they do not compete for the same rows. At the same time, keeping a large number 
of locks is memory intensive, and memory is one of the most precious resources in SQL Server. This is 

   Table 20-1.    Test Code with Lock Escalation Disabled   

 Session 1  Session 2 

  alt er table Delivery.Orders set 
(lock_escalation=disable);  

  set transaction isolation level repeatable read  
  begin tran  

  select count(*) from Delivery.Orders with (rowlock);  

  -- Success  
  insert into Delivery.Orders
(OrderDate,OrderNum,CustomerId)  
  values(getUTCDate(),’99999’,100);  

  -- Result: 10,212,326  
  select count(*) as [Lock Count] 
from sys.dm_tran_locks;  

  -- Result: 1,940,272 KB  
  select sum(pages_kb) as [Memory, KB]  
  from sys.dm_os_memory_clerks  
  where type = 'OBJECTSTORE_LOCK_MANAGER';  

  commit  

  Figure 20-1.    Lock Memory (KB) system performance  counter            
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especially important for non-Enterprise editions in which there is a limitation on the amount of memory 
that can be utilized. In our example, SQL Server needs to keep millions of lock structures utilizing almost 
two gigabytes of RAM. This number includes the row-level shared (S) locks as well as the page-level  intent 
shared (IS) locks.   Moreover, there is the overhead of maintaining the locking information and the large 
number of lock structures in the system. 

 Let’s see what happens if we enable lock escalation with the  ALTER TABLE SET (LOCK_
ESCALATION=TABLE)  command and run the code shown in Table  20-2 . Figure  20-2  shows the output from the 
 sys.dm_tran_locks  view.   

   Table 20-2.    Test Code with Lock Escalation Enabled   

 Session 1  Session 2 

  alter table Delivery.Orders set (lock_escalation=table);  
  set transaction isolation level repeatable read  
  begin tran  

  select count(*) from Delivery.Orders with (rowlock);  

  -- The session is blocked  
  insert into Delivery.Orders
(OrderDate,OrderNum,CustomerId)  
  values(getUTCDate(),’100000’,100);  

      select  
          request_session_id as [SPID]  
          ,resource_type as [Resource]  
          ,request_mode as [Lock Mode]  
          ,request_status as [Status]  
      from sys.dm_tran_locks;  
  commit  

  Figure 20-2.    Sys.dm_tran_locks output with lock escalation enabled       

 SQL Server replaces the row- and page-level locks with an object-level shared (S) lock. Although this 
is great from a memory-usage standpoint—there is just a single lock to maintain—it affects concurrency. 
As you can see, the second session is blocked; it cannot acquire an  intent exclusive (IX) lock   on the table 
because it is incompatible with the full shared (S) lock held by the first session. It is also worth mentioning 
that the  WITH (ROWLOCK)  hint does not affect lock escalation behavior. 

  Lock escalation   is enabled by default and could introduce the blocking issues, which can be confusing 
for developers and database administrators. Let’s talk about a few typical cases. 

 The first case is reporting using the  REPEATABLE READ  or  SERIALIZABLE  isolation levels for data 
consistency purposes. If reporting queries are reading large amounts of data when there are no sessions 
updating the data, those queries can escalate shared (S) locks to the table level. Afterward, all writers would 
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be blocked, even when trying to insert new data or modify data not read by reporting queries, as you saw 
earlier in this chapter. One of the ways to address this issue is by switching to  optimistic transaction isolation 
levels , which we will discuss in the next chapter. 

 The second case is the implementation of the purge process. Let’s assume that you need to purge a large 
amount of data using a  DELETE  statement. If the implementation deletes a large number of rows at once, you 
could have an  exclusive (X) lock   escalated to the table level. This blocks access to the table for all writers, 
as well as for the readers in the  READ COMMITTED ,  REPEATABLE READ , or  SERIALIZABLE  isolation levels, even 
when those queries are working with a completely different set of data than the one you are purging. 

 Finally, you can think about the process that inserts a large batch of rows with a single  INSERT  
statement. Similar to the purge process, it could escalate an exclusive (X) lock to the table level and block the 
other sessions from accessing it. 

 All of these patterns have one thing in common: they acquire and hold a large number of row- and 
page-level locks as part of a single statement. This triggers lock escalation, which would succeed if there 
were no other sessions holding incompatible locks on the table (or partition) level. This would then block 
other sessions from acquiring incompatible intent or full locks on the table (or partition) until the first 
session completes the transaction, regardless of whether the blocked sessions are trying to access the data 
affected by the first session or not. 

 It is worth repeating that lock escalation is triggered by the number of locks acquired by the statement, 
rather than by the transaction. If the separate statements acquire less than 5,000 row- and page-level locks 
each, lock escalation is not triggered, regardless of the total number of locks the transaction holds. 
Listing  20-1  shows an example where multiple update statements run in a loop within a single transaction. 

      Listing 20-1.    Lock escalation and multiple statements   

  declare 
     @id int = 1 

   begin tran 
     while @id < 100000 
     begin 
         update Delivery.Orders 
         set OrderStatusId = 1 
         where OrderId between @id and @id + 4998; 

           select @id += 4999 
     end 

       select count(*) as [Lock Count]     
     from sys.dm_tran_locks 
     where request_session_id = @@SPID; 
 commit 

    Figure  20-3  shows the output of the  SELECT  statement from Listing  20-1 . Even when the total number of 
locks the transaction holds is far more than the threshold, lock escalation is not triggered.   

  Figure 20-3.    Number of locks held by the transaction       
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     Lock Escalation Troubleshooting 
 There are a few ways to troubleshoot blocking problems that occur because of lock escalation. One sign of 
potential problems is a high percentage of intent lock waits in the wait statistics. 

 You can monitor and capture lock escalations with Extended Events. Figure  20-4  illustrates the 
 lock_escalation  Extended Event and some of the available event fields.  

 ■   Note    We will talk about wait statistics analysis and Extended Events in Part V of this book.  

 Figure  20-5  illustrates the data captured by the event.  

  Figure 20-4.    Lock_escalation Extended Event       
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 Similarly, you can capture lock escalation events with SQL Traces. Figure  20-6  illustrates the output 
from this event in the  SQL Profiler  application.  

 SQL Trace provides the following attributes:

•      EventSubClass       indicates what triggered the lock escalation—number of locks or 
memory threshold.

•      IntegerData  and  IntegerData2    show the number of locks that existed at the time of 
the escalation and how many locks were converted during the escalation process. 
It is worth noting that in our example lock escalation occurred when the statement 
acquired 6,248 rather than 5,000 locks.  

•     Mode    tells what kind of lock was escalated.  

  Figure 20-5.    Lock_escalation Extended Event data       

  Figure 20-6.    Lock-escalation event in SQL Server Profiler       
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•     ObjectID  is the   object_id of the table for which lock escalation was triggered.  

•     ObjectID2    is the  HoBT  ID for which lock escalation was triggered.  

•    Type  represents lock escalation granularity.  

•    TextData ,  LineNumber,  and  Offset  provide the information on the batch and 
statement that triggered  lock escalation.            

 There is also the  Table Lock Escalations/sec  performance counter in the “SQL Server Access Methods” 
section, which can be useful for baselining the system. 

 From the blocked-session standpoint, if you run the code shown in Listing 18-2 (Chapter   18    ), you will 
see the results shown in Figure  20-7 .  

 The key point here is that you have two object-level locks. The blocked session is trying to acquire an 
intent lock on the object level while the blocking session holds an incompatible full lock. 

 If you look at the blocked process report, you can see that the blocked process is waiting on the intent 
lock on the object, as shown in Listing  20-2 . 

     Listing 20-2.    Blocked process report (partial)      

 <blocked-process-report> 
  <blocked-process> 
   <process id="..." taskpriority="0" logused="0"  waitresource="OBJECT: ..."  waittime="..." 
ownerId="..." transactionname="user_transaction" lasttranstarted="..." XDES="..." 
 lockMode="IX"  schedulerid="..."  ...> 

   Keep in mind that there could be other reasons for the sessions to acquire full object locks or be blocked 
waiting for an intent lock on the table. You must correlate the information from the other venues (Extended 
Events, SQL Traces, and so on) to be sure blocking occurs because of lock escalation. 

 Although lock escalation can introduce blocking issues, it helps to preserve SQL Server memory. 
Without lock escalation, the large number of locks held by the instance reduces the size of the buffer pool. 
As a result, you have fewer data pages in the cache, which could lead to a higher number of physical I/O 
operations and degrade the performance of the queries. In addition, SQL Server could terminate the queries 
with error 1204 when there is no available memory to store the lock information. Figure  20-8  shows just such 
an error message.  

  Figure 20-7.    Blocked and blocking sessions due to lock escalation       

  Figure 20-8.    Error  1204         

 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_18


CHAPTER 20 ■ LOCK ESCALATION

430

 In SQL Server 2008 and above, you can control escalation behavior at the table level by using the  ALTER 
TABLE SET LOCK_ESCALATION  statement. This option affects lock escalation behavior for all clustered and 
nonclustered indexes defined on the table. Three options are available:

    DISABLE:  This option disables lock escalation for a specific table.  

   TABLE:  SQL Server escalates locks to the table level. This is the default option.  

   AUTO:  SQL Server escalates locks to the partition level when the table is 
partitioned or to the table level when the table is not partitioned. Use this option 
with large partitioned tables, especially when there are large reporting queries 
running on the old data.    

 Unfortunately, SQL Server 2005 does not support this option, and the only way to disable lock 
escalation in this version is by using documented trace flags  T1211  or   T1224       at the instance or session level. 
Keep in mind that you need to have  sysadmin  rights to call the  DBCC TRACEON  command and set trace flags at 
the session level.

    T1211  disables lock escalation, regardless of the memory conditions.  

   T1224  disables lock escalation based on the number of locks threshold, although 
lock escalation can still be triggered in cases of memory pressure.    

 ■   Note    You can read more about trace flags  T1211  and  T1224  in Books Online at    http://technet.
microsoft.com/en-us/library/ms188396.aspx     .  

 As with the other blocking issues, you should find the root cause of why lock escalation occurs. You 
should also think about the pros and cons of disabling lock escalation on particular objects in the system. 
Although it could reduce the blocking in the system, SQL Server would use more memory to store lock 
information. And, of course, you can consider code re-factoring as another option. 

 In case lock escalation is triggered by the writers, you can reduce the batches to the point at which they 
are acquiring less than 5,000 row- and page-level locks per object. You can still process multiple batches in 
the same transaction — the 5,000 locks threshold is per statement. At the same time, you should remember 
that smaller batches are usually less effective than large ones. You need to fine-tune the batch sizes and find 
the optimal values. It is normal to have lock escalation triggered as long as object-level locks are not held for 
an excessive period of time and/or it does not affect the other sessions. 

 As for lock escalations triggered by readers, you should avoid situations in which many shared (S) 
locks are held. One example is scans due to nonoptimized or reporting queries in the  REPEATABLE READ  
or  SERIALIZABLE  transaction isolation levels when queries hold shared (S) locks until the end of the 
transaction. The example shown in Listing  20-3  runs the  SELECT  from the  Delivery.Orders  table using the 
 REPEATABLE READ  isolation level. Figure  20-9  shows the output of the query.  

     Listing 20-3.    Lock escalation triggered by nonoptimized query   

  set transaction isolation level repeatable read 
 begin tran 
     select OrderId, OrderDate, Amount 
     from Delivery.Orders 
     where OrderNum = '1'; 

       select 
         resource_type as [Resource Type] 
         ,case resource_type 

http://technet.microsoft.com/en-us/library/ms188396.aspx
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             when 'OBJECT' then object_name(resource_associated_entity_id,resource_database_id) 
             when 'DATABASE' then 'DB' 
             else 
                 (  select object_name(object_id, resource_database_id) 
                         from sys.partitions 
                         where hobt_id = resource_associated_entity_id ) 
         end as [Object] 
         ,request_mode as [Mode] 
         ,request_status as [Status] 
     from sys.dm_tran_locks 
     where request_session_id = @@SPID; 
  commit   

    Even if the query returned just a single row, you can see that shared (S) locks have been escalated to the 
table level. Let’s take a look at the execution plan shown in Figure  20-10 .  

 There are no indexes on the  OrderNum  column, and SQL Server uses the  clustered index scan  operator. 
Even if the query returns just a single row, it acquires and holds shared (S) locks on all the rows it read. As 
a result, lock escalation is triggered. If you add an index on the  OrderNum  column, it changes the execution 
plan to a  nonclustered index seek . Only one row is read, very few row- and page-level locks are acquired and 
held, and lock escalation is not needed. 

 In some cases, you may consider partitioning the tables and setting the lock escalation option to use 
partition-level escalation, rather than table level, using the  ALTER TABLE SET (LOCK_ESCALATION=AUTO)  
statement.       This could help in scenarios in which you must purge old data using the  DELETE  statement or run 
reporting queries against old data in the  REPEATABLE READ  or  SERIALIZABLE  isolation levels. In those cases, 
statements escalate the locks to partitions, rather than to tables, and queries that are not accessing those 
partitions would not be blocked. 

 In other cases, you can switch to optimistic isolation levels, which will be discussed in Chapter   21    . 
Finally, you would not have any reader-related blocking issues in the  READ UNCOMMITTED  transaction 
isolation level, where shared (S) locks are not acquired, although this method is not recommended because 
of all the other data consistency issues it introduces.  

  Figure 20-9.    Selecting data in the  REPEATABLE READ isolation level          

  Figure 20-10.    Execution plan of the query       
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     Summary 
 SQL Server escalates locks to the object level after the statement acquires and holds about 5,000 row- and 
page-level locks. When escalation succeeds, SQL Server keeps the single object-level lock, blocking other 
sessions with incompatible lock types from accessing the table. If escalation fails, SQL Server repeats 
escalation attempts after about every 1,250 new locks are acquired. 

 Lock escalation fits perfectly into the “It Depends” category. It reduces the SQL Server Lock Manager 
memory usage and the overhead of maintaining a large number of locks. At the same time, it could increase 
blocking in the system because of the object- or partition-level locks held. 

 You should keep lock escalation enabled unless you find that it introduces noticeable blocking issues 
in the system. Even in those cases, however, you should perform root-cause analysis as to why blocking due 
to lock escalation occurs and evaluate the pros and cons of disabling it. You should also look at the other 
options available, such as code and database schema re-factoring, query tuning, or switching to optimistic 
transaction isolation levels. Any of these options might be the better choice to solve blocking problems, 
rather than disabling lock escalation.     
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    CHAPTER 21   

 Optimistic Isolation Levels                          

  Optimistic transaction isolation levels  were introduced in SQL Server 2005 as a new way to deal with blocking 
problems and to address data consistency issues. With optimistic transaction isolation levels, queries read 
“old” committed versions of rows while accessing the data modified by the other sessions, rather than being 
blocked by the incompatibility of shared (S) and exclusive (X) locks. 

 This chapter explains how optimistic isolation levels are implemented and how they affect the locking 
behavior of the system. 

     Row Versioning  Overview   
  With optimistic transaction isolation levels, when updates occur, SQL Server stores the old versions of the 
rows in a special part of  tempdb  called  version store . The original rows in the database are also modified with 
14-byte pointers that reference the old versions of the rows. Depending on the situation, you can have more 
than one version record stored in the version store for the row. Figure  21-1  illustrates this behavior.  

 Now, when readers (and sometimes writers) access the row that holds an exclusive (X) lock, they read 
the old version from the version store rather than being blocked, as shown in Figure  21-2 .  

  Figure 21-1.    Version store       
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 As you can guess, while optimistic isolation levels help reduce blocking, there are some tradeoffs. Most 
significant among these is that they contribute to  tempdb  load. Using optimistic isolation levels on highly 
volatile systems can lead to very heavy  tempdb  activity and can significantly increase  tempdb  size. We will 
look at this issue in greater detail later in this chapter. 

 There is overhead during data modification and retrieval. SQL Server needs to copy the data to  tempdb  
as well as maintain a linked list of the version records. Similarly, it needs to traverse that list when reading 
data. This adds additional CPU and I/O load. You need remember these tradeoffs, especially when you host 
the system in the Cloud, where I/O performance can quickly become a bottleneck in the system. 

 Finally,  optimistic isolation   levels contribute to index fragmentation. When a row is modified, SQL 
Server increases the row size by 14 bytes due to the versioning tag pointer. If a page is tightly packed and a 
new version of the row does not fit into the page, it will lead to a page split and further fragmentation. This is 
very similar to the insert/update pattern we discussed in Chapter   6    , “Index Fragmentation.” Those 14 bytes 
will stay in the row, even after records are removed from the version store, until the index is rebuilt.  

 ■   Tip    If optimistic isolation levels are used, it is recommended that you reserve some space on the pages by 
using a  FILLFACTOR  of less than 100. It reduces page splits due to row-size increases because of the version 
store pointers.   

     Optimistic Transaction Isolation Levels 
 There are two optimistic transaction isolation levels:  READ COMMITTED SNAPSHOT  and  SNAPSHOT.  To be 
precise,  SNAPSHOT  is a separate transaction isolation level, while  READ COMMITTED SNAPSHOT  is a database 
option that changes the behavior of the readers in the  READ COMMITTED  transaction isolation level. 

 Let’s examine these levels in depth. 

      READ COMMITTED SNAPSHOT Isolation  Level      
 Both optimistic isolation levels need to be enabled on the database level. You can enable   READ COMMITTED 
SNAPSHOT (RCSI    )  with the  ALTER DATABASE SET READ_COMMITTED_SNAPSHOT ON  command. This statement 
needs to acquire an exclusive (X) database lock in order to change the database option, and it will be blocked 
if there are other users connected to the database. You can address this by running the  ALTER DATABASE SET 
READ_COMMITTED_SNAPSHOT ON WITH ROLLBACK AFTER X SECONDS  command. This will roll back all active 
transactions and terminate existing database connections, which allows the changing of the database option. 

  Figure 21-2.    Readers and version store       
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 As already mentioned,  RCSI  changes the behavior of the readers in  READ COMMITTED  mode. It does not 
affect the behavior of the writers, however. 

 As you can see in Figure  21-3 , instead of acquiring shared (S) locks and being blocked by exclusive (X) 
locks held on the row, readers use the old version of the row from the version store. Writers still acquire 
update (U) and exclusive (X) locks in the same way as in pessimistic isolation levels. Again, as you can see, 
blocking between writers from different sessions still exists, although writers do not block readers, in a 
similar manner to the  READ UNCOMMITTED  mode.  

 There is a major difference between the  READ UNCOMMITTED  and  READ COMMITTED SNAPSHOT  isolation 
levels, however.  READ UNCOMMITTED  removes the blocking at the expense of data consistency. Many 
consistency anomalies are possible, including reading uncommitted data, duplicated reads, and missed 
rows. On the other hand, the  READ COMMITTED SNAPSHOT  isolation level provides you with full statement-
level consistency. Statements running in this isolation level do not access uncommitted data nor the data 
committed after the statement started. 

 As the obvious conclusion, you should avoid using the  NOLOCK  hint in queries that use the  READ 
COMMITTED SNAPSHOT  isolation level. While using  NOLOCK  with  READ UNCOMMITTED  is a bad practice by itself, 
it is completely useless in  READ COMMITTED SNAPSHOT  mode, which provides you with the same blocking 
behavior without losing data consistency for the queries. 

 ■   Tip    Switching a database to the  READ COMMITTED SNAPSHOT  isolation level can be a great emergency 
technique when the system is suffering from blocking issues. It removes writers/readers blocking without any 
code changes, assuming that readers are running in the  READ COMMITTED  isolation level. Obviously, this is only 
a temporary solution, and you need to detect and eliminate the root cause of the problem.    

      SNAPSHOT Isolation Level   
  SNAPSHOT  is a separate transaction isolation level, and it needs to be set explicitly in the code with a  SET 
TRANSACTION ISOLATION LEVEL SNAPSHOT  statement or by using a  WITH (SNAPSHOT)  table hint. 

 By default, using the  SNAPSHOT  isolation level is prohibited. You must enable it with an  ALTER DATABASE 
SET ALLOW_SNAPSHOT_ISOLATION ON  statement. This statement does not require an exclusive database lock, 
and it can be executed with other users connected to the database. 

 A  SNAPSHOT  isolation level provides  transaction-level consistency.   Transactions will see a  snapshot  of 
the data at the moment when the transaction started, regardless of how long the transaction was active and 
how many data changes were made via other transactions during that time. 

  Figure 21-3.    Read Committed Snapshot isolation level behavior       
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 In the example shown in Figure  21-4 , we have session 1, which starts the transaction and reads the row 
at time  T1 . At time  T2 , we have session 2, which modifies the row in the implicit transaction. At this moment, 
the old (original) version of the row is moved to the version store in  tempdb .  

 In the next step, we have session 3, which starts another transaction and reads the same row at time 
 T3 . It sees the version of the row as modified and committed by session 2 (at time  T2 ). At time  T4 , we have 
session 4, which modifies the row in the implicit transaction again. At this time, we have two versions of the 
rows in the version store—one that existed between  T2  and  T4  and the original version that existed before 
 T2 . Now, if session 3 runs the  SELECT  again, it would use the version that existed between  T2  and  T4 , because 
this version was committed at the time the session 3 transaction started. Similarly, session 1 would use the 
original version of the row that existed before  T2 . At some point after session 1 and session 3 are committed, 
the version store clean-up task would remove both records from the version store — assuming, of course, that 
there are no other transactions that need them. 

 The  SERIALIZABLE  and  SNAPSHOT  isolation levels provide the same level of protection against data 
inconsistency issues; however, there is a subtle difference in their behavior. A  SNAPSHOT  isolation level 
transaction sees data as of the beginning of a transaction. With the  SERIALIZABLE  isolation level, the 
transaction sees data as of the time when the data was accessed for the first time. Consider a situation where 
a session is reading data from a table in the middle of a transaction. If another session changed the data 
in that table after the transaction started but before data was read, the transaction in the   SERIALIZABLE  
isolation level   would see the changes while the  SNAPSHOT  transaction would not. 

 A  SNAPSHOT  isolation level provides transaction-level  data consistency      with no blocking involved, 
although it could generate an enormous amount of data in  tempdb . If you have a session that deletes millions 
of rows from the table, all of those rows need to be copied to the version store, even if the original  DELETE  
statement is running in a non- SNAPSHOT  isolation mode, just to preserve the state of the data for possible 
 SNAPSHOT  or  RCSI  transactions. 

 Now, let’s examine the writer’s behavior. Let’s assume that session 1 starts the transaction and updates 
one of the rows. That session holds an exclusive (X) lock there, as shown in Figure  21-5 .  

  Figure 21-4.    Snapshot isolation level and readers behavior       
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 Session 2 wants to update all rows where  Cancelled = 1 . It starts to scan the table, and when it needs 
to read the data for  OrderId = 10 , it reads the row from the version store; that is, the last committed version 
before the session 2 transaction started. This version is the original (non-updated) version of the row, and it 
has  Cancelled = 0 , so session 2 does not need to update it. Session 2 continues scanning the rows without 
being blocked by update (U) and exclusive (X) lock incompatibility.        

 Similarly, session 3 wants to update all rows with  Amount = 29.95 . When it reads the version of the row 
from the version store, it determines that the row needs to be updated. Again, it does not matter that session 1 
also changes the amount for the same row. At this point, a “new version” of the row has not been committed 
and it is invisible to the other sessions. Now, session 3 wants to update the row in the database, tries to acquire 
an exclusive (X) lock, and is blocked because session 1 already has an exclusive (X) lock there. 

 There is another possibility, however. Let’s consider the following scenario, keeping in mind the 
transaction consistency that a  SNAPSHOT  isolation level guarantees. 

 In the example shown in Figure  21-6 , session 1 starts a transaction and updates one of the rows. In 
the next step, session 2 starts another transaction. In fact, it does not really matter what session starts the 
transaction first, as long as a new version of the row with  OrderId = 10  is not committed.  

  Figure 21-5.     Snapshot isolation level   and writer’s behavior (1)       

  Figure 21-6.    Snapshot isolation level and writer’s behavior (2)       
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 In either case, session 1 commits the transaction as the next step. At this point, the exclusive (X) lock 
on the row is released. If session 2 tries to read that row, it would still use the version from the version store, 
because it was the last committed version at the time that the session 2 transaction started. Nevertheless, if 
session 2 tries to modify that row, it would generate the 3960 error and roll back the transaction,       as shown in 
Figure  21-7 .  

 ■   Tip    You can implement retry logic with  TRY/CATCH  statements to handle the 3960 error if business 
requirements allow that.  

 You need to keep this behavior in mind when you are updating the data in the  SNAPSHOT  isolation level 
in a system with  volatile data.      If other sessions update the rows that you are modifying after the transaction is 
started, you would end up with this error, even if you did not access those rows before the update. One of the 
possible workarounds is using  READCOMMITTED  or other non-optimistic isolation level table hints as part of 
the  UPDATE  statement, as shown in Listing  21-1 . 

     Listing 21-1.    Using READCOMMITTED hint to prevent 3960  error         

  set transaction isolation level snapshotxs 
 begin tran 
     select count(*) from Delivery.Drivers; 

       update Delivery.Orders  with (readcommitted)  
     set Cancelled = 1 
     where OrderId = 10; 
 commit 

     SNAPSHOT  isolation levels can change the behavior of the system. Let’s assume there is a table,  dbo.
Colors , with two rows:  Black  and  White . The code that creates the table is shown in Listing  21-2 . 

     Listing 21-2.    SNAPSHOT isolation level update behavior:  Table creation        

  create table dbo.Colors 
 ( 
     Id int not null, 
     Color char(5) not null 
 ); 

   insert into dbo.Colors(Id, Color) values(1,'Black'),(2,'White') 

    Now, let’s run two sessions simultaneously. In the first session, we run the update that sets the color to 
white for the rows where the color is currently black by using the  UPDATE dbo.Colors SET Color='White' 
WHERE Color='Black'  statement. In the second session, let’s perform the opposite operation by using the 
 UPDATE dbo.Colors SET Color='Black' WHERE Color='White'  statement. 

  Figure 21-7.    Error 3960       
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 Let’s run both sessions simultaneously in  READ COMMITTED  or any other    pessimistic transaction isolation 
level. In the first step, as shown in Figure  21-8 , we have the race condition. One of the sessions places 
exclusive (X) locks on the row it updated while the other session will be blocked when trying to acquire an 
update (U) lock on the same row.            

 Once the first session commits the transaction, the exclusive (X) lock will be released. At this point, the 
row will have a  Color  value updated by the first session so that the second session updates two rows rather 
than one, as shown in Figure  21-9 . In the end, both rows in the table will be either  Black  or  White  depending 
on which session acquires the lock first.  

  Figure 21-8.    Pessimistic locking behavior: Step 1       

  Figure 21-9.    Pessimistic locking behavior: Step 2       
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 With the  SNAPSHOT  isolation level, however, this works a bit differently, as shown in Figure  21-10 . When 
the first session updates the row, it moves the old version of the row to the version store. The second session 
will read the row from there, rather than being blocked, and vice versa. As a result, the colors will be swapped.     

 You need to be aware of  RCSI  and  SNASPSHOT  isolation level behavior, especially if you have code that 
relies on blocking. One example is trigger-based implementation of referential integrity. You can have an   ON 
DELETE  trigger on         the referenced table, where you are running a  SELECT  statement, to check if there are any 
rows in another table referencing deleted rows. With an optimistic isolation level, the trigger can skip the rows 
that were inserted after the transaction started. The solution here again is using  READ COMMITTED  or other 
pessimistic isolation level table hints as part of the  SELECT  in triggers on both referenced and referencing tables. 

 ■   Note    SQL Server uses a  READ COMMITTED  isolation level when validating foreign key constraints. This 
means that you can still have blocking between writers and readers even with optimistic isolation levels, 
especially if there are no indexes on the referencing column that lead to a table scan of the referencing table.    

     Version Store Behavior 
 As already mentioned, you need to monitor how optimistic isolation levels affect  tempdb  in your system. For 
example, let’s run the  DELETE FROM Delivery.Orders WITH (NOLOCK)  statement that deletes all rows from 
the  Delivery.Orders  table. 

 The  WITH (NOLOCK)  hint forces the statement to run in the  READ UNCOMMITTED  transaction isolation 
level. Even if there are no other transactions using optimistic isolation levels, there is still a possibility that 
they will start before the  DELETE  transaction commits. As a result, SQL Server needs to maintain the version 
store, regardless of whether there are any active transactions that use optimistic isolation levels. 

  Figure 21-10.    Snapshot isolation level locking behavior       
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 Figure  21-11  shows  tempdb  free space and version store size. As you can see, as soon as the deletion 
starts, the version store grows and takes up all of the free space in  tempdb .  

 In Figure  21-12 , you can see the version store generation and cleanup rate. The generation rate 
remained more or less the same during execution, while the cleanup task cleaned the version store after the 
transaction was committed. By default, the cleanup task runs once per minute as well as before an auto-
growth event, in case  tempdb  is full.     

  Figure 21-11.    Tempdb free space and version store  size         

  Figure 21-12.    Version generation and cleanup rates       
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 There are three other performance counters related to optimistic isolation levels, as follows:

    1.      Snapshot Transactions .   This shows the total number of active snapshot 
transactions.  

    2.     Update Conflict    Ratio   .    This shows the ratio of the number of update conflicts to 
the total number of update snapshot transactions.  

    3.      Longest Transaction Running Time   .    This shows the duration in seconds of the 
oldest active transaction that is using row versioning.     

 There are a few  dynamic management views (DMVs)      that can be useful in troubleshooting various 
issues related to the version store and transactions in general. Look at the “Transaction-Related Dynamic 
Management Views and Functions” section at    http://technet.microsoft.com/en-us/library/ms178621.
aspx      for further reading.  

     Summary 
 SQL Server uses a row-versioning model with optimistic isolation levels. Queries access “old” committed 
versions of rows rather than being blocked by the incompatibility of shared (S), update (U), and exclusive (X) 
locks. There are two optimistic transaction isolation levels available:  READ COMMITTED SNAPSHOT  and  SNAPSHOT . 

  READ COMMITTED SNAPSHOT  is a database option that changes the behavior of readers in  READ COMMITTED  
mode. It does not change the behavior of writers—there is still blocking due to (U)/(U) and (U)/(X) locks’ 
incompatibility.  READ COMMITTED SNAPSHOT  does not require any code changes, and it can be used as an 
emergency technique when a system is experiencing blocking issues. 

  READ COMMITTED SNAPSHOT  provides statement-level consistency; that is, the query reads a snapshot of 
the data at the time the statement started. 

 The  SNAPSHOT  isolation level is a separate transaction isolation level that needs to be explicitly specified 
in the code. This level provides transaction-level consistency; that is, the query accesses a snapshot of the 
data at the time the transaction started. 

 With the  SNAPSHOT  isolation level, writers do not block each other, with the exception of a situation 
where both sessions are updating the same rows. Such a situation leads either to blocking or to a 3960 error. 

 While optimistic isolation levels reduce blocking, they can significantly increase  tempdb  load, especially 
in OLTP systems where data is constantly changing. They also contribute to index fragmentation by adding 
14-byte versioning tag pointers to the data rows. You should consider the tradeoffs of using them at the 
implementation stage, perform  tempdb  optimization, and monitor the system to make sure that the version 
store is not abused.     

http://technet.microsoft.com/en-us/library/ms178621.aspx
http://technet.microsoft.com/en-us/library/ms178621.aspx
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    CHAPTER 22   

 Application Locks                          

 This chapter discusses another SQL Server locking feature called  application locks , which allow you to place locks 
on an application’s resources as identified by name. One of the most common scenarios where application locks 
are beneficial is serializing access to T-SQL code in the client application, similar to critical sections and mutexes. 

     Application Locks Overview 
 Application locks allow an application to place a lock on an  application resource , which is not related to 
database objects and is identified by name only. The lock would follow the regular rules in terms of lock 
compatibility, and it can be one of the following types: shared (S), update (U), exclusive (X), intent shared 
(IS), and intent exclusive (IX). 

 An application needs to call the   sp_getapplock  stored procedure   to acquire the lock, using the 
following parameters:

    @Resource:  Specifies the name of the application lock  

   @LockMode:  Specifies the lock type  

   @LockOwner:  Should be one of two values— Transaction  or  Session— and control 
the owner (and scope) of the lock.  

   @LockTimeout:  Specifies the timeout in milliseconds. If stored procedure cannot 
acquire the lock within this interval, it would return an error.  

   @DbPrincipal:  Specifies security context (the caller needs to be a member of 
 database_principal ,  dbo , or  db_owner  roles)    

 This procedure returns a value greater than or equal to zero in the case of success, and a negative value 
in the case of failure. As with regular locks, there is the possibility of  deadlocks  ,    although this would not roll 
back the transaction of the session that is chosen as the victim, but would rather return an error code that 
indicates the deadlock condition. 

 An application needs to call the  sp_releaseapplock  stored procedure to release the application lock. 
Alternatively, in cases where the  @LockOwner  of the lock is a transaction, the lock would be automatically 
released when the transaction commits or rolls back.    This is similar to regular locks.  

     Application Locks Usage 
 There is a concept in computer science called   mutual execution .      It signifies that multiple threads or processes 
cannot execute specific code at the same time. As an example, think about a multi-threaded application in 
which threads use shared objects. In those systems, you often need to serialize the code that accesses those 
objects, preventing the race conditions where multiple threads read and update them simultaneously. 
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 Every development language has a set of  synchronization primitives   that can accomplish such tasks 
(for example, mutexes and critical sections). Application locks do the same trick when you need to serialize 
some part of the T-SQL code. 

 As an example, let’s think about a system that collects some data, saves it into the database, and has a 
set of application servers for data processing. Each application server reads the package of data, processes it, 
and finally deletes processed data from the original table. Obviously, you do not want different application 
servers processing the same rows, and serializing the data loading process is one of the available options. An 
exclusive (X) table lock would not work, because it blocks any table access, rather than just the data loading. 
Implementing serialization on the application server level is not a trivial task either. Fortunately, application 
locks could help to solve the problem. 

 Let’s assume that you have the table shown in Listing  22-1 . For simplicity’s sake, there is a column called 
 Attributes  that represents all of the row data. 

     Listing 22-1.    Table  structure     

 create table dbo.RawData 
 ( 
     ID int not null, 
     Attributes char(100) not null 
         constraint DEF_RawData_Attributes default 'Row Data', 
     ProcessingTime datetime not null 
         constraint DEF_RawData_ProcessingTime default '2000-01-01', 
     constraint PK_RawData 
     primary key clustered(ID) 
 ) 

   There are two important columns:  ID , which is the primary key, and  ProcessingTime  ,  which represents 
the time at which the row was loaded for processing. You should use UTC rather than local time to support 
situations in which application servers are residing in different time zones, as well as to prevent issues 
when the clock is adjusted to Daylight Saving Time. This column also helps to prevent other sessions from 
re-reading the data while it is still processing. It is better to avoid Boolean (bit) columns for such purposes, 
because if the application server crashes the row would remain in the table forever. With the time column, 
the system can read it again after some length of timeout. 

 Now, let’s create the stored procedure that reads the data, as shown in Listing  22-2 . 

      Listing 22-2.    Stored procedure that reads the  data     

  create proc dbo.LoadRawData(@PacketSize int) 
 as 
     set nocount, xact_abort on 

       declare 
         @EarliestProcessingTime datetime 
         ,@ResCode int 

       declare 
         @Data table 
           ( 
                 ID int not null primary key, 
                 Attributes char(100) not null 
             ) 
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       begin tran 
          exec @ResCode = sp_getapplock  
              @Resource = 'LoadRowDataLock'  
              ,@LockMode = 'Exclusive'  
              ,@LockOwner = 'Transaction'  
              ,@LockTimeout = 15000; -- 15 seconds  
         if @ResCode >= 0 -- success 
         begin 
             -- We assume that app server processes the packet within 1 minute unless crashed 
             select @EarliestProcessingTime = dateadd(minute,-1,getutcdate()); 
             ;with DataPacket(ID, Attributes, ProcessingTime) 
             as 
             ( 
                 select top (@PacketSize) ID, Attributes, ProcessingTime 
                 from dbo.RawData 
                 where ProcessingTime <= @EarliestProcessingTime 
                 order by ID 
             ) 
             update DataPacket 
             set ProcessingTime = getutcdate() 
             output inserted.ID, inserted.Attributes into @Data(ID, Attributes); 
         end 
          -- we don't need to explicitly release application lock because @LockOwner is 
         -- Transaction 
     commit 
     select ID, Attributes from @Data; 

     The stored procedure obtains an exclusive (X) application lock at the beginning of the transaction. As 
a result, all other sessions calling the stored procedure will be blocked until the transaction is committed 
and the application lock is released. It guarantees that only one session can update and read the data 
simultaneously from within the stored procedure. At the same time, other sessions can still work with the 
table (for example, insert new rows or delete processed rows). Application locks are separate from data 
locks, and sessions would not be blocked unless they were trying to obtain an application lock for the same  
@Resource  with the  sp_getapplock  call. 

 Figure  22-1  demonstrates the output from the  sys.dm_tran_locks  data management view at the time 
when two sessions were calling the  dbo.LoadRawData  stored procedure simultaneously. The session with 
 SPID=58  successfully obtained an application lock, while the other session, with  SPID=63 , is blocked. A 
 resource_type  value of  APPLICATION  indicates an application lock.  

 It is worth mentioning that, if our  goal   is to simply guarantee that multiple sessions cannot read the 
same rows simultaneously, rather than serializing the entire read process, there is another, simpler, solution. 
You can use locking table hints, as shown in Listing  22-3 . 

  Figure 22-1.    Sys.dm_tran_locks output       
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     Listing 22-3.    Serializing access to the data with table locking  hints     

 ;with DataPacket(ID, Attributes, ProcessingTime) 
 as 
 ( 
     select top (@PacketSize) ID, Attributes, ProcessingTime 
     from dbo.RawData with ( updlock, readpast ) 
     where ProcessingTime <= @EarliestProcessingTime 
     order by ID 
 ) 
 update DataPacket 
 set ProcessingTime = getutcdate() 
 output inserted.ID, inserted.Attributes into @Data(ID, Attributes) 

   The  UPDLOCK  hint forces SQL Server to use update (U) rather than shared (S) locks during  SELECT  
operations. This prevents other sessions from reading the same rows simultaneously. At the same time, the 
  READPAST  hint   forces the sessions to skip the rows with incompatible locks held rather than being blocked. 

 Although both implementations accomplish the same goal, they use different approaches. The latter 
serializes access to the same rows by using data (row level) locks. Application locks serialize access to the 
code and prevent multiple sessions from running the statement simultaneously. This can be very useful in 
cases where you want to prevent some code from being executed in parallel.  

     Summary 
 Application locks allow an application to place a lock on an application resource; it is not related to database 
objects and is identified by name. It is a useful tool that helps you to implement  mutual execution  code patterns, 
serializing access to T-SQL code similar to critical sections and mutexes in the client applications. 

 You can create application locks using the  sp_getapplock  stored procedure and release them using the 
 sp_releaseapplock  stored procedure. Application locks can have either session or transaction scope, and 
they follow regular lock compatibility rules as the data locks.     
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    CHAPTER 23   

 Schema Locks                          

 SQL Server uses two additional lock types, called  schema locks , to prevent table and metadata alteration 
during query execution. This chapter discusses schema locks in depth, along with other topics such as lock 
partitioning, which occurs in systems with more than 16 CPUs, and low-priority locks, which were introduced 
in SQL Server 2014 to reduce blocking during online index rebuilds and partition switch operations. 

     Schema Modification Locks 
 SQL Server needs to protect database metadata in order to prevent situations where the table structure is changed 
in the middle of query execution. The problem is more complicated than it seems, however. Even though 
exclusive (X) table locks can, in theory, block access to a table during an  ALTER TABLE  operation, they would not 
work in a  READ UNCOMMITTED  isolation level where readers do not acquire intent shared (IS) table locks. 

 SQL Server uses two additional lock types to address the problem:  schema stability (Sch-S)   and  schema 
modification (Sch-M)   locks.  Schema modification (Sch-M) locks      are acquired before any metadata changes 
and during the execution of a  TRUNCATE TABLE  statement. You can think about this lock type as a “super 
lock.” It is incompatible with any other lock types, and it completely blocks access to the object. 

 Similar to exclusive (X) locks, schema modification (Sch-M) locks are held until the end of the 
transaction. You need to keep this in mind when you run DDL statements within explicit transactions. 
While explicit transaction allows you to roll back all of the schema changes in case of an error, it also 
prevents any access to the affected objects until the transaction is committed. 

 ■   Important   Many database schema-comparison tools use explicit transactions in the alteration script. This could 
introduce serious blocking when you run the script on live servers while other users are accessing the system.  

 SQL Server also uses  schema modification (Sch-M  ) locks while altering the partition function. This 
can seriously affect the availability of the system when such alterations introduce data movement or scans. 
Access to the entire partitioned table is then blocked until the operation is completed. 

  Schema stability (Sch-S) lock     s are used during DML query compilation and execution. SQL Server 
acquires them regardless of the transaction isolation level, even in   READ UNCOMMITTED  mode.   Schema 
stability (Sch-S) locks are compatible with any lock type other than schema modification (Sch-M) locks. 

 SQL Server can perform some optimizations to reduce the number of locks acquired. While a schema 
stability (Sch-S) lock is always used during query compilation, SQL Server can replace it with an intent 
object lock during query execution. Let’s look at the example shown in Table  23-1 .  

 The first session starts the transaction and alters the table, acquiring a schema modification (Sch-M) 
lock there. In the next step, two other sessions run a  SELECT  statement in the  READ UNCOMMITTED  isolation 
level and a  DELETE  statement, respectively. 
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 As you can see in Figure  23-1 , sessions 2 and 3 were blocked while waiting for schema stability (Sch-S) 
locks that were required for query compilation.  

 If you run that example a second time, when queries are compiled and plans are in the cache, you 
would see a slightly different picture, as shown in Figure  23-2 .  

 The second session would still wait for the schema stability (Sch-S) lock. There are no shared (S) locks in 
the  READ UNCOMMITTED  mode, and the schema stability (Sch-S) lock is the only way to keep a schema stable 
during execution. However, the session with the  DELETE  statement would wait for an intent exclusive (IX) lock 
instead. That lock type needs to be acquired anyway, and it can replace a schema stability (Sch-S) lock because 
it is also incompatible with schema modification (Sch-M) locks and prevents the schema from being altered. 

 Mixing schema modification locks with other lock types in the same transaction increases the 
possibility of deadlocks. Let’s assume that we have two sessions. The first one starts the transaction and 
updates the row in the table. At this point, it holds an exclusive (X) lock on the row and two intent exclusive 
(IX) locks, one each on the page and the table. If another session tries to read (or update) the same row, 

   Table 23-1.    Schema Locks: Query Compilation   

 Session 1 (SPID=64)  Session 2 (SPID=65)  Session 3 (SPID=66) 

  begin tran  
  alter table Delivery.Orders  
  add Dummy int;  

  select count(*) 
fro m Delivery.Orders 

with (nolock);  

  delete from Delivery.Orders 
where OrderId = 1;  

      select request_session_id  
           ,resource_type, request_type

,request_mode, request_status  
      from  sys.dm_tran_locks  
      where resource_type = 'OBJECT';  
  rollback  

  Figure 23-1.    Schema locks during query compilation       

  Figure 23-2.    Schema locks when execution plans are cached       
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it will be blocked. At this point, it will wait for the shared (S) lock on the row and then will have the intent 
shared (IS) locks held on the page and the table. That stage is illustrated in Figure  23-3 . (Page-level intent 
locks are omitted.)  

 If at this point the first session wants to alter the table, it will need to acquire a schema modification 
(Sch-M) lock. This lock type is incompatible with any other lock type, and the session will be blocked by 
the intent shared (IS) lock held by the second session, which leads to a deadlock condition, as shown in 
Figure  23-4 .   

      Multiple Sessions and Lock Compatibility 
 One important point we have yet to cover is lock compatibility when more than two sessions are competing 
for the same resource. Let’s look at a couple of examples. 

 As you can see in Table  23-2 , the first  session   ( SPID=55 ) holds a shared (S) lock on the row. The second 
session ( SPID=54 ) is trying to acquire an exclusive (X) lock on the same row, and it is being blocked due to 
lock incompatibility. The third session ( SPID=53 ) is reading the same row in the  READ COMMITTED  transaction 
isolation level. This session has not been blocked.  

  Figure 23-3.     Deadlock      due to mixed DDL and DML statements: Step 1       

  Figure 23-4.    Deadlock due to mixed DDL and DML statements: Step  2             
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   Table 23-2.    Multiple Sessions and Lock Compatibility (READ COMMITTED Isolation Level)   

 Session 1 (SPID=55)  Session 2 (SPID=54)  Session 3 (SPID=53) 

  begin tran  
     select OrderId, Amount 
fr om Delivery.Orders 
with (repeatableread)  

    where OrderId = 1;  

  -- Blocked  
  delete from Delivery.Orders
where OrderId = 1;  

  -- Success 
select OrderId, Amount 
fr om Delivery.Orders 
with (readcommitted)  

  where OrderId = 1;  

    select
l.request_session_id as [SPID], 
l.resource_description, 
l.resource_type, l.request_mode, 
l.request_status, 
r.blocking_session_id

  fr om
sy s.dm_tran_locks l join 
sy s.dm_exec_requests r on 
l.r equest_session_id = 

r.session_id
  where l.resource_type = 'KEY';  
  rollback  

  Figure 23-5.    Lock compatibility with more than two sessions       

 Figure  23-5  illustrates the row-level locks held on the row with  OrderId=1 .   

  As you can see in Figure  23-6 , the third session did not even try to acquire the shared (S) lock on the 
row. There is already a shared (S) lock on the row held by the first session ( SPID=55) , which guarantees that 
the row has not been modified by uncommitted transactions. In a  READ COMMITTED  isolation level, a shared 
(S) lock releases immediately after a row is read. As a result, session 3 ( SPID=53)  does not need to hold its 
own shared (S) lock after reading the row, and it can rely on the lock from session 1.   
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 Let’s change our example and see what happens if the third session tries to read the row in a  REPEATABLE 
READ  isolation level, where a shared (S) lock needs to be held until the end of the transaction, as shown in 
Table  23-3 . In this case, the third session will need to acquire its own shared (S) lock, and it will be blocked 
because of an incompatible exclusive (X) lock from the second session in the queue.  

 Figure  23-7  illustrates the row-level locks requests at this point.  

  Figure 23-6.    Locks acquired during the  operation         

   Table 23-3.    Multiple Sessions and Lock Compatibility (REPEATABLE READ Isolation Level)   

 Session 1 (SPID=55)  Session 2 (SPID=54)  Session 3 (SPID=53) 

  begin tran
select OrderId, Amount
from Delivery.Orders
with (repeatableread)

where OrderId = 1;  

  -- Blocked 
delete from Delivery.Orders 
where OrderId = 1;  

  -- Blocked 
select OrderId, Amount 
from Delivery.Orders 
  with (repeatableread) 
where OrderId = 1;  

    select
l.request_session_id as [SPID], 
l.resource_description, 
l.resource_type, l.request_mode, 
l.request_status, 
r.blocking_session_id

  from
sys.dm_tran_locks l join
sys.dm_exec_requests r on
l.r equest_session_id = 

r.session_id
  where l.resource_type = 'KEY';
rollback  
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  This leads as to a very important conclusion:  In order to be granted, a lock needs to be compatible 
with all of the lock requests on that resource, granted or not . 

 It is also worth noting that the first scenario, where the third session ran in the  READ COMMITTED  isolation 
level and did not acquire a lock on the resource, can be considered an internal optimization, which you 
should not rely upon. In some cases, SQL Server still acquires another shared (S) lock on the resource in 
 READ COMMITTED  mode, even if there is another shared (S) lock already held. In such a case, the query would 
be blocked, similar to the  REPEATABLE READ  isolation level example.  

     Lock Partitioning 
 The behavior we just observed means that lock requests are serialized, and thus requests on the same object 
should not deadlock each other. Unfortunately, there is another factor that complicates matters. When a 
system has 16 or more logical processors, SQL Server starts to use a technique called   lock partitioning      . This 
term is a bit confusing, as it has nothing to do with table partitioning or lock escalation. When lock partitioning 
is enabled, SQL Server starts to store the information about locks on a per-scheduler (logical CPU) basis. In this 
mode, intent shared (IS), intent exclusive (IX), and schema stability (Sch-S) locks are acquired and stored on 
a single partition based on the CPU (scheduler) where the batch is executing. All other lock types need to be 
acquired on all of the partitions. This does not change anything from a lock compatibility standpoint. When a 
session needs to acquire an exclusive (X) table lock, for example, it would go through all of the lock partitions 
and be blocked if any partition held an incompatible intent lock on the table. 

 However, there are two consequences about which you need to be aware. First, SQL Server needs more 
memory to store lock information. Non-partitioned locks are stored separately in every partition, and if, for 
example, a system has 20 CPUs, it would maintain 20 lock structures instead of just one. All lock types that 
can be acquired on the row level are non-partitioned. 

 The second issue is more complicated. Lock partitioning increases the chances of deadlocks when 
object-level locks are involved. 

 Let’s look at an example and assume that the first session updates a row in a system that uses lock 
partitioning. If this batch is executing on CPU 2, the session acquires an intent exclusive (IX) table lock, 
which is partitioned and stored on CPU 2 only. It also acquires a row-level exclusive (X) lock, which is not 
partitioned and is stored across all CPUs. (I am omitting page-level intent locks again for simplicity’s sake.) 

   The second session is trying to alter the table, and it needs to acquire a schema modification (Sch-M) 
lock. This lock type is non-partitioned, so the session needs to acquire it on every  CPU     . It successfully 
acquires and holds the locks on CPUs 0 and 1, and it is blocked on CPU 2 due the lock’s incompatibility with 
the  intent exclusive (IX  ) lock held there. Figure  23-8  illustrates this condition.  

  Figure 23-7.    Lock compatibility with more than two sessions       

 



CHAPTER 23 ■ SCHEMA LOCKS

453

 If the first session now tries to acquire another intent table lock on CPUs 0 or 1, it would be blocked 
because the second session already holds a schema modification (Sch-M) lock there. We again have a 
deadlock, as shown in Figure  23-9 .    

 While this could happen with any object–level, non-intent lock type, one of the most common scenarios 
happens with partitioned table – related operations, such as a partition switch or a partition function 
alteration. These operations require schema modification (Sch-M) locks, which can often lead to deadlocks 
on busy systems when many sessions are accessing the same object. 

 Unfortunately, there is very little you can do about it. Lock partitioning cannot be disabled through 
documented approaches. The undocumented trace flag  T1229  does the trick; however, using undocumented 
trace flags is not recommended in production. Moreover, in those systems with a large number of CPUs, 
disabling lock partitioning can lead to performance issues resulting from excessive serialization during 
lock structures management. 

 With lock partitioning in place, the best option that you have is to implement retry logic using  TRY/
CATCH  around DDL statements. A  SET DEADLOCK_PRIORITY  boost could also help reduce the chance that a 
DDL session will be chosen as the deadlock victim. 

  Figure 23-8.     Deadlock      due to lock partitioning: Step 1       

  Figure 23-9.    Deadlock due to lock partitioning: Step 2       

 

 



CHAPTER 23 ■ SCHEMA LOCKS

454

 In cases where you have a dedicated data access tier and full control around it, you can also use 
application locks, which are not subject to lock partitioning, to serialize access to the table. With such an 
implementation, all DML queries would need to acquire shared (S) application locks, while DDL code would 
use exclusive (X) application locks. Obviously, this method introduces a fair amount of extra work for the 
implementation. 

 Information about lock partitions is available in the  sys.dm_tran_locks  DMV via the  resource_lock_
partition  column, in the  resource_2  field of the  lock_acquired  Extended Event, and in the  BigIntData1  
column in the SQL Trace  Locks  event. It is also available in the deadlock graph.  

     Low-Priority Locks 
 SQL Server  2014 introduced the concept of   low-priority locks   ,    which can improve concurrency in the system 
during online index rebuilds and partition switch operations. You already know that a partition switch 
acquires a schema modification (Sch-M) lock. The same is also true with an online index rebuild. Even 
though it holds an intent shared (IS) table lock during the rebuild process, it needs to acquire a shared (S) 
table lock at the beginning and a schema modification (Sch-M) lock in the final phase of execution. Both 
locks are held for a very short time; however, they can introduce blocking issues in busy OLTP environments. 

 Consider a situation where you start an online index rebuild at a time when you have another active 
transaction modifying data in a table. That initial transaction will hold an intent exclusive (IX) lock on the 
table, which prevents the online index rebuild from acquiring a shared (S) table lock. The lock request will 
wait in the queue and block all other transactions that want to modify data in the table, and it still needs to 
acquire an intent exclusive (IX) lock there. Figure  23-10  illustrates this situation.  

 This blocking condition clears only after the first transaction is completed and the online index rebuild 
acquires and releases a shared (S) table lock. A similar blocking condition could occur in the final stage of 
an online index rebuild when it needs to acquire a schema modification (Sch-M) lock to replace an index 
reference in the metadata. Both readers and writers will be blocked while the index rebuild waits for the 
schema modification (Sch-M) lock to be granted. 

 While this behavior occurs in every version of  SQL Server  , you can mitigate blocking issues in SQL 
Server 2014 and 2016 by using low-priority locks. Low-priority locks do not block other sessions that want to 
acquire incompatible lock types while they are waiting for such locks to be acquired. Conceptually, you can 
think of low-priority locks as staying in a different locking queue than regular locks. Figure  23-11  illustrates 
this concept.  

  Figure 23-10.    Blocking during the initial stage of an index rebuild       
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 ■   Important   It is essential to remember that as soon as a low-priority lock is acquired it will then behave the 
same as a regular lock, preventing other sessions from acquiring incompatible locks on the resource.  

 Figure  23-12  shows the output of the query from Listing 18-1 in Chapter   18    . It demonstrates how low-
priority locks are shown in  the    sys.dm_tran_locks  data management view output. It is worth noting that the 
view does not provide the wait time of those locks.  

 You can specify lock priority with a   WAIT_AT_LOW_PRIORITY    clause in the  ALTER INDEX  and  ALTER TABLE  
statements, as shown in Listing  23-1 . 

    Listing 23-1.    Specifying lock priority   

  alter index PK_Customers on Delivery.Customers rebuild 
 with 
 ( 
     online=on 
     ( 
          wait_at_low_priority ( max_duration=10 minutes, abort_after_wait=blockers ) 
     ) 
 ); 

   alter table Delivery.Orders 
 switch partition 1 to Delivery.OrdersTmp 
 with 
 ( 
      wait_at_low_priority  ( max_duration=60 minutes, abort_after_wait=self ) 
 ) 

  Figure 23-11.    Low-priority locks       

  Figure 23-12.    Low-priority locks in the  sys.dm_tran_locks  data management view       
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    As you can see,  WAIT_AT_LOW_PRIORITY  has two options. The  MAX_   DURATION    setting specifies the 
lock wait time in minutes. The   ABORT_AFTER_WAIT  setting   defines the session behavior if a lock cannot be 
obtained within the specified time limit. The possible values are as follows:

    NONE : The low-priority lock is converted to a regular lock. It behaves as a 
regular lock does after conversion. It will block sessions, which want to acquire 
incompatible lock types while waiting for the lock to be acquired. The session 
continues to wait until the lock is acquired.  

   SELF : The operation is aborted if a lock cannot be granted within the time 
specified by the  MAX_DURATION  setting.  

   BLOCKERS : All sessions that held locks on the resource are aborted, and the 
session that is waiting for a low-priority lock is able to acquire it.    

 ■   Note    Omitting the  WAIT_AT_LOW_PRIORITY  clause works the same way as specifying  WAIT_AT_LOW_
PRIORITY(MAX_DURATION=0 MINUTES, ABORT_AFTER_WAIT=NONE) .  

 Very active OLTP tables always have a large number of concurrent sessions accessing them. Therefore, 
there is always the possibility that a session will not be able to acquire a low-priority lock even with a 
 prolonged    MAX_DURATION  specified. You may consider using the  ABORT_AFTER_WAIT=BLOCKERS  option, which 
will allow the operation to complete, especially when client applications have proper exception handling 
and retry logic implemented.   

     Summary 
 SQL Server uses schema locks to protect metadata from alteration during query compilation and execution. 
There are two types of schema locks in SQL Server: schema stability (Sch-S) and schema modification 
(Sch-M) locks. 

 Schema stability (Sch-S) locks are acquired on objects referenced by queries during query compilation 
and execution. In some cases, however, SQL Server can replace schema stability (Sch-S) locks with intent 
table locks, which also protect the table schema. Schema stability (Sch-S) locks are compatible with any 
other lock type, with the exception of schema modification (Sch-M) locks. 

 Schema modification (Sch-M) locks are incompatible with any other lock type. SQL Server uses them 
during DDL operations. If a DDL operation needs to scan or modify the data (for example, adding a trusted 
foreign key constraint to the table or altering a partition function on a non-empty partition), the schema 
modification (Sch-M) lock would be held for the duration of the operation. This can take a long time on large 
tables and can cause severe blocking issues in the system. You need to keep this in mind when designing 
systems with DDL and DML operations running in parallel. 

 SQL Server uses lock partitioning on systems that have 16 or more logical processors. With lock 
partitioning, SQL Server maintains separate lock structures on a per-processor basis. Intent and schema 
stability locks are held within a single lock partition, while other lock types are acquired and held across all 
partitions. This increases the amount of memory required to store lock information, and it can increase the 
chances of deadlocks occurring when DDL and DML statements are running in parallel. 

 SQL Server 2014 and 2016 support low-priority locks, which can be used to reduce blocking during online 
index rebuild and partition switch operations. These locks do not block other sessions that are requesting 
incompatible lock types at the time when the low-priority lock is waiting for the lock to be acquired.     
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    CHAPTER 24   

 Designing Transaction Strategies                          

 This rather short chapter provides a set of generic guidelines for how you can design transaction strategies 
and improve concurrency in the systems. 

     Considerations and Code Patterns 
 Blocking occurs when multiple sessions compete for the same set of resources. Sessions are trying to acquire 
incompatible locks on them, which leads to lock collision and blocking. 

 As you already know, SQL Server acquires the locks when it  processes  data. It does not matter how many 
rows need to be modified or returned to the client. What matters is how many rows SQL Server accesses 
during the statement execution. It is entirely possible that a query that selected or updated just a single row 
acquired thousands or even millions of locks because of an  index scan  operator in the execution plan. 

 Proper query optimization and index tuning reduce the number of rows SQL Server needs to access 
during query executions. This, in turn, reduces the number of locks to acquire and the chance that lock 
collisions will occur. 

 ■   Tip    Optimize the queries. It will help to improve concurrency, performance, and user experience in the 
system.  

 Another method for reducing the chance of lock collision is reducing the length of time locks are held. 
Exclusive (X) locks are always held until the end of the transaction. The same is true for shared (S) locks in 
the  REPEATABLE READ  and  SERIALIZABLE  isolation levels. The longer locks are held, the bigger the chance is 
that lock collision and blocking will occur. 

 You need to make transactions as short as possible and avoid any long-time operations or interactions 
with users through the UI while a transaction is active. You also need to be careful when dealing with external 
resources using CLR or linked servers. For example, when a linked server is down, it can take a long time 
before a connection timeout occurs, and you want to avoid a situation where locks are kept all that time. 

 ■   Tip    Make transactions as short as possible.  

 Update the data as close to the end of the transaction as possible. This reduces the time that exclusive 
(X) locks are held. In some cases, it might make sense to use temporary tables as the staging place, inserting 
data there and updating the actual tables at the very end of the transaction. 
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 One particular instance when this technique is useful is an  UPDATE  statement that is impossible or 
unpractical to optimize. Consider a situation where the statement scans a large number of rows but updates 
just a handful of them. You can change the code, storing the clustered index key values of the rows that need 
to be updated in a temporary table, later running an  UPDATE  based on those collected key values. 

 Listing  24-1  shows an example of a statement that could lead to a  clustered index scan  during execution. 
SQL Server will need to acquire an update (U) lock on every row of the table. 

     Listing 24-1.    Reducing blocking with temporary table: Original statement   

 update dbo. Orders      
 set 
     Cancelled = 1 
 where 
     (PendingCancellation = 1) or 
     (Paid = 0 and OrderDate < @MinUnpaidDate) or 
     (Status = 'BackOrdered' and EstimatedStockDate > @StockDate) 

   You can change the code to be similar to that shown in Listing  24-2 . The  SELECT  statement either 
acquires  shared (S) locks      or does not acquire row-level locks at all, depending on the isolation level. The 
 UPDATE  statement is optimized, and it acquires just a handful of update (U) and exclusive (X) locks.     

     Listing 24-2.    Reducing blocking with a temporary table: Using a temporary table to stage key values for the 
update   

  create table #OrdersToBeCancelled 
 ( OrderId int not null primary key ); 

   insert into #OrdersToBeCancelled(OrderId) 
     select OrderId 
     from dbo.Orders 
     where 
         (PendingCancellation = 1) or 
         (Paid = 0 and OrderDate < @MinUnpaidDate) or 
         (Status = 'BackOrdered' and EstimatedStockDate > @StockDate); 

   update dbo.Orders 
 set Cancelled = 1 
 where OrderId in (select OrderId from #OrdersToBeCancelled); 

    You need to remember that while this approach helps to reduce blocking, creating and populating 
temporary tables can introduce significant I/O overhead, especially when there is a large amount of data 
involved. This method should be considered as the last resort; creating the correct indexes is the better 
option in most cases. 

 ■   Tip    Modify data as close to the end of the transaction as possible.  

 You should avoid updating a row multiple times within the same transaction, especially when  UPDATE  
statements modify data in the different nonclustered indexes. Remember that SQL Server acquires locks 
on a per-index basis when index rows are updated. Having multiple updates increases the chances of a 
deadlock occurring when other sessions are accessing the updated rows. 
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 ■   Tip    Do not update data rows multiple times in a single transaction.  

 You need to understand whether lock escalation affects your system, especially in cases of OLTP 
workload. You can monitor object-level blocking conditions and locking waits and correlate it with 
 lock escalation  Extended and Trace Events. Remember that lock escalation helps to reduce memory 
consumption and improve performance in the system. You should analyze why lock escalation occurs and 
how it affects the system before making any decisions. In many cases, it is better to change the code and 
workflows rather than disable it. 

 ■   Tip    Monitor lock escalation in the system.  

 You should avoid mixing statements that can lead to row- and object-level locks in the same transaction 
in general, and mixing DML and DDL statements in particular. This pattern can lead to deadlock conditions 
as well as to blocking between intent and full object-level locks. This is especially important when servers 
have 16 or more logical CPUs, which enables lock partitioning. 

 ■   Tip    Do not mix DDL and DML statements in one transaction.  

 You need to analyze the root cause of deadlocks if you have them in your system. In most cases, query 
optimization and code re-factoring would help to address them. However, in some cases, especially if lock 
partitioning is involved, you can consider implementing retry logic around critical use cases in the system. 

 ■   Tip    Find the root cause of deadlocks. Implement retry logic if query optimization and code re-factoring do 
not address them.   

     Choosing Transaction Isolation Level 
 Choosing the right  transaction isolation level   is not a trivial task. You should find the right balance between 
blocking and  tempdb  overhead, and between the required level of data consistency and the isolation in 
the system. The system must provide reliable data to the customers, and you should not compromise by 
choosing an isolation level that cannot guarantee it just because you want to reduce blocking. 

 You should choose the  minimally required  isolation level that provides the required data consistency. 
In many cases, the default  READ COMMITTED  isolation level is  good enough , especially if queries are optimized 
and do not perform unnecessary scans. Avoid using  REPEATABLE READ  or  SERIALIZABLE  isolation levels in 
OLTP systems unless you have legitimate reasons to do so. These isolation levels hold shared (S) locks until 
the end of the transaction, which can lead to severe blocking issues with volatile data. They can also trigger 
shared (S) lock escalation during the scans. 

 As a general rule, it is better to avoid the  READ UNCOMMITTED  isolation level. Even though many database 
professionals are trying to reduce blocking by switching to this isolation level, either explicitly or with  NOLOCK  
hints, this is rarely the right choice. First,  READ UNCOMMITTED  does not address the blocking issues introduced 
by writers. They still acquire update (U) locks during scans. Most important, however, is that by using  READ 
UNCOMMITTED , you are stating that data consistency is not required at all, and that it is not only about reading 
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uncommitted data. SQL Server can choose execution plans that use  allocation map scans  on large tables, 
which can lead to missing rows and duplicated reads resulting from page splits, especially in busy systems 
with volatile data. 

 In a majority of the cases, optimistic isolation levels, especially  READ COMMITTED SNAPSHOT,  are a better 
choice than  READ UNCOMMITTED ,  REPEATABLE READ , or  SERIALIZABLE , even in OLTP systems. It provides 
statement-level data consistency without readers/writers blocking involved. Historically, I have been very 
cautious  suggesting    RCSI  in OLTP systems due to its  tempdb  overhead; however, nowadays it becomes a 
lesser issue with modern hardware and solid state-based disk arrays. You should still factor additional index 
fragmentation and  tempdb  overhead into your analysis though. It is also worth noting that  READ COMMITTED 
SNAPSHOT  is enabled in Microsoft Azure SQL Databases. 

 As a general rule, I recommend you do not use the  SNAPSHOT  isolation level in OLTP systems due to its 
excessive  tempdb  usage unless transaction-level consistency is absolutely required. It could be a good choice 
for data warehouse and reporting systems where data is static most of the time. 

 You should be very careful with transaction management if you enable the  SNAPSHOT  isolation level in 
the database. Bugs and uncommitted transactions can prevent  tempdb  version store clean up and lead to 
the excessive growth of  tempdb  data files. It can happen even if you do not use  SNAPSHOT  transactions in the 
system, as long as the  ALLOW_SNAPSHOT_ISOLATION  database setting is enabled. 

 Optimistic isolation levels, however, often  mask  poorly optimized queries in the system. Even though 
those queries contribute to the bad system performance, they are not involved in the blocking conditions 
and are often ignored. It is not uncommon to see cases where people  solve  the readers/writers blocking by 
enabling  READ COMMITTED SNAPSHOT  and do not address the root cause of the blocking afterward. You should 
remember it and perform query optimization regardless of whether you have blocking in the system or not. 

 For data warehouse systems, transaction strategy greatly depends on how data is updated. For static 
read-only data, any isolation level will work, because readers do not block other readers. You can even 
switch the database to read-only mode so as to reduce the locking overhead. Otherwise, optimistic isolation 
levels are a good choice. They provide either transaction- or statement-level consistency for report queries, 
and they eliminate possible blocking with the writers involved. 

 Last but not least, it is completely normal to use different isolation levels in a system and even within 
the same transaction. You need to analyze the use cases and choose the right transaction strategy on case-
by-case basis.  

     Summary 
 Query optimization helps to improve concurrency in a majority of the cases. Properly optimized queries 
acquire fewer locks, which reduces the chance of lock collisions and blocking in the system. You should 
also keep transactions as short as possible and modify data close to the end of the transaction to reduce the 
length of time locks are held. 

 Business requirements should dictate the data consistency and isolation rules in the system. You should 
choose the  minimally required  isolation level that satisfies them. Do not use  READ UNCOMMITTED  unless it is 
absolutely necessary in order to avoid the consistency issues it introduces. 

 Optimistic isolation levels could be acceptable even with an OLTP workload as long as the system can 
handle additional  tempdb  overhead. It is better to use  READ COMMITTED SNAPSHOT  unless transactional-level 
consistency is required. 

 Every system is unique, and it is impossible to provide generic advice that can be applied everywhere. 
However, a good understanding of SQL Server concurrency models will help you to design the right 
transaction strategies and address any blocking issues in the systems.     



   PART IV 

   Query Life Cycle 
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    CHAPTER 25   

 Query Optimization and Execution                          

  SQL Server Query Processor   is perhaps the least visible and least well-known part of SQL Server. It does not 
expose a large set of public features, and it allows very limited control in a documented and supported way. 
It accepts a query as input, compiles and optimizes it to generate the execution plan, and finally executes it. 

 This chapter discusses the query life cycle and provides a high-level overview of the query optimization 
process. It explains how SQL Server executes queries, discusses several commonly used operators, and 
addresses query and table hints that you can use to fine-tune some aspects of query optimization. 

     Query Life Cycle 
 Every query submitted to SQL Server goes through a process of compilation and execution. That process 
consists of the steps shown in Figure  25-1 .  

  Figure 25-1.    Query life cycle       

 When SQL Server receives a query, it goes through the  parsing  stage. SQL Server compiles and validates 
the query’s syntax and transforms it into a structure called a   logical query tree       .  That tree consists of various 
 logical  relational algebraic operators, such as inner and outer joins, aggregations, and others. 

 In the next step, called   binding   , SQL Server binds logical tree nodes to the actual database objects, 
converting the logical tree to a  bound tree . It validates that all objects referenced in the query are valid, that 
they exist in the database, and that all columns are correct. Finally, SQL Server loads various metadata 
properties associated with tables and columns; for example,  CHECK  and  NOT NULL  constraints. 

 Query Optimizer uses the bound tree as input during the  optimization  stage when the actual   execution 
plan    is generated. The execution plan is also a tree-like structure and is comprised of  physical  operators; it is 
used by SQL Server to execute a query. Physical operators perform the actual work during query execution, 
and they are different from logical operators. For example, a logical inner join can be transformed to one of 
three physical joins, such as a nested loop, merge, or hash join. 

 One of the key elements that you need to remember is that Query Optimizer is not looking for the  best 
execution plan  that exists for the query. Query optimization is a complex and expensive process, and it is 
often impossible to evaluate all possible execution strategies. 
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 For example, inner joins are commutative, and thus the result of  (A join B)  is equal to result of 
 (B join A) . Therefore, there are two possible ways that SQL Server can perform a two-table join; six ways 
that it can do three-table joins, and  N! , which is  (N * (N - 1) * (N - 2) * ..),  combinations for an 
 N -table join. For a ten-table join, the number of possible combinations is 3,628,800, which is impossible to 
evaluate in a reasonable time period. Moreover, there are multiple physical join operators, which increases 
that number even further. 

 Optimization time is another important factor. For example, it is impractical to spend an extra ten 
seconds on optimization only to find an execution plan that saves just a fraction of a second during execution. 

 ■   Important   The goal of query optimization is to find a  good enough  execution plan,  quickly enough .  

 SQL is a declarative language in which you should focus on what  needs to be done  rather than  how  to 
achieve it .  As a general rule, you should not expect that the way you write a query will affect the execution 
plan. SQL Server applies various heuristics that transform the query internally by removing contradicting 
parts, changing join orders, and performing other re-factoring steps. 

 As with other general rules, they are correct only up to a point. It is often possible to improve the 
performance of a query by re-factoring and simplifying it, removing correlated subqueries, or splitting a complex 
query down into a few simple ones. As you know, cardinality estimation errors quickly progress and grow 
through the execution plan, which can lead to suboptimal performance, especially with very complex queries. 

 Moreover, you should not expect an execution plan for a particular query to always be the same 
and to rely on it as such. Query Optimizer algorithms change with every version of  SQL Server  , and even 
with service pack releases. Even when this is not the case, statistics and data distribution changes lead to 
recompilation and potentially different execution plans. 

 You can control the execution plan’s shape with query and table hints and plan guides. We will discuss 
hints in more detail later in this chapter and plan guides in the following chapter. 

 In the end, having the correct indexes and an efficient database schema is the best way to achieve 
predictability and good system performance. They simplify execution plans and make queries more efficient.  

     Query Optimization 
 The  query optimization process   consists of multiple phases, as shown in Figure  25-2 .  

  Figure 25-2.     Query optimization phases         

 During the  simplification  stage, SQL Server transforms the query tree in a way that simplifies the 
optimization process further. Query Optimizer removes contradictions in the queries, performs computed 
column matching, and works with joins, picking an initial join order based on the statistics and cardinality 
data. 
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 Listing  25-1  provides an example of removing contradicting parts in a query. Both tables,  dbo.
NegativeNumbers  and  dbo.PositiveNumbers , have  CHECK  constraints that dictate the domain scope for the 
values. SQL Server can detect domain-value contradictions, and it understands that an inner join operation 
will not return any data. It generates the execution plan, which does not access tables at all, as shown in 
Figure  25-3 .  

     Listing 25-1.    Removing contradicting parts from the execution plan   

  create table dbo.PositiveNumbers 
 ( 
     PositiveNumber int not null 
         constraint CHK_PositiveNumbers check (PositiveNumber > 0) 
 ); 

   create table dbo.NegativeNumbers 
 ( 
     NegativeNumber int not null 
         constraint CHK_NegativeNumbers check (NegativeNumber < 0) 
 ); 

   select * 
 from dbo.PositiveNumbers e join dbo.NegativeNumbers o on 
     e.PositiveNumber = o.NegativeNumber 

  Figure 25-3.    Execution plan for the query       

    After the simplification phase is completed, Query Optimizer checks if there is a  trivial plan  available 
for the query. This happens either when a query has only one plan available to execute or when the choice of 
plan is obvious. Listing  25-2  shows such an example. 

     Listing 25-2.    Query with trivial execution plan   

  create table dbo.Data 
 ( 
     ID int not null, 
     Col1 int not null, 
     Col2 int not null, 
     constraint PK_Data primary key clustered(ID) 
 ); 

   select ID, Col1, Col2 from dbo.Data where ID = 11111; 

    SQL Server generates the trivial execution plan, which uses a  clustered index seek  operator, as shown in 
Figure  25-4 .  
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 Even though there are technically two different execution plan choices, clustered index seek and 
 clustered index scan , Query Optimizer does not consider the scan option because it is clearly more 
expensive. Moreover, adding nonclustered indexes on  Col1  or  Col2  would introduce additional, non-
optimal execution plan choices. Nevertheless, Query Optimizer is still able to detect it and generates a trivial 
execution plan instead. You can check if an execution plan is trivial in the properties of the root operator or 
in the XML representation of the plan. 

 If a trivial plan was not found, SQL Server checks whether any auto-updated statistics are outdated and 
triggers a statistics update if needed. If the statistics need to be updated synchronously, which is the default 
option, Query Optimizer waits until the statistics update is finished. Otherwise, an optimization is done 
based on old, outdated statistics while statistics are updated asynchronously in another thread. After that, 
SQL Server starts a cost-based optimization, which includes a few different stages. Each stage explores more 
rules, and, as a consequence, it can take a longer time to execute.

    Stage 0  is called   Transaction Processing      , and it is targeted at scenarios that have 
an OLTP workload with multiple (at least three) table joins selecting a relatively 
small number of rows using indexes. This stage usually uses nested loop joins, 
although in some cases it may consider a hash join instead. Only a limited 
number of optimization rules are explored during this stage.  

   Stage 1  is called   Quick Plan   , and it applies most of the optimization rules 
available in SQL Server. It may be run twice, looking for serial and parallel 
execution plans, if needed. Most queries in SQL Server find the execution plan 
during this stage.  

   Stage 2  is called   Full Optimization   , and it performs the most comprehensive 
and, therefore, longest-running analysis, exploring all of the optimization rules 
available.    

 Each stage has its own entry and termination conditions. For example, Stage 0 requires a query to have 
at least three-table joins; otherwise, it will not be executed. Alternatively, if the cost of the plan exceeds 
some threshold during optimization, the stage is terminated and Query Optimizer moves on to the next, 
more comprehensive, stage. Optimization can be completed at any stage, as soon as a  “good enough”  plan is 
found. 

 You can examine the details of the optimization process by using undocumented trace flag  T8675 . 
The usual disclaimer about undocumented trace flags applies here: be careful, and do not use them in 
production. You will also need to use trace flag  T3604  to redirect output to the console. 

 Figure  25-5  illustrates the  optimization statistics   for one of the queries. As you can see, SQL Server 
performed Stage 0 and Stage 1 optimizations, generating the execution plan after Stage 1.  

  Figure 25-4.     Trivial execution plan            
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 ■   Note    The documented data management view (DMV)  sys.dm_exec_query_optimizer_info  allows you 
to retrieve Query Optimizer–related statistics. While this DMV provides a great overview in the server scope, 
it does not allow you to filter information for the specific session, which makes it very hard to use in busy 
environments. You can get more information about this DMV at    http://technet.microsoft.com/en-us/
library/ms175002.aspx     .  

 Finally, when Query Optimizer is satisfied with the optimization results, it generates the execution plan. 
 As you can guess, SQL Server analyzes and explores a large number of alternative execution strategies 

during the query optimization stage. Those alternatives, which are part of the query tree, are stored in the 
part of Query Optimizer called   Memo   . SQL Server performs a cost estimation for every group in Memo, 
which allows it to locate the least expensive alternative when generating an execution plan. 

 The cost calculation is based on a complex mathematical model that considers various factors, such as 
cardinality, row size, expected memory usage, number of sequential and random I/O operations, parallelism 
overhead, and others. The costing numbers and plan cost are meaningless by themselves; they should be 
used for comparison only. 

 There are quite a few assumptions in the costing model that help to make it more consistent, as follows:

    Random I/O   is anticipated to be evenly distributed across the database files. For 
example, if an execution plan requires performing ten  RID lookup  operations 
in a heap table, the costing model would expect that ten random physical I/O 
operations would be required. In reality, the data might reside on the same data 
pages, which could lead to a situation where Query Optimizer overcosts some 
operators in the plan.  

  Query Optimizer expects all queries to start with cold cache and perform 
physical I/O when accessing the data. This may be incorrect in production 
systems where data pages are often cached in the buffer pool. In some rare 
cases, this assumption could lead to a situation where SQL Server chooses a less 
efficient plan that requires less I/O at the cost of higher CPU or memory usage.  

   Query Optimizer   assumes that sequential I/O performance is significantly 
faster than random I/O performance. While this is usually true for magnetic 
hard drives, it is not exactly the case with solid-state media, where random I/O 
performance is much closer to sequential I/O, as compared to magnetic hard 

  Figure 25-5.     Optimization statistics   returned by trace flag 8675       
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drives. SQL Server does not take drive type into account and overcosts random 
I/O operations in the case of solid-state-based disk arrays. It can generate 
execution plans with a clustered index scan instead of a  nonclustered index seek  
and  key lookup , which could be less efficient with SSD-based disk subsystems 
for some of the queries. It is also worth noting that the same thing could happen 
with modern high-performance disk arrays with a large number of drives and 
very good random I/O performance.    

 With all that being said, the costing model in SQL Server  generally  produces correct and consistent 
results. However, as with any mathematical model, the quality of the output highly depends on the quality 
of the input data. For example, it is impossible to provide correct cost estimations when the cardinality 
estimations are incorrect due to outdated statistics. Keeping statistics up to date helps SQL Server generate 
efficient execution plans.  

     Query Execution 
 SQL Server generates an execution plan in the final stage of query optimization. The execution plan is then 
passed to the  query executor , which, as you can guess by its name, executes the query. 

 The  execution plan   is a tree-like structure that includes a set of  operators , sometimes called  iterators . 
Typically, SQL Server uses a  row-based  execution model where each operator generates a single row by 
requesting the row from one or more children and passing the generated row to its parent. 

 ■   Note    SQL Server 2012 introduced a new batch mode execution model, which is used with some data 
warehouse queries. We will talk about this execution model in Part VIII of this book.  

 Let’s look at an example that illustrates a row-based execution model, assuming that you have the query 
shown in Listing  25-3 . 

      Listing 25-3.    Row-based execution: Sample query   

 select top 10 c.CustomerId, c.Name, a.Street, a.City, a.State, a.ZipCode 
 from dbo.Customers c join dbo.Addresses a on 
     c.PrimaryAddressId = a.AddressId 
 order by c.Name 

   This query would produce the execution plan shown in Figure  25-6 . SQL Server selects all of the data 
from the  dbo.Customers  table, sorts it based on the  Name  column, getting the first ten rows, joins it with the 
 dbo.Addresses  data, and returns it to the client.  
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 Let’s look at how SQL Server executes such a query on an operator-by-operator basis. The  SELECT  
operator, which is the parent operator in the execution plan, calls the   GetRow()  method   of the  Top  operator. 
The  Top  operator, in turn, calls the  GetRow()  method of the  nested loop join . 

 As you know, a join needs to get data from two different sources to produce output. As a first step, it calls 
the   GetRow()  method   of the  Sort  operator. In order to do sorting, SQL Server needs to read all of the rows first; 
therefore, the  Sort  operator calls the  GetRow()  method of the   Clustered Index Scan    operator multiple times, 
accumulating the results. The  Scan  operator, which is the lowest operator in the execution plan tree, returns 
one row from the  dbo.Customers  table per call. Figure  25-6  shows just two  GetRow()  calls for simplicity’s sake. 

 When all of the data from the  dbo.Customers  table has been read, the  Sort  operator performs the sorting 
and returns the first row back to the  Join  operator, which then calls the   GetRow()  method   of the  Clustered 
Index Seek  operator on the  dbo.Addresses  table. If there is a match, the  Join  operator concatenates data from 
both inputs and passes the resulting row back to the  Top  operator, which, in turn, passes it to  SELECT . 

 The   SELECT  operator   returns a row to the client and requests the next row by calling the  GetRow()  
method of the  Top  operator again. The process repeats until the first ten rows are selected. It is worth 
mentioning that the operators kept their state, and the  Sort  operator preserves the sorted data and can return 
all subsequent rows without accessing the   Clustered Index Scan  operator   again, as shown in Figure  25-7 .  

  Figure 25-6.    Row-based model: Getting the first row in the output       

  Figure 25-7.    Row-based model: Getting the subsequent row       

 ■   Note    There are two other methods,  Open()  and  Close() , called for each operator during execution. The 
 Open()  method initializes the operator before the first  GetRow()  call. The  Close()  method performs clean up at 
the end of the execution.  
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 As you probably noticed, there are two kinds of operators. The first group, called   non-blocking 
operators   , consumes the row from the children and produces the output immediately. The second group, 
called  blocking operators , must consume all rows from the children before producing the output. In our 
example, the  Sort  operator is the only blocking operator, as it consumes all of the  dbo.Customers  table’s rows 
before sorting. Another common blocking operator,  Hash , is used during hash joins and aggregations, which 
we will discuss later in this chapter. 

 Even though blocking operators are completely normal and cannot be avoided in many cases, there 
are a couple of issues associated with them. The first issue is memory usage. Every operator, blocking or 
non-blocking, requires some memory to execute; however, blocking operators can use a large amount of 
memory when they accumulate and process rows. That memory is called a   memory grant      , and it needs to 
be allocated to the queries before they start execution. We will discuss this process in detail in Chapter   28    , 
“System Troubleshooting.” 

 Correct memory grant size estimation is very important. Overestimation and underestimation both 
negatively affect the system. Overestimation wastes server memory, and it can increase how long a query 
waits for a memory grant. Underestimation, on the other hand, can force SQL Server to perform sorting or 
hashing operations in  tempdb  rather than in memory, which is significantly slower. This condition is called 
  tempdb spill   . 

  Memory estimation   for an operator depends on the cardinality and average row size estimation. Either 
error leads to an incorrect memory grant request. The typical sources of cardinality estimation errors are 
inaccurate statistics, non-SARGable predicates and functions in  where  clauses and join conditions, and 
Query Optimizer model limitations. They can often be addressed by statistics maintenance and query 
simplification and optimization. However, dealing with row-size estimation errors is a bit trickier. 

 SQL Server knows the size of the fixed-length data portion of the row. For variable-length columns, 
however, it estimates that data populates, on average, 50 percent of the defined column size. For example, if 
you had two columns defined as  varchar(100)  and  nvarchar(200) , SQL Server would estimate that every 
data row stores 50 and 200 bytes in those columns, respectively. For  (n)varchar(max)  and  varbinary(max)  
columns, SQL Server uses 4,000 bytes as the base figure. 

 ■   Tip    You can improve row-size estimation by defining variable-length columns to be two times larger than 
the average size of the data stored there.  

 Let’s look at an example and create two tables, as shown in Listing  25-4 . 

     Listing 25-4.    Variable-length columns and memory grant: Table creation   

  create table dbo.Data1 
 ( 
     ID int not null, 
     Value varchar(100) not null, 
     constraint PK_Data1 primary key clustered(ID) 
 ); 

   create table dbo.Data2 
 ( 
     ID int not null, 
     Value varchar(200) not null, 
     constraint PK_Data2 primary key clustered(ID) 
 ); 

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
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   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Data1(ID, Value) 
     select Num, replicate('0',100) from Nums; 

   insert into dbo.Data2(ID, Value) 
     select ID, Value from dbo.Data1; 

    In the next step, let’s run two identical queries against those tables, as shown in Listing  25-5 . I am using 
the variable as a way to discard the result set. 

     Listing 25-5.    Variable-length columns and memory grant: Queries   

  declare 
         @V varchar(200) 

   select @V = Value from dbo.Data1 where ID < 42000 order by Value, ID desc; 
 select @V = Value from dbo.Data2 where ID < 42000 order by Value, ID desc; 

    As you can see in Figure  25-8 , an incorrect memory grant forced SQL Server to spill data to  tempdb , 
which increased the execution time.  

  Figure 25-8.    Variable-length columns and memory grant: Execution plan       

 ■   Tip    You can monitor data spills to  tempdb  with Sort and Hash Warnings in SQL Trace and Extended Events. 
You can also specify the minimum and maximum sizes of the memory grant with the  MIN_GRANT_PERCENT  and 
 MAX_GRANT_PERCENT  query hints if you are using SQL Server 2012 SP3, SQL Server 2014 SP2, or SQL Server 
2016.  
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  Blocking operators   can negatively affect the performance of queries when they are present in parallel 
sections of the execution plan. The   Parallelism  operator  , which merges data from parallel executing threads, 
would wait until all threads were finished with their execution. Thus, the execution time would depend on 
the slowest thread. Blocking operators can contribute to delays, especially in the case of  tempdb  spills. Such 
conditions often happen when a parallel thread workload has been unevenly distributed due to cardinality 
estimation errors. 

 ■   Tip    You can see the distribution of workload between threads when you open the Properties window for 
the operators in the parallel section of the graphical execution plan in SQL Server Management Studio.  

 In some cases, adding indexes can remove blocking operators from execution plans. For example, if 
you added the index  CREATE INDEX IDX_Customers_Name ON dbo.Customers(Name) , SQL Server would not 
need to sort customer data anymore, and the query from Listing  25-3  would end up with an execution plan 
without blocking operators, as shown in Figure  25-9 .  

  Figure 25-9.    Execution plan without blocking operators       

 There are three ways in which you can analyze execution plans in SQL Server Management Studio. 
The most common method is graphical execution plan representation, which can be enabled through the 
  Include Actual Execution     Plan  menu item in the  Query  menu. A graphical execution plan represents an 
execution plan tree rotated 90 degrees counter-clockwise. The top root element of the tree is the leftmost 
icon on the plan, with children nodes to the right side of the parents. 

 When you select an operator in the plan, a small pop-up window shows some of the properties of the 
operator. However, you can get a more comprehensive picture by opening the operator’s Properties window 
in Management Studio. 

 ■   Tip    SentryOne “Plan Explorer” is a great freeware tool that simplifies execution-plan analysis. You can 
download it from:    http://sentryone.com     .  

 In addition to a graphical representation of the execution plan, SQL Server can display it as text or as 
XML. A text representation places each operator onto individual lines that display parent – child relationships 
with indents and | symbols. A text execution plan may be useful when you need to share a compact and 
easy-to-understand representation of the execution plan without worrying about image size and the scale of 
the graphical execution plan. 

 

http://sentryone.com
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 An XML execution plan represents operators as XML nodes, with child operator nodes nested in parent 
nodes. It is the most complete representation of the execution plan and includes a large set of attributes 
that are omitted in other modes. However, an XML execution plan is complex and requires some time and 
practice before it becomes easy to understand. 

 In addition to the actual execution plan, SQL Server can provide an  estimated execution plan  without 
running the actual query. This allows you to obtain the execution plan shape quickly for analysis. However, it 
does not include actual row and execution counts, which are very helpful during query performance tuning. 

 Table  25-1  shows different commands that generate estimated and actual execution plans in graphical, 
text, and XML modes.  

   Table 25-1.    Commands That Generate Actual and Estimated Execution Plans   

 Plan Type  Command / Menu Item  Execute a query  Include Estimated 
Row and Execution 
Count 

 Include Actual Row 
and Execution Count 

 Graphical  Display Estimated Execution 
Plan 

 No  Yes  No 

 Include Actual Execution 
Plan 

 Yes  Yes  Yes 

 Text  SET SHOWPLAN_TEXT ON  No  No  No 

 SET SHOWPLAN_ALL ON  No  Yes  No 

 SET STATISTICS PROFILE 
ON 

 Yes  Yes  Yes 

 XML  SET SHOWPLAN_XML ON  No  Yes  No 

 SET STATISTICS PROFILE 
XML 

 Yes  Yes  Yes 

 ■   Important   You should always pay attention to the difference between actual and estimated row counts in 
execution plans. A large discrepancy between these two values is often a sign of cardinality estimation errors 
resulting from inaccurate statistics.   

     Operators 
 SQL Server uses two types of operators:  logical  and  physical . These  operators   are used during the different 
stages of the query life cycle in different types of query trees. SQL Server uses logical operators during the 
parsing and binding stages and replaces them with physical operators during optimization. For example, an 
 inner join  logical operator can be replaced with one of three physical join operators in the execution plan. 

 It is impossible to cover all physical operators in this chapter; however, we will discuss a few common 
ones that you will often encounter in execution plans. 
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     Joins 
 There are multiple variations of physical join operators in SQL Server that dictate how join predicates are 
matched and what is included in the resulting row. However, in terms of algorithms, there are just three join 
types:   nested loop   ,  merge,  and  hash  joins. 

   Nested Loop Join 
 A   nested loop join    is the simplest join algorithm. As with any join type, it accepts two inputs, which are 
called   outer  and  inner  tables  . The algorithm for an inner nested loop join is shown in Listing  25-6 , and the 
algorithm for an outer nested loop join is shown in Listing  25-7 . 

      Listing 25-6.    Inner nested loop join algorithm   

 for each row R1 in outer table 
         for each row R2 in inner table 
                 if R1 joins with R2 
                         return join (R1, R2) 

      Listing 25-7.    Outer nested loop join algorithm   

 for each row R1 in outer table 
         for each row R2 in inner table 
                 if R1 joins with R2 
                         return join (R1, R2) 
                 else 
                         return join (R1, NULL)   

 As you can see, the cost of the algorithm depends on the size of the inputs, and it is proportional to its 
multiplication; that is, the size of the outer input multiplied by the size of the inner input. The cost grows 
quickly with the size of the inputs; therefore, a nested loop join is efficient when at least one of the inputs is 
small. In cases of an equality join predicate, it is also beneficial to have the predicate column(s) in the inner 
table indexed. This helps to avoid an  index scan  operation during execution. 

 A nested loop join does not require join keys to have an equality predicate. SQL Server evaluates the 
join predicate between every row from both inputs. In fact, it does not require a join predicate at all. For 
example, the  CROSS JOIN  logical operator would lead to a nested loop physical join where all rows from both 
inputs are joined together.  

   Merge Join 
 The  merge join  works with two sorted inputs. It compares two rows, one at time, and returns their join to the 
client if they are equal. Otherwise, it discards the lesser value and moves on to the next row in the input. 

 Contrary to nested loop joins, a merge join requires at least one equality predicate on the join keys. 
Listing  25-8  shows the algorithm for the inner merge join. 

     Listing 25-8.     Inner merge join algorithm     

 /* Pre-requirements: Inputs I1 and I2 are sorted */ 
 get first row R1 from input I1 
 get first row R2 from input I2 
 while not end of either input 
 begin 
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         if R1 joins with R2 
         begin 
                 return join (R1, R2) 
                 get next row R2 from I2 
         end 
         else if R1 < R2 
                 get next row R1 from I1 
         else /* R1 > R2 */ 
                 get next row R2 from I2 
 end 

   The cost of the merge join algorithm is proportional to the sum of the sizes of both inputs, which makes 
it more efficient on large inputs as compared to a nested loop join. However, a merge join requires both 
inputs to be sorted, which is often the case when inputs are indexed on the join-key column. 

 In some cases, SQL Server may decide to sort input(s) using the  Sort  operator before a merge join. The 
cost of the sort obviously needs to be factored in along with the cost of the join operator during the analysis. 
You can also consider creating indexes to pre-sort the data.  

   Hash Join 
 Unlike the nested loop join, which works best on small inputs, and the merge join, which excels on sorted 
inputs, a  hash join  is designed to handle large, unsorted inputs. The hash join algorithm consists of two 
different phases. 

 During the first, or  build,  phase, a hash join scans one of the inputs (usually the smaller one), calculates 
the hash values of the join keys, and places them into the hash table. Next, in the second, or  probe,  phase, 
the hash join scans the second input and checks, or  probes , if the hash value of the join key from the second 
input exists in the hash table. When this is the case, SQL Server evaluates the join predicate for the row from 
the second input and all rows from the first input that belong to the same hash bucket. 

 This comparison must be done, because the algorithm that calculates the hash values does not 
guarantee the uniqueness of the hash value of individual keys, which leads to   hash collision    when multiple 
keys generate the same hash. Even though there is the possibility of additional overhead from the extra 
comparison operations due to hash collisions, such situations are relatively rare. 

 Listing  25-9  shows the algorithm of an inner hash join. 

     Listing 25-9.     Inner hash join algorithm     

 /* Build Phase */ 
 for each row R1 in input I1 
 begin 
         calculate hash value on R1 join key 
         insert hash value to appropriate bucket in hash table 
 end 
 /* Probe Phase */ 
 for each row R2 in input I2 
 begin 
         calculate hash value on R2 join key 
         for each row R1 in hash table bucket 
                 if R1 joins with R2 
                         return join (R1, R2) 
 end 
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   As you can guess, a hash join requires memory to store the hash table. The performance of a hash join 
greatly depends on correct memory grant estimation. When the memory estimation is incorrect, the hash 
join stores some hash table buckets in  tempdb , which can greatly reduce the performance of the operator. 

 When this happens, SQL Server tracks where the buckets are located: either in memory or on disk. For 
each row from the second input, it checks where the hash bucket is located. If it is in memory, SQL Server 
processes the row immediately. Otherwise, it stores the row in another internal temporary table in  tempdb . 

 After the first pass is done, SQL Server discards in-memory buckets, replacing them with the buckets 
from disk, and repeats the probe phase for all of the remaining rows from the second input that were stored 
in the internal temporary table. If there still wasn’t enough memory to accommodate all hash buckets, some 
of them would be spilled on-disk again. 

 The number of times this happens is called the   recursion level   . SQL Server tracks it and eventually 
switches to a special  bailout  algorithm, which is less efficient, although it’s guaranteed to complete at some 
point. 

 ■   Tip    You can monitor hash table spills to  tempdb  with  Hash Warnings  in SQL Trace and Extended Events.  

 Similar to a merge join, hash joins require at least one equality predicate in the join condition.  

   Comparing Join Types 
 As usual, the choice of join operator fits into the “It Depends” category. Each join type has its own pros and 
cons, which makes it good for some use cases and not so good for others. 

 Table  25-2  compares different join types in various scenarios.  

   Table 25-2.     Join type comparison     

 Nested Loop Join  Merge Join  Hash Join 

 Best use case  Small inputs. Preferable 
with index on join key in 
inner table. 

 Medium-to-large 
inputs sorted on 
index key. 

 Medium-to-large inputs. 

 Requires sorted input  No  Yes  No 

 Requires equality predicate  No  Yes  Yes 

 Blocking operator  No  No  Yes (Build phase only) 

 Uses memory  No  No  Yes 

 Uses tempdb  No  No (with exception 
of many-to-many 
joins) 

 Yes, in case of spills 

 Preserves order  Yes (outer input)  Yes  No 

 One of the common mistakes people make during performance tuning is relying strictly on the number 
of logical reads produced by the query. Even though that number is a great performance characteristic, it 
could be misleading in the case of joins. For example, it is entirely possible that a hash join produces fewer 
reads as compared to a nested loop. However, it would not factor in CPU usage and memory overhead or the 
performance implications of  tempdb  spills and bailouts. 
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 The merge join is another great example. While it is more efficient than a nested loop on sorted inputs, 
it is easy to overlook the overhead of the  Sort  operation, which often prepares input for the merge join. 

 As usual, you should keep join behaviors and the pros and cons of each join type in mind, factoring this 
into your analysis.   

     Aggregates 
  Aggregates   perform a calculation on a set of values and return a single value. A typical example of aggregates 
in SQL is the  MIN()  function, which returns the minimal value from the group of values it processes. 

 SQL Server supports two types of aggregate operators:  stream  and  hash  aggregates. 

   Stream Aggregate 
 A   stream aggregate    performs the aggregation based on sorted input; for example, when data is sorted on a 
column that is specified in a  group by  clause. Listing  25-10  shows the stream aggregate algorithm. 

     Listing 25-10.     Stream aggregate algorithm     

 /* Pre-requirement: input is sorted */ 
 for each row R1 from input 
 begin 
         if R1 does not match current group by criteria 
         begin 
                 return current aggregate results (if any) 
                 clear current aggregate results 
                 set current group criteria to match R1 
         end 
         update aggregate results with R1 data 
 end 
 return current aggregate results (if any) 

   Because of the sorted-input requirement, SQL Server often uses a stream aggregate together with the 
 Sort  operator. Let’s look at an example and create a table with some sales information for a company. After 
that, let’s run the query, which calculates the total amount of sales for each customer. The code to perform 
this is shown in Listing  25-11 . 

      Listing 25-11.    Query that uses stream aggregate   

  create table dbo.Orders 
 ( 
     OrderID int not null, 
     CustomerId int not null, 
     Total money not null, 
     constraint PK_Orders primary key clustered(OrderID) 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
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 ,Nums(Num) as (select row_number() over (order by (select null)) from N4) 
 insert into dbo.Orders(OrderId, CustomerId, Total) 
     select Num, Num % 10 + 1, Num from Nums; 

   select Customerid, sum(Total) as [Total Sales] 
 from dbo.Orders 
 group by CustomerId; 

    You can see the execution plan of the query in Figure  25-10 . There is no index on the  CustomerId  
column, and SQL Server needs to add a  Sort  operator to guarantee sorted input for the   Stream Aggregate  
operator  .   

  Figure 25-10.    Execution plan of the query with stream aggregate       

   Hash Aggregate 
 A   hash aggregate    is very similar to a hash join. It is targeted toward large input and requires memory to store 
the hash table. The hash aggregate algorithm is shown in Listing  25-12 . 

     Listing 25-12.     Hash aggregate algorithm     

 for each row R1 from input 
 begin 
         calculate hash value of R1 group columns 
         check for a matching row in hash table 
         if matching row exists 
                 update aggregate results of matching row 
         else 
                 insert new row into hash table 
 end 
 return all rows from hash table with aggregate results 

   Similar to a hash join, a hash table can be spilled to  tempdb , which negatively affects the performance of 
the aggregate.  

   Comparing Aggregates 
 As with joins, stream and hash aggregates are targeted toward different use cases. A stream aggregate works 
best with sorted input—either because of existing indexes or when the amount of data is small and can be 
easily sorted. A hash aggregate, on the other hand, is targeted toward large, unsorted inputs. 

 Table  25-3  compares hash and stream aggregates.  
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 You should consider the cost of the  Sort  operator during performance tuning if it is used only to support 
a stream aggregate pre-requirement. The cost of sorting usually exceeds the cost of stream aggregation itself. 
You can often remove it by creating indexes, which would sort the data in the order required for a stream 
aggregate.   

     Spools 
  Spool operators  , in a nutshell, are internal in-memory or in- tempdb  caches/temporary tables. SQL Server 
often uses spools for performance reasons to cache the results of complex subexpressions that need to be 
used several times during query execution. 

 Let’s look at an example and use the table we created in Listing  25-11 . We will run a query that returns 
information about all of the orders, together with the total amount of sales on a per-customer basis, as 
shown in Listing  25-13 . 

     Listing 25-13.    Table Spool example   

 select OrderId, CustomerID, Total, sum(Total) over(partition by CustomerID) as [Customer 
Sales] 
 from dbo.Orders 

   The execution plan for the query is shown in Figure  25-11 . As you can see, SQL Server scans the table, 
sorts the data based on the  CustomerID  order, and uses a  Table Spool  operator to cache the results. This 
allows SQL Server to access the cached data and avoid an expensive sorting operation later.  

   Table 25-3.    Aggregate Comparison   

 Stream Aggregate  Hash Aggregate 

 Best use case  Small-size input where data can be sorted with 
the  Sort  operator or pre-sorted input 

 Medium-to-large unsorted input 

 Requires sorted input  Yes  No 

 Blocking  No. However, it often requires a blocking  Sort  
operator. 

 Yes 

 Uses memory  No  Yes 

 Uses tempdb  No  Yes, in case of spills 

  Figure 25-11.    Execution plan of the query       
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 Even though a  Table Spool  operator is shown in the execution plan several times, it is essentially the 
same spool/cache. SQL Server builds it the first time and uses its data later. 

 SQL Server uses spools for  Halloween Protection  when modifying the data. Halloween Protection helps 
you avoid situations where data modifications affect what data need to be updated. The classic example of 
such a situation is shown in Listing  25-14 . Without Halloween Protection, the  INSERT  statement would fall 
into an infinite loop, reading the rows it has been inserting. 

     Listing 25-14.     Halloween Protection     

  create table dbo.HalloweenProtection 
 ( 
     Id int not null identity(1,1), 
     Data int not null 
 ); 

   insert into dbo.HalloweenProtection(Data) 
     select Data from dbo.HalloweenProtection; 

    The execution plan of the  INSERT  statement is shown in Figure  25-12 . SQL Server uses the   Table Spool  
operator   to cache the data from the table prior to the  INSERT  to avoid an infinite loop during execution.  

  Figure 25-12.    Halloween Protection execution plan       

 As I mentioned in Chapter   11    , “User-Defined Functions,” it is important to use the  WITH SCHEMABINDING  
option when you define scalar user-defined functions. This option forces SQL Server to analyze if a user-
defined function performs data access and avoids extra Halloween Protection – related  Spool  operators in the 
execution plan. 

 Listing  25-15  shows an example of code that creates two user-defined functions, using them in the 
 where  clause of  UPDATE  statements. 

     Listing 25-15.    Halloween Protection and user-defined functions   

  create function dbo.ShouldUpdateData(@Id int) 
 returns bit 
 as 
         return (1); 
 go 

   create function dbo.ShouldUpdateDataSchemaBound(@Id int) 
 returns bit 
 with schemabinding 
 as 
         return (1); 
 go 

   update dbo.HalloweenProtection set Data = 0 where dbo.ShouldUpdateData(ID) = 1; 
 update dbo.HalloweenProtection set Data = 0 where dbo.ShouldUpdateDataSchemaBound(ID) = 1; 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_11
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    Neither of these functions accesses the data, and therefore cannot introduce the Halloween effect. 
However, SQL Server does not know that in the case of non-schema-bound functions, and it adds a  Spool  
operator to execution plan, as shown in Figure  25-13 .  

  Figure 25-13.    Halloween Protection and user-defined functions: Execution plans       

   Spool  temporary tables   are usually referenced as  worktables  in the I/O statistics for the queries. You 
should analyze table spool – related reads during query performance tuning. While spools can improve the 
performance of queries, there is the management and  tempdb  overhead introduced by the unnecessary 
spools. You can often remove them by creating appropriate indexes on the tables. 

 SQL Server 2016 introduced the new query hint  NO_PERFORMANCE_SPOOL , which can prevent  Spool  
operators from being added to the execution plan. This could be helpful in some cases, especially in 
systems with a very heavy  tempdb  load, when the overhead of creating an internal spool temporary table 
is unacceptable. However, this hint changes the execution plan’s shape and can degrade the performance 
of queries in other cases. Use it with great care, and always analyze how it affects the execution plans and 
performance of the queries.  

     Parallelism 
 SQL Server can execute queries using multiple CPUs simultaneously. Even though parallel query execution 
can reduce the response time of queries, it comes at a cost. Parallelism always introduces the overhead of 
managing multiple execution threads. 

 Let’s look at an example and create two tables, as shown in Listing  25-16 . The script inserts 65,536 rows 
into table  dbo.T1  and 1,048,576 rows into table  dbo.T2 . 

     Listing 25-16.     Parallelism  : Table creation   

  create table dbo.T1 
 ( 
     T1ID int not null, 
     Placeholder char(100), 
     constraint PK_T1 primary key clustered(T1ID) 
 ); 

   create table dbo.T2 
 ( 
     T1ID int not null, 
     T2ID int not null, 
     Placeholder char(100) 
 ); 
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   create unique clustered index IDX_T2_T1ID_T2ID 
 on dbo.T2(T1ID, T2ID); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.T1(T1ID) 
     select Num from Nums; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N3) 
 insert into dbo.T2(T1ID, T2ID) 
     select T1ID, Num from dbo.T1 cross join Nums; 

    In the next step, let’s run two  SELECT  statements, as shown in Listing  25-17 . 

     Listing 25-17.    Parallelism: Test queries   

  select count(*) 
 from 
     ( 
         select t1.T1ID, count(*) as Cnt 
         from dbo.T1 t1 join dbo.T2 t2 on 
             t1.T1ID = t2.T1ID 
         group by t1.T1ID 
     ) s 
 option (maxdop 1); 

   select count(*) 
 from 
     ( 
         select t1.T1ID, count(*) as Cnt 
         from dbo.T1 t1 join dbo.T2 t2 on 
             t1.T1ID = t2.T1ID 
         group by t1.T1ID 
     ) s; 

    We force a serial execution plan for the first query using  MAXDOP 1  as a query hint. The second query has 
a parallel execution plan. Figure  25-14  illustrates this scenario.  
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 As you can see, the response (elapsed) time of the first query is much slower than that of the second 
query: 245 milliseconds versus 90 milliseconds. However, the total CPU time of the first query is much 
lower compared to second query: 240 milliseconds versus 655 milliseconds. We are using CPU resources for 
parallelism management. 

 A parallel execution plan does not necessarily mean that all operators are executing in parallel. An 
execution plan can have both parallel and serial execution zones. The parallel plan shown in Figure  25-14  
runs a subquery in a parallel zone and an outer  COUNT(*)  calculation serially. 

 The  Parallelism  operator, sometimes called   Exchange   , manages parallelism during query execution. It 
accepts the input data from one or more  producer  threads and distributes it across one or more  consumer  
threads, and it can run in three different modes. 

 In  distribute streams  mode, the   Parallelism  operator   accepts data from one producer thread and 
distributes it across multiple consumer threads. This mode is usually the entry point to the parallel 
execution zone in the plan. Figure  25-15  illustrates this concept.  

  Figure 25-14.    Parallel execution: Query plans       

  Figure 25-15.    Parallelism: Distribute streams mode       

  Figure 25-16.    Parallelism: Gather streams mode       

 In  gather streams  mode, the  Parallelism  operator merges the data from multiple producer threads and 
passes it to a single consumer thread. This mode is usually the exit point from the parallel execution zone in 
the plan. Figure  25-16  illustrates this idea.  
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 Finally, in  repartition streams  mode, the  Parallelism  operator accepts data from multiple producer 
threads and distributes it across multiple consumer threads. This happens in the middle of a parallel zone 
of the plan when the data needs to be redistributed between execution threads. Figure  25-17  illustrates this 
concept.  

   Table 25-4.    Data Redistribution Methods in Parallelism   

 Redistribution Method  Description 

 Broadcast  Send row to all consumer threads 

 Round Robin  Send row to the next consumer thread in sequence 

 Demand  Send row to the next consumer thread that requests the row 

 Range  Use range function to determine which consumer thread should get a row 

 Hash  Use hash function to determine which consumer thread should get a row 

  Figure 25-17.    Parallelism: Repartition streams  mode         

 There are several different ways that data can be distributed between consumer threads. Table  25-4  
summarizes these methods.  

 The  Parallelism  operator uses a different execution model than other operators use. It uses a push-
based model, with producer threads pushing rows to it. It is the opposite of a pull-based model, where the 
parent operator calls the   GetRow()  method   of a child operator to get the data. 

 An evenly distributed workload is the key element for the good performance of parallel execution plans. 
You can see the number of rows processed by each thread in the “Actual Number of Rows” section of the 
operator’s Properties window in Management Studio. That information is not displayed in a tool-tip in the 
graphical execution plans. Thread 0 is the parallelism-management thread, which always shows zero as the 
number of rows. 

 Uneven data distribution and outdated statistics are common causes of uneven workload distribution 
between threads. Figure  25-18  shows how workload distribution changes after a statistics update on one of 
the tables. The left side shows the distribution before the statistics update, and the right side shows it after 
the update.    
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     Query and Table Hints 
 Query Optimizer usually does a good job of generating decent execution plans. However, in some cases you 
can decide to fine-tune the shape of the execution plan with query and table hints. For example, query and 
table hints allow you to force Query Optimizer to choose specific indexes or join types for the query. 

  Query hints   are a great, but very dangerous, tool. They can help you improve the quality of execution 
plans; however, they could also significantly decrease the performance of the system when applied 
incorrectly. You should have a very good understanding of how SQL Server works and know your system and 
data before using them. 

 The supportability of the system is another very important factor. You should document cases 
where hints are used and periodically re-evaluate if they are still required. The amount of data and data-
distribution changes can lead to situations where plans forced by hints become suboptimal. For example, 
consider a situation where a hint forces Query Optimizer to use a nested loop join. This join type will work 
more inefficiently as the amount of data and the size of inputs grows. 

 Forcing Query Optimizer to use a specific index is another example. The choice of index can become 
inefficient in the case of data selectivity changes, and it would prevent Query Optimizer from using other 
indexes that were created later. Moreover, the code would be broken and queries would error out if you ever 
dropped or renamed the index referenced by the hint. 

 As a general rule, you should only use hints as a last resort. If you do, make sure that the statistics are up 
to date and that the query cannot be optimized, simplified, or re-factored before applying them. 

 In cases of parameter sniffing, it is usually better to use the  OPTIMIZE FOR  hint or statement-level 
recompile rather than force specific index usage with an index hint. We will discuss these approaches in 
greater depth in the next chapter. 

      INDEX Table Hint   
  INDEX  is, perhaps, one of the most commonly used table hints. It forces Query Optimizer to use a specific 
index for data access. It requires you to specify either the name or ID of the index as a parameter. In most 
cases, the name of the index is the better choice for supportability reasons. There are two exceptions, 
however, where index ID is the better option: forcing a clustered index or heap table scan. You can consider 
using 1 and 0 respectively as the ID in those cases. 

 SQL Server can use either  Scan  or  Seek  access methods with an index. Listing  25-18  shows an example 
of  INDEX  hint usage, which forces SQL Server to use the  IDX_Orders_OrderDate  index in the query. 

  Figure 25-18.    Workload distribution before and after a statistics update       
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     Listing 25-18.    INDEX query hint   

 select OrderId, OrderDate, CustomerID, Total 
 from dbo.Orders with (Index = IDX_Orders_OrderDate) 
 where OrderDate between @StartDate and @EndDate 

   One of the legitimate use cases for an  INDEX  query hint is to force SQL Server to use one of the 
composite indexes in those cases where correct cardinality estimation is impossible. Consider a case where 
a table stores location information for multiple devices that belong to different accounts, as shown in 
Listing  25-19 . Let’s assume that  DeviceId  is unique only within a single account. 

     Listing 25-19.    Composite indexes and uneven data distribution: Table creation   

  create table dbo.Locations 
 ( 
     AccountId int not null, 
     DeviceId int not null, 
     UtcTimeTag datetime2(0) not null, 
     /* Other Columns */ 
 ); 

   create unique clustered index IDX_Locations_AccountId_UtcTimeTag_DeviceId 
 on dbo.Locations(AccountId, UtcTimeTag, DeviceId); 

   create unique nonclustered index IDX_Locations_AccountId_DeviceId_UtcTimeTag 
 on dbo.Locations(AccountId, DeviceId, UtcTimeTag); 

    It is common to have data distributed very unevenly in multi-tenant systems where some accounts have 
hundreds or even thousands of devices while others have just a few of them. Let’s assume that we would like 
to select the data that belongs to a subset of devices for a specific time frame, as shown in Listing  25-20 . 

     Listing 25-20.    Composite indexes and uneven data distribution: Query   

 select DeviceId, UtcTimeTag /* Other Columns */ 
 from dbo.Locations 
 where 
     AccountId = @AccountID and 
     UtcTimeTag between @StartTime and @StopTime and 
     DeviceID in (select DeviceID from #ListOfDevices); 

   SQL Server has two different choices for the execution plan. The first choice uses a  nonclustered index 
seek  and a  key lookup , which is better when you need to select data for a very small percentage of the 
devices in the account. In all other cases, it is more efficient to use a  clustered index seek  with  AccountId  and 
 UtcTimeTag  as seek predicates, and to perform a range scan for all devices that belong to the account. 

 Unfortunately, SQL Server would not have enough data to perform a correct cardinality estimation in 
either case. It can estimate the selectivity of particular   AccountID  data   based on the histogram from either 
index; however, it is not enough to estimate cardinality for the list of devices. 

 One possible solution is to write code that calculates the number of devices in the  #ListOfDevices  table 
and compare it to the total number of devices per account, forcing SQL Server to use a specific index with an 
 INDEX  hint based on the comparison results. 

 It is worth mentioning that such a system design is not optimal. It would be better to make  DeviceId  
unique system-wide rather than just in the account scope. This would allow you to make  DeviceId  the 
leftmost column in the nonclustered index, which would help SQL Server with cardinality estimations based 
on the list of devices. This approach, however, would still not factor time parameters into such estimations.  
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     FORCE ORDER Hint 
 A   FORCE ORDER  query   hint preserves the join order in the query. When this hint is specified, SQL Server 
always joins tables in the order in which joins are listed in the  from  clause of the query. However, SQL Server 
would choose the least expensive join type in each case. 

 Listing  25-21  shows an example of such a hint. SQL Server will perform joins in the following order: 
 ((TableA join TableB) join TableC).  

     Listing 25-21.    FORCE ORDER hint   

 select /* Columns */ 
 from 
     TableA join TableB on TableA.ID = TableB.AID 
     join TableC on TableB.ID = TableC.BID 
 option (force order) 

        LOOP, MERGE, and HASH JOIN Hints 
 You can specify join types with  LOOP ,  MERGE , and  HASH  hints on both query and individual join levels. It 
is possible to specify more than one join type in the query hint and allow SQL Server to choose the least 
expensive one. A join operator hint takes precedence over a query hint if both are specified. Finally, a join 
type hint forces join orders in a way similar to a  FORCE ORDER  hint. 

 Listing  25-22  shows an example of using join type hints. SQL Server will perform joins in the following 
order:  ((TableA join TableB) join TableC).  It will use a nested loop join to join  TableA  and  TableB , and 
either a nested loop or merge join for the  TableC  join. 

     Listing 25-22.     Join type hints     

 select /* Columns */ 
 from 
     TableA inner loop join TableB on TableA.ID = TableB.AID 
     join TableC on TableB.ID = TableC.BID 
 option (loop join, merge join) 

        FORCESEEK/FORCESCAN Hints 
 A   FORCESEEK  hint   prevents SQL Server from using  index scan  operators. It can be used on both query and 
individual table levels and can be combined with an  INDEX  hint if needed. SQL Server would generate an 
error if an execution plan without index scans cannot be created. You can also specify an optional list of 
columns for  SEEK  predicates. 

 The opposite hint,  FORCESCAN , prevents SQL Server from using  index seek  operators and forces it to scan 
data. Both of these hints were introduced in SQL Server 2008 SP1.  

     NOEXPAND/EXPAND VIEWS Hints 
   NOEXPAND  and  EXPAND VIEWS  hints control   how SQL Server handles indexed views. This behavior is edition-
specific. By default, non-Enterprise editions of SQL Server expand indexed views to their definition and do 
not use data from them, even when views are referenced in the queries. You should specify a  NOEXPAND  hint 
to avoid this. 
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 ■   Tip    Always specify a  NOEXPAND  hint when you reference an indexed view in the query if there is a 
possibility that the database might be moved to a non-Enterprise edition of SQL Server.  

 Listing  25-23  shows an example of  NOEXPAND  and  INDEX  hints, which force SQL Server to use the 
nonclustered index created on the indexed view. 

     Listing 25-23.    NOEXPAND and INDEX hints   

 select CustomerID, ArticleId, TotalSales 
 from  dbo.vArticleSalesPerCustomer 

with (NOEXPAND, Index=IDX_vArticleSalesPerCustomer_CustomerID) 
 where CustomerID = @CustomerID 

   Alternatively, the  EXPAND VIEWS  hint allows SQL Server to expand an indexed view to its definition in 
the Enterprise Edition. To be honest, I cannot think of use cases when such behavior is beneficial.  

     FAST N Hints 
 A   FAST N  hint   tells SQL Server to generate an execution plan with the goal of quickly returning the number of 
rows specified as a parameter. This can generate an execution plan with non-blocking operators, even when 
such a plan is more expensive compared to one that uses blocking operators. 

 One possible use case for such a hint is an application that is loading a large amount of data in the 
background (perhaps caching it) and wants to display the first page of the data to the user as quickly as 
possible. Listing  25-24  shows an example of a query that uses such a hint. 

     Listing 25-24.    FAST N hint   

 select o.OrderId, OrderNumber, OrderData, CustomerId, CustomerName, OrderTotal 
 from dbo.vOrders 
 where OrderDate > @StartDate 
 order by OrderDate desc 
 option (FAST 50) 

 ■     Note    You can see full list of query and table hints at    http://technet.microsoft.com/en-us/library/
ms181714.aspx     .    

     Summary 
 The query life cycle consists of four different stages: parsing, binding, optimization, and execution. A query 
is transformed numerous times using tree-like structures, starting with a logical query tree at the parsing 
stage and finishing with the execution plan after optimization. 

 Query optimization is done in several phases. With the exception of the trivial plans search, SQL Server 
uses a cost-based model, evaluating the cost of access methods, resource usage, and a few other factors. 

 The quality of execution plans greatly depends on the correctness of input data. Accurate and up-
to-date statistics are a key factor that improves cardinality estimations and allows SQL Server to generate 

http://technet.microsoft.com/en-us/library/ms181714.aspx
http://technet.microsoft.com/en-us/library/ms181714.aspx
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efficient execution plans. However, as with any model, there are limitations. In some cases, you need to 
re-factor, split, and simplify queries to overcome such restrictions. 

 An execution plan consists of physical operators, which, with the exception of  Parallelism , use a 
poll-based, row-based model. Each parent operator requests data from its children on a row-by-row basis. 
Starting with SQL Server 2012, there is another batch mode execution model available, which is used with 
columnstore indexes and some data warehouse queries. 

 There are two types of operators: blocking and non-blocking. Non-blocking operators serve rows back 
to parents as soon as they get them. Blocking operators acquire and cache all rows from children before 
returning rows to parents. 

 Blocking operators require memory to store data. In cases where the memory estimation is incorrect, 
data is spilled to  tempdb . Such spills reduce the performance of queries and can be monitored with Sort and 
Hash Warnings in SQL Trace and Extended Events. 

 The two most common cases of incorrect memory grant sizes are incorrect cardinality and row-size 
estimates. You can improve these by keeping statistics up to date and defining variable-length data columns 
to be about twice as big as the actual data stored there. You should also avoid non-SARGable predicates in 
the join conditions, especially when a query joins a large number of tables. 

 You can control some aspects of query optimization by using query and table hints. However, you 
should be very careful when using them, documenting and periodically re-evaluating their usage. This 
helps to avoid subefficient execution plans due to data size or distribution changes, which invalidate the 
correctness of the hints’ use.     
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    CHAPTER 26   

 Plan Caching                          

  Query optimization  is a resource-intensive process that could introduce a significant CPU load on busy 
servers. SQL Server tries to minimize such load by caching plans in a special part of the process memory 
called the  plan cache . 

 This chapter talks about  plan caching  in detail and consists of two parts. The first part provides a high-
level overview of plan caching and discusses several issues associated with it. The second part dives deeper 
into plan cache internals and discusses the various data management views (DMVs) that you can use for 
plan cache monitoring. 

     Plan Caching Overview 
 SQL Server prevents unnecessary recompilations of queries by caching plans in a special area of the memory 
called the  plan cache . In addition to prepared parameterized queries and ad-hoc queries and batches, it 
caches plans of various objects, such as stored procedures, triggers, user-defined functions, and a few others. 

 SQL Server does not cache actual execution plans, but rather caches a set of other plan-related entities, 
mainly  compiled plans . Every time a query needs to be executed, SQL Server generates an actual execution 
plan from the compiled plan, which is an inexpensive operation as compared to compiled plan creation. 
 Execution plans   are run-time structures and are unique for each query execution; that is, if multiple sessions 
need to execute the same compiled plan, multiple execution plans would be generated, at one per session. 

 ■   Note    SQL Server documentation and other resources often ignore the difference between compiled 
and execution plans. They often refer to plan cache as the memory area that caches execution plans. This is 
completely normal, and you should not be confused by this description.  

 A  compiled plan   is generated for the entire batch and includes plans for individual statements from 
the batch. In this chapter, I typically reference query- or statement-level plans; however, plans for multi-
statement batches behave in the same way. 

 In addition to compiled plans, SQL Server caches other structures, such as  compiled plan stubs ,  shell 
queries , and a couple of others. We will talk about all of them in detail later in this chapter. 

 The number of cached plans does not directly affect the performance of SQL Server. However, plan 
cache uses memory and, therefore, can reduce the size of the buffer pool, which, in turn, can increase the 
number of physical reads and decrease system performance. 

 SQL Server uses different algorithms to determine which plans should be removed from the cache in 
case of  memory pressure  . For ad-hoc queries, this selection is based strictly on how often a plan is reused. 
For other types of plans, the cost of plan generation is also factored into the decision. We will talk about plan 
cache memory management later in this chapter. 
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 SQL Server recompiles queries when it suspects that currently cached plans are no longer valid. One 
such case is when the schema of the objects referenced by the plan changes. This could include the creation 
or dropping of columns, indexes, constraints, triggers, and statistics defined in a table. 

 Another case relates to stale statistics. SQL Server checks to see if the statistics are outdated when it 
looks up a plan from the cache, and it recompiles the query if they are. That recompilation, in turn, triggers a 
statistics update. 

 Temporary tables can increase the number of recompilations triggered by outdated statistics. As you 
will remember, SQL Server outdates statistics based on the number of modifications of the statistics 
(and index) columns. For regular tables, the statistics update thresholds are as follows:

   When a table is empty, SQL Server outdates statistics when you add data to it.  

  When a table has less than 500 rows, SQL Server outdates statistics after every 
500 changes to the statistics columns.  

  When a table has 500 or more rows, SQL Server outdates statistics after every 
500+ changes (or 20 percent of the total number of rows in the table) to the 
statistics columns in cases where the database compatibility level is less than 130 
(SQL Server 2016). For databases with a compatibility level of 130 or when trace 
flag  T2371  is enabled, that threshold is dynamic and is based on the total number 
of rows in the table.    

 However, for temporary tables there is another threshold value of six changes, which can lead to 
unnecessary recompilations in some cases. The  KEEP PLAN  query hint eliminates that threshold, and it 
makes the behavior of the temporary tables the same as the regular ones. 

 Another query hint,  KEEPFIXED PLAN , prevents query recompilation in cases of outdated statistics. 
Queries would be recompiled only when the schemas of the underlying tables are changed or the 
recompilation is forced; for example, when a stored procedure is called using the  WITH RECOMPILE  clause. 

 The plan cache can store multiple plans for the same queries, batches, or T-SQL objects. Some of the 
 SET  options, such as  ANSI_NULL_DLFT_OFF ,  ANSI_NULL_DLFT_ON ,  ANSI_NULL ,  ANSI_PADDING ,  ANSI_WARNING , 
 ARITHABORT ,  CONCAT_NULL_YELDS_NULL ,  DATEFIRST ,  DATEFORMAT ,  FORCEPLAN ,  DATEFORMAT ,  LANGUAGE ,  NO_
BROWSETABLE ,  NUMERIC_ROUNDABORT , and  QUOTED_IDENTIFIER , affect plan reuse. Plans generated with one set 
of  SET  options cannot be reused by sessions that use a different set of  SET  options. 

 Unfortunately, different client libraries and development environments have different default  SET  
options. For example, by default  ARITHABORT  is OFF in ADO.Net and  ON  in Management Studio. Remember 
this when you troubleshoot inefficient queries submitted by client applications. You could get different 
execution plans when you run those queries in Management Studio. When your database works with 
multiple client applications developed in different languages, you should consider specifying  SET  options in 
the same way at the session level after establishing the connection to SQL Server. 

 ■   Tip    You can change the default  SET  options for queries running in Management Studio to match the client 
applications via the  Options  menu item in the  Tools  menu.  

 Another common reason for duplicated plans in cache is using unqualified object names without 
specifying the object’s schema. In that case, SQL Server resolves objects based on the default schema of the 
database’s users, and, therefore, statements like  SELECT * FROM Orders  could reference completely different 
tables for different users, which prevents plan reuse. Alternatively,  SELECT * FROM Sales.Orders  always 
references the same table regardless of the default database schema for the user. 

 ■   Important   Always specify the schema when you reference tables and stored procedures. It reduces the 
size of the plan cache and speeds up the compilation process.  
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 Finally, SQL Server does not cache plans if the batch or object includes string literals greater than 8 KB 
in size. For example, the plan for the following query is not going to be cached when a constant used in the 
 WHERE  clause has more than 8,192 characters: 

   SELECT * FROM Table1 WHERE Col='<insert more than 8,192 characters here>' 

   We will dive deeper into plan cache internals later in this chapter after discussing a few practical 
questions related to plan caching.  

      Parameter Sniffing   
 Plan caching can significantly reduce CPU load on systems by eliminating unnecessary query compilations. 
However, it also introduces a few problems. The most widely known problem is called  parameter sniffing . 
SQL Server  sniffs  parameter values at the time of optimization and generates and caches a plan that 
is optimal for those values. Nothing is wrong with this behavior. However, in some cases, when data is 
unevenly distributed, it leads to a situation where the generated and  cached  plan is optimal only for atypical, 
rarely used parameter values. These cached plans could be suboptimal for further calls that use more 
common values as parameters. 

 Most database professionals have experienced a situation where some queries or stored procedures 
suddenly took a much longer time to complete than before, even though there were no recent deployments 
to production. In most cases, these situations happened due to parameter sniffing when queries were 
recompiled because of a statistics update. 

 Let’s look at an example and create the table shown in Listing  26-1 . We will populate it with data in such 
a way that most rows have the  Country  value set to 'USA'. Then, we will create a nonclustered index on the 
 Country  column. 

     Listing 26-1.    Parameter sniffing: Table creation   

  create table dbo.Employees 
 ( 
         ID int not null, 
         Number varchar(32) not null, 
         Name varchar(100) not null, 
         Salary money not null, 
         Country varchar(64) not null, 
         constraint PK_Employees primary key clustered(ID) 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2 ) -- 65,536 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.Employees(ID, Number, Name, Salary, Country) 
         select Num, convert(varchar(5),Num) 
                   ,'USA Employee: ' + convert(varchar(5),Num), 40000, 'USA' 
         from Nums; 
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   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,Nums(Num) as (select row_number() over (order by (select null)) from N3) 
 insert into dbo.Employees(ID, Number, Name, Salary, Country) 
         select 65536 + Num, convert(varchar(5),65536 + Num) 
                   ,'Canada Employee: ' + convert(varchar(5),Num), 40000, 'Canada' 
         from Nums; 

   create nonclustered index IDX_Employees_Country 
 on dbo.Employees(Country); 

    As the next step, let’s create a stored procedure that calculates the average salary for employees 
in a specific country. The code to do this is shown in Listing  26-2 . Even though we are using a stored 
procedure in this example, the same situation could happen with parameterized queries called from client 
applications. 

     Listing 26-2.     Parameter sniffing  : Stored procedure   

 create proc dbo.GetAverageSalary @Country varchar(64) 
 as 
         select Avg(Salary) as [Avg Salary] 
         from dbo.Employees 
         where Country = @Country; 

   With the current data distribution, when the stored procedure is called with  @Country='USA' , the 
optimal execution plan is a  clustered index scan . However, for  @Country='Canada' , the better execution plan 
is a  nonclustered index seek  with  key lookup  operations. 

 Let’s call the stored procedure twice: the first time with  @Country='USA'  and the second time with 
 @Country='Canada' , as shown in Listing  26-3 . 

     Listing 26-3.    Parameter sniffing: Calling a stored procedure   

 exec dbo.GetAverageSalary @Country='USA'; 
 exec dbo.GetAverageSalary @Country='Canada'; 

   As you can see in Figure  26-1 , SQL Server compiles the stored procedure and caches the plan with the 
first call, then reuses it later. Even though such a plan is less efficient with the  @Country='Canada'  parameter 
value, it may be acceptable when those calls are rare, which is expected with such a data distribution.  
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 Now, let’s take a look at what happens if we swap those calls when the plan is not cached. Listing  26-4  
shows the code for achieving this. We will use the  DBCC FREEPROCCACHE  command, which clears the plan 
cache. Another instance when this might happen is with a statistics update that forces a query to recompile. 

 ■   Important   Do not use the  DBCC FREEPROCCACHE  command in production.  

     Listing 26-4.    Parameter sniffing: Calling a stored procedure with a different order of parameters   

 dbcc freeproccache 
 go 
 exec dbo.GetAverageSalary @Country='Canada'; 
 exec dbo.GetAverageSalary @Country='USA'; 

   As you can see in Figure  26-2 , SQL Server now compiles and caches the plan based on the 
 @Country='Canada'  parameter value. Even though this plan is more efficient when the stored procedure 
is called with  @Country='Canada' , it is highly inefficient for  @Country='USA'  calls.  

  Figure 26-1.    Parameter sniffing: Cached plan for  @Country='USA'        
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 There are a few ways to address the issue. You can force the recompilation of either stored procedure 
using  EXECUTE WITH RECOMPILE  or a statement-level recompile with the  OPTION (RECOMPILE)  clause. 
Obviously, a statement-level recompile is better, because it performs the recompilation on a smaller scope. 
SQL Server  sniffs  the parameter values at the time of the recompilation, generating the optimal execution 
plan for each parameter value. Listing  26-5  shows the statement-level recompile approach. 

     Listing 26-5.    Parameter sniffing:  Statement-level recompile     

 alter proc dbo.GetAverageSalary @Country varchar(64) 
 as 
     select Avg(Salary) as [Avg Salary] 
     from dbo.Employees 
     where Country = @Country 
     option (recompile); 
 go 
 exec dbo.GetAverageSalary @Country='Canada'; 
 exec dbo.GetAverageSalary @Country='USA'; 

   As you can see in Figure  26-3 , SQL Server does not cache the execution plan and instead recompiles the 
statement on every call, generating the most efficient execution plan for every parameter value.  

  Figure 26-2.    Parameter sniffing: Cached plan for  @Country='Canada'        
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  Figure 26-3.    Parameter sniffing: Statement-level recompile       

 The  statement-level recompile   may be a good option to use when the queries do not execute very often 
or, in the case of complex queries, when the compilation time is just a fraction of the total execution time. 
However, it is hardly the best approach for frequently executed OLTP queries due to the extra CPU load that 
recompilation introduces. 

 Another option is using an  OPTIMIZE FOR  hint, which forces SQL Server to optimize a query for the 
specific parameter values provided in the hint. Listing  26-6  illustrates such an approach. 

     Listing 26-6.    Parameter sniffing: OPTIMIZE FOR hint   

 alter proc dbo.GetAverageSalary @Country varchar(64) 
 as 
     select Avg(Salary) as [Avg Salary] 
     from dbo.Employees 
     where Country = @Country 
     option (optimize for(@Country='USA')); 
 go 
 exec dbo.GetAverageSalary @Country='Canada'; 
 exec dbo.GetAverageSalary @Country='USA'; 

   As you can see in Figure  26-4 , SQL Server ignores the parameter value during compilation and 
optimizes the query, then caches the execution plan for the  @Country='USA'  value.  

  Figure 26-4.    Parameter Sniffing: OPTIMIZE FOR hint       

 

 



CHAPTER 26 ■ PLAN CACHING

498

 Unfortunately, the  OPTIMIZE FOR  hint introduces supportability issues, and it can lead to suboptimal 
execution plans in cases where the data distribution has changed. Listing  26-7  shows such an example. Let’s 
consider a situation, albeit an unrealistic one, where a company and all of its employees moved from the 
United States to Germany. 

     Listing 26-7.    Parameter sniffing: OPTIMIZE FOR and data distribution change   

 update dbo.Employees set Country='Germany' where Country='USA'; 
 exec dbo.GetAverageSalary @Country='Germany'; 

   Statistics are outdated at the time of the update, which forces SQL Server to recompile the statement 
in the stored procedure. At this point, there are no rows in the table with  Country='USA',  and the 
recompilation produces a suboptimal execution plan, as shown in Figure  26-5 . As a side note, the query uses 
more reads than before as a result of the index fragmentation introduced by the update.  

  Figure 26-5.    Parameter sniffing: OPTIMIZE FOR and data-distribution change       

  Figure 26-6.    Parameter sniffing: OPTIMIZE FOR UNKNOWN hint       

 SQL Server 2008 introduced another optimization hint,  OPTIMIZE FOR UNKNOWN , which helps to address 
such situations. With this hint, SQL Server performs an optimization based on the most statistically common 
value in the table. Listing  26-8  shows the code involved in doing this. 

     Listing 26-8.    Parameter sniffing: OPTIMIZE FOR UNKNOWN hint   

 alter proc dbo.GetAverageSalary @Country varchar(64) 
 as 
     select Avg(Salary) as [Avg Salary] 
     from dbo.Employees 
     where Country = @Country 
     option (optimize for(@Country UNKNOWN)); 
 go 
 exec dbo.GetAverageSalary @Country='Canada'; 

   Figure  26-6  illustrates the execution plan.  Germany  is the most statistically common value in the table, 
and therefore SQL Server generates an execution plan that is optimal for such a parameter value.  
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 You can achieve the same results as an  OPTIMIZE FOR UNKNOWN  hint by using local variables instead 
of parameters. This method also works with SQL Server 2005, where the  OPTIMIZE FOR UNKNOWN  hint is 
not supported. Listing  26-9  illustrates this approach. It introduces the same execution plan as that in 
Figure  26-6  — one with a c lustered  i ndex  s can . 

     Listing 26-9.    Parameter sniffing: Using local variables   

 alter proc dbo.GetAverageSalary @Country varchar(64) 
 as 
     declare 
         @CountryTmp varchar(64) = @Country; 
     select Avg(Salary) as [Avg Salary] 
     from dbo.Employees 
     where Country = @CountryTmp; 

   SQL Server 2016 allows you to control parameter sniffing on the database level through database 
scoped configuration by using the  ALTER DATABASE SCOPED CONFIGURATION SET PARAMETER_SNIFFING  
command. Disabling parameter sniffing is equivalent to use the  OPTIMIZE FOR UNKNOWN  hint with all queries. 
Another command,  ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE , allows you to clear 
the procedure plan cache for the database. 

 You can troubleshoot issues introduced by parameter sniffing by analyzing cached plans with the  sys.
dm_exec_query_stats  view and the  sys.dm_exec_query_plan  function. We will discuss this in more detail, 
including how to obtain execution plans for currently running statements, both later in this chapter and in 
Chapter   28    . 

  SQL Server 2016   introduces the new component called  Query Store , which allows you to capture 
execution plans and runtime statistics of the queries in the system. Moreover, it helps you to avoid 
parameter sniffing issues by permitting you to force specific execution plans for queries. We will discuss the 
Query Store in detail in Chapter   29     of this book.  

     Plan Reuse 
 Plans cached by SQL Server must be valid for any combination of parameters during future calls that reuse 
the plan. In some cases, this can lead to situations where a cached plan is suboptimal for a specific set of 
parameter values. 

 One of the code patterns that often leads to such situations is the implementation of stored procedures 
that search for data based on a set of optional parameters. A typical implementation of such a stored 
procedure is shown in Listing  26-10 . This code also creates two nonclustered indexes on the  dbo.Employees  
table. 

     Listing 26-10.    Plan reuse: Creation of stored procedure and indexes   

  create proc dbo.SearchEmployee 
 ( @Number varchar(32) = null, @Name varchar(100) = null ) 
 as 
     select Id, Number, Name, Salary, Country 
     from dbo.Employees 
     where 
         ((@Number is null) or (Number=@Number)) and 
         ((@Name is null) or (Name=@Name)); 
 go 

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
http://dx.doi.org/10.1007/978-1-4842-1964-5_29
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   create unique nonclustered index IDX_Employees_Number 
 on dbo.Employees(Number); 
 create nonclustered index IDX_Employees_Name 
 on dbo.Employees(Name); 

    A plan cached by SQL Server should work with any combination of input parameters, regardless of their 
values at the time when the query was compiled. If you were to call stored procedures multiple times using 
the code from Listing  26-11 , SQL Server would decide to generate and cache a plan with an  IDX_Employees_
Number   index scan  and  key lookup  operations. 

      Listing 26-11.    Plan reuse: Stored procedure calls   

 exec dbo.SearchEmployee @Number = '10000'; 
 exec dbo.SearchEmployee @Name = 'Canada Employee: 1'; 
 exec dbo.SearchEmployee @Number = '10000', @Name = 'Canada Employee: 1'; 
 exec dbo.SearchEmployee @Number = NULL, @Name = NULL; 

   Figure  26-7  demonstrates Listing  26-11 ’s execution plan for the stored procedure calls. As you can 
see, the query does not use the  IDX_Employees_Number   nonclustered index seek  operation, even when the 
 @Number  parameter has a  NOT NULL  value, because this plan would not be valid when  @Number  is  NULL . 
Moreover, when  @Number  is not provided, SQL Server has to perform a  key lookup  operation for every row in 
the table, which is highly inefficient.  

  Figure 26-7.    Plan reuse: Execution plans for the stored procedure calls       

 Similar to with parameter sniffing issues, you can address this problem with statement-level 
recompilation using the  OPTION (RECOMPILE)  clause. Figure  26-8  shows the execution plans in that case.  
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 As you can see, SQL Server recompiles the query on every call, and therefore it can choose the most 
beneficial execution plan for every parameter set. It is worth mentioning again that plans are not cached in 
cases where a statement-level recompile is used. 

 Even though a  statement-level recompile   solves the problem, it introduces the overhead of constant 
recompilations, which you would like to avoid when stored procedures are called very often. One of the 
options that you have available is to write multiple queries using  IF  statements that cover all possible 
combinations of parameters. SQL Server would cache the plan for each statement in that case. 

 Listing  26-12  shows such an approach; however, it quickly becomes unmanageable with a large number 
of parameters. The number of combinations to cover is equal to the number of parameters squared. 

  Figure 26-8.    Plan reuse: Execution plans with statement-level recompile       
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     Listing 26-12.    Plan reuse: Covering all possible parameter combinations   

 alter proc dbo.SearchEmployee 
 (  @Number varchar(32) = null, @Name varchar(100) = null ) 
 as 
     if @Number is null and @Name is null 
         select Id, Number, Name, Salary, Country 
         from dbo.Employees; 
     else if @Number is not null and @Name is null 
         select Id, Number, Name, Salary, Country 
         from dbo.Employees 
         where Number=@Number; 
     else if @Number is null and @Name is not null 
         select Id, Number, Name, Salary, Country 
         from dbo.Employees 
         where Name=@Name; 
     else 
         select Id, Number, Name, Salary, Country 
         from dbo.Employees 
         where Number=@Number and Name=@Name; 

   In the case of a large number of parameters, dynamic SQL becomes the only option. SQL Server will 
cache the execution plans for each dynamically generated SQL statement. Listing  26-13  shows such an 
approach. Remember that using dynamic SQL breaks ownership chaining, and it always executes in the 
security context of  CALLER . 

     Listing 26-13.    Plan reuse: Using dynamic SQL   

  alter proc dbo.SearchEmployee 
 (  @Number varchar(32) = null, @Name varchar(100) = null ) 
 as 
     declare 
         @SQL nvarchar(max) = N' 
 select Id, Number, Name, Salary, Country 
 from dbo.Employees 
 where 1=1' + 
         case when @Number is not null then N' and Number=@Number' else N‘’ end + 
         case when @Name is not null then N' and Name=@Name' else N” end; 

       exec sp_executesql @Sql, N'@Number varchar(32), @Name varchar(100)' 
         ,@Number=@Number, @Name=@Name; 

 ■      Important   Always use parameters with the sp_executesql procedure to avoid SQL Injection.  

 Remember this behavior when you are using filtered indexes. SQL Server will not generate and cache a 
plan that uses a filtered index in cases where that index cannot be used with some combination of parameter 
values. Listing  26-14  shows an example. SQL Server will not generate a plan, which is using the  IDX_Data_
UnprocessedData  index, when the  @Processed  parameter is set to zero, because this plan would not be valid 
for a non-zero  @Processed  parameter value. 
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     Listing 26-14.    Plan reuse: Filtered indexes (non-functional demo)   

  create unique nonclustered index IDX_Data_UnprocessedData 
 on dbo.RawData(ID) 
 include(Processed) 
 where Processed = 0; 

   -- Cached Plan for the query would not use filtered index 
 select top 100 * 
 from dbo.RawData 
 where ID > @ID and Processed = @Processed 
 order by ID; 

         Plan Caching for Ad-Hoc Queries 
 SQL Server caches plans for ad-hoc queries (and batches), which use constants rather than parameters in 
the  WHERE  clause. Listing  26-15  shows an example of ad-hoc queries. 

      Listing 26-15.     Ad-hoc queries     

 select * from dbo.Customers where LastName='Smith' 
 go 
 select * from dbo.Customers where LastName='Smith' 
 go 
 SELECT * FROM dbo.Customers WHERE LastName='Smith' 
 go 
 select * from dbo.Customers where LastName   =  'Smith' 
 go 

   SQL Server reuses plans for ad-hoc queries only in cases where the queries are exactly the same and a 
complete character-for-character match with each other. For example, the four queries from Listing  26-15  
would introduce three different plans. The first and second queries are identical and share a plan. The two 
other queries would not reuse that plan due to the keywords’ upper- and lowercase mismatch and the extra 
space characters around the equality operator in the  WHERE  clause. 

 Because of the nature of  ad-hoc queries  , they do not reuse plans very often. Unfortunately, cached 
plans for ad-hoc queries can consume a large amount of memory. Let’s look at an example and run 1,000 
simple ad-hoc batches, as shown in Listing  26-16 , checking the plan cache state afterward. The script clears 
the content of the cache with the  DBCC FREEPROCCACHE  command; do not run this on a production server. 

      Listing 26-16.    Ad-hoc queries’ memory usage: Running ad-hoc queries   

  dbcc freeproccache 
 go 

   declare 
     @SQL nvarchar(max) 
     ,@I int = 0 
 while @I < 1000 



CHAPTER 26 ■ PLAN CACHING

504

 begin 
     select @SQL = 
         N'declare @C int;select @C=ID from dbo.Employees where ID=' 
         + convert(nvarchar(10),@I); 
     exec(@SQL); 
     select @I += 1; 
 end     
 go 

   select 
     p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.[text] 
 from     
     sys.dm_exec_cached_plans p cross apply 
         sys.dm_exec_sql_text(p.plan_handle) t 
 where 
     p.cacheobjtype like 'Compiled Plan%' and 
     t.[text] like '%Employees%' 
 order by 
     p.objtype desc; 

    As you can see in Figure  26-9 , there are 1,000 plans cached, each of which uses 32 KB of memory, or 32 
MB total. As you can guess, ad-hoc queries in busy systems can lead to excessive plan cache memory usage.  

  Figure 26-9.    Plan cache content after query execution       

 SQL Server 2008 introduced a server-side configuration setting called  Optimize for ad-hoc workloads . 
When this setting is enabled, SQL Server caches small, less-than-300-byte structures, called  compiled plan 
stubs , instead of actual compiled plans. A compiled plan stub is a placeholder that is used to keep track of 
which ad-hoc queries were executed. When the same query runs a second time, SQL Server replaces the 
compiled plan stub with the actual compiled plan and reuses it going forward. 

 The  Optimize for ad-hoc workloads  setting is disabled by default. However, it should be enabled in most 
systems. Even though it introduces slight CPU overhead on the second ad-hoc query recompilation, it could 
significantly decrease plan cache memory usage on systems with heavy ad-hoc activity. That memory would 
be available for the buffer pool, which could reduce the number of physical I/O operations and improve 
system performance. 

 You can enable this setting with the code shown in Listing  26-17 . In addition, it can be enabled in the 
Advanced tab of the Server Properties window in Management Studio. 

     Listing 26-17.    Enabling Optimize for ad-hoc activity setting   

 exec sys.sp_configure N'optimize for ad hoc workloads', N'1'; 
 reconfigure with override; 
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  Figure 26-10.    Plan cache content when Optimize for ad-hoc workload is enabled       

   If you ran the code from Listing  26-16  with the  Optimize for ad-hoc workloads  setting enabled, you 
would see the plan cache content shown in Figure  26-10 . As you can see, it now uses just 272 KB of memory 
rather than the 32 MB it used to before.   

  Figure 26-11.    Plan cache content after parameterization occurred       

      Auto-Parameterization   
 In some cases, SQL Server may decide to replace some constants in ad-hoc queries with parameters and 
cache compiled plans as if the queries were parameterized. When this happens, similar ad-hoc queries that 
use different constants can reuse cached plans. 

 Listing  26-18  shows two queries that could be parameterized and will share a compiled plan. 

      Listing 26-18.    Parameterization   

 select ID, Number, Name from dbo.Employees where ID = 5 
 go 
 select ID, Number, Name from dbo.Employees where ID = 10 
 go 

   Internally, SQL Server stores the compiled plan as shown below: 

   (@1 tinyint)SELECT [ID],[Number],[Name] FROM [dbo].[Employees] WHERE [ID]=@1 

   By default, SQL Server defines a parameter data type based on a constant value, choosing the smallest 
data type where the value fits. For example, the query  SELECT ID, Number, Name FROM dbo.Employees 
WHERE ID = 10000  would introduce another cached plan, as shown below: 

   (@1 smallint)SELECT [ID],[Number],[Name] FROM [dbo].[Employees] WHERE [ID]=@1 

   When parameterization occurs, SQL Server stores another structure in the plan cache, called a  shell 
query , in addition to the compiled plan of the parameterized query. The shell query uses about 16 KB of 
memory and stores information about the original query, linking it to the compiled plan. 

 In Figure  26-11 , you can see the content of plan cache after we run the queries from Listing  26-18 . As 
you can see, it stores the compiled plan and two shell queries.  
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 By default, SQL Server uses  simple parameterization,  and it is very conservative in parameterizing 
queries. Simple parameterization only happens when a cached plan is considered  safe to parameterize , 
which means that the plan would be the same in terms of plan shape and cardinality estimations, even when 
constant/parameter values have changed. For example, a plan with a n onclustered  i ndex  s eek  and k ey  l ookup  
on a unique index is safe because it would never return more than one row, regardless of the parameter 
value. Conversely, the same operation on a non-unique index is not safe. Different parameter values lead 
to different cardinality estimations, which makes a c lustered  i ndex  s can  the better choice for some of them. 
Moreover, there are many language constructs that prevent simple parameterization, such as  IN ,  TOP , 
 DISTINCT ,  JOIN ,  UNION , subqueries, and quite a few others. 

 Alternatively, SQL Server can use  forced parameterization,  which can be enabled at the database 
level with the  ALTER DATABASE SET PARAMETERIZATION FORCED  command or on the query level with a 
 PARAMETERIZATION FORCED  hint. In this mode, SQL Server auto-parameterizes most ad-hoc queries, with 
very few exceptions. 

 As might be expected, forced parameterization comes with a set of benefits and drawbacks. While on 
one hand it can significantly reduce the size of the plan cache and CPU load, it also increases the chance of 
suboptimal execution plans due to parameter sniffing issues. 

 Another problem with forced parameterization is that SQL Server replaces constants with parameters 
without giving you any control about the constants you want to parameterize. This is especially critical for 
filtered indexes, where parameterization can prevent SQL Server from generating and caching a plan that 
utilizes them by replacing constant values in the statements with parameters. I am including one such 
example in the companion materials of the book. 

 One of the good use cases for forced parameterization is the complex ad-hoc queries submitted by a 
client application in cases where the choice of execution plan does not depend on constant values. While it 
is better to change the client application and parameterize queries, it is not always possible. 

 Listing  26-19  shows an example of such a query. Every query execution leads to a compilation, and 
it adds an entry to the plan cache. Such a query benefits from forced parameterization, because the most 
optimal execution plan for the query is a c lustered  i ndex  s eek,  and it does not change based on the constant/
parameter value. 

     Listing 26-19.    Example of a query that benefits from forced parameterization   

 select top 100 RecId, /* Other Columns */ 
 from dbo.RawData 
 where RecID > 432312 -- Client application uses different values at every call 
 order by RecId 

   With all that being said, you should be careful with forced parameterization when you enable it at the 
database level. It is safer to enable it on the individual query level if needed.  

     Plan Guides 
 Query hints can be extremely useful in helping to resolve various plan caching – related issues. Unfortunately, 
in some cases you are unable to modify the query text, either because you do not have access to the 
application code or because the recompilation and redeployment is impossible or impractical. 

 You can solve such problems by using plan guides, which allow you to add hints to the queries or even 
force specific execution plans without changing a query’s text. You can create them with the   sp_create_
plan_guide    stored procedure and manage them with the  sp_control_plan_guide  stored procedure. 
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  Figure 26-12.    Execution plan with Object plan guide       

 There are three types of  plan guides   available, as follows:

   An   Object  plan guide   allows you to specify a hint for a query that exists in a T-SQL 
object, such as a stored procedure, trigger, or user-defined function.  

  A   SQL  plan guide   allows you to specify a hint for a particular SQL query, either 
standalone or as part of a batch.  

  A   Template  plan guide   allows you to specify a type of parameterization—forced 
or simple—for a particular query template, overriding the database setting.    

 The code in Listing  26-20  removes the query hint from the  dbo.GetAverageSalary  stored procedure 
and creates a plan guide with an  OPTIMIZE FOR UNKNOWN  hint. The  @Stmt  parameter should specify a query 
where a hint needs to be added, and  @module_or_batch  should specify the name of the object. 

     Listing 26-20.    Object plan guide   

  alter proc dbo.GetAverageSalary @Country varchar(64) 
 as 
     select Avg(Salary) as [Avg Salary] 
     from dbo.Employees 
     where Country = @Country; 
 go 

   exec sp_create_plan_guide 
     @type = N'OBJECT' 
     ,@name = N'object_plan_guide_demo' 
     ,@stmt = N'select Avg(Salary) as [Avg Salary] 
 from dbo.Employees 
 where Country = @Country' 
     ,@module_or_batch = N'dbo.GetAverageSalary' 
     ,@params = null 
     ,@hints = N'OPTION (OPTIMIZE FOR (@Country UNKNOWN))'; 

    Now, if you ran the stored procedure for  @Country = 'Canada' , you would get the execution plan 
shown in Figure  26-12 . It is similar to what you had with the query hint within the stored procedure. You can 
see in the properties of the top operator in the graphical plan, as well as in its XML representation, that a 
plan guide was used during optimization.  
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 Listing  26-21  shows an example of a SQL plan guide, which set the  MAXDOP  option for the query. In this 
mode, the  @module_or_batch  parameter should be set to  null . 

     Listing 26-21.    SQL plan guide   

 exec sp_create_plan_guide 
     @type = N'SQL' 
     ,@name = N'SQL_plan_guide_demo' 
     ,@stmt = N'select Country, count(*) as [Count] 
 from dbo.Employees 
 group by Country' 
     ,@module_or_batch = NULL 
     ,@params = null 
     ,@hints = N'OPTION (MAXDOP 2)' ; 

   Working with Template plan guides is a bit more complex. Unlike SQL and Object plan guides, 
where the  @stmt  parameter should be a character-for-character match with the queries, a Template plan 
guide requires you to provide the template for the query. Fortunately, you can use another system stored 
procedure,  sp_get_query_template , to prepare it. 

 Let’s look at an example and assume that we want SQL Server to auto-parameterize the query from 
Listing  26-22 . Even though the execution plan for the query is safe—a clustered index seek on a unique index 
would always return one row — the  TOP  clause prevents SQL Server from parameterizing it. You can see the ad-
hoc cached plan in Figure  26-13 .  

      Listing 26-22.    Template plan guide: Sample query   

  select top 1 ID, Number, Name from dbo.Employees where ID = 5; 
 go 

   select p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.[text] 
 from sys.dm_exec_cached_plans p cross apply 
         sys.dm_exec_sql_text(p.plan_handle) t 
 where t.[text] like '%Employees%' 
 order by p.objtype desc 
 option (recompile); 

  Figure 26-13.    Plan cache before the Template plan guide is created       

    Listing  26-23  shows you how to create a template plan guide and override the  PARAMETERIZATION  
database option. 

     Listing 26-23.     Template plan guide  : Creating a plan guide   

  declare 
     @stmt nvarchar(max) 
     ,@params nvarchar(max) 
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   -- Getting template for the query 
 exec sp_get_query_template 
     @querytext = N'select top 1 ID, Number, Name from dbo.Employees where ID = 5;' 
     ,@templatetext = @stmt output 
     ,@params = @params output; 

   -- Creating plan guide 
 exec sp_create_plan_guide 
     @type = N'TEMPLATE' 
     ,@name = N'template_plan_guide_demo' 
     ,@stmt = @stmt 
     ,@module_or_batch = null 
     ,@params = @params 
     ,@hints = N'OPTION (PARAMETERIZATION FORCED)' 

    Now, if you ran the code from Listing  26-22 , the statement would be parameterized, as shown in 
Figure  26-14 .  

  Figure 26-14.    Plan cache after Template plan guide is created       

 As a final option, you can force SQL Server to use a specific execution plan by specifying it in the plan 
guide or using the  USE PLAN  query hint. Listing  26-24  shows an example of both approaches. The full XML 
plan is omitted to conserve space in the book. 

     Listing 26-24.    Forcing XML query plan   

  -- Using USE PLAN query hint 
 select Avg(Salary) as [Avg Salary] 
 from dbo.Employees 
 where Country = 'Germany' 
 option (use plan N'<?xml version="1.0"?> 
 <ShowPlanXML><!-- Actual execution plan here --></ShowPlanXML>'); 
 go 

   -- Using Plan Guide 
 declare 
     @Xml xml = N'<?xml version="1.0"?> 
 <ShowPlanXML><!-- Actual execution plan here --> </ShowPlanXML>'; 

   declare 
     @XmlAsNVarchar nvarchar(max) = convert(nvarchar(max),@Xml) 
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   exec sp_create_plan_guide 
     @type = N'SQL' 
     ,@name = N'xml_plan_guide_demo' 
     ,@stmt = N'select Avg(Salary) as [Avg Salary] 
 from dbo.Employees 
 where Country = ''Germany''' 
     ,@module_or_batch = NULL 
     ,@params = null 
     ,@hints = @XmlAsNVarchar; 

    While both the query hint and the plan guide force SQL Server to use a specific execution plan, in SQL 
Server 2008 and above, they exhibit different behaviors when the plan becomes incorrect. Query Optimizer 
will ignore an incorrect plan guide and generate a plan as if the plan guide has not been specified. A query 
with a  USE PLAN  hint, on the other hand, would generate an error. An example of such an error is shown 
here. SQL Server 2005, however, simply fails the query if an invalid plan guide is specified. 

   Msg 8712, Level 16, State 0, Line 1 
 Index 'tempdb.dbo.Employees.IDX_Employees_Country', specified in the USE PLAN hint, does not 
exist. Specify an existing index, or create an index with the specified name. 

   You need to be careful when you change the schemas of the objects referenced in plan guides and 
 USE PLAN  hints. It is entirely possible to invalidate plans, even when your changes do not directly affect the 
indexes and columns used by a query. For example, unique indexes or constraints can eliminate some of the 
assertions in the plan and, therefore, invalidate a plan when you drop them. Another common example is 
changes in partition schemas and functions. 

 Starting with SQL Server 2008, you can use the  sys.fn_validate_plan_guide  system function to check 
if a plan guide is still valid. The code in Listing  26-25  shows an example of this. 

     Listing 26-25.    Validating plan guides   

 select pg.plan_guide_id, pg.name, pg.scope_type_desc, pg.is_disabled, vpg.message 
 from sys.plan_guides pg cross apply 
     ( select message from sys.fn_validate_plan_guide(pg.plan_guide_id) ) vpg; 

   The  sys.fn_validate_plan_guide  function returns a row if the plan guide is incorrect. You can see an 
example of its output in Figure  26-15 .  

  Figure 26-15.     Validating plan guides         

 As a final note, plan guides are only supported in the Standard, Enterprise, and Developer editions of SQL 
Server. You can still create plan guides in the unsupported editions, but Query Optimizer will ignore them.  
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      Plan Cache Internals   
 SQL Server separates plan cache into four different memory areas called  cache stores . Each cache store 
caches different entities and plans, as follows:

   The  SQL Plans  cache store (internal name  CACHESTORE_SQLCP ) stores plans 
for parameterized and ad-hoc queries and batches, as well as for auto-
parameterized plans.  

  The   Object Plans  cache store   ( CACHESTORE_OBJCP ) stores plans for T-SQL objects, 
such as stored procedures, triggers, and user-defined functions.  

  The   Extended Stored Procedures    cache store ( CACHESTORE_XPROC ) stores plans for 
extended stored procedures.  

  The   Bound Trees  cache   store ( CACHESTORE_PHDR ) stores bound trees generated 
during the query optimization stage.    

 ■   Note    SQL Server uses other cache stores that are not associated with plan cache. You can examine their 
content by using the  sys.dm_os_memory_cache_counters  data management view.  

 You can monitor the size of each cache store with a  SELECT  statement, as shown in Listing  26-26 . 

     Listing 26-26.    Checking a cache store’s size   

 select type as [Cache Store], sum(pages_in_bytes) / 1024.0 as [Size in KB] 
 from sys.dm_os_memory_objects 
 where type in ( 'MEMOBJ_CACHESTORESQLCP','MEMOBJ_CACHESTOREOBJCP' 
     ,'MEMOBJ_CACHESTOREXPROC','MEMOBJ_SQLMGR' ) 
 group by type ; 

   Each cache store uses a hash table in which hash buckets keep zero or more plans. There are about 
40,000 buckets in both the Object Plan store and the SQL Plan store in 64-bit instances, and about 10,000 
buckets in 32-bit instances of SQL Server. The size of the Bound Trees cache store is about 1/10th of that 
number, and the number of buckets in the Extended Stored Procedures store is always 127. You can examine 
the cache store properties with the   sys.dm_os_memory_cache_hash_tables    view. 

 SQL Server uses a very simple algorithm to calculate the hash value for a plan based on the following 
formula:  (object_id * database_id) mod hash_table_size . 

 For parameterized and ad-hoc queries,  object_id  is the internal hash of the query or batch. It is 
entirely possible that one bucket stores multiple plans for the same object or query. As we have already 
discussed, different  SET  options, database users, and quite a few other factors can prevent plan reuse. SQL 
Server compares multiple plan attributes when looking for the right plan in the cache. We will discuss how to 
analyze plan attributes later in this chapter. 

 Compiled plans cached for multi-statement batches are basically the arrays of individual statement-
level plans. When a statement from a batch needs to be recompiled, SQL Server recompiles the individual 
statement rather than the entire batch. 

 SQL Server treats a cached batch plan as a single unit. The entire batch must be a character-for-
character match with original batch that produced the cached plan in order for that plan to be reused. SQL 
Server generates an execution plan from the compiled plan for the entire batch. 

 The amount of memory that can be used by the plan cache depends on the version of SQL Server being 
used (see Table  26-1 ).  
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   Visible memory    is different in 32-bit and 64-bit instances of SQL Server. 32-bit instances of SQL Server 
have at most 2 GB or 3 GB of visible memory, depending on the presence of a /3GB switch in the  boot.ini  
file. Even when AWE (Address Windows Extension) memory is in use, memory above 4 GB can be used for 
the buffer pool only. No such limitation exists on 64-bit instances of SQL Server. 

 SQL Server starts to remove plans from the cache in cases of memory pressure. There are two kinds 
of memory pressure:  local  and  global . Local memory pressure happens when one of the cache stores 
grows too big and starts using too much SQL Server process memory. Global memory pressure happens 
when Windows forces SQL Server to reduce its physical memory usage, or when the size of all cache stores 
combined reaches 80 percent of the plan cache pressure limit. 

  Local memory pressure   is triggered when one of the cache stores starts to use too much memory. In 
SQL Server 2005-2008R2, where single-page and multi-page allocations are treated separately, memory 
pressure occurs when a cache store reaches 75 percent of the plan cache pressure limit in a single-page 
allocation or 50 percent in a multi-page allocation. In SQL Server 2012 and above, there is only one memory 
allocator, called the  any-size page allocator , and memory pressure is triggered when a cache store grows to 
62.5 percent of the plan cache pressure limit. 

 Local memory pressure can also be triggered based on the number of plans in the SQL and Object Plan 
cache stores. That number is about four times the hash table size, which is 40,000 or 160,000 plans on 32-bit 
and 64-bit instances respectively. 

 Both  local and global memory pressure   remove plans from the cache using an algorithm called  eviction 
policy , which is based on plan cost. For ad-hoc plans, the cost starts with zero and increments by one with 
every plan reuse. Other types of plans measure the cost of resources required to produce them. It is based on 
I/O, memory, and context switches in the units, called  ticks , as shown here:

    I/O : Each I/O operation costs 1 tick, with a maximum of 19.  

   Memory : Each 16 pages of memory costs 1 tick, with a maximum of 4.  

   Context Switches : Each switch costs 1 tick, with a maximum of 8.    

 When not under memory pressure, costs are not decreased until the total size of all cached plans 
reaches 50 percent of the buffer pool size. At that point, the  Lazy Writer  process starts periodically 
scanning plan caches, decrementing the cost of each plan by one on each scan, removing plans with zero 
cost. Alternatively, each plan reuse increments its cost by one for ad-hoc queries, or by the original plan 
generation cost for other types of plans. 

 Listing  26-27  shows you how to examine the current and original costs of cached entries in SQL and 
Object Plan cache stores. 

     Listing 26-27.    Examining original and current costs of cache entries   

 select 
     q.Text as [SQL], p.objtype, p.usecounts, p.size_in_bytes, mce.Type as [Cache Store] 
     ,mce.original_cost, mce.current_cost, mce.disk_ios_count 
     ,mce.pages_kb  /* Use pages_allocation_count in SQL Server prior 2012 */ 
     ,mce.context_switches_count, qp.query_plan 

   Table 26-1.    Plan Cache Pressure Limit Calculation Formula   

 SQL Server Version  Cache Pressure Limit 

 SQL Server 2005 RTM, SP1  75% of visible target memory from 0-8 GB + 50% of visible target 
memory from 8 GB-64 GB + 25% of visible target memory > 64 GB 

 SQL Server 2005 SP2+, SQL Server 
2008/2008R2, SQL Server 2012 - 2016 

 75% of visible target memory from 0-4 GB + 10% of visible target 
memory from 8 GB-64 GB + 5% of visible target memory > 64 GB 
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 from 
     sys.dm_exec_cached_plans p with (nolock) join 
         sys.dm_os_memory_cache_entries mce with (nolock) on 
             p.memory_object_address = mce.memory_object_address 
     cross apply sys.dm_exec_sql_text(p.plan_handle) q 
     cross apply sys.dm_exec_query_plan(p.plan_handle) qp 
 where 
     p.cacheobjtype = 'Compiled plan' and 
     mce.type in (N'CACHESTORE_SQLCP',N'CACHESTORE_OBJCP') 
 order by 
     p.usecounts desc 

        Examining Plan Cache 
 There are several data management views that provide plan cache – related information. Let’s look at some of 
them in depth. 

 As you already saw, the  sys.dm_exec_cached_plans  view provides information about every plan 
stored in the SQL and Object Plan cache stores. The key column in the view is  plan_handle , which uniquely 
identifies the plan. In the case of a batch, that value remains the same even when some statements from the 
batch are recompiled. In addition to  plan_handle , this view provides information about the type of plan 
(Compiled Plan, Compiled Plan Stub, and so forth) in the  cacheobjtype  column, type of object (Proc, Ad-
Hoc query, Prepared, Trigger, and so on) in the  objtype  column, reference and use counts, memory size, 
and a few other attributes. 

 The data management function  sys.dm_exec_plan_attributes  accepts  plan_handle  as a parameter 
and returns a set of attributes for a particular plan. Those attributes include references to the database and 
object to which the plan belongs, the  user_id  of the session that submits the batch, and quite a few other 
attributes. 

 One of the attributes,  sql_handle , links the plan to the batch for which the plan has been compiled. You 
can use it together with the   sys.dm_exec_sql_text    function to obtain its SQL text. 

 Each attribute has a flag if it is included in the  cache key . SQL Server reuses plans only when both the 
 sql_handle  and cache key of the cached plan match the values from the submitted batch. Think about the 
 set_option  attribute as an example. It is included in the cache key; therefore, different  SET  options would 
lead to different cache key values, which would prevent plan reuse. 

 One SQL batch, identified by  sql_handle , can have multiple plans, identified by  plan_handle —one for 
each cache key attribute’s value. Listing  26-28  illustrates an example of this. 

     Listing 26-28.      SQL_Handle  and  plan_handle  relations     

 set quoted_identifier off 
 go 
 select top 1 ID from dbo.Employees where Salary > 40000; 
 go 
 set quoted_identifier on 
 go 
 select top 1 ID from dbo.Employees where Salary > 40000 
 go 
 ;with PlanInfo(sql_handle, plan_handle, set_options) 
 as 
 ( 
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     select pvt.sql_handle, pvt.plan_handle, pvt.set_options 
     from 
      (  select p.plan_handle, pa.attribute, pa.value 
         from sys.dm_exec_cached_plans p with (nolock) outer apply 
                 sys.dm_exec_plan_attributes(p.plan_handle) pa 
         where cacheobjtype = 'Compiled Plan' ) as pc 
     pivot (max(pc.value) for pc.attribute 
         in ("set_options", "sql_handle")) as pvt 
 ) 
 select pi.sql_handle, pi.plan_handle, pi.set_options, b.text 
 from 
     PlanInfo pi cross apply 
         sys.dm_exec_sql_text(convert(varbinary(64),pi.sql_handle)) b 

   Figure  26-16  shows two different plans for the same SQL batch, resulting from the difference in  SET  options.  

  Figure 26-16.     Plan_handle  and  sql_handle        

 You can obtain an XML representation of the execution plan with the  sys.dm_exec_query_plan  
function, which accepts  plan_handle  as a parameter. However, it does not return a query plan if the XML 
plan has more than 128 nested levels, because of XML data-type limitations. In that case, you can use the 
 sys.dm_exec_text_query_plan  function, which returns a text representation of the XML plan instead. 

 You can retrieve information about currently executed requests by using the  sys.dm_exec_requests  
view. Listing  26-29  shows the query, which returns the data on currently running requests from user 
sessions, sorted by their running time in descending order. 

     Listing 26-29.    Using   sys.dm_exec_requests      

 select 
     er.session_id, er.user_id, er.status, er.database_id, er.start_time 
     ,er.total_elapsed_time, er.logical_reads, er.writes 
     ,substring(qt.text, (er.statement_start_offset/2)+1, 
         ( ( case er.statement_end_offset 
                  when -1 then datalength(qt.text) 
                  else er.statement_end_offset 
              end - er.statement_start_offset ) /2 ) +1 ) as [SQL] 
     ,qp.query_plan, er.* 
 from 
     sys.dm_exec_requests er with (nolock) 
         cross apply sys.dm_exec_sql_text(er.sql_handle) qt 
         cross apply sys.dm_exec_query_plan(er.plan_handle) qp 
 where 
     er.session_id > 50 and /* Excluding system processes */ 
     er.session_id <> @@SPID 
 order by 
     er.total_elapsed_time desc 
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   The  sys.dm_exec_query_stats ,  sys.dm_exec_procedure_stats , and  sys.dm_exec_trigger_stats  
views provide aggregated performance statistics for queries, procedures, and triggers that have cached plans. 
They return one row for every cached plan per object, as long as the plan stays in the cache. These views are 
extremely useful during performance troubleshooting. We will discuss their use in depth in Chapter   28    . 

  Sys.dm_exec_query_stats  is supported in SQL Server 2005 and above.  Sys.dm_exec_procedure_stats  
and  sys.dm_exec_trigger_stats  were introduced in SQL Server 2008. 

 ■   Note    You can find more information about execution-related DMOs at    http://technet.microsoft.com/
en-us/library/ms188068.aspx     .   

     Summary 
 Query optimization is an expensive process that increases CPU load on busy systems. SQL Server reduces 
such load by caching plans in a special part of memory called the plan cache. It includes plans for T-SQL 
objects, such as stored procedures, triggers, and user-defined functions; ad-hoc queries and batches; and a 
few other plan-related entities. 

 SQL Server reuses plans for ad-hoc queries and batches only when there is a character-for-character 
match of the query/batch texts. Moreover, different  SET  options and/or references to unqualified objects 
could prevent plan reuse. 

 Caching plans for ad-hoc queries can significantly increase plan cache memory usage. It is 
recommended that you enable the server-side  Optimize for ad-hoc workloads  configuration setting if you are 
using SQL Server 2008 and above. 

 SQL Server  sniffs parameters  and generates and caches plans that are optimal for the parameter values 
at the time of compilation. In cases of uneven data distribution, this could lead to performance issues when 
cached plans are not optimal for the typically submitted parameter values. You can address such issues with 
a statement-level recompile,  OPTIMIZE FOR  query hints, or, in SQL Server 2016, with Query Store. 

 You can specify hints directly in queries. Alternatively, you can use plan guides, which allow you to 
apply hints or force specific execution plans without changing the query text. 

 Cached plans should be valid for every possible combination of parameters. This can lead to 
suboptimal plans when a query has  OR  conditions to support optional parameter values. You can address 
such issues with a statement-level recompile, or by building SQL dynamically and omitting  OR  conditions.     

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
http://technet.microsoft.com/en-us/library/ms188068.aspx
http://technet.microsoft.com/en-us/library/ms188068.aspx


   PART V 

   Practical Troubleshooting 

        



519© Dmitri Korotkevitch 2016 
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_27

    CHAPTER 27   

 Extended Events                          

  Extended Events  is a highly scalable performance monitoring and troubleshooting solution introduced in 
SQL Server 2008. It is targeted as a  replacement   for SQL Traces, which was deprecated in SQL Server 2012. 
Extended Events are lightweight, and they have the flexibility to allow for troubleshooting of some scenarios 
that were not possible with SQL Traces. 

 This chapter provides an overview of the Extended Events framework and shows you how to work with 
them. 

     Extended Events Overview 
 Even though SQL Traces events are extremely easy to set up, they have serious limitations. All event types 
generate output in the same format. The same columns in the output could provide different data for 
different SQL Traces events. For example, in the  SQL:Batch Completed  event, the   TextData  column   contains 
the text of the SQL batch. Alternatively, in the  Lock:Acquired   event  , the same column shows a resource 
where a lock was acquired. It is complicated to analyze the output of the traces that collect different events. 

 Performance is another important factor. A SQL Server component called   Trace Controller    manages 
SQL Traces defined by all  trace consumers . It keeps an internal bitmap that shows event types that are 
consumed by currently active traces and, therefore, need to be collected. Other SQL Server components, 
which in this context are called  trace producers , analyze that bitmap and fire corresponding events when 
needed. 

 Trace producers do not know what data columns are included in the trace. Data for all of the columns is 
collected and passed to the controller, which evaluates trace filters and discards unneeded events and data 
columns. 

 This architecture introduces unnecessary overhead. Consider a situation where you want to capture 
long-running SQL statements from a specific session. SQL Traces would have very few columns defined and 
collect just a handful of events. Trace  producers  , however, would fire events for each SQL statement that 
comes to the system. The trace controller would do all further filtering and column removal. 

 The Extended Events framework has been designed with the goal of addressing these limitations in 
mind. Similar to SQL Traces, it includes  event sessions  that define the boundaries for event collection. They 
specify event  types   and data that needs to be collected, predicates that are used in filters, and targets where 
the data is stored. SQL Server can write events to targets either synchronously, in the same thread where the 
event occurs, or asynchronously, buffering data in the memory reserved for each event session. 

 Extended Events uses an XML format. Each event type has its own set of data columns. For example, the 
  sql_statement_completed  event   provides the number of reads and writes, CPU time, duration, and other 
execution statistics for a query. You can collect additional attributes — for example, the tsql stack — by executing 
operators called  actions.  In contrast to SQL Traces, Extended Events does not collect unnecessary data; that 
is, only a small set of event data columns and specified actions are collected. 
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 When SQL Server triggers an  event , it checks for any active event sessions that consume such an event. 
When such sessions exist, SQL Server collects the event data columns and, if predicates were defined, 
collects the information needed for their evaluation. If predicate evaluation succeeds and the event needs 
to be fired, SQL Server collects all of the actions, passes data to  synchronous targets  , and buffers data for 
asynchronous targets. Figure  27-1  illustrates this process.  

  Figure 27-1.    Extended Events  life cycle         

 Finally, it is worth noting that Extended Events support in  SQL Server 2008   is rather limited, and it does 
not include all of the events that exist in SQL Traces. Moreover, Management Studio in SQL Server 2008 does 
not include a UI to work with Extended Events. Fortunately, those limitations have been addressed in SQL 
Server 2012 and above, where all SQL Traces events have corresponding Extended Events, and Management 
Studio provides the tools to manage and analyze Extended Events data. 

 ■   Note    You can download the SQL Server 2008 Extended Events Management Studio Add-In developed 
by Jonathan Kehayias from the SqlSkills.com website at    http://www.sqlskills.com/free-tools/     , or from 
CodePlex. Moreover, Jonathan wrote an excellent tutorial on Extended Events called “An XEvent a Day,” which is 
available at    http://www.sqlskills.com/blogs/jonathan/category/xevent-a-day-series/     .   

     Extended Events Objects 
 The Extended Events framework consists of several different objects. Let’s examine them in detail. 

      Packages   
 SQL Server combines Extended Events objects into  packages . You can think of packages as containers for 
metadata information. Each Extended Events object is referenced by a two-part name, which includes 
package and object names. Packages do not define a functional boundary for the events. It is completely 
normal to use objects from different packages together. 

 Different versions of SQL Server have a different number of packages available and expose them 
with the  sys.dm_xe_packages  view. You can examine them with the code shown in Listing  27-1 . The 
 Capabilities  column is a bitmask that describes the properties of the package. The leftmost bit indicates 
if the package is private, and thus if objects from that package are used by SQL Server internally and are 
not accessible to users. For example, the  SecAudit  package is private and is used by SQL Server for audit 
functions. This package cannot be referenced in any user-defined Extended Events session. 

 

http://www.sqlskills.com/free-tools/
http://www.sqlskills.com/blogs/jonathan/category/xevent-a-day-series/
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     Listing 27-1.    Examining Extended Events packages   

 select 
     dxp.guid, dxp.name, dxp.description, dxp.capabilities 
     ,dxp.capabilities_desc, os.name as [Module] 
 from 
     sys.dm_xe_packages dxp join sys.dm_os_loaded_modules os on 
         dxp.module_address = os.base_address 

   Figure  27-2  shows the output of this query in SQL Server 2016.   

  Figure 27-2.    Extended Events  packages   in SQL Server 2016       

     Events 
  Events  correspond to specific points in SQL Server code; for example, completion of a SQL statement, 
acquiring and releasing a lock, deadlock conditions, and others. 

 Different  versions   of SQL Server expose a different number of events. Moreover, the number of events 
may increase with service pack releases. For example, SQL Server 2008 SP2 exposes 253 events, SQL Server 
2012 RTM exposes 617 events, SQL Server 2012 SP1 exposes 625 events, SQL Server 2014 RTM exposes 870 
events, and SQL Server 2016 RTM exposes 1,301 events. 

 In  SQL Server 2012   and above, every SQL Traces event has a corresponding Extended Event. The 
opposite, however, is not true. SQL Traces is deprecated in SQL Server 2012, and the new SQL Server 
features do not expose troubleshooting capabilities through SQL Traces, using Extended Events instead. 

 You can analyze available events with the   sys.dm_xe_objects  view  , as shown in Listing  27-2 . Figure  27-3  
shows the partial output of a query from SQL Server 2016.  

     Listing 27-2.    Examining Extended Events   

 select xp.name as [Package], xo.name as [Event], xo.Description 
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on 
     xp.guid = xo.package_guid 
 where 
     (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages 
     (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects 
     xo.object_type = 'event' 
 order by 
     xp.name, xo.name 
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   Each event has a set of associated columns that belong to one of three  categories  , as follows:

    Read Only  columns contain static information about an event, such as the event 
GUID, schema version, and other static information.  

   Data  columns contain run-time event data. For example,  sql_statement_
completed  events expose various execution statistics- related data columns, such 
as the number of I/O operations, CPU time, and other run-time event data.  

   Customizable  columns allow you to change their values during event session 
creation, and they control the behavior of the event. For example, the   collect_
statement  column   of   sql_statement_completed  events   controls if a SQL 
statement is collected when an event is fired. It is enabled by default; however, 
you can change its value and disable statement collection on busy servers. 
Alternatively, the   collect_parameterized_plan_handle    column is disabled by 
default, but it could be enabled if needed.    

 You can examine event columns with the   sys.dm_xe_object_columns  view  . Listing  27-3  shows you how 
to obtain column information for the  sql_statement_completed  event. 

     Listing 27-3.    Examining Extended Events columns   

 select 
     dxoc.column_id, dxoc.name, dxoc.type_name as [Data Type] 
     ,dxoc.column_type as [Column Type], dxoc.column_value as [Value], dxoc.description 
 from 
     sys.dm_xe_object_columns dxoc 
 where 
     dxoc.object_name = 'sql_statement_completed' 

   The set of available columns changes based on the SQL Server version in use. Figure  27-4  shows the 
output of the preceding query in SQL Server 2008, and Figure  27-5  shows it in SQL Server 2012 and above. It 
is worth noting that the   VERSION  column value   in the event data is different in those cases.    

  Figure 27-3.    Extended Events events  in SQL Server 2016         
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      Predicates   
  Predicates  define Boolean conditions for when an event needs to be fired. For example, if you want to collect 
information about CPU-intensive queries, you can define a predicate on the  cpu_time  column of the  sql_
statement_completed  event, capturing only the statements with CPU time that exceeds some predefined 
threshold. 

 Even though predicates look very similar to column filters in SQL Traces, there is a subtle difference 
between them. SQL Traces evaluates column filters after an event is collected and passed to the trace 
controller. In contrast, Extended Events collects the minimally required amount of data to evaluate 
predicates and does not execute actions or fire events if the predicates were evaluated as  False . 

 Predicates can be defined against either the event data columns or global attributes, such as  session_
id ,  database_id , and many others. You can see a list of the available global attributes by using the query 
shown in Listing  27-4 . Figure  27-6  shows the partial output of this query in SQL Server 2016.  

  Figure 27-4.      sql_statement_completed  event columns   in SQL Server 2008       

  Figure 27-5.      sql_statement_completed  event   columns in SQL Server 2012 and above       

 

 



CHAPTER 27 ■ EXTENDED EVENTS

524

     Listing 27-4.    Examining global attributes   

 select xp.name as [Package], xo.name as [Predicate], xo.Description 
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on 
     xp.guid = xo.package_guid 
 where 
     (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages 
     (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects 
     xo.object_type = 'pred_source' 
 order by 
     xp.name, xo.name 

  Figure 27-6.    Global attributes that can be used in predicates       

  Figure 27-7.    Comparison functions that can be used in predicates       

   Predicates can use the basic arithmetic operations and comparison functions provided by the Extended 
Events framework. You can examine the list of available  functions   by using the query shown in Listing  27-5 . 
Figure  27-7  shows the partial output of this query in SQL Server 2016.  

     Listing 27-5.    Examining comparison functions   

 select xp.name as [Package], xo.name as [Comparison Function], xo.Description 
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on 
     xp.guid = xo.package_guid 
 where 
     (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages 
     (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects 
     xo.object_type = 'pred_compare' 
 order by 
     xp.name, xo.name 
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   In contrast to Transact SQL, Extended Events supports short-circuit predicate evaluation, similar to 
development languages like C# or Java. When you have multiple predicates defined with logical  OR  and  AND  
conditions, SQL Server stops the evaluation as soon as the result is definitive. For example, if you have two 
predicates using the logical  AND  operator, and the first predicate is evaluated as  False , SQL Server does not 
evaluate the second predicate. 

 ■   Tip    Collecting global attributes data adds slight overhead to predicate evaluation. It is helpful to write 
multiple predicates in such a way that the event data columns are evaluated prior to the global attributes, thus 
preventing global attribute data collection due to short-circuiting.  

 SQL Server maintains the predicate state within an event session. For example, the  package0.counter  
attribute stores the number of times the predicate was evaluated. You can rely on the predicate state if you 
want to create event sessions that sample the data; for  example  , collecting data for every one hundredth or, 
perhaps, the first ten occurrences of the event.  

      Actions   
  Actions  provide you with the ability to collect additional information with the events. Available actions 
include  session_id ,  client_app_name ,  query_plan_hash , and many others. Actions are executed after 
predicates are evaluated, and only if an event is going to be fired. 

 SQL Server executes actions synchronously in the same thread as the events, which adds overhead to 
event collection. The amount of overhead depends on the action. Some of them — for example,  session_id  
or  cpu_id— are relatively lightweight. Others, such as  sql_text  or  callstack , can add significant overhead to 
SQL Server when they are collected with frequently fired events. The same applies to execution plan – related 
events and actions. They can add considerable overhead to the server. 

 ■   Important   Even though individual Extended Events are lightweight compared to SQL Traces events, they 
can still add considerable overhead to the server when used incorrectly. Do not add unnecessary load to SQL 
Server, and collect only those events and actions that are required for troubleshooting.  

 You can examine the list of available actions by using the query shown in Listing  27-6 . Figure  27-8  
shows the partial output of the query when run in SQL Server 2016.  

     Listing 27-6.    Examining actions   

 select xp.name as [Package], xo.name as [Action], xo.Description 
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on 
     xp.guid = xo.package_guid 
 where 
     (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages 
     (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects 
     xo.object_type = 'action' 
 order by 
     xp.name, xo.name 
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         Types      and Maps 
 In the Extended Events framework, data attributes are strongly typed with either types or maps.  Types  
represent scalar data types, such as integer, character, or GUID.  Maps , on the other hand, are enumerators 
that convert integer keys into a human-readable representation. 

 You can think of wait types as an example of Extended Events maps. The list of available wait types is 
pre-defined, and SQL Server can return an integer wait type key with events. The  wait_types  map allows 
you to convert this code into an easy-to-understand wait type definition. 

 You can see the list of available types and maps by using the query shown in Listing  27-7 . Figure  27-9  
shows the partial output of the query when run in SQL Server 2016.  

     Listing 27-7.    Examining types and maps   

 select xo.object_type as [Object], xo.name, xo.description, xo.type_name, xo.type_size 
 from sys.dm_xe_objects xo 
 where xo.object_type in ('type','map') 

  Figure 27-9.    Extended Events types and maps       

  Figure 27-8.    Extended Events  actions         

   You can examine the  list      of map values for a type with the  sys.dm_xe_map_values  view. Listing  27-8  
shows you how to obtain values for the  wait_types  map. Figure  27-10  shows the partial output of the query.  
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     Listing 27-8.    Examining  wait_types  map   

 select name, map_key, map_value 
 from sys.dm_xe_map_values 
 where name = 'wait_types' 
 order by map_key 

  Figure 27-10.     wait_types  map keys values       

  Figure 27-11.    SQL Server 2012-2016 Extended Events targets       

         Targets   
 When all event data is collected and the event is fired, it goes to the  targets , which allow you to store and 
retain raw event data or perform some data analysis and aggregation. 

 Similar to packages, some targets are private and cannot be used in an Extended Events session’s 
definition. You can examine the list of public targets by using the code shown in Listing  27-9 . 

     Listing 27-9.    Examining public targets   

 select 
     xp.name as [Package], xo.name as [Action], xo.Description 
     ,xo.capabilities_desc as [Capabilities] 
 from 
     sys.dm_xe_packages xp join sys.dm_xe_objects xo on 
         xp.guid = xo.package_guid 
 where 
     (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages 
     (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects 
     xo.object_type = 'target' 
 order by 
     xp.name, xo.name 

   The set of available  targets   is pretty much the same in different versions of SQL Server. Target names, 
however, are different between SQL Server 2008/2008R2 and subsequent versions. Figure  27-11  shows the 
list of available targets in SQL Server 2012-2016.  
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 Now, let’s look at targets in greater depth. Some of the most useful are listed here:

   The   ring_buffer  target   stores data in an in-memory ring buffer of a predefined 
size. When it is full, new events override the oldest ones in the buffer. Therefore, 
events can be consumed indefinitely. However, only the newest events are 
retained. This target is most useful when you need to perform troubleshooting 
and do not need to retain event data afterward. This is an asynchronous target 
(more about this later) and is supported in all versions of SQL Server.  

  The   asynchronous_file_target    (SQL Server 2008/2008R2) and  event_file  
(SQL Server 2012-2016) targets store events in the file using a proprietary binary 
format. These targets are most useful when you want to retain raw event data 
collected by a session. These targets are asynchronous.  

  The  etw_classic_sync_target  is a file-based target that writes data in a format 
that can be used by ETW-enabled readers. This target is used when you need 
to correlate SQL Server events with event-tracing events that are generated by 
Windows Kernel and other non-SQL Server components. (These scenarios are 
outside of the scope of this book.) This is a synchronous target and is supported 
in all versions of SQL Server.  

  The   synchronous_event_counter    (SQL Server 2008/2008R2) and the  event_
counter  (SQL Server 2012-2016) targets count the number of occurrences of 
each event in an event session. This target is useful when you need to analyze 
the particular metrics from a workload without introducing the overhead of full 
event collection. You can think about counting the number of queries in the 
system as an example. These targets are synchronous.  

  The  synchronous_bucketizer  (SQL Server 2008/2008R2),  asynchronous_ 
bucketizer  (SQL Server 2008/2008R2), and  histogram  (SQL Server 2012-2016) 
targets allow you to count the number of specific events, grouping the results 
based on a specified event data column or action. For example, you can count 
the number of queries in the system on a per-database basis. The bucketizer 
targets in SQL Server 2008/2008R2 can be either synchronous or asynchronous, 
while the histogram target is asynchronous.  

  The   pair_matching  target      helps you to troubleshoot situations in which one 
of the expected events does not occur for some reason. One such example is 
troubleshooting orphaned transactions by looking for  database_transaction_
begin  events without corresponding  database_transaction_end  events. The 
 pair_matching  target discards all matching event pairs, keeping only events that 
do not match. This is an asynchronous target and is supported in all versions of 
SQL Server.    

 Each target has its own set of properties that need to be configured with event sessions. For example, 
the   ring_buffer  target   requires you to specify the amount of memory and/or number of events to keep as 
well as the maximum number of occurrences of each event type in the buffer. Listing  27-10  shows you how 
to examine the configuration parameters of a target, using the  event_file  target as an example. Figure  27-12  
shows the output of this query.  
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     Listing 27-10.    Examining target configuration parameters   

 select 
     oc.column_id, oc.name as [Column], oc.type_name 
     ,oc.Description, oc.capabilities_desc as [Capabilities] 
 from 
     sys.dm_xe_objects xo join sys.dm_xe_object_columns oc on 
         xo.package_guid = oc.object_package_guid and 
         xo.name = oc.object_name 
 where 
     xo.object_type = 'target' and 
     xo.name = 'event_file' 
 order by 
     oc.column_id 

  Figure 27-12.      Event_file  target configuration   settings       

 ■     Note    You can read more about targets and their configuration settings at    http://technet.microsoft.
com/en-us/library/bb630339.aspx     . Remember that configuration settings vary in different versions of SQL 
Server.  

 You can use multiple event targets in one event session. For example, you can combine the  event_file  
target with the  ring_buffer , using the latter for real-time troubleshooting while retaining events in the file. 

 As you have already seen, targets can be either synchronous or asynchronous. SQL Server writes data to 
synchronous targets in the execution thread that fires an event. For asynchronous targets, SQL Server buffers 
events in the  memory  , periodically flushing them out to the targets. The   EVENT_RETENTION_MODE  event   
session configuration setting controls what happens with new events when buffers are full, as follows:

   The   NO_EVENT_LOSS  option   indicates that all events must be retained and event 
loss is unacceptable. SQL Server execution threads wait until buffers are flushed 
and have the free space to accommodate the new events. As you can guess, this 
option can introduce a major performance impact on SQL Server. Think about 
an event session that collects information about acquired and released locks, 
using the  event_file  target as an example. That event session can collect an 
enormous amount of events, and I/O throughput quickly becomes a bottleneck 
when the event data is saved.  

  The   ALLOW_SINGLE_EVENT_LOSS  option   allows a session to lose a single event 
when the buffers are full. This option reduces the performance impact on SQL 
Server while minimizing the loss of event data collected.  

  The   ALLOW_MULTIPLE_EVENT_LOSS  option      allows a session to lose multiple events 
when the buffers are full. This option minimizes the performance impact on SQL 
Server at the cost of the potential loss of a large number of events.      

 

http://technet.microsoft.com/en-us/library/bb630339.aspx
http://technet.microsoft.com/en-us/library/bb630339.aspx
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     Creating Events  Sessions   
 Now, it is time to bring everything together and look at Extended Events sessions. We will focus on a T-SQL 
implementation; however, you can use Management Studio with SQL Server 2012 and above, or Jonathan 
Kehayias’ SSMS Add-In with SQL Server 2008 if you prefer to work through the UI. 

 Each Extended Events session specifies the events to collect, targets for collected data, and several 
configuration properties. Listing  27-11  shows a statement that creates an Extended Events session that 
collects information about  tempdb  spills using the   hash_warning    and   sort_warning    events. This code works 
in SQL Server 2012 and above, as SQL Server 2008/2008R2 does not support  hash_warning  or  sort_warning  
events. However, the syntax of the  CREATE EVENT SESSION  command is the same in every version of SQL 
Server. 

      Listing 27-11.    Creating an event session   

 create event session [TempDB Spills] 
 on server 
 add event sqlserver.hash_warning 
 ( 
     action ( sqlserver.session_id, sqlserver.plan_handle, sqlserver.sql_text ) 
     where ( sqlserver.is_system=0 ) 
 ), 
 add event sqlserver.sort_warning 
 ( 
     action ( sqlserver.session_id, sqlserver.plan_handle, sqlserver.sql_text ) 
     where ( sqlserver.is_system=0 ) 
 ) 
 add target package0.event_file 
 ( set filename='c:\ExtEvents\TempDB_Spiils.xel', max_file_size=25 ), 
 add target package0.ring_buffer 
 ( set max_memory=4096 ) 
 with  -- Extended Events session properties 
 ( 
     max_memory=4096KB 
     ,event_retention_mode=allow_single_event_loss 
     ,max_dispatch_latency=15 seconds 
     ,track_causality=off 
     ,memory_partition_mode=none 
     ,startup_state=off 
 ); 

   As already mentioned, for asynchronous targets, SQL Server stores collected events in a set of memory 
 buffers  , using multiple buffers to separate the collection and processing of events. The number of buffers 
and their size depends on the  max_memory  and  memory_partition_mode  settings. SQL Server uses the 
following algorithm, rounding the buffer size up to the next 64 KB boundary:

     memory_partition_mode = none   : SQL Server uses three central buffers with 
the size of  max_memory  / 3 rounded up to next 64 KB boundary. For example, a 
 max_memory  of 4000 KB would create three buffers of 1344 KB each, regardless of 
the server configuration.  
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    memory_partition_mode = per_node   : SQL Server creates a separate set of three 
buffers each per NUMA node. For example, on a server with two NUMA nodes, 
a  max_memory  of 4000 KB would create six buffers, three per node, at a size of 704 
KB per buffer.  

    memory_partition_mode = per_cpu   : SQL Server creates the number of buffers 
based on this formula,  2.5 * (number of CPUs) , and partitions them on a 
per-CPU basis. For example, on a server with 20 CPUs, a  max_memory  of 4000 KB 
would create 50 buffers of 128 KB each.    

 Partitioning by NUMA node or CPU allows multiple CPUs to store events in a separate set of buffers, which 
helps reduce contentions and, therefore, the performance impact of Extended Events sessions that collect a 
very large number of events. There is a caveat, however. An event needs to be able to fit into the buffer in order 
to be collected. As you may have noticed, buffer partitioning increases the number of buffers, and this reduces 
their size. This is usually not a problem, because most of the events are relatively small. However, it is also 
possible to define a very large event that would not fit into the buffer. Make sure that you increase  max_memory  
when you partition events on a server with a large number of NUMA nodes and/or CPUs. 

 ■   Note    You can examine the  largest_event_dropped_size  column of the  sys.dm_xe_sessions  view to 
check if the buffers are big enough to fit the events.  

 SQL Server flushes the event session data to asynchronous targets when the buffers are full and/or 
based on a time interval specified by the  max_dispatch_latency  setting, which is 30 seconds by default. 

 The   startup_state  option   controls whether an event session should start automatically on SQL Server 
startup. 

 Finally, the  track_causality  option allows you to track the sequence of events and see how different 
events lead to each other. An example of such a scenario is a SQL statement that triggers a file read event, 
which in turn triggers a wait event with   PAGELATCHIO    wait, and so forth. When this option is enabled, SQL 
Server adds a unique activity ID that is a combination of the GUID value, which remains the same for the 
task, and the event sequence number. 

 After an event session is  created  , you can start or stop it with the   ALTER EVENT SESSION  command  , or 
drop it with the   DROP EVENT SESSION  command  , as shown in Listing  27-12 . 

     Listing 27-12.    Working with an event session   

 -- Starting Event Session 
 alter event session [TempDB Spills] on server state=start; 
 -- Stopping Event Session 
 alter event session [TempDB Spills] on server state=stop; 
 -- Dropping Event Session 
 drop event session [TempDB Spills] on server; 

        Working with Event Data 
 Management Studio 2012 and above provides you with a UI to monitor a live stream of event data or to 
examine data already collected in the targets. This UI is very convenient and flexible, and it allows you to 
customize the layout of a grid that shows events, letting you group and aggregate event data and export it 
into the  database table  , event, or CSV files. You should be careful, however, when connecting to a live stream 
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of events, because event sessions can generate events faster than Management Studio can consume them. 
When this happens, Management Studio disconnects from the live stream of data to avoid a negative impact 
on server performance. 

 In this section, I will not discuss how to work with the  Management Studio UI  , but rather will focus on 
T-SQL implementation. I would encourage you, however, to experiment with Management Studio. Even 
though the Extended Events management UI has some limitations, it is more than sufficient in a large 
number of cases. 

 The key Extended Events  data management views   that can be used to examine event sessions and data 
include the following:

   The   sys.dm_xe_sessions  view   provides information about active event sessions. 
It shows the configuration parameters of the sessions as well as execution 
statistics, such as the number of dropped events or the amount of time that event 
collection contributed to blocking if the  NO_EVENT_LOSS  option was used.  

  The   sys.dm_xe_session_targets  view   returns information about targets. 
One of the key columns of the view is  event_data . Some targets — for example, 
 ring_buffer  or  histogram— expose collected event data in this column. For 
other targets, such as  event_file , the  event_data  column contains metadata 
information, such as the file name and session statistics.  

  The   sys.dm_xe_sessions_object_columns  view   exposes configuration values for 
objects bound to the session. You can use this view to obtain the configuration 
properties for the targets; for example, the event file path.    

 ■   Note    You can find more information about Extended Events DMVs at    http://technet.microsoft.com/
en-us/library/bb677293.aspx     .  

 Now, let’s look at how to access data collected in different targets. 

     Working with the  ring_buffer Target   
  Ring_buffer  event data is exposed through the  event_data  column in the  sys.dm_xe_session_targets  
view. Listing  27-13  shows how to parse data collected by the  TempDB Spill  event session, which we defined 
in Listing  27-11 . 

     Listing 27-13.    Examining ring_buffer target data   

 ;with TargetData(Data) 
 as 
 ( 
     select convert(xml,st.target_data) as Data 
     from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on 
         s.address = st.event_session_address 
     where s.name = 'TempDB Spills' and st.target_name = 'ring_buffer' 
 ) 
 ,EventInfo([Event Time],[Event],SPID,[SQL],PlanHandle) 
 as 
 ( 

http://technet.microsoft.com/en-us/library/bb677293.aspx
http://technet.microsoft.com/en-us/library/bb677293.aspx
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     select 
         t.e.value('@timestamp','datetime') as [Event Time] 
         ,t.e.value('@name','sysname') as [Event] 
         ,t.e.value('(action[@name="session_id"]/value)[1]','smallint') as [SPID] 
         ,t.e.value('(action[@name="sql_text"]/value)[1]','nvarchar(max)') as [SQL] 
         ,t.e.value('xs:hexBinary((action[@name="plan_handle"]/value)[1])' 
                 ,'varbinary(64)') as [PlanHandle] 
     from 
         TargetData cross apply 
             TargetData.Data.nodes('/RingBufferTarget/event') as t(e) 
 ) 
 select 
     ei.[Event Time], ei.[Event], ei.SPID, ei.SQL, qp.Query_Plan 
 from 
     EventInfo ei outer apply 
         sys.dm_exec_query_plan(ei.PlanHandle) qp 

   If you forced a  tempdb   spill   with the code from Listings 3-6, 3-7, and 3-8 in Chapter   3    , you would see 
results similar to what is shown in Figure  27-13 .  

  Figure 27-13.    Examining  ring_buffer  target data       

 Unfortunately, the  sys.dm_xe_session_targets  view has a limitation that limits the size of the 
 target_data  column XML output to 4 MB. This can lead to a situation where some of the events from the 
 ring_buffer  target are not present in the view. This could happen even when the configured size of the 
 ring_buffer  is less than 4 MB; events are stored in binary format internally, and XML serialization can 
significantly increase the output size, making it larger than 4 MB. It is safer to use file-based targets to avoid 
this “missing events” situation.  

     Working with event_file and  asynchronous_file_target Targets   
 The   sys.fn_xe_file_target_read_file  table-valued function   allows you to read the content of the 
 asynchronous_file_target  and  event_file  targets. 

 Similar to SQL Traces, Extended Events’ file-based targets can generate multiple rollover files. You can 
read data from an individual file by specifying the exact file name in the first parameter of the function, 
 @path . Alternatively, you can read data from all of the files by using  @path  with wildcards. 

 The SQL Server 2008/2008R2  asynchronous_file_target  creates another file type called a  metadata 
file . You should provide the path to this file as the second parameter of the function,   @mdpath   . Though 
SQL Server 2012-2016 does not use metadata files, this function still has such a parameter for backward-
compatibility reasons. You can use  NULL  instead. 

 Finally, the third and fourth parameters allow you to specify the point at which to start reading. The 
third parameter,  @initial_file_name , is the first file to read. The fourth parameter,  @initial_offset , is 
the starting offset in the file. This function skips all of the data from the file up to the offset value. Both the 
file name and offsets are included in the result set, which allows you to  implement   code that reads only the 
newly collected data. 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_3
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 Listing  27-14  illustrates how you can read data from the  event_file  target generated by a  TempDB 
Spills  session in SQL Server 2016. 

     Listing 27-14.    Reading data from the event_file target   

 ;with TargetData(Data, File_Name, File_Offset) 
 as 
 ( 
     select convert(xml,event_data) as Data, file_name, file_offset 
      from sys.fn_xe_file_target_read_file('c:\extevents\TempDB_Spiils*.xel', null, null

    ,null) 
 ) 
 ,EventInfo([Event Time], [Event], SPID, [SQL], PlanHandle, File_Name, File_Offset) 
 as 
 ( 
     select 
         Data.value('/event[1]/@timestamp','datetime') as [Event Time] 
         ,Data.value('/event[1]/@name','sysname') as [Event] 
         ,Data.value('(/event[1]/action[@name="session_id"]/value)[1]','smallint') as [SPID] 
          ,Data.value('(/event[1]/action[@name="sql_text"]/value)[1]','nvarchar(max)') 

    as [SQL] 
         ,Data.value('xs:hexBinary((/event[1]/action[@name="plan_handle"]/value)[1])' 
             ,'varbinary(64)') as [PlanHandle] 
         ,File_Name, File_Offset 
     from TargetData 
 ) 
 select ei.[Event Time], ei.File_Name, ei.File_Offset, ei.[Event], ei.SPID, ei.SQL
    ,qp_Query_Plan 
 from EventInfo ei outer apply sys.dm_exec_query_plan(ei.PlanHandle) qp 

   For active sessions, you can obtain the path to the target file from the   sys.dm_xe_session_object_
columns  view  . However, this path does not include rollover information, which SQL Server appends to the 
file name when it is created. You need to transform it by adding a wildcard to the path. Listing  27-15  shows 
how you can do this with SQL Server 2012-2016. 

     Listing 27-15.    Reading the path to the event_file target file in SQL Server 2012 – 2016   

  declare 
     @dataFile nvarchar(260) 

   -- Get path to event data file 
 select 
      @dataFile = left(column_value,len(column_value ) - charindex('.',reverse(column_value))) 

  + '*.' + right(column_value, charindex('.',reverse(column_value))-1) 
 from 
     sys.dm_xe_session_object_columns oc join sys.dm_xe_sessions s on 
         oc.event_session_address = s.address 
 where 
     s.name = 'TempDB Spills' and 
     oc.object_name = 'event_file' and 
     oc.column_name = 'filename'; 
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    You can use a similar  approach   to obtain the path to the metadata file in SQL Server 2008/2008R2. The 
 metadatafile  path, however, could be NULL in the  sys.dm_xe_session_object_columns  view if you did not 
specify it as a parameter of the target, and you will need to use the same file name as that of the event file, 
replacing the extension with  xem  if this is the case.  

     Working with event_counter and  synchronous_event_counter Targets   
 The  synchronous_event_counter  (SQL Server 2008/2008R2) and  event_counter  (SQL Server 2012-2016) 
targets allow you to count the number of occurrences of specific events. Both targets provide data in a very 
simple XML format, which can be accessed through the  event_data  column in the  sys.dm_xe_session_
targets  view. 

 Listing  27-16  creates an event session that counts the number of reads from and writes to  tempdb  files; 
this will work in SQL Server 2012-2016. This same code will work in SQL Server 2008/2008R2 if you replace 
the target name with  synchronous_event_counter . 

     Listing 27-16.    Creating a session that counts number of reads and writes to/from tempdb files   

 create event session [FileStats] 
 on server 
 add event sqlserver.file_read_completed ( where(sqlserver.database_id = 2) ), 
 add event sqlserver.file_write_completed ( where(sqlserver.database_id = 2) ) 
 add target package0.event_counter 
 with 
 ( 
     event_retention_mode=allow_single_event_loss 
     ,max_dispatch_latency=5 seconds 
 ); 

   After you start the  session  , you can examine the data collected with the code shown in Listing  27-17 . 
You should change the target name to  synchronous_event_counter  in the  TargetData  CTE if you are 
working with SQL Server 2008/2008R2. 

     Listing 27-17.    Examining session data   

 ;with TargetData(Data) 
 as 
 ( 
     select convert(xml,st.target_data) as Data 
     from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on 
         s.address = st.event_session_address 
     where s.name = 'FileStats' and st.target_name = 'event_counter' 
 ) 
 ,EventInfo([Event],[Count]) 
 as 
 ( 
     select t.e.value('@name','sysname') as [Event], t.e.value('@count','bigint') as [Count] 
     from 
         TargetData cross apply 
             Targ etData.Data.nodes

('/CounterTarget/Packages/Package[@name="sqlserver"]/Event') as t(e) 
 ) 
 select [Event], [Count] from EventInfo; 
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        Working with  histogram  ,  synchronous_ bucketizer  , and 
 asynchronous_ bucketizer Targets    
  Histogram  or  bucketizer  targets group occurrences of specific event types based on event data. Let’s 
consider a scenario where you have a SQL Server instance with a large number of databases, and you want to 
find out which databases are not in use. You could analyze the index usage statistics; however, that method 
is not bulletproof and can provide incorrect results for rarely used databases if the statistics were unloaded 
due to a SQL Server restart, index rebuild, or for other reasons. 

 Extended Events can help you in this scenario. There are two simple ways to achieve your goal. You 
can analyze the activity against different databases by capturing the  sql_statement_starting  and  rpc_
starting  events. Alternatively, you can look at database-level shared (S) locks, which are acquired by any 
sessions accessing a database. With either approach,  histogram  or  bucketizer  targets allow you to count the 
occurrences of these events, grouping them by  database_id . 

 Let’s look at the second approach and implement an event session that tracks database-level locks. As a 
first step, let’s analyze the data columns of the   lock_acquired  event   with the query shown in Listing  27-18 . 
Figure  27-14  shows partial results of the query.  

     Listing 27-18.    Examining  lock_acquired  event data columns   

 select column_id, name, type_name 
 from sys.dm_xe_object_columns 
 where column_type = 'data' and object_name = 'lock_acquired' 

  Figure 27-14.    Lock_acquired event data columns       

   As you can see, the   resource_type    and   owner_type  columns  ’ data types are maps. You can examine all 
possible values with the queries shown in Listing  27-19 . Figure  27-15  shows partial results of the  queries           .  

     Listing 27-19.    Examining  lock_resource_type  and  lock_owner_type  maps   

  select name, map_key, map_value 
 from sys.dm_xe_map_values 
 where name = 'lock_resource_type' 
 order by map_key; 

   select name, map_key, map_value 
 from sys.dm_xe_map_values 
 where name = 'lock_owner_type' 
 order by map_key; 
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     Lock_acquired  events with an  owner_type  of  DATABASE  and  resource_type  of   SharedXActWorkspace    
would fire every time that a session accesses a database. Listing  27-20  creates an event session that captures 
these events using SQL Server 2012-2016. This approach works in SQL Server 2008/2008R2 if you change the 
target name. 

     Listing 27-20.    Creating an event session   

 create event session DBUsage 
 on server 
 add event sqlserver.lock_acquired 
 ( 
     where 
         database_id > 4 and -- Users DB 
         owner_type = 4 and -- SharedXactWorkspace 
         resource_type = 2 and -- DB-level lock 
         sqlserver.is_system = 0 
 ) 
 add target package0.histogram 
 ( 
     set 
         slots = 32 -- Based on # of DB 
         ,filtering_event_name = 'sqlserver.lock_acquired' 
         ,source_type = 0 -- event data column 
         ,source = 'database_id' -- grouping column 
 ) 
 with 
 ( 
     event_retention_mode=allow_single_event_loss 
     ,max_dispatch_latency=30 seconds 
 ); 

    Histogram  and/or  bucketizer   targets           , have four different parameters, as follows:

    slots  indicates the maximum number of different values (groups) to retain. SQL 
Server ignores all new values (groups) as soon as that number is reached. You 
should be careful and always reserve enough slots to keep information for all 
groups that might be present in the data. In our example, you should have a slot 
value that exceeds the number of databases in the instance. SQL Server rounds 
the provided value to the next power of two in order to improve performance.  

   source  contains the name of the event column or action that provides data for 
grouping.  

  Figure 27-15.     lock_resource_types  and  lock_owner_types  values       
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    source_type    is the type of the object by which you are grouping, and it can 
be either 0 or 1, which indicate a grouping by event data column or action, 
respectively. The default value is 1, which is action.  

    filtering_event_name    is an optional value that specifies the event from an 
event session that you are using as the data source for grouping. It should be 
specified if you group by event data column, and it could be omitted when 
grouping by action. In the latter case, grouping can be done based on actions 
from multiple events.    

 You can access  histogram  or  bucketizer  event data through the  event_data  column in the  sys.dm_xe_
session_targets  view. Listing  27-21  shows the code that analyzes the results of the   DBUsage  event              ,  session. 

     Listing 27-21.    Examining  histogram data     

 ;with TargetData(Data) 
 as 
 ( 
     select convert(xml,st.target_data) as Data 
     from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on 
         s.address = st.event_session_address 
     where s.name = 'DBUsage' and st.target_name = 'histogram' 
 ) 
 ,EventInfo([Count],[DBID]) 
 as 
 ( 
     select t.e.value('@count','int'), t.e.value('((./value)/text())[1]','smallint') 
     from 
         TargetData cross apply 
             TargetData.Data.nodes('/HistogramTarget/Slot') as t(e) 
 ) 
 select e.dbid, d.name, e.[Count] 
 from sys.databases d left outer join EventInfo e on 
         e.DBID = d.database_id 
 where d.database_id > 4 
 order by e.Count 

   Finally, it is worth noting that this approach can result in  false positives  by counting the locks acquired 
by various maintenance tasks, such as  CHECKDB , backups, and others, as well as by  SQL Server Management 
Studio  .  

     Working with the  pair_matching Target   
 The  pair_matching  target maintains information about unmatched events when a  begin  event does not 
have a corresponding  end  event, dropping out events from the target when they have a match. Think of 
orphaned transactions where  database_transaction_begin  events do not have corresponding  database_
transaction_end  events, as an example. Another case is a query timeout when the  sql_statement_
starting  event does not have a corresponding  sql_statement_completed  event. 

 Let’s look at the latter example and create an event session, as shown in Listing  27-22 . The  pair_
matching  target requires you to specify matching criteria based on the event data column and/or actions. 
It is also worth noting that in some cases — for example, with ADO.Net SQL Client library — you also need to 
capture  rpc_starting  and  rpc_completed  events during troubleshooting. 
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     Listing 27-22.    Creating an event session with a  pair_matching  target   

 create event session [Timeouts] 
 on server 
 add event sqlserver.sql_statement_starting ( action (sqlserver.session_id) ), 
 add event sqlserver.sql_statement_completed ( action (sqlserver.session_id) ) 
 add target package0.pair_matching 
 ( 
     set 
         begin_event = 'sqlserver.sql_statement_starting' 
         ,begin_matching_columns = 'statement' 
         ,begin_matching_actions = 'sqlserver.session_id' 
         ,end_event = 'sqlserver.sql_statement_completed' 
         ,end_matching_columns = 'statement' 
         ,end_matching_actions = 'sqlserver.session_id' 
         ,respond_to_memory_pressure = 0 
 ) 
 with 
 ( 
     max_dispatch_latency=10 seconds 
     ,track_causality=on 
 ); 

   You can examine  pair_matching   data   through the  event_data  column in the  sys.dm_xe_session_
targets  view. Listing  27-23  illustrates such an approach. 

     Listing 27-23.    Examining  pair_matching  target data   

 ;with TargetData(Data) 
 as 
 ( 
     select convert(xml,st.target_data) as Data 
     from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on 
         s.address = st.event_session_address 
     where s.name = 'Timeouts' and st.target_name = 'pair_matching' 
 ) 
 select 
     t.e.value('@timestamp','datetime') as [Event Time] 
     ,t.e.value('@name','sysname') as [Event] 
     ,t.e.value('(action[@name="session_id"]/value/text())[1]','smallint') as [SPID] 
     ,t.e.value('(data[@name="statement"]/value/text())[1]','nvarchar(max)') as [SQL] 
 from 
     TargetData cross apply TargetData.Data.nodes('/PairingTarget/event') as t(e) 

          System_health   and  AlwaysOn_Health Sessions   
 One of the great features of the Extended Events framework is the  system_health  event session, which is 
created and is running on every SQL Server installation by default. This session captures various types of 
information about the status and resource usage of SQL Server components, high severity and internal 
errors, excessive waits for resources or locks, and quite a few other events. The session uses  ring_buffer  and 
 event_file  targets to store the data. 
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 The  system_health  session is started on SQL Server startup by default. It gives you an idea of what 
recently happened in a SQL Server instance as you begin troubleshooting. Moreover, recent critical events 
have already been collected without requiring you to set up any monitoring routines. 

 One such example is deadlock  troubleshooting     . The  system_health  session collects the  xml_deadlock_
report  event. Therefore, when customers complain about deadlocks, you can analyze already-collected data 
without waiting for the next deadlock to occur. 

 The Enterprise Edition of SQL Server 2012-2016 and Standard Edition of SQL Server 2016 introduced 
another default Extended Events session called  AlwaysOn_health . As you can guess by the name, this session 
collects information about AlwaysOn Availability Groups – related events, such as errors and failovers. This 
session is enabled only when SQL Server participates in an AlwaysOn Availability Group. 

 Finally, SQL Server 2016 has another event session called  telemetry_xevents  that collect various 
telemetry data, storing it in a  ring_buffer  target. The majority of the information belongs to the new SQL 
Server 2016 features, such as row-level security, stretch databases, and temporal tables; however, some 
of the information is related to regular operations, such as database creation, missing statistics and join 
predicates, and others. 

 You can examine events collected by  system_health ,  AlwaysOn_health , and  telemetry_xevents  
sessions by scripting them in SQL Server Management Studio. You can even modify session definitions if 
needed. Be careful, however, because those changes can be overwritten during SQL Server upgrades or 
service pack installations.  

     Using Extended Events 
 Let’s look at a couple of practical examples of how you can use Extended Events during troubleshooting. 

     Detecting  Expensive Queries   
 You can detect expensive queries in the system by capturing  sql_statement_completed  and  rpc_completed  
events that have execution metrics that exceed some thresholds. This approach allows you to capture 
queries that do not have an execution plan cached and that are not exposed by the  sys.dm_exec_query_
stats  view. However, you will need to perform additional work aggregating and analyzing the collected data 
afterward when choosing what queries need to be optimized. 

 It is very important to find the right threshold values that define expensive queries in your system. Even 
though you do not want to capture an excessive amount of information, it is important to collect the  right  
information. Optimization of relatively inexpensive, but very frequently executed, queries can provide much 
better results when compared to the optimization of expensive but rarely executed queries. Analysis of the 
  sys.dm_exec_query_stats  view   data can help you detect some of those queries, and it should be used in 
parallel with Extended Events. 

 Listing  27-24  shows an event session that captures queries that use more than five seconds of CPU time 
or that issued more than 10,000 logical reads or writes. Obviously, you need to fine-tune filters based on your 
system workload, avoiding the  collection   of excessive amounts of data. 

     Listing 27-24.    Capturing expensive queries   

 create event session [Expensive Queries] 
 on server 
 add event sqlserver.sql_statement_completed 
 ( 
     action ( sqlserver.plan_handle ) 
     where 
     ( 



CHAPTER 27 ■ EXTENDED EVENTS

541

         ( 
             cpu_time >= 5000000 or -- Time in microseconds 
             logical_reads >= 10000 or writes >= 10000 
         ) and sqlserver.is_system = 0 
     ) 
 ), 
 add event sqlserver.rpc_completed 
 ( 
     where 
     ( 
         ( 
             cpu_time >= 5000000 or -- Time in microseconds 
             logical_reads >= 10000 or writes >= 10000 
         ) and sqlserver.is_system = 0 
     ) 
 ) 
 add target package0.event_file 
 ( set filename = 'c:\ExtEvents\Expensive Queries.xel' ) 
 with 
 ( event_retention_mode=allow_single_event_loss ); 

   Listing  27-25  shows the query that extracts the data from the  event_file  target. 

     Listing 27-25.    Extracting expensive queries information   

 ;with TargetData(Data, File_Name, File_Offset) 
 as 
 ( 
     select convert(xml,event_data) as Data, file_name, file_offset 
     from sys.fn_xe_file_target_read_file('c:\extevents\Expensive*.xel',null, null, null) 
 ) 
 ,EventInfo([Event], [Event Time], [CPU Time], [Duration], [Logical Reads], [Physical Reads]    
     ,[Writes], [Rows], [Statement], [PlanHandle], File_Name, File_Offset) 
 as 
 ( 
     select 
         Data.value('/event[1]/@name','sysname') as [Event] 
         ,Data.value('/event[1]/@timestamp','datetime') as [Event Time] 
          ,Data.value('((/event[1]/data[@name="cpu_time"]/value/text())[1])','bigint') 

    as [CPU Time] 
          ,Data.value('((/event[1]/data[@name="duration"]/value/text())[1])','bigint') 

    as [Duration] 
         ,Data.value('((/event[1]/data[@name="logical_reads"]/value/text())[1])' 
             ,'int') as [Logical Reads] 
         ,Data.value('((/event[1]/data[@name="physical_reads"]/value/text())[1])' 
             ,'int') as [Physical Reads] 
         ,Data.value('((/event[1]/data[@name="writes"]/value/text())[1])','int') as [Writes] 
         ,Data.value('((/event[1]/data[@name="row_count"]/value/text())[1])','int') as [Rows] 
          ,Data.value('((/event[1]/data[@name="statement"]/value/text())[1])','nvarchar(max)') 

    as [Statement] 
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          ,Data.value('xs:hexBinary(((/event[1]/action[@name="plan_handle"]/value/text())[1]))' 
             ,'varbinary(64)') as [PlanHandle] 
         ,File_Name, File_Offset 
     from TargetData 
 ) 
 select 
     ei.[Event], ei.[Event Time] 
     ,ei.[CPU Time] / 1000 as [CPU Time (ms)] 
     ,ei.[Duration] / 1000 as [Duration (ms)] 
     ,ei.[Logical Reads], ei.[Physical Reads], ei.[Writes], ei.[Rows], ei.[Statement] 
     ,ei.[PlanHandle], ei.File_Name, ei.File_Offset, qp.Query_Plan 
 from EventInfo ei outer apply sys.dm_exec_query_plan(ei.PlanHandle) qp 

   Further steps depend on your objectives. In some cases, you can see the obvious optimization targets 
when you analyze raw event data. In other situations, you will need to perform additional analysis and look 
at the frequency of executions, aggregating data based on  query_hash  or  query_plan_hash  actions data. 

 You may also consider creating a  process   that runs based on a schedule, extracting newly collected data 
and persisting it in a table. This approach increases the chances of capturing query plans if they are still in 
the plan cache. You can use  ring_buffer  rather than  event_file  as the target in such an implementation.  

     Monitoring  Page Split Events   
 Extended Events can help you to address problems that were hard and sometimes even impossible to 
troubleshoot with other methods. One such example is the monitoring of  page split  events, which allows you 
to identify indexes that suffer from page splits and fragmentation. 

 Capturing actual page splits is a tricky process. Even though SQL Server 2012 exposes the  page_split  
event, it does not differentiate between page splits that occur during new page allocations in ever-
increasing indexes and  regular  page splits. Fortunately, you can use the  LOP_DELETE_SPLIT  operation of the 
 transaction_log  event instead. This operation marks the deletion of the rows on the original page at the 
time of the split event. 

 Listing  27-26  shows the code that creates the Extended Events session that captures page split information 
in one of the databases. The session uses the  histogram  target, counting events on a per-index bases. 

     Listing 27-26.    Capturing page-split events   

 create event session PageSplits_Tracking 
 on server 
 add event sqlserver.transaction_log 
 ( 
     where operation = 11  -- lop_delete_split 
         and database_id = 17 
 ) 
 add target package0.histogram 
 ( 
     set 
         filtering_event_name = 'sqlserver.transaction_log', 
         source_type = 0, -- event column 
         source = 'alloc_unit_id' 
 ) 

   The code in Listing  27-27  shows how to extract the data from the target. 
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     Listing 27-27.    Analyzing page-split information   

 ;with Data(alloc_unit_id, splits)    
 as 
 ( 
     sel ect c.n.value('(value)[1]', 'bigint') as alloc_unit_id, c.n.value('(@count)[1]'

,'bigint') as splits 
     from 
     ( 
         select convert(xml,target_data) target_data 
         from sys.dm_xe_sessions s with (nolock) join sys.dm_xe_session_targets t on 
             s.address = t.event_session_address 
         where s.name = 'PageSplits_Tracking' and t.target_name = 'histogram' 
     ) as d cross apply 
         target_data.nodes('HistogramTarget/Slot') as c(n) 
 ) 
 select 
     s.name + '.' + o.name as [Table], i.index_id, i.name as [Index] 
     ,d.Splits, i.fill_factor as [Fill Factor] 
 from 
     Data d join sys.allocation_units au with (nolock) on 
         d.alloc_unit_id = au.allocation_unit_id 
     join sys.partitions p with (nolock) on 
         au.container_id = p.partition_id 
     join sys.indexes i with (nolock) on 
         p.object_id = i.object_id and p.index_id = i.index_id 
     join sys.objects o with (nolock) on 
         i.object_id = o.object_id 
     join sys.schemas s on 
         o.schema_id = s.schema_id 

   You can also use this  technique   during index FILLFACTOR tuning when analyzing how different values 
affect page splits in real time.   

     Extended Events in  Azure SQL Databases   
 Extended Events are also supported in Microsoft Azure SQL Databases v12. Even though the list of exposed 
events is relatively small, it supports the events that are helpful during the troubleshooting of common 
performance problems, such as detecting inefficient queries, blocking issues,  tempdb  spills, excessive 
memory grants, and a few others. 

 At the time when this book was written, SQL Azure supported three event targets: such as  ring_buffer , 
 event_counter , and  event_file . You can analyze the list of supported Extended Events objects by querying 
the catalog views using the queries from this chapter. 

 You can create Extended Events sessions in SQL Databases and query targets, as with the regular SQL 
Server. There are a couple of minor differences in the syntax, however. First, you have to use the   CREATE 
EVENT SESSION ON DATABASE  rather than the  ON SERVER  clause. SQL Databases scope events to the database 
rather than to the server level. The naming convention for database management views is also different. You 
should add  _database  to the name; for example, use the  sys.dm_xe_database_sessions  view instead of the 
 sys.dm_xe_sessions  view. 
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 ■   Note    You can read about Extended Events support in Azure SQL Databases at    https://azure.
microsoft.com/en-us/documentation/articles/sql-database-xevent-db-diff-from-svr/        

     Summary 
 Extended Events is a  lightweight   and highly scalable monitoring and debugging infrastructure that will 
replace SQL Traces in future versions of SQL Server. It addresses the usability limitations of SQL Traces, 
and it places less overhead on SQL Server by collecting only the information required and by performing 
predicate analysis at a very early stage of event execution. 

 SQL Server exposes new Extended Events with every new release. Starting with SQL Server 2012, all SQL 
Traces events have corresponding Extended Events. Moreover, new SQL Server features do not provide any 
SQL Traces support, relying on Extended Events instead. 

 Extended Events provides data in XML format. Every event type has its own schema, which includes 
specific data columns for that event type. You can add additional information to event data with a global set 
of available actions, and you can apply predicates to event data, filtering out events that you do not need. 

 Event data can be stored in multiple in-memory and on-disk targets, which allows you to collect raw 
event data or perform some analysis and aggregation, such as counting and grouping events or tracking an 
unmatched pair of events. 

 The  system_health  event session provides information about general SQL Server component health, 
resource usage, and high severity errors. This session is created and is running by default on every instance 
of SQL Server. One of the collected events is  xml_deadlock_report , which allows you to obtain a deadlock 
graph for recent deadlocks without needing to set up a SQL Traces event or a  T1222  trace flag. 

 Extended Events is a great technology that allows you to troubleshoot very complex scenarios that are 
impossible to troubleshoot using other methods. Even though the learning curve is steep, it is very beneficial 
to learn and use Extended Events.     

https://azure.microsoft.com/en-us/documentation/articles/sql-database-xevent-db-diff-from-svr/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-xevent-db-diff-from-svr/
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    CHAPTER 28   

 System Troubleshooting                          

 Things do not always work as expected. System performance can degrade over time when the amount 
of data and load increases, or sometimes a server can become unresponsive and stop accepting any 
connections at all. In either case, you need to find and fix such problems quickly while working under 
pressure and stress. 

 In this chapter, we will talk about the SQL Server execution model and discuss system troubleshooting 
based on wait statistics analysis. I will show you how to detect common issues frequently encountered in 
systems. 

     Looking at the Big Picture 
 Even though this chapter focuses on the troubleshooting of database-related issues, you need to remember 
that databases and SQL Server never live in a vacuum. There are always customers who use client 
applications. Those applications work with single or multiple databases from one or more instances of SQL 
Server. SQL Server, in turn, runs on physical or virtual hardware, with data stored on disks often shared with 
other customers and database systems. Finally, all system components use the network for communication 
and network-based storage access. 

 From the customers’ standpoint, most problems present themselves as general performance issues. 
Client applications feel slow and unresponsive, queries time out, and, in some cases, applications cannot 
even connect to the database. Nevertheless, the root cause  of   the problem could be anywhere. Hardware 
could be malfunctioning or incorrectly configured; the database might have inefficient schemas, indexing, or 
code; SQL Server could be overloaded; or client applications could have bugs or design issues. 

 ■   Important   You should always look at all of the components of a system during troubleshooting to identify 
the root cause of the problem.  

 The performance of a system depends on its slowest component. For example, if SQL Server uses SAN 
storage, you should look at the performance of both the storage subsystem and the network. If network 
throughput is not sufficient to transmit data, improving SAN performance wouldn’t help much. You could 
achieve better results by optimizing network throughput or by reducing the amount of network traffic with 
extra indexes or database schema changes. 

 Another example is  client-side data processing   when a large amount of data needs to be transmitted 
to client applications. While you could improve application performance by upgrading the network, you 
could obtain much better results by moving the data processing to SQL and/or application servers, thereby 
reducing the amount of data travelling over the wire. 
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 In this chapter, we will focus on troubleshooting the database portion of the system. However, I 
would still like to mention the various components and configuration settings that you should analyze 
during the initial stage of performance troubleshooting. Do not consider this list to be a comprehensive 
guide on hardware and software configuration. Be sure to do further research using Microsoft MSDN 
documentation, white papers, and other resources, especially when you need to deploy, configure, or 
troubleshoot complex infrastructures. 

     Hardware and Network 
 As a first step in troubleshooting, it is beneficial to look at the SQL Server hardware and network 
configuration.       There are several aspects of this involved. First, it makes sense to analyze if the server is 
powerful enough to handle the load. Obviously, this is a very subjective question that often cannot be 
answered based solely on the server specifications. However, in some cases you will see that the hardware is 
clearly underpowered. 

 One example of when this happens is with systems developed by  independent software vendors (ISV)   
and deployed in an Enterprise environment. Such deployments usually happen in stages. Decision makers 
evaluate system functionality under a light load during the trial/pilot phase. It is entirely possible that the 
database has been placed into second-grade hardware or an underprovisioned virtual machine during trials 
and stayed there even after full deployment. 

 SQL Server is a very I/O-intensive application, and a slow or misconfigured I/O subsystem often 
becomes a performance bottleneck. One very important setting that is often overlooked is partition 
alignment. Old versions of Windows created partitions right after 63 hidden sectors on a disk, which striped 
the disk allocation unit across multiple stripe units in RAID arrays. With such configurations, a single I/O 
request to a disk controller leads to multiple I/O operations in order to access data from the different RAID 
stripes. 

 Fortunately, partitions created in Windows Server 2008 and above are aligned by default. However, 
Windows does not realign existing partitions created in older versions of Windows when you upgrade 
operating systems or attach disks to servers. It is possible to achieve a 20 to 40 percent I/O performance 
improvement by fixing an incorrect partition alignment without making any other changes to the system. 

 Windows  allocation      unit size also comes into play. Most SQL Server instances would benefit from 64 KB 
units; however, you should take the RAID stripe size into account. Use the RAID stripe size recommended by 
the manufacturer; however, make sure that the Windows allocation unit resides on a single RAID stripe. For 
example, a 1 MB RAID stripe size works fine with 64 KB Windows allocation units, hosting 16 allocation units 
per stripe when disk partitions are aligned. 

 ■   Tip    You can read more about partition alignments at    http://technet.microsoft.com/en-us/library/
dd758814.aspx     .  

 Finally, you need to analyze network throughput. Network performance depends on the slowest link 
in the topology. For example, if one of the network switches in the path between SQL Server and a SAN has 
two-gigabit uplink, the network throughput would be limited to two gigabits, even when all other network 
components in the topology are faster than that. This is especially important in cases of network-based 
storage, when every physical I/O operation utilizes the network and, as a general rule, you would like to 
have network throughput be faster than disk performance. Moreover, always remember to factor in the 
distance information travels over a network. Accessing remote data adds extra latency and slows down 
communication.  

http://technet.microsoft.com/en-us/library/dd758814.aspx
http://technet.microsoft.com/en-us/library/dd758814.aspx


CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

547

     Operating System Configuration 
 You should look at the  operating system configuration      as the next step. It is especially important in the case 
of a 32-bit OS where the amount of user memory available to processes is limited. It is crucial that you check 
that 32-bit version of SQL Server can use extended memory, that the “Use AWE Memory” setting is enabled, 
and that the SQL Server startup account has  Lock Pages in Memory  permission. Nevertheless, the 32-bit 
version of SQL Server can use extended memory for the buffer pool only. This limits the amount of memory 
that can be utilized by other components, such as the plan cache and lock manager.  It is always beneficial 
to upgrade to a 64-bit version of SQL Server, especially because Microsoft dropped support of the 32-bit 
SQL Server version starting with SQL Server 2016.  

 You should check which software is installed and which processes are running on the server. Non-
essential processes use memory and contribute to server CPU load. Think about antivirus software, as an 
example. It is better to protect the server from viruses by restricting user access and revoking administrator 
permissions than to have antivirus software constantly running on the server. If company policy requires 
that you have antivirus up and running, make sure that the system and user databases are excluded from 
the scan. You should also exclude the folders with  FILESTREAM  and  FILETABLES  data from the scan if you use 
those technologies in the system. 

 Using development and troubleshooting tools locally on the server is another commonly encountered 
mistake. Developers and database administrators often run Management Studio, SQL Profiler, and other 
tools on a server during deployment and troubleshooting. These tools reduce the amount of memory 
available to SQL Server and contribute to unnecessary load. It is always better to access SQL Server remotely 
whenever possible. 

 Also, check if SQL Server is virtualized.  Virtualization             helps reduce IT costs, improves the availability 
of the system, and simplifies management. However, virtualization adds another layer of complexity during 
performance troubleshooting. Work with system administrators or use third-party tools to make sure that 
the host is not overloaded, even when performance metrics in a guest virtual machine appear normal. 

 Another common problem related to virtualization is resource overallocation. As an example, it is 
possible to configure a host in such a way that the total amount of memory allocated for all guest virtual 
machines exceeds the amount of physical memory installed on the host. That configuration leads to artificial 
memory pressure and introduces performance issues for a virtualized SQL Server. Again, you should work 
with system administrators to address such situations.  

     SQL Server Configuration 
 It is typical to have  multiple      databases hosted on a SQL Server instance. Database consolidation helps 
lower IT costs by reducing the number of servers that you must license and maintain. All those databases, 
however, use the same pool of SQL Server resources, contribute to its load, and affect each other. Heavy SQL 
Server workload from one system can negatively impact the performance of other systems. 

 You can analyze such conditions by examining resource-intensive and frequently executed queries on 
the server scope. If you detect a large number of such queries coming from different databases, you may 
consider optimizing all of them or to separate the databases onto different servers. We will discuss how to 
detect such queries later in this chapter. 

 You should also check if multiple SQL Server instances are running on the same server and how they 
affect the performance of each other. This condition is a bit trickier to detect and requires you to analyze 
various performance counters and DMOs from multiple instances. One of the most common problems 
in this situation happens when multiple SQL Server instances compete for memory, introducing memory 
pressure on each other. It might be beneficial to set and fine-tune the minimum and maximum memory 
settings for each instance based on requirements and load. 

 It is also worth noting that various Microsoft and third-party products often install separate SQL  Server       
instances without your knowledge. Always check to see if this is the case on non-dedicated servers. 
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 Finally, check the  tempdb  configuration and make sure that it is optimal, as we have already discussed in 
Chapter   13    , “Temporary Objects and TempDb.” 

 DATABASE CONSOLIDATION

 It is impossible to avoid a discussion of the database consolidation process when we talk about SQL 
Server installations hosting multiple databases. Even though it is not directly related to the topic of this 
chapter, I would like to review several aspects of the database consolidation process here. 

 There is no universal  consolidation   strategy that can be used with every project. You should analyze the 
amount of data, load, hardware configuration, and business and security requirements when making 
this decision. However, as a general rule, you should avoid consolidating OLTP and data warehouse/
reporting databases onto the same server when they are working under a heavy load. Data warehouse 
queries usually process large amounts of data, which leads to heavy I/O activity and flushes the content 
of the buffer pool. Taken together, this negatively affects the performance of other systems. 

 Listing  28-1  shows you how to get information about buffer pool usage on a per-database basis. 
Similarly, you can get information about I/O activity for each database file with the  sys.dm_io_virtual_
file_stats  function. We will discuss this function in greater detail later in this chapter. 

     Listing 28-1.    Buffer-pool usage on a per-database basis   

 select database_id as [DB ID], db_name(database_id) as [DB Name] 
     ,convert(decimal(11,3),count(*) * 8 / 1024.0) as [Buffer Pool Size (MB)] 
 from sys.dm_os_buffer_descriptors with (nolock) 
 group by database_id 
 order by [Buffer Pool Size (MB)] desc; 

   You should also analyze the security requirements when consolidating databases. Some security 
features, such as Audit, work on the server scope and add performance overhead for all of the 
databases on the server. Transparent Data Encryption (TDE) is another example. Even though it is a 
database-level feature, SQL Server encrypts  tempdb  when either of the databases has TDE enabled, 
which also introduces performance overhead for other systems. 

 As a general rule, you should avoid consolidating databases with different security requirements on the 
same instance of SQL Server. Using multiple  instances   of SQL Server, perhaps virtualizing them, is a 
better choice, even when such instances or virtual machines run on the same server/host.   

     Database Options 
 Every  production  database should have the   Auto Shrink  option   disabled. As we have already discussed,  Auto 
Shrink   periodically triggers the database shrink process, which introduces unnecessary I/O load and heavy 
index fragmentation. Moreover, this operation is practically useless, because further data modifications and 
index maintenance make database files grow yet again. 

 The   Auto Close  option   forces SQL Server to remove any database-related objects from memory when 
the database does not have any connected users. As you can guess, it leads to extra physical I/O and query 
compilations as users reconnect to the database afterward. With the rare exception of very infrequently 
accessed databases, the Auto Close setting should be disabled. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_13
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 It is better to have multiple data files in filegroups with volatile data. This helps avoid allocation map 
contention, similar to what happens in the case of  tempdb . We will discuss the symptoms of such contention 
later in this chapter. 

 MY FIVE-MINUTE CONFIGURATION CHECKLIST

 There are several items that I usually check during the initial system analysis stage. These allow me to 
quickly locate some of the SQL Server and database configuration issues.

   OS Version and Edition. The big red flags are the use of old (Windows Server 
2003/2008) and/or 32-bit editions of the OS.  

  SQL Server Version and Edition. As with the OS, I’d check if the system is using 
64-bit SQL Server. I would also validate service pack and CU level. I do not advocate 
upgrading to the latest CU immediately; however, it is important to find out if the 
system is running on a supported version of the product/service pack and what the 
known issues are of that build.  

  Is  Instant File Initialization  enabled? It needs to be enabled in most systems.  

  What trace flags are in use? In a majority of the systems prior to SQL Server 2016, 
I would enable  T1118  (disabling mixed extent allocation) and  T2371  (make statistics 
update threshold dynamic). I would also suggest you enable  T4199  (enable Query 
Optimizer hotfixes), even though it could require regression testing and system 
monitoring. As you will remember, in SQL Server 2016,  T2371  and  T4199  are not 
required for databases with a compatibility level of 130. Another useful trace flag is 
 T3226 , which prevents SQL Server from storing successful backup information in the 
log, ballooning its size.  

   SQL Server memory configuration  . More on this later.  

  Is the  Optimize for ad-hoc workload  setting enabled? It needs to be enabled in most 
systems.  

  High-level configuration of the disk subsystem, which includes raid level, stripe size, 
and partition alignment. In reality, in the majority of cases, I analyze this configuration 
at the same time as I look at I/O subsystem latency, throughput, and redundancy. It is 
also impossible to avoid a discussion about data and log files placement. As you know, 
separation of data and log files to different disk arrays is good practice, and it provides 
better data recoverability in the event of a disaster. However, you should also consider 
I/O system performance and throughput. In some cases, when the storage subsystem 
does not have enough spindles, you can get better performance by placing all files onto 
a single drive rather than spreading spindles across multiple drives. Nevertheless, you 
need to consider the increased risk of data loss with this approach.  

  Number of   tempdb  data files  , and data/log files’ auto-growth parameters.  

  User database options. It includes Auto Shrink and Auto Close, which both should be 
disabled, and  Page Verify , which should be set to  CHECKSUM . I’d look at statistics 
update parameters, correlating them with the statistics maintenance plan in the future. 
I also check if the  Allow    Snapshot Isolation  option   is enabled. The key is avoiding 
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unnecessary  tempdb  overhead by enabling and not using it. Obviously, the database 
recovery model also needs to be analyzed at the time of Disaster Recovery strategy 
analysis.  

  Database files’  auto-growth parameters   and number of VLFs (virtual log files) in the 
transaction log. Data files in the same filegroup should have the same initial sizes 
and auto-growth parameters specified in MB rather than percentage. The number of 
VLFs should be manageable, which we will discuss in Chapter   30    , “Transaction Log 
Internals.” In some cases, I would consider enabling trace flag  T1117  to guarantee 
that all files in the filegroup would auto-grow at same time. In SQL Server 2016, this 
behavior is controlled by the   AUTOGROW_ALL_FILES  filegroup   setting rather than by the 
trace flag.    

 This list is just the starting point of analysis and does not cover anything beyond basic configuration 
issues, nor does it provide you with any information about bottlenecks and system health. Nevertheless, 
it is useful as an initial stage of system troubleshooting.    

      Resource Governor   Overview 
 The Enterprise Edition of SQL Server comes with another useful feature called  Resource Governor . It allows 
you to separate different workload patterns and sessions into separate  workload groups . The classification 
is done through a user-defined function called a  classifier function , which SQL Server calls at the login stage. 
The classifier function performs classification based on user-defined criteria; for example, login, host, or 
application name. 

 Workload groups allow you to specify several parameters, such as  MAXDOP , maximum number of 
concurrent requests to execute, percentage of the workspace memory available for query memory grant 
(more on this later), and a couple of others. Moreover, each workload group is associated with the  resource 
pool , which allows you to customize or throttle resource usage for associated workgroups. 

 SQL Server documentation refers to resource pools as the virtual SQL Server instances inside the main 
one. I do not think it is accurate though. Resource pools do not provide enough isolation from each other; 
they, however, do allow you to configure some parameters, such as setting affinity, limiting CPU bandwidth, 
and controlling workspace memory for memory grants. In SQL Server 2014 and 2016, you can also control 
disk throughput.  Resource Governor, however, does not allow you to control buffer pool usage; it is 
shared across all pools.  

 There are two system workload groups and resource pools:  internal  and  default . As you can guess by 
the names, the first one handles internal workload. The second one is responsible for all non-classified 
 workload  . In reality, you can change the parameters of the default workload group—for example, reducing 
the size of the maximum memory grant — without creating other user-defined workload groups and pools. 

 Figure  28-1  illustrates an example of Resource Governor configuration. It represents a scenario that 
separates customer-facing OLTP and internal reporting activity, thus preventing a situation where reporting 
queries saturate disk throughput and CPU. Another common example is creating a separate workload and 
resource pool for maintenance activity, thereby mitigating the impact of index maintenance or database 
consistency checks by limiting disk throughput for those operations.  

http://dx.doi.org/10.1007/978-1-4842-1964-5_30
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 Resource Governor configuration is a complex topic that is outside of the scope of this book. You can 
read more about it at    http://msdn.microsoft.com/en-us/library/bb933866.aspx     .  

     SQL Server Execution Model 
 From a high level, the architecture of SQL Server includes five different  components  , as shown in 
Figure  28-2 .  

  Figure 28-1.    Example of Resource Governor  configuration         

  Figure 28-2.    High-level SQL Server  architecture         

 The   Protocol  layer   handles communications between SQL Server and client applications. The data 
is transmitted in an internal format called   Tabular Data Stream (TDS)    using one of the standard network 
communication protocols, such as TCP/IP or Named Pipes. Another communication protocol, called  shared 
memory , can be used when both SQL Server and the client application run locally on the same server. The 
shared memory protocol does not utilize the network and is more efficient than the others. 

 Different editions of SQL Server have different protocols enabled after installation. For example, 
the SQL Server Express Edition has all network protocols disabled by default, and it would not be able to 
serve network requests until you enable them. You can enable and disable protocols in the SQL Server 
Configuration Manager utility. 

 

 

http://msdn.microsoft.com/en-us/library/bb933866.aspx
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 The   Query Processor  layer   is responsible for query optimization and execution. We have already 
discussed various aspects of its behavior in previous chapters. 

 The  Storage Engine   consists   of components related to data access and data management in SQL Server. 
It works with the data on disk, handles transactions and concurrency, manages the transaction log, and 
performs several other functions. 

 SQL Server includes a set of  Utilities  that are responsible for backup and restore operations, bulk 
loading of data, full-text index management, and several other actions. 

 Finally, the vital component of SQL Server is the   SQL Server Operating System (SQLOS)      .    SQLOS is the 
layer between SQL Server and Windows, and it is responsible for scheduling and resource management, 
synchronization, exception handling, deadlock detection, CLR hosting, and more. For example, when any 
SQL Server component needs to allocate memory, it does not call the Windows API function directly, but 
rather requests memory from SQLOS, which in turn uses the  memory allocator  component to fulfill the 
request. 

 ■   Note   The Enterprise Edition of SQL Server 2014-2016 includes another major component called 
 In-Memory OLTP Engine . We will discuss this component in more detail in Part VIII, “In-Memory OLTP.”  

  SQLOS      was initially introduced in SQL Server 7.0 to improve the efficiency of scheduling in SQL Server 
and to minimize context and kernel mode switching. The major difference between Windows and SQLOS 
is the scheduling model. Windows is a general-purpose operating system that uses preemptive scheduling. 
It controls what processes are currently running, suspending and resuming them as needed. Alternatively, 
with the exception of  CLR code  , SQLOS uses cooperative scheduling, where processes yield voluntarily on a 
regular basis. 

 SQLOS creates a set of  schedulers  when it starts. The number of schedulers is equal to the number of 
logical CPUs in the system, plus one extra scheduler for the Dedicated Admin Connection, which we will 
discuss later in this chapter. For example, if a server has two quad-core CPUs with hyper-threading enabled, 
SQL Server creates 17 schedulers. Each scheduler can be in either an  ONLINE   or  OFFLINE stage   based on 
the process affinity settings and core-based licensing model. 

 Even though the number of schedulers matches the number of CPUs in the system, there is no strict 
one-to-one relationship between them unless the process affinity is set. In some cases, and under heavy 
load, it is possible to have more than one scheduler running on the same CPU. Alternatively, when process 
affinity is set, schedulers are bound to CPUs in a strict one-to-one relationship. 

 Each scheduler is responsible for managing working threads called  workers . The maximum number 
of workers in a system is specified by the   Max Worker Thread  configuration option  . The default value of 
 zero  indicates that SQL Server calculates the maximum number of worker threads based on the number of 
schedulers in the system. In a majority of cases, you do not need to change this default value. 

 Each time there is a task to execute, it is assigned to a worker in an idle state. When there are no idle 
workers, the scheduler creates a new one. It also destroys idle workers after 15 minutes of inactivity or in 
case of memory pressure. It is also worth noting that each worker would use 512 KB of RAM in 32-bit and
2 MB of RAM in 64-bit SQL Server for the thread stack. 

 Workers do not move between schedulers. Moreover, a task is never moved between workers. SQLOS, 
however, can create child tasks and assign them to different workers; for example, in the case of parallel 
execution plans. 

 Each task can be in one of six different  states:  

    Pending : Task is waiting for an available worker.  

   Done : Task is completed.  

   Running : Task is currently executing on the scheduler.  
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   Runnable : Task is waiting for the scheduler to be executed.  

   Suspended : Task is waiting for external event or resource.  

   Spinloop : Task is processing a spinlock. We will discuss spinlocks later in this 
chapter.    

 Each scheduler has at most one task in a running state.    In addition, it has two different queues—one 
for runnable tasks and one for suspended tasks. When the running task needs some resources—a data 
page from a disk, for example—it submits an I/O request and changes its state to  suspended . It stays in 
the  suspended  queue until the request is fulfilled and the page is read. After that, the task is moved to the 
 runnable  queue, where it is ready to resume execution. 

 A grocery store is, perhaps, the closest real-life analogy to the SQL Server execution model. Think of 
cashiers as representing schedulers. Customers in checkout lines are similar to tasks in the runnable queue. 
A customer who is currently checking out is similar to a task in the running state. 

 If an item is missing a  UPC code  , a cashier sends a store worker to do a price check. The cashier 
suspends the checkout process for the current customer, asking her or him to step aside (to the suspended 
queue). When the worker comes back with the price information, the customer who had stepped aside 
moves to the end of the checkout line (end of the runnable queue). 

 It is worth mentioning that the SQL Server process is much more efficient than real life, where others 
wait patiently in line during a price check. However, a customer who is forced to move to the end of the 
runnable queue would probably disagree with such a conclusion. 

 Figure  28-3  illustrates the typical task life cycle of the SQL Server execution model. The total task 
execution time can be calculated as a summary of the time the task spent in the running state (when it ran 
on the scheduler), in the runnable state (when it waited for an available scheduler), and in the suspended 
state (when it waited for a resource or external event).  

  Figure 28-3.     Task life cycle         

 SQL Server tracks the cumulative time tasks spend in a suspended state for different types of waits and 
exposes this through the  sys.dm_os_wait_stats  view. This information is collected as of the time of the 
last SQL Server restart or since it was cleared with the   DBCC SQLPERF    ('sys.dm_os_wait_stats', CLEAR)  
command. 

 Listing  28-2  shows how to find the top  wait types  in a system, which are the wait types for which workers 
spent the most time waiting. It filters out some nonessential wait types mainly related to internal SQL Server 
processes. Even though it is beneficial to analyze some of them during advanced performance tuning, you 
rarely focus on them during the initial stage of system troubleshooting. 
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 ■   Note    Every new version of SQL Server introduces new wait types. You can see a list of wait types at 
   http://msdn.microsoft.com/en-us/library/ms179984.aspx     . Make sure to select the appropriate version of 
SQL Server.  

     Listing 28-2.    Detecting top wait types in the  system     

 ;with Waits 
 as 
 ( 
     select 
             wait_type, wait_time_ms, waiting_tasks_count,signal_wait_time_ms 
             ,wait_time_ms - signal_wait_time_ms as resource_wait_time_ms 
             ,100. * wait_time_ms / SUM(wait_time_ms) over() as Pct 
             ,row_number() over(order by wait_time_ms desc) AS RowNum 
     from sys.dm_os_wait_stats with (nolock) 
     where 
         wait_time_ms > 0 and  
             wait_type not in /* Filtering out non-essential system waits */ 
     (N'CLR_SEMAPHORE',N'LAZYWRITER_SLEEP',N'RESOURCE_QUEUE', N'DBMIRROR_DBM_EVENT' 
     ,N'SLEEP_TASK',N'SLEEP_SYSTEMTASK',N'SQLTRACE_BUFFER_FLUSH',N'FSAGENT' 
     ,N'DBMIRROR_EVENTS_QUEUE', N'DBMIRRORING_CMD', N'DBMIRROR_WORKER_QUEUE' 
     ,N'WAITFOR',N'LOGMGR_QUEUE',N'CHECKPOINT_QUEUE',N'FT_IFTSHC_MUTEX' 
     ,N'REQUEST_FOR_DEADLOCK_SEARCH',N'HADR_CLUSAPI_CALL',N'XE_TIMER_EVENT' 
     ,N'BROKER_TO_FLUSH',N'BROKER_TASK_STOP',N'CLR_MANUAL_EVENT',N'HADR_TIMER_TASK' 
     ,N'CLR_AUTO_EVENT',N'DISPATCHER_QUEUE_SEMAPHORE',N'HADR_LOGCAPTURE_WAIT' 
     ,N'FT_IFTS_SCHEDULER_IDLE_WAIT',N'XE_DISPATCHER_WAIT',N'XE_DISPATCHER_JOIN' 
     ,N'HADR_NOTIFICATION_DEQUEUE',N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',N'MSQL_XP' 
     ,N'HADR_WORK_QUEUE',N'ONDEMAND_TASK_QUEUE',N'BROKER_EVENTHANDLER' 
     ,N'SLEEP_BPOOL_FLUSH',N'KSOURCE_WAKEUP',N'SLEEP_DBSTARTUP',N'DIRTY_PAGE_POLL' 
     ,N'BROKER_RECEIVE_WAITFOR',N'MEMORY_ALLOCATION_EXT',N'SNI_HTTP_ACCEPT' 
     ,N'PREEMPTIVE_OS_LIBRARYOPS',N'PREEMPTIVE_OS_COMOPS',N'WAIT_XTP_HOST_WAIT' 
     ,N'PREEMPTIVE_OS_CRYPTOPS',N'PREEMPTIVE_OS_PIPEOPS',N'WAIT_XTP_CKPT_CLOSE' 
     ,N'PREEMPTIVE_OS_AUTHENTICATIONOPS',N'PREEMPTIVE_OS_GENERICOPS',N'CHKPT' 
     ,N'PREEMPTIVE_OS_VERIFYTRUST',N'PREEMPTIVE_OS_FILEOPS',N'QDS_ASYNC_QUEUE' 
     ,N'PREEMPTIVE_OS_DEVICEOPS',N'HADR_FILESTREAM_IOMGR_IOCOMPLETION' 
     ,N'PREEMPTIVE_XE_GETTARGETSTATE',N'SP_SERVER_DIAGNOSTICS_SLEEP' 
     ,N'BROKER_TRANSMITTER',N'PWAIT_ALL_COMPONENTS_INITIALIZED' 
     ,N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',N'PWAIT_DIRECTLOGCONSUMER_GETNEXT' 
     ,N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP',N'SERVER_IDLE_CHECK' 
     ,N'SLEEP_DCOMSTARTUP',N'SQLTRACE_WAIT_ENTRIES',N'SLEEP_MASTERDBREADY' 
     ,N'SLEEP_MASTERMDREADY',N'SLEEP_TEMPDBSTARTUP',N'XE_LIVE_TARGET_TVF' 
     ,N'WAIT_FOR_RESULTS',N'WAITFOR_TASKSHUTDOWN',N'PARALLEL_REDO_WORKER_SYNC' 
     ,N'PARALLEL_REDO_WORKER_WAIT_WORK',N'SLEEP_MASTERUPGRADED' 
     ,N'SLEEP_MSDBSTARTUP',N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG') 
 ) 
 select 
     w1.wait_type as [Wait Type] 
     ,w1.waiting_tasks_count as [Wait Count] 

http://msdn.microsoft.com/en-us/library/ms179984.aspx
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  Figure 28-4.    Output of the script on a production  server         

     ,convert(decimal(12,3), w1.wait_time_ms / 1000.0) as [Wait Time] 
     ,convert(decimal(12,1), w1.wait_time_ms / w1.waiting_tasks_count) 
         as [Avg Wait Time] 
     ,convert(decimal(12,3), w1.signal_wait_time_ms / 1000.0) 
         as [Signal Wait Time] 
     ,convert(decimal(12,1), w1.signal_wait_time_ms / w1.waiting_tasks_count) 
         as [Avg Signal Wait Time] 
     ,convert(decimal(12,3), w1.resource_wait_time_ms / 1000.0) 
         as [Resource Wait Time] 
     ,convert(decimal(12,1), w1.resource_wait_time_ms / w1.waiting_tasks_count) 
         as [Avg Resource Wait Time] 
     ,convert(decimal(6,3), w1.Pct) as [Percent] 
     ,convert(decimal(6,3), w1.Pct + IsNull(w2.Pct,0)) as [Running Percent] 
 from 
     Waits w1 cross apply 
     ( 
             select sum(w2.Pct) as Pct 
             from Waits w2 
             where w2.RowNum < w1.RowNum 
     ) w2 
 where 
     w1.RowNum = 1 or w2.Pct <= 99 
 order by 
     w1.RowNum 
 option (recompile); 

   Figure  28-4  illustrates the output of a script from a production server at the beginning of the 
troubleshooting process. We will talk about wait types from output later in this chapter.  

 There are other useful SQLOS-related data management views, as follows:      

    sys.dm_os_waiting_tasks  returns a list of currently suspended tasks, including 
wait type, waiting time, and the resource for which it is waiting. It also includes 
the ID of the blocking session, if any.  
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  The   sys.dm_exec_requests    view provides a list of requests currently executing 
on SQL Server. This includes information about the session that submits the 
request; the current status of request; information about the current wait type if a 
task is suspended; SQL and plan handles; execution statistics; and several other 
attributes. In SQL Server 2016, you can use it together with the new function, 
 sys.dm_exec_input_buffer , to obtain information about currently running SQL 
statements. In earlier versions of SQL Server, you can use the  sys.dm_exec_sql_
text  function for such a purpose.  

  The   sys.dm_exec_session_wait_stats  view  , introduced in SQL Server 2016, 
provides the aggregated wait statistics on a per-session level. Keep in  mind   that 
information is updated after the wait has ended, and you need to analyze data 
from  sys.dm_os_waiting_tasks  and/or  sys.dm_exec_requests  views when you 
troubleshoot waits from currently running sessions. You can also use the  sqlos.
wait_info  Extended Event in earlier versions of SQL Server to track session waits.  

  The  sys.dm_os_schedulers  view returns information about schedulers, 
including their status, workers, and task information.  

  The   sys.dm_os_threads    view provides information about workers.  

  The   sys.dm_os_tasks  view   provides  information   about tasks, including their 
state and some execution statistics.     

     Wait Statistics Analysis and Troubleshooting 
 The process of analyzing the top waits in the system is called  wait statistics analysis . This is one of the 
frequently used troubleshooting and performance-tuning techniques in SQL Server. Figure  28-5  illustrates a 
typical wait statistics analysis troubleshooting cycle.  

  Figure 28-5.    Wait statistics analysis troubleshooting cycle       

 As a first step, look at the wait statistics,       which detect the top waits in the system. This narrows down 
the area of concern for further analysis. After that, you confirm the problem using other tools, such as DMV, 
Windows Performance Monitor, SQL Traces, and Extended Events, and detect the root cause of the problem. 
When the root cause is confirmed, you fix it and analyze the wait statistics again, choosing a new target for 
analysis and improvement. 

 This is a never-ending process. Waits always exist in systems, and there is always space for 
improvement. However, a generic 80/20 Pareto principle can be applied to almost any troubleshooting and 
optimization process. You achieve an 80 percent effect or improvement by spending 20 percent of your time. 
At some point, further optimization does not provide a sufficient return on investment, and it is better to 
spend your time and resources elsewhere. 
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 Even though wait statistics can help you detect problematic areas in a system, it is not always easy to 
find the root cause of a problem. Different issues affect and often mask each other. 

 Figure  28-6  illustrates such a situation. Bad system performance due to a slow and unresponsive 
I/O subsystem often occurs due to missing indexes and nonoptimized queries that overload it. Those 
queries require SQL Server to scan a large amount of data, which flushes the content of the buffer pool and 
contributes to CPU load. Moreover, missing indexes introduce locking and blocking in the system.  

  Figure 28-6.    Everything is related       

  Ad-hoc queries   and recompilations contribute to CPU load and increase plan cache size, which in turn 
leaves less memory for the buffer pool. It also increases I/O subsystem load due to the extra physical I/O 
required. 

 Let’s look at different  issues      frequently encountered in systems and discuss how we can detect and 
troubleshoot them. 

     I/O Subsystem and Nonoptimized  Queries      
 The most common root cause of issues related to a slow and/or overloaded I/O subsystem is nonoptimized 
queries, which require SQL Server to scan a large amount of data. When SQL Server does not have enough 
physical memory to cache all of the required data in the buffer pool, which is typically the case for large 
systems, physical I/O occurs and constantly replaces data in the buffer pool. 

 ■   Tip    You can add or allocate more physical memory to the server that hosts SQL Server when an I/O 
subsystem is overloaded. Extra memory increases the size of the buffer pool and the amount of data SQL 
Server can cache. It reduces the physical I/O required to scan the data. While it does not fix the root cause of 
the problem, it can work as an emergency fix and buy you some time. Remember that non-Enterprise editions 
of SQL Server have limitations in the amount of memory that they can utilize. Lastly, data compression in 
Enterprise Edition can also reduce the size of the data that needs to be cached.  

 Figure  28-7  illustrates a situation with nonoptimized queries, and it shows the metrics and tools that 
can be used to diagnose and fix these problems.  
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  PAGEIOLATCH_*  wait types occur when SQL Server is waiting for an I/O subsystem to bring a data page 
from disk to the buffer pool. A large percentage of those waits indicate heavy physical I/O activity in the 
system. Other I/O wait types, such as  IO_COMPLETION ,  ASYNC_IO_COMPLETION ,  BACKUPIO ,  WRITELOG , and 
 LOGBUFFER , relate to non-data pages’ I/O. These wait types may occur for various reasons.  IO_COMPLETION  
often indicates slow  tempdb  I/O performance during sort and hash operators.  BACKUPIO  is a sign of the slow 
performance of a backup disk drive, and it often occurs with an  ASYNC_IO_COMPLETION  wait type.  WRITELOG  
and  LOGBUFFER  waits are a sign of bad transaction log I/O throughput. 

 When all of these wait types are present together, it is easier to focus on reducing   PAGEIOLATCH    waits and 
data-related I/O. This will reduce the load on the I/O subsystem and, in turn, can improve the performance 
of non-data–related I/O operations. 

 It has become common nowadays for  servers      to have enough physical memory to cache an entire 
active data set in the buffer pool. Such systems usually have a relatively low percentage of  PAGEIOLATCH  waits 
present. Queries in these systems introduce a low amount of physical I/O activity, and even nonoptimized 
queries can have acceptable execution times. One sign of such a condition in OLTP systems is having 
a significant amount of parallelism  CXPACKET  waits and a low percentage of  PAGEIOLATCH  waits, with or 
without non-data page I/O-related waits present. You will need to confirm the situation by looking at query 
execution statistics, which we will discuss later in this chapter. 

 Nonoptimized queries without physical disk activity do not necessarily introduce a visible performance 
impact on the system. There is a hidden danger in this situation, however: the amount of data growth. It can 
reach the tipping point when data does not fit into memory anymore and the system starts to experience 
performance issues because of the excessive disk activity that the situation introduced. Moreover, 
nonoptimized queries can contribute to concurrency issues even without physical I/O being involved. 
Nevertheless, you should analyze whether optimizing such queries would provide you with sufficient ROI for 
your efforts. 

 The  sys.dm_io_virtual_file_stats   function      provides you with I/O statistics for data and log files, 
including information about a number of I/O operations, the amount of data processed, and I/O stalls, 
which is the time that SQL Server waited for I/O operations to complete. This can help you detect most 
I/O-intensive databases and data files, which is especially useful when a SQL Server instance hosts a large 
number of databases. This view is also useful when you work on database consolidation projects. 

 Listing  28-3  shows you a query that obtains information about I/O statistics for all of the databases on a 
server. Figure  28-8  illustrates the partial output of this query when run against one of the production servers.  

     Listing 28-3.     Using  sys.dm_io_virtual_file_stats      

 select 
     fs.database_id as [DB ID], fs.file_id as [File Id], mf.name as [File Name] 
     ,mf.physical_name as [File Path], mf.type_desc as [Type], fs.sample_ms as [Time] 
     ,fs.num_of_reads as [Reads], fs.num_of_bytes_read as [Read Bytes] 
     ,fs.num_of_writes as [Writes], fs.num_of_bytes_written as [Written Bytes] 

  Figure 28-7.    Nonoptimized queries  troubleshooting         
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     ,fs.num_of_reads + fs.num_of_writes as [IO Count] 
     ,convert(decimal(5,2),100.0 * fs.num_of_bytes_read / 
         (fs.num_of_bytes_read + fs.num_of_bytes_written)) as [Read %] 
     ,convert(decimal(5,2),100.0 * fs.num_of_bytes_written / 
         (fs.num_of_bytes_read + fs.num_of_bytes_written)) as [Write %] 
     ,fs.io_stall_read_ms as [Read Stall], fs.io_stall_write_ms as [Write Stall] 
     ,case when fs.num_of_reads = 0 
         then 0.000 
         else convert(decimal(12,3),1.0 * fs.io_stall_read_ms / fs.num_of_reads) 
     end as [Avg Read Stall] 
     ,case when fs.num_of_writes = 0 
         then 0.000 
         else convert(decimal(12,3),1.0 * fs.io_stall_write_ms / fs.num_of_writes) 
     end as [Avg Write Stall] 
 from 
     sys.dm_io_virtual_file_stats(null,null) fs join 
         sys.master_files mf with (nolock) on 
             fs.database_id = mf.database_id and fs.file_id = mf.file_id     
         join sys.databases d with (nolock) on 
             d.database_id = fs.database_id   
 where 
     fs.num_of_reads + fs.num_of_writes > 0; 

  Figure 28-8.     Sys_dm_io_virtual_file_stats   output         

   Unfortunately,   sys.dm_io_virtual_file_stats          provides cumulative statistics as of the time of a SQL 
Server restart, without any way to clear it. If you need to get a snapshot of the current load in the system, you 
should run this function several times and compare how the results changed between calls. I’m including 
the code that implements such an approach in the companion materials of this book. 

 You can analyze various system performance counters using the  PhysicalDisk  object to obtain 
information about current I/O activity, such as the number of requests and the amount of data being read 
and written. These counters, however, are most useful when compared against the baseline, which we will 
discuss later in this chapter. 

 Performance counters from the   SQL Server:Buffer Manager  object   provide various metrics related to 
the buffer pool and data-page I/O. One of the most useful counters is  page life expectancy , which indicates 
the average time a data page stays in the buffer pool. Historically, Microsoft suggested that values above 
300 seconds were acceptable and  good enough ; however, this is hardly the case with modern servers, which 
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use large amounts of memory. One approach to defining the lowest acceptable value for the counter is 
by multiplying 300 seconds by every 4 GB of buffer pool memory. For example, a server that uses 56 GB 
of memory for the buffer pool should have a page life expectancy greater than 4,200 seconds (56/4*300). 
However, as with other counters, it is better to compare the current value against a baseline than to rely on a 
statically defined threshold. 

 The   page read/sec       and  page write/sec  counters show the number of physical data pages that were read 
and written, respectively.  Checkpoint pages/sec  and  lazy writer/sec  indicate the activity of the checkpoint 
and lazy writer processes that save dirty pages to disks. High numbers in those counters and a low value for 
page life expectancy could be a sign of memory pressure. However, a high number of checkpoints could 
transpire because of a large number of transactions in the system, and you should include the  transactions/
sec  counter in the analysis. 

 In a scenario where servers have enough physical memory to cache the active data set in memory, you 
would notice the high value of the page life expectancy and low value of the page read/sec counters. The 
values of page write/sec and checkpoint pages/sec would depend on the volatility of the data in the system. 

 The   buffer cache hit ratio    indicates the percentage of pages that are found in the buffer pool without 
the requirement of performing a physical read operation. A low value for this counter indicates a constant 
buffer pool flush and is a sign of a large amount of physical I/O. However, a high value in the counter is 
meaningless. Read-ahead reads often bring data pages to memory, increasing the buffer cache hit ratio value 
and masking the problem. In the end, page life expectancy is a more reliable counter for this analysis. 

 ■   Note    You can read more about performance counters from the buffer manager object at    http://technet.
microsoft.com/en-us/library/ms189628.aspx     .  

 The  full scans/sec  and  range scan/sec   performance   counters from the  SQL Server:Access Methods  
object provide you with information about the scan activity in the system. Their values, however, can be 
misleading. While scanning a large amount of data negatively affects performance, small range scans or full 
scans of small temporary tables are completely acceptable. As with other performance counters, it is better 
to compare counter values against a baseline rather than relying on absolute values. 

 There are several ways to detect I/O-intensive queries using standard SQL Server tools. One of the most 
common approaches is by capturing system activity using SQL Traces or Extended Events, filtering the data 
by the number of reads and/or writes. You can also analyze query duration; however, you should be careful 
with such an approach. The longest-running queries are not necessarily the most I/O-intensive ones. There 
are other factors that can increase query execution time. Think about locking and blocking, as an example. 

 This approach, however, requires you to perform additional analysis after the data is collected. You 
should check how frequently queries are executed when determining targets for optimization. 

 Another very simple and powerful method of detecting resource intensive queries is the   sys.
dm_exec_query_stats           data management view. SQL Server tracks various statistics, including the number 
of executions and I/O operations and elapsed and CPU times, and exposes them through that view. 
Furthermore, you can join it with other data management objects and obtain the SQL text and execution 
plans for those queries. This simplifies the analysis, and it can be helpful during the troubleshooting of 
various performance and plan cache issues in the system. 

 Listing  28-4  shows a query that returns the 50 most I/O-intensive queries, which have been plan cached 
at the moment of execution. It is worth noting that  sys.dm_exec_query_stats  has slightly different columns 
in the result set in different  versions      of SQL Server. The query in Listing  28-5  works in SQL Server 2008R2 
and above. You can remove the last four columns from the  SELECT  list to make it compatible with SQL Server 
2005-2008. 

http://technet.microsoft.com/en-us/library/ms189628.aspx
http://technet.microsoft.com/en-us/library/ms189628.aspx
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      Listing 28-4.     Using  sys.dm_exec_query_stats      

 select top 50 
     substring(qt.text, (qs.statement_start_offset/2)+1, 
     (( 
         case qs.statement_end_offset 
             when -1 then datalength(qt.text) 
             else qs.statement_end_offset 
         end - qs.statement_start_offset)/2)+1) as SQL 
     ,qp.query_plan as [Query Plan] 
     ,qs.execution_count as [Exec Cnt] 
     ,(qs.total_logical_reads + qs.total_logical_writes) / qs.execution_count as [Avg IO] 
     ,qs.total_logical_reads as [Total Reads], qs.last_logical_reads as [Last Reads] 
     ,qs.total_logical_writes as [Total Writes], qs.last_logical_writes as [Last Writes] 
     ,qs.total_worker_time as [Total Worker Time], qs.last_worker_time as [Last Worker Time] 
     ,qs.total_elapsed_time / 1000 as [Total Elapsed Time] 
     ,qs.last_elapsed_time / 1000 as [Last Elapsed Time] 
     ,qs.last_execution_time as [Last Exec Time] 
     ,qs.total_rows as [Total Rows], qs.last_rows as [Last Rows] 
     ,qs.min_rows as [Min Rows], qs.max_rows as [Max Rows] 
 from 
     sys.dm_exec_query_stats qs with (nolock) 
         cross apply sys.dm_exec_sql_text(qs.sql_handle) qt 
         cross apply sys.dm_exec_query_plan(qs.plan_handle) qp 
 order by 
      [Avg IO] desc 

   As you can see in Figure  28-9 , it allows you to easily define optimization targets based on resource 
usage and the number of executions. For example, the second query in the result set is the best candidate for 
optimization because of how frequently it runs.  

  Figure 28-9.    Sys.dm_exec_query_stats  results          

 Unfortunately,  sys.dm_exec_query_stats  does not return any information for queries that do not have 
compiled plans cached. Usually this is not an issue, because our optimization targets are not only resource 
intensive, but are also frequently executed queries. Plans of these queries usually stay in the cache because 
of their frequent reuse. However, SQL Server does not cache plans in cases of statement-level recompiles, 
and therefore  sys.dm_exec_query_stats  misses such queries. You should use Extended Events and/or SQL 
Traces to capture them. I usually start with queries from the  sys.dm_exec_query_stats  function output and 
crosscheck the optimization targets with Extended Events later. 

 The new SQL Server 2016 component called Query Store addresses such an issue. It captures and 
persists execution statistics and execution plans for those queries without any dependencies on the plan 
cache. We will discuss Query Store in depth in the next chapter. 

 Query plans can be removed from the cache, and therefore they are not included in the  sys.dm_exec_
query_stats  results in cases of a SQL Server restart, memory pressure, or recompilations due to a statistics 
update, as well as in a few other cases. It is beneficial to analyze the  creation_time  and  last_execution_
time  columns in addition to the number of executions. 
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 SQL Server 2008 and above provide stored procedure – level execution statistics with the  sys.dm_exec_
procedure_stats  view. It provides similar metrics as  sys.dm_exec_query_stats , and it can be used to 
determine the most resource intensive stored  procedures      in the system. Listing  28-5  shows a query that 
returns the 50 most I/O-intensive stored procedures, which have plan cached at the moment of execution. 

       Listing 28-5.    Using   sys.dm_exec_procedure_stats      

 select top 50 
     db_name(ps.database_id) as [DB] 
     ,object_name(ps.object_id, ps.database_id) as [Proc Name] 
     ,ps.type_desc as [Type] 
     ,qp.query_plan as  [Plan] 
     ,ps.execution_count as [Exec Count] 
     ,(ps.total_logical_reads + ps.total_logical_writes) / ps.execution_count as [Avg IO] 
     ,ps.total_logical_reads as [Total Reads], ps.last_logical_reads as [Last Reads] 
     ,ps.total_logical_writes as [Total Writes], ps.last_logical_writes as [Last Writes] 
     ,ps.total_worker_time as [Total Worker Time], ps.last_worker_time as [Last Worker Time] 
     ,ps.total_elapsed_time / 1000 as [Total Elapsed Time] 
     ,ps.last_elapsed_time / 1000 as [Last Elapsed Time] 
     ,ps.last_execution_time as [Last Exec Time] 
 from 
     sys.dm_exec_procedure_stats ps with (nolock) 
         cross apply sys.dm_exec_query_plan(ps.plan_handle) qp 
 order by 
      [Avg IO] desc 

   SQL Server 2016 introduces another view,  sys.dm_exec_function_stats , which allows you to track 
execution statistics of scalar user-defined functions. It works with T-SQL, CLR, and In-Memory OLTP scalar 
functions; however, it does not capture table-valued functions’ execution statistics. 

 The  sys.dm_exec_function_stats  view returns information similar to that returned by  sys.dm_exec_
procedure_stats.  In fact, the code from Listing  28-5  would work as long as you replaced the DMV name 
there. 

 There are plenty of tools available on the market to help you automate the data collection and analysis 
process, including the SQL Server Management Data Warehouse. All of them help you to achieve the same 
goal and find optimization targets in the system. 

 Finally, it is worth mentioning that the data warehouse and reporting  systems      usually play by 
different rules. In those systems, it is typical to have I/O-intensive queries that scan large amounts of 
data. Performance tuning of such systems can require different approaches than those found in OLTP 
environments, and they often lead to database schema changes rather than index tuning.  

     Parallelism 
 Parallelism is perhaps one of the most confusing aspects of troubleshooting. It exposes itself with the 
 CXPACKET  wait  type     , which often can be seen in the list of top waits in the system. The   CXPACKET  wait type  , 
which stands for  Class eXchange , occurs when parallel threads are waiting for other threads to complete 
their execution. 

 Let’s consider a simple example and assume that we have a parallel plan with two threads followed by 
the  exchange/repartition streams  operator. When one parallel thread finishes its work, it waits for the other 
thread to complete. The waiting thread does not consume any CPU resources; it just waits, generating the 
 CXPACKET  wait type. 
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 The  CXPACKET  wait type merely indicates that there is parallelism in the system, and, as usual, this fits 
into the “It Depends” category. It is beneficial when large and complex queries utilize parallelism, because it 
can dramatically reduce their execution time. However, there is always overhead associated with parallelism 
management and exchange operators. For example, if a serial plan finishes in one second on a single CPU, 
the execution time of the parallel plan that uses two CPUs would always exceed 0.5 seconds. There is always 
extra CPU time required for parallelism management. Even though the response (elapsed) time of the 
parallel plan would be smaller, the CPU time would always be greater than in the case of the serial plan. 
You want to avoid such overhead when a large number of OLTP queries are waiting for the available CPU to 
execute. Having a high percentage of  SOS_SCHEDULER_YIELD  and  CXPACKET  waits is a sign of such a situation. 

 One common misconception suggests that you should completely disable parallelism in cases where 
you have a large percentage of  CXPACKET  waits in an OLTP system and then set the server-level  MAXDOP  setting 
to 1. However, this is not the right way to deal with parallelism waits. You need to investigate the root cause 
of the parallelism in the OLTP system and analyze why SQL Server has generated parallel execution plans. In 
most cases, it occurs due to complex and/or nonoptimized queries. Query optimization simplifies execution 
plans and removes parallelism. 

 Moreover, any OLTP system has  some      legitimate complex queries that would benefit from parallelism. It 
is better to increase the  Cost Threshold for Parallelism  configuration option rather than to disable parallelism 
by setting the  MAXDOP  setting to 1. This would allow you to utilize parallelism with complex and expensive 
queries while keeping low-cost OLTP queries running serially. 

 There is no generic advice for how the  Cost Threshold for Parallelism  value needs to be set. By default, 
it is set to five, which is very low nowadays. You should analyze the activity and cost of the queries in your 
system to find the optimal value for this setting. Check the cost of the queries that you want to run serially 
and in parallel, and adjust the threshold value accordingly. You can see that cost in the properties of the root 
(top) operator in the execution plan. 

 Speaking of the  MAXDOP  setting, in general it should not exceed the number of logical CPUs per hardware 
NUMA node. However, in some data warehouse systems, you can consider using a  MAXDOP  setting that exceeds 
this number. Again, you should analyze and test your workload to find the optimal value for this setting.  

      Memory-Related Wait Types   
 SQL Server allocates query memory grants from a special part of the buffer pool called  workspace memory . The 
maximum size of workspace memory is limited to 75 percent of the buffer pool size. By default, the maximum 
query memory grant size cannot exceed 25 percent of workspace memory; however, you can control it through 
the  REQUEST_MAX_MEMORY_GRANT_PERCENT  setting in the Resource Governor workload group. 

 As you already know, every query uses a small amount of memory to execute. In addition,  sort  and  hash  
operators require additional memory to run, which can be separated into two groups, as follows:

    Required memory  is needed to store internal data structures that are required for 
the operation. The query would not run without this memory available.  

   Additional memory  is used to store the data rows in memory during the 
operation. The amount of additional memory is based on row size and 
cardinality estimations. The query could run if the amount of additional memory 
is insufficient, spilling the data to  tempdb  when needed.    

 The amount of required memory is also affected by parallelism. Each worker needs to create its own set 
of internal data structures for  sort  or  hash  operators. Moreover, exchange operators will need some memory 
to buffer the rows. 

 After the  size   of the memory grant is calculated, SQL Server checks if it exceeds the maximum size limit 
and reduces it if needed. After that, it requests memory from the  MEMORYCLERK_SQLQERESERVATIONS  memory 
clerk, which uses a thread synchronization object called  Resource Semaphore  to allocate the memory. We 
will talk about memory clerks and SQL Server memory allocation later in this chapter. 
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 When memory cannot be allocated, Resource Semaphore puts the queries in the wait queues, which 
leads to  RESOURCE_SEMAPHORE  waits. Internally, Resource Semaphore uses two wait queues, ranking queries 
based on the memory grant size and query cost. One queue, called  Small-query Resource Semaphore,  stores 
the queries that require less than 5 MB and cost less than 3 cost units. The second queue stores all other 
queries. 

 When Resource Semaphore receives the new request, it first checks if any query is waiting, then 
processes requests based on the first come, first served principle. It favors the small-query queue over the 
regular one, which reduces the waiting time for the small queries that do not require a large amount of 
memory. 

 Large memory grants consume system memory and can prevent queries from being immediately 
executed. Unfortunately, sometimes SQL Server overestimates the size of the memory grants required for 
the queries, usually because of cardinality overestimations. A common case for such an error is a complex 
query with a large number of joins and non-SARGable predicates, and/or functions in join conditions and 
the  WHERE  clause. SQL Server has to apply heuristics during the cardinality estimations, which may produce 
incorrect results for the actual data. 

 You should monitor the situation of the memory grants in the system. Even a small percentage of 
 RESOURCE_SEMAPHORE  waits can indicate serious performance issues. This can be a sign of memory pressure 
and poorly optimized and extremely inefficient queries. 

 You can confirm the problem by looking at the  memory grants pending  performance counter in the 
 SQL Server:Memory Manager  object. This counter shows the number of queries waiting for memory grants. 
Ideally, the counter value should be zero all the time. 

 The  sys.dm_exec_query_resource_semaphores  view shows the statistics for both Resource Semaphore 
queues, including granted and available workspace memory, number of queries in the waiting queue, and 
a few other parameters. You can also look at the  sys.dm_exec_query_memory_grants  view, which provides 
information about memory grant requests, both pending and outstanding. Listing  28-6  illustrates how you 
can obtain information about them, along with the query text and execution plan. 

     Listing 28-6.    Obtaining query  information   from the   sys.dm_exec_query_memory_grants  view     

 select 
     mg.session_id, t.text as [SQL], qp.query_plan as [Plan], mg.is_small, mg.dop 
     ,mg.query_cost, mg.request_time, mg.required_memory_kb, mg.requested_memory_kb 
      ,mg.wait_time_ms, mg.grant_time, mg.granted_memory_kb, mg.used_memory_kb

,mg.max_used_memory_kb 
 from 
     sys.dm_exec_query_memory_grants mg with (nolock) 
         cross apply sys.dm_exec_sql_text(mg.sql_handle) t 
         cross apply sys.dm_exec_query_plan(mg.plan_handle) as qp 

   SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016 have several enhancements that 
simplify memory grant troubleshooting. The  sys.dm_exec_query_stats  view provides memory grant-
related statistics in the output columns. There is also the  query_memory_grant_usage  Extended Event, which 
you can use to track memory allocation in real time. Finally, Query Store in SQL Server 2016 collects memory 
grant metrics along with other parameters. 

 If you run older builds of SQL Server, you can obtain information about memory grants from the cached 
execution plans. As with other metrics, memory grant information there lacks actual execution statistics, 
and it also shows information about memory grant requests that are required for the serial execution plans, 
without parallelism overhead involved. 

 Listing  28-7  shows how you can obtain memory grant information from the cached execution plans 
using the  sys.dm_exec_cached_plans  view. Alternatively, you can obtain similar information by using the 
 sys.dm_exec_query_stats  view and the  sys.dm_exec_query_plan  function. 
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     Listing 28-7.    Getting memory grant information from the cached  plans     

 ;with xmlnamespaces(default 'http://schemas.microsoft.com/sqlserver/2004/07/showplan') 
 ,Statements(PlanHandle, ObjType, UseCount, StmtSimple) 
 as 
 ( 
     select cp.plan_handle, cp.objtype, cp.usecounts, nodes.stmt.query('.') 
     from sys.dm_exec_cached_plans cp with (nolock) 
         cross apply sys.dm_exec_query_plan(cp.plan_handle) qp 
         cross apply qp.query_plan.nodes('//StmtSimple') nodes(stmt) 
 ) 
 select top 50 
     s.PlanHandle, s.ObjType, s.UseCount 
     ,p.qp.value('@CachedPlanSize','int') as CachedPlanSize 
     ,mg.mg.value('@SerialRequiredMemory','int') as [SerialRequiredMemory KB] 
     ,mg.mg.value('@SerialDesiredMemory','int') as [SerialDesiredMemory KB] 
 from Statements s 
     cross apply s.StmtSimple.nodes('.//QueryPlan') p(qp) 
     cross apply p.qp.nodes('.//MemoryGrantInfo') mg(mg) 
 order by 
     mg.mg.value('@SerialRequiredMemory','int') desc 

   You can restrict the maximum size of the memory grant by using the  MAX_GRANT_PERCENT  query hint, 
which is supported in SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016, or by restricting 
the  REQUEST_MAX_MEMORY_GRANT_PERCENT  setting in the Resource Governor workload group. However, the 
best approach is simplifying and optimizing the queries in a way that removes memory-intensive operators, 
such as hashes, sorts, and sometimes parallelism, from the execution plan. You can often achieve it by index 
tuning and query re-factoring. 

   CXMEMTHREAD       is another memory-related wait type that you can encounter in systems. These waits occur 
when multiple threads are trying to allocate memory from unallocated memory HEAP simultaneously. You can 
often observe a high percentage of these waits in systems with a large number of ad-hoc queries, where SQL 
Server constantly allocates and de-allocates plan cache memory. Enabling the  Optimize for Ad-hoc Workloads  
configuration setting can help address this problem if plan cache memory allocation is the root cause. 

 SQL Server has three categories of memory objects. Some of them are created globally on the server 
scope. Others are partitioned on a per-NUMA node or per-CPU basis. In SQL Server prior to 2016, you can 
use startup trace flag  T8048  to switch per-NUMA node to per-CPU partitioning, which can help reduce 
 CXMEMTHREAD  waits at the cost of extra memory usage. SQL Server 2016, on the other hand, promotes such 
partitioning to the per-NUMA level and then to the per-CPU level automatically when it detects contention, 
and therefore  T8048  is not required. 

 ■   Note    You can read more about Non-Uniform Memory Access (NUMA) architecture at    http://technet.
microsoft.com/en-us/library/ms178144.aspx     .  

 Listing  28-8  shows you how to analyze the memory allocations of memory objects. You may consider 
applying the  T8048  trace flag if top memory consumers are per-NUMA node partitioned and you can see a large 
percentage of   CXMEMTHREAD    waits in the system. This is especially important in scenarios with servers that have 
more than eight CPUs per NUMA node, where older versions of SQL Server have known issues of per-NUMA 
node memory object scalability. As I already mentioned, this trace flag is not required in SQL Server 2016. 

http://technet.microsoft.com/en-us/library/ms178144.aspx
http://technet.microsoft.com/en-us/library/ms178144.aspx
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     Listing 28-8.    Analyzing memory-object partitioning and memory usage   

 select type, pages_in_bytes 
     ,case 
         when (creation_options & 0x20 = 0x20) 
             then 'Global PMO. Cannot be partitioned by CPU/NUMA Node. T8048 not applicable.' 
         when (creation_options & 0x40 = 0x40) 
             then 'Partitioned by CPU. T8048 not applicable.' 
         when (creation_options & 0x80 = 0x80) 
             then 'Partitioned by Node. Use T8048 to further partition by CPU.' 
         else 'Unknown' 
     end as [Partitioning Type] 
 from sys.dm_os_memory_objects 
 order by pages_in_bytes desc 

 ■     Note    You can read an  article   published by the Microsoft CSS Team that explains how to debug 
 CXMEMTHREAD  wait types at    http://blogs.msdn.com/b/psssql/archive/2012/12/20/how-it-works-
cmemthread-and-debugging-them.aspx     .   

     High  CPU Load      
 As strange as it sounds, low CPU load on a server is not necessarily a good sign. It indicates that the server 
is under-utilized. Even though under-utilization leaves systems with room to grow, it increases the IT 
infrastructure and operational costs; there are more servers to host and maintain. Obviously, high CPU load 
is not good either. Constant CPU pressure on SQL Server makes systems unresponsive and slow. 

 There are several indicators that can help you detect that a server is working under CPU pressure. 
These include a high percentage of  SOS_SCHEDULER_YIELD  waits, which occur when a worker is waiting in a 
runnable state. You can analyze the  %   processor time  and  processor queue length  performance counters and 
compare the signal and resource wait times in the  sys.dm_os_wait_stats  view, as shown in Listing  28-9 . 
Signal waits indicate the waiting times for the CPU, while resource waits indicate the waiting times for 
resources, such as for pages from disk. Although Microsoft recommends that the signal wait type should not 
exceed 25 percent, I believe that 15 to 20 percent is a better target on busy systems. 

     Listing 28-9.    Comparing signal and resource waits   

 select 
     sum(signal_wait_time_ms) as [Signal Wait Time (ms)] 
     ,convert(decimal(7,4), 100.0 * sum(signal_wait_time_ms) / 
         sum (wait_time_ms)) as [% Signal waits] 
     ,sum(wait_time_ms - signal_wait_time_ms) as [Resource Wait Time (ms)] 
     ,convert(decimal(7,4), 100.0 * sum(wait_time_ms - signal_wait_time_ms) / 
         sum (wait_time_ms)) as [% Resource waits] 
 from 
     sys.dm_os_wait_stats with (nolock) 

   Plenty of factors can contribute to CPU load in a system, and bad T-SQL code is at the top of the list. 
Imperative processing, cursors, XQuery, multi-statement user-defined functions, and complex calculations 
are especially CPU-intensive. 

http://blogs.msdn.com/b/psssql/archive/2012/12/20/how-it-works-cmemthread-and-debugging-them.aspx
http://blogs.msdn.com/b/psssql/archive/2012/12/20/how-it-works-cmemthread-and-debugging-them.aspx
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 The process of detecting the most CPU-intensive  queries      is very similar to that for detecting 
nonoptimized queries. You can use the  sys.dm_exec_query_stats  view, as was shown in Listing  28-4 . You 
can sort the data by the  total_worker_time  column, which detects the most CPU-intensive queries with 
plans currently cached. Alternatively, you can use Extended Events, filtering data by CPU time rather than by 
I/O metrics. 

 Constant recompilation is another source of CPU load. You can check the  batch requests/sec ,  SQL 
compilations/sec,  and  SQL recompilations/sec  performance counters and calculate plan reuse with the 
following formula: 

   Plan Reuse = (Batch Requests/Sec - (SQL Compilations/Sec - SQL Recompilations/Sec)) / Batch 
Requests/Sec 

    Low plan reuse  in OLTP systems indicates heavy ad-hoc activity and often requires code re-factoring 
and the parameterization of queries. However, nonoptimized queries are still the major contributor to CPU 
load. With nonoptimized queries, SQL Server processes a large amount of data, which burns CPU cycles 
regardless of other factors. In most cases, query optimization reduces the CPU load in the system. 

 Obviously, the same is true for bad T-SQL code. You should reduce the amount of imperative data 
processing, avoid multi-statement functions, and move calculations and XML processing to the application 
side if at all possible.  

     Locking and Blocking 
 Excessive  locking and blocking issues   in a system presents various  LCK_M_*  wait types. Each lock type has its 
own corresponding wait type. For example,  LCK_M_U  indicates update (U) lock waits, which can be a sign of 
nonoptimized data modification queries. 

 We have already covered how to troubleshoot locking and blocking issues in a system. You need to 
detect which processes participated in the blocking chain with the  blocked process report ,  deadlock graph  
events, and  sys.dm_tran_locks  view and find the root cause of the blocking. In most cases, it happens due 
to nonoptimized queries.  

     Worker Thread Starvation 
 In rare cases, SQL Server can experience  worker thread starvation , a situation where there are no available 
workers to assign to new tasks. One scenario where this can happen is when a task acquires and holds a lock 
on a critical resource that is blocking a large number of other tasks/workers, which stays in a suspended 
state. When the number of workers in the system reaches the limit defined by the  Maximum Worker Thread  
threshold, SQL Server is not able to create new workers, and new tasks remain unassigned, generating 
  THREADPOOL  waits.   

 Blocking is not the only reason why this situation could occur. It is also possible to reach the limit 
of worker threads in systems when the server is under memory pressure and/or does not have enough 
memory available. In those cases, workers stay assigned for a longer time, waiting for memory grants 
(check  RESOURCE_SEMAPHORE  waits) or performing a large number of physical I/O operations. Finally, heavy 
concurrent workload from a large number of users can also exhaust the workers pool. 

 As usual, you need to find the root cause of the problem.    While it is possible to increase the Maximum 
Worker Thread number in the SQL Server configuration, this may or may not help. For example, in the 
blocking scenario just described, there is a good chance that newly created workers will be blocked in the 
same way as existing ones are. It is better to investigate the root cause of the blocking problem and address it 
instead. 
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 You can check a blocking condition and locate the blocking session by analyzing the results of the  sys.
dm_os_waiting_tasks  or  sys.dm_exec_requests  views. Listing  28-10  demonstrates the first approach. Keep 
in mind that the  sys.dm_exec_requests  view does not show tasks that do not have workers assigned and 
waiting with the  THREADPOOL  wait type. It is also worth noting that worker thread starvation may prevent 
any connections to the server. In that case, you need to use a  Dedicated Admin Connection (DAC)  for 
troubleshooting. We will discuss DAC later in this chapter. 

     Listing 28-10.    Using   sys.dm_os_waiting_tasks      

 select session_id, wait_type, wait_duration_ms, blocking_session_id, resource_description 
 from sys.dm_os_waiting_tasks with (nolock) 
 order by wait_duration_ms desc 

   As you can see in Figure  28-10 , the ID of the blocking session is 51.  

  Figure 28-10.      Sys.dm_os_waiting_tasks  result         

 For the next step, you can use the  sys.dm_exec_sessions  and  sys.dm_exec_connections  views to get 
information about the blocking session, as shown in Listing  28-11 . You can troubleshoot why the lock is held 
and/or terminate the session with the  KILL  command if needed.     

     Listing 28-11.    Getting information about a blocking session   

 select 
     ec.session_id, s.login_time, s.host_name, s.program_name, s.login_name 
     ,s.original_login_name, ec.connect_time, qt.text as [SQL] 
 from 
     sys.dm_exec_connections ec with (nolock) 
         join sys.dm_exec_sessions s with (nolock) on 
             ec.session_id = s.session_id 
     cross apply sys.dm_exec_sql_text(ec.most_recent_sql_handle) qt 
 where 
     ec.session_id = 51 -- session id of the blocking session 

   It is worth mentioning that even though increasing the Maximum Worker Thread setting does not 
necessarily solve the problem, it is always worth upgrading to a 64-bit version of Windows and SQL Server. 
A 64-bit version of SQL Server has more worker threads available by default, and it can utilize more memory 
for query grants and other components. It reduces memory grant waits and makes SQL Server more 
efficient, and therefore allows tasks to complete execution and frees up workers faster. 
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 Workers, however, consume memory, which reduces the amount of memory available to other SQL 
Server components. This is not usually an issue, unless SQL Server is running on a server with very little 
physical memory available. You should consider adding more memory to the server if this is the case. After 
all, it is a cheap solution nowadays.  

     ASYNC_NETWORK_IO Waits 
 The   ASYNC_NETWORK_IO  wait type   occurs when SQL Server generates data faster than the client application 
consumes it. While this could be a sign of insufficient network throughput, in a large number of cases  ASYNC_
NETWORK_IO  waits accumulate because of incorrect or inefficient client code. 

 One such example is reading an excessive amount of data from the server. The client application reads 
unnecessary data or, perhaps, performs client-side filtering, which adds extra load and exceeds network 
throughput. 

 Another pattern includes reading and simultaneously processing the data, as shown in Listing  28-12 . 
The client application consumes and processes rows one by one, keeping  SqlDataReader  open. Therefore, 
the worker waits for the client to consume all rows, generating the  ASYNC_NETWORK_IO  wait type. 

     Listing 28-12.    Reading and processing of the data: Incorrect implementation   

 using (SqlConnection connection = new SqlConnection(connectionString)) 
 { 
     SqlCommand command = new SqlCommand(cmdText, connection); 
     connection.Open(); 
     using (SqlDataReader reader = command.ExecuteReader()) 
     { 
         while (reader.Read()) 
             ProcessRow((IDataRecord)reader); 
     } 
 } 

   The correct way of handling such a situation is by reading all rows first as fast as possible and processing 
them after all rows have been read. Listing  28-13  illustrates this approach. 

     Listing 28-13.    Reading and processing of the data: Correct implementation   

 List<Orders> orderRows = new List<Orders>(); 
 using (SqlConnection connection = new SqlConnection(connectionString)) 
 { 
     SqlCommand command = new SqlCommand(cmdText, connection); 
     connection.Open(); 
     using (SqlDataReader reader = command.ExecuteReader()) 
     { 
         while (reader.Read()) 
             orderRows.Add(ReadOrderRow((IDataRecord)reader)); 
     } 
 } 
 ProcessAllOrderRows(orderRows); 

   You could easily duplicate such behavior by running a test in Management Studio, connecting to a SQL 
Server instance locally. It would use the shared memory protocol without any network traffic being involved. 
You could clear wait statistics on the server using the  DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)  
command, and run a  SELECT  statement that reads a large amount of data, displaying it in the result grid. If you 
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checked the wait statistics after execution, you would see a large number of  ASYNC_NETWORK_IO  waits due to 
the slow grid performance, even though Management Studio was running locally on a SQL Server box. After 
that, you should repeat the test with the  Discard Results After Execution  configuration setting enabled. You 
should see the  ASYNC_NETWORK_IO  waits disappear. 

 You should check network performance and analyze the client code if you see a large percentage of 
 ASYNC_NETWORK_IO  waits in the system.  

     Latches and  Spinlocks      
 Latches are lightweight synchronization objects that protect the consistency of SQL Server internal data 
structures. As the opposite of locks, which protect transactional data consistency, latches prevent the 
corruption of the data structures in memory. 

 Consider a situation where multiple sessions need to update different rows on the same data page. 
Those sessions would not block each other, because they don’t acquire incompatible locks on the same 
objects. SQL Server, however, must prevent the situation where multiple sessions simultaneously update 
a data page structure in-memory, making it inconsistent and corrupting it. Moreover, SQL Server needs to 
prevent other sessions from accessing the data page structure at the time of modification. SQL Server uses 
latches to achieve this. 

 There are five different latch types in SQL Server, as follows:

    KP  – Keep latch ensures that the referenced structure cannot be destroyed. It is 
compatible with any other latch type, with the exception of the Destroy (DT) latch.  

   SH  – Shared latch is required when thread needs to read the data structure. 
Shared latches are compatible with each other, along with the Keep (KP) and 
Update (UP) latches.  

   UP  – Update latch allows other threads to read the structure but prevents the 
updating of the structure. SQL Server uses them in some scenarios to improve 
concurrency, similar to update (U) locks. Update latches are compatible with 
Keep (KP) and Shared (SH) latches and incompatible with any other type.  

   EX  – Exclusive latch is required when a thread modifies the data structure. 
Conceptually, Exclusive (EX) latches are similar to exclusive (X) locks, and they 
are incompatible with other latch types, with the exception of Keep (KP) latches.  

   DT  – Destroy latch is required to destroy the data structure. For example, a 
Destroy latch is acquired at the time the  lazy writer  process removes a data page 
from the buffer pool. These latches are incompatible with any other latch type.    

 When the thread cannot obtain a latch on the data structure, it is placed into the FIFO queue, where it 
stays suspended, generating one of the latch-related wait types, until a latch can be obtained. We will discuss 
those types shortly. 

 In  systems      with 32 or more logical processors, SQL Server can partition some of the latches on a per-
CPU basis. These partitioned latches are called  superlatches , or sometimes  sub-latches . In this scenario, each 
logical CPU maintains its own state and waiters list for the latch object, which improves the performance of 
acquiring shared (SH) latches on the referenced structures. Acquiring exclusive (EX) latches, on the other 
hand, requires synchronization across all superlatch partitions and, therefore, is more expensive compared 
to regular latches. 

 SQL Server dynamically promotes and demotes latches to/from superlatches based on activity. 
Latches on frequently read data structures — for example, root pages of the indexes — are quickly promoted 
to superlatches. Heavy modifications, such as page splits, could demote those superlatches back to regular 
latches. 
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 The wait types generated by latches can belong to three different classes. Moreover, in each class, SQL 
Server uses different wait types based on latch type. You can determine latch type by the postfix on the wait 
type name. For example,  PAGELATCH_EX  wait type indicates exclusive (EX) latch on the data page structure, 
while  PAGELATCH_SH  indicates shared (SH) latch. 

 The three wait type classes are the following:

     PAGEIOLATCH    – indicates I/O-related latches. SQL Server uses these latches/wait 
types while waiting for data pages to be read from disk to the buffer pool. A large 
percentage of such wait types could indicate a large amount of nonoptimized 
queries and/or a suboptimal disk system. We have already covered how to 
troubleshoot those conditions in this chapter.  

    PAGELATCH    – indicates buffer pool – related latches, which occur when threads 
need to access or modify data and allocation map pages in the buffer pool.  

    LATCH    – all other latches not related to the buffer pool    

 There are two main scenarios that can lead to  PAGELATCH  waits. The first is allocation map contention, 
which most often happens in  tempdb , or sometimes in user tables with highly volatile data. As we already 
discussed in this book, you can address it by increasing the number of data files in  tempdb  and/or affected 
filegroups and, in SQL Server prior 2016, by enabling trace flag  T1118 , which prevents mixed extents 
allocation. 

 The second  scenario      involves ever-increasing or ever-decreasing indexes on the data, with very high 
concurrent insert activity. Consider a situation where you have a table that has an index on the identity 
column and accepts hundreds or thousands of inserts per second. While this design greatly reduces index 
fragmentation, all sessions insert data to the same data pages, acquiring exclusive  PAGELATCH_EX  latches 
and blocking each other. This condition is called  hot spots , and the only way to address it is by changing the 
database schema and removing ever-increasing/ever-decreasing indexes. 

 When you see a large percentage of  PAGELATCH  waits, you should locate the resources where contention 
occurs. You can monitor the  wait_resource  column in the  sys.dm_exec_requests  view or the  resource_
description  columns in the  sys.dm_os_waiting_tasks  view for corresponding wait types. The information 
in those columns includes the database ID, file ID, and page number, which will allow you to identify the 
root cause of the issue. For example, allocation map contention in  tempdb  often occurs on  PFS  (2:1:1) and 
 SGAM  (2:1:3) pages. 

 As a general rule, you do not need to focus on  LATCH  wait types during wait statistics analysis unless you 
see a high percentage of such wait types. In those cases, you can look at latch statistics in the system by using 
the  sys.dm_os_latch_stats  view, as shown in Listing  28-14 . Figure  28-11  illustrates the output from one of 
the servers.  

 As a side note, you can clear latch statistics on your server with the  DBCC SQLPERF('sys.dm_os_latch_
stats', CLEAR)  command. 

     Listing 28-14.    Analyzing latch statistics   

 ;with Latches 
 as 
 ( 
     select latch_class, wait_time_ms, waiting_requests_count 
         ,100. * wait_time_ms / SUM(wait_time_ms) over() as Pct 
         ,row_number() over(order by wait_time_ms desc) AS RowNum 
     from sys.dm_os_latch_stats with (nolock) 
     where latch_class not in (N'BUFFER',N'SLEEP_TASK') and wait_time_ms > 0 
 ) 
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 select 
     l1.latch_class as [Latch Type] 
     ,l1.waiting_requests_count as [Wait Count] 
     ,convert(decimal(12,3), l1.wait_time_ms / 1000.0) as [Wait Time] 
     ,convert(decimal(12,1), l1.wait_time_ms / 
         l1.waiting_requests_count) as [Avg Wait Time] 
     ,convert(decimal(6,3), l1.Pct) as [Percent] 
     ,convert(decimal(6,3), l1.Pct + IsNull(l2.Pct,0)) 
         as [Running Percent] 
 from 
     Latches l1 cross apply 
         ( 
             select sum(l2.Pct) as Pct 
             from Latches l2 
             where l2.RowNum < l1.RowNum 
         ) l2 
 where 
         l1.RowNum = 1 or l2.Pct < 99 
 option (recompile); 

  Figure 28-11.    Latch statistics       

   Unfortunately, latch types are poorly  documented     . Even though they are listed at    https://msdn.
microsoft.com/en-us/library/ms175066.aspx     , many of them are documented as  Internal Use Only . I 
outline several common latch types in Table  28-1 .  

 You can read more about latches and latch-contention troubleshooting at    http://www.microsoft.com/en-us/
download/details.aspx?id=26665     . 

 

https://msdn.microsoft.com/en-us/library/ms175066.aspx
https://msdn.microsoft.com/en-us/library/ms175066.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=26665
http://www.microsoft.com/en-us/download/details.aspx?id=26665
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   Table 28-1.    Common Latch  Types      

 Latch Type  Description 

  LOG_MANAGER   Access to internal transaction log manager structures, 
usually when log is growing. Analyze why transaction log is 
not truncated. We will discuss transaction log internals and 
troubleshooting in Chapter   30    . 

  ACCESS_METHODS_DATASET_PARENT

ACCESS_METHODS_SCAN_RANGE_GENERATOR

ACCESS_METHODS_SCAN_KEY_GENERATOR 

NESTING_TRANSACTION_FULL  

 Parallelism-related latches. Troubleshoot unnecessary 
parallelism. 

  ACCESS_METHODS_HOBT_VIRTUAL_ROOT   Access to the root index page. Can indicate a large amount of 
page splits in the index. 

  ACCESS_METHODS_HOBT_COUNT   Update of page/row count information in metadata tables. 
Can indicate heavy data modifications on individual table(s) 
from multiple sessions. 

  FGCB_ADD_REMOVE   Occurs during adding, removing, growing, and shrinking 
files in the filegroup. Check if  Instant File Initialization  is 
enabled and  Auto Shrink  database option is disabled. 

  TRACE_CONTROLLER   SQL Traces-related latches. Reduce the number of trace events 
running on the server and switch to Extended Events if possible. 

 Lastly, SQL Server uses another type of synchronization object —  spinlocks . These are used when access 
to the data structure needs to be held for a very short amount of time. SQL Server uses spinlocks in a manner 
similar to latches while protecting internal data structures. The main difference between them is that when 
a thread is unable to acquire the spinlock, it spins constantly through a loop, periodically checking if the 
resource is available rather than giving the CPU to another thread, as latches do. This helps to avoid thread 
context switching, which is a relatively expensive operation. 

 Usually, you do not need to worry about  spinlocks      during system troubleshooting unless you 
experience a rare case of spinlock collision, which can occur on very busy systems with a large number of 
CPUs. Such a condition can present itself as a disproportional increase of CPU utilization as compared to 
the system throughput. For example, a 10 percent increase in transaction throughput led to 50 percent more 
load to the CPU. As you can guess, there are other cases that can lead to such conditions, and the best way to 
confirm that the system is suffering from spinlock collision is by comparing the system state to the baseline. 
You can obtain that baseline from the undocumented  sys.dm_os_spinlock_stats  view along with the 
 spinlock_backoff  Extended Event. 

 Troubleshooting of spinlock collision is a very advanced topic, which is outside of the scope of this 
book. You can read about it in the following white paper:    https://www.microsoft.com/en-us/download/
details.aspx?id=26666     .  

     Wait Statistics: Wrapping Up 
 Table  28-2  shows symptoms of the most common problems you will encounter in systems, and it illustrates 
the steps you can take to address these problems.  

http://dx.doi.org/10.1007/978-1-4842-1964-5_30
https://www.microsoft.com/en-us/download/details.aspx?id=26666
https://www.microsoft.com/en-us/download/details.aspx?id=26666
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   Table 28-2.    Common  Problems, Symptoms, and Solutions      

 Problem  Symptoms / Monitoring Targets  Further Actions 

 Overloaded I/O 
Subsystem 

  PAGEIOLATCH ,  IO_COMPLETION , 
 WRITELOG ,  LOGBUFFER, BACKUPIO  waits. 
  sys.dm_io_virtual_file_stats  
stalls. 
 Low  page life expectancy , High 
 page read/sec, page write/sec  
performance counters 

 Check I/O subsystem configuration and 
throughput, especially in cases of non – data 
page I/O waits. Detect and optimize I/O-
intensive queries using Query Store,  sys.dm_
exec_query_stats , SQL Traces, and Extended 
Events. 

 CPU Load  High CPU load,  SOS_SCHEDULER_
YIELD  waits, high percentage of signal 
waits 

 Possible non-efficient T-SQL code. Detect and 
optimize CPU-intensive queries using Query 
Store,  sys.dm_exec_query_stats , SQL Traces, 
and Extended Events. Check recompilation and 
plan reuse in OLTP systems. 

 Query Memory 
Grants 

  RESOURCE_SEMAPHORE  waits. Non-
zero  Memory Grants Pending  value. 
Pending requests in  sys.dm_exec_
memory_grants . 

 Detect and optimize queries that require large 
memory grants. Perform general query tuning. 

 HEAP Memory 
Allocation 
Contention 

  CXMEMTHREAD  waits  Enable the  Optimize for Ad-hoc Workloads  
configuration setting. Analyze which memory 
objects consume the most memory, and switch 
to per-CPU partitioning with the  T8048  trace 
flag if appropriate. Apply the latest service pack. 

 Parallelism in 
OLTP Systems 

  CXPACKET  waits  Find the root cause of parallelism; most likely 
nonoptimized or reporting queries. Perform 
query optimization for the nonoptimized 
queries that should not have parallel plans. 
Tune and increase  Cost Threshold for 
Parallelism  value. 

 Locking and 
Blocking 

  LCK_M_*  waits. Deadlocks.     Detect queries involved in blocking with 
 sys.dm_tran_locks ,  blocking process report , 
and  deadlock graph . Eliminate root cause of 
blocking, most likely nonoptimized queries or 
client-code issues. 

 ASYNC_
NETWORK_IO 
Waits 

  ASYNC_NETWORK_IO  waits, Network 
performance counters 

 Check network performance. Review and re-
factor client code (loading excessive amount 
of data and/or loading and processing data 
simultaneously). 

 Worker Thread 
Starvation 

  THREADPOOL  waits  Detect and address root cause of the problem 
(blocking and/or load). Upgrade to 64-bit 
version of SQL Server. Increasing  Maximum 
Working Thread  value may or may not help. 

 Allocation-Map 
Contention 

  PAGELATCH  waits  Detect resource that lead to contention using 
 sys.dm_os_waiting_tasks  and  sys.dm_exec_
requests . Add more data files. In the case of 
 tempdb , use  T1118  (not required in SQL Server 
2016) and utilize temporary object caching. 
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 This list is by no means complete; however, it should serve as a good starting point. 

 ■   Note    Read “SQL Server 2005 Performance Tuning using the Waits and Queues” white paper for more 
details about wait statistics-based performance troubleshooting methodology. It is available for download at 
   http://technet.microsoft.com/en-us/library/cc966413.aspx     . Even though this white paper was written 
to address SQL Server 2005, the information within it applies to any newer version of SQL Server as well.    

     Memory Management and Configuration 
 It is impossible to discuss system troubleshooting and SQLOS without covering how SQL Server works with 
the memory. Let’s start with memory configuration. 

      Memory Configuration   
 As you know, SQL Server tries to allocate and use as much memory as is possible and required for 
operations. It does not allocate all the memory at start time; the allocation occurs on  as needed  basis — for 
example, when SQL Server reads data pages to the buffer pool or stores compiled plans in the cache. 
It is common to see instances that consume hundreds of gigabytes or even terabytes of memory. This 
is completely normal and, in a nutshell, is a good thing — it reduces the amount of physical I/O and 
recompilations and improves the performance of the system.  In reality, adding more memory to the 
servers is often the fastest and cheapest way to improve performance of the system.  

 Non-Enterprise editions of SQL Server have a limit on the amount of memory they can utilize. Standard 
edition can use at most 128 GB of RAM in SQL Server 2014-2016 or 64 GB of RAM in earlier versions. Express 
edition is limited to 1 GB. 

 You can check SQL Server memory usage by analyzing performance counters from the  SQL Server: 
Memory Manager  object.  Total Server Memory (KB)  indicates how much memory SQL Server is consuming. 
 Target Server Memory (KB)  indicates the ideal amount of memory SQL Server wants to consume. A situation 
where  Total Server Memory (KB)  is significantly less than  Target Server Memory (KB)  can indicate memory 
pressure. Alternatively, you can use the  sys.dm_os_process_memory  view to obtain this information. 

 It is recommended you set the  Maximum Server Memory   setting   in the SQL Server configuration. In 
SQL Server 2012 and above, this setting applies to all SQL Server internal components. In SQL Server prior to 
2012, this setting controls the size of the buffer pool, and you need to reduce it to factor in the memory usage 
of the other components. In a majority of cases, those components will require an extra 1 to 2 GB of RAM 
reserved. 

 The  Maximum Server Memory  value should leave enough memory for the OS and applications running 
on the server. It is best to fine-tune it on each individual server. As a rule of thumb, you can start by reserving 
4 GB for the first 16 GB of RAM and 1 GB per every 8 GB thereafter. For example, a server with 128 GB of 
RAM would lead to (128-16) / 8 + 4 = 110 GB of RAM to start with. Obviously, reduce this number, reserving 
memory for other applications, in case of non-dedicated SQL Server instances. 

 After the initial  Maximum Server Memory  value is set, you should monitor the  memory/available 
mbytes  performance counter, fine-tuning the  Maximum Server Memory  value as needed. You should always 
keep at least 500 MB of available memory (and even more on servers with a large amount of RAM installed) 
to avoid memory pressure situations. 

 It is also beneficial to give the SQL Server startup account the  Lock Pages in Memory  permission to 
prevent a situation where SQL Server memory is paged to disk. You can set it up in  Group Policy  (gpedit.msc) 
editor.  Lock Pages in Memory  is supported in both Enterprise and Standard editions; however, in Standard 
Edition of SQL Server 2005 and 2008 it requires a certain service pack level to work. 

http://technet.microsoft.com/en-us/library/cc966413.aspx
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 The 32-bit edition of SQL Server requires you to enable the  Lock Pages in Memory  privilege and the 
 AWE Enable  setting to utilize the extended memory of about 4 GB. However, I purposefully do not dive into 
memory configuration in 32-bit editions; there is absolutely no reason nowadays to use 32-bit OS and SQL 
Server. The 64-bit edition provides better performance, and it is beneficial to upgrade. It is worth mentioning 
again that SQL Server 2016 does not even come with a 32-bit edition.  

      Memory Allocation   
 All memory allocations in SQL Server are done through SQLOS. Internally, SQLOS partitions the memory 
into memory nodes based on the server’s NUMA configuration. For example, a server with four NUMA 
nodes will have four memory nodes. A server without NUMA hardware will have just a single memory node. 

 Each memory node has a  memory allocator  component that is responsible for memory allocations, 
performing them by calling various Windows API methods. Prior to SQL Server 2012, memory nodes 
used different memory allocators for single- and multi-page allocations, called  single-page allocator  and 
 multi-page allocator . Starting with SQL Server 2012, there is just one memory allocator called  any size page 
allocator , which handles both types of allocations. You can track memory usage and allocations on a per-
memory node basis with the  sys.dm_os_memory_nodes  view. 

 There is another key  element   of SQL Server memory architecture called  memory clerks . Each major 
component of SQL Server has its own memory clerk, which works as the proxy between the component and 
the memory allocator. When the component needs the memory, it requests the corresponding memory 
clerk, which in turn gets the memory from the memory allocator. Each memory clerk tracks the allocation 
statistics, which allows you to determine memory usage by the individual components. 

 Listing  28-15  shows the code that returns the ten largest memory consumers on the server. Figure  28-
12  shows the output from one of the production servers. In SQL Server prior to 2012, you should replace 
the  pages_kb  column with the summary of the  single_page_kb  and  multi_pages_kb  columns due to the 
different memory allocators SQL Server uses.  

     Listing 28-15.    Analyzing memory clerks (SQL Server 2012 and above)   

 select top 10 
     [type] as [Memory Clerk] 
     ,convert(decimal(16,3),sum(pages_kb) / 1024.0) as [Memory Usage(MB)]   
 from sys.dm_os_memory_clerks with (nolock) 
 group by [type]   
 order by sum(pages_kb) desc 

  Figure 28-12.    Latch statistics       
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   Some of the common memory clerks are the following:

     MEMORYCLERCK_SQLBUFFERPOOL    clerk shows the memory usage of the buffer pool. 
It is normal to have high memory usage by this clerk.  

    CACHESTORE_SQLCP    clerk displays memory usage of ad-hoc, auto-parameterized, 
and prepared plans. High memory usage by this clerk often indicates a large 
amount of ad-hoc queries in the system. Check if  Optimize for Ad-hoc Workload  
setting is enabled and then parameterize the queries.  

   CACHESTORE_OBJCP  clerk is responsible for memory usage of compiled execution 
plans for stored procedures, functions, and triggers.  

    CACHESTORE_PHDR    clerk indicates memory usage of bound trees, the structures 
created by Query Optimizer.  

    USERSTORE_TOKENPERM    clerk shows memory usage of security token store. Some 
SQL Server versions have known bugs related to  USERSTORE_TOKENPERM  growth. 
Apply the latest service pack if you experience large memory usage by this 
clerk. As a temporary solution, you can clear the token store by using the  DBCC 
FREESYSTEMCACHE(‘TokenAndPermUserStore’)  command.  

    OBJECTSTORE_LOCK_MANAGER    clerk displays the memory usage of the Lock 
Manager. A large amount of memory consumed by the Lock Manager can 
indicate a suboptimal transaction strategy in the system; for example, the use of 
large batch updates in long-running transactions.  

    MEMORYCLERK_SQLQERESERVATIONS    clerk is responsible for query memory 
grants reservation. A large amount of memory consumed by this clerk indicates 
excessive memory grants that reduce the size of the buffer pool. It is beneficial to 
analyze why queries require such memory grants if it happens.    

 Finally, the  DBCC MEMORYSTATUS  command provides information about SQL Server memory usage along 
with memory node and memory clerk statistics. Even though this  information   is very detailed, in many 
cases it is easier to use the  sys.dm_os_memory_clerks  and  sys.dm_os_memory_nodes  views to perform the 
filtering, grouping, and aggregation in the queries.   

     What to Do When the Server Is Not Responding 
 Situations where SQL Server stops responding, or where it is not accepting user requests, do not happen very 
often. Nevertheless, they do sometimes happen, and the first and most important rule is to not panic. SQL 
Server always treats data consistency as its top priority, and it is highly unlikely that something will happen 
to the data. 

 As a first step, you should validate that the problem is not an infrastructure-related one. You should 
check that the server and network are up and running and that the problem is not isolated to a particular 
client workstation or subset of the network. It is entirely possible that the problem is not related to SQL 
Server at all. For example, changes in a firewall configuration or a network  switch   malfunction could block 
communication between SQL Server and client applications. 

 Next, you should check the  SQL Server error log.   Some conditions, such as prolonged worker thread 
starvation, leave error messages in the log, notifying the system administrator about the problem. Moreover, 
such conditions could introduce unhandled internal exceptions and mini-dumps. Unfortunately, there is no 
guarantee that SQL Server will recover after such exceptions, and in some cases you will need to restart it. 
The key point of a restart, however, is performing a root-cause analysis of the problem. You need to analyze 
the error logs and default trace, do the research, and, in some cases, open a support case with Microsoft to 
make sure that the problem is detected and addressed. 
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 ■   Note    Unhandled exceptions often occur because of bugs in SQL Server, which may already be fixed in the 
most recent service packs and cumulative updates. Consider applying them, and then open a support case with 
Microsoft CSS if this does not help.  

 You might need to connect to SQL Server for further troubleshooting. Fortunately, SQL Server 2005 
introduced a special connection called   Dedicated Admin Connection (DAC)    that can be used for such a 
purpose. SQL Server reserves a private scheduler and a small amount of memory for DAC, which will allow 
you to connect even when SQL Server does not accept regular connections. 

 By default, DAC is available only locally. In some cases, when a server is completely overloaded, the 
operating system does not have adequate resources to handle user sessions, which prevents you from using 
DAC in local mode. You can change the configuration setting to allow a remote DAC connection with the 
code shown in Listing  28-16 . Obviously, it is better to enable this setting during initial server configuration 
rather than waiting until problems occur. 

     Listing 28-16.    Enabling remote admin  connection     

 exec sp_configure 'remote admin connections', 1 
 go 
 reconfigure 
 go 

   You can connect to SQL Server with DAC by using the  ADMIN:  server-name prefix in the Management 
Studio connection box or with the  -A  option in  sqlcmd . Only members of the  sysadmin  server role are 
allowed to connect, and only one session can use a DAC connection at any point in time. 

 ■   Important   You should use the connection dialog initiated from the Query window when you use DAC from 
Management Studio. Object Explorer uses multiple database connections by design, and therefore it cannot use 
DAC. Make sure that Intellisense and other Management Studio plugins are disabled before you attempt this 
connection.  

 A DAC connection can utilize a limited amount of resources, and it has a few restrictions on what 
operations can be done. For example, DAC does not support parallel query execution or backup/restore 
functions. It is designed for troubleshooting, and you should use  DAC      only for such a purpose. 

 We have already discussed worker thread starvation as one reason SQL Server may become 
unresponsive. Another possibility is  run-away queries , which consume a major part of the resources on the 
server. You can detect such queries via the  sys.dm_exec_requests  view, as shown in Listing  28-17 . 

     Listing 28-17.    Detecting  run-away queries     

 select top 10 
     er.session_id, er.start_time, er.cpu_time, er.status, er.command, er.blocking_session_id 
     ,er.wait_time, er.wait_type, er.last_wait_type, er.logical_reads 
     ,substring(qt.text, (er.statement_start_offset/2)+1, 
         ((  case er.statement_end_offset 
                 when -1 then datalength(qt.text) 
                 else er.statement_end_offset 
             end - er.statement_start_offset)/2)+1) as SQL 
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 from 
     sys.dm_exec_requests er with (nolock) 
         cross apply sys.dm_exec_sql_text(er.sql_handle) qt 
 order by cpu_time desc 

   You can terminate a session with a run-away query using the  KILL  command. You should be careful, 
however, and analyze what the session is doing. SQL Server rolls back the active session transaction when 
you terminate it, which could be time- and resource-consuming in the case of heavy data modifications. It is 
entirely possible that allowing a session to finish a task is a faster and better option. 

 You can also consider using Resource Governor to prevent tasks from consuming all SQL Server 
resources. This could be especially useful if a server hosts multiple databases that belong to multiple 
systems. You can separate connections to different systems between resource pools, configured in such a 
way that leaves some resources available for every system.  

     Working with Baseline 
 As you have already observed, I regularly mention the  baseline  in this chapter. Creating a baseline is an 
essential task for any database and IT professional. It allows you to be proactive and detect problems in the 
early stages before they become visible and impact system health and performance. 

 Many performance counters and metrics have very limited use by themselves. Some of them have 
a threshold or  bad   value   that indicates a problem; however, a  good  value does not always guarantee that 
a system is healthy. It is always beneficial to look at dynamics and trends and monitor how values are 
changing. 

 Consider the    page life expectancy  counter.   The value of 10,000 is perfectly healthy for a server with 
64 GB of memory. However, if it were 50,000 last week, this would indicate that something has changed. 
Perhaps the last deployment dropped some indexes or introduced nonoptimized queries that triggered a 
heavy I/O load. Monitoring the page life expectancy value over time allows you to be proactive and to start 
investigating and addressing the problem before it starts affecting other parts of the system. 

 Another good example is I/O subsystem performance.    Every I/O subsystem has some breaking point 
where performance starts to drop exponentially with load increase. It is always beneficial to determine the 
limits before the initial deployment and to monitor how I/O load changes over time, making sure that there 
is still room to grow. The baseline will help you with monitoring and analysis. 

 ■   Tip    You can use the DiskSpd utility for stress testing the I/O subsystem before the initial deployment. You 
can download it from    https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223     .  

 There are plenty of tools on the market that can help you automate baseline creation and monitoring. 
However, you can easily implement it manually by collecting and persisting metrics on a regular basis using 
various data management objects and Windows performance counters exposed through the  sys.dm_os_
performance_counters  view. We have already discussed quite a few of them, and obviously you can expand 
upon these with other information as needed. 

 It is very important to capture information for the system workload,    which includes the number of 
connections, number of batches and transactions per second, size of the database, and other similar metrics. 
This will help you analyze trends, correlate workload with system load, and perform capacity analysis when 
needed. 

 It is also very beneficial to capture information about the performance of the system-critical parts 
of the code. Application developers can collect and persist the response time of the most critical queries 
and/or stored procedures, which will allow you to monitor trends, making sure that critical code performs 
satisfactorily all of the time. 

https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223
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 Finally, creating a baseline is a very helpful first step in system troubleshooting. It helps you evaluate 
that you achieved desirable results, and you can then demonstrate them to management or customers.  

     Summary 
 Databases do not live in a vacuum. They are a part of a large ecosystem that includes various hardware 
and software components. The slowness and unresponsiveness of client applications are not necessarily 
database- or SQL Server – related. The root cause of the problem can be anywhere in the system, from 
hardware misconfiguration to incorrect application code. 

 It is important to check the entire system infrastructure as an initial step in the troubleshooting process. 
This includes the performance characteristics of the hardware, network topology and throughput, operating 
system and SQL Server configuration, processes, and databases running on the server. 

 SQL Server consists of several major components, including the protocol layer, query processor, storage 
engine, utilities, and SQL Server Operating System (SQLOS). SQLOS is the layer between Windows and all 
other SQL Server components, and it is responsible for scheduling, resource management, and several other 
low-level tasks. 

 SQLOS creates a number of schedulers equal to the number of logical processors in the system. Every 
scheduler is responsible for managing a set of workers that perform a job. Every task is assigned to one or 
more workers for the duration of the execution. 

 Tasks stay in one of three major states during execution:  running  (currently executing on scheduler), 
 runnable  (waiting for scheduler to execute), and  suspended  (waiting for the resource). SQL Server tracks 
the cumulative waiting time for the different types of waits and exposes this information to the users. Wait 
statistics analysis is a common performance troubleshooting technique that analyzes top system wait types 
and eliminates the root causes of waits. 

 It is essential that you create a baseline by collecting and monitoring various performance and load 
metrics in the system. A baseline helps you to be proactive in detecting and resolving problems in the early 
stages before they start affecting the users. It shows how system behavior and load changes over time, which 
helps in capacity analysis and prevents situations where a system outgrows the hardware.     
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    CHAPTER 29   

 Query Store                          

 Query Store is a new SQL Server 2016 component that collects execution plans and runtime statistics for 
the queries in the system. It helps you to detect suboptimal queries, shows how execution plans evolve over 
time, and allows you to force specific plans in order to address parameter sniffing–related issues. 

 This chapter provides an overview of the Query Store, explains how it is integrated into the query 
processing pipeline, and demonstrates how you can use it during system monitoring and performance 
troubleshooting. 

     Why Query Store? 
 Even though every database system is unique, there are several common tasks and problems each database 
professional has to deal with. Performance tuning is, perhaps, the most common one. 

 Performance tuning is a complex process. It covers many topics, such as hardware, OS and SQL Server 
setup and configuration, and application and  database design  , among other things. Query optimization 
is one of the top tasks in the list. The key challenge here is choosing what queries to optimize. It is neither 
possible nor feasible to optimize all queries in the system, and you need to focus on those that will provide 
you with the best return on investment. In reality, this means frequently executed queries that introduce 
heavy I/O activity and/or consume a large amount of CPU power and memory. 

 It is not always easy to detect such queries. Even though  SQL Server   keeps runtime execution statistics 
for cached execution plans, it has a few limitations. Plans can be removed from the cache for various reasons 
or not be cached at all; for example; when statement-level recompile is used. Finally, plan cache runtime 
statistics are not persisted in the database and will be cleared upon SQL Server restart. 

 You can address some of those limitations by capturing query runtime statistics with Extended Events; 
however, it will require complex analysis afterward and can also introduce performance overhead on already 
busy servers. 

 The second common type of problem  database professionals   have to address is performance regression 
introduced by parameter sniffing. As you will remember from Chapter   26    , SQL Server recompiles queries 
because of statistics updates, and atypical parameter values at recompilation can lead to inefficient 
execution plans being cached and reused. 

 It is possible to proactively protect critical queries from such issues. However, this usually requires 
index or  query   hints, plan guides, or code changes. Any of these approaches has downsides, especially in the 
maintainability arena. In reality, database professionals usually deal with these problems reactively, after 
they have occurred in the system and users have reported performance issues. 

 Fortunately, the Query Store helps to address both of these challenges. You can consider it to be the  SQL 
Server flight data recorder ; when the Query Store is enabled, SQL Server captures and persists the runtime 
statistics and execution plans of the queries in the database. It shows you how execution plans evolve over 
time and allows you to force a specific execution plan for the query. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_26
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 Query Store is available in every edition of SQL Server 2016 and in Microsoft Azure SQL Databases. It 
introduces some overhead to SQL Server when it is enabled; however, such overhead is relatively small. We 
will discuss how to monitor such overhead later in the chapter.  

     Query Store  Configuration   
 Query Store is a  database-level feature   and is disabled by default. You can enable it in SQL Server 
Management Studio (SSMS) or in T-SQL with the  ALTER DATABASE SET QUERY_STORE = ON  command. 

 Query Store can run in two operation modes. In the default,  READ_WRITE  mode, SQL Server collects 
and persists execution plans and runtime statistics in the Query Store and allows you to work with it. In 
 READ_ONLY  mode, you can query the data from the Query Store; however, SQL Server does not collect any 
new information there. You can set the operation mode using the  ALTER DATABASE SET QUERY_STORE 
(OPERATION_MODE = mode)  command. 

 The SSMS interface is a bit confusing. You can access the Query Store configuration through  Query 
Store  page of the  Database Properties  window. There are two Operation Mode settings available within 
the  General  group, as shown in Figure  29-1 .  Operational Mode (Actual)  shows whether the Query Store is 
enabled as well as its current mode.  Operational Mode (Requested)  allows you to choose the new value or 
disable the Query Store, which will take effect after you apply the changes.  

  Figure 29-1.    Query Store configuration in SSMS       
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 In order to reduce the overhead, the  Query   Store keeps recently captured information in the in-memory 
cache, flushing it to disk based on the schedule defined by the  DATA_FLUSH_INTERVAL_SECONDS  setting ( Data 
Flush Interval (Minutes)  in SSMS), with a default value of 15 minutes. In a nutshell, this value controls the 
amount of captured data, which will be lost in the event of a SQL Server crash. 

 The Query Store aggregates runtime statistics over a fixed time interval controlled by the   INTERVAL_
LENGTH_MINUTES  setting   ( Statistics Collection Interval  in SSMS), with a default value of 60 minutes. Reducing 
this interval provides you with better granularity; however, it could increase the disk space required to store 
the information. Unfortunately, SQL Server does not allow you to specify an arbitrary value and you should 
choose one of the following: 1, 5, 10, 15, 30, 60, or 1440 minutes. 

 You can control the size of Query Store’s on-disk tables with the   MAX_STORAGE_SIZE_MB    ( Max Size (MB)  
in SSMS) setting. Once the size is reached, the Query Store becomes read-only. By default, SQL Server 2016 
RTM allows Query Store to use up to 100 MB of disk space. You should remember that Query Store tables 
are placed into the  primary  filegroup and take this into consideration when you design database layout and 
your Disaster Recovery strategy. 

 The Query Store cleanup policy can be configured with   STALE_QUERY_THRESHOLD_DAYS    ( Stale Query 
Threshold (Days)  in SSMS) and  SIZE_BASED_CLEANUP_POLICY  ( Size Based Cleanup Mode  in SSMS) 
settings. The first one specifies how long information is retained in the Query Store. The second controls 
the automatic cleanup process, which runs when the Query Store is about 80 percent full and removes 
information about the least expensive queries. 

 ■   Important   SQL Server 2016 RTM has a bug that prevents automatic data cleanup in editions other 
than Enterprise and Developer. You should disable it in the affected editions by using the  ALTER DATABASE 
SET QUERY_STORE (CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 0), SIZE_BASED_CLEANUP_

MODE = OFF)  command and implement manual cleanup, as we will discuss later in this chapter. The bug 
is fixed in CU1.  

 The   QUERY_CAPTURE_MODE  setting   ( Query Store Capture Mode  in SSMS) controls which queries are 
captured. It has one of three values:  ALL ,  NONE , or  AUTO . The first two values are self-explanatory. The last one 
triggers an internal algorithm that filters out insignificant queries. 

 Finally, the   MAX_PLAN_PER_QUERY  setting      sets a limit on the number of plans maintained for each query. 
This setting is unavailable in SSMS. 

 The  sys.database_query_store_options  view provides you with information about current Query 
Store configuration settings and its size.  

     Query Store  Internals   
 Internally, the Query Store consists of two related parts:  plan store  and  runtime statistics store . SQL Server 
interacts with them during both query compilation and execution stages. When a query is compiling, SQL 
Server works with the plan store, updating its data and checking if there is a forced plan available. During 
query execution, SQL Server updates its execution statistics in the runtime statistics store. 

 As you already know, each store consists of both an in-memory cache and disk data. The new 
information is placed into the cache and asynchronously written to disk based on a schedule defined by 
the   DATA_FLUSH_INTERVAL_SECONDS  setting  . In-memory cache can be also flushed manually with the  sys.
sp_query_store_flush_db  stored procedure. SQL Server combines the data from both sources when you 
query the data from the Query Store. 

 Figure  29-2  illustrates a high-level SQL Server Query Store workflow.  
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 The  Query Store   is fully integrated into the query processing pipeline, as shown in Figure  29-3 .  

  Figure 29-2.    High-level SQL Server Query Store workflow       

  Figure 29-3.    Query-processing pipeline       

 When a query needs to be executed, SQL Server looks up the execution plan in the plan cache. If a plan 
is found, SQL Server checks if the query needs to be recompiled due to a statistics update or other factors, or 
if there is a new forced plan created or old forced plan dropped from the Query Store. 

 During compilation, SQL Server checks if the query has a forced plan available. When that happens, 
the query essentially gets compiled with the forced plan, similar to when the  USE PLAN  hint is used. If the 
resulting plan is valid, it is cached in the plan cache and reused afterward. 
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 If the forced  plan   is no longer valid—for example, when the user has dropped an index referenced in 
the forced plan—SQL Server does not fail the query, but rather compiles it again without the forced plan and 
caches the new plan afterward. The Query Store, on the other hand, persists both plans, marking the forced 
plan as invalid. All of this happens transparently to the applications. 

 You can access the Query Store data through several views, as shown in Figure  29-4 .  

  Figure 29-4.    Query Store views       

 The plan store–related views include the following:

     sys.query_store_query    provides information about queries, their compilation 
statistics, and last execution time. You can read about this view at    https://msdn.
microsoft.com/en-us/library/dn818156.aspx     .  

    sys.query_store_query_text    shows information about query text. More 
information about this view is available at    https://msdn.microsoft.com/en-us/
library/dn818159.aspx     .  

   sys.query_context_setting  contains information about context settings 
associated with the query. It includes  SET  options, default schema for the session, 
language, and other attributes. As you will remember from Chapter   26    , SQL 
Server generates and caches separate execution plans based on these settings. 
This level of detail helps you to diagnose cases where the plan cache contains 
a large number of plans for the same query. The documentation is available at 
   https://msdn.microsoft.com/en-us/library/dn818148.aspx     .  

 

https://msdn.microsoft.com/en-us/library/dn818156.aspx
https://msdn.microsoft.com/en-us/library/dn818156.aspx
https://msdn.microsoft.com/en-us/library/dn818159.aspx
https://msdn.microsoft.com/en-us/library/dn818159.aspx
http://dx.doi.org/10.1007/978-1-4842-1964-5_26
https://msdn.microsoft.com/en-us/library/dn818148.aspx


CHAPTER 29 ■ QUERY STORE

586

    sys.query_store_plan    provides information about query execution plans. The 
 is_forced_plan  column indicates if the plan is forced.  Last_force_failure_
reason  provides the reason why the forced plan was not applied to the query. 
You can read about this view at    https://msdn.microsoft.com/en-us/library/
dn818155.aspx      .     

 As you can see, each  query   can have multiple entries in the  sys.query_store_query  and  sys.query_
store_plan  views based on session context options, recompilations, and other factors. 

 The runtime statistics store is represented by two views, as follows:

     sys.query_store_runtime_stats_interval    contains information about 
statistics collection intervals. As you should remember, the Query Store 
aggregates execution statistics over fixed time intervals defined by the  INTERVAL_
LENGTH_MINUTES  setting. The MSDN link is    https://msdn.microsoft.com/en-
us/library/dn818147.aspx     .  

    sys.query_store_runtime_stats    references the  sys.query_store_plan  view 
and contains information about runtime statistics for a specific plan during a 
particular  sys.query_store_runtime_stats_interval  interval. It provides 
information about count of executions, CPU time and duration of the calls, 
logical and physical I/O statistics, transaction log usage, degree of parallelism, 
memory grant size, and a few other useful metrics. You can read more at 
   https://msdn.microsoft.com/en-us/library/dn818158.aspx     .    

 Finally, the Query Store allows you to collect data from the In-Memory OLTP workload. When Query 
Store is enabled, SQL Server automatically collects queries, plans, and optimization statistics for In-Memory 
OLTP objects without any additional configuration changes required. However, runtime statistics are not 
collected by default, and you need to explicitly enable this with the  sys.sp_xtp_control_query_exec_stats  
stored procedure. 

 Keep in mind that the  collection   of runtime statistics introduces overhead, which can degrade the 
performance of the In-Memory OLTP workload. It is also important to remember that SQL Server does not persist 
the In-Memory OLTP runtime statistics collection setting, and it will be disabled upon SQL Server restart. 

 ■   Note   We will discuss In-Memory OLTP in detail in Part VIII of this book.   

     Usage Scenarios 
 SQL Server provides you with a rich set of tools with which to work with Query Store in both  SSMS and 
T-SQL  . Let’s look at them in detail. 

 As a first step, let’s collect some data and emulate performance regression resulting from parameter 
sniffing. I will use the table and stored procedure defined in Listings 26-1 and 26-2 in Chapter   26    , calling 
them in two sessions, as shown in Listing  29-1 . 

https://msdn.microsoft.com/en-us/library/dn818155.aspx
https://msdn.microsoft.com/en-us/library/dn818155.aspx
https://msdn.microsoft.com/en-us/library/dn818147.aspx
https://msdn.microsoft.com/en-us/library/dn818147.aspx
https://msdn.microsoft.com/en-us/library/dn818158.aspx
http://dx.doi.org/10.1007/978-1-4842-1964-5_26
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     Listing 29-1.    Emulating  peformance regression   resulting from parameter sniffing   

  -- Session 1 
 while 1 = 1 
 begin 
     exec dbo.GetAverageSalary @Country='USA'; 
     waitfor delay '0:00:01.000'; 
 end; 

   -- Session 2 
 dbcc freeproccache; 
 exec dbo.GetAverageSalary @Country='CANADA'; 

        Working with Query Store  in SSMS   
 After you have enabled Query Store in the database, you can see the  Query Store  folder in the Object 
Explorer, as shown in Figure  29-5 . This folder contains four interactive reports that allow you to analyze 
collected data, force execution plans for the queries, and perform several other actions.  

  Figure 29-5.    Query Store folder in Object Explorer       

 The  Regressed Queries  report, shown in Figure  29-6 , displays the queries that have performance 
regressed over time. You can configure regression criteria and a time frame for the analysis, along with 
several other parameters.  
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 You can choose the query to display in the graph on the top left. The top right portion of report 
illustrates collected execution plans for the selected query. You can click on the dots representing different 
execution plans and see them at the bottom. You can also compare different execution plans if needed. 

 The  Force Plan  button allows you to force a selected plan for the query. It calls the  sys.sp_query_
store_force_plan  stored procedure internally. Similarly, the  Unforce Plan  button removes the forced plan 
by calling the  sys.sp_query_store_unforce_plan  stored procedure. 

 The Regressed  Queries   report is a great tool with which to troubleshoot parameter sniffing–related 
issues in the system and quickly fix them by forcing specific execution plans. 

 The  Top Resource Consuming Queries  report, shown in Figure  29-7 , allows you to detect the most 
resource intensive queries in the system. In a nutshell, it works in a manner similar to the  sys.dm_exec_
query_stats  view; however, it does not have that view’s limitations, such as dependency on the plan cache. 
This report is a great tool that helps you to quickly identify optimization targets in the system.  

  Figure 29-6.    Regressed Queries report       
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 The  Overall Resource Consumption  report shows you statistics and resource usage of the  workload   over 
time intervals. It allows you to detect and analyze spikes in resource usage and drill down to the queries that 
introduce such spikes. Figure  29-8  illustrates the output of the report.  

  Figure 29-7.    Top Resource Consuming Queries report       
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 The  Tracked Queries  report allows you to monitor execution plans and statistics for individual queries. 
It provides similar information as the  Regressed Queries  and  Top Resource Consuming Queries  reports but in 
the scope of individual queries. Figure  29-9  illustrates this.   

  Figure 29-8.    Overall Resource Consumption report       
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     Working with Query Store from  T-SQL   
 Even though SSMS provides a rich set of tools with which to work with the Query Store, in some cases it is 
beneficial to use T-SQL and work with the Query Store data directly. Let’s look at several common scenarios 
in which this is helpful. 

 The first very common task is searching for the most resource intensive queries while choosing targets 
for further performance optimizations. You already saw how to get execution statistics from the  sys.dm_
exec_query_stats  view in the previous chapter. As you remember, this view depends on the plan cache, and 
you often need to cross-check the data with Extended Events during analysis. Query Store can provide you 
with similar information without any plan cache dependencies, which dramatically simplify the process. 

 Listing  29-2  illustrates the code that returns information for 50 recent, most I/O-intensive queries in 
the system. As you already know, the Query Store aggregates execution statistics over time intervals, and 
therefore you need to aggregate data from multiple  sys.query_store_runtime_stats  rows. The output will 
include data for all intervals that ended within the last 24 hours, grouping it by queries and their execution 
plans. 

     Listing 29-2.    Getting information about most expensive queries   

 select top 50 
     q.query_id, qt.query_sql_text, qp.plan_id, qp.query_plan 
     ,sum(rs.count_executions) as [Execution Cnt] 
     ,convert(int,sum(rs.count_executions * 
         (rs.avg_logical_io_reads + avg_logical_io_writes)) / 
             sum(rs.count_executions)) as [Avg IO] 
     ,convert(int,sum(rs.count_executions * 
         (rs.avg_logical_io_reads + avg_logical_io_writes))) as [Total IO] 
     ,convert(int,sum(rs.count_executions * rs.avg_cpu_time) / 

  Figure 29-9.    Tracked Queries report       
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         sum(rs.count_executions)) as [Avg CPU] 
     ,convert(int,sum(rs.count_executions * rs.avg_cpu_time)) as [Total CPU] 
     ,convert(int,sum(rs.count_executions * rs.avg_duration) / 
         sum(rs.count_executions)) as [Avg Duration] 
     ,convert(int,sum(rs.count_executions * rs.avg_duration)) 
         as [Total Duration] 
     ,convert(int,sum(rs.count_executions * rs.avg_physical_io_reads) / 
         sum(rs.count_executions)) as [Avg Physical Reads] 
     ,convert(int,sum(rs.count_executions * rs.avg_physical_io_reads)) 
         as [Total Physical Reads] 
     ,convert(int,sum(rs.count_executions * rs.avg_query_max_used_memory) / 
         sum(rs.count_executions)) as [Avg Memory Grant Pages] 
     ,convert(int,sum(rs.count_executions * rs.avg_query_max_used_memory)) 
         as [Total Memory Grant Pages] 
     ,convert(int,sum(rs.count_executions * rs.avg_rowcount) / 
         sum(rs.count_executions)) as [Avg Rows] 
     ,convert(int,sum(rs.count_executions * rs.avg_rowcount)) as [Total Rows] 
     ,convert(int,sum(rs.count_executions * rs.avg_dop) / 
         sum(rs.count_executions)) as [Avg DOP] 
     ,convert(int,sum(rs.count_executions * rs.avg_dop)) as [Total DOP] 
 from 
     sys.query_store_query q join sys.query_store_plan qp on 
         q.query_id = qp.query_ id   
     join sys.query_store_query_text qt on 
         q.query_text_id = qt.query_text_id 
     join sys.query_store_runtime_stats rs on 
         qp.plan_id = rs.plan_id 
     join sys.query_store_runtime_stats_interval rsi on 
         rs.runtime_stats_interval_id = rsi.runtime_stats_interval_id 
 where 
     rsi.end_time >= dateadd(day,-1,getdate()) 
 group by 
     q.query_id, qt.query_sql_text, qp.plan_id, qp.query_plan 
 order by 
     [Avg IO] desc; 

   Obviously, you can choose different criteria than average I/O. You can also add predicates to the  WHERE  
and/or  HAVING  clauses of the query to narrow down the results. For example, you can add the filter by DOP if 
you want to detect queries that use parallelism in OLTP environments, then optimize them or fine-tune the 
 Cost Threshold for Parallelism  value. 

 ■   Important   SQL Server 2016 RTM has a bug that sometimes corrupts the text representation of the 
execution plan returned by the  sys.query_store_plan  view when it is joined with the other views in the same 
statement. You can implement a workaround by obtaining the  plan_id  first and then querying the  sys.query_
store_plan  view, without any joins involved. The bug is fixed in one of the CU releases.  

 Listing  29-3  returns information about query regressions that occurred in the last 72 hours. It uses a 
two-times increase of the average query  duration   as the regression criteria and returns one row per query 
with the plans that have the lowest and highest average durations. You can use  query_id  from the output to 
perform further analysis of the regression. 
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     Listing 29-3.    Getting information about  regressions     

 ;with Regressions(query_id, query_text_id, plan1_id, plan2_id, plan1 
     ,plan2, dur1, dur2, row_num) 
 as 
 ( 
     select 
         q.query_id, q.query_text_id, qp1.plan_id, q2.plan_id 
         ,qp1.query_plan, q2.query_plan, rs1.avg_duration, q2.avg_duration 
         ,row_number() over (partition by qp1.plan_id order by rs1.avg_duration) 
     from 
         sys.query_store_query q join sys.query_store_plan qp1 on 
             q.query_id = qp1.query_id 
         join sys.query_store_runtime_stats rs1 on 
             qp1.plan_id = rs1.plan_id 
         join sys.query_store_runtime_stats_interval rsi1 on 
             rs1.runtime_stats_interval_id = rsi1.runtime_stats_interval_id 
         cross apply 
         ( 
             select top 1 
                 qp2.query_plan, qp2.plan_id, rs2.avg_duration 
             from 
                 sys.query_store_plan qp2 
                     join sys.query_store_runtime_stats rs2 on 
                         qp2.plan_id = rs2.plan_id 
                 join sys.query_store_runtime_stats_interval rsi2 on 
                         rs2.runtime_stats_interval_id = 
                             rsi2.runtime_stats_interval_id 
             where 
                 q.query_id = qp2.query_id and 
                 qp1.plan_id <> qp2.plan_id and 
                 rsi1.start_time < rsi2.start_time and 
                 rs1.avg_duration * 2 <= rs2.avg_duration 
             order by 
                 rs2.avg_duration desc 
         ) q2 
     where 
         rsi1.start_time >= dateadd(day,-3,getdate())       
 ) 
 select 
     r.query_id, qt.query_sql_text, r.plan1_id, r.plan1, r.plan2_id, r.plan2 
     ,r.dur1, r.dur2 
 from 
     Regressions r join sys.query_store_query_text qt  on 
         r.query_text_id = qt.query_text_id 
 where 
     r.row_num = 1 
 order by 
     r.dur2 / r.dur1 desc; 
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   You can also use the Query Store to detect queries that pollute the plan cache. Listing  29-4  illustrates 
how you can get information about queries that generate multiple execution plans because of different 
context settings. The two most common conditions when it happens are sessions that use different  SET  
options and queries that reference objects without schema names. 

     Listing 29-4.    Queries with multiple context settings   

 select 
     q.query_id, qt.query_sql_text 
     ,count(distinct q.context_settings_id) as [Context Setting Cnt] 
     ,count(distinct qp.plan_id) as [Plan Count] 
 from 
     sys.query_store_query q join sys.query_store_query_text qt on 
         q.query_text_id = qt.query_text_id 
     join sys.query_store_plan qp on 
         q.query_id = qp.query_id 
 group by 
     q.query_id, qt.query_sql_text 
 having 
     count(distinct q.context_settings_id) > 1 
 order by 
     count(distinct q.context_settings_id);    

   Listing  29-5  shows how to find similar queries that have duplicated  query_hash  values and a low 
execution count. Usually, these queries belong to a non-parameterized ad-hoc workload in the system. 
You should parameterize these queries in the code, or, if that is impossible, you can consider forcing 
parameterization on the database level or with plan guides, as we discussed in Chapter   26    . 

     Listing 29-5.    Detecting queries with the same hash   

 select top 100 
     q.query_hash 
     ,count(*) as [Query Count] 
     ,avg(rs.count_executions) as [Avg Exec Count] 
 from 
     sys.query_store_query q join sys.query_store_plan qp on 
         q.query_id = qp.query_id 
     join sys.query_store_runtime_stats rs on 
         qp.plan_id = rs.plan_id 
 group by 
     q.query_hash 
 having 
     count(*) > 1 
 order by 
     [Avg Exec Count] asc, [Query Count] desc 

   As you can see, the information from  Query Store provides   you with endless possibilities for analysis 
and performance tuning in your system.   
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      Managing      and Monitoring Query Store 
 Even though Query Store should not introduce noticeable performance overhead to the system, it is 
important to monitor its health and performance impact. This will allow you to fine-tune Query Store 
parameters in a way that minimizes performance overhead and provides you with granular enough data for 
analysis. 

 The Query Store size depends on the data retention policy, which is controlled by the  STALE_QUERY_
THRESHOLD_DAYS  and  SIZE_BASED_CLEANUP_POLICY  settings, and the collection mode, which is specified by 
the  QUERY_CAPTURE_MODE  and  MAX_PLAN_PER_QUERY  settings. Moreover, the size of the runtime statistics store 
greatly depends on the aggregation interval, which is defined by the  INTERVAL_LENGTH_MINUTES  value. The 
shorter the aggregation interval is, the more data there will be saved to the store. 

 It is important to define the aggregation interval in the way that fits your needs. Keeping the  INTERVAL_
LENGTH_MINUTES  value unnecessarily small generates an excessive amount of data, which makes analysis 
more complicated. For example, if you want to create a general baseline of your system, an aggregation 
interval of one day would suffice. However, if you need a detailed analysis of how the workload changes 
during the day, you should use one hour, or even lower intervals. As usual, the key is avoiding the collection 
of unnecessary information in the system. 

 You can analyze the size of the Query Store and its state by using the  sys.database_query_store_
options  view, as shown in Listing  29-6 . You should monitor the Query Store’s free space by analyzing the 
 current_storage_size_mb  and  max_storage_size_mb  values. Remember: Query Store will switch to read-
only mode when it is full. 

     Listing 29-6.    Analyzing Query Store state   

 select actual_state_desc, desired_state_desc, current_storage_size_mb   
     ,max_storage_size_mb, readonly_reason, interval_length_minutes   
     ,stale_query_threshold_days, size_based_cleanup_mode_desc   
     ,query_capture_mode_desc   
 from sys.database_query_store_options 

   You can purge data from the Query Store by using the  ALTER DATABASE SET QUERY_STORE CLEAR  
statement, or in Management Studio. Alternatively, you can clear the Query Store on a per-query basis by 
using the  sys.sp_query_store_remove_query  stored procedure, as shown in Listing  29-7 . This code clears 
all queries that are older than three days and were executed only once. On a side note, the  sys.sp_query_
store_remove_plan  stored procedure allows you to remove an individual plan from the Query Store. 

     Listing 29-7.    Removing  queries      from the Query Store   

  declare 
     @RecId int = -1 
     ,@QueryId int 
 declare 
     @Queries table 
     (   
         RecId int not null identity(1,1) primary key, 
         QueryId int not null   
     ) 
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   insert into @Queries(QueryId) 
     select p.query_id 
     from sys.query_store_plan p join sys.query_store_runtime_stats rs on   
         p.plan_id = rs.plan_id   
     group by 
         p.query_id 
     having 
         sum(rs.count_executions) < 2 and 
         max(rs.last_execution_time) < dateadd(day,-72,getdate()); 

   while 1 = 1 
 begin 
     select top 1 @RecId = RecId, @QueryID = QueryId 
     from @Queries 
     where RecId > @RecId 
     order by RecID; 

       if @@rowcount = 0 
         break; 
     exec sys.sp_query_store_remove_query @QueryID;   
 end; 

    There are several ways in which you can monitor Query Store performance. There are several 
performance counters in the  SQL Server:Query Store  object that allow you to track Query Store CPU usage 
and disk activity. 

 The Query Store exposes a large number of Extended Events. One of them,  query_store_plan_
forcing_failed , fires in situations where a forced plan cannot be applied. An instance where it could 
happen is when changing the database name. SQL Server keeps execution plans using a three-part object 
reference, and renaming the database would invalidate the plans. 

 Finally, SQL Server  2016      RTM exposes 19 Query Store–related wait types, which you can identify by 
the  QDS  prefix in the name. These waits should not be present in the system in a large amount, with the 
exception of  QDS_PERSIST_TASK_MAIN_LOOP_SLEEP  and  QDS_ASYNC_QUEUE  waits. These waits are normal, and 
you should filter them out as non-essential waits during wait statistics analysis.  

     Summary 
 The Query Store is SQL Server 2016’s “flight data recorder” that captures execution plans and statistics for 
the queries in the system. It is fully integrated into the query processing pipeline and does not depend on the 
plan cache. 

 Internally, the Query Store consists of two stores: the plan store, which contains information about 
execution plans, and the runtime statistics store, which collects runtime execution statistics aggregated by 
specific time intervals. Both stores consist of in-memory cache and disk tables. The newly collected data 
is stored in-memory and flushed to disk based on a schedule. The Query Store disk tables are stored in the 
 primary  filegroup. 

 The Query Store is extremely helpful when you need to address parameter sniffing–related performance 
issues. It shows you how plans evolve over time and allows you to force a specific execution plan to a query. 
You can work with the Query Store through the set of interactive reports available in Management Studio or 
though the set of database views from T-SQL. 

 The Query Store should not introduce noticeable performance overhead to the system. You could 
monitor its impact through the set of performance counters and Extended Events. You should also prevent 
the Query Store from reaching its maximum size and becoming read-only, which can happen if automatic 
cleanup tasks are disabled.     



   PART VI 

   Inside the Transaction Log 
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    CHAPTER 30   

 Transaction Log Internals                          

 As you already know, every database in SQL Server has one or more transaction log files in addition to data 
files. The transaction log stores information about all of the changes made in the database, and it allows SQL 
Server to recover databases to transactionally consistent states in case of an unexpected shutdown or crash. 

 In this chapter, we will examine the internal structure of the transaction log, discuss how SQL Server 
logs data modifications, and review how it performs database crash recovery. We will also cover how to 
diagnose excessive transaction log growth and discuss a few best practices related to log management and 
I/O file placement. 

     Data Modifications, Logging, and Recovery 
 SQL Server always keeps databases in a transactionally consistent state. Data modifications done from 
within transactions must either be committed or be rolled back in full. SQL Server never allows data to be 
transactionally inconsistent by applying just a subset of the changes from uncommitted transactions. 

 This is true even when SQL Server shuts down unexpectedly. Every time SQL Server restarts, it runs 
a recovery process on every database in the instance. SQL Server rolls back ( undo ) all changes from 
uncommitted transactions and re-applies ( redo ) all changes done by committed transactions if they had not 
been saved into data files at the time of the shutdown or crash. 

 The same process happens when you restore a  database   from the backup. There is no guarantee that all 
transactions had been completed at the time the backup was run. Therefore, SQL Server needs to recover the 
database as the final step of the restore process. 

 The transaction log guarantees the transactional consistency of the data in the database. It consists of 
the stream of   log records    generated by data modification operations. Every log record has a unique, auto-
incrementing  log sequence number (LSN) , and it also describes the data change. The log record includes 
information about the operation and affected row; the old and new version of the data; the transaction that 
performed the modification; and so forth. Moreover, some internal operations, such as  CHECKPOINT , generate 
their own log records. 

 Every data page keeps the LSN of the last log record that modified it. At the recovery stage, SQL Server 
can compare the LSNs of the log records from both the log and the data pages and find out if the most recent 
changes were saved to the data files. There is enough information stored in a log record to undo or redo the 
operation if needed. 

 SQL Server uses  write-ahead logging , which guarantees that log records are written to the log file before dirty 
data pages are saved to the database. In Chapter   1    , I mentioned that log records are saved synchronously with 
data modifications, while data pages are saved asynchronously during the  CHECKPOINT  process. That is not 100 
percent accurate, however. SQL Server caches log records in a small memory cache called the   log buffer   , saving 
multiple log records at once. This helps reduce the number of physical I/O operations required. 

 Internally, the log buffer consists of 128 60KB structures called   log blocks   . SQL Server writes the log 
block to the transaction log file in a single I/O operation. This does not mean, however, that SQL Server waits 
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until the entire log block is full; the size of the data in the write request may vary from 512 bytes to 60 KB. 
Moreover, SQL Server can have multiple outstanding log write requests in the queue. The maximum number 
of allowed requests depends on the SQL Server version. 

 Unfortunately, SQL Server documentation is a bit confusing and often references log blocks as log 
buffers, stating that every database has many of them. In the end, what matters is that every database caches 
log records in memory before flushing them to disk in batches of up to 60 KB. 

 Now, let’s look at how data modifications work in greater detail. Let’s assume that we have a system 
with an empty log buffer, and the last LSN in the transaction log is 7213, as shown in Figure  30-1 . Let’s also 
assume that there are two active transactions:  T1  and  T2 . Each of these transactions has  BEGIN TRAN  log 
records already saved in the transaction log.  

  Figure 30-1.    Data modifications:  Initial state         

  Figure 30-2.    Data modifications: T1 updates one of the  rows         

 As a first step, let’s assume that transaction  T1  updates one of the rows from page (1:24312). As you can 
see in Figure  30-2 ,    this operation generates a new log record, which has been placed into the log buffer. In 
addition, it modifies the data page, marking it as dirty, updating the LSN in the page header, and changing 
the data row. While the log record has not yet been saved ( hardened ) to the log file, it is not critical as long as 
the data page has not been saved in the data file. Both log record and modifications on the data page will be 
gone if there is a SQL Server crash, which is fine, because the transaction has not been committed.  
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 Next, let’s assume that transaction  T2  inserts a new row into page (1:26912) and transaction T1 deletes 
another row on the same page. These operations generate two log records, which are placed into the  log 
buffer  , as shown in Figure  30-3 .  

  Figure 30-3.    Data modifications: T1 and T2 change data on another page       

 As you can see, all log records are still in the  log buffer  . Now, let’s assume that transaction  T2  wants to 
commit. This action generates another log record and forces SQL Server to flush the content of the log block 
to the disk, as shown in Figure  30-4 . SQL Server hardens  COMMIT  and all preceding log records from the log 
buffer into the transaction log, regardless of the transactions that generated them.  

 ■   Note    To be exact, the  COMMIT  operation marks the part of the log buffer that includes  COMMIT  and all 
preceding log records as “Ready to Flush.” Another SQL Server Process,  log writer , continuously scans the log 
buffers and flushes “Ready to Flush” regions to the transaction log.  

  Figure 30-4.    Data modifications:  Commit         
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  Client applications   would receive confirmation that the transaction was committed only after all log 
records were hardened. Even though the data page (1:26912) would still be dirty and would not have been 
saved into the data file, hardened log records on the disk would have enough information to re-apply (redo) 
all of the changes done by the committed  T2  transaction. Thus, it guarantees no data loss if there were to be a 
SQL Server crash. 

 At this point, the system has log records hardened in the transaction log, even though the data pages in 
the data files have yet to be updated. The next  CHECKPOINT  process saves dirty data pages and marks them as 
clean in the buffer pool.   CHECKPOINT    also generates its own log record, as shown in Figure  30-5 .  

  Figure 30-5.    Data modifications:  CHECKPOINT         

  Figure 30-6.    Data modifications:  ROLLBACK         

 At this time, pages in the data file store data from uncommitted transaction  T1 . However, log records 
in the transaction log have enough information to undo the changes if needed. When this is the case, 
SQL Server performs   compensation operations   , which execute the opposite actions of the original data 
modifications and generate  compensation log records.  

 Figure  30-6  shows such an example. SQL Server performed a compensation update, generating a 
compensation log record with an LSN of 7219, to reverse the changes made by the original update operation 
with an LSN of 7214. It also generated a compensation insert with an LSN of 7920 to compensate for the 
delete operation with an LSN of 7216.  
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 A write-ahead logging mechanism guarantees that dirty data pages are never saved into the data 
files until the corresponding log records are hardened in the transaction log. The opposite, however, is 
not true. The   CHECKPOINT  process   is asynchronous, and there is a delay in between when log records are 
hardened and when pages in the data files are updated. Moreover,  CHECKPOINT  does not analyze whether 
the transactions that modified data pages were actually committed. Therefore, some pages in the data files 
reflect changes from uncommitted transactions. 

 The goal of the recovery process is to make the database transactionally consistent. SQL Server analyzes 
the transaction log, making sure that all changes from committed transactions are saved into the data files 
and all changes from uncommitted transactions are rolled back. 

 The  recovery process   consists of three different phases, as follows:

    1.    During the  analysis  phase, SQL Server locates the last  CHECKPOINT  operation in 
the log file, which is the last time dirty pages were saved into the data file. SQL 
Server builds a list of pages that were modified after  CHECKPOINT  as well as a list 
of transactions that were uncommitted at the time SQL Server stopped.  

    2.    During the  redo  phase, SQL Server analyzes the transaction log from the initial 
LSN of the oldest active transaction at the moment of the crash, which is stored 
in the database boot page, and applies the changes to the data. Even though 
some of the changes could already be saved to the data files, SQL Server acquires 
locks on the modified rows, similar to with a regular workload. At the end of the 
redo phase, the database is in the state that it was in at the time when SQL Server 
shut down unexpectedly.  

    3.    Finally, during the  undo  phase, SQL Server rolls back all active, uncommitted 
transactions.     

 Figure  30-7  shows an example of a recovery scenario for the database. SQL Server will redo and commit 
transactions  T2  and  T3  and roll back transaction  T4 .  

  Figure 30-7.    Database recovery       
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 The  recovery process   uses a single thread per database. The Enterprise Edition of SQL Server supports 
 fast recovery , which makes the database available to users after the redo stage. 

 There are two transaction log–related wait types you need to monitor in the system.  WRITELOG  waits 
occur when SQL Server flushes log blocks to the disk that is waiting for them to be hardened. An excessive 
amount of such waits indicate that the log drive does not have enough throughput to handle the log 
generation rate. 

  LOGBUFFER  waits occur when SQL Server is waiting for the space in the log buffer to save the record. 
Even though it could happen shortly after database startup when SQL Server constructs a log buffer, usually 
these waits indicate that the log buffer is full and SQL Server is waiting until records are flushed to the disk 
that is generating  WRITELOG  waits in parallel. 

 You should analyze transaction log drive performance and throughput when you have these waits in 
the system. You can also look at data from  sys.dm_io_virtual_file_stats  and disk-related performance 
counters during analysis. 

 You could improve transaction log throughput by reducing the amount of generated log records 
and write operations. In many cases, it can be done by improving transaction management in the client 
application. An excessive amount of data modifications in the implicit individual transactions would 
generate an enormous amount of log records and force SQL Server to flush the log buffer on each commit. 
Changing the code to perform data modifications in a single explicit transaction would address this issue. 
Alternatively, if you are using SQL Server 2014–2016 and can tolerate the small amount of data loss, you can 
switch to delayed durability for transactions, which we are about to discuss.  

     Delayed Durability 
   Delayed durability   , also known as  lazy commit , was introduced in SQL Server 2014. As already discussed, 
by default a commit operation is synchronous. SQL Server flushes the content of the log buffer, hardening 
log records into a log file at the time of commit, and it sends a confirmation to the client only after a 
commit record is written to disk. Delayed durability changes this behavior by making the commit operation 
asynchronous. The client receives the confirmation that the transaction is committed immediately, without 
waiting for the commit record to be hardened to disk. The commit record stays in a log buffer until its 
content is flushed, which happens in one of the following cases:

   The log block is full.  

  A fully durable transaction in the same database is committed. The commit 
record from such a transaction flushes the content of the log block to disk.  

  A  CHECKPOINT  operation occurs.  

  A  sp_flush_log  stored procedure is completed successfully.    

 If SQL Server crashed before the commit record were hardened, the data modifications from that 
transaction would be rolled back at recovery as if the transaction had never been committed at all. However, 
other transactions would be able to see the data modifications done by such a transaction in between the 
time of commit and the SQL Server crash.    

 Data loss is also possible with a regular SQL Server shutdown. Even though SQL Server tries to flush log 
buffers at the time of shutdown, there is no guarantee that this operation will succeed. 

 Delayed durability may be a good choice for systems that experience a bottleneck in transaction 
log writes and that can tolerate a small data loss. There is a small risk, however. In some rare cases, the 
 CHECKPOINT  process can flush the dirty data pages before the transaction log records are hardened. If SQL 
Server crashed at exactly the same moment, it would bring the database to a corrupted and transactionally 
inconsistent state after restart. You should evaluate that risk if you decided to use delayed durability. 
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 One database option,  DELAYED_DURABILITY , controls the behavior of delayed durability in the database 
scope. It may have one of these three options:   

    DISABLED : This option disables delayed durability for database transactions 
regardless of the transaction durability mode. All transactions in the database 
are always fully durable. This is the default option and matches the behavior of 
previous versions of SQL Server.  

   FORCED : This option forces delayed durability for database transactions regardless 
of the transaction durability mode.  

   ALLOWED : Delayed durability is controlled at the transaction level. Transactions 
are fully durable unless delayed durability is specified.    

 It is worth noting that in the case of cross-database or distributed transactions, all transactions are 
fully durable regardless of their settings. The same applies to Change Tracking and Change Data Capture 
technologies. Any transaction that updates tables that are enabled for either of these technologies will be 
fully durable. Delayed durability is also not supported with transactional replication. 

 You can control transaction durability by specifying the durability mode in the  COMMIT  operator. 
Listing  30-1  shows an example of a transaction that uses delayed durability. As was already mentioned, the 
 DELAYED_DURABILITY  database option can override that setting. 

     Listing 30-1.    Transaction with delayed durability   

 begin tran 
         /* Do something */ 
 commit with (delayed_durability=on) 

   Any other SQL Server technologies that work with the transaction log would see and process commit 
records from transactions with delayed durability only after those records were hardened in the log and, 
therefore, became durable in the database. For example, if a database backup finished in between a 
transaction commit and log buffer flush, the commit log record would not be included in the backup, and, 
therefore, the transaction would be rolled back at the time of a restore. 

 Another example is AlwaysOn Availability Groups. Secondary nodes would receive commit records only 
after those records were hardened in the log on the primary node and were transmitted over the network.  

     Virtual Log  Files      
 Even though a transaction log can have multiple files, SQL Server works with it in a sequential manner 
while writing and reading a stream of log records. As a result, SQL Server does not benefit from the multiple 
physical log files. 

 ■   Note    You can benefit from the multiple log files in some edge cases. For example, placing multiple log files 
onto separate disk arrays will allow SQL Server to zero-initialize log files in parallel during database creation or 
restore operation.  

 Internally, SQL Server divides every physical log file into smaller sections called  virtual log files (VLF) . 
SQL Server uses virtual log files as a unit of management; they can be either active or inactive. 
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 A VLF is active when it stores the  active portion of the transaction log , which contains the stream of log 
records required to keep the database transactionally consistent in the event of a transaction rollback or 
unexpected SQL Server shutdown. For now, do not focus on what keeps a log active; we will examine this 
later in this chapter. An inactive VLF contains the  truncated  (inactive) and unused parts of the transaction 
log. 

 Figure  30-8  shows an example of a transaction log and virtual log files.  

  Figure 30-8.    Transaction log and virtual log files       

  Figure 30-9.    A transaction log is a wraparound file       

   Table 30-1.    Allocation Size and Number of VLFs Created (Prior to SQL Server 2014)   

 Allocation Size  Number of VLFs Created 

 < 64 MB  4 VLFs 

 64 MB – 1 GB  8 VLFs 

 > 1 GB  16 VLFs 

 Transaction log truncation does not reduce the size of the log file on disk. Truncation means that parts 
of transaction log (one or more VLFs) are marked as inactive and ready for reuse. It clears up the internal 
space in the log, keeping log file size intact.    

 A transaction log is a wraparound file. When the end of the logical log file reaches the end of the 
physical file, the log wraps around it, as shown in Figure  30-9 .  

 SQL  Server      creates new virtual log files every time the log grows. The number of VLFs depends on the 
newly allocated space size and SQL Server version. The algorithm for SQL Server prior to 2014 is shown in 
Table  30-1 .  
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 In SQL Server 2014 and 2016, the algorithm has changed a bit. It analyzes the current size of the log file, 
and if the growth is less than 1/8th the size of the current log size, it generates one VLF file. Otherwise, it uses 
the old algorithm. 

 You can examine virtual log files with the  DBCC LOGINFO  command. Figure  30-10  illustrates the output 
of such a command running against the  master  database on one SQL Server instance. It shows that the 
database has one physical log file with  FileId = 2  and three virtual log files. Other columns indicate the 
following:      

    Status  is the status of the VLF. Values of 0 and 2 indicate inactive and active 
VLFs, respectively.  

   FileSize  is the size of the VLF in bytes.  

   StartOffset  is the starting offset of the VLF in the file.  

   CreateLSN  is the LSN at the moment when the VLF was created. Zero means that 
the VLF was created at database creation time.  

   FSeqNo  is the order of usage of the VLFs. The VLF with the highest  FSeqNo  is the 
file where the current log records are written.  

   Parity  can be one of two possible  values     : 64 and 128. SQL Server switches the 
parity value every time a VLF is reused. SQL Server uses the parity value to detect 
where to stop processing log records during a crash recovery.      

  Figure 30-10.    DBCC LOGINFO output       

     Database Recovery Models 
 There are three database recovery models that affect transaction log management and truncation behavior: 
 SIMPLE ,  FULL , and  BULK LOGGED . While SQL Server logs enough information to roll back transactions and/or 
perform crash recovery regardless of the recovery model, such models control when a log is truncated and 
when VLFs become inactive. You cannot access and redo any actions from the inactive part of the log, and 
therefore truncation affects the amount of potential work loss if data files are unavailable. 

 It is again worth mentioning that transaction log truncation does not reduce the size of the log file, but 
rather marks  VLFs   as inactive and ready for reuse. 

 In the   SIMPLE  recovery model  , SQL Server truncates the transaction log at  CHECKPOINT . Let’s assume 
that you have a system with three active VLFs, as shown in Figure  30-11 . The oldest active LSN is in  VLF4 . 
Therefore, there is the possibility that SQL Server will need to access log records from  VLF4  and  VLF5  in case 
of transaction rollbacks, which requires SQL Server to keep  VLF4  and  VLF5  active.  

 There are no log records from the active transactions in  VLF3 , although some of the dirty data pages in 
the buffer pool may have corresponding log records stored there. SQL Server needs to access those records 
in case of a crash recovery to be able to redo the changes; therefore,  VLF3  should also be kept active. 
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 When SQL Server performs a  CHECKPOINT , all of the dirty data pages are saved into the data file. As 
a result, crash recovery does not need to redo any changes related to log records from  VLF3 , and it can 
be truncated and marked as inactive. However,  VLF4  must be kept active to support the rollback of the 
transactions that have corresponding log records stored in  VLF4 . Figure  30-12  illustrates this point.     

  Figure 30-11.    SIMPLE recovery model: Initial stage       

  Figure 30-12.    SIMPLE recovery model: Log truncation after CHECKPOINT       

 Thus, in the  SIMPLE  recovery model, the active part of transaction log starts with VLF, which contains 
the oldest LSN of the oldest active transaction or the last  CHECKPOINT . It is also worth noting that if 
transaction replication is enabled, VLFs can be truncated only after the Replication Log Reader has 
processed transactions from there.    

 ■   Note    An active database backup defers transaction log truncation until it is completed.  

 As you can guess, even though SQL Server supports crash recovery in the  SIMPLE  model, you should 
keep both data and log files intact to avoid data loss and to keep the database transactionally consistent. 

 Alternatively, with the  FULL  or  BULK LOGGED  recovery  models   SQL Server supports transaction log 
backups, which allow you to recover the database and avoid data loss regardless of the state of the data files, 
as long as the transaction log is intact. This assumes, of course, that a proper set of backups is available. We 
will discuss the backup and recovery process in greater detail in the next chapter. 

 In the   FULL  and  BULK LOGGED  recovery models  , SQL Server requires you to perform a transaction log 
backup in order to trigger log truncation. Moreover, truncation can be delayed if you have other processes 
that need to read the transaction log records. Think about transactional replication, database mirroring, and 
AlwaysOn Availability Groups as examples of such processes. 

 Figure  30-13  shows one example. Both minimum and current LSNs are in  VLF5 , although the LSN of 
the last transaction log backup is in  VLF3 . Therefore, the active portion of the transaction log includes  VLF3 , 
 VLF4 , and  VLF5 .  
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 After another transaction log backup, SQL Server can truncate  VLF3 . However,  VLF4  must remain active, 
as the Replication Log Reader has yet to process some of the log records from  VLF4 . Figure  30-14  illustrates 
this point.  

  Figure 30-13.    FULL and BULK LOGGED recovery models: Initial stage       

  Figure 30-14.    FULL and BULK LOGGED recovery models: Log truncation       

 As you can see, in the  FULL  or  BULK LOGGED  recovery models, the active part of transaction log starts with 
VLF, which contains the oldest of the following:   

   LSN of the last log backup  

  LSN of the oldest active transaction  

  LSN of the process that reads transaction log records    

 ■   Important    FULL  database backup does not truncate the transaction log. You must perform a transaction 
log backup in order to do so.  

 The difference between the   FULL  and  BULK LOGGED  recovery models   is in how SQL Server logs minimally 
logged operations, such as  CREATE INDEX ,  ALTER INDEX REBUILD ,  BULK INSERT ,  INSERT INTO ,  INSERT 
SELECT , and a couple of others. In the  FULL  recovery model, those operations are fully logged. SQL Server 
writes log records for every data row affected by the operation. Alternatively, in the  BULK LOGGED  recovery 
model, SQL Server does not log minimally logged operations on a row-by-row basis; rather, it logs the 
extents allocation instead. All minimally logged operations generate new (or a copy of existing) objects, and 
extents deallocation rolls back the changes. The non-minimally logged operations are always fully logged 
in the  BULK LOGGED  model, like they are in the  FULL  recovery model. It is also worth noting that the  SIMPLE  
recovery model logs minimally logged operations in a manner similar to the  BULK LOGGED  recovery model. 
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 The   BULK LOGGED  recovery model   reduces transaction log load during minimally logged operations, 
but it comes at price. First, SQL Server is not able to perform point-in-time recovery if bulk operations were 
running at a particular time. Moreover, SQL Server must have access to the data files while performing log 
backups, and it stores data pages/extents modified by minimally logged operations as part of the backup file. 
This can increase the size of the log backups and lead to data loss if data files become unavailable in between 
log backups. 

 Choosing the right recovery model is a very important decision that affects the potential amount of data 
loss in case of disaster. It is an essential part of designing Backup and Disaster Recovery strategies, which we 
will discuss in the next chapter.  

      TempDB Logging      
 All user objects in  tempdb  must be transactionally consistent. SQL Server must be able to roll back 
transactions that change data in  tempdb  in the same way as in the users’ databases. However,  tempdb  is 
always recreated at SQL Server startup. Therefore, logging in  tempdb  does not need to support the redo stage 
of crash recovery. Log records in  tempdb  store just the  old values  from the modified data rows, omitting  new 
values . 

 This behavior makes  tempdb  a good candidate to be a staging area for ETL processes. Data modifications 
in  tempdb  are more efficient as compared to ones in users’ databases because of the lower amount of logging 
involved. Log records are not part of transaction log activity in users’ databases, which reduces the size of log 
backups. Moreover, those modifications are not transmitted over the network if any transaction log–based 
High Availability technologies are in use. 

 As we discussed in Chapter   13    , “Temporary Objects and TempDB,” using  tempdb  as a staging area 
introduces a set of challenges during implementation. All of the data stored in  tempdb  would be lost in the 
case of a SQL Server restart or failover to another node. The code must be aware of such a possibility and 
handle it accordingly.         

      Excessive Transaction Log Growth      
 Excessive transaction log growth is a common problem that junior or accidental database administrators 
have to handle. It happens when SQL Server is unable to truncate the transaction log and reuse the space in 
the log file. In such a case, the log file continues to grow until it fills the entire disk, switching the database to 
read-only mode with this 9002 error:  “Transaction log full.”  

 There are plenty of reasons why SQL Server is unable to truncate the transaction log. You can examine 
the  log_reuse_wait_desc  column in the  sys.databases  view to discover the reason why the transaction log 
cannot be reused. You can see the query, which checks  log_reuse_wait_desc  for the users’ databases, in 
Listing  30-2 . The output of the query is shown in Figure  30-15 .  

     Listing 30-2.    Check log_reuse_wait_desc for users’ databases   

 select database_id, name, recovery_model_desc, log_reuse_wait_desc 
 from sys.databases 
 where database_id >= 5 

http://dx.doi.org/10.1007/978-1-4842-1964-5_13
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   For databases in the  FULL  or  BULK LOGGED  recovery models, one of the most common reasons the 
transaction log is not truncated is the lack of log backups. It is a common misconception that a  FULL  
database backup truncates the transaction log. It is not true, and you must perform a log backup in order to 
do so. The  Log_reuse_wait_desc  value of  LOG_BACKUP  indicates that you need to perform a log backup in 
order to truncate the transaction log. 

 The  Log_reuse_wait_desc  value of  ACTIVE_TRANSACTION  indicates that there are long and/or 
uncommitted transactions in the system. SQL Server is unable to truncate the transaction log past the LSN of 
the oldest uncommitted transaction, regardless of the database recovery model in use. 

 The query in Listing  30-3  returns a list of the five oldest uncommitted transactions in the current 
database. It returns the time when the transaction was started, information about the session, and log usage 
statistics. On a side note, you can use the same query and change the  order by  clause to the  Log Used  
column if you need to locate transactions that consume the most log space.        

     Listing 30-3.    Finding five oldest active transactions in the system   

 select top 5 
     ses_tran.session_id as [Session Id], es.login_name as [Login], es.host_name as [Host] 
     ,es.program_name as [Program], es.login_time as [Login Time] 
     ,db_tran.database_transaction_begin_time as [Tran Begin Time] 
     ,db_tran.database_transaction_log_record_count as [Log Records] 
     ,db_tran.[database_transaction_log_bytes_used] as [Log Used] 
     ,db_tran.[database_transaction_log_bytes_reserved] as [Log Rsrvd] 
     ,sqlText.text as [SQL], qp.query_plan as [Plan] 
  from      
     sys.dm_tran_database_transactions db_tran join 
         sys.dm_tran_session_transactions ses_tran on 
             db_tran.transaction_id = ses_tran.transaction_id       
     join sys.dm_exec_sessions es on 
             es.[session_id] = ses_tran.[session_id] 
     left outer join sys.dm_exec_requests er on 
             er.session_id = ses_tran.session_id   
     join sys.dm_exec_connections ec on 
             ec.session_id = ses_tran.session_id   
     cross apply   
             sys.dm_exec_sql_text (ec.most_recent_sql_handle) sqlText 
     cross apply 
             sys.dm_exec_query_plan (er.plan_handle) qp 
 where 
         db_tran.database_id = DB_ID() 
 order by 
         db_tran.database_transaction_begin_time; 

  Figure 30-15.    Log_reuse_wait_desc output       
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   As I already mentioned, SQL Server has many processes that read the transaction log, such as 
transactional replication, change data capture, database mirroring, AlwaysOn Availability Groups, and 
others. Any of these processes can prevent transaction log truncation when there is a backlog. While it rarely 
happens when everything is working as expected, you may experience this issue if there is an error. 

 A common example of this situation is an unreachable secondary node in an Availability Group or 
database mirroring session. Log records, which have not been sent to the secondaries, will remain part of the 
active transaction log. This prevents its truncation. The  Log_reuse_wait_desc  column value would indicate 
this condition.       

 ■   Note    You can see the list of possible  log_reuse_wait_desc  values at    http://technet.microsoft.com/
en-us/library/ms178534.aspx     .  

 If you experience a 9002  Transaction log full  error, the key point is to not panic. The worst thing you can 
do is to perform an action that makes the database transactionally inconsistent. For example, shutting down 
SQL Server or detaching the database and deleting the transaction log file afterward will do just that. If the 
database has not been shut down cleanly, SQL Server may not be able to recover it, because the transaction 
log would be missing. 

 Creating another log file could be the fastest and simplest way to address this issue; however, it is hardly 
the best option in the long run. Multiple log files complicate database management. Moreover, it is hard to 
drop log files. SQL Server does not allow you to drop log files if they store an active portion of the log.        

 You must understand why the transaction log cannot be truncated and react accordingly. You can 
perform a log backup, identify and kill sessions that keep uncommitted active transactions, or remove an 
unreachable secondary node from the availability group depending on the root cause of the problem.  

      Transaction Log Management   
 It is better to manage transaction log size manually than to allow SQL Server to auto-grow it. Unfortunately, 
it is not always easy to determine optimal log size. On one hand, you want the transaction log to be big 
enough to avoid auto-growth events. On the other hand, you would like to keep the log small, saving disk 
space and reducing the time required to zero-initialize the log when the database is restored from a backup. 

 You should also keep some space reserved in the log file if you are using any High Availability or other 
technologies that rely on transaction log records. SQL Server is not able to truncate transaction log during 
log backups if something goes wrong with those processes. Moreover, you should implement a monitoring 
and notification framework that alerts you to such conditions and gives you time to react before the 
transaction log becomes full. 

 Another important factor is the number of  VLFs   in the log files. You should avoid situations where the 
transaction log becomes overly fragmented and has a large number of small VLFs. Similarly, you should 
avoid situations where the log has too few but very large VLFs. 

 For databases that require a large transaction log, you can pre-allocate space using 4,000 MB chunks, 
which generates 16 VLFs of 250 MB each. If a database does not require a large (more than 4,000 MB) 
transaction log, you can pre-allocate log space in one operation based on the size requirements. 

 ■   Note    There is a bug in SQL Server 2005–2008R2 that incorrectly grows the transaction log if its size is in 
multiples of 4 GB. You can use multiples of 4,000 MB instead. This bug has been fixed in SQL Server 2012 and 
in cumulative updates/service packs for older versions of SQL Server.  

http://technet.microsoft.com/en-us/library/ms178534.aspx
http://technet.microsoft.com/en-us/library/ms178534.aspx
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 You should still allow SQL Server to auto-grow the transaction log in case of an emergency. However, 
choosing the right auto-growth size is tricky. For databases with large transaction logs, it is wise to use 4,000 
MB so as to reduce the number of  VLFs  . However, zeroing out 4,000 MB of newly allocated space can be 
time consuming. Remember that SQL Server always zeroes out transaction logs, even when Instant File 
Initialization is enabled. All database activities that write to the log file are blocked during the auto-growth 
process. This is another argument for manual transaction log size management. 

 ■   Tip    The decision of what auto-growth size should be used depends on the performance of the I/O 
subsystem. You should analyze how long zero-initialization takes and find a sweet spot where the auto-growth 
time and the size of the generated VLFs are acceptable. 1 GB for auto-growth could work in many cases.  

 It is also worth noting that the Management Studio database creation dialog uses inefficient default 
transaction log auto-growth parameters, which leads to an excessive number of  VLFs   in the database. 
You need to change these parameters when you create the new database through Management Studio. 
Fortunately, this problem has been addressed in SQL Server 2016. 

 SQL Server writes to the transaction log synchronously in the case of data modifications. OLTP systems 
with volatile data and heavy transaction log activity should have the transaction log stored on a disk array 
with good write performance and low latency. Transaction log I/O performance is less important when 
the data is static; for example, in data warehouse systems. However, you should consider how it affects the 
performance and duration of the processes that refresh data there.     

 Best practices suggest you store the transaction log on a dedicated disk array optimized for sequential 
write performance. This is great advice for situations where an underlying I/O subsystem has enough power 
to accommodate multiple high-performance disk arrays. In some cases, however, when faced with budget 
constraints and not enough disk drives, you can achieve better I/O performance by storing data and log files 
on a single disk array. You should remember, however, that keeping data and log files on the same disk array 
could lead to data loss in case of a disk array failure. 

 Another important factor is the number of databases. When you place transaction logs from multiple 
active databases onto a single disk array, log I/O access becomes random rather than sequential. You should 
factor in such behavior when testing your I/O subsystem and then choose test scenarios that represent the 
workload that you expect to have in production.     

 Most important, you should store the transaction log to a highly redundant disk array. It is impossible to 
recover the database in a transactionally consistent state if the transaction log has been corrupted.  

     Summary 
 SQL Server uses a transaction log to store information about all data modifications made to the database. 
It allows SQL Server to keep the database transactionally consistent, even in the event of an unexpected 
shutdown or crash. 

 SQL Server uses a write-ahead logging mechanism, which guarantees that log records are always saved 
into the log file before the updated data pages are saved to the data files. SQL Server uses a small buffer to 
cache log records in memory, saving all of them at once when needed. 

 The transaction log is a wraparound file, which internally consists of multiple virtual log files. Every 
virtual log file can either be active or inactive. Transaction log truncation marks some VLFs as inactive, 
making them ready for reuse. In the  SIMPLE  recovery model, SQL Server truncates the transaction log at the 
 CHECKPOINT . In the  FULL  and  BULK LOGGED  recovery models, SQL Server truncates the transaction log during 
log backups. 
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 There are a number of issues that can prevent transaction log truncation. The most common ones are 
lack of transaction log backups in the  FULL  and  BULK LOGGED  recovery models, or long-running uncommitted 
transactions. You can examine what prevents log truncation by analyzing the  log_reuse_wait_desc  column 
in the  sys.databases  view. 

 You should avoid situations where the transaction log has too many or too few  VLFs  . Either 
circumstance negatively affects system performance. For databases that require large transaction log files, 
you can pre-allocate the transaction log with 4,000 MB chunks, which makes 16 VLFs of about 250 MB each. 

 It is recommended that you manage the transaction log size manually to avoid log auto-growth. 
However, you should still keep auto-growth enabled to avoid a  “9002: Transaction Log Full”  error. 
Auto-growth size should be specified in MB rather than as a percentage. You need to fine-tune the size based 
on the I/O performance of the system. 

 Fast transaction log throughput is essential for good performance, especially with OLTP systems. 
You must store the transaction log on a fast disk array, minimizing writing latency. Most important, that 
array must be redundant. It is impossible to recover the database in a transactionally consistent state if the 
transaction log is corrupted.     
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    CHAPTER 31   

 Backup and Restore                          

 In the technology world, it is just a matter of time before disaster happens. A database could become 
corrupted due to a user error, hardware malfunction, or software bug. A disk array could fail, making databases 
unavailable to users. An engineer could accidentally change the LUN configuration in a SAN array and affect 
the database it stores. A natural disaster could affect the availability of a datacenter. In any of these instances, it 
is essential to recover the database and bring the system online with minimal data loss and downtime. 

 This chapter discusses how SQL Server performs database backup and restore and covers several 
important use cases that can be used during the database recovery process. It also provides several ideas on 
how to design backup strategies in a way that minimizes system downtime and data loss. 

     Database Backup Types 
 There are three different types of  database backups   available in SQL Server. 

 A  full  database backup backs up the whole database. SQL Server performs a  CHECKPOINT  as the first step 
of database backup, backs up all allocated extents from the data files, and, finally, backs up the portion of the 
transaction log required in order to recover the database after a restore. That portion includes all log records, 
starting from the oldest of these events:

   The last  CHECKPOINT .  

  The beginning of the oldest active transaction.  

  The beginning of the unscanned portion of the log if there are any processes 
that rely on the transaction log scan, such as transactional replication, database 
mirroring, AlwaysOn Availability Groups, and others.    

 A full database backup represents the database at the time when the backup operation was finished. It is 
supported in every recovery model. 

 A   differential  backup   backs up those extents that have been modified since the last full backup. SQL Server 
tracks which extents have been changed with a set of allocation map pages called a   differential changed map 
(DCM    ) . SQL Server clears these map pages only during a full database backup. Therefore, differential backups 
are cumulative, and each of them stores all extents that have been modified since the last full, rather than last 
differential, backup. Like a full database backup, differential backups work in every recovery model. 

 A  log  backup backs up the active portion of the transaction log, starting with the LSN of the last full or 
log backup. This backup type is only supported in the  FULL  or  BULK LOGGED  recovery models. It is an essential 
part of transaction log management and is required in order to trigger log truncation. It is worth reiterating 
that the full database backup does not truncate the transaction log in the  FULL  or  BULK LOGGED  recovery 
models. You should perform a log backup to truncate the transaction log. 

 If a  log backup   were running at the same time as a full database backup, log truncation would be 
deferred until the full backup was complete. 
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 For a database in the  BULK LOGGED  recovery model, log backups also store data from extents that were 
allocated during minimally logged  bulk-copy operations  , such as  CREATE INDEX ,  ALTER INDEX REBUILD , 
 BULK INSERT ,  INSERT INTO ,  INSERT SELECT , and a few others. These extents are tracked with another set of 
allocation map pages called a   bulk changed map (BCM) .   SQL Server must be able to access data files with 
those extents in order for the log backup to succeed. 

 In contrast to differential backups, log backups are incremental. Each subsequent log backup stores the 
portion of the transaction log starting at the point where the previous log backup finished. You must apply all 
log backups one by one during the restore process. 

 The sequence of log backups contains log records for all operations performed by SQL Server since 
last full backup. This allows you to redo the work and recover the database, even when database files are 
corrupted or unavailable. Moreover, it supports point-in-time recovery and allows you to recover the 
database up to a particular time. One case where this is beneficial is upon the accidental deletion of data or a 
database object. We will talk about such a situation later in this chapter. 

 ■   Important    The database in the  BULK LOGGED  recovery model does not support point-in-time recovery if 
the transaction log contains bulk logged operations running at the same time.  

 A special kind of log backup, called   tail-log backup   , is used when you need to recover a database after 
a disaster. It backs up log records that have not been backed up since the last log backup, and it prevents 
potential data loss during recovery. We will talk about tail-log backups in detail later in this chapter. 

 A continuous sequence of backups is called a   backup chain   . A backup chain starts with a full database 
backup, and it is required in order to restore the database up to the point of failure and/or a point in time. 

 Figure  31-1  shows an example of a backup chain and a tail-log backup.   

  Figure 31-1.    Backup chain and tail-log backup       

     Backing Up the Database 
 You can backup and restore the database using Management Studio UI, T-SQL, and PowerShell, as well as 
with third-party tools. In this chapter, we will focus on the T-SQL implementation. 

 Listing  31-1  shows the T-SQL statements that perform a full database backup using the   BACKUP 
DATABASE    command with a disk as the destination. 

     Listing 31-1.    Performing a full database backup   

 backup database OrderEntryDb 
 to disk = N'e:\backups\OrderEntry.bak' 
 with format, init, 
 name = N'OrderEntryDb-Full Database Backup', 
 stats = 5, checksum, compression; 
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   SQL Server allows you to store multiple backups in a single file. You should be extremely careful with 
this approach, however. While it reduces the number of files on the disk and simplifies their management, it 
is possible to override existing backups and invalidate the backup chain. 

 You should design your backup placement in a way that reduces the amount of data that needs to be 
copied over the network in case of disaster. Do not store backups from different log chains in the same file. 
Moreover, do not store differential backups together with other, redundant differential and/or log backups. This 
reduces both the size of the backup file and the time it takes to copy the file over a network in case of disaster. 

 The  FORMAT  and  INIT  options tell SQL Server to override all existing backups in the backup file. 
 The   CHECKSUM  option   forces SQL Server to validate the checksum on the data pages and generate a 

checksum of the backup file. This helps to validate that the data pages have not been corrupted by the I/O 
subsystem after they were saved to disk. This option, however, should not be used as a replacement for a 
regular database consistency check with the  DBCC CHECKDB  command.  BACKUP WITH CHECKSUM  does not 
test the integrity of the database objects and allocation map pages, nor does it test pages that do not have a 
 CHECKSUM  generated. 

 Finally, the   COMPRESSION  option   forces SQL Server to compress the backup. Backup compression can 
significantly reduce the size of the backup file, although it uses more CPU resources during the backup and restore 
processes. It is recommended that you use backup compression unless the system is heavily CPU-bound or the 
database is encrypted. In the latter case, backup compression does not introduce any space savings. 

  Backup compression   is available in the Enterprise and Standard editions of SQL Server 2008R2 and 
above as well as in the Enterprise Edition of SQL Server 2008. It is worth mentioning that every edition of 
SQL Server can restore a compressed backup. 

 ■   Note    You can look at all of the available  BACKUP  command options at    http://technet.microsoft.com/
en-us/library/ms186865.aspx     .  

 You can perform a differential backup using the   DIFFERENTIAL  option  , as shown in Listing  31-2 . 

     Listing 31-2.    Performing a differential database backup   

 backup database OrderEntryDb 
 to disk = N'e:\backups\OrderEntry.bak' 
 with differential, noformat, noinit, 
 name = N'OrderEntryDb-Differential Database Backup', 
 stats = 5, checksum, compression; 

   Now, our backup file  OrderEntry.bak  has two backups: one  FULL  and another  DIFFERENTIAL . Finally, 
Listing  31-3  shows you how to perform a transaction log backup by placing it into another file. 

     Listing 31-3.    Performing a transaction log backup   

 backup log OrderEntryDb 
 to disk = N'e:\backups\OrderEntry.trn' 
 with format, init, 
 name = N'OrderEntryDb-Transaction Log Backup', 
 stats = 5, checksum, compression; 

   You must have  BACKUP DATABASE  and   BACKUP LOG    permissions granted in order to perform the 
backups. By default, those permissions are granted to the members of the  sysadmin  server role,  db_owner , 
and  db_backupoperator  database roles. Moreover, the SQL Server startup account should have adequate 
permissions to write a backup file to the designated location. 

http://technet.microsoft.com/en-us/library/ms186865.aspx
http://technet.microsoft.com/en-us/library/ms186865.aspx
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 You can specify multiple destination backup files and allow SQL Server to stripe backup across 
all of them. This can improve the performance of backup and subsequent restore operations if the I/O 
performance of the backup drive becomes a bottleneck. 

 The   COPY_ONLY  option   allows you to perform a backup without breaking the log chain. One possible 
use case for such option is a situation where you need to bring a copy of the database to a development 
environment. 

  SQL Server stores   the information about every backup and restore operation on a server instance 
in a set of tables defined in the  msdb  database. A description of these tables is outside of the scope of this 
book. You can read the Books Online article “Backup History and Header Information” at    http://msdn.
microsoft.com/en-us/library/ms188653.aspx      for more details. 

 Finally, SQL Server writes information about every backup to the error log file. This could quickly 
balloon the size of the log file if backups are running frequently. You can disable this behavior with trace flag 
 T3226 . This makes error logs more compact at the cost of requiring a query against  msdb  to obtain a backup 
history.  

     Restoring the Database 
 You can restore a database with the   RESTORE DATABASE  command  . You can see an example of this command 
in action in Listing  31-4 . It restores the  OrderEntryDB  database at a new destination (the  MOVE  option 
controls this), and it applies differential and transaction log backups after that. 

      Listing 31-4.    Restoring the database   

  -- Initial FULL backup 
 restore database OrderEntryDbDev 
 from disk = N'C:\Backups\OrderEntry.bak' with file = 1, 
 move N'OrderEntryDB' to N'c:\backups\OrderEntryDB.mdf', 
 move N'OrderEntryDB_log' to N'c:\backups\OrderEntryDB_log.ldf', 
 norecovery, nounload, stats = 5; 

   -- Differential backup 
 restore database OrderEntryDbDev 
 from disk = N'C:\Backups\OrderEntry.bak' with file = 2, 
 norecovery, nounload, stats = 5; 

   -- Transaction Log backup 
 restore log OrderEntryDbDev 
 from disk = N'C:\Backups\OrderEntry.trn' 
 with nounload, norecovery, stats = 10; 

   restore database OrderEntryDbDev with recovery; 

    When the backup file stores multiple backups, you should specify a file number by using the   WITH FILE    
option. As I noted earlier, be careful with this approach and make sure that your backup routine does not 
accidentally override existing backups in the file. 

 Each  RESTORE  operation should have a database recovery option specified. When a backup is restored 
with the   RECOVERY  option  , SQL Server recovers the database by performing both the redo and undo recovery 
stages, and it makes the database available to the users. No further backups can be restored. Alternatively, 
the   NORECOVERY  option   performs only the redo stage of database recovery, and it leaves the database in the 
 RESTORING  state. It allows you to restore further backups from the log chain. 

http://msdn.microsoft.com/en-us/library/ms188653.aspx
http://msdn.microsoft.com/en-us/library/ms188653.aspx
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 ■   Important   The UI interface in Management Studio uses the  RECOVERY  option by default. Always pay 
attention to this setting when using the Database Restore UI in Management Studio.  

 Accidental use of the  RECOVERY  option would require you to repeat the restore process from the 
beginning, which could be very time consuming in the case of large databases. It is safer to restore all 
backups with the T-SQL  RESTORE  command using the  NORECOVERY  option all of the time. Finally, you can 
recover the database and bring it online with the  RESTORE DATABASE WITH RECOVERY  command, as was 
shown in Listing  31-4 . 

 We will discuss how to restore the database after a disaster later in this chapter. Now, let’s cover a couple 
of useful options that you can use during a restore. 

     Restore to a Point in Time 
 You can restore the database to a point in time using the   STOPAT  option  . This option accepts a date/time 
value or a variable as a parameter and restores the database to its state as of that time. Alternatively, you can 
use the   STOPATMARK    and   STOPBEFOREMARK    options, which allow you to restore the database by stopping at a 
particular  LSN  or named transaction. 

 One common use case for these options is the recovery of an accidentally dropped object. Let’s look at 
the example shown in Listing  31-5  and create the database with table  dbo.Invoices , populate it with some 
data, and perform a full database backup. 

     Listing 31-5.    Point-in-time restore: Database creation   

  create database MyDB 
 go 

   create table MyDB.dbo.Invoices(InvoiceId int not null); 
 insert into MyDB.dbo.Invoices values(1),(2),(3) ; 
 go 

   backup database MyDB 
 to disk = N'c:\backups\MyDB.bak' 
 with noformat, init, 
 name = N'MyDB-Full Database Backup', stats = 5; 

    Now, let’s assume that somebody accidentally dropped the  dbo.Invoices  table using the  DROP TABLE 
dbo.Invoices  command. If the database is active and other data has been modified over time, the best 
course of action would be to restore another copy of the database from the backup to the point in time when 
the table was dropped and then copy the data from the newly restored to the original database. 

 As a first step in the recovery process, let’s make a backup of the transaction log, as shown in Listing  31-6 . 
Obviously, in a real system, it is possible that you already have the log backup that covers the time when the 
table was dropped. 

     Listing 31-6.    Point-in-time restore: Backing up the log   

 backup log MyDB 
 to disk = N'c:\backups\MyDB.trn' 
 with noformat, init, 
 name = N'MyDB-Transaction Log Backup’, stats = 5; 
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   The tricky part is finding the time when the table was dropped. One of the options that you have is 
analyzing the system default trace, which captures such events. You can use the  fn_trace_gettable  system 
function, as shown in Listing  31-7 . 

     Listing 31-7.    Point-in-time restore: Analyzing the system trace   

  declare 
     @TraceFilePath nvarchar(2000) 

   select @TraceFilePath  = convert(nvarchar(2000),value) 
 from ::fn_trace_getinfo(0) 
 where traceid = 1 and property = 2; 

   select 
     StartTime, EventClass 
     ,case EventSubClass 
         when 0 then 'DROP' 
         when 1 then 'COMMIT' 
         when 2 then 'ROLLBACK' 
     end as SubClass 
     ,ObjectID, ObjectName, TransactionID 
 from ::fn_trace_gettable(@TraceFilePath, default) 
 where EventClass = 47 and DatabaseName = 'MyDB' 
 order by StartTime desc 

    As you can see in Figure  31-2 , there are two rows in the output. One of them corresponds to the time 
when the object was dropped. The other one relates to the time when the transaction was committed.  

  Figure 31-2.    Output from the  default system trace         

 You can use the time from the output to specify the  STOPAT  parameter of the  RESTORE  command, as 
shown in Listing  31-8 . It is also possible to perform a point-in-time restore in the Management Studio 
Database Restore UI. However, that option does not allow you to specify milliseconds in the  STOPAT  value. 

     Listing 31-8.    Point-in-time restore: Using the STOPAT parameter   

  restore database MyDBCopy 
 from disk = N'C:\Backups\MyDB.bak' with file = 1,   
 move N'MyDB' to N'c:\db\MyDBCopy.mdf',   
 move N'MyDB_log' to N'c:\db\MyDBCopy.ldf',   
 norecovery, stats = 5; 

   restore log MyDBCopy 
 from disk = N'C:\Backups\MyDB.trn' with file = 1, 
 norecovery, stats = 5, 
 stopat = N'2016-03-10T06:21:27.697'; 

   restore database MyDBCopy with recovery; 
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    While the system default trace is a very simple option, there is a downside. The time of the event in the 
trace is not precise enough, and it could be a few milliseconds apart from the time that you need to specify 
as the  STOPAT  value. Therefore, there is no guarantee that you would restore the most recent table data at the 
time of deletion. Moreover, there is a chance that the  DROP OBJECT  event has been overwritten or that the 
trace is disabled on the server. 

 One of the workarounds available for this is to use an undocumented system function,  fn_dump_dblog , 
which returns the content of the transaction log backup file. You need to find the LSN that belongs to the 
 DROP TABLE  statement and restore a copy of the database using the   STOPBEFOREMARK  option  . Listing  31-9  
shows the code that calls the  fn_dump_dblog  function. Figure  31-3  shows the output of the query.  

     Listing 31-9.    Point-in-time restore: Using the  fn_dump_dblog  function   

 select [Current LSN], [Begin Time], Operation,[Transaction Name], [Description] 
 from fn_dump_dblog 
 ( default, default, default, default, 'C:\backups\mydb.trn',default, default, default 
 ,default, default, default, default, default, default, default, default, default, default 
 ,default, default, default, default, default, default, default, default, default, default 
 ,default, default, default, default, default, default, default, default, default, default 
 ,default, default, default, default, default, default, default, default, default, default 
 ,default, default, default, default, default, default, default, default, default, default 
 ,default, default, default, default, default, default, default, default, default, default ) 
 where [Transaction Name] = 'DROPOBJ'; 

  Figure 31-3.     Fn_dump_dblog  output       

   Listing  31-10  shows a  RESTORE  statement that uses the LSN from this output. You should specify the 
 lsn:0x  prefix in the  STOPBEFOREMARK  parameter. It tells SQL Server that you are using an LSN in hexadecimal 
format. 

     Listing 31-10.    Point-in-time restore: Using the  STOPBEFOREMARK parameter     

 restore log MyDBCopy 
 from disk = N'C:\Backups\MyDB.trn' 
 with file = 1,  norecovery, stats = 5, 
 stopbeforemark = 'lsn:0x 00000024:00000178:0001'; 

   Analyzing transaction log records is a tedious and time consuming job. However, it provides the most 
accurate results. Moreover, you can use such a technique when data is accidentally deleted by the  DELETE  
statement. Such an operation is not logged in the system default trace, and analyzing transaction log content 
is the only option available. Fortunately, there are third-party tools available that can simplify the process of 
searching for the  LSN  of the operation in the log.  

     Restore with STANDBY 
 When you finish a restore process using the  NORECOVERY  option, the database stays in the  RESTORING  state 
and it is unavailable to users. The   STANDBY  option   allows you to access the database in read-only mode. 
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 As mentioned previously, SQL Server performs the redo stage of recovery as the final step of the 
restore process. The undo stage of recovery is deferred until a restore is called with the  RECOVERY  option. 
The  STANDBY  option forces SQL Server to perform the undo stage using a temporary  undo file  to store the 
compensation log records generated during the undo process. The compensation log records do not become 
part of the database transaction log, and you can restore additional log backups or recover the database if 
needed. 

 Listing  31-11  illustrates the use of the  RESTORE WITH STANDBY  operator. It is worth mentioning that you 
should not specify  RECOVERY/NORECOVERY  options in this mode. 

     Listing 31-11.    Restore with STANDBY option   

 restore log MyDBCopy 
 from disk = N'C:\Backups\MyDB.trn' 
 with file = 1, stats = 5, 
 standby = 'C:\Backups\undo.trn'; 

   The  STANDBY  option can be used together with point-in-time restore. This can help you avoid 
unnecessary restores when you need to locate the  LSN  to use with the  STOPBEFOREMARK  option. Think 
about a situation where the log file has multiple  DROP OBJECT  transactions, and you do not know which 
one dropped the table that you wish to recover. In this case, you can perform multiple restores using 
both the  STOPBEFOREMARK  and  STANDBY  options, querying the database until you find the right spot for 
recovery. 

 Alternatively, you can use the  STANDBY  option together with  STOPAT  to analyze the database state at a 
specific time.   

     Designing a Backup Strategy 
 Every production system has two requirements that affect and shape backup strategy implementation. 
The first is the   Recovery Point Objective (RPO    ) , which dictates how much data loss is acceptable in the case 
of disaster. The second requirement is the   Recovery Time Objective (RTO) ,   which defines the acceptable 
downtime for the recovery process. 

 RPO and RTO metrics are usually included in the Service Level Agreements defined for the system. 
When RPO and RTO are not formally documented, you can determine them by interviewing stakeholders 
and gathering information about their expectations. 

  Non-technical stakeholders   often have unrealistic expectations when defining RPO and RTO 
requirements. They often request zero data loss and zero system downtime. It is impossible to guarantee or 
achieve such goals in real life. Moreover, very small RPO/RTO adds additional load to the server and is often 
impractical and very expensive to implement. It is your job to educate stakeholders and work with them to 
define realistic RPO and RTO based on business requirements. 

 The RPO dictates the recovery model that the database should use. Table  31-1  shows possible data loss 
and recovery points for the different database recovery models, assuming that backup files are available and 
the backup chain is intact. Obviously, if both the data and log files are corrupted, restoring the last backup is 
the only option, regardless of the recovery model.  
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 In the   SIMPLE  recovery model  , all changes since the last full or differential backup must be redone. 
Therefore, this model is not the best candidate for databases with volatile data that needs to be protected. 
However, the  SIMPLE  recovery model is perfectly acceptable when the data is static; for example, in data 
warehouse and/or reporting systems where the data is refreshed based on some schedule. You can use the 
 SIMPLE  recovery model by performing a full database backup after each data refresh. 

 Another possible use case for the  SIMPLE  recovery model is a database with data that can be easily 
and quickly reconstructed from other sources. In these cases, you might consider using this model to 
avoid transaction log maintenance. It is also worth noting that databases in the  SIMPLE  recovery model do 
not support features that rely on transaction log scans, such as database mirroring, AlwaysOn Availability 
Groups, log shipping, and others. 

 The   FULL  and  BULK LOGGED  recovery   models log regular (non-bulk copy) operations in the same way 
as each other and have the same transaction log maintenance requirements. Even though the  BULK LOGGED  
recovery model improves the performance of bulk-copy operations due to minimal logging, it is exposed to 
data loss in cases of data file corruption. You should avoid using the  BULK LOGGED  recovery model because 
of this. Nevertheless, you may consider switching the database from the  FULL  to the   BULK LOGGED  recovery 
model   for the duration of bulk-copy operations (for example, during index rebuild) and then switching the 
database back to the  FULL  recovery model afterward. 

 ■   Important   You should perform a full or log backup immediately after you switch the database back to the 
 FULL  recovery model.  

 Neither of these recovery models would survive transaction log corruption and keep the database 
transactionally consistent. You should store the transaction log on a highly redundant disk array in order 
to minimize the chance of such situations. Neither solution, however, is 100 percent redundant. You 
should make regular log backups to minimize possible data loss.  The frequency of log backups helps control 
possible data loss and indicates how much work must be redone in instances of transaction log corruption . 
For example, if you performed a log backup every hour, you would only lose up to one hour’s work when 
restoring the last log backup. 

   Table 31-1.    Data Loss Based on the Database Recovery Model   

 Recovery Model  Description  Data Files Corruption  Log Corruption 

 SIMPLE  Log backups are not supported. 
The database can be restored 
to the point of the last full or 
differential backup. 

 Changes since the last full or differential backup 
must be redone. 

 FULL  All operations are fully recorded 
in the transaction log. 

 No data loss  Changes since the last 
LOG backup must be 
redone.  BULK LOGGED  Bulk copy operations are 

minimally logged. All other 
operations are fully logged. 

 No data loss if bulk-copy 
operations did not occur 
since the last log backup. 
Otherwise, changes since 
the last LOG backup must 
be redone. 
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 ■   Important   The intervals between log backups should not exceed the time specified by the Recovery Point 
Objective requirement. You should also consider log backup duration when designing a backup strategy.  

 While it is relatively easy to define a backup strategy based on the RPO, it is much trickier with RTO, 
which specifies the maximum duration of the recovery process and therefore the system downtime. That 
time depends on a few factors, such as network throughput, which dictates how much time is required to 
transmit backup files over the network, as well as on the size and number of backup files. Moreover, this 
duration changes over time as the database and load grows. You should regularly test the database recovery 
process, making sure that it still meets  RTO   requirements. 

 Figure  31-4  shows a recovery scenario for a database that has multiple differentials and log backups. As 
a first step during recovery, you should make a tail-log backup, which backs up the portion of the transaction 
log that has not been backed up since the last log backup. After that, you should restore the last full backup, 
most recent differential backup, and all log backups taken afterward, including the tail-log backup.  

  Figure 31-4.     Recovery sequence         

 Let’s assume that the example shown in Figure  31-4  represents a database with the primary filegroup 
residing on disk  M: , secondary filegroup on disk  N: , and transaction log on disk  L: . All backup files are 
stored on disk  V: . Listing  31-12  shows the script that recovers the database after a disaster when disk  N:  
becomes corrupted and unavailable. The data files from the secondary filegroup are moved to disk  M: . In this 
example, SQL Server must redo all data modifications that occurred in between the time of the differential 
backup  D2  and the time of failure. 

     Listing 31-12.    Restoring the database after a disaster   

  -- Backing up Tail-Log. Database will be left in RESTORING stage 
 backup log RecoveryDemo 
 to disk = N'V:\RecoveryDemo-tail-log.trn' 
 with no_truncate, noformat, init, 
 name = N'RecoveryDemo-Tail-log backup', 
 norecovery, stats = 5; 

   -- Restoring FULL backup moving files from SECONDARY FG to M: drive 
 restore database RecoveryDemo 
 from disk = N'V:\RecoveryDemo-F1.bak' with file = 1, 
 move N'RecoveryDemo_Secondary' to N'M:\RecoveryDemo_Secondary.ndf',   
 norecovery, stats = 5; 

   -- Restoring DIFF backup 
 restore database RecoveryDemo 
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 from disk = N'V:\RecoveryDemo-F2.bak' with file = 1, 
 norecovery, stats = 5; 

   -- Restoring L5 Log backup 
 restore log RecoveryDemo 
 from disk = N'V:\RecoveryDemo-L5.trn' with file = 1, 
 norecovery, stats = 5; 

   -- Restoring L6 Log backup 
 restore log RecoveryDemo 
 from disk = N'V:\RecoveryDemo-L6.trn' with file = 1, 
 norecovery, stats = 5; 

   -- Restoring tail-log backup 
 restore log RecoveryDemo 
 from disk = N'V:\RecoveryDemo-tail-log.trn' with file = 1, 
 norecovery, stats = 5; 

   -- Recovering database 
 restore database RecoveryDemo with recovery; 

    You can take multiple restore paths while recovering the database. In addition to the method just 
shown, you can also use differential backup  D1 , applying log backups  L3 – L7  and the tail-log backup. As 
another option, you can use only log backups after you have restored a full backup without using any 
differential backups at all. However, the time required for the restore process greatly depends on the amount 
of transaction log records that need to be replayed. Differential backups allow you to reduce the amount of 
time involved and speed up the restore process. 

 You should design a backup strategy and find the right combination of full, differential, and log backups 
that allows you to restore the database within the time defined by the  RTO requirements  . The key point here 
is to define the schedule of full and differential backups because the frequency of log backups depends on 
RPO and possible data loss. 

 ■   Tip    Remember to enable Instant File Initialization, which prevents the zeroing-out of data files during the 
database creation stage of restore.  

 You should create differential backups often enough to minimize the number of log backups that 
need to be restored and log records that need to be replayed in case of recovery. Differential backups are 
cumulative, though, and you should avoid the situation where they store a large amount of data modified 
since the last full backup. It would be better to perform full backups more often in that case. 

 As an example, consider a database that collects some data from external sources, keeping one week of 
the most recent data and purging it on a daily basis using a sliding window pattern implementation. In this 
schema, one-seventh of the data is changing on a daily basis. 

 Let’s assume that a full backup is taken weekly and differential backups are taken daily. If the size of the 
full backup is 1 TB, the incremental backups would grow at a rate of 140–150 GB per day. In that case, if a 
disaster happened on the seventh day after the last full backup, you would need to restore 1 TB of full backup 
and about 850 GB of differential backups before applying log backups, which is very time consuming and 
redundant. It would be much more efficient to perform full backups on a daily basis in that case. 
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 The location of backup files is another important factor that affects recovery time. It could be very time 
consuming to copy a large amount of data over the network. Consider keeping multiple copies of backup 
files when it is appropriate—off-site, on-site, and perhaps even locally on the server. 

 Make sure that you have enough free space on disk to store backup files and implement alerting in the 
system in case backup fails. Remember that failed log backups would prevent truncation of the transaction 
log and would force the transaction log to grow. 

 When fast  system recovery   is crucial, you can consider striping backup across multiple local DAS drives, 
copying backup files to other servers and offsite locations afterward. This will protect you from various types 
of failures and provide the best performance of backup and restore processes. 

  I/O subsystem and network performance   are usually the biggest bottlenecks during backup and restore. 
Backup compression helps to reduce the size of the data that needs to be transmitted over the network or 
read from disk. Always use backup compression if the database is not encrypted and the server can handle 
the extra CPU load introduced by compression. 

 You should remember that backup compression affects the duration of backup and restore operations. 
SQL Server spends extra time compressing and decompressing data; however, this can be mitigated by a 
smaller backup file and thus a smaller amount of data being transmitted over the network and/or read from 
disk. You need to validate that you can still achieve RTO after you enable backup compression in the system. 

 One of the key elements of a good backup strategy is backup validation. It is not enough to back up the 
database. You should make sure that backup files are not corrupted and that the database can be restored 
from them. You can validate backup files by restoring them on another server. 

 ■   Tip    You can also perform database consistency checks by running  DBCC CHECKDB  after the backup is 
restored on another server. This helps reduce the load on the production server.  

 Another good practice that ensures the safety of a backup is storing a redundant set of backup files. Do 
not delete backup files with old differential and log backups after you make a new differential backup. Such a 
strategy may help you to recover the database when the most recent backup is corrupted. 

 Finally, databases do not live in a vacuum. It is not enough to recover a database after a disaster; it must 
also be available to the client applications. Backup and Disaster Recovery strategies should incorporate 
other elements from the database ecosystem and support database restore on another SQL Server. Those 
elements include server logins, SQL Jobs, Database Mail profiles, procedures in the  master  database, and a 
few others. They should be scripted and tested together with the backup strategy.  

     Partial Database Availability and Piecemeal Restore 
   Partial database availability    is an Enterprise Edition feature that allows you to keep part of the 
database online during a disaster or to restore the database on a filegroup-by-filegroup basis, making these 
filegroups available to users one by one. Partial database availability works on per-filegroup basis and 
requires a  PRIMARY  filegroup and transaction log file to be available and online. 

 ■   Tip    Do not place user objects in the  PRIMARY  filegroup. This reduces the size of the  PRIMARY  filegroup and 
the time required to restore it in case of a disaster.  

  Partial database availability   is especially beneficial in cases of data partitioning. Different data in the 
system may have different RTO requirements. For example, it is not uncommon to have the recovery time 
requirement for current critical operation data in minutes, while the recovery time for older, historical data 
is listed in hours or even days. Piecemeal restore allows you to perform a partial database restore and quickly 
bring operational data online without waiting for historical data to be restored. 
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 Let’s assume that we have the database  OrderEntryDB  with four filegroups:  Primary ,  Entities , 
 OperationalData , and  HistoricalData . The  Primary  filegroup resides on the  M:  drive,  Entities  and 
 OperationalData  reside on the  N:  drive, and  HistoricalData  resides on the  S:  drive. Listing  31-13  shows 
the database layout for this. 

     Listing 31-13.    Partial DB availability: Database layout   

 create database OrderEntryDB 
 on primary 
 (name = N'OrderEntryDB', filename = N'M:\OrderEntryDB.mdf'), 
 filegroup Entities 
 (name = N'OrderEntryDB_Entities', filename = N'N:\OrderEntryDB_Entities.ndf'), 
 filegroup OperationalData 
 (name = N'OrderEntryDB_Operational', filename = N'N:\OrderEntryDB_Operational.ndf'), 
 filegroup HistoricalData 
 (name = N'OrderEntryDB_Historical', filename = N'S:\OrderEntryDB_Historical.ndf') 
 log on 
 (name = N'OrderEntryDB_log', filename = N'L:\OrderEntryDB_log.ldf'); 

   In the first example, let’s assume that the  S:  drive is corrupted and the  HistoricalData  filegroup 
becomes unavailable. Let’s see how you can recover the data from this filegroup and move the files to 
another drive. 

 As a first step, shown in Listing  31-14 , you need to mark the corrupted file as being offline. This 
operation terminates all database connections, although users can reconnect to the database immediately 
afterward. 

     Listing 31-14.    Partial DB availability: Mark file as offline   

 alter database OrderEntryDb modify file(name = OrderEntryDB_Historical, offline); 

   At this point, all of the data in the  HistoricalData  filegroup is unavailable to users. However, users can 
still work with the data from the other filegroups. 

 If you queried the  sys.database_files  view with the query shown in Listing  31-15 , you would see that 
the data files from the  HistoricalData  filegroup have an  OFFLINE  state. Figure  31-5  shows this state.  

       Listing 31-15.     Partial DB availability  : Querying state of the files   

 select file_id, name, state_desc, physical_name 
 from sys.database_files 

  Figure 31-5.    Partial DB availability: Data files’ state after marking one file as offline       
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   In the next step, you should make a tail-log backup, as shown in Listing  31-16 . It does not matter that 
the database is still online and that other sessions are generating log records. The  OrderEntryDB_Historical  
file is offline, and therefore none of the newly generated log records would apply to the data in that file. It is 
worth mentioning that you should not use the   NORECOVERY  option   when making a tail-log backup because 
 NORECOVERY  switches the database to a  RESTORING  state. 

     Listing 31-16.    Partial DB availability: Making tail-log backup   

 backup log OrderEntryDB 
 to disk = N'V:\OrderEntryDB-tail-log.trn' 
 with no_truncate, init, 
 name = N'OrderEntryDB-Tail-log backup'; 

   As a next step, you should restore a full backup from the current log chain, restoring individual files as 
shown in Listing  31-17 . 

     Listing 31-17.    Partial DB availability: Restoring a full backup   

 restore database OrderEntryDB 
 file = N'OrderEntryDB_Historical' 
 from disk = N'V:\OrderEntryDB.bak' with file = 1,   
 move  N'OrderEntryDB_Historical' to N'P:\OrderEntryDB_Historical.ndf',   
 norecovery, stats = 5; 

   If you ran the query that shows the state of the files from Listing  31-15  again, you would see the results 
shown in Figure  31-6 . Only one file would be in the  RESTORING  stage, while all other files would be online 
and available to users.  

  Figure 31-6.    Partial DB availability: Data files’ state after applying a full backup       

 Finally, you should restore all other differential and log backup files, finishing with the tail-log backup. 
You do not need to specify each individual file here. SQL Server will restore only files that are in the 
 RESTORING  state. Review the code for doing this, shown in Listing  31-18 . 

     Listing 31-18.     Partial DB availability  : Restoring other backup files   

  restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB.trn' with file = 1, 
 norecovery, stats = 5; 
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   -- Restoring tail-log backup 
 restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB-tail-log.trn' with file = 1, 
 norecovery, stats = 5; 

   restore database OrderEntryDB with recovery; 

    The database is recovered, and all files are now online, as shown in Figure  31-7 .  

  Figure 31-7.     Partial DB availability  : Data files’ state after restore       

 You can use the same sequence of actions while recovering individual files in the non-Enterpise 
Editions of SQL Server, although the database switches to  RESTORING  state and would not be available to 
users during this process. 

 The same technique can be applied when you want to perform a piecemeal restore of the database, 
bringing it online on a filegroup-by-filegroup basis. You could use a  RESTORE  statement, specifying the list of 
the filegroups, and use the  PARTIAL  option. Listing  31-19  shows you how to perform a piecemeal restore of 
the  Primary ,  Entities,  and  OperationalData  filegroups. 

     Listing 31-19.    Piecemeal filegroup restore: Restoring Primary, Entities, and OperationalData filegroups   

  restore database OrderEntryDB 
 filegroup='Primary', filegroup='Entities', filegroup='OperationalData' 
 from disk = N'V:\OrderEntryDB.bak' with file = 1,   
 move N'OrderEntryDB' to N'M:\OrderEntryDB.mdf',   
 move N'OrderEntryDB_Entities' to N'N:\OrderEntryDB_Entities.ndf',   
 move N'OrderEntryDB_Operational' to N'N:\OrderEntryDB_Operational.ndf',   
 move N'OrderEntryDB_log' to N'L:\OrderEntryDB_log.ldf',   
 norecovery, partial, stats= 5; 

   restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB.trn' with file = 1,   
 norecovery, stats = 5; 

   restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB-tail-log.trn' with file = 1, 
 norecovery, stats = 5; 

   restore database OrderEntryDB with recovery; 

    At this point, files from the restored filegroups are online, while the historical data file is in a  RECOVERY_
PENDING  state. You can see the results of the query from Listing  31-15  in Figure  31-8 .  
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 Finally, you can bring the  HistoricalData  filegroup online by using the  RESTORE  statements shown in 
Listing  31-20 . 

     Listing 31-20.    Piecemeal filegroup restore: Restoring the HistoricalData filegroup   

  restore database OrderEntryDB 
 filegroup='HistoricalData' 
 from disk = N'V:\OrderEntryDB.bak' with file = 1,   
 move N'OrderEntryDB_Historical' to N'S:\OrderEntryDB_Historical.ndf',   
 norecovery, stats = 5; 

   restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB.trn' with file = 1,   
 norecovery, stats = 5; 

   restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB-tail-log.trn' with file = 1, 
 norecovery, stats = 5; 

   restore database OrderEntryDB with recovery; 

    A piecemeal restore greatly improves the availability of the system; however, you should design the data 
layout in such a way that allows you to utilize it. Usually, this implies the use of data partitioning techniques, 
which we discussed in Chapter   16    , “Data Partitioning.”  

      Partial Database Backup   
 SQL Server allows you to back up individual files and filegroups as well as exclude read-only filegroups from 
a backup. You can back up read-only filegroups separately and exclude them from regular full backups, 
which could dramatically reduce the size of backup files and backup time. 

 Listing  31-21  marks the  HistoricalData  filegroup as read-only, and it backs up the data from this 
filegroup. After that, it performs a full backup for read-write filegroups only using the   READ_WRITE_
FILEGROUPS    option and log backup. 

     Listing 31-21.    Partial backup: Performing backups   

  alter database OrderEntryDB modify filegroup HistoricalData readonly; 

   backup database OrderEntryDB 
 filegroup = N'HistoricalData' 

  Figure 31-8.     Piecemeal filegroup restore  : Data files state after Primary, Entities, and OperationalData 
filegroups are restored       
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 to disk = N'V:\OrderEntryDB-hd.bak' 
 with noformat, init, 
 name = N'OrderEntryDB-HistoricalData Backup', stats = 5; 

   backup database OrderEntryDB read_write_filegroups 
 to disk = N'V:\OrderEntryDB-rw.bak' 
 with noformat, init, 
 name = N'OrderEntryDB-R/W FG Full', stats = 5; 

   backup log OrderEntryDB 
 to disk = N'V:\OrderEntryDB.trn' 
 with noformat, init, 
 name = N'OrderEntryDB-Transaction Log ', stats = 5; 

    You can exclude the  HistoricalData  filegroup from all further full backups as long as you keep the 
filegroup read-only. 

 If you need to restore the database after a disaster, you could perform a piecemeal restore of read-write 
filegroups, as shown in Listing  31-22 . 

     Listing 31-22.    Partial backup: Piecemeal restore of read-write filegroups   

  restore database OrderEntryDB 
 filegroup='Primary', filegroup='Entities', filegroup='OperationalData' 
 from disk = N'V:\OrderEntryDB-rw.bak' with file = 1,   
 move N'OrderEntryDB' to N'M:\OrderEntryDB.mdf',   
 move N'OrderEntryDB_Entities' to N'N:\OrderEntryDB_Entities.ndf',   
 move N'OrderEntryDB_Operational' to N'N:\OrderEntryDB_Operational.ndf',   
 move N'OrderEntryDB_log' to N'L:\OrderEntryDB_log.ldf',   
 norecovery, partial, stats = 5; 

   restore database OrderEntryDB 
 from disk = N'V:\OrderEntryDB-rw.bak' with file = 1,   
 norecovery,  stats = 5; 

   restore log OrderEntryDB 
 from disk = N'V:\OrderEntryDB.trn' with file = 1 
 norecovery,  stats = 5; 

   restore database OrderEntryDB with recovery; 

    The  Primary ,  Entities,  and  OperationData  filegroups are now online, and the  HistoricalData  
filegroup is in the  RECOVERY_PENDING  state, as shown in Figure  31-9 .  

  Figure 31-9.     Partial backup  : Data files state after piecemeal restore of read-write filegroups       
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 You can bring the  HistoricalData  filegroup online by performing a restore of the original filegroup 
backup file, as shown in Listing  31-23 . 

     Listing 31-23.    Partial backup: Read-only filegroup restore   

 restore database OrderEntryDB 
 filegroup='HistoricalData' 
 from disk = N'V:\OrderEntryDB-hd.bak' with file = 1,   
 move N'OrderEntryDB_Historical' to N'S:\OrderEntryDB_Historical.ndf',   
 recovery, stats = 5; 

         Microsoft Azure Integration   
 SQL Server includes several backup-related features that are integrated with Microsoft Azure. Let’s look at 
them in detail. 

     Backup to Microsoft Azure 
 Starting with SQL Server 2012 SP1 CU2, you can back up directly to or restore from Microsoft Azure Blob 
Storage by specifying the URL location as part of the  BACKUP  and  RESTORE  commands. Listing  31-24  shows an 
example of this process. 

     Listing 31-24.    Backup to and restore from Windows Azure Blob Storage   

  create credential MyCredential 
 with identity = 'mystorageaccount', secret = '<Secret Key>'; 

   backup database MyDb 
 to url = 'https://mystorageaccount.blob.core.windows.net/mycontainer/MyDb.bak' 
 with credential = 'MyCredential', stats = 5; 

   restore database MyDb 
 from url = 'https://mystorageaccount.blob.core.windows.net/mycontainer/MyDb.bak' 
 with credential = 'MyCredential', recovery, stats = 5; 

    Storing a database backup in Azure Blob Storage is a great option when you run SQL Server in a virtual 
machine in Microsoft Azure. However, for on-premises installations, you need to consider the upload and 
download bandwidth that you have available. Uploading and downloading large, multi-gigabyte backup files 
can take hours or even days, which makes it impractical and leads to prolonged downtime in case of disaster. 
With all that being said, storing backup files in Microsoft Azure can still be an option for small and non–
mission critical databases with RTOs that allow prolonged downtime. 

 In addition to the  BACKUP TO URL  command, you can use the   Microsoft SQL Server Backup to Microsoft 
Windows Azure Too    l , which will work with any version and edition of SQL Server. This tool works separately 
from SQL Server. It intercepts backup files being written to the folders based on specified rules, and it 
uploads the files to Azure Blob Storage. 

 Unfortunately, the Microsoft SQL Server Backup to Microsoft Windows Azure Tool does not keep a local 
copy of backup files. You should consider the available bandwidth and RTO requirements if you decided to 
use it. 
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 ■   Note    You can download the Microsoft SQL Server Backup to Microsoft Windows Azure Tool from 
   https://www.microsoft.com/en-us/download/details.aspx?id=40740     .  

 With all that being said, storing backup files in the Cloud can be a good option when you need a 
cost-effective, redundant solution for on-premises installations. Nonetheless, it is better to implement this 
separately from the SQL Server backup process, uploading a local copy of the backup files afterward. This 
approach allows you to quickly recover a database from a disaster by using the local copy of the backup files 
while keeping another copy of the files in the Cloud for redundancy purposes.  

      Managed Backup   to Microsoft Azure 
 SQL Server 2014 introduced the concept of managed backup to Microsoft Azure Blob Storage. This can 
be enabled at the instance or database levels. SQL Server automatically performs full and transaction log 
backups based on the following criteria and retains them for up to 30 days:

    Full backup  is performed in any of the following situations: the last full backup 
was taken more than a week previously, there is log growth of 1 GB or more since 
the last full backup, or the backup chain is broken.  

   Transaction log backup  is taken every two hours, when 5 MB of log space is used, 
or when transaction log backup is lagging behind the full backup.    

 SQL Server 2014 managed backup does not work with databases in the  SIMPLE  or  BULK LOGGED  recovery 
models, nor with system databases. These limitations have been removed in SQL Server 2016. 

 Managed backup backs up files to Microsoft Azure Blob Storage only. Local storage is not supported. All 
considerations that we discussed in the “Backup to Microsoft Azure” section also apply to managed backups. 

 ■   Note    You can read more about managed backups at    https://msdn.microsoft.com/en-us/library/
dn449496.aspx     . Make sure to select the appropriate version of SQL Server. There are significant changes in the 
configuration between SQL Server 2014 and 2016.   

      File Snapshot Backup   for Database Files in Azure 
 Starting with SQL Server 2014, you can store database files in  Microsoft Azure Blob Storage   with both 
on-premises and SQL Server in Azure VM installations. This provides you the option of using cheap and 
redundant storage in those systems that can tolerate lower I/O performance and higher latency of the Blob 
Storage. 

 As an additional enhancement, SQL Server 2016 allows you to utilize Azure Blob Snapshot capabilities 
as part of the database backup and restore processes. This approach works very differently from traditional 
backups. As the opposite of the regular backup files, which contain a copy of the data pages and log records, 
Blob Snapshots store a read-only copy of all database files at the time of snapshot creation. 

 Figure  31-10  illustrates the concept of  file snapshot backups  . Only full and log backups are supported. 
However, both of these types are very similar and contain a copy of all database files. The difference between 
them is that full backup initializes the backup chain while log backup truncates the log after the operation.  

https://www.microsoft.com/en-us/download/details.aspx?id=40740
https://msdn.microsoft.com/en-us/library/dn449496.aspx
https://msdn.microsoft.com/en-us/library/dn449496.aspx


CHAPTER 31 ■ BACKUP AND RESTORE

634

 The restore process copies database files from the snapshot, always creating a new copy of the database. 
As you can guess, this allows you to run the  RESTORE DATABASE  command using the log-backup snapshot as 
the source. It contains a copy of the database files, and you do not need to restore the full backup first. 

 For a point-in-time restore, you should use two adjacent backup sets performing two restore operations. 
First, you need to restore the database from the first backup set using the  RESTORE DATABASE WITH 
NORECOVERY  command. This command will create a new copy of the database as of the time of the backup 
set. Next, you need to restore the log from the second backup set using the  RESTORE LOG WITH STOPAT  
statement. This command replays the portion of the transaction log starting from the previously restored 
backup set and up to the time specified in the  STOPAT  option. Figure  31-11  illustrates that.  

  Figure 31-10.     File snapshot backups         

  Figure 31-11.    File snapshot point-in-time restore       

 Listing  31-25  shows the code that implements this process. 

     Listing 31-25.    File snapshot backup and point-in-time restore   

  -- Performing full and log database backups 
 backup database MyDb  /* T1 in Figure 31-11 */ 
 to url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb.bak' 
 with file_snapshot; 
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   backup log MyDb /* T2 in Figure 31-11 */ 
 to url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-08-00.trn' 
 with file_snapshot; 

   backup log MyDb /* T4 in Figure 31-11 */ 
 to url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-10-00.trn' 
 with file_snapshot; 

   -- Point in time restore at 10am /* T4 in Figure 31-11 */ 
 restore database /* T2 in Figure 31-11 */ 
 from url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-08-00.trn' 
 with norecovery, replace; 

   restore log /* T4 in Figure 31-11 */ 
 from url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-11-00.trn' 
 with recovery, stopat = '2016-03-11T10:00:00.000'; 

    As you can guess, the restore process utilizes file copy operations under the hood and needs to replay 
a very limited amount of transaction log records. This can provide a very significant time reduction as 
compared to the traditional restore process, and it simplifies the design of the backup strategy. You should 
add Azure storage costs into the equation, however. Even though Blob Storage is relatively cheap, its cost can 
be significant with a large number of snapshots, especially with large databases. 

 Finally, file snapshot backups require you to manage backup sets from within SQL Server. The manual 
deletion of snapshot files can invalidate the backup set. You should use the  sys.sp_delete_backup   and  sys.
sp_delete_backup_file_snapshot   system stored procedures for such an action. 

 ■   Note    You can read more about file snapshot backups at    https://msdn.microsoft.com/en-us/library/
mt169363.aspx      .    

      Summary 
 A full database backup stores a copy of the database that represents its state at the time when the backup 
finished. Differential backup stores extents that have been modified since the last full backup. Log backups 
store the portion of the transaction log starting from the last full or the end of the last log backup. 

 Full and differential backups are supported in every recovery model, while log backup is supported only 
in the  FULL  or  BULK LOGGED  recovery models. 

 Differential backups are cumulative. Every backup contains all of the extents modified since the last full 
backup. You can restore the latest differential backup when needed. Conversely, log backups are incremental 
and do not contain the part of the transaction log backed up by previous backups. 

 A full backup and a sequence of log backups make up a backup chain. You should restore all of the 
backups from a chain in the right order when restoring a database. You can use the  COPY_ONLY  option with 
full or log backups to keep the backup chain intact. 

 The frequency of log backups is dictated by the Recovery Point Objective (RPO) requirements. The log 
should be backed up in intervals that do not exceed the allowable data loss for a system. 

https://msdn.microsoft.com/en-us/library/mt169363.aspx
https://msdn.microsoft.com/en-us/library/mt169363.aspx
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 A Recovery Time Objective ( RTO  ) specifies the maximum acceptable duration of the recovery process, 
which affects full and differential backup schedules. You should also factor in the time required to transmit 
files over the network when designing a backup strategy. Backup compression can help reduce this time and 
improve the performance of backup and restore operations, but at a cost of extra CPU load and extra time as 
the compression and decompression of data takes place. 

 You should validate backup files and make sure that your backup strategy is valid and meets the RTO 
and RPO requirements. The duration of the backup and restore processes changes over time along with 
database size and load. 

 SQL Server Enterprise Edition supports piecemeal restore, which allows you to restore data on 
per-filegroup basis, keeping part of the database online. This feature greatly improves the availability of 
the system and helps to reduce the recovery time of critical operational data when the data is properly 
partitioned. 

 You can exclude read-only data from regular full backups, which can reduce backup time and the size 
of backup files. Consider putting read-only data into a separate filegroup and marking it as read-only when 
appropriate.     
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    CHAPTER 32   

 High Availability Technologies                          

 A High Availability (HA) strategy helps improve the availability of the system due to hardware, software, or 
network malfunctions. Even though it sounds similar to a backup and Disaster Recovery (DR) strategy, it 
is not the same. A High Availability strategy serves as the first level of defense, making a hardware failure 
or software crash transparent to users. Disaster recovery, on the other hand, deals with situations where 
a system needs to be recovered after a disaster that was not prevented by the High Availability strategy in use. 

 Think about a situation in which a system is hosted within a single datacenter. It may have a High 
Availability strategy that implements server redundancy within the datacenter, which keeps the system 
online in case of a server failure. However, it would not necessarily protect the system from a simultaneous 
malfunction of multiple servers, nor from datacenter-level disasters. A Disaster Recovery strategy will help 
you recover from the latter case, restoring or rebuilding the system on different hardware or in a different 
datacenter.     

 This chapter provides you with an overview of the different High Availability technologies available in 
SQL Server and explains the principles they were built upon. You should not view this chapter as a definitive 
guide on SQL Server High Availability implementations, which easily merit their own book. 

 This chapter does not cover High Availability technologies that are not SQL Server–based, such as SAN 
replication and virtualization technologies. You should research and evaluate those technologies if they are 
applicable to your environment. 

      SQL Server Failover Cluster   
 Perhaps the best-known High Availability technology in SQL Server is a  SQL Server failover cluster . Until SQL 
Server 2005, a failover cluster was the only High Availability technology that supported automatic failover in 
case of a server failure.     

 Starting with SQL Server 2012, Microsoft changed the name of this technology, calling it an  AlwaysOn 
Failover Cluster.  However, I will continue to use the old name in this chapter to avoid confusion with 
 AlwaysOn Availability Groups . 

 A SQL Server failover cluster is installed as a resource group of the  Windows Server Failover Clustering 
(WSFC)      cluster. WSFC should be installed and configured prior to SQL Server failover cluster installation. 

 With both WSFC and SQL Server failover clusters, the group of individual servers, called   nodes    ,  shares 
a set of resources, such as disks or databases in a SQL Server instance. However, only one node at time owns 
the resource. If a node fails, ownership is transferred to another node through a process called  failover . 

 The simple  installation   of a failover cluster consists of two different nodes, each of which has a SQL 
Server instance installed. The nodes work with a single copy of the users’ and system databases placed on 
shared storage. The cluster provides a virtual SQL Server name and IP address, which can be used by client 
applications. These resources are different from those assigned to a Windows Server Failover Clustering 
cluster. Figure  32-1  illustrates a simple failover cluster.  
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 One of the SQL Server instances is active and handles all user requests. Another node provides hot 
standby. When something happens to the active node, the SQL Server cluster fails over to the second node, 
formerly the  passive  node, and starts from there. This process, in a nutshell, is a SQL Server instance restart. 
The new active node performs a crash recovery of all of the databases in the instance, preventing clients 
from connecting to the databases until this process is complete. 

 The duration of  crash recovery   and failover greatly depends on the amount of data modified by active 
transactions at the time of the failover. With short OLTP transactions, failover could be in the under-a-
minute range. However, it is possible that failover can take much longer, as with active transactions that 
modified a large amount of data and need to be rolled back by a crash recovery process. 

 In-Memory OLTP, which we will discuss in Part VIII of this book, could also affect failover time. SQL 
Server loads all data from durable memory-optimized tables into the memory during database startup, 
which can be time consuming if there is a large amount of data. 

  A SQL Server failover cluster works on the instance level and protects the entire instance. It 
includes system and user databases, SQL Server configuration settings, logins and security, and SQL 
Agent jobs.  Entire SQL Server instance fails over, it is impossible to have some databases running on a SQL 
Server instance installed on one node of the cluster and other databases running on another SQL Server 
instance installed on a different node. 

 Failover clustering requires that all databases be placed into shared storage. Starting with Windows 
Server 2012R2, you can use SMB shares to store the data. Nevertheless, storage becomes the single point of 
failure. 

 ■   Important   Always use highly redundant storage with failover clustering. Moreover, consider combining 
a SQL Server failover cluster with other High Availability technologies that allow you to store copies of the 
databases on a different storage devices. It increases the availability of the system and minimizes possible data 
loss in case of a storage failure.  

  Figure 32-1.    Two-node  WSFC      with a single SQL Server failover cluster instance       
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 The system databases also use  shared storage  . Fortunately, starting with SQL Server 2012, you can put 
 tempdb  onto the local drive, which can significantly improve the performance of the cluster, especially if you 
place it on the solid state–based storage. 

 While it is relatively easy to set up Windows clusters, which host a single SQL Server cluster instance, 
they double the number of servers that you will need. Even though you are generally not required to buy 
another SQL Server license if a passive node is used for High Availability only, there are still the hardware, 
electricity, and maintenance costs to consider. 

 ■   Note    Work with Microsoft licensing specialists to determine the exact licensing requirements for your High 
Availability configuration. Licensing requirements vary based on SQL Server version and existence of a Software 
Assurance agreement.  

 One of the ways to reduce the cost of a failover cluster solution is by using  multi-instance failover  
  clusters   . In this configuration, one Windows cluster hosts multiple SQL Server failover cluster instances. 

 Figure  32-2  shows an example of a two-node multi-instance cluster. There are two cluster instances of 
SQL Server:  vSales  and  vAccounting . The  CNode1  cluster node is the active node for the  vSales  instance, 
and the  CNode2  is the active node for the  vAccounting  instance.  

 In an ideal situation, when all cluster nodes are up and running, multiple SQL Server clusters would 
not affect each other’s performance. Each SQL Server cluster instance is running on a separate node. 
Unfortunately, the situation becomes much more complex when one of the servers becomes unavailable, 
and the SQL Server instance fails over to another node, as shown in Figure  32-3 . Both SQL Server cluster 
instances are running on the same server, competing for CPU and memory and affecting each other’s 
performance.  

  Figure 32-2.     Two-node multi-instance cluster         
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 One of the typical approaches to reducing possible performance implications in case of a failover in a 
multi-instance cluster is by building a cluster configuration that reserves some nodes to pick up the load in 
case of a failover. With such an approach, a cluster with multiple active instances would have one or more 
reserved passive nodes. If one of the active nodes failed, the instance from that node could fail over to the 
reserved, formerly passive node without affecting the performance of the other SQL Server cluster instances. 
Figure  32-4  shows an example of a  two-instance cluster   with one reserved passive node.  

 Unfortunately, you cannot implement configurations with reserved passive nodes in the Standard 
Edition of SQL Server, which supports two-node failover clusters only. 

  Figure 32-3.    Two-node multi-instance cluster: One-node failure       

  Figure 32-4.    Multi-instance cluster with one reserved passive node       
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 You should carefully plan  multi-instance cluster configurations  , assuming that multiple instances 
might end up running on the same node. You should buy hardware that can handle the load, then set up the 
minimum and maximum server memory for each instance on each node. It is better to set up the minimum 
server memory based on a worst-case scenario that assumes multiple instances are running simultaneously. 
The maximum server memory can be set up based on the best-case scenario, when there is only one 
instance running on the node. 

 Remember to keep some memory reserved for the OS when you set up the SQL Server  Maximum Server 
Memory  configuration option. We already discussed how to choose the right value for this setting in Chapter 
  28    . Do not forget that in SQL Server versions prior to 2012,  memory settings   controlled the memory usage of 
the buffer pool only. You should factor in non-buffer pool memory when you set the memory settings. 

 Dealing with  CPU configuration   is more challenging. You can set up an affinity mask for the different 
instances, which restricts an instance from using some of the logical CPUs. However, this is not the best 
approach when you have only one instance running on a node and you would like to have as much CPU 
power available to the instance as possible. It is better to use the Windows System Resource Manager or 
Windows System Center and throttle CPU activity if needed. 

 You can monitor SQL Server cluster instances similar to how you monitor non-clustered ones. You 
should use a virtual SQL Server instance name, which ensures that the monitoring target always represents 
an active SQL Server instance, regardless of the cluster node where it is currently running. 

 ■   Note    You can read more about SQL Server failover clustering at    http://technet.microsoft.com/en-us/
library/hh270278.aspx      .    

     Database Mirroring and AlwaysOn Availability Groups 
 The SQL Server failover cluster provides great instance-level protection. However, it does not protect against 
storage failure. Only one copy of the data is stored, and storage failure can lead to data loss. 

 That problem can be mitigated by another set of technologies, such as  database mirroring  and 
 AlwaysOn Availability Groups , which allow you to persist a byte-by-byte copy of the databases on two or, in 
the case of AlwaysOn Availability Groups, several servers. 

 Database mirroring works on the database level. AlwaysOn Availability Groups work on the database 
group level, which may include one or more databases. Every database can participate in a single mirroring 
or AlwaysOn session. Each SQL Server instance, however, can host multiple mirrored databases or 
AlwaysOn Availability Groups. 

 The database scope is the key difference between these technologies and SQL Server failover clustering, 
which works on the SQL Server instance level. Only the database(s) are replicated between the nodes. While 
on the one hand this provides you with flexibility and allows you to replicate different databases to different 
servers, it also introduces administration overhead. You need to perform server configuration, set up logins 
and security, configure SQL Agent jobs, and perform other server-level actions individually on each server in 
the infrastructure. 

     Technologies Overview 
 Both mirroring and the AlwaysOn Availability Groups work by sending a stream of log records from  primary  
to  secondary  servers, which are sometime called  nodes . In database mirroring, these servers are called 
the  principal  and the  mirror . All data modifications must be done on the primary server. With database 
mirroring, the database on the mirror server is inaccessible to the clients. With AlwaysOn Availability 
Groups, clients can access and read data from the secondary servers when it is enabled in the configuration. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
http://technet.microsoft.com/en-us/library/hh270278.aspx
http://technet.microsoft.com/en-us/library/hh270278.aspx
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 The technology can work in either  synchronous  or  asynchronous  modes, which are also called 
  synchronous    and  asynchronous commits . A synchronous commit guarantees no data loss for committed 
transactions as long as data replication is up to date and both servers can communicate with each other. 
With synchronous commits, the primary server does not send an acknowledgment that a transaction 
is committed to the client until the secondary server hardens a  COMMIT  log record in its transaction log. 
Figure  32-5  illustrates the step-by-step commit process in this mode.  

 Let me reiterate that a synchronous commit  only  guarantees that there will be no data loss when 
both servers are online and the process is up to date. If, for example, the secondary server goes offline, the 
primary server continues to run and commit transactions, keeping the database on the secondary server 
in  SUSPENDED  state. It is building a  send queue  of the log records, which needs to be sent to the secondary 
server when it comes back online. If something happened with the primary server at this point, the data 
modifications since the time when the secondary server disconnected could be lost. 

 When the secondary server comes back online, synchronization switches to the  SYNCHRONIZING  state, 
and the primary server starts sending log records from the send queue to the secondary server. Data loss is 
still possible at this point. Only after all log records have been sent to the secondary server does the process 
switch to a  SYNCHRONIZED  state, which guarantees that no data loss will occur in synchronous commit mode. 

 The connectivity between the servers and the size of the send queue both affect transaction log 
truncation. SQL Server defers log truncation until all records from VLF are sent to the secondary servers. 
While in most cases this does not introduce any issues with log management, this is not the case when the 
secondary server is offline. The send queue will grow and the transaction log will not be able to truncate 
until the secondary server is online again and log records are transmitted over the network.     

 ■   Tip    Consider dropping database mirroring or removing the secondary server from the AlwaysOn 
Availability Group if you see prolonged secondary server downtime.  

 As you can see in Figure  32-5 , steps 2, 4, 5, and 6 introduce extra latency, which depends on network 
and mirror server I/O performance. In some heavily loaded OLTP systems, such latency is unacceptable. 
You can avoid it by using  asynchronous commit  , which with database mirroring is called  high performance  
mode. In this mode, the primary server sends log records to the secondary server, and it does not wait for 
acknowledgment before committing transactions, as illustrated in Figure  32-6 .  

  Figure 32-5.     Synchronous commit         
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 Network latency with asynchronous commit does not affect the performance of the primary server, 
although there is a possibility of data loss based on log records that are in the send queue at the time when 
the primary server crashed. 

 Although both the primary and secondary server databases are byte-to-byte copies of each other, 
the process does not update the data files at the time when it hardens the log records in the transaction 
log. SQL Server applies the changes to the data files on the secondary server by replaying the log records 
asynchronously, regardless of the commit mode.  Synchronous commit only guarantees that log records 
are synchronously hardened in the transaction log. It does not guarantee or provide synchronous 
changes of the data files.  

 On secondary servers, SQL Server uses the set of threads called  redo threads  to replay the log records 
and apply the changes to the data files. The number of active redo threads depends on technology, SQL 
Server version, number of worker threads in the system, and, most important, number of synchronized 
databases and their workload. A large number of mirrored or synchronized databases can exhaust the pool 
of worker threads and affect the performance of the system.    

 The portion of the transaction log that has yet to be replayed is called the  redo queue . You should 
monitor the sizes of both the send queue on the primary server and the redo queue on the secondary server. 
The size of the send queue indicates possible data loss in cases of primary server failure. The size of the 
redo queue indicates how many log records must be replayed, and thus how long it could take to bring the 
mirrored database back online after failover. 

 The  SQLServer:Database Mirroring  performance counters provide information about database 
mirroring performance along with send and  redo queue   statistics. The  SQL Server:Availability Replica  and 
 SQL Server:Database Replica  counters provide AlwaysOn Availability Groups–related information. 

 You need to test how database maintenance affects the size of the redo queue. Some operations, such as 
an index rebuild or database shrink, can generate an enormous amount of log records, which in turn makes 
the redo queue very big. This can lead to a long crash recovery process in case of a failover, which could 
prevent you from meeting the availability requirements defined in the SLA. 

 ■   Tip    See    https://msdn.microsoft.com/en-us/library/ms190030.aspx      for more details about 
database mirroring monitoring. More information about AlwaysOn Availability Groups monitoring is available at 
   https://msdn.microsoft.com/en-us/library/ff877954.aspx     .  

  Figure 32-6.     Asynchronous commit         
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 One very useful feature of these technologies is automatic page repair. When SQL Server detects that 
a data page is corrupted, it replaces this corrupted page with a fresh copy of the page from the other server. 
This is an asynchronous process, and a query that accessed the corrupted page and triggered a page repair 
could be interrupted and receive an error until the page is repaired in the background. 

 ■   Note    You can read more about automatic page repair at    http://technet.microsoft.com/en-us/
library/bb677167.aspx     .  

 Database mirroring and AlwaysOn Availability Groups support situations where the mirror server is 
running a newer version of SQL Server than the primary server is running. For example, you can have the 
primary server running SQL Server 2012 and the secondary server running SQL Server 2016. This is an 
extremely useful feature, as it allows you to upgrade SQL Server  almost  transparently to your users. You can 
perform an in-place upgrade of the secondary server, failover, and upgrade the former primary server. Keep 
in mind that it is impossible to fail back to the older version of SQL Server after failover, and also remember 
to update all statistics in the database with the  sp_updatestats  stored procedure after an upgrade.  

     Database Mirroring:  Automatic Failover and Client Connectivity   
 Synchronous database mirroring is available in two different modes:  high protection  and  high availability . 
The only difference between these two modes is automatic failover support. SQL Server supports automatic 
failover in high availability mode; however, it requires you to have a third SQL Server instance,  witness , 
which helps to support quorum in the configuration. 

 ■   Note    The quorum indicates that the servers that participated in the database mirroring session agreed on 
their roles; that is, which server worked as the principal and which worked as the mirror. In practice, quorum 
can be established as long as at least two servers (from principal, mirror, and witness) can communicate with 
each other. We will discuss what happens with mirroring when one or more servers are unavailable later in this 
chapter.  

 You can use any edition of SQL Server, including the Express Edition, as the witness. It is critical, 
however, that the witness instance be installed on another physical server to avoid the situation where a 
hardware malfunction of a single physical server kicks multiple SQL Server instances offline and prevents a 
quorum from being established. 

 Table  32-1  shows the similarities and differences among different database mirroring modes.  

   Table 32-1.    Database Mirroring  Modes      

 High Performance  High Protection  High Availability 

  Commit   Asynchronous  Synchronous 

  SQL Server edition   Enterprise Edition only  Enterprise and Standard editions 

  Data loss   Possible  Not possible when DB is in  SYNCHRONIZED  state 

  Automatic failover   Not supported  Not supported  Supported with witness 
server 

  Performance impact   None  Network and mirror I/O subsystem latency   

http://technet.microsoft.com/en-us/library/bb677167.aspx
http://technet.microsoft.com/en-us/library/bb677167.aspx
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 Let’s look at a few possible failover scenarios in High Availability mode. The key point here is that, at any 
point in time, servers must have a quorum, and thus at least two servers must be able to connect to each other. 

 First, let’s assume that the principal and witness servers lost the connection to the mirror server. The 
principal and witness servers still have a quorum, and the principal server continues to work on mirroring 
in  SUSPENDED  state. If at this stage the principal server lost its connection to the witness server, and therefore 
did not have a quorum, the principal server would shut down.    

 ■   Tip    Consider placing the witness instance close to the principal server to avoid connectivity issues 
between them and unnecessary failovers and shutdowns. It is also beneficial to fail back to a former principal 
server that is close to a witness instance, when the server is back online.  

 Now, let’s assume that the principal server goes offline. In this case, the mirror and witness server can 
see each other and thus have a quorum, so automatic failover occurs and the mirror server becomes the new 
principal server. If the old principal server were to come back online and see both servers, it would become 
the mirror server and synchronize itself with the new principal server. Otherwise, it would shut itself down 
to avoid a  split brain  situation where two different servers allow clients to connect to different copies of the 
same database, changing the data simultaneously. 

 If the witness server goes offline, mirroring continues to work without the ability to perform automatic 
failover. This is similar to high protection mode, with the exception that if the principal server lost its 
connection to the mirror server without the witness server being available, the principal server would shut 
down to avoid a split brain situation. 

 In high protection mode, a loss of connectivity between the principal and mirror servers would not stop 
the principal server. If the principal goes down, you have to perform a manual failover to make the mirror 
server the new principal server. There is one caveat, though. If you performed a manual failover and at 
some point the principal server came back online without connectivity to the former mirror server, it would 
continue to behave as the principal server, which is a split brain situation. 

 The .Net SQL client automatically obtains and caches a mirror server name when it is connected to the 
principal server. If a failover happened  after  the mirror server name was cached, the client application would 
be able to reconnect to the mirror server, which would become the new principal server. However, if the 
failover occurred  before  the mirror server name was cached, the application would be unable to connect to 
the former principal server, which would now work as the mirror server and keep the database in  RESTORING  
state. The application would be unable to obtain information about the new principal server and, therefore, 
would be unable to connect to the database.    

 You can avoid such situations by specifying the mirror server name in an additional connection string 
property,  Failover Partner . The SQL client tries to connect to the server specified there only in cases when it 
is unable to connect to the principal server. When the principal server is online, the SQL client ignores the 
mirror server name specified in this property and caches the mirror server name as it was retrieved from the 
principal server. 

 You should be careful when removing database mirroring. The SQL client will be able to connect to the 
database after mirroring is removed only when it runs on the server specified in the  Server Name  property 
of the connection string. You will get a  “Database is not configured for database mirroring”  error if it runs on 
the server specified as a  Failover Partner . 

 Database mirroring failover is usually faster than failover cluster failover. Contrary to a failover cluster, 
which restarts the entire SQL Server instance, database mirroring performs crash recovery on a single 
database. However, the actual duration of the failover process depends on the size of the redo queue and the 
number of log records that need to be replayed. 

 The  PARTNER TIMEOUT  database setting controls the database mirroring failover detection time, which 
is ten seconds by default. You can change this with the  ALTER DATABASE SET PARTNER TIMEOUT  command. 
It is beneficial to increase this setting if the network latency between the principal server and the mirror 
server is high; for example, when servers reside in different datacenters and/or in the Cloud. 
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 Another example of when you should increase this setting is when you set up the database mirroring 
with a SQL Server failover cluster instance as one of the database mirroring partners. The cluster failover 
process usually takes longer than ten seconds, and keeping the default  PARTNER TIMEOUT  setting can trigger 
unnecessary database mirroring failovers. You should set the  PARTNER FAILOVER  value to be greater than the 
typical cluster failover time. 

 The database on the mirror server stays in  RESTORING  state; therefore, clients are unable to access it. 
However, it is possible to create a read-only database snapshot on the mirror server so you can access it for 
reporting purposes. This snapshot represents the database as of the last  CHECKPOINT  on the primary server. 

 ■   Note    Coverage of database snapshots is beyond the scope of this book. You can read more about this 
topic at    http://technet.microsoft.com/en-us/library/ms175158.aspx     .  

 Database mirroring has been deprecated in SQL Server 2012. AlwaysOn Availability Groups are a great 
replacement for database mirroring; however, in SQL Server 2012 and 2014, they included only to Enterprise 
Edition.     

 The Standard Edition of SQL Server 2016, on the other hand, supports  Basic Availability Groups , which 
allow you to create a one-database, two-server replica similar to database mirroring. Basic Availability 
Groups, however, support asynchronous commit, which is not the case with database mirroring. 

 ■   Note    You can read more about database mirroring at    http://technet.microsoft.com/en-us/library/
ms189852.aspx      .    

     AlwaysOn Availability  Groups   
 As the opposite to database mirroring, AlwaysOn Availability Groups require and rely on the  Windows Server 
Failover Clustering (WSFC)   cluster. While this can make their infrastructure and setup more complicated as 
compared to database mirroring, it also simplifies the deployment of client applications. They can connect 
to the AlwaysOn Availability Group through the  listener , which virtualizes a SQL Server instance in a way 
similar to the SQL Server failover cluster. 

 The AlwaysOn Availability Group consists of one primary node (or replica) with read/write access. 
In Enterprise Edition, you can have up to four secondary nodes with SQL Server 2012, and up to eight 
secondary nodes with SQL Server 2014–2016. The three nodes in the availability group can use synchronous 
commit. You need two nodes in order to support automatic failover. As I already mentioned, the Standard 
Edition of SQL Server 2016 supports two-node Basic Availability Groups. 

 Figure  32-7  shows an example of an AlwaysOn Availability Group configuration with three nodes.  

http://technet.microsoft.com/en-us/library/ms175158.aspx
http://technet.microsoft.com/en-us/library/ms189852.aspx
http://technet.microsoft.com/en-us/library/ms189852.aspx
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 In fact, the availability group can consist of a single primary node only. This behavior helps abstract the 
availability group infrastructure from applications. For example, you can set up a single-node availability 
group and create a listener, virtualizing a SQL Server instance during the initial stage of deployment. After 
that, system administrators can start changing connection strings using the listener as the server without 
having to worry about the availability group infrastructure’s state while you are adding other nodes there.    

 Another useful example is changing database options that require single-user access, such as enabling 
the  READ COMMITTED SNAPSHOT  isolation level. It is impossible to switch the database to  SINGLE_USER  mode 
with database mirroring enabled. You can remove database mirroring and reestablish it later, although you 
will need to check all connection strings, making sure that the principal server is always specified as the 
 Server  rather than the  Failover Partner . However, an AlwaysOn Availability Group allows you to remove all 
secondary nodes without having to worry about connection strings. While it is still not possible to switch 
a database that participates in an AlwaysOn Availability Group to  SINGLE_USER  mode, you can remove the 
database from availability group, change the database options, and add the database back to availability 
group in a matter of seconds with minimal impact on client applications. 

 Unlike database mirroring, which works on a single-database scope, AlwaysOn Availability Groups can 
include multiple databases. This guarantees that all of the databases in the group will be failed over together 
and will always have the same primary node. This behavior is helpful when a system requires multiple 
databases residing on the same server in order to be operational.    

 AlwaysOn Availability Groups allow read-only access to secondary nodes and also allow you to perform 
database backups from them. Moreover, an application can specify that it only needs read-only access in the 
connection string and the AlwaysOn Availability Group routes it to a readable secondary node automatically. 

 ■   Note    You can read about client connections to AlwaysOn Availability Groups at    http://technet.
microsoft.com/en-us/library/hh510184.aspx     .  

 This behavior helps reduce the load on the primary server, although you should be careful and always 
monitor the size of the redo queue. It is entirely possible for the  REDO  process on secondaries to fall behind 
and serve clients data that is not up to date and is different from the database on the primary node. It is also 
important to remember that the failover process under such conditions can take a long time. Even though 
you would not have any data loss with a synchronous commit, the database would not be available until the 
crash recovery process finished. 

  Figure 32-7.    AlwaysOn Availability Group       

 

http://technet.microsoft.com/en-us/library/hh510184.aspx
http://technet.microsoft.com/en-us/library/hh510184.aspx
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 You should also be careful with SQL Server Agent jobs in the case of readable secondaries. Jobs are able 
to access the databases on readable secondaries and read the data from there. This could lead to situations 
where you have the same jobs running on multiple nodes, even though you want them to run only on the 
primary node. 

 As a solution, in SQL Server 2014 and above you can use the  sys.fn_hadr_is_primary_replica  
function that provides you with the status of the replica. In SQL Server 2012 you can check the  Role_Desc  
column of the  sys.dm_hadr_availability_replica_states  view for one of the databases in the availability 
group, checking and validating if the node is primary. You can use it in every job or, alternatively, create 
another job that runs every minute and enable or disable jobs based on the state of the node.    

 You can include a SQL Server instance running inside a virtual machine in the Microsoft Azure Cloud 
as a member of the availability group. This can help you add another geographically redundant node to 
your High Availability solution. You need to be careful with this approach, however, and make sure that the 
Cloud-based SQL Server instance can handle the load. 

 Internet connectivity is another factor to consider. It should have enough bandwidth to transmit log 
records and be stable enough to keep the Microsoft Azure node online and connected most of the time. 
Remember that the transaction log will not be truncated when connectivity goes down, and some records 
were not transmitted to the secondary nodes.    

 AlwaysOn Availability Groups provide a great alternative to database mirroring. Unfortunately, this 
feature is not supported in the Standard Edition of SQL Server 2012–2014. 

 ■   Note    You can read about AlwaysOn Availability Groups at    http://technet.microsoft.com/en-us/
library/hh510230.aspx      .     

      Log Shipping      
  Log shipping  allows you to maintain a copy of the database on one or more secondary servers. In a nutshell, 
log shipping is a very simple process. You perform log backups based on some schedule, copy those backup 
files to a shared location, and restore them on one or more secondary servers. Optionally, you can have 
a separate server that monitors the log shipping process, retains information about backup and restore 
operations, and sends alerts if attention is required. 

 Figure  32-8  illustrates a log shipping configuration.  

  Figure 32-8.     Log shipping            

 

http://technet.microsoft.com/en-us/library/hh510230.aspx
http://technet.microsoft.com/en-us/library/hh510230.aspx
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 Log shipping does not protect against data loss. Log backups are done on a schedule, and if the 
transaction log on the primary server were corrupted you would lose all changes since the last log backup. 

 Log shipping is often used together with other High Availability technologies. One of the common 
scenarios is using it with a failover cluster instance, shipping the log to the secondary servers in remote off-
site locations. This provides geo-redundancy for the data tier in the systems at a low implementation cost. 

 Log shipping is also useful in scenarios where you purposely do not want to have up-to-date data on the 
secondary servers. This could help you to recover data from accidental deletions on the primary server. 

 There is no automatic failover support with log shipping. Manual failover consists of a few steps. First, 
you need to disconnect users from the database and, perhaps, switch the database to  RESTRICTED_USER  or 
 SINGLE_USER  mode to avoid client connections during the failover process. Next, you need to back up the 
remaining part of the log that is on the primary server. It might be beneficial to use the  NORECOVERY  option 
during backup if you expect to fail back to the primary server later. Finally, you should apply all remaining 
log backups on the secondary server and recover the database to bring it online. Obviously, you should also 
change the connection strings to point to the new server.       

 Secondary servers keep the database in  RESTORING  state, preventing clients from accessing it. You can 
work around this by using the  STANDBY  option, which gives you read-only access to the database. However, 
clients will lose connectivity during the time it takes log backups to be restored. You should also consider 
the SQL Server licensing model, which requires you to purchase another license when the server is used for 
anything but supporting high availability. 

 You should design a log shipping strategy and backup schedule in a way that allows you to avoid a 
backlog when log backups are transmitted over the network and are restored more slowly than they were 
generated. 

 Make sure that the shared locations you use for backup storage have enough space to accommodate 
your backup files. You can reduce the storage size and transmission time and improve the performance of 
the backup and restore process by using backup compression if it is supported by your SQL Server version 
and edition, and if you have adequate CPU resources to handle the compression overhead. 

  Log shipping      is, perhaps, the easiest solution to set up and maintain. It is also not uncommon to see 
custom  log shipping–like  implementations that allow you to implement additional business requirements 
and address the limitations of native SQL Server log shipping. Nevertheless, you should keep in mind 
possible data loss and consider combining it with other technologies if such data loss is unacceptable or if 
automatic failover is required. 

 ■   Note    You can read more about log shipping at    http://technet.microsoft.com/en-us/library/
ms187103.aspx     .   

     Replication 
 In contrast to the technologies that we have already discussed in this chapter,  replication  is far more than 
a High Availability solution. The main goal of replication is to  copy  and  replicate  data across multiple 
databases. Even though it can be used as a High Availability technology, this is hardly its main purpose. 

 Replication works in the scope of  publications , which are collections of database objects. Replication 
is a good choice if you want to protect just a subset of the data in the database; for example, a few critical 
tables. Another key difference between replication and other High Availability techniques is that replication 
allows you to implement a solution where data can be modified in multiple places. It could require 
the implementation of a complex conflict detection mechanism and, in some cases, have a negative 
performance impact, although this is a small price to pay in some scenarios. 

http://technet.microsoft.com/en-us/library/ms187103.aspx
http://technet.microsoft.com/en-us/library/ms187103.aspx
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 There are three major types of replication available in SQL Server, as follows:

     Snapshot      replication    generates and distributes a snapshot of the data based on 
some schedule. One example when this could be useful is a set of tables that are 
updated based on a schedule, perhaps once per week. You may consider using 
snapshot replication to distribute the data from those tables after the update. 
Another example involves a small table with highly volatile data. In this case, 
when you do not need to have an up-to-date copy of the data on the secondary 
servers, snapshot replication would carry much less overhead as compared to 
other replication types.  

    Merge replication    allows you to replicate and  merge   changes across multiple 
servers, such as in scenarios where those servers are infrequently connected 
to each other. One possible example is a company with a central server and 
separate servers in branch offices. The data can be updated in every branch 
office and merged/distributed across the servers using merge replication. 
Unfortunately, merge replication requires changes in the database schema and 
the use of triggers, which can introduce performance issues.  

    Transactional replication    allows you to replicate changes between different 
servers with relatively low latency, usually in seconds. By default, secondary 
servers, called  subscribers , are read-only, although you have the option to 
update data there. A special kind of transactional replication, called  peer-to-peer 
replication , is available in the Enterprise Edition of SQL Server, and it allows 
you to build a solution with multiple updateable databases hosted on different 
servers and replicating data between each other.    

  Transaction   replication is the most appropriate replication type to be used as a High Availability 
technology for updateable data. Figure  32-9  illustrates the components used in transactional replication. 
The primary server, called the  publisher , is accessed by a special job known as the  Log Reader Agent , which is 
constantly scanning the transaction log of the database configured for replication and harvesting log records 
that represent changes in the publications. Those log records are converted to logical operations ( INSERT , 
 UPDATE ,  DELETE ) and are stored in another  distribution database,  usually on another server called  distributor , 
which runs the Log Reader Agent job. Finally, the distributor either pushes those changes to subscribers or, 
alternatively, subscribers will pull them from the distributor based on the replication configuration.  

  Figure 32-9.    Transactional replication with push  subscriptions         
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  Peer-to-peer    replication  , shown in Figure  32-10 , allows you to build a distributed and scalable solution 
with multiple updateable databases residing on different servers called  nodes . It is an Enterprise Edition 
feature that is based on transaction replication, and therefore it has a very low latency to distribute the 
changes between nodes. One scenario where it is useful is with a system with multiple datacenters. You can 
host individual SQL Server instances in every datacenter and redirect clients to the nearest one. Peer-to-peer 
replication synchronizes data across all nodes and handles the situation when a node temporarily loses 
connectivity with other nodes.  

 The biggest downside of replication is its complexity. Setting up and monitoring a complex replication 
topology is by far a more complex task than other High Availability solutions. Moreover, it often requires the 
implementation of a complex conflict resolution mechanism, and it can require changes in the application 
logic and database schema to minimize conflicts.       

 I would suggest avoiding the use of replication for High Availability purposes, unless you need to protect 
a very small subset of data in the database or have other use cases that would benefit from replication 
besides high availability. 

 ■   Note    You can read more about replication at    http://technet.microsoft.com/en-us/library/
ms151198.aspx        

      Designing   a High Availability Strategy 
 The process of designing a High Availability strategy mixes art, science, and politics all together. It is an 
iterative process of collecting and often adjusting requirements, setting the right expectations, and building 
a solution that fits into the budget. 

  Figure 32-10.     Peer-to-peer replication            
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  Requirements gathering  is the first stage of the process. Like a backup strategy, you have to deal 
with RPO and RTO metrics. Usually, you can get them from the Service Level Agreement (SLA). 
Alternatively, if those metrics were not present in the SLA, you should work with the system’s 
stakeholders to define them. 

 ■   Note    System availability requirements are usually measured in “groups of nines.” For example,  five nines , 
or 99.999 percent availability, means that system should be available 99.999 percent of time, which translates 
to 5.26 minutes of downtime per year.  Four nines , or 99.99 availability, translates to 52.56 minutes of downtime 
per year.  Three nines , or 99.9 percent availability, allows 8.76 hours of downtime annually.  

 Working with stakeholders is a tricky process. While stakeholders usually want zero downtime and zero 
data loss, this is neither technically possible nor financially feasible. For example, none of the existing High 
Availability technologies can provide zero downtime. There is always some period of time when a system is 
inaccessible during the failover process.     

 Zero data loss, on the other hand, is achievable, but it comes at a cost. Synchronous commit in database 
mirroring or AlwaysOn Availability Groups adds overhead and extra latency to the transactions that modify 
the data. In some cases, with high-end OLTP systems, such overhead is not acceptable. 

 In either case, the budget is another critical factor to consider. Implementing a High Availability strategy 
always leads to additional expenses. In most cases, you need to buy new servers, software licenses, and 
network and storage equipment. These purchases, in turn, require extra rack space and use more AC power 
for the new hardware and for air conditioning it. Moreover, you need to have the manpower available to 
implement and maintain the solution. 

 The budget places constraints on what you are able to achieve. It is impossible to implement 99.999 
or even 99.99 availability in a system if the budget does not allow you to buy the required hardware 
and software licenses. You should work together with the system’s stakeholders and either adjust the 
requirements and expectations or obtain the extra budget when needed. 

 Another important action is defining the scope of the High Availability solution. For example, it is very 
important to understand if the required availability level must be achieved around the clock, or just during 
business hours. Another important question to resolve is whether the solution should be geographically 
redundant. That requirement can dramatically increase the complexity and cost of the solution. 

 It is very important to not start the implementation until you have collected and analyzed all of the 
requirements, including budget constraints. Taken together, the requirements will dictate what technology 
or technologies you will be able to use for the implementation. 

 Table  32-2  compares the High Availability  technologies   available in different versions and editions of 
SQL Server.  
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   Table 32-2.    Comparison of SQL Server High Availability Technologies   

 Failover Cluster  Log Shipping  Database Mirroring  AlwaysOn AG  Replication 

 SQL Server 
version 

 2005–2016  2005–2016  2005–2016 
 Deprecated in 
2012–2016 

 2012–2016  2005–2016 

 Standard 
edition 
support 

 2 nodes only  Supported  Synchronous only  Not supported 
in 2012–2014. 
SQL Server 
2016 supports 
basic AG. 

 Supported 

 Unit of 
protection 

  Instance    Database  Database  Group of 
databases. (One 
DB in basic AG) 

 Publication 
(Subset of data) 

 Data loss No data loss but 
not protected 
against storage 
failure  

 Data loss 
based on 
log backup 
schedule 

 No data loss with 
synchronous 
mirroring 

 No data 
loss with 
synchronous 
commit 

 Data loss based 
on latency 

 Single point 
of failure 

 Storage  No  No  No  No 

 Failover  Automatic  Manual  Automatic (Requires 
witness) 

 Automatic  Manual 

 Failover time 
 (best-case 
scenario) 

 Minutes (crash-
recovery of all 
databases in the 
instance) 

 N/A  Seconds 
 (crash recovery of a 
single database) 

 Seconds 
 (crash recovery 
of all databases 
in AG) 

 N/A 

 Performance 
overhead 

 No overhead  No overhead  Overhead of 
synchronous 
commit 

 Overhead of 
synchronous 
commit 

 Additional load 
to transaction 
log 

 Obviously, you are not restricted to the use of a single High Availability technology. It is often beneficial 
to combine technologies, using a few of them together to be protected from different kinds of failures. 
For example, if an AlwaysOn Availability Group is not an option due to SQL Server version or edition 
incompatibility, you can use a failover cluster together with database mirroring or log shipping. A failover 
cluster will protect you from a server malfunction, while the second technology protects you against a 
storage system failure.    

 In cases where data loss is not allowed, the choices are limited to either database mirroring or 
AlwaysOn Availability Groups with synchronous commit. Even though a failover cluster uses a single copy 
of the database, and therefore you cannot lose data due to replication (or synchronization) latency, it is not 
protected against storage failure. Unfortunately, synchronous commit could introduce unacceptable latency 
in some of the edge cases. 

 This is an example of a situation where you need to work with the stakeholders and reach a 
compromise. For example, in some cases it could be  good enough  to have a failover cluster with data stored 
on a highly redundant disk array with asynchronous commit to another server. 
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 The unit of protection is another very important factor to consider. If an AlwaysOn Availability Groups 
are unavailable, synchronous database mirroring could be a great option that guarantees zero data loss and 
does not have a single point of failure. However, it works within the scope of a single database, which could 
be problematic if the system consists of multiple databases that should reside on the same server. A failover 
cluster is the only option besides an AlwaysOn Availability Group that guarantees that multiple databases 
will always fail over together. 

 You can still use database mirroring in such a scenario by implementing a routine that monitors the 
principal server database location and fails over the databases if needed. One possible implementation is a 
SQL Agent job that runs every minute and queries the  State  or  State_Desc  columns in the  sys.databases  
view for one of the databases in the group. The job could fail over other databases in the group when it 
detects that the database is in  RESTORING  state, which means that it was failed over to a different server. 

 It is extremely important to test your High Availability strategy and perform failover after it is 
implemented in production. The situation where everything works perfectly the first time is extremely rare. 
You may encounter security issues, incorrect settings in application connection strings, missing objects on 
the servers, and quite a few other issues that prevent the system from working as expected after failover. Even 
though testing of the failover process can lead to system downtime, it is better to have a controlled outage 
with all personnel on deck than a situation where the system does not work after an unplanned disaster.    

 Finally, you should regularly reevaluate and test your High Availability and Disaster Recovery strategies. 
Database size and activity growth can invalidate your HA implementation, making it impossible to meet 
RPO and RTO requirements. It is especially important when secondary (standby) servers are less powerful 
than the primary ones. It is entirely possible that the system would not be able to keep up with the load after 
a failover in such cases.  

     Summary 
 Even though High Availability and Disaster Recovery strategies are interconnected, they are not the same. 
A High Availability strategy increases the availability of the system by handling hardware or software 
malfunctions transparently to users. A Disaster Recovery strategy deals with situations that the High 
Availability strategy was unable to handle and when the system needs to be recovered after a disaster. 

 A SQL Server failover cluster protects you from server failures by implementing a clustered model using 
a SQL Server instance as the shared resource. Only one server/node can handle users’ requests at any given 
time; however, a Windows Server Failover Clustering  cluster   can host multiple SQL Server clusters. Even 
though running multiple instances of a SQL Server failover cluster is a common practice that helps to reduce 
the cost of the solution, you should avoid situations where the cluster does not have spare passive nodes and 
multiple SQL Server instances running on the same node after failover with unacceptable performance. 

 A SQL Server failover cluster uses shared storage, which becomes the single point of failure. You should 
combine the failover cluster with other High Availability technologies that store the data on different storage 
devices to minimize the possibility of data loss resulting from storage failure. 

 Database mirroring and AlwaysOn Availability Groups allow you to maintain a byte-to-byte copy 
of the database on another server(s) by constantly sending transaction log records over the network. 
With synchronous commit, SQL Server does not commit the transaction on the primary server until the 
log record is hardened on the secondary server. This approach guarantees no data loss for committed 
transactions, although it adds extra latency to the transactions. With asynchronous commit, log records are 
sent asynchronously and data loss is possible. Data loss is possible even with synchronous commit if the 
secondary server is offline or data is not fully synchronized. 

  AlwaysOn Availability Groups   allow the creation of an infrastructure with one primary server that 
handles read/write activity and multiple secondary servers that allow read-only access to the databases. 
AlwaysOn Availability Groups should be installed underneath the Windows Server Failover Clustering 
cluster, although every node uses separate storage for the databases. 
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  Log shipping   allows the maintenance of a copy of the database on multiple secondary servers by 
applying a continuous stream of log backups. It does not protect against data loss for the period since the last 
backup was applied. 

 Replication allows you to replicate a subset of data from the database across multiple databases, 
allowing read/write access in each location. Transaction replication has low latency for the changes to be 
distributed across subscribers. However, setting up and monitoring a complex replication topology is a very 
challenging task. 

 Designing a High Availability strategy is an iterative and interactive process that requires you to work 
with other members of the technical team as well as with stakeholders. You must make sure that RTO and 
RPO requirements are realistic and achievable within the budget allocated to the project. 

 The choice of High Availability technology depends on the requirements and budget as well as on 
the version and edition of SQL Server installed. You are not restricted to a single technology—it is often 
beneficial to combine a few technologies together. 

 You should consider the performance implications of the technologies that use synchronous commit, 
especially if the system has a performance SLA that dictates latency for some OLTP transactions. 

 It is extremely important to test your High Availability technology and perform failover after it is 
implemented in production. It is better to find and fix any issues in a controlled environment than to fight 
with them after a disaster occurs. 

 You should regularly reevaluate the High Availability solution you implement based on database size 
and activity growth, especially if your secondary standby servers are less powerful than your primary ones.     



   PART VII 

   Columnstore Indexes 
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    CHAPTER 33   

 Column-Based Storage and 
Batch Mode Execution                          

  Columnstore indexes  are an Enterprise Edition feature introduced in SQL Server 2012. They are part of the 
new family of technologies called  x   Velocity    (formerly known as   VertiPaq   ), which optimizes the performance 
of analytical queries that scan and aggregate large amounts of data. 

 Columnstore indexes use a different storage format for data, storing compressed data on a per-column 
rather than a per-row basis. This storage format benefits query processing in data warehousing, reporting, 
and analytics environments where, although they typically read a very large number of rows, queries work 
with just a subset of the columns from a table. 

 The design and implementation of data warehouse systems is a very complex process that is not 
covered in this book. This chapter, however, will reference common database design patterns frequently 
encountered in such systems. Moreover, it will provide an overview of columnstore indexes and their storage 
format, discuss batch mode execution, and outline several tips that can improve the performance of data 
warehouse solutions. 

     Data Warehouse  Systems   Overview 
 Data warehouse systems provide the data that is used for analysis, reporting, and decision support purposes. 
In contrast to OLTP (online transactional processing) systems, which are designed to support operational 
activity and which process simple queries in short transactions, data warehouse systems handle complex 
queries that usually perform aggregations and process large amounts of data. 

 For example, consider a company that sells articles to customers. A typical OLTP query from the 
company’s   Point-of - Sale  (POS) system   might have the following semantics:  Provide a list of orders that were 
placed by this particular customer this month . Alternatively, a typical query in a data warehouse system 
might read as follows:  Provide the total amount of sales year to date, grouping the results by article categories 
and customer regions . 

 There are other differences between data warehouse and OLTP systems. Data in OLTP systems is 
usually volatile. Such systems serve a large number of requests simultaneously, and they often have a 
performance SLA associated with the customer-facing queries. Alternatively, the data in data warehouse 
systems is relatively static and is often updated based on a set schedule, such as at night or during weekends. 
These systems usually serve a small number of customers, typically business analysts, managers, and 
executives who can accept the longer execution time of the queries due to the amount of data that needs to 
be processed. 
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 To put things into perspective, the response time of the short OLTP queries usually needs to be in the 
milliseconds range. However, for complex data warehouse queries, a response time in seconds or even 
minutes is often acceptable. 

 The majority of companies start by designing or purchasing  an    OLTP system   that supports the 
operational activities of the business. Reporting and analysis is initially accomplished based on OLTP data; 
however, as the business grows, that approach becomes more and more problematic. Database schemas 
in OLTP systems rarely suit reporting purposes. Reporting activity adds load to the server and degrades the 
performance and customer experience in the system. 

 Data partitioning can help address some of these issues; however, there are limits on what can be 
achieved with such an approach. At some point, the separation of operational and analysis data becomes 
the only option that can guarantee the acceptable performance of both solutions as well as the ability to 
meet availability SLA. In many cases, it leads to the physical separation of the data between OLTP and data 
warehouse databases. 

 It is important to remember that the data warehouse workload is usually processing a large amount of 
data, and this adds a heavy load on the I/O subsystem and can flush content of the buffer pool on the server. 
It is usually better to place OLTP and large data warehouse databases on different servers unless you have 
enough memory in the buffer pool to cache data from both systems. 

 OPERATIONAL ANALYTICS

 It is also impossible to avoid mentioning another category of tasks called  operational analytics , which 
has become very popular nowadays. Consider a  Point-of-Sale  system in which you want to monitor up-
to-date sales and dynamically adjust articles’ sale price based on their popularity. This requires you to 
run analytical queries on recent OLTP data. 

 SQL Server 2016 helps you to improve performance in such a scenario by mixing column-based and 
row-based indexes on the same table. OLTP queries use regular B-Tree indexes while operational 
analytics queries utilize columnstore indexes. We will talk about this approach in the next chapter while 
focusing on the classic data warehouse implementation in this chapter.  

 OLTP systems usually become the source of the data for data warehouses. The data from OLTP systems 
is transformed and loaded into a data warehouse with   ETL     (Extract Transform and    Load    ) processes . This 
transformation is key; that is, database schemas in OLTP and data warehouse systems do not and should not 
match. 

 A typical data warehouse database consists of several  dimensions tables   and one or a few facts tables. 
  Facts tables    store facts or measures of the business, while  dimensions tables  store the attributes or properties 
of facts. In our Point-of-Sale system, the information relating to sales becomes facts while the list of articles, 
customers, and branch offices become dimensions in the model. 

 Large facts tables can store millions or even billions of rows and use terabytes of disk space. 
Dimensions, on the other hand, are significantly smaller. 

 A typical data warehouse database design follows either a  star  or a  snowflake  schema. A star schema 
consists of a facts table and a single layer of dimensions tables. A snowflake schema, on the other hand, 
normalizes dimensions tables even further. 

 Figure  33-1  shows an example of a star schema.  
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 Figure  33-2  shows an example of a snowflake schema for the same data model.  

  Figure 33-1.     Star schema         

  Figure 33-2.     Snowflake schema         
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 A typical query in data warehouse systems selects data from a facts table and joins it with one or more 
dimensions tables. SQL Server detects star and snowflake database schemas, and it uses a few optimization 
techniques to try to reduce the number of rows to scan and the amount of I/O required for a query. It pushes 
predicates toward the lowest operators in the execution plan tree, trying to evaluate them as early as possible 
so as to reduce the number of rows that need to be selected. Other optimizations include a cross join of 
dimensions tables and hash joins that pre-filter with  bitmap  filters. 

 ■   Note   Defining foreign key constraints between facts and dimensions tables helps SQL Server detect 
star and snowflake schemas more reliably. You may consider creating foreign key constraints using the  WITH 
NOCHECK  option if the overhead of constraint validation at the creation stage is unacceptable.  

 Even with all optimizations, however, query performance in large data warehouses is not always 
sufficient. Scanning gigabytes or terabytes of data is time consuming even on today’s hardware. Part of the 
problem is the nature of query processing in SQL Server; that is, operators request and process rows one by 
one, which is not always efficient in the case of a large number of rows. 

 Some of these problems can be addressed with columnstore indexes and batch mode execution, which 
I will cover next.  

     Columnstore Indexes and Batch Mode Execution  Overview   
 As already mentioned, the typical data warehouse query joins facts and dimensions tables and performs 
some calculations and aggregations while accessing just a subset of the facts table’s columns. Listing  33-1  
shows an example of a query in the database that follows the star schema design pattern, as was shown in 
Figure  33-1 . 

     Listing 33-1.    Typical query in data warehouse environment   

 select a.ArticleCode, sum(s.Quantity) as [Units Sold] 
 from dbo.FactSales s join dbo.DimArticles a on 
         s.ArticleId = a.ArticleId 
     join dbo.DimDates d on 
         s.DateId = d.DateId 
 where d.AnYear = 2016 
 group by a.ArticleCode 

   As you can see, this query needs to perform a scan of a large amount of data from the facts table; 
however, it uses just three table columns. With regular row-based execution, SQL Server accesses rows one 
by one, loading the entire row into memory, regardless of how many columns from the row are required. 

 You can reduce the storage size of the table, and therefore the number of I/O operations, by 
implementing page compression. However, page compression works in the scope of a single page. Each 
page will maintain a separate copy of the compression dictionary, which is used for all rows on the page. 
Maintaining the dictionaries and compressing large batches of rows on a per-column basis will lead to 
significantly better compression results. 

 Finally, there is another, less obvious problem. Even though access to in-memory data is orders of 
magnitude faster than access to data on disk, it is still slow as compared to CPU cache access time. With 
row mode execution, SQL Server constantly reloads CPU cache data with new rows copied from the main 
memory. This overhead is usually not a problem with an OLTP workload and simple queries; however, it 
becomes very noticeable with data warehouse queries that process millions or even billions of rows. 
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      Column-Based Storage and Batch Mode Execution   
 SQL Server addresses these problems with columnstore indexes and batch mode execution. Columnstore 
indexes store data on a per-column rather than a per-row basis. Figure  33-3  illustrates this approach.  

  Figure 33-3.    Row-based and column-based storage       

  Figure 33-4.    Row mode  execution         

 Data in columnstore indexes is heavily compressed using algorithms that provide significant space 
savings, even when compared to page compression. We will compare the results of different compression 
methods later in this chapter. Moreover, SQL Server can skip columns that are not requested by a query, and 
it does not load data from those columns into memory. 

 The new data storage format of columnstore indexes allows SQL Server to implement a new batch 
mode execution model that significantly reduces the CPU load and execution time of data warehouse 
queries. In this mode, SQL Server processes data in groups of rows, or batches, rather than one row at a time. 
The size of the batches varies to fit into the CPU cache, which reduces the number of times that the CPU 
needs to request  external  data from memory or other components. Moreover, the batch approach improves 
the performance of aggregations, which can be calculated on a per-batch rather than a per-row basis. 

 In contrast to row mode execution, where data values are copied between operators, batch mode 
processing tries to minimize such copies by creating and maintaining a special bitmap that indicates if a row 
is still valid in the batch. 

 To illustrate this approach, let’s consider the query in Listing  33-2 . 

     Listing 33-2.     Sample query     

 select ArticleId, sum(Quantity) 
 from dbo.FactSales 
 where UnitPrice >= 10.00 
 group by ArticleId 

   With regular row mode execution, SQL Server scans a clustered index and applies a filter on every row. 
For rows that have  UnitPrice >= 10.00 , it passes another row of two columns ( ArticleId  and  Quantity ) to 
the  aggregate  operator. Figure  33-4  shows this process.  
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 Alternatively, with batch mode execution, the  filter  operator would set an internal bitmap that shows 
the validity of the rows. A subsequent aggregate operator would process the same batch of rows, ignoring 
non-valid ones. No data copying is involved. Figure  33-5  shows such an approach. It is also worth noting that 
only the  ArticleId ,  Quantity , and  UnitPrice  columns would be loaded into the batch.  

  Figure 33-5.    Batch mode  execution         

  Figure 33-6.    Parallelism in row mode  execution         

 ■   Note   In a real system, SQL Server can push a predicate that evaluates if  UnitPrice >= 10  to the 
 columnstore index scan  operator, preventing unnecessary rows from being loaded into the batch. However, let’s 
assume that this is not the case in our example.  

 SQL Server handles parallelism in row mode and batch mode executions very differently. As you know, 
in row mode execution, an  exchange  operator distributes rows between different parallel threads using 
one of the distribution algorithms available. However, after the distribution, a row never migrates from one 
thread to another until another exchange operator gathers or repartitions the data. 

 Figure  33-6  illustrates this by demonstrating an exchange operator that uses the  Range  redistribution 
method to distribute data to three parallel threads that perform  hash joins . The first letter of a join key value 
would control to which thread row it is distributed and where it is processed.  
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 SQL Server takes a different approach with batch mode execution. In that mode, every operator has a 
queue of work items (batches) to process. Worker threads from a shared pool pick items from queues and 
process them while migrating from operator to operator. Figure  33-7  illustrates this method.  

  Figure 33-7.    Parallelism in batch mode  execution         

 One of the common issues that increases the response time of parallel queries in row mode execution 
is uneven data distribution. Exchange operators wait for all parallel threads to complete; thus, the execution 
time depends on the slowest thread. Some threads have more work to do than others when data is unevenly 
distributed. Batch mode execution eliminates such problems. Every thread picks up work items from the 
shared queue until the queue is empty.  

      Columnstore Indexes and Batch Mode Execution in Action   
 Let’s look at several examples related to columnstore index behavior and performance. Listing  33-3  creates 
a set of tables for the database schema shown in Figure  33-1  and populates it with test data. As a final step, 
it creates a nonclustered columnstore index on the facts table. Based on the performance of your computer, 
this could take several minutes to complete. 

 It is also worth noting that nonclustered columnstore indexes are implemented and behave differently 
in SQL Server 2012/2014 and 2016. These indexes make tables read-only in SQL Server 2012/2014, which is 
not the case in SQL Server 2016. We will discuss their internal implementation in detail in the next chapter. 

     Listing 33-3.    Test  database creation     

  create table dbo.DimBranches 
 ( 
     BranchId int not null primary key, 
     BranchNumber nvarchar(32) not null, 
     BranchCity nvarchar(32) not null, 
     BranchRegion nvarchar(32) not null, 
     BranchCountry nvarchar(32) not null 
 ); 
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   create table dbo.DimArticles 
 ( 
     ArticleId int not null primary key, 
     ArticleCode nvarchar(32) not null, 
     ArticleCategory nvarchar(32) not null 
 ); 

   create table dbo.DimDates 
 ( 
     DateId int not null primary key, 
     ADate date not null, 
     ADay tinyint not null, 
     AMonth tinyint not null, 
     AnYear smallint not null, 
     AQuarter tinyint not null, 
     ADayOfWeek tinyint not null 
 ); 

   create table dbo.FactSales 
 ( 
     DateId int not null 
         foreign key references dbo.DimDates(DateId), 
     ArticleId int not null 
         foreign key references dbo.DimArticles(ArticleId), 
     BranchId int not null 
         foreign key references dbo.DimBranches(BranchId), 
     OrderId int not null, 
     Quantity decimal(9,3) not null, 
     UnitPrice money not null, 
     Amount money not null, 
     DiscountPcnt decimal (6,3) not null, 
     DiscountAmt money not null, 
     TaxAmt  money not null, 
     constraint PK_FactSales primary key (DateId, ArticleId, BranchId, OrderId) 
     with (data_compression = page) 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N2 as T1 cross join N4 as T2) -- 1,024 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 ,Dates(DateId, ADate) 
 as 
 ( 
     select ID, dateadd(day,ID,'2014-12-31')    
     from IDs 
     where ID <= 727 
 ) 
 insert into dbo.DimDates(DateId, ADate, ADay, AMonth, AnYear, AQuarter, ADayOfWeek) 
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      select DateID, ADate, Day(ADate), Month(ADate), Year(ADate), datepart(qq,ADate), 
datepart(dw,ADate) 

     from Dates; 

 ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N3) 
 insert into dbo.DimBranches(BranchId, BranchNumber, BranchCity, BranchRegion, BranchCountry) 
     select ID, convert(nvarchar(32),ID), 'City', 'Region', 'Country' from IDs where ID <= 13; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5) 
 insert into dbo.DimArticles(ArticleId, ArticleCode, ArticleCategory) 
     select ID, convert(nvarchar(32),ID), 'Category ' + convert(nvarchar(32),ID % 51) 
     from IDs 
     where ID <= 1021; 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,N6(C) as (select 0 from N5 as T1 cross join N4 as T2) -- 16,777,216 rows 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6) 
 insert into dbo.FactSales(DateId, ArticleId, BranchId, OrderId, Quantity, UnitPrice, Amount 
     ,DiscountPcnt, DiscountAmt, TaxAmt) 
     select ID % 727 + 1, ID % 1021 + 1, ID % 13 + 1, ID, ID % 51 + 1, ID % 25 + 0.99 
         ,(ID % 51 + 1) * (ID % 25 + 0.99), 0, 0, (ID % 25 + 0.99) * (ID % 10) * 0.01 
           from IDs; 

   create nonclustered columnstore index IDX_FactSales_ColumnStore 
 on dbo.FactSales(DateId, ArticleId, BranchId, Quantity, UnitPrice, Amount); 

    Let’s run several tests that select data from a facts table and join it with one of the dimensions tables using 
different indexes and different degrees of parallelism, which leads to serial and parallel execution plans. I am 
running the queries in SQL Server 2012, 2014, and 2016 on 4-vCPU virtual machines with 8 GB of RAM allocated. 

 The first query, shown in Listing  33-4 , performs a  clustered index scan  using a serial execution plan with 
row mode execution. 

     Listing 33-4.    Test query: Clustered index scan with MAXDOP=1   

 select a.ArticleCode, sum(s.Amount) as [TotalAmount] 
 from dbo.FactSales s with (index = 1) join dbo.DimArticles a on 
     s.ArticleId = a.ArticleId 
 group by a.ArticleCode 
 option (maxdop 1) 

   All versions of SQL Server produce identical execution plans, as shown in Figure  33-8 .  
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 Table  33-1  shows the execution statistics for the queries in my environment.  

   Table 33-1.    Execution Statistics: Clustered Index Scan and MAXDOP=1   

 Logical Reads  CPU Time (ms)  Elapsed Time (ms) 

 SQL Server 2012  46,254  4,594  4,660 

 SQL Server 2014  46,245  4,564  4,656 

 SQL Server 2016  46,781  4,484  4,608 

  Figure 33-9.    Execution plan with a  columnstore index scan   and MAXDOP=1 (SQL Server 2012 and 2014)       

  Figure 33-8.    Execution plan with clustered index scan and MAXDOP=1       

 In the next step, let’s remove the index hint and allow SQL Server to pick a columnstore index with 
which to access the data, still using the serial execution plan. The query is shown in Listing  33-5 . 

     Listing 33-5.    Test query:  Columnstore index scan   with MAXDOP=1   

 select a.ArticleCode, sum(s.Amount) as [TotalAmount] 
 from dbo.FactSales s join dbo.DimArticles a on 
     s.ArticleId = a.ArticleId 
 group by a.ArticleCode 
 option (maxdop 1) 

   SQL Server 2012 and 2014 generated an identical execution plan, as shown in Figure  33-9 . The plan 
utilizes a columnstore index scan via row mode execution.  

 One of SQL Server 2016’s enhancements is the ability to use batch mode execution in serial plans when 
the database compatibility level is set to 130. In this mode, SQL Server generates the execution plan shown 
in Figure  33-10 . The plan utilizes a columnstore index scan in batch mode.  
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 With a database compatibility level of less than 130, SQL Server generates the plan shown in Figure  33-11 . This 
plan uses row mode execution and is less efficient as compared to SQL Server 2012 and 2014. The difference in the 
plan results from the different (updateable) nature of nonclustered columnstore indexes in SQL Server 2016.  

  Figure 33-10.    Execution plan with a  columnstore index scan   and MAXDOP=1 in SQL Server 2016 with 
compatibility level of 130       

  Figure 33-11.    Execution plan with a  columnstore index scan   and MAXDOP=1 in SQL Server 2016 with 
compatibility level less than 130       

 It is worth noting that the ability to use batch mode execution in serial plans depends on the database 
compatibility level rather than on the cardinality estimation model. SQL Server 2016 will be able to use it 
even when the legacy cardinality estimator is enabled in the database scoped configuration, as long as the 
database compatibility level is set to 130. 

 Table  33-2  shows the execution statistics for the queries. In SQL Server 2012 and 2014, even with row 
mode execution, the columnstore index scan introduces more than four times the reduction of the number 
of reads, and it allowed the query to complete almost two times faster as compared to the clustered index 
scan. In SQL Server 2016, the query is an order of magnitude faster with batch mode execution.  

   Table 33-2.    Execution Statistics: Columnstore Index Scan and MAXDOP=1   

 Logical Reads  CPU Time (ms)  Elapsed Time (ms) 

 SQL Server 2012  10,030  2,703  2,746 

 SQL Server 2014  12,522  2,563  2,604 

 SQL Server 2016 
compatibility level < 130 

 29,914  6,985  7,023 

 SQL Server 2016 
compatibility level = 130 

 29,914  407  475 
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 Unfortunately, this is not the case with row mode execution in SQL Server 2016, where the plan is 
less efficient than the clustered index scan.  Make sure that queries against the tables with columnstore 
indexes can utilize parallelism in case if you upgrade to SQL Server 2016 and decide to keep the 
database compatibility level less than 130.  

 In the next group of tests, we will remove the  MAXDOP  hint and allow SQL Server to generate parallel 
execution plan for the queries. As the first step, we will run the query while forcing the clustered index scan 
with the code shown in Listing  33-6 . 

     Listing 33-6.    Test query: Clustered index scan with parallel execution plan   

 select a.ArticleCode, sum(s.Amount) as [TotalAmount] 
 from dbo.FactSales s with (index = 1) join dbo.DimArticles a on 
         s.ArticleId = a.ArticleId 
 group by a.ArticleCode 

   Figure  33-12  illustrates the execution plan for the query running in SQL Server 2012. Even though 
SQL Server generated a parallel execution plan, it used row mode execution for all operators.  

  Figure 33-12.    Execution plan with clustered index scan in SQL Server 2012       

  Figure 33-13.    Execution plan with clustered index scan in SQL Server 2014 and SQL Server 2016 with a 
database compatibility level of less than  130         

 If you ran the same query in SQL Server 2014 or in SQL Server 2016 with a database compatibility level 
of less than 130, you would see different results, as shown in Figure  33-13 . SQL Server still used row mode 
execution during the clustered index scan; however, hash join and hash aggregate operators were used in 
batch mode execution. It is worth repeating that in SQL Server 2012 and 2014, batch mode execution works 
only in parallel execution plans.  
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 Unfortunately, in SQL Server 2016, forcing a non-columnstore index with an index hint on those tables 
with a columnstore index prevents batch mode execution in databases with a compatibility level of 130. 
This behavior provides the user with finer control over execution and resource consumption in operational 
analytics scenarios; however, in our example it led to a less efficient execution plan, as shown in Figure  33-14 .  

  Figure 33-14.    Execution plan with clustered index scan in SQL Server 2016 with a database compatibility 
level of  130         

   Table 33-3.    Execution Statistics: Clustered Index Scan and Parallel Execution Plan   

 Logical Reads  CPU Time (ms)  Elapsed Time (ms) 

 SQL Server 2012  46,907  5,531  1,825 

 SQL Server 2014  47,147  4,704  1,716 

 SQL Server 2016 
compatibility level < 130 

 47,623  4,657  1,673 

 SQL Server 2016 
compatibility level = 130 

 47,435  5,656  1,819 

 Table  33-3  shows the execution statistics for the queries.  

 Finally, let’s remove the index hint and allow SQL Server to use a columnstore index and parallel 
execution plan. This query is shown in Listing  33-7 . 

     Listing 33-7.    Test query: Columnstore index scan with parallel execution plan   

 select a.ArticleCode, sum(s.Amount) as [TotalAmount] 
 from dbo.FactSales s join dbo.DimArticles a on 
         s.ArticleId = a.ArticleId 
 group by a.ArticleCode 

   Figure  33-15  illustrates the execution plan of this query in SQL Server 2012. As you can see, it utilizes 
batch mode execution. It is worth noting that the  exchange/parallelism  ( repartition streams ) operators in the 
execution plan do not move data between different threads, which you can see by analyzing the operators’ 
 actual number of rows  properties. SQL Server 2012 keeps them in the plan to support cases where a hash 
table spills to  tempdb , which would force SQL Server to switch to row mode execution.  
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 Figure  33-16  shows the execution plan of this query in SQL Server 2014 and 2016. As you can see, 
the execution plan is significantly simpler and does not include  parallelism/exchange  operators. Both 
SQL Server 2014 and 2016 support batch mode execution even in cases of  tempdb  spills. SQL Server 2016 
generates the same plan regardless of database compatibility level.  

  Figure 33-15.    Execution plan with a columnstore index scan and batch mode  execution   (SQL Server 2012)       

  Figure 33-16.    Execution plan with a columnstore index scan and batch mode execution (SQL Server 2014 
and 2016)       

   Table 33-4.    Execution Statistics: Columnstore Index Scan and Parallel Execution Plan   

 Logical Reads  CPU Time (ms)  Elapsed Time (ms) 

 SQL Server 2012  10,048  482  180 

 SQL Server 2014  25,784  480  181 

 SQL Server 2016  29,952  469  178 

 Table  33-4  illustrates the execution statistics for the queries. It is worth noting that, even though SQL 
Server 2014/2016’s performance improvements are marginal in batch mode execution, this situation would 
change if there were a  tempdb  spill, when SQL Server 2012 would switch to row mode execution.  

 As you can see, columnstore indexes significantly reduce the I/O load in the system as well as the CPU 
and elapsed times of the queries. The difference is especially noticeable in the case of batch mode execution, 
where the query ran orders of magnitude faster as compared to a row mode clustered index scan. 
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 Every new version of SQL Server increases the number of operators and use cases that support batch 
mode execution. As an example, batch mode support in SQL Server 2012 is extremely limited. It does not 
support any join types with the exception of inner hash joins; it does not support scalar aggregates, nor does 
it support the  union all  operator, and it has quite a few other limitations. 

 In SQL Server 2014, batch mode execution supports all join types and outer joins, explores different 
join orders during the query optimization stage, and supports scalar aggregates and the  union all  operator. 
Moreover, the execution algorithms for various operators have been improved. For example, the hash join 
operator in SQL Server 2014 can now spill to  tempdb  without switching to row mode execution, which was 
impossible in SQL Server 2012. 

 SQL Server 2016 improves the situation even further. It supports batch mode execution with  sort  
operators, allows the pushing of string predicates to the  scan  operator in some cases, and has many other 
enhancements, including the ability to use batch mode execution in serial execution plans. 

 All these improvements make upgrading to the latest SQL Server version in data warehouse 
environments worth the effort, especially in the case of SQL Server 2012, where batch mode execution 
support is very limited and requires non-trivial query re-factoring.   

     Column-Based  Storage   
 There are several types of columnstore indexes available in different versions of SQL Server. Even though 
they have different requirements and behavior, all of them share a column-based storage format under the 
hood. We will talk about different columnstore index types in subsequent chapters. 

 It is important to mention that regardless of the type of columnstore indexes, SQL Server does not allow 
you to define more than one columnstore index per table. 

     Storage Format 
 Each data column in column-based storage is stored separately in a set of structures called  row groups . 
Each row group stores data for up to approximately one million or, to be precise,  2^20=1,048,576  rows. 
SQL Server tries to populate row groups completely during index creation, leaving the last row group 
partially populated. For example, if a table has five million rows, SQL Server creates four row groups of 
1,048,576 rows each and one row group with 805,696 rows. 

 In practice, you can have more than one partially populated row group when multiple threads create 
columnstore indexes using parallel execution plans. Each thread will work with its own subset of data, 
creating separate row groups. Moreover, in the case of partitioned tables, each table partition has its own set 
of row groups. 

 After row groups are built, SQL Server combines all column data on a per-row group basis and encodes 
and compresses these groups. The rows within a row group can be rearranged if that helps to achieve a 
better compression rate. 

 Column data within a row group is called a  segment . SQL Server loads an entire segment to memory 
when it needs to access columnstore data. SQL Server also keeps information about the data stored in each 
segment in segment metadata—for example, minimum and maximum values—and can skip segments that 
do not have the required data. 

 Figure  33-17  illustrates the index creation process. It shows a columnstore index with four columns and 
three row groups. Two row groups are populated in full, and the last one is partially populated.  
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 During encoding, SQL Server replaces all values in the data with 64-bit integers using one of two 
encoding algorithms. The first algorithm, called  dictionary encoding , stores distinct values from the data in 
a separate structure called a  dictionary . Every value in a dictionary has a unique  ID  assigned. SQL Server 
replaces the actual value in the data with an  ID  from the dictionary. 

 SQL Server creates one  global dictionary , which is shared across all segments that belong to the same 
index partition. Moreover, SQL Server can create local dictionaries for individual segments using values that 
are not present in the global dictionary. 

 Figure  33-18  illustrates dictionary encoding. For simplicity’s sake, it shows neither multiple row groups 
nor local dictionaries in order to focus on the main idea of the algorithm.  

  Figure 33-17.    Building a columnstore  index         

  Figure 33-18.     Dictionary encoding         

 The second type of encoding, called  value-based encoding , is mainly used for numeric and integer data 
types that do not have enough duplicated values. With this condition, dictionary encoding is inefficient. 
The purpose of value-based encoding is to convert integer and numeric values to a smaller range of 64-bit 
integers. This process consists of the following two steps. 

 In the first step, numeric data types are converted to integers using the minimum positive exponent 
that allows this conversion. Such an exponent is called  magnitude . For example, for a set of values such as 
0.8, 1.24, and 1.1, the minimum exponent is 2, which represents a multiplier of 100. After this exponent is 
applied, values would be converted to 80, 124, and 110 respectively. The goal of this process is to convert all 
numeric values to integers. 

 Alternatively, for integer data types, SQL Server chooses the smallest negative exponent that can be 
applied to all values without losing their precision. For example, for the values 1340, 20, and 2,340, that 
exponent is -1, which represents a divider of 10. After this operation, the values would be converted to 134, 
2, and 234 respectively. The goal of such an operation is to reduce the interval between the minimum and 
maximum values stored in the segment. 
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 During the second step, SQL Server chooses the  base value , which is the minimum value in the 
segment, and subtracts it from all other values. This makes the minimum value in the segment number 0. 

 Figure  33-19  illustrates the process of value-based encoding.  

  Figure 33-19.     Value-based encoding         

  Figure 33-20.     dbo.FactSales table   allocation units       

 After encoding, SQL Server compresses the data and stores it as a LOB allocation unit. We have 
discussed how this type of data is stored in Chapter   1    , “Data Storage Internals.” 

 Listing  33-8  shows a query that displays allocation units for the  dbo.FactSales  table we created earlier 
in the chapter. 

     Listing 33-8.     dbo.FactSales table   allocation units   

 select i.name as [Index], p.index_id, p.partition_number as [Partition] 
         ,p.data_compression_desc as [Compression], u.type_desc, u.total_pages 
 from sys.partitions p join sys.allocation_units u on 
         p.partition_id = u.container_id 
     join sys.indexes i on 
         p.object_id = i.object_id and p.index_id = i.index_id 
 where p.object_id = object_id(N'dbo.FactSales') 

   As you can see in Figure  33-20 , the columnstore index is stored as  LOB_DATA . It is worth noting that 
this index has  IN_ROW_DATA  allocation units; however, these allocation units do not store any data. It is 
impossible to have  LOB_DATA  allocation in the index without an  IN_ROW_DATA  allocation present.   

     Compression and Storage Size 
 As you already know, the data in columnstore indexes is heavily compressed and can introduce significant 
space savings compared even to page compression. Moreover, SQL Server 2014 introduces another 
compression option called  archival compression . It can be applied on an entire index or on individual 
partitions by specifying a  DATA_COMPRESSION=COLUMNSTORE_ARCHIVE  columnstore index property, and it 
reduces storage space even further. It uses the Xpress 8 compression library, which is an internal Microsoft 
implementation of the LZ77 algorithm. This compression works directly with binary data without any 
knowledge of the underlying SQL Server data structures. 

 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_1
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 Archival compression works transparently with other SQL Server features. Columnstore data is 
compressed at the time it is saved on disk and decompressed before it is loaded into memory. 

 Let’s compare the results of different compression methods. I created four different tables with the same 
schema, as shown in Listing  33-9 . The first two tables were heaps with no nonclustered indexes defined. 
The first table was uncompressed and the second one was compressed with page compression. The third 
and fourth tables had clustered columnstore indexes (more about them in the next chapter) compressed 
with the  COLUMNSTORE  and  COLUMNSTORE_ARCHIVE  compression methods respectively. Each table had almost 
62 million rows generated based on the  dbo.FactResellerSales  table from the  AdventureWorksDW2012  
database. 

     Listing 33-9.    Schema of test tables   

 create table dbo.FactSalesBig 
 ( 
     ProductKey int not null, 
     OrderDateKey int not null, 
     DueDateKey int not null, 
     ShipDateKey int not null, 
     CustomerKey int not null, 
     PromotionKey int not null, 
     CurrencyKey int not null, 
     SalesTerritoryKey int not null, 
     SalesOrderNumber nvarchar(20) not null, 
     SalesOrderLineNumber tinyint not null, 
     RevisionNumber tinyint not null, 
     OrderQuantity smallint not null, 
     UnitPrice money not null, 
     ExtendedAmount money not null, 
     UnitPriceDiscountPct float not null, 
     DiscountAmount float not null, 
     ProductStandardCost money not null, 
     TotalProductCost money not null, 
     SalesAmount money not null, 
     TaxAmt money not null, 
     Freight money not null, 
     CarrierTrackingNumber nvarchar(25) null, 
     CustomerPONumber nvarchar(25) null, 
     OrderDate datetime null, 
     DueDate datetime null, 
     ShipDate datetime null 
 ) 

   Table  33-5  compares the on-disk size of all four compression methods.  

   Table 33-5.    On-disk Data Size for Different Compression Methods   

 HEAP Table 

 (no compression) 

 HEAP Table 

 (page compression) 

 Columnstore 
Compression 

 Archival Compression 

 10,504 MB  2,440 MB  831 MB  362 MB 
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 Obviously, different table schemas and data lead to different compression results; however, in most 
cases you will achieve significantly greater space savings when archival compression is implemented. 

 Archival compression introduces additional CPU overhead at the compression and decompression 
stages. Let’s run a query that performs a   MAX()  aggregation   on 20 columns in a table. The result of the query 
is meaningless; however, it forces SQL Server to read data from 20 different column segments in each row 
group in the table. Listing  33-10  shows the query. 

     Listing 33-10.    Test query   

 select max(ProductKey),max(OrderDateKey),max(DueDateKey),max(ShipDateKey),max(CustomerKey) 
     ,max(PromotionKey),max(CurrencyKey),max(SalesTerritoryKey),max(SalesOrderLineNumber) 
     ,max(RevisionNumber),max(OrderQuantity),max(UnitPrice),max(ExtendedAmount) 
     ,max(UnitPriceDiscountPct),max(DiscountAmount),max(ProductStandardCost) 
     ,max(TotalProductCost) 
     ,max(SalesAmount),max(TaxAmt),max(Freight) 
 from dbo.FactSalesBig; 

   Table  33-6  illustrates the execution times of the query against the tables with different columnstore 
compression methods. Even though the data compressed with archival compression uses significantly less 
space on disk, it takes longer for the query to complete because of the decompression overhead involved. 
Obviously, the results would vary based on the CPU and I/O performance of the system.  

   Table 33-6.    Execution Time for Different Compression Methods   

 COLUMNSTORE Compression 

 (Elapsed/CPU time) 

 COLUMNSTORE_ARCHIVE Compression 

 (Elapsed/CPU time) 

 1,458 ms / 4,733 ms  1,774 ms / 6,098 ms 

 Archival compression is a great choice for static, rarely accessed data, and I would like to reiterate that 
it can be used on a per-index partition basis. It is common for data warehouses to retain data for a long time, 
even though historical data is rarely accessed. You may wish to consider applying archival compression on 
partitions that store old data and benefit from the disk space savings it achieves.  

      Metadata   
 SQL Server provides several columnstore index–related catalog and data management views. Two catalog 
views, described next, work in SQL Server 2012–2016. We will look at other views in the next chapter. 

    sys.column_store_segments   
 The  sys.column_store_segments  view returns one row for each column per segment. 

 Listing  33-11  shows a query that returns information about the  IDX_FactSales_ColumnStore  
columnstore index that is defined on the  dbo.FactSales  table. There are a couple of things that you should 
note here. First, the view does not return the  object_id  or  index_id  of the index. This is not a problem, as a 
table can have only one columnstore index defined. However, you need to use the  sys.partitions  view to 
obtain the  object_id  when it is required. 

 Second, like regular B-Tree indexes, nonclustered columnstore indexes include a  row-id , which is either 
the address of a row in a heap table or a clustered index key value. In the latter case, all columns from the 
clustered index are included in the columnstore index, even when you do not explicitly define them in the 
 CREATE COLUMNSTORE INDEX  statement. However, these columns would not exist in the  sys.index_columns  
view, and you would need to use an  outer join  if you wanted to obtain the column name. 
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     Listing 33-11.    Examining the  sys.column_store_segments  view   

 select p.partition_number as [partition], c.name as [column], s.column_id, s.segment_id 
         ,p.data_compression_desc as [compression], s.version, s.encoding_type, s.row_count 
         , s.has_nulls, s.magnitude,s.primary_dictionary_id, s.secondary_dictionary_id, 
         , s.min_data_id, s.max_data_id, s.null_value 
         , convert(decimal(12,3),s.on_disk_size / 1024.0 / 1024.0)  as [Size MB] 
 from sys.column_store_segments s join sys.partitions p on 
             p.partition_id = s.partition_id 
         join sys.indexes i on 
             p.object_id = i.object_id 
         left join sys.index_columns ic on 
             i.index_id = ic.index_id and 
             i.object_id = ic.object_id and 
             s.column_id = ic.index_column_id 
         left join sys.columns c on 
             ic.column_id = c.column_id and 
             ic.object_id = c.object_id 
 where i.name = 'IDX_FactSales_ColumnStore' 
 order by p.partition_number, s.segment_id, s.column_id 

   Figure  33-21  shows the partial output of this query. Column 8, which does not have column name 
displayed, represents the  OrderId  column, which is a part of the clustered index and has not been explicitly 
defined in the columnstore index.  

  Figure 33-21.     sys.column_store_segments   output         
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 The columns in the output represent the following:

    column_id  is the ID of a column in the index that you can join with the  sys.
index_columns  view. As you have seen, only columns that are explicitly included 
in an index have corresponding  sys.index_columns  rows.  

   partition_id  references the partition to which a row group (and, therefore, 
a segment) belongs. You can use it in a join with the  sys.partitions  view to 
obtain the  object_id  of the index.  

   segment_id  is the ID of the segment, which is basically the ID of a row group. The 
first segment/row group in a partition has ID of 0.  

   version  represents a columnstore segment format. SQL Server 2012, 2014, and 
2016 return 1 as its value.  

   encoding_type  represents the encoding used for this segment. It can have one of 
the following four values:

   Value-based encoding has  encoding_type = 1   

  Dictionary encoding of non-strings has  encoding_type = 2   

  Dictionary encoding of string values has  encoding_type = 3   

  No encoding has  encoding_type = 4      

   row_count  represents number of rows in the segment.  

   has_null  indicates if the data has null values.  

   magnitude  is the magnitude used for value-based encoding. For other encoding 
types, it returns -1.  

   min_data_id  and  max_data_id  represent the minimum and maximum values 
in a column within the segment. SQL Server analyzes these values during 
query execution and eliminates segments that do not store values that satisfy 
query predicates. This process works in a way similar to partition elimination in 
partitioned tables.  

   null_value  represents the value used to indicate nulls.  

   on_disk_size  indicates the size of a segment in bytes.     

    sys.column_store_dictionaries   
 The  sys.column_store_dictionaries  view provides information about the dictionaries used by a 
columnstore index. Listing  33-12  shows the code that you can use to examine the list of dictionaries. 
Figure  33-22  illustrates the query output.  
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     Listing 33-12.    Examining the  sys.column_store_dictionaries  view   

 select p.partition_number as [partition], c.name as [column], d.column_id, d.dictionary_id 
         ,d.version, d.type, d.last_id, d.entry_count 
         ,convert(decimal(12,3),d.on_disk_size / 1024.0 / 1024.0)  as [Size MB] 
 from sys.column_store_dictionaries d join sys.partitions p on 
             p.partition_id = d.partition_id 
         join sys.indexes i on 
             p.object_id = i.object_id 
         left join sys.index_columns ic on 
             i.index_id = ic.index_id and     
             i.object_id = ic.object_id and 
             d.column_id = ic.index_column_id 
         left join sys.columns c on 
             ic.column_id = c.column_id and 
             ic.object_id = c.object_id 
 where i.name = 'IDX_FactSales_ColumnStore' 
 order by p.partition_number, d.column_id 

   The columns in the output represent the following:

    column_id  is the ID of a column in the index.  

   dictionary_id  is the ID of a dictionary.  

   version  represents a dictionary format. SQL Server 2012, 2014, and 2016 return 1 
as its value.  

   type  represents the type of values stored in a dictionary. It can have one of the 
following three values:

   Dictionary containing integer values is specified by  type = 1   

  Dictionary containing string values is specified by  type = 3   

  Dictionary containing float values is specified by  type = 4      

   last_id  is the last data ID in a dictionary.  

   entry_count  contains the number of entries in a dictionary.  

   on_disk_size  indicates the size of a dictionary in bytes.          

  Figure 33-22.     sys.column_store_dictionaries  output       
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     Design Considerations and Best Practices for Columnstore 
Indexes 
 The subject of designing efficient data warehouse solutions is very broad and impossible to cover completely 
in this book. However, it is equally impossible to avoid such a discussion entirely. 

     Reducing Data Row  Size   
 Regardless of the indexing technologies in use, most I/O activity in data warehouse systems is related to 
scanning facts tables’ data. The efficient design of facts tables is one of the key factors in data warehouse 
performance. 

 It is always advantageous to reduce the size of a data row, and it is even more critical in the case of facts 
tables in data warehouses. By making data rows smaller, we reduce the size of the table on-disk and the 
number of I/O operations during a scan. Moreover, it reduces the memory footprint of the data and makes 
batch mode execution more efficient because of better utilization of the internal CPU cache. 

 As you will remember, one of the key factors in reducing data size is the use of correct data types for 
values. You can think about storing Boolean values in  int  data types, or using  datetime  when a value 
requires up to the minute precision as examples of bad design. Always use the smallest data type that can 
store column values and that provides the required precision for the data.  

     Giving SQL Server as Much Information as Possible 
 Knowledge is power. The more SQL Server knows about the data, the better the chances are that an efficient 
execution plan is generated. 

 Unfortunately, the nullability of columns is one of the most obvious but frequently overlooked factors. 
Defining columns as  NOT NULL  when appropriate helps Query Optimizer and in some cases reduces the 
storage space required for the data. It also allows SQL Server to avoid unnecessary encoding in columnstore 
indexes and during batch mode execution. 

 Consider a  bigint  column as an example. When this column is defined as  NOT NULL , the value fits into 
a single CPU register, and therefore operations on the value can be performed more quickly. Alternatively, 
a nullable  bigint  column requires another, 65th bit to indicate  NULL  values. When this is the case, SQL 
Server avoids cross-register data storage by storing some of the row values (usually the highest or lowest 
values) in main memory using special markers to indicate it in the data that resides in the CPU cache. As you 
can probably guess, this approach adds extra load during execution. As a general rule, it is better to avoid 
nullable columns in data warehouse environments. It is also beneficial to use  CHECK  constraints and  UNIQUE  
constraints or indexes when overhead introduced by constraints or unique indexes is acceptable.  

      Maintaining Statistics   
 Creating and maintaining statistics is a good practice that benefits any SQL Server system. As you know, up-
to-date statistics help Query Optimizer generate more efficient execution plans. 

 Columnstore indexes behave differently than B-Tree indexes do regarding statistics. SQL Server creates 
a statistics object at the time of columnstore index creation; however, it is neither populated nor updated 
afterward. SQL Server relies on segment information, B-Tree indexes (when available), and column-level 
statistics when deciding if a columnstore index needs to be used. 

 It is beneficial to create missing column-level statistics on the columns that participate in a columnstore 
index and are used in query predicates and as join keys. 
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 Remember to update statistics, keeping them up to date after you load new data to a data warehouse. 
Statistics rarely update automatically on very large tables.  

     Avoiding String Columns in  Fact Tables   
 Generally, you should minimize the use of string columns in facts tables. String data uses more space, and 
SQL Server performs extra encoding when working with such data during batch mode execution. Moreover, 
queries with predicates on string columns may have less efficient execution plans that also require 
significantly larger memory grants as compared to their non-string counterparts. SQL Server 2012 and 2014 
do not push string predicates down toward the lowest operators in execution plans. 

 Let’s look at an example of such behavior. The code shown in Listing  33-13  adds an  ArticleCategory  
column to the  dbo.FactSales  table, populating it with values from the  dbo.DimArticles  table. As a final 
step, the code recreates the columnstore index, adding a new column there. Obviously, you should not 
design database schemas this way, as you don’t want to keep redundant attributes in facts tables. 

     Listing 33-13.    String columns in facts tables: Table  schema changes     

  drop index IDX_FactSales_ColumnStore on dbo.FactSales; 
 alter table dbo.FactSales add ArticleCategory nvarchar(32) not null default ''; 
 go 

   update t 
 set t.ArticleCategory = a.ArticleCategory 
 from dbo.FactSales t join dbo.DimArticles a on 
     t.ArticleId = a.ArticleId; 

   create nonclustered columnstore index IDX_FactSales_ColumnStore 
 on dbo.FactSales(DateId, ArticleId, BranchId, Quantity, UnitPrice, Amount, ArticleCategory); 

    As a next step, let’s run two similar queries that calculate the total amount of sales for a particular 
branch and article category. The queries are shown in Listing  33-14 . The first query uses a  dbo.DimArticle  
dimensions table for category filtering, while the second query uses an attribute from the facts table. 

     Listing 33-14.    String columns in facts tables:  Test queries     

  select sum(s.Amount) as [Sales] 
 from dbo.FactSales s join dbo.DimBranches b on 
         s.BranchId = b.BranchId 
     join dbo.DimArticles a on 
         s.ArticleId = a.ArticleId 
 where 
         b.BranchNumber = N'3' and 
         a.ArticleCategory = N'Category 4'; 

   select sum(s.Amount) as [Sales] 
 from dbo.FactSales s join dbo.DimBranches b on 
         s.BranchId = b.BranchId 
 where 
         b.BranchNumber = N'3' and 
         s.ArticleCategory = N'Category 4'; 
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    The partial execution plan for the first query, performed in SQL Server 2012, is shown in Figure  33-23 . As 
you can see, SQL Server pushes both predicates on the  BranchId  and  ArticleId  columns to the  columnstore 
index scan operator  , filtering out unnecessary rows during a very early stage of the execution. SQL Server 2014 
and 2016 would generate a slightly different plan; however, they would use the same approach, evaluating 
predicates during a columnstore index scan.  

   Table 33-7.    Execution Times of the First Query   

 CPU Time (ms)  Elapsed Time (ms) 

 SQL Server 2012  61  22 

 SQL Server 2014  32  11 

 SQL Server 2016  28  10 

  Figure 33-24.    Execution plan for a query that uses a  string attribute   in the facts table to filter the article 
category (prior to SQL Server 2016)       

 Table  33-7  shows execution times of the queries in my environment. As you can see, SQL Server 2014 
and 2016 are slightly faster than SQL Server 2012; however, all versions of SQL Server ran efficiently.  

  Figure 33-23.    Execution plan for a query that uses a dimensions table to filter the article category       

 With the second query, neither SQL Server 2012 nor 2014 pushed a string predicate on the 
 ArticleCategory  column to the columnstore index scan operator. Both versions of SQL Server used an 
additional filter operator afterward. This introduced the overhead of loading unnecessary rows during the 
index scan. You can see a partial execution plan of the second query in Figure  33-24 .  

 SQL Server 2016 generates a different execution plan that pushes the string predicate toward the 
columnstore index scan operator, as shown in Figure  33-25 .  
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 As you can see in Table  33-8 , in SQL Server 2016, the execution time of the second query did not 
change. This was not the case in SQL Server 2012 and 2014, where evaluating the string predicate in the filter 
operator slowed down queries dramatically.  

  Figure 33-25.    Execution plan for a query that uses a  string attribute   in the facts table to filter the article 
category (SQL Server 2016)       

 Obviously, in some cases string attributes become part of the facts and should be stored in facts tables. 
However, in a large number of cases, you can add another dimensions table and replace the string value in 
the facts table with a synthetic, integer-based  ID  key that references a new table. 

 You already saw one such example of this with the  ArticleCategory  data. As another example, you 
may consider a situation where the facts table needs to specify the currency of a sale. Rather than storing a 
currency code (USD, EUR, GBP, and so forth) in a facts table, you can create a  dbo.DimCurrency  dimensions 
table and reference it with a  tinyint  or  smallint CurrencyID  column. This approach can significantly 
improve the performance of queries against facts tables in data warehouse environments, especially in SQL 
Server prior to 2016.   

     Summary 
 Columnstore indexes are an Enterprise Edition feature introduced in SQL Server 2012. In contrast to B-Tree 
indexes that store data on a per-row basis, columnstore indexes store unsorted and compressed data on a 
per-column basis. 

 Columnstore indexes are beneficial in data warehouse environments where typical queries perform a 
scan and aggregation of data from facts tables, selecting just a subset of table columns. 

   Table 33-8.    Execution Times of the Second Query   

 CPU Time (ms)  Elapsed Time (ms) 

 SQL Server 2012  266  90 

 SQL Server 2014  187  65 

 SQL Server 2016  30  11 
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 Columnstore indexes reduce the I/O load and memory usage during query execution. Only the 
columns that are referenced in a query are processed. Moreover, SQL Server introduced a batch mode 
execution model that utilizes columnstore indexes. Rather than accessing data on a row-by-row basis, in 
batch mode execution SQL Server performs operations against a batch of rows, keeping them in the fast CPU 
cache whenever possible. Batch mode execution can significantly improve query performance and reduce 
query execution time. 

 Several factors improve the efficiency of data warehouse database systems. You should endeavor to 
reduce row and column sizes by using appropriate data types; avoid nullable columns; use  CHECK  and 
 UNIQUE  constraints when appropriate, and avoid using string columns in facts tables when possible.     
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    CHAPTER 34   

 Columnstore Indexes                          

 This chapter provides an overview of the different columnstore index types available in various  versions   of 
SQL Server. It discusses their internal structure as well as best practices for data loading and maintenance. 

     Columnstore Index Types 
 As mentioned in the previous chapter, there are several different types of columnstore indexes supported in 
SQL Server. Unfortunately, the terminology is quickly become confusing and version-specific. For example, 
 nonclustered columnstore indexes  in SQL Server 2012/2014 and in SQL Server 2016 are, in a nutshell, very 
different objects; however, they are called the same thing in the documentation. 

 Table  34-1  shows what types of columnstore indexes are supported in different versions of SQL Server.  

   Table 34-1.    Columnstore Index  Types   Available in SQL Server   

 SQL Server 2012  SQL Server 2014  SQL Server 2016 

 Read-only nonclustered columnstore indexes on heap/B-Tree 
clustered indexes 
 (they make a table read-only) 

 Updateable nonclustered 
columnstore indexes on heap/
B-Tree clustered indexes. 

 Clustered columnstore index as the single index on the table 

 Clustered columnstore index with 
nonclustered B-Tree indexes 

 Clustered columnstore index on 
memory-optimized tables 
 (will be covered in the Chapter   35    ) 

 ■   Note   You can read more about columnstore index features supported in different versions of SQL Server at 
   https://msdn.microsoft.com/en-us/library/dn934994.aspx     .  

 Regardless of the type, columnstore indexes have several limitations in common. They cannot have 
more than 1,024  columns   or include sparse columns. You cannot define them as  UNIQUE  or use them with 
the tables that utilize  FILESTREAM  or replication, nor can they be created on an indexed view. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_35
https://msdn.microsoft.com/en-us/library/dn934994.aspx
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 Moreover, the following data types are not supported:  binary ,  varbinary ,  (n)text ,  image , 
 (n)varchar(max) ,  timestamp ,  CLR ,  sql_variant , and  xml . In addition, SQL Server 2012 does not support 
the following data types:  uniqueidentifier ,  decimal , and  numeric  with precision greater than 18 digits, or 
 datetimeoffset  with precision greater than 2 digits. 

 Let’s look at the different types of columnstore indexes in depth.  

     Read-Only Nonclustered Columnstore  Indexes   
(SQL Server 2012–2014) 
 Read-only nonclustered columnstore indexes were introduced in SQL Server 2012, and they were the 
only columnstore index type supported in this version. In this section, I will refer to them as  nonclustered 
columnstore indexes  (NCCI); however, I would like to repeat that they are implemented and behave 
differently from nonclustered columnstore indexes in SQL Server 2016. 

 A nonclustered columnstore index can include up to 1,024 non-sparse columns. Due to the nature of the 
index, it does not matter in what order the columns are specified; that is, data is stored on a per-column basis. 

 Similar to B-Tree nonclustered indexes, nonclustered columnstore indexes include a  row-id,  which is 
either a clustered index key value or the physical location of a row in a heap table. This behavior allows SQL 
Server to use the  columnstore index scan  operation to perform a  key lookup  afterward. It is worth repeating 
that columnstore indexes do not support seek operations, because the data in those indexes is not sorted, as 
you saw in the previous chapter. 

 Listing  34-1  shows an example of a query that uses a columnstore index scan with key lookup operators, 
using the  dbo.FactSales  table defined in the previous chapter. 

     Listing 34-1.    Query that triggers key lookup operation   

 select OrderId, Amount, TaxAmt 
 from dbo.FactSales 
 where ArticleId = 10 

   Figure  34-1  shows the execution plan for this query. You can see that the  OrderId  column is included 
in the output list of the columnstore index scan. That column has not been explicitly defined in the 
columnstore index; however, it is part of the clustered index key in the table.  

  Figure 34-1.    Execution plan for this query       
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 The creation of a columnstore index is a very  memory intensive operation  . When you create a 
columnstore index in SQL Server 2012, it requests a memory grant of a size that you can roughly estimate 
with the following formula: 

   Memory Grant Request (MB) = 
          (4.2 * Number of columns in the index + 68) * (Degree of Parallelism) + 
          (Number of text columns in the index * 34) 

   For example, the columnstore  index   created in Listing 33-3 in the previous chapter requested a memory 
grant of 394 MB in my environment, which is fairly close to the  (4.2 * 7 (6 index columns + OrderId) + 
68) * 4 = 390 MB  calculated with the formula. The size of the memory grant does not depend on the size of 
the table. As you will see later, SQL Server processes data in batches of about one million rows each. 

 The index creation process fails in cases of insufficient memory. There are two ways to solve this 
problem besides adding more memory to the server. The first is to reduce the degree of parallelism with the 
 MAXDOP  index option. While this option reduces the memory requirements for a query, it increases the index 
creation time proportionally to the decrease of DOP. 

 The second option is to change the   REQUEST_MAX_MEMORY_GRANT_PERCENT  property   of the workload 
group in Resource Governor. By default, the size of the query memory grant is limited to 25 percent of the 
available workspace memory, which you can increase for the duration of the   CREATE INDEX  statement  . 

 The index creation algorithm has been improved in SQL Server 2014. In contrast to SQL Server 2012, 
which uses a degree of parallelism that matches either the server or index DOP options, SQL Server 2014 
automatically adjusts the DOP based on available memory. This behavior decreases the chance that the 
index creation process will fail due to an out-of-memory condition. 

 The biggest limitation of nonclustered columnstore indexes is that a table with such an index becomes 
read-only. You cannot change data in the table after the index is created. This limitation, however, is 
not as critical in a data warehouse environment where data is usually static and updated on schedule. 
Unfortunately, this limitation prevents nonclustered columnstore indexes from being used in operational 
analytics scenarios in SQL Server 2012 and 2014. 

 Tables with columnstore indexes support a partition switch, which is a great option for importing data 
into the table. You can create a staging table, use it as the target for data import, then add a columnstore 
index to the staging table when the import is completed, and then switch the staging table to be the new 
partition in the main read-only table as the last step of the operation. Listing  34-2  shows an example of this. 

     Listing 34-2.    Importing data into a table with a nonclustered columnstore index using a staging table and 
partition  switch     

  create partition function pfFacts(int) as range left for values (1,2,3,4,5); 
 create partition scheme psFacts as partition pfFacts all to ([FG2016]); 
 go 

   create table dbo.FactTable 
 ( 
     DateId int not null, 
     ArticleId int not null, 
     OrderId int not null, 
     Quantity decimal(9,3) not null, 
     UnitPrice money not null, 
     Amount money not null, 
     constraint PK_FactTable 
     primary key clustered(DateId, ArticleId, OrderId) 
     on psFacts(DateId) 
 ); 
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   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows 
 ,IDs(ID) as (select ROW_NUMBER() over (order by (select NULL)) from N5) 
 insert into dbo.FactTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount) 
     select ID % 4 + 1, ID % 100, ID, ID % 10 + 1, ID % 15 + 1 , ID % 25 + 1 
     from IDs; 

   create nonclustered columnstore index IDX_FactTable_Columnstore 
 on dbo.FactTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount) 
 on psFacts(DateId); 

   create table dbo.StagingTable 
 ( 
     DateId int not null, 
     ArticleId int not null, 
     OrderId int not null, 
     Quantity decimal(9,3) not null, 
     UnitPrice money not null, 
     Amount money not null, 

       constraint PK_StagingTable 
     primary key  clustered  (DateId, ArticleId, OrderId) 
     on [FG2016], 

       constraint CHK_StagingTable check(DateId = 5) 
 ); 

   /*** Step 1: Importing data into a staging table ***/ 
 ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows 
 ,IDs(ID) as (select ROW_NUMBER() over (order by (select null)) from N5) 
 insert into dbo.StagingTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount) 
     select 5, ID % 100, ID, ID % 10 + 1, ID % 15 + 1 , ID % 25 + 1 
     from IDs; 

   /*** Step 2: Creating nonclustered columstore index ***/ 
 create nonclustered columnstore index IDX_StagingTable_Columnstore 
 on dbo.StagingTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount) 
 on [FG2016]; 

   /*** Step 3: Switching a staging table to be the new partition of the main table ***/ 
 alter table dbo.StagingTable switch to dbo.FactTable partition 5; 



CHAPTER 34 ■ COLUMNSTORE INDEXES

691

 ■      Tip   You can use a partitioned view that combines data from updatable tables and read-only tables with 
columnstore indexes. However, using the  UNION ALL  clause in SQL Server 2012 disables batch mode execution.   

     Clustered Columnstore Indexes (SQL Server 2014–2016) 
 The read-only nature of nonclustered columnstore indexes in SQL Server 2012 seriously affected the 
adoption of the technology. Even though data partitioning and partition switches could help to work around 
this limitation, they require complex and often cumbersome implementations. 

 Starting with SQL Server 2014, you can store data in column-based storage using   clustered columnstore 
indexes  (CCI)  . In SQL Server 2014, a  CCI   is a single instance of the data in a table, and tables with clustered 
columnstore indexes cannot have any other indexes defined—neither  B-Tree   nor nonclustered columnstore 
indexes. In SQL Server 2016, however, you can define nonclustered B-Tree indexes on tables with clustered 
columnstore indexes. Finally, neither SQL Server 2014 nor 2016 allows you to define triggers on the table. 

 In SQL Server 2014, clustered columnstore indexes have several other limitations in addition to the 
list provided in the beginning of this chapter. A table cannot reference other tables nor be referenced 
with foreign key constraints. You cannot query tables with clustered columnstore indexes on readable 
secondaries in AlwaysOn Availability Groups. 

 SQL Server 2016 removes those limitations; however, supporting uniqueness, referential integrity, and 
primary key constraints will require the creation of nonclustered B-Tree indexes. 

 There are still some features that do not work with clustered columnstore indexes. For example, 
replication, change tracking, and change data capture are not supported, even in SQL Server 2016. 

 You can create a clustered columnstore index with the   CREATE CLUSTERED COLUMNSTORE INDEX  
command  . You do not need to specify any columns in the statement—the index will include all table 
columns. This adds further restrictions on the column data types, as we discussed in the beginning of this 
chapter. 

     Internal Structure 
  Clustered columnstore indexes   use the same storage format as nonclustered columnstore indexes use, 
storing columnstore data in row groups. However, they have two additional elements that support data 
modifications. The first is  delete bitmap , which indicates which rows were deleted from a table. The second 
structure is   delta store   , which includes newly inserted rows. Both delta store and delete bitmap use the 
B-Tree format to store data. Moreover, SQL Server 2016 uses several other structures to support nonclustered 
B-Tree indexes. We will discuss these later. 

 ■   Note   SQL Server’s use of delete bitmaps and delta stores is transparent to users, which makes the relevant 
terminology confusing. You will often see delta stores referenced as another row group in documentation and 
technical articles. Moreover, a delete bitmap is often considered a part of a delta store and/or row group. 

 To avoid confusion, I will use the following terminology in this chapter. The term  row group  references data 
stored in a column-based storage format. I will explicitly reference  delta stores  and  delete bitmaps  as two 
separate sets of internal objects as needed.  
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 Figure  34-2  illustrates the structure of a clustered columnstore index in a table that has two  partitions.   
Each partition can have a single delete bitmap and multiple delta stores. This structure makes each partition 
self-contained and independent from other partitions, which allows you to perform a partition switch on 
tables that have clustered columnstore indexes defined.  

  Figure 34-2.    Clustered columnstore index structure       

 It is worth noting that delete bitmaps and delta stores are created  on demand . For example, a delete 
bitmap would not be created unless some of the rows in the row groups were deleted. 

 Every time you delete a row that is stored in a row group (not in a delta store), SQL Server adds 
information about the deleted row to the delete bitmap. Nothing happens to the original row. It is still stored 
in a row group. However, SQL Server checks the delete bitmap during query execution and excludes deleted 
rows from the processing. 

 As already mentioned, when you insert data into a columnstore index, it goes into a delta store, which 
uses a  B-Tree format.   Updating a row that is stored in a row group does not change the row data. Such an 
update triggers the deletion of the row, which is, in fact, insertion to a delete bitmap, and insertion of a new 
version of a row to a delta store. However, any data modifications of the rows in a delta store are done the 
same way as in regular B-Tree indexes—by updating and deleting actual rows there. You will see one such 
example later in this chapter. 

 Each delta store can be in either an  open  or a  closed  state. Open delta stores accept new rows and allow 
modifications and deletions of data. SQL Server closes a delta store when it reaches 1,048,576 rows, which 
is the maximum number of rows that can be stored in a row group. Another SQL Server process, called  tuple 
mover , runs every five minutes and converts closed delta stores to row groups that store data in a column-
based storage format. 

 Alternatively, you can force the conversion of closed delta stores to row groups by reorganizing an index 
with the   ALTER INDEX REORGANIZE  command.   While both approaches achieve the same goal of converting 
closed delta stores to row groups, their implementation is slightly different. Tuple mover is a single-threaded 
process that works in the background, preserving system resources. Alternatively, index reorganizing runs in 
parallel using multiple threads. This approach can significantly decrease conversion time at a cost of extra 
CPU load and memory usage. 

 ■   Note   You can disable the background tuple mover process with trace flag  T634 .  
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 Neither tuple mover nor index reorganizing prevent other sessions from inserting new data into a table. 
New data will be inserted into different and open delta stores. However, deletions and data modifications 
would be blocked for the duration of the operation. In some cases, you may consider forcing index 
reorganization manually to reduce execution, and therefore locking, time. 

 You can examine the state of row groups and delta stores with the  sys.column_store_row_groups  view. 
Figure  34-3   illustrates   the output of this view, which returns the combined information of all columnstore 
index objects. Rows in  OPEN  or  CLOSED  state correspond to delta stores. Rows in  COMPRESSED  state correspond 
to row groups with data in a column-based storage format. Finally, the  deleted_rows  column provides 
statistics about deleted rows stored in a delete bitmap.  

  Figure 34-3.      Sys.column_store_row_groups  view output         

 As you can see, the second row in the view output from Figure 35-2 shows the closed delta store that 
has yet to be picked up by the tuple mover process. The situation will change after the tuple mover process 
converts the closed delta store to a row group on its next scheduled run. Figure  34-4  shows the output from 
a view in SQL Server 2014 after this occurs. As you can see, the  row_group_id  of the converted row group 
changed. Tuple mover created a new row group, dropping the closed delta store afterward. It is worth 
noting that in SQL Server 2016 the old row group will be present in the output in  TOMBSTONE  state until it is 
deallocated.   

  Figure 34-4.     Sys.column_store_row_groups  view output after tuple mover process execution       

     Data Load 
 Two different types of  data load   can insert data into a columnstore index. The first type is  bulk insert , 
which is used by the  BULK INSERT  operator, the  bcp  utility, and other applications that utilize the bulk 
insert API. The second type, called  trickle inserts,  are regular  INSERT  operations that do not use the bulk 
insert API. 

 Bulk insert operations provide the number of rows in the batch as part of the API call. SQL Server 
inserts data into newly created row groups if that size exceeds a threshold of 102,400 rows. Depending 
on the size of the batch, one or more row groups can be created, and some rows may be stored in a delta 
store. 

 Table  34-2  illustrates how data from different batches are distributed between row groups and delta 
stores.  
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 SQL Server loads columnstore data to memory on  a   per-segment basis, and, as you remember, 
segments represent data for a single column in a row group. It is more efficient to load and process a smaller 
number of fully populated segments as compared to a large number of partially populated segments. An 
excessive number of partially populated row groups negatively affect SQL Server performance. I will provide 
an example of this later in the chapter. 

 If you bulk load data to a table with a clustered columnstore index, you will achieve the best results by 
choosing a batch size that is divisible by 1,048,576 rows. This will guarantee that every batch produces one 
or several fully populated row groups, reduce the total number of row groups in a table, and improve query 
performance. Do not exceed this number, however, because the batch would not fit into a single row group. 

 Batch size is less important for non-bulk  operations  . Trickle inserts go directly to a delta store. In some 
cases, SQL Server can still create row groups on the fly in a manner to similar a bulk insert when the size of 
the insert batch is close to or exceeds 1,048,576 rows. You should not rely on this behavior, however.  

     Delta Store and Delete Bitmap 
 Let’s analyze the structure of delta stores and delete bitmaps and look at the format of their rows. As a first 
step, let’s create a table, populate it with data, and define a clustered columnstore index there. Finally, we 
will look at segments and row groups with the  sys.column_store_segments  and  sys.column_store_row_
groups  views. 

 Listing  34-3  shows the code that does just that. I am using the  MAXDOP=1  option during the index 
creation stage to minimize the number of partially populated row groups in the index. 

     Listing 34-3.    Delta store and delete bitmap: Test  table creation        

  create table dbo.CCI 
 ( 
     Col1 int  not null, 
     Col2 varchar(4000) not null, 
 ); 

   ;with N1(C) as (select 0 union all select 0) -- 2 rows 
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows 
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows 
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows 
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows 
 ,N6(C) as -- 1,048,592 rows 
 ( 
     select 0 from N5 as T1 cross join N3 as T2 

   Table 34-2.    Batch Size and Data Distribution During Bulk Insert   

 Batch size  Rows added to row groups 
 (column-based storage) 

 Rows added to delta store 
 (row-based storage) 

 99,000  0  99,000 

 150,000  150,000  0 

 1,048,577  1,048,576  1 

 2,100,000  1,048,576; 1,048,576  2,848 

 2,250,000  1,048,576; 1,048,576; 152,848  0 
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     union all 
     select 0 from N3 
 ) 
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6)       
 insert into dbo.CCI(Col1,Col2) 
     select ID, 'aaa' from IDS; 

   create clustered columnstore index IDX_CS_CLUST on dbo.CCI 
 with (maxdop=1); 

   select g.state_description, g.row_group_id, s.column_id 
     ,s.row_count, s.min_data_id, s.max_data_id, g.deleted_rows 
 from 
     sys.column_store_segments s join sys.partitions p on 
         s.partition_id = p.partition_id 
     join sys.column_store_row_groups g on 
         p.object_id = g.object_id and s.segment_id = g.row_group_id 
 where p.object_id = object_id(N'dbo.CCI') 
 order by g.row_group_id, s.column_id; 

    Figure  34-5  shows the output from the  sys.column_store_segments  and  sys.column_store_row_
groups  views. The columnstore index has two row groups and does not have a delta store or delete bitmap. 
You can see  Col1  values that are stored in both row groups in the  min_data_id  and  max_data_id  columns for 
the rows that have  column_id=1 .  

  Figure 34-5.    Delta store and delete bitmap: Sys.column_store_segments and sys.column_store_row_groups 
output       

 In the next step, shown in Listing  34-4 , we will perform some data modifications in the table. The first 
statement inserts two new rows into the table. The second statement deletes three rows, including one of the 
rows that we just inserted. Finally, we will update another newly inserted row. 

     Listing 34-4.    Delta store and delete bitmap: Data modifications   

  insert into dbo.CCI(Col1,Col2)        
 values (2000000,replicate('c',4000)), (2000001, replicate('d',4000)); 

   delete from dbo.CCI 
 where Col1 in 
     (  100            -- Row group 0 
        ,16150       -- Row group 1 
        ,2000000   -- Newly inserted row (Delta Store) 
     ); 

   update dbo.CCI 
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 set Col2 = replicate('z',4000) 
 where Col1 = 2000001;   -- Newly inserted row (Delta Store) 

    Now, it is time to find the data pages that are used by the delta store and delete bitmap. We will use the 
undocumented  sys.dm_db_database_page_allocations  data management function, as shown in Listing 
 34-5 . This function returns us the information about object page allocations. 

     Listing 34-5.    Delta store and delete bitmap:  Analyzing page allocations        

 select object_id, index_id, partition_id, allocation_unit_type_desc as [Type] 
     ,is_allocated,is_iam_page,page_type,page_type_desc 
     ,allocated_page_file_id as [FileId] 
     ,allocated_page_page_id as [PageId] 
 from sys.dm_db_database_page_allocations(db_id(),object_id('dbo.CCI'),null,null,'DETAILED') 

   You can see the output of this query in Figure  34-6 . As you know, SQL Server stores columnstore 
segments in  LOB_DATA  allocation units. Delta store and delete bitmap use  IN_ROW_DATA  allocation.  

  Figure 34-6.    Delta store and delete bitmap:  Allocation units            

 Let’s look at the data pages using the  DBCC PAGE  command with the code shown in Listing  34-6 . 
Obviously, the database, file, and page IDs would be different in your environment. 

     Listing 34-6.    Delta store and delete bitmap: Analyzing page  data        

 dbcc traceon(3604);  -- Redirecting output to console 
 dbcc page -- Analyzing content of a page 
 (   9        -- Database Id 
     ,1       -- FileId 
     ,306     -- PageId 
     ,3       -- Output style 
 ) 

   Figure  34-7  shows the partial content of a data page that is a delta store page. As you can see, SQL Server 
stores data in regular row-based storage. There is one internal column,   CSILOCATOR ,      in addition to two table 
columns.  CSILOCATOR  is used as an internal unique identifier of the row in the delta store.  
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 Finally, it is worth noting that the row with  Col1=2000000 , which we inserted and deleted after the 
clustered columnstore index was created, is not present in the delta store. SQL Server deletes (and updates) 
rows in the B-Tree delta store the same way as in regular B-Tree tables. 

 You can use the same approach to examine the content of a deleted bitmap data page. In my case, the 
page ID is 308. 

 Figure  34-8  shows the partial output of the   DBCC PAGE  command.      As you can see, the delete bitmap 
includes two columns that uniquely identify a row. The first column is a  row group id  and the second 
column is the offset of the row in the segment. Do not be confused by the fact that the column names match 
table columns.  DBCC PAGE  uses table metadata to prepare the output.  

  Figure 34-7.    Delta store and delete bitmap:  Delta store data page         
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 It is worth noting that in SQL Server 2014 delta stores are page compressed. As we already discussed 
in Chapter   4    , compression can increase the row size and, in some edge cases, disallow the creation of 
columnstore indexes with a very large number of columns. Page compression for delta stores has been 
removed in SQL Server 2016 to address this problem. 

 Delete bitmaps, on the other hand, use page compression in both SQL Server 2014 and 2016.  

     Columnstore Index  Maintenance   
 Updateable columnstore indexes require maintenance that is similar to that of regular B-Tree indexes, 
even though the reasons for doing the maintenance are different. Columnstore indexes do not become 
fragmented; however, they can suffer from a large number of partially populated row groups. Another issue 
is the overhead of delta store and delete bitmap scans during query execution. 

 Let’s run several tests and look at the issues involved in detail. 

  Figure 34-8.    Delta store and delete bitmap: Delete bitmap  page            

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_4
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   Excessive Number of Partially Populated Row Groups 
 For this test, I created two tables with a structure similar to the table we defined in Listing 33-9 in the 
previous chapter when we tested archival compression. I bulk inserted almost 62 million rows with the  bcp  
utility, using 1,000,000-row batches and 102,500-row batches respectively. 

 Figure  34-9  illustrates the row groups in both tables after the import.  

  Figure 34-9.    Row groups after bulk import       

 During the tests, I ran the query from Listing 33-10. The query required SQL Server to perform   MAX()  
aggregation   on 20 columns from the table by scanning all row groups and column segments. 

 Table  34-3  illustrates the execution time and number of I/O operations for the query against both tables. 
As you can see, the query against the table with partially populated row groups took a considerably longer 
time to execute.  

   Table 34-3.    Execution Statistics for the Tables with Fully and Partially Populated Row Groups   

 Fully populated row groups  Partially populated row 
groups 

 SQL Server 2014  Elapsed / CPU Time  1,735 ms / 6,202 ms  2,450 ms / 7,418 ms 

 Logical Reads  177,812  192,533 

 SQL Server 2016  Elapsed / CPU Time  1,405 ms / 5,500 ms  1,603 ms / 6,162 ms 

 Logical Reads  118,197  192,533 

 It is worth noting that the performance of batch inserts was also affected by smaller batch sizes. In the 
case of 1,000,000-row batches, my system was able to insert about 143,750 rows per second, compared to 
129,830 rows per second in the case of the 102,500-row batches. 

 Loading data in smaller batches puts new data into the delta store and produces fully populated row 
 groups   afterward. However, insert performance is seriously affected. For example, when I inserted data in 
99,999-row batches, my system was able to insert only 55,500 rows per second.  

   Large Delta Stores 
 For the next step, let’s look at how large delta stores affect the performance of queries. SQL Server needs to 
scan these delta stores during query execution. 

 For this test, I inserted 1,000,000 rows in small batches into the delta store of the first table from the 
previous test (the table that had row groups fully populated). After that, I rebuilt the columnstore index, 
comparing the execution time of the test query before and after the index rebuild. 
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 The index rebuild process moved all data from the delta store to row groups. You can see the status of 
the row groups and the delta store before (on the left side) and after (on the right side) the index rebuild in 
Figure  34-10 .  

  Figure 34-10.    Row groups and delta store after insertion of 1,000,000  rows         

   Table 34-4.    Execution Time and Delta Store Size   

 Empty delta store 
 (Elapsed / CPU time) 

 1,000,000 rows in delta store 
 (Elapsed / CPU time) 

 SQL Server 2014  1,767 ms / 6,235 ms  2,557 ms / 8,781 ms 

 SQL Server 2016  1,507 ms / 5,723 ms  2,916 ms / 8,512 ms 

  Figure 34-11.    Row groups after deletion of 30,000,000  rows         

 Table  34-4  illustrates the execution times of the test query in both scenarios, and it shows the overhead 
introduced by the large delta store scan during query execution. It is worth noting that this overhead is bigger in 
SQL Server 2016 where the delta store is not using page compression and requires more I/O operations to scan.   

   Large Delete Bitmap 
 Finally, let’s see how delete bitmaps affect query performance. For that test, I deleted almost 30,000,000 rows 
from a table.     

 You can see the row groups’ information in Figure  34-11 .  
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 The test query needs to validate that rows have not been deleted during query execution. Similar to 
the previous test, this adds considerable overhead. Table  34-5  shows the execution time of the test query, 
comparing it to the execution time of the query before the data deletion.   

   Table 34-5.    Execution Time and Delete Bitmap   

 Empty delete bitmap 
 (Elapsed / CPU time) 

 Delete bitmap with large number of rows 
 (Elapsed / CPU time) 

 SQL Server 2014  1,767 ms / 6,235 ms  3,995 ms / 11,421 ms 

 SQL Server 2016  1,507 ms / 5,723 ms  3,049 ms / 10,611 ms 

   Index Maintenance Options 
 You can address all of these performance issues by rebuilding the columnstore index, which you can trigger 
with the   ALTER INDEX REBUILD  command.      The index rebuild forces SQL Server to remove deleted rows 
physically from the index and to merge the delta stores’ and row groups’ data. All column segments are 
recreated with row groups fully populated. 

 Similar to index creation, the index rebuild process is very resource intensive. Moreover, as with the 
regular index rebuild process, it holds a  schema modification (Sch-M)   lock on the table, thus preventing 
other sessions from accessing it. Unfortunately, a columnstore index rebuild is an offline operation, and so 
you cannot use the  ONLINE=ON  clause with it. 

 Similar to B-Tree indexes, you can mitigate the overhead of an index rebuild by utilizing  table/index 
partitioning . You can rebuild indexes on a partition basis and only do so for partitions that have volatile data. 
Old facts table data in most data warehouse solutions is relatively static, and ETL processes usually load new 
data only. Partitioning by date in this scenario localizes modifications within the scope of one or very few 
partitions. This can help you dramatically reduce the overhead of an index rebuild. 

 As we already discussed, columnstore indexes support an online index reorganize process, which you 
can trigger with the   ALTER INDEX REORGANIZE  command.      The term  index reorganize  is a bit vague here; you 
can think of it as a tuple mover process running on demand. In  SQL Server 2014 , the only action performed 
by index reorganization, by default, is compressing and moving the data from closed delta stores to row 
groups. Delete bitmap and open delta stores stay intact. 

 In  SQL Server 2016 , index reorganize also performs additional defragmentation, as follows:

   It removes deleted rows from row groups that have 10 or more percent of the 
rows logically deleted.  

  It merges closed row groups together, keeping the total number of rows less than 
or equal to 1,024,576.    

 Both processes can be done together. For example, if you have two row groups, one that has 
500,000 total with 100,000 deleted rows and one that has 750,000 total with 250,000 deleted rows, the 
defragmentation process will merge them into another row group with 900,000 rows total, physically 
removing all deleted rows from the merged row group. 

 You can use the  ALTER INDEX REORGANIZE WITH (COMPRESS_ALL_ROW_GROUPS = ON)  statement to close 
and compress all open row groups. SQL Server does not merge row groups during this operation. 

 In contrast to a single-threaded tuple mover process, the  ALTER INDEX REORGANIZE  operation uses all 
available system resources while it is running. This can significantly speed up the execution process and 
reduce the time during which other sessions cannot modify or delete data in a table. It is worth noting again 
that insert processes are not blocked during this time. 
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 A columnstore index’s maintenance strategy should depend on the volatility of the data and the ETL 
processes implemented in the system. You should rebuild indexes when a table has a considerable amount 
of deleted rows and/or a large number of partially populated row groups. 

 It is also advantageous to rebuild partition(s) that still have a large number of rows in open delta stores 
after the ETL process has completed, especially if the ETL process does not use a bulk insert API.   

      Nonclustered B-Tree Indexes   (SQL Server 2016) 
 As I already mentioned, in SQL Server 2014, the clustered columnstore index is the only copy of the data 
in the table. You cannot create any other columnstore or B-Tree indexes there. This restriction has been 
removed in SQL Server 2016, which allows you to define nonclustered B-Tree indexes on tables with 
 clustered columnstore indexes.    

 Nonclustered B-Tree indexes, in a nutshell, allow you to optimize OLTP queries against those tables. 
Consider a situation where you store all  current  and  historical  data in a system that handles OLTP activity 
against current hot data and analysis/reporting activity against historical data. One of the common 
implementations in this schema is the use of partitioned views that store historical data in tables with 
column-based storage. 

 There are still cases, however, when you need to run OLTP queries against historical data. For example, 
in Point-of-Sale  systems   customers may want to look up the old order record. Nonclustered B-Tree indexes 
can help you to optimize those queries and avoid scanning the columnstore index. 

 Nonclustered B-Tree indexes also allow you to define and enforce primary key and unique constraints 
on the clustered columnstore index tables. They also allow such tables to reference or be referenced by 
foreign key constraints. All of this helps to improve data quality in data warehouse systems. 

 When a table with a clustered columnstore index is partitioned, which is usually the case, SQL Server 
also partitions nonclustered B-Tree indexes, aligning them with the columnstore index. This may prevent 
you from defining the uniqueness of the index unless you include a partition column in the index key. 

 Figure  34-12  shows the partition of the clustered columnstore index with a nonclustered B-Tree index 
created. Nonclustered B-Tree indexes use the columnstore index locator as the row-id, which references the 
rows in the clustered columnstore index.  

  Figure 34-12.    Partition of the table with clustered columnstore and nonclustered B-Tree  indexes             

 There are cases when rows in the columnstore indexes can be moved to different locations; for example, 
when delta stores are compressed or row groups are merged. When it happens, SQL Server does not update 
the row-id in the nonclustered indexes but rather uses another internal component, called the  mapping 
index , which contains information about old and new row locations. 
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 Let’s look at the following example. Listing  34-7  shows code that creates a table with clustered 
columnstore and nonclustered B-Tree indexes and populates it with some data. 

     Listing 34-7.    Query that uses nonclustered B-Tree  index           

  create table dbo.CCIWithNI 
 ( 
     Col1 int not null, 
     Col2 int not null, 
     Col3 int not null 
 ); 

   insert into dbo.CCIWithNI(Col1, Col2, Col3) 
 values(1,1,1), (2,2,2); 

   create clustered columnstore index CCI_CCIWithNI on dbo.CCIWithNI; 

   insert into dbo.CCIWithNI(Col1, Col2, Col3) 
 values(100,100,100),(200,200,200); 

   create nonclustered index IDX_CCIWithNI_Col3 on dbo.CCIWithNI(Col3); 

    At this stage, the columnstore index will have one compressed row group and one open delta store. You 
can examine it with the new SQL Server 2016 data management view  sys.dm_db_column_store_row_group_
physical_stats , which provides you with information about row groups in columnstore indexes. 

 Listing  34-8  shows the query that uses this view. Figure  34-13  illustrates the output of the query.  

     Listing 34-8.    Analyzing the row groups in the index   

 select object_id, index_id, partition_number, row_group_id,generation, state_desc 
     ,total_rows, deleted_rows 
 from sys.dm_db_column_store_row_group_physical_stats 
 where object_id =  object_id(N'dbo.CCIWithNI'); 

  Figure 34-13.    Columnstore index row  groups             

   Another new SQL Server 2016 view— sys.internal_partitions —provides information about internal 
columnstore index objects. You can see the query that uses this view in Listing  34-9 . 

     Listing 34-9.    Columnstore index internal objects   

 select ip.object_id, ip.index_id, ip.partition_id, ip.row_group_id, ip.internal_object_type 
        ,ip.internal_object_type_desc, ip.rows, ip.data_compression_desc, ip.hobt_id 
 from sys.internal_partitions ip 
 where ip.object_id = object_id(N'dbo.CCIWithNI'); 

   Figure  34-14  illustrates the output of this query. As you can see, at this stage the clustered columnstore 
index has delta store and delete bitmap without a mapping index present.  
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 Let’s look at the internal structure of a nonclustered B-Tree index. Listing  34-10  shows a query that 
returns information about index page allocation. It is using the nonclustered index ID (2) as the parameter of 
the call. Figure  34-15  shows the  output   of the query.  

     Listing 34-10.    Getting page allocation information   

 select object_id, index_id, partition_id, allocation_unit_type_desc as [Type], is_allocated 
        ,is_iam_page, page_type, page_type_desc, allocated_page_file_id as [FileId] 
        ,allocated_page_page_id as [PageId], rowset_id, allocation_unit_id 
 from sys.dm_db_database_page_allocations(db_id(), object_id('dbo.
CCIWithNI'),2,null,'DETAILED') 
 where is_allocated = 1; 

  Figure 34-14.    Columnstore index internal  objects            

  Figure 34-15.    Nonclustered index page allocation       

   Now, when we know the file and page IDs of the index, we can examine it with the  DBCC PAGE  
command, as shown in Listing  34-11 . Obviously, you will get different values when you run the previous 
query in your environment. 

     Listing 34-11.    Analyzing index page   

 dbcc traceon(3604);  -- Redirecting output to console 
 dbcc page -- Analyzing content of a page 
 (   10          -- Database Id 
     ,1          -- FileId 
     ,14568      -- PageId 
     ,3          -- Output style 
 ); 

   Figure  34-16  illustrates the data from the index page.  DBCC PAGE  incorrectly assumes that the second 
index  column   is  uniquifier . In reality, this column is known as the columnstore index  original locator , 
which is an eight-byte value that consists of a  row_group_id  in the high four bytes and the offset within the 
row group in the low four bytes. For example, the decimal value  4,294,967,297  is  0x0000 0001 0000 0001  
in hexadecimal format, which corresponds to  row_group_id=1  and  offset=1 .  

  Figure 34-16.    Nonclustered index page       
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 Let’s run the  ALTER INDEX REORGANIZE  statement, closing and compressing the delta store, as shown in 
Listing  34-12 . 

     Listing 34-12.    Reorganizing the index   

 alter index CCI_CCIWithNI on dbo.CCIWithNI reorganize 
 with (compress_all_row_groups = on); 

   If you looked at the columnstore index’s row groups and internal objects again, using the code from 
Listings 34-9 and 34-10, you would see the output shown in Figure  34-17 . As you can see, the delta store is 
now compressed into the new row group (the old row group is in  TOMBSTONE  state and will be eventually 
deallocated). Moreover, SQL Server creates a mapping index to indicate that rows from the old delta store 
have been moved.  

  Figure 34-17.    Row groups and internal objects after ALTER INDEX REORGANIZE       

 It is worth mentioning that if you look at the nonclustered index page again, the row-id of the rows will 
not have changed. SQL Server will use the mapping index to locate the new location of the rows. 

 Internally, the mapping index can track the movement of individual rows along with multiple rows’ 
movements and row group ID changes. As you can see, in our case we have just the single row in the 
mapping index even though the old delta store had two rows. 

 When a row in a columnstore index is moved, SQL Server keeps track of the row’s  original locator  
in an internal nullable column in the columnstore index. This column is created when you add the first 
nonclustered B-Tree index to the table. This original locator value uniquely identifies corresponding rows 
in nonclustered B-Tree indexes and is used when you, for example, delete the row from a table. The original 
locator value is not populated until the row is moved. 

 ■   Note   You can see the original locator column if you examine the contents of the delta store data page or 
look at columnstore index segment information with the  sys.column_store_segments  view. That column has a 
 column_id  of 65,535.  

 The Query Optimizer could use nonclustered B-Tree indexes for OLTP queries that perform point 
lookups or small range scans. In cases where nonclustered indexes do not cover the queries, SQL Server will 
get the data from the clustered columnstore index. This operation is shown as a key lookup in the execution 
plans even though it is different than the key lookup performed on clustered B-Tree indexes. 

 Listing  34-13  shows a query that could benefit from the  IDX_CCIWithNI_Col3  index we defined earlier. 
Figure  34-18  shows the execution plan of this query, assuming you populated the table with enough data for 
a  nonclustered index seek  to become more efficient than a columnstore index scan .  Alternatively, you can 
force this execution plan using the  WITH (INDEX=IDX_CCIWithNI_Col3)  hint.  
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     Listing 34-13.    Query that uses nonclustered B-Tree  index           

 select Col1, Col2, Col3 
 from dbo.CCIWithNI 
 where Col3 = 42 

   Nonclustered B-Tree indexes need to be maintained in the same way as indexes on B-Tree tables. One 
thing worth noting is that a rebuild of the clustered columnstore index rearranges rows in the row groups, 
changing their location. SQL Server will rebuild nonclustered B-Tree indexes and remove mapping indexes 
as part of this operation.   

      Updateable Nonclustered Columnstore Indexes   
(SQL Server 2016) 
 SQL Server 2016 supports updateable nonclustered columnstore indexes on B-Tree tables. Those indexes 
can be beneficial in operational analytics scenarios when you need to run reporting/analytics queries 
against tables with heavy OLTP workload. You can think about a system that should display an operational 
dashboard with up-to-date information as an example.    

 Despite the name, nonclustered columnstore indexes in SQL Server 2016 are very different from those 
in an SQL Server 2012/2014 implementation. Similar to clustered columnstore indexes, they use delta store 
and delete bitmap to support data modifications. Their delta stores, however, are not limited to 1,048,576 
rows and can grow up to about 33.5 million rows (2^25) when you insert a large number of rows in between 
tuple mover executions. 

 There is another structure called  delete buffer  that is used as temporary storage for information 
about deleted rows. It reduces the overhead that delete bitmap managements would introduce to OLTP 
transactions. 

 Internally, the delete buffer is implemented as a B-Tree index with a structure that mimics the table 
row-id, which is either a clustered index key or the location of the row in the heap table. This approach 
allows SQL Server to avoid a lookup of the columnstore index row locator, which is used in delete bitmap 
during  DELETE  and  UPDATE  operations. 

 The tuple mover process updates delete bitmap based on the data from delete buffer during the  ALTER 
INDEX REORGANIZE  command or when the number of rows there exceeds 1,048,576. At any given point in 
time, the union of delete buffer and delete bitmap represents all deleted rows in the index. 

 Figure  34-19  illustrates all components of a B-Tree table partition with a nonclustered columnstore 
index.  

  Figure 34-18.    Execution plan with nonclustered B-Tree index  seek               
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 Listing  34-14  shows the code that creates a table with a B-Tree clustered index and inserts three rows 
there. As the next step, the code creates a nonclustered columnstore index and deletes one row from the table. 
Finally, the code examines the state of the row groups and internal partitions in the columnstore index. 

     Listing 34-14.    Nonclustered  columnstore    index: Table creation   

  create table dbo.CIWithNCI 
 ( 
     Col1 int not null, 
     Col2 int not null, 
     Col3 int not null, 
     constraint PK_CIWithNCI 
     primary key clustered(Col1, Col2) 
 ); 

   insert into dbo.CIWithNCI(Col1, Col2, Col3) 
 values(1,10,100), (2, 20, 200), (3, 30, 300); 

   create nonclustered columnstore index NCI_CIWithNCI 
 on dbo.CIWithNCI(Col2, Col3); 

   delete from dbo.CIWithNCI where Col1 = 3; 

   select object_id, index_id, partition_number, row_group_id 
         ,generation, state_desc, total_rows, deleted_rows 
 from sys.dm_db_column_store_row_group_physical_stats 
 where object_id =  object_id(N'dbo.CIWithNCI'); 

   select ip.object_id, ip.index_id, ip.partition_id, ip.row_group_id, ip.internal_object_type 
         ,ip.internal_object_type_desc, ip.rows, ip.data_compression_desc, ip.hobt_id 
 from sys.internal_partitions ip 
 where ip.object_id = object_id(N'dbo.CIWithNCI'); 

    Figure  34-20  illustrates the output of the two   SELECT  statements      . As you can see, there is one deleted 
row in the delete buffer; however, delete bitmap is empty. It is also worth noting that SQL Server preallocates 
extra delete buffer to reduce the overhead of switching buffers during the tuple mover execution.  

  Figure 34-19.    Partition of the table with a nonclustered columnstore  index            
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 Let’s examine the structure of delete buffer. As a first step, we need to locate the data page that belongs 
to it by using the  sys.dm_db_database_page_allocations  function. We can use the  hobt_id  of delete buffer 
to filter the output, as shown in Listing  34-15 . Obviously, you will have a different  hobt_id  when you run this 
example. 

     Listing 34-15.    Nonclustered columnstore index: Obtaining page_id of delete buffer   

 select object_id, index_id, partition_id, allocation_unit_type_desc as [Type], is_allocated 
       ,is_iam_page, page_type, page_type_desc, allocated_page_file_id as [FileId] 
       ,allocated_page_page_id as [PageId], rowset_id, allocation_unit_id 
 from sys.dm_db_database_page_allocations(db_id(),object_id('dbo.CIWithNCI'),null,null 
       ,'DETAILED') 
 where is_allocated = 1 and rowset_id in (72057594067222528) 

   Figure  34-21  illustrates the output of this query.  

  Figure 34-20.    Row group state and internal  partitions            

  Figure 34-21.    Delete buffer page  allocation               

 Now that we know file and page IDs, let’s look at the internal structure of a delete buffer using the  DBCC 
PAGE  command, as shown in Listing  34-16 . 

     Listing 34-16.    Nonclustered columnstore index: Analyzing delete buffer data page   

 dbcc traceon(3604);  -- Redirecting output to console 
 dbcc page -- Analyzing content of a page 
 (   10       -- Database Id 
     ,1        -- FileId 
     ,10880   -- PageId 
     ,3       -- Output style 
 ) 

   Figure  34-22  shows the partial output with the row data. As you can see, it includes three columns. 
Ignore the column names— DBCC PAGE  obtains them from the table metadata, which cannot be applied to 
the delete buffer structure.  
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 The first two left-most columns match the structure of the clustered index. The last column indicates 
the columnstore index  generation  value at the time when the row was deleted. This helps SQL Server to 
isolate row groups to which the deleted row may belong. 

 As with any other index, nonclustered columnstore indexes introduce overhead during data 
modifications. An  INSERT  operation requires SQL Server to insert the row into the delta store. A  DELETE  
operation populates the delete buffer. Finally, an  UPDATE  operation performs both of these actions. 

 In some cases, you can reduce overhead by defining a filter on the index. The filter condition 
requirements are the same as with regular B-Tree filtered indexes and support simple comparison logic. 
It is possible to define the filter on a static condition; for example,  OrderStatus=’COMPLETED’ . However, 
you cannot use function calls and non-deterministic expressions, such as  OrderDate < DATEADD(HOUR,-
24,GETUTCDATE()) . 

 Another useful option is  COMPRESSION_DELAY , which allows you to specify a time interval in  minutes   
for how long a row group should stay in the  CLOSED  state before it is compressed. Consider a system that 
handles a high rate of inserts and performs some processing when updating the data afterward. Setting 
 COMPRESSION_DELAY  to a value that exceeds the typical processing time would exclude old (deleted) versions 
of the rows from compression and improve the performance of the columnstore index.  

     Metadata 
 SQL Server 2014 and 2016 provide several catalog and data management views in addition to the  sys.
column_store_segments  and  sys.column_store_dictionaries  views, which we already discussed in the 
previous chapter. Let’s look at them in detail. 

     sys.column_store_row_groups (SQL Server 2014–2016)    
 The  sys.column_store_row_groups  view returns information about row groups in columnstore indexes. You 
have already seen this view in action many times in this chapter. 

 The columns in the output represent the following:

    object_id  and  index_id  provide information about the object and index to 
which the row group belongs.  

   partition_number  is the number of partition in the table.  

   row_group_id  is the ID of the row group within the partition.  

   delta_store_hobt_id  is the  hobt_id  of the open delta store.  

   state  and  state_description  show the state of the row group.  

   total_rows  and  deleted_rows  show the number of total and deleted rows in the 
row group.  

   size_in_bytes  indicates the size of the row group on disk.    

  Figure 34-22.    Delete-buffer data  page            
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 You should monitor the total number of rows and number of deleted rows in the row groups, rebuilding 
or reorganizing indexes when needed. As you should remember, small row groups and a large number of 
deleted rows in the row groups would negatively affect the performance of the queries. 

   sys.dm_db_column_store_row_group_physical_stats (SQL Server 2016)    
 The  sys.dm_db_column_store_row_group_physical_stats  view also returns information about row groups 
in the columnstore index. Some of the columns in the output match the  sys.column_store_row_groups  
view; however, there are several additional columns that can be useful during analysis and troubleshooting. 

 The columns in the output represent the following:

    object_id ,  index_id ,  partition_number ,  row_group_id ,  delta_store_hobt_id , 
 has_vertipaq_optimization , and  creation_time  provide information about the 
row group and  hobt_id  of the open delta store.  

   state  and  state_description  show the state of the row group.  

   total_rows ,  deleted_rows , and  size_in_bytes  provide information about row 
count and row group size.  

   transition_to_compressed_state  provides the reason why a row group was 
compressed.  

   trim_reason  indicates why a row group has less than 1,048,576 rows.  

   generation  shows the sequence number in which the row group has been 
created.    

 You can use the  transition_to_compressed_state  and  trim_reason  columns to troubleshoot the 
situation when a columnstore index has a large number of partially populated row groups in the system.  

   sys.internal_partitions (SQL Server 2016)    
 The  sys.internal_partitions  view provides information about internal columnstore objects, such as 
delete bitmap, delete buffer, delta store, and mapping indexes. We have used this view in this chapter. 

 The columns in the output represent the following:

    object_id ,  index_id, partition_id , and  partition_number  provide 
information about object, index, and partition of the internal columnstore 
object.  

   internal_object_type  and  internal_object_type_desc  show the type of the 
internal object.  

   row_group_id  indicates the row group for the delta store. It is  NULL  for all other 
object types, which exist on a per-partition basis.  

   rows  provides the number of rows in the object.  

   data_compression  and  data_compression_desc  provide information about the 
data compression of the internal object.    

 This view is useful for the low-level monitoring of columnstore indexes. For example, a large number of 
rows in mapping indexes or a delete buffer could indicate that the index would benefit from a rebuild. It is 
worth noting that all internal objects are recreated when you rebuild the index.  
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   sys.dm_db_column_store_row_group_operational_stats 
(SQL Server 2016)    
 The  sys.dm_db_column_store_row_group_operational_stats  view provides you with low-level statistics 
on columnstore index usage, returning information on a per–row group basis. The output includes the 
following columns:

    object_id ,  index_id ,  partition_number , and  row_group_id  indicate the row 
group in the output.  

   scan_count  and  delete_buffer_scan_count  indicate how many times the row 
group and delete buffer were scanned since the last SQL Server restart.  

   index_scan_count  shows how many times a partition has been scanned. The 
value in the output is the same for all row groups on the partition.  

   rowgroup_lock_count ,  rowgroup_lock_wait_count , and  rowgroup_lock_wait_in_
ms  provide cumulative locking-related statistics since the last SQL Server restart.       

        Design Considerations 
 The choice between columnstore and B-Tree indexes depends on several factors. The most important factor, 
however, is the type of workload in the system. These indexes are targeted to different use cases, and each 
has its own set of strengths and weaknesses.     

 Columnstore indexes shine with data warehouse workloads where queries need to scan a large amount 
of data in a table. However, they are not a good fit for cases where you need to select one or a handful of rows 
using point lookup or small range scan operations. An  index scan   is the only access method supported by 
columnstore indexes, and SQL Server will scan all the data even if your query needs to select just a single 
row from a table. The amount of data to scan can be reduced by partition and segment eliminations. In 
either case, however, a scan would be far less efficient than the use of a B-Tree index seek operation. 

 Most large data warehouse systems would benefit from columnstore indexes, even though their 
implementation requires some work in order to get the most from them. You often need to change a 
database schema to fit into star or snowflake patterns and/or to normalize facts tables and remove string 
attributes from them. In the case of SQL Server 2012, you need to change ETL processes to address the 
read-only limitation of nonclustered columnstore indexes, and you must often re-factor queries to utilize 
batch mode execution. 

 Clustered columnstore indexes simplify the conversion process. You can continue to use existing ETL 
processes and insert data directly into facts tables. There is a hidden danger in this approach, however. Even 
though clustered columnstore indexes are fully updateable, they are optimized for large bulk load operations. As 
you have seen, excessive data modifications and a large number of partially populated row groups could and will 
negatively affect the performance of queries. In the end, you should either fine-tune ETL processes or frequently 
rebuild  indexes   to avoid such performance overhead. In some cases, especially with frequently modified or 
deleted data, you need to rebuild indexes on a regular basis, regardless of the quality of the ETL processes. 

 Table partitioning becomes a  must have  element in this scenario. It allows you to perform index 
maintenance in the partition scope, which can dramatically reduce the overhead of such operations. It also 
allows you to save storage space and reduce the solution cost by implementing archival compression on the 
partitions that store old data. 

 The question of columnstore index usage in  OLTP environments   is more complex than it may seem. 
Even though tables with clustered columnstore indexes are updateable, they are not good candidates for 
active and volatile OLTP data. Unfortunately, performance issues are easy to overlook at the beginning of 
development; after all, any solution performs  good enough  with a small amount of data. However, as the 
amount of data increases, performance issues become noticeable and force the re-factoring of systems. 
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 Nevertheless, there are some legitimate uses for columnstore indexes even in OLTP environments. 
Almost all OLTP systems provide some reporting and analysis capabilities to customers. The mixed workload 
can be easily supported with updatable nonclustered columnstore indexes; however, this option will work 
only in  SQL Server 2016 . 

 In  SQL Server 2012/2014 , you may consider using columnstore indexes on tables that store old and 
static historical data while using regular B-Tree tables for volatile operational data. You can combine data 
from all tables with a partitioned view, hiding the data layout from client applications. However, it will 
require a complex and thoughtful design process, deep knowledge of the system workload, and considerable 
effort to implement. 

 In some cases, especially if data is static and read-only, nonclustered columnstore indexes could be a 
better choice than clustered columnstore indexes in  SQL Server 2012/2014 . Even though they require extra 
storage space for B-Tree representation of the data, you can benefit from regular B-Tree indexes to support 
some use cases and OLTP queries. Obviously, in  SQL Server 2016  you can create nonclustered B-Tree 
indexes on tables that have clustered columnstore indexes in that scenario. 

 Finally, it is worth remembering that columnstore indexes are an Enterprise Edition–only feature. 
Moreover, they are not a  transparent  feature, as are data compression and table partitioning, that can be 
removed from the database relatively easily if necessary. Implementation of columnstore indexes leads to 
specific database schema and code patterns, which can be less efficient in the case of B-Tree indexes. Think 
about the over-normalization of facts tables, changes in ETL processes, and batch mode execution query 
re-factoring as examples of those patterns. 

 Columnstore indexes are also available in Microsoft Azure; however, you need to use the premium tier 
of SQL Databases to utilize them.     

     Summary 
 Even though SQL Server supports just two types of columnstore indexes—clustered and nonclustered—they 
work and behave very differently in the different SQL Server versions. 

 In SQL Server 2012 and 2014, nonclustered columnstore indexes are essentially read-only. With the 
exception of a partition switch, you cannot update data in the table once a nonclustered columnstore index 
is created. It is the only columnstore index type supported in SQL Server 2012. 

 The clustered columnstore indexes introduced in SQL Server 2014 address the major limitation of 
nonclustered columnstore indexes in SQL Server 2012/2014, which prevent any modifications of the data 
in the table. Clustered columnstore indexes are updateable, and in SQL Server 2014 they are the only 
instance of the data that is stored in the table. No other indexes can be created on a table that has a clustered 
columnstore index defined. 

 SQL Server 2016 allows you to create nonclustered B-Tree indexes on tables with a clustered 
columnstore index. Moreover, it allows you to create updateable nonclustered columnstore indexes in 
B-Tree tables. 

 Clustered and nonclustered columnstore indexes share the same storage format for column-based 
data. Two types of internal objects support data modifications in updateable columnstore indexes. A delete 
bitmap indicates what rows were deleted. A delta store stores new rows. Both delta stores and delete bitmaps 
use a B-Tree format to store the data. 

 The update of rows stored in column-based row groups is implemented as the deletion of old rows, 
which is insertion to a delete bitmap, and the insertion of a new version of the rows to the delta store. 
Deletion and modification of the data in a delta store deletes or updates rows in the delta store B-Tree. 

 Delta stores can store up to 1,048,576 rows. Although, in SQL Server 2016, delta stores of  nonclustered  
columnstore indexes can exceed this size if heavy inserts occurred in between tuple mover executions. After 
this limit is reached, the delta store is closed and converted to a row group in column-based storage format 
by a background process called tuple mover. Alternatively, you can force this conversion with the   ALTER 
INDEX REORGANIZE  command  . 
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 A large amount of data in delta stores and/or delete bitmaps negatively affects query performance. You 
should monitor their size and rebuild the indexes to address performance issues. You should partition tables 
to minimize index maintenance overhead. 

 Bulk insert operations with a batch size that exceeds 102,400 rows create new, compressed row groups 
and insert data there. A large number of partially populated row groups is another factor that negatively 
affects query performance. You should import data in batches with a size divisible by 1,048,576 rows to avoid 
this situation. Alternatively, you can rebuild indexes after ETL operations are completed. 

 Columnstore indexes do not support any access methods with the exception of an index scan. They are 
targeted at data warehouse workloads, and they should be used with extreme care in OLTP environments. 
In SQL Server 2012 and 2014, you can use them in tables with historical data, storing active OLTP data in 
B-Tree tables and combining all data with partitioned views. In SQL Server 2016, you can mix B-Tree and 
columnstore indexes on the same table when you need to support operational analytics or systems with a 
mixed workload.     



   PART VIII 

   In-Memory OLTP Engine 

          In-Memory OLTP is a complex and fascinating subject that easily merits a book by itself. 
Unfortunately, it is impossible to cover all aspects of the technology in this book. 

 The next three chapters will provide you with a good overview of In-Memory OLTP and explain 
how it works under the hood. Those chapters, however, do not unravel some of the low-level 
implementation details, nor do they talk about the deployment and management of In-Memory 
OLTP solutions. 

 Apress has already published my  Expert SQL Server In-Memory OLTP  book that elucidates 
In-Memory OLTP implementation in SQL Server 2014. The second edition of the book will be 
published in 2017, and it will describe SQL Server 2016 implementation. Consider reading those 
books for a deeper dive into the technology.       
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    CHAPTER 35   

 In-Memory OLTP Internals                          

  Hekaton  was the code name of an In-Memory OLTP Engine introduced in SQL Server 2014. It is an Enterprise 
Edition feature, and it is available only in the 64-bit version of SQL Server.  Hekaton  is Greek for  one hundred,  
which was the target performance improvement goal of the project. Even though this goal has yet to be achieved, 
it is not uncommon to see a 10X–40X system throughput increase when In-Memory OLTP is used. 

 This chapter discusses the internal architecture of In-Memory OLTP and explains how In-Memory 
OLTP stores and works with data in-memory and persists it on-disk. 

     Why In-Memory  OLTP  ? 
 Way back when SQL Server and other major databases were originally designed, hardware was very 
expensive. Servers used to have just one or very few CPUs and a small amount of installed memory. 
Database servers had to work with data that resided on disk and load it to memory on demand. 

 The situation has dramatically changed over time. During the last 30 years, memory prices have 
dropped by a factor of ten every five years. Hardware has become more affordable. It is now entirely possible 
to buy a server with 32 cores and 1 TB of RAM for less than $50,000. While it is also true that databases have 
become larger, it is often possible that  active  operational data fits into the memory. 

 Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load on the I/O 
subsystem and improves system performance. However, when systems work under heavy concurrent load, 
it is often not enough. SQL Server manages and protects page structures in memory, which introduces large 
overhead and does not scale well. Even with row-level locking, multiple sessions cannot modify data on the 
same data page simultaneously and must wait for each other. 

 Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can modify data rows on 
the same data page, holding exclusive (X) locks on different rows simultaneously. However, they cannot 
update on-page and in-row data simultaneously, because it could corrupt the page structure. As you already 
know, SQL Server addresses this problem by protecting pages with latches. They protect internal SQL Server 
data structures by serializing access to them; only one thread can update data on the data page in memory at 
any given point of time. 

 In the end, this limits the  improvements   that can be achieved with the current database systems 
architecture. Although you can scale hardware by adding more CPUs with a larger number of logical cores 
per CPU, that serialization quickly becomes a bottleneck and limiting factor in improving system scalability. 

 Likewise, you cannot improve performance by increasing the CPU clock speed, as the silicon chips 
would melt down. Therefore, the only feasible way to improve database system performance is by reducing 
the number of CPU instructions that need to be executed to perform an action. 

 Unfortunately,  code optimization   is not enough by itself. Consider a situation where you need to update 
a row in a table. Even when you know the clustered key value, that operation needs to traverse the clustered 
index tree, obtaining latches and locks on the data pages and a row. In some cases, it needs to update 
nonclustered indexes, obtaining the latches and locks there. All of this generates log records and requires 
writing them and the dirty data pages to disk. 
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 All of these actions can lead to a hundred thousand or even millions of CPU instructions to execute. 
Code optimization can help reduce this number to some degree; however, it is impossible to reduce it 
dramatically without changing the system architecture and the way the system stores and works with data. 

 All these trends and architectural limitations led the Microsoft team to the conclusion that a true In-
Memory solution should be built using the different design principles and architecture other than the classic 
SQL Server Database Engine. The In-Memory  OLTP Engine   is based on three design goals, as follows:

    Optimize data storage for main memory.  Data in In-Memory OLTP is not 
stored on on-disk data pages nor does it mimic an on-disk storage structure 
when loaded into memory. This permits the elimination of the complex buffer 
pool structure and the code that manages it. Moreover, indexes are not persisted 
on disk, and they are recreated upon startup when memory-resident tables’ data 
is loaded into memory.  

   Eliminate latches and locks.  All In-Memory OLTP internal data structures are 
latch- and lock-free. In-Memory OLTP uses a new multi-version concurrency 
control (MVCC) to provide transaction consistency. From a user standpoint, 
it behaves in a way similar to the regular  SNAPSHOT  transaction isolation level; 
however, it does not use locking under the hood. This schema allows multiple 
sessions to work with the same data without locking and blocking each other 
and improves the scalability of the system allowing fully utilize modern 
multi-CPU/multi-core hardware.  

   Using native compilation.  T-SQL is an interpreted language that provides 
great flexibility at the cost of CPU overhead. Even a simple statement requires 
hundreds of thousands of CPU instructions to execute. The In-Memory OLTP 
Engine addresses this by compiling row access logic and stored procedures into 
native machine code.    

 It is also worth mentioning that the In-Memory OLTP design has been targeted toward OLTP workload. 
As all of us know, specialized solutions designed for particular tasks and workload usually outperform 
general purpose systems in the targeted areas. The same is true for In-Memory OLTP. It shines with the 
large and very busy OLTP systems that support hundreds or even thousands of concurrent users. At the 
same time, In-Memory OLTP is not necessarily the best choice for a data warehouse workload, where other 
SQL Server components could outperform it. SQL Server 2016, however, allows you to create columnstore 
indexes on in-memory data, which can help in a system with a mixed workload. 

 The  In-Memory OLTP Engine   is fully integrated into the SQL Server Engine, which is the key 
differentiator of Microsoft implementation as compared to other in-memory database solutions. You do 
not need to perform complex system re-factoring, splitting data between in-memory and conventional 
database servers, nor do you need to move all of the data from the database into memory. You can separate 
in-memory and disk data on a table-by-table basis, which allows you to move active operational data into 
memory, keeping other tables and historical data on disk. In some cases, that conversion can be even done 
transparently to client applications. 

 The first release of In-Memory OLTP in SQL Server 2014 had a large number of limitations and 
supported just a subset of the SQL Server data types and features. It often required you to perform complex 
code and schema re-factoring to utilize the technology. Fortunately, SQL Server 2016 removes many of those 
limitations, as we will discuss in this book.  

     In-Memory OLTP Engine  Architecture   and Data Structures 
 In-Memory OLTP is fully integrated into SQL Server, and other SQL Server features and client applications 
can access it transparently. Internally, however, it works and behaves very differently than the Storage 
Engine. 
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 It is important to define the terminology before we discuss In-Memory OLTP internals. I will use the 
following terms and definitions:

    Memory-optimized tables  refer to tables with the new data structure that is used 
by In-Memory OLTP.  

    On-disk tables  refer to regular SQL Server tables that are stored in database data 
files using 8 KB data pages. All tables that we discussed previously in this book 
were on-disk tables.  

   Interop  refers to the ability to reference memory-optimized tables from 
interpreted T-SQL code.  

   Natively-compiled  modules refer to stored procedures, triggers, and scalar user-
defined functions compiled into machine code. Those modules will be covered 
in the Chapter   37    .    

 Figure  35-1  shows the architecture of the SQL Server engine, including the In-Memory OLTP part. As 
you can see, memory-optimized tables do not share memory with on-disk tables. However, you can access 
both types of tables from T-SQL and client applications through the Interop Engine. Natively-compiled 
modules, on the other hand, work only with memory-optimized tables and are unable to access on-disk 
table data.  

  Figure 35-1.    SQL Server Engine  architecture         

 In-Memory OLTP stores data in a separate  FILESTREAM -based filegroup. SQL Server 2014 In-Memory 
OLTP implementation relies on  FILESTREAM  for all file management. With SQL Server 2016, the  FILESTREAM  
filegroup is only used as the container, and all file management and garbage collection is done by the 
In-Memory OLTP Engine. This makes file management more efficient and allows SQL Server to encrypt in-
memory data when you enable  Transparent Data Encryption  (TDE) in the database. 

 ■   Note    You can read more about  FILESTREAM  at    http://technet.microsoft.com/en-us/library/
gg471497.aspx     .  

 You specify a filegroup that contains memory-optimized tables’ data by using the  CONTAINS MEMORY_
OPTIMIZED_DATA  keyword, as shown in Listing  35-1 . All In-Memory OLTP files used by the database will 
reside in the  S:\HKData\Hekaton_InMemory  folder after you run the script. 

 

http://dx.doi.org/10.1007/978-1-4842-1964-5_37
http://technet.microsoft.com/en-us/library/gg471497.aspx
http://technet.microsoft.com/en-us/library/gg471497.aspx
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    Listing 35-1.    Creating a  database   with the In-Memory OLTP filegroup   

 create database [HekatonDB] on 
 primary 
 ( name = N'HekatonDB', filename = N'M:\HekatonDB.mdf'), 
 filegroup [OnDiskData] 
 ( name = N'Hekaton_OnDisk', filename = N'M:\Hekaton_OnDisk.ndf'), 
  filegroup [InMemoryData] contains memory_optimized_data  
  ( name = N'Hekaton_InMemory', filename = N'S:\HKData\Hekaton_InMemory')  
 log on 
 ( name = N'HekatonDB_log', filename = N'L:\HekatonDB_log.ldf') 

   It is also worth mentioning that you cannot drop an In-Memory OLTP filegroup from the database once 
it has been created. It may prevent you from restoring the database on the lower-than-Enterprise editions of 
SQL Server even after you have removed all In-Memory OLTP objects from there. 

     Memory-Optimized Tables 
 Even though the creation of  memory-optimized tables   is very similar to the creation of on-disk tables and 
can be done with a regular  CREATE TABLE  statement, SQL Server works very differently with memory-
optimized tables. Every time a memory-optimized table is created, SQL Server generates and compiles a 
DLL that is responsible for the manipulation of table row data. The In-Memory OLTP Engine is generic, and 
it does not access or modify row data directly. Rather, it calls DLL methods instead. 

 As you can guess, this approach adds limitations on the alterability of the table. Alteration of the table 
would require SQL Server to recreate a DLL and change the format of data rows. It is not supported in SQL 
Server 2014, and the schema of a memory-optimized table is static and cannot be altered in any way after it 
is created. The same is true for indexes. SQL Server requires you to define indexes inline in a  CREATE TABLE  
statement. You cannot add or drop an index or change an index’s definition after a table is created. 

 SQL Server 2016 allows you to alter table schemas and indexes. This, however, creates a new table 
object in-memory, copying data from the old table. This is offline operation, which can be time- and 
resource-consuming and requires you to have enough memory to accommodate multiple copies of the data. 

 ■   Tip    You can combine multiple  ADD  or  DROP  operations into a single  ALTER  statement to reduce the number 
of table rebuilds.  

 Indexes on memory- optimized   tables are not persisted on-disk. SQL Server recreates them at the 
time when it starts the database and loads memory-optimized data into memory. As with on-disk tables, 
unnecessary indexes in memory-optimized tables slow down data modifications and use extra memory in 
the system. 

 Each memory-optimized table has a  DURABILITY  option. The default  SCHEMA_AND_DATA  option 
indicates that the data in the tables is fully durable and persists on disk for recovery purposes. Operations 
on such tables are logged in the transaction log, which allows SQL Server to support database transactional 
consistency and recreate the data in the event of a SQL Server crash or unexpected shutdown. 

  SCHEMA_ONLY  is another option and indicates that data in memory-optimized tables is not durable 
and would be lost in the event of a  SQL Server   restart or crash.  Operations against non-durable memory-
optimized tables are not logged in the transaction log.  Non-durable tables are extremely fast and can 
be used if you need to store temporary data in use cases similar to when you would use temporary tables 
in  tempdb . As the opposite to temporary tables, SQL Server persists the schemas of non-durable memory-
optimized tables, and you do not need to recreate them in the event of SQL Server restart. 
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 Memory-optimized tables support at most eight indexes. Durable memory-optimized tables should 
have a unique primary key constraint defined. Non-durable memory-optimized tables do not require the 
primary key constraint; however, they should still have at least one index to link the rows together. 

 In  SQL Server 2014 , indexes cannot include nullable columns nor be defined as  UNIQUE  with the 
exception of the primary key constraint. Moreover, you cannot index text columns unless they have  BIN2  
collation. You should remember that these collations are case- and accent-sensitive, which could introduce 
some side effects, especially if you migrate to In-Memory OLTP, converting on-disk tables to memory-
optimized ones. 

 Other  SQL Server 2014  limitations include missing support of foreign key, check, and unique 
constraints and  DML  triggers. All of these limitations have been removed in SQL Server 2016. 

 Neither SQL Server 2014 nor 2016 support  IDENTITY  columns with  SEED  and  INCREMENT  different than (1,1). 
 Listing  35-2  shows code that creates a memory-optimized table. You can define a table as memory-

optimized by specifying the  MEMORY_OPTIMIZED=ON  option of the  CREATE TABLE  statement. Ignore index 
properties for now; we will discuss them later in this chapter. As I already mentioned, you do not need to 
store  varchar  columns in  BIN2  collation in SQL Server 2016. 

     Listing 35-2.    Creating a memory-optimized table   

  create table dbo.Customers 
 ( 
     CustomerID int not null 
         constraint PK_Customers 
         primary key nonclustered hash with (bucket_count = 131072), 
     Name varchar(128) collate Latin1_General_100_BIN2 not null, 
     City varchar(64) collate Latin1_General_100_BIN2 not null, 
     SSN char(9) not null,   
     DateOfBirth date not null, 

       index IDX_Customers_City nonclustered hash(City) 
     with (bucket_count = 16384), 

       index IDX_Customers_Name nonclustered(Name) 
 ) 
 with (memory_optimized = on, durability = schema_and_data) 

         High Availability  Technology Support   
 Memory-optimized tables are fully supported in AlwaysOn Failover Clusters and Availability Groups, as well 
as with log shipping. However, in the case of a failover cluster, data from durable memory-optimized tables 
must be loaded into memory in case of a failover, which could increase failover time. 

 In the case of AlwaysOn Availability Groups, only durable memory-optimized tables are replicated to 
secondary nodes. You can access and query those tables on the readable secondary nodes if needed. Data 
from non-durable memory-optimized tables, on the other hand, is not replicated and will be lost in the case 
of a failover. 

  SQL Server 2016  supports snapshot and transaction replication for memory-optimized tables. In  SQL 
Server 2014 , you can set up transactional replication on databases with memory-optimized tables; however, 
those tables cannot be used as articles in publications. 

 In-Memory OLTP is not supported in database mirroring sessions. This does not appear to be a big 
limitation, however. In-Memory OLTP is an Enterprise Edition feature that allows you to replace database 
mirroring with AlwaysOn Availability Groups.  
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     Data Row  Structure   
 Data and index formats in memory-optimized tables are different from those in on-disk tables. Storage is 
optimized for byte-addressable memory using in-memory pointers rather than for block-addressable disk 
data using in-file offsets. With the exception of nonclustered (range) indexes, which we will discuss later, in-
memory objects do not use in-memory data pages. Data rows have pointers to the next row in the row chain. 

 The 8,060-byte limit for the maximum in-row data size still applies. Moreover, in  SQL Server 2014 , 
memory-optimized tables do not support off-row storage, which limits the data types that can be used in 
tables; only the following data  types   are supported in SQL Server 2014:

    bit   

  Integer types:  tinyint ,  smallint ,  int ,  bigint   

  Floating point types:  float ,  real ,  numeric , and  decimal   

  Money types:  money  and  smallmoney   

  Date/time types:  smalldatetime ,  datetime ,  datetime2 ,  date , and  time   

   uniqueidentifiers   

  Non-LOB string types:  (n)char(N) ,  (n)varchar(N) , and  sysname   

  Non-LOB binary types:  binary(N)  and  varbinary(N)     

 As was already mentioned, in  SQL Server 2014  you cannot use data types that can use LOB storage in 
on-disk tables, such as ( n)varchar(max) ,  varbinary(max), xml ,  clr ,  (n)text , and  image . Moreover, there is 
no concept of row-overflow storage in  SQL Server 2014 , so the entire row must fit into 8,060 bytes, including 
variable-length data. It is impossible to create memory-optimized tables with a row that could exceed that 
size; for example, a row with two  varchar(5000)  columns. 

  SQL Server 2016  supports off-row storage and allows data rows to exceed 8,060 bytes. The ( n)varchar(max)  
and  varbinary(max)  data types are now supported. There is still no support for  xml ,  clr ,  (n)text , and  image  
data types; however, in some cases you can store them as  varbinary(max) . 

 As the opposite to on-disk tables, the decision of what columns need to be stored off-row is made at 
table-creation stage. The data from row-overflow and LOB columns are always stored off-row regardless 
of the row size.  (max)  columns are always stored in LOB storage. If the table schema allows the row size to 
exceed 8,060 bytes, the largest variable-length  (N)  columns are pushed to row-overflow storage. In both 
cases, the main in-row structure uses an eight-byte identifier to reference them. We will discuss off-row 
storage in more detail later in this chapter. 

 Figure  35-2  illustrates the structure of a data row in a memory-optimized table. As you can see, it 
consists of two sections:   Row Header  and  Payload   .  

  Figure 35-2.    The structure of a data row in a memory-optimized table       
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 A SQL Server instance maintains the   Global Transaction Timestamp    value, which is auto-incremented 
at the time of the transaction pre-commit validation (more on this in the next chapter), and it is unique for 
every committed transaction. The first two eight-byte elements in the row header,  BeginTs  and  EndTs , define 
the data row lifetime. BeginTs stores the Global Transaction Timestamp of the transaction that inserted a 
row, and EndTs stores the timestamp of the transaction that deleted a row. A special value called  Infinity  is 
used as EndTs for rows that have not been deleted. 

 In addition, BeginTs and EndTs control the visibility of a row for a transaction. A transaction can see a 
row only when the transaction logical start time (Global Transaction Timestamp value at the moment the 
transaction starts) is between BeginTs and EndTs timestamps of the row. 

 Every statement in a transaction has a unique four-byte  StmtId  value. The third element in a row header 
is the StmtId of the statement that is inserted a row. It works as a   Halloween protection  technique  , similar 
to  table spools  in on-disk tables, and it allows the statement to skip rows it inserted. You can think about 
the  INSERT INTO T SELECT FROM T  statement as the classic example of such a situation, as we discussed in 
Chapter   25    . 

 In contrast to on-disk tables, where nonclustered indexes are separate data structures, all indexes in 
memory-optimized tables reference actual data rows. Each new index that is defined on a table adds a 
pointer to a data row. For example, if a table has two indexes defined, every data row in the table would have 
two eight-byte pointers that reference the next data rows in the index row chains. This, in a nutshell, makes 
every index in memory-optimizing tables covering; that is, when SQL Server locates a row through an index, 
it finds the actual data row rather than the separate index row structure. 

 The next element in the header, the two-byte   IdxLinkCount   , indicates how many indexes (pointers) 
reference the row. SQL Server uses it to detect rows that can be deallocated by the garbage collection 
process. We will talk about garbage collection later in this chapter. 

 An array of eight-byte index pointers is the last element of the row header. As you can guess, every 
memory-optimized table should have at least one index to link data rows together. At most, you can define 
eight indexes per memory-optimized table, including the primary key. 

 The actual row data is stored in the Payload section of the row. As already mentioned, the Payload 
format may vary depending on the table schema. SQL Server works with Payload through a DLL that is 
generated and compiled at the time of table creation. 

 A key  principle   of In-Memory OLTP is that Payload data is never updated. When a table row needs to be 
updated, In-Memory OLTP sets the EndTs attribute of the original row to the Global Transaction Timestamp 
of the transaction and inserts the new version of the data row with the new BeginTs and EndTs values of 
Infinity. We will see how this works in more depth in the next chapter.  

      Hash Indexes   
  Hash indexes  are one of two index types supported by In-Memory OLTP. They consist of an array of hash 
buckets, each of which contains a pointer to a data row. SQL Server applies a hash function to the index key 
columns, and the result of the function determines to which bucket a row belongs. All rows that have the 
same hash value and belong to the same bucket are linked together through a chain of index pointers in the 
data rows. 

 Figure  35-3  illustrates an example of a memory-optimized table with two hash indexes defined on the 
 Name  and  City  columns. Solid arrows represent pointers in the index on the  Name  column. Dotted arrows 
represent pointers in the index on the  City  column. For simplicity’s sake, let’s assume that the hash function 
generates a hash value based on the first letter of the string.  

http://dx.doi.org/10.1007/978-1-4842-1964-5_25
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 Let’s assume that you need to run a query that selects all rows with  Name='Ann'  in the transaction that 
started when the Global Transaction Timestamp was 65. SQL Server calculates the hash value for  Ann , which 
is  'A',  and finds the corresponding bucket in the hash index, which is displayed on the left side in Figure  35-3 . 
It follows the pointer from that bucket, which references a row with  Name='Adam' . This row has BeginTs of 10 
and EndTs of Infinity; therefore, it is visible to the transaction. However, the  Name  value does not match the 
predicate, and the row is ignored. 

 In the next step, SQL Server follows the pointer from the  Adam  index pointer array, which references 
the first  Ann  row. This row has BeginTs of 50 and EndTs of Infinity; therefore, it is visible to the transaction 
and needs to be selected. 

 As a final step, SQL Server follows the next pointer in the index. Even though the last row also has 
 Name='Ann' , it has EndTs of 50 and is invisible to the transaction. 

 Obviously, the performance of queries that scan an index chain greatly depends on the number of rows 
in the chain. The greater the number of rows that need to be processed, the slower the query is. 

 There are two factors that affect index chain size in hash indexes. The first factor is index selectivity. 
Duplicate key values generate the same hash and belong to the same index chain. Therefore, indexes with 
low selectivity are less efficient. 

 Another factor is the number of  hash buckets   in the index, which you should specify during the index 
creation stage. In an ideal situation, the number of buckets in an array would match the number of unique 
key values in the index, and every unique key value would have its own bucket. The hash function in SQL 
Server, however, does not guarantee that.  It is better to define the number of buckets to be about 1.5–2 
times larger than the index cardinality, which is the number of unique key values in the index.  

 ■   Note    Internally, SQL Server rounds up the number of buckets specified for an index to the next power of 
two. For example, a hash index defined with  BUCKET_COUNT=100000  would have 131,072 buckets in the hash 
array.  

 You should analyze the data and include a projection of future system growth into the analysis when 
determining the optimal bucket count for the hash index. Underestimation and overestimation are both 
bad. Underestimation increases the size of the index chain while overestimation wastes system memory. 
However, in the big picture it is better to overestimate than to underestimate the bucket count. 

  Figure 35-3.    Hash indexes       
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 Unfortunately, it is impossible to change a bucket count after the table has been created. In  SQL Server 
2014 , the only option for changing the bucket count is by dropping and recreating the table.  SQL Server 
2016  allows you to change the bucket count by rebuilding the index via the  ALTER TABLE  operation, which 
rebuilds the table in the background. 

 You can monitor hash index–related statistics with the  sys.dm_db_xtp_hash_index_stats  data 
management view. This view provides information about the total number of buckets, the number of empty 
buckets, and the average and maximum row chain lengths. You can read more about that view at    http://
msdn.microsoft.com/en-us/library/dn296679.aspx     . 

 Hash indexes have different  SARGability rules   than do indexes defined on on-disk tables. They are 
efficient only in the case of a  point-lookup (equality) search  and  equality joins  ,  which allow SQL Server to 
calculate the corresponding hash value and find a bucket in a hash array. 

 In the case of composite hash indexes, SQL Server calculates the hash value for the combined value of 
all key columns. A hash value calculated on a subset of the key columns would be different, and, therefore, to 
be useful a query should have equality predicates on all key columns from the index. 

 This behavior is different from that of indexes on on-disk tables. Consider a situation where you want 
to define an index on the  (LastName, FirstName)  columns. In the case of on-disk tables, that index can 
be used for a  seek  operation, regardless of whether the predicate on the  FirstName  column is specified in 
the  WHERE  clause of a query. Alternatively, a composite hash index on a memory-optimized table requires 
queries to have equality predicates on both  LastName  and  FirstName  in order to calculate a hash value that 
allows for choosing the right hash bucket in the array. 

 Let’s look at the example and create on-disk and memory-optimized tables with composite indexes on 
the  (LastName, FirstName)  columns, populating them with the same data shown in Listing  35-3 . As before, 
I am using binary collation in the code to make it compatible with both SQL Server 2014 and 2016. 

     Listing 35-3.    Composite hash index: Test tables  creation     

  create table dbo.CustomersOnDisk 
 ( 
     CustomerId int not null identity(1,1), 
     FirstName varchar(64) collate Latin1_General_100_BIN2 not null, 
     LastName varchar(64) collate Latin1_General_100_BIN2 not null, 
     Placeholder char(100) null, 
     constraint PK_CustomersOnDisk primary key clustered(CustomerId) 
 ); 

   create nonclustered index IDX_CustomersOnDisk_LastName_FirstName 
 on dbo.CustomersOnDisk(LastName, FirstName); 

   create table dbo.CustomersMemoryOptimized 
 ( 
     CustomerId int not null identity(1,1) 
         constraint PK_CustomersMemoryOptimized 
         primary key nonclustered hash with (bucket_count = 4096), 
     FirstName varchar(64) collate Latin1_General_100_BIN2 not null, 
     LastName varchar(64) collate Latin1_General_100_BIN2 not null, 
     Placeholder char(100) null, 

       index IDX_CustomersMemoryOptimized_LastName_FirstName 
     nonclustered hash(LastName, FirstName) with (bucket_count = 1024), 
 ) 
 with (memory_optimized = on, durability = schema_only); 
 go 

http://msdn.microsoft.com/en-us/library/dn296679.aspx
http://msdn.microsoft.com/en-us/library/dn296679.aspx
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   -- Inserting cross-joined data for all first and last names 50 times 
 -- using GO 50 command in Management Studio 
 ;with FirstNames(FirstName) 
 as 
 ( 
     select Names.Name 
     from ( values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'), ('Brian'),('Cristopher')
        ,('Cathy') 
         ,('Daniel'),('Donny'),('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry')
        ,('Henry'),('Ida') 
         ,('John'),('Jimmy'),('Jenny'),('Jack'),('Kathy'),('Kim'),('Larry'),('Mary'),('Max')
        ,('Nancy') 
          ,('Olivia'),('Olga'),('Peter'),('Patrick'),('Robert'),('Ron'),('Steve'),('Shawn')

,('Tom'),('Timothy') 
         ,('Uri'),('Vincent') ) Names(Name) 
 ) 
 ,LastNames(LastName) 
 as 
 ( 
     select Names. Name   
     from ( values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'), ('Davis'),('Miller')
        ,('Wilson') 
         ,('Moore'),('Taylor'),('Anderson'),('Jackson'),('White'),('Harris')  ) Names(Name) 
 ) 
 insert into dbo.CustomersOnDisk(LastName, FirstName) 
     select LastName, FirstName from FirstNames cross join LastNames 
 go 50 

   insert into dbo.CustomersMemoryOptimized(LastName, FirstName) 
     select LastName, FirstName from dbo.CustomersOnDisk; 

    For the first test, let’s run  SELECT  statements against both tables, specifying both  LastName  and 
 FirstName  as predicates in the queries, as shown in Listing  35-4 . 

     Listing 35-4.    Composite hash index: Selecting data using both index columns as predicates   

  select CustomerId, FirstName, LastName 
 from dbo.CustomersOnDisk 
 where FirstName = 'Brian' and LastName = 'White'; 

   select CustomerId, FirstName, LastName 
 from dbo.CustomersMemoryOptimized 
 where FirstName = 'Brian' and LastName = 'White';    

    As you can see in Figure  35-4 , SQL Server is able to use an  index seek  operation in both cases.  
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 In the next step, let’s check what happens if you remove the filtering by  FirstName  from the queries. The 
code is shown in Listing  35-5 . 

      Listing 35-5.    Composite hash index: Selecting data using leftmost index column only   

  select CustomerId, FirstName, LastName 
 from dbo.CustomersOnDisk 
 where LastName = 'White'; 

   select CustomerId, FirstName, LastName 
 from dbo.CustomersMemoryOptimized 
 where LastName = 'White'; 

    In the case of the on-disk index, SQL Server is still able to utilize an  index seek operation  . This is not the 
case for the composite hash index defined on the memory-optimized table. You can see the execution plans 
for the queries in SQL Server 2014 in Figure  35-5 . SQL Server 2016 will generate a slightly different plan for 
the second query, scanning the  dbo.CustomersMemoryOptimized  table in a different way. We will discuss it 
later in this chapter.   

  Figure 35-4.    Composite hash index: Execution plans where queries use both index columns as predicates       

  Figure 35-5.    Composite hash index: Execution plans where queries use the leftmost index column only 
(SQL Server 2014)       
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     Nonclustered (Range)  Indexes   
  Nonclustered indexes  are another type of index supported by In-Memory OLTP. In contrast to hash indexes, 
which are optimized to support point-lookup searches, nonclustered indexes help you search data based on 
a range of values. They have a similar structure to regular B-Tree indexes on on-disk tables, and they do not 
require you to guess and pre-define number of buckets as you must do with hash indexes. 

 TERMINOLOGY ISSUE

 Nonclustered indexes were introduced in SQL Server 2014 CTP 2, and documentation and whitepapers 
for that version widely used the term  range indexes . However, in the production release of SQL Server 
2014, Microsoft changed the terminology and started to use the term  nonclustered indexes  instead. 

 That terminology can be confusing because hash indexes are also not clustered. In fact, the concept of 
clustered indexes cannot be applied to In-Memory OLTP. Data rows are not stored in any particular order 
nor grouped together on the data pages in memory. 

 It is also worth mentioning that the minimal  index_id  value of In-Memory OLTP indexes is 2, which 
corresponds to nonclustered indexes in on-disk tables.  

 Nonclustered indexes use a lock- and latch-free variation of B-Tree called  Bw-Tree , which was designed 
by Microsoft Research in 2011. Similar to B-Trees, index pages in a Bw-Tree contain a set of ordered index 
key values. However, Bw-Tree pages do not have a fixed size and are unchangeable after they are built. The 
maximum page size, however, is still 8 KB. 

 Rows from a leaf level of the nonclustered index contain pointers to the actual chain of the rows with 
the same index key values. This works in a similar manner to hash indexes, where multiple rows and/or 
versions of a row are linked together. Each index in the table adds a pointer to the index  pointer array   in the 
row, regardless of its type: hash or nonclustered. 

 Root and intermediate levels in nonclustered indexes are called  internal pages . Similar to B-Tree 
indexes, internal pages point to the next level in the index. However, instead of pointing to the actual data 
page, internal pages use a  logical    page ID  (PID)  , which is a position (offset) in a separate array-like structure 
called a  mapping table . In turn, each element in the mapping table contains a pointer to the actual index 
page. 

 As already mentioned, pages in nonclustered indexes are unchangeable once they are built. SQL Server 
builds a new version of the page when it needs to be updated and replaces the page pointer in the mapping 
table, which avoids changing internal pages that reference old (obsolete) pages. We will discuss this process 
in detail shortly. 

 Figure  35-4  shows an example of a nonclustered index and a mapping table. Each index row from the 
internal page stores the  highest  key value on the next-level page as well as the PID. This is different from a 
B-Tree index, where intermediate and root level index rows store the  lowest  key value of the next-level page 
instead. Another difference is that the pages in a Bw-Tree are not linked into a double-linked list. Each page 
knows the  PID   of the next page on the same level and does not know the PID of the previous page. Even 
though it appears as a pointer (arrow) in Figure  35-6 , that link is done through the mapping table, similar to 
links to pages on the next level.  
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 Even though a Bw-Tree looks very similar to a B-Tree, there is one conceptual difference: The leaf level 
of an on-disk B-Tree index consists of separate index rows for each data row in the index. If multiple data 
rows have the same index key value, each row would have an individual index row stored. 

 Alternatively, in-memory nonclustered indexes store one index row (pointer) to the row chain that 
includes all of the data rows that have the same key value. Only one index row (pointer) per key value is 
stored in the index. You can see this in Figure  35-6 , where the leaf level of the index has single rows for the 
key values of  Ann  and  Nancy,  even though the row chain includes more than one data row for each value. 

 Every time SQL Server needs to change a leaf level index page, it creates one or two  delta  records that 
represent the changes.   INSERT  and  DELETE    operations generate a single insert or delete delta record, while 
an  UPDATE  operation generates two delta records, one each for deleting old and inserting new values. Delta 
records create a chain of memory pointers with the last pointer going to the actual index page. SQL Server 
also replaces a pointer in the mapping table with the address of the first delta record in the chain. 

 Figure  35-7  shows an example of a leaf-level page and delta records if the following actions occurred in 
the sequence: R1 index row was updated, R2 row was deleted, and R3 row was inserted.  

  Figure 35-6.    Nonclustered  index         

  Figure 35-7.    Delta records and nonclustered index leaf page       

 SQL Server uses an   InterlockedCompareExchange  mechanism   to guarantee that multiple sessions 
cannot update the same pointer chain and thus overwrite each other’s changes, thereby losing references 
to each other’s objects.  InterlockedCompareExchange  functions change the value of the pointer, checking 
that the existing ( pre-update ) value matches the expected ( old)  value provided as another parameter. Only 
when the check succeeds is the pointer value updated. All of those operations are completed as a single CPU 
instruction. 
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 Let’s look at an example, which assumes that we have two sessions in which we want to insert new delta 
records for the same index page simultaneously. As a first step, shown in Figure  35-8 , the sessions create 
delta records and set their pointers to a page based on the address from the mapping table.  

  Figure 35-8.    Data modifications and concurrency: Step 1       

  Figure 35-9.     Data modifications and concurrency  : Steps 2 and 3       

 In the next step, both sessions call the   InterlockedCompareExchange  function,   trying to 
update the mapping table by changing the reference from a page to the newly created delta records. 
 InterlockedCompareExchange  serializes the update of the mapping table element and changes it only if 
its current pre-update value matches the old pointer (address of the page) provided as the parameter. The 
first  InterlockedCompareExchange  call would succeed. The second call, however, would fail because the 
mapping table element would reference the delta record from another session rather than the page. 

 Figure  35-9  illustrates such a scenario.  

 At this time, the second session will need to repeat the action. It will read the address of the Session 
1 delta page from the mapping table and repoint its own delta page to reference this delta page. Finally, it 
will call  InterlockedCompareExchange  again using the address of the Session 1 delta page as the  old pointer  
value during the call. Figure  35-10  illustrates that.  
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 As you can see, with the exception of a very short serialization during the  InterlockedCompareExchange  
call, there is no locking or latching of the data during the modifications. 

 ■   Note    SQL Server uses the same approach with  InterlockedCompareExchange  in cases where the 
pointers chain needs to be preserved; for example, when it creates another version of a row during an update.  

 The internal and leaf pages of nonclustered indexes consist of two areas: header and data. The header 
 area   includes information about the page, such as the following:

    PID : The position (offset) in the mapping table  

   Page Type : The type of the page, such as leaf, internal, delta, or special  

   Right Page PID : The position (offset) of the next page in the mapping table  

   Height : The number of levels from the current page to the leaf level of the index  

  The  Number of key values  (index rows) stored on the page.  

   Delta records statistics  :  Includes the number of delta records and space used by 
the delta key values.  

  The  Max value of a key  on the page.    

 The data area of the page includes either two or three arrays depending on the index keys’ data  types  . 
The arrays are as follows:

    Values : An array of eight-byte pointers. Internal pages in the index store the 
PID of next level pages. Leaf-level pages store pointers to the first row in the 
row chain with the corresponding key value. It is worth noting that even though 
PID requires four bytes to store a value, SQL Server uses eight-byte elements to 
preserve the same page structure between internal and leaf pages.  

   Keys : An array of key values stored on the page  

   Offsets : An array of two-byte offsets where individual key values in key arrays 
start. Offsets are stored only if keys have variable-length data.    

  Figure 35-10.     Data modifications and concurrency  : Final steps       
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 Delta records, in a nutshell, are one-record index data pages. The structure of delta data pages is similar 
to the structure of internal and leaf pages. However, instead of arrays of values and keys, delta data pages 
store operation code ( INSERT  or  DELETE ), a single key value, a pointer to the data row, and another pointer to 
either a leaf-level index page or the next delta record in a chain. 

 Figure  35-11  shows an example of a leaf-level index page with an inserted delta record.  

  Figure 35-12.     Page splitting  : Initial state       

  Figure 35-11.     Leaf-level index   page with an inserted delta record       

 SQL Server needs to traverse and analyze all delta records when accessing an index page. As you can 
guess, a long chain of delta records affects performance. When this is the case, SQL Server consolidates delta 
records and rebuilds an index page, creating a new one. The newly created page will have the same PID and 
replace the old page, which will be marked for garbage collection. Replacement of the page is accomplished 
by changing a pointer in the mapping table. SQL Server does not need to change internal pages, because 
they use the mapping table to reference leaf-level pages. 

 The process of rebuilding is triggered at the moment a new delta record is created for pages that already 
have 16 delta records in a chain. The action described by the delta record, which triggers the rebuild, will be 
incorporated into the newly created page. 

 Two other processes can create new or delete existing index pages in addition to delta record 
consolidation. The first process,  page splitting , occurs when a page does not have enough free space to 
accommodate a new data row. Let’s look at this situation in more detail. 

 Figure  35-12  shows the internal and leaf pages of a nonclustered index. Let’s assume that one of the 
sessions wants to insert a row with a key of value  Bob.   

 When the delta record is created, SQL Server adjusts the delta records statistics on the index page and 
detects that there is no space on the page to accommodate the new index value once the delta records are 
consolidated. It triggers a page split process, which is done in two atomic steps. 

 In the first step, SQL Server creates two new leaf-level pages and splits the old page’s values between 
them. After that, it repoints the mapping table to the first newly created page and marks the old page and the 
delta records for garbage collection. 
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 Figure  35-13  illustrates this state. At this point, there are no references to the second newly created leaf-
level page from internal pages. The first leaf-level page, however, maintains the link between pages (through 
the mapping table), and SQL Server is able to access and scan the second page if needed.  

  Figure 35-13.    Page  splitting  : First step       

  Figure 35-14.    Page  splittin  g: Second step       

  Figure 35-15.    Page  merging  : First step       

 During the second step, SQL Server creates another internal page with key values that represent the 
new leaf-level page’s layout. When the new page is created, SQL Server switches the pointer in the mapping 
table and marks the old internal page for garbage collection. Figure  35-14  illustrates this action.  

 Another process,  page merging , occurs when a delete operation leaves an index page less than 10 
percent from the maximum page size, which is 8 KB now, or when an index page contains just a single row. 

 Let’s assume that we have a page layout as shown in Figure  35-14 , and we want to delete the index key 
value  Bob , which means that all data rows with the name  Bob  have been deleted. In our example, this leaves 
an index page with the single value  Boris , which triggers page merging. 

 In the first step, SQL Server creates a delete delta record for Bob and another special kind of delta record 
called  merge delta . Figure  35-15  illustrates the layout after the first step.  
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 During the second step of page merging, SQL Server creates a new internal page that does not reference 
the page with which it is about to merge. After that, SQL Server switches the mapping table to point to the 
newly created internal page and marks the old page for garbage collection. Figure  35-16  illustrates this 
action.  

  Figure 35-16.    Page merging: Second  step         

  Figure 35-17.    Page merging: Third (final) step       

 Finally, SQL Server builds a new  leaf-level   page, copying the  Boris  value there. After the new page is 
created, it updates the mapping table and marks the old pages and delta records for garbage collection. 

 Figure  35-17  shows the final data layout after page merging is completed.  

 Indexing considerations for nonclustered indexes are similar to those for on-disk nonclustered indexes. 
You should remember, however, that In-Memory OLTP in  SQL Server 2014   requires   binary sorting for the 
indexes, which is case- and accent-sensitive. 

 Finally, the  sys.dm_db_xtp_index_stats  view returns statistics for the indexes defined on memory-
optimized tables. Indexes on memory-optimized tables are recreated when SQL Server loads data into 
memory; therefore, the statistics are collected and kept since that time. Some of the output columns are as 
follows:

    scans_started  shows the number of times that row chains in the index were 
scanned. Due to the nature of the index, every operation, such as  SELECT ,  INSERT , 
 UPDATE , and  DELETE , requires SQL Server to scan a row chain and increment this 
column.  

   rows_returned  represents the cumulative number of rows returned to a client.  

   rows_touched  represents the cumulative number of rows accessed in the index.  

   rows_expired  shows the number of detected stale rows. We will discuss this in 
greater detail in the “Garbage Collection” section.  

   rows_expired_removed  returns the number of stale rows that have been 
unlinked from the index row chains. We will also discuss this in more detail in 
the “Garbage Collection” section.    
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 You can read more about the  sys.dm_db_xtp_index_stats  view at    http://msdn.microsoft.com/en-
us/library/dn133081.aspx     .  

     Hash Indexes Versus Nonclustered Indexes 
 As you already know, hash indexes are useful only for point-lookup searches and equality joins in cases 
where queries use equality predicates on all index columns. Nonclustered indexes, on the other hand, 
can be used on a much wider scope, which often makes the choice obvious. You should use nonclustered 
indexes when your queries benefit from scenarios other than point-lookups. 

 The situation is less obvious in the case of point-lookups. With hash indexes, SQL Server can locate the 
hash bucket, which is the entry point to the data row chain, in a single step by calling the hash function and 
calculating the hash value. With nonclustered indexes, SQL Server has to traverse the Bw-Tree to find a leaf 
page, and the number of steps depends on the height of the index and number of delta records there. 

 Even though nonclustered indexes require more steps to find an entry point to the data row chain, the 
chain can be smaller compared to hash indexes. Row chains in nonclustered indexes are built based on 
unique index key values. In hash indexes, row chains are built based on a non-unique hash key and can be 
larger due to hash collisions, especially when the  bucket_count  is insufficient. 

 With a sufficient number of buckets, hash indexes outperform nonclustered indexes. However, an 
insufficient number of buckets and long row chains significantly degrade their performance, making them 
less efficient than nonclustered indexes. In the end, it all depends on correct  bucket_count  estimation. 
Unfortunately, the volatility of the data makes this task complicated and requires you to factor future data 
growth into your analysis. 

 In some cases, when data is relatively static, you can create hash indexes, overestimating the number 
of buckets there. Consider catalog entities; for example, a  Customers  table and the  CustomerId  and  Phone  
columns there. Hash indexes on those columns would improve performance of point-lookup searches and 
joins. Even though the customer base is growing over time, that growth rate is usually not excessive, and 
reserving one million empty buckets could be sufficient for a long period of time. It will use about 8 MB of 
memory per index, which should be acceptable in most cases. 

 Choosing the hash index for the  OrderId  column in an  Orders  table, on the other hand, is more 
dangerous. Load growth and changes in data retention rules can make the original  bucket_count  
insufficient. This still can be acceptable if you are planning to monitor the system and can afford the 
downtime while rebuilding the index; however, a nonclustered index could be the safer choice in this 
scenario. 

 To summarize, for point-lookup and equality join use cases, create hash indexes only when you can 
correctly estimate the number of buckets and factor future data growth into the analysis. You should also 
monitor them and be able to afford the downtime involved in rebuilding the indexes when the  bucket_count  
becomes insufficient. Otherwise, use nonclustered indexes, which are the safer choice and do not depend 
on bucket count.  

     Statistics on  Memory-Optimized Tables   
 In-Memory OLTP statistics update behavior is very different in SQL Server 2014 and 2016. In both versions, 
SQL Server creates index- and column-level statistics on memory-optimized tables; however,  in SQL Server 
2014 it does not update the statistics automatically.  This behavior leads to a very interesting situation: 
indexes on memory-optimized tables are created with the tables, and therefore the statistics are created at 
the time when the table is empty and are never updated automatically afterward. 

 You need to keep this behavior in mind while designing a statistics maintenance strategy in systems that 
use SQL Server 2014. You should update statistics after data is loaded into the table when SQL Server or the 
database restarts. Moreover, if the data in a memory-optimized table is volatile, which is usually the case, 
you should manually update statistics on a regular basis. 

http://msdn.microsoft.com/en-us/library/dn133081.aspx
http://msdn.microsoft.com/en-us/library/dn133081.aspx
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 You can update individual statistics with the  UPDATE STATISTICS  command. Alternatively, you can use 
the  sp_updatestats  stored procedure to update all statistics in the database. The  sp_updatestats  stored 
procedure always updates all statistics on memory-optimized tables, which is different from how it works for 
on-disk tables, where such a stored procedure skips statistics that do not need to be updated. 

  SQL Server 2016 , on the other hand, supports automatic statistics updates in the databases that use a 
compatibility level of 130. It works essentially the same way with on-disk tables, with one exception. With 
on-disk tables, SQL Server keeps statistics modification counters at the column level and would not count 
data modification toward the statistics update threshold if the statistics columns were not updated. In 
memory-optimized tables, statistics modification counters are maintained at the row level. 

 ■   Important   You should manually update statistics once to enable the automatic statistics update after you 
upgrade from SQL Server 2014 to SQL Server 2016.   

     Memory Consumers and Off-Row Storage 
 In-Memory OLTP database objects allocate memory from separate memory heaps called  varheap.  Varheaps 
are the data structures that respond to and track memory allocation requests from various database objects 
and can grow and shrink in size when needed. All database objects that consume memory are called 
 memory consumers.  

 The separation of per-varheap memory consumers allows you to track memory usage on a per-object 
basis. It also helps SQL Server to optimize some internal operations. For example, it allows the garbage 
collection process to quickly deallocate the memory when you drop or alter the table. Moreover,  SQL Server 
2016  can perform a table scan by going through the allocated memory in the table varheap. This operation is 
faster than traversing index row chains, and it also supports parallel execution plans when running in Query 
Interop mode. 

 It is worth repeating that the varheap scan is the only operation that can lead to parallel execution plans. 
It happens only in Query Interop mode and requires SQL Server 2016. SQL Server does not support parallel 
plans in natively-compiled code. 

 As an example, if you run the second query from Listing  35-5  in SQL Server 2016, you would get the 
execution plan shown in Figure  35-18 . As you can see, SQL Server uses the  table scan  operator rather than 
the index scan used in SQL Server 2014.  

  Figure 35-18.    Composite hash index: Execution plans where query use the leftmost index column only 
(SQL Server 2016)       

 You can get detailed information about database-level memory consumers with the  sys.dm_db_xtp_
memory_consumers  view. The  memory_consumer_type  column indicates the type of memory consumer and 
can have one of three possible values, as follows:

•     VARHEAP (2)  indicates the database heap that is used to store data rows, pages of 
nonclustered indexes, and other objects.  
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•    HASH (3)  indicates memory used by the hash table in hash indexes.  

•    PGPOOL (4)  shows the database page pool used by runtime operations.    

 Let’s create a table with one hash index and one nonclustered index and look at memory consumers, as 
shown in Listing  35-6 . 

       Listing 35-6.    Analyzing memory consumers   

  create table dbo.MemoryConsumers 
 ( 
     ID int not null 
         constraint PK_MemoryConsumers 
         primary key nonclustered hash with (bucket_count=1024), 
     Name varchar(256) not null, 
     index IDX_Name nonclustered(Name) 
 ) 
 with (memory_optimized=on, durability=schema_only); 

   select 
     i.name as [Index], i.index_id, a.xtp_object_id, a.type_desc, a.minor_id 
     ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type] 
     ,c.memory_consumer_desc as [description], c.allocation_count as [allocs] 
     ,c.allocated_bytes, c.used_bytes 
 from 
     sys.dm_db_xtp_memory_consumers c join 
         sys.memory_optimized_tables_internal_attributes a on 
             a.object_id = c.object_id and a.xtp_object_id = c.xtp_object_id 
     left outer join sys.indexes i on 
             c.object_id = i.object_id and 
             c.index_id = i.index_id and 
             a.minor_id = 0 
 where 
     c.object_id = object_id('dbo.MemoryConsumers'); 

    Figure  35-19  shows the output of this query. The  xtp_object_id  column represents the internal In-
Memory OLTP  object_id , which is different than the SQL Server  object_id .  

  Figure 35-19.    Memory consumers information       

 As you can see in Figure  35-19 , the table has three memory consumers. The  range index heap  stores 
internal and leaf pages of the nonclustered index. The  hash index heap  stores the hash table of the hash 
index. Finally, the  table heap  stores actual table rows. Figure  35-20  illustrates this.  

 



CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

738

 Let’s alter the table and add off-row storage columns, as shown in Listing  35-7 . Obviously, this code 
requires SQL Server 2016 to run. 

     Listing 35-7.    Altering the table   

 alter table dbo.MemoryConsumers add 
     RowOverflowCol varchar(8000), 
     LOBCol varchar(max); 

   Now, if you get the list of memory consumers using the query from Listing  35-6 , you would see the 
output as shown in Figure  35-21 . It is worth noting that the  xtp_object_id  column of the  USER_TABLE  has 
changed because the  ALTER TABLE  operation rebuilt the table internally.  

  Figure 35-20.    Table memory consumers       

  Figure 35-21.    Memory consumers after table alteration       

 As you can see, both off-row columns introduce their own range index heap and table heap memory 
consumers. In addition, LOB column adds the  LOB page allocator  memory consumer (more about this 
later). The  minor_id  column indicates the  column_id  in the table to which memory consumers belong. 

 As you can guess from the output, SQL Server 2016 stores row-overflow and LOB columns in separate 
internal tables. These tables consist of an eight-byte artificial primary key implemented as a nonclustered 
index and off-row column value. The main row references the off-row column through that artificial key, 
which is generated when the main row is created. It is worth repeating that this reference is done though the 
artificial value rather than the memory pointer. 
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 This approach allows In-Memory OLTP to decouple off-row columns from the main row by using a 
different lifetime for them. For example, if you update the main row data without touching off-row columns, 
SQL Server would not generate new versions of the off-row column rows. Vice versa, when only off-row data 
is modified, the main row stays intact. 

 In-Memory OLTP stores LOB data in the memory provided by the  LOB page allocator  memory 
consumer. This consumer is not limited to 8,060-byte row allocations and can allocate a large amount of 
memory to store the data. The rows in the table heap of LOB columns contain pointers to the row data in the 
LOB page allocator. 

 Let’s run several DML statements with imaginary Global Transaction Timestamp values, as shown in 
Listing  35-8 . 

     Listing 35-8.    Modifying data in the table   

  -- Global Transaction Timestamp: 100 
 insert into dbo.MemoryConsumers(ID, Name, RowOverflowCol, LobCol) 
 values 
     (1,'Ann','A1',replicate(convert(varchar(max),'1'),100000)) 
     (2,'Bob','B1',replicate(convert(varchar(max),'2'),100000)); 

   -- Global Transaction Timestamp: 110 
 update dbo.MemoryConsumers set RowOverflowCol = 'B2' where ID = 2; 

   -- Global Transaction Timestamp: 120 
 update dbo.MemoryConsumers set Name= 'Greg' where ID = 2; 

   -- Global Transaction Timestamp: 130 
 update dbo.MemoryConsumers set LobCol = replicate(convert(varchar(max),'3'),100000) 
where ID = 1; 

   -- Global Transaction Timestamp: 140 
 delete from dbo.MemoryConsumers where ID = 1; 

    Figure  35-22  illustrates the state of the data and the links between the rows. It omits hash table and 
nonclustered index structures in the main table for simplicity’s sake, along with the internal pages of 
nonclustered indexes for off-row columns.  
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 The decoupling of in-row and off-row data reduces the overhead of creating extra row versions during 
data modifications. However, it will add additional overhead when you insert and delete the data. SQL 
Server should create several row objects during the insert stage and update the EndTs of multiple rows 
during deletion. It also needs to maintain nonclustered Bw-Tree indexes for off-row columns. 

  Moreover, indexes defined in the table are not covering the queries that select off-row data . SQL 
Server needs to traverse nonclustered indexes on off-row columns to obtain their values. Conceptually, it 
looks very similar to  key lookup  operations in on-disk tables but done in the reverse direction—from the 
main data row to nonclustered indexes. Even though the overhead is significantly smaller compared to 
on-disk tables, it is still overhead you’d like to avoid. 

 You should avoid off-row storage unless you have legitimate reasons to use such columns. It is clearly 
a bad idea to define text columns as  (n)varchar(max)   just in case  when you do not store a large amount of 
data there. Do not forget that In-Memory OLTP would use off-row storage based on table definition rather 
than size of the data. In our example,  RowOverflowCol  data is stored off-row even though we used just two 
character values there.  

     Columnstore Indexes (SQL Server 2016)    
 In-Memory OLTP is a specialized solution targeted for an OLTP workload. The technology can dramatically 
improve the performance of OLTP systems that deal with volatile data and process a large number of small 
transactions in parallel. It does not necessarily perform well in data warehouse and reporting scenarios, 
where queries scan and process a large amount of static data. 

 Unfortunately, the line between OLTP and data warehouse workloads is very thin nowadays. Almost 
every OLTP system has some amount of reporting and analytical workload, and switching to In-Memory 
OLTP could affect the performance of such queries. It is possible to address some of these challenges by 
partitioning the data, keeping hot data in memory-optimized tables and cold data in B-Tree or columnstore 
indexes on disk. However, this approach would not work very well with operational analytics, which scans 
and aggregates the hot data. 

  Figure 35-22.    In-row and off-row storage       
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 In  SQL Server 2016 , you can solve this problem by creating clustered columnstore indexes on memory-
optimized tables. These indexes are updatable and have a structure similar to on-disk clustered columnstore 
indexes that use compressed segments merged into the row groups. Do not be confused by the definition of 
columnstore indexes as  clustered , however. As the opposite of on-disk tables, clustered columnstore indexes 
on memory-optimized tables are separate data structures that keep a copy of the data. In this context, 
 clustered  means that those indexes include all columns from the table. 

 Memory-optimized tables with clustered columnstore indexes have a hidden column— columnstore 
RID —that is used as the row locator in the columnstore index. In-Memory OLTP uses this column as the row 
locator in the delete bitmap, which is implemented as an internal table with a nonclustered range index. As 
with on-disk columnstore indexes, it consists of rowgroup ID and position of the row in the rowgroup. It is 
worth noting that the delete bitmap in In-Memory OLTP is called a  deleted rows table.  

 Memory-optimized columnstore indexes do not have a dedicated delta store. The most recent rows in a 
memory-optimized table  become  the delta store, as shown in Figure  35-23 .  

  Figure 35-23.    Clustered columnstore index on memory-optimized table       

 When you create a clustered columnstore index, In-Memory OLTP uses another memory consumer 
for the rows in the delta store. All new versions of the rows from  INSERT  or  UPDATE  operations are allocated 
from this varheap. There is a background process that wakes up about every two minutes and estimates the 
number of rows in the delta store. In cases where this estimate exceeds one million rows, the process creates 
a new rowgroup by compressing and encoding the rows in the delta store and then moves them to the 
varheap of the main table. It is also worth noting that columnstore indexes on memory-optimized tables do 
not support  COLUMNSTORE_ARCHIVE  compression. 

 You can add a delay to compression by using the  COMPRESSION_DELAY  index option. This option could 
be beneficial when the system performs some post-processing that modifies or deletes rows shortly after 
insert. Deleted versions of the rows in that scenario would not be included in the columnstore index. 

 Let’s look at an example and create a table with a clustered columnstore index, as shown in Listing  35-9 . 
The index has the  COMPRESSION_DELAY=60  option, which defers compression for new rows for an hour. 

     Listing 35-9.    Creating a table with a clustered columnstore index   

 create table dbo.OrdersCCI 
 ( 
     OrderId int not null 
         constraint PK_OrdersCCI 
         primary key nonclustered, 
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     OrderDate datetime2(0) not null, 
     OrderNum varchar(32) not null, 
     Amount money not null, 
     index CCI_OrdersCCI clustered columnstore with (compression_delay=60) 
 ) 
 with (memory_optimized=on, durability=schema_and_data); 

   Figure  35-24  shows memory consumers for the table after I inserted some data there. You can use the 
query from Listing  35-6  to get memory consumer information.  

  Figure 35-24.    Clustered columnstore index and memory consumers       

  Figure 35-25.    Rowgroups’ Status       

 The  HKCS_COMPRESSED  consumer stores compressed rowgroups. Besides that, you can see primary key 
range index heap and two other table heap consumers—the one with  memory_consumer_id=74  is for the delta 
store and the one with  memory_consumer_id=75 is  for the table data.  DELETED_ROWS_TABLE  consumers are 
responsible for storing the delete bitmap. Other memory consumers are used by internal columnstore objects. 

 You can analyze the state of the rowgroups by using the  sys.dm_db_column_store_row_group_
physical_stats  view, as shown in Listing  35-10 . 

     Listing 35-10.    Obtaining the rowgroups’ status   

 select row_group_id, state_desc, total_rows, deleted_rows, trim_reason_desc, created_time 
 from sys.dm_db_column_store_row_group_physical_stats 
 where object_id = object_id('dbo.OrdersCCI') 
 order by row_group_id 

   Figure  35-25  shows partial output of the query. The  trip_reason_desc  column indicates the reason 
why a rowgroup has less than 1,048,576 rows. The value of  SPILLOVER  indicates that the rowgroup contains 
rows left over after all full rowgroups were created. The value of  STATS_MISTMATCH  indicates that the estimate 
of the number of rows in the delta store was incorrect.  
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 You should also monitor the  deleted_rows  value, which indicates how many rows are stored in the 
delete bitmap. Consider increasing the  COMPRESSION_DELAY  if you see a large number there. It is also worth 
mentioning that SQL Server drops the rowgroup and moves non-deleted rows back to the delta store 
varheap after 90 percent of the rows in the rowgroup have been deleted. 

 There are several limitations related to columnstore indexes in In-Memory OLTP. The most important 
are the following:

   The columnstore index cannot be created in cases where the table uses off-row 
storage, and therefore the row size cannot exceed 8,060 bytes.  

  Memory-optimized tables with columnstore indexes cannot be altered. You 
should drop the index, alter the table, and recreate the index afterward.  

  Columnstore indexes on memory-optimized tables cannot be rebuilt or 
reorganized.  

  Archive compression is not supported.    

 Obviously, the system should have enough memory to accommodate columnstore indexes. These 
indexes, however, are heavily compressed and could use just a fraction of the memory used by non-
compressed rows. 

 Finally, it is important to note that SQL Server can utilize columnstore indexes only in Query Interop 
mode. These indexes are never used from natively-compiled code.  

      Garbage Collection   
 In-Memory OLTP is a row-versioning system. Data modifications generate new versions of rows rather than 
updating row data. Every row has two timestamps (BeginTs and EndTs) that indicate row lifetime: when the 
row was created and when it was deleted. Transactions can only see the versions of rows that were valid at 
the time when the transaction started. In practice, this means that the transaction’s  logical start time  (  Global 
Transaction Timestamp  value   at the start of the transaction) is between the BeginTs and EndTs timestamps 
of the row. 

 At some point, when the EndTs timestamp of a row is older than the logical start time of the  oldest active 
transaction  in the system, the row becomes stale. Stale rows are invisible to active transactions in the system, 
and eventually they need to be deallocated in order to reclaim system memory and speed up index chain 
navigation. This process is called  garbage collection . 

 SQL Server has a system thread dedicated to performing garbage collection; however, the user sessions’ 
threads do most of the work. When a user thread is scanning a row chain in the index and detects a stale row, 
the thread unlinks that row from the chain and decrements the reference counter ( IdxLinkCount ) in the row 
header. As already discussed, this counter indicates the number of chains in which the row is present. The 
row can be deallocated only after it is removed from all chains. 

 The user thread does not deallocate stale rows immediately, however. When a transaction is completed, 
the thread puts information about this transaction into the queue used by the garbage collector. Every 
transaction keeps information about the rows it created or deleted, which is available to the garbage 
collector thread. 

 The garbage collector thread, called the  idle worker  thread, periodically goes through that queue, 
analyzes stale rows, and builds  work items,  which are collections of rows that need to be deallocated. These 
work items, in turn, are inserted into other queues that are partitioned on a per–logical CPU basis. User (and 
sometimes idle worker) threads pick up work items and deallocate the rows, reclaiming system memory in 
the process. 

 When you use off-row storage in SQL Server 2016, the garbage collection process treats internal tables 
with off-row data as individual tables. It processes and deallocates the rows from those separately from the 
main tables. 
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 You can monitor statistics about the garbage collection process with the  sys.dm_xtp_gc_stats  view. 
This view returns various pieces of information about stale rows, statistics about garbage collection scans, 
and a few other metrics. You can read more about this view at    https://msdn.microsoft.com/en-us/
library/dn268336.aspx     . 

 The   sys.dm_xtp_gc_queue_stats    view provides information about the garbage collection work item 
queue, including how many work items have been enqueued and dequeued, how many items are still in 
the queue, and a couple of other attributes. More information about this view is available at    https://msdn.
microsoft.com/en-us/library/dn268336.aspx     . 

 ■   Note    You can read about the garbage collection process in detail in my  Expert SQL Server In-Memory 
OLTP  book.    

      Data Durability and Recovery   
 The data from durable memory-optimized tables is stored separately from that in on-disk tables. SQL Server 
uses a streaming mechanism to store In-Memory OLTP data which is based on  FILESTREAM  technology and 
is optimized for sequential I/O operations. In fact, In-Memory OLTP does not use random I/O operations at 
all; that is, all In-Memory OLTP I/O operations are sequential. 

 SQL Server 2014 In-Memory OLTP implementation relies on  FILESTREAM  for all file management. With 
SQL Server 2016, the  FILESTREAM  filegroup is only used as a container, and all file management and garbage 
collection is done by the In-Memory OLTP Engine. 

 In-Memory OLTP stores data in multiple file pairs:  data files  and  delta files,  which often referenced 
as  checkpoint files . Each pair of data and delta files covers operations for a range of  Global Transaction 
Timestamp  values and logs operations on the rows that have BeginTs in this range. Every time you insert a 
row, it is saved into a data file. Every time you delete a row, the information about the deleted row is saved 
into a delta file. An update generates two operations—insert and delete—and saves this information to 
both files. 

 

ON-DISK AND MEMORY-OPTIMIZED TABLES: DIFFERENT STORAGE 

CONCEPTS

 There is a  conceptual difference   in how on-disk and memory-optimized data are stored. On-disk tables 
store the single, most recent version of the row. Multiple updates of the data row change the same row 
object multiple times. Deletion of the row removes it from the database. Finally, it is always possible to 
locate a data row in a data file when needed. 

 On the other hand, memory-optimized files store multiple versions of the row. Multiple updates of 
the data row generate multiple row objects, each of them having a different lifetime. It is impossible 
to predict where a data row is stored in the files. Nor are there use cases for such an operation. The 
purpose of data and delta files is to provide data durability.  

 SQL Server 2016 uses another type of checkpoint file called a  large data  file. These files are very similar 
to data files and are used to store LOB column data and compressed columnstore rowgroups. The data from 
row-overflow columns, on the other hand, is stored in regular data files. 

https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
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 Figure  35-26  provides a  high-level overview   of the information stored in data and delta files. Large data 
files, in a nutshell, have the same format but can have significantly larger payload size. They also use delta 
files to indicate row versions that have already been deleted.  

  Figure 35-27.    Database with multiple data and delta files       

 Figure  35-27  shows an example of a database with four pairs of data and delta files. The vertical 
rectangles with a solid fill represent data files. The rectangles with a dotted fill represent delta files.  

 Using a separate delta file to log deletions allows SQL Server to avoid modifications in data and large 
data files and random I/O in cases where rows are deleted. All data, large data, and delta files are append-
only. Moreover, when files are closed they become read-only. The size of the data files depends on the 
amount of memory and number of logical cores installed on the server. It is also worth noting that SQL 
Server pre-allocates checkpoint files when you create the first memory-optimized table in the database, even 
when that table is non-durable. 

 When SQL Server needs to load In-Memory OLTP data to memory—after a restart, for example—it 
loads only the non-deleted versions of rows, using the delta files as the filter. It checks that a row from a data 
file is not deleted and is not referenced in the delta files. Based on the results of this check, a row is either 
loaded into memory or discarded. 

  Figure 35-26.    Data in checkpoint files       
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 The process of loading data is highly scalable. SQL Server creates one thread per logical CPU, and each 
thread processes an individual pair of data and delta files. In a large number of cases, the performance of 
the  I/O subsystem   becomes the limiting factor in data loading performance. Keep in mind that In-Memory 
OLTP data needs to be loaded to the memory before the database becomes available at startup or after 
restore. 

 Figure  35-28  illustrates the data loading process.  

  Figure 35-28.    Loading data to memory       

 ■   Important   Place the In-Memory OLTP filegroup into a fast disk array optimized for sequential access. 
Moreover, you can create multiple containers in the In-Memory OLTP filegroup by placing them into different 
disk drives with different I/O paths to parallelize and speed up the data load.  

 Having a large percentage of deleted rows, and therefore large delta files, adds unnecessary storage 
overhead and slows down the data loading process. SQL Server addresses this situation with a process 
called a  merge . A background task periodically analyzes whether adjacent active checkpoint file pairs can be 
merged together in such a way that active, non-deleted rows from the merged data files would fit into a new 
data file. 

 In the example shown in Figure  35-27 , the first data file, which covers the timestamp range of 1–1000, 
contains about 40 percent of the active rows. The second data file, which covers the timestamp range of 
1001–1650, has about 50 percent of the active rows. Those files can be merged together to cover a timestamp 
of 1–1650. Figure  35-29  illustrates the data and delta files after a merge.  
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 SQL Server uses a similar merge process to combine adjacent large data files. As you should remember, 
LOB data rows are decoupled from the main rows and have their own lifetime. Therefore, large data files 
need to be merged separately from the data files. 

 After the merge process is completed, garbage collection will eventually remove old data and delta files 
and reclaim the disk space. It does not happen immediately, however. SQL Server needs to make sure that 
the original files are no longer needed for recovery in case of disaster. 

 The In-Memory OLTP  CHECKPOINT  is a separate process from the Storage Engine  CHECKPOINT , and it 
has its own truncation LSN, which can prevent the transaction log from being truncated. In addition to a 
manual  CHECKPOINT  operation, which also closes all active data files, it can be triggered under the following 
conditions:

   Transaction log growth since the last checkpoint exceeds 512 MB in SQL 
Server 2014 or 1.5 GB in SQL Server 2016. It is also worth mentioning that these 
thresholds do not differentiate between on-disk and memory-optimized tables’ 
log generation.  

  The last automatic or manual  CHECKPOINT  occurred six hours previously.    

 A  CHECKPOINT  operation persists the current  Global Transaction Timestamp  value and the information 
about all active checkpoint files. SQL Server 2014 and 2016 use slightly different approaches in how to track 
checkpoint files. SQL Server 2014 relies mainly on the transaction log while SQL Server 2016 creates another 
type of checkpoint file called the  root file . 

 The In-Memory OLTP checkpoint process is  continuous . The process constantly analyzes the 
transaction log records generated by In-Memory OLTP and populates data, large data, and delta files in 
between checkpoints. This helps avoid bursts in I/O activity for In-Memory OLTP–related checkpoints. 

 In SQL Server 2014, the checkpoint process is single-threaded. In SQL Server 2016, the operation is 
multi-threaded. Multiple checkpoint threads are scanning the transaction log in about 1 MB segments and 
populating checkpoint files in parallel. 

 Finally, In-Memory OLTP is integrated with the database backup and restore functions. It supports 
piecemeal restore. However, the In-Memory OLTP filegroup should be backed up and restored together 
with the  PRIMARY  filegroup. In most cases, it is not a problem because In-Memory OLTP usually contains 
system critical data that should be online in order for the system to be functional during a piecemeal restore. 
However, you should analyze how this requirement affects your Backup and Disaster Recovery strategies. 

  Figure 35-29.     Merge process         
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 ■   Note    You can read more about data durability, the checkpoint process, and checkpoint file pairs’ lifetime in 
my book  Expert SQL Server In-Memory OLTP .   

     SQL Server 2016 Features Support 
 In-Memory OLTP is fully integrated with many SQL Server 2016 features. 

 As we already discussed in Chapter   29    , Query Store automatically collects queries, plans, and 
optimization statistics for In-Memory OLTP objects without any additional configuration changes required. 
However, runtime statistics is not collected by default, and you need to explicitly enable it with the 
 sys.sp_xtp_control_query_exec_stats  stored procedure. 

 Keep in mind that the collection of runtime statistics adds overhead, which can degrade the 
performance of the In-Memory OLTP workload. It is also important to remember that SQL Server does not 
persist the In-Memory OLTP runtime statistics collection settings, and it will be disabled in case of a SQL 
Server restart. 

 You can use system-versioned temporal tables with memory-optimized tables by using on-disk 
 history  tables to store old row versions. When you enable system versioning in memory-optimized table, 
SQL Server creates a memory-optimized staging table and synchronously populates it during  UPDATE  and 
 DELETE  operations. The data from the staging table is asynchronously moved to the on-disk history table by 
a background process called the  data flush task . This task wakes up every minute with a light workload and 
can adjust its schedule to run every 5 seconds under a heavy workload. 

 By default, the data flush task moves the data from the staging table when it reaches 8 percent of the size 
of the  current  memory-optimized table. You can also force data movement manually by calling the 
 sys.sp_xtp_flush_temporal_history  stored procedure. 

 Memory-optimized tables can be configured for row-level security. The configuration process is 
essentially the same as with on-disk tables; however, any inline table-valued function that is used as a 
security predicate must be natively-compiled. We will talk about native compilation in Chapter   37    . 

 Finally, In-Memory OLTP is supported in the premium tiers of SQL Databases in Microsoft Azure. All 
In-Memory OLTP features will work, considering the limitations on the amount of memory the tiers provide. 
You should be careful, however, with non-durable tables in SQL Databases. Transient database failovers in 
Azure will erase the data from those tables.  

     Memory  Usage   Considerations 
 It is obvious that In-Memory OLTP uses server memory. No further data modifications are possible when 
memory cannot be allocated. Moreover, if SQL Server did not have enough memory for In-Memory OLTP 
data at database startup, the database would not come online. Be sure to remember this when you need to 
restore a database backup with In-Memory OLTP data on another server that has less memory available, or 
when you have secondary nodes in a High Availability solution that are less powerful than the primary ones. 

 In-Memory OLTP memory usage can affect the performance of other SQL Server components. For 
example, SQL Server would have less memory available for the buffer pool, and this would degrade the 
performance of queries against on-disk tables due to the greater amount of physical I/O involved. In-
Memory OLTP can consume a maximum of 80 percent of SQL Server memory. However, you can reduce this 
number by limiting memory usage in the Resource Governor resource pool and binding the database there 
using the  sys.sp_xtp_bind_db_resource_pool  stored procedure. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_29
http://dx.doi.org/10.1007/978-1-4842-1964-5_37
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 ■   Note    You can read more about binding the database to the resource pool at    https://msdn.microsoft.
com/en-us/library/dn465873.aspx     .  

 In a cases of excessive memory usage, you should analyze which objects are consuming the most 
memory in In-Memory OLTP. You can use the  sys.dm_db_xtp_table_memory_stats  view to detect these 
tables. Listing  35-11  shows a query that analyzes memory usage on a per-table basis. Figure  35-30  illustrates 
the output of the query.  

  Figure 35-30.    Memory usage information       

     Listing 35-11.    Detecting memory usage of memory-optimized tables   

 select object_name(object_id) as [Object Name], * 
 from sys.dm_db_xtp_table_memory_stats 

 ■     Note    SQL Server Management Studio includes a “Memory Usage by Memory-Optimized Objects” standard 
report that provides similar information.  

 After you detect the memory consuming tables, you should analyze why they are using memory and 
look at the data and memory consumers in the table. In cases where a table is storing a large amount of data, 
you could consider partitioning the data by moving part of it to on-disk tables. 

 ■   Tip    Adding more memory to the server can be the easiest and cheapest option in the long term. It is often 
easier and cheaper to upgrade hardware than to invest hundreds of hours redesigning and re-factoring the code 
and database schema.  

 Estimating the amount of memory required for memory-optimized tables is not a trivial task. You 
should estimate the memory requirements of several different  components  :

    Row data size  consists of a 24-byte header, an index pointers array, which is eight 
bytes per index, and the payload (actual row data) size. For example, if your 
table has 1,000,000 rows and three indexes, and each row is about 200 bytes on 
average, you will need (24 + 3 * 8 + 200) * 1,000,000 = ~236.5 MB of memory to 
store row data without any versioning overhead included in this number. Do 
not forget that every off-row column adds an extra 54+ bytes to store off-row row 
header and row identifiers.  

   Hash indexes  use eight bytes per bucket. If a table has two hash indexes defined 
with 1,500,000 buckets each, SQL Server will create indexes with 2,097,152 
buckets, rounding the number of buckets specified in the index properties to 
the next power of two. Those two indexes will use 2,097,152 * 2 * 8 = 32 MB of 
memory.  

 

https://msdn.microsoft.com/en-us/library/dn465873.aspx
https://msdn.microsoft.com/en-us/library/dn465873.aspx
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   Nonclustered indexes’  memory usage is based on the number of unique index 
keys and index key size. If a table has a range index with 250,000 unique 
key values, and each key value on average uses 30 bytes, it would use (30 + 
8(pointer)) * 250,000 = ~9 MB of memory. You can ignore the page header and 
non-leaf pages in your estimation, as their sizes are insignificant compared to 
leaf-level row size.  

   Row-versioning  memory estimation depends on the duration of the longest 
transactions and the average number of data modifications (inserts and updates) 
per second. For example, if some processes in a system have ten-second 
transactions and, on average, the system handles 1,000 data modifications per 
second, you can estimate: 10 * 1,000 * 248(row size) = ~2.4 MB of memory for 
row-versioning storage.    

 Obviously, these numbers outline the minimally required amount of memory and do not include 
memory used by columnstore indexes. You should also factor in future growth and changes in workload and 
reserve some additional memory just to be safe. 

 It is almost impossible to estimate the exact  disk storage space   required for In-Memory OLTP data. It 
depends on the workload, rate of change of the data, and frequency of the  CHECKPOINT  and merge processes. 
As a general rule, you should reserve at least two to three times more space on disk than the space used by 
data rows in-memory. Remember that indexes do not take up any disk space, and they are recreated when 
the data is loaded into memory.  

     Summary 
 Project Hekaton, released as part of SQL Server 2014, is the new latch- and lock-free In-Memory OLTP 
Engine that provides exceptional throughput for OLTP workload. It is fully integrated into SQL Server, and 
it lets you store a subset of critical database tables in memory while keeping other tables on disk. You can 
access in-memory data through the T-SQL Query Interop Engine or through natively-compiled stored 
procedures, which we will discuss in Chapter  a . 

 There are plenty of limitations in the first release of the In-Memory OLTP Engine in SQL Server 2014. 
To name just a few, memory-optimized tables support only a subset of SQL Server data types, rows cannot 
exceed 8,060 bytes, and no off-row storage is supported. Indexed text columns should have  BIN2  collations. 
The majority of these limitations have been removed in SQL Server 2016. 

 SQL Server 2016 supports row-overflow and LOB columns, storing them in separate internal tables. 
The choice of which columns will be stored off-row depends on the table schema rather than on data size. 
These columns introduce performance and storage overhead, and you should avoid them unless absolutely 
necessary. 

 The In-Memory OLTP Engine supports two types of indexes. Hash indexes are useful for equality 
searches. Nonclustered (range) indexes are similar to regular B-Tree indexes. At most, a table can have eight 
indexes, including the unique primary key. With the exception of columnstore indexes, which are supported 
in SQL Server 2016, In-Memory OLTP does not persist indexes on disk; they are recreated when data is 
loaded to memory. 

 SQL Server uses a pairs of checkpoint files to provide data durability. Data files contain inserted 
versions of rows. Delta files contain information about deleted rows. Each pair of files covers a particular 
time range and uses a streaming append-only mechanism to maintain the files. SQL Server merges files that 
cover adjacent time ranges as the percentage of deleted rows grows. SQL Server 2016 also uses large data 
files to store LOB data and columnstore indexes. 
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 Memory-optimized tables can be either durable or non-durable. Data modifications of the data from 
durable tables are logged in the transaction log and saved in checkpoint files. That data is included in 
database backups and is synchronized with secondary nodes in AlwaysOn Availability Groups. Data from 
non-durable tables is not saved in checkpoint files, nor are data modifications logged in the transaction log. 

 You should monitor the memory usage of memory-optimized tables. Transactions in the In-Memory 
OLTP Engine will fail if SQL Server cannot allocate memory. Neither SQL Server nor the database would 
start if server does not have enough memory to load memory-optimized data.     
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    CHAPTER 36   

 Transaction Processing in 
In-Memory OLTP                          

 This chapter discusses transaction processing in In-Memory OLTP. It elucidates which isolation levels 
are supported by technology, talks about the lifetime of In-Memory OLTP transactions, and explains how 
In-Memory OLTP addresses concurrency phenomena encountered in the database systems. Finally, this 
chapter provides an overview of transaction logging in In-Memory OLTP. 

     Transaction Isolation Levels and Data Consistency 
 The concurrency model implemented in In-Memory OLTP is quite complex. Before we dive deeper into 
its internal implementation, it is beneficial to remember the level of data consistency provided by different 
transaction isolation levels. We discussed this in detail in Part III of this book. However, let’s review several 
points before we start to look at the implementation details in In-Memory OLTP. 

 Any  transaction isolation   level resolves write/write conflicts. Multiple transactions cannot update the 
same row simultaneously. Different outcomes are possible, and in some cases SQL Server uses blocking 
to prevent transactions from accessing uncommitted changes until the transaction that is making these 
changes has been committed. In other cases, SQL Server rolls back one of the transactions due to an update 
conflict. In-Memory OLTP uses the latter method to resolve write/write conflicts and aborts the transaction. 
We will discuss this situation in detail later, so let’s focus now on read data consistency. 

 There are three major data inconsistency issues that are possible in multi-user environments, as 
follows:

     Dirty Reads   : A transaction reads uncommitted (dirty) data from other 
uncommitted transactions.  

    Non-Repeatable Reads   : Subsequent attempts to read the same data from within 
the same transaction return different results.    This data inconsistency issue arises 
when the other transactions modified, or even deleted, data between the reads 
done by the affected transaction.  

    Phantom Reads :   This phenomenon occurs when subsequent reads within the 
same transaction return new rows (ones that the transaction did not read before). 
This happens when another transaction inserted the new data in between the 
reads done by the affected transaction.    

 Table  36-1  shows the data inconsistency issues that are possible for different transaction isolation levels.  
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 With the exception of the   SNAPSHOT  isolation level  , SQL Server uses locking to address data 
inconsistency issues when dealing with on-disk tables. It blocks sessions from reading or modifying data 
to prevent data inconsistency. Such behavior also means that, in the case of a write/write conflict, the last 
modification wins. For example, when two transactions are trying to modify the same row, SQL Server blocks 
one of the transactions until another transaction is committed, allowing the blocked transaction to modify 
the data afterward. No errors or exceptions would be raised; however, changes from the first transaction 
would be lost. 

 The  SNAPSHOT  isolation level uses a  row-versioning model   where all data modifications done by 
other transactions are invisible to the transaction. Though it is implemented differently in on-disk than in 
memory-optimized tables, logically it behaves the same. Aborting and rolling back the transactions resolves 
write/write conflicts in this model. 

 SERIALIZABLE VERSUS SNAPSHOT ISOLATION LEVELS

 While  SERIALIZABLE  and  SNAPSHOT  isolation levels provide the same level of protection against data 
inconsistency issues, there is a subtle difference in their behavior. A  SNAPSHOT  isolation level transaction 
sees data as of the beginning of a transaction. With the  SERIALIZABLE  isolation level, the transaction 
sees data as of the time when the data was accessed for the first time. 

 Consider a situation where a session is reading data from a table in the middle of a transaction. If 
another session changed the data in that table after the transaction started but before data was 
read, the transaction in the  SERIALIZABLE  isolation level would see the changes while the  SNAPSHOT  
transaction would not.   

     Transaction Isolation Levels in In-Memory OLTP 
 In-Memory OLTP supports three transaction isolation levels:  SNAPSHOT ,  REPEATABLE READ , and 
 SERIALIZABLE . However, In-Memory OLTP uses a completely different approach to enforcing data 
consistency rules as compared to on-disk tables. Rather than block or being blocked by other sessions, In-
Memory OLTP validates data consistency at the transaction  COMMIT  time and throws an exception and rolls 
back the transaction if rules were violated.

•    In the  SNAPSHOT  isolation level, any changes done by other sessions are invisible to 
the transaction. A  SNAPSHOT  transaction always works with a snapshot of the data as 
of the time when transaction started. The only validation at the time of commit is 
checking for primary key violations, which is called  snapshot validation .  

   Table 36-1.    Transaction Isolation Levels and Data Inconsistency Issues   

 Isolation Level  Dirty Reads  Non-Repeatable Reads  Phantom Reads 

  READ UNCOMMITTED   YES  YES  YES 

  READ COMMITTED   NO  YES  YES 

  REPEATABLE READ   NO  NO  YES 

  SERIALIZABLE   NO  NO  NO 

  SNAPSHOT   NO  NO  NO 
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   Table 36-2.    Concurrency in the REPEATABLE READ Transaction Isolation Level   

 Session 1  Session 2  Results 

 begin tran   
      select ID, Col  
      from dbo.HKData  
           with (repeatableread)   

 update dbo.HKData 
  set Col = -2  
 where ID = 2   

       select ID, Col
       from dbo.HKData  
          with (repeatableread)  

 Return old version of a row (Col = 2) 

  commit   Msg 41305, Level 16, State 0, Line 0 
 The current transaction failed to commit 
due to a repeatable read validation failure. 

  begin tran  
      select ID, Col  
      from dbo.HKData  
         with (repeatableread)   

(continued)

•   In the  REPEATABLE READ  isolation level, In-Memory OLTP validates that the rows 
that were read by the transaction have not been modified or deleted by the other 
transactions. A  REPEATABLE READ  transaction would not be able to commit if this 
was the case. This action is called  repeatable read validation .  

•   In the  SERIALIZABLE  isolation level, SQL Server performs repeatable read validation 
and also checks for phantom rows that were possibly inserted by the other sessions. 
This process is called  serializable validation .    

 Let’s look at a few examples that demonstrate this behavior. As a first step, shown in Listing  36-1 , let’s 
create a memory-optimized table and insert a few rows there. 

      Listing 36-1.    Data consistency and transaction isolation levels: Table creation   

  create table dbo.HKData 
 ( 
     ID int not null 
         constraint PK_HKData 
         primary key nonclustered hash with (bucket_count=64), 
     Col int not null 
 ) 
 with (memory_optimized=on, durability=schema_only);   

   insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5); 

    Table  36-2  shows how concurrency works in the  REPEATABLE READ  transaction isolation level. It is 
important to note that SQL Server starts a transaction at the moment of first data access rather than at the 
time of the  BEGIN TRAN  statement. Therefore, the session 1 transaction starts at the time when the first 
 SELECT  operator executes.  
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 As you can see, with memory-optimized tables, other sessions were able to modify data that was read by the 
active  REPEATABLE READ  transaction. This led to a transaction abort at the time of  COMMIT  when the repeatable 
read validation failed. This is a completely different behavior than that of on-disk tables, where other sessions are 
blocked, unable to modify data until the  REPEATABLE READ  transaction successfully commits. 

 It is also worth noting that in the case of memory-optimized tables, the  REPEATABLE READ  isolation level 
protects you from the  phantom read  phenomenon, which is not the case with on-disk tables. 

 As a next step, let’s repeat these tests in the   SERIALIZABLE  isolation level  . You can see the code and the 
results of the execution in Table  36-3 .  

   Table 36-3.    Concurrency in the  SERIALIZABLE  Transaction Isolation Level   

 Session 1  Session 2  Results 

   begin tran   
      select ID, Col  
      from dbo.HKData  
          with (serializable)  

  update dbo.HKData  
  set Col = -2  
  where ID = 2  

      select ID, Col  
      from dbo.HKData  
          with (serializable)  

 Return old version of a row (Col = 2) 

  commit   Msg 41305, Level 16, State 0, Line 0 
 The current transaction failed to commit due 
to a repeatable read validation failure. 

  begin tran  
      select ID, Col  
      from dbo.HKData  
          with (serializable)  

  insert into dbo.HKData  
  values(10,10)  

      select ID, Col  
      from dbo.HKData  
          with (serializable)  

 Does not return new row (10,10) 

  commit   Msg 41325, Level 16, State 0, Line 0 
 The current transaction failed to commit due 
to a serializable validation failure. 

 Session 1  Session 2  Results 

 insert into dbo.HKData 
 values(10,10) 

      select ID, Col  
      from dbo.HKData  
          with (repeatableread)  

 Does not return new row (10,10) 

  commit   Success 

Table 36-2. (continued) 
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 As you can see, the  SERIALIZABLE  isolation level prevents the session from committing a transaction 
when another session inserted a new row and violated the serializable validation. Like the  REPEATABLE READ  
isolation level, this behavior is different from that of on-disk tables, where the  SERIALIZABLE  transaction 
successfully blocks other sessions until it is done. 

 Finally, let’s repeat the tests in the  SNAPSHOT  isolation level. The code and results are shown in 
Table  36-4 .  

   Table 36-4.    Concurrency in the   SNAPSHOT  Transaction Isolation Level     

 Session 1  Session 2  Results 

  begin tran  
      select ID, Col  
      from dbo.HKData  
          with (snapshot)  

  update dbo.HKData  
  set Col = -2  
  where ID = 2  

      select ID, Col  
      from dbo.HKData  
          with (snapshot)  

 Return old version of a row (Col = 2) 

  commit   Success 

  begin tran  
      select ID, Col  
      from dbo.HKData  
          with (snapshot)  

  insert into dbo.HKData  
  values(10,10)  

      select ID, Col  
      from dbo.HKData  
          with (snapshot)  

 Does not return new row (10,10) 

  commit   Success 

 The  SNAPSHOT  isolation level behaves in a similar manner to its behavior in on-disk tables, and it 
protects from the non-repeatable reads and phantom reads phenomena. As you can guess, it does not need 
to perform repeatable read and serializable validations at the commit stage and therefore reduces the load 
on SQL Server. However, there is still snapshot validation, which checks for primary key violations and is 
done in any transaction isolation level. 

 Table  36-5  shows the code that leads to the primary key violation condition. In contrast to on-disk 
tables, the exception is raised at the commit stage rather than at the time of the second  INSERT  operation.  
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 It is worth mentioning that the error number and message are the same as with the serializable 
validation failure even though SQL Server validated the different rule. 

  Write/write conflicts   work the same way regardless of the transaction isolation level in In-Memory 
OLTP. SQL Server does not allow a transaction to modify a row that has been modified by other 
uncommitted transactions. Table  36-6  illustrates this behavior. It uses the  SNAPSHOT  isolation level; however, 
the behavior does not change with different isolation levels.   

   Table 36-5.    Primary Key Violation   

 Session 1  Session 2  Results 

  begin tran  
      insert into dbo.HKData  
          with (snapshot)  
      (ID, Col)  
      values(100,100)  

  begin tran  
      insert into dbo.HKData  
          with (snapshot)  
      (ID, Col)  
      values(100,100)  

  commit   Successfully commit the first session 

  commit   Msg 41325, Level 16, State 1, Line 0 
 The current transaction failed to commit 
due to a serializable validation failure. 

   Table 36-6.    Write/Write Conflicts in In-Memory OLTP   

 Session 1  Session 2  Results 

  begin tran  
      select ID, Col  
      from dbo.HKData  
          with (snapshot)  

  begin tran  
      update dbo.HKData  
          with (snapshot)  
      set Col = -3  
      where ID = 2  
  commit  

      update dbo.HKData  
          with (snapshot)  
      set Col = -2  
      where ID = 2  

 Msg 41302, Level 16, State 110, Line 1 
 The current transaction attempted to 
update a record that has been updated 
since this transaction started. The 
transaction was aborted. 
 Msg 3998, Level 16, State 1, Line 1 
 Uncommittable transaction is detected 
at the end of the batch. The transaction is 
rolled back. 
 The statement has been terminated. 

(continued)
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     Cross-Container Transactions 
 Any access to memory-optimized tables from interpreted T-SQL is done through the Query Interop Engine 
and leads to   cross-container transactions      . You can use different transaction isolation levels for on-disk and 
memory-optimized tables. However, not all combinations are supported. Table  36-7  illustrates possible 
combinations for transaction isolation levels in cross-container transactions.  

 Session 1  Session 2  Results 

  begin tran  
      select ID, Col  
      from dbo.HKData  
          with (snapshot)  

  begin tran  
      update dbo.HKData  
          with (snapshot)  
      set Col = -3  
      where ID = 2  

      update dbo.HKData  
          with (snapshot)  
      set Col = -2  
      where ID = 2  

 Msg 41302, Level 16, State 110, Line 1 
 The current transaction attempted to 
update a record that has been updated 
since this transaction started. The 
transaction was aborted. 
 Msg 3998, Level 16, State 1, Line 1 
 Uncommittable transaction is detected 
at the end of the batch. The transaction is 
rolled back. 
 The statement has been terminated. 

 commit  Successful commit of session 2 transaction 

Table 36-6. (continued) 

   Table 36-7.    Isolation Levels for Cross-Container Transactions   

  Isolation Levels for On-Disk Tables    Isolation Levels for Memory-Optimized Tables  

  READ UNCOMMITTED ,  READ COMMITTED , 
  READ COMMITTED SNAPSHOT  

  SNAPSHOT ,  REPEATABLE READ ,  SERIALIZABLE  

  REPEATABLE READ ,  SERIALIZABLE    SNAPSHOT  only 

  SNAPSHOT   Not supported 

 As you already know, internal implementations of  REPEATABLE READ  and  SERIALIZABLE  isolation levels 
are very different for on-disk and memory-optimized tables. Data consistency rules with on-disk tables rely 
on locking while In-Memory OLTP uses pre-commit validation. It leads to a situation in cross-container 
transactions where SQL Server only supports  SNAPSHOT  isolation levels for memory-optimized tables when 
on-disk tables require  REPEATABLE READ  or  SERIALIZABLE  isolation. 

 Moreover, SQL Server does not allow access to memory-optimized tables when on-disk tables require 
 SNAPSHOT  isolation. Cross-container transactions, in a nutshell, consist of two internal transactions: one for 
on-disk and another one for memory-optimized tables. It is impossible to start both transactions at exactly 
the same time and guarantee the state of the data at the moment the transaction starts. 
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 As the general guideline, it is recommended to use the  READ COMMITTED / SNAPSHOT  combination in 
cross-container transactions during a regular workload. This combination provides minimal blocking 
and the least pre-commit overhead and should be acceptable in a large number of use cases. Other 
combinations are more appropriate during data migrations when it is important to avoid non-repeatable 
and phantom reads phenomena. 

 As you may have already noticed, SQL Server requires you to specify the transaction isolation level with 
a table hint when you are accessing memory-optimized tables. This does not apply to individual statements 
that execute outside of the explicitly started (with  BEGIN TRAN ) transaction. Those statements are called 
 autocommitted transactions,  and each of them executes in a separate transaction that is active for the 
duration of the statement execution. Listing  36-2  illustrates code with three statements. Each of them will 
run in their own autocommitted transactions. 

     Listing 36-2.    Autocommitted Transactions   

  delete from dbo.HKData; 

   insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);   

   select ID, Col from dbo.HKData; 

    An isolation level hint is not required for statements running in autocommitted transactions. When the 
hint is omitted, the statement runs in the  SNAPSHOT  isolation level. 

 SQL Server allows you to keep a  NOLOCK  hint while accessing memory-optimized tables from 
autocommitted transactions. That hint is ignored. A  READUNCOMMITTED  hint, however, is not supported and 
triggers an error. 

 There is a useful database option,  MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT , which is disabled 
by default. When this option is enabled, SQL Server allows you to omit the isolation level hint in non-
autocommitted transactions. SQL Server uses the  SNAPSHOT  isolation level, as with autocommitted 
transactions, if the isolation level hint is not specified when the  MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT  
option is enabled. Consider enabling this option when you port an existing system to In-Memory OLTP and 
have T-SQL code that accesses tables that become memory-optimized.  

     Transaction Lifetime 
 Although I have already discussed a few key elements used by In-Memory OLTP to manage data access and 
the concurrency model, let’s review them here.

•      Global Transaction Timestamp    is an auto-incremented value that uniquely identifies 
every transaction in the system. SQL Server increments and obtains this value at the 
transaction commit stage.  

•   Every row has  BeginTs   and EndTs timestamps, which correspond to the   Global 
Transaction Timestamp    of the transaction that created or deleted this version 
of a row.    

 At the time when a new transaction starts, In-Memory OLTP generates a  TransactionId  value that 
uniquely identifies the transaction. Moreover, In-Memory OLTP assigns the  logical start time  to the 
transaction, which represents the   Global Transaction Timestamp    value at the time when transaction 
starts. This dictates what version of the rows is visible to the transaction. The logical start time should be in 
between the BeginTs and EndTs in order for the row to be visible. 
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 When the transaction issues a  COMMIT  statement, In-Memory OLTP increments the  Global Transaction 
Timestamp  value and assigns it to the transaction’s  logical end time . The logical end time will become the 
BeginTs for the rows inserted and EndTs for the rows deleted by the transaction after it is committed. 

 Figure  36-1  shows the lifetime of a transaction that works with memory-optimized tables.  

  Figure 36-1.     Transaction lifetime         

  Figure 36-2.    Data in the  dbo.HKData  table after insert       

 When a transaction is active and it needs to delete a row, it updates the EndTs timestamp with the 
 TransactionId  value. The  INSERT  operation creates a new row with the BeginTs of the  TransactionId  and 
the EndTs of  Infinity . Finally, the  UPDATE  operation consists of delete and insert operations internally. It is 
also worth noting that during data modifications, transactions raise an error if there are any uncommitted 
versions of the rows they were modifying. This prevents write/write conflicts when multiple sessions modify 
the same data. 

 When another transaction—call it  Tx1 —encounters uncommitted rows with a  TransactionId  in 
BeginTs or EndTs timestamps ( TransactionId  has a flag that indicates such a condition), it checks the status 
of the transaction with  TransactionId . If that transaction is committing and the logical end time is already 
set, those uncommitted rows may become visible for the  Tx1  transaction, which leads to a situation called 
 commit dependency .  Tx1  is not blocked; however, it does not return data to the client nor commit until the 
original transaction on which it has a commit dependency commits itself. I will talk more about commit 
dependencies shortly. 

 Let’s look at transaction lifetime in detail. Figure  36-2  shows the data rows after we created and 
populated the  dbo.HKData  table in Listing  36-1 , assuming that the rows were created by a transaction with 
the   Global Transaction Timestamp    of 5. (The hash index structure is omitted for simplicity’s sake.)  

 Let’s assume that you have a transaction that started at the time when the   Global Transaction 
Timestamp    value was 9 and the  TransactionId  generated was -8. (I am using a negative value for 
 TransactionId  to illustrate the difference between two types of timestamps in the figures.) 

 Let’s assume that the transaction performs the operations shown in Listing  36-3 . The explicit 
transaction has already started, and the  BEGIN TRAN  statement is not included in the listing. All three 
statements are executing in the context of a single active transaction. 
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     Listing 36-3.    Data modification operations   

 insert into dbo.HKData with (snapshot) (ID, Col) values(10,10); 
 update dbo.HKData with (snapshot) set Col = -2 where ID = 2; 
 delete from dbo.HKData with (snapshot) where ID = 4; 

   Figure  36-3  illustrates the state of the data after data modifications. An  INSERT  statement created a new 
row, a  DELETE  statement updated the EndTs value in the row with  ID=4 , and an  UPDATE  statement changed 
the EndTs value of the row with  ID=2  and created a new version of the row with the same  ID .  

  Figure 36-3.    Data in the  dbo.HKData  table after modifications       

  Figure 36-4.    Start of validation phase       

 It is important to note that the transaction maintains a   write set   , or pointers to rows that have been 
inserted and deleted by a transaction, which is used to generate transaction log records. 

 In addition to the write set, in the  REPEATABLE READ  and  SERIALIZABLE  isolation levels, transactions 
maintain a   read set    of the rows read by a transaction and use it for repeatable read validation. Finally, in 
the  SERIALIZABLE  isolation level, transactions maintain a   scan set   , which contains information about the 
predicates used by the queries in the transaction. The scan set is used for serializable validation. 

 When a  COMMIT  request is issued, the transaction starts the validation phase. First, it autoincrements 
the current  Global Transaction Timestamp  value, which becomes the logical end time of the transaction. 
Figure  36-4  illustrates this state, assuming that the new   Global Transaction Timestamp    value is 11. Note that 
the BeginTs and EndTs timestamps in the rows still have a  TransactionId  at this stage.  

 At this moment, the rows modified by transaction become visible to other transactions in the system 
even though the transaction has yet to be committed, which can lead to commit dependencies. Again, we 
will talk about them shortly. 
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 As the next step, the transaction starts a validation phase. SQL Server performs several validations 
based on the isolation level of the transaction, as shown in Table  36-8 .  

   Table 36-8.    Validations Done in the Different Transaction Isolation Levels   

 Snapshot Validation  Repeatable Read Validation  Serializable Validation 

 Checking for primary key 
violations 

 Checking for non-repeatable 
reads 

 Checking for phantom 
reads 

 SNAPSHOT  YES  NO  NO 

 REPEATABLE READ  YES  YES  NO 

 SERIALIZABLE  YES  YES  YES 

  Figure 36-5.    Commit dependency: Successful commit       

 ■   Important   Repeatable read and serializable validations add overhead to the system. Do not use 
 REPEATABLE READ  and  SERIALIZABLE  isolation levels unless you have a legitimate use case for such data 
consistency.  

 After the required rules have been validated, the transaction waits for the commit dependencies to clear 
and the transaction on which it depends to commit. If those transactions fail to commit for any reason—
for example, validation rules violation—the dependent transaction is also rolled back and error 41301 is 
generated. 

 Figure  36-5  illustrates a commit dependency scenario.  Transaction  Tx2    can access uncommitted rows 
from transaction  Tx1  during  Tx1  validation and commit phases, and therefore  Tx2  has a commit dependency 
on  Tx1 . After the  Tx2  validation phase is completed,  Tx2  has to wait for  Tx1  to commit and the commit 
dependency to clear before entering the commit phase.  

 If  Tx1 , for example, failed to commit due to serializable validation violation,  Tx2  would be rolled back 
with Error 41301, as shown in Figure  36-6 .  

 



CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP 

764

  Commit dependency      is technically a case of blocking in In-Memory OLTP. However, the validation and 
commit phases of the transactions are relatively short, and that blocking should not be excessive. 

 SQL Server allows a maximum of eight commit dependencies on a single transaction. When this 
number is reached, other transactions that try to take a dependency would fail with error 41839. 

 ■   Note    You can track commit dependencies using the  dependency_acquiredtx_event  and  waiting_for_
dependenciestx_event  extended events.  

 When all commit dependencies are cleared, the transaction moves to the commit phase, generates one 
or more log records, and saves them to the transaction log, moving to the post-commit phase afterward. 

 At the post-commit state, the transaction replaces the BeginTs and EndTs timestamps with the 
logical end time value and decrements the commit dependencies counters in the dependent transactions. 
Figure  36-7  illustrates the final state of the transaction.   

  Figure 36-6.    Commit dependency: Validation error       

  Figure 36-7.    Completed transaction       

 

 



CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP 

765

      Referential Integrity Enforcement   (SQL Server 2016) 
 It is impossible to enforce referential integrity in  pure   SNAPSHOT  isolation level, because transactions 
are completely isolated from each other. Consider a situation where a transaction deletes a row that is 
referenced by a newly inserted row in another transaction that started after the original one. In-Memory 
OLTP addresses this problem by maintaining read and/or scan sets in the  SNAPSHOT  isolation level for tables 
and queries that are affected by referential integrity validation. 

 In contrast to  REPEATABLE READ  and  SERIALIZABLE  transactions, these sets are maintained only for 
affected tables rather than for the entire transaction. They would include all rows that were read and all 
predicates that were applied during a referential integrity check. 

 This behavior can lead to issues when a referencing table does not have an index on the foreign key 
column(s). Similar to on-disk tables, SQL Server will have to scan the entire referencing (detail) table when 
you delete a row in the referenced (master) table. In addition to the performance impact, the transaction will 
maintain the read set, which includes all rows it read during the scan, regardless if those rows referenced 
a deleted row or not. If any other transactions update or delete any rows from the read set, the original 
transaction would fail with a  repeatable read rule violation  error. 

 Let’s look at an example and create two tables with the code seen in Listing  36-4 . 

     Listing 36-4.    Referential integrity validation:  Tables’   creation   

  create table dbo.Branches 
 ( 
     BranchId int not null 
         constraint PK_Branches 
         primary key nonclustered hash with (bucket_count = 4) 
 ) 
 with (memory_optimized = on, durability = schema_only); 

   create table dbo.Transactions 
 ( 
     TransactionId int not null 
         constraint PK_Transactions 
         primary key nonclustered hash with (bucket_count = 4), 
     BranchId int not null 
         constraint FK_Transactions_Branches 
         foreign key references dbo.Branches(BranchId), 
     Amount money not null 
 ) 
 with (memory_optimized = on, durability = schema_only); 

   insert into dbo.Branches(BranchId) values(1),(10); 
 insert into dbo.Transactions(TransactionId,BranchId,Amount) 
 values(1,1,1),(2,1,20); 

    The  dbo.Transactions  table has a foreign key constraint referencing the  dbo.Branches  table. There 
are no rows, however, referencing the row with  BranchId = 10 . As the next step, let’s run the code shown in 
Listing  36-5 , deleting this row and leaving the transaction active. 

     Listing 36-5.    Referential integrity validation: First session code   

 begin tran 
     delete from dbo.Branches with (snapshot) where BranchId = 10; 
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   The   DELETE  statement   would validate the foreign key constraint and would complete successfully. The 
 dbo.Transactions  table, however, does not have an index on the  BranchId  column, and the validation will 
require a scan of the entire table, as you can see in Figure  36-8 .  

  Figure 36-8.    Referential integrity validation: Execution plan of DELETE statement       

 At this time all rows from the  dbo.Transactions  table would be included in the transaction read set. 
If another session updated one of the rows from the read set with the code shown in Listing  36-6 , it would 
succeed and the first session would fail to commit as a result of a  repeatable read rule violation  error. 

     Listing 36-6.    Referential integrity validation: Second session code   

 update dbo.Transactions with (snapshot) 
 set Amount = 30 
 where TransactionId = 2; 

    Similar to on-disk tables, you should always create an index on the foreign key columns in the 
referencing table to avoid this problem.   

     Transaction Logging 
 As mentioned in the previous chapter,  transaction logging   in In-Memory OLTP is more efficient than the 
Storage Engine. Both engines share the same transaction log and perform  write-ahead logging  (WAL); 
however, the log records’ formats and algorithms are very different. 

 With on-disk tables, SQL Server generates transaction log records on a per-index basis. For example, 
when you insert a single row into a table with clustered and nonclustered indexes, it will log  INSERT  
operations in every individual index separately. Moreover, it will log internal operations, such as extent and 
page allocations, page splits, and a few others. 

 All log records are saved in a transaction log and hardened on disk pretty much synchronously at the 
time when they were created. As you already know, every database caches transaction log records in the log 
buffers; however, this cache is very small, and it is flushed on disk during  COMMIT  and  CHECKPOINT  operations. 

 Finally, SQL Server has to include  before-update  (undo) and  after-update  (redo) versions of the row to 
the log records. The checkpoint process is asynchronous and does not check the state of the transaction that 
modified the page. It is entirely possible for the checkpoint to save the dirty data pages from uncommitted 
transactions, and the undo part of the log records are required to roll back the changes. 

 Transaction logging in In-Memory OLTP addresses these inefficiencies. The first major difference is that 
In-Memory OLTP generates and saves log records at the time of the transaction  COMMIT  rather than during 
each data row modification. Therefore, rolled back transactions do not generate any log activity. 

 The format of a log record is also different and much more efficient. Log records do not include any undo 
information. Dirty data from uncommitted transactions will never materialize on disk, and therefore In-Memory 
OLTP log data does not need to support the undo stage of crash recovery or log uncommitted changes. 
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 In-Memory OLTP generates log records based on the transaction’s write set. All data modifications 
are combined in one or very few log records based on the write set and inserted rows’ size. Moreover, data 
modifications in non-durable memory-optimized tables are not logged at all. 

 Let’s examine this behavior and run the code shown in Listing  36-7 . It starts a transaction and inserts 
500 rows into a memory-optimized table. Then, it examines the content of the transaction log using the 
undocumented  sys.fn_dblog  system function. 

      Listing 36-7.    Transaction logging in In-Memory OLTP: Memory-optimized table logging   

  create table dbo.HKData 
 ( 
     ID int not null, 
     Col int not null, 

       constraint PK_HKData 
     primary key nonclustered hash(ID) with (bucket_count=1024), 
 ) 
 with (memory_optimized=on, durability=schema_and_data);   

   declare 
     @I int = 1 

   begin tran 
     while @I <= 500 
     begin 
         insert into dbo.HKData with (snapshot) (ID, Col) values(@I, @I); 
         set @I += 1; 
     end 
 commit; 

   select * from sys.fn_dblog(null, null) order by [Current LSN]; 

    Figure  36-9  illustrates the content of the transaction log. You can see the single transaction record for 
the In-Memory OLTP transaction.  

  Figure 36-9.    Transaction log content after the In-Memory OLTP transaction       

 Let’s repeat this test with an on-disk table of a similar structure. Listing  36-8  shows the code that creates 
a table and populates it with data. 

     Listing 36-8.    Transaction logging in In-Memory OLTP: On-disk table logging   

  create table dbo.DiskData 
 ( 
     ID int not null, 
     Col int not null, 
     constraint PK_DiskData primary key nonclustered(ID) 
 ); 
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   declare 
     @I int = 1 

   begin tran 
     while @I <= 500 
     begin 
         insert into dbo.DiskData(ID, Col) values(@I, @I); 
         set @I += 1; 
     end 
 commit; 

    As you can see in Figure  36-10 , the same transaction generated more than 1,000 log records.  

  Figure 36-11.    In-Memory OLTP transaction log record details       

  Figure 36-10.     Transaction log content   after on-disk table modification       

 You can use another undocumented function,  sys.fn_dblog_xtp , to examine the logical content of an 
In-Memory OLTP log record. Listing  36-9  shows the code that utilizes this function, and Figure  36-11  shows 
the output of that code. You should use the LSN of the  LSN_HK  log record from the Listing  36-7  output as the 
parameter of the function.  

     Listing 36-9.    Analyzing an In-Memory OLTP log record   

 select [Current LSN], object_name(table_id) as [Table] 
         ,operation_desc, tx_end_timestamp, total_size 
 from sys.fn_dblog_xtp 
 ( 
     '0x0000001f:0000593b:0002' 
     ,'0x0000001f:0000593b:0002' 
 ) 
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   Finally, it is worth stating again that any data modification made on non-durable tables 
( DURABILITY=SCHEMA_ONLY ) is not logged in the transaction log, nor is its data persisted on disk. This makes 
these tables great candidates to be the staging tables in ETL processes. You should obviously remember that 
data in non-durable tables do not survive server crashes or failover; you should handle these conditions in 
the ETL code.  

     Summary 
 In-Memory OLTP supports three transaction isolation levels:  SNAPSHOT ,  REPEATABLE READ , and 
 SERIALIZABLE . In contrast to on-disk tables, where non-repeatable and phantom reads are addressed by 
acquiring and holding locks, In-Memory OLTP validates data consistency rules at the transaction commit 
stage. An exception will be raised and the transaction will be rolled back if rules were violated. 

 Repeatable read and serializable validation add overhead to transaction processing. It is recommended 
to use the  SNAPSHOT  isolation level during a regular workload unless  REPEATABLE READ  or  SERIALIZABLE  data 
consistency is required. 

 SQL Server 2016 performs repeatable read and serializable validations to enforce referential integrity in 
the system. Always create an index on the foreign key columns in referencing tables to improve performance 
and avoid validation errors. 

 You can use different transaction isolation levels for on-disk and memory-optimized tables in cross-
container transactions; however, not all combinations are supported. The recommended practice is to use 
the  READ COMMITTED  isolation level for on-disk tables and the  SNAPSHOT  isolation level for memory-optimized 
tables. 

 SQL Server does not require you to specify a transaction isolation level when you access memory-
optimized tables through the Interop Engine in autocommitted (single-statement) transactions. SQL Server 
automatically promotes such transactions to the  SNAPSHOT  isolation level. However, you should specify an 
isolation level hint when a transaction is explicitly started with a  BEGIN TRAN  statement. You can avoid this 
by enabling the  MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT  database option. This option is useful when you 
port an existing system to use with In-Memory OLTP. 

 Transaction logging in In-Memory OLTP is more efficient than on-disk tables. Transactions are logged 
at the time of  COMMIT  based on the transaction write set. Log records are compact and contain information 
about multiple row-related operations. 

 In-Memory OLTP does not log any data modifications made in non-durable memory-optimized tables. 
It makes them a great choice to be staging tables in ETL processes.     



771© Dmitri Korotkevitch 2016 
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_37

    CHAPTER 37   

 In-Memory OLTP Programmability                          

 This chapter focuses on the programmability aspects of the In-Memory OLTP Engine in SQL Server. It 
describes the process of native compilation and provides an overview of the  natively-compiled modules   and 
 T-SQL features   that are supported in In-Memory OLTP. Finally, it discusses several questions related to the 
design of new systems and migration of existing systems to the In-Memory OLTP architecture. 

     Native Compilation 
 As you already know, memory-optimized tables can be accessed from regular T-SQL code using the Query 
Interop Engine. This approach is very flexible. As long as you work within the supported feature set, the 
location of data is transparent. The code does not need to know, nor does it need to worry about, if it works 
with on-disk or with memory-optimized tables.    

 Unfortunately, this  flexibility   comes at a cost. T-SQL is an interpreted and CPU-intensive language. 
Even a simple T-SQL statement requires thousands, and sometimes millions, of CPU instructions to execute. 
Even though in-memory data location dramatically speeds up data access and eliminates latching and 
locking contentions, the overhead of T-SQL interpretation and execution limits the level of performance 
improvements achievable with In-Memory OLTP. 

 ■   Note    The native compilation does not help in operational analytics scenarios in SQL Server 2016. 
Columnstore indexes can only be utilized in Query Interop mode.  

 In practice, it is possible to see a 2X–4X system throughput increase when  memory-optimized data   
is accessed through the Interop Engine. To improve performance even further, In-Memory OLTP utilizes 
native compilation. As a first step, it converts any row data manipulation and access logic into C code, which 
is compiled into DLLs and loaded into SQL Server process memory. Those DLLs (one per table) consist 
of native CPU instructions, and they execute without any further code interpretation overhead of T-SQL 
statements. 
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 Consider a simple situation where you need to read the value of a  fixed-length column   from a data 
row. In the case of on-disk tables, SQL Server obtains the starting offset and length of the column from the 
system catalogs and performs the required manipulations to convert the sequence of bytes to the required 
data type. With memory-optimized tables, the DLL already knows what the column offset and data type are. 
   SQL Server can read data from a pre-defined offset in a row using a pointer of the correct data type without 
any further overhead involved. As you can guess, this approach dramatically reduces the number of CPU 
instructions required for the operation. 

 On the flip side, this approach brings some limitations. You cannot change the format of a row after the 
DLL is generated. The compiled code would not know anything about the changes. This problem is more 
complicated than it seems, and simple recompilation of the DLL does not address it. 

 Consider a situation where you need to add another nullable column to a table. This is a metadata-level 
operation for on-disk tables and does not change the data in existing table rows. T-SQL would be able to 
detect that column data is not present by analyzing the various data row properties at runtime. 

 The situation is far more complicated in the case of  memory-optimized tables   and natively-compiled 
code. It is easy to generate a new version of the DLL that knows about new data column; however, that is 
not enough. The DLL needs to handle different versions of rows and different data formats depending on 
the presence of column data. While this is technically possible, it adds extra logic to the DLL, which leads 
to additional processing instructions, which slows data access. Moreover, the logic to support multiple data 
formats would remain in the code forever, degrading performance even further with each table alteration. 

 The only way to address this problem is to convert all existing data rows into the new format, rebuilding 
the table. This is exactly what table alteration performs in SQL Server 2016. In SQL Server 2014 this operation 
is not supported, so you need to implement it manually by creating another table and copying data there. 
Keep in mind that you cannot rename memory-optimized tables, and you will need to either change the 
code referencing the new table name or recreate the original table by persisting data in the staging table 
during the process. You can also use synonyms to reference the new table under the old name. 

 To reduce the overhead of T-SQL interpretation even further, the In-Memory OLTP Engine allows you to 
perform native compilation of stored procedures and, in SQL Server 2016, DML triggers and scalar table-
valued functions. These  modules   are compiled in the same way as table-related DLLs and are also loaded 
to SQL Server process memory. We will discuss natively-compiled stored procedures and other modules in 
greater detail later in the chapter. 

 Native compilation utilizes both the SQL Server and In-Memory OLTP Engines. As a first step, SQL 
Server parses the T-SQL code and generates an execution plan using Query Optimizer. At the end of this 
stage, SQL Server generates a structure called  MAT (Mixed Abstract    Tree    )    ,    which represents metadata, 
imperative logic, expressions, and query plans. 

 As a next step, In-Memory OLTP transforms MAT to another structure called   PIT (Pure Imperative Tree)    ,  
which is used to generate source code that is compiled and linked into the DLL.     

 Figure  37-1  illustrates the process of native compilation in SQL Server.  
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  The   code generated for native compilation uses plain C language and is very efficient. It is very hard 
to read, however. For example, every method is implemented as a single function, which does not call 
other functions but rather implements its code inline using  GOTO  as a control-flow statement. You should 
remember the intention has never been to generate human-readable code. It is used as the source for native 
compilation only. 

  Binary DLL files   are not persisted in a database backup. SQL Server recreates table-related DLLs on 
database startup and stored procedure–related DLLs at the time of first call. This approach addresses 
security risks from hackers, who can substitute DLLs with malicious copies. 

 SQL Server places binary DLLs and all other native compilation–related files in an  XTP  subfolder under 
the main SQL Server data directory. It groups files on a per-database basis by creating another level of 
subfolders. Figure  37-2  shows the contents of a folder for a database (with ID=9) that contains several In-
Memory OLTP objects.      

  Figure 37-1.    Native compilation in SQL Server       
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 All of the file names start with the prefix  xtp_  followed either by the  p  (stored procedure, scalar function, 
or trigger) or  t  (table) character, which indicates the object type. The two last parts of the name include the 
database and object IDs for the object. 

 File extensions determine the type of the file, such as the following:   

    *.mat.xml  files store an XML representation of the MAT structure.  

   *.c  files are the source file generated by the C code generator.  

   *.obj  are the object files generated by the C compiler.  

   *.pub  are symbol files produced by the C compiler.  

   *.out  are log files from the C compiler.  

   *.dll  are natively-compiled DLLs generated by the C linker. These files are 
loaded into SQL Server memory and used by the In-Memory OLTP Engine.    

 Listing  37-1  shows how to obtain a list of the natively-compiled objects loaded into SQL Server memory. 
It also returns the list of tables and stored procedures from the database to show the correlation between a 
DLL file name and object IDs.    

     Listing 37-1.    Obtaining a list of natively-compiled objects loaded into SQL Server memory   

  select 
     s.name + '.' + o.name as [Object Name], o.object_id 
 from 
     (   select schema_id, name, object_id 

  Figure 37-2.    Folder with natively-compiled objects       
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         from sys.tables 
         where is_memory_optimized = 1 
         union all 
         select schema_id, name, object_id 
         from sys.procedures 
     ) o join sys.schemas s on 
             o.schema_id = s.schema_id; 

   select base_address, language, description, name 
 from sys.dm_os_loaded_modules 
 where description = 'XTP Native DLL'; 

    Figure  37-3  illustrates the output of the code.  

  Figure 37-3.    Natively-compiled objects loaded into SQL Server memory       

   SQL Server 2016    allows you to  ALTER  natively-compiled modules. This is online operation; SQL 
Server uses an old version of the module during the compilation and replaces it with the new DLL when 
compilation is completed. Alteration is not supported in SQL Server 2014, and the only choice you have is 
dropping and recreating the stored procedure.  

     Natively-Compiled Modules 
 Natively-compiled stored procedures are stored procedures that are compiled into native code. They are 
extremely efficient, and they can provide major performance improvements when working with memory-
optimized tables, as compared to interpreted T-SQL statements, which access those tables through the 
Query Interop component. In addition, SQL Server 2016 allows you to natively compile triggers and scalar 
user-defined functions.    

 ■   Note    In this chapter, I will reference regular interpreted (non-natively compiled) modules as  T-SQL 
modules .  

 Natively-compiled modules can access only memory-optimized tables. Moreover, they support a smaller 
set of T-SQL features as compared to the Query Interop Engine. We will talk about those limitations in more 
detail shortly after we discuss when SQL Server compiles and how it optimizes natively-compiled modules 
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     Optimization of Natively-Compiled Modules 
 Interpreted T-SQL stored procedures and other modules are compiled at the time of first execution. 
Additionally, they can be recompiled after they are evicted from the plan cache and in a few other cases, 
such as outdated statistics, changes in database schema, or recompilation, that are explicitly requested in 
the code.     

 This behavior is different from natively-compiled modules, which are compiled at creation time. They 
are never recompiled except for SQL Server or database restart. In these cases, recompilation occurs at the 
time of the first call. 

 SQL Server does not sniff parameters at the time of compilation, optimizing statements for  UNKNOWN  
values. It uses memory-optimized table statistics during optimization, which may or may not be up to date, 
especially in SQL Server 2014 where statistics are not updated automatically. 

 Fortunately,  cardinality estimation errors   have a smaller impact on performance in the case of natively-
compiled modules. Contrary to on-disk tables, where such errors can lead to highly inefficient plans due 
to the high number of  key  or   RID lookup  operations  , all indexes in memory-optimized tables reference 
the same data row and, in a nutshell, are covering indexes for in-row columns. Moreover, errors will not 
affect the choice of join strategy— nested loop  is the only physical join type supported in natively-compiled 
modules in SQL Server 2014 and 2016. 

 Outdated  statistics   at the time of compilation, however, can still lead to inefficient plans. One such 
example is a query with multiple predicates on indexed columns. SQL Server needs to know the index’s 
selectivity to choose the most efficient index. 

 It is better to recompile natively-compiled modules if the data in the table has significantly changed. 
In  SQL Server 2016 , you can do it by calling the  sp_recompile  stored procedure. Unfortunately, it is not 
supported in  SQL Server 2014 , so you have to recreate natively-compiled stored procedure with the 
following set of actions:

    1.    Update statistics to reflect the current data distribution in the table(s).  

    2.    Script permissions assigned to natively-compiled stored procedures.  

    3.    Drop and recreate procedures. Those actions force recompilation.  

    4.    Assign required permissions to the procedures.     

 Finally, it is worth mentioning that the presence of natively-compiled modules often requires you to 
adjust the deployment process in the system. It is common to create all database schema objects, including 
tables and stored procedures, at the beginning of deployment. While the time of deployment does not matter 
for T-SQL modules, such a strategy compiles natively-compiled modules at a time when database tables are 
empty. You should recompile (or recreate) natively-compiled modules later; after the tables are populated 
with data and statistics are updated.  

     Creating Natively-Compiled Stored Procedures 
 Natively-compiled stored procedures and other modules execute as atomic blocks, which is an  all or nothing  
approach. Either all statements in the module succeed or all of them fail.     

 When a natively-compiled stored procedure is called outside of the context of an active transaction, it 
starts a new transaction and either commits or rolls it back at the end of the execution. 

 In cases where a procedure is called in the context of an active transaction,  SQL Server   creates a 
savepoint at the beginning of the procedure’s execution. In case of an error in the procedure, SQL Server rolls 
back the transaction to the created savepoint. Based on the severity and type of the error, the transaction is 
either going to be able to continue and commit or became doomed and uncommittable. The same is true for 
natively-compiled DML triggers, which always execute in the context of an active transaction. 
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 Let’s look at an example and create a memory-optimized table and natively-compiled stored procedure, 
as shown in Listing  37-2 . Do not focus on unfamiliar constructs in the stored procedure body. I will explain 
those shortly. 

      Listing 37-2.     Atomic blocks   and transactions: Objects’ creation   

  create table dbo.MOData 
 ( 
     ID int not null 
         primary key nonclustered hash with (bucket_count=16), 
     Value int null 
 ) 
 with (memory_optimized=on, durability=schema_only); 

   insert into dbo.MOData(ID, Value) values(1,1), (2,2) 
 go 

   create proc dbo.AtomicBlockDemo 
 ( 
     @ID1 int not null 
     ,@Value1 bigint not null 
     ,@ID2 int 
     ,@Value2 bigint 
 ) 
 with  native_compilation , schemabinding, execute as owner 
 as 
  begin atomic  
 with (transaction isolation level = snapshot, language=N'us_english') 
     update dbo.MOData set Value = @Value1 where ID = @ID1; 
     if @ID2 is not null 
         update dbo.MOData set Value = @Value2 where ID = @ID2; 
 end; 

    At this point, the   dbo.MOData  table   has two rows with values  (1,1)  and  (2,2) . Now, let’s start the 
transaction and call a stored procedure twice, as shown in Listing  37-3 .     

     Listing 37-3.    Atomic blocks and transactions: Calling stored procedure   

 begin tran 
     exec dbo.AtomicBlockDemo 1, -1, 2, -2; 
     exec dbo.AtomicBlockDemo 1, 0, 2, 999999999999999; 

   The first call of the stored procedure succeeds, while the second call triggers an  arithmetic overflow 
error  , as shown here: 

   Msg 8115, Level 16, State 0, Procedure AtomicBlockDemo, Line 49 

 Arithmetic overflow error converting bigint to data type int. 
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   You can check that the transaction is still active and committable with this select:  SELECT @@TRANCOUNT 
AS [@@TRANCOUNT], XACT_STATE() AS [XACT_STATE()] . It would return the following results: 

   @@TRANCOUNT XACT_STATE() 
 ----------- ------------ 
 1           1 

   If you commit the  transaction   and check the content of the table, you will see that the data reflects the 
changes caused by the first stored procedure call. Even though the first update statement from the second 
call succeeded, SQL Server rolled it back because the natively-compiled stored procedure executed as an 
atomic block. You can see the data in the table below. 

   ID          Value 
 ----------- ----------- 
 1           -1 
 2           -2 

   As a second example, let’s trigger a critical error, which dooms the transaction, making it 
uncommittable. One such situation is a write/write conflict. You can trigger it by executing the code in 
Listing  37-4  in two different sessions.     

     Listing 37-4.    Atomic blocks and transactions: Write/write conflict   

 begin tran 
     exec dbo.AtomicBlockDemo 1, 0, null, null; 

   When you run the code in the second session, it triggers the following exception: 

   Msg 41302, Level 16, State 110, Procedure AtomicBlockDemo, Line 13 
 The current transaction attempted to update a record that has been updated since this 
transaction started. The transaction was aborted. 
 Msg 3998, Level 16, State 1, Line 1 
 Uncommittable transaction is detected at the end of the batch. The transaction is rolled 
back. 

   If you check   @@TRANCOUNT    in the second session, you will see that SQL Server terminated the transaction 
as follows. 

   @@TRANCOUNT 
 ----------- 
 0           

   As you can see, when an atomic block executes in the context of an active transaction, severe errors in 
the atomic block roll back the entire transaction while  non-critical errors   roll back the transaction to the 
savepoint that corresponds to the beginning of the block. 



CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

779

 You should specify that the natively-compiled module is an atomic block by using  BEGIN ATOMIC..END  
at the top level of the module. It has two required and three  optional settings  , as follows:

    TRANSACTION ISOLATION LEVEL  is the required setting that controls transaction 
isolation level in the atomic block. You can use  SNAPSHOT ,  REPEATABLEREAD , or 
 SERIALIZABLE  isolation levels.  

   LANGUAGE  setting is required. It dictates the date/time format and system 
messages language in the block.  

   DATEFORMAT  is optional and it allows you to override the default date format 
associated with the language.  

   DATEFIRST  is optional and it overrides the default value associated with the 
language.  

   DELAYED_DURABILITY  is optional and it specifies the durability option for the 
transaction if it is started by the atomic block.    

 It is also worth noting that atomic blocks are not supported in interpreted T-SQL modules. 
 All natively-compiled objects are schema-bound, and they require you to specify the   SCHEMABINDING  

option  . Finally, in  SQL Server 2014 , natively-compiled stored procedures do not support the  EXECUTE AS 
CALLER  execution context and require you to specify  EXECUTE AS OWNER ,  EXECUTE AS USER , or  EXECUTE AS 
SELF  contexts in the definition. This limitation is removed in  SQL Server 2016 , and execution context is 
optional. 

 ■   Note    You can read about execution context at    http://technet.microsoft.com/en-us/library/
ms188354.aspx     .  

 As you have already seen in Listing  37-2 , you can specify the required parameters by using the  NOT NULL  
construct in the module’s definition. SQL Server raises an error if you do not provide the parameter values at 
the time of the call. 

 Finally, it is recommended that you avoid type conversion and do not use named parameters when you 
call natively-compiled stored procedures. It is more efficient to use  exec Proc value [..,value]  rather 
than the  exec Proc @Param=value [..,@Param=value]  calling format. 

 ■   Note    You can detect inefficient parameterization with the  hekaton_slow_parameter_parsing  extended 
event.   

     Natively-Compiled Triggers and  User-Defined Functions      
(SQL Server 2016) 
  SQL Server 2016  allows you to create natively-compiled scalar user-defined functions and DML triggers on 
memory-optimized tables. As with natively-compiled stored procedures, these modules cannot access on-
disk objects. 

 Listing  37-5  shows the code that creates both types of objects. 

http://technet.microsoft.com/en-us/library/ms188354.aspx
http://technet.microsoft.com/en-us/library/ms188354.aspx
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     Listing 37-5.    Natively-compiled trigger and user-defined function   

  create trigger NativelyCompiledTrigger on dbo.MemoryOptimizedTable 
 with native_compilation, schemabinding 
 after insert 
 as 
 begin atomic with 
 ( 
     transaction isolation level = snapshot, language = N'English' 
 ) 
     if @@rowcount = 0 
         return; 
     /* Trigger Body */ 
 end 
 go 

   create function dbo.NativelyCompiledScalarFunction(@Param1 int not null) 
 returns int 
 with native_compilation, schemabinding 
 as 
 begin atomic with 
 ( 
     transaction isolation level = snapshot, language = N'us_english' 
 ) 
     declare 
         @Result int = 0 
     /* Function Body */ 
     return @Result; 
 end 

    As with T-SQL triggers and scalar user-defined functions, you should consider the overhead these 
modules introduce. Let’s run a couple of tests and compare the  performance      of interpreted T-SQL and 
natively-compiled scalar functions. Listing  37-6  creates two very simple functions that just run an empty 
 WHILE  loop without any data access. 

     Listing 37-6.    Natively-compiled versus interpreted function: Functions’ creation   

  create function dbo.ScalarInterpret(@LoopCnt int) 
 returns int 
 as 
 begin 
     declare 
         @I int = 0 
     while @I < @LoopCnt 
         select @I += 1; 
     return @I; 
 end 
 go 

   create function dbo.ScalarNativelyCompiled(@LoopCnt int) 
 returns int 
 with native_compilation, schemabinding   
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 as   
 begin atomic with (transaction isolation level = snapshot, language = N'us_english')   
     declare 
         @I int = 0 
     while @I < @LoopCnt 
         select @I += 1; 
     return @I; 
 end 

    As the next step, let’s call the functions running a 1,000,000-execution loop inside them, as shown in 
Listing  37-7 . 

     Listing 37-7.    Natively-compiled versus interpreted function: Running the loop within the function   

 select dbo.ScalarInterpret(1000000); 
 select dbo.ScalarNativelyCompiled(1000000); 

   Table  37-1  illustrates the execution time in my environment. As you can see, the natively-compiled 
function is orders of magnitude faster than its interpreted T-SQL counterpart.  

   Table 37-1.    Execution Time When Functions Run 1,000,000-Execution Loop   

 Interpreted T-SQL Function  Natively-Compiled Function 

 454 ms  5 ms 

   Table 37-2.    Execution Time of 1,000,000 Function Calls   

 Interpreted T-SQL Function  Natively-Compiled Function 

 12,344 ms  11,392 ms 

 Let’s run another test and call the functions in the loop, as shown in Listing  37-8 . The  functions      do not 
execute a  WHILE  loop internally but rather being invoked 1,000,000 times. Table  37-2  shows the execution 
time in my environment.  

     Listing 37-8.    Natively-compiled versus interpreted function: Multiple calls   

  declare 
     @Dummy int 
     ,@I int = 0 

   while @I < 1000000 
 begin 
     select @Dummy = dbo.ScalarInterpret(0); 
     select @I += 1; 
 end; 

   set @I = 0; 
 while @I < 1000000 
 begin 
     select @Dummy = dbo.ScalarNativelyCompiled(0); 
     select @I += 1; 
 end; 
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    Even though natively-compiled functions are significantly faster than interpreted T-SQL functions, the 
execution overhead is very similar in both cases. You should avoid scalar user-defined functions in your 
code even when they are natively-compiled. 

  SQL Server 2016  also allows you to mark inline table-valued functions as natively-compiled. However, 
they behave differently than other modules. When you mark these functions as natively-compiled, SQL Server 
just validates that they are using the language constructs supported by native compilation. The functions are not 
actually compiled but rather are embedded into the other natively-compiled modules that reference them. 

 When you call natively-compiled inline table-valued functions from T-SQL via Query Interop, SQL 
Server treats them as regular T-SQL inline table-valued functions, embedding their statement to the 
referenced query. 

 Listing  37-9  illustrates a natively- compiled      inline table-valued function. 

     Listing 37-9.    Natively-compiled inline table-valued function   

 create function dbo.NativeCompiledInlineTVF(@Param datetime) 
 returns table 
 with native_compilation, schemabinding 
 as 
 return 
 ( 
     select count(*) as Result 
     from dbo.MemoryOptimizedTable 
     where DateCol >= @Param 
 ) 

        Supported T-SQL Features 
 Natively-compiled modules support only a limited set of T-SQL constructs. In SQL Server 2014, the list of 
limitations is extensive. Fortunately, many of those limitations were removed in SQL Server 2016. 

 Let’s look at the supported features in different areas. 

   Control Flow 
 The following control flow options are supported:      

    IF  and  WHILE   

  Assigning a value to a variable with the  SELECT  and  SET  operators. 

     RETURN  

     TRY / CATCH / THROW  ( RAISERROR  is not supported). It is recommended that you use 
a single  TRY / CATCH  block for the entire stored procedure for better performance.  

  It is possible to declare  variables      as  NOT NULL  as long as they have an initializer as 
part of the  DECLARE  statement.  

   SQL Server 2016  supports nested natively-compiled modules execution. For 
example, natively-compiled stored procedure can call another natively-compiled 
procedure or function.     
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   Operators 
 The following  operators   are supported:   

   Comparison operators, such as  = ,  < ,  <= ,  > ,  >= , and  <> .  

  Unary and binary operators, such as  + ,  - ,  * ,  / , and  %. The +  operators are 
supported for both numbers and strings.  

  Bitwise operators, such as  & ,  | ,  ~ , and  ̂  .  

  Logical operators, such as  AND ,  OR , and  NOT . However, in  SQL Server 2014 , the 
 OR  and  NOT  operators are not supported in the  WHERE  and  HAVING  clauses of the 
query.  

   SQL Server 2016  supports  IN ,  BETWEEN , and  EXISTS  operators.     

   Built-In Functions 
 The following built-in functions are supported:      

   Math functions:  SQL Server 2016  supports all mathematical functions.  In SQL 
Server 2014 , the following functions are supported:  ACOS ,  ASIN ,  ATAN ,  ATN2 ,  COS , 
 COT ,  DEGREES ,  EXP ,  LOG ,  LOG10 ,  PI ,  POWER ,  RAND ,  SIN ,  SQRT ,  SQUARE , and  TAN   

  Date/time functions:  CURRENT_TIMESTAMP ,  DATEADD ,  DATEDIFF ,  DATEFROMPARTS , 
 DATEPART ,  DATETIME2FROMPARTS ,  DATETIMEFROMPARTS ,  DAY ,  EOMONTH ,  GETDATE , 
 GETUTCDATE ,  MONTH ,  SMALLDATETIMEFROMPARTS ,  SYSDATETIME ,  SYSUTCDATETIME , 
and  YEAR   

  String functions:  LEN ,  LTRIM ,  RTRIM , and  SUBSTRING   

  Error functions:  ERROR_LINE ,  ERROR_MESSAGE ,  ERROR_NUMBER ,  ERROR_PROCEDURE , 
 ERROR_SEVERITY , and  ERROR_STATE   

   NEWID  and  NEWSEQUENTIALID   

   CAST  and  CONVERT . However, it is impossible to convert between a non-unicode 
and a unicode string.  

   ISNULL   

   SCOPE_IDENTITY   

  You can use  @@ROWCOUNT  within a natively-compiled  stored      procedure; however, 
its value is reset to 0 at the beginning and end of the procedure.  

   SQL Server 2016  supports the  @@SPID  function.  

   SQL Server 2016  supports the following security functions:  IS_MEMBER ,  IS_
ROLEMEMBER ,  IS_SRVROLEMEMBER ,  ORIGINAL_LOGIN ,  SESSION_USER ,  CURRENT_USER , 
 SUSER_ID ,  SUSER_SID ,  SUSER_SNAME ,  SYSTEM_USER ,  SUSER_NAME ,  USER ,  USER_ID , 
 USER_NAME , and  CONTEXT_INFO .     
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   Query Surface Area 
 The following query surface area functions are supported:      

    SELECT ,  INSERT ,  UPDATE , and  DELETE.   SQL Server 2016  supports the  SELECT 
DISTINCT  operator and allows you to use the  OUTPUT  clause with  INSERT ,  UPDATE , 
and  DELETE  operators.  

   SQL Server 2016  supports  UNION  and  UNION ALL  operators.  

   CROSS JOIN  and  INNER JOIN  are the only join types supported in  SQL Server 
2014. SQL Server 2016  also supports  LEFT OUTER JOIN  and  RIGHT OUTER JOIN . 
You can use joins only with  SELECT  operators.  

  Expressions in the  SELECT  list and  WHERE  and  HAVING  clauses are supported as 
long as they use supported operators.  

   SQL Server 2016  supports subqueries in  FROM  and  WHERE  clauses and scalar 
subqueries in the  SELECT  clause.  

   IS NULL  and  IS NOT NULL   

   GROUP BY  is supported with the exception of grouping by string or binary data.  

   TOP  and  ORDER BY . However, you cannot use these with  WITH TIES  and  PERCENT  
in the  TOP  clause. Moreover, the  TOP  operator is limited to 8,192 rows when 
the  TOP <constant>  is used, or an even lesser number of rows in the case of 
joins. You can address this last limitation by using a  TOP <variable>  approach. 
However, it is less efficient in terms of performance.    

 The native compilation in SQL Server 2016 still has several limitations and unsupported T-SQL 
constructs. You can think about unsupported  CASE  and  MERGE  statements as  examples     .   

      Execution Statistics   
 By default, SQL Server does not collect execution statistics for natively-compiled stored procedures because 
of the performance impact it introduces. You can enable such a collection at the procedure level with the 
 exec sys.sp_xtp_control_proc_exec_stats 1  command. Moreover, you can use the  exec sys.sp_xtp_
control_query_exec_stats 1  command to enable a collection at the statement level. SQL Server does not 
persist these settings, and you will need to re-enable statistics collection after each SQL Server restart. 

 ■   Note    Do not collect execution statistics unless you are troubleshooting performance.  

 As you can guess, the collection of execution statistics introduces overhead in the system. Do not enable 
it unless you are performing troubleshooting, and be sure to disable it as soon as troubleshooting is done. 

 Listing  37-10  shows the code that returns execution statistics for stored procedures using the  sys.
dm_exec_procedure_stats  view. 

      Listing 37-10.    Analyzing stored procedure execution statistics   

 select top 50 
     object_name(object_id) as [Proc Name] 
     ,execution_count as [Exec Cnt] 
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     ,total_worker_time as [Total CPU] 
     ,convert(int,total_worker_time / 1000 / execution_count) as [Avg CPU] 
     ,total_elapsed_time as [Total Elps] 
     ,convert(int,total_elapsed_time / 1000 / execution_count) as [Avg Elps] 
     ,cached_time as [Cached] 
     ,last_execution_time as [Last Exec Time]   
     ,sql_handle 
     ,plan_handle 
     ,total_logical_reads as [Reads] 
     ,total_logical_writes as [Writes] 
 from sys.dm_exec_procedure_stats 
 order by [Avg CPU] desc 

   Figure  37-4  illustrates the output of the code from Listing  37-10 . As you can see, neither the  sql_handle  
nor  plan_handle  columns are populated. Execution plans for natively-compiled stored  procedures   are 
embedded into the code and are not cached in the plan cache, nor are I/O-related statistics provided. 
Natively-compiled stored procedures work with memory-optimized tables only, and therefore there is no 
I/O involved.  

  Figure 37-4.    Data from  sys.dm_exec_procedure_stats  view       

 Listing  37-11  shows the code that obtains execution statistics for individual statements using the  sys.
dm_exec_query_stats  view. 

      Listing 37-11.    Analyzing stored procedure statement execution statistics   

 select top 50 
     substring(qt.text, (qs.statement_start_offset/2)+1, 
         (( case qs.statement_end_offset 
                 when -1 then datalength(qt.text) 
                 else qs.statement_end_offset 
             end - qs.statement_start_offset)/2)+1) as [SQL] 
     ,qs.execution_count as [Exec Cnt] 
     ,qs.total_worker_time as [Total CPU] 
     ,convert(int,qs.total_worker_time / 1000 / qs.execution_count) as [Avg CPU] 
     ,total_elapsed_time as [Total Elps] 
     ,convert(int,qs.total_elapsed_time / 1000 / qs.execution_count) as [Avg Elps] 
     ,qs.creation_time as [Cached] 
     ,last_execution_time as [Last Exec Time]       
     ,qs.plan_handle 
     ,qs.total_logical_reads as [Reads] 
     ,qs.total_logical_writes as [Writes] 
 from 
     sys.dm_exec_query_stats qs 
         cross apply sys.dm_exec_sql_text(qs.sql_handle) qt 
 where 
     qs.plan_generation_num is null 
 order by 
     [Avg CPU] desc 
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   Figure  37-5  illustrates the output of the code from Listing  37-11 . Like procedure  execution statistics  , 
it is impossible to obtain the execution plans of the statements. However, you can analyze the CPU time 
consumed by individual statements and the frequency of their execution.    

     Interpreted T-SQL and  Memory-Optimized Tables      
 The Query Interop component provides transparent, memory-optimized table access to interpreted T-SQL 
code. In interpreted mode, SQL Server treats memory-optimized tables pretty much the same way as it 
does on-disk tables. It optimizes queries and caches execution plans, regardless of where table is located. 
The same set of operators is used during query execution. From a high level, when the operator’s  GetRow()  
method is called, it is routed either to the Storage Engine or to the In-Memory OLTP Engine, depending on 
the underlying table type. 

 Most T-SQL features are supported in interpreted mode. There are still a few exceptions that are not 
supported in either version of SQL Server:

    TRUNCATE TABLE   

   MERGE  operator with memory-optimized table as the target  

  Context connection from CLR code  

  Referencing memory-optimized tables in indexed views. You can reference 
memory-optimized tables in partitioned views, combining data from memory-
optimized and on-disk tables.  

   DYNAMIC  and  KEYSET  cursors, which are automatically downgraded to  STATIC   

  Cross-database queries and transactions  

  Linked servers    

 As you can see, the list of limitations is pretty small. However, the flexibility of Query Interop  access      
comes at a cost. Natively-compiled modules are usually several times more efficient as compared to their 
interpreted T-SQL counterparts. In some cases—for example, joins between memory-optimized and on-disk 
tables—Query Interop is the only choice; however, it is usually preferable to use natively-compiled modules 
when possible.  

     Memory-Optimized Table Types and Variables 
 SQL Server allows you to create memory-optimized table types.          Table variables of these types are called 
 memory-optimized table variables . In contrast to regular disk-based table variables, memory-optimized 
table variables live in memory only and do not utilize  tempdb . 

 Memory-optimized table variables provide great performance. They can be used as a replacement 
for disk-based table variables and in some cases temporary tables. Obviously, they have the same set of 
functional limitations as memory-optimized tables. 

 Contrary to disk-based table types, you can define indexes on memory-optimized table types. The same 
statistics-related limitations still apply. However, as we already discussed, due to the nature of indexes on 

  Figure 37-5.    Data from the  sys.dm_exec_query_stats  view       

 



CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

787

memory-optimized tables, cardinality estimation errors yield a much lower negative impact as compared to 
those of on-disk tables. 

 SQL Server does not support inline declaration of memory-optimized table variables. For example, the 
code shown in Listing  37-12  would not compile and would raise an error. The reason behind this limitation 
is that SQL Server compiles a DLL for every memory-optimized table type, which would not work in the case 
of inline declarations. 

     Listing 37-12.    (Non-functional) inline declaration of memory-optimized table variables   

 declare 
     @IDList table 
     ( 
         ID int not null 
             primary key nonclustered hash with (bucket_count=1024) 
     ) 
     with (memory_optimized=on) 

 Msg 319, Level 15, State 1, Line 91 
 Incorrect syntax near the keyword 'with'. If this statement is a common table expression, 
an xmlnamespaces clause, or a change tracking context clause, the previous statement must 
be terminated with a semicolon. 

   You should define and use a memory-optimized table type instead, as shown in Listing  37-13 . 

     Listing 37-13.    Creating a memory-optimized table type and table variable   

  create type dbo.mtvIDList as table 
 ( 
     ID int not null 
         primary key nonclustered hash with (bucket_count=1024) 
 ) 
  with (memory_optimized=on)  
 go 

   declare 
     @IDList dbo.mtvIDList 

    Using memory-optimized  table         variables and table-valued parameters as the replacement for  tempdb  
temporary objects improves performance of the system and reduces  tempdb  load. It requires very few code 
changes. For example, you can switch from on-disk to memory-optimized TVP by marking the table type as 
memory-optimized. It is completely transparent to the other code. 

 As you might remember, in Chapter   13     we tested several methods of importing a batch of rows into the 
database. On-disk table-valued parameters outperformed all other methods, including the  SqlBulkCopy  
class. By changing the table type definition to become memory-optimized, I was able to reduce the import 
time another 40 percent as compared to on-disk implementation. 

 You can use memory-optimized table variables to imitate row-by-row processing using cursors, which 
are not supported in natively-compiled stored procedures. Listing  37-14  illustrates an example of using a 
memory-optimized table variable to imitate a static cursor. Obviously, it is better to avoid cursors and use 
set-based logic if at all possible. 

http://dx.doi.org/10.1007/978-1-4842-1964-5_13


CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

788

     Listing 37-14.    Using a memory-optimized table variable to imitate a cursor   

  create type dbo.MODataStage as table 
 ( 
     ID int not null 
         primary key nonclustered hash with (bucket_count=1024), 
        Value int null 
 ) 
 with (memory_optimized=on) 
 go 

   create proc dbo.CursorDemo 
 with native_compilation, schemabinding, execute as owner 
 as 
 begin atomic 
 with (transaction isolation level = snapshot, language=N'us_english') 
     declare 
         @tblCursor dbo.MODataStage   
         ,@ID int = -1 
         ,@Value int 
         ,@RC int = 1 

          /* Staging data in temporary table to imitate STATIC cursor */ 
     insert into @tblCursor(ID, Value) 
         select ID, Value from dbo. MOData        ; 

       while @RC = 1 
     begin 
         select top 1 @ID = ID, @Value = Value 
         from @tblCursor 
         where ID > @ID 
         order by ID; 

           select @RC = @@rowcount 
         if @RC = 1 
         begin 
             /* Row processing */ 
             update dbo.MOData set Value = Value * 2 where ID = @ID 
         end 
     end 
 end 

         In-Memory OLTP: Implementation Considerations 
 As with any new technology, the adoption of In-Memory OLTP comes at a cost. You will need to acquire 
and/or upgrade to SQL Server 2014 or 2016, spend time learning the technology, and if you are updating an 
existing system, re-factor code and test the changes. It is important to perform a  cost/benefits analysis   and 
determine if In-Memory OLTP provides you with adequate benefits to outweigh the costs. 

 In-Memory OLTP is hardly a magical solution that can help you improve server performance by simply 
flipping a switch and moving data into memory. It is designed to address a specific set of problems, such as 
latch and lock contentions on very active OLTP systems. It is less beneficial in the case of data warehouse 
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systems with low concurrent activity, large amounts of data, and queries that require complex aggregations. 
While in some cases it is still possible to achieve performance improvements by moving data into memory, 
you can often obtain better results by implementing on-disk columnstore indexes, indexing views, data 
compression, and other database schema changes. 

 This remains true even in SQL Server 2016, which supports columnstore indexes on memory-
optimized tables. Such indexes are targeted toward systems with a mixed workload, and they help with the 
performance of reporting and analytics queries that work in parallel with OLTP workload. You should not 
treat In-Memory OLTP columnstore indexes as an in-memory data warehouse solution. 

 It is also worth remembering that most performance improvements are achieved by using natively-
compiled modules,    which can rarely be used in data warehouse workloads due to the limited set of T-SQL 
features that they support. Moreover, SQL Server 2016 does not use columnstore indexes from natively-
compiled code. 

 Another important factor is whether you plan to use In-Memory OLTP during the development of new 
or the migration of existing systems, and it also greatly depends on the version of SQL Server being used. You 
need to make changes in existing systems to address the limitations of technology. In  SQL Server 2014  the 
list of limitations is extensive and includes missing support of triggers, foreign key constraints, check and 
unique constraints, calculated columns, and quite a few other restrictions. 

 I would like to discuss a few less obvious items that can greatly increase the migration cost in  SQL 
Server 2014 . The first is the 8,060-byte maximum row size limitation in memory-optimized tables without 
any off-row data storage support. Such a limitation can lead to a significant amount of work when the 
existing active OLTP tables use LOB data types, such as  (n)varchar(max)  or  xml . While it is possible to 
change the data types by limiting the size of the strings and/or storing xml as text or in binary format and/
or storing large objects in separate tables, such changes are complex, time consuming, and require careful 
planning. Do not forget that In-Memory OLTP in SQL Server 2014 does not allow you to create a table if there 
is a possibility that the size of a row exceeds 8,060 bytes. For example, you cannot create a table with three 
 varchar(3000)  columns. 

 The  indexing of   memory-optimized tables is another important factor.  SQL Server 2014  requires the 
binary collation of indexed text columns. This is a breaking change in system behavior, and it often requires 
non-trivial changes in the code and some sort of data conversion. 

 Consider a situation where an application performs a search on the  Name  column, which uses case-
insensitive collation. You will need to convert all values to upper- or lowercase in order to be able to utilize a 
nonclustered index after the table becomes memory-optimized. That will change the user experience in the 
system. 

 It is also worth noting that using binary collations for data will lead to changes in the T-SQL code. 
You will need to specify collations for variables in stored procedures and other T-SQL routines, unless you 
change the database collation to be a binary one. However, if the database and server collations do not 
match, you will need to specify a collation for the columns in temporary tables created in  tempdb . 

 You should also remember that nonclustered Bw-Tree indexes behave differently than B-Tree indexes 
on on-disk tables. Nonclustered Bw-Tree indexes are implemented as a single-linked list, and they would 
not help much if the data needed to be accessed in the opposite sorting order of an index key. To make 
matter worse, an  index  or  table scan  of large memory-optimized tables can be less efficient as compared to 
such scans of on-disk tables, especially when data resides in the buffer pool. All of that often requires you to 
re-evaluate your index strategy when a table is moved from disk into memory in both versions of SQL Server. 

  SQL Server 2016  addresses many of technology limitations that existed in SQL Server 2014. However, 
there are still limitations as compared to on-disk tables. Most notable are missing support for  xml  and  clr  
data types, calculated columns, and different off-row storage behavior.  Upgrading to SQL Server 2016 could 
be the easiest and cheapest way to address the technology limitations in SQL Server 2014.  

 There are plenty of other factors to consider. However, the key point is that you should perform a 
thorough analysis before starting a migration to In-Memory OLTP. Such a migration can have a very 
significant cost impact, and it should not be done unless it benefits the system. 

 SQL Server Management  Studio   provides a set of tools that can help you analyze if In-Memory OLTP 
will improve your application’s performance and identify the objects that would benefit the most from the 
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conversion. While these tools can be beneficial during the initial analysis stage, you should not make a 
decision based solely on the tools’ output. Take into account all of the other factors and considerations we 
have already discussed in this chapter. 

 ■   Note    You can read about the In-Memory OLTP ARM tool at    http://msdn.microsoft.com/en-us/
library/dn205133.aspx     .  

 New development, on the other hand, is a very different story. You can design a new system and 
database schema while taking In-Memory OLTP limitations into account. It is also possible to adjust some 
functional requirements during the design phase. As an example, it is much easier to store data in a case-
sensitive way from the beginning as compared to changing the behavior of existing systems after they are 
deployed to production, in the case if you use SQL Server 2014. 

 You should remember, however, that In-Memory OLTP is an  Enterprise Edition feature,   and it requires 
powerful hardware with a large amount of memory. It is an expensive feature because of its licensing costs. 
Moreover, it is impossible to  “set it and forget it.”  Database professionals should actively participate in 
monitoring and tuning the system after deployment. They need to monitor system memory usage, analyze 
data and recreate hash indexes if bucket counts need to be changed, update statistics, redeploy natively-
compiled modules, and perform other tasks as well. 

 All of that makes In-Memory OLTP a bad choice for independent software vendors who develop 
products that need be deployed to a large number of customers. Moreover, it is not practical to support two 
versions of a system—with and without In-Memory OLTP—because of the increase in development and 
support costs. 

 Finally, if you are using the Enterprise Edition of SQL Server or the premium tier of SQL Database in 
Microsoft Azure, you can benefit from some of the In-Memory OLTP features, even if you decided that In-
Memory OLTP migration is not cost-effective for your organization’s needs. You can use memory-optimized 
table variables and/or non-durable memory-optimized tables as a staging area and for the replacement of 
on-disk temporary tables. This will improve the performance of calculations and ETL processes that need to 
store a temporary copy of the data. 

 Another possibility is using memory-optimized tables as session state storage for ASP.Net applications 
and/or as distributed cache for client applications, avoiding the purchase of expensive third-party solutions. 
You can use either durable or non-durable tables in this scenario. Durable tables will provide you with 
transparent failover, while  non-durable tables   will have incredibly fast performance. Obviously, you should 
remember the 8,060-byte maximum row size limitation and address it in code if you are using SQL Server 
2014. 

 ■   Note    My  Expert SQL Server In-Memory OLTP  book covers many other questions related to the deployment, 
monitoring, and management of the systems utilizing In-Memory OLTP.   

     Summary 
 SQL Server uses native compilation to minimize the processing overhead of the interpreted T-SQL language. 
It generates separate DLLs for every memory-optimized object and loads it into process memory. 

 SQL Server 2014 supports the native compilation of regular T-SQL stored procedures. SQL Server 
2016 also supports the native compilation of DML triggers and scalar user-defined functions. It compiles 
them into DLLs at creation time or, in the case of a server or database restart, at the time of the first call. 
SQL Server optimizes natively-compiled modules and embeds an execution plan into the code. That plan 

http://msdn.microsoft.com/en-us/library/dn205133.aspx
http://msdn.microsoft.com/en-us/library/dn205133.aspx
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never changes unless the module is recompiled after a SQL Server or database restart. You should drop and 
recreate the module in SQL Server 2014 or recompile it with the  sp_recompile  stored procedure in SQL 
Server 2016 if data distribution has been significantly changed after compilation. 

 While natively-compiled modules are incredibly fast, they support a limited set of T-SQL language 
features. You can avoid such limitations by using interpreted T-SQL code that accesses memory-optimized 
tables through the Query Interop component of SQL Server. Almost all T-SQL language features are 
supported in this mode. 

 Memory-optimized table types and memory-optimized table variables are the in-memory analog of 
table types and table variables. They live in-memory only, and they do not use  tempdb . You can use memory-
optimized table variables as a staging area for the data and to pass a batch of rows to a T-SQL routine. 
Memory-optimized table types allow you to create indexes similar to memory-optimized tables. 

 In-Memory OLTP is an Enterprise Edition feature that requires the monitoring and tuning of systems in 
the post-deployment stage. It makes In-Memory OLTP a bad choice for independent software vendors who 
develop systems that need to be deployed to multiple customers. 

 The migration of existing systems could be a very time consuming and expensive process that requires 
you to address various limitations and differences in the behavior of memory-optimized and on-disk 
tables and indexes. You should perform a cost/benefit analysis, making sure that the benefits of migration 
overweigh its implementation costs.     
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  Designing a backup strategy , 622   
  Designing a high availability strategy , 651   
  Detecting suboptimal queries , 174   

  Deterministic encryption , 134   
  Dictionary compression in page compression , 102   
  Dictionary encoding in column-based storage , 674   
  Dictionary in column-based storage , 674   
  Diff erential change map pages , 21, 615   
  DIFFERENTIAL database backup , 617   
  Dimension tables , 660   
  Dirty reads data inconsistency issue , 392, 753   
  DISTINCT_EQ_ROWS in statistics histogram , 56   
  Distribution database in replication , 650   
  Distributor in replication , 650   
  DML triggers , 195   
  DONE worker thread state , 552   
  Duplicated reads data inconsistency issue , 392   
  Durability option in memory-optimized tables , 720   
  Durability transaction characteristic , 382   
  Dynamic Data Masking , 136    

          E 
  EndTs timestamp , 723, 743, 760   
  EQ_ROWS in statistics histogram , 56   
  Error 1204 , 429   
  Error 1205 , 421   
  Error 3960 , 438   
  Error 41301 , 763   
  Error 41839 , 764   
  Error 9002 , 610   
  -E startup parameter , 290   
  Estimated execution plan , 473   
  Estimated number of rows in the execution plan , 58   
  etw_classic_sync_target Extended Event target , 528   
  event_counter Extended Event target , 528, 535   
  EVENTDATA() function , 205, 207   
  event_fi le Extended Event target , 528, 533   
  EVENT_RETENTION_MODE Extended Events 

session confi guration setting , 529   
  Event sessions in Extended Events , 519   
  Events in Extended Events , 521   
  Eviction policy algorithm , 512   
  Exchange operator , 483   
  Exclusive (X) lock , 383   
  Execution model (SQL Server) , 551   
  Execution plan , 463, 472   
  EXECUTE WITH RECOMPILE clause , 496   
  EXISTS() method (XQUERY) , 254   
  EXPAND VIEWS query hint , 487   
  Exponential backoff  algorithm , 78   
  Extended Events , 519   
  Extended Events session , 530   
  Extents , 19   
  EXTERNAL_ACCESS CLR assemblies , 294   
  External index fragmentation , 143   
  Extract Transform and 

Load (ETL) processes , 660    
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          F 
  Facts tables , 660   
  Failover cluster , 637, 721   
   Failover Partner  connection string property , 645   
  Failover process , 637   
  Fast database recovery , 604   
  FAST N query hint , 488   
  FGCB_ADD_REMOVE latch type , 573   
  Filegroups , 3   
  File Snapshot Backup , 633   
  FILLFACTOR index option , 145, 543   
  Filtered indexes , 87, 109, 502, 506, 709   
  Filtered statistics , 90   
  Filter function for Stretch Database , 118, 120   
  FILTER predicate in row-level security policy , 127   
  Fixed-length data types , 9   
  fn_dump_dblog system function , 621   
  fn_hadr_is_primary_replica system function , 648   
  fn_trace_gettable system function , 620   
  Forced parameterization , 506   
  Forced plan in Query Store , 584   
  FORCE ORDER query hint , 487   
  FORCESCAN table hint , 487   
  FORCESEEK table hint , 487   
  Foreign key constraints , 184, 662, 721   
  FORMAT backup option , 617   
  FOR SYSTEM_TIME clause of the SELECT , 114   
  Forwarded row , 33   
  Forwarding pointer , 33   
  fragment_count in sys.dm_db_index_

physical_stats , 143   
  FULL database backup , 609, 617   
  FULL database recovery model , 608    

          G 
  Garbage collection in In-Memory OLTP , 743   
  Geography data type , 295, 319   
  Geometry data type , 295, 319   
  GetRow() method of the execution 

plan operator , 469, 786   
  Ghost cleanup task , 23   
  Global allocation map (GAM) pages , 19, 274   
  Global temporary tables , 270   
  Global transaction timestamp , 723, 743, 760    

          H 
  Halloween protection , 480, 723   
  Hash aggregate , 478   
  HASHBYTE() function , 148   
  Hash collision , 471   
  Hash indexes , 723, 735   
  Hash index heap , 737   

  Hash join operator , 475   
  Hash join query hint , 487   
  Hash warning , 471, 530   
  Header byte , 98   
  Heap tables , 31   
  Hekaton , 717   
  HierarchyID data type , 295, 328   
  High availability database mirroring mode , 644   
  High availability technologies , 637   
  High performance database mirroring mode , 642   
  High protection database mirroring mode , 644   
  Histogram in statistics , 56, 336, 340   
  Histogram Extended Event target , 528, 536   
  History table in temporal tables , 112, 748   
  HKCS_COMPRESSED allocator varheap , 742   
  Hot spots during inserts , 160, 571    

          I 
  IAM chain , 20   
  IAM pages , 20, 33, 274   
  IAM scan , 33, 40   
  Identity , 160   
  Idle worker thread , 743   
  IdxLinkCount element in 

memory-optimized table row , 723, 743   
  Included columns in the indexes , 81   
  Incremental statistics , 340   
  Index allocation map pages , 20, 33, 274   
  Index consolidation , 172   
  Indexed views , 219   
  Indexes on calculated columns , 96   
  Index intersection , 165   
  Index fragmentation , 143, 363, 434   
  Index rebuild , 146, 454   
  Index reorganize , 146   
  Index seek , 41   
  Index table hint , 485   
  Index usage statistics , 169   
  Infi nity Global Transaction Timestamp value , 723   
  INIT backup option , 617   
  Inline table-valued functions , 235, 782   
  In-row allocation units , 20, 338   
  Inserted virtual table , 197   
  Instant File Initialization , 6, 549   
  Instead of triggers , 195, 224, 348   
  Intent (I*) lock , 383   
  InterlockedCompareExchange functions , 729   
  Intermediate level of the index , 37, 728   
  Internal index fragmentation , 143   
  Internal index pages , 728   
  IO_COMPLETION wait type , 558   
  I/O stalls , 558   
  IsDeterministric attribute in CLR , 301   
  ISJSON() function , 264   
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  Isolation transaction characteristic , 382   
  IsPrecise attribute in CLR, ,301  
  Iterators in the execution plan , 468    

          J 
  Join elimination process , 216   
  JSON , 262   
  JSON_MODIFY() function , 264   
  JSON_QUERY() function , 264   
  JSON_VALUE() function , 264    

          K 
  KEEPFIXED PLAN query hint , 492   
  KEEP PLAN query hint , 270, 492   
  Key lookup deadlock , 410   
  Key lookup operation , 49, 81    

          L 
  Latches , 570   
  LATCH wait type , 571   
  Lazy commit , 604   
  Lazy writer process , 23, 505   
  LCK_M_* wait types , 567   
  Leaf level of the index , 36, 728   
  LEGACY_CARDINALITY_ESTIMATION 

database scoped confi guration , 70   
  Listener in AlwaysOn Availability Groups , 646   
  LOB allocation units , 20, 338, 353, 675   
  LOB data pages , 16   
  LOB page allocator , 738   
  LOB storage in In-Memory OLTP , 722   
  Local temporary tables , 269   
  Lock compatibility , 387   
  Lock escalation , 423   
   Lock Pages in Memory  

permission , 547, 575   
  Lock partitioning , 452   
  Lock types 

 exclusive (X) lock , 383  
 intent (I*) lock , 383  
 range locks , 390  
 schema modifi cation 

(Sch-M) lock , 146, 192, 348, 447  
 schema stability (Sch-S) lock , 447  
 shared (S) lock , 386  
 update (U) lock , 384   

  LOG_BACKUP log_reuse_wait_desc value , 611   
  Log blocks , 599   
  Log buff er , 599, 766   
  LOGBUFFER wait type , 558, 604   
  LOG database backup , 608, 617   
  Logical query tree , 463   

  Logical end time for In-Memory 
OLTP transaction , 761   

  Logical start time for In-Memory 
OLTP transaction , 723, 760   

  LOG_MANAGER latch type , 573   
  Logon triggers , 206   
  Log Reader Agent job , 650   
  Log sequence number (LSN) , 599, 621   
  Log shipping , 648, 721   
  Log writer process , 601   
  Long Data Region , 98   
  Loop join operator , 474, 776   
  Loop join query hint , 487   
  Low-priority locks , 454    

          M 
  Magnitude in value-based encoding 

in column-based storage , 674   
  Managed backup , 633   
  Mapping index in columnstore indexes , 702   
  Mapping table in range indexes , 728   
  Maps in Extended Events , 526   
  Masking function in dynamic data masking , 136   
  Materialized path in hierarchies , 330   
  Materialized views , 219   
  MaxByteSize attribute in CLR , 308   
  MAXDOP confi guration setting , 563   
  MAX_GRANT_PERCENT query hint , 471, 565   
  Maximum server memory 

confi guration option , 575, 641   
  Max worker thread confi guration option , 552   
  Memory allocator , 576   
  MEMORYCLERCK_SQLBUFFERPOOL 

memory clerk , 577   
  Memory clerks , 576   
  MEMORYCLERK_SQLQERESERVATIONS 

memory clerk , 563, 577   
  Memory confi guration , 575   
  Memory consumers in In-Memory OLTP , 736   
  Memory grant , 65, 470, 550, 564, 682, 689   
  Memory nodes , 576   
  MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT 

database option , 760   
  MEMORY_OPTIMIZED = ON option in 

CREATE TABLE statement , 721   
  Memory-optimized tables , 638, 720   
  Memory-optimized table types , 786   
  Memory-optimized table-valued parameters , 787   
  Memory-optimized table variables , 786   
  Memory pressure , 505   
  Merge delta , 733   
  Merge join operator , 474   
  Merge join query hint , 487   
  Merge of checkpoint fi les , 746   
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  Merge replication , 650   
  Merry-go-round scan , 40   
  MIN_GRANT_PERCENT query hint , 471   
  Minimally logged operations , 609   
  Mirror server in database mirroring , 641   
  Mixed extents , 19   
  Mixed OLTP and Data Warehouse workload , 167   
  MIXED_PAGE_ALLOCATION database option , 20   
  MODIFY() method (XQUERY) , 260   
  MOVE database restore option , 618   
  Multi-instance failover cluster , 639   
  Multi-page memory allocator , 576   
  Multi-statement user-defi ned function , 229   
  Mutual execution concept , 443    

          N 
  Named Pipes protocol , 551   
  Native compilation , 771   
  Natively-compiled inline 

table-valued functions , 235, 782   
  Natively-compiled modules , 775   
  Natively-compiled scalar 

user-defi ned functions , 779   
  Natively-compiled stored procedures , 776   
  Natively-compiled triggers , 779   
  Nested loop join , 474, 776   
  Nested sets in hierarchies , 330   
  Nested triggers , 208   
  NESTING_TRANSACTION_FULL latch type , 573   
  New cardinality estimator , 70, 92, 233   
  NEWID() function , 148, 161   
  NEWISEQUENTIALID() function , 163   
  Nodes in cluster , 637   
  NODES() method (XQUERY) , 257   
  NOEXPAND table hint , 223, 487   
  NOLOCK table hint , 391, 760   
  Non-blocking operators , 470   
  Nonclustered B-Tree indexes on tables with 

clustered columnstore indexes , 702   
  Nonclustered columnstore 

indexes (read-only) , 688   
  Nonclustered columnstore 

indexes (updateable) , 706   
  Nonclustered index design considerations , 165   
  Nonclustered indexes , 46   
  Nonclustered indexes in 

memory-optimized tables , 728, 735   
  Non-preemptive scheduling , 294   
  Non-repeatable reads data 

inconsistency issue , 392, 753   
  NO_PERFORMANCE_SPOOL query hint , 481   
  NORECOVERY database 

restore option , 618   
  Null bitmap , 10    

          O 
  Object plan guide , 507   
  OBJECTPROPERTY() function , 219   
  OBJECTSTORE_LOCK_MANAGER 

memory clerk , 577   
  OLTP workload , 167   
  OPENJSON , 265, 285   
  Open() method of the execution plan operator , 469   
  OPENXML , 260   
  Operational analytics , 660, 689, 706, 740, 771   
  Operators in the execution plan , 468   
  Optimistic transaction isolation levels , 153, 433   
  Optimization for UNKNOWN values , 776   
  Optimize for ad-hoc workloads confi guration 

setting , 504, 549, 565   
  OPTIMIZE FOR query hint , 497   
  OPTIMIZE FOR UNKNOWN query hint , 498   
  Ordered index scan , 38   
  Overall Resource Consumption 

Query Store report , 589   
  Ownership chaining , 295, 502    

          P 
  Packages in Extended Events , 520   
  PAD_INDEX index option , 145   
  PAGE compression , 97, 102, 112, 336, 676   
  Page free space (PFS) pages , 20, 31   
  PAGEIOLATCH wait type , 558, 571   
  PAGELATCH wait type , 558, 571   
  Page merging , 733   
  Page split , 142, 732   
  Page verify database option , 549   
  pair_matching Extended Event target , 528, 538   
  Parallelism , 39, 96, 481, 562, 664   
  Parallelism operator , 483   
  Parameterization , 125   
  Parameterization forced query hint , 506   
  Parameterized views , 235   
  Parameter sniffi  ng , 493, 581, 776   
  PARAMETER_SNIFFING database 

scoped confi guration , 499   
  Parsing during query optimization , 463   
  Partial database availability , 626   
  Partial database backup , 336, 630   
  Partial database restore option , 629   
  Partition alignment in disk subsystem , 546   
  Partitioned tables , 338   
  Partitioned views , 224, 342   
  $PARTITION function , 373   
  Partition function , 338   
  Partition scheme , 338   
  Partition switch , 340, 689   
  PARTNER TIMEOUT database option , 645   
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  Passive node , 638   
  PATH secondary XML index , 250   
  Payload in In-Memory OLTP row , 722   
  Peer-to-peer replication , 651   
  Pending worker thread state , 552   
  Performance counters: 

 batch requests/sec performance counter , 567  
 buff er cache hit ratio performance counter , 560  
 checkpoint pages/sec 

performance counter , 560  
 full scans/sec performance counter , 560  
 lazy writer /sec performance counter , 560  
 memory available/mbytes performance 

counter , 575  
 memory grants pending 

performance counter , 564  
 page life expectancy performance counter , 560  
 page read/sec performance counter , 560  
 page write/sec performance counter , 560  
 physicalDisk performance object , 560  
 processor queue length 

performance counter , 567  
 % processor time performance counter , 567  
 range scan/sec performance counter , 560  
 SQL compilations/sec 

performance counter , 567  
 SQL recompilations/sec 

performance counter , 567  
 SQL Server:Access Methods 

performance object , 560  
 SQL Server:Availability Replica 

performance object , 643  
 SQL Server:Buff er Manager 

performance object , 560  
 SQL Server:Database Mirroring 

performance object , 643  
 SQL Server:Database Replica 

performance object , 643  
 SQL Server:Memory Manager 

performance object, – 563 , 575  
 SQL Server:Query Store 

performance object , 596  
 Target Server Memory (KB) 

performance counter , 575  
 Total Server Memory (KB) 

performance counter , 575  
 transactions/sec performance counter , 560   

  Perform Volume Maintenance Task permission , 6   
  Period columns in temporal tables , 112   
  Permission sets for .Net assemblies , 294   
  Persisted calculated columns , 93   
  Phantom reads data inconsistency issue , 392, 753   
  Piecemeal restore , 336, 626, 747   
  Plan cache and plan caching , 88, 491   
  Plan guides , 506   

  Plan reuse calculation , 567   
  Plan store in Query Store , 583   
  Point in time recovery , 619   
  Point-lookup , 42, 135, 725   
  Policy function in row-level security , 126   
  Predicates in Extended Events , 523   
  Preemptive scheduling , 294   
  Prefi x compression in page compression , 102   
  Principal server in database mirroring , 641   
  Primary key constraints , 181, 721   
  Primary node in AlwaysOn Availability Groups , 641   
  Primary XML indexes , 244   
  Property secondary XML index , 250   
  Proportional fi ll algorithm , 5   
  Protocol layer , 551   
  Publisher in replication , 650    

          Q 
  Query execution , 468   
  Query Interop in In-Memory 

OLTP , 719, 736, 743, 771, 786   
  Query life cycle , 463   
  QUERY() method (XQUERY) , 257   
  Query optimization , 463   
  Query store , 404, 581, 748   
  Quorum in database mirroring , 644    

          R 
  Randomized encryption , 134   
  RANGE_HI_KEY in statistics histogram , 56   
  RANGE_HI_ROWS in statistics histogram , 56   
  Range indexes in memory-optimized 

tables , 728, 735   
  Range index varheap , 737   
  RANGE LEFT partition function parameter , 339, 356   
  Range locks , 390   
  RANGE RIGHT partition function 

parameter , 339, 356   
  Range scan , 42   
  Read-ahead technique , 142   
  READ COMMITTED SNAPSHOT transaction 

isolation (RCSI) level , 434   
  READCOMMITTED table hint , 391, 438   
  READ COMMITTED transaction isolation level , 389   
  Read-only fi legroups , 630   
  READPAST table hint , 392, 446   
  READ UNCOMMITTED transaction 

isolation level , 388, 435   
  READ_WRITE_ FILEGROUPS backup option , 630   
  Recovery database restore option , 618   
  Recovery Point Objective (RPO) , 622, 652   
  Recovery Time Objective (RTO) , 622, 626, 652   
  Recursive triggers , 209   
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  Redo phase of crash-recovery , 603   
  Redo queues on secondary node , 643   
  Redo threads , 367, 643   
  Redundant indexes , 172   
  Referential integrity , 184, 765   
  Regressed Queries Store report , 587   
  REMOTE_DATA_ARCHIVE_OVERRIDE 

table hint , 125   
  REPEATABLEREAD table hint , 391   
  REPEATABLE READ transaction 

isolation level , 389, 754   
  Repeatable read validation , 755, 763, 765   
  Replication , 649   
  REQUEST_MAX_MEMORY_GRANT_PERCENT 

workload group setting in 
Resource Governor , 563, 689   

  Resource Governor , 550   
  Resource pool in Resource Governor , 550   
  RESOURCE_SEMAPHORE wait type , 564, 567   
  Resource semaphore , 564   
  RESTORE database , 618   
  RESTORE DATABASE WITH RECOVERY 

command , 619   
  RESTORE from URL , 632   
  RID lookup operation , 49   
  ring_buff er Extended Event target , 528, 532   
  Root level of the index , 37, 81, 728   
  Row-based execution model , 468   
  Row-based storage , 663   
  Row chain in In-Memory OLTP , 722   
  Row compression , 97, 98   
  @@ROWCOUNT , 199   
  Row groups in column-based storage , 673, 691   
  Row header in In-Memory OLTP , 722   
  Row-id in nonclustered indexes , 47   
  Row-level locking , 382   
  Row-level security , 126, 748   
  Row mode execution , 663   
  Row-overfl ow allocation units , 20, 338   
  Row-overfl ow data pages , 14   
  Row-overfl ow storage in In-Memory OLTP , 722   
  Runnable tasks queue , 553   
  Runnable worker thread state , 553   
  Running worker thread state , 552   
  Runtime statistics store in Query Store , 583    

          S 
  SAFE CLR assemblies , 294   
  SA_MANAGE_VOLUME_NAME permission , 6   
  SARGability rules for hash indexes , 725   
  SARGable predicates , 42, 85, 172, 231   
  Scalar user-defi ned function , 229, 779   
  Scan set in In-Memory OLTP transaction , 762   
  Schedulers (SQLOS) , 552   

  SCHEMA_AND_DATA durability option , 720   
  SCHEMABINDING option , 127, 219, 235, 779   
  Schema modifi cation 

(Sch-M) lock , 146, 192, 348, 447   
  SCHEMA_ONLY durability option , 720   
  Schema stability (Sch-S) lock , 447   
  Secondary node in AlwaysOn 

Availability Groups , 641   
  Secondary XML indexes , 244   
  Security policy in row-level security , 126   
  Segments in column-based storage , 673   
  SELECT * , 17, 87, 108   
  SELECT FOR JSON , 263   
  SELECT FOR XML , 261   
  Semi-structured data (XML and JSON) , 241   
  Sequence objects , 160   
  SERIALIZABLE table hint , 391   
  SERIALIZABLE transaction 

isolation level , 390, 436, 549, 754   
  Serializable validation , 755, 763   
  Service Level Agreement (SLA) , 337, 622, 652   
  session_context() function , 130, 209   
  SET CONTEXT_INFO statement , 209   
  SET DEADLOCK_PRIORITY statement , 408   
  SET TRANSACTION ISOLATION 

LEVEL statement , 391   
  Shallow backup of stretch database , 119   
  Shared global allocation 

map (SGAM) pages , 19, 274   
  Shared memory protocol , 551   
  Shared (S) lock , 386   
  Shell query , 505   
  Short-circuit predicate evaluation , 525   
  Short Data Region , 98   
  Signing .Net assemblies , 297   
  Simple database recovery model , 607   
  Simple parameterization , 506   
  Single-page memory allocator , 576   
  Singleton lookup , 42   
  Skipped rows data inconsistency issue , 393   
  Sliding Windows scenario , 367   
  Slot array , 9   
  Snapshot replication , 650, 721   
  Snapshot table hint , 435   
  Snapshot transaction isolation level , 435, 754   
  Snapshot validation , 754, 763   
  Snowfl ake database schema , 660   
  Sort warning , 471, 530   
  SOS_SCHEDULER_YIELD wait type , 563, 566   
  Sparse columns , 106, 243   
  Sparse vector , 106   
  Spatial data types , 319   
  Spatial index - T6533 , 319   
  Spinlocks , 573   
  Spinloop worker thread state , 553   
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  Split brain situation , 645   
  Spool operator , 479   
  SQL:COLUMN() function (XQUERY) , 254   
  SQL Database in Microsoft Azure , 118   
  SQL plan guide , 507   
  SQL Server failover cluster , 637, 721   
  SQL Server Operating System (SQLOS) , 552   
  SQL trace , 519   
  SQL:VARIABLE() function (XQUERY) , 254   
  STANDBY database restore option , 621   
  Star database schema , 660   
  Startup stored procedure , 288   
  Statistics , 55, 270, 277, 681, 735   
  STATISTICS_NORECOMPUTE index option , 62   
  Statistics recompilation threshold , 62, 89, 270   
  Statistics update threshold , 62, 89, 270, 736   
  Status bits A , 10   
  Status bits B , 10   
  Steps in statistics object , 56   
  StmtId element in memory-optimized 

table row , 723   
  STOPAT database restore option , 619   
  STOPATMARK database restore option , 619   
  STOPBEFOREMARK database restore option , 619   
  Stream aggregate , 477   
  Stretch Databases , 118   
  Striping backups , 628   
  Sub-latches , 570   
  Subscriber in replication , 650   
  Superlatches , 570   
  SUSPENDED node state in database mirroring 

and AlwaysOn Availability Groups , 642   
  Suspended tasks queue , 553   
  SUSPENDED worker thread state , 553   
  SYNCHRONIZING node state in database mirroring 

and AlwaysOn Availability Groups , 642   
  synchronous_bucketizer Extended 

Event target , 528, 536   
  Synchronous commit , 642   
  synchronous_event_counter 

Extended Event target , 528, 535   
  sys.check_constraints catalog view , 192   
  sys.column_store_dictionaries catalog view , 679   
  sys.column_store_row_groups 

catalog view , 693, 709   
  sys.column_store_segments catalog view , 677, 705   
  sys.database_fi les catalog view , 627   
  sys.database_query_store_options view , 583, 595   
  sys.databases catalog view , 610, 654   
  sys.dm_clr_tasks data management view , 294   
  sys.dm_db_column_store_row_group_operational_

stats data management view , 711   
  sys.dm_db_column_store_row_group_physical_

stats data management view , 703, 710, 742   

  sys.dm_db_database_page_allocations data 
management function , 696   

  sys.dm_db_index_operational_stats data 
management function , 104, 169   

  sys.dm_db_index_physical_stats data 
management function , 143   

  sys.dm_db_index_usage_stats data 
management view , 169   

  sys.dm_db_missing_indexes data 
management view , 177   

  sys.dm_db_stats_properties data 
management view , 68   

  sys.dm_db_xtp_hash_index_stats data 
management view , 725   

  sys.dm_db_xtp_index_stats view data 
management view , 734   

  sys.dm_db_xtp_memory_consumers data 
management view , 736   

  sys.dm_db_xtp_table_memory_stats data 
management view , 749   

  sys.dm_exec_cached_plans data 
management view , 513, 564   

  sys.dm_exec_connections data 
management view , 568   

  sys.dm_exec_function_stats data 
management view , 562   

  sys.dm_exec_input_buff er data 
management function , 556   

  sys.dm_exec_plan_attributes 
data management function , 513   

  sys.dm_exec_procedure_stats data 
management view , 176, 515, 562, 784   

  sys.dm_exec_query_memory_grants data 
management function , 564   

  sys.dm_exec_query_optimizer_info 
data management view , 467   

  sys.dm_exec_query_plan data management 
function , 514, 564   

  sys.dm_exec_query_resource_semaphores 
data management function , 564   

  sys.dm_exec_query_stats data management 
view , 175, 294, 403, 515, 540, 560, 788   

  sys.dm_exec_request 
view , 210, 294, 396, 514, 556, 568   

  sys.dm_exec_sessions data 
management view , 210, 400, 568   

  sys.dm_exec_session_wait_stats 
data management view , 556   

  sys.dm_exec_sql_text data 
management function , 404, 418, 556   

  sys.dm_exec_text_query_plan data 
management function , 514   

  sys.dm_exec_trigger_stats data 
management view , 176, 515   
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  sys.dm_hadr_availability_replica_states 
data management view , 648   

  sys.dm_io_virtual_fi le_stats data 
management function , 558, 604   

  sys.dm_os_latch_stats data management view , 571   
  sys.dm_os_memory_cache_counters 

data management view , 511   
  sys.dm_os_memory_cache_hash_tables 

data management view , 511   
  sys.dm_os_memory_clerks data 

management view , 576   
  sys.dm_os_memory_* data management views , 294   
  sys.dm_os_memory_nodes data 

management view , 576, 577   
  sys.dm_os_performance_counters data 

management view , 579   
  sys.dm_os_process_memory 

data management view , 575   
  sys.dm_os_schedulers data management view , 556   
  sys.dm_os_spinlock_stats data 

management view , 573   
  sys.dm_os_tasks data management view , 556   
  sys.dm_os_threads data management view , 556   
  sys.dm_os_waiting_tasks data 

management view , 396, 556, 568   
  sys.dm_os_wait_stats data 

management view , 511, 566   
  sys.dm_tran_database_transactions data 

management view , 611   
  sys.dm_tran_locks data 

management view , 383, 396, 445, 454, 567   
  sys.dm_tran_session_transactions data 

management view , 611   
  sys.dm_xe_map_values data management view , 526   
  sys.dm_xe_object_columns data 

management view , 521   
  sys.dm_xe_objects data management view , 521   
  sys.dm_xe_packages data management view , 520   
  sys.dm_xe_sessions data management view , 532   
  sys.dm_xe_sessions_object_columns data 

management view , 532   
  sys.dm_xe_targets data management view , 532   
  sys.dm_xtp_gc_queue_stats 

data management view , 744   
  sys.dm_xtp_gc_stats data management view , 744   
  sys.fn_dblog function , 767   
  sys.fn_dblog_xtp function , 768   
  sys.fn_validate_plan_guide function , 510   
  sys.fn_xe_fi le_target_read_fi le 

table-valued function , 533   
  sys.foreign_keys catalog view , 187   
  sys.foreign_key_columns catalog view , 187   
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