
Pro SQL Server
Internals

—
Understand what happens under
the hood and how it affects you
—
Second Edition
—
Dmitri Korotkevitch

THE E XPER T ’S VOICE® IN SQL

www.allitebooks.com

http://www.allitebooks.org

 Pro SQL Server Internals
 Second Edition

Dmitri Korotkevitch

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server Internals, Second Edition

Dmitri Korotkevitch
Tampa
Florida, USA

ISBN-13 (pbk): 978-1-4842-1963-8 ISBN-13 (electronic): 978-1-4842-1964-5
DOI 10.1007/978-1-4842-1964-5

Library of Congress Control Number: 2016959812

Copyright © 2016 by Dmitri Korotkevitch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Laura Berendson
Technical Reviewer: Victor Isakov and Mike McQuillan
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org

 To my family. Thank you for letting me disappear behind the keyboard
and ignore all my chores and duties!

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ..xxiii

About the Technical Reviewers ...xxv

Acknowledgments ...xxvii

Introduction ..xxix

 ■Part I: Tables and Indexes .. 1

 ■Chapter 1: Data Storage Internals ... 3

 ■Chapter 2: Tables and Indexes: Internal Structure and Access Methods 31

 ■Chapter 3: Statistics .. 55

 ■Chapter 4: Special Indexing and Storage Features ... 81

 ■Chapter 5: SQL Server 2016 Features .. 111

 ■Chapter 6: Index Fragmentation .. 141

 ■Chapter 7: Designing and Tuning the Indexes ... 155

 ■Part II: Other Things That Matter .. 179

 ■Chapter 8: Constraints ... 181

 ■Chapter 9: Triggers .. 195

 ■Chapter 10: Views ... 213

 ■Chapter 11: User-Defi ned Functions .. 227

 ■Chapter 12: XML and JSON .. 241

 ■Chapter 13: Temporary Objects and TempDB .. 269

www.allitebooks.com

http://www.allitebooks.org

vi

■ CONTENTS AT A GLANCE

 ■Chapter 14: CLR ... 293

 ■Chapter 15: CLR Types ... 311

 ■Chapter 16: Data Partitioning .. 335

 ■Part III: Locking, Blocking, and Concurrency 379

 ■Chapter 17: Lock Types and Transaction Isolation Levels 381

 ■Chapter 18: Troubleshooting Blocking Issues ... 395

 ■Chapter 19: Deadlocks .. 407

 ■Chapter 20: Lock Escalation .. 423

 ■Chapter 21: Optimistic Isolation Levels ... 433

 ■Chapter 22: Application Locks ... 443

 ■Chapter 23: Schema Locks .. 447

 ■Chapter 24: Designing Transaction Strategies .. 457

 ■Part IV: Query Life Cycle ... 461

 ■Chapter 25: Query Optimization and Execution ... 463

 ■Chapter 26: Plan Caching .. 491

 ■Part V: Practical Troubleshooting ... 517

 ■Chapter 27: Extended Events ... 519

 ■Chapter 28: System Troubleshooting ... 545

 ■Chapter 29: Query Store .. 581

 ■Part VI: Inside the Transaction Log ... 597

 ■Chapter 30: Transaction Log Internals .. 599

 ■Chapter 31: Backup and Restore ... 615

 ■Chapter 32: High Availability Technologies ... 637

www.allitebooks.com

http://www.allitebooks.org

vii

■ CONTENTS AT A GLANCE

 ■Part VII: Columnstore Indexes .. 657

 ■Chapter 33: Column-Based Storage and Batch Mode Execution 659

 ■Chapter 34: Columnstore Indexes ... 687

 ■Part VIII: In-Memory OLTP Engine ... 715

 ■Chapter 35: In-Memory OLTP Internals ... 717

 ■Chapter 36: Transaction Processing in In-Memory OLTP 753

 ■Chapter 37: In-Memory OLTP Programmability ... 771

Index ... 793

www.allitebooks.com

http://www.allitebooks.org

ix

Contents

About the Author ..xxiii

About the Technical Reviewers ...xxv

Acknowledgments ...xxvii

Introduction ..xxix

 ■Part I: Tables and Indexes .. 1

 ■Chapter 1: Data Storage Internals ... 3

Database Files and Filegroups ... 3

Data Pages and Data Rows .. 8

Large Objects Storage .. 14

Row-Overfl ow Storage.. 14

LOB Storage .. 16

SELECT * and I/O .. 17

Extents and Allocation Map Pages ... 19

Data Modifi cations ... 21

Much Ado about Data Row Size ... 23

Table Alteration ... 25

Summary .. 28

 ■Chapter 2: Tables and Indexes: Internal Structure and Access Methods 31

Heap Tables .. 31

Clustered Indexes ... 36

Composite Indexes ... 45

www.allitebooks.com

http://www.allitebooks.org

x

■ CONTENTS

Nonclustered Indexes ... 46

Summary .. 52

 ■Chapter 3: Statistics .. 55

Introduction to SQL Server Statistics ... 55

Column-Level Statistics ... 58

Statistics and Execution Plans ... 62

Statistics and Query Memory Grants .. 65

Statistics Maintenance ... 68

New Cardinality Estimator (SQL Server 2014–2016) .. 69

Comparing Cardinality Estimators: Up-to-Date Statistics ... 71

Comparing Cardinality Estimators: Outdated Statistics .. 73

Comparing Cardinality Estimators: Indexes with Ever-Increasing
Key Values .. 75

Comparing Cardinality Estimators: Joins .. 76

Comparing Cardinality Estimators: Multiple Predicates.. 77

Choosing the Model .. 78

Query Optimizer Hotfi xes and Trace Flag T4199 ... 79

Summary .. 80

 ■Chapter 4: Special Indexing and Storage Features ... 81

Indexes with Included Columns ... 81

Filtered Indexes .. 87

Filtered Statistics ... 90

Calculated Columns .. 93

Data Compression .. 97

Row Compression ... 98

Page Compression .. 102

Performance Considerations .. 104

Sparse Columns ... 106

Summary .. 110

www.allitebooks.com

http://www.allitebooks.org

xi

■ CONTENTS

 ■Chapter 5: SQL Server 2016 Features .. 111

Temporal Tables ... 111

Stretch Databases .. 118

Confi guring Stretch Database ... 119

Querying Stretch Databases ... 121

Stretch Database Pricing .. 125

Row-Level Security .. 126

Performance Impact ... 128

Blocking Modifi cations ... 130

Always Encrypted ... 132

Always Encrypted Overview ... 133

Programmability ... 134

Security Considerations and Key Management .. 135

Dynamic Data Masking .. 136

Performance and Security Considerations ... 137

Combining Security Features ... 140

Summary .. 140

 ■Chapter 6: Index Fragmentation .. 141

Types of Fragmentation .. 141

FILLFACTOR and PAD_INDEX .. 145

Index Maintenance ... 146

Designing an Index Maintenance Strategy ... 146

Patterns That Increase Fragmentation ... 148

Summary .. 153

 ■Chapter 7: Designing and Tuning the Indexes ... 155

Clustered Index Design Considerations .. 155

Identities, Sequences, and Uniqueidentifi ers ... 160

Nonclustered Index Design Considerations .. 165

www.allitebooks.com

http://www.allitebooks.org

xii

■ CONTENTS

Optimizing and Tuning Indexes... 168

Detecting Unused and Ineffi cient Indexes .. 168

Index Consolidation .. 172

Detecting Suboptimal Queries .. 174

Summary .. 178

 ■Part II: Other Things That Matter .. 179

 ■Chapter 8: Constraints ... 181

Primary Key Constraints ... 181

Unique Constraints ... 183

Foreign Key Constraints ... 184

Check Constraints .. 188

Wrapping Up ... 192

Summary .. 193

 ■Chapter 9: Triggers .. 195

DML Triggers .. 195

DDL Triggers ... 204

Logon Triggers .. 206

UPDATE() and COLUMNS_UPDATED() Functions .. 207

Nested and Recursive Triggers ... 208

First and Last Triggers .. 209

CONTEXT_INFO and SESSION_CONTEXT .. 209

Summary .. 212

 ■Chapter 10: Views ... 213

Views .. 213

Indexed (Materialized) Views.. 219

Partitioned Views .. 224

Updatable Views ... 224

Summary .. 225

xiii

■ CONTENTS

 ■Chapter 11: User-Defi ned Functions .. 227

Much Ado About Code Reuse ... 227

Multi-Statement Functions ... 229

Inline Table-Valued Functions... 235

Summary .. 240

 ■Chapter 12: XML and JSON .. 241

To Use or Not to Use XML or JSON? That Is the Question! ... 241

XML Data Type .. 243

Working with XML Data .. 250

OPENXML .. 260

SELECT FOR XML .. 261

Working with JSON Data (SQL Server 2016) .. 262

SELECT FOR JSON .. 263

Built-In Functions ... 264

OPENJSON .. 265

Summary .. 267

 ■Chapter 13: Temporary Objects and TempDB .. 269

Temporary Tables ... 269

Table Variables ... 276

User-Defi ned Table Types and Table-Valued Parameters ... 281

Regular Tables in TempDB .. 287

Optimizing TempDB Performance ... 289

Summary .. 291

 ■Chapter 14: CLR ... 293

CLR Integration Overview ... 293

Security Considerations ... 295

Performance Considerations .. 299

Summary .. 309

xiv

■ CONTENTS

 ■Chapter 15: CLR Types ... 311

User-Defi ned CLR Types ... 311

Spatial Data Types .. 319

HierarchyId ... 328

Summary .. 334

 ■Chapter 16: Data Partitioning .. 335

Reasons to Partition Data ... 335

When to Partition? .. 337

Data Partitioning Techniques .. 337

Partitioned Tables ... 338

Partitioned Views .. 342

Comparing Partitioned Tables and Partitioned Views ... 348

Using Partitioned Tables and Views Together ... 349

Tiered Storage .. 352

Moving Non-Partitioned Tables Between Filegroups .. 353

Moving Partitions Between Filegroups ... 356

Moving Data Files Between Disk Arrays ... 362

Tiered Storage in Action ... 364

Tiered Storage and High Availability Technologies ... 367

Implementing Sliding Window Scenario and Data Purge ... 367

Potential Issues .. 369

Summary .. 377

 ■Part III: Locking, Blocking, and Concurrency 379

 ■Chapter 17: Lock Types and Transaction Isolation Levels 381

Transactions and ACID .. 382

Major Lock Types .. 382

Exclusive (X) Locks ... 383

Intent (I*) Locks .. 383

Update (U) Locks ... 384

xv

■ CONTENTS

Shared (S) Locks ... 386

Lock Compatibility, Behavior, and Lifetime ... 387

Transaction Isolation Levels and Data Consistency .. 392

Summary .. 393

 ■Chapter 18: Troubleshooting Blocking Issues ... 395

General Troubleshooting Approach ... 395

Troubleshooting Blocking Issues in Real Time ... 396

Collecting Blocking Information for Further Analysis ... 400

Summary .. 405

 ■Chapter 19: Deadlocks .. 407

Classic Deadlock .. 407

Deadlock Due to Nonoptimized Queries ... 408

Key Lookup Deadlock ... 410

Deadlock Due to Multiple Updates of the Same Row ... 411

Deadlock Troubleshooting .. 416

Reducing the Chance of Deadlocks .. 420

Summary .. 422

 ■Chapter 20: Lock Escalation .. 423

Lock Escalation Overview .. 423

Lock Escalation Troubleshooting .. 427

Summary .. 432

 ■Chapter 21: Optimistic Isolation Levels ... 433

Row Versioning Overview ... 433

Optimistic Transaction Isolation Levels .. 434

READ COMMITTED SNAPSHOT Isolation Level .. 434

SNAPSHOT Isolation Level .. 435

Version Store Behavior ... 440

Summary .. 442

xvi

■ CONTENTS

 ■Chapter 22: Application Locks ... 443

Application Locks Overview ... 443

Application Locks Usage .. 443

Summary .. 446

 ■Chapter 23: Schema Locks .. 447

Schema Modifi cation Locks ... 447

Multiple Sessions and Lock Compatibility .. 449

Lock Partitioning .. 452

Low-Priority Locks ... 454

Summary .. 456

 ■Chapter 24: Designing Transaction Strategies .. 457

Considerations and Code Patterns ... 457

Choosing Transaction Isolation Level ... 459

Summary .. 460

 ■Part IV: Query Life Cycle ... 461

 ■Chapter 25: Query Optimization and Execution ... 463

Query Life Cycle ... 463

Query Optimization ... 464

Query Execution ... 468

Operators .. 473

Joins ... 474

Aggregates ... 477

Spools ... 479

Parallelism .. 481

Query and Table Hints .. 485

INDEX Table Hint ... 485

FORCE ORDER Hint ... 487

LOOP, MERGE, and HASH JOIN Hints ... 487

FORCESEEK/FORCESCAN Hints ... 487

xvii

■ CONTENTS

NOEXPAND/EXPAND VIEWS Hints .. 487

FAST N Hints ... 488

Summary .. 488

 ■Chapter 26: Plan Caching .. 491

Plan Caching Overview ... 491

Parameter Sniffi ng ... 493

Plan Reuse ... 499

Plan Caching for Ad-Hoc Queries ... 503

Auto-Parameterization ... 505

Plan Guides .. 506

Plan Cache Internals .. 511

Examining Plan Cache .. 513

Summary .. 515

 ■Part V: Practical Troubleshooting ... 517
 ■Chapter 27: Extended Events ... 519

Extended Events Overview ... 519

Extended Events Objects .. 520

Packages .. 520

Events ... 521

Predicates ... 523

Actions .. 525

Types and Maps .. 526

Targets .. 527

Creating Events Sessions ... 530

Working with Event Data .. 531

Working with the ring_buffer Target ... 532

Working with event_fi le and asynchronous_fi le_target Targets .. 533

Working with event_counter and synchronous_event_counter Targets .. 535

Working with histogram, synchronous_ bucketizer, and asynchronous_ bucketizer Targets 536

Working with the pair_matching Target ... 538

xviii

■ CONTENTS

System_health and AlwaysOn_Health Sessions .. 539

Using Extended Events ... 540

Detecting Expensive Queries .. 540

Monitoring Page Split Events .. 542

Extended Events in Azure SQL Databases .. 543

Summary .. 544

 ■Chapter 28: System Troubleshooting ... 545

Looking at the Big Picture .. 545

Hardware and Network ... 546

Operating System Confi guration ... 547

SQL Server Confi guration ... 547

Database Options ... 548

Resource Governor Overview ... 550

SQL Server Execution Model .. 551

Wait Statistics Analysis and Troubleshooting ... 556
I/O Subsystem and Nonoptimized Queries ... 557

Parallelism .. 562

Memory-Related Wait Types ... 563

High CPU Load .. 565

Locking and Blocking ... 566

Worker Thread Starvation ... 567

ASYNC_NETWORK_IO Waits ... 568

Latches and Spinlocks .. 569

Wait Statistics: Wrapping Up... 572

Memory Management and Confi guration ... 574

Memory Confi guration .. 574

Memory Allocation .. 575

What to Do When the Server Is Not Responding .. 576

Working with Baseline.. 578

Summary .. 579

xix

■ CONTENTS

 ■Chapter 29: Query Store .. 581

Why Query Store? ... 581

Query Store Confi guration .. 582

Query Store Internals ... 583

Usage Scenarios ... 586

Working with Query Store in SSMS .. 587

Working with Query Store from T-SQL .. 591

Managing and Monitoring Query Store .. 595

Summary .. 596

 ■Part VI: Inside the Transaction Log ... 597

 ■Chapter 30: Transaction Log Internals .. 599

Data Modifi cations, Logging, and Recovery ... 599

Delayed Durability .. 604

Virtual Log Files .. 605

Database Recovery Models .. 607

TempDB Logging .. 610

Excessive Transaction Log Growth ... 610

Transaction Log Management .. 612

Summary .. 613

 ■Chapter 31: Backup and Restore ... 615

Database Backup Types ... 615

Backing Up the Database ... 616

Restoring the Database .. 618

Restore to a Point in Time ... 619

Restore with STANDBY ... 621

Designing a Backup Strategy ... 622

Partial Database Availability and Piecemeal Restore ... 626

Partial Database Backup .. 630

xx

■ CONTENTS

Microsoft Azure Integration .. 632
Backup to Microsoft Azure .. 632

Managed Backup to Microsoft Azure .. 633

File Snapshot Backup for Database Files in Azure ... 633

Summary .. 635

 ■Chapter 32: High Availability Technologies ... 637

SQL Server Failover Cluster.. 637

Database Mirroring and AlwaysOn Availability Groups ... 641
Technologies Overview ... 641

Database Mirroring: Automatic Failover and Client Connectivity .. 644

AlwaysOn Availability Groups.. 646

Log Shipping .. 648

Replication ... 649

Designing a High Availability Strategy .. 651

Summary .. 654

 ■Part VII: Columnstore Indexes .. 657

 ■Chapter 33: Column-Based Storage and Batch Mode Execution 659

Data Warehouse Systems Overview ... 659

Columnstore Indexes and Batch Mode Execution Overview .. 662
Column-Based Storage and Batch Mode Execution ... 663

Columnstore Indexes and Batch Mode Execution in Action .. 665

Column-Based Storage .. 673
Storage Format ... 673

Compression and Storage Size ... 675

Metadata .. 677

Design Considerations and Best Practices for Columnstore Indexes 681
Reducing Data Row Size... 681

Giving SQL Server as Much Information as Possible .. 681

Maintaining Statistics ... 681

Avoiding String Columns in Fact Tables .. 682

Summary .. 684

xxi

■ CONTENTS

 ■Chapter 34: Columnstore Indexes ... 687

Columnstore Index Types ... 687

Read-Only Nonclustered Columnstore Indexes
(SQL Server 2012–2014) .. 688

Clustered Columnstore Indexes (SQL Server 2014–2016) ... 691
Internal Structure ... 691

Data Load ... 693

Delta Store and Delete Bitmap ... 694

Columnstore Index Maintenance .. 698

Nonclustered B-Tree Indexes (SQL Server 2016) .. 702

Updateable Nonclustered Columnstore Indexes
(SQL Server 2016) .. 706

Metadata .. 709
sys.column_store_row_groups (SQL Server 2014–2016) .. 709

sys.dm_db_column_store_row_group_physical_stats (SQL Server 2016) 710

sys.internal_partitions (SQL Server 2016) .. 710

sys.dm_db_column_store_row_group_operational_stats (SQL Server 2016) 711

Design Considerations .. 711

Summary .. 712

 ■Part VIII: In-Memory OLTP Engine ... 715

 ■Chapter 35: In-Memory OLTP Internals ... 717

Why In-Memory OLTP? ... 717

In-Memory OLTP Engine Architecture and Data Structures .. 718
Memory-Optimized Tables .. 720

High Availability Technology Support .. 721

Data Row Structure .. 722

Hash Indexes .. 723

Nonclustered (Range) Indexes .. 728

Hash Indexes Versus Nonclustered Indexes ... 735

Statistics on Memory-Optimized Tables ... 735

Memory Consumers and Off-Row Storage ... 736

xxii

■ CONTENTS

Columnstore Indexes (SQL Server 2016) .. 740

Garbage Collection ... 743

Data Durability and Recovery ... 744

SQL Server 2016 Features Support .. 748

Memory Usage Considerations... 748

Summary .. 750

 ■Chapter 36: Transaction Processing in In-Memory OLTP 753

Transaction Isolation Levels and Data Consistency .. 753

Transaction Isolation Levels in In-Memory OLTP .. 754

Cross-Container Transactions .. 759

Transaction Lifetime ... 760

Referential Integrity Enforcement (SQL Server 2016) .. 765

Transaction Logging ... 766

Summary .. 769

 ■Chapter 37: In-Memory OLTP Programmability ... 771

Native Compilation ... 771

Natively-Compiled Modules ... 775

Optimization of Natively-Compiled Modules ... 776

Creating Natively-Compiled Stored Procedures ... 776

Natively-Compiled Triggers and User-Defi ned Functions
(SQL Server 2016) ... 779

Supported T-SQL Features .. 782

Execution Statistics .. 784

Interpreted T-SQL and Memory-Optimized Tables .. 786

Memory-Optimized Table Types and Variables ... 786

In-Memory OLTP: Implementation Considerations ... 788

Summary .. 790

Index ... 793

xxiii

 About the Author

 Dmitri Korotkevitch is a Microsoft Data Platform MVP and
Microsoft Certified Master (SQL Server 2008) with more than 20
years of IT experience, including years of experience working with
Microsoft SQL Server as an application and database developer,
database administrator, and database architect.

 Dmitri specializes in the design, development, and performance
tuning of complex OLTP systems that handle thousands of transactions per
second around the clock.

 Dmitri regularly speaks at various Microsoft and SQL PASS events,
and he provides SQL Server training to clients around the world. He
regularly blogs at http://aboutsqlserver.com , rarely tweets as
 @aboutsqlserver , and can be reached at dk@aboutsqlserver.com .

http://aboutsqlserver.com/

xxv

 About the Technical Reviewers

 Victor Isakov is a database architect and Microsoft certified trainer. He provides consulting and
training services globally to various organizations in the public, private, and NGO sectors, and
has been involved in different capacities at various international events and conferences.

 He has authored a number of books on SQL Server and worked closely with Microsoft to develop the
new generation of SQL Server 2005 certification and the Microsoft Official Curriculum for both ILT and
e-learning.

 Specialties include Microsoft SQL Server; Microsoft analysis services; designing database solutions; re-
factoring database solutions; performance tuning database solutions; and SQL Server training.

 Mike McQuillan is a software and database specialist who lives
with his wife and daughter in the United Kingdom. Mike is a
polyglot programmer who began messing around with computers
in the 1980s, first with an Atari 800XL and then a Sinclair Spectrum.
He took up databases in the 1990s and quickly fell in love with SQL.
He’s been working with SQL Server since version 7 and is an SQL
Server MCSA.

 When he’s not tinkering with computers, Mike and his family enjoy
lengthy walks around Cheshire with the family pups, Dolly and Bertie
(who keep his feet warm when he’s writing).

xxvii

 Acknowledgments

 First and foremost, I am enormously grateful to my technical reviewers, Victor Isakov and Mike McQuillan.
Their suggestions and comments were extremely helpful and dramatically improved the quality of the book.
It would have been impossible for me to complete the project without their help.

 The same applies to the entire Apress team and especially to Jill Balzano, Douglas Pundick, and April
Rondeau. Special thanks go to Jonathan Gennick, who is keeping the series alive.

 I would also like to thank Tom LaRock, who reviewed the first edition of the book. Even though he was
unable to participate in this project, you can see his influence all over the place.

 Next, I would like to thank Thomas Grohser, who helped me to write Chapter 5 and provided great
feedback on a few other topics. He is a Microsoft Data Platform MVP with more than 20 years of experience
working with SQL Server. He specializes in designing and building SQL Server solutions that focus on high
availability, disaster recovery, scalability, security, and manageability.

 I would like to thank Niko Neugebauer, who is the one of the world’s best experts in columnstore
indexes and data warehousing. Niko reviewed Chapters 33 and 34 and gave me great feedback on them.
Niko is a Microsoft Data Platform MVP and has, perhaps, the best columnstore indexes – related blog
on the Internet, which can be found at http://www.nikoport.com/columnstore . He also published
the Columnstore Indexes Scripts Library at GitHub, which you can access at https://github.com/
NikoNeugebauer/CISL .

 The same thanks apply to Dmitry Pilugin for his help with Chapters 3 and 29 . Dmitry is one of very few
people outside of Microsoft who knows how Query Optimizer actually works, and he generously reviewed
those chapters for me. You can read Dmitry’s blog about Query Processor at http://www.queryprocessor.com .

 Obviously, a book about SQL Server would be meaningless without the product itself. I would like to
thank the entire Microsoft team for all their hard work and the wonderful platform they created. Special
thanks go to Jos de Bruijn, Sunil Agarwal, Ajay Jagannathan, Gjorgji Gjeorgjievski, Alexey Eksarevskiy, Borko
Novakovic, Arvind Shyamsundar, and many others who patiently answered my questions.

 I would like to thank Ian Stirk and Nazanin Mashayekh for the great feedback on the first-edition
content. It helped me to improve the quality of this edition.

 Finally, I would like to thank all my friends from the SQL Server community for their support and
encouragement. It is impossible to list everyone here, but there is one group of people I want to thank in
particular. Those are my Nepali friends: Dibya Shakya, Shree Khanal, Ravi Chandra Koirala, and Raghu
Bhandari. It was very motivating to meet such a wonderful community!

 Thank you very much! It was a pleasure and honor to work with all of you!

http://dx.doi.org/10.1007/978-1-4842-1964-5_5
http://dx.doi.org/10.1007/978-1-4842-1964-5_33
http://dx.doi.org/10.1007/978-1-4842-1964-5_34
http://www.nikoport.com/columnstore
https://github.com/NikoNeugebauer/CISL
https://github.com/NikoNeugebauer/CISL
http://dx.doi.org/10.1007/978-1-4842-1964-5_3
http://dx.doi.org/10.1007/978-1-4842-1964-5_29
http://www.queryprocessor.com/#_blank

xxix

 Introduction

 Four years ago, when I had just started to work on the first edition of Pro SQL Server Internals , many people
asked me, “Why have you decided to write yet another book on the subject? There are plenty of other
Internals books already published.” It was — and, as a matter of fact, still is — a very valid question, which I feel
obligated to answer.

 I set myself two goals when I started to work on the series. First, I wanted to explain how SQL Server
works in the most practical way, demonstrating dependencies between particular aspects of SQL Server
Internals and the behavior of your systems. Perhaps it deserves some explanation.

 There is a joke in the SQL Server community: “How do you distinguish between junior- and senior-level
database professionals? Just ask them any question about SQL Server. The junior-level person gives you the
straight answer. The senior-level person, on the other hand, always answers, ‘It depends.’”

 As strange as it sounds, that is correct. SQL Server is a very complex product with a large number of
components that depend on each other. You can rarely give a straight yes or no answer to any question. Every
decision comes with its own set of strengths and weaknesses and leads to consequences that affect other
parts of the system.

 Pro SQL Server Internals covers on what, exactly, “it depends.” I wanted to give you enough information
about how SQL Server works and to show you various examples of how specific database designs and code
patterns affect SQL Server’s behavior. I tried to avoid generic suggestions based on best practices. Even
though those suggestions are great and work in a large number of cases, there are always exceptions. I hope
that, after you read this series, you will be able to recognize those exceptions and make decisions that benefit
your particular systems.

 My second goal was based on the strong belief that the line between database administration and
development is very thin. It is impossible to be a successful database developer without knowledge of SQL
Server Internals. Similarly, it is impossible to be a successful database administrator without the ability
to design efficient database schema and write good T-SQL code. That knowledge helps both developers
and administrators to better understand and collaborate with each other, which is especially important
nowadays in the age of agile development and multi-terabyte databases.

 This belief came from my personal experience. I started my career in IT as an application developer,
slowly moving to backend and database development over the years. At some point, I found that it was
impossible to write good T-SQL code unless I understood how SQL Server executed it. That discovery forced
me to learn SQL Server Internals, and it led to a new life in which I design, develop, and tune various database
solutions. I do not write client applications anymore; however, I perfectly understand the challenges that
application developers face when they deal with SQL Server. I have “been there and done that.”

 My biggest challenge during the transition to the Internals world was to find good learning materials.
There were plenty of good books; however, all of them had a clear separation in their content. They expected
the reader to be either developer or database administrator — never both. I tried to avoid that separation
in this book. Obviously, some of the chapters are more DBA-oriented, while others lean more toward
developers. Nevertheless, I hope that anyone who is working with SQL Server will find the content useful.

 You should not, however, consider Pro SQL Server Internals to be a SQL Server tutorial. Nor is it a
beginner-level book. I expect you to have previous experience working with relational databases, preferably
with SQL Server. You need to know RDBMS concepts, be familiar with different types of database objects,
and be able to understand SQL code if you want to get the most out of this series.

xxx

■ INTRODUCTION

 As you may have already noticed, this book covers multiple SQL Server versions, from SQL Server 2005
up to recently released SQL Server 2016. With a few exceptions, I did not specifically cover Microsoft Azure
SQL Databases; however, they are based on the most recent SQL Server codebase, and the majority of the
book’s content can be applied to them.

 I also need to mention that I completed the manuscript shortly after SQL Server 2016 RTM was released.
 The recent development process changes have made Microsoft significantly more agile, and we should
expect enhancements and improvements to be delivered in service packs and even CU releases. Some of
them would even appear in the previous versions of the product, as we have already seen with SQL Server
2012 SP3 and SQL Server 2014 SP2.

 With the agile nature of development and the cloud-first model adopted by Microsoft, I would expect
that some of the limitations that the new SQL Server 2016 features have in the RTM release will be lifted
in the future. Check the latest documentation and do not rely strictly on this book as your source of
information. While it is challenging to work with and write about a product that evolves all the time, it is a
good challenge to have.

 I was extremely nervous two and half years ago when the first edition of Pro SQL Server Internals was
about to be published. I did not know if I would succeed in my goals. I was very happy to find that many of
you liked the book and found it useful. I hope you will enjoy the second edition, which I subjectively think is
even better than the first one.

 Finally, I want to thank you again for all your feedback, encouragement, and support — and, most
important, for your trust in me. I would have been unable to write it without all your help!

 How This Book Is Structured
 The book is logically separated into eight different parts. Even though all of these parts are relatively
independent of each other, I would encourage you to start with Part I, “Tables and Indexes,” anyway. This
part explains how SQL Server stores and works with data, which is the key point in understanding SQL
Server Internals. The other parts of the book rely on this understanding.

 The parts of the book are as follows:

 Part I: Tables and Indexes covers how SQL Server works with data. It explains
the internal structure of database tables; discusses how and when SQL Server
uses indexes; and provides you with basic guidelines about how to design and
maintain them. The second edition of the book brings a new chapter about new
SQL Server 2016 features, along with some additional SQL Server 2016 – related
changes in the other chapters.

 Part II: Other Things That Matter provides an overview of different T-SQL
objects and outlines their strengths and weaknesses; it also supplies use cases
showing when these objects should or should not be used. It also includes a long,
architecture-focused discussion on data partitioning. The second edition adds
content on JSON support and geospatial types enhancements, and it has several
other minor improvements in other areas.

 Part III: Locking, Blocking, and Concurrency talks about the SQL Server
concurrency model. It explains the root causes of various blocking issues in
SQL Server, and it shows you how to troubleshoot and address them in your
systems. Finally, this part provides you with a set of guidelines on how to design
transaction strategies in a way that improves concurrency in systems. This
area has not been changed in SQL Server 2016; however, I rewrote a couple of
chapters to make them better.

xxxi

■ INTRODUCTION

 Part IV: Query Life Cycle discusses the optimization and execution of queries in
SQL Server. Moreover, it explains how SQL Server caches execution plans, and it
demonstrates several issues related to plan caching commonly encountered in
systems. As with the SQL Server concurrency model, there are not many changes
in SQL Server 2016; however, I tried to improve content here and there.

 Part V: Practical Troubleshooting provides an overview of the SQL Server
execution model and explains how you can quickly diagnose systems and
pinpoint the root cause of a problem. The second edition introduces a new
chapter on the new and exciting SQL Server 2016 feature called Query Store .
Moreover, the “System Troubleshooting ” chapter has also been extended and
improved.

 Part VI: Inside the Transaction Log explains how SQL Server works with the
transaction log, and it gives you a set of guidelines on how to design backup and
High Availability strategies in systems. The second edition adds content on SQL
Server 2016 and Microsoft Azure improvements in those areas.

 Part VII: Columnstore Indexes provides an overview of columnstore indexes,
which can dramatically improve the performance of data warehouse solutions.
SQL Server 2016 adds many improvements in that area, including the use of
columnstore indexes in operational analytics scenarios, which are now covered
the second edition.

 Part VIII: In-Memory OLTP Engine discusses In-Memory OLTP
implementation in both SQL Server 2014 and 2016. There are many technology
improvements in SQL Server 2016 that are described in this book.

 It is also worth noting that most of the figures and examples in this book were created in the Enterprise
Edition of SQL Server 2012-2016, with parallelism disabled on the server level in order to simplify the
resulting execution plans. In some cases, you may get slightly different results when you run scripts in your
environment using different versions of SQL Server.

 Downloading the Code
 You can download the code used in this book from the Source Code section of the Apress website (www.
apress.com) or from the Publications section of my blog (http://aboutsqlserver.com). The source code
consists of SQL Server Management Studio solutions, which include a set of the projects (one per chapter).
Moreover, it includes several .Net C# projects, which provide the client application code used in the
examples in Chapters 13 , 14 , and 15 .

 Contacting the Author
 You can visit my blog at http://aboutsqlserver.com and email me at dk@aboutsqlserver.com . I am always
happy to answer any of your questions, and I would be enormously grateful for any feedback you provide —
 both privately and publicly on Amazon and in other web sites. Trust me, it makes a difference and helps
improve the quality of future books in the series.

http://www.apress.com/
http://www.apress.com/
http://aboutsqlserver.com/
http://dx.doi.org/10.1007/978-1-4842-1964-5_13
http://dx.doi.org/10.1007/978-1-4842-1964-5_14
http://dx.doi.org/10.1007/978-1-4842-1964-5_15
http://aboutsqlserver.com/

 PART I

 Tables and Indexes

3© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_1

 CHAPTER 1

 Data Storage Internals

 A SQL Server database is a collection of objects that allow you to store and manipulate data. In theory, SQL
Server supports 32,767 databases per instance, although the typical installation usually has only several
databases. Obviously, the number of databases SQL Server can handle depends on the load and hardware.
It is not unusual to see servers hosting dozens or even hundreds of small databases.

 In this chapter, we will discuss the internal structure of databases and how SQL Server stores data.

 Database Files and Filegroups
 Every database consists of one or more transaction log files and one or more data files. A transaction log
 stores information about database transactions and all of the data modifications made in each session. Every
time the data is modified, SQL Server stores enough information in the transaction log to undo (roll back)
or redo (replay) this action, which allows SQL Server to recover the database to a transactionally consistent
state in the event of an unexpected failure or crash.

 Every database has one primary data file, which by default has an .mdf extension. In addition, every
database can also have secondary database files. Those files, by default, have .ndf extensions.

 All database files are grouped into filegroups. A filegroup is a logical unit that simplifies database
administration. It permits the logical separation of database objects and physical database files. When you
create database objects — tables, for example — you specify what filegroup they should be placed into without
worrying about the underlying data files’ configuration.

 Listing 1-1 shows the script that creates a database with the name OrderEntryDb . This database consists
of three filegroups. The primary filegroup has one data file stored on the M: drive. The second filegroup,
 Entities , has one data file stored on the N: drive. The last filegroup, Orders , has two data files stored on the
 O: and P: drives. Finally, there is a transaction log file stored on the L: drive.

 Listing 1-1. Creating a database

 create database [OrderEntryDb] on
 primary
 (name = N'OrderEntryDb', filename = N'm:\OEDb.mdf'),
 filegroup [Entities]
 (name = N'OrderEntry_Entities_F1', filename = N'n:\OEEntities_F1.ndf'),
 filegroup [Orders]
 (name = N'OrderEntry_Orders_F1', filename = N'o:\OEOrders_F1.ndf'),
 (name = N'OrderEntry_Orders_F2', filename = N'p:\OEOrders_F2.ndf')
 log on
 (name = N'OrderEntryDb_log', filename = N'l:\OrderEntryDb_log.ldf')

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1964-5_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1964-5_1

CHAPTER 1 ■ DATA STORAGE INTERNALS

4

 You can see the physical layout of the database and data files in Figure 1-1 . There are five disks with four
data files and one transaction log file. The dashed rectangles represent the filegroups.

 Figure 1-1. Physical layout of the database and data files

 The ability to put multiple data files inside a filegroup lets us spread the load across different storage
drives, which could help to improve the I/O performance of the system. You should consider, however,
the redundancy of the storage subsystem when you do that. A database would become fully or partially
unavailable if one of the storage drives failed.

 Transaction log throughput, on the other hand, does not benefit from multiple files. SQL Server works
with transactional logs sequentially, and only one log file would be accessed at any given time.

 ■ Note We will talk about the transaction log’s internal structure and best practices associated with it in
Chapter 30 , “Transaction Log Internals.”

 Let’s create a few tables, as shown in Listing 1-2 . The Customers and Articles tables are placed into the
 Entities filegroup. The Orders table resides in the Orders filegroup.

 Listing 1-2. Creating tables

 create table dbo.Customers
 (
 /* Table Columns */
) on [Entities];

 create table dbo.Articles
 (
 /* Table Columns */
) on [Entities];

 create table dbo.Orders
 (
 /* Table Columns */
) on [Orders];

 Figure 1-2 shows the physical layout of the tables in the database and on the disks.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1964-5_30
http://www.allitebooks.org

CHAPTER 1 ■ DATA STORAGE INTERNALS

5

 The separation between logical objects in the filegroups and the physical database files allows us to
fine-tune the database file layout to get the most out of the storage subsystem without worrying that it breaks
the system. For example, independent software vendors (ISV) who are deploying their products to different
customers can adjust the number of database files during the deployment stage based on the underlying I/O
configuration and the expected amount of data. These changes will be transparent to developers who are
placing the database objects into the filegroups rather than into database files.

 ■ Best Practice Do not use the PRIMARY filegroup for anything but system objects. Creating a separate filegroup
or set of filegroups for the user objects simplifies database administration and disaster recovery, especially in
the case of large databases. We will discuss this in greater depth in Chapter 31 , “Backup and Restore.”

 You can specify initial file sizes and auto-growth parameters at the time that you create the database
or add new files to an existing database. SQL Server uses a proportional fill algorithm when choosing to
which data file it should write data. It writes an amount of data proportional to the free space available in the
file — the more free space a file has, the more writes it handles.

 ■ Tip OLTP systems and filegroups with volatile data usually benefit from multiple data files regardless of
the underlying storage configuration. The optimal number of files depends on workload and the underlying
hardware. As a rule of thumb, create four data files if the server has up to 16 logical CPUs, keeping a 1/8 th ratio
between files and CPUs afterward.

 Set the same initial size and auto-growth parameters, with grow size being defined in megabytes rather than
by percentage for all files in a same filegroup. This helps the proportional fill algorithm balance write activities
evenly across data files.

 Setting the same initial size and auto-growth parameters for all files in the filegroup is usually enough
to keep the proportional fill algorithm working efficiently. However, in some rare cases SQL Server can grow
filegroup files unevenly, even with this setup.

 SQL Server 2016 introduces two options — AUTOGROW_SINGLE_FILE and AUTOGROW_ALL_FILES— which
control auto-growth events on a per-filegroup level. With AUTOGROW_SINGLE_FILE , which is the default
option, SQL Server 2016 grows the single file in the filegroup when needed. With AUTOGROW_ALL_FILES , SQL
Server grows all files in the filegroup whenever one of the files is out of space.

 Figure 1-2. Physical layout of the tables

http://dx.doi.org/10.1007/978-1-4842-1964-5_31

CHAPTER 1 ■ DATA STORAGE INTERNALS

6

 When using SQL Server releases prior to 2016, you can control this behavior with the instance-level trace
flag T1117 . Enabling this flag forces SQL Server to grow all files in the filegroup, similar to the AUTOGROW_
ALL_FILES filegroup option, whenever one of the files is out of space. I usually do not use this flag unless I
constantly see the problem with uneven filegroup file sizes.

 Every time SQL Server grows the files, it fills the newly allocated space with zeros. This process blocks
all sessions that are writing to the corresponding file or, in the case of transaction log growth, generating
transaction log records.

 SQL Server always zeros out the transaction log, and this behavior cannot be changed. However, you
can control if data files are zeroed out or not by enabling or disabling Instant File Initialization . Enabling
Instant File Initialization helps speed up data-file growth and reduces the time required to create or restore
the database.

 ■ Note There is a small security risk associated with Instant File Initialization. When this option is enabled,
an unallocated part of the data file can contain information from previously deleted OS files. Database
administrators are able to examine such data.

 You can enable Instant File Initialization by adding an SA_MANAGE_VOLUME_NAME permission, also known
as a Perform Volume Maintenance Task , to the SQL Server startup account. This can be done under the
Local Security Policy management application (secpol.msc), as shown in Figure 1-3 . You need to open the
properties for the Perform Volume Maintenance Task permission and add a SQL Server startup account to
the list of accounts there.

 Figure 1-3. Enabling Instant File Initialization in secpol.msc

 ■ Tip SQL Server checks to see if Instant File Initialization is enabled on startup. You need to restart the SQL
Server service after you give the corresponding permission to the SQL Server startup account.

 SQL Server 2016 allows you to enable Instant File Initialization by granting Perform Volume
Maintenance Task permission to the SQL Server startup account during setup. Figure 1-4 illustrates that.

CHAPTER 1 ■ DATA STORAGE INTERNALS

7

 In order to check if Instant File Initialization is enabled, you can use the code shown in Listing 1-3 .
This code sets two trace flags that force SQL Server to put additional information into the error log, create a
small database, and read the content of the error log file.

 Listing 1-3. Checking to see if Instant File Initialization is enabled

 dbcc traceon(3004,3605,-1)
 go
 create database Dummy
 go
 exec sp_readerrorlog
 go
 drop database Dummy
 go
 dbcc traceoff(3004,3605,-1)
 go

 If Instant File Initialization is not enabled, the SQL Server error log indicates that SQL Server is zeroing
out the .mdf data file in addition to zeroing out the log .ldf file, as shown in Figure 1-5 . When Instant File
Initialization is enabled, it would only show the zeroing out of the log .ldf file.

 Figure 1-4. Enabling Instant File Initialization in SQL Server 2016 setup

CHAPTER 1 ■ DATA STORAGE INTERNALS

8

 Another important database option that controls database file sizes is Auto Shrink . When this option is
enabled, SQL Server shrinks the database files every 30 minutes, reducing their size and releasing the space
to the operating system. This operation is very resource intensive and is rarely useful, as the database files
grow again when new data comes into the system. Moreover, it greatly increases index fragmentation in
the database. Auto Shrink should never be enabled. Moreover, Microsoft will remove this option in future
versions of SQL Server.

 ■ Note We will talk about index fragmentation in greater detail in Chapter 6 , “Index Fragmentation.”

 Data Pages and Data Rows
 The space in the database is divided into logical 8KB pages . These pages are continuously numbered starting
with zero, and they can be referenced by specifying a file ID and page number. The page numbering is
always continuous, such that when SQL Server grows the database file, new pages are numbered starting
from the highest page number in the file plus one. Similarly, when SQL Server shrinks the file, it removes the
highest-number pages from the file.

 DATA STORAGE IN SQL SERVER

 Generally speaking, there are three different ways, or technologies, in which SQL Server stores and
works with the data in the database. With the classic row-based storage , the data is stored in data rows
that combine the data from all columns together.

 SQL Server 2012 introduced columnstore indexes and column-based storage . This technology stores
the data on a per-column rather than a per-row basis. We will cover column-based storage in Part VII of
this book.

 Finally, there is the set of in-memory technologies introduced in SQL Server 2014 and further improved
in SQL Server 2016. Even though they persist the data on disk for redundancy purposes, their storage
format is very different from both row- and column-based storage. We will discuss in-memory
technologies in Part VIII of this book.

 This part of the book is focused on row-based storage and classic B-Tree indexes and heaps.

 Figure 1-5. Checking whether Instant File Initialization is enabled — SQL Server error log

http://dx.doi.org/10.1007/978-1-4842-1964-5_6

CHAPTER 1 ■ DATA STORAGE INTERNALS

9

 Figure 1-6 shows the structure of a data page.

 Figure 1-6. The data page structure

 A 96-byte page header contains various pieces of information about a page, such as the object to which
the page belongs, the number of rows and amount of free space available on the page, links to the previous
and next pages if the page is in an index-page chain, and so on.

 Following the page header is the area where actual data is stored. This is followed by free space. Finally,
there is a slot array, which is a block of two-byte entries indicating the offset at which the corresponding data
rows begin on the page.

 The slot array indicates the logical order of the data rows on the page. If data on a page needs to be
sorted in the order of the index key, SQL Server does not physically sort the data rows on the page, but rather
it populates the slot array based on the index sort order. Slot 0 (rightmost in Figure 1-6) stores the offset for
the data row with the lowest key value on the page; slot 1, the second-lowest key value; and so forth. We will
discuss indexes in greater depth in the next chapter.

 SQL Server offers a rich set of system data types that can be logically separated into two different
groups: fixed length and variable length. Fixed-length data types, such as int , datetime , char , and others,
always use the same amount of storage space regardless of their value, even when it is NULL . For example,
the int column always uses 4 bytes and an nchar(10) column always uses 20 bytes to store information.

 In contrast, variable-length data types, such as varchar , varbinary , and a few others, use as much
storage space as is required to store data, plus two extra bytes. For example, an nvarchar(4000) column
would use only 12 bytes to store a five-character string and, in most cases, two bytes to store a NULL value.
We will discuss the case where variable-length columns do not use storage space for NULL values later in
this chapter.

 Let’s look at the structure of a data row, as shown in Figure 1-7 .

CHAPTER 1 ■ DATA STORAGE INTERNALS

10

 The first two bytes of the row, called Status Bits A and Status Bits B , are bitmaps that contain information
about the row, such as row type, if the row has been logically deleted (ghosted), and if the row has NULL
values, variable-length columns, and a versioning tag.

 The next two bytes in the row are used to store the length of the fixed-length portion of the data. They
are followed by the fixed-length data itself.

 After the fixed-length data portion, there is a null bitmap , which includes two different data elements.
The first two-byte element is the number of columns in the row. The second is a null bitmap array. This array
uses one bit for each column of the table, regardless of whether it is nullable or not.

 A null bitmap is always present in data rows in heap tables or clustered index leaf rows, even when the
table does not have nullable columns. However, the null bitmap is not present in non-leaf index rows nor in
leaf-level rows of nonclustered indexes when there are no nullable columns in the index.

 Following the null bitmap, there is the variable-length data portion of the row. It starts with a two-byte
number of variable-length columns in the row followed by a column-offset array. SQL Server stores a two-
byte offset value for each variable-length column in the row, even when the value is NULL. It is followed by
the actual variable-length portion of the data. Finally, there is an optional 14-byte versioning tag at the end
of the row. This tag is used during operations that require row versioning, such as an online index rebuild,
optimistic isolation levels, triggers, and a few others.

 ■ Note We will discuss index maintenance in Chapter 6 , triggers in Chapter 9 , and optimistic isolation levels
in Chapter 21 .

 Let’s create a table, populate it with some data, and look at the actual row data. The code is shown in
Listing 1-4 . The Replicate function repeats the character provided as the first parameter ten times.

 Listing 1-4. The data row format: Table creation

 create table dbo.DataRows
 (
 ID int not null,
 Col1 varchar(255) null,
 Col2 varchar(255) null,
 Col3 varchar(255) null
);

 insert into dbo.DataRows(ID, Col1, Col3) values (1,replicate('a',10),replicate('c',10));
 insert into dbo.DataRows(ID, Col2) values (2,replicate('b',10));

 Figure 1-7. Data row structure

http://dx.doi.org/10.1007/978-1-4842-1964-5_6
http://dx.doi.org/10.1007/978-1-4842-1964-5_9
http://dx.doi.org/10.1007/978-1-4842-1964-5_21

CHAPTER 1 ■ DATA STORAGE INTERNALS

11

 dbcc ind
 (
 'SQLServerInternals' /*Database Name*/
 ,'dbo.DataRows' /*Table Name*/
 ,-1 /*Display information for all pages of all indexes*/
);

 An undocumented but well-known DBCC IND command returns information about table page
allocations. You can see the output of this command in Figure 1-8 .

 Figure 1-8. DBCC IND output

 There are two pages that belong to the table. The first one, with PageType=10 , is a special type of page
called an IAM allocation map . This page tracks the pages that belong to a particular object. Do not focus on
that now, however, as we will cover allocation map pages later in this chapter.

 ■ Note SQL Server 2012 introduces another undocumented data-management function (DMF) , sys.dm_db_
database_page_allocations , which can be used as a replacement for the DBCC IND command. The output of
this DMF provides more information when compared to DBCC IND , and it can be joined with other system DMVs
and/or catalog views.

 The page with PageType=1 is the actual data page that contains the data rows. The PageFID and
 PagePID columns show the actual file and page numbers for the page. You can use another undocumented
command, DBCC PAGE , to examine its contents, as shown in Listing 1-5 .

 Listing 1-5. The data row format: DBCC PAGE call

 -- Redirecting DBCC PAGE output to console
 dbcc traceon(3604);
 dbcc page
 (
 'SqlServerInternals' /*Database Name*/
 ,1 /*File ID*/
 ,214643 /*Page ID*/
 ,3 /*Output mode: 3 - display page header and row details */
);

 Listing 1-6 shows the output of the DBCC PAGE that corresponds to the first data row. SQL Server stores
the data in byte-swapped order. For example, a two-byte value of 0001 would be stored as 0100 .

CHAPTER 1 ■ DATA STORAGE INTERNALS

12

 Listing 1-6. DBCC PAGE output for the first row

 Slot 0 Offset 0x60 Length 39

 Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
 Record Size = 39
 Memory Dump @0x000000000EABA060

 0000000000000000: 30000800 01000000 04000403 001d001d 00270061 0................'.a
 0000000000000014: 61616161 61616161 61636363 63636363 636363 aaaaaaaaacccccccccc

 Slot 0 Column 1 Offset 0x4 Length 4 Length (physical) 4
 ID = 1

 Slot 0 Column 2 Offset 0x13 Length 10 Length (physical) 10
 Col1 = aaaaaaaaaa

 Slot 0 Column 3 Offset 0x0 Length 0 Length (physical) 0
 Col2 = [NULL]

 Slot 0 Column 4 Offset 0x1d Length 10 Length (physical) 10
 Col3 = cccccccccc

 Let’s look at the data row in more detail, as shown in Figure 1-9 .

 Figure 1-9. First data row

 As you can see, the row starts with the two status bits followed by a two-byte value of 0800 . This is the
byte-swapped value of 0008 , which is the offset for the Number of Columns attribute in the row. This offset
tells SQL Server where the fixed-length data part of the row ends.

 The next four bytes are used to store fixed-length data, which is the ID column in our case. After that,
there is the two-byte value that shows that the data row has four columns, followed by a one-byte NULL
bitmap. With just four columns, one byte in the bitmap is enough. It stores the value of 04 , which is 00000100
in the binary format. It indicates that the third column in the row contains a NULL value.

 The next two bytes store the number of variable-length columns in the row, which is 3 (0300 in byte-
swapped order). It is followed by an offset array, in which every two bytes store the offset where the variable-
length column data ends. As you can see, even though Col2 is NULL, it still uses the slot in the offset array.
Finally, there is the actual data from the variable-length columns.

 Now, let’s look at the second data row. Listing 1-7 shows the DBCC PAGE output, and Figure 1-10 shows
the row data.

CHAPTER 1 ■ DATA STORAGE INTERNALS

13

 Listing 1-7. DBCC PAGE output for the second row

 Slot 1 Offset 0x87 Length 27

 Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
 Record Size = 27
 Memory Dump @0x000000000EABA087

 0000000000000000: 30000800 02000000 04000a02 0011001b 00626262 0................bbb
 0000000000000014: 62626262 626262 bbbbbbb

 Slot 1 Column 1 Offset 0x4 Length 4 Length (physical) 4
 ID = 2

 Slot 1 Column 2 Offset 0x0 Length 0 Length (physical) 0
 Col1 = [NULL]

 Slot 1 Column 3 Offset 0x11 Length 10 Length (physical) 10
 Col2 = bbbbbbbbbb

 Slot 1 Column 4 Offset 0x0 Length 0 Length (physical) 0
 Col3 = [NULL]

 The NULL bitmap in the second row represents a binary value of 00001010 , which shows that Col1 and
 Col3 are NULL. Even though the table has three variable-length columns, the number of variable-length
columns in the row indicates that there are just two columns/slots in the offset array. SQL Server does not
maintain the information about the trailing NULL variable-length columns in the row.

 ■ Tip You can reduce the size of the data row by creating tables in a manner in which variable-length
columns, which usually store null values, are defined as the last ones in the CREATE TABLE statement. This is
the only case in which the order of columns in the CREATE TABLE statement matters.

 The fixed-length data and internal attributes must fit into the 8,060 bytes available on the single data page.
SQL Server does not let you create the table when this is not the case. For example, the code in Listing 1-8
produces an error.

 Figure 1-10. Second data row data

CHAPTER 1 ■ DATA STORAGE INTERNALS

14

 Listing 1-8. Creating a table with a data row size that exceeds 8,060 bytes

 create table dbo.BadTable
 (
 Col1 char(4000),
 Col2 char(4060)
)

 Msg 1701, Level 16, State 1, Line 1
 Creating or altering table 'BadTable' failed because the minimum row size would be 8,067,
including 7 bytes of internal overhead. This exceeds the maximum allowable table row size of
8,060 bytes.

 Large Objects Storage
 Even though the fixed-length data and the internal attributes of a row must fit into a single page, SQL Server
can store the variable-length data on different data pages. There are two different ways to store the data,
depending on the data type and length.

 Row-Overflow Storage
 SQL Server stores variable-length column data that does not exceed 8,000 bytes on special pages called
 row-overflow pages . Let’s create a table and populate it with the data shown in Listing 1-9 .

 Listing 1-9. Row-overflow data: Creating a table

 create table dbo.RowOverflow
 (
 ID int not null,
 Col1 varchar(8000) null,
 Col2 varchar(8000) null
);

 insert into dbo.RowOverflow(ID, Col1, Col2) values
(1,replicate('a',8000),replicate('b',8000));

 As you see, SQL Server creates the table and inserts the data row without any errors, even though the
data-row size exceeds 8,060 bytes. Let’s look at the table page allocation using the DBCC IND command. The
results are shown in Figure 1-11 .

 Figure 1-11. Row-overflow data: DBCC IND results

CHAPTER 1 ■ DATA STORAGE INTERNALS

15

 Now you can see two different sets of IAM and data pages. The data page with PageType=3 represents the
data page that stores row-overflow data.

 Let’s look at data page 214647, which is the in-row data page that stores main row data. The partial
output of the DBCC PAGE command for the page (1:214647) is shown in Listing 1-10 .

 Listing 1-10. Row-overflow data: DBCC PAGE results for IN_ROW data

 Slot 0 Offset 0x60 Length 8041

 Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
 Record Size = 8041
 Memory Dump @0x000000000FB7A060

 0000000000000000: 30000800 01000000 03000002 00511f69 9f616161 0............Q.iŸaaa
 0000000000000014: 61616161 61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaaaaaa
 <Skipped>
 0000000000001F40: 61616161 61616161 61616161 61616161 61020000 aaaaaaaaaaaaaaaaa…
 0000000000001F54: 00010000 00290000 00401f00 00754603 00010000 )…@…uF.....
 0000000000001F68: 00

 As you can see, SQL Server stores Col1 data in-row. Col2 data, however, has been replaced with a
24-byte value. The first 16 bytes are used to store off-row storage metadata, such as type, length of the data,
and a few other attributes. The last chunk of 8 bytes is the actual pointer to the row on the row-overflow
page, which is made up by the file, page, and slot number. Figure 1-12 shows this in detail. Remember that
all information is stored in byte-swapped order.

 Figure 1-12. Row-overflow data: Row-overflow page pointer structure

 As you can see, the slot number is 0, the file number is 1, and the page number is the hexadecimal value
 0x00034675 , which is decimal 214645 . The page number matches the DBCC IND results shown in Figure 1-10 .

 The partial output of the DBCC PAGE command for the page (1:214645) is shown in Listing 1-11 .

 Listing 1-11. Row-overflow data: DBCC PAGE results for row-overflow data

 Blob row at: Page (1:214645) Slot 0 Length: 8014 Type: 3 (DATA)
 Blob Id:2686976

 0000000008E0A06E: 62626262 62626262 62626262 62626262 bbbbbbbbbbbbbbbb
 0000000008E0A07E: 62626262 62626262 62626262 62626262 bbbbbbbbbbbbbbbb

 As you can see, Col2 data is stored in the first slot on the page.

CHAPTER 1 ■ DATA STORAGE INTERNALS

16

 LOB Storage
 For the text , ntext , or image columns, SQL Server stores the data off-row by default. It uses another kind of
pages called a LOB data pages .

 ■ Note You can control this behavior to a degree by using the “text in row” table option. For example, exec
sp_table_option dbo.MyTable, 'text in row', 200 forces SQL Server to store LOB data less than or equal
to 200 bytes in-row. LOB data greater than 200 bytes would be stored in LOB pages.

 The logical LOB data structure is shown in Figure 1-13 .

 Figure 1-13. LOB data: Logical structure

 As with row-overflow data, there is a pointer to another piece of information called the LOB root
structure , which contains a set of the pointers to other data pages and rows. When LOB data is less than 32
KB and can fit into five data pages, the LOB root structure contains the pointers to the actual chunks of LOB
data. Otherwise, the LOB tree starts to include additional intermediate levels of pointers, similar to the index
B-Tree, which we will discuss in the next chapter.

 Let’s create the table and insert one row of data, as shown in Listing 1-12 . We need to cast the first
argument of the replicate function to varchar(max) . Otherwise, the result of the replicate function would
be limited to 8,000 bytes.

 Listing 1-12. LOB data: Table creation

 create table dbo.TextData
 (
 ID int not null,
 Col1 text null
);

 insert into dbo.TextData(ID, Col1) values (1, replicate(convert(varchar(max),'a'),16000));

 The page allocation for the table is shown in Figure 1-14 .

CHAPTER 1 ■ DATA STORAGE INTERNALS

17

 As you can see, the table has one data page for in-row data and three data pages for LOB data. I am
not going to examine the structure of the data row for in-row allocation; it is similar to the row-overflow
allocation. However, with the LOB allocation, the table stores less metadata information in the pointer and
uses 16 bytes rather than the 24 bytes required by the row-overflow pointer.

 The result of the DBCC PAGE command for the page that stores the LOB root structure is shown in
Listing 1-13 .

 Listing 1-13. LOB data: DBCC PAGE results for the LOB page with the LOB root structure

 Blob row at: Page (1:3046835) Slot 0 Length: 84 Type: 5 (LARGE_ROOT_YUKON)

 Blob Id: 131661824 Level: 0 MaxLinks: 5 CurLinks: 2

 Child 0 at Page (1:3046834) Slot 0 Size: 8040 Offset: 8040
 Child 1 at Page (1:3046832) Slot 0 Size: 7960 Offset: 16000

 As you can see, there are two pointers to the other pages with LOB data blocks, which are similar to the
blob data shown in Listing 1-11 .

 The format, in which SQL Server stores the data from the (MAX) columns, such as varchar(max) ,
 nvarchar(max) , and varbinary(max) , depends on the actual data size. SQL Server stores it in-row when
possible. When in-row allocation is impossible, and data size is less than or equal to 8,000 bytes, it is stored
as row-overflow data. The data that exceeds 8,000 bytes is stored as LOB data.

 ■ Important text , ntext , and image data types are deprecated, and they will be removed in future versions
of SQL Server. Use varchar(max) , nvarchar(max) , and varbinary(max) columns instead.

 It is also worth mentioning that SQL Server always stores rows that fit into a single page using in-row
allocations. When a page does not have enough free space to accommodate a row, SQL Server allocates a
new page and places the row there rather than placing it on the half-full page and moving some of the data
to row-overflow pages.

 SELECT * and I/O
 There are plenty of reasons why selecting all columns from a table with the SELECT * operator is not a good
idea. It increases network traffic by transmitting columns that the client application does not need. It also
makes query performance tuning more complicated, and it introduces side effects when the table schema
changes.

 Figure 1-14. LOB data: DBCC IND result

CHAPTER 1 ■ DATA STORAGE INTERNALS

18

 It is recommended that you avoid such a pattern and instead explicitly specify the list of columns
needed by the client application. This is especially important with row-overflow and LOB storage, when one
row can have data stored in multiple data pages. SQL Server needs to read all of those pages, which can
significantly decrease the performance of queries.

 As an example, let’s assume that we have table dbo.Employees , with one column storing employee
pictures. Listing 1-14 creates the table and populates it with some data.

 Listing 1-14. Select * and I/O: Table creation

 create table dbo.Employees
 (
 EmployeeId int not null,
 Name varchar(128) not null,
 Picture varbinary(max) null
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Employees(EmployeeId, Name, Picture)
 select
 ID, 'Employee ' + convert(varchar(5),ID),
 convert(varbinary(max),replicate(convert(varchar(max),'a'),120000))
 from Ids;

 The table has 1,024 rows with binary data amounting to 120,000 bytes. Let’s assume that we have code
in the client application that needs the EmployeeId and Name to populate a drop-down menu. If a developer
is not careful, he or she could write a select statement using the SELECT * pattern, even though a picture is
not needed for this particular use case.

 Let’s compare the performance of two selects — one selecting all data columns and another that selects
only EmployeeId and Name . The code to do this is shown in Listing 1-15 . The execution time and number of
reads on my computer is shown in Table 1-1 .

 Listing 1-15. Select * and I/O: Performance comparison

 select * from dbo.Employees;
 select EmployeeId, Name from dbo.Employees;

 Table 1-1. Execution Time of Two SELECT Operators

 Number of Reads Execution Time

 select EmployeeID, Name from dbo.Employees 7 2 ms

 select * from dbo.Employees 90,895 3,343 ms

CHAPTER 1 ■ DATA STORAGE INTERNALS

19

 As you can see, the first select, which reads the LOB data and transmits it to the client, is a few orders of
magnitude slower than the second select. One case where this becomes extremely important is with client
applications, which use Object Relational Mapping (ORM) frameworks. Developers tend to reuse the same
entity objects in different parts of an application. As a result, an application may load all attributes/columns
even though it does not need all of them in many cases.

 It is better to define different entities with a minimum set of required attributes on an individual use-
case basis. In our example, it would work best to create separate entities/classes, such as EmployeeList
and EmployeeProperties . An EmployeeList entity would have two attributes: EmployeeId and Name.
EmployeeProperties would include a Picture attribute in addition to the two mentioned. This approach
can significantly improve the performance of systems.

 Extents and Allocation Map Pages
 SQL Server logically groups eight pages into 64 KB units called extents . There are two types of extents
available: mixed extents store data that belongs to different objects, while uniform extents store the data for
the same object.

 By default, when a new object is created, SQL Server stores the first eight object pages in mixed extents.
After that, all subsequent space allocation for that object is done with uniform extents.

 SQL Server uses a special kind of pages, called allocation maps, to track extent and page usage in a file.
There are several different types of allocation map pages in SQL Server.

 Global allocation map (GAM) page s track if extents have been allocated by any objects. The data is
represented as bitmaps, where each bit indicates the allocation status of an extent. Zero bits indicate that
the corresponding extents are in use. The bits with a value of one indicate that the corresponding extents are
free. Every GAM page covers about 64,000 extents, or almost 4 GB of data. This means that every database file
has one GAM page for about 4 GB of file size.

 Shared global allocation map (SGAM) page s track information about mixed extents. Similar to GAM
pages, it is a bitmap with one bit per extent. The bit has a value of one if the corresponding extent is a mixed
extent and has at least one free page available. Otherwise, the bit is set to zero. Like a GAM page, an SGAM page
tracks about 64,000 extents, or almost 4 GB of data.

 SQL Server can determine the allocation status of the extent by looking at the corresponding bits in the
 GAM and SGAM pages. Table 1-2 shows the possible combinations of the bits.

 Table 1-2. Allocation Status of the Extents

 Status SGAM bit GAM bit

 Free, not in use 0 1

 Mixed extent with at least one free page available 1 0

 Uniform extent or full mixed extent 0 0

 When SQL Server needs to allocate a new uniform extent, it can use any extent where a bit in the
 GAM page has the value of one. When SQL Server needs to find a page in a mixed extent, it searches both
allocation maps looking for the extent with a bit value of one in an SGAM page and the corresponding zero bit
in a GAM page. If there are no such extents available, SQL Server allocates the new free extent based on the
 GAM page, and it sets the corresponding bit to one in the SGAM page.

 Even though mixed extents can save an insignificant amount of space in the database, they require SQL
Server to perform more modifications of allocation map pages, which may become a source of contention in
a busy system. It is especially critical for tempdb databases where small objects are usually created at a very
fast rate.

CHAPTER 1 ■ DATA STORAGE INTERNALS

20

 SQL Server 2016 allows you to control mixed extents’ space allocation on a per-database level by setting
the MIXED_PAGE_ALLOCATION database option. By default, it is enabled for the user databases and disabled
for tempdb . This configuration should be sufficient in a majority of the cases.

 In SQL Server prior to 2016, you can disable mixed extents’ space allocation on an entire instance by
using trace flag T1118 . Setting this flag can significantly reduce allocation map – pages contention on the busy
 OLTP servers , especially for the tempdb database. I recommend you set this flag as a startup parameter on
every SQL Server instance.

 Every database file has its own chain of GAM and SGAM pages. The first GAM page is always the third page in
the data file (page number 2). The first SGAM page is always the fourth page in the data file (page number 3).
The next GAM and SGAM pages appear every 511,230 pages in the data files, which allows SQL Server to navigate
through them quickly when needed.

 SQL Server tracks the pages and extents used by the different types of pages (IN_ROW_DATA , ROW_
OVERFLOW , and LOB pages) that belong to the object with another set of the allocation map pages, called
the index allocation map (IAM) . Every table/index has its own set of IAM pages, which are combined into
separate linked lists called IAM chains . Each IAM chain covers its own allocation unit — IN_ROW_DATA , ROW_
OVERFLOW_DATA , and LOB_DATA .

 Each IAM page in the chain covers a particular GAM interval. The IAM page represents the bitmap, where
each bit indicates if a corresponding extent stores the data that belongs to a particular allocation unit for a
particular object. In addition, the first IAM page for the object stores the actual page addresses for the first
eight object pages, which are stored in mixed extents.

 Figure 1-15 shows a simplified version of the allocation map pages’ bitmaps.

 Figure 1-15. Allocation map pages

 ■ Note Partitioned tables and indexes have separate IAM chains for every partition. We will discuss
partitioned tables in greater detail in Chapter 16 , “Data Partitioning.”

 There is another type of allocation map page called page free space (PFS) . Despite the name, PFS pages
track a few different things. We can call PFS as a byte mask, where every byte stores information about a
specific page, as shown in Figure 1-16 .

http://dx.doi.org/10.1007/978-1-4842-1964-5_16

CHAPTER 1 ■ DATA STORAGE INTERNALS

21

 The first three bits in the byte indicate the percentage of used space on the page. SQL Server tracks the
used space for row-overflow and LOB data, as well as for in-row data in the heap tables, which we will discuss
in the next chapter. These are the only cases in which the amount of free space on the page matters.

 When you delete a data row from the table, SQL Server does not remove it from the data page, but rather
marks the row as deleted. Bit 3 indicates whether the page has logically deleted (ghosted) rows. We will talk
about the deletion process later in this chapter.

 Bit 4 indicates if the page is an IAM page. Bit 5 indicates whether or not the page is in the mixed extent.
Finally, bit 6 indicates if the page is allocated.

 Every PFS page tracks 8,088 pages, or about 64 MB of data space. It is always the second page (page 1) in
the file and every 8,088 pages thereafter.

 There are two more types of allocation map pages. The seventh page (page 6) in the file is called a
 differential changed map (DCM) . These pages keep track of extents that have been modified since the last
 FULL database backup. SQL Server uses DCM pages when it performs DIFFERENTIAL backups.

 The last allocation map is called a bulk changed map (BCM) . It is the eighth page (page 7) in the file,
and it indicates which extents have been modified in minimally logged operations since the last transaction
log backup. BCM pages are used only with a BULK-LOGGED database recovery model.

 ■ Note We will discuss different types of backups and recovery models in Part VI of this book.

 Both DCM and BCM pages are bitmasks that cover 511,230 pages in the data file.

 Data Modifications
 SQL Server does not read or modify data rows directly on the disk. Every time you access data, SQL Server
reads it into memory.

 Let’s look at what happens during data modifications. Figure 1-17 shows the initial state of the database
before an update operation. There is a memory cache, called a buffer pool , that caches some of the data pages.

 Figure 1-16. Page status byte in PFS page

CHAPTER 1 ■ DATA STORAGE INTERNALS

22

 Let’s assume that you want to update the data row from the page (1:28992). This page is not in the buffer
pool, and SQL Server needs to read the data page from the disk.

 When the page is in memory, SQL Server updates the data row. This process includes two different steps.
First, SQL Server generates a new transaction log record and synchronously writes it to the transaction
log file. Next, it modifies the data row and marks the data page as modified (dirty). Figure 1-18 illustrates
this point.

 Figure 1-17. Data modification: Initial stage

 Figure 1-18. Data modification: Modifying data

 Even though the new version of the data row is not yet saved in the data file, the transaction log record
contains enough information to reconstruct (redo) the change if needed.

 Finally, at some point, SQL Server asynchronously saves the dirty data pages into the data file and a
special log record into the transaction log. This process is called a checkpoint . Figure 1-19 illustrates the
checkpoint process.

CHAPTER 1 ■ DATA STORAGE INTERNALS

23

 The insert process works in a similar manner. SQL Server reads the data page where the new data row
needs to be inserted into the buffer pool, or it allocates a new extent/page if needed. After that, SQL Server
synchronously saves the transaction log record, inserts a row into the page, and asynchronously saves the
data page to the disk.

 The same process transpires with deletions. As already mentioned, when you delete a row, SQL Server
does not physically remove the row from the page. Rather, it flags deleted rows as ghosted (deleted) in the
status bits. This speeds up deletion and allows SQL Server to undo it quickly if necessary.

 The deletion process also sets a flag in the PFS page indicating that there is a ghosted row on the page.
SQL Server removes ghosted rows in the background through a task called ghost cleanup .

 There is another SQL Server process called lazy writer that can save dirty pages on disk. As the opposite
to checkpoint, which saves dirty data pages by keeping them in the buffer pool, lazy writer processes the
 least recently used data pages (SQL Server tracks buffer pool page usage internally), releasing them from
memory. It releases both dirty and clean pages, saving dirty data pages on disk during the process. As you
can guess, lazy writer runs in case of memory pressure or when SQL Server needs to bring more data pages
to the buffer pool.

 There are two key points that you need to remember. First, when SQL Server processes DML queries
(SELECT , INSERT , UPDATE , DELETE , and MERGE), it never works with the data without first loading the data
pages into the buffer pool. Second, when you modify the data, SQL Server synchronously writes log records
to the transaction log. The modified data pages are saved to the data files asynchronously in the background.

 Much Ado about Data Row Size
 As you already know, SQL Server is a very I/O-intensive application. SQL Server can generate an enormous
amount of I/O activity, especially when it deals with large databases accessed by a large number of
concurrent users.

 There are many factors that affect the performance of queries, and the number of I/O operations
involved is at the top of the list; that is, the more I/O operations a query needs to perform, the more data
pages it needs to read, and the slower it gets.

 The size of a data row affects how many rows will fit in a data page. Large data rows require more pages
to store the data and, as a result, increase the number of I/O operations during scans. Moreover, objects will
use more memory in the buffer pool.

 Let’s look at the following example and create two tables, as shown in Listing 1-16 . The first table, dbo.
LargeRows , uses a char(2000) fixed-length data type to store the data. As a result, you can fit only four rows
per data page, regardless of the size of Col data. The second table, dbo.SmallRows , uses a varchar(2000)
variable-length data type. Let’s populate both of the tables with the same data.

 Figure 1-19. Data modification: Checkpoint

CHAPTER 1 ■ DATA STORAGE INTERNALS

24

 Listing 1-16. Data row size and performance: Table creation

 create table dbo.LargeRows
 (
 ID int not null,
 Col char(2000) null
);

 create table dbo.SmallRows
 (
 ID int not null,
 Col varchar(2000) null
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) – 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.LargeRows(ID, Col)
 select ID, 'Placeholder' from Ids;

 insert into dbo.SmallRows(ID, Col)
 select ID, 'Placeholder' from dbo.LargeRows;

 Now, let’s run the selects that scan the data and compare the number of I/O operations and execution
times. You can see the code in Listing 1-17 . The results I got on my computer are shown in Table 1-3 .

 Listing 1-17. Data row size and performance: SELECT statements

 select count(*) from dbo.LargeRows;
 select count(*) from dbo.SmallRows;

 Table 1-3. Number of Reads and Execution Times of the Queries

 Number of Reads Execution Time

 select count(*) from dbo.SmallRows 227 5 ms

 select count(*) from dbo.LargeRows 16,384 31 ms

 As you can see, SQL Server needs to perform about 70 times more reads while scanning dbo.LargeRows
data, which leads to the longer execution time.

 You can improve the performance of the system by reducing the size of the data rows. One of the ways to
do this is by using the smallest data type that covers the domain values when you create tables. For example:

• Use bit instead of tinyint , smallint, or int to store Boolean values. The bit data
type uses one byte of storage space per eight columns.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ DATA STORAGE INTERNALS

25

• Use the appropriate date/time data type based on the precision you need. For
example, an order-entry system can use smalldatetime (four bytes of storage space)
or datetime2(0) (six bytes of storage space) rather than datetime (eight bytes of
storage space) to store information on when an order was placed into the system
when one-minute or one-second precision is enough.

• Use decimal or real rather than float whenever possible. Similarly, use money or
 smallmoney data types rather than float to store monetary values.

• Do not use large fixed-length char/binary data types unless the data is always
populated and static in size.

 As an example, let’s look at Table 1-4 , which shows two different designs for a table that collects
location information.

 Table 1-4. Table That Collects Location Information

 create table dbo.Locations
 (
 ATime datetime not null, -- 8 bytes
 Latitude float not null, -- 8 bytes
 Longitude float not null, -- 8 bytes
 IsGps int not null, -- 4 bytes
 IsStopped int not null, -- 4 bytes
 NumberOfSatellites int not null, -- 4 bytes
)

 create table dbo.Locations2
 (
 ATime datetime2(0) not null, -- 6 bytes
 Latitude decimal(9,6) not null, -- 5 bytes
 Longitude decimal(9,6) not null, -- 5 bytes
 IsGps bit not null, -- 1 byte
 IsStopped bit not null, -- 0 bytes
 NumberOfSatellites tinyint not null, -- 1 byte
)

 Total: 36 bytes Total: 18 bytes

 Table dbo.Locations2 uses 18 bytes less storage space per data row. This does not appear particularly
impressive in the scope of a single row; however, it quickly adds up. If a system collects 1,000,000 locations
daily, 18 bytes per row produces about 18 MB of space savings per day — and 6.11 GB per year. In addition
to the database space, it affects buffer pool memory usage, backup file size, network bandwidth, and a few
other things.

 It is especially important for databases in the cloud, where an excessive amount of data often forces
you to use higher-tier virtual machines and cloud services and upgrade to premium storage. All of that can
significantly increase your monthly service costs.

 At the same time, you need to be careful with such an approach and not be too cheap. For example,
choosing smallint as the data type for the CustomerId column is not a wise step. Even though 32,768 (or
even 65,536) customers look good enough when you just start the development of a new system, the cost of
code refactoring and changing the data type from smallint to int could be very high in the future.

 Table Alteration
 Let’s look at what happens when you are altering a table. There are three different ways that SQL Server can
proceed, as follows:

 1. Alteration requires changing the metadata only. Examples of such an alteration
include dropping a column, changing a not nullable column to a nullable one, or
adding a nullable column to the table.

CHAPTER 1 ■ DATA STORAGE INTERNALS

26

 2. Alteration requires changing the metadata only, but SQL Server needs to scan the
table data to make sure it conforms to the new definition. You can think about
changing a nullable column to be not nullable, as an example. SQL Server needs
to scan all data rows in the table to make sure that there are no null values stored
in a particular column before changing the table metadata. Another example is
changing a column data type to one with a smaller scope of domain values. If you
change an int column to smallint , SQL Server needs to check if there are any
rows with values outside of the smallint boundaries.

 3. Alteration requires changing every data row in addition to the metadata. An
example of such an operation is changing a column data type in a way that
requires either a different storage format or a type conversion. For example,
when you change a fixed-length char column to varchar , SQL Server needs to
move the data from the fixed- to the variable-length section of the row. Another
example is when changing char data type to int . This operation works as long as
all char values can be converted to int , but SQL Server must physically update
every data row in the table converting the data.

 It is worth noting that table-locking behavior during alteration is version and edition specific. For
example, the Enterprise Edition of SQL Server 2012 allows adding a new NOT NULL column, instantly
storing the information at the metadata level without changing every row in the table. As another example,
SQL Server 2016 adds the option of altering columns and adding and dropping primary-key and unique
constraints online using the same technique as an online index rebuild under the hood.

 ■ Note We will discuss SQL Server locking and the concurrency model in greater detail in Part III of the book.

 Unfortunately, table alteration never decreases the size of a data row. When you drop a column from a
table, SQL Server does not reclaim the space that the column used.

 When you change the data type to decrease the data length, for example from int to smallint , SQL
Server continues to use same amount of storage space as before while checking that row values conform to
the new data-type domain values.

 When you change the data type to increase the data length, for example from int to bigint , SQL Server
adds the new column under the hood and copies the original data to the new column in all data rows,
leaving the space used by the old column intact.

 Let’s look at the following example. Listing 1-18 creates a table and checks the column offsets on the table.

 Listing 1-18. Table alteration: Table creation and original column offsets check

 create table dbo.AlterDemo
 (
 ID int not null,
 Col1 int null,
 Col2 bigint null,
 Col3 char(10) null,
 Col4 tinyint null
);

 select
 c.column_id, c.Name, ipc.leaf_offset as [Offset in Row]
 ,ipc.max_inrow_length as [Max Length], ipc.system_type_id as [Column Type]

CHAPTER 1 ■ DATA STORAGE INTERNALS

27

 from
 sys.system_internals_partition_columns ipc join sys.partitions p on
 ipc.partition_id = p.partition_id
 join sys.columns c on
 c.column_id = ipc.partition_column_id and
 c.object_id = p.object_id
 where p.object_id = object_id(N'dbo.AlterDemo')
 order by c.column_id;

 Figure 1-20 shows the results of the query. All columns in the table are fixed length. The Offset in Row
column indicates the starting offset of the data column in the row. The Max Length column specifies how
many bytes of data the column uses. Finally, the Column Type column shows the system data type of the
column.

 Figure 1-20. Table alteration: Column offsets before table alteration

 Figure 1-21. Table alteration: Column offsets after table alteration

 Now, let’s perform a few alterations, as shown in Listing 1-19 .

 Listing 1-19. Table alteration: Altering the table

 alter table dbo.AlterDemo drop column Col1;
 alter table dbo.AlterDemo alter column Col2 tinyint;
 alter table dbo.AlterDemo alter column Col3 char(1);
 alter table dbo.AlterDemo alter column Col4 int;

 If you check the column offsets again, you’ll see the results shown in Figure 1-21 .

CHAPTER 1 ■ DATA STORAGE INTERNALS

28

 Even though we dropped the Col1 column, the offsets of the Col2 and Col3 columns have not been
changed. Moreover, both the Col2 and Col3 columns require just one byte to store the data, although it does
not affect the offsets of either.

 Finally, the Col4 column offset has been changed. The column data length has been increased, and SQL
Server created the new column to accommodate the new data type values.

 Before the alterations, a row needed 27 bytes to store the data. Alteration increased the required storage
space to 31 bytes even though the actual data size is just 10 bytes. 21 bytes of storage space per row are
wasted.

 The only way to reclaim the space is by rebuilding a heap table or clustered index, which we will discuss
in Chapter 6 .

 If you rebuilt the table with the ALTER TABLE dbo.AlterDemo REBUILD command and checked the
column offsets again, you would see the results shown in Figure 1-22 .

 Figure 1-22. Table alteration: Column offsets after table rebuild

 As you can see, the table rebuild reclaims the unused space from the rows.
 Finally, table alteration requires SQL Server to obtain a schema modification (SCH-M) lock on the

table. It makes the table inaccessible by another session for the duration of the alteration. We will talk about
schema locks in detail in Chapter 23 , “Schema Locks.”

 Summary
 SQL Server stores data in databases that consist of one or more transaction log files and one or more data
files. Data files are combined into filegroups. Filegroups abstract the database file structure from database
objects, which are logically stored in the filegroups rather than in database files. You should consider
creating multiple data files for any filegroups that store volatile data.

 SQL Server always zeros out transaction logs during a database restore and log file auto-growth. By
default, it also zeros out data files unless instant file initialization is enabled. Instant file initialization
significantly decreases database restore time and makes data file auto-growth instant. However, there is a
small security risk associated with instant file initialization, as the uninitialized part of the database may
contain data from previously deleted OS files. Nevertheless, it is recommended that you enable instant file
initialization if such a risk is acceptable.

 SQL Server stores information on 8,000 data pages combined into extents. There are two types of
extents. Mixed extents store data from different objects. Uniform extents store data that belongs to a single
object. SQL Server stores the first eight object pages in mixed extents. After that, only uniform extents are
used during object space allocation. You should consider enabling trace flag T1118 to prevent mixed extents
space allocation and reduce allocation map pages contention.

 SQL Server uses special map pages to track allocations in the file. There are several allocation map
types. GAM pages track which extents are allocated. SGAM pages track available mixed extents. IAM pages track
extents that are used by the allocation units on the object (partition) level. PFS stores several page attributes,
including free space available on the page, in heap tables and in row-overflow and LOB pages.

http://dx.doi.org/10.1007/978-1-4842-1964-5_6
http://dx.doi.org/10.1007/978-1-4842-1964-5_23

CHAPTER 1 ■ DATA STORAGE INTERNALS

29

 SQL Server stores actual data in data rows. There are two different kinds of data types available. Fixed-
length data types always use the same storage space regardless of the value, even when it is NULL. Variable-
length data storage uses the actual data value size.

 The fixed-length part of the row and internal overhead must fit into a single data page. Variable-length
data can be stored in separate data pages, such as row-overflow and LOB pages, depending on the actual
data size and data type.

 SQL Server reads the data pages into a memory cache called the buffer pool. When data is modified,
SQL Server synchronously writes the log record into the transaction log. It saves the modified data pages
asynchronously during the checkpoint and lazy writer processes.

 SQL Server is a very I/O-intensive application, and reducing the number of I/O operations helps to
improve the performance of systems. It is beneficial to reduce the size of data rows by using optimal data
types. This allows you to put more rows in the data page and decreases the number of data pages to be
processed during scan operations.

 You need to be careful when altering tables. This process never decreases the size of rows. The unused
space from the rows can be reclaimed by rebuilding a table or clustered index.

31© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_2

 CHAPTER 2

 Tables and Indexes: Internal
Structure and Access Methods

 SQL Server stores data in tables and indexes. They represent a collection of data pages with rows that belong
to a single entity or object.

 By default, the data in tables is unsorted. You can store it in sorted order by defining a clustered index
on the table. Moreover, you can create nonclustered indexes that persist another copy of the data from the
index columns sorted in a different order.

 In this chapter, we will talk about the internal structure of the indexes, cover how SQL Server uses them,
and discuss how to write queries in a way that efficiently utilizes them.

 Heap Tables
 Heap tables are tables without a clustered index. The data in heap tables is unsorted. SQL Server does not
guarantee, nor does it maintain, a sorting order of the data in heap tables.

 When you insert data into heap tables, SQL Server tries to fill pages as much as possible, although it
does not analyze the actual free space available on a page. It uses the page free space (PFS) allocation map
 instead. SQL Server errs on the side of caution and uses the low value from the PFS free space percentage tier
during the estimation.

 For example, if a data page stores 4,100 bytes of data, and as result it has 3,960 bytes of free space
available, PFS would indicate that the page is 51–80 percent full. SQL Server would not put a new row on
the page if its size exceeds 20 percent (8,060 bytes * 0.2 = 1,612 bytes) of the page size. Let’s examine that
behavior and create the table with the code shown in Listing 2-1 .

 Listing 2-1. Inserting data into heap tables: Creating the table

 create table dbo.Heap
 (
 Val varchar(8000) not null
);

 ;with CTE(ID,Val)
 as
 (
 select 1, replicate('0',4089)
 union all
 select ID + 1, Val from CTE where ID < 20

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

32

)
 insert into dbo.Heap
 select Val from CTE;

 select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.Heap'),0,null,'DETAILED');

 The following is the output of the code from Listing 2-1 :

 Result: 1 row per page. 4,100 bytes are used. 3,960 bytes are available per page

 page_count avg_record_size_in_bytes avg_page_space_used_in_percent
 ----------- ------------------------- -------------------------------
 20 4100 50.6548060291574

 At this point, the table stores 20 rows of 4,100 bytes each. SQL Server allocates 20 data pages—one page
per row—with 3,960 bytes available. PFS would indicate that pages are 51–80 percent full.

 The code shown in Listing 2-2 inserts a small 111-byte row, which is about 1.4 percent of the page size.
As a result, SQL Server knows that the row would fit into one of the existing pages (they all have at least 20
percent of free space available), and a new page should not be allocated.

 Listing 2-2. Inserting data into heap tables: Inserting a small row

 insert into dbo.Heap(Val) values(replicate('1',100));

 select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.Heap'),0,null,'DETAILED');

 The following is the output of the code from Listing 2-2 :

 Result: 100 bytes row has been inserted into one of existing pages (100 bytes = ~1.4% of
the page size)

 page_count avg_record_size_in_bytes avg_page_space_used_in_percent
 ----------- ------------------------- --------------------------------
 20 3910.047 50.7246108228317

 Lastly, a third insert statement, shown in Listing 2-3 , needs 2,011 bytes for the row, which is about 25
percent of the page size. SQL Server does not know if any of the existing pages have enough free space to
accommodate the row, and, as a result, it allocates a new page. You can see that SQL Server does not access
existing pages by checking the actual free space, and it uses PFS data for the estimation.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

33

 Listing 2-3. Inserting data into heap tables: Inserting a large row

 insert into dbo.Heap(Val) values(replicate('2',2000));

 select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.Heap'),0,null,'DETAILED');

 The following is the output of the code from Listing 2-3 :

 Result: New page has been allocated for 2000 bytes row (2000 bytes = ~25% of the page size)

 page_count avg_record_size_in_bytes avg_page_space_used_in_percent
 ----------- ------------------------- -------------------------------
 21 3823.727 49.4922782307882

 This behavior leads to the situation where SQL Server unnecessarily allocates new data pages, leaving
large amounts of free space unused. It is not always a problem when the size of rows vary—in those cases,
SQL Server eventually fills empty spaces with the smaller rows. However, especially in cases when all rows
are relatively large, you can end up with large amounts of unused space on the data pages.

 When selecting data from the heap table, SQL Server uses an index allocation map (IAM) to find the
pages and extents that need to be scanned. It analyzes what extents belong to the table and processes them
based on their allocation order rather than on the order in which the data was inserted. Figure 2-1 illustrates
this point.

 Figure 2-1. Selecting data from the heap table

 When you update a row in the heap table, SQL Server tries to accommodate it on the same page. If there
is no free space available, SQL Server moves the new version of the row to another page and replaces the old
row with a special 16-byte row called a forwarding pointer . The new version of the row is called forwarded
row . Figure 2-2 illustrates this point.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

34

 There are two main reasons why forwarding pointers are used. First, they prevent updates of
nonclustered index keys that reference the row. We will talk about nonclustered indexes in more detail later
in this chapter.

 In addition, forwarding pointers help minimize the number of duplicated reads; that is, situations in
which a single row is read multiple times during a table scan. Let’s look at Figure 2-2 as an example of this
and assume that SQL Server scans the pages in left-to-right order. Let’s further assume that the row in page
3 was modified after the page was read at the time when SQL Server was reading page 4. The new version of
the row would be moved to page 5, which has yet to be processed. Without forwarding pointers, SQL Server
would not know that the old version of the row had already been read, and it would read it again during the
page 5 scan. With forwarding pointers, SQL Server would ignore the forwarded rows — they have a bit set in
the Status Bits A byte in the data row.

 Although forwarding pointers help minimize duplicated reads, they introduce additional read
operations at the same time. SQL Server follows the forwarding pointers and reads the new versions of the
rows at the time it encounters them. That behavior can introduce an excessive number of I/O operations.

 Let’s look at the following example, create the table, and insert three rows with the code shown in
Listing 2-4 .

 Listing 2-4. Forwarding pointers and IO: Table creation and three rows inserted

 create table dbo.ForwardingPointers
 (
 ID int not null,
 Val varchar(8000) null
);

 insert into dbo.ForwardingPointers(ID,Val)
 values(1,null),(2,replicate('2',7800)),(3,null);

 select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent
 ,forwarded_record_count
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.ForwardingPointers'),0
 ,null,'DETAILED');

 set statistics io on
 select count(*) from dbo.ForwardingPointers;

 Figure 2-2. Forwarding pointers

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

35

 The following is the output of the code from Listing 2-4 :

 page_count avg_record_size_in_bytes avg_page_space_used_in_percent forwarded_record_count
 --------- ---------------------- --------------------------- --------------------
 1 2612.333 98.8742278230788 0

 Table 'ForwardingPointers'. Scan count 1, logical reads 1

 As you can see in Figure 2-3 , all three rows fit into the single page, and SQL Server needs to read just
that page when it scans the table.

 Figure 2-3. Forwarding pointers and I/O: Data pages after table creation

 Now, let’s update two of the table rows by increasing their size. The new versions of the rows will not
fit into the page anymore, which introduces the allocation of two new pages and two forwarding pointers.
Listing 2-5 shows the code for this.

 Listing 2-5. Forwarding pointers and I/O: Increasing size of the rows

 update dbo.ForwardingPointers set Val = replicate('1',5000) where ID = 1;
 update dbo.ForwardingPointers set Val = replicate('3',5000) where ID = 3;

 select page_count, avg_record_size_in_bytes, avg_page_space_used_in_percent, forwarded_record_count
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.ForwardingPointers'),0,null
 ,'DETAILED');

 set statistics io on
 select count(*) from dbo.ForwardingPointers

 The following is the output of the code from Listing 2-5 :

 page_count avg_record_size_in_bytes avg_page_space_used_in_percent forwarded_record_count
 --------- --------------------- ---------------------------- --------------------
 3 3577.4 73.6800963676798 2

 Table 'ForwardingPointers'. Scan count 1, logical reads 5

 When SQL Server reads the forwarding pointer rows from page 1, it follows them and reads pages 2
and 3 immediately. After that, SQL Server reads those pages one more time during the regular IAM scan
process. As a result, we have five read operations, even though our table has just three data pages. Figure 2-4
illustrates this point.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

36

 Figure 2-4. Forwarding pointers and I/O: Reading data when forwarding pointers exist

 As you can see, the large number of forwarding pointers leads to extra I/O operations and significantly
reduces the performance of the queries accessing the data. Companion materials for this book include the
script that demonstrates this problem in a large scope with a table that includes a large amount of data.

 When the size of the forwarded row is reduced by another update and the data page with forwarding
pointer has enough space to accommodate the updated version of the row, SQL Server may move it back to
its original data page and remove the forwarding pointer row. Nevertheless, the only reliable way to get rid
of all of the forwarding pointers is by rebuilding the heap table. You can do that by using an ALTER TABLE
REBUILD statement.

 Heap tables can be useful in staging environments, where you want to import a large amount of data
into the system as fast as possible. Inserting data into heap tables can often be faster than inserting it into
tables with clustered indexes. Nevertheless, during a regular workload, tables with clustered indexes usually
outperform heap tables, which have suboptimal space control and extra I/O operations introduced by
forwarding pointers.

 Clustered Indexes
 A clustered index dictates the physical order of the data in a table, which is sorted according to the clustered
index key. The table can have only one clustered index defined.

 Let’s assume that you want to create a clustered index on the heap table with the data. As a first step,
which is shown in Figure 2-5 , SQL Server creates another copy of the data that is then sorted based on the
value of the clustered key. The data pages are linked in a double-linked list where every page contains
pointers to the next and previous pages in the chain. This list is called the leaf level of the index, and it
contains the actual table data.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

37

 ■ Note The sort order on the page is controlled by a slot array. Actual data on the page is unsorted.

 When the leaf level consists of multiple pages, SQL Server starts to build an intermediate level of the
index, as shown in Figure 2-6 .

 Figure 2-5. Clustered index structure: Leaf level

 Figure 2-6. Clustered index structure: Intermediate and leaf levels

 The intermediate level stores one row per leaf-level page. It stores two pieces of information: the
physical address and the minimum value of the index key from the page it references. The only exception is
the very first row on the first page, where SQL Server stores NULL rather than the minimum index key value.
With such optimization, SQL Server does not need to update non-leaf-level rows when you insert the row
with the lowest key value in the table.

 The pages on the intermediate levels are also linked to the double-linked list. SQL Server adds more
and more intermediate levels until there is a level that includes just the single page. This level is called the
 root level , and it becomes the entry point to the index, as shown in Figure 2-7 .

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

38

 As you can see, the index always has one leaf level, one root level, and zero or more intermediate levels.
The only exception is when the index data fits into a single page. In that case, SQL Server does not create the
separate root-level page, and the index consists of just the single leaf-level page.

 The number of levels in the index largely depends on the row and index key sizes. For example, the
index on the 4-byte integer column will require 13 bytes per row on the intermediate and root levels. Those
13 bytes consist of a 2-byte slot-array entry, a 4-byte index-key value, a 6-byte page pointer, and a 1-byte row
overhead, which is adequate because the index key does not contain variable-length and NULL columns.

 As a result, you can accommodate 8,060 bytes / 13 bytes per row = 620 rows per page. This means that,
with the one intermediate level, you can store information about up to 620 * 620 = 384,400 leaf-level pages.
If your data row size is 200 bytes, you can store 40 rows per leaf-level page and up to 15,376,000 rows in
the index with just three levels. Adding another intermediate level to the index would essentially cover all
possible integer values.

 ■ Note In real life, index fragmentation would reduce those numbers. We will talk about index fragmentation
in Chapter 6 .

 There are three different ways in which SQL Server can read data from the index. The first one is
by an ordered scan. Let’s assume that we want to run the SELECT Name FROM dbo.Customers ORDER BY
CustomerId query. The data on the leaf level of the index is already sorted based on the CustomerId column
value. As a result, SQL Server can scan the leaf level of the index from the first to the last page and return the
rows in the order in which they were stored.

 SQL Server starts with the root page of the index and reads the first row from there. That row references
the intermediate page with the minimum key value from the table. SQL Server reads that page and repeats
the process until it finds the first page on the leaf level. Then, SQL Server starts to read rows one by one,
moving through the linked list of the pages until all rows have been read. Figure 2-8 illustrates this process.

 Figure 2-7. Clustered index structure: Root level

http://dx.doi.org/10.1007/978-1-4842-1964-5_6

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

39

 The execution plan for the preceding query shows the Clustered Index Scan operator with the Ordered
property set to true, as shown in Figure 2-9 .

 Figure 2-8. Ordered index scan

 Figure 2-9. Ordered index scan execution plan

 It is worth mentioning that the order by clause is not required for an ordered scan to be triggered.
An ordered scan just means that SQL Server reads the data based on the order of the index key.

 SQL Server can navigate through indexes in both directions, forward and backward. However, there is
one important aspect that you must keep in mind: SQL Server does not use parallelism during backward
index scans.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

40

 ■ Tip You can check scan direction by examining the INDEX SCAN or INDEX SEEK operator properties in
the execution plan. Keep in mind, however, that Management Studio does not display these properties in the
graphical representation of the execution plan. You need to open the Properties window to see it by selecting the
operator in the execution plan and choosing the View/Properties Window menu item or by pressing the F4 key.

 The Enterprise Edition of SQL Server has an optimization feature called merry-go-round scan that
allows multiple tasks to share the same index scan. Let’s assume that you have session S1, which is scanning
the index. At some point in the middle of the scan, another session, S2, runs a query that needs to scan the
same index. With a merry-go-round scan, S2 joins S1 at its current scan location. SQL Server reads each page
only once, passing rows to both sessions.

 When the S1 scan reaches the end of the index, S2 starts scanning data from the beginning of the index
until the point where the S2 scan started. A merry-go-round scan is another example of why you cannot rely
on the order of the index keys and why you should always specify an ORDER BY clause when it matters.

 The next access method after the ordered scan is called an allocation order scan . SQL Server accesses
the table data through the IAM pages, similar to how it does so with heap tables. The SELECT Name FROM
dbo.Customers WITH (NOLOCK) query and Figure 2-10 illustrate this method. Figure 2-11 shows the query
execution plan.

 Figure 2-10. Allocation order scan

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

41

 Figure 2-11. Allocation order scan execution plan

 Figure 2-12. Index seek

 Unfortunately, it is not easy to detect when SQL Server uses an allocation order scan. Even though the
 Ordered property in the execution plan shows false , it indicates that SQL Server does not care whether the
rows were read in the order of the index key, not that an allocation order scan was used.

 An allocation order scan can be faster for scanning large tables, although it has a higher startup cost.
SQL Server does not use this access method when the table is small. Another important consideration is
data consistency. SQL Server does not use forwarding pointers in tables that have a clustered index, and an
allocation order scan can produce inconsistent results. Rows can be skipped or read multiple times due to
the data movement caused by page splits. As a result, SQL Server usually avoids using allocation order scans
unless it reads the data in READ UNCOMMITTED or SERIALIZABLE transaction-isolation levels.

 ■ Note We will talk about page splits and fragmentation in Chapter 6 , “Index Fragmentation,” and discuss
locking and data consistency in Part III, “Locking, Blocking, and Concurrency.”

 The last index access method is called index seek . The SELECT Name FROM dbo.Customers WHERE
CustomerId BETWEEN 4 AND 7 query and Figure 2-12 illustrate the operation.

http://dx.doi.org/10.1007/978-1-4842-1964-5_6

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

42

 In order to read the range of rows from the table, SQL Server needs to find the row with the minimum
value of the key from the range, which is 4. SQL Server starts with the root page, where the second row
references the page with the minimum key value of 350. It is greater than the key value that we are looking for
(4), and SQL Server reads the intermediate-level data page (1:170) referenced by the first row on the root page.

 Similarly, the intermediate page leads SQL Server to the first leaf-level page (1:176). SQL Server reads
that page, then it reads the rows with CustomerIds equal to 4 and 5, and, finally, it reads the two remaining
rows from the second page.

 The execution plan is shown in Figure 2-13 .

 Figure 2-13. Index seek execution plan

 As you can guess, index seek is more efficient than index scan, because SQL Server processes just the
subset of rows and data pages rather than scanning the entire table.

 Technically speaking, there are two kinds of index seek operations. The first is called a singleton lookup ,
or sometimes point-lookup , where SQL Server seeks and returns a single row. You can think about WHERE
CustomerId = 2 predicate as an example. The other type of index seek operation is called a range scan , and
it requires SQL Server to find the lowest or highest value of the key and scan (either forward or backward) the
set of rows until it reaches the end of scan range. The predicate WHERE CustomerId BETWEEN 4 AND 7 leads
to the range scan. Both cases are shown as INDEX SEEK operations in the execution plans.

 As you can guess, it is entirely possible for range scans to force SQL Server to process a large number or
even all data pages from the index. For example, if you changed the query to use a WHERE CustomerId > 0
predicate, SQL Server would read all rows/pages, even though you would have an Index Seek operator
displayed in the execution plan. You must keep this behavior in mind and always analyze the efficiency of
range scans during query performance tuning.

 There is a concept in relational databases called SARGable predicates , which stands for S earch
 Arg ument able . The predicate is SARGable if SQL Server can utilize an index seek operation, if an index
exists. In a nutshell, predicates are SARGable when SQL Server can isolate the single value or range of index
key values to process, thus limiting the search during predicate evaluation. Obviously, it is beneficial to write
queries using SARGable predicates and utilize index seek whenever possible.

 SARGable predicates include the following operators: = , > , >= , < , <= , IN , BETWEEN , and LIKE (in case of prefix
matching). Non-SARGable operators include NOT , <> , LIKE (in case of non-prefix matching), and NOT IN .

 Another circumstance for making predicates non-SARGable is using functions or mathematical
calculations against the table columns. SQL Server has to call the function or perform the calculation for
every row it processes. Fortunately, in some of cases you can refactor the queries to make such predicates
SARGable. Table 2-1 shows a few examples of this.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

43

 Table 2-1. Examples of Refactoring Non-SARGable Predicates into SARGable Ones

 Operation Non-SARGable implementation SARGable implementation

 Mathematical calculations Column - 1 = @Value Column = @Value + 1

 ABS(Column) = 1 Column IN (-1, 1)

 Date manipulation CAST(Column as date) = @Date
(in SQL Server prior 2008)

 convert(datetime, convert
(varchar(10),Column,121))

 Column >= @Date and
 Column < DATEADD(day,1,@Date)

 DATEPART(year,Column) = @Year Column >= @Year and
 Column < DATEADD(year,1,@Year)

 DATEADD(day,7,Column) >
 GETDATE()

 Column >
 DATEADD(day,-7,GETDATE())

 Prefix search LEFT(Column,3) = 'ABC' Column LIKE 'ABC%'

 Substring search Column LIKE '%ABC%' Use Full-Text Search or other
technologies

 Another important factor that you must keep in mind is type conversion . In some cases, you can make
predicates non-SARGable by using incorrect data types. Let’s create a table with a varchar column and
populate it with some data, as shown in Listing 2-6 .

 Listing 2-6. SARG predicates and data types: Test table creation

 create table dbo.Data
 (
 VarcharKey varchar(10) not null,
 Placeholder char(200)
);

 create unique clustered index IDX_Data_VarcharKey
 on dbo.Data(VarcharKey);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Data(VarcharKey)
 select convert(varchar(10),ID) from IDs;

 The clustered index key column is defined as varchar , even though it stores integer values. Now, let’s
run two selects, as shown in Listing 2-7 , and look at the execution plans.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

44

 Listing 2-7. SARG predicates and data types: Select with integer parameter

 declare
 @IntParam int = '200'

 select * from dbo.Data where VarcharKey = @IntParam;
 select * from dbo.Data where VarcharKey = convert(varchar(10),@IntParam);

 As you can see in Figure 2-14 , in the case of the integer parameter, SQL Server scans the clustered
index, converting varchar to an integer for every row. In the second case, SQL Server converts the integer
parameter to a varchar at the beginning and utilizes a much more efficient clustered index seek operation.

 Figure 2-14. SARG predicates and data types: Execution plans with integer parameter

 ■ Tip Pay attention to the column data types in the join predicates. Implicit or explicit data type conversions
can significantly decrease the performance of the queries.

 You will observe very similar behavior in the case of unicode string parameters. Let’s run the queries
shown in Listing 2-8 . Figure 2-15 shows the execution plans for the statements.

 Listing 2-8. SARG predicates and data types: Select with string parameter

 select * from dbo.Data where VarcharKey = '200';
 select * from dbo.Data where VarcharKey = N'200'; -- unicode parameter

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

45

 As you can see, a unicode string parameter is non-SARGable for varchar columns. This is a much
bigger issue than it appears to be. While you rarely write queries in this way, as shown in Listing 2-8 ,
most application development environments nowadays treat strings as unicode. As a result, SQL Server
client libraries generate unicode (nvarchar) parameters for string objects unless the parameter data
type is explicitly specified as varchar . This makes the predicates non-SARGable, and it can lead to major
performance hits due to unnecessary scans, even when varchar columns are indexed.

 ■ Important Always specify parameter data types in client applications. For example, in ADO.Net, use
 Parameters.Add("@ParamName",SqlDbType.Varchar, <Size>).Value = stringVariable instead of
 Parameters.Add("@ParamName").Value = stringVariable overload. Use mapping in ORM frameworks to
explicitly specify non-unicode attributes in the classes.

 It is also worth mentioning that varchar parameters are SARGable for nvarchar unicode data columns.

 Composite Indexes
 Indexes with multiple key columns are called composite (or compound) indexes . The data in the composite
indexes is sorted on a per-column basis from leftmost to rightmost columns. Figure 2-16 shows the structure
of a composite index.

 Figure 2-15. SARG predicates and data types: Execution plans with string parameter

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

46

 The SARGability of a composite index depends on the SARGability of the predicates on the leftmost
index columns. Table 2-2 shows examples of SARGable and non-SARGable predicates using the index from
Figure 2-16 as the example.

 Figure 2-16. Composite index structure

 Table 2-2. SARGable and Non-SARGable Predicates on a Composite Index

 SARGable predicates Non-SARGable predicates

 LastName = 'Clark' and FirstName = 'Steve' LastName <> 'Clark' and FirstName = 'Steve'

 LastName = 'Clark' and FirstName <> 'Steve' LastName LIKE '%ar%' and FirstName = 'Steve'

 LastName = 'Clark' FirstName = 'Steve'

 LastName LIKE 'Cl%'

 Nonclustered Indexes
 While a clustered index specifies how data rows are sorted in a table, nonclustered indexes define a separate
sorting order for a column or set of columns and persist them as a separate data structure.

 You can think about a book as an example. Page numbers would represent the book’s clustered index .
The index at the end of the book shows the list of terms from the book in alphabetical order. Each term
references the page numbers where the term is mentioned. The index represents the nonclustered index of
the terms.

 When you need to find a term in the book, you can look it up in the index. It is a fast and efficient
operation, because terms are sorted in alphabetical order. Next, you can quickly find the pages on which the
terms are mentioned using the page numbers specified there. Without the index, the only choice would be
reading all of the pages in the book one by one until all references to the term were found.

 The nonclustered index structure is very similar to the clustered index structure. Let’s create a
nonclustered index on the Name column from the Customers table with a CREATE NONCLUSTERED INDEX IDX_
NCI ON dbo.Customers(Name) statement. Figure 2-17 shows the structures of both indexes.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

47

 The leaf level of the nonclustered index is sorted based on the value of the index key— Name in our case.
Every row on the leaf level includes the key value and row-id . For heap tables, row-id is the physical location
of the row, defined as file:page:slot , and has the size of eight bytes.

 ■ Note Another reason why SQL Server uses forwarding pointers in heap tables is to prevent the updating of
nonclustered index rows when the original row in the heap table has been moved to another data page after the
update. Nonclustered indexes keep the old row-id, which references the forwarding pointer row.

 For tables with a clustered index, row-id represents the value of the clustered index key of the row.

 ■ Important This is a very important point to remember. Nonclustered indexes do not store information about
physical row location when a table has a clustered index. They store the value of the clustered index key instead.

 Like clustered indexes, the intermediate and root levels of nonclustered indexes store one row per page
from the level they reference. That row consists of the physical address and the minimum value of the key
from the page. In addition, for non-unique indexes, it also stores the row-id of such a row.

 ■ Note It is important to define a nonclustered index as unique when the data is unique. Intermediate- and
root-level rows of unique indexes are more compact, because SQL Server does not maintain the row-id there.
Moreover, the uniqueness of the index helps Query Optimizer generate more efficient execution plans.

 SQL Server 2016 allows you to define nonclustered indexes with a key size up to 1,700 bytes. Previous
versions of SQL Server limit that to 900 bytes. The maximum clustered index key size is 900 bytes in all versions.
SQL Server allows the creation of indexes with a key size that can potentially exceed this limit because of
variable-length columns, although you would not be able to insert such rows into a table. Listing 2-9 shows an
example of this (you need to use the 900-bytes threshold if you run it on SQL Server 2014 or below)

 Figure 2-17. Clustered and nonclustered index structures

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

48

 Listing 2-9. 1700-bytes limitation on the index key size

 create table dbo.LargeKeys
 (
 Col1 varchar(1000) not null,
 Col2 varchar(1000) not null
);

 -- Success with the warning
 create nonclustered index IDX_NCI on dbo.LargeKeys(Col1,Col2);

 Warning:
 Warning! The maximum key length is 1700 bytes. The index 'IDX_NCI' has a maximum length of
2000 bytes. For some combination of large values, the insert/update operation will fail.

 -- Success:
 insert into dbo.LargeKeys(Col1, Col2) values('Small','Small');

 -- Failure:
 insert into dbo.LargeKeys(Col1, Col2) values(replicate('A',900),replicate('B',900));

 Error:
 Msg 1946, Level 16, State 3, Line 4
 Operation failed. The index entry of length 1800 bytes for the index 'IDX_NCI' exceeds the
maximum length of 1700 bytes.

 Let’s look at how SQL Server uses nonclustered indexes, assuming that you run the following query:
 SELECT * FROM dbo.Customers WHERE Name = 'Boris'

 As shown in the first step in Figure 2-18 , SQL Server starts with the root page of the nonclustered index.
 The key value Boris is less than Dan, and SQL Server goes to the intermediate page referenced from the first
row in the root-level page.

 Figure 2-18. Nonclustered index usage: Step 1

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

49

 The second row of the intermediate page indicates that the minimum key value on the page is Boris ,
although the index had not been defined as unique and SQL Server does not know if there are other Boris
rows stored on the first page. As a result, it goes to the first leaf page of the index and finds the row with the
key value Boris and a row-id equal to 7 there.

 In our case, the nonclustered index does not have any data besides CustomerId and Name, and SQL
Server needs to traverse the clustered index tree and obtain the data from other columns from there. This
operation is called key lookup .

 In the next step, shown in Figure 2-19 , SQL Server comes back to the nonclustered index and reads
the second page from the leaf level. It finds another row with the key value Boris and row-id 93712, and it
performs a key lookup again.

 Figure 2-19. Nonclustered index usage: Step 2

 As you can see, SQL Server had to read the data pages ten times, even though the query returned just
two rows. The number of I/O operations can be calculated based on the following formula: (number of
levels in nonclustered index) + (number of pages read from the leaf level of nonclustered
index) + (number of rows found) * (number of levels in clustered index). As you can guess,
a large number of rows found and, therefore, a large number of key lookup operations, lead to a large
number of I/O operations, which makes nonclustered index usage inefficient.

 There is another important factor contributing to nonclustered index inefficiency. Key lookups read the
data from different places in the data files. Even though data pages from root and intermediate index levels
are often cached and introduce just logical reads, accessing leaf-level pages leads to random physical I/O
activity. In contrast, index scans trigger sequential I/O activity, which is more efficient than random I/O,
especially in the case of magnetic hard drives.

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

50

 KEY LOOKUPS VS. RID LOOKUPS

 Nonclustered indexes defined on heap tables reference the actual location of the rows in the data file.
SQL Server uses the RID lookup operation to obtain the data row from the heap. In theory, RID lookup
seems to be more efficient than key lookup, because it can read the row directly without traversing the
root and intermediate levels of the clustered index.

 In reality, however, the performance impact of reading non-leaf clustered index data pages is relatively
small. Those pages are usually cached in the buffer pool and do not introduce physical I/O to access.
Logical reads still introduce some overhead; however, it is usually insignificant compared to physical I/O
and disk access. Moreover, forwarding pointers in the heap tables can introduce multiple physical reads
during a single RID lookup operation, which would impact its performance.

 As a result, SQL Server is very conservative in choosing nonclustered indexes when it expects that a
large number of key or RID lookup operations will be required. To illustrate this, let’s create a table and
populate it with the data shown in Listing 2-10 .

 Listing 2-10. Nonclustered index usage: Creating a test table

 create table dbo.Books
 (
 BookId int identity(1,1) not null,
 Title nvarchar(256) not null,
 -- International Standard Book Number
 ISBN char(14) not null,
 Placeholder char(150) null
);

 create unique clustered index IDX_Books_BookId on dbo.Books(BookId);

 -- 1,252,000 rows
 ;with Prefix(Prefix)
 as
 (
 select 100
 union all
 select Prefix + 1
 from Prefix
 where Prefix < 600
)
 ,Postfix(Postfix)
 as
 (
 select 100000001
 union all
 select Postfix + 1
 from Postfix
 where Postfix < 100002500
)

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

51

 insert into dbo.Books(ISBN, Title)
 select
 convert(char(3), Prefix) + '-0' + convert(char(9),Postfix)
 ,'Title for ISBN' + convert(char(3), Prefix) + '-0' + convert(char(9),Postfix)
 from Prefix cross join Postfix
 option (maxrecursion 0);

 create nonclustered index IDX_Books_ISBN on dbo.Books(ISBN);

 At this point, the table has 1,252,000 rows. The ISBN column is populated with data in the following
format: <Prefix>-<Postfix> with prefixes from 100 to 600 and 2,500 postfixes each.

 Let’s try to select the data for one of the prefixes, as shown in Listing 2-11 .

 Listing 2-11. Nonclustered index usage: Selecting data for a single prefix

 -- 2,500 rows
 select * from dbo.Books where ISBN like '210%'

 As you can see in Figure 2-20 , SQL Server decided to use a nonclustered index seek with a key lookup
as the execution plan. Selecting 2,500 rows introduces 7,676 logical reads. The clustered index IDX_Books_
BookId has three levels, which leads to 7,500 reads during key lookup operations. The remaining 176 reads
were performed on the nonclustered index when SQL Server traversed the index tree and read pages during
a range scan operation.

 Figure 2-20. Selecting data for the single prefix: Execution plan

 For the next step, let’s select the data for five different prefixes. We will run two different selects. In the
first one, we will give SQL Server the ability to choose the execution plan it wishes. In the second select,
we will force the use of a nonclustered index with the index hint. The code to accomplish this is shown in
Listing 2-12 . Figure 2-21 shows the execution plans.

 Listing 2-12. Nonclustered index usage: Selecting data for five prefixes

 -- 12,500 rows
 select * from dbo.Books where ISBN like '21[0-4]%'
 select * from dbo.Books with (index = IDX_BOOKS_ISBN) where ISBN like '21[0-4]%'

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

52

 As you can see, in our case selecting 12,500 rows using a nonclustered index seek introduced more
logical reads when compared to scanning the entire table. It is worth mentioning that 12,500 rows are less
than 1 percent of the total number of rows in the table. This threshold varies, although it is very low . We will
discuss how SQL Server performs such an estimation in the next chapter.

 ■ Important SQL Server does not use nonclustered indexes if it estimates that a large number of key or RID
lookup operations will be required.

 Nonclustered indexes help improve the performance of queries, although this comes at its own price.
They maintain a copy of the data from the index columns. When columns are updated, SQL Server needs to
update them in the every index in which they are included.

 Even though SQL Server allows the creation of either 250 or 999 nonclustered indexes per table,
depending on the version, it is not a good idea to create a lot of them. We will talk about indexing strategies
in Chapter 7 , “Designing and Tuning the Indexes.”

 Summary
 Clustered indexes define the sorting order for data in a table. Nonclustered indexes store a copy of the data
for a subset of table columns sorted in the order in which the key columns are defined.

 Both clustered and nonclustered indexes are stored in a multiple-level tree-like structure called a
 B-Tree . Data pages on each level are linked in a double-linked list.

 Figure 2-21. Selecting data for five prefixes: Execution plans

http://dx.doi.org/10.1007/978-1-4842-1964-5_7

CHAPTER 2 ■ TABLES AND INDEXES: INTERNAL STRUCTURE AND ACCESS METHODS

53

 The leaf level of the clustered index stores the actual table data. The intermediate- and root-level pages
store one row per page from the next level. Every row includes the physical address and minimum value of
the key from the page that it references.

 The leaf level of a nonclustered index stores the data from the index columns and row-id. For tables
with a clustered index, row-id is the clustered key value of the row. Then intermediate and root levels of a
nonclustered index are similar to those of a clustered index, although when the index is not unique, those
rows store row-id in addition to the minimum index key value. It is beneficial to define indexes as unique,
as it makes the intermediate and root levels more compact. Moreover, uniqueness helps Query Optimizer
generate more efficient execution plans.

 SQL Server needs to traverse the clustered index tree to obtain any data from the columns that are not
part of the nonclustered index. Those operations, called key lookups , are expensive in terms of I/O. SQL
Server does not use nonclustered indexes if it expects that a large number of key or RID lookup operations
will be required.

 Tables with a clustered index usually outperform heap tables. It is thus beneficial to define a clustered
index on tables in most cases.

 SQL Server can utilize indexes in two separate ways. The first way is an index scan operation, where it
reads every page from the index. The second one is an index seek operation, where SQL Server processes just
a subset of the index pages. It is beneficial to use SARGable predicates in queries, which allows SQL Server to
perform index seek operations by exactly matching the row or range of rows in the index.

 You should avoid calculations and/or function calls against data columns, because it makes predicates
non-SARGable. You should also take care to use the correct data types for parameters, especially when
dealing with unicode and non-unicode strings.

55© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_3

 CHAPTER 3

 Statistics

 SQL Server Query Optimizer uses a cost-based model when choosing an execution plan for queries. It
estimates the costs of the different execution plans and chooses the one with the lowest cost. Remember,
however, that SQL Server does not search for the best execution plan available for the query, as evaluating all
possible alternatives is time consuming and expensive in terms of the CPU. The goal of Query Optimizer is
finding a good enough execution plan, fast enough .

 Cardinality estimation (estimation of the number of rows that need to be processed at each step of
query execution) is one of the most important factors in query optimization . This number affects the choice
of join strategies, amount of memory (memory grant) required for query execution, and quite a few other
things.

 The choice of indexes to use while accessing the data is among those factors. As you will remember, key
and RID lookup operations are expensive in terms of I/O, and SQL Server does not use nonclustered indexes
when it estimates that a large number of these operations will be required. SQL Server maintains statistics
on indexes — and in some cases on columns — which help in performing such estimations.

 Introduction to SQL Server Statistics
 SQL Server statistics are system objects that contain information about data distribution in the index key
values and, sometimes, in regular column values. Statistics can be created on any data type that supports
comparison operations, such as > , < , = , and so on.

 Let’s examine the IDX_BOOKS_ISBN index statistics from the dbo.Books table we created in Listing 2-15
in the previous chapter. You can do this by using the DBCC SHOW_STATISTICS ('dbo.Books',IDX_BOOKS_ISBN)
command. The results are shown in Figure 3-1 .

CHAPTER 3 ■ STATISTICS

56

 As you can see, the DBCC SHOW_STATISTICS command returns three result sets. The first one contains
general metadata information about the statistics, such as name, update date, number of rows in the index
at the time when the statistics were updated, and so on. The Steps column in the first result set indicates
the number of steps/values in the histogram (more about this later). The Density value is not used by Query
Optimizer and is displayed for backward-compatibility purposes only.

 The second result set, called density vector , contains information about density for the combination
of key values from the statistics (index). It is calculated based on a 1 / number of distinct values
formula, and it indicates how many rows, on average, each combination of key values has. Even though the
 IDX_Books_ISBN index has just one key column ISBN defined, it also includes a clustered index key as part
of the index row. Our table has 1,252,500 unique ISBN values, and the density for the ISBN column is 1.0 /
1,252,500 = 7.984032E-07 . All combinations of the (ISBN, BookId) columns are also unique and have the
same density.

 The last result set is called the histogram . Every record in the histogram, called a histogram step ,
includes the sample key value in the leftmost column of the statistics (index) and information about the
data distribution in the range of values from the preceding to the current RANGE_HI_KEY value. Let’s examine
 histogram columns in greater depth.

 The RANGE_HI_KEY column stores the sample value of the key. This value is the
upper-bound key value for the range defined by the histogram step. For example,
record (step) #3 with RANGE_HI_KEY = '104-0100002488' in the histogram from
Figure 3-1 stores information about the interval from ISBN > '101-0100001796'
to ISBN <= '104-0100002488' .

 The RANGE_ROWS column estimates the number of rows within the interval. In our
case, the interval defined by record (step) #3 has 8,191 rows.

 EQ_ROWS indicates how many rows have a key value equal to the RANGE_HI_KEY
upper-bound value. In our case, there is only one row with ISBN = '104-0100002488' .

 DISTINCT_RANGE_ROWS indicates how many distinct values of the keys are
within the interval. In our case, all of the values of the keys are unique,
so DISTINCT_RANGE_ROWS = RANGE_ROWS .

 Figure 3-1. DBCC SHOW_STATISTICS output

CHAPTER 3 ■ STATISTICS

57

 AVG_RANGE_ROWS indicates the average number of rows per distinct key
value in the interval. In our case, all of the values of the keys are unique,
so AVG_RANGE_ROWS = 1 .

 Let’s insert a set of duplicate ISBN values into the index with the code shown in Listing 3-1 .

 Listing 3-1. Inserting duplicate ISBN values into the index .

 ;with Prefix(Prefix)
 as (select Num from (values(104),(104),(104),(104),(104)) Num(Num))
 ,Postfix(Postfix)
 as
 (
 select 100000001
 union all
 select Postfix + 1 from Postfix where Postfix < 100002500
)
 insert into dbo.Books(ISBN, Title)
 select
 convert(char(3), Prefix) + '-0' + convert(char(9),Postfix)
 ,'Title for ISBN' + convert(char(3), Prefix) + '-0' + convert(char(9),Postfix)
 from Prefix cross join Postfix
 option (maxrecursion 0);

 -- Updating the statistics
 update statistics dbo.Books IDX_Books_ISBN with fullscan;

 Now, if you run the DBCC SHOW_STATISTICS ('dbo.Books',IDX_BOOKS_ISBN) command again, you will
see the results shown in Figure 3-2 .

 Figure 3-2. DBCC SHOW_STATISTICS output

CHAPTER 3 ■ STATISTICS

58

 ISBN values with the prefix 104 now have duplicates, and this affects the histogram. It is also worth
mentioning that the density information in the second result set is also changed. The density for ISBN s with
duplicate values is higher than for the combination of (ISBN, BookId) columns, which is still unique.

 Let’s run the SELECT BookId, Title FROM dbo.Books WHERE ISBN LIKE ‘114%’ statement and check
the execution plan, as shown in Figure 3-3 .

 Figure 3-3. Execution plan of the query

 There are two important properties that most execution plan operators have. Actual Number of Rows
indicates how many rows were processed during operator execution. Estimated Number of Rows indicates
the number of rows SQL Server estimated for that operator during the Query Optimization stage . In our
case, SQL Server estimates that there are 2,625 rows with ISBN s starting with 114. If you look at the histogram
shown in Figure 3-2 , you will see that step 10 stores the information about data distribution for the ISBN
interval that includes the values that you are selecting. Even with linear approximation, you can estimate the
number of rows to be close to what SQL Server determined.

 There are two very important things to remember about statistics.

 1. The histogram stores information about data distribution for the leftmost
statistics (index) column only. There is information about the multi-column
density of the key values in statistics, but that is it. All other information in the
histogram relates to data distribution for the leftmost statistics column only.

 2. SQL Server retains at most 200 steps in the histogram, regardless of the size of
the table and if the table is partitioned. The intervals covered by each histogram
step increase as the table grows. This leads to less accurate statistics in the case of
large tables.

 In the case of composite indexes, when all columns from the index are used as predicates in all queries,
it is beneficial to define a column with lower density/higher percentage of unique values as the leftmost
column of the index. This will allow SQL Server to better utilize the data distribution information from
the statistics. You should consider the SARGability of the predicates, however. For example, if all queries
are using FirstName=@FirstName and LastName=@LastName predicates in the where clause, it is better to
have LastName as the leftmost column in the index. Nonetheless, this is not the case for predicates like
 FirstName=@FirstName and LastName<>@LastName , where LastName is not SARGable.

 Column-Level Statistics
 In addition to index-level statistics, you can create separate column-level statistics. Moreover, in some cases
SQL Server creates such statistics automatically.

 Let’s take a look at an example and create a table and populate it with the data shown in Listing 3-2 .

CHAPTER 3 ■ STATISTICS

59

 Listing 3-2. Column-level statistics: Table creation

 create table dbo.Customers
 (
 CustomerId int not null identity(1,1),
 FirstName nvarchar(64) not null,
 LastName nvarchar(128) not null,
 Phone varchar(32) null,
 Placeholder char(200) null
);

 create unique clustered index IDX_Customers_CustomerId
 on dbo.Customers(CustomerId)
 go

 -- Inserting cross-joined data for all first and last names 50 times
 -- using GO 50 command in Management Studio
 ;with FirstNames(FirstName)
 as
 (
 select Names.Name
 from (values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),('Brian'),

('Cristopher'),('Cathy')
 , ('Daniel'),('Donny'),('Edward'),('Eddy'),('Emy'),('Frank'),('George'),

('Harry'),('Henry')
 , ('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),('Kathy'),('Kim'),('Larry'),

('Mary'),('Max')
 , ('Nancy'),('Olivia'),('Olga'),('Peter'),('Patrick'),('Robert'),('Ron'),

('Steve'),('Shawn')
 ,('Tom'),('Timothy'),('Uri'),('Vincent')) Names(Name)
)
 ,LastNames(LastName)
 as
 (
 select Names.Name
 from (values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),('Davis'),('Miller')
 ,('Wilson'), ('Moore'),('Taylor'),('Anderson'),('Jackson'),('White'),('Harris'))
Names(Name)
)
 insert into dbo.Customers(LastName, FirstName)
 select LastName, FirstName from FirstNames cross join LastNames
 go 50

 insert into dbo.Customers(LastName, FirstName) values('Isakov','Victor')
 go

 create nonclustered index IDX_Customers_LastName_FirstName
 on dbo.Customers(LastName, FirstName);

 Every combination of first and last names specified in the first INSERT statement has been inserted into
the table 50 times. In addition, there is one row, with the first name Victor , inserted by the second INSERT
statement.

CHAPTER 3 ■ STATISTICS

60

 Now, let’s assume that you want to run a query that selects the data based on the FirstName parameter
only. That predicate is not SARGable for the IDX_Customers_LastName_FirstName index because there is no
SARGable predicate on the LastName column, which is the leftmost column in the index.

 SQL Server offers two different options on how to execute the query. The first option is to perform a
 clustered index scan . The second option is to use a nonclustered index scan while doing a key lookup for every
row of the nonclustered index where the FirstName value matches the parameter.

 The nonclustered index row size is much smaller than that of the clustered index. It uses fewer data
pages, and a scan of the nonclustered index would be more efficient as compared to a clustered index
scan, owing to the fewer I/O reads that it performs. At the same time, the plan with a nonclustered index
scan would be less efficient than a clustered index scan when the table has a large number of rows with a
particular FirstName and a large number of key lookups is required. Unfortunately, the histogram for the
 IDX_Customers_LastName_FirstName index stores the data distribution for the LastName column only, and
SQL Server does not know about the FirstName data distribution .

 Let’s run the two selects shown in Listing 3-3 and examine the execution plans in Figure 3-4 .

 Listing 3-3. Column-level statistics: Querying data

 select CustomerId, FirstName, LastName, Phone
 from dbo.Customers
 where FirstName = 'Brian';

 select CustomerId, FirstName, LastName, Phone
 from dbo.Customers
 where FirstName = 'Victor';

 Figure 3-4. Column-level statistics: Execution plans

 As you can see, SQL Server decides to use a clustered index scan for the first select, which returns 700
rows, and a nonclustered index scan for the second select, which returns a single row.

 Now, let’s query the sys.stats catalog view and check the table’s statistics. The code for this is shown in
Listing 3-4 . Alternatively, you can explore the Statistics node of the dbo.Customers table in Management Studio.

CHAPTER 3 ■ STATISTICS

61

 Listing 3-4. Column-level statistics: Querying sys.stats view

 select stats_id, name, auto_created
 from sys.stats
 where object_id = object_id(N'dbo.Customers')

 The query returned three rows, as shown in Figure 3-5 .

 Figure 3-5. Column-level statistics: Result of the query

 Figure 3-6. Column-level statistics: Auto-created statistics on the FirstName column

 The first two rows correspond to the clustered and nonclustered indexes from the table. The last
one, with the name that starts with the _WA prefix, displays column-level statistics, which were created
automatically when SQL Server optimized our queries. It is worth noting that SQL Server does not drop
those column-level statistics automatically after they are created.

 ■ Tip Consider renaming auto-created _WA statistics to simplify database management.

 Let’s examine it with the DBCC SHOW_STATISTICS ('dbo.Customers', _WA_Sys_00000002_276EDEB3)
 command . As you can see in Figure 3-6 , it stores information about the data distribution for the FirstName
column. As a result, SQL Server can estimate the number of rows for first names, which we used as
parameters, and generate different execution plans for each parameter value.

CHAPTER 3 ■ STATISTICS

62

 You can manually create statistics on a column or on multiple columns with the CREATE STATISTICS
command . Statistics created on multiple columns are similar to statistics created on composite indexes.
They include information about multi-column density, although the histogram retains data distribution
information for the leftmost column only.

 There is overhead associated with column-level statistics maintenance, although it is much smaller
than that of an index, which needs to be updated every time data modifications occur. In some cases, when
particular queries do not run very often, you can elect to create column-level statistics rather than an index.
Column-level statistics help Query Optimizer find better execution plans, even though those execution plans
are suboptimal due to the index scans involved. At the same time, statistics do not add overhead during data
modification operations, and they help you avoid index maintenance. This approach works only for rarely
executed queries, however. You need to create indexes to optimize queries that run often.

 Finally, do not forget to re-evaluate and drop redundant column-level statistics when you add the new
indexes to the table.

 Statistics and Execution Plans
 SQL Server creates and updates statistics automatically by default. There are two options on the database
level that control such behavior:

 1. Auto Create Statistics controls whether or not the optimizer creates column-level
statistics automatically. This option does not affect index-level statistics, which are
always created. The Auto Create Statistics database option is enabled by default.

 2. When the Auto Update Statistics database option is enabled, SQL Server checks
if statistics are outdated every time it compiles or executes a query and updates
them if needed. The Auto Update Statistics database option is also enabled by
default.

 ■ Tip You can control the auto update behavior of statistics on the index level by using the STATISTICS_
NORECOMPUTE index option. By default, this option is set to OFF, which means that statistics are automatically
updated. Another way to change auto update behavior at the index or table levels is by using the sp_autostats
system stored procedure.

 SQL Server determines if statistics are outdated based on the number of changes performed by the
 INSERT , UPDATE , DELETE , and MERGE statements that affect the statistics columns. SQL Server counts how
many times the statistics columns were changed, rather than the number of changed rows. For example, if
you change the same row 100 times, it would be counted as 100 changes rather than as 1 change.

 There are three different scenarios, called statistics update thresholds , also sometimes known as
 statistics recompilation thresholds , in which SQL Server marks statistics as outdated.

 1. When a table is empty, SQL Server outdates statistics when you add data to the
table.

 2. When a table has less than 500 rows, SQL Server outdates statistics after every
500 changes of the statistics columns.

 3. Prior to SQL Server 2016 and in SQL Server 2016 with database compatibility
level < 130: When a table has 500 or more rows, SQL Server outdates statistics
after every 500 + (20% of total number of rows in the table) changes of the
statistics columns.

CHAPTER 3 ■ STATISTICS

63

 In SQL Server 2016 with database compatibility level = 130: Statistics update
threshold on large tables becomes dynamic and depends on the size of the table.
The more rows the table has, the lower the threshold is. On large tables with
millions or even billions of rows, the statistics update threshold can be just a
fraction of a percentage of the total number of rows in the table. This behavior
can also be enabled with the trace flag T2371 in SQL Server 2008R2 SP1 and
above.

 Table 3-1 summarizes statistics update threshold behavior in different versions of SQL Server.

 Table 3-1. Statistics Update Threshold and SQL Server Versions

 Prior to SQL Server 2016 SQL Server 2016 with
Database Compatibility
Level < 130

 SQL Server 2016 with
Database Compatibility
Level = 130

 Default behavior Static (~20%) threshold Static (~20%) threshold Dynamic threshold

 T2371 Dynamic threshold in SQL
Server 2008R2 SP1 and above

 Dynamic threshold Dynamic threshold
(trace flag is ignored)

 That leads us to a very important conclusion. With the static statistics update threshold, the number
of changes to statistics columns required to trigger a statistics update is proportional to the table size. The
larger the table, the less often statistics are automatically updated. For example, in the case of a table with
1 billion rows, you would need to perform about 200 million changes to statistics columns to make the
statistics outdated. It is recommended to use dynamic update threshold when possible.

 Let’s look at how that behavior affects our systems and execution plans . At this point, the table dbo.
Books has 1,265,000 rows. Let’s add 250,000 rows to the table with the prefix 999, as shown in Listing 3-5 . In
this example, I am using SQL Server 2012 without T2371 enabled. You can see the different results if you run
it with the dynamic statistics update threshold enabled. Moreover, the new cardinality estimator introduced
in SQL Server 2014 can also change the behavior. We will discuss it later in the chapter.

 Listing 3-5. Adding rows to dbo.Books

 ;with Postfix(Postfix)
 as
 (
 select 100000001
 union all
 select Postfix + 1
 from Postfix
 where Postfix < 100250000
)
 insert into dbo.Books(ISBN, Title)
 select
 '999-0' + convert(char(9),Postfix)
 ,'Title for ISBN 999-0' + convert(char(9),Postfix)
 from Postfix
 option (maxrecursion 0);

 Now, let’s run the SELECT * FROM dbo.Books WHERE ISBN LIKE '999%' query that selects all of the
rows with such a prefix.

CHAPTER 3 ■ STATISTICS

64

 If you examine the execution plan of the query, shown in Figure 3-7 , you will see nonclustered index
seek and key lookup operations, even though they are inefficient in cases where you need to select almost
20 percent of the rows from the table.

 Figure 3-8. IDX_BOOKS_ISBN statistics

 Figure 3-7. Execution plan for the query selecting rows with the 999 prefix

 You will also notice in Figure 3-7 that there is a huge discrepancy between the estimated and actual
number of rows for the Index Seek operator. SQL Server estimated that there are only 31.4 rows with prefix
999 in the table, even though there are 250,000 rows with such a prefix. As a result, a highly inefficient plan is
generated.

 Let’s look at the IDX_BOOKS_ISBN statistics by running the DBCC SHOW_STATISTICS ('dbo.Books', IDX_
BOOKS_ISBN) command. The output is shown in Figure 3-8 . As you can see, even though we inserted 250,000
rows into the table, statistics were not updated, and there is no data in the histogram for the prefix 999. The
number of rows in the first result set corresponds to the number of rows in the table during the last statistics
update. It does not include the 250,000 rows just inserted.

 Let’s now update statistics using the UPDATE STATISTICS dbo.Books IDX_Books_ISBN WITH FULLSCAN
command, and then run the SELECT * FROM dbo.Books WHERE ISBN LIKE '999%' query again. The
 execution plan for the query is shown in Figure 3-9 . The estimated number of rows is now correct, and SQL
Server ended up with a much more efficient execution plan that uses a clustered index scan with about 17
times fewer I/O reads than before.

CHAPTER 3 ■ STATISTICS

65

 As you can see, incorrect cardinality estimations can lead to highly inefficient execution plans. Outdated
statistics are, perhaps, one of the most common reasons for incorrect cardinality estimations. You can
pinpoint some of these cases by examining the estimated and actual number of rows in the execution
plans. A big discrepancy between these two values often indicates that statistics are incorrect. Updating
statistics can solve this problem and generate more efficient execution plans.

 Statistics and Query Memory Grants
 SQL Server queries need memory for execution. Different operators in the execution plans have different
 memory requirements . For example, the Index Scan operator fetches rows one by one and does not need to
store multiple rows in memory. Other operators — for example, the Sort operator — need access to the entire
rowset before it starts execution.

 SQL Server tries to estimate the amount of memory (memory grant) required for a query and its
operators based on row size and cardinality estimation. It is important that the memory grant is correct.
Underestimations and overestimations both introduce inefficiencies. Overestimations waste SQL Server
memory. Moreover, it may take longer to allocate a large memory grant on busy servers.

 Underestimations, on the other hand, can lead to a situation in which some operators in the execution
plan do not have enough memory. If the Sort operator does not have enough memory for an in-memory
sort, SQL Server spills the rowset to tempdb and sorts the data there. A similar situation occurs with hash
tables. SQL Server uses tempdb if needed. In either case, using tempdb can significantly decrease the
performance of an operation, and of a query in general.

 Let’s look at an example and create a table, populating it with some data. Listing 3-6 creates the table
 dbo.MemoryGrantDemo and populates it with 65,536 rows. The Col column stores values from 0 to 99, with
either 655 or 656 rows per value. There is a nonclustered index on the Col column, which is created at the
end of the script. As a result, statistics on that index are accurate, and SQL Server would be able to estimate
correctly the number of rows per each Col value in the table.

 Listing 3-6. Cardinality estimation and memory grants: Table creation

 create table dbo.MemoryGrantDemo
 (
 ID int not null,
 Col int not null,
 Placeholder char(8000)
);

 create unique clustered index IDX_MemoryGrantDemo_ID
 on dbo.MemoryGrantDemo(ID);

 Figure 3-9. Execution plan for the query selecting rows with the 999 prefix after a statistics update

CHAPTER 3 ■ STATISTICS

66

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.MemoryGrantDemo(ID,Col,Placeholder)
 select ID, ID % 100, convert(char(100),ID) from IDs;

 create nonclustered index IDX_MemoryGrantDemo_Col
 on dbo.MemoryGrantDemo(Col);

 As a next step, shown in Listing 3-7 , we add 656 new rows to the table, with Col=1000 . This is just 1
percent of the total table data, and, as a result, the statistics are not going to be outdated. As you already
know, the histogram would not have any information about the Col=1000 value.

 Listing 3-7. Cardinality estimation and memory grants: Adding 656 rows

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.MemoryGrantDemo(ID,Col,Placeholder)
 select 100000 + ID, 1000, convert(char(100),ID)
 from IDs
 where ID <= 656;

 Now, let’s try to run two queries that select data with the predicate on the Col column using the
 execution plan with a Sort operator. The code for doing this is shown in Listing 3-8 . I am using a variable as
a way to suppress the result set from being returned to the client. I am running this code in SQL Server 2012.
The new cardinality estimator introduced in SQL Server 2014 would lead to different estimations in this case,
as we will discuss later in the chapter.

 Listing 3-8. Cardinality estimation and memory grants: Selecting data

 declare
 @Dummy int

 set statistics time on
 select @Dummy = ID from dbo.MemoryGrantDemo where Col = 1 order by Placeholder;
 select @Dummy = ID from dbo.MemoryGrantDemo where Col = 1000 order by Placeholder;
 set statistics time off

 Query Optimizer will be able to correctly estimate the number of rows with Col=1 . However, this is not
the case for the Col=1000 predicate. Look at the execution plans shown in Figure 3-10 .

CHAPTER 3 ■ STATISTICS

67

 Even though the execution plans look very similar, the cardinality estimations and memory grants are
different. Another difference is that the Sort operator icon in the second query has an exclamation mark.
If you look at the operator properties, you will see a warning, which indicates that this operation spilled to
 tempdb .

 The execution time of the queries on my computer is as follows:

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 17 ms.

 SQL Server Execution Times:
 CPU time = 16 ms, elapsed time = 88 ms.

 As you can see, the second query with the incorrect memory grant and tempdb spill is about five times
slower than the first one, which performs an in-memory sort.

 You can also monitor tempdb spills with Extended Events and SQL Profiler by capturing the Sort
Warning and Hash Warning events. Moreover, SQL Server 2016, SQL Server 2014 SP2, and SQL Server 2012
SP3 display additional information related to spills in the execution plans. It includes the number of data
pages involved in the spill and number of spilled threads in parallel execution plans, along with memory
grant information. This is extremely useful when you need to estimate the performance impact that spills
introduce.

 ■ Note We will discuss memory grants in more detail in Chapter 25 , “Query Optimization and Execution,”
and Chapter 28 , “System Troubleshooting.”

 Figure 3-10. Cardinality estimation and memory grants: Execution plans

http://dx.doi.org/10.1007/978-1-4842-1964-5_25
http://dx.doi.org/10.1007/978-1-4842-1964-5_28

CHAPTER 3 ■ STATISTICS

68

 Statistics Maintenance
 As I already mentioned, SQL Server updates statistics automatically by default. This behavior is usually
acceptable for small tables; however, you should not rely on automatic statistics updates in the case of large
tables with millions or billions of rows unless you are using SQL Server 2016 with a database compatibility
level of 130 or with trace flag T2371 enabled. The number of changes required in order to trigger a statistics
update by the 20 percent statistics update threshold would be very high, and, as a result, an update would
not be triggered often enough.

 It is recommended that you update statistics manually in that case. You must analyze the size of the table,
data modification patterns, and system availability when picking an optimal statistics maintenance strategy.
For example, you can decide to update statistics on critical tables on a nightly basis if the system does not have
a heavy load outside of business hours. Do not forget that statistics and/or index maintenance add additional
load to SQL Server. You must analyze how it affects other databases on the same server and/or disk arrays.

 Another important factor to consider while designing a statistics maintenance strategy is how data is
modified. You need to update statistics more often in the case of indexes with ever-increasing or decreasing
key values, such as when the leftmost columns in the index are defined as identity or populated with
sequence objects. As you have seen, SQL Server hugely underestimates the number of rows if specific key
values are outside of the histogram. This behavior may be different in SQL Server 2014 through 2016, as we
will see later in this chapter.

 You can update statistics by using the UPDATE STATISTICS command. When SQL Server updates
statistics, it reads a sample of the data rather than scanning the entire index. You can change that behavior
by using the FULLSCAN option, which forces SQL Server to read and analyze all of the data from the index. As
you may guess, that option provides the most accurate results, although it can introduce heavy I/O activity in
the case of large tables.

 ■ Note SQL Server updates statistics when you rebuild the index. We will talk about index maintenance in
greater detail in Chapter 6 , “Index Fragmentation.”

 You can update all of the statistics in the database by using the sp_updatestats system stored
procedure. It is recommended you use this stored procedure and update all of the statistics in the database
after you upgrade it to a new version of SQL Server. You should run this along with the DBCC UPDATEUSAGE
stored procedure, which corrects incorrect page- and row-count information in the catalog views.

 There is a sys.dm_db_stats_properties DMV, which shows you the number of modifications made to
statistics columns since the last statistics update. The code, which utilizes that DMV, is shown in Listing 3-9 .

 Listing 3-9. Using sys.dm_db_stats_properties

 select
 s.stats_id as [Stat ID], sc.name + '.' + t.name as [Table], s.name as [Statistics]
 ,p.last_updated, p.rows, p.rows_sampled, p.modification_counter as [Mod Count]
 from
 sys.stats s join sys.tables t on
 s.object_id = t.object_id
 join sys.schemas sc on
 t.schema_id = sc.schema_id
 outer apply
 sys.dm_db_stats_properties(t.object_id,s.stats_id) p
 where
 sc.name = 'dbo' and t.name = 'Books';

http://dx.doi.org/10.1007/978-1-4842-1964-5_6

CHAPTER 3 ■ STATISTICS

69

 The result of the query, shown in Figure 3-11 , indicates that there were 250,000 modifications made
to the statistics columns since the last statistics update. You can build a statistics maintenance routine that
regularly checks the sys.dm_db_stats_properties DMV and rebuilds statistics with large modification_
counter values.

 Figure 3-11. Sys.dm_db_stats_properties output

 Another statistics-related database option is Auto Update Statistics Asynchronously . By default, when
SQL Server detects that statistics are outdated, it pauses query execution, synchronously updates statistics,
and generates a new execution plan after the statistics update is complete. With an asynchronous statistics
update, SQL Server executes the query using the old execution plan, which is based on outdated statistics,
while updating statistics in the background asynchronously. It is recommended that you keep to the
synchronous statistics update unless the system has a very short query timeout, in which case a synchronous
statistics update can timeout the queries.

 Finally, SQL Server does not drop column-level statistics automatically when you create new indexes.
You should drop redundant column-level statistics objects manually.

 New Cardinality Estimator (SQL Server 2014–2016)
 As you already know, the quality of query optimization depends on accurate cardinality estimations. SQL
Server must correctly estimate the number of rows in each step of query execution in order to generate
an efficient execution plan. The cardinality estimation model used in SQL Server 2005-2012 was initially
developed for SQL Server 7.0 and released in 1998. Obviously, there were some minor improvements and
changes in the newer versions of SQL Server; however, conceptually, the model remains the same.

 There are four major assumptions used in the model, including:

 Uniformity : This model assumes uniform data distribution in the absence of
statistical information. For example, inside histogram steps, it is assumed that all
key values are to be distributed evenly and uniformly.

 Independence : This model assumes that attributes in the entities are independent
of each other. For example, when a query has several predicates against different
columns of the same table, it assumes that the columns are not related in any way.

 Simple Containment : This model assumes that users query for the data that exists
in the tables. For example, when you join two tables, in the absence of statistical
information, the model assumes that all distinct values from one table exist in the
other. The selectivity of the join operator in this model is based on the selectivity
of the join predicates.

 Inclusion : This model assumes that when an attribute is compared to a constant,
there is always a match.

CHAPTER 3 ■ STATISTICS

70

 Even though such assumptions provide acceptable results in many cases, they are not always correct.
Unfortunately, the original implementation of the model makes it very hard to refactor, which led to a
decision to redesign it in SQL Server 2014. The new cardinality estimator uses a different code set that is
much easier to support and has several different assumptions in the model, including:

 Correlation : The new model assumes a correlation between the predicates in
the queries; this resembles more cases in real-life querying as compared to the
 Independence assumption model .

 Base Containment : This model assumes that users may query for data that does
not exist in the tables. It factors the base table’s histograms into join operations in
addition to the selectivity of join predicates.

 In SQL Server 2014 and 2016, you can choose the cardinality estimation model on a per-database level
with the setting for database compatibility level, or on a server, session, or even query level with the use of
trace flags. Moreover, the new cardinality estimator in SQL Server 2016 allows you to choose between SQL
Server 2014 and 2016 implementations.

 ■ Note You can see the version of the cardinality estimation model by analyzing the
 CardinalityEstimationModelVersion property of the root element in the execution plan. It can have the
values of 70, 120, and 130, which correspond to legacy, SQL Server 2014, and 2016 implementations.

 Table 3-2 illustrates the cardinality estimator model choice in SQL Server 2014 and 2016 based on the
 database compatibility level and trace flags T2312 / T9481 . These trace flags can be used on both the server
and query levels. As a reminder, database compatibility models of 120 and 130 correspond to SQL Server
2014 and 2016 respectively.

 Table 3-2. Cardinality Estimator Model Choice in SQL Server 2014 – 2016

 Database Compatibility
Level < 120

 Database Compatibility
Level = 120

 Database Compatibility
Level = 130

 Default behavior 70 120 in both SQL Server
2014 and 2016

 130

 T2312 120 in both SQL Server
2014 and 2016

 120 in both SQL Server
2014 and 2016

 130

 T9481 70 70 70

 A new feature of SQL Server 2016, database scoped configuration , allows you to override the cardinality
estimator model’s choice based on the database compatibility level. You can enable the legacy estimator by
using the ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = ON statement.
Table 3-3 shows the choice of the model when the LEGACY_CARDINALITY_ESTIMATION database scoped
configuration is enabled.

CHAPTER 3 ■ STATISTICS

71

 One of the key difference between legacy and new cardinality estimators is how they handle multi-
statement table-valued functions. The legacy cardinality estimator always expects a function to return a
single row. Both the 120 and 130 estimators expect 100 rows. Neither of the models are correct; however,
in many cases an estimation of 100 rows would work better when multi-statement table-valued functions
return a large amount of data. We will discuss user-defined functions in detail in Chapter 11 .

 Let’s examine a few different examples and compare the behavior of the legacy and new cardinality
estimators.

 Comparing Cardinality Estimators: Up-to-Date Statistics
 As a first test, let’s check out how both models perform estimations when statistics are up to date. Listing 3-10
constructs a test table, populates it with some data, and creates clustered and nonclustered indexes on
the table.

 Listing 3-10. Comparing cardinality estimators: Test table creation

 create table dbo.CETest
 (
 ID int not null,
 ADate date not null,
 Placeholder char(10)
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.CETest(ID,ADate)
 select ID,dateadd(day,abs(checksum(newid())) % 365,'2016-06-01') from IDs;

 create unique clustered index IDX_CETest_ID on dbo.CETest(ID);
 create nonclustered index IDX_CETest_ADate on dbo.CETest(ADate);

 If you examined nonclustered index statistics with the DBCC SHOW_STATISTICS('dbo.CETest', IDX_
CETest_ADate) command, you would see results similar to those shown in Figure 3-12 . Actual histogram
values may be different when you run the script, because the ADate values were generated randomly. Ignore
the highlights in the figure for now, though I will refer to them later.

 Table 3-3. Cardinality Estimator Model Choice in SQL Server 2016 When LEGACY_CARDINALITY_
ESTIMATION=ON

 Database Compatibility
Level < 120

 Database Compatibility
Level = 120

 Database Compatibility
Level = 130

 Default behavior 70 70 70

 T2312 70 120 130

 T9481 70 70 70

http://dx.doi.org/10.1007/978-1-4842-1964-5_11

CHAPTER 3 ■ STATISTICS

72

 Figure 3-12. IDX_CETest_AData statistics

 As you can see, the table has 65,536 rows. Let’s test cardinality estimations in cases where we use a
predicate for a value that is a key in one of the histogram’s steps. The query is shown in Listing 3-11 . I will run
it in compatibility levels of 110, 120, and 130 and compare the results of all models.

 Listing 3-11. Up-to-date statistics: Selecting data for a value that is a key in the histogram step

 alter database SQLServerInternals set compatibility_level = 110 /* 120; 130 */
 go

 select ID, ADate, Placeholder
 from dbo.CETest with (index=IDX_CETest_ADate)
 where ADate = '2016-06-07';

 As you can see in Figure 3-13 , the results are the same in all cases. SQL Server uses a value from the
 EQ_ROWS column from the fifth histogram step for the estimation.

 Figure 3-13. Up-to-date statistics: Cardinality estimations for a value that is a key in the histogram step

CHAPTER 3 ■ STATISTICS

73

 Now, let’s run a query that selects data for ADate = '2016-06-11' , which is not present in the histogram
as a key. The results shown in Figure 3-14 are the same for all models. SQL Server uses the AVG_RANGE_ROWS
column value from the eighth histogram step for the estimation.

 Figure 3-14. Up-to-date statistics: Cardinality estimations for a value that is not a key in the histogram step.

 Figure 3-15. Up-to-date statistics: Cardinality estimations for an unknown value

 Finally, let’s run a parameterized query, as shown in Listing 3-12 , using a local variable as the
predicate. In this case, SQL Server uses average selectivity in the index and estimates the number of rows
by multiplying the density of the key by the total number of rows in the index: 0.002739726 * 65536 =
179.551 . All models produce the same result, as shown in Figure 3-15 .

 Listing 3-12. Up-to-date statistics: Selecting data for unknown value

 declare
 @D date = '2016-06-07';

 select ID, ADate, Placeholder
 from dbo.CETest with (index=IDX_CETest_ADate)
 where ADate = @D;

 As you can see, when the statistics are up to date, all models provide the same results.

 Comparing Cardinality Estimators: Outdated Statistics
 Unfortunately, in systems with non-static data, data modifications always outdate the statistics. Let’s look
at how this affects cardinality estimations by inserting 6,554 new rows in the table, which is 10 percent of
the total number of rows. Listing 3-13 shows the code for achieving this. I am also disabling the automatic
statistics update option in the database to avoid a statistics update resulting from the dynamic statistics
update threshold being met in compatibility level 130. Do not forget to re-enable it later when you are
working with other demo scripts from the companion materials of this book.

CHAPTER 3 ■ STATISTICS

74

 Listing 3-13. Comparing cardinality estimators: Adding new rows

 alter database SQLServerInternals set auto_update_statistics off
 go

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.CETest(ID,ADate)
 select ID + 65536,dateadd(day,abs(checksum(newid())) % 365,'2016-06-01')
 from IDs
 where ID <= 6554;

 Now, let’s repeat our tests. Figure 3-16 illustrates the cardinality estimation for the query from Listing 3-11 ,
where the value is present as a key in the histogram step. As you can see, all models estimated 191.401 rows,
which is 10 percent more than previously. SQL Server compares the number of rows in the table with the
original Rows value in the statistics and adjusts the value from the EQ_ROWS column in the fifth histogram step
accordingly.

 Figure 3-16. Outdated statistics: Cardinality estimations for a value that is a key in the histogram step

 Figure 3-17. Outdated statistics: Cardinality estimations for a value that is not a key in the histogram step

 Figure 3-17 shows the cardinality estimations for the query from Listing 3-11 , where the value is not a
key in the histogram step. You can see the difference here. The new models take the 10 percent difference in
the row count into consideration, similar to the previous example. The legacy 70 model, on the other hand,
still uses the AVG_RANGE_ROWS value from the histogram step, even though the number of rows in the table
does not match the number of rows kept in the statistics.

CHAPTER 3 ■ STATISTICS

75

 The same thing happens with the parameterized query from Listing 3-12 . The new models adjust the
estimation based on the row-count differences, while the legacy model ignores them. Figure 3-18 illustrates
these estimations.

 Figure 3-18. Outdated statistics: Cardinality estimations for an unknown value

 Both approaches have their pros and cons. The new models produce better results when new data has
been evenly distributed in the index. This is exactly what happened in our case when ADate values were
randomly generated. Alternatively, the legacy model works better in cases of uneven distribution of new
values when the distribution of old values did not change. You can think about indexes with ever-increasing
key values as an example.

 Comparing Cardinality Estimators: Indexes with Ever-Increasing
Key Values
 The next test compares the behavior of cardinality estimators when the value is outside of the histogram
range. This often happens in cases of indexes with ever-increasing key values, such as those on the identity
or sequence columns. Right now, we have such a situation with the IDX_CETest_ID index. Index statistics
were not updated after we inserted new rows, as shown in Figure 3-19 .

 Figure 3-19. Indexes with ever-increasing keys: Histogram

 Listing 3-14 shows the queries that select data for certain parameters, which are not present in the
histogram. Figure 3-20 shows the cardinality estimations.

 Listing 3-14. Indexes with ever-increasing key values: Test query

 select top 10 ID, ADate
 from dbo.CETest
 where ID between 66000 and 67000
 order by PlaceHolder;

CHAPTER 3 ■ STATISTICS

76

 As you can see, the legacy model estimated just the single row while the new models performed the
estimation based on the average data distribution in the index. The new models provide better results and
let you avoid frequent manual statistics updates for indexes with ever-increasing key values.

 Comparing Cardinality Estimators: Joins
 Let’s look at how both models handle joins and create another table, as shown in Listing 3-15 . The table
has a single ID column populated with data from the dbo.CETest table, referencing it with a foreign key
constraint, which we will discuss in greater depth in Chapter 8 .

 Listing 3-15. Cardinality estimators and joins: Creating another table

 create table dbo.CETestRef
 (
 ID int not null
 constraint FK_CTTestRef_CTTest foreign key references dbo.CETest(ID)
);

 insert into dbo.CETestRef(ID) -- 72,090 rows
 select ID from dbo.CETest;

 create unique clustered index IDX_CETestRef_ID on dbo.CETestRef(ID);

 As a first step, let’s run the query with a join, as shown in Listing 3-16 . This query returns data from the
 dbo.CETestRef table only. A foreign key constraint guarantees that every row in the dbo.CETestRef table
has a corresponding row in the dbo.CETest table; therefore, SQL Server can eliminate the join from the
execution plan. We will discuss join elimination in detail in Chapter 10 .

 Listing 3-16. Cardinality estimators and joins: Test query 1

 select d.ID
 from dbo.CETestRef d join dbo.CETest m on
 d.ID = m.ID

 Figure 3-21 shows the cardinality estimations for the query. As you can see, both models work the same,
correctly estimating the number of rows.

 Figure 3-20. Cardinality estimations for indexes with ever-increasing keys

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1964-5_8
http://dx.doi.org/10.1007/978-1-4842-1964-5_10
http://www.allitebooks.org

CHAPTER 3 ■ STATISTICS

77

 Let’s change our query and add a column from the referenced table to the result set. The code for doing
this is shown in Listing 3-17 .

 Listing 3-17. Cardinality estimators and joins: Test query 2

 select d.ID, m.ID
 from dbo.CETestRef d join dbo.CETest m on
 d.ID = m.ID

 Even though a foreign key constraint guarantees that the number of rows in the result set will match the
number of rows in the CETestRef table, the legacy cardinality estimator does not take it into consideration
and therefore underestimates the number of rows. The new cardinality estimators do a better job, providing
the correct result. Figure 3-22 illustrates the latter, showing the estimations for the Join operator.

 Figure 3-21. Cardinality estimations with join elimination

 Figure 3-22. Cardinality estimations with join

 It is worth mentioning that the new models do not always provide a 100 percent correct estimation
when joins are involved. Nevertheless, the results are generally better than with the legacy model.

 Comparing Cardinality Estimators: Multiple Predicates
 The new cardinality estimation model removes the Independence assumption, and it expects some level
of correlation between entities’ attributes. It performs estimations differently when queries have multiple
predicates that involve multiple columns in the table. Listing 3-18 shows an example of such a query.
Figure 3-23 shows the cardinality estimations for both models.

 Listing 3-18. Query with multiple predicates

 select ID, ADate
 from dbo.CETest
 where
 ID between 20000 and 30000 and
 ADate between '2017-01-01' and '2017-02-01';

CHAPTER 3 ■ STATISTICS

78

 The legacy cardinality estimator assumes the independence of predicates and uses the following formula:

 (Selectivity of first predicate * Selectivity of second predicate) * (Total number of rows
in table) = (Estimated number of rows for first predicate * Estimated number of rows for
second predicate) / (Total number of rows in the table).

 The new cardinality estimator expects some correlation between predicates, and it uses another
approach called an exponential backoff algorithm , which is as follows:

 (Selectivity of most selective predicate) * SQRT(Selectivity of next most selective
predicate) * (Total number of rows in table).

 This change fits entirely into the “It depends” category. The legacy cardinality estimator works better
when there is no correlation between attributes/predicates, as demonstrated in our example. The new
cardinality estimator provides better results in cases of correlation. We will look at such an example in the
“Filtered Statistics” section of the next chapter.

 Choosing the Model
 As you can see, the legacy (70) cardinality estimator behaves very differently from the new cardinality
estimator (120) introduced in SQL Server 2014. The differences between SQL Server 2014 (120) and SQL
Server 2016 (130) models are less noticeable. There are several areas where SQL Server 2016 has some
enhancements. Most notably, it better handles the estimations for ever-increasing indexes and better
utilizes density information from multi-column statistics. However, you should consider the 130 model as an
enhancement over the 120 model rather than an entirely new implementation.

 As a general rule, you should always choose the most recent model for a new development. Upgrades,
on the other hand, are more complicated. Even though the new cardinality estimation model could provide
better results in systems with modern workloads, there is always the possibility of performance regression
resulting from the different execution plans. It is impossible to build a model that covers all possible
workloads and data distributions, and you should carefully test the system after upgrading.

 In SQL Server 2016, you can utilize a new component called Query Store , which captures and persists
execution statistics and plans in the system. This can dramatically simplify the testing process, allowing you
to quickly pinpoint performance regressions. Obviously, you need to have a representative workload and
data distribution during testing. We will discuss Query Store in greater depth in Chapter 29 .

 Of course, nothing prevents you from using the legacy cardinality estimator after the upgrade.
However, you should expect that the majority of future enhancements and improvements in the product
will belong to the new model. The legacy cardinality estimator would not disappear from SQL Server;
however, I seriously doubt that Microsoft will continue to invest a significant amount of time and
resources into the old model.

 Figure 3-23. Cardinality estimations with multiple predicates

http://dx.doi.org/10.1007/978-1-4842-1964-5_29

CHAPTER 3 ■ STATISTICS

79

 Query Optimizer Hotfixes and Trace Flag T4199
 The complexity of Query Optimizer and the massive customer base of the product introduce supportability
issues. It is impossible to test hotfixes and improvements in every possible scenario and workload, and,
therefore, there is always the possibility of performance issues introduced by any changes in query
optimization algorithms.

 The situation is changing along with the adoption of the Clouds. SQL databases in Microsoft Azure
share a code base with the boxed version. SQL Server, along with other Microsoft products, follows a cloud-
first model where features are deployed to the Clouds long before they appear in the boxed products. It
allows Microsoft to test the function across millions of SQL databases, collecting telemetry from various
production workloads and fixing any issues before RTM release. All of this greatly improves the quality of
and reduces the number of bugs in the product.

 Historically, Microsoft has been very cautious about shipping hotfixes and changes in Query Optimizer.
They had been disabled by default and had to be enabled by using the individual trace flags associated
with them. Another trace flag , T4199, combines many of those hotfixes — which were recommended to be
enabled in most systems – under a single flag. Nevertheless, the majority of installations do not have those
trace flags enabled and would not benefit from all improvements in the product.

 As of SQL Server 2016, hotfix-distribution policy is controlled by the database compatibility level rather
than by trace flags. Setting the database compatibility level to 130 enables all Query Optimizer hotfixes and
enhancements similar to trace flag T4199 . That flag, in turn, enables the hotfixes introduced after the SQL
Server 2016 RTM release, as is illustrated in Table 3-4 .

 Table 3-4. Database Compatibility Level and Hotfixes in SQL Server 2016

 Compatibility Level TF4199 Hotfixes Released Before
SQL Server 2016 RTM

 Hotfixes Released After
SQL Server 2016 RTM

 <= 120 Off Disabled Disabled

 <= 120 On Enabled Disabled

 130 Off Enabled Disabled

 130 On Enabled Enabled

 You should rely on the same behavior in future releases of SQL Server. Setting the database compatibility
level to the product version will enable all hotfixes and enhancements from the previous versions of SQL
Server. Trace flag T4199 would enable all hotfixes introduced in the current SQL Server version after the
RTM release.

 This behavior would lead to a situation in which trace flag T4199 would control different sets of hotfixes
in different versions of SQL Server in the future. It can be safer to rely on database compatibility level rather
than on the trace flag after you perform the SQL Server 2016 upgrade, switching to the legacy cardinality
estimator using the LEGACY_CARDINALITY_ESTIMATOR database setting if needed.

 ■ Note You can read more about the Query Optimizing Servicing Model at https://support.microsoft.
com/en-us/kb/974006 .

https://support.microsoft.com/en-us/kb/974006
https://support.microsoft.com/en-us/kb/974006

CHAPTER 3 ■ STATISTICS

80

 Summary
 Correct cardinality estimation is one of the most important factors that allows the Query Optimizer to
generate efficient execution plans. Cardinality estimation affects the choice of indexes, join strategies, and
other parameters.

 SQL Server uses statistics to perform cardinality estimations. The vital part of statistics is the histogram,
which stores information about data distribution in the leftmost statistics column. Every step in the
histogram contains a sample statistics-column value and information about what happens in the histogram
step, such as how many rows are in the interval, how many unique key values there are, and so on.

 SQL Server creates statistics for every index defined in the system. In addition, you can create column-
level statistics on individual or multiple columns in the table. SQL Server creates column-level statistics
automatically if the database has the Auto Create Statistics option enabled.

 Statistics have a few limitations. There are at most 200 steps (key value intervals) stored in the
histogram. As a result, the histogram’s steps cover larger key value intervals as the table grows. This leads to
larger approximations within the intervals and less accurate cardinality estimations on tables with millions
or billions of rows. Moreover, the histogram stores information about data distribution for the leftmost
statistics column only. There is no information about other columns in the statistics or index aside from
multi-column density.

 SQL Server tracks the number of changes made in statistics columns. By default, SQL Server outdates
and updates statistics after that number exceeds about 20 percent of the total number of rows in the table. As
a result, statistics are rarely updated automatically on large tables. You need to consider updating statistics
on large tables manually based on a schedule.

 In SQL Server 2016, with database compatibility level 130, the statistics update threshold is dynamic
and based on the size of the table, which makes statistics on large tables more accurate. You can use trace
flag T2371 in previous versions of SQL Server, or with database compatibility level lower than 130. It is
recommended that you set this trace flag in the majority of systems.

 You should also update statistics on ever-increasing or ever-decreasing indexes more often, as SQL
Server tends to underestimate the number of rows when the parameters are outside of the histogram, unless
you are using the new cardinality estimation model introduced in SQL Server 2014.

 The new cardinality estimation model is enabled in SQL Server 2014 and 2016 for databases with a
compatibility level of 120 or 130. This model addresses a few common issues, such as estimations for ever-
increasing indexes when statistics are not up to date; however, it may introduce plan regressions in some
cases. You should carefully test existing systems before enabling the new cardinality estimation model after
upgrading SQL Server.

81© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_4

 CHAPTER 4

 Special Indexing and Storage
Features

 This chapter discusses several storage- and indexing-related features available in SQL Server. It covers
indexes with included columns, filtered indexes and statistics, data compression, and sparse columns.

 Indexes with Included Columns
 As you already know, SQL Server rarely uses nonclustered indexes when it expects that a large number of
 Key or RID lookups is required. Those operations usually lead to a large number of reads, both logical and
physical.

 With key lookup operations, SQL Server accesses multiple data pages from different levels in a clustered
index every time it needs to obtain a single row. Even though root and intermediate index levels are usually
cached in the buffer pool, access to leaf-level pages produces random, and often physical, I/O reads, which
are slow, especially in the case of magnetic disk drives.

 This is also true for heap tables . Even though the row-id in a nonclustered index stores the physical
location of the row from the heap table, and RID lookup operations do not need to traverse the clustered
index tree, they still introduce random I/O. Moreover, forwarding pointers can lead to extra reads if a row has
been updated and moved to another page.

 The existence of key or RID lookups is the crucial factor here. Rows in a nonclustered index are smaller
than those in a clustered index. Nonclustered indexes use fewer data pages and, therefore, are more
efficient. SQL Server uses nonclustered indexes even when it expects that a large number of rows need to be
selected, as long as key or RID lookups are not required.

 As you will recall, nonclustered indexes store data from the index key columns and row-id. For tables
with clustered indexes, the row-id is the clustered key value of the index row. The values in all indexes are
the same: when you update the row, SQL Server synchronously updates all indexes.

 SQL Server does not need to perform key or RID lookups when all of the data a query needs exists in a
nonclustered index. Those indexes are called covering indexes as they provide all of the information that a
query needs, and they are essentially covering the query.

 Making nonclustered indexes covering ones is one of the most commonly used query optimization
techniques . In the past, the only way to achieve this was to add columns, referenced by the queries, as the
rightmost index key columns. Even though this method generally worked, it had a few disadvantages.

 First, SQL Server stores sorted index rows based on index key values. An update of the index key
columns can lead to a situation where a row needs to be moved to a different place in the index, which
increases the I/O and transaction log load, as well as fragmentation.

 Second, new columns increase the size of the index key, which can potentially increase the number of
levels in the index, making it less efficient.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

82

 Finally, a nonclustered index key cannot exceed 900 or 1,700 bytes, depending on the SQL Server
version. As a result, you cannot add a large amount of data or LOB columns to the index. Even though
making a large index row is not necessarily a good idea, it could be helpful in some cases.

 SQL Server 2005 introduced a new way of making covering indexes by storing columns in the index
without adding them to the index key. The data from these columns are stored on the leaf level only and do
not affect the sorting order of the index rows. As a result, SQL Server does not need to move rows to different
places in the index when included columns are modified. Included columns are not counted toward the
900/1,700 bytes index key size limit, and you can even store LOB columns if absolutely needed.

 Figure 4-1 illustrates the structure of an index with included columns, defined as CREATE INDEX IDX_
Customers_Name ON dbo.Customers(Name) INCLUDE(DateOfBirth) on the table, which has CustomerId as
the clustered index.

 Figure 4-1. Structure of an index with included columns

 Let’s look at how an index with included columns can help us with query optimization. We will use
table dbo.Customers , which we created and populated with data in Listing 3-3 in the previous chapter.
That table has a clustered index on the CustomerId column and a composite nonclustered index on the
 (LastName, FirstName) columns.

 Let’s select data for a customer with last name Smith . We will run two queries. In the first case, we will
allow SQL Server to choose the execution plan by itself. In the second case, we will force SQL Server to use
a nonclustered index via an index hint. The code to do this is shown in Listing 4-1 . Figure 4-2 shows the
 execution plans for the queries.

 Listing 4-1. Selecting data for a customer with the last name 'Smith'

 select CustomerId, LastName, FirstName, Phone
 from dbo.Customers
 where LastName = 'Smith';

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

83

 select CustomerId, LastName, FirstName, Phone
 from dbo.Customers with (Index=IDX_Customers_LastName_FirstName)
 where LastName = 'Smith';

 Figure 4-2. Execution plans for the queries

 As you can see, SQL Server correctly estimated the number of rows with LastName = 'Smith' , and it
decided to use a clustered index scan instead of a nonclustered index seek. A nonclustered index seek and
key lookups introduce seven times more reads to obtain the data.

 The query selects four columns from the table : CustomerId , LastName , FirstName , and Phone.
LastName and FirstName are key columns in the nonclustered index key. CustomerId is the clustered
index key, which makes it the row-id in the nonclustered index. The only column that is not present in the
nonclustered index is Phone . You can confirm it by looking at the output list in the key lookup operator
properties in the execution plan.

 Let’s make our index a covering one by including the Phone column there and then seeing how it affects
the execution plan. The code to achieve this is shown in Listing 4-2 . Figure 4-3 shows the new execution plan .

 Listing 4-2. Creating a covering index and running the query a second time

 create nonclustered index IDX_Customers_LastName_FirstName_PhoneIncluded
 on dbo.Customers(LastName, FirstName)
 include(Phone);

 select CustomerId, LastName, FirstName, Phone
 from dbo.Customers
 where LastName = 'Smith';

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

84

 Table 4-1. Number of Logical Reads with Different Execution Plans

 Clustered Index Scan Nonclustered Index Seek without
covering index

 Nonclustered Index Seek with
covering index

 853 logical reads 6,146 logical reads 12 logical reads

 Figure 4-3. Execution plan with covering index

 The new index has all of the required columns and, therefore, a key lookup is no longer needed. This
leads to a much more efficient execution plan. Table 4-1 shows the number of logical reads in all three cases.

 ■ Note The new covering index, IDX_LastName_FirstName_PhoneIncluded , makes the original
nonclustered index, IDX_LastName_FirstName , redundant. We will discuss index consolidation in greater detail
in Chapter 7 , “Designing and Tuning the Indexes.”

 Although covering indexes are a great tool that can help optimize queries, they come at a cost. Every
column in the index increases its leaf-level row size and the number of data pages it uses on disk and in
memory. That introduces additional overhead during index maintenance and increases the database size.
Moreover, queries need to read more pages when scanning all or part of the index. Covering indexes do
not necessarily introduce a noticeable performance impact during small range scans, when reading a few
extra pages is far more efficient as compared to using key lookups. However, they could negatively affect the
performance of queries that scan a large number of data pages or the entire index.

 By adding a column to nonclustered indexes, you store the data in multiple places. This improves the
performance of queries that select the data. However, during updates, SQL Server needs to change the rows
in every index where updated columns are present.

 Let’s look at the example and run two UPDATE statements , as shown in Listing 4-3 . The first statement
modifies the Placeholder column, which is not included in any nonclustered index. The second statement
modifies the Phone column, which is included in the IDX_Customers_LastName_FirstName_PhoneIncluded
index.

 Listing 4-3. Updating data in dbo.Customers table

 update dbo.Customers set Placeholder = 'Placeholder' where CustomerId = 1;
 update dbo.Customers set Phone = '505-123-4567' where CustomerId = 1;

 As you can see in Figure 4-4 , the execution plan of the second UPDATE statement requires SQL Server to
update data in both the clustered and nonclustered indexes.

http://dx.doi.org/10.1007/978-1-4842-1964-5_7

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

85

 That behavior reduces the performance of data-modification queries , introducing additional locking in
the system and contributing to index fragmentation. You need to be careful and consider the pros and cons
of making an index a covering one on a case-by-case basis.

 ■ Note We will discuss locking in detail in Part III, “Locking, Blocking, and Concurrency.”

 It is important to know when to add a column to the index key and when to make it an included
column. While in both cases the column is present on the leaf level of the index, predicates on included
columns are not SARGable. Let’s compare two indexes, as shown in Listing 4-4 .

 Listing 4-4. Included versus key columns: Index creation

 drop index IDX_Customers_LastName_FirstName_PhoneIncluded on dbo.Customers;
 drop index IDX_Customers_LastName_FirstName on dbo.Customers;

 create index IDX_Key on dbo.Customers(LastName, FirstName);
 create index IDX_Include on dbo.Customers(LastName) include(FirstName);

 The data in the IDX_Key index is sorted based first on LastName and then on FirstName . The data in
 IDX_Include is sorted based on LastName only. FirstName does not affect the sorting order in the index at all.

 LastName is SARGable in both indexes. Both indexes support Index Seek while searching for a particular
 LastName value. There is no difference in performance when LastName is the only predicate in the query.
Listing 4-5 and Figure 4-5 illustrate this point.

 Listing 4-5. Included versus key columns: Selecting by LastName only

 select CustomerId, LastName, FirstName
 from dbo.Customers with (index = IDX_Key)
 where LastName = 'Smith';

 select CustomerId, LastName, FirstName
 from dbo.Customers with (index = IDX_Include)
 where LastName = 'Smith';

 Figure 4-4. Execution plans for UPDATE statements

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

86

 Figure 4-5. Included versus key columns: Selecting by LastName only

 Nonetheless, the situation changes when you add the FirstName predicate to the queries. With
the IDX_Key index, a query is able to do an index seek using both LastName and FirstName as seek
predicates. This would not be possible with the IDX_Include index. SQL Server needs to scan all rows
with a specific LastName and check the predicate on the FirstName column. Listing 4-6 and Figure 4-6
illustrate this point.

 Listing 4-6. Included versus key columns: Selecting by LastName and FirstName

 select CustomerId, LastName, FirstName
 from dbo.Customers with (index = IDX_Key)
 where LastName = 'Smith' and FirstName = 'Andrew';

 select CustomerId, LastName, FirstName
 from dbo.Customers with (index = IDX_Include)
 where LastName = 'Smith' and FirstName = 'Andrew';

 Figure 4-6. Included versus key columns: Selecting by LastName and FirstName

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

87

 As you can see, it is better to add a column as the key column if you expect to use SARGable predicates
against that column. Otherwise, it is better to add a column as an included column, make the non-leaf index
levels smaller, and avoid the overhead of maintaining the sorting on extra columns.

 Finally, it is impossible to avoid mentioning the SELECT * pattern when we talk about covering indexes.
 SELECT * returns the data for all columns in the table, which essentially prevents you from creating covering
indexes to optimize it. You should not use SELECT * in the code.

 Filtered Indexes
 Filtered indexes , introduced in SQL Server 2008, allow you to index only a subset of the data. That reduces
the index size and the maintenance overhead .

 Consider a table with some data that needs to be processed. This table can have a Processed bit
column, which indicates the row status. Listing 4-7 shows a possible table structure.

 Listing 4-7. Filtered indexes: Table creation

 create table dbo.Data
 (
 RecId int not null,
 Processed bit not null,
 /* Other Columns */
);

 create unique clustered index IDX_Data_RecId on dbo.Data(RecId);

 Let’s assume that you have a backend process that loads unprocessed data based on the query shown
in Listing 4-8 .

 Listing 4-8. Filtered indexes: Query that reads unprocessed data

 select top 1000 RecId, /* Other Columns */
 from dbo.Data
 where Processed = 0
 order by RecId;

 This query can benefit from the following index: CREATE NONCLUSTERED INDEX IDX_Data_Processed_
RecId ON dbo.Data(Processed, RecId) . However, all index rows with a key value of Processed=1 would be
useless. They will increase the index’s size, waste storage space, and introduce additional overhead during
 index maintenance .

 Filtered indexes solve that problem by allowing you to index just unprocessed rows, making the index
small and efficient. Listing 4-9 illustrates this concept.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

88

 Listing 4-9. Filtered indexes: Filtered index

 create nonclustered index IDX_Data_Unprocessed_Filtered
 on dbo.Data(RecId)
 include(Processed)
 where Processed = 0;

 ■ Important The SQL Server Query Optimizer has a design limitation that can lead to suboptimal execution
plans when columns from the filter are not present in leaf-level index rows. Always add all columns from the
filter to the index, as either key or included columns.

 Filtered indexes have a few limitations . Only simple filters are supported. You cannot use a logical OR
operator, and you cannot reference functions and calculated columns.

 Another important limitation of filtered indexes relates to plan caching. SQL Server could not use
a filtered index when the execution plan needs to be cached and the index cannot be used with some
combination of parameter values. For example, the IDX_Data_Unprocessed_Filtered index could not be
used with the parameterized query shown in Listing 4-10 , even if @Processed=0 at the time of compilation.

 Listing 4-10. Filtered indexes: Parameterized query

 select top 1000 RecId, /* Other Columns */
 from dbo.Data
 where Processed = @Processed
 order by RecId;

 SQL Server cannot cache the plan, which is using a filtered index, because this plan would be incorrect
for the calls with @Processed=1 . The solution here is to use a statement-level recompile with option
(recompile) , use dynamic SQL, or add an IF statement, as shown in Listing 4-11 .

 Listing 4-11. Filtered indexes: Rewriting a parameterized query with an IF statement

 if @Processed = 0
 select top 1000 RecId, /* Other Columns */
 from dbo.Data
 where Processed = 0
 order by RecId;
 else
 select top 1000 RecId, /* Other Columns */
 from dbo.Data
 where Processed = 1
 order by RecId;

 ■ Note We will discuss plan caching in greater depth in Chapter 26 , “Plan Caching.”

http://dx.doi.org/10.1007/978-1-4842-1964-5_26

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

89

 Another very important aspect that you need to remember when dealing with filtered indexes is how
SQL Server updates statistics on them. Unfortunately, SQL Server does not count the modifications of
columns from the filter toward the statistics update threshold . As an example, let’s populate the dbo.Data
table with some data and then update statistics after that. The code for doing this is shown in Listing 4-12 .

 Listing 4-12. Filtered indexes: Inserting data and updating statistics

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 CROSS JOIN N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 CROSS JOIN N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 CROSS JOIN N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 CROSS JOIN N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.Data(RecId, Processed)
 select ID, 0 from Ids;

 update statistics dbo.Data;

 At this point, the dbo.Data table has 65,536 rows. Let’s update all of the data in the table and set
 Processed = 1 . After that, we will look at the statistics’ column modification count. The code to do this is
shown in Listing 4-13 .

 Listing 4-13. Filtered indexes: Updating data

 update dbo.Data set Processed = 1;

 select
 s.stats_id as [Stat ID], sc.name + '.' + t.name as [Table], s.name as [Statistics]
 ,p.last_updated, p.rows,p .rows_sampled, p.modification_counter as [Mod Count]
 from
 sys.stats s join sys.tables t on
 s.object_id = t.object_id
 join sys.schemas sc on
 t.schema_id = sc.schema_id
 outer apply
 sys.dm_db_stats_properties(t.object_id,s.stats_id) p
 where
 sc.name = 'dbo' and t.name = 'Data'

 As you can see in Figure 4-7 , the modification count for the filtered index column shows zero. Moreover,
the number of rows in the index is still 65,536, even though all rows in the table are now processed.

 Figure 4-7. Filtered indexes: Statistics information

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

90

 If you look at the histogram shown in Figure 4-8 , you will see that it contains the old data distribution
information.

 Figure 4-8. Filtered indexes: Statistics histogram

 This behavior can lead to incorrect cardinality estimation and suboptimal execution plans . You should
regularly update statistics on filtered indexes when the filter columns are volatile and are not included in the
index key. On the positive side, filtered indexes are usually small, and index maintenance introduces less
overhead than with regular indexes.

 Another area where filtered indexes are very useful is in supporting uniqueness on a subset of values. As
a practical example, think about a table with SSN (Social Security Number) as the optional nullable column.
This scenario usually requires you to maintain the uniqueness of the provided SSN values. You cannot use
a unique nonclustered index for such a purpose, however. SQL Server treats NULL as the regular value and
does not allow you to store more than one row with a non-specified SSN. Fortunately, a unique filtered index
does the trick. Listing 4-14 shows such an approach.

 Listing 4-14. Supporting uniqueness on a subset of values

 create table dbo.Customers
 (
 CustomerId int not null,
 SSN varchar(11) null,
 /* Other Columns */
);

 create unique index IDX_Customers_SSN on dbo.Customers(SSN)
 where SSN is not null;

 Filtered Statistics
 One of the assumptions with the legacy cardinality estimator (70) is the independence of query predicates
from each other. To illustrate this concept, let’s look at the code shown in Listing 4-15 . This table stores
information about articles, and it has a few attributes, such as Color and Size .

 Listing 4-15. Cardinality estimation with multiple predicates

 create table dbo.Articles
 (
 ArticleId int not null,
 Name nvarchar(64) not null,
 Description nvarchar(max) null,
 Color nvarchar(32) null,
 Size smallint null
);

 select ArticleId, Name from dbo.Articles where Color = 'Red' and Size = 3

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

91

 When you filter data based on both attributes, Query Optimizer correctly assumes that only a subset
of the rows will be red in color. Moreover, only some of the red articles will have a size equal to three. As a
result, it expects that the total number of rows with both predicates applied will be lower than with either of
the single predicates applied.

 While this approach works fine in some cases, it would introduce an incorrect cardinality estimation
in the case of highly correlated predicates. Let’s look at another example and create a table that stores
information about cars, including their make and model. Listing 4-16 creates this table and populates it with
some data. As a final step, it creates column-level statistics on both columns.

 Listing 4-16. Correlated predicates: Table creation

 create table dbo.Cars
 (
 ID int not null identity(1,1),
 Make varchar(32) not null,
 Model varchar(32) not null
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)
 ,Models(Model)
 as
 (
 select Models.Model
 from (values('Yaris'),('Corolla'),('Matrix'),('Camry'),('Avalon'),('Sienna')

,('Tacoma'),('Tundra'),('RAV4'),('Venza'),('Highlander'),('FJ Cruiser'),('4Runner')
,('Sequoia'),('Land Cruiser'),('Prius')) Models(Model)

)
 insert into dbo.Cars(Make,Model)
 select 'Toyota', Model from Models cross join IDs;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)
 ,Models(Model)
 as
 (
 select Models.Model
 from (values('Accord'),('Civic'),('CR-V'),('Crosstour'),('CR-Z'),('FCX Clarity')
 ,('Fit'),('Insight'),('Odyssey'),('Pilot'),('Ridgeline')) Models(Model)
)
 insert into dbo.Cars(Make,Model)
 select 'Honda', Model from Models cross join IDs;

 create statistics stat_Cars_Make on dbo.Cars(Make);
 create statistics stat_Cars_Model on dbo.Cars(Model);

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

92

 SQL Server correctly estimates cardinality when you run queries with a single predicate, as shown in
Listing 4-17 and Figure 4-9 .

 Listing 4-17. Correlated predicates: Cardinality estimations with single predicates

 select count(*) from dbo.Cars where Make = 'Toyota';
 select count(*) from dbo.Cars where Model = 'Corolla';

 Figure 4-9. Cardinality estimations with a single predicate

 However, cardinality estimations would be incorrect when both predicates are specified. Figure 4-10
illustrates cardinality estimation for the query: SELECT COUNT(*) FROM dbo.Cars WHERE Make='Toyota'
and Model='Corolla' when the legacy cardinality estimator is used.

 Figure 4-10. Cardinality estimation with correlated predicates (legacy cardinality estimator)

 The legacy cardinality estimator (70) assumes the independence of predicates and uses the following
formula:

 (Selectivity of first predicate * Selectivity of second predicate) * (Total number of rows
in table) = (Estimated number of rows for first predicate * Estimated number of rows for
second predicate) / (Total number of rows in the table) = (4096 * 256) / 6912 = 151.704

 The new cardinality estimator (120), introduced in SQL Server 2014, takes a different approach and
assumes some correlation between predicates. It uses the following formula:

 (Selectivity of most selective predicate) * SQRT(selectivity of next most selective
predicate) = (256 / 6912) * SQRT(4096 / 6912) * 6912 = 256 * SQRT(4096 / 6912) = 197.069

 Even though this formula provides better results in this case, it is still incorrect, as shown in Figure 4-11 .

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

93

 One solution to this problem is the use of filtered column-level statistics. These could improve
cardinality estimation in the case of correlated predicates. Listing 4-18 creates filtered statistics on the Model
column for all cars made by Toyota.

 Listing 4-18. Correlated predicates: Creating filtered statistics

 create statistics stat_Cars_Toyota_Models
 on dbo.Cars(Model)
 where Make='Toyota'

 Now, if you run the SELECT statement again, you will get a correct cardinality estimation, as shown in
Figure 4-12 .

 Figure 4-11. Cardinality estimation with correlated predicates (new cardinality estimator)

 Figure 4-12. Cardinality estimation with filtered statistics

 The limitations of filtered statistics are similar to those of filtered indexes. SQL Server would not use
this feature for cardinality estimation in the case of cached plans when there is the possibility that filtered
statistics would not be applicable for all possible parameter choices. One of the cases where this happens
is autoparameterization , which is when SQL Server replaces constant values in the WHERE clause of a query
with parameters; that is, SQL Server would not use statistics if it autoparameterizes the predicate on the
 Model column in the preceding query. A statement-level recompile can help you to avoid such a situation.
Moreover, SQL Server does not count the modifications of filter columns toward the statistics-modification
threshold, which thus requires you to update statistics manually in some cases.

 Calculated Columns
 SQL Server allows you to define calculated columns in a table using expressions or system and scalar user-
defined functions . Listing 4-19 shows an example of a table with two calculated columns.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

94

 Listing 4-19. Table with two calculated columns

 create table dbo.Customers
 (
 CustomerId int not null,
 SSN char(11) not null,
 Phone varchar(32) null,
 SSNLastFour as (right(SSN,4)),
 PhoneAreaCode as (dbo.ExtractAreaCode(Phone)),
 /* Other Columns */
);

 SQL Server calculates the value of the calculated column when queries reference it. This can introduce
some performance impact in the case of complex calculations, especially when a calculated column is
referenced in the WHERE clause of a query. You can avoid this by making the calculated columns PERSISTED .
In that case, SQL Server persists the calculated values, storing them in data rows similar to regular columns.
While this approach improves the performance of queries that read data by removing any on-the-fly
calculations, it reduces the performance of data modifications and increases the size of the rows.

 User-defined functions (UDF) allow the implementation of very complex calculations. However, they
can significantly reduce the performance of queries. Let’s look at an example and create a table with 65,536
rows, as shown in Listing 4-20 . We will use this table as the source of the data.

 Listing 4-20. Calculated columns and UDF: Creating a table with data

 create table dbo.InputData (ID int not null);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.InputData(ID)
 select Num from Nums;

 For the next step, let’s create two other tables with calculated columns. One of the tables persists
calculated column data while the other table does not. The code to accomplish this is shown in Listing 4-21 .

 Listing 4-21. Calculated columns and UDF: Creating test tables

 create function dbo.SameWithID(@ID int)
 returns int
 with schemabinding
 as
 begin
 return @ID;
 end
 go

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

95

 create table dbo.NonPersistedColumn
 (
 ID int not null,
 NonPersistedColumn as (dbo.SameWithID(ID))
);

 create table dbo.PersistedColumn
 (
 ID int not null,
 PersistedColumn as (dbo.SameWithID(ID)) persisted
);

 In the first test, let’s measure the performance impact of the persisted calculated column during a
 batch-insert operation . The code for this is shown in Listing 4-22 .

 Listing 4-22. Calculated columns and UDF: Comparing the performance of batch-insert operations

 insert into dbo.NonPersistedColumn(ID)
 select ID from dbo.InputData;

 insert into dbo.PersistedColumn(ID)
 select ID from dbo.InputData;

 The execution time on my computer is shown in Table 4-2 .

 Table 4-2. Batch-Insert Performance

 dbo.NonPersistedColumn dbo.PersistedColumn

 100 ms 449ms

 As a next step, let’s compare the performance of the queries, which reference the persisted and
non-persisted calculated columns during the SELECT operation, using the code shown in Listing 4-23 .

 Listing 4-23. Calculated columns and UDF: Comparing the performance of SELECT operations

 select count(*)
 from dbo.NonPersistedColumn
 where NonPersistedColumn = 42;

 select count(*)
 from dbo.PersistedColumn
 where PersistedColumn = 42;

 In the case of the non-persisted calculated column, SQL Server calls the user-defined function to
evaluate the predicate on every row, which significantly increases the execution time, as shown in Table 4-3 .

 Table 4-3. Select Performance with Warm Cache

 dbo.PersistedColumn dbo.NonPersistedColumn

 7 ms 218ms

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

96

 The noticeable performance impact is mainly related to the user-defined function call’s overhead.
However, you would still have a performance impact because of the calculations, granted of a smaller scope,
even if user-defined functions were not used.

 ■ Note We will discuss user-defined functions and their performance implications in greater depth in
Chapter 11 , “User-Defined Functions.”

 Calculated columns that use user-defined functions prevent Query Optimizer from generating parallel
execution plans even when queries do not reference them. This is one of the design limitations of Query
Optimizer . We can see this behavior if we run the query shown in Listing 4-24 . The code uses undocumented
trace flag T8649 , which forces SQL Server to produce a parallel execution plan if it is possible. As usual, be
careful with undocumented trace flags and do not use them in production.

 Listing 4-24. Calculated columns and parallel execution plans

 select count(*) from dbo.NonPersistedColumn option (querytraceon 8649);
 select count(*) from dbo.PersistedColumn option (querytraceon 8649);
 select count(*) from dbo.InputData option (querytraceon 8649);

 As you can see in Figure 4-13 , the only time SQL Server is able to generate a parallel execution plan is
in the table without a calculated column. It is worth mentioning that SQL Server is able to generate parallel
execution plans for tables with calculated columns, as long as they are not calculated with user-defined
functions.

 Figure 4-13. Calculated columns and parallel execution plans

 You can create indexes on calculated columns even when those columns are not persisted. This is
a great option when the main use case for a calculated column is to support index seek operations. One
such example is searching by the last four digits in an SSN. You can create a nonclustered index on the
 SSNLastFour calculated column in the dbo.Customers table (shown in Listing 4-19) without making the
calculated column persisted. Such an approach saves storage space for data.

http://dx.doi.org/10.1007/978-1-4842-1964-5_11

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

97

 The code shown in Listing 4-25 creates an index on a non-persisted calculated column and references
this column in the query.

 Listing 4-25. Indexing a non-persisted calculated column

 create unique nonclustered index IDX_Customers_SSNLastFour
 on dbo.Customers(SSNLastFour);

 select CustomerId, SSN
 from dbo.Customers
 where SSNLastFour = '1234';

 Figure 4-14 shows the execution plan for the SELECT statement. As you can see, SQL Server is able to use
the nonclustered index .

 Figure 4-14. Execution plan that utilizes a nonclustered index on a non-persisted calculated column

 It is important to decide where to calculate data. Even though calculated columns are convenient for
developers, they add load to SQL Server during calculations. This decision is even more important in cases
where applications use ORM frameworks and load calculated columns as attributes of the entities. This
scenario increases the chance that calculated columns will be referenced and calculated, even when they
are not needed for some of the use cases.

 You also need to remember that a typical system includes multiple application servers with only one
active database server serving all of the data. It is usually simpler and cheaper to scale out application
servers than it is to upgrade the database server .

 Calculating data at the application server or client level reduces the load on SQL Server. However, if the
system does not have dedicated data-access and/or business-logic tiers, it could lead to supportability issues
when a calculation needs to be done in multiple places in the code. As usual, the decision falls into the “It
Depends” category, and you need to evaluate the pros and cons of every approach.

 Data Compression
 The Enterprise Edition of SQL Server 2008 and above allows you to reduce the size of tables by implementing
data compression. There are two types of data compression available: row and page. Row compression
reduces the size of rows by using a different row format, which eliminates the unused storage space
from fixed-length data. Page compression works on the data-page scope, and it removes duplicated byte
sequences from a page.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

98

 Data pages in the buffer pool store data in the same format as data is stored on disk. Compression is
implemented transparently to other SQL Server features; that is, SQL Server components that access data do
not know if compression is used or not.

 Even though data compression allows you to put more rows into data pages, it does not increase the
amount of data that a row can store. The 8,060 bytes maximum row size limitation still applies, regardless of
the compression settings. SQL Server guarantees that the disabling of data compression will always succeed
and, therefore, an uncompressed row must always fit on a data page.

 Let’s examine how both compression types are implemented.

 Row Compression
 As you should remember, the regular row format, called FixedVar , stores fixed- and variable-length data in
different sections of the row. The benefit of such an approach is fast access to column data. Fixed-length
columns always have the same in-row offset. The offset of variable-length column data can also be easily
obtained based on the offset array information.

 This fast access, however, comes at a cost. Fixed-length columns always use the same storage space
based on the largest possible value of the data type. For example, the int data type always uses four bytes,
even when it stores 0 or NULL values.

 Unfortunately, unused space quickly adds up. One unused byte leads to almost 350 MB of unused space
per year in a table that collects one million rows per day. The table uses more space on disk and in the buffer
pool, which increases the number of required I/O operations and negatively affects the performance of the
system.

 Row compression addresses this problem by implementing another row format, called CD , which
stands for column descriptor . With this format, every row stores the column and data description
information for the row using the exact amount of storage space required for the value. Figure 4-15 illustrates
the CD row format.

 Figure 4-15. CD row format

 Similar to the FixedVar row format, data in the CD format is separated into two different sections: Short
Data Region and Long Data Region . However, the separation is based on the size of the data rather than on
the data type. The Short Data Region stores data up to 8 bytes in size. Larger values are stored in the Long
Data Region. Let’s look at the row format in depth.

 The Header byte is a bitmask, which is similar to the Status Bits A byte in the FixedVar row format.
It consists of various bits representing the properties of the row, such as if it is an index row, if it has a
versioning tag, if the row was deleted, and a few other attributes.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

99

 The CD region stores information about the column data in the row. It starts with either one or two
bytes indicating the number of columns in the CD array. The first bit in the first byte indicates if there are
more than 127 columns, in which case two bytes are needed to store the number of columns. It is followed
by the CD array itself. Each element in the array stores information about one of the columns, and it uses
four bits to store one of the following values :

 0 (0x0) indicates that the corresponding column is NULL

 1 (0x1) indicates that the corresponding column stores an empty value for the
data type. For example, an empty value for int columns would be 0. Empty
columns do not use space in either the Short or the Long Data Region sections.

 2 (0x2) indicates that the corresponding column is a 1-byte short value.

 3 (0x3) indicates that the corresponding column is a 2-byte short value.

 4 (0x4) indicates that the corresponding column is a 3-byte short value.

 5 (0x5) indicates that the corresponding column is a 4-byte short value.

 6 (0x6) indicates that the corresponding column is a 5-byte short value.

 7 (0x7) indicates that the corresponding column is a 6-byte short value.

 8 (0x8) indicates that the corresponding column is a 7-byte short value.

 9 (0x9) indicates that the corresponding column is an 8-byte short value.

 10 (0xA) indicates that the corresponding column has more than an 8-byte value
and is stored in Long Data Region.

 11 (0xB) indicates that the corresponding column is a bit column with the value
of one. Such a column does not use space in the Short Data Region.

 Offsets for column data in the Short Data Region can be calculated based on the CD region information.
However, that calculation could be expensive when there is a large number of columns. SQL Server
optimizes it by storing a series of 30-column clusters at the beginning of the Short Column Data region. For
example, if the Short Data Region has 70 columns, SQL Server stores an array with two one-byte elements .
The first element/byte stores the size of the first 30-column cluster. The second element/byte stores the size
of the second 30-column cluster. An array is not stored if the row has less than 30 columns.

 Figure 4-16 illustrates such an example. The value 10 (0xA) in the CD array indicates that the column
stores long data, and therefore the actual Short Data Region column cluster can include less than 30
values—18, 16, and 4 in this example.

 Figure 4-16. Example of CD and Short Data Regions data

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

100

 The Long Data Region starts with an offset array, which is similar to a variable-length offset array in the
FixedVar row format.

 The first byte is a bitmask with two meaningful bits. The first one is always 1, which tells SQL Server that
the offset array uses two-byte values. The second bit indicates if the row has any complex columns that store
data off-row.

 The next two bytes store the number of columns in the array to follow.
 The most significant bit in the first byte of each element in the offset array indicates if it is a complex

column. Other bits store the ending offset of the column.
 Similar to the Short Data Region, SQL Server optimizes access to the trailing columns by storing an

array with a number of long data columns in each 30-column cluster. Figure 4-17 illustrates the Long Data
Region for the same row shown in Figure 4-16 .

 Let’s examine the actual row data and create a table, as shown in Listing 4-26 .

 Listing 4-26. Row compression: Creating a table

 create table dbo.RowCompressionData
 (
 Int1 int,
 Int2 int,
 Int3 int,
 VarChar1 varchar(1000),
 VarChar2 varchar(1000),
 Bit1 bit,
 Bit2 bit,
 Char1 char(1000),
 Char2 char(1000),
 Char3 char(1000)
)
 with (data_compression=row);

 insert into dbo.RowCompressionData
 values
 (0 /*Int1*/, 2147483647 /*Int2*/, null /*Int3*/, 'aaa'/*VarChar1*/
 ,replicate('b',1000) /*VarChar2*/, 0 /*BitCol1*/, 1 /*BitCol2*/, null /*Char1*/
 ,replicate('c',1000) /*Char2*/, 'dddddddddd' /*Char3*/);

 Listing 4-27 shows the partial DBCC PAGE command results . You can use the same technique, described
in Chapter 1 , to obtain a page number for the row.

 Figure 4-17. Example of Long Data Region data

http://dx.doi.org/10.1007/978-1-4842-1964-5_1

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

101

 Listing 4-27. Row compression: DBCC PAGE results

 Slot 0 Offset 0x60 Length 2033
 Record Type = (COMPRESSED) PRIMARY_RECORD
 Record attributes = LONG DATA REGION
 Record size = 2033
 CD Array
 CD array entry=Column 1 (cluster 0, CD array offset 0): 0x01 (EMPTY)
 CD array entry=Column 2 (cluster 0, CD array offset 0): 0x05 (FOUR_BYTE_SHORT)
 CD array entry=Column 3 (cluster 0, CD array offset 1): 0x00 (NULL)
 CD array entry=Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)
 CD array entry=Column 5 (cluster 0, CD array offset 2): 0x0a (LONG)
 CD array entry=Column 6 (cluster 0, CD array offset 2): 0x01 (EMPTY)
 CD array entry=Column 7 (cluster 0, CD array offset 3): 0x0b (BIT_COLUMN)
 CD array entry=Column 8 (cluster 0, CD array offset 3): 0x00 (NULL)
 CD array entry=Column 9 (cluster 0, CD array offset 4): 0x0a (LONG)
 CD array entry=Column 10 (cluster 0, CD array offset 4): 0x0a (LONG)

 Record Memory Dump
 0EA4A060: 210a5140 1a0baaff ffffff61 61610103 00e803d0 !.Q@..ªÿÿÿÿaaa…è.Ð
 0EA4A074: 07da0762 62626262 62626262 62626262 62626262 .Ú.bbbbbbbbbbbbbbbbb
 <SKIPPED>
 0EA4A448: 62626262 62626262 62626262 62626262 62626262 bbbbbbbbbbbbbbbbbbbb
 0EA4A45C: 62626263 63636363 63636363 63636363 63636363 bbbccccccccccccccccc
 0EA4A470: 63636363 63636363 63636363 63636363 63636363 cccccccccccccccccccc
 <SKIPPED>
 0EA4A830: 63636363 63636363 63636363 63636363 63636363 cccccccccccccccccccc
 0EA4A844: 63636364 64646464 64646464 64 cccdddddddddd

 Slot 0 Column 1 Offset 0x0 Length 4 Length (physical) 0
 Int1 = 0
 Slot 0 Column 2 Offset 0x7 Length 4 Length (physical) 4
 Int2 = 2147483647
 Slot 0 Column 3 Offset 0x0 Length 0 Length (physical) 0
 Int3 = [NULL]
 Slot 0 Column 4 Offset 0xb Length 3 Length (physical) 3
 VarChar1 = aaa
 Slot 0 Column 5 Offset 0x17 Length 1000 Length (physical) 1000
 VarChar2 = bbbbbbbbbbbbbbbbbbbbbbbbbbbbb <SKIPPED>
 Slot 0 Column 6 Offset (see CD array entry) Length 1
 Bit1 = 0
 Slot 0 Column 7 Offset (see CD array entry) Length 1
 Bit2 = 1
 Slot 0 Column 8 Offset 0x0 Length 0 Length (physical) 0
 Char1 = [NULL]
 Slot 0 Column 9 Offset 0x3ff Length 1000 Length (physical) 1000
 Char2 = cccccccccccccccccccccccccccccccc <SKIPPED>
 Slot 0 Column 10 Offset 0x7e7 Length 1000 Length (physical) 10
 Char3 = dddddddddd

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

102

 Figure 4-18 illustrates the data in the row. Keep in mind that multi-byte values are stored in
 byte-swapped order , similar to with the FixedVar format. Moreover, four-bit sections in the CD array are
also swapped within each byte.

 Figure 4-18. Row compression: Row data

 There is one very important catch, however. In some cases, compression can increase the size of the
row. Consider a situation where you have a table with multiple fixed-length columns that utilize all storage
space according to the data type. Consider tinyint columns that store non-zero values, smallint columns
that store two-byte values, or datetime columns that always use eight bytes. Those columns would not
benefit from row compression, and, in fact, row compression would use an extra four bits per column in the
CD array, which you do not have with the FixedVar format. Fortunately, those cases are relatively rare, and
row compression usually introduces significant space savings.

 Finally, it is worth repeating that default type values—for example, zeroes for int and bit data types—
do not use storage space outside of the four bits in the CD region.

 Page Compression
 Page compression works differently than row compression does. It is applied to the entire page, but only after
the page is full and only when the compression saves a significant amount of space on the page. Moreover,
SQL Server does not use page compression on non-leaf index levels —those are compressed with row
compression when page compression is used.

 Page compression consists of three different stages . First, SQL Server performs row compression
on the rows. Next, it performs prefix compression on the column level by locating and reusing the most
common prefix, which reduces the data size for values in that column. Finally, SQL Server does a dictionary
compression by removing all of the duplicates in the data across all columns. Let’s examine prefix and
dictionary compressions in depth.

 As a first step, SQL Server detects the most common prefix in a column’s data and finds the longest
value that is using such a prefix. This value is called the anchor value . All other rows on the page store the
difference between their values and the anchor values, rather than the actual values.

 Let’s look at an example, assuming that we have a four-column table with the data shown in Table 4-4 .

 Table 4-4. Page Compression: Original Data

 Column 1 Column 2 Column 3 Column 4

 PALETTE CAN NULL PONY

 PAL BALL MILL HORSE

 POX BILL MALL TIGER

 PILL BOX MAN BUNNY

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

103

 For the first column, the most common prefix is P ; therefore PALETTE is the anchor value . SQL Server
stores the anchor value as an empty not null string (<><> is used to indicate anchor values in the tables that
follow). All other values are stored based on the prefix. For example, the value PILL is stored as <1><ILL> ,
indicating that it should use one letter from the anchor value as the prefix followed by ILL . The value PAL is
stored as <3><> , indicating that it uses three letters from the anchor value only. If no usable prefix is found,
SQL Server does not store the anchor value and all data is stored as is.

 Table 4-5 illustrates page data after prefix compression has been applied.

 Table 4-5. Page Compression: Data After Prefix Compression

 Column 1 Column 2 Column 3 Column 4

 Anchor value PALETTE BALL MALL NULL

 <><> <><CAN> NULL PONY

 <3><> <><> <1><ILL> HORSE

 <1><OX> <1><ILL> <><> TIGER

 <1><ILL> <1><OX> <2><N> BUNNY

 Table 4-6. Page Compression: Data After Dictionary Compression

 Column 1 Column 2 Column 3 Column 4

 Dictionary Entities: [D1]: <1><OX>; [D2]:<1><ILL>

 <><> <><CAN> NULL PONY

 <3><> <><> [D2] HORSE

 {D1] [D2] <><> TIGER

 [D2] [D1] <2><N> BUNNY

 Figure 4-19. Compression information record format

 During dictionary compression, SQL Server detects the same patterns across all data on the page and
replaces them with dictionary entries , as shown in Table 4-6 . This process is type-agnostic and works with
byte sequences. The row is still using the CD data format. The CD array stores a value of 13 (0xC) to indicate
that the row value has been replaced with a dictionary entry.

 Both anchor and dictionary values are optional. SQL Server does not create either or both of them if the
data patterns do not repeat often enough.

 When a page is compressed, SQL Server adds another hidden row, called the compression information
(CI) record , right after the page header. Figure 4-19 illustrates its format.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

104

 A Header is a bitmask that indicates the CI record version and if it has an anchor
record and/or dictionary entry present.

 The PageModCount indicates the number of changes on the page after it has
been compressed. SQL Server tries to recompress the page and rebuild the
CI records either after 25 modifications or when the number of modifications
exceeds 25 percent of the number of rows on the page.

 Offsets is an array that stores the beginning and ending offsets of the anchor
record and/or dictionary entry in the CI record.

 The Anchor Record is another row in CD format, with each column representing
the anchor value for a particular table column.

 The Dictionary stores an array of dictionary entries and consists of three parts:
number of entries, their offsets, and actual values.

 As already mentioned, SQL Server stores the data in page-compressed format only when the page
is full and compression leads to significant space savings. When a page is full, SQL Server performs
compression and evaluates if the newly compressed page can store either five more rows or 25 percent
more rows than before the compression. If that is the case, then page compression is retained and SQL
Server stores the data in page-compressed format. Otherwise, the page compression is discarded and data
is stored in row-compressed format.

 The same process occurs when PageModCount in the CI record exceeds the threshold. SQL Server tries to
recompress a page, evaluating the space savings and either keeping or discarding results.

 ■ Note You can see page-compression statistics in the page_compression_attempt_count and page_
compression_success_count columns in the sys.dm_db_index_operational_stats DMF.

 Finally, neither transaction log records for data modifications nor the version store in tempdb supports
page compression. SQL Server needs to decompress the page and remove anchor and dictionary records
every time a row needs to be placed in the version store or written to the transaction log. This can introduce
an additional performance impact when optimistic isolation levels or AFTER triggers are used, or when
compressed data is frequently modified.

 ■ Note We will discuss the version store in more detail in Chapter 9 , “Triggers,” and Chapter 21 , “Optimistic
Isolation Levels.” Transaction log internals are covered in Chapter 30 , “Transaction Log Internals.”

 Performance Considerations
 Data compression can significantly reduce the storage space needed for data at the cost of extra CPU
load. SQL Server needs more time to access row data regardless of the compression type used. It does not
necessarily mean that the query execution time will increase, as in many cases queries will work even faster
due to fewer data pages to scan and less I/O reads to perform. However, the performance of batch data
modifications and index-maintenance routines could be negatively affected.

 Let’s do some tests and check out how data compression affects the storage size and execution time
of queries. I am using data from one of the production tables with a decent number of fixed- and variable-
length columns. Obviously, different table schema and data distribution will lead to slightly different results.
However, in most cases, you would see similar patterns.

http://dx.doi.org/10.1007/978-1-4842-1964-5_9
http://dx.doi.org/10.1007/978-1-4842-1964-5_21
http://dx.doi.org/10.1007/978-1-4842-1964-5_30

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

105

 To begin the tests, I created three different heap tables and inserted one million rows into each of
them. After that, I created clustered indexes with different compression settings and FILLFACTOR=100 . This
workflow led to fully populated data pages and zero index fragmentation.

 During the first test, I ran SELECT statements to scan all of the clustered indexes accessing some row
data. The second test updated every row in the tables, changing the value of the fixed-length column in a
way that did not increase the row size. The third test inserted another batch of one million rows into the
tables. Finally, I rebuilt all of the clustered indexes.

 You can see the execution statistics in Table 4-7 . All tests ran with a warm cache, with the data pages
cached in the buffer pool. Cold cache could reduce the difference in execution times for the queries against
compressed and non-compressed data, because queries against compressed data perform less physical I/O.

 Table 4-7. Data Compression, Storage Space, and Performance

 Size

 (MB)

 Avg. Row Size

 (bytes)

 SELECT

 Elapsed
Time (ms)

 UPDATE

 Elapsed
Time (ms)

 INSERT

 Elapsed
Time (ms)

 INDEX REBUILD

 Elapsed
Time (ms)

 No Compression 285 287 298 3,745 12,596 21,537

 Row Compression 181 183 224 12,618 17,808 33,074

 Page Compression 94 81 267 36,690 39,121 76,694

 All statements were forced to run on a single CPU by using a MAXDOP 1 query hint. Using parallelism
would decrease the query execution times; however, it would also add the overhead of parallelism
 management during query execution. We will discuss such overhead later in this book.

 As you can see, data compression improved the performance of the queries that read and scan the data,
even without physical I/O involved. This leads us to conclude that reading compressed data adds very little
overhead to the system. However, compression decreased the performance of data modifications; therefore,
it is expensive to compress data, especially when using page compression.

 CPU overhead, however, is not the only factor to consider. Compression reduces the size of rows and the
number of data pages required to store them. Compressed indexes use less space in the buffer pool, which
allows you to cache more data in the system. Compression can significantly reduce the amount of physical
I/O and improve system performance as a result of such caching, even with all the data modification
overhead involved. Furthermore, data compression reduces the size of the database and thus the size of
backup files and their storage costs.

 Obviously, it is impossible to provide generic advice when it comes to using data compression. In some
cases, especially with heavily CPU-bound servers, compression can degrade system performance. However,
in most cases, compression will benefit the systems. Row compression is usually a good choice when the
data is volatile. Page compression, on the other hand, is better suited for static data. You should analyze each
case individually, however, taking CPU and I/O load, data-modification patterns, and various other factors
into account.

 You should also estimate how much space compression actually saves you. There is no reason to be
compressing the data if the space savings is minimal. Row compression reduces the storage space used
by fixed-length data. It does not help much with variable-length data storage space. The results of page
compression depend on the data itself rather than on data types. Finally, both data compression methods
work with in-row data only, and they will not compress data stored in row-overflow and LOB pages.

 As a rule of thumb, I usually enable row compression for all volatile indexes when it introduces space savings,
and page compression for indexes with static data. I also consider enabling page compression even when data
is volatile when the size of the active data in the system exceeds the amount of available memory. As I already
mentioned, compression allows SQL Server to cache more data in the buffer pool, thus reducing physical I/O
activity and improving the performance of the system even with all the data modification overhead involved.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

106

 ■ Tip Data compression can be useful when you deal with third-party systems with an excessive use of
fixed-length data types. For example, some independent software vendors use the fixed-length char data type
to store text information. Implementing data compression here significantly reduces table storage space and
improves system performance transparently to the applications.

 You can estimate the space savings of row and page compression by using the sp_estimate_data_
compression_savings stored procedure. This procedure copies a sample of the data to tempdb and applies
the desired data compression method, estimating the space savings. Obviously, it can produce incorrect
results if data is distributed unevenly. I am including the script that estimates the compression space saving
for all indexes in the database to the companion materials for the book.

 You can apply different data compression methods on a per-index basis. In the case of partitioned
 tables , compression can be applied on a per-partition basis. For example, you may decide to use row
compression or no compression at all for partitions with volatile operational data and page compression for
static archived data.

 ■ Note We will talk about partitioned tables and other data-partition techniques in Chapter 16 , “Data
Partitioning.”

 Sparse Columns
 Sparse columns , introduced in SQL Server 2008, have a special storage format optimized for the storage of
 NULL values. As you will remember, without data compression, fixed-length columns always use the same
storage space, even when they store NULL values. Variable-length columns use an amount of space based on
the size of the value, along with an extra two bytes found in the variable-length offset array.

 When a column is defined as sparse , it does not use any storage space when it is NULL , at the cost of
extra storage overhead in cases of NOT NULL values. This storage overhead is four bytes for fixed-length data
types and two bytes for variable-length data types .

 ■ Caution Even though NULL fixed-length data types do not use storage space when defined as sparse, you
should not interchange them with variable-length data types. A sparse char column would be stored in-row
when it is NOT NULL and contribute toward the 8,060 maximum row size limit. Alternatively, a sparse varchar
column could be stored in a row-overflow page if needed.

 Sparse column data is stored in a special part of the row called the sparse vector . I am not going to dive
into the sparse vector internal storage format, but I want to mention that it is located after the variable-
length portion of the row. Moreover, the sparse vector adds extra storage overhead, which increases size of
the row and counts toward the 8,060-byte limit.

 Table 4-8 shows the required storage space used by data types for a regular nonsparse column and for
a sparse column that stores a NOT NULL value. It also shows the minimum percentage of rows that must have
 NULL values to achieve a net space savings of 40 percent.

http://dx.doi.org/10.1007/978-1-4842-1964-5_16

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

107

 Table 4-8. Space Used by Nonsparse and Sparse Columns

 Data Type Nonsparse storage
space (bytes)

 Sparse storage space
when not null (bytes)

 NULL percentage

 Bit 0.125 4.125 98%

 Tinyint 1 5 86%

 Smallint 2 6 76%

 Date 3 7 69%

 time(0) 3 7 69%

 Int 4 8 64%

 Real 4 8 64%

 Smallmoney 4 8 64%

 Smalldatetime 4 8 64%

 time(7) 5 9 60%

 decimal/numeric(1,s) 5 9 60%

 datetime2(0) 6 10 57%

 Bigint 8 12 52%

 Float 8 12 52%

 Money 8 12 52%

 Datetime 8 12 52%

 datetime2(7) 8 12 52%

 datetimeoffset(0) 8 12 52%

 datetimeoffset(7) 10 14 49%

 Uniqueidentifier 16 20 43%

 decimal/numeric(38,s) 17 21 42%

 Variable-length types 2 + avg data size 4 + avg data size 60%

 Sparse columns allow the creation of wide tables with up to 30,000 columns. Some systems—for
example, Microsoft SharePoint—use wide tables to store semistructured data.

 Think about a table that stores different types of documents , as an example. Each document type has its
own set of attributes/columns defined. Some attributes, such as Document Number and Creation Date, e xist
in every document type, while other are unique for a specific type.

 If you decided to keep all documents in a single table, you could define common attributes as
regular nonsparse columns and document-type-related attributes as sparse columns. That approach can
significantly reduce table row size in cases where a large number of attributes store NULL values.

 It is worth mentioning that you can choose other design solutions besides wide tables in such
situations. You may consider storing different document types in separate tables, with another table used
to store common document attributes . Alternatively, you could use XML to store some of the attributes or
unpivot them into another name/value pairs table. Every approach has its pros and cons based on business
and functional requirements.

 There is still a limitation of a maximum of 1,024 nonsparse columns per table. Moreover, the in-row part
of the row must not exceed 8,060 bytes.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

108

 Managing a large number of sparse columns in the code can become cumbersome. As a workaround,
SQL Server allows you to define a designated column called COLUMN_SET . Think about the COLUMN_SET
column as an untyped, calculated XML column that contains information about NOT NULL sparse columns
from a row.

 The COLUMN_SET column changes the behavior of the SELECT * operation. When it is specified, SQL
Server does not include individual sparse columns in the result set, returning a COLUMN_SET column instead.
Moreover, if you add new sparse columns to a table, they would appear in the result set.

 Listing 4-28 illustrates an example of this. The code creates two tables with sparse columns—one with
 COLUMN_SET —and it populates them with the same data.

 Listing 4-28. Sparse columns: COLUMN_SET—tables creation

 create table dbo.SparseDemo
 (
 ID int not null,
 Col1 int sparse,
 Col2 varchar(32) sparse,
 Col3 int sparse
);

 create table dbo.ColumnSetDemo
 (
 ID int not null,
 Col1 int sparse,
 Col2 varchar(32) sparse,
 Col3 int sparse,
 SparseColumns xml column_set for all_sparse_columns
);

 insert into dbo.SparseDemo(ID,Col1) values(1,1);
 insert into dbo.SparseDemo(ID,Col3) values(2,2);
 insert into dbo.SparseDemo(ID,Col1,Col2) values(3,3,'Col2');

 insert into dbo.ColumnSetDemo(ID,Col1,Col2,Col3)
 select ID,Col1,Col2,Col3 from dbo.SparseDemo;

 As a next step, let’s select data from those tables using the SELECT * operator , as shown in Listing 4-29 .

 Listing 4-29. Sparse columns: COLUMN_SET—select *

 select 'SparseDemo' as [Table], * from dbo.SparseDemo;
 select 'ColumnSetDemo' as [Table], * from dbo.ColumnSetDemo;

 Figure 4-20 shows the results. As you can see, when you select data from the second table, there are no
individual sparse columns in the result set.

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

109

 Figure 4-20. Sparse columns: COLUMN_SET and select *

 You can insert or update sparse columns through the COLUMN_SET column. Listing 4-30 shows an
example of this, and Figure 4-21 shows the result of the execution.

 Listing 4-30. Sparse columns: Using COLUMN_SET to manipulate data

 insert into dbo.ColumnSetDemo(ID, SparseColumns)
 values(4, '<col1>4</col1><col2>Insert data through column_set</col2>');

 update dbo.ColumnSetDemo
 set SparseColumns = '<col2>Update data through column_set</col2>'
 where ID = 3;

 select ID, Col1, Col2, Col3 from dbo.ColumnSetDemo where ID in (3,4);

 Figure 4-21. Sparse columns: Using COLUMN_SET to manipulate data

 Working with sparse columns through COLUMN_SET can simplify development and database
administration, especially when the table schema is changing due to business or functional requirements.

 ■ Note There is a set of restrictions related to the COLUMN_SET column. Read this document for more details:
 http://technet.microsoft.com/en-us/library/cc280521.aspx .

 Regular indexes are inefficient with sparse columns due to the large number of NULL values. You should
use filtered indexes instead. Even a large number of filtered indexes might be acceptable and would not
introduce noticeable data-modification and -maintenance overhead in cases where a very small subset of
the rows is being indexed.

 Microsoft suggests implementing sparse columns in cases where the net space savings would be at least
20 to 40 percent as compared to a nonsparse implementation . Sparse columns, however, have a cost. Some
SQL features, such as replication, change tracking, and change data capture, are limited when dealing with
sparse columns and/or column sets. Moreover, tables with sparse columns cannot be compressed.

http://technet.microsoft.com/en-us/library/cc280521.aspx

CHAPTER 4 ■ SPECIAL INDEXING AND STORAGE FEATURES

110

 You need to monitor the data when dealing with sparse columns. The percentage of NULL values in the
columns could change over time, which makes sparse columns inefficient.

 With the Enterprise Edition of SQL Server, I prefer to use data compression rather than sparse columns
when the goal is to reduce the amount of storage space used by fixed-length columns that store mostly NULL
values. Data compression decreases storage space like sparse columns in that use case and, at the same
time, is transparent to other SQL Server features.

 Summary
 SQL Server does not use nonclustered indexes in cases where it expects a large number of key or RID lookup
operations to be required. You can eliminate these operations by adding columns to the index and making it
covering for the queries. This approach is a great optimization technique that can dramatically improve the
performance of the system.

 Adding included columns to the index, however, increases the size of leaf-level rows, which would
negatively affect the performance of the queries that scan data. It would also introduce additional index-
maintenance overhead, slow down data-modification operations, and increase locking in the system.

 Filtered indexes allow you to reduce index storage size and maintenance costs by indexing just a subset
of the data. SQL Server has a few design limitations associated with filtered indexes. Even though it is not a
requirement, you should make all columns from the filters part of the leaf-level index rows so as to prevent
the generation of suboptimal execution plans.

 Modifications of the columns from the filter do not increment the statistics’ column modification
counter, which can make the statistics inaccurate. You need to factor that behavior into your statistics
maintenance strategy for the system.

 Filtered statistics allow you to improve cardinality estimations in the case of highly correlated predicates
in the queries. They have all of the limitations of filtered indexes, however.

 The Enterprise Edition of SQL Server supports two different data compression methods. Row
compression reduces data row size by removing unused storage space from rows. Page compression
removes duplicated sequences of bytes from data pages.

 Data compression can significantly reduce table storage space at the cost of extra CPU load, especially
when data is modified. However, compressed data uses less space in the buffer pool and requires fewer I/O
operations, which can improve the performance of the system. Row compression could be a good choice even
with volatile data on non-heavily-CPU-bound systems. Page compression is a good choice for static data.

 Sparse columns allow you to reduce row size when some columns store primarily NULL values. Sparse
columns do not use storage space while storing NULL values at the cost of the extra storage space required for
 NOT NULL values.

 Although sparse columns allow the creation of wide tables with thousands of columns, you should be
careful with them. There is still the 8,060-byte in-row data size limit, which can prevent you from inserting
or updating some rows. Moreover, wide tables usually introduce development and administrative overhead
when frequent schema alteration is required.

 Finally, you should monitor the data stored in sparse columns, making sure that the percentage of NOT
NULL data is not increasing, which would make sparse storage less efficient than nonsparse storage.

111© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_5

 CHAPTER 5

 SQL Server 2016 Features

 Dmitri Korotkevitch with Thomas Grohser

 This chapter provides an overview of several new SQL Server 2016 features, such as temporal tables, stretch
databases, row-level security, dynamic data masking, and Always Encrypted.

 Temporal Tables
 The majority of systems nowadays deal with data that changes over time. New data is collected and inserted
into the system, old data is purged, and catalog entities are modified.

 There are two requirements that often exist in systems. The first is keeping an audit trail of any data
changes, providing information on who changed what and when it happened. There are many ways to build
this solution based on existing technologies, such as SQL Audit, change tracking, and change data capture . It
is also very common to see custom implementations based on triggers.

 Unfortunately, in some cases, keeping an audit trail of the changes is not enough. Some systems — for
example, inventory management or financial portfolio management solutions — need to be able to access a
 snapshot of the data at any given point in time. It is possible to reconstruct such snapshots from audit trail
tables; however, it is a complex task prone to errors, especially if multiple related tables are involved.

 System-versioned temporal tables are the new type of user table that helps to implement those
requirements. They are designed to keep a full history of data changes and allow easy point-in-time analysis.

SYSTEM-VERSIONED AND APPLICATION-VERSIONED

TEMPORAL TABLES

 ANSI SQL 2011 defines two types of temporal tables . System-versioned temporal tables keep a history
of data changes based on the time when those changes occurred in the system. They provide you with
a snapshot of the data that existed in the database at a particular time. Application-versioned temporal
tables , on the other hand, provide you with a data snapshot that is valid from a business standpoint.

 Consider the insurance system as an example. Each insurance policy has effective dates that define
when the policy started and expired, or will expire. Application-versioned temporal tables could help to
identify the policies that were active at a particular time. System-versioned temporal tables could help
to find the policy data rows that were present in the database at a particular time, regardless of whether
those policies were active or not.

 Unfortunately, SQL Server 2016 RTM does not support application-versioned temporal tables.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

112

 In a nutshell, each system-versioned temporal table consists of two tables — the current table with the
current data, and a history table that stores old versions of the rows. Every time you modify or delete data in
the current table, SQL Server adds an original version of those rows to the history table.

 A current table should always have a primary key defined. Moreover, both current and history tables
should have two datetime2 columns, called period columns , that indicate the lifetime of the row. SQL Server
populates these columns automatically based on transaction start time when the new versions of the rows
were created. When a row has been modified several times in one transaction, SQL Server does not preserve
uncommitted intermediary row versions in the history table.

 It is worth repeating that period columns always store transaction start time rather than time of the
actual DML operation. This provides you point-in-time consistency when a transaction modifies several
related entities; for example, Orders and OrderLineItems . It opens the door to another phenomenon,
however, which we will discuss later in the chapter.

 There are three ways in which you can create history tables. First, you can allow SQL Server to generate
an anonymous history table by omitting its name during temporal table creation. SQL Server then creates a
history table, auto-generating its name. Alternatively, you can specify the history table's name and schema
and allow SQL Server to create the corresponding table.

 In both of those cases, SQL Server places the history tables in a default filegroup, creating non-unique
clustered indexes on the two datetime2 columns that control row lifetime . It does not create any other
indexes on the table.

 ■ Important In both the Enterprise and Developer Editions, history tables use page compression by default.
You will be unable to restore the database in lower editions of SQL Server unless you rebuild the index
removing the data compression.

 Lastly, you can assign an existing table to become a history table for the temporal table, assuming that
table schemas are compatible. As you can guess, this approach provides you with the most flexibility in
configuration.

 Listing 5-1 shows the code that creates a temporal table by specifying the history table schema and table
name. It has new temporal table – related language constructs in bold-face font.

 Listing 5-1. Creating a temporal table

 create table dbo.Employees
 (
 EmployeeId int not null,
 FullName nvarchar(128) not null,
 Position nvarchar(128) not null,
 Salary money not null,
 SysStartTime datetime2 generated always as row start not null ,
 SysEndTime datetime2 generated always as row end not null ,
 constraint PK_Employees
 primary key clustered(EmployeeId)
 period for system_time(SysStartTime, SysEndTime)
)
 with
 (
 system_versioning = on (history_table = dbo.EmployeesHistory)
);

 create nonclustered index IDX_Employees_FullName
 on dbo.Employees(FullName);

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

113

 Figure 5-1 illustrates both current and history tables in SSMS and also shows the properties of the
clustered index defined on the history table.

 Figure 5-1. Temporal table in SSMS

 Current and history tables are, obviously, logically linked to each other and would have a matching
set of columns. There are no dependencies, however, on the physical storage and indexing . The tables can
each have a different set of indexes, being located in separate filegroups and even using different storage
technologies. For example, it is possible to use a clustered columnstore index for the history data while
keeping row-based storage in the current table.

 History tables, however, cannot have unique indexes or foreign key and table constraints, nor can they
participate in change tracking, change data capture, or transactional or merge replications. You should treat
history tables the same way as you treat regular tables during index and statistics maintenance, which we
will discuss in the next chapter.

 When you alter the schema of the current table, the changes are propagated to the history table.
You cannot drop the temporal table, however, until you stop system versioning with ALTER TABLE SET
(SYSTEM_VERSIONING = OFF) command . This command converts a temporal table to two regular tables in
the database.

 When you update or delete data in the current table, SQL Server copies the affected rows to the history
table. Figure 5-2 illustrates the execution plan of the DELETE FROM dbo.Employees WHERE EmployeeId =
@EmployeeId statement with a clustered index insert to the history table. On a side note, SQL Server does not
store the current version of the row in the history table, and, therefore, the INSERT statement does not insert
data there.

 Figure 5-2. Execution plan of DELETE statement

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

114

 When you select the data from temporal table, SQL Server accesses either one or both tables depending
on the query. Let's look at a few examples, and as a first step, let's populate the dbo.Employees table with
some data, as shown in Listing 5-2 . Figure 5-3 shows the output of the SELECT statements from the code. It is
important to note that SQL Server uses UTC time when it generates period column values.

 Listing 5-2. Populating temporal table with data

 insert into dbo.Employees(EmployeeId, FullName, Position, Salary)
 values
 (1,'John Doe','Database Administrator',85000),
 (2,'David Black','Sr. Software Developer',95000),
 (3,'Mike White','QA Engineer',75000);

 waitfor delay '00:01:00.000';

 update dbo.Employees set Salary = 85500 where EmployeeID = 1;
 delete from dbo.Employees where EmployeeId = 2;

 select 'dbo.Employees' as [Table], * from dbo.Employees;
 select 'dbo.EmployeesHistory' as [Table], * from dbo.EmployeesHistory;

 You can query the history data directly; however, you should remember that it does not contain the
 current version of the rows. Figure 5-3 just illustrated that — there was just one old row for John Doe and no
data for Mike White in the dbo.EmployeesHistory table.

 Figure 5-3. The data in the tables

 Figure 5-4. Querying temporal table without FOR SYSTEM_TIME clause

 By default, when you query the current table, the query works with the current snapshot of the data,
similar to how regular tables work, and it does not access history data. Figure 5-4 illustrates that.

 You can access history data by specifying the FOR SYSTEM_TIME clause of the SELECT . There are several
possible options.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

115

 The FOR SYSTEM_TIME AS OF <time> option returns a snapshot of the data that corresponds to a
particular point in time in the system. SQL Server combines data from both tables when it executes the
 SELECT . Figure 5-5 illustrates the output and execution plan of the SELECT * FROM dbo.Employees FOR
SYSTEM_TIME AS OF '2016-07-09T17:57:00' statement. As you can see, the data represents the state after
the initial insert and before the data modifications seen in Listing 5-2 .

 Figure 5-5. Querying temporal table: FOR SYSTEM_TIME AS OF

 As you can see in Figure 5-5 , SQL Server adds the predicates on period columns in both tables. You
should add indexes on these columns when you use the FOR SYSTEM_TIME option in the queries.

 FOR SYSTEM_TIME FROM <starttime> TO <endtime> and FOR SYSTEM_TIME BETWEEN <starttime>
AND <endtime> clauses return you all versions of the rows that existed in a specific time interval. The
difference between them is that FOR SYSTEM_TIME FROM excludes the <endtime> from the output while FOR
SYSTEM_TIME BETWEEN includes it. Figure 5-6 illustrates that.

 Figure 5-6. Querying temporal table: FOR SYSTEM_TIME FROM and FOR SYSTEM_TIME BETWEEN

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

116

 The FOR SYSTEM_TIME CONTAINED IN option returns you all versions of the rows that were valid in a
specific time interval. It does not include any current versions and should work only with the history table.

 Figure 5-7 illustrates the execution plan of a query with the FOR SYSTEM_TIME CONTAINED IN clause.
Even though it includes a clustered index scan operator on the current table, the filter operator prevents it
from being executed.

 Figure 5-7. Querying temporal table: FOR SYSTEM_TIME CONTAINED IN

 Finally, FOR SYSTEM_TIME ALL concatenates data from both tables and returns it to the client. This can
be useful when you need to access all versions of the rows — both current and all previous ones; for example,
when you analyze trends over time. Figure 5-8 illustrates that.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

117

 I would like to reiterate one very important point. Accessing temporal data with the FOR SYSTEM_TIME
clause adds predicates on the period columns in both the current and history tables. You need to factor that
into the indexing strategy for the system.

 There is another phenomenon you need to be aware of when dealing with queries that access temporal
data. As I already mentioned, SQL Server populates period columns with a time that corresponds to the start
time of the transaction that inserted, updated, or deleted the data. Therefore, temporal queries can return
data that have not yet been committed at a specific point in time.

 Consider a situation in which you have a transaction that started at time TStart and committed at time
 TEnd . The data modifications done by this transaction will be invisible to other sessions unless they are using
the READ UNCOMMITTED transaction isolation level. Depending on the isolation level, those sessions will either
be blocked or read snapshot of the data at the TStart time.

 However, if you query temporal data using the FOR SYSTEM_TIME clause, SQL Server filters data based
on period columns, which contain the TStart rather than the TEnd timestamp, which can lead to incorrect
results.

 ■ Note We will discuss transaction isolation level and concurrency in Part V of the book.

 You can read more about temporal tables at https://msdn.microsoft.com/en-us/library/dn935015.aspx

 Figure 5-8. Querying temporal table: FOR SYSTEM_TIME ALL

https://msdn.microsoft.com/en-us/library/dn935015.aspx

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

118

 Stretch Database s
 It has become common for systems to collect a large amount of data and retain it in the database for a
long time. In many cases, old data is rarely accessed by the users; it is just retained due to compliance and
regulations or for other purposes. Properly designed databases would partition the data, separating current
and old data from each other; however, there are many implementations in which everything is stored in a
single, non-partitioned table.

 There are many challenges with this implementation. It makes performance tuning and database
maintenance more difficult. It complicates high availability and disaster recovery planning, and it also
increases hardware and storage costs. A new SQL Server 2016 feature, the stretch database , can address some
of these challenges by storing part of the data in Microsoft Azure SQL Database, accessing it transparently to
the applications.

 Conceptually, a stretch database is similar to a linked server setup, with a set of internal processes that
move data between the servers in the background. You can migrate either an entire table or just subset of the
table data by specifying an inline table- valued filter function , which controls what rows need to be moved.
The queries continue to work with the local database, and SQL Server transparently accesses a remote
portion of the data in Microsoft Azure by running remote queries when needed.

 One caveat of this technology is the requirement to have connectivity between the servers. Without
connectivity, the queries — which access remote data — would fail. You should remember this behavior when
you choose to use the feature.

 Figure 5-9 provides a high-level overview of stretch database implementation. When data is migrated,
SQL Server temporarily retains a copy of migrated rows in the local internal-staging tables, ensuring that the
data can be reconciled if you restore local or Azure SQL database backups . By default, the data is retained for
eight hours, which corresponds to SQL Azure's automatic backup schedule. You can increase this time with
the sys.sp_rda_set_rpo_duration stored procedure. Keep in mind, however, that a longer retention time
increases the size of the staging tables in the local database.

 Figure 5-9. Stretch database overview

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

119

 When you back up the stretch-enabled database, SQL Server creates a shallow backup . It only contains
the local data and rows eligible for the migration at the time when the backup runs. The remote portion of
the data in Azure SQL Database is protected by automatic, geo-redundant storage snapshot backups that
run every eight hours and are retained for seven days, providing you with a range of restore points. We will
discuss Azure storage snapshot backups in Chapter 31 .

 After you restore the stretch-enabled database , you need to re-establish the connection between the
local and Azure databases with the sys.sp_rda_reauthorize_db stored procedure. You can perform a point-
in-time restoration of the SQL database from the Azure portal, where storage backups are maintained for
seven days.

 Configuring Stretch Database
 Before you can start using stretching, it has to be enabled on both the server and database levels. Perhaps the
easiest way to perform the initial setup is using the Enable Database for Stretch wizard in SSMS. This wizard
configures both server- and database-level stretching and also allows you to choose the tables to stretch.

 Alternatively, you can use T-SQL to configure it. You can enable stretching on the server level by
running the EXEC SP_CONFIGURE 'remote data archive', '1' command, which requires sysadmin or
 serveradmin permissions.

 Listing 5-3 illustrates how you can enable stretching on the database using the existing Microsoft Azure
SQL Server as the target. This action requires CONTROL DATABASE permission to execute.

 Listing 5-3. Enable stretch database on the database level

 -- Creating the Master Key
 create master key encryption by password='Strong Password';

 -- Creating the Database Scoped Credentials with SQL Server Login Info
 create database scoped credential SQLServerLoginInfo
 with
 identity = 'my_azure_sql_server_login_name'
 ,secret = 'my_password';

 -- Enabling Stretching for the database
 alter database MyDatabase
 set remote_data_archive = on
 (
 server = 'myserver.database.windows.net'
 ,credential = SQLServerLoginInfo
);

 After the feature is enabled, you can choose the tables to stretch. The Stretch Database Advisor tool,
which is included in SQL Server 2016 Upgrade Advisor, can help you to identify the tables that can most
benefit from the technology, along with any blocking issues that can prevent stretching.

 There are quite a few such blocking issues in SQL Server 2016 RTM. For example, a table cannot have
 DEFAULT and CHECK constraints nor be referenced by foreign keys. The table cannot use XML , text , ntext ,
 image , timestamp , sql_variant , or CLR data types, nor be included in the indexed views.

 There are other limitations after stretch is enabled. The most notable is that SQL Server does not
enforce UNIQUE and PRIMARY KEY constraints nor allow you to UPDATE and DELETE migrated data.

http://dx.doi.org/10.1007/978-1-4842-1964-5_31

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

120

 ■ Note You can read about the Stretch Database Advisor tool at https://msdn.microsoft.com/en-us/
library/dn935004.aspx . The full list of limitations is available at https://msdn.microsoft.com/en-us/
library/mt605114.aspx

 When a table is stretch-compatible, you can stretch it by using the ALTER TABLE SET (REMOTE_DATA_
ARCHIVE = ON) command or through the Stretch task in SSMS. As I already mentioned, you can migrate
either the entire table or a subset of the table data. The latter case requires you to specify the filter function
that controls which rows need to be migrated. When the filter function is provided, SQL Server applies it to
the rows in the table using the CROSS APPLY operator. The row is eligible for migration when the function
returns a non-empty result set.

 Listing 5-4 illustrates both methods. It shows ALTER TABLE statements that migrate the entire dbo.
AppLogs table and a subset of the data from the dbo.Orders table. The migration_state option controls the
direction of migration. It can have one of three values: OUTBOUND (data is moved from the local database to
Azure), INBOUND (data is moved back from Azure to the local database), and PAUSED .

 Listing 5-4. Enable stretch for the tables

 alter table dbo.AppLogs
 set (remote_data_archive = on (migration_state = outbound));

 create function dbo.fnOrdersOlderThanJan2016(@OrderDate datetime2(0))
 returns table
 with schemabinding
 as
 return
 (
 select 1 as is_migrating
 where @OrderDate < convert(datetime2(0), '1/1/2016', 101)
)
 go

 alter table dbo.Orders set
 (
 remote_data_archive = on
 (
 filter_predicate = dbo.fnOrdersOlderThanJan2016(OrderDate),
 migration_state = outbound
)
);

 As you can guess, the filter functions should be deterministic and should not depend on the data outside
of the row it is evaluating. You cannot perform any data access from there. Moreover, only the primitive
predicates and conditions, such as AND and OR predicates, IN , IS NULL, IS NOT NULL , and comparison
operators are supported. All of this guarantees that a function always returns the same result for the same set
of parameter values .

 You can change the filter function by altering the table. However, the new function should provide less
restrictive results and allow you to migrate more rows than before.

 Listing 5-5 illustrates the function dbo.fnOrdersOlderThanFeb2016 , which can replace the dbo.
fnOrdersOlderThanJan2016 function defined in Listing 5-4 . It also shows the ALTER TABLE statement that
replaces the filter function. This code shows an example of the sliding window scenario implementation
with stretch databases.

https://msdn.microsoft.com/en-us/library/dn935004.aspx
https://msdn.microsoft.com/en-us/library/dn935004.aspx
https://msdn.microsoft.com/en-us/library/mt605114.aspx
https://msdn.microsoft.com/en-us/library/mt605114.aspx

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

121

 Listing 5-5. Replacing the filter function

 create function dbo.fnOrdersOlderThanFeb2016(@OrderDate datetime2(0))
 returns table
 with schemabinding
 as
 return
 (
 select 1 as is_migrating
 where @OrderDate < convert(datetime2(0), '2/1/2016', 101)
)
 go

 alter table dbo.Orders set
 (
 remote_data_archive = on
 (
 filter_predicate = dbo.fnOrdersOlderThanFeb2016(OrderDate),
 migration_state = outbound
)
);

 As another example, Listing 5-6 illustrates a function that cannot be used as replacement of the original
filter function . It adds the predicate @Completed parameter and, therefore, is more restrictive than the
original. Thus, some of the rows that have already been migrated are not eligible for migration anymore,
which is not allowed.

 Listing 5-6. More restrictive filter function

 create function dbo.fnInvalid(@OrderDate datetime2(0), @Completed bit)
 returns table
 with schemabinding
 as
 return
 (
 select 1 as is_migrating
 where
 (@Completed = 1) and
 @OrderDate < convert(datetime2(0), '2/1/2016', 101)
)

 Querying Stretch Databases
 Even though stretch databases are transparent to client applications, they do not guarantee that query
performance will remain the same. In some cases, stretching can improve performance by reducing the
amount of data to scan locally and/or running scans in parallel on both servers. In other cases, they could
hurt performance due to network latency and cross-server joins.

 If you have ever worked with linked servers, you should be aware of potential performance issues with
the technology. The distributed queries work great when predicates can be evaluated remotely and servers
do not need to push a large amount of data over the network. Otherwise, the large amount of network traffic
and remote calls can greatly affect performance. There is also the connectivity aspect of the technology. The
distributed queries would fail if there were no connectivity between the servers.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

122

 All of that remains true for stretch databases. Let's look at several examples related to performance and
data access.

 Listing 5-7 shows the code that creates the dbo.Customers and dbo.Orders tables and populates them
with some data. It also assumes that we enabled stretching for the dbo.Orders table by running the code
from Listing 5-5 and migrated all orders older than February 2016 to Microsoft Azure.

 Listing 5-7. Querying stretch databases: Table creation

 create table dbo.Customers
 (
 CustomerId int identity(1,1) not null,
 Name nvarchar(32) not null,
 PostalCode char(5) not null,
 constraint PK_Customers primary key clustered(CustomerId)
);

 create table dbo.Orders
 (
 OrderId int not null,
 CustomerID int not null,
 OrderDate datetime2(0) not null,
 Amount money not null,
 Completed bit not null,
 constraint PK_Orders primary key clustered(OrderId)
);

 create nonclustered index IDX_Orders_CustomerId on dbo.Orders(CustomerId);
 create nonclustered index IDX_Orders_OrderDate on dbo.Orders(OrderDate);

 -- 65,536 customers total. 256 customers per Postal Code
 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)
 insert into dbo.Customers(Name, PostalCode)
 select 'Customer ' + convert(varchar(32),i1.ID * i2.Id)
 ,convert(char(5),10000 + i2.ID)
 from IDs i1 cross join IDs i2;

 declare
 @StartDate datetime2(0) = '2016-09-01';

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,N6(C) as (select 0 from N5 as T1 cross join N3 as T2) -- 1,048,576 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6)

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

123

 insert into dbo.Orders(OrderId, CustomerId, Amount, OrderDate, Completed)
 select ID, ID % 65536 + 1, Id % 50, dateadd(day,-ID % 365, getDate()), 0
 from IDs;

 /* Enable Stretching for dbo.Orders table with Listing 5-5 code */

 First, let's run a query that calculates how many orders were submitted in January and February of 2016.
That code is shown in Listing 5-8 .

 Listing 5-8. Querying stretch databases: Counting total number of orders

 select count(*) as [Order Count]
 from dbo.Orders o
 where o.OrderDate >= '2016-01-01' and o.OrderDate < '2016-03-01';

 Figure 5-10 illustrates a partial execution plan for the query. As you can see, SQL Server performed
 COUNT() aggregation remotely, and the remote query returned just a single row to the local server.

 Figure 5-10. Execution plan: Counting total number of orders

 Now, let's run a query that calculates the total sales on a per-customer basis, as shown in Listing 5-9 .

 Listing 5-9. Querying stretch databases: Total sales on per-customer basis

 select c.Name, sum(o.Amount) as [Total Sales]
 from dbo.Customers c join dbo.Orders o on
 c.CustomerId = o.CustomerId
 group by c.Name

 Figure 5-11 shows the execution plan and execution time of the query. As you can see, SQL Server
decides to bring all the remote data over the network and perform aggregation locally. You can also see a
cardinality estimation error, even though statistics were up to date on both servers. It happened because of
the extra internal predicates which remote SQL Server added to the query.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

124

 Finally, let's add the predicate to the previous query, filtering customers by the postal code. This query
is shown in Listing 5-10 .

 Listing 5-10. Querying stretch databases: Filter by PostalCode

 select c.Name, sum(o.Amount) as [Total Sales]
 from dbo.Customers c join dbo.Orders o on
 c.CustomerId = o.CustomerId
 where c.PostalCode = '10050'
 group by c.Name

 As you can see in Figure 5-12 , the shape of the execution plan has changed. SQL Server runs multiple
remote queries, selecting data for the individual customers with a nested loop operator. Even though this
approach reduced the number of rows transmitted over the network, the overhead of multiple remote calls
led to a significantly longer execution time.

 Figure 5-11. Execution plan: Total sales on per-customer basis

 Figure 5-12. Execution plan: Filtering by PostalCode

 All of these queries did not have the predicate on the OrderDate column, and, therefore, SQL Server
had to access both local and remote data. Adding such a predicate would allow SQL Server to eliminate
unnecessary remote-server access. For example, if you run the SELECT COUNT(*) FROM dbo.Orders WHERE
OrderDate >= '2016-05-01' statement, you would have the execution plan, which does not access the
remote server, shown in Figure 5-13 .

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

125

 Parameterization and autoparameterization, however, can still lead to a situation in which the query
has to access the remote server when the plan is cached. While it would not necessarily introduce a huge
performance impact — the remote query could just evaluate the predicate value without performing any data
access — the query would fail if there were no connectivity between the servers.

 You should keep these performance and connectivity implications in mind when you decide to stretch
the data. In many cases, it is safer to partition the data to separate tables, stretching the entire History table
rather than migrating a subset of data from the single table. This approach, however, requires code changes
and defeats purpose of the transparency of the technology to client applications.

 ■ Note We will discuss data partitioning in more detail in Chapter 16 and plan caching in Chapter 26 .

 Finally, it is worth repeating that, by default, SQL Server does not allow you to specify the data location
when you query stretch-enabled table . Nor does it allow you to update or delete remote data after rows have
been migrated. There is the table hint —WITH (REMOTE_DATA_ARCHIVE_OVERRIDE)— which allows the members
of the db_owner role to change the scope of the queries. This hint can have one of the three values:

 LOCAL_ONLY - runs the query against local data only

 REMOTE_ONLY - runs the query against remote data only

 STAGE_ONLY - runs the query against staged data (the rows that temporarily
persisted in the local database after they were migrated to Azure)

 This hint can be used with SELECT , UPDATE , and DELETE queries and allows you to modify and delete
remote data. Be careful, however, if you need to modify remote data in the scope of the active transaction.
This operation can take a considerable amount of time, and can even fail if SQL Server cannot access the
remote database. It is better to implement data modifications asynchronously using Service Broker or other
queue-based technologies.

 Stretch Database Pricing
 Stretch database is an exciting feature that can be helpful in many scenarios. Unfortunately, it is expensive.

 The cost of using stretch database consists of two parts — compute and storage. Essentially, you are
choosing the performance tier of Microsoft Azure SQL Database and also paying for the storage of the
database files and backups.

 The pricing in Microsoft Azure can change at any time, but as of September 2016, the lowest compute
tier with 100 DSU (Database Stretch Units) is priced at $1,860 per month. The storage cost is $164 per 1TB of
storage per month. In reality, it means that you have to pay more than $2,000 per month to store 1 TB of data
remotely using the lowest compute tier.

 Figure 5-13. Execution plan: Predicate on OrderDate column

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
http://dx.doi.org/10.1007/978-1-4842-1964-5_26

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

126

 You should factor that cost into your analysis. In many cases, implementing data partitioning and tiered
storage is a more cost-effective solution in the long term, especially if you are using the Enterprise Edition of
SQL Server. We will discuss such implementation in Chapter 16 .

 ■ Note You can read more about stretch database setup, maintenance, and monitoring at https://msdn.
microsoft.com/en-us/library/dn935011.aspx

 Row-Level Security
 Row-level security limits read and write access to some of the rows in tables on a per-user basis. As the
opposite to regular SELECT , INSERT , UPDATE , and DELETE permissions that work on the scope of entire table,
row-level security helps to implement a security model that takes row data into consideration. For example,
in client - management systems, you can use row-level security to limit regular users' access to a subset of the
clients while allowing the regional managers to see all clients from the region. Another common use case is
security in a multi-tenant setup when tenants' data should be invisible to the other tenants in the system.

 To implement row-level security, you have to write an inline table-valued function, which is called a
 policy function . This function returns a single-row result set for the rows that should be visible to the user. As
the next step, you should create a security policy that binds that function to the table.

 Let's look at an example and assume that we want to implement a simple client-management system.
The code shown in Listing 5-11 creates several users in the database and a table with a few rows.

 Listing 5-11. Row-level security: Set up users and table for row-level security

 create user ClientManager1 without login;
 create user RegionalManager without login;
 create schema Client;
 go

 create table Client.Client1
 (
 ClientID int not null,
 ClientManager sysname not null,
 Revenue money not null,
 OtherInfo nvarchar(100) not null
);

 grant select on Client.Client1 to ClientManager1, RegionalManager;

 insert into Client.Client1 values
 (1, 'ClientManager1', 100000, 'abc')
 ,(2, 'ClientManager1', 200000, 'def')
 ,(3, 'ClientManager2', 300000, 'ghi')
 ,(4, 'ClientManager2', 400000, 'jkl')
 ,(5, 'ClientManager3', 500000, 'mno');

 With the current implementation, every user can see all data in the table. You can test it by
impersonating the users with the EXECUTE AS command, as shown in Listing 5-12 .

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
https://msdn.microsoft.com/en-us/library/dn935011.aspx
https://msdn.microsoft.com/en-us/library/dn935011.aspx

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

127

 Listing 5-12. Row-level security: Select data impersonating user

 execute as user = 'ClientManager1';
 select * from Client.Client1;
 revert;

 As you can see in Figure 5-14 , the query returns all rows, which is expected at this point. The execution
plan is a simple full table scan .

 Figure 5-14. Row-level security: Data and execution plan without RLS applied

 Let's set up row-level security and, as the first step, create a policy function that determines if a row can
be seen by a user. In the example shown in Listing 5-13 , the function is very simple. It takes one argument —
 the manager name—and compares it to the user that executes the query. Obviously, in a real-world scenario,
it would be better to check Active Directory group memberships instead.

 The function must return a row (the value and column name do not matter) if a table row should
be made visible to the current user. It is also worth noting that the security function defined with the
 SCHEMABINDING clause does not require users to have SELECT permissions for the tables accessed from within
the function. Alternatively, functions defined without the SCHEMABINDING clause will require the user to have
those permissions.

 Listing 5-13. Row-level security: Security policy function

 create function Client.fn_LimitToManager(@Manager as sysname)
 returns table
 with schemabinding
 as
 return
 (select 1 AS fn_LimitToManagerResult
 where @Manager = user_name() or user_name() = 'RegionalManager')

 The final step is creating the security policy that ties the function and the table together. You can see the
syntax of the command in Listing 5-14 . The FILTER predicate in the security policy specifies the function that
is responsible for the read access to the data. The BLOCK predicate, which we will discuss later in the chapter,
controls write access to the data.

 Listing 5-14. Row-level security: Security policy

 create security policy LimitMgrFilter
 add filter predicate Client.fn_LimitToManager(ClientManager)
 on Client.Client1
 with (state = on)

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

128

 If you run the code from Listing 5-12 again, you should see that the query returns just two rows that are
managed by ClientManager1 , as shown in Figure 5-15 .

 Figure 5-16. Execution plan with row-level security applied

 Figure 5-15. Row-level security: Data after RLS has been applied

 Performance Impact
 As you can guess, row-level security introduces performance overhead, which depends on the
implementation of the policy function. Figure 5-16 shows the execution plan of the query from Listing 5-12
after the security policy has been applied. You can see an additional Filter operator that corresponds to the
policy function.

 Let's change our example to use a lookup table that stores client/manager relations, as shown in Listing 5-15 .
As the last step, the code will run a SELECT statement impersonating the user, similar to in Listing 5-12 .

 Listing 5-15. Row-level security: Reference table in security policy function

 create table Client.ClientManager
 (
 ID int not null
 constraint PK_ClientManager primary key clustered,
 ManagerName nvarchar(100) not null,
 isRegionalManager bit not null
);

 insert into Client.ClientManager values
 (1,'ClientManager1',0), (2,'ClientManager2',0)
 ,(3,'ClientManager3',0), (4,'RegionalManager',1);

 create table Client.Client2
 (
 ClientID int not null,
 ClientManagerID int not null
 constraint FK_Client2_ClientManager

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

129

 foreign key references Client.CLientManager(ID),
 ClientName nvarchar(64) not null,
 CreditLimit money not null,
 IsVIP bit not null
 constraint DEF_Client2_IsVIP default 0
);

 grant select on Client.Client2 to ClientManager1, RegionalManager;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select ROW_NUMBER() over (order by (select null)) from N5)
 insert into Client.Client2(ClientID, ClientManagerID, ClientName, CreditLimit, IsVip)
 select ID, ID % 3 + 1, convert(nvarchar(6),ID), 100000, abs(sign(ID % 10) - 1)
 from IDS
 go

 create function Client.fn_LimitToManager2(@ManagerID AS int)
 returns table
 with schemabinding
 as
 return
 (select 1 as fn_LimitToManagerResult
 from Client.ClientManager
 where ManagerName = user_name()
 and ((ID = @ManagerID) or (isRegionalManager = 1)))
 go

 create security policy LimitMgrFilter2
 add filter predicate Client.fn_LimitToManager2(ClientManagerID)
 on Client.Client2
 with (state = on);
 go

 -- Getting data while impersonating the user
 execute as user = 'ClientManager1';
 select * from Client.Client2;
 revert;

 As you can see in the execution plan shown in Figure 5-17 , row-level security added the nested loop join
to the execution plan, performing a clustered index scan on each execution. As you can guess, this would
significantly affect the performance of the query.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

130

 The performance impact of row-level security depends on the complexity of the policy function, which
is applied to every row in the result set. You should make policy functions as simple as possible, limiting
data access whenever it is possible. In cases where data access is required, you need to make sure that it
is optimized. For example, adding the index with CREATE INDEX IDX_ClientManager_ManagerName ON
Client.ClientManager(ManagerName) INCLUDE(IsRegionalManager) would eliminate the clustered index
scan and would lead to the execution plan shown in Figure 5-18 .

 Figure 5-18. Execution plan with lookup table after index creation

 Figure 5-17. Execution plan with lookup table

 In some cases, when the security model is relatively static, you can consider storing some information
in the session context, populating it on the login phase. A policy function could get the information from
there using the session_context() function rather than performing data access. You will see an example of
how to use session context in Chapter 9 .

 Other useful functions that can help you to eliminate data access are the following: user_name() , suser_
name() , suser_sname() , original_login() , is_member('domain\group') , is_rolemember('rolename',
original_login()) , is_srvrolemember('serverrolename', original_login() , app_name() , program_
name() , platform() , session_user() , sessionproperty() , database_principal_id() , and @@SPID .

 Blocking Modifications
 Row-level security can be used to prevent users from modifying data on the row level. In this case, the
security policy should have the BLOCK predicate instead of or in addition to a FILTER predicate. The
predicates work together — the rows filtered out by the FILTER predicate are invisible to the user and,
therefore, it is impossible to update or delete those rows, with or without the BLOCK predicate specified. The
 FILTER predicate, however, would not prevent users from inserting data that violates the predicate condition,
and you need to use the BLOCK predicate to avoid it.

http://dx.doi.org/10.1007/978-1-4842-1964-5_9

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

131

 You can specify BLOCK predicates for BEFORE INSERT , AFTER INSERT , BEFORE UPDATE, AFTER UPDATE ,
and BEFORE DELETE operations. BEFORE predicates are useful when you want to prevent data modifications
for some rows. AFTER predicates help to block operations when the values violate the predicate.

 Listing 5-16 shows such an example. The BEFORE UPDATE predicate prevents the update of VIP clients
(IsVIP=1) for non-regional managers. The AFTER UPDATE predicate disallows non-regional managers to set
the CreditLimit value above 100,000. The script also grants UPDATE permission on the table and denies the
right to update the ClientManagerId value to both users.

 Listing 5-16. Row-level security: BLOCK predicates

 /* Checking if user is the Regional Manager */
 create function Client.fn_CurrentUserIsRegionalManager()
 returns table
 with schemabinding
 as
 return
 (
 select 1 as Result
 from Client.ClientManager
 where ManagerName = user_name() and IsRegionalManager = 1
)
 go

 create function Client.fn_checkCanUpdateVIP(@IsVIP bit)
 returns table
 with schemabinding
 as
 return
 (
 select 1 as CanUpdateClient
 where
 case
 when @IsVip = 0 then 1
 else (select Result from Client.fn_CurrentUserIsRegionalManager())
 end = 1
)
 go

 create function Client.fn_checkCanUpdateCreditLimit(@CreditLimit money)
 returns table
 with schemabinding
 as
 return
 (
 select 1 as CanUpdateClient
 where
 case
 when @CreditLimit <= 100000 then 1
 else (select Result from Client.fn_CurrentUserIsRegionalManager())
 end = 1
)
 go

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

132

 alter security policy LimitMgrFilter2
 add block predicate Client.fn_checkCanUpdateVIP(IsVip) on Client.Client2 before update,
 add block predicate Client.fn_checkCanUpdateCreditLimit(CreditLimit) on Client.Client2 after update;

 grant update on Client.Client2 to ClientManager1, RegionalManager;
 deny update Client.Client2(ClientManager) to ClientManager1, RegionalManager;

 As you have probably noticed, the predicates in Listing 5-15 do not validate the client ownership for
non-regional manager users. That validation is done by the FILTER predicate, which will make those rows
invisible and, therefore, exclude them from the update.

 Finally, there is one other important thing to remember about BEFORE UPDATE and AFTER UPDATE BLOCK
predicates . SQL Server does not evaluate them unless you update the columns that are used as parameters
in the policy function. For example, the implementation in Listing 5-15 would not prevent non-regional
manager users from updating the ClientName of VIP clients. You can either add extra parameters to the
function, as shown in Listing 5-17 , or rely on triggers to address the problem.

 Listing 5-17. Row-level security: Adding extra columns to BLOCK predicates (partial)

 create function Client.fn_checkCanUpdateVIP(@IsVIP bit, @ClientName nvarchar(64))
 returns table
 with schemabinding
 as
 return
 (
 select 1 as CanUpdateClient
 where
 case
 when @IsVip = 0 then 1
 else (select Result from Client.fn_CurrentUserIsRegionalManager())
 end = 1
)
 go

 alter security policy LimitMgrFilter2
 add block predicate Client.fn_checkCanUpdateVIP(IsVip,ClientName) on Client.Client2 before update,

 ■ Note You can read more about row-level security at https://msdn.microsoft.com/en-us/library/
dn765131.aspx

 Always Encrypted
 Always Encrypted is the new SQL Server 2016 Enterprise Edition feature that allows you to encrypt both
 data-at-rest and data-in-transit in the system on a per-column basis. Always Encrypted has two key
differences when compared to other similar technologies.

 First, it performs encryption and decryption of the data almost transparently to the client applications, and
data-in-transit encryption does not rely on transport security, such as SSL or TLS. Second, and more important,
it allows you to implement a true separation of duties between security administrators, who manage security
keys in the key store, and database administrators, who manage metadata about security keys in the database.
With this separation, neither role would be able to decrypt sensitive data in the system.

https://msdn.microsoft.com/en-us/library/dn765131.aspx
https://msdn.microsoft.com/en-us/library/dn765131.aspx

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

133

 Always Encrypted Overview
 Always Encrypted uses two types of keys to protect data. The column encryption key (CEK) encrypts the data
in the database. The column master key (CMK) encrypts the column encryption keys. The encrypted CEKs
are stored in the database, while the CMKs are stored in a trusted key store, such as Windows Certificate
Store, Azure Key Vault, or Hardware Security Modules. It is also possible to implement a custom key store, if
necessary.

 The data in the database is always stored encrypted using the AEAD_AES_256_CBC_HMAC_SHA_256
algorithm, and it is never decrypted by SQL Server. All decryption is done by the client application, which
needs to use an Always Encrypted – enabled client driver. As of August 2016, Always Encrypted is supported
by the Microsoft .Net 4.6, Microsoft JDBC 6.0, and Windows ODBC 13.1 SQL Server drivers. This list may
change in the future.

 The application needs to specify that it can handle Always Encrypted in the connection string using the
 Column Encryption Setting property. When SQL Server sends encrypted data back to such applications,
it attaches an encrypted CEK and the location of the CMK to the result set. The client driver communicates
with the key store and gets the CMK, which is used to decrypt the CEK and column data.

 A similar process happens with parameterized queries. The driver collaborates with SQL Server in
determining what parameters should be encrypted. It obtains the CEK and the location of the CMK from
SQL Server, gets the CMK from the key store, and encrypts the parameter values before sending a query to
SQL Server. All encryption and decryption is done transparently to the client applications, and data is never
transmitted over the wire unencrypted. It is also worth noting that the driver uses the local cache to store
decrypted column encryption keys so as to reduce the number of round trips made to the key store.

 Figure 5-19 illustrates the Always Encrypted components.

 Figure 5-19. Always Encrypted workflow

 Communication with the server adds extra round trips and network traffic. Figure 5-20 shows the calls
performed by a client application while running the query against a table with an encrypted ClientName
column. As you can see, the driver called the sp_describe_parameter_encryption stored procedure, which
provides the information about the encrypted column.

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

134

 Always Encrypted supports two different types of encryption. Deterministic encryption always generates
the same encrypted value for any given unencrypted value, which allows you to create indexes on encrypted
columns and utilize them for point-lookup searches, equality joins, and grouping. However, deterministic
encryption increases security risks by allowing unauthorized users to examine patterns in encrypted data
and guess their values. Deterministic encryption is not the best choice if the number of possible encrypted
values is relatively small.

 The second type of encryption, randomized encryption , generates random values during each
encryption. It is more secure than deterministic encryption; however, it prevents searching, grouping, and
joining on encrypted columns.

 There are several other limitations associated with Always Encrypted. The most notable are:

 The following data types cannot be encrypted: xml , timestamp/rowversion ,
 image , (n)text , sql_variant , hierarchyid , geography , geometry and user-
defined types

 Text columns ((n)char and (n)varchar) must have binary BIN2 collation in
order to be encrypted.

 Encrypted columns cannot have DEFAULT or CHECK constraints.

 Columns that use randomized encryption cannot be indexed, be defined as
 UNIQUE , or participate in PRIMARY KEY or FOREIGN KEY constraints.

 ■ Note You can see a full list of limitations at https://msdn.microsoft.com/en-us/library/mt163865.aspx

 As you can guess, encrypted values require extra storage space. The storage overhead is pretty significant,
especially for the smaller data types. All data types that use less than 16 bytes of storage in plain text will use
65 bytes when encrypted. For the data that use 16 or more bytes, the storage space can be calculated based
on the following formula: 1 + 32 + 16 + (FLOOR(DATALENGTH(plain_text_length)/16) + 1) * 16 .
For example, a 16-byte uniqueidentifier value will use 81 bytes when encrypted. Obviously, you should
remember the 8,060-byte row-size limitation for IN_ROW data if you decide to encrypt a wide table.

 Programmability
 As I already mentioned, Always Encrypted works almost transparently to the application. All encryption
and decryption is done by the driver, and you just need to enable Always Encrypted by setting the Column
Encryption Setting=enabled property in the connection string.

 There is a catch, however. Once data is encrypted, SQL Server is unable to decrypt it to perform any
operations that require decrypted data. Consider the dbo.Employees table with an encrypted Salary column
as an example. SQL Server would be unable to execute the SELECT * FROM dbo.Employees WHERE Salary
>= @Salary statement because it is unable to decrypt the Salary column's data to evaluate the predicate.
Similarly, SQL Server would be unable to perform a substring search using the LIKE operator or calculate the
length of an encrypted string column with the LEN function. All of these queries would fail, and you would
need to change the client application and implement all of the logic there after the data is decrypted. In
many cases, this will also require the client application to bring more data over the network.

 Figure 5-20. Client/SQL Server communication with Always Encrypted enabled

https://msdn.microsoft.com/en-us/library/mt163865.aspx

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

135

 The columns encrypted with randomized encryption cannot be used in any predicates, join conditions,
or grouping. Randomized encryption generates different values for the same input and, therefore, SQL
Server cannot compare the data without decrypting it. Deterministic encryption, on the other hand,
guarantees the same encrypted value for the same input, and SQL Server can perform equality comparisons
of encrypted data, which allows you to reference columns with deterministic encryption in point-lookup
searches, equality joins, and grouping. You can also index columns with deterministic encryption to
optimize those use cases.

 Equality comparison is the only operation supported by deterministic encryption. For example, the
query with the Salary = @Salary predicate would work with deterministic encryption, while the Salary >=
@Salary predicate would fail the query regardless of encryption type.

 Always Encrypted does not support ad-hoc non-parameterized queries, and it also requires you to use
parameters when inserting data or updating encrypted columns. You should also use parameters in equality
search predicates against columns with deterministic encryption. Even though these requirements look like
limitations, removing ad-hoc workload reduces the plan's cache-memory consumption and could improve
the performance of the system. Nevertheless, it may require code changes in the client application.

 Security Considerations and Key Management
 It is always important to choose the right tool for the job, and Always Encrypted has one key difference
when compared to other SQL Server encryption technologies. It is the only technology that allows you
to implement the separation of duties security concept, separating the roles of security and database
administrators in a business. When this separation is not required, it is entirely possible that other SQL
Server technologies would be the better solution. For example, it can be easier to encrypt data-at-rest with
 transparent data encryption (TDE) and/or column-level encryption using SSL/TLS for transport security.

 Moreover, implementing a separation of duties is never limited to the technical implementation. It
requires businesses to define and adopt formal policies and processes, with technology just supporting
them. For example, one of the prerequisites to Always Encrypted implementation is defining the key
management process, which outlines how security keys need to be generated, stored, backed up, and
rotated.

 As a general rule, security administrators should generate CMK and CEK on a computer separate from
SQL Server. This will prevent a rogue administrator of a computer that is hosting Always Encrypted data
from accessing the keys on disk or in computer memory. It is also important to back up the keys after they
are generated and store those backups in a safe physical location.

 Key rotation is another important factor in security. Always Encrypted allows you to rotate both CMK
and CEK, either in SSMS or with T-SQL. Rotation of CMK decrypts all CEK with the old key and encrypts
them with the new key. This is a very fast operation. Rotation of CEK, on the other hand, will require you to
decrypt and encrypt all table data , which can be very time consuming on large tables.

 Finally, it is important to remember that with Always Encrypted, the data is decrypted on the driver
level and is stored in memory in plain text. Some security standards and regulations require the application
to keep certain data encrypted even in memory. For example, payment card industry (PCI) standards require
you to keep all credit card numbers encrypted all the time. You should combine Always Encrypted with
other technologies when this is the case.

 ■ Note You can see read more about Always Encrypted and how to configure and use it at https://msdn.
microsoft.com/en-us/library/mt163865.aspx

https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

136

 Dynamic Data Masking
 Dynamic data masking allows you to hide the content of sensitive columns by masking it in the result sets. It
allows you to obfuscate either entire column data or just part of the value; for example, allowing users to see
the last four digits of a credit card number or Social Security number.

 Dynamic data masking works on a per-column level and is controlled by the UNMASK permission. Users
with such permission will see unmasked data in the result set, while users without that permission will see
obfuscated data. For example, you can grant UNMASK permission on the CreditCardNumber column to the
 Accounting group, who will see the unmasked value. The Call Center group, on the other hand, should not
have this permission and would see the masked value instead.

 The masking rule is controlled by the masking function . SQL Server 2016 RTM supports four masking
functions, specified next. It is worth noting that NULL values will always be displayed as NULL .

 default() returns the default value for the data type. For example, the function
uses 0 for numeric data types and 1900-01-01 for date and time information. For
the text data, it replaces the text with XXXX characters.

 email() masks the value of the email address by showing the first actual letter
from the email, replacing everything else with xxx@XXXX.com . For example, a
 tg@grohser.at email address will be replaced with a txxx@XXXX.com value.

 random() works only with numeric datatypes (int , float , money , …) and replaces
data with a random value from the interval specified as a parameter of the
function.

 partial() is the most flexible function, allowing you to define a custom string
that is used for masking. It takes three parameters, such as prefix , padding ,
and suffix. Prefix and suffix are integer values that define the number
of characters at the beginning and end of the text that are populated from the
original value. The optional padding value controls the masking pattern.

 Listing 5-18 shows dynamic data masking in action . The code creates a table with several columns
masked with different masking functions. Then, it performs two SELECT queries in context of the users both
with and without UNMASK permissions.

 Listing 5-18. Dynamic data masking in action

 create table dbo.Consultants
 (
 ID int not null,
 FirstName varchar(32)
 masked with (function='partial(1,"XXXXXXXX",0)') not null,
 LastName varchar(32) not null,
 DateOfBirth date
 masked with (function='default()') not null,
 SSN char(12)
 masked with (function='partial(0,"XXX-XXX-",4)') not null,
 EMail nvarchar(255)
 masked with (function='email()') not null,
 SpendingLimit money
 masked with (function='random(500,1000)') not null
);

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

137

 insert into dbo.Consultants(ID,FirstName,LastName,DateOfBirth,SSN,Email,SpendingLimit)
 values
 (1,'Thomas','Grohser','1/1/1980','123-456-7890','tg@grohser.com',10000)
 ,(2,'Dmitri','Korotkevitch','1/1/2010','234-567-8901','dk@aboutsqlserver.com',10000);

 create user NonPrivUser without login;
 grant select on dbo.Consultants to NonPrivUser;
 go

 -- Running as db_owner who can UNMASK the data
 select * from dbo.Consultants;

 -- Running as non-privilege user without UNMASK permission
 execute as user = 'NonPrivUser';
 select * from dbo.Consultants
 revert;

 Figure 5-21 shows the output of both queries. The result sets represent unmasked and masked data
respectively.

 Figure 5-21. Dynamic data masking in action

 Figure 5-22. Execution plan of the query with dynamic data masking

 Performance and Security Considerations
 When data needs to be obfuscated, SQL Server applies the masking after the data-access operators, usually
using compute scalar . Figure 5-22 shows the execution plan of the SELECT query from Listing 5-16 .

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

138

 As you can guess, this implementation introduces relatively little performance impact; however, it leads
to security issues. The predicates are evaluated against non-masked data, and a malicious person who has
the ability to execute queries against the table could obtain the values by performing a brute-force attack.

 Listing 5-19 demonstrates how an attacker could guess the value of the SpendingLimit column in
the dbo.Consultants table. SQL Server performs the join based on the unmasked value, which allows the
attacker to capture them. Figure 5-23 shows the output from the attack.

 Listing 5-19. Brute-force attack on the masked data

 execute as user = 'NonPrivUser';

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,PossibleValues(SpendingLimit)
 as (select row_number() over (order by (select null)) from N5)
 select c.ID, p.SpendingLimit, c.SpendingLimit as MaskedLimit
 from dbo.Consultants c join PossibleValues p on
 c.SpendingLimit >= p.SpendingLimit - 1 and
 c.SpendingLimit < p.SpendingLimit;

 revert;

 Figure 5-23. Result of the attack

 Unfortunately, a similar approach can be taken with any data types that can be casted to text. The attack
can be implemented on a per-character basis, as shown in Listing 5-20 . The code splits the data from the
masked columns into individual characters and joins them with a result set that represents all possible ASCII
characters. The query in Listing 5-20 reveals the DateOfBirth and first 24 characters of the Email columns;
however, it could easily be adopted to deal with longer strings. Figure 5-24 shows the result of the query.

 Listing 5-20. Per-character basis brute-force attack

 execute as user = 'NonPrivUser';

 ;with N(n)
 as
 (
 select n
 from (values (0),(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13),(14),(15)) n(n)
)
 ,C(c)
 as
 (
 select char(n1.n * 16 + n2.n) from n as n1 cross join n as n2
)

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

139

 select
 d.id,
 bd1.c+bd2.c+bd3.c+bd4.c+'/'+bd5.c+bd6.c+'/'+bd7.c+bd8.c as DateOfBirth,
 email1.c+email2.c+email3.c+email4.c+email5.c+email6.c+
 isnull(email7.c,'')+isnull(email8.c, '')+isnull(email9.c, '')+
 isnull(email10.c, '')+isnull(email11.c, '')+isnull(email12.c, '')+
 isnull(email13.c, '')+isnull(email14.c, '')+isnull(email15.c, '')+
 isnull(email16.c, '')+isnull(email17.c, '')+isnull(email18.c, '')+
 isnull(email19.c, '')+isnull(email20.c, '')+isnull(email21.c, '')+
 isnull(email22.c, '')+isnull(email23.c, '')+isnull(email24.c, '') as Email
 from dbo.Consultants d
 left join c bd1 on ascii(substring(cast(d.DateOfBirth as varchar),1,1))=ascii(bd1.c)
 left join c bd2 on ascii(substring(cast(d.DateOfBirth as varchar),2,1))=ascii(bd2.c)
 left join c bd3 on ascii(substring(cast(d.DateOfBirth as varchar),3,1))=ascii(bd3.c)
 left join c bd4 on ascii(substring(cast(d.DateOfBirth as varchar),4,1))=ascii(bd4.c)
 left join c bd5 on ascii(substring(cast(d.DateOfBirth as varchar),6,1))=ascii(bd5.c)
 left join c bd6 on ascii(substring(cast(d.DateOfBirth as varchar),7,1))=ascii(bd6.c)
 left join c bd7 on ascii(substring(cast(d.DateOfBirth as varchar),9,1))=ascii(bd7.c)
 left join c bd8 on ascii(substring(cast(d.DateOfBirth as varchar),10,1))=ascii(bd8.c)
 left join c email1 on ascii(substring(d.EMail, 1, 1)) = ascii(email1.c)
 left join c email2 on ascii(substring(d.EMail, 2, 1)) = ascii(email2.c)
 left join c email3 on ascii(substring(d.EMail, 3, 1)) = ascii(email3.c)
 left join c email4 on ascii(substring(d.EMail, 4, 1)) = ascii(email4.c)
 left join c email5 on ascii(substring(d.EMail, 5, 1)) = ascii(email5.c)
 left join c email6 on ascii(substring(d.EMail, 6, 1)) = ascii(email6.c)
 left join c email7 on ascii(substring(d.EMail, 7, 1)) = ascii(email7.c)
 left join c email8 on ascii(substring(d.EMail, 8, 1)) = ascii(email8.c)
 left join c email9 on ascii(substring(d.EMail, 9, 1)) = ascii(email9.c)
 left join c email10 on ascii(substring(d.EMail, 10, 1)) = ascii(email10.c)
 left join c email11 on ascii(substring(d.EMail, 11, 1)) = ascii(email11.c)
 left join c email12 on ascii(substring(d.EMail, 12, 1)) = ascii(email12.c)
 left join c email13 on ascii(substring(d.EMail, 13, 1)) = ascii(email13.c)
 left join c email14 on ascii(substring(d.EMail, 14, 1)) = ascii(email14.c)
 left join c email15 on ascii(substring(d.EMail, 15, 1)) = ascii(email15.c)
 left join c email16 on ascii(substring(d.EMail, 16, 1)) = ascii(email16.c)
 left join c email17 on ascii(substring(d.EMail, 17, 1)) = ascii(email17.c)
 left join c email18 on ascii(substring(d.EMail, 18, 1)) = ascii(email18.c)
 left join c email19 on ascii(substring(d.EMail, 19, 1)) = ascii(email19.c)
 left join c email20 on ascii(substring(d.EMail, 20, 1)) = ascii(email20.c)
 left join c email21 on ascii(substring(d.EMail, 21, 1)) = ascii(email21.c)
 left join c email22 on ascii(substring(d.EMail, 22, 1)) = ascii(email22.c)
 left join c email23 on ascii(substring(d.EMail, 23, 1)) = ascii(email23.c)
 left join c email24 on ascii(substring(d.EMail, 24, 1)) = ascii(email24.c)
 revert;

 Figure 5-24. Result of the attack

CHAPTER 5 ■ SQL SERVER 2016 FEATURES

140

 You can mitigate this risk by denying users SELECT permission on the table with masked data and
using stored procedures for data access. This approach, however, will require code changes in the client
application.

 Combining Security Features
 The new SQL Server 2016 security features can help you to address some of the security challenges in
your system. However, they should be used together with the other classic security techniques. You should
combine them with other SQL Server security features, following the least required privilege principle and
giving users the minimally required permissions on the column, object, database, and server levels.

 This is especially important with row-level security and dynamic data masking. These features should
be considered as application security features. They help to implement application security; however, they
do not protect the data in the database. It is possible to break them as long as a malicious user has the ability
to execute ad-hoc queries against the table.

 You can also combine the features. For example, it is possible to combine row-level security with
Always Encrypted and/or with dynamic data masking. Obviously, you cannot combine Always Encrypted
and dynamic data masking on the same columns, and you need to implement the masking manually in the
application if this is required.

 Finally, all three new security features work well with transparent database encryption (TDE) and
backup encryption. It is beneficial to use TDE and backup encryption together with Always Encrypted when
security is the concern. It will allow you to protect all data in the database rather than encrypting the data on
a per-column basis as Always Encrypted does.

 Summary
 System-versioned temporal tables maintain a history of the data changes in a table. They consist of two
tables: current , with the current data, and history , which stores previous versions of the rows. Every time
rows from the current table are updated or deleted, previous versions of the rows are copied to the history
table. You can access a point-in-time snapshot using the FOR SYSTEM_TIME clause in SELECT queries.

 Both current and history tables should have two datetime2 period columns that indicate the lifetime of
the row. SQL Server adds predicates on period columns when you use the FOR SYSTEM_TIME clause, which
you should factor into the index design of the system.

 Stretch databases allow you to store some of the database data in SQL Database in Microsoft Azure
transparently to the client applications. You can migrate either entire tables or a subset of the table data
by specifying a filter function. Stretch databases work the same way as linked servers do and have similar
connectivity requirements and performance implications.

 SQL Server 2016 comes with three new security features. Row-level security allows you to control
the visibility of data on a per-user basis. This solution can help to improve security in multi-tenant
environments. Dynamic data masking allows you to mask the values in particular columns in result
sets. Finally, Always Encrypted provides you with the ability to encrypt the data in particular columns
by implementing a separation of duties security concept and preventing database administrators from
accessing sensitive data.

 You should use the new security features together with the classic SQL Server security features, such as
column and object permissions, TDE, and others, when tightening security in the system.

141© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_6

 CHAPTER 6

 Index Fragmentation

 Index fragmentation is, perhaps, one of those rare topics that does not entirely belong to the “It Depends”
category. Most database professionals agree that fragmentation negatively affects the system. While that is
correct, it is still important to understand the downside of index fragmentation and analyze how your system
is affected by it.

 In this chapter, we will talk about internal and external index fragmentation in SQL Server, what code
and design patterns increase fragmentation, and what factors must be taken into account when designing an
index maintenance strategy.

 Types of Fragmentation
 As you will remember, SQL Server stores data on data pages that are combined into eight-page extents on a
per-object allocation unit basis. For the index in-row pages, every data page has pointers to the previous and
next pages based on the index key sorting order.

 SQL Server neither reads nor modifies data directly on the disk. A data page needs to be in memory to
be accessible. Every time SQL Server accesses the data page in memory, it issues a logical read operation.
When the data page is not in memory, SQL Server performs a physical read, which leads to the physical disk
access.

 ■ Note You can find the number of I/O operations performed by a query on a per-table basis by enabling I/O
statistics using the set statistics io on command. An excessive number of logical reads often indicates
suboptimal execution plans due to missing indexes and/or suboptimal join strategies selected because
of incorrect cardinality estimation. However, you should not use that number as the only criteria during
optimization and should take other factors into account, such as resource usage, parallelism, and related
operators in the execution plan.

 Both logical and physical reads affect the performance of queries. Even though logical reads are very
fast, they are not instantaneous. SQL Server burns CPU cycles while accessing data pages in memory, and
physical I/O operations are slow. Even with a fast disk subsystem, latency quickly adds up with a large
number of physical reads.

CHAPTER 6 ■ INDEX FRAGMENTATION

142

 One of the optimization techniques that SQL Server uses to reduce the number of physical reads is
called read-ahead . With this technique, SQL Server determines if leaf-level pages reside continuously on
the disk based on intermediate index level information and reads multiple pages as part of a single read
operation from the data file. This increases the chance that the following read requests would reference
data pages, which are already cached in memory, and it minimizes the number of physical reads required.
Figure 6-1 illustrates this situation, and it shows two adjacent extents with all data pages fully populated
with data.

 Let’s see what happens when you insert a new row into the index. As you will remember, the data in
clustered and nonclustered indexes is sorted based on the value of the index key, and SQL Server knows the
data page into which the row must be inserted. If the data page has enough free space to accommodate a
new row, that would be it — SQL Server just inserts the new row there. However, if the data page does not have
enough free space, the following happens:

 1. A new data page and, if needed, a new extent are allocated.

 2. Some data from the old data page is moved to the newly allocated page.

 3. Previous- and next-page pointers are updated in order to maintain a logical
sorting order in the index.

 This process is called page split . Figure 6-2 illustrates the data layout when this happens. It is worth
mentioning that a page split can happen when you update an existing row, thereby increasing its size, and
the data page does not have enough space to accommodate a new, larger version of the row.

 Figure 6-1. Logical and physical reads

 Figure 6-2. Page split and fragmentation

CHAPTER 6 ■ INDEX FRAGMENTATION

143

 At this point, you have index fragmentation of two kinds: internal and external. External fragmentation
 means that the logical order of the pages does not match their physical order, and/or logically subsequent
pages are not located in the same or adjacent extents. Such fragmentation forces SQL Server to jump
around reading the data from the disk, which makes read-ahead less efficient and increases the number of
physical reads required. Moreover, it increases random disk I/O, which is far less efficient when compared to
sequential I/O, especially in the case of magnetic hard drives.

 Internal fragmentation , on the other hand, means that data pages in the index have an excessive
amount of free space. As a result, the index uses more data pages to store data, which increases the number
of logical reads during query execution. In addition, SQL Server uses more memory in the buffer pool to
cache index pages.

 A small degree of internal fragmentation is not necessarily bad. It reduces page splits during insert and
update operations when data is inserted into or updated from different parts of the index. Nonetheless,
a large degree of internal fragmentation wastes index space and reduces the performance of the system.
Moreover, for indexes with ever-increasing keys — for example, on identity columns — internal fragmentation is
not desirable because the data is always inserted at the end of the index.

 There is a data-management function , sys.dm_db_index_physical_stats , that you can use to analyze
fragmentation in the system. The three most important columns from the result set are the following:

 avg_page_space_used_in_percent shows the average percentage of the
data storage space used on the page. This value shows you the internal index
fragmentation.

 avg_fragmentation_in_percent provides you with information about
external index fragmentation. For tables with clustered indexes, it indicates
the percentage of out-of-order pages, where the next physical page allocated in
the index is different from the page referenced by the next-page pointer of the
current page. For heap tables, it indicates the percentage of out-of-order extents,
where extents are not residing continuously in data files.

 fragment_count indicates how many continuous data fragments the index has.
Every fragment constitutes the group of extents adjacent to each other. Adjacent
data increases the chances that SQL Server will use sequential I/O and read-
ahead while accessing the data.

 Sys.dm_db_index_physical_stats can analyze data in three different modes: LIMITED , SAMPLED , and
 DETAILED , which you need to specify as a parameter of the function. In LIMITED mode, SQL Server uses non-
leaf index pages to analyze the data. It is the fastest mode, although it does not provide information about
internal fragmentation.

 In DETAILED mode , SQL Server scans the entire index. As you can guess, this mode provides the most
accurate results, although it is the most I/O-intensive method.

 In SAMPLED mode , SQL Server returns statistics based on a one percent data sample from the table when
it has 10,000 or more data pages. It reads every hundredth page from the leaf level during execution. For
tables with less than 10,000 data pages, SQL Server scans the entire index using DETAILED mode instead.

 ■ Note Check out the Books Online article at http://technet.microsoft.com/en-us/library/ms188917.
aspx for more details about sys.dm_db_index_physical_stats .

http://technet.microsoft.com/en-us/library/ms188917.aspx
http://technet.microsoft.com/en-us/library/ms188917.aspx

CHAPTER 6 ■ INDEX FRAGMENTATION

144

 Page split is not limited to single-page allocation and data movement. Let’s look at an example, create
the table, and populate it with some data, as shown in Listing 6-1 .

 Listing 6-1. Multiple page splits: Table creation

 create table dbo.PageSplitDemo
 (
 ID int not null,
 Data varchar(8000) null
);

 create unique clustered index IDX_PageSplitDemo_ID
 on dbo.PageSplitDemo(ID);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.PageSplitDemo(ID)
 select ID * 2 from Ids where ID <= 620

 select page_count, avg_page_space_used_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.PageSplitDemo'),1,null
 ,'DETAILED');

 The following is the output from the code shown in Listing 5-1. As you can see, there is the single data
page, which is almost full.

 page_count avg_page_space_used_in_percent
 ---------------- ---
 1 99.5552260934025

 As a next step, let’s insert a large row into the table with the code from Listing 6-2 .

 Listing 6-2. Multiple page splits: Insert a large row into the table

 insert into dbo.PageSplitDemo(ID,Data) values(101,replicate('a',8000));

 select page_count, avg_page_space_used_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.PageSplitDemo'),1,null
 ,'DETAILED');

 The following is the output of the code in Listing 6-2 if you ran it using SQL Server prior to SQL Server
2012. As you can see, SQL Server had to allocate seven new leaf-level data pages to accommodate a new data
row and to preserve the logical sorting order in the index.

 The process worked in the following way. SQL Server kept 50 rows with ID<=100 on the original page,
trying to fit new (ID=101) and remaining (ID>=102) rows into the newly allocated data page. They did not fit
into the single page, and SQL Server continued to allocate pages, splitting rows by half until they finally fit.

CHAPTER 6 ■ INDEX FRAGMENTATION

145

 It is also worth mentioning that SQL Server had to create the root level in the index.

 page_count avg_page_space_used_in_percent
 ---------------- ---
 8 24.8038670620213
 1 1.26019273535953

 Fortunately, the page-split algorithm has been dramatically improved in SQL Server 2012. The following
is the output of the code in Listing 6-2 if you run it using SQL Server 2012 or above. When SQL Server
detected that the data did not fit into the newly allocated page, it allocated another (third) page, put the new
(ID=101) row into one of the pages and all of the remaining rows (ID >= 102) into another one. Therefore,
with SQL Server 2012-2016, page split introduces at most two new page allocations.

 page_count avg_page_space_used_in_percent
 ---------------- ---
 3 99.5552260934025
 1 0.457128737336299

 FILLFACTOR and PAD_INDEX
 Every index in SQL Server has a FILLFACTOR option, which allows you to reserve some space on the leaf-level
index data pages. Setting FILLFACTOR to something less than 100, which is the default value, increases the
chances that data pages will have enough free space to accommodate the newly inserted or updated data
rows without having a page split involved. This option can be set on both the server and individual index
levels. SQL Server uses the server-level FILLFACTOR when the index does not have FILLFACTOR explicitly
specified.

 SQL Server maintains FILLFACTOR only when creating or rebuilding the index. It still fills pages up to 100
percent during normal workload, splitting pages when needed.

 Another important factor to keep in mind is that by reducing FILLFACTOR , you decrease external index
fragmentation and the number of page splits by increasing internal index fragmentation. The index will have
more data pages, which will negatively affect the performance of scan operations. Moreover, SQL Server will
use more memory in the buffer pool to accommodate the increased number of index pages.

 There is no recommended setting for FILLFACTOR . You need to fine-tune it by gradually decreasing its
value and monitoring how it affects fragmentation with the sys.dm_db_index_physical_stats function.
You can start with FILLFACTOR = 100 and decrease it by 5 percent increments by rebuilding the index with
a new FILLFACTOR until you find the optimal value that has the lowest degree of both internal and external
fragmentation. Obviously, you need to perform that analysis under a production workload and allow
fragmentation to build up in between measurements.

 In SQL Server 2012 or above, you can monitor page split operations in real time using Extended Events.
It allows you to fine-tune FILLFACTOR by analyzing how different FILLFACTOR values affect the number of
page splits in the index. The Extended Events chapter of this book shows such an example.

 It is recommended that you keep FILLFACTOR close to 100 with indexes that have ever-increasing key
values. All inserts into those indexes come at the end of the index, and existing data pages do not benefit
from the reserved free space unless you are updating data and increasing row size afterward.

 Finally, there is another index option, PAD_INDEX , which controls whether FILLFACTOR is maintained in
non-leaf index pages. It is OFF by default and rarely needs to be enabled.

CHAPTER 6 ■ INDEX FRAGMENTATION

146

 Index Maintenance
 SQL Server supports two methods of index maintenance that reduce fragmentation: index reorganize and
index rebuild.

 Index reorganize , which is often called index defragmentation, reorders leaf-level data pages into their
logical order and also tries to compact pages by reducing their internal fragmentation. This is an online
operation that can be interrupted at any time without forgoing the operation’s progress up to the point of
interruption. You can reorganize indexes with the ALTER INDEX REORGANIZE command.

 ■ Tip SQL Server does not deallocate empty LOB data pages from the database. ALTER INDEX REORGANIZE
compacts (deallocates) those pages by default. It is beneficial to reorganize the indexes when large amounts of
LOB data have been deleted or LOB columns have been dropped.

 An index rebuild operation, which can be done with the ALTER INDEX REBUILD command, removes
external fragmentation by creating another index as a replacement of the old, fragmented one. By default,
this is an offline operation, and SQL Server acquires and holds a schema modification (Sch-M) table lock for
the duration of the operation, which prevents any other sessions from accessing the table. We will discuss
the SQL Server concurrency model in greater detail in Part III of this book.

 The Enterprise Edition of SQL Server can perform an online index rebuild. This operation uses row
versioning under the hood, and it allows other sessions to modify data while the index rebuild is still in
process.

 ■ Note An online index rebuild still acquires a schema-modification (SCH-M) lock during the final phase of
execution. Even though this lock is held for a very short time, it can increase locking and blocking in very active
OLTP systems. SQL Server 2014 introduced the concept of low-priority locks, which can help in this situation.
We will discuss low-priority locks in detail in Chapter 23 , “Schema Locks.”

 Index rebuild achieves better results than index reorganize, although it is an all or nothing operation; that
is, SQL Server rolls back the entire operation if the index rebuild is interrupted. You should also have enough
free space in the database to accommodate another copy of the data generated during the index rebuild stage.

 Finally, index rebuild updates statistics, while index reorganize does not. You need to factor this
behavior into the statistics-maintenance strategy in your system if an automatic statistics update is not
optimal in the case of large tables.

 Designing an Index Maintenance Strategy
 Microsoft suggests performing an index rebuild when the external index fragmentation (avg_
fragmentation_in_percent value in sys.dm_dm_index_physical_stats) exceeds 30 percent, and an
index reorganize when fragmentation is between 5 and 30 percent. While this may work as general advice,
it is important to analyze how badly the system is affected by fragmentation when designing your index
maintenance strategy.

 Index fragmentation hurts most during index scans, when SQL Server needs to read large amounts of
data from the disk. Highly tuned OLTP systems, which primarily use small range scans and point lookups,
are usually affected less by fragmentation. It does not really matter where data resides on the disk if a query

http://dx.doi.org/10.1007/978-1-4842-1964-5_23

CHAPTER 6 ■ INDEX FRAGMENTATION

147

needs to traverse the index tree and read just a handful of data pages. Moreover, when the data is already
cached in the buffer pool, external fragmentation hardly matters at all.

 Database file placement is another factor that you need to take into account. One of the reasons why
you want to reduce external fragmentation is for sequential I/O performance, which, in the case of magnetic
hard drives, is usually an order of magnitude better than random I/O performance. However, if multiple
database files share the same disk array, it hardly matters. Simultaneous I/O activity generated by multiple
active databases randomizes all I/O activity on the disk array, making external fragmentation less critical.

 Nevertheless, internal fragmentation is still a problem. Indexes use more memory, and queries need to
scan more data pages, when data pages have large amounts of unused space. This negatively affects system
performance, whether data pages are cached or not.

 Another important factor is system workload. Index maintenance adds its load to SQL Server, and
it is better to perform index maintenance at a time of low activity. Keep in mind that index maintenance
overhead is not limited to the single database, and you need to analyze how it affects other databases
residing on the same server and/or disk array.

 Both index rebuild and reorganize introduce heavy transaction log activity and generate a large number
of log records. This affects the size of the transaction log backup, and it can produce an enormous amount
of network traffic if the system uses transaction log – based High Availability technologies, such as AlwaysOn
Availability Groups, database mirroring, log shipping, and replication. It can also affect the availability of the
system if failover to another node occurs during the operation.

 ■ Note We will discuss High Availability strategies in greater detail in Chapter 32 , “Designing a High
Availability Strategy.”

 It is important to consider index maintenance overhead on busy servers that work around the clock.
In some cases, it is better to reduce the frequency of index maintenance routines, keeping some level of
fragmentation in the system. However, you should always perform index maintenance if such overhead is
not an issue. For example, for systems with low activity outside of business hours, there is no reason not to
perform index maintenance at night or on weekends.

 The version and edition of SQL Server in use dictates its ability to perform an index maintenance
operation online. Table 6-1 shows what options are available based on the version and edition of SQL Server.
It also shows partition-level index rebuild options, which can be beneficial with partitioned tables. We will
discuss them in detail in Chapter 16 .

 Table 6-1. Index Maintenance Options Based on SQL Server Version and Edition

 SQL Server Version
and Edition

 Index
Reorganize

 Index Rebuild
(index has LOB
columns)

 Index Rebuild
 (index does not
have LOB columns)

 Partition-Level Index
Rebuild

 SQL Server 2005-2016
non-Enterprise edition

 Online Offline only Offline only N/A

 SQL Server 2005-2008R2
Enterprise edition

 Online Offline only Offline or Online Offline only

 SQL Server 2012
Enterprise Edition

 Online Offline or Online Offline or Online Offline only

 SQL Server 2014-2016
Enterprise Edition

 Online Offline or Online Offline or Online Offline or Online

http://dx.doi.org/10.1007/978-1-4842-1964-5_32
http://dx.doi.org/10.1007/978-1-4842-1964-5_16

CHAPTER 6 ■ INDEX FRAGMENTATION

148

 ■ Note Be careful with SQL Server maintenance plans. They tend to perform index maintenance on all
indexes, even when it is not required.

 ■ Tip Ola Hallengren’s free database-maintenance script is a great solution that analyzes fragmentation
level on a per-index basis, and it performs index rebuild/reorganize only when needed. It is available for
download at http://ola.hallengren.com/ .

 With all that being said, the best way to reduce fragmentation is to avoid creating patterns in the
database design and code that lead to such conditions.

 Patterns That Increase Fragmentation
 One of the most common cases that leads to fragmentation is indexing complete random values, such
as unique identifiers generated with NEWID() or byte sequences generated with HASHBYTE() functions.
 Values generated with these functions are randomly inserted into different parts of the index, which causes
excessive page splits and fragmentation. You should avoid using such indexes if it is at all possible.

 ■ Note We will discuss the performance implications of indexes on random values in the next chapter.

 Another common pattern that contributes to index fragmentation is increasing the size of the row
during an update; for example, when a system collects data and performs post-processing of some kind,
populating additional attributes/columns in a data row. This increases the size of the row, which triggers a
page split if the page does not have enough space to accommodate it.

 As an example, let’s think about a table that stores GPS location information, which includes both
geographic coordinates and the address of the location. Let’s assume that the address is populated during
post-processing, after the location information has already been inserted into the system. Listing 6-3 shows
the code that creates the table and populates it with some data.

 Listing 6-3. Patterns that lead to fragmentation: Table creation

 create table dbo.Positions
 (
 DeviceId int not null,
 ATime datetime2(0) not null,
 Latitude decimal(9,6) not null,
 Longitude decimal(9,6) not null,
 Address nvarchar(200) null,
 Placeholder char(100) null,
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows

http://ola.hallengren.com/

CHAPTER 6 ■ INDEX FRAGMENTATION

149

 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.Positions(DeviceId, ATime, Latitude, Longitude)
 select
 ID % 100 /*DeviceId*/
 ,dateadd(minute, -(ID % 657), getutcdate()) /*ATime*/
 ,0 /*Latitude - just dummy value*/
 ,0 /*Longitude - just dummy value*/
 from IDs;

 create unique clustered index IDX_Postitions_DeviceId_ATime
 on dbo.Positions(DeviceId, ATime);

 select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Positions'),1,null,'DETAILED')

 At this point, the table has 65,536 rows. A clustered index is created as the last stage during execution.
As a result, there is no fragmentation on the index. Figure 6-3 illustrates this point.

 Figure 6-3. Fragmentation after table creation

 Let’s run the code that populates the address information. This code, shown in Listing 6-4 , emulates
post-processing.

 Listing 6-4. Patterns that lead to fragmentation: Post-processing

 update dbo.Positions set Address = N'Position address';

 select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Positions'),1,null,'DETAILED')

CHAPTER 6 ■ INDEX FRAGMENTATION

150

 Figure 6-4 shows the index fragmentation. Post-processing doubled the number of leaf-level pages of
the index, making it heavily fragmented both internally and externally.

 As you may guess, you can avoid this situation by populating the address information during the insert
stage. This option, however, is not always available.

 Another option is that you can reserve the space in the row during the insert stage by populating the
address with a default value, preallocating the space. Let’s find out how much space is used by the address
information with the code shown in Listing 6-5 . Figure 6-5 shows the result.

 Listing 6-5. Patterns that lead to fragmentation: Calculating average address size

 select avg(datalength(Address)) as [Avg Address Size] from dbo.Positions

 Average address size is 32 bytes, which is 16 Unicode characters. You can populate it with a string of 16
space characters during the insert stage, which would reserve the required space in the row. The code in
Listing 6-6 demonstrates this approach.

 Listing 6-6. Patterns that lead to fragmentation: Populating address with 16 space characters during insert stage

 truncate table dbo.Positions
 go

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.Positions(DeviceId, ATime, Latitude, Longitude, Address)
 select
 ID % 100 /*DeviceId*/
 ,dateadd(minute, -(ID % 657), getutcdate()) /*ATime*/
 ,0 /*Latitude - just dummy value*/
 ,0 /*Longitude - just dummy value*/
 ,replicate(N' ',16) /*Address - adding string of 16 space characters*/
 from IDs;

 Figure 6-4. Fragmentation after post-processing

 Figure 6-5. Fragmentation after post-processing

CHAPTER 6 ■ INDEX FRAGMENTATION

151

 create unique clustered index IDX_Postitions_DeviceId_ATime
 on dbo.Positions(DeviceId, ATime);

 update dbo.Positions set Address = N'Position address';

 select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'Positions'),1,null,'DETAILED')

 Even though you update the address information during post-processing, it does not increase the size of
the data rows. As a result, there is no fragmentation in the table, as shown in Figure 6-6 .

 Unfortunately, in some cases you cannot pre-populate some of the columns in the insert stage because
of the business or functional requirements of the system. As a workaround, you can create a variable-length
column in the table and use it as a placeholder to reserve the space. Listing 6-7 shows such an approach.

 Listing 6-7. Patterns that lead to fragmentation: Using a placeholder column to reserve the space

 drop table dbo.Positions
 go

 create table dbo.Positions
 (
 DeviceId int not null,
 ATime datetime2(0) not null,
 Latitude decimal(9,6) not null,
 Longitude decimal(9,6) not null,
 Address nvarchar(200) null,
 Placeholder char(100) null,
 Dummy varbinary(32)
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.Positions(DeviceId, ATime, Latitude, Longitude, Dummy)
 select

 Figure 6-6. Fragmentation when row has been pre-populated with 16 space characters for the address during
the insert stage

CHAPTER 6 ■ INDEX FRAGMENTATION

152

 ID % 100 /*DeviceId*/
 ,dateadd(minute, -(ID % 657), getutcdate()) /*ATime*/
 ,0 /*Latitude - just dummy value*/
 ,0 /*Longitude - just dummy value*/
 ,convert(varbinary(32),replicate('0',32)) /* Reserving the space*/
 from IDs;

 create unique clustered index IDX_Postitions_DeviceId_ATime
 on dbo.Positions(DeviceId, ATime);

 update dbo.Positions
 set
 Address = N'Position address'
 ,Dummy = null;

 select index_level, page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'Positions'),1,null,'DETAILED')

 Row size during post-processing remains the same. Even though it adds 32 bytes to the Address
column, it also decreases the row size for the same 32 bytes by setting the Dummy column to null . Figure 6-7
illustrates the fragmentation after the execution of the code.

 It is worth mentioning that the efficiency of such a method depends on several factors. First, it would
be difficult to predict the amount of space to reserve when the row size increase varies significantly. You can
decide to err on the side of caution if this is the case. Keep in mind that even though overestimation reduces
external fragmentation, it increases internal fragmentation and leaves unused space on the data pages.

 Another factor is how fragmentation is introduced. That method works best with ever-increasing
indexes, when insert fragmentation is minimal. It is less efficient when page splits and fragmentation occur
during the insert stage; for example, when indexes on the uniqueidentifier column are populated with the
 NEWID() value.

 Finally, even though using placeholders reduces fragmentation, it does not replace, but rather works in
parallel with, other index maintenance routines.

 Unfortunately, situations where row size increases during an update are much more common than it
might appear at first. SQL Server uses row versioning to support some of its features. With row versioning,
SQL Server stores one or more old versions of the row in a special part of tempdb called the version store .
It also adds a 14-byte version tag to the rows in the data file to reference rows from the version store. That
14-byte version tag is added when a row is modified and, in a nutshell, it increases the row size in a manner
that is similar to what you just saw in the post-processing example. The version tag stays in the rows until the
index is rebuilt.

 Figure 6-7. Fragmentation when a placeholder column was used

CHAPTER 6 ■ INDEX FRAGMENTATION

153

 The two most common SQL Server features that rely on row versioning are optimistic transaction
isolation levels and AFTER triggers. Both features contribute to index fragmentation, and they need to be
taken into account when you design an index maintenance strategy. We will discuss both triggers and
optimistic transaction isolation levels later in this book.

 ■ Best Practice Do not use FILLFACTOR=100 in cases where the database is using optimistic transaction
isolation levels and/or if the table has AFTER UPDATE or AFTER DELETE triggers defined. It helps to reduce index
fragmentation introduced by row versioning during data modifications.

 Finally, database shrink greatly contributes to external fragmentation because of the way in which it
is implemented. The DBCC SHRINK command locates the highest page allocated in a file based on the GAM
allocation map, and it moves it as far forward as possible without considering to which object that page
belongs. It is recommended that you avoid shrink unless absolutely necessary.

 It is better to reorganize rather than rebuild indexes after a shrink operation is completed. An index
rebuild creates another copy of the index, which increases the size of the data file and defeats the purpose of
the shrink.

 As an alternative to the shrink process, you can create a new filegroup and recreate indexes by moving
objects there. After that, the old and empty filegroup can be dropped. This approach reduces the size of the
database in a way similar to a shrink operation without introducing fragmentation.

 Summary
 There are two types of index fragmentation in SQL Server. External fragmentation occurs when logically
subsequent data pages are not located in the same or adjacent extents. Such fragmentation affects the
performance of scan operations that require physical I/O reads.

 External fragmentation has a much lesser effect on the performance of index seek operations when just
a handful of rows and data pages need to be read. Moreover, it does not affect performance when data pages
are cached in the buffer pool.

 Internal fragmentation occurs when leaf-level data pages in the index have free space. As a result, the
index uses more data pages to store data on disk and in memory. Internal fragmentation negatively affects
the performance of scan operations, even when data pages are cached, due to the extra data pages that need
to be processed.

 A small degree of internal fragmentation can speed up insert and update operations and reduce
the number of page splits. You can reserve some space in leaf-level index pages during index creation or
index rebuild by specifying the FILLFACTOR property. It is recommended that you fine-tune FILLFACTOR
by gradually decreasing its value and monitoring how it affects fragmentation in the system. You can also
monitor page split operations with Extended Events if you are using SQL Server 2012 or above.

 The sys.dm_db_index_physical_stats data management function allows you to monitor both
internal and external fragmentation. There are two ways to reduce index fragmentation. The ALTER INDEX
REORGANIZE command reorders index leaf pages. This is an online operation that can be cancelled at any
time without losing its progress. The ALTER INDEX REBUILD command replaces an old fragmented index
with a new copy. By default, it is an offline operation, although the Enterprise Edition of SQL Server can
rebuild indexes online.

CHAPTER 6 ■ INDEX FRAGMENTATION

154

 You must consider multiple factors when designing index maintenance strategies, such as system
workload and availability, the version and edition of SQL Server being used, and any High Availability
technologies used in the system. You should also analyze how fragmentation affects the system. Index
maintenance is very resource-intensive, and, in some cases, the overhead it introduces exceeds the benefits
it provides.

 The best way to minimize fragmentation, however, is by eliminating its root cause. Consider avoiding
situations where the row size increases during updates, and do not shrink data files, do not use AFTER
triggers, and avoid indexes on the uniqueidentifier or hashbyte columns that are populated with random
values.

155© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_7

 CHAPTER 7

 Designing and Tuning the Indexes

 It is impossible to define an indexing strategy that will work everywhere. Every system is unique and requires
its own indexing approach based on workload, business requirements, and quite a few other factors.
However, there are several design considerations and guidelines that can be applied in every system.

 The same is true when we are optimizing existing systems. While optimization is an iterative process
that is unique in every case, there is a set of techniques that can be used to detect inefficiencies in every
database system.

 In this chapter, we will cover a few important factors that you will need to keep in mind when designing
new indexes and optimizing existing systems.

 Clustered Index Design Considerations
 Every time you change the value of a clustered index key, two things happen. First, SQL Server moves the
row to a different place in the clustered index page chain and in the data files. Second, it updates the row-id ,
which is the clustered index key. The row-id is stored and needs to be updated in all nonclustered indexes.
That can be expensive in terms of I/O, especially in the case of batch updates. Moreover, it can increase the
fragmentation of the clustered index and, in cases of row-id size increase, of the nonclustered indexes. Thus,
it is better to have a static clustered index where key values do not change.

 All nonclustered indexes use a clustered index key as the row-id . A too-wide clustered index key
increases the size of nonclustered index rows and requires more space to store them. As a result, SQL Server
needs to process more data pages during index- or range-scan operations, which makes the index less
efficient.

 In cases of non-unique nonclustered indexes, the row-id is also stored at non-leaf index levels, which,
in turn, reduces the number of index records per page and can lead to extra intermediate levels in the index.
Even though non-leaf index levels are usually cached in memory, this introduces additional logical reads
every time SQL Server traverses the nonclustered index B-Tree.

 Finally, larger nonclustered indexes use more space in the buffer pool and introduce more overhead
during index maintenance. Obviously, it is impossible to provide a generic threshold value that defines the
maximum acceptable size of a key that can be applied to any table. However, as a general rule, it is better to
 have a narrow clustered index key, with the index key as small as possible.

 It is also beneficial to have the clustered index be defined as unique . The reason this is important is not
obvious. Consider a scenario in which a table does not have a unique clustered index and you want to run a
query that uses a nonclustered index seek in the execution plan. In this case, if the row-id in the nonclustered
index were not unique, SQL Server would not know what clustered index row to choose during the key
lookup operation.

 SQL Server solves such problems by adding another nullable integer column called uniquifier to non-
unique clustered indexes. SQL Server populates uniquifiers with NULL for the first occurrence of the key
value, autoincrementing it for each subsequent duplicate inserted into the table.

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

156

 ■ Note The number of possible duplicates per clustered index key value is limited by integer domain values.
You cannot have more than 2,147,483,648 rows with the same clustered index key. This is a theoretical limit,
and it is clearly a bad idea to create indexes with such poor selectivity.

 Let’s look at the overhead introduced by uniquifiers in non-unique clustered indexes. The code shown
in Listing 7-1 creates three different tables of the same structure and populates them with 65,536 rows each.
Table dbo.UniqueCI is the only table with a unique clustered index defined. Table dbo.NonUniqueCINoDups
does not have any duplicated key values. Finally, table dbo.NonUniqueCDups has a large number of
duplicates in the index.

 Listing 7-1. Nonunique clustered index: Table creation

 create table dbo.UniqueCI
 (
 KeyValue int not null,
 ID int not null,
 Data char(986) null,
 VarData varchar(32) not null
 constraint DEF_UniqueCI_VarData
 default 'Data'
);

 create unique clustered index IDX_UniqueCI_KeyValue
 on dbo.UniqueCI(KeyValue);

 create table dbo.NonUniqueCINoDups
 (
 KeyValue int not null,
 ID int not null,
 Data char(986) null,
 VarData varchar(32) not null
 constraint DEF_NonUniqueCINoDups_VarData
 default 'Data'
);

 create /*unique*/ clustered index IDX_NonUniqueCINoDups_KeyValue
 on dbo.NonUniqueCINoDups(KeyValue);

 create table dbo.NonUniqueCIDups
 (
 KeyValue int not null,
 ID int not null,
 Data char(986) null,
 VarData varchar(32) not null
 constraint DEF_NonUniqueCIDups_VarData
 default 'Data'
);

 create /*unique*/ clustered index IDX_NonUniqueCIDups_KeyValue
 on dbo.NonUniqueCIDups(KeyValue);

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

157

 -- Populating data
 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.UniqueCI(KeyValue, ID)
 select ID, ID from IDs;

 insert into dbo.NonUniqueCINoDups(KeyValue, ID)
 select KeyValue, ID from dbo.UniqueCI;

 insert into dbo.NonUniqueCIDups(KeyValue, ID)
 select KeyValue % 10, ID from dbo.UniqueCI;

 Now, let’s look at the clustered indexes’ physical statistics for each table. The code for this is shown in
Listing 7-2 , and the results are shown in Figure 7-1 .

 Listing 7-2. Nonunique clustered index : Checking clustered indexes’ row sizes

 select index_level, page_count, min_record_size_in_bytes as [min row size]
 ,max_record_size_in_bytes as [max row size]
 ,avg_record_size_in_bytes as [avg row size]
 from
 sys.dm_db_index_physical_stats(db_id(), object_id(N'dbo.UniqueCI'), 1, null ,'DETAILED');

 select index_level, page_count, min_record_size_in_bytes as [min row size]
 ,max_record_size_in_bytes as [max row size]
 , avg_record_size_in_bytes as [avg row size]
 from
 sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCINoDups'), 1, null

,'DETAILED');

 select index_level, page_count, min_record_size_in_bytes as [min row size]
 ,max_record_size_in_bytes as [max row size]
 ,avg_record_size_in_bytes as [avg row size]
 from
 sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCIDups'), 1, null

,'DETAILED');

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

158

 Even though there are no duplicated key values in the dbo.NonUniqueCINoDups table, there are still two
extra bytes added to the row. SQL Server stores a uniquifier in the variable-length section of the data, and
those two bytes are added by yet another entry in a variable-length data offset array.

 In the case, when a clustered index has duplicate values, uniquifiers add yet another four bytes, which
makes for an overhead of six bytes total.

 It is worth mentioning that in some edge cases, the extra storage space used by the uniquifier can
reduce the number of rows that can fit onto the data page. Our example demonstrates such a condition. As
you can see, dbo.UniqueCI uses about 15 percent fewer data pages than the other two tables.

 Now, let’s see how the uniquifier affects nonclustered indexes. The code shown in Listing 7-3 creates
nonclustered indexes in all three tables. Figure 7-2 shows the physical statistics for those indexes.

 Listing 7-3. Nonunique clustered index : Checking nonclustered indexes’ row size

 create nonclustered index IDX_UniqueCI_ID
 on dbo.UniqueCI(ID);

 create nonclustered index IDX_NonUniqueCINoDups_ID
 on dbo.NonUniqueCINoDups(ID);

 create nonclustered index IDX_NonUniqueCIDups_ID
 on dbo.NonUniqueCIDups(ID);

 select index_level, page_count, min_record_size_in_bytes as [min row size]
 ,max_record_size_in_bytes as [max row size]
 ,avg_record_size_in_bytes as [avg row size]
 from
 sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.UniqueCI'), 2, null

,'DETAILED');

 select index_level, page_count, min_record_size_in_bytes as [min row size]
 ,max_record_size_in_bytes as [max row size]
 ,avg_record_size_in_bytes as [avg row size]

 Figure 7-1. Nonunique clustered index: Clustered indexes’ row size

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

159

 from
 sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCINoDups'), 2, null

,'DETAILED');

 select index_level, page_count, min_record_size_in_bytes as [min row size]
 ,max_record_size_in_bytes as [max row size]
 ,avg_record_size_in_bytes as [avg row size]
 from
 sys. dm_db_index_physical_stats(db_id(), object_id(N'dbo.NonUniqueCIDups'), 2, null

,'DETAILED');

 There is no overhead in the nonclustered index in the dbo.NonUniqueCINoDups table. As you will recall,
SQL Server does not store offset information in a variable-length offset array for trailing columns storing
 NULL data. Nonetheless, the uniquifier introduces eight bytes of overhead in the dbo.NonUniqueCIDups table.
Those eight bytes consist of a four-byte uniquifier value, a two-byte variable-length data offset array entry,
and a two-byte entry storing the number of variable-length columns in the row.

 We can summarize the storage overhead of the uniquifier in the following way. For the rows that have
a uniquifier as NULL , there is a two-byte overhead if the index has at least one variable-length column that
stores a NOT NULL value. That overhead comes from the variable-length offset array entry for the uniquifier
column. There is no overhead otherwise.

 In cases where the uniquifier is populated, the overhead is six bytes if there are variable-length columns
that store NOT NULL values. Otherwise, the overhead is eight bytes.

 ■ Tip If you expect a large number of duplicates in the clustered index values, you can add an integer
 identity column as the rightmost column to the index, thereby making it unique. This adds a four-byte
predictable storage overhead to every row as compared to an unpredictable up to eight-byte storage overhead
introduced by uniquifiers. This can also improve the performance of individual lookup operations when you
reference the row by all of its clustered index columns.

 Figure 7-2. Nonunique clustered index: Nonclustered indexes’ row size

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

160

 It is beneficial to design clustered indexes in a way that minimizes index fragmentation caused by
inserting new rows. One of the methods to accomplish this is by making clustered index values ever
increasing . The index on the identity column is one such example. Another example is a datetime column
populated with the current system time at the moment of insertion.

 There are two potential issues with ever-increasing indexes, however. The first relates to statistics. As
you learned in Chapter 3 , the legacy cardinality estimator in SQL Server underestimates cardinality when
parameter values are not present in the histogram. You should factor such behavior into your statistics
maintenance strategy for the system, unless you are using the new SQL Server 2014-2016 cardinality
estimators, which assume that data outside of the histogram has distributions similar to those of other data
in the table.

 The next problem is more complicated. With ever-increasing indexes, the data is always inserted at the
end of the index. On the one hand, it prevents page splits and reduces fragmentation. On the other hand, it
can lead to hot spots , which are serialization delays that occur when multiple sessions are trying to modify
the same data page and/or allocate new pages or extents. SQL Server does not allow multiple sessions to
update the same data structures, and instead serializes those operations.

 Hot spots are usually not an issue unless a system collects data at a very high rate and the index
handles hundreds of inserts per second. We will discuss how to detect such an issue in Chapter 27 , “System
Troubleshooting.”

 Finally, if a system has a set of frequently executed and important queries, it might be beneficial to
consider a clustered index, which optimizes them. This eliminates expensive key lookup operations and
improves the performance of the system.

 Even though such queries can be optimized by using covering nonclustered indexes, it is not always the
ideal solution. In some cases, it requires you to create very wide nonclustered indexes, which will use up a
lot of storage space both on disk and in the buffer pool.

 Another important factor is how often columns are modified. Adding frequently modified columns to
nonclustered indexes requires SQL Server to change data in multiple places, which negatively affects the
update performance of the system and increases blocking.

 With all that being said, it is not always possible to design clustered indexes that will satisfy all of these
guidelines. Moreover, you should not consider these guidelines to be absolute requirements. You should
analyze the system, business requirements, workload, and queries and choose clustered indexes that would
benefit you, even if they violate some of those guidelines.

 Identities, Sequences, and Uniqueidentifiers
 People often choose identities, sequences, and uniqueidentifiers as clustered index keys. As always, that
approach has its own set of pros and cons.

 Clustered indexes defined on such columns are unique , static, and narrow . Moreover, identities and
sequences are ever increasing, which reduces index fragmentation. One of the ideal use cases for them is
catalog entity tables. You can think about tables, which store lists of customers, articles, or devices, as an
example. Those tables store thousands, or maybe even a few million, rows, although the data is relatively
static, and, as a result, hot spots are not an issue. Moreover, such tables are usually referenced by foreign
keys and used in joins. Indexes on integer or bigint columns are very compact and efficient, which will
improve the performance of queries.

 ■ Note We will discuss foreign key constraints in greater detail in Chapter 8 , “Constraints.”

http://dx.doi.org/10.1007/978-1-4842-1964-5_3
http://dx.doi.org/10.1007/978-1-4842-1964-5_27
http://dx.doi.org/10.1007/978-1-4842-1964-5_8

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

161

 Clustered indexes on identity or sequence columns are less efficient in the case of transactional tables,
which collect large amounts of data at a very high rate, due to the potential hot spots they introduce.

 Uniqueidentifiers, on the other hand, are rarely a good choice for indexes, both clustered and
nonclustered. Random values generated with the NEWID() function greatly increase index fragmentation.
Moreover, indexes on uniqueidentifiers decrease the performance of batch operations. Let’s look at an
example and create two tables: one with clustered indexes on identity columns and one with clustered
indexes on uniqueidentifier columns. In the next step, we will insert 65,536 rows into both tables. You can
see the code for doing this in Listing 7-4 .

 Listing 7-4. Uniqueidentifiers: Table creation

 create table dbo.IdentityCI
 (
 ID int not null identity(1,1),
 Val int not null,
 Placeholder char(100) null
);

 create unique clustered index IDX_IdentityCI_ID
 on dbo.IdentityCI(ID);

 create table dbo.UniqueidentifierCI
 (
 ID uniqueidentifier not null
 constraint DEF_UniqueidentifierCI_ID
 default newid(),
 Val int not null,
 Placeholder char(100) null,
);

 create unique clustered index IDX_UniqueidentifierCI_ID
 on dbo.UniqueidentifierCI(ID)
 go

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.IdentityCI(Val)
 select ID from IDs;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.UniqueidentifierCI(Val)
 select ID from IDs;

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

162

 The execution time on my computer and number of reads are shown in Table 7-1 . Figure 7-3 shows
execution plans for both queries.

 Figure 7-3. Inserting data into the tables: Execution plans

 Table 7-1. Inserting Data into the Tables: Execution Statistics

 Number of Reads Execution Time (ms)

 Identity 158,438 173 ms

 Uniqueidentifier 181,879 256 ms

 As you can see, there is another sort operator in the case of the index on the uniqueidentifier column.
SQL Server sorts randomly generated uniqueidentifier values before the insert, which decreases the
performance of the query.

 Let’s insert another batch of rows into the table and check index fragmentation. The code for doing this
is shown in Listing 7-5 . Figure 7-4 shows the results of the queries.

 Listing 7-5. Uniqueidentifiers : Inserting rows and checking fragmentation

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.IdentityCI(Val)
 select ID from IDs;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

163

 insert into dbo.UniqueidentifierCI(Val)
 select ID from IDs;

 select page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.IdentityCI'),1,null,'DETAILED');

 select page_count, avg_page_space_used_in_percent, avg_fragmentation_in_percent
 from sys.dm_db_index_physical_stats(db_id(),object_id(N'dbo.UniqueidentifierCI'),1,null

,'DETAILED');

 Figure 7-4. Fragmentation of the indexes

 As you can see, the index on the uniqueidentifier column is heavily fragmented, and it uses about 40
percent more data pages as compared to the index on the identity column.

 A batch insert into the index on the uniqueidentifier column inserts data at different places in
the data file, which leads to heavy, random physical I/O in the case of large tables. This can significantly
decrease the performance of the operation.

 PERSONAL EXPERIENCE

 Some time ago, I had been involved in the optimization of a system that had a 250 GB table with
one clustered and three nonclustered indexes. One of the nonclustered indexes was the index on the
 uniqueidentifier column. By removing this index, we were able to speed up a batch insert of 50,000
rows from 45 seconds down to 7 seconds.

 There are two common use cases for when you would want to create indexes on uniqueidentifier
columns. The first one is for supporting the uniqueness of values across multiple databases. Think about a
distributed system where rows can be inserted into every database. Developers often use uniqueidentifiers
to make sure that every key value is unique system wide.

 The key element in such an implementation is how key values were generated. As you have already
seen, the random values generated with the NEWID() function or in the client code negatively affect system
performance. However, you can use the NEWSEQUENTIALID() function, which generates unique and generally
ever-increasing values (SQL Server resets their base value from time to time). Indexes on uniqueidentifier
columns generated with the NEWSEQUENTIALID() function are similar to indexes on identity and sequence
columns; however, you should remember that the uniqueidentifier data type uses 16 bytes of storage
space, compared to the 4-byte int or 8-byte bigint data types.

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

164

 As an alternative solution, you may consider creating a composite index with two columns
 (InstallationId, Unique_Id_Within_Installation). The combination of these two columns guarantees
uniqueness across multiple installations and databases and uses less storage space than uniqueidentifiers
do. You can use an integer identity or sequence to generate the Unique_Id_Within_Installation value,
which will reduce the fragmentation of the index.

 In cases where you need to generate unique key values across all entities in the database, you can
consider using a single sequence object across all entities. This approach fulfils the requirement but uses a
smaller data type than uniqueidentifiers .

 Another common use case is security, where a uniqueidentifier value is used as a security token or a
random object ID. Unfortunately, you cannot use the NEWSEQUENTIALID() function in this scenario, because
it is possible to guess the next value returned by that function.

 One possible improvement in this scenario is creating a calculated column using the CHECKSUM()
function, indexing it afterward without creating the index on the uniqueidentifier column. The code is
shown in Listing 7-6 .

 Listing 7-6. Using CHECKSUM(): Table structure

 create table dbo.Articles
 (
 ArticleId int not null identity(1,1),
 ExternalId uniqueidentifier not null
 constraint DEF_Articles_ExternalId
 default newid(),
 ExternalIdCheckSum as checksum(ExternalId),
 /* Other Columns */
);

 create unique clustered index IDX_Articles_ArticleId
 on dbo.Articles(ArticleId);

 create nonclustered index IDX_Articles_ExternalIdCheckSum
 on dbo.Articles(ExternalIdCheckSum);

 ■ Tip You can index a calculated column without persisting it.

 Even though the IDX_Articles_ExternalIdCheckSum index is going to be heavily fragmented, it will be
more compact as compared to the index on the uniqueidentifier column (a 4-byte key versus 16 bytes).
It also improves the performance of batch operations because of faster sorting, which also requires less
memory to proceed.

 One thing that you must keep in mind is that the result of the CHECKSUM() function is not guaranteed to
be unique. You should include both predicates to the queries, as shown in Listing 7-7 .

 Listing 7-7. Using CHECKSUM(): Selecting data

 select ArticleId /* Other Columns */
 from dbo.Articles
 where checksum(@ExternalId) = ExternalIdCheckSum and ExternalId = @ExternalId

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

165

 ■ Tip You can use the same technique in cases where you need to index string columns larger than
900/1,700 bytes, which is the maximum size of a nonclustered index key. Even though such an index would not
support range scan operations, it could be used for point lookups .

 Nonclustered Index Design Considerations
 It is hard to find the tipping point where joining multiple nonclustered indexes is more efficient than using
single nonclustered index seek and key lookup operations. When index selectivity is high and SQL Server
estimates a small number of rows will be returned by the index seek operation, the key lookup cost would
be relatively low. In such cases, there is no reason to use another nonclustered index . Alternatively, when
index selectivity is low, index seek returns a large number of rows, and SQL Server typically would not use it
because it is not efficient.

 Let’s look at an example where we will create a table and populate it with 1,048,576 rows. Col1 stores
50 different values in the column, Col2 stores 150 values, and Col3 stores 200 values. Finally, we will create
three different nonclustered indexes on the table. The code for doing this is shown in Listing 7-8 .

 Listing 7-8. Multiple nonclustered indexes : Table creation

 create table dbo.IndexIntersection
 (
 Id int not null,
 Placeholder char(100),
 Col1 int not null,
 Col2 int not null,
 Col3 int not null
);

 create unique clustered index IDX_IndexIntersection_ID
 on dbo.IndexIntersection(ID);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,N6(C) as (select 0 from N3 as T1 cross join N5 as T2) -- 1,048,576 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6)
 insert into dbo.IndexIntersection(ID, Col1, Col2, Col3)
 select ID, ID % 50, ID % 150, ID % 200 from IDs;

 create nonclustered index IDX_IndexIntersection_Col1
 on dbo.IndexIntersection(Col1);
 create nonclustered index IDX_IndexIntersection_Col2
 on dbo.IndexIntersection(Col2);
 create nonclustered index IDX_IndexIntersection_Col3
 on dbo.IndexIntersection(Col3);

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

166

 For the next step, let’s look at the execution plan of a query that selects data from the table using three
predicates in the where clause. Each predicate can use an index seek operation on an individual index. The
code for doing this is shown in Listing 7-9 , and the execution plan is shown in Figure 7-5 . As a side note,
you might see a different execution plan and cardinality estimations in your environment based on the SQL
Server version and service pack you have installed.

 Listing 7-9. Multiple nonclustered indexes: Selecting data

 select ID
 from dbo.IndexIntersection
 where Col1 = 42 and Col2 = 43 and Col3 = 44;

 Figure 7-5. Multiple nonclustered indexes: Execution plan with index intersection

 There are a couple of things worth mentioning here. Even though there is another nonclustered index
on Col1 , and all indexes include an ID column, which is row-id, SQL Server elects to use a key lookup rather
than perform a third index seek operation. There are 20,971 rows in the table with Col1=42 , which makes a
key lookup the better choice.

 Another important factor is the cardinality estimations. Even though SQL Server correctly estimates
cardinality for both index seek operations, the estimation after the join operator is incorrect. SQL Server
does not have any data about the correlation of column values in the table, which can lead to cardinality
estimation errors and, potentially, suboptimal execution plans.

 Let’s add another covering index, which will include all three columns from the where clause, and run
the query from Listing 7-9 again. The code creates the index shown in Listing 7-10 . The execution plan is
shown in Figure 7-6 .

 ■ Note The new index with the two included columns makes the IDX_IndexIntersection_Col1 index
redundant. We will discuss this situation later in this chapter.

 Listing 7-10. Multiple nonclustered indexes : Adding a covering index

 create nonclustered index IDX_IndexIntersection_Col3_Included
 on dbo.IndexIntersection(Col3)
 include (Col1, Col2)

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

167

 The CPU time and the number of reads are shown in Table 7-2 .

 Even though the number of reads is not very different in both cases, the CPU time of the query with
index intersection is much higher than that for the query with a covering index.

 A design with multiple narrow, nonclustered indexes, which lead to index intersection, can still help,
especially in the case of a data warehouse workload where queries need to scan and aggregate a large
amount of data. They are less efficient, however, when compared to covering indexes. It is usually better to
create a small set of wide indexes with multiple columns included rather than a large number of narrow,
perhaps single-column, indexes.

 While ideal indexes would cover the queries, it is not a requirement. A small number of key lookup
operations is perfectly acceptable. Ideally, SQL Server would perform a nonclustered index seek, filtering
out rows even further by evaluating other predicates against included columns from the index. This would
reduce the number of key lookups required. The key here is evaluating the query predicates against the
data from nonclustered indexes rather than after the key lookup stage. You can achieve this by including
predicate columns in the index.

 It is impossible to advise you about how many indexes per table you should create. Moreover, it is
different for systems with OLTP, data warehouse, or mixed workloads. In any case, that number fits into the
“It Depends” category.

 In OLTP systems, where data is highly volatile, you should have the minimally required set of indexes.
While it is important to have enough indexes to provide sufficient query performance in the system, you
must consider the data modification overhead introduced by them. In some cases, it is preferable to live with
suboptimal performance of rarely executed queries rather than live with the overhead during every data
modification operation.

 In data warehouse environments, you can create a large number of indexes and/or indexed views,
especially when data is relatively static and is refreshed based on a given schedule. In some cases, you can
achieve better update performance by dropping indexes before and recreating them after the update. It is
also worth mentioning that in dedicated data warehouse systems, you will usually get significantly better
performance by using columnstore indexes.

 ■ Note We will discuss indexed views in Chapter 9 , “Views.” Columnstore indexes are covered in Part VIII of
the book.

 Figure 7-6. Multiple nonclustered indexes: Execution plan with covering index

 Table 7-2. Index Intersection Versus Covering Index

 Number of Reads CPU Time (ms)

 Index Intersection 29 9 ms

 Covering Index 18 1 ms

http://dx.doi.org/10.1007/978-1-4842-1964-5_9

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

168

 Working in mixed-workload environments is always a challenge. I tend to optimize them for OLTP
activity, which is usually customer facing and thus more critical. However, you always need to keep
reporting/data warehouse aspects in mind when dealing with such systems. It is not uncommon to design a
set of tables to store aggregated data and then use them for reporting and analysis purposes, or to use data
partitioning that combines row-based and column-based storage for a different type of data. We will discuss
the latter scenario in Chapter 16 of this book.

 Finally, remember to define indexes as unique whenever possible. Unique nonclustered indexes are
more compact because they do not store row-id on non-leaf levels. Moreover, uniqueness helps the Query
Optimizer to generate more efficient execution plans.

 Optimizing and Tuning Indexes
 System optimization and performance tuning is an iterative, never-ending process, especially in cases where
a system is in development. New features and functions often require you to re-evaluate and refactor the
code and change the indexes in the system.

 While index tuning is an essential part of system optimization, it is hardly the only area on which you
must focus. There are plenty of other factors besides bad or missing indexes that can lead to suboptimal
performance. You must analyze the entire stack, which includes the hardware, operating system, SQL Server,
and database configurations, when troubleshooting your systems.

 ■ Note We will talk about system troubleshooting in greater detail in Chapter 27 , “System Troubleshooting.”

 Index tuning of existing systems may require a slightly different approach as compared to the
development of new systems. With new development, it often makes sense to postpone index tuning until
the later stages when the database schema and queries are more or less finalized. This approach helps to
avoid spending time on optimizations that become obsolete due to code refactoring. This is especially true
in the case of agile development environments, where such refactoring is routinely done at every iteration.

 You should still create the minimally required set of indexes at the very beginning of new development.
This includes primary key constraints and indexes and/or constraints to support uniqueness and referential
integrity in the system. However, all further index tuning can be postponed until the later development
stages.

 There are two must have elements during the index tuning of new systems. First, the database should
store enough data, ideally with data distribution similar to that expected in production. Second, you should
be able to simulate workload, which helps to pinpoint the most common queries and inefficiencies in the
system.

 Optimization of existing systems requires a slightly different approach. Obviously, in some cases you
must fix critical production issues, and there is no alternative but to add or adjust indexes quickly. However,
as a general rule, you should perform index analysis and consolidation, remove unused and inefficient
indexes, and sometimes refactor the queries before adding new indexes to the system. Let’s look at all these
steps in detail.

 Detecting Unused and Inefficient Indexes
 Indexes improve the performance of read operations. The term read is a bit confusing in the database world,
however. Every DML query, such as SELECT , INSERT , UPDATE, DELETE , or MERGE , reads the data. For example,
when you delete a row from a table, SQL Server reads a handful of pages, locating that row in every index.

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
http://dx.doi.org/10.1007/978-1-4842-1964-5_27

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

169

 ■ Note Every database system, including the ones with highly volatile data, handles many more reads than
writes.

 At the same time, indexes introduce overhead during data modifications. Rows need to be inserted into
or deleted from every index. Columns must be updated in every index where they are present. Obviously, we
want to reduce such overhead and drop indexes that are not used very often.

 SQL Server tracks index usage statistics internally and exposes it through the sys.dm_db_index_usage_
stats and sys.dm_db_index_operation_stats DMOs.

 The first data management view —sys.dm_db_index_usage_stats— provides information about different
types of index operations and the time when such an operation was last performed. Let’s look at an example
and create a table, populate it with some data, and look at index usage statistics. The code for doing this is
shown in Listing 7-11 .

 Listing 7-11. Index-usage statistics: Table creation

 create table dbo.UsageDemo
 (
 ID int not null,
 Col1 int not null,
 Col2 int not null,
 Placeholder char(8000) null
);

 create unique clustered index IDX_CI on dbo.UsageDemo(ID);
 create unique nonclustered index IDX_NCI1 on dbo.UsageDemo(Col1);
 create unique nonclustered index IDX_NCI2 on dbo.UsageDemo(Col2);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N3)
 insert into dbo.UsageDemo(ID, Col1, Col2)
 select ID, ID, ID from IDs;

 select
 s.Name + N'.' + t.name as [Table] ,i.name as [Index]
 ,ius.user_seeks as [Seeks], ius.user_scans as [Scans]
 ,ius.user_lookups as [Lookups]
 ,ius.user_seeks + ius.user_scans + ius.user_lookups as [Reads]
 ,ius.user_updates as [Updates], ius.last_user_seek as [Last Seek]
 ,ius.last_user_scan as [Last Scan], ius.last_user_lookup as [Last Lookup]
 ,ius.last_user_update as [Last Update]
 from

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

170

 sys.tables t join sys.indexes i on
 t.object_id = i.object_id
 join sys.schemas s on
 t.schema_id = s.schema_id
 left outer join sys.dm_db_index_usage_stats ius on
 ius.database_id = db_id() and
 ius.object_id = i.object_id and
 ius.index_id = i.index_id
 where
 s.name = N'dbo' and t.name = N'UsageDemo'
 order by
 s.name, t.name, i.index_id

 The user_seeks , user_scans , and user_lookups columns in sys.dm_db_index_usage_stats indicate
how many times the index was used for index seek, index scan, and key lookup operations respectively.
 User_updates indicates the number of inserts, updates, and deletes the index handled. The sys.dm_
index_usage_stats DMV also returns statistics about index usage by the system as well as the last time the
operation occurred.

 As you can see in Figure 7-7 , both clustered and nonclustered indexes were updated once, which is the
 INSERT statement in our case. Neither of the indexes were used for any type of read activity.

 One thing worth mentioning is that we are using an outer join in the select. The sys.dm_db_index_
usage_stats and sys.dm_index_operation_stats DMOs do not return any information about the index if it
has not been used since statistics counters were reset.

 ■ Important Index usage statistics reset on SQL Server restarts. Moreover, they clear whenever the database
is detached or shut down when the AUTO_CLOSE database property is enabled. Moreover, SQL Server 2012 and
2014 have a bug that resets statistics when the index is rebuilt. This bug is fixed in SQL Server 2012 SP3 CU3,
SQL Server 2014 SP2, and SQL Server 2016.

 You must keep this behavior in mind during index analysis. It is not uncommon to have indexes to
support queries that execute on a given schedule. As an example, you can think about an index that supports
a payroll process running on a bi-weekly or monthly basis. Index statistics information could indicate that
the index has not been used for reads if SQL Server was recently restarted or, in the case of SQL Server 2012
RTM–SP3 CU2 and SQL Server 2014 RTM and SP1, if the index was recently rebuilt.

 ■ Tip You can consider creating and dropping such an index on a schedule in order to avoid update
overhead in between-process executions.

 Figure 7-7. Index usage statistics after table creation

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

171

 Now, let’s run a few queries against the dbo.UsageDemo table, as shown in Listing 7-12 .

 Listing 7-12. Index usage statistics: Queries

 -- Query 1: CI Seek (Point lookup)
 select Placeholder from dbo.UsageDemo where ID = 5;

 -- Query 2: CI Seek (Range Scan)
 select count(*)
 from dbo.UsageDemo with (index=IDX_CI)
 where ID between 2 and 6;

 -- Query 3: CI Scan
 select count(*) from dbo.UsageDemo with (index=IDX_CI);

 -- Query 4: NCI Seek (Point Lookup + Key Lookup)
 select Placeholder from dbo.UsageDemo where Col1 = 5;

 -- Query 5: NCI Seek (Range Scan - all data from the table)
 select count(*) from dbo.UsageDemo where Col1 > -1;

 -- Query 6: NCI Seek (Range Scan + Key Lookup)
 select sum(Col2)
 from dbo.UsageDemo with (index = IDX_NCI1)
 where Col1 between 1 and 5;

 -- Queries 7-8: Updates
 update dbo.UsageDemo set Col2 = -3 where Col1 = 3;
 update dbo.UsageDemo set Col2 = -4 where Col1 = 4;

 If you run the SELECT , which displays index usage statistics, again, you would see the results shown in
Figure 7-8 .

 There are a couple of important things to note here. First, sys.dm_db_index_usage_stats returns how
many times the corresponding operations appear in the execution plan. For example, there are only four
lookup operations returned for the IDX_CI index, which indicates that there were four queries with the key
lookup operation in the execution plan, regardless of how many key lookups were actually performed during
query execution.

 Second, the sys.dm_db_index_usage_stats DMV counts both point lookups and range scans as seeks,
which corresponds to the index seek operator. This could mask a situation in which an index seek performs
range scans on a large number of rows. For example, the fifth query in our example scanned all rows from
the IDX_NCI1 index, although it was counted as Seek rather than Scan .

 Figure 7-8. Index usage statistics after several queries

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

172

 When you do such an analysis in production systems, you can consider removing indexes that handle
more updates than reads, similar to IDX_NCI2 from our example. In some cases, it is also beneficial not to
count scan operations toward reads, especially in OLTP environments, where queries that perform index
scans should usually be optimized.

 While sys.dm_db_index_usage provides a good high-level overview of index usage based on operations
from the execution plan, sys.dm_db_index_operation_stats dives deeper and provides detailed level I/O,
access methods, and locking statistics for the indexes.

 The key difference between two DMOs is how they collect data. Sys.dm_db_index_usage_stats tracks
how many times an operation appeared in the execution plan. Alternatively, sys.dm_db_index_operation_
stats tracks operations at the row level. In our key lookup example, sys.dm_db_index_operation_stats
would report eight operations rather than four.

 Even though sys.dm_db_index_operation_stats provides very detailed information about index
usage, I/O, and locking overhead, it could become overwhelming, especially during the initial performance-
tuning stage. It is usually easier to do an initial analysis with sys.dm_db_index_usage_stats and then use
 sys.dm_db_index_operation_stats later when fine-tuning the system.

 ■ Note You can read more about sys.dm_db_index_operation_stats DMF at Books Online:
 http://technet.microsoft.com/en-us/library/ms174281.aspx

 ■ Important Make sure that usage statistics collect enough information representing typical system
workload before performing an analysis.

 Index Consolidation
 As we discussed in Chapter 2 , “Tables and Indexes: Internal Structure and Access Methods,” SQL Server
can use a composite index for an index seek operation as long as a query has a SARGable predicate on the
leftmost query column.

 Let’s look at the table shown in Listing 7-13 . There are two nonclustered indexes, IDX_Employee_
LastName_FirstName and IDX_Employee_LastName , which each have a LastName column defined as the
leftmost column. The first index, IDX_Employee_LastName_FirstName , can be used for an index seek
operation as long as there is a SARGable predicate on the LastName column, even when a query does not
have a predicate on the FirstName column. Thus, the IDX_Employee_LastName index is redundant.

 Listing 7-13. Example of redundant indexes

 create table dbo.Employee
 (
 EmployeeId int not null,
 LastName nvarchar(64) not null,
 FirstName nvarchar(64) not null,
 DateOfBirth date not null,
 Phone varchar(20) nul
);

http://technet.microsoft.com/en-us/library/ms174281.aspx
http://dx.doi.org/10.1007/978-1-4842-1964-5_2

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

173

 create unique clustered index IDX_Employee_EmployeeId
 on dbo.Employee(EmployeeId);

 create nonclustered index IDX_Employee_LastName_FirstName
 on dbo.Employee(LastName, FirstName);

 create nonclustered index IDX_Employee_LastName
 on dbo.Employee(LastName);

 As a general rule, you can remove redundant indexes from the system. Although such indexes can
be slightly more efficient during scans due to their compact size, update overhead usually outweighs this
benefit.

 Obviously, there are always exceptions to the rule. Consider a Shopping Cart system that allows for
searching for products by part of their name. There are several ways to implement this feature, though
when the table is small enough, an index scan operation performed on the nonclustered index on the
 Name column may provide acceptable performance. In such a scenario, you want to have the index be as
compact as possible to reduce its size and the number of reads required during a scan operation. Thus, you
might consider keeping a separate nonclustered index on the Name column, even when this index can be
consolidated with other ones.

 The script shown in Listing 7-14 returns information about potentially redundant indexes with the same
leftmost column defined. Figure 7-9 shows the result of the execution.

 Listing 7-14. Detecting potentially redundant indexes

 select
 s.Name + N'.' + t.name as [Table]
 ,i1.index_id as [Index1 ID], i1.name as [Index1 Name]
 ,dupIdx.index_id as [Index2 ID], dupIdx.name as [Index2 Name]
 ,c.name as [Column]
 from
 sys.tables t join sys.indexes i1 on
 t.object_id = i1.object_id
 join sys.index_columns ic1 on
 ic1.object_id = i1.object_id and
 ic1.index_id = i1.index_id and
 ic1.index_column_id = 1
 join sys.columns c on
 c.object_id = ic1.object_id and
 c.column_id = ic1.column_id
 join sys.schemas s on
 t.schema_id = s.schema_id
 cross apply
 (
 select i2.index_id, i2.name
 from

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

174

 sys.indexes i2 join sys.index_columns ic2 on
 ic2.object_id = i2.object_id and
 ic2.index_id = i2.index_id and
 ic2.index_column_id = 1
 where
 i2.object_id = i1.object_id and
 i2.index_id > i1.index_id and
 ic2.column_id = ic1.column_id
) dupIdx
 order by
 s.name, t.name, i1.index_id

 After you detect potentially redundant indexes, you should analyze all of them on a case-by-case
basis. In some instances, consolidation is trivial. For example, if a system has two indexes, IDX1(LastName,
FirstName) include (Phone) and IDX2(LastName) include(DateOfBirth) , you can consolidate them as
 IDX3(LastName, FirstName) include(DateOfBirth, Phone) .

 In the other cases, consolidation requires further analysis. For example, if a system has two indexes,
 IDX1(OrderDate, WarehouseId) and IDX2(OrderDate, OrderStatus) , you have three options. You
can consolidate it as IDX3(OrderDate, WarehouseId) include(OrderStatus) or as IDX4(OrderDate,
OrderStatus) include(WarehouseId) . Finally, you can leave both indexes in place. The decision primarily
depends on the selectivity of the leftmost column and index usage statistics.

 ■ Tip The sys.dm_db_index_operation_stats function provides information about index usage at the row
level. Moreover, it tracks the number of point lookups separately from range scans. It is beneficial to use this
function when analyzing index consolidation options.

 Finally, you should remember that the goal of index consolidation is removing redundant and
 unnecessary indexes. While reducing index update overhead is important, it is safer to keep an unnecessary
index than it is to drop a necessary one. You should always err on the side of caution during this process.

 Detecting Suboptimal Queries
 There are plenty of ways to detect suboptimal queries using both standard SQL Server and third-party tools.
There are two main metrics to analyze when detecting suboptimal queries: number of I/O operations and
CPU time of the query.

 Having a large number of I/O operations is often a sign of suboptimal or missing indexes, especially in
OLTP systems. It also affects query CPU time—the more data that needs to be processed, the more CPU time
that needs to be consumed doing it. However, the opposite is not always true. There are plenty of factors
besides I/O that can contribute to high CPU time. The most common ones are multi-statement user-defined
functions; imperative code; and calculations.

 Figure 7-9. Potentially redundant indexes

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

175

 ■ Note We will discuss user-defined functions in more detail in Chapter 10 , “Functions.”

 SQL Profiler is, perhaps, the most commonly used tool to detect suboptimal queries. You can set up a
SQL trace to capture a SQL:Stmt Completed event and filter it by the Reads , CPU , or Duration columns.

 There is a difference between CPU time and duration, however. The CPU column indicates how much
CPU time a query uses. The Duration column stores total query execution time. With parallel execution
plans, the CPU time consists of the time spent by all CPUs and could exceed the duration. High duration,
however, does not necessarily indicate high CPU time, as blocking and I/O latency affect the execution time
of the query.

 Starting with SQL Server 2008, it is better to use Extended Events rather than SQL Profiler. Extended
Events are more flexible and introduce less overhead as compared to SQL traces.

 ■ Note We will discuss Extended Events in greater detail in Chapter 28 , “Extended Events.”

 SQL Server tracks execution statistics for queries and exposes them via the sys.dm_exec_query_stats
DMV. Querying this DMV is, perhaps, the easiest way to find the most expensive queries in the system.
Listing 7-15 shows an example of a query that returns information about the fifty most expensive queries in a
system in terms of the average I/O per execution.

 Listing 7-15. Using sys.dm_exec_query_stats

 select top 50
 substring(qt.text, (qs.statement_start_offset/2)+1,
 ((
 case qs.statement_end_offset
 when -1 then datalength(qt.text)
 else qs.statement_end_offset
 end - qs.statement_start_offset)/2)+1) as [Sql]
 ,qs.execution_count as [Exec Cnt]
 ,(qs.total_logical_reads + qs.total_logical_writes)
 / qs.execution_count as [Avg IO]
 ,qp.query_plan as [Plan]
 ,qs.total_logical_reads as [Total Reads]
 ,qs.last_logical_reads as [Last Reads]
 ,qs.total_logical_writes as [Total Writes]
 ,qs.last_logical_writes as [Last Writes]
 ,qs.total_worker_time as [Total Worker Time]
 ,qs.last_worker_time as [Last Worker Time]
 ,qs.total_elapsed_time/1000 as [Total Elps Time]
 ,qs.last_elapsed_time/1000 as [Last Elps Time]
 ,qs.creation_time as [Compile Time]
 ,qs.last_execution_time as [Last Exec Time]
 from
 sys.dm_exec_query_stats qs with (nolock)
 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
 cross apply sys.dm_exec_query_plan(qs.plan_handle) qp
 order by
 [Avg IO] desc
 option (recompile)

http://dx.doi.org/10.1007/978-1-4842-1964-5_10
http://dx.doi.org/10.1007/978-1-4842-1964-5_28

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

176

 The query result, shown in Figure 7-10 , helps you quickly identify optimization targets in the system.
In our example, the second query in the result set executes very often, which makes it an ideal candidate
for optimization, even though it is not the most expensive query in the system. Obviously, you can sort the
results by other criteria, such as the number of executions, execution time, and so on.

 Unfortunately, sys.dm_exec_query_stats returns information only about queries with execution
plans cached. As a result, there are no statistics for those statements that use a statement-level recompile
with option (recompile) . Moreover, execution_count data can be misleading if a query was recently
recompiled. You can correlate the execution_count and creation_time columns to detect the most
frequently executed queries.

 ■ Note We will discuss plan caches in greater detail in Chapter 26 , “Plan Caching.”

 Starting with SQL Server 2008, there is another DMV, sys.dm_exec_procedure_stats , which returns
similar information about stored procedures that have execution plans cached. Listing 7-16 shows a query
that returns a list of the fifty most I/O-intensive procedures. Figure 7-11 shows the results of this query on
one of the production servers.

 Listing 7-16. Using sys.dm_exec_procedure_stats

 select top 50
 s.name + '.' + p.name as [Procedure]
 ,qp.query_plan as [Plan]
 ,(ps.total_logical_reads + ps.total_logical_writes) /
 ps.execution_count as [Avg IO]
 ,ps.execution_count as [Exec Cnt]
 ,ps.cached_time as [Cached]
 ,ps.last_execution_time as [Last Exec Time]
 ,ps.total_logical_reads as [Total Reads]
 ,ps.last_logical_reads as [Last Reads]
 ,ps.total_logical_writes as [Total Writes]
 ,ps.last_logical_writes as [Last Writes]
 ,ps.total_worker_time as [Total Worker Time]
 ,ps.last_worker_time as [Last Worker Time]
 ,ps.total_elapsed_time as [Total Elapsed Time]
 ,ps.last_elapsed_time as [Last Elapsed Time]
 from

 Figure 7-10. Sys.dm_exec_query_stats results

http://dx.doi.org/10.1007/978-1-4842-1964-5_26

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

177

 sys.procedures as p with (nolock) join sys.schemas s with (nolock) on
 p.schema_id = s.schema_id
 join sys.dm_exec_procedure_stats as ps with (nolock) on
 p.object_id = ps.object_id
 outer apply sys.dm_exec_query_plan(ps.plan_handle) qp
 order by
 [Avg IO] desc
 option (recompile);

 ■ Note We will discuss the sys.dm_exec_query_stats and sys.dm_exec_procedure_stats views in
greater detail in Chapter 28 , “System Troubleshooting.”

 SQL Server collects information about missing indexes in the system and exposes it via a set of DMVs
with names starting at sys.dm_db_missing_index . Moreover, you can see suggestions for creating such
indexes in the execution plans displayed in Management Studio.

 There are two caveats when dealing with suggestions about missing indexes. First, SQL Server suggests
the index, which only helps the particular query you are executing. It does not take update overhead, other
queries, and existing indexes into consideration. For example, if a table already has an index that covers the
query with the exception of one column, SQL Server suggests creating a new index rather than changing an
existing one.

 Moreover, suggested indexes help to improve the performance of a specific execution plan. SQL Server
does not consider indexes that can change the execution plan shape and, for example, use a more efficient
join type for the query.

 ■ Important Creating indexes strictly based on suggestions from missing indexes DMVs will lead to a large
number of redundant and inefficient indexes in the system.

 The quality of Database Engine Tuning Advisor (DTA) results greatly depends on the quality of the
workload used for analysis. Good and representative workload data leads to decent results, which is much
better than the suggestions provided by missing indexes DMVs. Make sure to capture the workload, which
includes data modification queries in addition to select queries, if you use DTA.

 Regardless of the quality of the tools, all of them have the same limitation: they are analyzing and
tuning indexes based on existing database schema and code. You can often achieve much better results by
performing database schema and code refactoring in addition to index tuning.

 Figure 7-11. Sys.dm_exec_procedure_stats results

http://dx.doi.org/10.1007/978-1-4842-1964-5_28

CHAPTER 7 ■ DESIGNING AND TUNING THE INDEXES

178

 Summary
 An ideal clustered index is narrow, static, and unique. Moreover, it optimizes the most important queries
against the table and reduces fragmentation. It is often impossible to design a clustered index that
satisfies all of the five design guidelines provided in this chapter. You should analyze the system, business
requirements, and workload and choose the most efficient clustered indexes—even when they violate some
of those guidelines.

 Ever-increasing clustered indexes usually have low fragmentation because the data is inserted at
the end of the table. A good example of such indexes are identities, sequences, and ever-incrementing
date/time values. While such indexes may be a good choice for catalog entities with thousands or even
millions of rows, you should consider other options in the case of huge tables with a high rate of inserts.

 Uniqueidentifier columns with random values are rarely good candidates for indexes due to their
high fragmentation. You should generate the key values with the NEWSEQUENTIALID() function if indexes on
the uniqueidentifier data type are required.

 SQL Server rarely uses index intersection, especially in an OLTP workload. It is usually beneficial to
have a small set of wide, composite, nonclustered indexes with included columns rather than a large set of
narrow one-column indexes.

 In OLTP systems, you should create a minimally required set of indexes to avoid index update overhead.
In data warehouse systems, the number of indexes greatly depends on the data-refresh strategy. You should
also consider using columnstore indexes in dedicated data warehouse databases.

 It is important to drop unused and inefficient indexes and perform index consolidation before
adding new indexes to the system. This simplifies the optimization process and reduces data modification
overhead. SQL Server provides index usage statistics with the sys.dm_db_index_usage_stats and
sys.dm_db_index_operation_stats DMOs.

 You can use SQL Server Profiler, Extended Events, and DMVs, such as sys.dm_exec_query_stats and
 sys.dm_exec_procedure_stats , to detect inefficient queries. Moreover, there are plenty of tools that can
help with monitoring and index tuning. With all that being said, you should always consider query and
database schema refactoring as an option. It often leads to much better performance improvements when
compared to index tuning by itself.

 PART II

 Other Things That Matter

181© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_8

 CHAPTER 8

 Constraints

 It is important to design databases in a way that makes efficient processing and querying of the data
possible. That by itself, however, is not enough. We must make sure that the data we get from the database
can be trusted. Think about an Order Entry system, for example. We can query the OrderLineItems table to
get the information about products we sold, but we cannot trust the results unless we know that the table has
no orphaned rows that do not belong to any orders in our system.

 Constraints allow us to declare the data integrity and business rules for the database and have SQL
Server enforce them. They ensure that data is logically correct, help us to catch bugs in the early stages of
development, and improve the supportability and performance of the system. Let’s look at the different
types of constraints in more detail.

 Primary Key Constraints
 Conceptually, database design can be separated into logical and physical design stages. During the logical
database design stage, we identify the entities in systems based on business requirements, and we define the
attributes and relations between them. After that, during the physical database design stage, we map those
entities to the database tables, defining data access strategies through the indexes and design the physical
data placement across different filegroups and storage arrays.

 Even though the logical and physical database design stages are often mixed together, conceptually they
are separate from each other and can even be performed by different teams, especially on large projects.

 Primary key constraint s define the attribute or set of attributes that uniquely identify an object in an
entity or in the physical database design scope; that is, a row in a table. Internally, primary key constraints
are implemented as unique indexes. By default, SQL Server creates a primary key as a unique clustered
index, although it is not a requirement. We can have nonclustered primary keys, or we can even have tables
with no primary keys at all.

 As you have probably already noticed, the first part of this book did not mention primary keys, and it
routinely used clustered indexes instead. This was done on purpose. Primary keys conceptually belong to
the logical database design domain, while clustered and nonclustered indexes are the part of the physical
database design.

 Database professionals, however, often mix the two by defining the clustered indexes as primary keys,
even though, in some cases, it is incorrect from a logical design standpoint. For example, consider an Order
Entry system with an Orders table with an OrderId identity column. This column uniquely identifies the
order row, and it would be a perfect candidate for a primary key constraint. Whether it is a clustered or
nonclustered primary key depends on the other factors, mainly on how we query and work with the data. In
the end, we would have something similar to the code shown in Listing 8-1 .

CHAPTER 8 ■ CONSTRAINTS

182

 Listing 8-1. Orders table

 create table dbo.Orders
 (
 OrderId int not null identity(1,1),
 -- other columns
 constraint PK_Orders
 primary key clustered(OrderId)
)

 The OrderLineItems table could have two key columns: OrderId , which references the row from the
 Orders table, and the OrderLineItemId identity column. In most cases, we will work with OrderLineItems in
the context of the specific Order and will have OrderId as the predicate in our queries. Therefore, the natural
candidate for the clustered index in this table would be (OrderId, OrderLineItemId) . It would be logically
incorrect, however, to define that clustered index as the primary key—the row can be uniquely identified by
the single OrderLineItemId identity column, and we do not need OrderId for this purpose.

 The question of whether we want to define a nonclustered primary key on OrderLineItemId depends
on the other factors. From the logical design standpoint, it would be the right thing to do, especially if the
table is referenced by the other tables with foreign key constraints, which we will discuss later in this chapter.
This would introduce another nonclustered index, however, which we need to store and maintain. The final
implementation might be similar to the code shown in Listing 8-2 .

 Listing 8-2. OrderLineItems table

 create table dbo.OrderLineItems
 (
 OrderId int not null,
 OrderLineItemId int not null identity(1,1),
 -- other columns

 constraint PK_OrderLineItems
 primary key nonclustered(OrderLineItemId)
);

 create unique clustered index IDX_OrderLineItems_OrderId_OrderLineItemId
 on dbo.OrderLineItems(OrderId,OrderLineItemId);

 While primary keys can be represented as unique indexes from the physical implementation
standpoint, there is the minor difference between them. No primary key columns can be nullable. On the
other hand, unique indexes can be created on the nullable columns and would treat NULL as the regular
value.

 One very important thing to remember is that we cannot change the definition of the primary key or, in
fact, change the definition of any constraint without dropping and recreating it. As a result, if a primary key
constraint is clustered, it will lead to two table rebuilds. Dropping the constraint would remove the clustered
index and convert the table to a heap table. Adding a clustered primary key creates a clustered index on
the heap table. Alternatively, changing the definition of the clustered index would lead to the single index
rebuild.

CHAPTER 8 ■ CONSTRAINTS

183

 ■ Tip Disable nonclustered indexes in case you need to drop and recreate a clustered primary key
constraint. Enable (rebuild) them after both operations are done. This will speed up the process, because
nonclustered indexes will be rebuilt only once after the operation is completed rather than during each step.

 Primary keys usually benefit the system. They provide better data integrity and improve the
supportability of the system. I would recommend defining the primary keys when you can afford to have the
additional index on the primary key columns.

 ■ Note Some SQL Server features, such as transactional replication, require that tables have primary keys
defined. Defining a clustered index without a primary key is not sufficient.

 Because primary keys are implemented as regular indexes, there is no special catalog view for them.
You can look at the is_primary_key column in the sys.indexes catalog view to determine if the index is
defined as the primary key.

 ■ Note SQL Server Catalog Views allow us to obtain information about database and server metadata
programmatically. See http://technet.microsoft.com/en-us/library/ms174365.aspx for more details.

 Unique Constraints
 Unique constraints enforce the uniqueness of the values from one or multiple attributes in the entity or,
in the physical world, columns in the table. Similar to primary keys, unique constraints uniquely identify
rows in a table, although they can be created on the nullable columns and would thus treat NULL as one of
the possible values. Like primary keys, unique constraints belong to the logical database design and are
implemented as unique, nonclustered indexes on the physical level.

 The code in Listing 8-3 shows a table with two unique constraints defined: one constraint defined on
the SSN column and another one on the combination of the DepartmentCode and IntraDepartmentCode
columns.

 Listing 8-3. Defining unique constraints

 create table dbo.Employees
 (
 EmployeeId int not null
 constraint PK_Employees primary key clustered,
 Name nvarchar(64) not null,
 SSN char(9) not null
 constraint UQ_Employees_SSN unique,
 DepartmentCode varchar(32) not null,
 IntraDepartmentCode varchar(32) not null,

 constraint UQ_Employees_Codes
 unique(DepartmentCode, IntraDepartmentCode)
)

http://technet.microsoft.com/en-us/library/ms174365.aspx

CHAPTER 8 ■ CONSTRAINTS

184

 As you can see in Figure 8-1 , SQL Server Management Studio lists unique (and primary key) constraints
in two different places: under both the Key and Indexes nodes .

 Generally, it is a good idea to have uniqueness enforced when data is unique. This helps to keep the
data clean and avoids data integrity issues. Unique constraints can also help Query Optimizer to generate
more efficient execution plans. The downside is that you will have to maintain another nonclustered
index for every uniqueness condition you define. You need to consider the data modification and index
maintenance overhead that are introduced when choosing to implement constraints.

 Whether to choose a unique constraint or a unique index largely depends on personal preferences.
Uniqueness usually comes in the form of a business requirement, and enforcing uniqueness with
constraints can contribute to system supportability. On the other hand, unique indexes are more flexible.
You can include columns and use those indexes for query optimization purposes in addition to uniqueness
enforcement. You can also specify the sorting order, which can help in some rare cases.

 It is also impossible to alter a unique constraint definition without dropping and recreating it. Even
though dropping a constraint is a metadata operation, which does not introduce data movement, there is
a possibility that a uniqueness rule will be violated when a constraint is dropped. Alternatively, you can
change the unique index definition in atomary operation by using the CREATE INDEX .. WITH (DROP_
EXISTING=ON) statement.

 Like primary key constraints, there is no special catalog view for unique constraints. There is the
column is_unique_constraint in the sys.indexes catalog view, which shows if an index is created as a
unique constraint.

 Foreign Key Constraints
 Foreign key constraints identify and enforce relations between entities/tables. Think about our Orders and
 OrderLineItems tables example. Every OrderLineItems row belongs to a corresponding Orders row and
cannot exist by itself. These kinds of relations are enforced with foreign key constraints.

 Like other constraints, foreign keys enforce data integrity. It is always easier to deal with clean and
correct data rather than cleaning up data on the fly. In addition, during the development and testing stages,
foreign keys help catch a good number of bugs related to incorrect data processing.

 Figure 8-1. Unique constraints in SQL Server Management Studio

CHAPTER 8 ■ CONSTRAINTS

185

 However, foreign keys come with a price. Every time you insert data into the referencing table , you
need to check to see if there are corresponding rows in the referenced table. Let’s look at the example using
the same Orders and OrderLineItems tables we created earlier in this chapter. When you insert a row into
the OrderLineItems table without any foreign keys defined, the query needs to perform only one clustered
index insert operation, as shown in Figure 8-2 .

 Now, let’s add a foreign key constraint to the table. Listing 8-4 shows the ALTER TABLE statement , which
performs this task.

 Listing 8-4. Adding a foreign key constraint to the OrderLineItems table

 alter table dbo.OrderLineItems with check
 add constraint FK_OrderLineItems_Orders
 foreign key(OrderId)
 references dbo.Orders(OrderId)

 When you run the insert again, you will see that the execution plan changes, as shown in Figure 8-3 .

 As you can see, the plan now includes a clustered index seek operation on the referenced (Orders) table.
SQL Server needs to validate the foreign key constraint and make sure that there is a corresponding order
row for the line item that you are inserting.

 Now, let’s see what happens when you delete the row from the Orders table . As you see in Figure 8-4 ,
our execution plan now includes a clustered index seek on the referencing (OrderLineItems) table. SQL
Server needs to check to see if there are any line-item rows that reference the row you are deleting. If there
are any such line-item rows, SQL Server either aborts the deletion or performs some cascade actions,
depending on the rules of the foreign key constraint.

 Figure 8-2. Inserting a row into the referencing table with no foreign key constraint defined

 Figure 8-3. Inserting a row into the referencing table with a foreign key constraint defined

CHAPTER 8 ■ CONSTRAINTS

186

 Let’s add an ON DELETE CASCADE action to the foreign-key constraint, as shown in Listing 8-5 . Now
when you delete the row from the Orders table, SQL Server needs to find and delete the referencing rows
from the OrderLineItems table. The execution plan is shown in Figure 8-5 .

 Listing 8-5. Replacing the constraint with ON DELETE CASCADE action

 alter table dbo.OrderLineItems drop constraint FK_OrderLineItems_Orders;

 alter table dbo.OrderLineItems with check
 add constraint FK_OrderLineItems_Orders
 foreign key(OrderId)
 references dbo.Orders(OrderId)
 on delete cascade;

 Figure 8-4. Deleting a row from the referenced table (no cascade actions)

 Figure 8-5. Deleting a row from the referenced table (ON DELETE CASCADE action)

 There is one very important thing to remember: when you create the foreign key constraint, SQL Server
requires you to have a unique index on the referenced (OrderId) column in the referenced (Orders) table.
However, there is no requirement to have a similar index on the referencing (OrderLineItems) table. If you
do not have such an index, any referential integrity checks on the referencing tables will introduce the scan
operation. In order to prove this, let’s drop the clustered index on the OrderLineItems table using the DROP
INDEX IDX_OrderLineItems_OrderId_OrderLineItemId ON dbo.OrderLineItems statement.

 Now, when you run the deletion again, you will see the execution plan, as shown in Figure 8-6 .

CHAPTER 8 ■ CONSTRAINTS

187

 Missing indexes on the referencing columns could have a huge performance impact in the case of large
tables. This would introduce excessive and unnecessary I/O load and contribute to blocking. Also, besides
referential integrity support, those indexes can be helpful during join operations between the tables. With
very rare exceptions, you should create those indexes when you create the foreign key constraints.

 In some cases, foreign key constraints can help the Query Optimizer . They can help eliminate
unnecessary joins, especially when views are involved, as well as improve the performance of some queries
in data warehouse environments.

 ■ Note We will discuss join elimination in greater detail in Chapter 10 , “Views.”

 Unfortunately, foreign keys are incompatible with some SQL Server features. For example, when a table
is partitioned and referenced by a foreign key, you cannot alter the table and switch the partition to another
table. You can still have the table partitioned, however, if a partition switch is not involved. Another example
is table truncation. You cannot truncate a table when it is referenced by foreign keys.

 Defining foreign key constraints is usually a good thing, assuming, of course, that you are OK with the
extra indexes and that the system can handle the slight performance overhead introduced by index seek
operations during referential integrity checks. In OLTP systems , I recommend that you always create foreign
keys when referencing catalog entities where the amount of data is relatively small and static. For example,
an order-entry system’s catalog entities would include Articles , Customers , Warehouses , and so forth. You
need to be careful, however, when dealing with transactional entities that store billions of rows and handle
thousands of inserts per second. I would still use foreign keys whenever possible, though I would analyze the
performance implications on a case-by-case basis.

 There are a couple of catalog views, sys.foreign_ keys and sys.foreign_key_ columns , that provide
information concerning any foreign key constraints that are defined in the database.

 Figure 8-6. Deleting the row from the referenced table without an index specified on the referencing column

http://dx.doi.org/10.1007/978-1-4842-1964-5_10

CHAPTER 8 ■ CONSTRAINTS

188

 Check Constraints
 Check constraints enforce domain integrity by limiting the values that you can put into the column or into
multiple columns in the row. They specify a logical expression that is evaluated every time a row is inserted
or when corresponding columns are modified, and they fail the operation when an expression is evaluated
as FALSE .

 Look at the example shown in Listing 8-6 .

 Listing 8-6. Check constaints: Table creation

 create table dbo.Accounts
 (
 AccountId int not null identity(1,1),
 AccountType varchar(32) not null,
 CreditLimit money null,

 constraint CHK_Accounts_AccountType
 check (AccountType in ('Checking','Saving','Credit Card')),

 constraint CHK_Accounts_CreditLimit_For_CC
 check ((AccountType <> 'Credit Card') or (CreditLimit > 0))
)

 There are two check constraints specified. The first one, CHK_Accounts_AccountType , enforces the
rule that AccountType needs to belong to one of three values. The second one is more complex. It enforces
the rule that, for credit card accounts, there should be a positive CreditLimit provided. One key point to
remember is that data is rejected only when a constraint expression is evaluated as FALSE . NULL results are
accepted. For example, the INSERT statement shown in Listing 8-7 works just fine.

 Listing 8-7. Check constaints: Inserting a NULL value

 insert into dbo.Accounts(AccountType, CreditLimit)
 values('Credit Card',null)

 The main purpose of check constraints is to enforce data integrity, although they can, in some cases,
help Query Optimizer and simplify execution plans. Assume that you have two tables: one that contains
positive numbers and another one that contains negative numbers, as shown in Listing 8-8 .

 Listing 8-8. Check constaints: PositiveNumbers and NegativeNumbers tables creation

 create table dbo.PositiveNumbers
 (PositiveNumber int not null);

 create table dbo.NegativeNumbers
 (NegativeNumber int not null);

 insert into dbo.PositiveNumbers(PositiveNumber) values(1);
 insert into dbo.NegativeNumbers(NegativeNumber) values(-1);

 Now, let’s run a SELECT that joins the data from those two tables. You can see the SELECT statement in
Listing 8-9 and the execution plan in Figure 8-7 .

CHAPTER 8 ■ CONSTRAINTS

189

 Listing 8-9. Check constaints: Two tables joined without check constraints created

 select *
 from dbo.PositiveNumbers e join dbo.NegativeNumbers o on
 e.PositiveNumber = o.NegativeNumber

 As you can see, SQL Server scans and joins the two tables. That makes sense. Even if we had named
our tables in a very specific way, nothing would prevent us from inserting positive values into the
 NegativeNumbers table and vice versa. Now, let’s add the check constraints that enforce the rules. You can
see the ALTER TABLE statements in Listing 8-10 .

 Listing 8-10. Check constaints: Adding check constraints to the table

 alter table dbo.PositiveNumbers
 add constraint CHK_IsNumberPositive
 check (PositiveNumber > 0);

 alter table dbo.NegativeNumbers
 add constraint CHK_IsNumberNegative
 check (NegativeNumber < 0);

 If you run the select again, you will see a different execution plan, as shown in Figure 8-8 .

 SQL Server evaluated the check constraints, determined that they were mutually exclusive, and
removed any unnecessary joins.

 ■ Note One very important situation where you must define check constraints is in the case of partitioned
views. Check constraints prevent access to unnecessary tables and greatly improve the performance of queries.
We will discuss partitioning views in greater detail in Chapter 16 , “Data Partitioning.”

 Figure 8-7. Execution plan without check constraints

 Figure 8-8. Execution plan with check constraints

http://dx.doi.org/10.1007/978-1-4842-1964-5_16

CHAPTER 8 ■ CONSTRAINTS

190

 Obviously, check constraints introduce overhead during data modifications, especially when you
are calling the functions from the constraints. They can significantly decrease the performance of batch
operations that insert or update data.

 Let’s create a table and insert 65,536 rows into it without using check constraints. The code is shown in
Listing 8-11 .

 Listing 8-11. Check constaints: CheckConstraintTest table creation

 create table dbo.CheckConstraintTest
 (Value varchar(32) not null);

 with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.CheckConstraintTest(Value)
 select 'ABC' from IDs;

 You can see the part of the execution plan that inserts data into the table in Figure 8-9 .

 On my computer, the execution time is as follows:

 SQL Server Execution Times:
 CPU time = 78 ms, elapsed time = 87 ms.

 Let’s add a check constraint to the table and see how it affects the performance of the INSERT operation.
The code is shown in Listing 8-12 .

 Listing 8-12. Check constaints: Adding a check constraint to the CheckConstraintTest table

 alter table dbo.CheckConstraintTest with check
 add constraint CHK_CheckConstraintTest_Value
 check (Value = 'ABC')

 As you can see in Figure 8-10 , there are two additional operations in the plan introduced by the check
constraint, which leads to a longer execution time.

 Figure 8-9. Part of the execution plan: Insert without check constraints

CHAPTER 8 ■ CONSTRAINTS

191

 On my computer, the execution time is as follows:

 SQL Server Execution Times:
 CPU time = 93 ms, elapsed time = 118 ms.

 Now, let’s see what happens when we call a system function from the check constraint. Let’s change the
constraint definition, as shown in Listing 8-13 .

 Listing 8-13. Check constaints: Replacing check constraints with one that calls a system function

 alter table dbo.CheckConstraintTest
 drop constraint CHK_CheckConstraintTest_Value;

 alter table dbo.CheckConstraintTest with check
 add constraint CHK_CheckConstraintTest_Value
 check (Right(Value, 1) = 'C');

 After we run our insert again, the execution time is as follows:

 SQL Server Execution Times:
 CPU time = 109 ms, elapsed time = 131 ms.

 While system functions do not necessarily introduce huge overhead in terms of CPU load and execution
time, user-defined functions (UDFs) are a different story. Let’s create a simple UDF and see how it affects
performance. The code is shown in Listing 8-14 .

 Listing 8-14. Check constaints: Replacing a check constraint with one that calls a UDF function

 create function dbo.DummyCheck(@Value varchar(32))
 returns bit
 with schemabinding
 as
 return (1);
 go

 alter table dbo.CheckConstraintTest
 drop constraint CHK_CheckConstraintTest_Value;

 alter table dbo.CheckConstraintTest
 add constraint CHK_CheckConstraintTest_Value
 check (dbo.DummyCheck(Value) = 1);

 Figure 8-10. Part of the execution plan: insert with check constraint

CHAPTER 8 ■ CONSTRAINTS

192

 When we run the same INSERT again, the execution time is as follows:

 SQL Server Execution Times:
 CPU time = 375 ms, elapsed time = 475 ms.

 As you can see, it now takes five times as long to run as when the table did not have a check constraint
specified.

 ■ Note We will discuss the performance implications of user-defined functions in greater detail in Chapter 11 ,
“Functions.”

 As with other constraint types, check constraints help us to enforce data integrity and, in some cases,
lead to better execution plans. It is a good idea to use them as long as you can live with the overhead that
they introduce during data modification. You can get information about check constraints from the sys.
check_constraints catalog view .

 Wrapping Up
 One other important thing that you need to keep in mind when dealing with foreign key and check
constraints is whether the constraints are trusted. When a constraint is not trusted, SQL Server will not
guarantee that all data in the table complies with the constraint rule. Moreover, SQL Server does not take
untrusted constraints into consideration during the query optimization stage. You can see if a constraint is
trusted by examining the is_not_trusted column in the corresponding catalog view.

 SQL Server validates constraints during data modifications regardless of whether they are trusted or
not. Having an untrusted constraint does not mean that SQL Server permits violations of it. It means that old
data was not validated at the moment the constraint was created.

 ■ Note In some cases, SQL Server can still benefit from untrusted foreign key constraints. They can trigger
the Query Optimizer to explore additional join strategies (star join extensions) when the table structure belongs
to a star or snowflake schema in data warehouse environments.

 You can control if a constraint is created as trusted by using the WITH CHECK / WITH NOCHECK parameters
of the ALTER TABLE statement. By using the WITH CHECK condition, you force SQL Server to validate whether
existing data complies with a constraint rule, which would lead to a table scan. The problem here is that
such an operation requires a schema modification (Sch-M) lock, which makes the table inaccessible to
other sessions. Such a scan can be very time consuming on large tables. Alternatively, creating untrusted
constraints with the WITH NOCHECK condition is a metadata operation.

 ■ Note We will talk about schema locks in greater detail in Chapter 23 , “Schema Locks.”

 Finally, you always need to name constraints explicitly, even if it is not a requirement, as it is
inconvenient to deal with auto-generated names. With auto-generated names, you need to query the
catalog views every time you access constraints programmatically. The use of auto-generated names also
reduces the supportability of a system. For example, it is very hard to know what a constraint with the name
 CK__A__3E52440B does without diving deeper into the details.

http://dx.doi.org/10.1007/978-1-4842-1964-5_11
http://dx.doi.org/10.1007/978-1-4842-1964-5_23

CHAPTER 8 ■ CONSTRAINTS

193

 I recommend that you choose a naming convention that works best for you and use it across the
system. Details do not really matter, as long as it is consistent and ideally provides information about
the rules for which the constraints are responsible. In my systems, I am using DEF_<Table>_<Column>
for the default constraints , CHK_<Table>_<Column_Or_Description> for the check constraints,
 UQ_<TableName>_<ColNames> for the unique constraints, and <FK>_<ReferencingTable>_<ReferencedTab
le> for the foreign key constraints. This notation helps me to understand what constraints are doing simply
by glancing at their names.

 Constraints are a very powerful tool that helps to keep the data clean and improves the supportability
and performance of the system. Use them wisely.

 Summary
 Primary key constraints define the column or set of columns that uniquely identify a row in a table.
Internally, primary key constraints are implemented as unique indexes and can be either clustered or
nonclustered.

 Foreign key constraints define the relationships between tables in the system. They help to improve
data quality in the database; however, they introduce some overhead during referential integrity checks. It is
important to define the index on the referencing column in the referencing table whenever it is possible.

 Check constraints enforce domain integrity by limiting the values that you can put into the column or
into multiple columns in the row. As with foreign key constraints, they help to improve data quality in the
system at the cost of validation overhead during data modifications. You should consider this overhead,
especially in cases when you are using user-defined functions to validate the constraint.

 Foreign key and check constraints can be either trusted or untrusted. SQL Server does not validate
untrusted constraints at the creation stage; however, it performs validation after the constraint has been
created. In most cases, Query Optimizer does not rely on untrusted constraints during query optimization.

195© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_9

 CHAPTER 9

 Triggers

 Triggers define the code that runs in response to specific events. There are three types of triggers available in
SQL Server, as follows:

 1. DML triggers fire when data modification occurs. You can use DML triggers
in cases where you need to enforce specific business rules during data
modifications and the system does not have a dedicated data access tier
implemented. You can think about audit-trail functional, which captures who
changed the data in the table, as an example. When a system has multiple
applications working with the database directly, an audit-trail implementation
based on triggers is the simplest one.

 2. DDL triggers fire in response to events that change database and server objects.
You can use DDL triggers to prevent or audit those changes; for example,
dropping tables, altering stored procedures, or creating new logins.

 3. Logon triggers fire during the user login process. You can use triggers for audit
purposes, as well as to prevent users from logging in to the system when needed.

 DML Triggers
 DML triggers allow you to define the code that will be executed during data modification operations, such
as INSERT , UPDATE , DELETE , or MERGE . There are two types of DML triggers: INSTEAD OF and AFTER triggers .
 INSTEAD OF triggers run as a replacement of the actual data modification operation on a table or view. With
these types of triggers, you can evaluate and/or implement business rules. You also need to issue the actual
DML statement against a table if you want the data to be modified. AFTER triggers fire following a data
modification operation, when the data in the table has been changed.

CHAPTER 9 ■ TRIGGERS

196

 Let’s see what happens when we insert data into a table that has triggers and constraints defined. First,
let’s create a table using the code shown in Listing 9-1 .

 Listing 9-1. Inserting data into the table: Table and two triggers creation

 create table dbo.OrderLineItems
 (
 OrderId int not null,
 OrderLineItemId int identity(1,1) not null,
 ProductId int not null,
 ProductName nvarchar(64) not null,
 CreationDate smalldatetime not null,
 constraint DEF_OrderLineItems_CreationDate
 default GetUtcDate(),
 Quantity decimal(9,3) not null,
 Price smallmoney not null,

 constraint PK_OrderLineItems
 primary key clustered(OrderId, OrderLineItemId),

 constraint CHK_OrderLineItems_PositiveQuantity
 check (Quantity > 0),

 constraint FK_OrderLineItems_Orders
 foreign key(OrderId)
 references dbo.Orders(OrderId),

 constraint FK_OrderLineItems_Products
 foreign key(ProductId)
 references dbo.Products(ProductId)
)
 go

 create trigger trg_OrderLineItems_InsteadOfInsert on dbo.OrderLineItems
 instead of insert
 as
 begin
 if @@rowcount = 0
 return;
 set nocount on
 if not exists(select * from inserted)
 return;

 insert into dbo.OrderLineItems(OrderId, ProductId, ProductName, Quantity, Price)
 select i.OrderId, i.ProductId, p.ProductName, i.Quantity, i.Price
 from inserted i join dbo.Products p on
 i.ProductId = p.ProductId;
 end
 go

CHAPTER 9 ■ TRIGGERS

197

 create trigger trg_OrderLineItems_AfterInsert on dbo.OrderLineItems
 after insert
 as
 begin
 if @@rowcount = 0
 return;
 set nocount on
 if not exists(select * from inserted)
 return;

 if exists
 (
 select *
 from inserted i join dbo.Orders o on
 i.OrderId = o.OrderId
 where o.Status = 'CLOSED'
)
 begin
 raiserror('Cannot change the closed order',16,1);
 rollback tran;
 return;
 end
 end

 The table has both primary and foreign keys as well as default and check constraints. INSTEAD OF and
 AFTER triggers are also defined. Let’s take a look at what happens when we run an INSERT statement against
the table, as shown in Listing 9-2 .

 Listing 9-2. Inserting data into the table: Insert statement

 insert into dbo.OrderLineItems(OrderId, ProductId, ProductName, Quantity, Price)
 values(@OrderId, @ProductId, @ProductName, @Quantity, @Price)

 In the first step, SQL Server creates and populates inserted and deleted virtual tables that contain
information about the new and old versions of the rows affected by the DML statement. These tables will
be accessible in the INSTEAD OF trigger. In our case, the inserted table would have one row with the values
that we provided in the INSERT statement and the deleted table would be empty, because there is no
“old” version of the row when we insert it. We will talk about these tables later in this chapter, but for now
let us remember one very important thing: DML triggers have a statement scope and would be fired just
once regardless of how many rows were affected. The virtual tables could have more than one row, and the
implementation needs to handle that correctly.

 In the next step, SQL Server fires the trg_OrderLineItems_InsteadOfInsert INSTEAD OF trigger . In the
trigger, we are implementing the business logic and executing an INSERT statement against the actual table.
Our implementation of the trigger ignores the ProductName value provided by the original INSERT statement
and replaces it with the actual product name from the Products table. An inner join also filters out the rows
that do not have corresponding products in the system. Even if we enforce the same rule by foreign key
constraint, such an implementation behaves differently. Violation of the foreign key constraint terminates
the entire batch without inserting any rows, while a join in the trigger just filters out incorrect rows and
inserts the correct ones.

CHAPTER 9 ■ TRIGGERS

198

 ■ Tip Whether you should use such an approach, ignoring the incorrect rows rather than terminating the
batch, depends on the business requirements. Although it can help in some cases, it complicates system
troubleshooting. At a bare minimum, I suggest that you log information about the skipped rows somewhere in
the system.

 When the INSTEAD OF trigger runs the INSERT statement, SQL Server performs the following tasks in the
sequence:

 1. It assigns the default constraint value to the CreationDate column.

 2. It validates the not null, primary key, unique, check constraints, and unique
indexes in the table, and it terminates the statement in the case of constraint or
uniqueness violations.

 3. It checks referential integrity and terminates the statement in case of foreign key
constraint violations. Otherwise, it inserts the new rows into the table.

 ■ Note AFTER triggers do not fire in the case of constraint or index-uniqueness violations.

 Finally, we have the new inserted and deleted tables created, and the AFTER triggers are fired. At this
point, the new row has already been inserted into the table and, if we needed to roll back the changes, SQL
Server would undo the INSERT operation. In the preceding example, it would be more efficient to have the
order-status check being implemented as part of INSTEAD OF rather than as an AFTER trigger.

 As I already mentioned, triggers run on a per-statement rather than a per-row basis. Our
implementation needs to work correctly when inserted and deleted tables have more than one row. For
example, the implementation in Listing 9-3 would fail with the exception that the subquery used in the set
operator returns more than one row if multiple rows are being updated.

 Listing 9-3. Triggers implementation: Incorrect implementation

 create trigger Trg_OrderLineItems_AfterUpdate_Incorrect on dbo.OrderLineItems
 after update
 as
 begin
 -- Some code here
 declare
 @OrderId int;

 set @OrderId = (select OrderId from inserted);
 -- Some code here
 end

 Error Message:
 Msg 512, Level 16, State 1, Procedure Trg_OrderLineItems_AfterUpdate_Incorrect, Line 9
 Subquery returned more than 1 value. This is not permitted when the subquery
 follows =, !=, <, <= , >, >= or when the subquery is used as an expression.

CHAPTER 9 ■ TRIGGERS

199

 Alternatively, triggers would fire even if the DML statement did not change (insert, update, or delete)
any data. In that case, both the inserted and the deleted tables would be empty. In order to create
an efficient implementation, you need to have a few checks in the beginning of the trigger to prevent
unnecessary code from being executed. Let’s look at our implementation again, as shown in Listing 9-4 .

 Listing 9-4. Trigger implementation: Preventing unnecessary code from being executed

 create trigger trg_OrderLineItems_InsteadOfInsert on dbo.OrderLineItems
 instead of insert
 as
 begin
 if @@rowcount = 0
 return;
 set nocount on
 if not exists(select * from inserted)
 return;
 -- Some code here
 end

 The first statement in the trigger— if @@ rowcount = 0 —checks if the INSERT statement did, in fact,
insert any rows. As an example, you can think about the insert/select pattern when the SELECT query did not
return any data. You would like to avoid having a trigger code be executed in such cases.

 The second statement— set nocount on —stops SQL Server from returning the message that displays
the number of rows affected by the code in the trigger. Some client libraries do not handle multiple messages
correctly.

 The last statement— if not exists(select * from inserted) —is trickier. While @@rowcount can
help you detect when there are no rows affected by INSERT , UPDATE , or DELETE statements, it would not work
very well with MERGE . That operator, introduced in SQL Server 2008, allows you to combine all three actions
into the single statement. Triggers would fire even if there were no corresponding actions. @@rowcount in the
trigger represents the total number of rows affected by the MERGE statement.

 Let’s create a simple table with three triggers that displays the value of @@rowcount and the number of
rows in the inserted and deleted tables. You can see this code in Listing 9-5 . It is also worth mentioning
that it is very bad practice to return any result sets from triggers, because it could easily break client
applications.

 Listing 9-5. Triggers and MERGE statement : Table and three triggers creation

 create table dbo.Data(Col int not null);

 create trigger trg_Data_AI on dbo.Data
 after insert
 as
 select
 'After Insert' as [Trigger]
 ,@@RowCount as [RowCount]
 ,(select count(*) from inserted) as [Inserted Cnt]
 ,(select count(*) from deleted) as [Deleted Cnt];

CHAPTER 9 ■ TRIGGERS

200

 create trigger trg_Data_AU on dbo.Data
 after update
 as
 select
 'After Update' as [Trigger]
 ,@@RowCount as [RowCount]
 ,(select count(*) from inserted) as [Inserted Cnt]
 ,(select count(*) from deleted) as [Deleted Cnt];

 create trigger trg_Data_AD on dbo.Data
 after delete
 as
 select
 'After Delete' as [Trigger]
 ,@@RowCount as [RowCount]
 ,(select count(*) from inserted) as [Inserted Cnt]
 ,(select count(*) from deleted) as [Deleted Cnt];

 Now, let’s run the MERGE statement, as shown in Listing 9-6 .

 Listing 9-6. Triggers and MERGE statement: MERGE

 merge into dbo.Data as Target
 using (select 1 as [Value]) as Source
 on Target.Col = Source.Value
 when not matched by target then
 insert(Col) values(Source.Value)
 when not matched by source then
 delete
 when matched then
 update set Col = Source.Value;

 Because the dbo.Data table is empty, the MERGE statement would insert one row there. Let’s look at the
output from the triggers, as shown in Figure 9-1 .

 Figure 9-1. @@rowcount, inserted and deleted tables with MERGE operator

CHAPTER 9 ■ TRIGGERS

201

 As you can see, all three triggers were fired. In each of them, @@rowcount represented the number of
rows affected by the MERGE . However, with the AFTER UPDATE and AFTER DELETE triggers , the inserted and
 deleted tables were empty. You need to check the content of these tables in order to prevent the code in the
trigger from being executed if they are empty.

 As you can guess, there is overhead associated with the triggers. At a bare minimum, SQL Server needs
to create inserted and deleted virtual tables when triggers are present. SQL Server does not analyze
whether there is any logic that references those tables within the trigger, and simply always creates them.
While the overhead associated with INSTEAD OF triggers is not particularly large, this is not the case with
 AFTER triggers. AFTER triggers store the data from those tables in the special part of tempdb called the version
store , keeping it until after the transaction completes.

 ■ Note SQL Server uses the version store to maintain multiple versions of the rows, and it supports several
features, such as optimistic transaction isolation levels, online indexing, multiple active result sets (MARS), and
triggers. We will talk about it in greater detail in Chapter 21 , “Optimistic Isolation Levels.”

 While version store usage introduces additional tempdb load , there is another important factor that
you need to keep in mind. In order to maintain the links between the new and old versions of the rows,
 AFTER UPDATE and AFTER DELETE triggers add a 14-byte versioning tag pointer to the rows they modified
or deleted, which will stay until the index has been rebuilt. That could increase the row size and introduce
fragmentation similar to that in the insert/update pattern discussed in Chapter 6 , “Index Fragmentation.”
Let’s look at an example and create a table with some data, as shown in Listing 9-7 .

 Listing 9-7. Triggers and fragmentation: Table creation

 create table dbo.Data
 (
 ID int not null identity(1,1),
 Value int not null,
 LobColumn varchar(max) null,
 constraint PK_Data
 primary key clustered(ID)
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,Numbers(Num) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Data(Value)
 select Num from Numbers;

 Now, let’s delete every other row in the table, looking at the index’s physical statistics before and after
the deletion. The code is found in Listing 9-8 , and the results are shown in Figure 9-2 .

http://dx.doi.org/10.1007/978-1-4842-1964-5_21
http://dx.doi.org/10.1007/978-1-4842-1964-5_6

CHAPTER 9 ■ TRIGGERS

202

 Listing 9-8. Triggers and fragmentation: Physical index stats before and after deletion

 select
 alloc_unit_type_desc as [AllocUnit], index_level,page_count,
 ,avg_page_space_used_in_percent as [SpaceUsed]
 ,avg_fragmentation_in_percent as [Frag %]
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Data'),1,null,'DETAILED');

 delete from dbo.Data where ID % 2 = 0;

 select
 alloc_unit_type_desc as [AllocUnit], index_level,page_count,
 ,avg_page_space_used_in_percent as [SpaceUsed]
 ,avg_fragmentation_in_percent as [Frag %]
 from sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID(N'dbo.Data'),1,null,'DETAILED');

 Figure 9-2. Clustered index physical statistics after DELETE statement without AFTER DELETE trigger

 As you should remember, the DELETE operation does not physically remove the row from the page; it
just marks it as a ghost row. In our example, the only thing that was changed is the amount of free space on
the pages.

 Now, let’s truncate the table and populate it with the same data as before with the code shown in
Listing 9-9 .

 Listing 9-9. Triggers and fragmentation: Populating table with data

 truncate table dbo.Data;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,Numbers(Num) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Data(Value)
 select Num from Numbers;

CHAPTER 9 ■ TRIGGERS

203

 Next, let’s create the empty AFTER DELETE trigger on the table, as shown in Listing 9-10 .

 Listing 9-10. Triggers and fragmentation: Trigger creation

 create trigger trg_Data_AfterDelete
 on dbo.data
 after delete
 as
 return;

 If you run the same deletion statement as you did previously, you will see the results shown in Figure 9-3 .

 Figure 9-3. Clustered index physical statistics after DELETE statement with AFTER DELETE trigger

 Versioning tags increased the size of the rows and led to massive page splits and fragmentation during
 DELETE operations. Moreover, in the end, we almost doubled the number of pages in the index.

 ■ Note In some cases, when there is only in-row allocation involved (for example, when a table does not
have either LOB columns or variable-length columns, which can potentially require it to store data in the row-
overflow pages), SQL Server optimizes that behavior and does not add 14 bytes of versioning tags to the rows.

 Triggers are always running during the same transaction as the statement that fired them. We need
to make trigger execution time as short as possible to minimize the duration of locks being held. In the
event a trigger contains complex logic that can be executed outside of the transaction, you can consider
implementing that logic using Service Broker. The trigger can send Service Broker a message, and Service
Broker in turn can execute an activation procedure that implements the logic.

 ■ Note Coverage of Service Broker is outside of the scope of this book. You can read about it at https://
msdn.microsoft.com/en-us/library/bb522893.aspx .

https://msdn.microsoft.com/en-us/library/bb522893.aspx
https://msdn.microsoft.com/en-us/library/bb522893.aspx

CHAPTER 9 ■ TRIGGERS

204

 DDL Triggers
 DDL triggers allow you to define the code that executes in response to various DDL events, such as the
creation, alteration, or deletion of database objects; changing permissions; and updating statistics. You
can use these triggers for audit purposes, as well as to restrict some operations on database schemas. For
example, the trigger shown in Listing 9-11 would prevent the accidental altering or dropping of a table, and it
could be used as a safety feature in a production environment.

 Listing 9-11. DDL Triggers: Preventing the altering and dropping of tables in production

 create trigger trg_PreventAlterDropTable on database
 for alter_table, drop_table
 as
 begin
 print 'Table cannot be altered or dropped with trgPreventAlterDropTable trigger enabled' ;
 rollback;
 end

 While this approach helps with keeping tables and their schemas intact, it introduces one potential
problem. DDL triggers fire after an operation is completed. As a result, using our example, if you have the
session altering the table, SQL Server would perform the alteration before the trigger fires and then would
roll back all of the changes.

 Let’s prove it now. As a first step, let’s alter the trigger to capture information about the table structure
during execution and then display a list of the columns in the table when it fires. You can see the code that
does this in Listing 9-12 .

 Listing 9-12. DDL triggers: Trigger code

 alter trigger trg_PreventAlterDropTable on database
 for alter_table
 as
 begin
 declare
 @objName nvarchar(257) =
 eventdata().value('/EVENT_INSTANCE[1]/SchemaName[1]','nvarchar(128)') +
 '.' + eventdata().value('/EVENT_INSTANCE[1]/ObjectName[1]','nvarchar(128)');

 select column_id, name
 from sys.columns
 where object_id = object_id(@objName);

 print 'Table cannot be altered or dropped with trgPreventAlterDropTable trigger enabled'
 rollback;
 end

CHAPTER 9 ■ TRIGGERS

205

 Now, let’s run the ALTER TABLE statement that adds a persistent computed column to the table,
capturing I/O statistics during the execution. You can see the code for doing this in Listing 9-13 .

 Listing 9-13. DDL triggers: ALTER TABLE statement

 set statistics io on;
 alter table Delivery.Addresses add NewColumn as AddressId persisted;

 This alteration adds another column to every data row in the table. We can see the results in Figure 9-4 .

 Figure 9-4. Table structure in DDL trigger with I/O statistics of the operation

 As you can see, when the trigger fires, the table has already been altered and a new column called
 NewColumn has been created. As a result, when the trigger rolls back the transaction, SQL Server needs to
undo the table alteration. This process can be very inefficient, especially with large tables.

 As you have already seen, we are using the EVENTDATA() function from within the trigger to get
information about the DDL event. This function returns an xml value that contains information about the
type of event, session and DDL command, affected object, as well as other attributes. For instance, in our
example, you would get the following XML code :

 <EVENT_INSTANCE>
 <EventType>ALTER_TABLE</EventType>
 <PostTime>2015-11-28T12:26:44.453</PostTime>
 <SPID>54</SPID>
 <ServerName>SQL2016</ServerName>
 <LoginName>SQL2016\Administrator</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>SqlServerInternals</DatabaseName>
 <SchemaName>Delivery</SchemaName>
 <ObjectName>Addresses</ObjectName>
 <ObjectType>TABLE</ObjectType>
 <AlterTableActionList>
 <Create>
 <Columns>

CHAPTER 9 ■ TRIGGERS

206

 <Name>NewColumn</Name>
 </Columns>
 </Create>
 </AlterTableActionList>
 <TSQLCommand>
 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON"
 ANSI_PADDING="ON" QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
 <CommandText>alter table Delivery.Addresses add NewColumn as AddressId persisted</
CommandText>
 </TSQLCommand>
 </EVENT_INSTANCE>

 DDL triggers can be created on either the server or database scope. Some of the DDL events — CREATE_
DATABASE , for example — would require the trigger to have a server scope. Other events —ALTER_TABLE , for
example — could use either of them. When such a trigger is created on the server scope, it would fire in the
instance of the corresponding event in any database on the server.

 In SQL Server Management Studio, database-level DDL triggers can be found under the
 Programmability node in the database. Server-level DDL triggers are displayed under the Server Objects
node . You can also use sys.triggers and sys.server_triggers catalog views to find them with T-SQL.

 Logon Triggers
 Logon triggers fire after a user is successfully authenticated on the server, but before the session has been
established. Some of the scenarios in which you can use logon triggers are to prevent the same user from
opening multiple database connections or to restrict access to the system based on some custom criteria.
The trigger in Listing 9-14 prevents the HRLogin login from accessing the system outside of business hours.

 Listing 9-14. Logon trigger

 create trigger trg_Logon_BusinessHoursOnly
 on all server
 for logon
 as
 begin
 declare
 @currTime datetime = current_timestamp;

 if original_login() = 'HRLogin' and
 (-- Check if today is weekend
 ((@@datefirst + datepart(dw, @currTime)) % 7 in (0,1)) or
 (cast(@currTime as time) >= '18:00:00') or
 (cast(@currTime as time) < '8:00:00')
)
 rollback;
 end

CHAPTER 9 ■ TRIGGERS

207

 Like DDL triggers, there is an EVENTDATA function that returns XML with additional information about a
logon event. An example of this XML code follows here:

 <EVENT_INSTANCE>
 <EventType>LOGON</EventType>
 <PostTime>2016-11-18T17:55:40.090</PostTime>
 <SPID>55</SPID>
 <ServerName>SQL2016</ServerName>
 <LoginName>SQL2016\Administrator</LoginName>
 <LoginType>Windows (NT) Login</LoginType>
 <SID>sid</SID>
 <ClientHost><local machine></ClientHost>
 <IsPooled>0</IsPooled>
 </EVENT_INSTANCE>

 You need to make sure that the logon trigger executes as fast as possible to prevent possible connection
timeouts. You need to be very careful if the trigger is accessing external resources where response time is not
guaranteed. Think about a CLR function that performs additional authentication against a corporate Active
Directory, as an example. That function needs to set a short timeout for AD queries and correctly handle
possible exceptions. Otherwise, nobody would be able to log in to SQL Server.

 UPDATE() and COLUMNS_UPDATED() Functions
 The UPDATE and COLUMNS_UPDATED functions allow you to check if specific columns were affected by INSERT
or UPDATE operations.

 The UPDATE function accepts a column name as the parameter and returns a Boolean value that shows
if the column was affected by the statement that fired the trigger. For INSERT operations, it always returns
 TRUE . For UPDATE operations, it would return TRUE if an attempt was made or, more specifically, if a column
were present in the list of columns that needed to be updated, regardless of whether it changed the value
or not. For example, in Listing 9-15 , the UPDATE statement does not change the value of column C in the row.
However, the UPDATE(C) function in the trigger returns TRUE because column C was included in the list of the
columns in the UPDATE statement.

 Listing 9-15. UPDATE() function behavior

 create trigger trg_T_AU
 on dbo.T
 after update
 as
 begin
 -- Some code here
 if update(C)
 -- Some code here
 end
 go

 declare @V int = null;
 update T set C = IsNull(@V, C) where ID = 1;

CHAPTER 9 ■ TRIGGERS

208

 Listing 9-16 shows an example of a trigger that recalculates the order total when a line-item price or
quantity changes.

 Listing 9-16. UPDATE() function implementation example

 create trigger trg_OrderLineItems_AfterUpdate
 on dbo.OrderLineItems
 after update
 as
 begin
 -- Some code here
 if update(Quantity) or update(Price)
 begin
 -- recalculating order total
 update o
 set
 o.Total =
 (select sum(li.Price * li.Quantity)
 from dbo.OrderLineItems li
 where li.OrderId = o.OrderId)
 from dbo.Orders o
 where o.OrderId in (select OrderId from inserted);
 end;
 -- Some code here
 end

 The COLUMNS_UPDATED function returns the varbinary value, which represents a bitmask where each bit
is set to 1 in case the column was affected by the statement. The order of the bits, from least significant to the
most significant, corresponds to the column_id value from the sys.columns catalog view.

 Assuming that the column_id for the Quantity column is 4 and the column_id for the Price column is 5,
we can replace the if operator with the following bitmask comparison: if columns_updated() & 24 <> 0 .

 The integer value 24 represents the binary value 11000. The result of the bitwise & (and) operator would
not be equal to 0 if either of the corresponding bits returned by the columns_updated function were set to 1.

 Nested and Recursive Triggers
 Both DDL and DML triggers are nested when their actions fire triggers in other tables. For example, you
can have an AFTER UPDATE trigger on Table A that updates Table B, which has its own AFTER UPDATE trigger
defined. When nested triggers are enabled, the trigger on Table B would be fired. You can control that
behavior by setting the nested trigger server configuration option. The code in Listing 9-17 disables the
nested triggers execution.

 Listing 9-17. Disabling nested triggers

 EXEC sp_configure 'show advanced options', 1;
 GO
 RECONFIGURE ;
 GO
 EXEC sp_configure 'nested triggers', 0 ;
 GO
 RECONFIGURE;
 GO

CHAPTER 9 ■ TRIGGERS

209

 By default, nested triggers execution is enabled. In the case of infinite loops, SQL Server terminates the
execution and rolls back the transaction when the nesting level exceeds 32.

 Another database option, recursive_triggers , controls if an AFTER trigger can fire itself. There are
two types of recursion. With direct recursion , the trigger fires itself by performing the same action against
the table where it has been defined; for example, when an AFTER UPDATE trigger updates the same table. By
default, direct recursion is disabled. Indirect recursion , on the other hand, happens when Table A performs
the action that fires the trigger in Table B, and the trigger on Table B performs the action that fires the same
trigger on Table A. To prevent indirect recursion from happening, we need to disable the nested triggers
configuration option on the server level.

 ■ Caution You need to be careful about changing the nested triggers or recursive triggers options.
Developers often rely on default trigger behavior, and you can break existing systems by changing those
options.

 First and Last Triggers
 In a situation where a table has multiple AFTER triggers , you can specify what triggers are firing first and last
by using the sp_settriggerorder system stored procedure. For example, the code in Listing 9-18 makes
 trg_Data_AUAudit the first trigger in the execution.

 Listing 9-18. Specifying triggers’ execution order

 sp_settriggerorder @triggername = ' trg_Data_AUAudit', @order = 'first'
 ,@stmttype = 'UPDATE'

 Each action— INSERT , UPDATE, and DELETE —can have its own first and last triggers specified. The value
will be cleared when the trigger is altered.

 You cannot control the order in which triggers fire in any other way.

 CONTEXT_INFO and SESSION_ CONTEXT
 Every session has up to 128 bytes of binary data value, called context information, associated with it. That
value has the session scope, and it can be used when you need to pass some parameters to or from triggers.
You can set the value with the SET CONTEXT_INFO statement and retrieve it with the CONTEXT_INFO function .

 As an example, let’s modify the DDL trigger trg_PreventAlterDropTable to allow table alteration when
the context information contains the string ALLOW_TABLE_ALTERATION . The code for doing this is shown in
Listing 9-19 .

CHAPTER 9 ■ TRIGGERS

210

 Listing 9-19. CONTEXT_INFO: Trigger code

 create trigger trg_PreventAlterDropTable on database
 for alter_table
 as
 begin
 if isnull(convert(varchar(22),context_info()),'') <> 'ALLOW_TABLE_ALTERATION'
 begin
 print 'Table alteration is not allowed in such context';
 rollback;
 end
 end

 To be able to alter the table, the session needs to set CONTEXT_INFO , as shown in Listing 9-20 .

 Listing 9-20. CONTEXT_INFO: Setting CONTEXT_INFO value

 declare
 @CI varbinary(128) = convert(varbinary(22),'ALLOW_TABLE_ALTERATION');
 set context_info @CI

 alter table Delivery.Addresses add NewColumn int null

 Context binary data is also exposed through the CONTEXT_INFO column in the sys.dm_exec_request ,
 sys.dm_exec_sessions , and sys.processes system views.

 SQL Server 2016 introduced the concept of session-specific storage called session context , which allows
each session to store up to 256 KB of data in key-value pairs. As you can guess, session context is much more
flexible and easier to work with compared to context information.

 Listing 9-21 illustrates an example of a DDL trigger that allows table alterations based on the session-
context data.

 Listing 9-21. Session context: Trigger code

 create table dbo.AlterationEvents
 (
 OnDate datetime2(7) not null
 constraint DEF_AlterationEvents_OnDate
 default sysutcdatetime(),
 Succeed bit not null,
 RequestedBy varchar(255) not null,
 Description varchar(8000) not null,

 constraint PK_AlterationEvents
 primary key clustered(OnDate)
)
 go

CHAPTER 9 ■ TRIGGERS

211

 create trigger trg_PreventAlterDropTable_WithAudit on database
 for alter_table
 as
 begin
 set nocount on
 declare
 @AlterationAllowed bit = 1
 ,@RequestedBy varchar(255)
 ,@Description varchar(8000)

 select
 @AlterationAllowed = convert(bit,session_context(N'AlterationAllowed'))
 ,@RequestedBy = convert(varchar(255),session_context(N'RequestedBy'))
 ,@Description = convert(varchar(255),session_context(N'Description'));

 if (@AlterationAllowed != 1) or (IsNull(@RequestedBy,'') = '') or
(IsNull(@Description,'') = '')

 begin
 set @AlterationAllowed = 0;
 print 'Table alteration is not allowed in such context';
 rollback;
 end;

 insert into dbo.AlterationEvents(Succeed,RequestedBy,Description)
 valu es(@AlterationAllowed,IsNull(@RequestedBy,'Not Provided')

,IsNull(@Description,'Not Provided'));
 end

 Listing 9-22 shows the code that populates the session context with values that allow for performing the
alteration.

 Listing 9-22. Session context: Populating session-context data

 exec sp_set_session_context @key = N'AlterationAllowed', @value = 1, @read_only = 0
 exec sp_set_session_context @key = N'RequestedBy', @value = 'Developers', @read_only = 0
 exec sp_set_session_context @key = N'Description', @value = 'Client App v1.0.1 Support'

,@read_only = 0

 alter table dbo.Config add SyncURL nvarchar(1024) not null;

 ■ Note You can read more about session context at https://msdn.microsoft.com/en-us/library/
mt605113.aspx

https://msdn.microsoft.com/en-us/library/mt605113.aspx
https://msdn.microsoft.com/en-us/library/mt605113.aspx

CHAPTER 9 ■ TRIGGERS

212

 Summary
 Triggers can help in certain scenarios. DDL triggers can validate and prevent unwanted metadata changes
in the system. Logon triggers can help implement custom authentication. DML triggers can help centralize
some logic in the code, especially when there is no dedicated data access tier in the system. One example
is the implementation of an audit-trail function when you want to capture information about users who
change data. While there are other approaches to implementing such tasks, trigger-based implementation
can be the simplest.

 Unfortunately, triggers come at a high cost. AFTER DML triggers introduce overhead related to
the maintenance of inserted and deleted virtual tables. This leads to extra tempdb load and index
fragmentation . INSTEAD OF triggers could lead to system supportability issues. It is easy to forget or
overlook the logic implemented in such triggers.

 DDL triggers run after schema changes are done. While you can roll back those changes from within the
triggers, such operations can be very expensive in terms of I/O, CPU, and transaction log activity, especially
with large tables.

 Finally, logon triggers can prevent users from logging into the system when incorrectly implemented
due to bugs in the logic or connection timeouts introduced by long execution times, especially when those
triggers access external resources.

 Triggers always run in the context of a transaction. Any active locks — that is, data and schema — will be
held while a trigger is running and until the transaction is completed. You need to make your triggers as
quick and efficient as possible and avoid any actions that could potentially take a long time. For example,
it is a bad idea to implement an audit-trail function that uses an external (linked) server for the logging. If
that server goes down, it will take a long time for a connection attempt to timeout. In addition, if you did not
handle the exception properly, it would roll back the original transaction.

 Keeping all of these implications in mind, you need to be very careful when dealing with triggers. It is
better to avoid them unless absolutely necessary.

213© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_10

 CHAPTER 10

 Views

 Views represent virtual tables defined by underlying queries, and they add another layer of abstraction to the
system. Views hide implementation details and can present queries with complex joins and aggregation as
a single table. Moreover, views can be used to restrict access to the data and provide just a subset of the rows
and columns to users.

 There are two different kinds of views available in SQL Server: regular views and indexed (materialized)
views. Let’s look at them in detail.

 Views
 Regular views are just the metadata. When you reference a view in your queries, SQL Server replaces it with
the query from the view definition, then optimizes and executes the statement, as the view is not actually
present. Views work in a way similar to the #define macro in the C programming language, where a pre-
processor replaces the macro with its definition during compilation.

 There are two main benefits provided by views. First, they simplify security administration in the
system. You can use views as another security layer and grant users permissions on the views rather than on
the actual tables. Moreover, views can provide users with only a subset of the data, filtering out of some rows
and columns from the original tables.

 Consider a situation where you have a table that contains information about a company’s employees,
which has both private and public attributes. The code that creates this table is shown in Listing 10-1 .

 Listing 10-1. Views and security: Table creation

 create table dbo.Employees
 (
 EmployeeId int not null,
 Name nvarchar(100) not null,
 Position nvarchar(100) not null,
 Email nvarchar(256) not null,
 DateOfBirth date not null,
 SSN varchar(10) not null,
 Salary money not null,
 -- specifies if employee info needs to be listed in the intranet

PublishProfile bit not null,

 constraint PK_Employee
 primary key clustered(EmployeeID)
)

CHAPTER 10 ■ VIEWS

214

 Let’s assume that you have a system that displays the company directory on the company intranet. You
can define the view that selects public information from the table, filtering out the employees who do not
want their profiles to be published, and then grant users SELECT permission on the view rather than on the
table. You can see this code in Listing 10-2 .

 Listing 10-2. Views and security: View creation

 create view dbo.vPublicEmployeeProfiles(EmployeeId, Name, Position, Email)
 as
 select EmployeeId, Name, Position, Email
 from dbo.Employees
 where PublishProfile = 1
 go

 grant select on object::dbo.vPublicEmployeeProfiles to [IntranetUsers];

 While you can accomplish this task without a view by using column-level permissions and an
additional filter in the queries, the view approach is simpler to develop and maintain.

 ■ Note In SQL Server 2016, you can use row-level security to exclude rows from result sets.

 Another benefit of views is that they abstract the database schema from the client applications. You can
alter the database schema, keeping it transparent to the applications, by altering the views and changing the
underlying queries. It is then transparent to the client applications as long as the view’s interface remains the
same.

 In addition, you can hide complex implementation details and table joins and use views as a simple
interface to client applications. This approach is a bit dangerous, however. It could lead to unnecessary and
unexpected performance overhead in the system. You should also avoid creating nested views that reference
other views in underlying queries because of optimization challenges and performance issues they could
introduce.

 Let’s look at a few examples and assume that we have an order-entry system with two tables: dbo.
Orders and dbo.Clients . The code to create these tables is shown in Listing 10-3 .

 Listing 10-3. Views and joins: Tables creation

 create table dbo.Clients
 (
 ClientId int not null,
 ClientName varchar(32),
 constraint PK_Clients
 primary key clustered(ClientId)
);

CHAPTER 10 ■ VIEWS

215

 create table dbo.Orders
 (
 OrderId int not null identity(1,1),
 Clientid int not null,
 OrderDate datetime not null,
 OrderNumber varchar(32) not null,
 Amount smallmoney not null,
 constraint PK_Orders
 primary key clustered(OrderId)
);

 Let’s create a view that returns order information, including client names, as shown in Listing 10-4 .

 Listing 10-4. Views and joins: vOrders view creation

 create view dbo.vOrders(OrderId, Clientid, OrderDate, OrderNumber, Amount, ClientName)
 as
 select o.OrderId, o.ClientId, o.OrderDate, o.OrderNumber, o.Amount, c.ClientName
 from dbo.Orders o join dbo.Clients c on
 o.Clientid = c.ClientId;

 This implementation is very convenient for developers. By referencing the view, they have complete
information about the orders without worrying about the underlying join. When a client application wants
to select a specific order, it could issue a SELECT , as shown in Listing 10-5 , and get an execution plan, as
shown in Figure 10-1 .

 Listing 10-5. Views and joins: Selecting all columns from vOrders view

 select OrderId, Clientid, ClientName, OrderDate, OrderNumber, Amount
 from dbo.vOrders
 where OrderId = @OrderId

 This is exactly what you were expecting. SQL Server replaces the view with an underlying query that
selects data from the dbo.Orders table, joining it with the data from the dbo.Clients table. However, if you
run a query that returns columns only from the dbo.Orders table, as shown in Listing 10-6 , you would have
an unexpected execution plan, as shown in Figure 10-2 .

 Figure 10-1. Execution plan when selecting all columns from the view

CHAPTER 10 ■ VIEWS

216

 Listing 10-6. Views and joins: Selecting columns from the Orders table using vOrders view

 select OrderId, OrderNumber, Amount
 from dbo.vOrders
 where OrderId = @OrderId

 As you can see, SQL Server still does the join, even if you do not need ClientName column data. It makes
sense; you are using an inner join in the view, and SQL Server needs to exclude the rows from the dbo.
Orders table that do not have corresponding rows in the dbo.Clients table.

 There are two options for how you can address this and eliminate the unnecessary join from the
execution plan. The first is to use an outer join rather than the inner one, as shown in Listing 10-7 .

 Listing 10-7. Views and joins: vOrders2 view creation

 create view dbo.vOrders2(OrderId, Clientid, OrderDate, OrderNumber, Amount, ClientName)
 as
 select o.OrderId, o.ClientId, o.OrderDate, o.OrderNumber, o.Amount, c.ClientName
 from dbo.Orders o left outer join dbo.Clients c on
 o.Clientid = c.ClientId;

 Now, if you run the SELECT statement, as shown in Listing 10-8 , you would have an execution plan
without an inner join, as shown in Figure 10-3 .

 Listing 10-8. Views and joins: Selecting columns from the Orders table using vOrders2 view

 select OrderId, OrderNumber, Amount
 from dbo.vOrders2
 where OrderId = @OrderId

 Figure 10-2. Execution plan when selecting columns that belong to the Orders table only

 Figure 10-3. Execution plan with left outer join

CHAPTER 10 ■ VIEWS

217

 While it does the trick, outer joins restrict the choices available to the Query Optimizer when generating
execution plans. Another thing to keep in mind is that you changed the behavior of the view. If you can now
have orders that do not belong to clients in the system, then the new implementation would not exclude
them from the result set. This can introduce side effects and break other code that references the view and
relies on the old behavior of the inner join. You must analyze the data and subject area before implementing
join elimination using outer joins.

 A better option is adding a foreign key constraint to the dbo.Orders table, as shown in Listing 10-9 .

 Listing 10-9. Views and joins: Adding a foreign-key constraint

 alter table dbo.Orders with check
 add constraint FK_Orders_Clients
 foreign key(ClientId)
 references dbo.Clients(ClientId)

 A trusted foreign key constraint guarantees that every order has a corresponding client row. As a result,
SQL Server can eliminate the join from the plan. Figure 10-4 shows the execution plan if you query the dbo.
vOrders view using the code from Listing 10-6 , which selects data from the dbo.Orders table only.

 Figure 10-4. Execution plan with inner join when foreign-key constraint is present

 Unfortunately, there is no guarantee that SQL Server will eliminate all unnecessary joins, especially in
very complex cases with many tables involved. Moreover, SQL Server does not eliminate joins if the foreign
key constraints include more than one column.

 Now, let’s review a situation where a system collects location information for devices that belong to
multiple companies. The code that creates the tables is shown in Listing 10-10 .

 Listing 10-10. Join elimination and multi-column foreign key constraints: Table creation

 create table dbo.Devices
 (
 CompanyId int not null,
 DeviceId int not null,
 DeviceName nvarchar(64) not null,
);

 create unique clustered index IDX_Devices_CompanyId_DeviceId
 on dbo.Devices(CompanyId, DeviceId);

 create table dbo.Positions
 (
 CompanyId int not null,
 OnTime datetime2(0) not null,
 RecId bigint not null,
 DeviceId int not null,
 Latitude decimal(9,6) not null,
 Longitute decimal(9,6) not null,

CHAPTER 10 ■ VIEWS

218

 constraint FK_Positions_Devices
 foreign key(CompanyId, DeviceId)
 references dbo.Devices(CompanyId, DeviceId)
);

 create unique clustered index IDX_Positions_CompanyId_OnTime_RecId
 on dbo.Positions(CompanyId, OnTime, RecId);

 create nonclustered index IDX_Positions_CompanyId_DeviceId_OnTime
 on dbo.Positions(CompanyId, DeviceId, OnTime);

 Let’s create a view that joins these tables, as shown in Listing 10-11 .

 Listing 10-11. Join elimination and multi-column foreign key constraints: View creation

 create view dbo.vPositions(CompanyId, OnTime, RecId, DeviceId, DeviceName, Latitude,
Longitude)
 as
 select p.CompanyId, p.OnTime, p.RecId, p.DeviceId, d.DeviceName, p.Latitude, p.Longitude
 from dbo.Positions p join dbo.Devices d on
 p.CompanyId = d.CompanyId and p.DeviceId = d.DeviceId;

 Now, let’s run the SELECT shown in Listing 10-12 . This returns the columns from the dbo.Positions
table only and produces the execution plan shown in Figure 10-5 .

 Listing 10-12. Join elimination and multi-column foreign key constraints: Select from vPositions view

 select OnTime, DeviceId, Latitude, Longitude
 from dbo.vPositions
 where CompanyId = @CompanyId and OnTime between @StartTime and @StopTime

 Figure 10-5. Execution plan with multi-column foreign key constraints

 Even with a foreign key constraint in place, you still have the join. SQL Server does not perform join
elimination when a foreign key constraint has more than one column. Unfortunately, there is very little
you can do in such a situation to perform join elimination. You can use the approach with the outer join,
although it is worth considering querying the tables directly rather than using views in such a scenario.

CHAPTER 10 ■ VIEWS

219

 Finally, SQL Server does not perform join elimination, even with single-column foreign key constraints,
when tables are created in tempdb . You need to keep this in mind if you use tempdb as the staging area for the
ETL processes when you load data from external sources and do some processing and data transformation
before inserting the data into a user database.

 Indexed (Materialized) Views
 As opposed to views, which are just metadata, indexed views materialize the data from the view queries,
storing it in the database in a way similar to tables. Then, every time the base tables are updated, SQL Server
synchronously refreshes the data in the indexed views, thus keeping them up to date.

 In order to define an indexed view, you need to create a regular view using the schemabinding option.
This option binds the view and underlying tables, and it prevents any alteration of the tables that affects the
view.

 Next, you need to create a unique clustered index on the view. At this point, SQL Server materializes the
view data in the database. You can also create nonclustered indexes if needed, after the clustered index has
been created. When indexes are defined as unique, SQL Server enforces the rule and fails any modification
of the base tables if there is a uniqueness violation. You can rely on this behavior to support uniqueness on
a subset of the values in SQL Server 2005, or in complex cases, which are not supported by filtered indexes.
One such example is the filter that includes OR conditions.

 There are plenty of requirements and restrictions in order for a view to be indexable. To name just a few,
a view cannot have subqueries, semi or outer joins, reference LOB columns, or have UNION , DISTINCT, or
 TOP specified. There are also restrictions on the aggregate functions that can be used with a view. Finally, a
view needs to be created with specific SET options, and it can reference only deterministic functions, which
always return the same result when they are called with a specific set of parameter values.

 ■ Note Look at Books Online at http://technet.microsoft.com/en-us/library/ms191432.aspx for a
complete list of requirements and restrictions.

 ■ Tip You can use the function OBJECTPROPERTY with parameter IsIndexable to determine if you can create
a clustered index on the view. The following select returns 1 if the view vPositions is indexable:

 SELECT OBJECTPROPERTY (OBJECT_ID(N'dbo.vPositions','IsIndexable')

 One instance where an indexed view is useful is for the optimization of queries that include joins and
aggregations on large tables. Let’s look at this situation, assuming that you have the dbo.OrderLineItems
and dbo.Products tables in the system. The code that creates these tables is shown in Listing 10-13 .

 Listing 10-13. Indexed views: Table creation

 create table dbo.Products
 (
 ProductID int not null identity(1,1),
 Name nvarchar(100) not null,
 constraint PK_Product
 primary key clustered(ProductID)
);

http://technet.microsoft.com/en-us/library/ms191432.aspx

CHAPTER 10 ■ VIEWS

220

 create table dbo.OrderLineItems
 (
 OrderId int not null,
 OrderLineItemId int not null identity(1,1),
 Quantity decimal(9,3) not null,
 Price smallmoney not null,
 ProductId int not null,

 constraint PK_OrderLineItems
 primary key clustered(OrderId,OrderLineItemId),

 constraint FK_OrderLineItems_Products
 foreign key(ProductId)
 references dbo.Products(ProductId)
);

 create index IDX_OrderLineItems_ProductId on dbo.OrderLineItems(ProductId);

 Now, let’s imagine a dashboard that displays information about the ten most popular products sold to
date. The dashboard can use the query shown in Listing 10-14 .

 Listing 10-14. Indexed views: Dashboard query

 select top 10 p.ProductId, p.name as ProductName, sum(o.Quantity) as TotalQuantity
 from
 dbo.OrderLineItems o join dbo.Products p on
 o.ProductId = p.ProductId
 group by
 p.ProductId, p.Name
 order by
 TotalQuantity desc

 If you were to run this dashboard query in the system, you would receive the execution plan shown in
Figure 10-6 .

 Figure 10-6. Execution plan of a query that selects the top 10 most popular products

CHAPTER 10 ■ VIEWS

221

 As you can see, this plan scans and aggregates the data from the dbo.OrderLineItems table, which
is expensive in terms of I/O and CPU. Alternatively, you can create an indexed view that does the same
aggregation and materializes the results in the database. The code to create this view is shown in Listing 10-
15 . On a side note, one of the requirements for indexed views is the presence of a COUNT_BIG(*) aggregation
when the GROUP BY clause is present.

 Listing 10-15. Indexed views: Indexed view creation

 create view dbo.vProductSaleStats(ProductId, ProductName, TotalQuantity, Cnt)
 with schemabinding
 as
 select p.ProductId, p.Name, sum(o.Quantity), count_big(*)
 from dbo.OrderLineItems o join dbo.Products p on
 o.ProductId = p.ProductId
 group by
 p.ProductId, p.Name
 go

 create unique clustered index IDX_vProductSaleStats_ProductId
 on dbo.vProductSaleStats(ProductId);

 create nonclustered index IDX_vClientOrderTotal_TotalQuantity
 on dbo.vProductSaleStats(TotalQuantity desc)
 include(ProductName);

 The code in Listing 10-15 creates a unique clustered index on the ProductId column as well as a
nonclustered index on the TotalQuantity column.

 Now you can select data directly from the view, as shown in Listing 10-16 .

 Listing 10-16. Indexed views: Selecting data from the indexed view

 select top 10 ProductId, ProductName, TotalQuantity
 from dbo.vProductSaleStats
 order by TotalQuantity desc

 The execution plan shown in Figure 10-7 is much more efficient.

 Figure 10-7. Execution plan of a query that selects the top 10 most popular products utilizing an indexed view

CHAPTER 10 ■ VIEWS

222

 The part of the plan in the highlighted area is responsible for indexed view maintenance. This portion of
the plan could introduce a lot of overhead when data in the table is highly volatile, which leads us to a very
important conclusion: indexed views work best when the benefits we get while selecting the data exceed the
overhead of maintaining the view during data modifications. Simply said, indexed views are most beneficial
when the underlying data is relatively static. Think about data warehouse systems where a typical workload
requires a lot of joins and aggregations and the data is updating infrequently, perhaps based on some
schedule, as an example.

 ■ Tip Always test the performance of the batch data update when there is an indexed view referencing
a table. In some cases, it would be faster to drop and recreate the view rather than keeping it during such
operations.

 In an OLTP system , you need to consider carefully the pros and cons of indexed views on a case-by-
case basis. It is better to avoid indexed views if the underlying data is too volatile. The preceding view we
created is an example of what should not be done in systems where data—in this case, data in the dbo.
OrderLineItems table — is constantly changing.

 Another area where indexed views can be beneficial is in join optimization. One system I dealt with
had a hierarchical security model with five levels. There were five different tables, and each of them stored
information about specific permissions for every level in the hierarchy. Almost every request in the system
checked permissions by joining the data from those tables. I optimized that part of the system by creating
an indexed view that performed a five-table join so that every request performed just a single index seek
operation against the indexed view. Even though it was an OLTP system, the data in the underlying tables
was relatively static, and the benefits achieved exceeded the overhead of the indexed view maintenance.

 Figure 10-8. Execution plan of a query that inserts data into OrderLineItems table

 As always, “there ain’t no such thing as a free lunch.” Now, SQL Server needs to maintain the view. Each
time you insert or delete the dbo.OrderLineItem row or, perhaps, modify the quantity or product there, SQL
Server needs to update the data in the indexed view in addition to in the main table.

 Let’s look at the execution plan of the INSERT operation, as shown in Figure 10-8 .

CHAPTER 10 ■ VIEWS

223

 While indexed views can be created in every edition of SQL Server, their behavior is indeed edition-
specific. Non-Enterprise editions of SQL Server need to reference a view directly in queries using the WITH
(NOEXPAND) hint in order to use data from the indexed view. Without the hint, SQL Server expands the
indexed view definition and replaces it with an underlying query similar to regular views. Enterprise and
Developer editions do not require such hints. SQL Server can utilize indexed views even when you do not
reference them in the query.

 Now, let’s return to our previous example. In Enterprise Edition, when you run the query shown in
Listing 10-17 , you would still get an execution plan that utilizes it, as shown in Figure 10-9 .

 Listing 10-17. Indexed views: Dashboard query

 select top 10 p.ProductId, p.name as ProductName, sum(o.Quantity) as TotalQuantity
 from
 dbo.OrderLineItems o join dbo.Products p on
 o.ProductId = p.ProductId
 group by
 p.ProductId, p.Name
 order by
 TotalQuantity desc

 Figure 10-10. Execution plan of the query (Enterprise or Developer editions)

 Figure 10-9. Execution plan of a query that does not reference the indexed view (Enterprise or Developer
editions)

 In fact, the Enterprise Edition of SQL Server can use indexed views for any queries, regardless of how
close they are to the view definition. For example, let’s run a query that selects a list of all of the products
ever sold in the system. This query is shown in Listing 10-18 .

 Listing 10-18. Indexed views : Query that returns a list of all of the products ever sold in the system

 select p.ProductId, p.Name
 from dbo.Products p
 where
 exists (select *
 from dbo.OrderLineItems o
 where p.ProductId = o.ProductId)

 SQL Server recognizes that it would be cheaper to scan the indexed view rather than perform the join
between two tables, and it generates a plan, as shown in Figure 10-10 .

CHAPTER 10 ■ VIEWS

224

 In some cases, you can use such behavior if you need to optimize systems where you cannot change the
database schema and queries. If you are working with Enterprise Edition, you can create the indexed views,
and the optimizer would start using them for some of the queries, even when those queries do not reference
the views directly. Obviously, you need to carefully consider the indexed view maintenance overhead that
you would introduce with such an approach.

 Partitioned Views
 Partitioned views combine data via a UNION ALL of multiple tables stored on the same or different database
servers. One of the common use cases for such an implementation is data partitioning; that is, when you
split data among multiple tables based on some criteria — for example, how recent it is — and then combine the
data from all the tables via the partitioned view.

 Another case is data sharding , which is when you separate (shard) data between multiple servers
based on some criteria. For example, a large, Web-based shopping-cart system can shard data based on the
geographic locations of the customers. In such cases, partitioned views can combine the data from all shards
and use it for analysis and reporting purposes.

 ■ Note We will discuss partitioned views in greater detail in Chapter 16 , “Data Partitioning.”

 Updatable Views
 Client applications can modify data in underlying tables through a view. It can reference the view in DML
statements, although there is a set of requirements to be met. To name just a few, all modifications must
reference columns from only one base table. Those columns should be physical columns and should not
participate in calculations and aggregations.

 ■ Note You can see the full list of requirements in Books Online at http://technet.microsoft.com/en-
us/library/ms187956.aspx .

 These restrictions are the biggest downside of this approach. One of the reasons we are using views is
to add another layer of abstraction that hides the implementation details. By doing updates directly against
views, we are limited in how we can alter them. If our changes violate some of the requirements for making
the view updatable, the DML statements issued by the client applications would fail.

 Another way to make a view updatable is by defining an INSTEAD OF trigger. While this gives us the
flexibility to re-factor views in the manner we want, this approach is usually slower than directly updating
the underlying tables. It also makes the system harder to support and maintain; you must remember that
data in tables can be modified through views.

 Finally, you can create the view with the CHECK OPTION parameter. When this option is specified, SQL
Server checks if the data inserted or updated through the view conforms to criteria set in the view’s SELECT
statement. It guarantees that the rows will be visible through the view after the transaction is committed. For
example, look at the table and view defined in Listing 10-19 .

http://dx.doi.org/10.1007/978-1-4842-1964-5_16
http://technet.microsoft.com/en-us/library/ms187956.aspx
http://technet.microsoft.com/en-us/library/ms187956.aspx

CHAPTER 10 ■ VIEWS

225

 Listing 10-19. CHECK OPTION: Table and view creation

 create table dbo.Numbers(Number int)
 go

 create view dbo.PositiveNumbers(Number)
 as
 select Number
 from dbo.Numbers
 where Number > 0
 with check option
 go

 Either of the statements shown in Listing 10-20 would fail because they violate the criteria Number > 0
specified in the view query.

 Listing 10-20. CHECK OPTION: Failed statements

 insert into dbo.PositiveNumbers(Number) values(-1)
 update dbo.PositiveNumbers set Number = -1 where Number = 1

 You should consider creating a view with CHECK OPTION when the view is being used to prevent access
to a subset of the data and when client applications update the data through the view. Client applications
would not be able to modify data outside of the allowed scope.

 Summary
 Views are a powerful and useful tool that can help in several different situations. Regular views can provide
a layer of abstraction from both the security and implementation standpoints. Indexed views can help with
system optimization, and they reduce the number of joins and aggregations that need to be performed.

 As with other SQL Server objects, views come at a cost. Regular views can negatively affect performance
by introducing unnecessary joins. Indexed views introduce overhead during data modifications, and you
need to maintain their indexes in a manner similar to that for those defined on regular tables. You need to
keep these factors in mind when designing views.

 Views are generally better suited to reading data. Updating data through views is a questionable
practice. Using INSTEAD OF triggers is usually slower than directly updating the underlying tables.
Without triggers, there are restrictions that you have to follow to make views updatable. Changing the
implementation of the views could lead to side effects and break client applications.

 As with the other database objects, you need to consider the pros and cons of views, especially
when you design the dedicated data access tier. Another option you have at your disposal is using stored
procedures. Even though views are generally simpler to use in client applications, you can add another
filter predicate on the client side, for example, without changing anything in the view definition, and
stored procedures provide more flexibility and control over implementation during the development and
optimization stages.

227© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_11

 CHAPTER 11

 User-Defined Functions

 This chapter discusses multi-statement and inline user-defined functions. It analyzes how SQL Server
executes multi-statement functions and the performance impact they introduce. After that, this chapter
demonstrates a technique that can help address those performance issues by converting multi-statement
functions into inline ones.

 Much Ado About Code Reuse
 One of the first things that developers learn about in their career is the benefits of code reuse. Encapsulating
and reusing code into separate libraries speeds up the development and testing process and reduces the
number of bugs in the system.

 Unfortunately, this approach does not always work well in the case of T-SQL. From a development and
testing standpoint, code reuse definitely helps. However, from a performance standpoint, it could introduce
unnecessary overhead when implemented incorrectly. One such example is a “one size fits all” approach
where developers create a single stored procedure or function and then use it to support different use cases.
For example, consider a system with two tables —dbo.Orders and dbo.Clients— as shown in Listing 11-1 .

 Listing 11-1. Code reuse: Table creation

 create table dbo.Clients
 (
 ClientId int not null,
 ClientName varchar(32),

 constraint PK_Clients
 primary key clustered(ClientId)
);

 create table dbo.Orders
 (
 OrderId int not null identity(1,1),
 Clientid int not null,
 OrderDate datetime not null,
 OrderNumber varchar(32) not null,
 Amount smallmoney not null,
 IsActive bit not null,

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

228

 constraint PK_Orders
 primary key clustered(OrderId)
);

 create index IDX_Orders_OrderNumber
 on dbo.Orders(OrderNumber)
 include(IsActive, Amount)
 where IsActive = 1;

 Let’s assume that the system has a stored procedures – based data access tier, and one of these
procedures provides information about all of the active orders in the system. The stored procedure code is
shown in Listing 11-2 .

 Listing 11-2. Code reuse: Stored procedure that returns a list of active orders in the system

 create proc dbo.usp_Orders_GetActiveOrders
 as
 select o.OrderId, o.ClientId, c.ClientName, o.OrderDate, o.OrderNumber, o.Amount
 from dbo.Orders o join dbo.Clients c on
 o.Clientid = c.ClientId
 where IsActive = 1;

 A client application can call this stored procedure whenever an order list is needed. For example, it
can have a page that displays the list with all order attributes as well as a drop-down control that shows only
order numbers and amounts. In both cases, the same stored procedure can be used — applications just need
to ignore any unnecessary columns in the output while populating the drop-down list.

 While this approach helps us to reuse the code, it also reuses the execution plan. When we run the
stored procedure, we will get the plan, as shown in Figure 11-1 .

 Figure 11-1. Execution plan of the dbo.usp_Orders_GetActiveOrders stored procedure

 This execution plan would be used in both cases. However, the drop-down control does not need all of
the order attributes or the client information, and it can get the required information with the query shown
in Listing 11-3 .

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

229

 Listing 11-3. Code reuse: Select that returns the information required for drop-down control

 select OrderId, OrderNumber, Amount
 from dbo.Orders
 where IsActive = 1

 Such a query would have a much more efficient execution plan without the join operator, as shown in
Figure 11-2 .

 Figure 11-2. Execution plan of query that returns order numbers and amounts for the drop-down control

 As you can see, by reusing the same stored procedure, we introduced a suboptimal execution plan with
an unnecessary join and a clustered index scan as opposed to a filtered, nonclustered index scan for one of
our use cases. We could also have very similar problems with user-defined functions, which we are going to
discuss in this chapter.

 There are three types of user-defined functions available in SQL Server: scalar , multi-statement
table-valued, and inline table-valued . However, I would rather use a different classification based on their
execution behavior and impact; that is, multi-statement and inline functions.

 Multi-Statement Functions
 The code in a multi-statement function starts with a BEGIN and ends with an END keyword. It does not
matter how many statements they have; that is, functions with a single RETURN statement are considered
multi-statement as long as the BEGIN and END keywords are present.

 There are two different types of multi-statement functions. The first is the scalar function , which returns
a single scalar value. The second type is the table-valued function, which builds and returns a table result set
that can be used anywhere in the statement.

 Unfortunately, multi-statement function calls are expensive and introduce significant CPU overhead.
Let’s populate the dbo.Orders table that we already defined with 100,000 rows and create a scalar function
that truncates the time part of the OrderDate column. The function code is shown in Listing 11-4 .

 Listing 11-4. Multi-statement functions overhead: Scalar function creation

 create function dbo.udfDateOnly(@Value datetime)
 returns datetime
 with schemabinding
 as
 begin
 return (convert(datetime,convert(varchar(10),@Value,121)));
 end

 This function accepts the datetime parameter and converts it to a varchar in a way that truncates the
time part of the value. As a final step, it converts that varchar back to datetime , and it returns that value to
the caller. This implementation is terribly inefficient. It introduces the overhead of both the function call and
the type conversions. However, we often see it in various production systems.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

230

 Now, let’s run the statement shown in Listing 11-5 . This query counts the number of orders with an
 OrderDate of March 1, 2013.

 Listing 11-5. Multi-statement functions overhead: Select that uses scalar function

 select count(*)
 from dbo.Orders
 where dbo.udfDateOnly(OrderDate) = '2013-03-01'

 The execution time on my computer is as follows:

 SQL Server Execution Times:
 CPU time = 468 ms, elapsed time = 509 ms

 For the next step, let’s try to perform a type conversion without the scalar function, as shown in
Listing 11-6 .

 Listing 11-6. Multi-statement functions overhead: Select without scalar function

 select count(*)
 from dbo.Orders
 where convert(datetime,convert(varchar(10),OrderDate,121))) = '2013-03-01'

 The execution time for this query is as follows:

 SQL Server Execution Times:
 CPU time = 75 ms, elapsed time = 82 ms.

 You can see that the statement runs six times faster without any multi-statement call overhead involved,
although there is a better way to write this query. You can check if OrderDate is within the date interval, as
shown in Listing 11-7 .

 Listing 11-7. Multi-statement functions overhead: Select without type conversion

 select count(*)
 from dbo.Orders
 where OrderDate >= '2013-03-01' and OrderDate < '2013-03-02'

 This approach cuts execution time to the following:

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 5 ms.

 As you can see, user-defined multi-statement function and type conversion operations, which can be
considered as system functions, introduce huge overhead and significantly increase query execution time.
However, you would hardly notice it in the execution plans. Figure 11-3 shows the execution plan for the
queries that use user-defined functions (Listing 11-5) and date interval (Listing 11-7).

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

231

 A user-defined function adds the filter operator to the execution plan. However, the costs for both
operator and query are way off base.

 If you run SQL Server Profiler and capture the SP:Starting event, you would see the screen shown in
Figure 11-4 . As you can see, SQL Server calls the function 100,000 times—once for every row.

 Figure 11-3. Execution plans with and without a scalar user-defined function

 Figure 11-4. SQL trace with SP:Starting event

 Another important factor is that multi-statement functions make the predicates non-SARGable. Let’s
add an index on the OrderDate column with the CREATE NONCLUSTERED INDEX IDX_Orders_OrderDate ON
dbo.Orders(OrderDate) statement and then check the execution plans of the queries.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

232

 As you can see in Figure 11-5 , both queries are now using a nonclustered index. However, the first query
scans the entire index and calls the function for every row within it, while the second query performs an
 index seek operation.

 Figure 11-5. Execution plans of the queries with a non-clustered index on the OrderDate column

 There are also some limitations on how the Query Optimizer works with multi-statement functions.
First, it does not factor function-execution overhead into the plan. As you already saw in Figure 11-4 , there is
an additional filter operator in the execution plan, although SQL Server expects this operator to have a very
low cost, which is not even close to the real overhead it introduces. Moreover, SQL Server does not factor the
cost of the operators within the function into the execution plan cost of the calling query.

 To illustrate this behavior, let’s create a function that returns the number of orders for a specific client
based on the ClientId provided as the parameter. This function is shown in Listing 11-8 .

 Listing 11-8. Multi-statement function costs and estimates: Function creation

 create function dbo.ClientOrderCount(@ClientId int)
 returns int
 with schemabinding
 as
 begin
 return
 (
 select count(*)
 from dbo.Orders
 where ClientId = @ClientId
)
 end

 Now, let’s call this function with the SELECT dbo.ClientOrderCount(1) statement and look at the
execution plan, shown in Figure 11-6 .

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

233

 As you can see, SQL Server displays the execution plans for two queries. There are no indexes on the
 ClientId column, and the function needs to perform a clustered index scan on the dbo.Orders table even
though the Query Optimizer does not factor the estimated cost of the function into the outer query cost.

 Another very important limitation is that with the legacy cardinality estimator (70) Query Optimizer
always estimates that a multi-statement table-valued function returns just a single row, regardless of the
statistics available. New cardinality estimator models (120 and 130) in SQL Server 2014 and 2016 always
estimate that a multi-statement table-valued function returns 100 rows.

 To demonstrate this, let’s create a nonclustered index on the ClientId column with the CREATE
NONCLUSTERED INDEX IDX_Orders_ClientId ON dbo.Orders(ClientId) statement in the database that
uses the legacy cardinality estimator.

 In this demo, we have 100 clients in the system with 1,000 orders per client. As you should remember, a
statistics histogram retains 200 steps, so it would store information for every ClientId . You can confirm this
by running the DBCC SHOW_STATISTICS('dbo.Orders', 'IDX_Orders_ClientId') command. The partial
output is shown in Figure 11-7 .

 Figure 11-6. Estimated execution plan for the multi-statement function

 Figure 11-7. Index IDX_Orders_ClientId histogram

 Now, let’s create a multi-statement table-valued function that returns the order information for a
specific client and call it in the single-client scope. The code for accomplishing this is shown in Listing 11-9 .

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

234

 Listing 11-9. Multi-statement function costs and estimates: Function that returns orders for the clientid
 provided

 create function dbo.udfClientOrders(@ClientId int)
 returns @Orders table
 (
 OrderId int not null,
 OrderDate datetime not null,
 OrderNumber varchar(32) not null,
 Amount smallmoney not null
)
 with schemabinding
 as
 begin
 insert into @Orders(OrderId, OrderDate, OrderNumber, Amount)
 select OrderId, OrderDate, OrderNumber, Amount
 from dbo.Orders
 where ClientId = @ClientId
 return
 end
 go

 select c.ClientName, o.OrderId, o.OrderDate, o.OrderNumber, o.Amount
 from dbo.Clients c cross apply dbo.udfClientOrders(c.ClientId) o
 where c.ClientId = 1

 ■ Note The APPLY operator invokes a table-valued function for every row from the outer table. The table-
valued function can accept values from the row as parameters. SQL Server joins the row from the outer table
with every row from the function output, similar to a two-table join. CROSS APPLY works in a manner similar to
the inner join. Thus, if the function does not return any rows, the row from the outer table would be excluded
from the output. OUTER APPLY works in a way similar to the outer join.

 Even though there is enough statistical information to estimate the number of orders correctly for
the client with ClientId=1 , the estimated number of rows is incorrect. Figure 11-8 demonstrates this. This
behavior can lead to a highly inefficient execution plan when functions return a large number of rows. It is
also worth mentioning that the new cardinality estimator in SQL Server 2014 and 2016 would estimate 100
rows in this example, which is also incorrect.

 Figure 11-8. Execution plan of query with multi-statement table-valued function (legacy cardinality
estimator)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

235

 You should remember this limitation and avoid using multi-statement table-valued functions when
cardinality estimation errors can lead to inefficient plans. A common scenario is when functions are
involved in joins. In many cases, you will get better results by storing the function result set in a temporary
table, using that in the joins instead, as we will discuss in Chapter 13 .

 As you probably noticed, all of the functions were created with the schemabinding option. While it
is not required, specifying this option can help in several ways. It binds the function with the objects they
reference, and it prevents any metadata changes that could potentially break the code. Moreover, when the
function does not access the data, schemabinding forces SQL Server to analyze the function body.
SQL Server will know that the function does not access any data, which helps to generate more efficient
execution plans. We will look at this situation in detail in Chapter 25 , “Query Optimization and Execution.”

 Inline Table-Valued Functions
 Inline table-valued functions work in a manner that is completely different from multi-statement functions.
Sometimes, these functions are even named parameterized views . This definition makes a lot of sense. As
opposed to multi-statement functions, which execute as separate code blocks, SQL Server expands and
embeds inline table-valued functions into the actual queries, similar to regular views, and it optimizes their
statements as part of the queries. As a result, there are no separate calls of the function and you don’t have to
deal with its associated overhead.

 Let’s rewrite our multi-statement table-valued function to be an inline table-valued function, as shown
in Listing 11-10 . Then we will examine the execution plan, shown in Figure 11-9 .

 Listing 11-10. Inline table-valued functions: Function that returns orders for the clientid provided

 create function dbo.udfClientOrdersInline(@ClientId int)
 returns table
 as
 return
 (
 select OrderId, OrderDate, OrderNumber, Amount
 from dbo.Orders
 where ClientId = @ClientId
)
 go

 select c.ClientName, o.OrderId, o.OrderDate, o.OrderNumber, o.Amount
 from dbo.Clients c cross apply dbo.udfClientOrdersInline(c.ClientId) o
 where c.ClientId = 1;

 Figure 11-9. Execution plan of query with an inline table-valued function

http://dx.doi.org/10.1007/978-1-4842-1964-5_13
http://dx.doi.org/10.1007/978-1-4842-1964-5_25

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

236

 As you can see, there is no reference to the function in the execution plan, and now the estimated
number of rows is correct. In fact, you will get exactly the same execution plan if you do not use the inline
table-valued function at all. Listing 11-11 and Figure 11-10 illustrate this point.

 Listing 11-11. Inline table-valued functions: Select statement without inline table-valued function

 select c.ClientName, o.OrderId, o.OrderDate, o.OrderNumber, o.Amount
 from dbo.Clients c join dbo.Orders o on
 c.ClientId = o.Clientid
 where c.ClientId = 1

 Figure 11-10. Execution plan of query without an inline table-valued function

 ■ Note Code reuse based on inline table-valued functions may be acceptable in some cases. SQL Server
expands and optimizes those functions with outer statements and can eliminate unnecessary overhead and
joins. Remember, however, the join elimination issues we discussed in the previous chapter.

 While inline table-valued functions can help us encapsulate and reuse code without unnecessary side
effects, they cannot include more than one statement. Fortunately, in some cases you can re-factor the code
and convert multi-statement functions into inline table-valued functions.

 As a general rule, scalar functions can be replaced with inline table-valued functions that return a one-
row table with a single column. As an example, look at the implementation of the dbo.udfDateOnly function.
You can convert it to an inline table-valued function, as shown in Table 11-1 .

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

237

 If you run the SELECT with an inline table-valued function, the execution plan shown in Figure 11-11
would still use an index scan operator instead of an index seek. Even with an inline table-valued function,
you cannot make the predicate SARGable due to the convert system function calls.

 Table 11-1. Converting Multi-Statement Scalar to Inline Table-Valued Function

 Multi-statement scalar function Inline table-valued function

 cr eate function dbo.udfDateOnly
(@Value datetime)

 returns datetime
 with schemabinding
 as
 begin
 return
 co nvert(datetime,

convert(varchar(10),@Value,121))
 end

 cr eate function dbo.udfDateOnlyInline
(@Value datetime)

 returns table
 as
 return
 (
 select
 co nvert(datetime,

convert(varchar(10),@Value,121))
 as [OrderDate]
)

 select count(*)
 from dbo.Orders
 where
 dbo.udfDateOnly(OrderDate) = '2013-03-01'

 select count(*)
 from dbo.Orders o cross apply
 dbo.udfDateOnlyInline(o.OrderDate) udf
 where udf.OrderDate = '2013-03-01'

 Figure 11-11. Execution plan of query with inline table-valued function

 If you compare the execution plan shown in Figure 11-11 with the plan that uses a multi-statement
scalar function, as shown in Figure 11-5 , you will observe that there is no filter operator in Figure 11-11 . SQL
Server checks the predicate as part of the index scan operator. This behavior is the same in the query from
Listing 11-6 .

 The execution time on my computer is as follows:

 SQL Server Execution Times:
 CPU time = 78 ms, elapsed time = 84 ms.

 While it is still far from being optimal due to the scan performed, these numbers are much better than
what we had with the multi-statement function call.

 Of course, it is much trickier when the function consists of multiple statements. Fortunately, in some cases
you can be creative and re-factor those functions to be inline ones. An IF statement can often be replaced with
a CASE operator, and Common Table Expressions can sometimes take care of procedural style code.

 As an example, let’s look at a multi-statement function that accepts geographic location as the input
parameter and returns a table with information about nearby points of interest (POI) . This table includes
information about the first POI in alphabetical order by name, as well as an optional XML column that
contains the list of all POI IDs to which that location belongs. In the database, each POI is specified by a pair
of min and max latitudes and longitudes. Listing 11-12 shows the implementation of the multi-statement
table-valued function.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

238

 Listing 11-12. Converting multi-statement to inline functions: Multi-statement function implementation

 create function dbo.GetPOIInfo(@Lat decimal(9,6), @Lon decimal(9,6), @ReturnList bit)
 returns @Result table
 (
 POIID int not null,
 POIName nvarchar(64) not null,
 IDList xml null
)
 as
 begin
 declare
 @POIID int, @POIName nvarchar(64), @IDList xml

 select top 1 @POIID = POIID, @POIName = Name
 from dbo.POI
 where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon
 order by Name;

 if @@rowcount > 0
 begin
 if @ReturnList = 1
 select @IDList =
 (
 select POIID as [@POIID]
 from dbo.POI
 where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon
 for xml path('POI'), root('POIS')
);
 insert into @Result(POIID, POIName, IDList) values(@POIID, @POIName, @IDList);
 end
 return;
 end

 As you can see, there are two separate queries against the table in the implementation. If you want
to convert this function to an inline table-valued function, you can run the queries as two CTEs, or as
subselects and then cross-join their results. The If @ReturnList = 1 statement can be replaced with the
 CASE operator, as you can see in the implementation shown in Listing 11-13 .

 Listing 11-13. Converting multi-statement to inline functions: Inline function implementation

 create function dbo.GetPOIInfoInline(@Lat decimal(9,6), @Lon decimal(9,6), @ReturnList bit)
 returns table
 as
 return
 (
 with TopPOI(POIID, POIName)
 as
 (
 select top 1 POIID, Name
 from dbo.POI

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

239

 where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon
 order by Name
)
 ,IDList(IDList)
 as
 (
 select
 case
 when @ReturnList = 1
 then
 (select POIID as [@POIID]
 from dbo.POI
 where @Lat between MinLat and MaxLat and @Lon between MinLon and MaxLon
 for xml path('POI'), root('POIS'), type)
 else null
 end
)
 select TopPOI.POIID, TopPOI.POIName, IDList.IDList
 from TopPOI cross join IDList
)

 There is a very important difference between the two implementations, however. The multi-statement
function will not run the second SELECT , which generates the XML, when the first query does not return
any rows. There is no reason for it to do so: location does not belong to any POI. Alternatively, inline
implementation would always run the two queries. It could even degrade performance when the location
does not belong to a POI, and the underlying query against the POI table is expensive. It would be better to
split the function into two separate ones, GetPOINameInline and GetPOIIDListInline , and re-factor the
outer queries in the manner shown in Listing 11-14 .

 Listing 11-14. Converting multi-statement to inline functions: Re-factoring of the outer query

 from
 dbo.Locations l
 outer apply dbo.GetPOINameInline(l.Latitude, l.Longitude) pn
 outer apply
 (
 select
 case
 when @ReturnList = 1 and pn.POIID is not null
 then (select IDList from dbo.GetPOIIDListInline(l.latitude,l.longitude))
 else null
 end
) pids

 A CASE statement in the second OUTER APPLY operator guarantees that the second function will be
executed only when the dbo.GetPOINameInline function returns the data (pn.POIID is not null); that is,
there is at least one POI for the location.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS

240

 ■ Note You can see other examples of converting complex multi-statement functions to inline table-valued
functions in Chapter 14 , “CLR,” and in the companion materials of the book.

 Summary
 While encapsulation and code reuse are great processes that can simplify and reduce the cost of
development, they are not always well suited for T-SQL code. Generalization of an implementation in order
to support multiple use cases within a single method can lead to suboptimal execution plans in some cases.
This is especially true for multi-statement functions, both scalar and table-valued. There is large overhead
associated with their calls, which in turn introduces serious performance issues when functions are called
for a large number of rows. Moreover, SQL Server does not expand them to the referenced queries, and
it always estimates that table-valued functions will return a single row when using the legacy cardinality
estimator or 100 rows with the new cardinality estimator in SQL Server 2014 and 2016.

 Predicates that include multi-statement functions are always non-SARGable, regardless of the indexes
defined on the table. This can lead to suboptimal execution plans for the queries and extra CPU load due to
the function calls. You need to keep all of these factors in mind when creating multi-statement functions.

 On the other hand, inline table-valued functions are expanded to the outer queries, similar to regular
views. They do not have the same overhead as multi-statement functions and are optimized as part of the
queries. You should re-factor multi-statement functions to inline table-valued functions whenever possible.

http://dx.doi.org/10.1007/978-1-4842-1964-5_14

241© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_12

 CHAPTER 12

 XML and JSON

 We are living in a world full of information. Businesses are constantly collecting large amounts of data from
multiple sources, processing it, and exchanging it with other systems. XML and its popular alternative JSON
have become the de-facto standards for information exchange. They work across different platforms and are
supported in every development platform that exists today.

 Moreover, not all data easily fits into a structured relational data model. For example, we can think
about an Internet of Things (IoT) system that collects metrics from different types of sensors. Some sensors
might provide information about temperature, while others could supply humidity data. Although there are
several ways to store such data in a database, XML and JSON are definitely options worth considering.

 In this chapter, we will talk about the XML and JSON data types , system design considerations, and a
few methods that can help to improve system performance while working with XML data in SQL Server.

 To Use or Not to Use XML or JSON? That Is the Question!
 One of the key questions you will need to answer when dealing with XML and JSON data in a database is
what use cases you need to support. Although both technologies, XML and JSON, give you the flexibility
to deal with semi-structured data, they come at a price. XQuery is CPU-intensive, and it does not provide
performance on par with queries against relational data. You can overcome some of these limitations by
creating XML indexes, which internally shred XML data into the relational format, but these indexes require
a lot of storage space — often several times more than the XML data itself.

 JSON, on the other hand, adds less overhead to CPU, but its support in SQL Server is rather limited. It is
not supported in SQL Server prior 2016, and it requires a database compatibility level of 130 for all features
to be enabled. Moreover, SQL Server does not support the native JSON data type, and you have to store it as
a string. Nor does SQL Server allow you to index JSON data. You can create calculated persisted columns for
some JSON properties and index them afterward; however, it is impossible to automatically shred JSON data
into the relational format as XML indexes do.

 In cases where the only requirement is keeping the XML data without any further processing, the best
approach is to store it as regular BLOB in the varbinary(max) column . This allows reconstruction of the
original document without any encoding-related issues being introduced by varchar / nvarchar data types.
The XML data type is not a good choice, as it does not preserve the original document. Even when it is
acceptable, there is overhead associated with parsing the XML data that you would prefer to avoid.

 If you decide to store XML data in a binary format, consider putting it into a separate table with a
one-to-one relationship to the main table. This helps to reduce the row size in the main table and would
improve the performance of the system in many scenarios. You can also compress it either in the client
code or by using the COMPRESS and DECOMPRESS functions in SQL Server 2016, or by building CLR-based
compression in the earlier versions of SQL Server. Compression can also help to reduce the size of the large
JSON fragments in the database.

CHAPTER 12 ■ XML AND JSON

242

 When you need to work with XML or JSON data in SQL Server, you have a few choices. If the data
fits into a structured relational model, you will get the best performance by shredding and storing it in a
relational table format. For example, you can shred and store XML or similar JSON data, as shown in
Listing 12-1 , into two tables, Orders and OrderLineItems .

 Listing 12-1. XML that fits into a relation model

 <Order OrderId="42" OrderTotal="49.96">
 <CustomerId>123</CustomerId>
 <OrderNum>10025</OrderNum>
 <OrderDate>2016-07-15T10:05:20</OrderDate>
 <OrderLineItems>
 <OrderLineItem>
 <ArticleId>250</ArticleId>
 <Quantity>3</Quantity>
 <Price>9.99</Price>
 </OrderLineItem>
 <OrderLineItem>
 <ArticleId>404</ArticleId>
 <Quantity>1</Quantity>
 <Price>19.99</Price>
 </OrderLineItem>
 </OrderLineItems>
 </Order>

 In some cases, when the data is semi-structured, you can shred the structured part into non-XML/
non-JSON columns, retaining the semi-structured part as XML/JSON. Listing 12-2 shows an example of this.
In this case, you can consider shredding and keeping location-related information in the non-XML columns
and keeping DeviceData information as XML.

 Listing 12-2. Semistructured XML

 <Locations>
 <Location DeviceId="321432345" Timestamp="2016-07-10T09:01:03">
 <Latitude>47.609102</Latitude>
 <Longitude>-122.321503</Longitude>
 <DeviceData>
 <Ignition>1</Ignition>
 <Sensor1>0</Sensor1>
 <Sensor2>1</Sensor2>
 </DeviceData>
 </Location>
 <Location DeviceId="1563287" Timestamp="2016-07-10T09:02:00">
 <Latitude>47.610611</Latitude>
 <Longitude>-122.201202</Longitude>
 <DeviceData>
 <Speed>56</Speed>
 <Temperature>29</Temperature>
 </DeviceData>
 </Location>
 </Locations>

CHAPTER 12 ■ XML AND JSON

243

 Using sparse columns is another option. You can create a wide table with a large number of sparse
columns that represent all possible attributes from the XML/JSON data without introducing the storage
overhead associated with the storage of NULL values.

 You can shred the XML/JSON in the code at the time that you insert or update the data. Alternatively,
you can create a set of scalar user-defined functions that extract the data from XML/JSON and store it in the
persisted calculated columns. Both approaches have their pros and cons. With the first approach, you need
to shred the XML data and update the columns every time the XML/JSON data is updated, potentially in
different places in the code. The second approach, on the other hand, can lead to some performance issues.
User-defined functions, which shred the data into calculated columns, would prevent parallel execution
plans for any queries that are referencing the table, even when calculated columns are not used. Moreover,
in some cases, when you reference calculated columns, SQL Server recalculates their values rather than use
persisted fields.

 Although XML and JSON data add flexibility to our data model, they affect the performance of the
system. You must always keep this in mind when designing solutions.

 XML Data Type
 An XML data type stores data in an internal format using UTF-16 encoding with some compression involved,
and it does not preserve the original XML document. Listing 12-3 shows an example of this.

 Listing 12-3. XML data type does not preserve original XML document

 select cast(
 N'<script>
 <![CDATA[
 function max(a,b)
 {
 if (a <= b) then { return b; } else { return a; }
 }]]>
 </script>' as xml)

 Result:

 <script>

 function max(a,b)
 {
 if (a <= b) then { return b; } else { return a; }
 }

 </script>

 As you can see, there is no CDATA section in the output, and the < character has been replaced with
character entity & lt; .

 The total storage space used by the XML data type varies. Even with compression, it can exceed the
raw text size when the original text uses UTF-8 encoding. However, with UTF-16 data, XML could save some
space compared to the text representation.

 There are two types of XML data available in SQL Server: untyped and typed . Untyped XML can store
data as long as it is in a valid format, while typed XML is bound by the XML schema. You can create an XML

CHAPTER 12 ■ XML AND JSON

244

schema with a CREATE XML SCHEMA COLLECTION statement and assign it to a column, parameter, or variable
of the XML data type.

 Typed XML allows SQL Server to take advantage of the data-type information from the XML nodes.
Although it improves XQuery performance, it also introduces overhead from schema validation when data
is inserted or modified. Usually, you like to have XML typed in cases where the data conforms to a specific
XML schema and you can afford such overhead.

 The XML schema is stored in the system tables in an internal format. As with regular XML data, SQL
Server does not persist the original schema definition. You need to store it separately, perhaps as a BLOB, in
case you need to reconstruct it in the future.

 As I already mentioned, you can create indexes on XML data. There are two kinds of XML indexes:
 primary and secondary . Primary XML indexes shred the XML data into a relational format, and they have
either one or two rows for each XML node. Secondary XML indexes are nonclustered indexes defined in
the relational table that stores the primary XML index data. They can help with the performance of some
operations against XML data.

 Now, let’s create the table shown in Listing 12-4 . We will insert one row of data using the XML from
Listing 12-1 .

 Listing 12-4. Primary XML index on untyped XML

 create table dbo.XmlDemo
 (
 ID int not null identity(1,1),
 XMLData xml not null,
 constraint PK_XmlDemo primary key clustered(ID)
);

 insert into dbo.XMLDemo(XMLData)
 values(/*XML From Listing 12-1*/);

 create primary xml index XML_Primary_XmlDemo
 on dbo.XmlDemo(XMLData);

 Next, let’s look at the internal structure of the primary XML index . You can find the name of the internal
table that stores the index by querying the sys.internal_tables view. You will see results similar to the
ones shown in Figure 12-1 .

 Figure 12-1. Sys.internal_tables content

CHAPTER 12 ■ XML AND JSON

245

 As you can see, one row of data from the original table produced twenty-five rows in the primary XML
index, with twelve columns each. The clustered index of the primary XML index consists of the primary key
in the original table (pk1 column in the output) and the internal node ID (id column in the output). The HID
column, which stands for hierarchy ID , contains a reverse path to the node in the binary format.

 It is also worth mentioning that the primary XML index requires tables to have a clustered primary key
defined. Neither a unique clustered index nor a nonclustered primary key will work.

 Now, let’s create a schema collection and construct the table using typed XML. The code for
accomplishing this is shown in Listing 12-5 .

 Listing 12-5. Primary XML index on typed XML

 create xml schema collection XmlDemoCollection as
 N'<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:int" name="CustomerId"/>
 <xs:element type="xs:string" name="OrderNum"/>
 <xs:element type="xs:dateTime" name="OrderDate"/>
 <xs:element name="OrderLineItems">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderLineItem" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:short" name="ArticleId"/>
 <xs:element type="xs:int" name="Quantity"/>
 <xs:element type="xs:float" name="Price"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:int" name="OrderId"/>

 Figure 12-2. Primary XML index data (untyped XML)

 Now, if you query the data from the primary XML index table, you will see the results shown in
Figure 12-2 . You need to connect through a dedicated admin connection to be able to do this.

CHAPTER 12 ■ XML AND JSON

246

 <xs:attribute type="xs:float" name="OrderTotal"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>';

 create table dbo.XmlTypedDemo
 (
 ID int not null identity(1,1),
 XMLData xml (document xmldemocollection) not null,
 constraint PK_XmlTypedDemo primary key clustered(ID)
);

 insert into dbo.XMLTypedDemo(XMLData)
 values(/*XML From Listing 12-1*/);

 create primary xml index XML_Primary_XmlTypedDemo
 on dbo.XmlDemo(XMLData);

 Now, let’s look at the primary XML index for the typed XML, shown in Figure 12-3 .

 Figure 12-3. Primary XML index data (typed XML)

 As you can see, the primary XML index now has just sixteen rows — a single row for each XML node in the
original data. It also has type information specified for every node (tid column).

 Let’s compare the storage space required for element- and attribute-centric XML for both the typed and
untyped XML. Let’s create two XML schema collections and four tables with primary XML indexes. Then, we
will populate these tables with 65,536 rows of data. The code in Listing 12-6 shows all of these steps.

 Listing 12-6. Comparing storage space required for both typed and untyped XML

 create xml schema collection ElementCentricSchema as
 '<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:int" name="OrderId"/>
 <xs:element type="xs:float" name="OrderTotal"/>
 <xs:element type="xs:int" name="CustomerId"/>
 <xs:element type="xs:string" name="OrderNum"/>
 <xs:element type="xs:dateTime" name="OrderDate"/>
 <xs:element name="OrderLineItems">

CHAPTER 12 ■ XML AND JSON

247

 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderLineItem" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:int" name="ArticleId"/>
 <xs:element type="xs:int" name="Quantity"/>
 <xs:element type="xs:float" name="Price"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>';

 create xml schema collection AttributeCentricSchema as
 '<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderLineItem" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute type="xs:int" name="ArticleId" use="optional"/>
 <xs:attribute type="xs:int" name="Quantity" use="optional"/>
 <xs:attribute type="xs:float" name="Price" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:int" name="OrderId"/>
 <xs:attribute type="xs:float" name="OrderTotal"/>
 <xs:attribute type="xs:int" name="CustomerId"/>
 <xs:attribute type="xs:string" name="OrderNum"/>
 <xs:attribute type="xs:dateTime" name="OrderDate"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>';

 create table dbo.ElementCentricUntyped
 (
 ID int not null identity(1,1),
 XMLData xml not null,
 constraint PK_ElementCentricUntyped primary key clustered(ID)
);

CHAPTER 12 ■ XML AND JSON

248

 create primary xml index XML_Primary_ElementCentricUntyped
 on dbo.ElementCentricUntyped(XMLData);

 create table dbo.ElementCentricTyped
 (
 ID int not null identity(1,1),
 XMLData xml (document ElementCentricSchema) not null,
 constraint PK_ElementCentricTyped primary key clustered(ID)
);

 create primary xml index XML_Primary_ElementCentricTyped
 on dbo.ElementCentricTyped(XMLData);

 create table dbo.AttributeCentricUntyped
 (
 ID int not null identity(1,1),
 XMLData xml not null,
 constraint PK_AttributeCentricUntyped primary key clustered(ID)
);

 create primary xml index XML_Primary_AttributeCentricUntyped
 on dbo.AttributeCentricUntyped(XMLData);

 create table dbo.AttributeCentricTyped
 (
 ID int not null identity(1,1),
 XMLData xml (document AttributeCentricSchema) not null,
 constraint PK_AttributeCentricTyped primary key clustered(ID)
);

 create primary xml index XML_Primary_AttributeCentricTyped
 on dbo.AttributeCentricTyped(XMLData);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 CROSS JOIN N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 CROSS JOIN N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 CROSS JOIN N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 CROSS JOIN N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.ElementCentricUntyped(XMLData)
 select '
 <Order>
 <OrderId>42</OrderId>
 <OrderTotal>49.96</OrderTotal>
 <CustomerId>123</CustomerId>
 <OrderNum>10025</OrderNum>
 <OrderDate>2016-07-15T10:05:20</OrderDate>
 <OrderLineItems>
 <OrderLineItem>
 <ArticleId>250</ArticleId>
 <Quantity>3</Quantity>

CHAPTER 12 ■ XML AND JSON

249

 <Price>9.99</Price>
 </OrderLineItem>
 <OrderLineItem>
 <ArticleId>404</ArticleId>
 <Quantity>1</Quantity>
 <Price>19.99</Price>
 </OrderLineItem>
 </OrderLineItems>
 </Order>'
 from Ids;

 insert into dbo.ElementCentricTyped(XMLData)
 select XMLData from dbo.ElementCentricUntyped;

 with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 CROSS JOIN N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 CROSS JOIN N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 CROSS JOIN N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 CROSS JOIN N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
 insert into dbo.AttributeCentricUntyped(XMLData)
 select
 N'<Order OrderId="42" OrderTotal="49.96" CustomerId="123"
 OrderNum="10025" OrderDate="2016-07-15T10:05:20">
 <OrderLineItem ArticleId="250" Quantity="3" Price="9.99"/>
 <OrderLineItem ArticleId="404" Quantity="1" Price="19.99"/>
 </Order>'
 from Ids;

 insert into dbo.AttributeCentricTyped(XMLData)
 select XMLData from dbo.AttributeCentricUntyped;

 When we compare the storage space used by all four tables, we see the results shown in Table 12-1 .

 Table 12-1. Typed and Untyped XML Storage Requirements

 Clustered
Index Size (KB)

 Primary XML
Index Size (KB)

 Total Size (KB)

 Untyped Element-Centric XML 28,906 90,956 119,862

 Typed Element-Centric XML 45,760 52,595 99,355

 Untyped Attribute-Centric XML 26,021 57,390 83,411

 Typed Attribute-Centric XML 36,338 54,105 90,443

 As you can see, typed XML uses more space in the clustered index of the table because of the extra
information stored in the XML data type column. At the same time, adding type information to element-
centric XML can significantly reduce the size of the primary XML index. Unfortunately, even in a best-case
scenario, XML indexes require a large amount of storage space that exceeds the storage space required by
the XML data type itself.

CHAPTER 12 ■ XML AND JSON

250

 ■ Note The actual size of the primary XML index depends on the number of nodes and the data types in the
XML data.

 Secondary XML indexes are nonclustered indexes in a table and are represented by the primary XML
index. Look at Table 12-2 , which demonstrates a simplified version of some of the data from the primary
XML index table from Figure 12-3 .

 Table 12-2. Primary XML index simplified

 PK ID NodeId Type Value HID

 1 1 1 (Order) Null Null

 1 1.1 2 (OrderId) xs:int 42 #@OrderId#Order

 1 1.5 3 (OrderLineItems) SectionT Null #OrderLineItems#Order

 1 1.5.1 4 (OrderLineItem) SectionT Null #OrderLineItem
#OrderLineItems#Order

 1 1.5.1.1 5 (ArticleId) xs:int 250 #ArticleId #OrderLineItem
#OrderLineItems#Order

 The VALUE secondary XML index is a nonclustered index with two columns: Value and HID . As you can
guess, the best use case for such indexes is when you want to locate rows based on the values and optional
paths to the nodes. In our example, the VALUE secondary XML index would be beneficial if you wanted to
find all of the orders that have a line item with a specific ArticleID .

 The PATH secondary XML index has two columns: HID and Value . Like the VALUE index, the PATH index
can be used to find all of the rows with a particular value in a particular path, although there are a couple
of differences between these indexes. The VALUE index can be used to find an XML element or attribute
with a specific value anywhere within the XML without referencing the path. The PATH index, on the other
hand, is not a good choice for such a use case. The PATH index, however, is useful when you are checking
the existence of an element based on a particular path. For instance, the PATH index is advantageous if you
have an optional nullable node called Comments and you want to select all of the orders where that node is
present. Moreover, the PATH index is useful when you are using the // shortcut in the path. For example,
 Order//ArticleId looks for an ArticleId element anywhere within the Order node. HID stores the inverted
path and, as a result, SQL Server can perform a prefix lookup on the index when dealing with such queries.

 The PROPERTY secondary XML index has three columns: PK , HID , and Value . This index is useful when
you already know the row to which the XML belongs, and you want to get the value and potential node
information for a specific path.

 SQL Server 2012 and above supports selective XML indexes that allow you to index a subset of the
XML nodes. These indexes help you to preserve the storage space when the majority of queries deal with a
subset of the XML data. For more information about selective XML indexes, check out this link: http://msdn.
microsoft.com/en-us/library/jj670108.aspx .

 Working with XML Data
 The XQuery implementation in SQL Server utilizes a relation engine. Although XQuery uses its own parser
and performs its own algebrarization during the query compilation stage, the results are combined and
optimized together with the DML portion of the query, then embedded into a single execution plan.

http://msdn.microsoft.com/en-us/library/jj670108.aspx
http://msdn.microsoft.com/en-us/library/jj670108.aspx

CHAPTER 12 ■ XML AND JSON

251

 ■ Note The algebrarization stage is responsible for name resolution, type derivation, and binding and
converting XML operators into a relational-operators tree that can be further used by the Query Optimizer.

 When XML indexes are present, SQL Server always retrieves the data from them. Otherwise, it uses
table-valued functions to shred the XML data into a relational format. In both cases, the database engine
works with a relational representation of the XML data while optimizing and executing the queries.

 The XML data type in SQL Server supports five different methods. Four of them— value , exist , query , and
 nodes —can be used to access and transform the data. The last one, modify , uses XML DML to modify the data.

 value() Method
 The value() method returns a sc alar value from the XML instance. XPath is an expression that defines
the path to the value, and it should statically represent the singleton by referencing the single element or
attribute from the XML.

 The code shown in Listing 12-7 provides examples of singletons in untyped XML.

 Listing 12-7. XPath referencing singletons in untyped XML

 declare
 @X xml =
 '<Order OrderId="42" OrderTotal="49.96">
 <Customer Id="123"/>
 <OrderLineItems>
 <OrderLineItem>
 <ArticleId>250</ArticleId>
 <Quantity>3</Quantity>
 <Price>9.99</Price>
 </OrderLineItem>
 </OrderLineItems>
 </Order>’

 -- SUCCESS: Get @Id from the first customer from first order
 select @X.value('/Order[1]/Customer[1]/@Id','int')

 -- ERROR: Not a singleton; XML can include information about multiple orders and/or customers
 select @X.value('/Order/Customer/@Id','int')

 -- SUCCESS: Get first ArticleId from the first order from the first line item
 select @X.value('/Order[1]/OrderLineItems[1]/OrderLineItem[1]/ArticleId[1]','int')

 -- ERROR: Not a singleton; SQL Server does not know that ArticleId is an element rather than
a section
 select @X.value('/Order[1]/OrderLineItems[1]/OrderLineItem[1]/ArticleId','int')

 ■ Note The XML schema helps SQL Server detect if XPath references the singleton without specifying
indexes/ordinals in the path expressions.

CHAPTER 12 ■ XML AND JSON

252

 A key XQuery concept is called the atomization of nodes . When an XPath expression identifies an
element in the untyped XML, XQuery does not know if that element is a section or if it has any child nodes.
As a result, it tries to parse and concatenate the values from all XML child nodes from the section by adding
another table-valued function to the execution plan. Doing so could introduce a noticeable performance hit
to the query. As a workaround, use the XQuery function text() , which returns a text representation of the
element and eliminates the table-valued function call.

 Listing 12-8 shows an example of such behavior, and Figure 12-4 shows the execution plan of the two calls.

 Listing 12-8. Atomization of nodes overhead

 declare
 @X xml =
 '<Order OrderId="42" OrderTotal="49.96">
 <CustomerId>123</CustomerId>
 <OrderNum>10025</OrderNum>
 <OrderDate>2016-07-15T10:05:20</OrderDate>
 <OrderLineItems>
 <OrderLineItem>
 <ArticleId>250</ArticleId>
 <Quantity>3</Quantity>
 <Price>9.99</Price>
 </OrderLineItem>
 <OrderLineItem>
 <ArticleId>404</ArticleId>
 <Quantity>1</Quantity>
 <Price>19.99</Price>
 </OrderLineItem>
 </OrderLineItems>
 </Order>'

 select @X.value('(/Order/CustomerId)[1]','int')
 select @X.value('(/Order/CustomerId/text())[1]','int')

 Figure 12-4. Atomization of nodes overhead

 Atomization of nodes occurs only when an XML instance is untyped. Let’s see what happens with typed
XML data, as shown in Listing 12-9 and Figure 12-5 .

CHAPTER 12 ■ XML AND JSON

253

 Figure 12-5. Typed XML and atomization of nodes

 Listing 12-9. Typed XML data and atomization of nodes

 declare
 @X xml (document ElementCentricSchema) =
 '<Order>
 <OrderId>42</OrderId>
 <OrderTotal>49.96</OrderTotal>
 <CustomerId>123</CustomerId>
 <OrderNum>10025</OrderNum>
 <OrderDate>2016-07-15T10:05:20</OrderDate>
 <OrderLineItems>
 <OrderLineItem>
 <ArticleId>250</ArticleId>
 <Quantity>3</Quantity>
 <Price>9.99</Price>
 </OrderLineItem>
 <OrderLineItem>
 <ArticleId>404</ArticleId>
 <Quantity>1</Quantity>
 <Price>19.99</Price>
 </OrderLineItem>
 </OrderLineItems>
 </Order>'

 select @X.value('(/Order/CustomerId)[1]','int')

 As you can see, there is no atomization of nodes overhead. SQL Server knows that CustomerId is an
integer rather than a section. This is another benefit of preserving XML type information with XML schema
collections.

 Finally, let’s check out what happens when we have a primary XML index defined and we run the
same method against one of the rows from the ElementCentricTyped table, as shown in Listing 12-10 . The
execution plan is then shown in Figure 12-6 .

 Listing 12-10. Calling the XML data type method when XML index is present

 select XmlData.value('(/Order/CustomerId)[1]','int')
 from dbo.ElementCentricTyped
 where ID = 1

CHAPTER 12 ■ XML AND JSON

254

 As you can see, SQL Server retrieves the data from the primary XML index rather than using a
table-valued function.

 exists() Method
 The exist() method returns 1 when XQuery/XPath returns non-empty results. Although you can use this
method when you need to check for the existence of an XML node, the typical use case for such a method is
to check for the existence of an element or attribute with a specific value.

 This method usually outperforms the approach that shreds the XML using the value() method and
compares the results afterward. This happens because you are evaluating the XPath predicate in the XML
Reader rather than doing an evaluation after you shred the XML. You can also use the sql:column() and
 sql:variable() functions to pass the values from the variable or table column to the XPath predicate.

 Another important factor is that the exist() method can utilize a secondary FOR VALUE XML index,
while the value() method does not use it.

 Now, let’s create that index and compare the performance of the two methods. The code for
accomplishing this is shown in Listing 12-11 , and the execution plans are shown in Figure 12-7 .

 Listing 12-11. Comparing exist() and value() methods

 create xml index XML_Value on dbo.ElementCentricUntyped(XMLData)
 using xml index XML_Primary_ElementCentricUntyped for value;

 select count(*)
 from dbo.ElementCentricUntyped
 where XmlData.exist('/Order/OrderNum/text()[.="10025"]') = 1;

 select count(*)
 from dbo.ElementCentricUntyped
 where XmlData.value('(/Order/OrderNum/text())[1]','varchar(32)') = '10025';

 Figure 12-6. Execution plan when the XML index is present

CHAPTER 12 ■ XML AND JSON

255

 In cases where there is no FOR VALUE secondary XML index present, however, the value() method
may be more efficient than the exist() method. There is one more caveat. XQuery compares string data as
unicode case-sensitive strings, and it does not take database collation into consideration. Consequently, you
can have different results when you perform a comparison within the XQuery value() method . The code
shown in Listing 12-12 demonstrates an example of such behavior.

 Listing 12-12. String comparison within XQuery

 declare
 @X xml = '<Order OrderNum="Order1"><OrderId>1</OrderId></Order>'
 ,@V varchar(32) = 'ORDER1'

 select 'exist(): found' as [Result]
 where @X.exist('/Order/@OrderNum[.=sql:variable("@V")]') = 1

 select 'value(): found' as [Result]
 where @X.value('/Order[1]/@OrderNum','varchar(16)') = @V

 As you can see in Figure 12-8 , the exist() method compares the OrderNum attribute and the @V variable
with case sensitivity, and it produces a different comparison result in T-SQL when case-insensitive collation
is used.

 Figure 12-7. Comparing the exist() and value() methods

 Figure 12-8. String comparison within XQuery

 As with the value() method , the atomization of nodes rule applies to the exist() method. It is also
better to move the node path to the outside of the predicate part, referencing it with the current node ' . '

CHAPTER 12 ■ XML AND JSON

256

symbol when dealing with untyped XML. This helps to avoid type casting, which introduces an additional
UDX operator that implements XQuery/XPath operations, to the execution plan.

 The code shown in Listing 12-13 executes three queries. The first query references the element within
the predicate, and it performs atomization of nodes, which leads to an additional call to the table-valued XML
Reader function. The second query does not perform atomization of nodes, although it performs comparison
casting of the values to xs:int . This adds the UDX operator to the execution plan. The last query compares
values as strings, which is the most efficient method. Again, keep in mind that string comparison uses
unicode, case-sensitive comparison rules. Figure 12-9 shows the execution plans for all three queries.

 Listing 12-13. Atomization of nodes and type casting

 declare
 @X xml = '<Order OrderNum="Order1"><OrderId>1</OrderId></Order>'

 select 'Atomization of nodes'
 where @X.exist('/Order[OrderId=1]') = 1;

 select 'No text() function'
 where @X.exist('/Order/OrderId[.=1]') = 1;

 select 'With text() function'
 where @X.exist('/Order/OrderId/text()[.=1]') = 1;

 Figure 12-9. Atomization of nodes and type casting

CHAPTER 12 ■ XML AND JSON

257

 query() Method
 The query() method returns the untyped XML specified by that query. You can use this method to obtain
part of the original XML or to transform it to another XML. The code shown in Listing 12-14 demonstrates
both use cases. The results are shown in Figure 12-10 .

 Listing 12-14. The query() method

 declare
 @X xml =
 N'<Order OrderId="42" OrderTotal="49.96">
 <CustomerId>123</CustomerId>
 <OrderNum>10025</OrderNum>
 </Order>'

 select
 @X.query('/Order/CustomerId') as [Part of XML]
 ,@X.query('<Customer Id="{/Order/CustomerId/text()}"/>') as [Transform]

 Figure 12-10. The query() method

 nodes() Method
 The nodes() method shreds XML into relational data. It returns a row set, with rows representing the nodes
identified by the path expression. Furthermore, you can use other XML methods —value() , for example — to
shred those rows into individual elements and attributes.

 The code shown in Listing 12-15 shows how you can access the individual nodes from the row set and
shred them into individual values. You can see the results in Figure 12-11 .

 Listing 12-15. The nodes() method

 declare
 @X xml =
 '<Order OrderId="42" OrderTotal="49.96">
 <CustomerId>123</CustomerId>
 <OrderNum>10025</OrderNum>
 <OrderDate>2016-07-15T10:05:20</OrderDate>
 <OrderLineItems>
 <OrderLineItem>
 <ArticleId>250</ArticleId>
 <Quantity>3</Quantity>
 <Price>9.99</Price>
 </OrderLineItem>
 <OrderLineItem>
 <ArticleId>404</ArticleId>
 <Quantity>1</Quantity>

CHAPTER 12 ■ XML AND JSON

258

 <Price>19.99</Price>
 </OrderLineItem>
 </OrderLineItems>
 </Order>'

 select
 t.c.query('.') as [Raw Node]
 ,t.c.value('(ArticleId/text())[1]','int') as [ArticleId]
 from @X.nodes('/Order/OrderLineItems/OrderLineItem') as t(c)

 Figure 12-11. The nodes() method

 When you use the nodes() method with the XML column from the table, you must use the APPLY
operator. You can see an example of this in Listing 12-16 .

 Listing 12-16. Using the nodes() method with the APPLY operator

 select
 t.ID
 ,sum(Items.Item.value('(Quantity/text())[1]','int') *
 Items.Item.value('(Price/text())[1]','float')) as [Total]
 from
 dbo.ElementCentricUntyped t cross apply
 t.XMLData.nodes('/Order/OrderLineItems/OrderLineItem')
 as Items(Item)
 group by
 t.ID

 You should avoid referencing parent nodes with descendant axes in path expressions; rather, you
should use a drill-down approach with multiple nodes() methods instead.

 Now, let’s compare the two approaches. Assume that you have XML that contains information about
multiple orders, as shown in Listing 12-17 .

 Listing 12-17. Drill-down approach : XML

 declare
 @X xml =
 N'<Orders>
 <Order OrderId="42" CustomerId="123" OrderNum="10025">
 <OrderLineItem ArticleId="250" Quantity="3" Price="9.99"/>
 <OrderLineItem ArticleId="404" Quantity="1" Price="19.99"/>
 </Order>
 <Order OrderId="54" CustomerId="234" OrderNum="10025">
 <OrderLineItem ArticleId="15" Quantity="1" Price="14.99"/>
 <OrderLineItem ArticleId="121" Quantity="2" Price="6.99"/>
 </Order>
 </Orders>'

CHAPTER 12 ■ XML AND JSON

259

 Assume that you want to achieve a result set that includes OrderId , CustomerId , ArticleId , Quantity ,
and Price columns. The first approach uses the nodes() method to shred the OrderLineItems node, and it
will access CustomerId and OrderId from there using descendant axes. The second approach will use two
 nodes() methods: one to shred the individual Order nodes and a second to shred OrderLineItems from
those nodes. The code needed to accomplish both approaches is shown in Listing 12-18 .

 Listing 12-18. Drill-down approach : Queries

 select
 LineItems.Item.value('../@OrderId','int') as [OrderId]
 ,LineItems.Item.value('../@OrderNum','varchar(32)') as [OrderNum]
 ,LineItems.Item.value('@ArticleId','int') as [ArticleId]
 ,LineItems.Item.value('@Quantity','int') as [Quantity]
 ,LineItems.Item.value('@Price','float') as [Price]
 from
 @X.nodes('/Orders/Order/OrderLineItem') as LineItems(Item);

 select
 Orders.Ord.value('@OrderId','int') as [OrderId]
 ,Orders.Ord.value('@OrderNum','varchar(32)') as [CustomerId]
 ,LineItems.Item.value('@ArticleId','int') as [ArticleId]
 ,LineItems.Item.value('@Quantity','int') as [Quantity]
 ,LineItems.Item.value('@Price','float') as [Price]
 from
 @X.nodes('/Orders/Order') as Orders(Ord) cross apply
 Orders.Ord.nodes('OrderLineItem') as LineItems(Item)

 Figure 12-12 shows the execution plans for the queries. Descendant axes introduce an additional pair of
XML Readers in the execution plan, which significantly degrades the performance of the queries.

CHAPTER 12 ■ XML AND JSON

260

 modify() Method
 Finally, the modify() method allows you to modify XML data by using the XML data modification language
(XML DML) . I am not going to cover the DML XML syntax in depth. You can find detailed information about
XML DML in Books Online at http://msdn.microsoft.com/en-us/library/ms177454.aspx .

 All of the XQuery/XPath performance considerations discussed previously apply here as well.

 OPENXML
 OPENXML is another way of dealing with XML data in SQL Server. It utilizes the MSXML parser (Msxmlsql.dll),
and it keeps documents in the memory cache, which can utilize up to one-eighth of SQL Server’s memory.

 All XML documents need to be parsed individually using the sp_xml_preparedocument stored
procedure. As a result, you cannot use OPENXML to process XML data from multiple table rows. For single
XML documents, OPENXML outperforms XQuery, although OPENXML’s memory-usage pattern makes
it a dangerous choice. You can lose a large amount of SQL Server memory if your code does not remove
documents from the cache by using the sp_xml_removedocument stored procedure. I suggest avoiding
OPENXML unless the performance of XQuery is insufficient for the task to be performed. For more information
about OPENXML, read this article: http://msdn.microsoft.com/en-us/library/ms186918.aspx .

 Figure 12-12. Drill-down approach: Execution plans

http://msdn.microsoft.com/en-us/library/ms177454.aspx
http://msdn.microsoft.com/en-us/library/ms186918.aspx

CHAPTER 12 ■ XML AND JSON

261

 SELECT FOR XML
 You can retrieve the results of the SELECT query in XML format by using the FOR XML clause. There are four
modes that control the shape of the generated XML: RAW , AUTO , EXPLICIT , and PATH . I recommend that you
use the PATH mode when you need to generate XML for a complex shape. The code shown in Listing 12-19
demonstrates using FOR XML PATH to accomplish this.

 Listing 12-19. Using FOR XML PATH

 declare
 @Orders table
 (
 OrderId int not null primary key,
 CustomerId int not null,
 OrderNum varchar(32) not null,
 OrderDate date not null
)
 declare
 @OrderLineItems table
 (
 OrderId int not null,
 ArticleId int not null,
 Quantity int not null,
 Price money not null,
 primary key(OrderId, ArticleId)
)

 insert into @Orders(OrderId, CustomerId, OrderNum, OrderDate)
 values
 (42,123,'10025','2016-07-15T10:05:20'),
 (54,25,'10032','2016-07-15T11:21:00')

 insert into @OrderLineItems(OrderId, ArticleId, Quantity, Price)
 values
 (42,250,3,9.99), (42,404,1,19.99),
 (54,15,1,14.99), (54,121,2,6.99)

 select
 o.OrderId as [@OrderId]
 ,o.OrderNum as [OrderNum]
 ,o.CustomerId as [CustomerId]
 ,o.OrderDate as [OrderDate]
 ,(select
 i.ArticleId as [@ArticleId]
 ,i.Quantity as [@Quantity]
 ,i.Price as [@Price]
 from @OrderLineItems i
 where i.OrderId = o.OrderId
 for xml path('OrderLineItem'),root('OrderLineItems'), type)
 from @Orders o
 for xml path('Order'),root('Orders');

CHAPTER 12 ■ XML AND JSON

262

 -- RESULT:
 <Orders>
 <Order OrderId="42">
 <OrderNum>10025</OrderNum>
 <CustomerId>123</CustomerId>
 <OrderDate>2016-07-15</OrderDate>
 <OrderLineItems>
 <OrderLineItem ArticleId="250" Quantity="3" Price="9.99" />
 <OrderLineItem ArticleId="404" Quantity="1" Price="19.99" />
 </OrderLineItems>
 </Order>
 <Order OrderId="54">
 <OrderNum>10032</OrderNum>
 <CustomerId>25</CustomerId>
 <OrderDate>2016-07-15</OrderDate>
 <OrderLineItems>
 <OrderLineItem ArticleId="15" Quantity="1" Price="14.99" />
 <OrderLineItem ArticleId="121" Quantity="2" Price="6.99" />
 </OrderLineItems>
 </Order>
 </Orders>

 You can use a FOR XML PATH clause to generate a delimiter-separated list of values. The code shown in
Listing 12-20 generates a comma-separated list of RecId values from the table.

 Listing 12-20. Generating comma-separated list of values with FOR XML PATH

 select LEFT(Data,LEN(Data) - 1) -- removing right-most comma
 from
 (select convert(varchar(max),
 (select RecId as [text()], ',' as [text()]
 from dbo.Data
 for XML PATH(''))) as Data
) List

 This approach is very fast compared to using regular string concatenation in the code. You need to be
careful, however, as SQL Server replaces characters with character entities when needed. For example, it
would replace the < character with < if it is present.

 For more information about the FOR XML clause and the shape of the XML it generates, read this article:
 http://msdn.microsoft.com/en-us/library/ms178107.aspx .

 Working with JSON Data (SQL Server 2016)
 SQL Server 2016 provides several methods that help when working with JSON data. There is no native JSON
data type, and you need to store JSON data as text in the database. However, you can select data in JSON
format using the SELECT FOR JSON operator, shred JSON data into row sets using the OPENJSON table-valued
function, and manipulate JSON data with several built-in functions.

 The choice between XML and JSON depends on many factors. Even though both technologies
allow you to work with semi-structured data, they are different. XML, which stands for eXtensive Markup
Language , is the language that allows you to describe, validate, and manipulate data. A properly constructed
XML document is self-contained and self-explanatory, and it can be strongly typed through the XML

http://msdn.microsoft.com/en-us/library/ms178107.aspx

CHAPTER 12 ■ XML AND JSON

263

schema. Finally, XQuery and XPath provide you with very powerful querying capabilities, and XLS allows
you to transform one XML type to another.

 JSON, on the other hand, stands for JavaScript Object Notation . It is not a language, but rather a data
format optimized for data communication between the systems. It is easier to read, is lighter compared
to XML, and is faster to shred and parse. It is not intended, however, for complex data manipulation and
transformation.

 XML support in SQL Server is much more robust. You can enforce strong typing with the XML schema
and manipulate it with XQuery. You can also index it to improve the performance of the queries that deal
with XML data. It is the better choice when you expect to query or modify semi-structured data in T-SQL
and/or when you can benefit from XML indexes in the queries.

 In contrast, SQL Server 2016 JSON support is rather limited. It is impossible to validate the JSON
schema or index JSON data. It could be a good choice when you do not need to enforce a specific JSON
schema nor expect to shred or parse a large amount of JSON data in the database.

 Let’s look at JSON support in SQL Server 2016.

 SELECT FOR JSON
 You can format query results in JSON format by using the FOR JSON clause and using either AUTO or PATH
mode. In AUTO mode, the JSON output is formatted based on the structure of the SELECT statement. PATH
mode, on the other hand, gives you full control over the output format.

 There are three additional options that control the formatting, as follows:

 ROOT adds the top-level element to JSON output.

 INCLUDE_NULL_VALUES allows you to add NULL properties to the output. By
default, NULL values are omitted.

 WITHOUT_ARRAY_WRAPPER removes array square brackets from enclosing the
output.

 Listing 12-21 shows an example of the SELECT FOR JSON AUTO operator. It is using the @Orders and
 @OrderLineItems table variables defined in Listing 12-19 .

 Listing 12-21. Using SELECT FOR JSON AUTO

 select
 o.OrderId as [OrderId]
 ,o.OrderNum as [OrderNum]
 ,o.CustomerId as [CustomerId]
 ,o.OrderDate as [OrderDate]
 ,(
 select
 i.ArticleId as [ArticleId]
 ,i.Quantity as [Quantity]
 ,i.Price as [Price]
 from @OrderLineItems i
 where i.OrderId = o.OrderId
 for json auto
) as LineItems
 from @Orders o
 for json auto

CHAPTER 12 ■ XML AND JSON

264

 -- Partial RESULT:
 [
 {
 "OrderId":42,
 "OrderNum":"10025",
 "CustomerId":123,
 "OrderDate":"2016-07-15",
 "LineItems":
 [
 {
 "ArticleId":250,
 "Quantity":3,
 "Price":9.9900
 },
 {
 "ArticleId":404,
 "Quantity":1,
 "Price":19.9900
 }
]
 },
 {
 "OrderId":54,
 -- Skipped
 }
]

 Similar to SELECT FOR XML PATH , SELECT FOR JSON PATH provides you with full control over the shape
of the generated JSON. You can read more about it at https://msdn.microsoft.com/en-us/library/
dn921882.aspx .

 Built-In Functions
 SQL Server 2016 provides several functions that work with JSON data, as follows:

 ISJSON tests whether a string contains valid JSON. You can use this function in
the CHECK constraint if you need to enforce that the column stores valid JSON
data.

 JSON_VALUE extracts a scalar value from a JSON string. You can use this function
to extract JSON properties to persisted calculated columns and index them
afterward.

 JSON_QUERY extracts an object or array from a JSON string.

 JSON_MODIFY updates the value of a property in a JSON string and returns a
modified JSON string.

 Listing 12-22 shows those functions in action.

https://msdn.microsoft.com/en-us/library/dn921882.aspx
https://msdn.microsoft.com/en-us/library/dn921882.aspx

CHAPTER 12 ■ XML AND JSON

265

 Listing 12-22. Using built-in functions

 declare
 @Data nvarchar(max) = N'
 {
 "Book":{
 "Title":"Pro SQL Server Internals 2nd Edition",
 “ISBN":"978-1484219638",
 "Author": {
 "Name":"Dmitri Korotkevitch",
 "Blog":"http://aboutsqlserver.com"
 }
 }
 }'

 select
 isjson(@Data) as [Is JSON]
 ,json_value(@Data,'$.Book.Title') as [Title]
 ,json_query(@Data,'$.Book.Author') as [Author in JSON]
 ,json_modify(@Data,'$.Book.Year',2016) as [Modified JSON];

 You can read more about this at https://msdn.microsoft.com/en-us/library/dn921890.aspx .

 OPENJSON
 The OPENJSON table-valued function allows you to shred JSON values into a row set. It is available only in
databases that have a compatibility level of 130. You can call this function with or without an explicit schema
definition for the output provided by the WITH clause.

 Listing 12-23 shows an example that shreds the JSON data generated in Listing 12-20 .

 Listing 12-23. Using OPENJSON

 declare
 @Data varchar(max) = '/* JSON FROM LISTING 12-20 */'

 select
 Orders.OrderId, Orders.CustomerId, Orders.OrderNum
 ,Orders.OrderDate, Orders.LineItems
 ,sum(Items.Quantity * Items.Price) as Total
 from
 openjson(@Data,'$')
 with
 (
 OrderId int '$.OrderId',
 CustomerId int '$.CustomerId',
 OrderNum varchar(32) '$.OrderNum',
 OrderDate date '$.OrderDate',
 LineItems nvarchar(max) '$.LineItems' as json
) as Orders

https://msdn.microsoft.com/en-us/library/dn921890.aspx

CHAPTER 12 ■ XML AND JSON

266

 cross apply
 openjson(Orders.LineItems,'$')
 with
 (
 Quantity int '$.Quantity',
 Price float '$.Price'
) as Items
 group by
 Orders.OrderId, Orders.CustomerId, Orders.OrderNum
 ,Orders.OrderDate, Orders.LineItems

 Figure 12-13 illustrates the output of this query. As you can see, the LineItems column from the first
result set is in JSON format, which is then shredded by the second OPENJSON function.

 Figure 12-14. OPENJSON: Execution plan of the query

 Figure 12-13. OPENJSON: Output of the query

 Figure 12-14 shows a partial execution plan for the query. As you can see, SQL Server estimates fifty
rows in the output for the OPENJSON function. This value is hardcoded, and it does not change, even if you
enable the legacy cardinality estimator in the database. You should be aware of this behavior if you expect a
large number of rows in the output.

 You can use JSON to pass a batch of rows from client applications, shredding it with the OPENJSON
function afterward. It is less efficient as compared to table-valued parameters; however, it can be used if
the SQL Client library does not support table-valued parameters. We will compare the performance of this
approach with other methods in the next chapter.

 You can read more about it at https://msdn.microsoft.com/en-us/library/mt629158.aspx .

https://msdn.microsoft.com/en-us/library/mt629158.aspx

CHAPTER 12 ■ XML AND JSON

267

 Summary
 While XML and JSON add flexibility to data models, it comes at a high cost. Queries against XML data are
slower and more CPU-intensive than queries against relational data. You can improve XQuery performance
with XML indexes, although they require a large amount of storage space—often several times larger than
that of the XML data itself. JSON data manipulation adds less overhead to the CPU; however, it is supported
in SQL Server 2016 only, and support is rather limited. SQL Server 2016 does not provide a native JSON data
type nor allow the indexing of JSON data.

 It is recommended that you create a primary XML index when the XML data is relatively static and
index maintenance does not introduce a lot of overhead, XML data is queried often enough, and you will
have enough storage space to accommodate the index. Secondary XML indexes, which are nonclustered
indexes on the primary XML index’s internal table, can be useful for optimizing specific query patterns in
the code.

 You can make XML typed by specifying that the XML conforms to a specific XML schema collection.
Queries against typed XML are usually more efficient. Typed XML requires more storage space because
the XML data type preserves type information, even though it reduces the size of the primary XML index,
especially in the case of element-centric XML. You need to consider the overhead of the schema validation
before making typed XML.

 There are several rules that you must follow when designing efficient XQuery and XPath expressions.
One of the biggest performance hits with untyped XML is the atomization of nodes. This introduces
additional calls to the XML Reader’s table-valued functions. Moreover, descendent axes in the path,
expressions at the middle of the path, and type casts also negatively affect XQuery performance.

 You must avoid property-container design patterns where you store name/value pairs, such as
 <props><name>color</name> <value>black</value></props>, unless they are absolutely needed. The
reason for this is that property-container design patterns usually introduce expressions in the middle of the
path when you access the data stored in the values elements of such XML.

 The most important decisions are made during the design stage. You must evaluate whether XML or
JSON needs to be used, and then you must define what data should be stored in the XML or JSON formats.
When data conforms to a relational model, you will achieve better performance by shredding all or part of
the data and retaining the separate elements and attributes as regular non-XML/non-JSON columns. While
it is great to have flexibility in your system, you must remember that nothing is free, and flexibility comes at
the cost of performance.

269© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_13

 CHAPTER 13

 Temporary Objects and TempDB

 Temporary objects are an essential part of SQL Server. SQL Server will sometimes create them during query
execution to store working tables and intermediate result sets. At other times, they are created by developers.

 In this chapter, we will discuss a few different types of temporary objects that can be created by users:
local and global temporary tables, table variables, user-defined table types, and table-valued parameters.
We will also talk about tempdb and ways to optimize its performance.

 Temporary Tables
 We create temporary tables to store short-term information, such as intermediate results and temporary data
during data processing. Temporary tables live in tempdb , and they behave very similarly to regular tables.
There are a few minor differences, however, which we will discuss later in this chapter.

 There are two kinds of temporary tables: local and global. Local temporary tables are named starting
with the # symbol, and they are visible only in the session in which they were created and in the modules
called from that session. When multiple sessions simultaneously create local temporary tables with the same
name, each session will have its own instance of the table.

 When you create a temporary table in a stored procedure, for example, you are able to access it in that
specific stored procedure as well as in the stored procedures that you call from that stored procedure.

 ■ Caution You can access a temporary table created in a stored procedure from the triggers defined in some
tables if the stored procedure performs the action that fires those triggers. However, this is clearly a bad idea,
as the data modification operation will fail if a temporary table has not been created.

 Listing 13-1 provides an example that demonstrates a temporary table scope.

 Listing 13-1. Local temporary table scope and visibility

 create table #SessionScope(C1 int not null)
 go

 create proc dbo.P1
 as
 begin
 -- Success: #SessionScope is visible because it's created
 -- in the session scope
 select * from #SessionScope

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

270

 -- Results depends on how P1 is called
 select * from #P2Scope
 end
 go

 create proc dbo.P2
 as
 begin
 create table #P2Scope(ID int)

 -- Success: #SessionScope is visible because it's created
 -- in the session scope
 select * from #SessionScope;

 -- Success - P1 is called from P2 so table #P2Scope is visible there
 exec dbo.P1;

 -- Success #P2Scope is visible from dynamic SQL called from within P2
 exec sp_executesql N'select * from #P2Scope';
 end
 go

 -- Success: #SessionScope is visible because it's created in the session scope
 select * from #SessionScope;

 -- Success
 exec dbo.P2;

 -- Error: Invalid object name '#P2Scope'
 exec dbo.P1;

 The temporary table #SessionScope is created on the connection/session level. This table is visible and
accessible from anywhere within the session. Another temporary table, #P2Scope , is created in the stored
procedure dbo.P2 . This table would be visible in the stored procedure (after it has been created) as well as in
the other stored procedures and dynamic SQL called from dbo.P2 . Finally, as you can see, stored procedure
 dbo.P1 references both the #SessionScope and #P2Scope tables. As a result, that stored procedure works just
fine when it is called from the dbo.P2 stored procedure, although it would fail when called from anywhere
else if the temporary table #P2Scope has not been created.

 You can drop temporary tables using the DROP TABLE statement . Alternatively, SQL Server will drop
them when the session has disconnected or after finishing the execution of the module in which they
were created. In the preceding example, the #SessionScope table would be dropped when the session
disconnected and #P2Scope would be dropped after the dbo.P2 stored procedure finished execution.

 Global temporary tables are created with names that start with ## symbols, and they are visible to
all sessions. They are dropped after the session in which they were created disconnects and when other
sessions stop referencing them.

 Neither global nor local temporary tables can have triggers defined, nor can they participate in views.
Nonetheless, like regular tables, you can create clustered and nonclustered indexes and define constraints
in them.

 SQL Server maintains statistics on the indexes defined in temporary tables in a manner similar to
regular tables. Temporary tables have an additional statistics update threshold of six changes to the leftmost
statistics column, which regular tables do not have. A KEEP PLAN query hint lets us prevent a statistics update
based on that threshold and match a regular table’s behavior.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

271

 Temporary tables are often used to simplify large and complex queries by splitting them into smaller
and simpler ones. This helps the Query Optimizer find a better execution plan in a few ways. First, simpler
queries usually have a smaller number of possible execution plans. This reduces the search area for Query
Optimizer, and it improves the chances of finding a better execution plan. In addition, simpler queries
usually have better cardinality estimations, because the number of errors tends to grow quickly when more
and more operators appear in the plan. Moreover, statistics kept by temporary tables allow Query Optimizer
to use actual cardinality data rather than relying on those often-incorrect estimates.

 Let’s look at one such example. In the first step, shown in Listing 13-2 , we create a table and populate it
with data.

 Listing 13-2. Using temporary tables to optimize queries: Table creation

 create table dbo.Orders
 (
 OrderId int not null,
 CustomerId int not null,
 Amount money not null,
 Placeholder char(100),

 constraint PK_Orders
 primary key clustered(OrderId)
);

 create index IDX_Orders_CustomerId on dbo.Orders(CustomerId);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Orders(OrderId, CustomerId, Amount)
 select ID, ID % 250 + 1, Id % 50 from IDs;

 At this point, the table has 65,536 order rows evenly distributed across 250 customers. In the next step,
let’s create a multi-statement table-valued function that accepts a comma-separated list of ID values as the
parameter and returns a table with individual ID values in the rows. One possible implementation of such a
function is shown in Listing 13-3 .

 Listing 13-3. Using temporary tables to optimize queries: Function creation

 create function dbo.ParseIDList(@List varchar(8000))
 returns @IDList table
 (
 ID int
)
 as
 begin
 if (IsNull(@List,'') = '')
 return;

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

272

 if (right(@List,1) <> ',')
 select @List += ',';

 ;with CTE(F, L)
 as
 (
 select 1, charindex(',',@List)
 union all
 select L + 1, charindex(',',@List,L + 1)
 from CTE
 where charindex(',',@List,L + 1) <> 0
)
 insert into @IDList(ID)
 select distinct convert(int,substring(@List,F,L-F))
 from CTE
 option (maxrecursion 0);

 return;
 end

 Now, let’s run a SELECT statement that calculates the total amount for all orders for all customers. We
will build a comma-separated list of values from 1 to 250 and use a dbo.ParseIDList function to parse it. We
will join the dbo.Orders table with the function, as shown in Listing 13-4 , and then examine the execution
plan, shown in Figure 13-1 .

 Listing 13-4. Using temporary tables to optimize queries: Joining the Orders table with a multi-statement
table-valued function

 declare
 @List varchar(8000)

 -- Populate @List with comma-separated list of integers
 -- from 1 to 250
 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows

 Figure 13-1. Execution plan for the query that joins a table and a function (Legacy cardinality estimator)

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

273

 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)
 select @List = convert(varchar(8000),
 (select ID as [text()], ',' as [text()]
 from IDs
 where ID <= 250
 for xml path('')));

 select sum(o.Amount)
 from dbo.Orders o join dbo.ParseIDList(@List) l on
 o.CustomerID = l.ID;

 As you know, legacy cardinality estimator always estimates that multi-statement table-valued functions
return just one row. This would lead to a very inefficient execution plan in our example.

 The I/O statistics and execution time on my computer produced the following results:

 Table 'Orders'. Scan count 250, logical reads 201295
 Table '#25869641'. Scan count 1, logical reads 1

 SQL Server Execution Times:
 CPU time = 249 ms, elapsed time = 239 ms.

 Now, let’s change our approach and populate a temporary table with the values returned by the dbo.
ParseIDList function, as shown in Listing 13-5 .

 Listing 13-5. Using temporary tables to optimize queries: Temporary table approach

 declare
 @List varchar(8000)

 -- Populate @List with comma-separated list of integers
 -- from 1 to 250
 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)
 select @List = convert(varchar(8000),
 (select ID as [text()], ',' as [text()]
 from IDs
 where ID <= 250
 for xml path('')));

 create table #Customers(ID int not null primary key);
 insert into #Customers(ID)
 select ID from dbo.ParseIDList(@List);

 select sum(o.Amount)
 from dbo.Orders o join #Customers c on
 o.CustomerID = c.ID;

 drop table #Customers;

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

274

 As you can see in Figure 13-2 , SQL Server estimates the number of IDs correctly, and, as a result, you
end up with a much more efficient execution plan .

 Figure 13-2. Execution plan for a query that uses temporary table

 The I/O statistics and execution time on my computer are as follows:

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 1 ms.
 Table '#Customers__________00000000001D'. Scan count 0, logical reads 501
 Table '#25869641'. Scan count 1, logical reads 1

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 6 ms.
 Table 'Orders'. Scan count 1, logical reads 1029
 Table '#Customers__________00000000001D'. Scan count 1, logical reads 2

 You can see that with the temporary table, our query is more than 30 times faster and uses two orders of
magnitude less I/O compared to the query that used a multi-statement table-valued function.

 Obviously, there is overhead associated with temporary tables, especially in cases when you insert a
large amount of data. In some cases, such overhead would degrade the performance of the queries, even
with the more efficient execution plans that were generated. For example, if in a majority of cases you
calculated the total orders amount for a single or for very few customers, the approach with the temporary
table would be slower than without it. You would end up with similar execution plans, but you would have
to deal with the overhead from creating and populating the temporary table. On the other hand, you may
decide to live with such overhead rather than having to deal with the poor performance that results on the
rare occasions you run the query for a large list of customers.

 Both the creation and the deletion of temporary tables require access to and modifications of the
allocation map pages, such as IAM, SGAM, and PFS, as well as of the system tables. While the same actions
occur during the creation of regular tables in users’ databases, the system rarely creates and drops users’
tables at a high rate. Temporary tables, on the other hand, can be created and dropped quite frequently. On
busy systems, this can lead to contention when multiple sessions are trying to modify allocation map pages.

 ■ Note We will talk about how to detect such contention in Part V of this book, “Practical Troubleshooting.”

 In order to improve performance, SQL Server introduces the concept of temporary objects caching . This
term is a bit confusing. It relates to temporary object allocation rather than data pages, which are cached in a
buffer pool, similar to regular tables.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

275

 In a nutshell, with temporary objects caching, instead of dropping the table, SQL Server truncates it,
keeping two pages per index pre-allocated: one IAM and one data page. The next time the table is created,
SQL Server will reuse these pages, which helps reduce the number of modifications required in the
allocation map pages.

 Let’s look at the example shown in Listing 13-6 . In the first step, let’s define the stored procedure that
creates and drops the temporary table.

 Listing 13-6. Temporary objects caching : Stored procedure

 create proc dbo.TempTableCaching
 as
 create table #T(C int not null primary key);
 drop table #T;

 In the next step, let’s run the stored procedure and examine the transaction log activity it generates. You
can see the code for doing this in Listing 13-7 .

 Listing 13-7. Temporary objects caching: Running the stored procedure

 checkpoint;
 go
 exec dbo.TempTableCaching;
 go
 select Operation, Context, AllocUnitName, [Transaction Name], [Description]
 from sys.fn_dblog(null, null);

 When you run this code for the first time, you will see results similar to those in Figure 13-3 .

 Figure 13-3. Log activity when a temporary table has not been cached

 As you can see, the first stored procedure call produced 51 log records. Forty of them (the highlighted
portion) relate to the update of the allocation map pages and system tables during temporary table creation.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

276

 If you run the code from Listing 13-7 a second time, you will see a different picture, as shown in
Figure 13-4 .

 Figure 13-4. Log activity when the temporary table has been cached

 This time, as the temporary table has been cached, table creation introduces just a few log records, all of
which are against the system table with no allocation map pages involved.

 SQL Server does not cache IAM or data pages for global temporary tables, nor does it cache local
temporary tables created in the session scope. Only the temporary tables created within stored procedures
and triggers are cached.

 There are also a few requirements for the table and code, including the following:

• The table needs to be smaller than eight megabytes. Large tables are not cached.

• There are no DDL statements that change the table structure. Any schema
modification statements in the code, with the exception of DROP TABLE , will prevent
temporary objects caching. However, you can create indexes on the table and, as
mentioned previously, SQL Server will cache them.

• There are no named constraints defined in the table. Unnamed constraints will not
prevent the caching.

 As you can see, it is very easy to follow the guidelines that make temporary tables cacheable. This can
significantly improve performance and reduce the contention on tempdb allocation map pages on busy systems.

 Table Variables
 Despite the myth that table variables are in-memory objects, they are actually created and live in tempdb ,
similar to regular temporary tables. You can think about them as lightweight temporary tables, although
their lightness comes with a set of limitations and restrictions.

 ■ Note In-Memory OLTP technology introduced in SQL Server 2014 allows you to create memory-optimized
table variables . Those objects live only in memory and do not use tempdb . We will discuss In-Memory OLTP in
Part VIII of this book.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

277

 The first major difference between temporary tables and table variables is the scope. Table variables
live only within the batch in which they were created. They are not accessible from outside of the batch, as
opposed to temporary tables. For example, when you define a table variable in a stored procedure, you are
not able to reference it from the dynamic SQL nor from other stored procedures called from the original one.

 You cannot create indexes on table variables , with the exception of primary key and unique constraints.

 ■ Important SQL Server does not maintain any statistics on table variables, and it always estimates that a
table variable has just a single row, unless a statement-level recompile is used.

 Look at the example shown in Listing 13-8 . Here, we create a temporary table and table variable,
populate it with some data, and check SQL Server’s cardinality estimations.

 Listing 13-8. Cardinality estimation for temporary tables and table variables

 declare
 @TTV table(ID int not null primary key)

 create table #TT(ID int not null primary key);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N4)
 insert into #TT(ID)
 select ID from IDs;

 insert into @TTV(ID)
 select ID from #TT;

 select count(*) from #TT;
 select count(*) from @TTV;
 select count(*) from @TTV option (recompile);

 As you can see in Figure 13-5 , unless you are using a statement-level recompile, SQL Server estimates
that a table variable has only one row. Cardinality estimation errors often progress quickly through the
execution plan, and this can lead to highly inefficient plans when table variables are used. A statement-level
recompile provides the Query Optimizer with information about the total number of rows, although no
statistics are kept and the Query Optimizer knows nothing about data distribution in the table variable.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

278

 Figure 13-5. Cardinality estimation for temporary tables and table variables

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

279

 Now, let’s change our previous example and add a where ID > 0 clause to all three selects. All ID values
in both tables are positive. When you run these queries, you will receive the cardinality estimations shown in
Figure 13-6 .

 Regular temporary tables maintain statistics on indexes, and, as a result, SQL Server was able to access
the histogram and estimate the number of rows in the first SELECT correctly. As previously, without a
statement-level recompile it is assumed that the table variable has only a single row. Nevertheless, even with
a statement-level recompile, the estimations were way off. There are no statistics, and SQL Server assumes
that the greater operator will return one-third of the rows from the table, which is incorrect in our case.

 Another difference between temporary tables and table variables is how they handle transactions.
Temporary tables are fully transaction-aware, similar to regular tables. Table variables, on the other hand,
support only statement-level rollbacks. Any statement-level errors — for example, “key violation” — would roll
back the statement, although explicit transaction rollback keeps the table variable data intact.

 Let’s look at a couple of examples. In the first example, we will produce a primary key violation error
during the INSERT operation. The code for this is shown in Listing 13-9 .

 Figure 13-6. Cardinality estimations for temporary tables and table variables

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

280

 Listing 13-9. Temporary table variables: Statement-level rollback

 declare
 @T table(ID int not null primary key)

 -- Success
 insert into @T(ID) values(1);

 -- Error: primary key violation
 insert into @T(ID) values(2),(3),(3);

 -- 1 row
 select * from @T;

 As you can see in Figure 13-7 , the second INSERT statement did not add rows to the table.

 Figure 13-7. Table variables: Statement-level rollback

 Now, let’s examine what happens when we roll back an explicit transaction . The code for doing this is
shown in Listing 13-10 .

 Listing 13-10. Table variables: Explicit transactions

 declare
 @Errors table
 (
 RecId int not null primary key,
 [Error] nvarchar(512) not null
)
 begin tran
 -- Insert error information
 insert into @Errors(RecId, [Error])
 values
 (11,'Price mistake'),
 (42,'Insufficient stock');
 rollback
 /* Do something with errors */
 select RecId, [Error] from @Errors;

 As you can see in Figure 13-8 , the explicit rollback statement did not affect the table variable data. You
can benefit from such behavior when you need to collect some error or log information that you want to
persist even after the transaction has been rolled back.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

281

 ■ Caution While table variables can outperform temporary tables in some cases because of their lower
overhead, you need to be extremely careful with them, especially when you store large amounts of data in the
table variable. The single-row cardinality estimation rule and missing statistics can produce highly inefficient
plans with a large number of rows involved. A statement-level recompile can help address some cardinality
estimation issues, although it will not help when the data distribution needs to be analyzed.

 As a general rule of thumb , it is safer to use temporary tables than table variables when you need to join
them with other tables. With single-row cardinality estimation, Query Optimizer usually chooses a nested
loop when a table variable is present in the join. This join type is highly inefficient in cases where there is a
large amount of data stored in both join inputs.

 Table variables are a good choice when you need to deal with a large number of rows and no joins with
other tables are involved. For example, you can think about a stored procedure where you stage the data, do
some processing, and return the data to the client. If there is no other choice but to scan the entire table, you
will have the same execution plan regardless of what object types are used. In these cases, table variables can
outperform temporary tables. Nevertheless, temporary tables are the safer choice in the majority of cases.

 Finally, table variables are cached in the same way as temporary tables are.

 User-Defined Table Types and Table-Valued Parameters
 You can define table types in the database. When you declare the variable of the table type in the code, it
works the same way as with table variables.

 Alternatively, you can pass the variables of the table types, called table-valued parameters (TVPs) , to
T-SQL modules. While table-valued parameters are implemented as table variables under the hood, they are
actually read-only. You cannot insert, update, or delete data in table-valued parameters.

 The code in Listing 13-11 shows how you can use table-valued parameters. It creates the table type
dbo.tvpErrors , a stored procedure with a table-valued parameter, and shows the examples how to pass that
parameter to a stored procedure and dynamic SQL.

 Listing 13-11. Table-valued parameters

 create type dbo.tvpErrors as table
 (
 RecId int not null primary key,
 [Error] nvarchar(512) not null,
)
 go

 create proc dbo.TvpDemo
 (
 @Errors dbo.tvpErrors readonly
)

 Figure 13-8. Table variables: Explicit transactions

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

282

 as
 select RecId, [Error] from @Errors;

 exec sp_executesql
 N'select RecId, [Error] from @Err'
 ,N'@Err dbo.tvpErrors readonly'
 ,@Err = @Errors;
 go

 declare
 @Errors dbo.tvpErrors

 insert into @Errors(RecId, [Error])
 values
 (11,'Price mistake'),
 (42,'Insufficient stock')

 exec dbo.TvpDemo @Errors

 As you can see, you need to mention explicitly that the table-valued parameter is read-only in both the
stored procedure and the dynamic SQL parameter lists.

 Table-valued parameters are one of the fastest ways to pass a batch of rows from a client application to
a T-SQL routine. Table-valued parameters are an order of magnitude faster than separate DML statements,
and, in some cases, they can even outperform bulk operations.

 Now, let’s run a few tests comparing the performance of inserting the data into the table using
different methods and different batch sizes. As a first step, let’s create a table to store the data, as shown in
Listing 13-12 . The actual table used in the tests has 21 data columns. A few data columns are omitted in
the listings in order to save space. The actual test application and all the scripts are included in the book
companion materials.

 Listing 13-12. Inserting a batch of rows: Table creation

 create table dbo.Data
 (
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns Col3 - Col19 */
 Col20 varchar(20) not null,

 constraint PK_DataRecords
 primary key clustered(ID)
)

 The first method calls the separate INSERT statements from within the transaction. The .Net code to do
this is shown in Listing 13-13 . It is worth mentioning that the only purpose of this code is to generate dummy
data and to test the performance of the different methods that insert data into the database.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

283

 Listing 13-13. Inserting a batch of rows: Using separate inserts

 using (SqlConnection conn = GetConnection())
 {
 /* Generating SqlCommand and parameters */
 SqlCommand cmd = new SqlCommand(
 @"insert into dbo.Data(ID,Col1,Col2,/*…*/Col20)
 values(@ID,@Col1,@Col2,/*…*/@Col20)",conn);
 cmd.Parameters.Add("@ID", SqlDbType.Int);
 for (int i = 1; i <= 20; i++)
 cmd.Parameters.Add("@Col" + i.ToString(), SqlDbType.VarChar, 20);
 /* Running individual insert statements in the loop
 within explicit transaction */
 using (SqlTransaction tran =
 conn.BeginTransaction(IsolationLevel.ReadCommitted))
 {
 try
 {
 cmd.Transaction = tran;
 for (int i = 0; i < packetSize; i++)
 cmd.Parameters[0].Value = i;
 for (int p = 1; p <= 20; p++)
 cmd.Parameters[p].Value = "Parameter: " + p.ToString();
 cmd.ExecuteNonQuery();
 }
 tran.Commit();
 }
 catch (Exception ex)
 {
 tran.Rollback();
 }
 }

 The second method sends the entire batch at once in an element-centric XML format, using a stored
procedure to parse it. The .Net code is omitted, and the stored procedure is shown in Listing 13-14 .

 Listing 13-14. Inserting a batch of rows: Using element-centric XML

 create proc dbo.InsertDataXmlElementCentric
 (
 @Data xml
)
 as
 -- @Data is in the following format:
 -- <Rows><R><ID>{0}</ID><C1>{1}</C1><C2>{2}</C2>..<C20>{20}</C20></R></Rows>
 insert into dbo.Data(ID,Col1,Col2,/*…*/ Col20)
 select
 rows.n.value('(ID/text())[1]', 'int')
 ,rows.n.value('(C1/text())[1]', 'varchar(20)')
 ,rows.n.value('(C2/text())[1]', 'varchar(20)')

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

284

 /* other 17 columns */
 ,rows.n.value('(C20/text())[1]', 'varchar(20)')
 from
 @Data.nodes('//Rows/R') rows(n)

 The third method is very similar to the second, but it uses attribute-centric XML instead. The code for
this is shown in Listing 13-15 .

 Listing 13-15. Inserting a batch of rows: Using attribute-centric XML

 create proc dbo.InsertDataXmlAttributeCentric
 (
 @Data xml
)
 as
 -- @Data is in the following format:
 -- <Rows><R ID="{0}" C1="{1}" C2="{2}"..C20="{20}"/></Rows>
 insert into dbo.Data(ID,Col1,Col2,/*…*/Col20)
 select
 rows.n.value('@ID', 'int')
 ,rows.n.value('@C1', 'varchar(20)')
 ,rows.n.value('@C2', 'varchar(20)')
 /* other 17 columns */
 ,rows.n.value('@C20', 'varchar(20)')
 from
 @Data.nodes('//Rows/R') rows(n)

 The fourth method uses a SqlBulkCopy .Net class with DataTable as the source using row-level locks.
The code for this is shown in Listing 13-16 .

 Listing 13-16. Inserting a batch of rows: Using SqlBulkCopy .Net class

 using (SqlConnection conn = GetConnection())
 {
 /* Creating and populating DataTable object with dummy data */
 DataTable tbl = new DataTable();
 tbl.Columns.Add("ID", typeof(Int32));
 for (int i = 1; i <= 20; i++)
 tbl.Columns.Add("Col" + i.ToString(), typeof(string));
 for (int i = 0; i < packetSize; i++)
 tbl.Rows.Add(i, "Parameter: 1", /* Other columns */ "Parameter: 20");
 /* Saving data into the database */
 using (SqlBulkCopy bc = new SqlBulkCopy(conn))
 {
 bc.BatchSize = packetSize;
 bc.DestinationTableName = "dbo.Data";
 bc.WriteToServer(tbl);
 }
 }

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

285

 The next method uses table-valued parameters. Listing 13-17 shows the T-SQL code and Listing 13-18
shows the .Net part of the implementation.

 Listing 13-17. Inserting a batch of rows: Table-valued parameters T-SQL code

 create type dbo.tvpData as table
 (
 ID int not null primary key,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns: Col3 - Col19 */
 Col20 varchar(20) not null
)
 Go

 create proc dbo.InsertDataTVP
 (
 @Data dbo.tvpData readonly
)
 as
 insert into dbo.Data(ID,Col1,Col2,/*…*/Col20)
 select ID,Col1,Col2,/*…*/Col20
 from @Data;

 Listing 13-18. Inserting a batch of rows: Table-valued parameters .Net code

 using (SqlConnection conn = GetConnection())
 {
 DataTable tbl = new DataTable();
 tbl.Columns.Add("ID", typeof(Int32));
 for (int i = 1; i <= 20; i++)
 tbl.Columns.Add("Col" + i.ToString(), typeof(string));
 for (int i = 0; i < packetSize; i++)
 tbl.Rows.Add(i, "Parameter: 1", /* Other columns */ "Parameter: 20");
 /* Calling SP with TVP parameter */
 SqlCommand cmd = new SqlCommand("dbo.InsertDataTVP", conn);
 cmd.Parameters.Add("@Data", SqlDbType.Structured);
 cmd.Parameters[0].TypeName = "dbo.tvpData";
 cmd.Parameters[0].Value = table;
 cmd.ExecuteNonQuery();
 }

 Finally, the last method will pass the batch of rows in JSON format using the OPENJSON function to shred
it. As you will remember, this method works only in SQL Server 2016 and requires the database to have a
compatibility level of 130. Listing 13-19 illustrates the stored procedure that imports the data.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

286

 Listing 13-19. Inserting a batch of rows: Using JSON and the OPENJSON function

 create proc dbo.InsertDataRecordsJSON
 (
 @Data nvarchar(max)
)
 as
 insert into dbo.Data(ID,Col1,Col2,/*…*/Col20)
 select ID,Col1,Col2,/*…*/Col20
 from openjson(@Data,'$')
 with (
 ID int '$.ID',
 Col1 varchar(20) '$.F1',
 Col2 varchar(20) '$.F2',
 /* Col3 - Col19 */
 Col20 varchar(20) '$.F20');

 I ran two series of tests measuring average execution time for the different methods and different batch
sizes in SQL Server 2016 RTM. In the first test, the application ran on the same server as SQL Server. On the
second test, the application connected to SQL Server over a network. You can see the execution time for
these two tests in milliseconds in Tables 13-1 and 13-2 .

 Table 13-2. Execution Time When the Application Was Run Remotely (in Milliseconds)

 Rows Separate
inserts

 Element-centric
XML

 Attribute-centric
XML

 SQLBulkCopy Table-valued
parameters

 JSON

 1,000 421 565 303 35 19 73

 5,000 2,089 2,561 1,478 108 97 339

 10,000 4,302 5,203 2,964 218 184 659

 100,000 43,644 52,860 28,534 2,275 1,998 6,491

 Table 13-1. Execution Time When the Application Was Run Locally (in Milliseconds)

 Rows Separate
inserts

 Element-centric
XML

 Attribute-centric
XML

 SQLBulkCopy Table-valued
parameters

 JSON

 1,000 176 535 300 28 18 68

 5,000 883 2,525 1,409 105 89 320

 10,000 1,844 5,365 2,892 214 179 612

 100,000 18,199 51,030 29,125 2,219 1,946 6,479

 The performance of the separate INSERT statements greatly depends on network speed. This approach
introduces a lot of network activity, and it does not perform well, especially with slow networks. The
performance of the other methods do not depend greatly on the network.

 As expected, the performance of attribute-centric XML is better than that of element-centric XML.
It will also outperform separate inserts with the large batches—even with no network overhead involved.
It is worth mentioning that the performance of XML implementations greatly depends on the data schema.
Every XML element adds another operator to the execution plan, which slows XML parsing.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

287

 SQLBulkCopy and table-valued parameters are by far the fastest methods. Table-valued parameters were
slightly more efficient in my test; however, the variation in performance is negligible and would depend on
SQL Server version and tempdb performance.

 Lastly, OPENJSON implementation in SQL Server 2016 outperforms individual INSERT statements and
the XML approaches. Even though it is still slower as compared to table-valued parameters and
 SQLBulkCopy , it could be a good choice in some cases if SQL Client library does not support TVPs.

 ■ Note In-Memory OLTP allows you to use memory-optimized table-valued parameters , which are faster
than their on-disk counterparts, especially with large batches of data. We will discuss them in Chapter 37 ,
“In-Memory OLTP Programmability.”

 When you work with table-valued parameters in the client code, you need to assign a DataTable object
to a corresponding SqlParameter object. The DataTable object should match the corresponding table-type
definition from both the schema and data standpoints. The DataTable object should have the same number
of columns, and these columns should have the same names and be in the same order as in the table type
defined in the database. They also need to support type conversions between the corresponding .Net and
SQL data types.

 Data in the table needs to conform to the table type’s primary and unique constraints, and it should not
exceed the defined column sizes and T-SQL data type’s domain values.

 Finally, table types should not have sql_variant columns. Unfortunately, the .Net SQL client does
not work with these correctly, and it raises exceptions during the call when the table-valued type has a
 sql_variant column defined.

 Regular Tables in TempDB
 You can create regular tables in tempdb , either directly or through the model database. User tables in tempdb
are visible in all sessions.

 Tempdb is recreated every time SQL Server restarts, and, because of this, it does not need to support
crash recovery. As a result, tempdb uses the SIMPLE recovery model , and it has some additional logging
optimizations, which make it more efficient than logging into the user’s databases.

 ■ Note We will discuss recovery models and the differences in logging between tempdb and user databases
in Chapter 30 , “Transaction Log Internals.”

 Tempdb could be an option to be the staging area for ETL processes , where you need to load and process
a large amount of data as fast as possible with minimum logging overhead. You can use temporary tables
when the process is done as a single session; however, you need to use regular tables in more complex cases.

 While tempdb can help with staging-area performance, client applications need to handle situations
where tempdb is recreated and the tables with the data are gone. This may occur if SQL Server restarts or fails
over to another node.

 To make the situation even worse, this can happen transparently to the client applications in some
cases. Applications need to handle these situations either by checking for the existence of the staging tables
or, if you are creating tables automatically, persisting the state information somewhere else.

 Let’s assume that we have a table called dbo.ETLStatuses that contains information about the ETL
process statuses. There are a couple of ways that you can create such a table. One is using a model database.
All objects created in a model database are copied to tempdb during SQL Server startup.

http://dx.doi.org/10.1007/978-1-4842-1964-5_37
http://dx.doi.org/10.1007/978-1-4842-1964-5_30

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

288

 ■ Caution All objects created in a model database will be copied into the user databases that are created
afterward.

 Alternatively, you can create objects in tempdb using a stored procedure that executes upon SQL Server
startup. Listing 13-20 shows such an example.

 Listing 13-20. Creating a table in tempdb with a startup stored procedure

 use master;
 go

 -- Enable scan for startup procs
 exec sp_configure 'show advanced option', '1';
 reconfigure;
 exec sp_configure 'scan for startup procs', '1';
 reconfigure;
 go

 create proc dbo.CreateETLStatusesTable
 as
 create table tempdb.dbo.ETLStatuses
 (
 ProcessId int not null,
 ActivityTime datetime not null,
 StageNo smallint not null,
 [Status] varchar(16) not null,

 constraint PK_ETLStatuses
 primary key clustered (ProcessID)
)
 go

 -- Mark procedure to run on SQL Server Startup
 exec sp_procoption N'CreateETLStatusesTable', 'startup', 'on';

 Listing 13-21 shows a possible implementation of the procedure that performs one of the stages of ETL
processing by using the dbo.ETLStatuses table to validate process-state information.

 Listing 13-21. Example of ETL stored procedure

 -- Either defined in user db or in tempdb
 create proc dbo.ETL_Process1Stage2
 as
 begin
 -- Returns
 -- 0: Success
 -- -1: ETL tables do not exist – something is wrong
 -- -2: ETLStatuses table does not have the record for the process
 -- -3: Invalid stage

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

289

 set xact_abort on
 declare
 @StageNo smallint
 ,@Status varchar(16)

 if object_id(N’tempdb.dbo.ETLStatuses’) is null or
 object_id(N’tempdb.dbo.ETLData’) is null
 return -1;

 select @StageNo = StageNo, @Status = [Status]
 from tempdb.dbo.ETLStatuses
 where ProcessId = 1;
 if @@rowcount = 0
 return -2;

 if @StageNo <> 1 or @Status <> ‘COMPLETED’
 return -3;

 -- This implementation rolls back all the changes in case of the error
 -- and throw the exception to the client application.
 begin tran
 update tempdb.dbo.ETLStatuses
 set ActivityTime = getutcdate(), StageNo = 2, [Status] = ‘STARTED’
 where ProcessId = 1;

 /* Do Some Processing */

 update tempdb.dbo.ETLStatuses
 set ActivityTime = getutcdate(), [Status] = ‘COMPLETED’
 where ProcessId = 1;
 commit
 return 0;
 end

 Of course, there are other ways to accomplish the same task. However, the key point here is the need to
make your code aware of the situation when tempdb is recreated and the staged data is gone.

 Optimizing TempDB Performance
 Tempdb is usually one of the busiest databases on the server. In addition to temporary objects created by
users, SQL Server uses this database to store internal result sets during query executions, version store,
internal temporary tables for sorting, hashing, and database consistency checking, and so forth. Tempdb
performance is a crucial component in overall server health and performance. Thus, in most cases, you
should put tempdb on the fastest disk array that you have available.

 In cases where you are using Standard Edition on the servers that have more memory that SQL Server
can utilize, it is possible to create RAM drive and put tempdb there. Make sure that the RAM drive has enough
space to accommodate tempdb growth in that case. In Enterprise Edition, however, it is better to leave the
memory to SQL Server and place tempdb on the fastest disk array instead.

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

290

 Redundancy of the array is another issue. On one hand, you do not need to worry much about the data
that you are storing in tempdb . On the other hand, if the tempdb disk array goes down, SQL Server becomes
unavailable. As a general rule then, you would like to have disk array redundancy.

 Although, in some cases, when tempdb performance becomes a bottleneck and your High Availability
strategy supports the simultaneous failure of two or more nodes, and furthermore there are spare parts
available and there is a process in place that allows you to bring the failed node(s) online quickly, you
could consider making the tempdb disk array non-redundant. This is a dangerous route, however, and you
need to consider the pros and cons of this decision very carefully, avoiding unnecessary failovers whenever
it is possible.

 There is a trace flag, T1118 , that prevents SQL Server from using mixed extents for space allocation.
By allocating uniform extents only, you reduce the number of changes required in the allocation map pages
during object creation. Moreover, even if temporary objects caching keeps only one data page cached, that
page would belong to its own free uniform extent. As a result, SQL Server does not need to search, and
potentially allocate, the mixed extents with free pages that are available during the allocation of pages two
to eight of the table. Those pages can be stored in the same uniform extent in which the first cached data
page belongs.

 The bottom line is that trace flag T1118 can significantly reduce allocation map pages contention in
 tempdb . This trace flag should be enabled in every SQL Server instance prior to SQL Server 2016; that is, there
is no downside to doing this.

 SQL Server 2016, on the other hand, does not use mixed extents allocation in tempdb , even without
 T1118 enabled. Thus, this trace flag is not required in SQL Server 2016.

 Another way to reduce contention is by creating multiple tempdb data files. Every data file has its own
set of allocation map pages, and, as a result, allocations are spread across these files and pages. This reduces
the chances of contention, because fewer threads are then competing simultaneously for access to the same
allocation map pages.

 There is no generic rule that defines the optimal number of tempdb data files—everything depends on the
actual system workload and behavior. The old guidance — to have the number of data files equal the number
of logical processors — is no longer the best advice. While that approach still works, an extremely large number
of data files could degrade the performance of the system due to the file-management overhead.

 Having multiple data files can also degrade the performance of tempdb spills when SQL Server uses
 tempdb to store internal record sets during Sort and Hash operations. As a general rule, you would need to
perform query optimization to reduce spills in the system; however, if it is impossible, you can consider
using the -E SQL Server startup parameter, which increases the number of extents allocated in each data file
in a proportional fill algorithm. Use this startup parameter with care and as a last resort and validate how it
affects your workload. We will discuss spills in detail in Chapter 25 .

 The Microsoft CSS team performed a stress test of tempdb performance using a server with 64 logical
processors running under a heavy load with 500 connections that create, populate, and drop temporary
tables into the loop. Table 13-3 displays the execution time based on the number of files in tempdb and a
trace flag T1118 configuration.

 Table 13-3. Execution time based on the number of data files in tempdb

 1 data file 8 data files 32 data files 64 data files

 Without T1118 1,080 seconds 45 seconds 17 seconds 15 seconds

 With T1118 525 seconds 38 seconds 15 seconds 15 seconds

http://dx.doi.org/10.1007/978-1-4842-1964-5_25

CHAPTER 13 ■ TEMPORARY OBJECTS AND TEMPDB

291

 As you can see, creating more than one data file dramatically improved tempdb performance, although
it stabilized at some point. For instance, there was only a marginal difference in performance between the
scenarios with 32 and 64 data file.

 In general, you should start with a number of files equal to the number of logical processors in case the
system has eight or fewer logical processors. Otherwise, start with eight data files and add them in groups
of four in case there is still contention in the system. Make sure that the files are created with the same
initial size and same auto-growth parameters, with growth size set in megabytes rather than by percentage.
This helps you to avoid situations where files grow disproportionately, causing some files to process more
allocations than others do.

 SQL Server 2016 simultaneously grows all tempdb data files whenever any single data file needs to be
grown. This reduces the chance that tempdb data files would grow unevenly and would have disproportional
allocations. You should still make sure that all files have identical auto-growth parameters specified.

 You can enable the same auto-growth behavior in previous versions of SQL Server by using trace flag
 T1117 . Keep in mind, however, that this behavior will be applied server-wide and affect user databases.
All data files in the filegroup will grow together at the time of an auto-growth event.

 It is also beneficial to apply the latest SQL Server service packs and cumulative updates to the system.
Microsoft constantly optimizes tempdb performance and reduces tempdb disk activity in the various use cases.

 Of course, the best method of optimizing tempdb performance is to reduce unnecessary activity. You
can re-factor your code to avoid the unnecessary usage of temporary tables, avoid sending extra load to the
version store because of triggers or unnecessary optimistic transaction isolation levels, reduce the number
of internal working tables created by SQL Server by optimizing the queries and simplifying execution plans,
and so on. The less unnecessary activity tempdb has, the better it performs.

 Summary
 There are many different object types that can be created by users in tempdb . Temporary tables behave
similarly to regular tables. They can be used to store intermediate data during processing. In some cases,
you can split complex queries into smaller ones by keeping intermediate results in temporary tables. While
this introduces the overhead of creating and populating the temporary tables, it can help Query Optimizer to
generate simpler and more efficient execution plans.

 Table variables are a lightweight version of temporary tables. While they can outperform temporary
tables in some cases, they have a set of restrictions and limitations. These limitations can introduce
suboptimal execution plans, especially when you join table variables with other tables.

 Table-valued parameters allow you to pass row sets as parameters to stored procedures and functions.
They are the one of the fastest ways to pass batches of rows from client applications to T-SQL routines.

 The user’s table in tempdb can be used as the staging area for data during ETL processes. This approach
can outperform the staging tables in the user databases due to the more efficient logging in tempdb .
However, client applications need to handle the situations when those tables and/or data disappear after a
SQL Server restart or failover to another node.

 As opposed to regular tables in the user’s database, temporary objects can be created at a very high rate
and can introduce allocation map page and system object contention in tempdb . You should create multiple
 tempdb data files and, in SQL Server 2014 and below, use trace flag T1118 to reduce contention.

 Finally, you should utilize temporary objects caching, which reduces contention even further. You need
to avoid named constraints in temporary tables, and do not alter them to make them cacheable.

293© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_14

 CHAPTER 14

 CLR

 There are several different programming paradigms that exist nowadays. Some languages, such as SQL or
XQuery, are declarative . They define what needs to be done without specifying how it needs to be achieved.
Other languages, such as C# or Java, are imperative . This model requires specifying an exact, step-by-step
control flow of the execution, defining how to achieve the results.

 As an example, think about a scenario where you need to read all of the data that belongs to a specific
customer. In the declarative model implemented in SQL, you would use the where clause with the predicate
on the CustomerId column. In the imperative model, you would process all records, one by one, comparing
 CustomerId using the IF operator.

 SQL is a declarative language, and it has been optimized for set-based declarative logic. Even though
Transact SQL has a set of constructs that allows us to develop imperative code, the constructs are not very
efficient. Moreover, the T-SQL language is very limited compared to modern imperative development
languages. The Common Language Runtime (CLR) helps address some of these challenges by providing the
execution environment for .Net code within SQL Server, and it allows us to develop various database objects
using .Net programming languages.

 Implementation of imperative, procedural-style code in CLR is usually more efficient than in T-SQL.
Moreover, CLR outperforms T-SQL in computation-intensive areas, such as mathematical calculation, string
manipulation, serialization, byte-level manipulation on large objects, and others.

 Covering all aspects of CLR development easily merits a book by itself. This chapter provides an
overview of CLR integration in SQL Server, discusses several security-related questions, and compares the
performance of T-SQL and CLR routines in a few different areas.

 CLR Integration Overview
 SQL Server loads the .Net runtime environment inside its own process, and it manages memory and other
resources there. It has full control over the environment, and it can shut down .Net application domains if needed.

 ■ Note Application domain is the key concept in .Net, and it represents the isolated environment where .Net
code is executed. It provides a similar level of isolation for Windows processes in native Windows code.

 CLR code is compiled into assembly DLLs, which are stored within the database. You can register and
catalog assemblies there using the CREATE ASSEMBLY statement, specifying either the path to the file or a
binary sequence of assembly bits that represent assembly code. SQL Server then loads the assembly into a
separate application domain for validation and checks that the DLL or assembly bits represent compiled
.Net code. In addition, SQL Server performs code verification to ensure that the assembly does not perform
unauthorized actions.

CHAPTER 14 ■ CLR

294

 Assemblies belong to one of three different security categories, called permission sets . You need to
specify the corresponding permission set as part of the CREATE ASSEMBLY statement. The categories are as
follows:

 SAFE : This code is fully reliable, and it works in-process only. Only a subset
of the standard .Net libraries and classes can be used here. This is the default
permission set for assemblies and the only permission set supported in Microsoft
Azure SQL databases.

 EXTERNAL_ACCESS : This code can perform some out-of-process calls that access
external resources, such as the file system, registry, web services, and Windows
event log. Similar to SAFE assemblies, only a subset of .Net libraries and classes
can be used. The code is also guaranteed to be reliable.

 UNSAFE : There are no restrictions in unsafe CLR code. It can do out-of-process
calls, utilize almost all .Net libraries, start its own threads, and perform other
actions that can lead to unreliable code.

 When you run CLR code, SQL Server creates a separate application domain on a database and
assembly-owner basis. For example, if you have user Mary as the owner of assembly A1 and user Bob as the
owner of assemblies A2 and A3 , you would have two application domains where CLR code is running—one
for Bob’s and another for Mary’s assemblies — regardless of how many users are calling CLR routines.

 SQL Server can shut down an entire application domain when unhandled exceptions occur. This would
affect the other sessions that are running CLR code in that domain. Conditions that can lead to this situation
usually occur only with UNSAFE permission sets, and you need to be extremely careful when dealing with
exception handling there.

 You can troubleshoot CLR routine performance in a manner similar to that of T-SQL code. Profiler
events (and corresponding Extended Events), such as SQL:Batch Starting , Completed , SP:Starting ,
 Completed , StmtStarting , and StmtCompleted , monitor the execution of both T-SQL and CLR code.

 Data-management views (DMVs), such as sys.dm_exec_query_stats , sys.dm_exec_requests , and
s ys.dm_os_memory_* , work the same way.

 ■ Note We will talk about performance troubleshooting with these DMVs in Part V of this book, “Practical
Troubleshooting.”

 The performance counter SQL Server:CLR\CLR Execution shows the total time spent in CLR execution.
 SQL Server T-SQL threads use cooperative non-preemptive scheduling and yields voluntarily. Managed

CLR threads, on the other hand, use preemptive scheduling and rely on the host to interrupt them. Even if
SQL Server had the ability to detect and interrupt non-yielding threads, runaway CLR code could affect the
performance of the system to a much higher degree than T-SQL could. You must avoid such conditions and
have CLR voluntarily yield from time to time by calling the System.Threading.Thread.Sleep(0) method in
the CLR code.

 You can identify the sessions that are running non-yielding CLR code with the sys.dm_clr_tasks DMV,
as shown in Listing 14-1 .

CHAPTER 14 ■ CLR

295

 Listing 14-1. Identifying sessions with non-yielding CLR code

 select
 er.session_id, ct.forced_yield_count,
 w.task_address, w.[state], w.last_wait_type, ct.state
 from
 sys.dm_clr_tasks ct with (nolock) join
 sys.dm_os_workers w with (nolock) on
 ct.sos_task_address = w.task_address
 join sys.dm_exec_requests er with (nolock) on
 w.task_address = er.task_address
 where
 ct.type = 'E_TYPE_USER'

 The results shown in Figure 14-1 include information about currently running CLR tasks. The forced_
yield_count column indicates how many times the scheduler forced CLR code to yield.

 Figure 14-1. Identifying the sessions with non-yielding CLR code

 Security Considerations
 SQL Server has CLR integration disabled by default. Although this would not prevent you from deploying the
database with assemblies and CLR objects, you would not be able to call CLR routines until CLR is enabled
on the server level. You can enable CLR with the code shown in Listing 14-2 .

 Listing 14-2. Enabling CLR integration

 sp_configure 'show advanced options', 1;
 reconfigure;
 go
 sp_configure 'clr enabled', 1;
 reconfigure;
 go
 sp_configure 'show advanced options', 0;
 reconfigure;
 go

 The requirement to have CLR enabled on the server level can lead to roadblocks for independent
software vendors (ISV) who are trying to deploy their systems in Enterprise environments. Database and
security administrators in such environments often oppose such requirements when dealing with ISVs.

 It is also worth mentioning that system-level CLR code is always enabled. You can use system CLR
types, such as HierarchyId , Geometry , and Geography , regardless of the configuration setting. We will
discuss these types in detail in the next chapter.

 CLR objects that access data break the ownership chaining in a manner similar to dynamic SQL.
This leads to additional security-management overhead in the system. Let’s look at the example shown in
Listing 14-3 and Listing 14-4 .

CHAPTER 14 ■ CLR

296

 Listing 14-3. Ownership chaining: CLR part

 [Microsoft.SqlServer.Server.SqlFunction(DataAccess = DataAccessKind.Read)]
 public static SqlMoney GetOrderTotalCLR(SqlInt32 orderId)
 {
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 conn.Open();
 SqlCommand cmd = new SqlCommand(
 @"select @Result = sum(Quantity * Price)
 from dbo.OrderLineItems
 where OrderId = @OrderId", conn);

 cmd.Parameters.Add("@OrderId", SqlDbType.Int).Value = orderId;
 cmd.Parameters.Add("@Result", SqlDbType.Float).Direction = ParameterDirection.Output;
 cmd.ExecuteNonQuery();
 return new SqlMoney((double)cmd.Parameters[1].Value);
 }
 }

 Listing 14-4. Ownership chaining: T-SQL part

 create function dbo.GetOrderTotal(@OrderId int)
 returns money
 as
 return
 (
 select sum(Quantity * Price) as Total
 from dbo.OrderLineItems
 where OrderId = @OrderId
)
 go

 create view dbo.vOrdersTSQL(OrderId, OrderTotal)
 as
 select o.OrderId, dbo.GetOrderTotal(o.OrderId)
 from dbo.Orders o
 go

 create view dbo.vOrdersCLR(OrderId, OrderTotal)
 as
 select o.OrderId, dbo.GetOrderTotalCLR(o.OrderId)
 from dbo.Orders o
 go

 grant select on object::dbo.vOrdersTSQL to [Bob];
 grant select on object::dbo.vOrdersCLR to [Bob];
 go

 execute as user='Bob';

CHAPTER 14 ■ CLR

297

 -- Success
 select * from dbo.vOrdersTSQL;

 -- Failure - Bob needs to have SELECT permission on dbo.OrderLineItems table
 select * from dbo.vOrdersCLR;

 In Listing 14-4 , we created two views, dbo.vOrdersTSQL and dbo.vOrdersCLR , which utilize T-SQL and
CLR user-defined functions. Both functions select data from the dbo.OrderLineItems table.

 When user Bob queries the dbo.vOrdersTSQL view, it works just fine. SQL Server does not require Bob
to have SELECT permission on the tables referenced by the view as long as he has SELECT permission on the
view itself, and both the view and the table have the same owner. This is an example of ownership chaining .

 However, Bob would not be able to query the dbo.vOrdersCLR view, as ownership chaining would not
work in the CLR routines, and he needs to have SELECT permission on the dbo.OrderLineItems table in
order for the dbo.GetOrderTotalCLR method to work.

 When CLR code accesses external resources, it is done in the context of a SQL Server startup account,
and it could require that additional privileges be granted. You can work around such requirements by using
impersonation in the .Net code, although it would work only when Windows Authentication is used.

 Finally, EXTERNAL_ACCESS or UNSAFE assemblies must be signed with the same key as the SQL Server
login, which has EXTERNAL ACCESS or UNSAFE permission granted. Let’s look at how you can do that .

 As a first step, as shown in Figure 14-2 , you need to generate a key pair file. Visual Studio and Windows
SDK have the utility sn.exe that you can use.

 Figure 14-2. Generating key pair file with sn. exe

 You should specify the generated file in the CLR project properties, as shown in Figures 14-3 and 14-4 .

CHAPTER 14 ■ CLR

298

 After that, you can create an asymmetric key from the key pair file and create a login with corresponding
permissions, as shown in Listing 14-5 .

 Listing 14-5. Creating a login with EXTERNAL ACCESS permissions from the key pair file

 use master
 go

 -- Creating master key if it does not exist
 if not exists
 (
 select *

 Figure 14-3. Signing CLR project: Step 1

 Figure 14-4. Signing CLR project: Step 2

CHAPTER 14 ■ CLR

299

 from sys.symmetric_keys
 where name = '##MS_DatabaseMasterKey##'
)
 create master key encryption by password = '$tr0ngPas$word1';
 go

 create asymmetric key KeyExternalAccess from file = 'c:\SQL\CLRSecurity\CLRSecurityKey.snk';
 create login CLRExtAccessLogin from asymmetric key KeyExternalAccess;
 grant external access assembly to CLRExtAccessLogin;

 You should now be able to successfully register the signed assembly that requires the EXTERNAL_ACCESS
permission set.

 ■ Note An alternative option for registering the assembly with the EXTERNAL_ACCESS or UNSAFE permission
set is to mark the hosting database as TRUSTWORTHY . However, this action violates security best practices.

 All of these security requirements must be taken into consideration when you decide to start using CLR
integration in your systems, especially if you are an independent software vendor (ISV) and you are planning
to deploy the software to a large number of customers.

 Performance Considerations
 It is not easy to compare the performance of CLR and T-SQL routines. The technologies are different in
nature, and they should be used for different tasks. T-SQL is an interpreted language, which is optimized
for set-based logic and data access. CLR, on the other hand, produces compiled code that works best with
imperative logic.

 Even with imperative code, you need to decide if you want to implement it in CLR or on the client side,
perhaps running on application servers. CLR works within the SQL Server process. While on one hand it
eliminates network traffic and can provide you with the best performance due to its “closeness” to the data as
compared to code running on the application server, on the other hand CLR adds to the load of SQL Server. It
could be easier and cheaper to add more application servers rather than upgrading the SQL Server box.

 There are some cases, however, where you must use CLR code. One example is on queries that perform
RegEx (regular expression) evaluation as part of the where clause. It would be inefficient to move such an
evaluation to the client code, and there is no regular expressions support in SQL Server. CLR is your only
option in this instance. In other cases, however, when imperative logic can be moved to application servers,
you should consider such an option, especially when those servers reside close to SQL Server and network
latency and throughput is not an issue.

 In this section, we will compare the performance of CLR and T-SQL in a few different areas. Similar to
other SQL Server technologies, the choice between CLR and T-SQL fits into the “It depends” category.

 Before we begin, let’s look at Table 14-1 and compare the objects supported by both technologies.

CHAPTER 14 ■ CLR

300

 ■ Note Even though you can create T-SQL types with CREATE TYPE statements, T-SQL user-defined types
are delivered from scalar T-SQL types. CLR user-defined types, on the other hand, are .Net classes that can
have multiple attributes and/or methods. We will discuss T-SQL and CLR user-defined types in greater depth in
Chapter 15 , “CLR Types.”

 CLR lets you create user-defined aggregates and complex types, which cannot be done with T-SQL.
User-defined aggregates are a great way to expand the standard SQL Server function library and, as you will
see later in this chapter, can provide very good performance when compared to T-SQL code. User-defined
types can also help in some cases.

 Let’s create a simple table and populate it with some data, as shown in Listing 14-6 .

 Listing 14-6. Test table creation

 create table dbo.Numbers
 (
 Num int not null,
 constraint PK_Numbers
 primary key clustered(Num)
);

 ;with N1(C) as (select 0 union all select 0)
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2)
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2)
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2)
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2)
 ,N6(C) as (select 0 from N4 as T1 cross join N4 as T2 cross join N2 as T3) -- 262,144 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N6)
 insert into dbo.Numbers(Num)
 select Num from Nums;

 The invocation of the T-SQL scalar function introduces higher overhead when compared to its CLR
counterpart. Let’s prove that with a test where we will use functions that accept an integer value as a
parameter and return 1 when this value is even. The CLR implementation is shown in Listing 14-7 .

 Table 14-1. CLR and T-SQL Object Types

 T-SQL CLR

 Scalar user-defined functions Yes Yes

 Multi-statement table-valued user-defined functions Yes Yes

 Inline table-valued user defined functions Yes No

 Stored procedures Yes Yes

 Triggers Yes Yes

 User-defined aggregates No Yes

 User-defined types No Yes

http://dx.doi.org/10.1007/978-1-4842-1964-5_15

CHAPTER 14 ■ CLR

301

 Listing 14-7. Invocation overhead: CLR functions

 [Microsoft.SqlServer.Server.SqlFunction(
 IsDeterministic=true,
 IsPrecise=true,
 DataAccess=DataAccessKind.None)]
 public static SqlInt32 EvenNumberCLR(SqlInt32 num)
 { return new SqlInt32((num % 2 == 0) ? 1 : 0); }

 [Microsoft.SqlServer.Server.SqlFunction(
 IsDeterministic=true,
 IsPrecise=true,
 DataAccess=DataAccessKind.Read)]
 public static SqlInt32 EvenNumberCLRWithDataAccess(SqlInt32 num)
 { return new SqlInt32((num % 2 == 0) ? 1 : 0); }

 There is a set of attributes specified for each function. These attributes describe the function behavior,
and they can help Query Optimizer generate a more efficient execution plan.

 In our case, there are three attributes specified. IsDeterministic tells if the function is deterministic,
and it always returns the same result for specific parameter values and database states. Our function is
deterministic—even numbers are always even. As a counter example, you can think about the getdate()
system function, which is not deterministic—results will be different every time it is called.

 IsPrecise describes if functions involve imprecise calculations; for example, using floating-point
operations.

 Finally, the DataAccess attribute indicates if a function performs any data access. If this is the case, SQL
Server calls the function in a different context that will allow it to access the data in the database. Setting up
such a context introduces additional overhead during the function call, which you will see in our tests.

 T-SQL implementation of those functions is shown in Listing 14-8 .

 Listing 14-8. Invocation overhead: T-SQL functions

 create function dbo.EvenNumber(@Num int)
 returns int
 with schemabinding
 as
 return (case when @Num % 2 = 0 then 1 else 0 end);

 create function dbo.EvenNumberInline(@Num int)
 returns table
 as
 return
 (
 select (case when @Num % 2 = 0 then 1 else 0 end) as Result
);

 Let’s use scalar and inline table-valued functions in our test and measure average execution time for the
statements shown in Listing 14-9 . The results in my environment are shown in Table 14-2 .

CHAPTER 14 ■ CLR

302

 Listing 14-9. Invocation overhead: Test statements

 -- CLR UDF - no data access context
 select count(*)
 from dbo.Numbers
 where dbo.EvenNumberCLR(Num) = 1

 -- CLR UDF - data access context
 select count(*)
 from dbo.Numbers
 where dbo.EvenNumberCLRWithDataAccess(Num) = 1

 -- TSQL - Scalar UDF
 select count(*)
 from dbo.Numbers
 where dbo.EvenNumber(Num) = 1;

 -- TSQL - Multi-statement UDF
 select count(*)
 from
 dbo.Numbers n cross apply
 dbo.EvenNumberInline(n.Num) e
 where
 e.Result = 1;

 Table 14-2. Invocation Overhead of T-SQL and CLR Routines: Execution Time

 CLR UDF

 No data-access context

 CLR UDF

 With data-access context

 T-SQL

 Scalar UDF

 T-SQL Inline

 Multi-statement

 167 ms 246 ms 675 ms 18 ms

 Each statement performs a clustered index scan of the dbo.Numbers table and checks if the Num column
is even for every row of the table. For CLR and T-SQL scalar user-defined functions, that would introduce the
function calls. Inline table-valued functions, on the other hand, perform the calculation inline.

 As you can see, a CLR UDF without a data access context runs about four times faster when compared
to the T-SQL scalar function. Even with data access context overhead, the CLR implementation is still faster
than T-SQL scalar UDF, although in this particular example the best performance can be achieved if we stop
using functions at all rather than converting them to CLR. The overhead of the function call is much higher
than with inline calculations.

 While you should always think about code re-factoring as an option, there are instances when CLR will
outperform inline T-SQL implementation even with all of the overhead involved. The two most common
areas for this are mathematical calculations and string manipulations.

 Let’s test the performance of a function that calculates the distance between two points defined
by latitude and longitude coordinates. The CLR implementation is shown in Listing 14-10 . The T-SQL
implementation is shown in Listing 14-11 . We will test two T-SQL approaches : scalar and inline table-valued
functions.

CHAPTER 14 ■ CLR

303

 Listing 14-10. Calculating the distance between two points: CLR function

 [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic=true, IsPrecise=false,
DataAccess=DataAccessKind.None)]
 public static SqlDouble CalcDistanceCLR
 (SqlDouble fromLat, SqlDouble fromLon, SqlDouble toLat, SqlDouble toLon)
 {
 double fromLatR = Math.PI / 180 * fromLat.Value;
 double fromLonR = Math.PI / 180 * fromLon.Value;
 double toLatR = Math.PI / 180 * toLat.Value;
 double toLonR = Math.PI / 180 * toLon.Value;

 return new SqlDouble(
 2 * Math.Asin(
 Math.Sqrt(
 Math.Pow(Math.Sin((fromLatR - toLatR) / 2.0),2) +
 (Math.Cos(fromLatR) * Math.Cos(toLatR) * Math.Pow(Math.Sin((fromLonR -

toLonR) / 2.0),2))
)
) * 20001600.0 / Math.PI
);
 }

 Listing 14-11. Calculating the distance between two points: T-SQL functions

 create function dbo.CalcDistance
 (@FromLat decimal(9,6), @FromLon decimal(9,6),@ToLat decimal(9,6), @ToLon
decimal(9,6))
 returns float
 with schemabinding
 as
 declare
 @Dist float
 ,@FromLatR float = radians(@FromLat)
 ,@FromLonR float = radians(@FromLon)
 ,@ToLatR float = radians(@ToLat)
 ,@ToLonR float = radians(@ToLon)

 set @Dist =
 2 * asin(
 sqrt(
 power(sin((@FromLatR - @ToLatR) / 2.), 2) +
 (cos(@FromLatR) * cos(@ToLatR) * power(sin((@FromLonR - @ToLonR) / 2.0), 2))
)
) * 20001600. / pi();
 return @Dist;

 create function dbo.CalcDistanceInline
 (@FromLat decimal(9,6), @FromLon decimal(9,6),@ToLat decimal(9,6), @ToLon
decimal(9,6))
 returns table
 as

CHAPTER 14 ■ CLR

304

 return
 (
 with Rads(FromLatR, FromLonR, ToLatR, ToLonR)
 as
 (
 select radians(@FromLat), radians(@FromLon), radians(@ToLat), radians(@ToLon)
)
 select
 2 * asin(
 sqrt(
 power(sin((FromLatR - ToLatR) / 2.), 2) +
 (cos(FromLatR) * cos(ToLatR) * power(sin((FromLonR - ToLonR) /

2.0),2))
)
) * 20001600. / pi() as Distance
 from Rads
);

 When you compare the results of the calculations for 262,144 rows, as shown in Table 14-3 , you can see
that CLR UDF performs almost two times faster than the inline table-valued function and more than five
times faster than the T-SQL scalar UDF.

 Table 14-3. Calculating Distance Between Two Points: Execution Time

 CLR UDF TSQL Scalar UDF TSQL Inline Table-Valued function

 347 ms 1,955 ms 721 ms

 Now, let’s look at data access performance. The first test compares the execution time of the separate
DML statements from the T-SQL and CLR stored procedures. In this test, I created procedures that
calculate the number of rows in the dbo.Numbers table for a specific range of numbers. The T-SQL and CLR
implementations are shown in Listings 14-12 and 14-13 respectively.

 Listing 14-12. Data access performance: T-SQL procedure (individual statements)

 create proc dbo.ExistInInterval(@MinNum int, @MaxNum int, @RowCount int output)
 as
 set @RowCount = 0;
 while @MinNum <= @MaxNum
 begin
 if exists(select * from dbo.Numbers where Num = @MinNum)
 set @RowCount += 1
 set @MinNum += 1
 end;

CHAPTER 14 ■ CLR

305

 Listing 14-13. Data access performance : CLR procedure (individual statements)

 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void ExistInIntervalCLR(SqlInt32 minNum, SqlInt32 maxNum, out SqlInt32 rowCnt)
 {
 int result = 0;
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 conn.Open();
 SqlCommand cmd = new SqlCommand
 ("select Num from dbo.Numbers where Num between @minNum and @maxNum", conn);
 cmd.Parameters.Add("@Result", SqlDbType.Int).Direction = ParameterDirection.Output;
 cmd.Parameters.Add("@Number", SqlDbType.Int);
 for (int i = minNum.Value; i <= maxNum.Value; i++)
 {
 cmd.Parameters[1].Value = i;
 cmd.ExecuteNonQuery();
 result += (int)cmd.Parameters[0].Value;
 System.Threading.Thread.Sleep(0);
 }
 }
 rowCnt = new SqlInt32(result);
 }

 Table 14-4 shows the average execution time for stored procedure calls that lead to 50,000 individual
 SELECT statements. As you can see, data access using CLR code works about five times slower than data
access using T-SQL.

 Table 14-4. Data Access Performance (Individual Statements): Execution Time

 T-SQL Stored Procedure CLR Stored Procedure

 410 ms 2,330 ms

 You need to keep this in mind when designing user-defined functions that need to access data from
the database. While CLR is more efficient than T-SQL in terms of invocation, data access code will work
significantly slower. You need to test both implementations to figure out which solution is more efficient for
your purposes. Moreover, you need to consider code re-factoring and removing UDF from the queries as
another possibility.

 In the next step, let’s look at the performance of the .Net SqlDataReader class and compare it to cursor
implementation in T-SQL. You can see the CLR code in Listing 14-14 and the T-SQL implementation in
Listing 14-15 .

 Listing 14-14. Data access performance: CLR procedure (SQL Reader)

 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void ExistInIntervalReaderCLR
 (SqlInt32 minNum, SqlInt32 maxNum, out SqlInt32 rowCnt)
 {
 int result = 0;
 using (SqlConnection conn = new SqlConnection("context connection=true"))

CHAPTER 14 ■ CLR

306

 {
 conn.Open();
 SqlCommand cmd = new SqlCommand
 ("select Num from dbo.Numbers where Num between @MinNum and @MaxNum", conn);
 cmd.Parameters.Add("@MinNum", SqlDbType.Int).Value = minNum;
 cmd.Parameters.Add("@MaxNum", SqlDbType.Int).Value = maxNum;
 using (SqlDataReader reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 result++;
 // Yielding every 500 rows
 if (result % 500 == 0) System.Threading.Thread.Sleep(0);
 }
 }
 }
 rowCnt = new SqlInt32(result);
 }

 Listing 14-15. Data access performance: T-SQL procedure (Cursor)

 create proc dbo.ExistInIntervalCursor(@MinNum int, @MaxNum int, @RowCount int output)
 as
 declare
 @Num int
 declare
 curWork cursor fast_forward
 for
 select Num
 from dbo.Numbers
 where Num between @MinNum and @MaxNum

 set @RowCount = 0;
 open curWork;
 fetch next from curWork into @Num;
 while @@fetch_status = 0
 begin
 set @RowCount += 1;
 fetch next from curWork into @Num;
 end
 close curWork;
 deallocate curWork;

 As you can see in Table 14-5 , row-by-row processing using SqlDataReader is much more efficient than
using the T-SQL cursor.

 Table 14-5. Data Access Performance (SQLReader Versus Cursor): Execution Time

 T-SQL Stored Procedure CLR Stored Procedure

 556 ms 116 ms

CHAPTER 14 ■ CLR

307

 Finally, let’s look at the performance of CLR aggregates. We will use an aggregate that concatenates the
values into a comma-separated string. The code for doing this is shown in Listing 14-16 .

 Listing 14-16. CLR aggregate

 [Serializable]
 [SqlUserDefinedAggregate(
 Format.UserDefined, IsInvariantToNulls=true, IsInvariantToDuplicates=false,
 IsInvariantToOrder=false, MaxByteSize=-1)]
 public class Concatenate : IBinarySerialize
 {
 // The buffer for the intermediate results
 private StringBuilder intermediateResult;

 // Initializes the buffer
 public void Init() { this.intermediateResult = new StringBuilder(); }

 // Accumulate the next value if not null
 public void Accumulate(SqlString value)
 {
 if (value.IsNull)
 return;
 this.intermediateResult.Append(value.Value).Append(',');
 }

 // Merges the partially completed aggregates
 public void Merge(Concatenate other)
 { this.intermediateResult.Append(other.intermediateResult); }

 // Called at the end of aggregation
 public SqlString Terminate()
 {
 string output = string.Empty;
 if (this.intermediateResult != null && this.intermediateResult.Length > 0)
 { // Deleting the trailing comma
 output = this.intermediateResult.ToString(0, this.intermediateResult.Length - 1);
 }
 return new SqlString(output);
 }

 // Deserializing data
 public void Read(BinaryReader r)
 { intermediateResult = new StringBuilder(r.ReadString()); }

 // Serializing data
 public void Write(BinaryWriter w)
 { w.Write(this.intermediateResult.ToString()); }
 }

CHAPTER 14 ■ CLR

308

 As with user-defined functions, it is extremely important to set the attributes that tell Query Optimizer
about CLR aggregate behavior and implementation. This helps generate more efficient execution plans
and prevents incorrect results due to optimization. It is also important to specify the MaxByteSize attribute
that defines the maximum size of the aggregate output. In our case, we set it to -1 , which means that the
aggregate can hold up to 2 GB of data.

 Let’s compare the performance of two different T-SQL implementations. In the first one, I will use a SQL
variable to hold intermediate results. This approach implements imperative row-by-row processing under
the hood. The second method utilizes the FOR XML PATH technique that we discussed in Chapter 13 . The
code is shown in Listing 14-17 .

 Listing 14-17. String concatenation: T-SQL implementation

 -- Using SQL Variable
 declare
 @V nvarchar(max) = N''
 ,@MaxNum int -- test batch size

 select @V = @V + convert(nvarchar(32), Num) + ','
 from dbo.Numbers
 where Num <= @MaxNum;

 -- removing trailing comma
 select @V = case when @V = '' then '' else left(@V,len(@V) - 1) end;

 -- display results
 select @v;

 -- FOR XML PATH
 select case when Result is null then '' else left(Result,len(Result) - 1) end
 from
 (
 select convert(nvarchar(max),
 (
 select Num as [text()], ',' as [text()]
 from dbo.Numbers
 where Num <= @MaxNum
 for xml path('')
)) as Result
) r

 Table 14-6 shows the average execution time when we concatenate different numbers of rows.

 Table 14-6. String Concatenation: Execution Time

 CLR Aggregate SQL Variable FOR XML PATH

 1,000 rows 3 ms 1 ms <1 ms

 10,000 rows 12 ms 129 ms 3 ms

 25,000 rows 33 ms 840 ms 6 ms

 50,000 rows 63 ms 37,182 ms 21 ms

 100,000 rows 146 ms 535,040 ms 43 ms

http://dx.doi.org/10.1007/978-1-4842-1964-5_13

CHAPTER 14 ■ CLR

309

 As you can see, CLR aggregate has a slightly higher startup cost when compared to the T-SQL variable
approach, although that quickly disappears on larger row sets. The performance of both the CLR aggregate
and the FOR XML PATH methods linearly depends on the number of rows, while the performance of the SQL
variable approach degrades exponentially. SQL Server needs to initiate a new instance of the string every
time it concatenates a new value, and it does not work efficiently, especially when the string becomes large.
Finally, the FOR XML PATH approach is the most efficient regardless of the number of the rows concatenated.

 The key point is that you always need to look at the options available to replace imperative code
with declarative set-based logic. While CLR usually outperforms imperative T-SQL code, set-based logic
outperforms both of them.

 As you can see, each technology—T-SQL and CLR—has its own strengths and weaknesses. CLR is better
at handling imperative code and complex calculations, and it has a much lower invocation cost for user-
defined functions. T-SQL, on the other hand, outperforms CLR in the data-access area with the exception of
row-by-row processing, where the .Net SqlDataReader class is faster than T-SQL cursors.

 Summary
 CLR code adds flexibility to SQL Server. It helps improve the performance of functions that require complex
calculations and expands the standard function library by adding new methods. It lets you access external
resources from within the database code.

 CLR code, however, comes at a performance and security cost. CLR code runs within the SQL Server
process, which adds an extra load and can introduce significant performance issues when coded incorrectly.
Moreover, CLR introduces security challenges. It needs to be enabled on the server level, which violates
security best practices. It also breaks ownership chaining, which will require using special care with
permissions.

 Keeping all of this in mind, you should always evaluate other options before using CLR code. You
need to consider moving imperative logic to the client application and/or re-factoring your queries to use
declarative set-based logic whenever possible.

 As with the other technologies available within SQL Server, the question: “What is better: T-SQL or
CLR?” has no right answer. Different use cases require different solutions, and it is always beneficial to
evaluate and test all of the available options during the decision-making stage.

311© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_15

 CHAPTER 15

 CLR Types

 CLR types make up another area of Common Language Runtime (CLR) integration with SQL Server. User-
defined CLR types allow us to expand the standard type library by developing .Net classes and registering
them in the database. Standard CLR types, such as Geometry , Geography , and HierarchyId , provide built-in
support for spatial and hierarchical data. You will learn about both user-defined and system CLR types in
this chapter.

 User-Defined CLR Types
 SQL Server has supported user-defined types (UDT) for years. Historically, T-SQL-based user-defined types
were used to enforce type consistency. For example, when you needed to persist U.S. postal addresses in a
several tables, you could create a user-defined type to store state information using the following statement:
 CREATE TYPE dbo.PostalState FROM char(2) NOT NULL.

 Now you can use dbo.PostalState as a data type that defines table columns, parameters, and SQL
variables. This guarantees that every reference to the postal state in the database has exactly the same
format: a non-nullable, two-character string.

 This approach has a few downsides, though. SQL Server does not permit the alteration of type
definitions. If, at any point in time, you need to make dbo.PostalState nullable or, perhaps, allow full
state names rather than abbreviations, the only option is to drop and recreate the type. Moreover, you must
remove any references to that type in the database in order to do that.

 ■ Tip You can alter the type of the column to the base data type used by the UDT. This is a metadata-only
operation.

 T-SQL user-defined types are always delivered from a scalar T-SQL type. For example, you cannot create
a T-SQL user-defined data type called Address that includes multiple attributes. Nor can you define check
constraints on the type level. Constraints can still be defined individually on the column level, although such
an approach is less convenient. Keeping all of this in mind, we can conclude that T-SQL user-defined types
have very limited use in SQL Server.

 ■ Note You can perform validation on the type level by binding the rule object to the UDT. It is not
recommended, however, as rules are deprecated and will be removed in a future version of SQL Server.

CHAPTER 15 ■ CLR TYPES

312

 CLR user-defined types, on the other hand, address some of these issues. They allow you to create
complex types with multiple attributes/properties, define data-validation rules for the type, and implement
methods that you can use to enhance the functionality of the type.

 As an example, let’s look at the implementation of a type that represents a simplified version of a U.S.
postal address. The code for this is shown in Listing 15-1 .

 Listing 15-1. CLR user-defined type

 [Serializable]
 [Microsoft.SqlServer.Server.SqlUserDefinedType(
 Format.UserDefined,
 ValidationMethodName = "ValidateAddress",
 MaxByteSize=8000)]
 public struct USPostalAddress : INullable, IBinarySerialize
 {
 // Needs to be sorted to support BinarySearch
 private static readonly List<string> _validStates = new List<string>
 {
 "AK","AL","AR","AZ","CA","CO","CT","DC","DE","FL","GA","HI","IA"
 ,"ID","IL","IN","KS","KY","LA","MA","MD","ME","MI","MN","MO","MS"
 ,"MT","NC","ND","NE","NH","NJ","NM","NV","NY","OH","OK","OR","PA"
 ,"PR","RI","SC","SD","TN","TX","UT","VA","VT","WA","WI","WV","WY"
 };

 private bool _null;
 private string _address;
 private string _city;
 private string _state;
 private string _zipCode;

 public bool IsNull { get { return _null; } }

 public string Address
 {
 [SqlMethod(IsDeterministic = true, IsPrecise = true)]
 get { return _address; }
 }

 public string City
 {
 [SqlMethod(IsDeterministic = true, IsPrecise = true)]
 get { return _city; }
 }

 public string State
 {
 [SqlMethod(IsDeterministic = true, IsPrecise=true)]
 get { return _state; }
 }

CHAPTER 15 ■ CLR TYPES

313

 public string ZipCode
 {
 [SqlMethod(IsDeterministic = true, IsPrecise = true)]
 get { return _zipCode; }
 }

 public override string ToString()
 { return String.Format("{0}, {1}, {2}, {3}", _address, _city, _state, _zipCode); }

 // The static representation of Null object
 public static USPostalAddress Null
 {
 get
 {
 USPostalAddress h = new USPostalAddress();
 h._null = true;
 return h;
 }
 }

 // Validation that Address information is correct
 private bool ValidateAddress()
 {
 // Check that all attributes are specified and state is valid
 return
 !(String.IsNullOrEmpty(_address) || String.IsNullOrEmpty(_city) ||
 String.IsNullOrEmpty(_state) || String.IsNullOrEmpty(_zipCode) ||
 _validStates.BinarySearch(_state.ToUpper()) == -1);
 }

 // Creating object from the string
 public static USPostalAddress Parse(SqlString s)
 {
 if (s.IsNull) return Null;
 USPostalAddress u = new USPostalAddress();
 string[] parts = s.Value.Split(",".ToCharArray());
 if (parts.Length != 4)
 throw new ArgumentException("Incorrect format. Should be <Address>, <City>,

<State>, <ZipCode>");
 u._address = parts[0].Trim();
 u._city = parts[1].Trim();
 u._state = parts[2].Trim();
 u._zipCode = parts[3].Trim();
 if (!u.ValidateAddress())
 throw new ArgumentException("Incorrect format. Attributes are empty or State is

incorrect");
 return u;
 }

 // Example of the class method
 [SqlMethod(OnNullCall = false, IsDeterministic = true, DataAccess=DataAccessKind.None)]

CHAPTER 15 ■ CLR TYPES

314

 public double CalculateShippingCost(USPostalAddress destination)
 {
 // Calculating shipping cost between two addresses
 return (destination.State == this.State)?15.0:25.0;
 }

 // IBinarySerializer.Read
 public void Read(System.IO.BinaryReader r)
 {
 _address = r.ReadString();
 _city = r.ReadString();
 _state = r.ReadString();
 _zipCode = r.ReadString();
 }

 // IBinarySerializer.Write
 public void Write(System.IO.BinaryWriter w)
 {
 w.Write(_address);
 w.Write(_city);
 w.Write(_state);
 w.Write(_zipCode);
 }
 }

 As you can see, the type includes four different public attributes/properties (Street , City , State ,
and ZIPCode) and several methods. Some of the methods (ToString , Parse , Read , and Write) are required
to support type creation and serialization. Another (CalculateShippingCost) is an example of a type
functionality enhancement.

 In the database, you can use this type when defining table columns, variables, and parameters.
Listing 15-2 and Figure 15-1 show an example of this.

 Listing 15-2. CLR user-defined type usage

 declare
 @MicrosoftAddr dbo.USPostalAddress = 'One Microsoft Way, Redmond, WA, 98052'
 ,@GoogleAddr dbo.USPostalAddress = '1600 Amphitheatre Pkwy, Mountain View, CA, 94043'

 select
 @MicrosoftAddr as [Raw Data]
 ,@MicrosoftAddr.ToString() as [Text Data]
 ,@MicrosoftAddr.Address as [Address]
 ,@MicrosoftAddr.CalculateShippingCost(@GoogleAddr) as [ShippingCost]

 Figure 15-1. CLR user-defined type usage

CHAPTER 15 ■ CLR TYPES

315

 CLR user-defined types let you easily expand the SQL Server type library with your own types,
developed and used in an object-oriented manner. It sounds too good to be true from a development
standpoint, and, unfortunately, there are a few caveats about which you need to be aware.

 As I already mentioned, SQL Server does not let you alter a type after you create it. You can redeploy
a new version of the assembly with the ALTER ASSEMBLY command. This allows you to change the
implementation of the methods and/or fix any bugs in the implementation, although you would not be able
to change the interface of existing methods, nor would you be able to utilize new public methods unless you
drop and re-create the type. This requires removing all type references from the database code.

 All of this means that you must perform the following set of actions to re-deploy the type:

 1. Remove all type references from the T-SQL code.

 2. Persist all data from the columns of that type somewhere else, either by
shredding type attributes to a relational format or casting them to varbinary . You
need to be careful with the latter approach and make sure that the new version of
the type object can be deserialized from the old object’s binary data.

 3. Drop all columns of that type.

 4. Drop type, redeploy assembly, and create type again.

 5. Recreate the columns and re-populate them with the data.

 6. Rebuild the indexes, reclaiming the space from the old columns and reducing
fragmentation.

 7. Recreate T-SQL code that references the type.

 As you can see, this introduces a large amount of maintenance overhead, and it can lead to prolonged
system downtimes.

 Performance is another very important aspect to consider. SQL Server stores CLR types in binary
format. Every time you access attributes or methods of a CLR type, SQL Server deserializes the object and
calls the CLR method, which leads to overhead similar to what you saw in Chapter 14 .

 Let’s run some tests and create two tables with address information: one using regular T-SQL data types
and another using a dbo.USPostalAddress CLR user-defined type. You can see the code for doing this in
Listing 15-3 .

 Listing 15-3. UDT performance: Table creation

 create table dbo.Addresses
 (
 ID int not null identity(1,1),
 Address varchar(128) not null,
 City varchar(64) not null,
 State char(2) not null,
 ZipCode varchar(10) not null,

 constraint CHK_Address_State check
 (S tate in ('AK','AL','AR','AZ','CA','CO','CT','DC','DE','FL','GA','HI','IA','ID'

,'IL','IN','KS','KY','LA','MA','MD','ME','MI','MN','MO','MS','MT','NC','ND','NE','NH'
,'NJ','NM','NV','NY','OH','OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VA'
,'VT','WA','WI','WV','WY')),

 constraint PK_Addresses primary key clustered(ID)
);

http://dx.doi.org/10.1007/978-1-4842-1964-5_14

CHAPTER 15 ■ CLR TYPES

316

 create table dbo.AddressesCLR
 (
 ID int not null identity(1,1),
 Address dbo.USPostalAddress not null,
 constraint PK_AddressesCLR primary key clustered(ID)
);

 ;with Streets(Street)
 as
 (
 select v.v
 from (values('Street 1'),('Street 2'),('Street 3'),('Street 4'),('Street 5')
 ,('Street 6'),('Street 7'),('Street 8'),('Street 9'),('Street 10')) v(v)
)
 ,Cities(City)
 as
 (
 select v.v
 from (values('City 1'),('City 2'),('City 3'),('City 4'),('City 5')
 ,('City 6'),('City 7'),('City 8'),('City 9'),('City 10')) v(v)
)
 ,ZipCodes(Zip)
 as
 (
 select v.v
 from (values('99991'),('99992'),('99993'),('99994'),('99995')
 ,('99996'),('99997'),('99998'),('99999'),('99990')) v(v)
)
 ,States(state)
 as
 (
 select v.v
 f rom (values('AL'),('AK'),('AZ'),('AR'),('CA'),('CO'),('CT'),('DE'),('FL'),('GA'),('HI')

,('ID'),('IL'),('IN'),('IA'),('KS'),('KY'),('LA'),('ME'),('MD'),('MA'),('MI'),('MN')
,('MS'),('MO'),('MT'),('NE'),('NV'),('NH'),('NJ'),('NM'),('NY'),('NC'),('ND'),('OH')
,('OK'),('OR'),('PA'),('RI'),('SC'),('SD'),('TN'),('TX'),('UT'),('VT'),('VA'),('WA')
,('WV'),('WI'),('WY'),('DC'),('PR')) v(v)

)
 insert into dbo.Addresses(Address,City,State,ZipCode)
 select Street,City,State,Zip
 from Streets cross join Cities cross join States cross join ZipCodes;

 insert into dbo.AddressesCLR(Address)
 select Address + ', ' + City + ', ' + State + ', ' + ZipCode from dbo.Addresses;

 Now, let’s run a test and look at the performance of the queries against both tables. We will use the
queries shown in Listing 15-4 .

CHAPTER 15 ■ CLR TYPES

317

 Listing 15-4. UDT performance: Querying the data

 select State, count(*)
 from dbo.Addresses
 group by State

 select Address.State, count(*)
 from dbo.AddressesCLR
 group by Address.State

 As you can see in Figure 15-2 , the second SELECT introduces a CLR method call for every row, and this
significantly affects the performance of the query. You can see information about the call in the compute
scalar operator properties, as shown in Figure 15-3 .

 Figure 15-2. UDT performance: Querying the data

 Figure 15-3. UDT performance: Computer scalar operator properties

CHAPTER 15 ■ CLR TYPES

318

 Some of the performance issues can be addressed with persisted calculated columns, which can even
be indexed if needed. Let’s test this by adding a State column to the dbo.AddressesCLR table and creating
indexes in both tables. The code for doing this is shown in Listing 15-5 .

 Listing 15-5. UDT performance: Adding a persisted calculated column

 alter table dbo.AddressesCLR add State as Address.State persisted;
 -- Rebuild the index to reduce the fragmentation caused by alteration
 alter index PK_AddressesCLR on dbo.AddressesCLR rebuild;

 create index IDX_AddressesCLR_State on dbo.AddressesCLR(State);
 create index IDX_Addresses_State on dbo.Addresses(State);

 Now, if you run the queries from Listing 15-4 again, you will see the results shown in Figure 15-4 . There
is still a compute scalar operator in the second execution plan, although this time it is not related to the CLR
method call, and it is used as a column-reference placeholder, as shown in Figure 15-5 .

 Figure 15-4. UDT performance: Persisted calculated column

 Figure 15-5. UDT performance: Computer scalar operator with calculated column

CHAPTER 15 ■ CLR TYPES

319

 Although persisted calculated columns can help with performance, they increase the size of the rows.
You are storing the same information several times, once as part of a UDT binary value and also in clustered
and potentially nonclustered indexes. These columns also introduce additional overhead for maintaining
calculated columns when UDT data is frequently modified.

 Keeping supportability and performance aspects in mind, you should be very careful when introducing
CLR user-defined types in your systems. The public methods of the type should be finalized before initial
deployment, and the code must be carefully tested. This will help you to avoid situations where the type
needs to be redeployed.

 In addition, you need to minimize the number of CLR calls by creating and possibly indexing persisted
calculated columns, which store the values of UDT properties and methods that are frequently called from
the queries.

 Spatial Data Types
 SQL Server supports two data types to store spatial information: geometry and geography . Geometry
 supports planar, or Euclidean, flat-earth data. Geography supports ellipsoidal round-earth surfaces. Both
data types can be used to store location information, such as GPS latitude and longitude coordinates. The
 geography data type considers the Earth’s roundness and provides slightly better accuracy, although it has
stricter requirements for the data. For example, data must fit in a single hemisphere, and polygons must be
defined in a specific ring orientation. Client applications need to be aware of these requirements and handle
them correctly in the code.

 Storing location information in a geometry data type introduces its own class of problems. It works fine
and often has better performance than a geography data type when you need to find out if a location belongs
to a specific area or if areas are intersecting. However, you cannot calculate the distance between points: the
unit of measure for the result is in decimal degrees, which are useless on a non-flat surface.

 ■ Note Coverage of spatial data type methods is outside of the scope of this book. If you are interested in
learning more about this, check out this site for more details: http://msdn.microsoft.com/en-us/library/
bb933790.aspx .

 Although spatial data types provide a rich set of methods with which to work with data, you must
consider performance aspects when dealing with them. Spatial data types are CLR-based; however, SQL
Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016 RTM allow you to use native implementation for
some spatial methods, which can significantly improve performance in some scenarios. You should use the
trace flags T6533 and T6534 to enable native implementation in SQL Server 2012 SP3 and SQL Server 2014
SP2. In SQL Server 2016, native implementation is enabled by default.

 Let’s compare the performance of the methods that calculate the distance between two points. A typical
use case for such a scenario is a search for a point of interest (POI) close to a specific location. As a first step,
let’s create three different tables that store POI information.

 The first table, dbo.Locations , stores coordinates using the decimal(9,6) data type. The two other
tables use a geography data type. Finally, the table dbo.LocationsGeoIndexed has a Location column
indexed with a special type of index called a spatial index . These indexes help improve the performance
of some operations, such as distance calculations or ones that check to see if objects intersect. The code is
shown in Listing 15-6 .

http://msdn.microsoft.com/en-us/library/bb933790.aspx
http://msdn.microsoft.com/en-us/library/bb933790.aspx

CHAPTER 15 ■ CLR TYPES

320

 Listing 15-6. POI Lookup: Creating test tables

 create table dbo.Locations
 (
 Id int not null identity(1,1),
 Latitude decimal(9,6) not null,
 Longitude decimal(9,6) not null,
 constraint PK_Locations primary key clustered(Id)
);

 create table dbo.LocationsGeo
 (
 Id int not null identity(1,1),
 Location geography not null,
 constraint PK_LocationsGeo primary key clustered(Id)
);

 create table dbo.LocationsGeoIndexed
 (
 Id int not null identity(1,1),
 Location geography not null,
 constraint PK_LocationsGeoIndexed primary key clustered(Id)
);

 -- 241,402 rows
 ;with Latitudes(Lat)
 as
 (
 select convert(float,40.0)
 union all
 select convert(float,Lat + 0.01)
 from Latitudes
 where Lat < 48
)
 ,Longitudes(Lon)
 as
 (
 select convert(float,-120.0)
 union all
 select Lon - 0.01
 from Longitudes
 where Lon > -123
)
 insert into dbo.Locations(Latitude, Longitude)
 select Latitudes.Lat, Longitudes.Lon
 from Latitudes cross join Longitudes
 option (maxrecursion 0);

 insert into dbo.LocationsGeo(Location)
 select geography::Point(Latitude, Longitude, 4326)
 from dbo.Locations;

CHAPTER 15 ■ CLR TYPES

321

 insert into dbo.LocationsGeoIndexed(Location)
 select Location
 from dbo.LocationsGeo;

 create spatial index Idx_LocationsGeoIndexed_Spatial
 on dbo.LocationsGeoIndexed(Location);

 ■ Tip We store location information in relational format using the decimal(9,6) data type rather than
 float . Decimal data types use six bytes less storage space per pair of values, and they provide accuracy that
exceeds that of commercial-grade GPS receivers.

 The storage space used by the tables from Listing 15-6 is shown in Table 15-1 .

 Table 15-1. Storage Space Used by the Tables in Listing 15-6

 dbo.Locations dbo.LocationsGeo dbo.LocationsGeoIndexed

 5,488 KB 9,368 KB 13,936 KB

 As you can see, the binary representation of the spatial type uses more space than the relational format.
As expected, the spatial index requires additional space, although the overhead is not nearly as much as the
overhead produced by the XML indexes that you saw in Chapter 12 , “XML and JSON.”

 Let’s run tests that measure the performance of queries that calculate the number of locations within
one mile of Seattle’s city center. In the dbo.Locations table, we will use the dbo.CalcDistanceCLR function,
 which was defined in Chapter 14 . For the two other tables, we will call the spatial method STDistance , both
with and without native implementation enabled via trace flags. The test code to accomplish this is shown in
Listing 15-7 . The query execution plans are shown in Figure 15-6 .

 Listing 15-7. POI Lookup: Test queries

 /* In SQL Server 2012 SP3 and SQL Server 2014 SP2 use T6533 and T6534 to enable native
implementation */
 declare
 @Lat decimal(9,6) = 47.620309
 ,@Lon decimal(9,6) = -122.349563

 declare
 @G geography = geography::Point(@Lat,@Lon,4326)

 select ID
 from dbo.Locations
 where dbo.CalcDistanceCLR(Latitude, Longitude, @Lat, @Lon) < 1609;

 select ID
 from dbo.LocationsGeo
 where Location.STDistance(@G) < 1609;

 select ID
 from dbo.LocationsGeoIndexed
 where Location.STDistance(@G) < 1609;

http://dx.doi.org/10.1007/978-1-4842-1964-5_12
http://dx.doi.org/10.1007/978-1-4842-1964-5_14

CHAPTER 15 ■ CLR TYPES

322

 The first and second queries perform clustered index scans and calculate the distance for every row of
the tables. The last query uses a spatial index to look up such rows. You can see the execution times for the
queries in my environment in Table 15-2 .

 Figure 15-6. POI Lookup: Execution plans

 Table 15-2. POI Lookup: Execution Time

 dbo.Locations dbo.LocationsGeo dbo.LocationsGeoIndexed

 SQL Server 2014 SP1 245 ms 9,477 ms 42 ms

 SQL Server 2014 SP2
without T6533 and T6534

 245 ms 9,652 ms 15 ms

 SQL Server 2014 SP2
with T6533 and T6534

 245 ms 224 ms 15 ms

 SQL Server 2016 241 ms 222 ms 12 ms

 As you can see, the spatial index greatly benefits the query. It is also worth mentioning that without
the index, the performance of the CalcDistanceCLR method is significantly better compared to the
 STDistance method when native implementation is not enabled.

 Although the spatial index greatly improves performance, it has its own limitations. It works within
the scope of the entire table, and all other predicates are evaluated after spatial index operations. This can
introduce suboptimal plans in some cases.

 As an example, let’s look at a use case for when we store POI information on a customer-by-customer
basis, as shown in Listing 15-8 . It is worth noting that this code will take a significant amount of time to
execute and will produce a large amount of transaction log records.

CHAPTER 15 ■ CLR TYPES

323

 Listing 15-8. Customer-based POI lookup: Table creation

 create table dbo.LocationsGeo2
 (
 CompanyId int not null,
 Id int not null identity(1,1),
 Location geography not null,
 constraint PK_LocationsGeo2
 primary key clustered(CompanyId,Id)
);

 -- 12,070,100 rows; 50 companies; 241,402 rows per company
 ;with Companies(CID)
 as
 (
 select 1
 union all
 select CID + 1 from Companies where CID < 50
)
 insert into dbo.LocationsGeo2(CompanyId,Location)
 select c.CID, l.Location
 from dbo.LocationsGeo l cross join Companies c;

 create spatial index Idx_LocationsGeo2_Spatial
 on dbo.LocationsGeo2(Location);

 In this case, when we perform a POI lookup for a specific company, the CompanyId column must be
included as the predicate to the queries. SQL Server has two choices on how to proceed. The first choice
is a clustered index seek based on the CompanyId value’s calling the STDistance method for every POI that
belongs to the company. The second choice is to use a spatial index, find all POIs within the specified
distance regardless of the company to which they belong, and, finally, join it with the clustered index data.
Let’s run the queries shown in Listing 15-9 .

 Listing 15-9. Customer-based POI lookup: Test queries

 declare
 @Lat decimal(9,6) = 47.620309
 ,@Lon decimal(9,6) = -122.349563
 ,@CompanyId int = 15

 declare
 @g geography = geography::Point(@Lat,@Lon,4326)

 select count(*)
 from dbo.LocationsGeo2 with (index= PK_LocationsGeo2)
 where Location.STDistance(@g) < 1609 and CompanyId = @CompanyId;

 select count(*)
 from dbo.LocationsGeo2 with (index=Idx_LocationsGeo2_Spatial)
 where Location.STDistance(@g) < 1609 and CompanyId = @CompanyId;

CHAPTER 15 ■ CLR TYPES

324

 Neither method is efficient when a table stores a large amount of data for a sizable number of
companies. The execution plan of the first query utilizing a clustered index seek shows that it performed the
 STDistance call 241,402 times, or once for every company POI. The execution plan is shown in Figure 15-7 .

 Figure 15-7. Customer-based POI lookup: Execution plan for the first query

 Figure 15-8. Customer-based POI ‘ookup: Execution plan for the second query

 The execution plan for the second query, which is shown in Figure 15-8 , indicates that the spatial index
lookup returned 550 rows; that is, all POI in the area, regardless of to which company they belong. SQL
Server then had to join the rows with the clustered index before evaluating the CompanyId predicate.

 One of the ways to solve such a problem is called the bounding box approach. This method lets us
minimize the number of calculations by filtering out POIs that are outside of the area of interest.

 As you can see in Figure 15-9 , all points that we need to select reside in the circle, with the location at
the center point and radius specified by the distance. The only points that we need to evaluate reside within
the box that surrounds the circle.

 Figure 15-9. Customer-based POI lookup: Bounding box

CHAPTER 15 ■ CLR TYPES

325

 We can calculate the coordinates of the corner points of the box, persist them in the table, and use a
regular nonclustered index to pre-filter the data. This lets us minimize the number of expensive distance
calculations to be performed.

 The calculation of the bounding box’s corner points can be done with a CLR table-valued function, as
shown in Listing 15-10 . Listing 15-11 shows the T-SQL code that alters the table and creates a nonclustered
index there.

 Listing 15-10. Customer-based POI lookup: Calculating bounding-box coordinates

 private struct BoundingBox
 {
 public double minLat;
 public double maxLat;
 public double minLon;
 public double maxLon;
 }

 private static void CircleBoundingBox_FillValues(
 object obj, out SqlDouble MinLat, out SqlDouble MaxLat,
 out SqlDouble MinLon, out SqlDouble MaxLon)
 {
 BoundingBox box = (BoundingBox)obj;
 MinLat = new SqlDouble(box.minLat);
 MaxLat = new SqlDouble(box.maxLat);
 MinLon = new SqlDouble(box.minLon);
 MaxLon = new SqlDouble(box.maxLon);
 }

 [Microsoft.SqlServer.Server.SqlFunction(
 DataAccess = DataAccessKind.None, IsDeterministic = true, IsPrecise = false,
 SystemDataAccess = SystemDataAccessKind.None,
 FillRowMethodName = "CircleBoundingBox_FillValues",
 TableDefinition = "MinLat float, MaxLat float, MinLon float, MaxLon float")]
 public static IEnumerable CalcCircleBoundingBox(SqlDouble lat, SqlDouble lon, SqlInt32
distance)
 {
 if (lat.IsNull || lon.IsNull || distance.IsNull) return null;

 BoundingBox[] box = new BoundingBox[1];
 double latR = Math.PI / 180 * lat.Value;
 double lonR = Math.PI / 180 * lon.Value;
 double rad45 = 0.785398163397448300; // RADIANS(45.)
 double rad135 = 2.356194490192344800; // RADIANS(135.)
 double rad225 = 3.926990816987241400; // RADIANS(225.)
 double rad315 = 5.497787143782137900; // RADIANS(315.)
 double distR = distance.Value * 1.4142135623731 * Math.PI / 20001600.0;
 doub le l atR45 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) *

Math.Sin(distR) * Math.Cos(rad45));
 double l atR135 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) *

Math.Sin(distR) * Math.Cos(rad135));
 double l atR225 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) *

Math.Sin(distR) * Math.Cos(rad225));

CHAPTER 15 ■ CLR TYPES

326

 double l atR315 = Math.Asin(Math.Sin(latR) * Math.Cos(distR) + Math.Cos(latR) *
Math.Sin(distR) * Math.Cos(rad315));

 double dLonR45 = Math.Atan2(Math.Sin(rad45) * Math.Sin(distR) * Math.Cos(latR),
 Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR45));
 double dLonR135 = Math.Atan2(Math.Sin(rad135) * Math.Sin(distR) * Math.Cos(latR),
 Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR135));
 double dLonR225 = Math.Atan2(Math.Sin(rad225) * Math.Sin(distR) * Math.Cos(latR),
 Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR225));
 double dLonR315 = Math.Atan2(Math.Sin(rad315) * Math.Sin(distR) * Math.Cos(latR),
 Math.Cos(distR) - Math.Sin(latR) * Math.Sin(latR315));
 double lat45 = latR45 * 180.0 / Math.PI;
 double lat225 = latR225 * 180.0 / Math.PI;
 double lon45 = (((lonR - dLonR45 + Math.PI) % (2 * Math.PI)) - Math.PI) * 180.0 / Math.PI;
 double lon135 = (((lonR - dLonR135 + Math.PI) % (2 * Math.PI)) - Math.PI) *180.0 / Math.PI;
 double lon225 = (((lonR - dLonR225 + Math.PI) % (2 * Math.PI)) - Math.PI) *180.0 / Math.PI;
 double lon315 = (((lonR - dLonR315 + Math.PI) % (2 * Math.PI)) - Math.PI) *180.0 / Math.PI;

 box[0].minLat = Math.Min(lat45, lat225);
 box[0].maxLat = Math.Max(lat45, lat225);
 box[0].minLon = Math.Min(Math.Min(lon45, lon135), Math.Min(lon225,lon315));
 box[0].maxLon = Math.Max(Math.Max(lon45, lon135), Math.Max(lon225, lon315));
 return box;
 }

 Listing 15-11. Customer-based POI lookup: Altering the table

 alter table dbo.LocationsGeo2 add MinLat decimal(9,6);
 alter table dbo.LocationsGeo2 add MaxLat decimal(9,6);
 alter table dbo.LocationsGeo2 add MinLon decimal(9,6);
 alter table dbo.LocationsGeo2 add MaxLon decimal(9,6);

 update t
 set
 t.MinLat = b.MinLat
 ,t.MinLon = b.MinLon
 ,t.MaxLat = b.MaxLat
 ,t.MaxLon = b.MaxLon
 from
 dbo.LocationsGeo2 t cross apply
 dbo.CalcCircleBoundingBox(t.Location.Lat,t.Location.Long,1609) b;

 create index IDX_LocationsGeo2_BoundingBox
 on dbo.LocationsGeo2(CompanyId, MinLon, MaxLon)
 include (MinLat, MaxLat);

 Now, you can change the query to utilize the bounding box. This query is shown in Listing 15-12 . The
corresponding execution plan is shown in Figure 15-10 .

CHAPTER 15 ■ CLR TYPES

327

 Listing 15-12. Customer-based POI lookup: Query utilizing bounding box

 declare
 @Lat decimal(9,6) = 47.620309
 ,@Lon decimal(9,6) = -122.349563
 ,@CompanyId int = 15

 declare
 @g geography = geography::Point(@Lat,@Lon,4326)

 select count(*)
 from dbo.LocationsGeo2
 where
 Location.STDistance(@g) < 1609 and
 CompanyId = @CompanyId and
 @Lat between MinLat and MaxLat and
 @Lon between MinLon and MaxLon;

 Figure 15-10. Customer-based POI lookup: Execution plan (bounding-box approach)

 Table 15-3. Customer-Based POI Lookup: Execution Times

 Clustered Index Seek Spatial Index Bounding Box

 SQL Server 2014 SP1 9,923 ms 55 ms 13 ms

 SQL Server 2014 SP2
without T6533 and T6534

 10,337 ms 19 ms 10 ms

 SQL Server 2014 SP2
with T6533 and T6534

 231 ms 18 ms 10 ms

 SQL Server 2016 222 ms 16 ms 5 ms

 As you can see, the last query calculated the distance 15 times. This is a significant improvement
over the 241,402 calculations in the original query. The execution times in my environment are shown in
Table 15-3 .

 As you can see, the bounding box outperforms both the clustered index seek and the spatial
index lookup, even with native implementation enabled. Obviously, this would be the case only when
the bounding box reduced the number of the calculations to a degree that offset the overhead of the
 nonclustered index seek and key lookup operations. It is also worth mentioning that you do not need a spatial
index with such an approach.

CHAPTER 15 ■ CLR TYPES

328

 You can also use a bounding box for other use cases; for example, when you are checking to see if
a position belongs to the area defined by a polygon. The bounding box corner coordinates should store
the minimum and maximum latitude and longitude coordinates of the polygon’s corner points. Like the
distance calculation, you would filter out the locations outside of the box before performing an expensive
spatial method call that validates whether the point is within the polygon area.

 HierarchyId
 The HierarchyId data type helps you work with hierarchical data structures. It is optimized to represent
trees, which are the most common type of hierarchical data.

 ■ Note Coverage of HierarchyId data-type methods is beyond the scope of this book. You can learn more
about the HierarchyId data type at http://technet.microsoft.com/en-us/library/bb677173.aspx .

 There are several techniques that allow us to store hierarchical information in a database. Let’s look at
the most common ones, as follows:

 Adjacency list. This is perhaps the most commonly used technique. It persists
the reference to the parent node in every child node. Such a structure is shown in
Figure 15-11 and Listing 15-13 .

 Figure 15-11. Adjacency list

 Listing 15-13. Adjancency list DDL

 create table dbo.OrgChart
 (
 ID int not null,
 Name nvarchar(64) not null,
 Title nvarchar(64) not null,
 ParentID int null,

 constraint PK_OrgChart primary key clustered(ID),

http://technet.microsoft.com/en-us/library/bb677173.aspx

CHAPTER 15 ■ CLR TYPES

329

 constraint FK_OrgChart_OrgChart
 foreign key(ParentId)
 references dbo.OrgChart(ID)
)

 Closure table. This is similar to an adjacency list; however, the parent-child
relationship is stored separately. Figure 15-12 and Listing 15-14 show an example
of a Closure Table.

 Figure 15-12. Closure table

 Listing 15-14. Closure table DDL

 create table dbo.OrgChart
 (
 ID int not null,
 Name nvarchar(64) not null,
 Title nvarchar(64) not null,

 constraint PK_OrgChart primary key clustered(ID),
);

 create table dbo.OrgTree
 (
 ParentId int not null,
 ChildId int not null,

 constraint PK_OrgTree primary key clustered(ParentId, ChildId),

 constraint FK_OrgTree_OrgChart_Parent
 foreign key(ParentId)
 references dbo.OrgChart(ID),

 constraint FK_OrgTree_OrgChart_Child
 foreign key(ChildId)
 references dbo.OrgChart(ID)
);

CHAPTER 15 ■ CLR TYPES

330

 Nested sets . With nested sets, every node contains two values, called left and
 right bowers . Child node bower values are within the interval of the parent
node bowers. As a result, when you need to find all of the children of the parent,
you can select all nodes with left and right bower values in between the parent
values. Figure 15-13 and Listing 15-15 show an example of nested sets.

 Figure 15-13. Nested sets

 Listing 15-15. Nested sets DDL

 create table dbo.OrgChart
 (
 ID int not null,
 Name nvarchar(64) not null,
 Title nvarchar(64) not null,
 LeftBower float not null,
 RightBower float not null,

 constraint PK_OrgChart primary key clustered(ID),
);

 Materialized path . This persists the hierarchical path in every node by concatenating
information about the parents up to the root of the hierarchy. As a result, you can
find all child nodes by performing a prefix lookup based on the parent path. Some
implementations store actual key values of the nodes in the path, while others store
the relative position of the node in the hierarchy. Figure 15-14 shows an example of
the latter. Listing 15-16 shows one possible implementation of such a method.

CHAPTER 15 ■ CLR TYPES

331

 Listing 15-16. Materialized path DDL

 create table dbo.OrgChart
 (
 ID int not null,
 Name nvarchar(64) not null,
 Title nvarchar(64) not null,
 Path varchar(256) not null,

 constraint PK_OrgChart primary key clustered(ID),
);

 Each hierarchy approach has its own strengths and weaknesses. Adjacency lists and closure tables
are easy to maintain; adding new members to or removing them from the hierarchy, as well as subtree
movement, affects a single or very small number of the nodes. However, querying those structures often
requires recursive or imperative code.

 In contrast, nested sets and materialized paths are very easy to query, although hierarchy maintenance
is expensive. For example, if you move the subtree to a different parent, you must update the corresponding
bower or path values for each child in the subtree.

 The HierarchyId type uses the materialized path technique, persisting relative path information in
a way similar to the example shown in Figure 15-14 . The path information is stored in binary format. The
actual storage space varies and depends on a few factors. For starters, each level in the hierarchy adds an
additional node to the path and increases its size.

 Another important factor is how a new HierarchyId value is generated. As already mentioned,
 HierarchyId stores the relative positions of the nodes rather than their absolute key values. As a result, if
you need to add a new child node at the node rightmost to the parent, you can increment the value from
the former rightmost node. However, if you need to add the node in between two existing nodes, that would
require persisting additional information in the path. Figure 15-15 shows an example of this.

 Figure 15-14. Materialized (hierarchical) path

CHAPTER 15 ■ CLR TYPES

332

 Let’s test how HierarchyId generation affects the path size by creating the table shown in Listing 15-17 .

 Listing 15-17. HierarchyId: Test table

 create table dbo.HierarchyTest
 (
 ID hierarchyid not null,
 Level tinyint not null
)

 The code shown in Listings 15-18 and 15-19 creates an eight-level hierarchy with eight children per
node. We will compare the average data size of HierarchyId data when children nodes are inserted as the
rightmost nodes (Listing 15-18) and when they are inserted in between existing nodes (Listing 15-19).

 Listing 15-18. HierarchyId: Adding children nodes as rightmost nodes

 declare
 @MaxLevels int = 8
 ,@ItemPerLevel int = 8
 ,@Level int = 2

 insert into dbo.HierarchyTest(ID, Level) values(hierarchyid::GetRoot(), 1);

 while @Level <= @MaxLevels
 begin
 ;with CTE(ID, Child, Num)
 as
 (
 select ID, ID.GetDescendant(null,null), 1
 from dbo.HierarchyTest
 where Level = @Level - 1
 union all
 select ID, ID.GetDescendant(Child,null), Num + 1
 from CTE
 where Num < @ItemPerLevel
)

 Figure 15-15. Inserting data

CHAPTER 15 ■ CLR TYPES

333

 insert into dbo.HierarchyTest(ID, Level)
 select Child, @Level from CTE
 option (maxrecursion 0);
 set @Level += 1;
 end;

 select avg(datalength(ID)) from dbo.HierarchyTest;

 Result:

 5

 Listing 15-19. HierarchyId: Adding children nodes in between existing nodes

 truncate table dbo.HierarchyTest
 go

 declare
 @MaxLevels int = 8
 ,@ItemPerLevel int = 8
 ,@Level int = 2

 insert into dbo.HierarchyTest(ID, Level) values(hierarchyid::GetRoot(), 1);

 while @Level <= @MaxLevels
 begin
 ;with CTE(ID, Child, PrevChild, Num)
 as
 (
 select ID, ID.GetDescendant(null,null), convert(hierarchyid,null), 1
 from dbo.HierarchyTest
 where Level = @Level - 1
 union all
 select ID,
 case
 when PrevChild < Child
 then ID.GetDescendant(PrevChild, Child)
 else ID.GetDescendant(Child, PrevChild)
 end, Child, Num + 1
 from CTE
 where Num < @ItemPerLevel
)
 insert into dbo.HierarchyTest(ID, Level)
 select Child, @Level from CTE
 option (maxrecursion 0);
 set @Level += 1;
 end;

 select avg(datalength(ID)) from dbo.HierarchyTest;

 Result:

 11

CHAPTER 15 ■ CLR TYPES

334

 As you can see, adding children in between existing nodes in the hierarchy more than doubled the size
of the path stored.

 ■ Note The HierarchyId data type has an additional two bytes of overhead stored in the variable-length
offset array in every row.

 The key point that you need to remember is that the HierarchyId data type persists a hierarchical
path, and it provides a set of methods that help when working with hierarchical data. It does not enforce the
correctness of the hierarchy stored in a table, nor the uniqueness of the values. It is your responsibility to enforce
it in the code.

 The maintenance of hierarchical data is expensive. Changing the path for the node with the children
requires an update of the path in every child node. This leads to the update of multiple rows in the table.
Moreover, the HierarchyId column is usually indexed, which introduces physical data movement and
additional index fragmentation, especially when the HierarchyId column is part of a clustered index. You
need to keep this in mind when designing an index maintenance strategy for tables with HierarchyId
columns when the data is volatile .

 Summary
 User-defined CLR data types allow us to expand the standard SQL Server type library. Unfortunately,
this flexibility has a price. CLR data types are stored in the database in binary format, and accessing the
object properties and methods leads to deserialization and CLR method calls. This can introduce serious
performance issues when those calls are done for a large number of rows.

 You can reduce the number of CLR calls by adding persisted calculated columns that store the results
of frequently accessed properties and methods. At the same time, this increases the size of the rows and
introduces overhead when data is modified.

 Another important aspect is maintainability. SQL Server does not support the ALTER TYPE operation.
It is impossible to change the interface of existing methods or utilize new methods of the type until it is
dropped and recreated.

 Geometry and geography types help us work with spatial data. They provide a rich set of methods used
to manipulate the data, although these methods are usually expensive and can lead to poor performance
when called for a large number of rows. SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016
allow you to use the native implementation for some of the methods, which can significantly improve the
performance of spatial calls. It is enabled by default in SQL Server 2016. In SQL Server 2012 SP3 and SQL
Server 2014 SP2, you can enable it with trace flags T6533 and T6534.

 Spatial indexes can address some performance issues, although they work within the scope of the
entire table. All further predicate evaluation is done at later execution stages. This leads to suboptimal
performance when spatial operations are done on subsets of the data. You can use a bounding-box approach
to address this issue, filtering out the unneeded rows prior to calling spatial methods.

 HierarchyId types provide built-in support for hierarchical data. Although it has excellent query
performance, hierarchy maintenance is expensive. Every change in the hierarchy requires an update of the
hierarchical path in every child node. You must consider such overhead when data is volatile.

 HierarchyId types do not enforce the correctness of the hierarchical structure. That must be done in
the code. You should also avoid inserting new nodes in between existing ones, as this increases the size of
the path stored.

 Finally, support of system- and user-defined CLR types is not consistent across different development
platforms. You need to make sure that client applications can utilize them before making the decision to
use them. Alternatively, you can hide those types behind the data-access tier with T-SQL stored procedures
when it is possible and feasible.

335© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_16

 CHAPTER 16

 Data Partitioning

 The amount of data stored in relational databases is growing exponentially every year. Customers are
collecting more data, and they are processing and retaining it for a longer amount of time. We, as database
professionals, are working with databases that have become larger over time.

 From a development standpoint, database size is not that critical. Non-optimized queries time out
regardless of the database size. However, from a database-administration standpoint, the management
of large databases introduces additional challenges. Data partitioning helps to address some of these
challenges.

 In this chapter, we will discuss the reasons we want to partition data, and we will cover the different
techniques of data partitioning what are available in SQL Server. We will focus on practical implementation
scenarios and typical data partitioning use cases in SQL Server.

 Reasons to Partition Data
 Let’s assume that our system stores data in a large non-partitioned table. This approach dramatically
simplifies development. All data is in the same place, and you can read the data from and write the data to
the same table. With such a design, however, all of the data is stored in the same location. The table resides
in a single filegroup, which consists of one or multiple files stored on the same disk array. Even though,
technically speaking, you could spread indexes across different filegroups or data files across different disk
arrays, it introduces additional database management challenges, reduces the recoverability of data in case
of a disaster, and rarely helps with performance.

 At the same time, in almost every system, data, which is stored in large tables, can be separated into
two different categories: operational and historical . The first category consists of the data for the current
operational period of the company and handles most of the customers' requests in the table. Historical
data, on the other hand, belongs to the older operational periods, which the system must retain for various
reasons, such as regulations and business requirements, among others.

 Most activity in the table is performed against operational data, even though it can be very small
compared to the total table size. Obviously, it would be beneficial to store operational data on a fast and
expensive disk array. Historical data, on the other hand, does not need such I/O performance.

 When data is not partitioned, you cannot separate it between disk arrays. You either have to pay extra
for the fast storage you do not need or compromise and buy larger but slower storage.

 It is also common for operational and historical data to have different workloads. Operational data
usually supports OLTP transactions from the customer-facing part of the system. Historical data is mainly
used for analysis and reporting. These two workloads produce different sets of queries, which would benefit
from a different set of indexes and, sometimes, even from different storage formats. For example, operational
data can benefit from In-Memory OLTP while historical data can utilize columnstore indexes.

CHAPTER 16 ■ DATA PARTITIONING

336

 Unfortunately, it is almost impossible to index a subset of the data in a table. Even though you can use
filtered indexes and/or indexed views, both approaches have several limitations. In most cases, you have
to create a set of indexes covering both workloads in the table scope. This requires additional storage space
and introduces update overhead for operational activity in the system. Moreover, volatile operational data
requires different and more frequent index maintenance as compared to static historical data, which is
impossible to implement in such a case.

 ■ Note SQL Server 2016 allows you to create filtered columnstore indexes that help speed up analysis and
reporting queries against historical data. We will discuss them in detail in Part VII of the book.

 Data compression is another important factor to consider. Static historical data would usually benefit
from, page compression, which can significantly reduce the storage space required. Moreover, it could
improve the performance of queries against historical data in non-CPU-bound systems by reducing the
number of I/O operations required to read the data. At the same time, page compression introduces
unnecessary CPU overhead when the data is volatile.

 ■ Tip In some cases, it is beneficial to use page compression even with volatile operational data when it
saves a significant amount of space and the system works under a heavy I/O load. As usual, you should test and
monitor how it affects the system.

 Unfortunately, it is impossible to compress only part of the data in a table. You would either have to
compress the entire table, which would introduce CPU overhead on operational data, or keep the historical
data uncompressed at additional storage and I/O cost.

 In cases of read-only historical data, it could be beneficial to exclude it from full database backups.
This would reduce the size of the backup file, I/O, and network load during backup operations. Regrettably,
partial database backups work on the filegroup level, which makes it impossible when the data is not
partitioned.

 The Enterprise Edition of SQL Server supports piecemeal restore, which allows you to restore the
database and bring it online on a filegroup-by-filegroup basis. It is great to have a Disaster Recovery strategy
that allows you to restore operational data and make it available to customers separately from the historical
data. This could significantly reduce the disaster recovery time for large databases.

 Unfortunately, such a design requires the separation of operational and historical data between
different filegroups, which is impossible when the data is not partitioned.

 ■ Note We will discuss backup and disaster-recovery strategies in greater detail in Chapter 31 , “Designing a
Backup Strategy.”

 Another important factor is statistics. As you will remember, the statistics histogram stores a maximum
of 200 steps, regardless of the table size. As a result, the histogram steps on large tables must cover a bigger
interval of key values. It makes the statistics and cardinality estimation less accurate, and it can lead to
suboptimal execution plans, in the case of large tables. Moreover, unless you are using databases with a
compatibility level of 130 in SQL Server 2016 or have trace flag T2371 enabled, SQL Server does not outdate
statistics unless you have changed statistics columns in about 20 percent of the total number of rows in the
table.

http://dx.doi.org/10.1007/978-1-4842-1964-5_31

CHAPTER 16 ■ DATA PARTITIONING

337

 That list is by no means complete, and there are other factors as to why data partitioning is beneficial,
although any of the aforementioned reasons is enough to start considering it.

 When to Partition?
 Database professionals often assume that data partitioning is required only for very large databases (VLDB) .
Even though database size definitely matters, it is hardly the only factor to consider.

 Service Level Agreement (SLA) is one of the key elements in the decision to partition or not. When a
system has an availability-based SLA clause, data partitioning becomes essential. The duration of possible
downtime depends on how quickly you can recover a database and restore it from a backup after disaster.
That time depends on the total size of the essential filegroups that need to be online for the system to
be functional. Data partitioning is the only approach that allows you to separate data between different
filegroups and use a piecemeal restore to minimize downtime.

 A performance-based SLA clause is another important factor. Data partitioning can help address some
of the challenges of performance tuning. For example, by partitioning data between multiple tables, you will
improve the accuracy of statistics and can use different indexing strategies for historical and operational
data. Moreover, data partitioning allows you to implement a tiered storage approach and put the operational
part of the data on faster disks, which improves the performance of the system. We will discuss tiered storage
in greater detail later in this chapter.

 The key point to remember is that you should not rely on database size as the only criteria for
partitioning. Consider data partitioning merely to be a tool that helps you address some of the challenges.
This tool can be useful regardless of database size.

 Nevertheless, data partitioning comes at a cost. It changes the execution plans of queries and often
requires code re-factoring. You need to keep this in mind, especially in the case of new development.
When you expect a system to collect a large amount of data in the future, it is often better to implement
data partitioning at a very early development stage. Even though data partitioning introduces development
overhead, such overhead may be much smaller than that which is involved in code re-factoring and the re-
testing of a production system with large amount of data.

 Finally, it is often very hard if not impossible to partition the data while keeping the database online and
available to users. Moving large amount of data around can be time consuming and can lead to long downtime.
This is another argument for implementing data partitioning during the initial stage of development.

 Data Partitioning Techniques
 There are two data partitioning techniques available in SQL Server: partitioned tables and partitioned views .
We will look at them in detail in this section.

 It is impossible to avoid mentioning SQL Server 2016’s stretch databases in the context of data
partitioning. Even though they allow us to address some of the VLDB administration challenges and reduce
the storage cost and disaster recovery time, I would consider them to be a different technique than classic
data partitioning. Stretch databases allow you to transparently build distributed database systems by moving
part of the data into the Cloud rather than partition the data in one central place. As we already discussed
in Chapter 5 , this approach comes with a set of benefits and downsides, which you need to analyze when
choosing the technology to use in your system.

 ■ Note In this chapter, we will use an order entry system that stores order information for two and a
half years as our example. Let’s assume that we want to partition the data on a monthly basis and that our
operational period consists of two months: May and June 2016.

http://dx.doi.org/10.1007/978-1-4842-1964-5_5

CHAPTER 16 ■ DATA PARTITIONING

338

 Partitioned Tables
 Table partitioning is an Enterprise Edition feature that was introduced in SQL Server 2005. You can think of
partitioned tables as logical tables that consist of multiple individual internal physical tables — partitions. This
terminology— logical and physical table—is not standard, although it describes it perfectly.

 Every table in SQL Server is partitioned. When a table is not partitioned by the user, SQL Server treats it
as a single-partition table internally.

 SQL Server tracks allocation units, such as IN-ROW , ROW-OVERFLOW , and LOB data, separately for each
partition. For example, a table with 10 partitions would have 30 different IAM chains per data file—one per
allocation unit per partition.

 There are two additional database objects that are used together with table partitioning. A partition
function specifies boundary values, which are the criteria on how data needs to be partitioned. A partition
scheme specifies the filegroups in which physical partition tables are stored.

 Listing 16-1 shows the code that creates partitioned table dbo.OrdersPT , with the data partitioned on a
monthly basis. This code assumes that the database has four different filegroups: FG2014 and FG2015 store
data for years 2014 and 2015, respectively. FG2016 stores data for the first four months of 2016. Finally, the
 FASTSTORAGE filegroup stores operational data starting from May 2016.

 Listing 16-1. Creating a partitioned table

 create partition function pfOrders(datetime2(0))
 as range right for values
 ('2014-02-01', '2014-03-01','2014-04-01','2014-05-01','2014-06-01','2014-07-01'
 ,'2014-08-01','2014-09-01','2014-10-01','2014-11-01','2014-12-01','2015-01-01'
 ,'2015-02-01','2015-03-01','2015-04-01','2015-05-01','2015-06-01','2015-07-01'
 ,'2015-08-01','2015-09-01','2015-10-01','2015-11-01','2015-12-01','2016-01-01'
 ,'2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01');

 create partition scheme psOrders
 as partition pfOrders
 to (FG2014 /* FileGroup to store data <'2014-02-01' */
 ,FG2014 /* FileGroup to store data >='2014-02-01' and <'2014-03-01' */
 ,FG2014,FG2014,FG2014,FG2014,FG2014
 ,FG2014,FG2014,FG2014,FG2014,FG2014
 ,FG2015 /* FileGroup to store data >='2015-01-01' and <'2015-02-01' */
 ,FG2015,FG2015,FG2015,FG2015,FG2015
 ,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015
 ,FG2016 /* FileGroup to store data >='2016-01-01' and <'2016-02-01' */
 ,FG2016,FG2016,FG2016
 ,FASTSTORAGE /* FileGroup to store data >='2016-05-01' and <'2016-06-01' */
 ,FASTSTORAGE /* FileGroup to store data >='2016-06-01' and <'2016-07-01' */
 ,FASTSTORAGE /* FileGroup to store data >='2016-07-01' */);

 create table dbo.OrdersPT
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
);

CHAPTER 16 ■ DATA PARTITIONING

339

 create unique clustered index IDX_OrdersPT_OrderDate_OrderId
 on dbo.OrdersPT(OrderDate, OrderId)
 with
 (
 data_compression = page on partitions(1 to 28),
 data_compression = row on partitions(29 to 31)
)
 on psOrders(OrderDate);

 create nonclustered index IDX_OrdersPT_CustomerId
 on dbo.OrdersPT(CustomerId)
 with
 (
 data_compression = page on partitions(1 to 28),
 data_compression = row on partitions(29 to 31)
)
 on psOrders(OrderDate);

 You control how boundary values are stored by specifying either the RANGE LEFT or RANGE RIGHT
parameter of the partition function. In our example, we are using the RANGE RIGHT parameter, which
indicates that the boundary value is stored on the right partition. With this option, if 2014-02-01 is the first
boundary value, the leftmost partition stores the data that is prior to that date. All values that are equal to the
boundary value are stored in the partition that is second from the left. Alternatively, if we used the
 RANGE LEFT parameter, the boundary value data would be stored in the left partition.

 Figure 16-1 shows the physical data layout of the dbo.OrdersPT table.

 Figure 16-1. Data layout of the dbo.OrdersPT table

CHAPTER 16 ■ DATA PARTITIONING

340

 Each partition can reside in its own filegroup and have its own data compression method. However, all
partitions have exactly the same schema and set of indexes that are controlled by the logical table. Moreover,
SQL Server does not maintain individual statistics at the partition level. There is a single 200-step histogram
on the index, regardless of whether it is partitioned or not.

 SQL Server 2014 and 2016 introduce the concept of incremental statistics , which allows you to create
per-partition statistics. When you enable it, SQL Server starts to track the number of statistics column
updates at the partition level and marks statistics as outdates when it exceeds the threshold on an individual
partition. Subsequent statistics updates would refresh statistics on the individual partition rather than on
entire table. This behavior needs to be enabled with the statistics_incremental index and incremental
statistics options respectively.

 Even through incremental statistics improve statistics maintenance on partitioned tables, the histogram
is still limited to 200 steps for the entire index, regardless of whether incremental statistics are enabled or not.

 Table partitioning can be implemented in a transparent manner to the client applications. The code
continues to reference the logical table while SQL Server manages the internal data layout under the hood.
There are still some cases, however, when you need to reference individual partitions during the query-
optimization stage. We will talk about these cases later in the chapter.

 You can create new (split) or drop existing (merge) partitions by altering the partition scheme and
functions. The code in Listing 16-2 merges the two leftmost and splits the rightmost partitions in the dbo.
OrdersPT table. After the split, the leftmost partition will store the data with an OrderDate before March 1,
2014, and the two rightmost partitions of the table will store data with an OrderDate for July 2016, equal to or
greater than 2016-08-01, respectively.

 Listing 16-2. Splitting and merging partitions

 /* Merging two leftmost partitions */
 alter partition function pfOrders() merge range('2014-02-01');

 /* Splitting rightmost partition */
 -- Step 1: Altering partition scheme - specifying FileGroup
 -- where new partition needs to be stored
 alter partition scheme psOrders next used [FASTSTORAGE];

 -- Step 2: Splitting partition function
 alter partition function pfOrders() split range('2016-08-01');

 One of the most powerful features of table partitioning is the ability to switch partitions between tables.
That dramatically simplifies the implementation of some operations, such as purging old data or importing
data into the table. We will discuss implementing data purge and sliding window patterns later in this
chapter.

 Listing 16-3 shows you how to import new data into the table dbo.MainData by switching in another
staging table, dbo.StagingData , as the new partition. This approach is very useful when you need to import
data from external sources into the table. Even though you can insert data directly into the table, a partition
switch is a metadata operation, which allows you to minimize locking during the import process.

 Listing 16-3. Switching a staging table as the new partition

 create partition function pfMainData(datetime)
 as range right for values
 ('2016-02-01', '2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01'
 ,'2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01');

CHAPTER 16 ■ DATA PARTITIONING

341

 create partition scheme psMainData
 as partition pfMainData
 all to (FG2016);

 /* Even though we have 12 partitions - one per month, let's assume that only
 January–April data is populated. E.g., we are in the middle of the year */
 create table dbo.MainData
 (
 ADate datetime not null,
 ID bigint not null,
 CustomerId int not null,
 /* Other Columns */
 constraint PK_MainData
 primary key clustered(ADate, ID)
 on psMainData(ADate)
);

 create nonclustered index IDX_MainData_CustomerId
 on dbo.MainData(CustomerId)
 on psMainData(ADate);

 create table dbo.StagingData
 (
 ADate datetime not null,
 ID bigint not null,
 CustomerId int not null,
 /* Other Columns */
 constraint PK_StagingData
 primary key clustered(ADate, ID),

 constraint CHK_StagingData
 check(ADate >= '2016-05-01' and ADate < '2016-06-01')
) on [FG2016];

 create nonclustered index IDX_StagingData_CustomerId
 on dbo.StagingData(CustomerId)
 on [FG2016];

 /* Switching partition */
 alter table dbo.StagingData
 switch to dbo.MainData
 partition 5;

 Both tables must have exactly the same schema and indexes. The staging table should be placed in the
same filegroup as the destination partition in the partitioned table. Finally, the staging table must have a
 CHECK constraint, which prevents values from outside of the partition boundaries.

 As you probably noticed, all nonclustered indexes have been partitioned in the same way as clustered
indexes. Such indexes are called aligned indexes . Even though there is no requirement to keep indexes
aligned, SQL Server would not be able to switch partitions when a table has non-aligned, nonclustered
indexes defined.

CHAPTER 16 ■ DATA PARTITIONING

342

 Finally, the partition switch operation does not work if a table is referenced by foreign key constraints
defined in other tables. Nevertheless, a partition switch is allowed when the table itself has foreign key
constraints referencing other tables.

 Partitioned Views
 Unlike partitioned tables, partitioned views work in every edition of SQL Server. In such schemas, you create
individual tables and combine data from all of them via a partitioned view using the union all operator.

 ■ Note SQL Server allows you to define partitioned views by combining data from multiple databases or even
SQL Server instances. The latter case is called a distributed partitioned view. The coverage of such scenarios
is outside of the scope of this book. However, they behave similarly to partitioned views defined in a single-
database scope.

 Listing 16-4 shows an example of data partitioning of the Orders entity using a partitioned view
approach.

 Listing 16-4. Creating partitioned views

 create table dbo.Orders2014_01
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
 constraint PK_Orders2014_01
 primary key clustered(OrderId),

 constraint CHK_Orders2014_01
 check (OrderDate >= '2014-01-01' and OrderDate < '2014-02-01')
) on [FG2014];

 create nonclustered index IDX_Orders2014_01_CustomerId
 on dbo.Orders2014_01(CustomerId)
 on [FG2014];

 create table dbo.Orders2014_02
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
 constraint PK_Orders2014_02
 primary key clustered(OrderId)
 with (data_compression=page),

CHAPTER 16 ■ DATA PARTITIONING

343

 constraint CHK_Orders2014_02
 check (OrderDate >= '2014-02-01' and OrderDate < '2014-03-01')
) on [FG2014];

 create nonclustered index IDX_Orders2014_02_CustomerId
 on dbo.Orders2014_02(CustomerId)
 with (data_compression=page)
 on [FG2014];

 /* Other tables */

 create table dbo.Orders2016_06
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
 constraint PK_Orders2016_06
 primary key clustered(OrderId)
 with (data_compression=row),

 constraint CHK_Orders2016_06
 check (OrderDate >= '2016-06-01' and OrderDate < '2016-07-01')
) on [FASTSTORAGE];

 create nonclustered index IDX_Orders2016_04_CustomerId
 on dbo.Orders2016_06(CustomerId)
 with (data_compression=row)
 on [FASTSTORAGE]
 go

 create view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other
Columns*/)
 with schemabinding
 as
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2014_01
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2014_02
 /* union all -- Other tables */
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2016_06;

 Figure 16-2 shows the physical data layout of the tables.

CHAPTER 16 ■ DATA PARTITIONING

344

 As you can see, different tables can be placed into different filegroups, which can even be marked as
read-only if needed. Each table can have its own set of indexes and maintain individual, more accurate
statistics. Moreover, each table can have its own schema. This is beneficial if operational activities require
tables to have additional columns — for data processing, for example — which you can drop afterward. The
difference in schemas can be abstracted on the partitioned view level.

 ■ Tip You can combine In-Memory OLTP memory-optimized tables, columnstore-based tables, and regular
on-disk B-Tree tables in the same partitioned view. This can help to improve the performance of the systems
with the mixed workload.

 It is extremely important to have CHECK constraints defined in each table. These constraints help SQL
Server avoid accessing unnecessary tables while querying the data. Listing 16-5 shows an example of queries
against a partitioned view.

 Listing 16-5. Queries against partitioned view

 select count(*) from dbo.Orders;
 select count(*) from dbo.Orders where OrderDate = '2016-06-03'

 As you can see in Figure 16-3 , the first query requires SQL Server to access all of the tables from the
partitioned view. Alternatively, the second query has OrderDate as a parameter, which allows SQL Server to
pinpoint the single table that needs to be queried.

 Figure 16-2. Data layout with a partitioned-view approach

CHAPTER 16 ■ DATA PARTITIONING

345

 You should always add predicates, which reduce the number of tables to be processed by the queries.
Let’s look at a practical example and, as a first step, create another entity called OrderLineItems . Obviously,
you would like to partition it in the same way as the Orders entity; that is, on a monthly basis.

 ■ Tip You should partition related entities and place them in filegroups in a way that supports piecemeal
restore and that allows you to bring entities online together.

 Listing 16-6 shows the code that creates the set of tables and the partitioned view. Even though the
 OrderDate column is redundant in the OrderLineItems tables, you need to add it to all of the tables in order
to create a consistent partitioning layout with the Orders tables.

 Listing 16-6. OrderLineItems partition view

 create table dbo.OrderLineItems2014_01
 (
 OrderId int not null,
 OrderLineItemId int not null,
 OrderDate datetime2(0) not null,
 ArticleId int not null,
 Quantity decimal(9,3) not null,
 Price money not null,
 /* Other Columns */

 constraint CHK_OrderLineItems2014_01
 check (OrderDate >= '2014-01-01' and OrderDate < '2014-02-01'),

 constraint FK_OrderLineItems_Orders_2014_01
 foreign key(OrderId)
 references dbo.Orders2014_01(OrderId),

 Figure 16-3. Execution plans of the queries against a partitioned view

CHAPTER 16 ■ DATA PARTITIONING

346

 constraint FK_OrderLineItems2014_01_Articles
 foreign key(ArticleId)
 references dbo.Articles(ArticleId)
);

 create unique clustered index IDX_Orders2014_01_OrderId_OrderLineItemId
 on dbo.OrderLineItems2014_01(OrderId, OrderLineItemId)
 on [FG2014];

 create nonclustered index IDX_Orders2014_01_ArticleId
 on dbo.OrderLineItems2014_01(ArticleId)
 on [FG2014];

 /* Other tables */

 create view dbo.OrderLineItems(OrderId, OrderLineItemId, OrderDate, ArticleId, Quantity,
Price)
 with schemabinding
 as
 select OrderId, OrderLineItemId, OrderDate, ArticleId, Quantity, Price
 from dbo.OrderLineItems2014_01
 /*union all other tables*/
 union all
 select OrderId, OrderLineItemId, OrderDate, ArticleId, Quantity, Price
 from dbo.OrderLineItems2016_06;

 Let’s assume that you have a query that returns a list of orders that includes a particular item bought by
a specific customer in January 2016. The typical implementation of such a query is shown in Listing 16-7 .

 Listing 16-7. Selecting a list of customer orders with a specific item: Non-optimized version

 select o.OrderId, o.OrderNum, o.OrderDate, i.Quantity, i.Price
 from dbo.Orders o join dbo.OrderLineItems i on
 o.OrderId = i.OrderId
 where
 o.OrderDate >= '2016-01-01' and
 o.OrderDate < '2016-02-01' and
 o.CustomerId = @CustomerId and
 i.ArticleId = @ArticleId

 As you can see in Figure 16-4 , SQL Server has to perform an index seek in every OrderLineItems table
while searching for line-item records. Query Optimizer is not aware that all required rows are stored in the
 dbo.OrderLineItems2016_01 table.

CHAPTER 16 ■ DATA PARTITIONING

347

 You can optimize this query by adding another join predicate on the OrderDate column, as shown in
Listing 16-8 . CHECK constraints allow Query Optimizer to eliminate access to tables that cannot store data for
a particular month. The execution plan is shown in Figure 16-5 .

 Listing 16-8. Selecting a list of customer orders with a specific item: Optimized version

 select o.OrderId, o.OrderNum, o.OrderDate, i.Quantity, i.Price
 from dbo.Orders o join dbo.OrderLineItems i on
 o.OrderId = i.OrderId and o.OrderDate = i.OrderDate
 where
 o.OrderDate >= '2016-01-01' and
 o.OrderDate < '2016-02-01' and
 o.CustomerId = @CustomerId and
 i.ArticleId = @ArticleId

 Figure 16-4. Execution plan of a non-optimized query

 Figure 16-5. Execution plan of an optimized query

 Unfortunately, in most cases using partitioned views requires modifications of the client code,
especially when you update the data. In some cases, you can update the data directly through the view;
however, partitioned views have a few restrictions in order to be updateable. For example, tables from the
view should have a CHECK constraint that defines the partitioning criteria, and a column from that constraint
must be part of the primary key.

CHAPTER 16 ■ DATA PARTITIONING

348

 Another important requirement is that the view should deliver all columns from the tables and that is
it; no calculated columns are allowed. With such a requirement, you are unable to have tables with different
schemas abstracting the difference on the view level.

 Even when all requirements are met and an updateable view can be created, there is still a
supportability issue. You should be extremely careful when altering the view in order to avoid a situation
where alteration accidentally breaks the client code.

 Another way to make the view updateable is by defining an INSTEAD OF trigger on the view. However,
such an approach will often perform less efficiently than updating the base tables directly from the client
code. Moreover, with the client code, you can update different tables simultaneously from the different
threads, which could improve the performance of batch operations.

 Comparing Partitioned Tables and Partitioned Views
 Table 16-1 compares partitioned tables and partitioned views in further detail.

 Table 16-1. Comparison of Partitioned Tables and Partitioned Views

 Partitioned Tables Partitioned Views

 Enterprise and Developer editions only All editions

 Maximum 1,000 or 15,000 partitions depending
on SQL Server version

 Maximum 255 tables/partitions

 Same table schema and indexes across all
partitions

 Every table/partition can have its own schema and
set of indexes

 Statistics kept at the table level Separate statistics per table/partition

 No partition-level online index rebuild prior to
SQL Server 2014

 Online index rebuild of the table/partition with
Enterprise Edition of SQL Server

 Transparent to client code (some query re-
factoring may be required)

 Usually requires changes in the client code

 Transparent for replication Requires changes in publications when a new table/
partition is created and/or an existing table/partition
is dropped

 As you can see, partitioned views are more flexible as compared to partitioned tables. Partitioned views
work in every edition of SQL Server, which is important for Independent Software Vendors (ISVs) who are
deploying systems to multiple customers with different editions of SQL Server. However, partitioned views
are harder to implement, and they often require significant code re-factoring in existing systems.

 System supportability is another factor. Consider a situation where you need to change the schema of
the entity. With partitioned tables, the main logical table controls the schema and only one ALTER TABLE
statement is required. Partitioned views, on the other hand, require multiple ALTER TABLE statements—one
per underlying table.

 This is not necessarily a bad thing, though. With multiple ALTER TABLE statements, you acquire schema
modification (SCH-M) locks at the individual table level, which can reduce the time the lock is held and
access to the table is blocked. We will discuss schema locks in greater detail in Chapter 23 , “Schema Locks.”

 Sometimes you can abstract schema changes at the partitioned view level, which allows you to avoid
altering some tables. Think about adding a NOT NULL column with a default constraint, as an example. In
SQL Server 2005-2008R2, this operation would modify every data row in the table and keep the schema
modification (SCH-M) lock held for the duration of the operation. It also generates a large amount of
transaction log activity.

http://dx.doi.org/10.1007/978-1-4842-1964-5_23

CHAPTER 16 ■ DATA PARTITIONING

349

 In the case of partitioned views, you can alter only operational data tables by using a constant with
historical data tables in the view. Listing 16-9 illustrates such an approach. Keep in mind that such an
approach prevents a partitioned view from being updateable.

 Listing 16-9. Abstracting schema changes in the partitioned view

 alter table dbo.Orders2016_06
 add IsReviewed bit not null
 constraint DEF_Orders2016_06_IsReviewed
 default 0;

 alter view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId, IsReviewed)
 with schemabinding
 as
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId, 0 as [IsReviewed]
 from dbo.Orders2014_01
 /* union all -- Other tables */
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId, IsReviewed
 from dbo.Orders2016_06;

 Using Partitioned Tables and Views Together
 You can improve the supportability of a system and reduce the number of required tables by using
partitioned tables and partitioned views together. With such an approach, you are storing historical data
in one or more partitioned tables and operational data in regular table(s), combining all of them into a
partitioned view.

 Listing 16-10 shows such an example. There are three partitioned tables, dbo.Orders2014 , dbo.
Orders2015 , and dbo.Orders2016 , which store historical data that is partitioned on a monthly basis. There
are also two regular tables storing operational data: dbo.Orders2016_05 and dbo.Orders2016_06 .

 Listing 16-10. Using partitioned tables and views together

 create partition function pfOrders2014(datetime2(0))
 as range right for values
 ('2014-02-01', '2014-03-01','2014-04-01','2014-05-01','2014-06-01','2014-07-01'
 ,'2014-08-01','2014-09-01','2014-10-01','2014-11-01','2014-12-01');

 create partition scheme psOrders2014
 as partition pfOrders2014
 all to ([FG2014]);

 create table dbo.Orders2014
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
 constraint CHK_Orders2014
 check(OrderDate >= '2014-01-01' and OrderDate < '2015-01-01')
);

CHAPTER 16 ■ DATA PARTITIONING

350

 create unique clustered index IDX_Orders2014_OrderDate_OrderId
 on dbo.Orders2014(OrderDate, OrderId)
 with (data_compression = page)
 on psOrders2014(OrderDate);

 create nonclustered index IDX_Orders2014_CustomerId
 on dbo.Orders2014(CustomerId)
 with (data_compression = page)
 on psOrders2014(OrderDate);
 go

 /* dbo.Orders2015 table definition – skipped */

 create partition function pfOrders2016(datetime2(0))
 as range right for values
 ('2016-02-01', '2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01'
 ,'2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01');

 create partition scheme psOrders2016
 as partition pfOrders2016
 all to ([FG2016]);

 create table dbo.Orders2016
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
 constraint CHK_Orders2016
 check(OrderDate >= '2016-01-01' and OrderDate < '2016-05-01')
);

 create unique clustered index IDX_Orders2016_OrderDate_OrderId
 on dbo.Orders2016(OrderDate, OrderId)
 with (data_compression = page)
 on psOrders2016(OrderDate);

 create nonclustered index IDX_Orders2016_CustomerId
 on dbo.Orders2016(CustomerId)
 with (data_compression = page)
 on psOrders2016(OrderDate);

 create table dbo.Orders2016_05
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,

CHAPTER 16 ■ DATA PARTITIONING

351

 /* Other Columns */
 constraint CHK_Orders2016_05
 check(OrderDate >= '2016-05-01' and OrderDate < '2016-06-01')
);

 create unique clustered index IDX_Orders2016_05_OrderDate_OrderId
 on dbo.Orders2016_05(OrderDate, OrderId)
 with (data_compression = row)
 on [FASTSTORAGE];

 create nonclustered index IDX_Orders2016_05_CustomerId
 on dbo.Orders2016_05(CustomerId)
 with (data_compression = row)
 on [FASTSTORAGE]

 /* dbo.Orders2016_06 table definition */

 create view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other
Columns*/)
 with schemabinding
 as
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2014
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2015
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2016
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2016_05
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.Orders2016_06;

 It is worth mentioning that table dbo.Orders2016 is partitioned on a monthly basis up to the end of the
year, even though it stores data up to the operational period, which starts in May. CHECK constraints in that
table indicate this.

 The data layout is shown in Figure 16-6 .

CHAPTER 16 ■ DATA PARTITIONING

352

 As you can see, such an approach dramatically reduces the number of tables as compared to a
partitioned views implementation, keeping the flexibility of partitioned views intact.

 Tiered Storage
 One of the key benefits of data partitioning is the reduction of storage costs in the system. You can achieve
this in two different ways. First, you can reduce the size of the data by using data compression on the
historical part of the data. Moreover, and more important, you can separate data between different storage
arrays in the system.

 It is very common to have different performance and availability requirements for different data in
the system. In our example, it is possible to have 99.99 percent availability and 20 ms latency SLAs defined
for operational data. However, for the older historical data, the requirements could be quite different. For
example, orders from 2014 must be retained in the system without any performance requirements, and the
availability SLA is much lower than it is for operational data.

 You can design a data layout and storage subsystem based on these requirements. Figure 16-7 illustrates
one possible solution. You can use a fast, SSD-based RAID-10 array for the FASTSTORAGE filegroup, which
contains operational data. Data for January-April 2016 is relatively static, and it could be stored on the slower
RAID-5 array using 15,000 RPM disks. Finally, you can use slow and cheap 5,400 RPM disks in the RAID-1
array for the data from the years 2015 and 2014.

 Figure 16-6. Using partitioned tables and views together: Data layout

CHAPTER 16 ■ DATA PARTITIONING

353

 Tiered storage can significantly reduce the storage costs of the system. Finally, it is also much easier to
get an approved budget allocation to buy a lower capacity, faster disk array due to its lower cost.

 The key question with tiered storage design is how to move data between different tiers when the
operational period changes, all while keeping the system online and available to customers. Let’s look at the
available options in greater detail.

 Moving Non-Partitioned Tables Between Filegroups
 You can move a non-partitioned table to another filegroup by rebuilding all of the indexes, using the new
filegroup as the destination. This operation can be done online in the Enterprise Edition of SQL Server with
the CREATE INDEX WITH (ONLINE=ON, DROP_EXISTING=ON) command. Other sessions can access the table
during the online index rebuild. Therefore, the system is available to customers.

 ■ Note Online index rebuild acquires schema modification (SCH-M) lock during the final phase of execution.
Even though this lock is held for a very short time, it can increase locking and blocking in very active OLTP
systems. SQL Server 2014 introduces the concept of low-priority locks, which can be used to improve system
concurrency during online index rebuild operations. We will discuss them in detail in Chapter 23 , “Schema Locks.”

 Unfortunately, there are two caveats associated with online index rebuilds. First, even with Enterprise
Edition, SQL Server 2005-2008R2 does not support an online index rebuild if an index has large object (LOB)
columns defined, such as (n)text , image , (n)varchar(max) , varbinary(max) , xml , and several others.

 The second issue is more complicated. Index rebuild does not move LOB_DATA allocation units to the
new filegroup. Let’s look at an example and create a table that has an LOB column on the FG1 filegroup.
Listing 16-11 shows the code for this.

 Listing 16-11. Moving a table with an LOB column to a different filegroup: Table creation

 create table dbo.RegularTable
 (
 OrderDate date not null,
 OrderId int not null identity(1,1),
 OrderNum varchar(32) not null,
 LobColumn varchar(max) null,
 Placeholder char(50) null,
) textimage_on [FG1];

 Figure 16-7. Tiered storage

http://dx.doi.org/10.1007/978-1-4842-1964-5_23

CHAPTER 16 ■ DATA PARTITIONING

354

 create unique clustered index IDX_RegularTable_OrderDate_OrderId
 on dbo.RegularTable(OrderDate, OrderId)
 on [FG1];

 As a next step, let’s check that all allocation units reside in the FG1 filegroup. The code for this is shown
in Listing 16-12 . You can see the result of the query in Figure 16-8 .

 Listing 16-12. Moving a table with an LOB column to a different filegroup: Checking allocation units’
placement

 select
 p.partition_number as [Partition]
 ,object_name(p.object_id) as [Table]
 ,filegroup_name(a.data_space_id) as [FileGroup]
 ,a.type_desc as [Allocation Unit]
 from
 sys.partitions p join sys.allocation_units a on
 p.partition_id = a.container_id
 where
 p.object_id = object_id('dbo.RegularTable')
 order by
 p.partition_number

 Figure 16-8. Allocation units’ placement after table creation

 Now, let’s rebuild the clustered index, moving the data to the FG2 filegroup. The code for doing this is
shown in Listing 16-13 .

 Listing 16-13. Rebuilding the index by moving data to a different filegroup

 create unique clustered index IDX_RegularTable_OrderDate_OrderId
 on dbo.RegularTable(OrderDate, OrderId)
 with (drop_existing=on, online=on)
 on [FG2]

 Now, if you run the query from Listing 16-12 again, you will see the results shown in Figure 16-9 . As you
can see, the index rebuild moved IN_ROW_DATA and ROW_OVERFLOW_DATA allocation units to the new filegroup,
keeping LOB_DATA intact.

CHAPTER 16 ■ DATA PARTITIONING

355

 Fortunately, there is a workaround available. You can move LOB_DATA allocation units to another
filegroup by performing an online index rebuild that uses a partition scheme rather than a filegroup as the
destination.

 Listing 16-14 shows such an approach. As a first step, you need to create a partition function with one
boundary value and two partitions in such a way that leaves one partition empty. After that, you need to
create a partition scheme using a destination filegroup for both partitions and then perform an index rebuild
into this partition scheme. Finally, you need to merge both partitions by altering the partition function. This
is a quick metadata operation because one of the partitions is empty.

 Listing 16-14. Rebuilding an index in a partition scheme

 create partition function pfRegularTable(date)
 as range right for values ('2100-01-01');

 create partition scheme psRegularTable
 as partition pfRegularTable
 all to ([FG2]);

 create unique clustered index IDX_RegularTable_OrderDate_OrderId
 on dbo.RegularTable(OrderDate, OrderId)
 with (drop_existing=on, online=on)
 on psRegularTable(OrderDate);

 alter partition function pfRegularTable()
 merge range('2100-01-01');

 Figure 16-10 shows the allocation units’ placement after the index rebuild.

 Figure 16-9. Allocation units’ placement after index rebuild

 Figure 16-10. Allocation units’ placement after rebuilding the index in a partition scheme

 Obviously, this method requires the Enterprise Edition of SQL Server. It also would require SQL Server
2012 or above to work as an online operation because of the LOB columns involved.

 Without the Enterprise Edition of SQL Server, your only option for moving LOB_DATA allocation units is
to create a new table in the destination filegroup and then copy the data to it from the original table.

CHAPTER 16 ■ DATA PARTITIONING

356

 Moving Partitions Between Filegroups
 You can move a single partition from a partitioned table to another filegroup by altering the partition
scheme and function. Altering the partition scheme marks the filegroup in which the newly created partition
must be placed. Splitting and merging the partition function triggers the data movement.

 The way that data is moved between partitions during SPLIT RANGE and MERGE RANGE operations
depends on the RANGE LEFT and RANGE RIGHT parameters of the partition function. Let’s look at an example
that assumes you have a database with four filegroups: FG1 , FG2 , FG3 , and FG4 . You have a partition function
in the database that uses RANGE LEFT values, as shown in Listing 16-15 .

 Listing 16-15. RANGE LEFT partition function

 create partition function pfLeft(int) as range left for values (10,20);

 create partition scheme psLeft
 as partition pfLeft
 to ([FG1],[FG2],[FG3]);

 alter partition scheme psLeft next used [FG4];

 In a RANGE LEFT partition function, the boundary values represent the highest value in a partition.
When you split a RANGE LEFT partition, the new partition with the highest new boundary value is moved to
the NEXT USED filegroup.

 Table 16-2 shows a partition and filegroup layout for the various SPLIT operations.

 Now, let’s look at what happens when you have a RANGE RIGHT partition function with the same
boundary values, as defined in Listing 16-16 .

 Listing 16-16. RANGE RIGHT partition function

 create partition function pfRight(int) as range right for values (10,20);

 create partition scheme psRight
 as partition pfRight
 to ([FG1],[FG2],[FG3]);

 alter partition scheme psRight next used [FG4];

 In a RANGE RIGHT partition function, the boundary values represent the lowest value in a partition.
When you split a RANGE RIGHT partition, the new partition with the new lowest boundary value is moved to
the NEXT USED filegroup.

 Table 16-2. RANGE LEFT Partition Function and SPLIT Operations

 FG1 FG2 FG3 FG4

 Original {min..10} {11..20} {21..max}

 SPLIT RANGE(0) {1..10} {11..20} {21..max} {min..0}

 SPLIT RANGE(15) {min..10} {16..20} {21..max} {11..15}

 SPLIT RANGE(30) {min..10} {11..20} {31..max} {21..30}

CHAPTER 16 ■ DATA PARTITIONING

357

 Table 16-5. RANGE LEFT Partition Function and MERGE Operations

 FG1 FG2 FG3 FG4

 Original {min..10} {11..20} {21..30} {31..max}

 MERGE RANGE(10) {min..20} {21..30} {31..max}

 MERGE RANGE(20) {min..10} {11..30} {31..max}

 MERGE RANGE(30) {min..10} {11..20} {21..max}

 Table 16-4. RANGE RIGHT Partition Function and MERGE Operations

 FG1 FG2 FG3 FG4

 Original {min..9} {10..19} {20..29} {30..max}

 MERGE RANGE(10) {min.. 19} {20..29} {30..max}

 MERGE RANGE(20) {min..9} {10..29} {30..max}

 MERGE RANGE(30) {min..9} {10..19} {20..max}

 Table 16-3 shows a partition and filegroup layout for the various SPLIT operations.

 Table 16-3. RANGE RIGHT Partition Function and SPLIT Operations

 FG1 FG2 FG3 FG4

 Original {min..9} {10..19} {20..max}

 SPLIT RANGE(0) {min.. -1} {10..19} {20..max} {0..9}

 SPLIT RANGE(15) {min..9} {10..14} {20..max} {15..19}

 SPLIT RANGE(30) {min..9} {10..19} {20..29} {30..max}

 Now, let’s look at a MERGE operation that assumes you have partition functions with the boundary values
of (10, 20, 30). For a RANGE RIGHT partition function, the data from the right partition is moved to the left
partition filegroup. Table 16-4 illustrates this point.

 Conversely, with a RANGE LEFT partition function, the data from the left partition is moved to the right
partition filegroup, as shown in Table 16-5 .

 When you move a partition to a different filegroup, you should choose a boundary value at which to
 SPLIT and MERGE the partition function. For example, if you want to move a partition that stores May 2016
data in the dbo.OrdersPT table from the FASTSTORAGE to the FG2016 filegroup, you need to MERGE and SPLIT
a boundary value of 2016-05-01. The partition function is defined as RANGE RIGHT , and, as a result, the MERGE
operation moves May 2016 data to the partition containing the April 2016 data, which resides on the FG2016
filegroup. Afterward, the SPLIT operation would move the May 2016 data to the filegroup you specified as
 NEXT USED by altering the partition scheme.

 You can see the code to accomplish this in Listing 16-17 . As a reminder, the dbo.OrdersPT table was
created in Listing 16-1 .

CHAPTER 16 ■ DATA PARTITIONING

358

 Listing 16-17. Moving data for a single partition

 -- Moving May 2016 partition data to April 2016 filegroup
 alter partition function pfOrders() merge range ('2016-05-01');

 -- Marking that next used filegroup
 alter partition scheme psOrders next used [FG2016];

 -- Creating new partition for May 2016 moving it to FG2016
 alter partition function pfOrders() split range ('2016-05-01');

 Even though the code is very simple, there are a couple of problems with such an approach. First, the
data is moved twice when you MERGE and SPLIT a partition function. Another problem is that SQL Server
acquires and holds a schema modification (SCH-M) lock for the duration of the data movement, which
prevents other sessions from accessing the table.

 There is no easy workaround for the problem of keeping the table online during data movement. One of
the options, shown in Listing 16-18 , is to rebuild the indexes using a different partition scheme. Even though
this operation can be performed online, it introduces huge I/O and transaction log overhead because you
are rebuilding indexes for the entire table rather than moving a single partition. Moreover, this operation will
not work online in SQL Server 2005-2008R2 if the table has LOB columns.

 Listing 16-18. Moving data for a single partition

 create partition scheme psOrders2
 as partition pfOrders
 to (FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014,FG2014
 ,FG2014,FG2014,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015,FG2015
 ,FG2015,FG2015,FG2015,FG2016,FG2016,FG2016,FG2016,FASTSTORAGE,FASTSTORAGE);

 create unique clustered index IDX_OrdersPT_OrderDate_OrderId
 on dbo.OrdersPT(OrderDate, OrderId)
 with
 (
 data_compression = page on partitions(1 to 28),
 data_compression = none on partitions(29 to 31),
 drop_existing = on, online = on
)
 on psOrders2(OrderDate);

 create nonclustered index IDX_OrdersPT_CustomerId
 on dbo.OrdersPT(CustomerId)
 with
 (
 data_compression = page on partitions(1 to 28),
 data_compression = none on partitions(29 to 31),
 drop_existing = on, online = on
)
 on psOrders2(OrderDate);

 Another workaround would be to switch the partition to a staging table, moving that table to a new
filegroup with an online index rebuild, and then switching the table back to being the partition to the
original table. This method requires some planning and additional code to make it transparent to the client
applications.

CHAPTER 16 ■ DATA PARTITIONING

359

 Let’s look more closely at this approach. One of the key elements here is the view, which works as
another layer of abstraction for the client code, hiding the staging table during the data movement process.

 Let’s create a table that stores data for the year 2016 and is partitioned on a monthly basis. The table
stores the data up to April in the FG1 filegroup, using FG2 afterward. You can see the code for doing this in
Listing 16-19 .

 Listing 16-19. Using a temporary table to move partition data: Table and view creation

 create partition function pfOrders(datetime2(0))
 as range right for values
 ('2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01');

 create partition scheme psOrders
 as partition pfOrders
 to (FG1,FG1,FG1,FG1,FG2,FG2,FG2);

 create table dbo.tblOrders
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
);

 create unique clustered index IDX_tblOrders_OrderDate_OrderId
 on dbo.tblOrders(OrderDate, OrderId)
 on psOrders(OrderDate);

 create nonclustered index IDX_tblOrders_CustomerId
 on dbo.tblOrders(CustomerId)
 on psOrders(OrderDate);
 go

 create view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other
Columns*/)
 with schemabinding
 as
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.tblOrders;

 As you can see, the script creates an updateable dbo.Orders view in addition to the table. All access to
the data should be done through that view.

 Let’s assume that you want to move May 2016 data to the FG1 filegroup. As a first step, you need to create
a staging table and switch May’s partition to be located there. The table must reside in the FG2 filegroup and
have a CHECK constraint defined. The code for accomplishing this is shown in Listing 16-20 .

CHAPTER 16 ■ DATA PARTITIONING

360

 Listing 16-20. Using a temporary table to move partition data: Switching the partition to the staging table

 create table dbo.tblOrdersStage
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
 constraint CHK_tblOrdersStage
 check(OrderDate >= '2016-05-01' and OrderDate < '2016-06-01')
);

 create unique clustered index IDX_tblOrdersStage_OrderDate_OrderId
 on dbo.tblOrdersStage(OrderDate, OrderId)
 on [FG2];

 create nonclustered index IDX_tblOrdersStage_CustomerId
 on dbo.tblOrdersStage(CustomerId)
 on [FG2];

 alter table dbo.tblOrders switch partition 5 to dbo.tblOrdersStage;

 Now you have data in two different tables, and you need to alter the view, making it partitioned. That
change allows client applications to read the data transparently from both tables. However, it would prevent
the view from being updateable. The simplest way to address this is to create INSTEAD OF triggers on the
view.

 You can see the code for doing this in Listing 16-21 . It shows only one INSTEAD OF INSERT trigger
statement in order to save space in this book.

 Listing 16-21. Using a temporary table to move partition data: Altering the view

 alter view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other
Columns*/)
 with schemabinding
 as
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.tblOrders
 union all
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.tblOrdersStage
 go

 create trigger dbo.trgOrdersView_Ins
 on dbo.Orders
 instead of insert
 as
 if @@rowcount = 0 return
 set nocount on
 if not exists(select * from inserted)
 return

CHAPTER 16 ■ DATA PARTITIONING

361

 insert into dbo.tblOrders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId)
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId
 from inserted
 where OrderDate < '2016-05-01' or OrderDate >= '2016-06-01';

 insert into dbo.tblOrdersStage(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId)
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId
 from inserted
 where OrderDate >= '2016-05-01' and OrderDate < '2016-06-01';

 You can now move the staging table to the FG1 filegroup by performing an index rebuild, as shown in
Listing 16-22 . It is worth repeating that if the table has LOB columns, it cannot work as an online operation
in SQL Server 2005-2008R2. Moreover, you will need to use a workaround and rebuild the indexes to the new
partition scheme to move the LOB_DATA allocation units, as was shown earlier in Listing 16-14 .

 Listing 16-22. Using a temporary table to move partition data: Moving the staging table

 create unique clustered index IDX_tblOrdersStage_OrderDate_OrderId
 on dbo.tblOrdersStage(OrderDate, OrderId)
 with (drop_existing=on, online=on)
 on [FG1];

 create nonclustered index IDX_tblOrdersStage_CustomerId
 on dbo.tblOrdersStage(CustomerId)
 with (drop_existing=on, online=on)
 on [FG1];

 As the final step, you need to move the dbo.tblOrders table’s May data partition to the FG1 filegroup by
merging and splitting the partition function. The partition is empty, and a schema modification (SCH- M)
lock will not be held for a long time. After that, you can switch the staging table back to being a partition to the
 dbo.tblOrders table, drop the trigger, and alter the view again. The code for doing this is shown in Listing 16-23 .

 Listing 16-23. Using a temporary table to move partition data: Moving the staging table

 alter partition function pfOrders() merge range ('2016-05-01');

 alter partition scheme psOrders next used [FG1];

 alter partition function pfOrders() split range ('2016-05-01');

 alter table dbo.tblOrdersStage switch to dbo.tblOrders partition 5;

 drop trigger dbo.trgOrdersView_Ins;

 alter view dbo.Orders(OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/)
 with schemabinding
 as
 select OrderId, OrderDate, OrderNum, OrderTotal, CustomerId /*Other Columns*/
 from dbo.tblOrders;

 The same technique would work if you needed to archive data into another table. You could switch the
staging table to be a partition there, as long as the table schemas and indexes were the same.

CHAPTER 16 ■ DATA PARTITIONING

362

 Moving Data Files Between Disk Arrays
 As you can see, there are plenty of limitations that can prevent online cross-filegroup data movement, even
in the Enterprise Edition of SQL Server. It is simply impossible to do this in the non-Enterprise editions,
which do not support online index rebuilds at all.

 Fortunately, there is still a workaround that allows you to build tiered storage, regardless of those
limitations. You can keep the objects in the same filegroups by moving the filegroup database files to
different disk arrays.

 There are two ways to implement this. First, you can manually copy the data files and alter the database
to specify their new locations. Unfortunately, this approach requires system downtime for the duration of
the file copy operation, which can take a long time with large amount of data unless the system is using
database mirroring as High Availability technology. When this is the case, you can move database files using
the following set of actions:

 1. Modify file paths using the ALTER DATABASE MODIFY FILE (FILENAME=...)
commands on the secondary (mirror) server. This is a metadata operation, which
changes files’ locations in the system catalogs.

 2. Shut down secondary (mirror) instance and copy database files to the new
locations.

 3. Start secondary (mirror) instance and perform failover, making it primary
(principal) server.

 4. Repeat the process on the former primary (principal) and now secondary
(mirror) server.

 Even though this approach is almost transparent to the client applications, it requires you to shut down
entire SQL Server instances and perform failover operations. There is also the possibility of data loss if the
primary (principal) server crashes when the secondary (mirror) server is offline.

 There is another method that allows you to move the data online by adding new files to the filegroup
and shrinking the original files with the DBCC SHRINKFILE(EMPTYFILE) command. SQL Server moves the
data between files transparently to the client applications, keeping the system online, no matter the edition
of SQL Server.

 Listing 16-24 shows the code for moving data files from filegroup FG2015 to disk S: . It assumes that the
filegroup has two files with the logical names Orders2015_01 and Orders2015_02 before the execution.

 Listing 16-24. Moving data files between disk arrays

 use master
 go

 alter database OrderEntryDB
 add file (name = N'Orders2015_03', filename = N'S:\Orders2015_03.ndf')
 to filegroup [FG1];

 alter database OrderEntryDB
 add file (name = N'Orders2015_04', filename = N'S:\Orders2015_04.ndf')
 to filegroup [FG1];
 go

 use OrderEntryDb
 go

CHAPTER 16 ■ DATA PARTITIONING

363

 -- Preventing the second OLD file to grow
 -- This stops movement of the data between OLD data files
 declare
 @MaxFileSizeMB int
 ,@SQL nvarchar(max)

 -- Obtaining the current file size
 select @MaxFileSizeMB = size / 128 + 1
 from sys.database_files
 where name = 'Orders2015_02';

 set @SQL = N'alter database OrderEntryDb
 modify file(name=N''Orders2015_02'',maxsize=' +
 convert(nvarchar(32),@MaxFileSizeMB) + N'MB);';

 exec sp_executesql @SQL;

 -- Step 1: Shrinking and removing first old file
 dbcc shrinkfile(Orders2015_01, emptyfile);
 alter database OrderEntryDb remove file Orders2015_01;

 -- Step 2: Shrinking and removing second old file
 dbcc shrinkfile(Orders2015_02, emptyfile);
 alter database OrderEntryDb remove file Orders2015_02;

 ■ Important Make sure to create new files with the same initial size and auto-growth parameters, with
growth size specified in MB. This helps SQL Server evenly distribute data across data files.

 When you empty a file with the DBCC SHRINKFILE command, it distributes the data across all other files
in the filegroup, including files that you will empty and remove in the next steps. You can avoid this overhead
by restricting maximum file size and preventing the auto-growth of the files you are going to remove, as was
shown in Listing 16-24 .

 Unfortunately, this approach introduces index fragmentation. The data in the new data files would be
heavily fragmented after the DBCC SHRINKFILE operation. You should perform index maintenance after the
data has been moved.

 ■ Tip Index REORGANIZE could be a better choice than REBUILD in this case. REORGANIZE is an online
operation, which would not block access to the table. Moreover, it would not increase the size of the data files.

 Both DBCC SHRINKFILE and index maintenance introduce a huge amount of transaction log activity. You
need to remember this behavior and perform regular log backups to allow the transaction log to truncate.

 ■ Note We will discuss transaction log management in greater depth in Chapter 30 , “Transaction Log
Internals.”

http://dx.doi.org/10.1007/978-1-4842-1964-5_30

CHAPTER 16 ■ DATA PARTITIONING

364

 Finally, it is worth noting that this technique would not work for the movement of the primary (MDF)
data file in the database. SQL Server does not allow you to remove this file from the database. It is another
reason why it is better to avoid storing any user objects in the primary filegroup.

 ■ Tip You can still run the DBCC SHRINKFILE(EMPTYFILE) command on the primary (MDF) data file. It would
move the majority of the data to other files in the primary filegroup and fail during the final stage of the execution.

 You can monitor the progress of the SHRINK operation by using the script shown in Listing 16-25 . This
script shows you the currently allocated file size and amount of free space for each of the database files.

 Listing 16-25. Monitoring the size of the database files

 select
 name as [FileName], physical_name as [Path], size / 128.0 as [CurrentSizeMB]
 ,size / 128.0 - convert(int,fileproperty(name,'SpaceUsed')) / 128.0 as [FreeSpaceMb]
 from sys.database_files

 Tiered Storage in Action
 Table 16-6 shows the available online data movement options for different database objects based on the
version and edition of SQL Server in use.

 Table 16-6. Online Data Movement of Database Objects Based on the SQL Server Version and Edition

 Moving Partition to
Different Filegroup

 Moving Table with
LOB Columns to
Different Filegroup

 Moving Table without
LOB Columns to
Different Filegroup

 Moving Data to
Different Disk Array

 SQL Server
2012-2016
Enterprise
Edition

 Straightforward
approach held
schema modification
(SCH-M) lock. Can
be implemented with
staging table and
partitioned view
 (Subject of LOB
column offline index
rebuild limitation in
SQL Server 2005-
2008R2)

 Supported Supported Supported in every
edition
 (Introduces
fragmentation and
overhead) SQL Server

2005-2008R2
Enterprise
Edition

 Not Supported Supported

 Non-Enterprise
Edition

 N/A Not Supported Not Supported

 As you can see, it is generally easier to implement online data movement using non-partitioned rather
than partitioned tables. This makes the approach that we discussed in the “Using Partitioned Tables and
Views Together” section of this chapter one of the most optimal solutions. With such an approach, you are
using non-partitioned tables to store operational data, keeping the historical data in partitioned tables, as
was shown in Figure 16-6 .

CHAPTER 16 ■ DATA PARTITIONING

365

 Figure 16-12. Tiered storage in action: Further steps

 Let’s look at the process of changing the operational period in more depth, assuming that you need to
archive May 2016 data and extend the operational period to July 2016.

 In the first step shown in Figure 16-11 , you move the dbo.Orders2016_05 table from FASTSTORAGE to the
 FG2016 filegroup.

 Figure 16-11. Tiered storage in action: Moving the dbo.Orders2016_05 table

 After that, you switch the dbo.Orders2016_05 table into the partition of the dbo.Orders2016 table,
creating a new dbo.Orders2016_07 table in the FASTSTORAGE filegroup and recreating the partitioned view.
You can see these steps demonstrated in Figure 16-12 .

CHAPTER 16 ■ DATA PARTITIONING

366

 All of these operations can be done online with the Enterprise Edition of SQL Server 2012 and above.
They can also be done online with SQL Server 2005-2008R2, as long as the tables do not contain LOB
columns.

 There is still the possibility of a lengthy hold of the schema modification (SCH-M) lock at the time when
you switch dbo.Orders2016_05 into the dbo.Orders2016 table. One of the things you need to do during this
process is to change the CHECK constraint on the dbo.Orders2016 table to indicate that the table now stores
May 2016 data. Unfortunately, SQL Server always scans one of the indexes in the table to validate CHECK
constraints and holds the schema modification (SCH-M) lock during the scan.

 One of the ways to work around such a problem is to create multiple CHECK constraints at the CREATE
TABLE stage and drop them later. In the example shown in Listing 16-26 , we create twelve CHECK constraints
in the dbo.Orders2016 table. Every time we switch the operational table as the partition, we drop a
constraint, a metadata operation, rather than create a new one.

 Listing 16-26. Creating multiple CHECK constraints on a table

 create table dbo.Orders2016
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,

 constraint CHK_Orders2016_01 check(OrderDate >= '2016-01-01' and OrderDate < '2016-02-01'),
 constraint CHK_Orders2016_02 check(OrderDate >= '2016-01-01' and OrderDate < '2016-03-01'),
 constraint CHK_Orders2016_03 check(OrderDate >= '2016-01-01' and OrderDate < '2016-04-01'),
 constraint CHK_Orders2016_04 check(OrderDate >= '2016-01-01' and OrderDate < '2016-05-01'),
 constraint CHK_Orders2016_05 check(OrderDate >= '2016-01-01' and OrderDate < '2016-06-01'),
 constraint CHK_Orders2016_06 check(OrderDate >= '2016-01-01' and OrderDate < '2016-07-01'),
 constraint CHK_Orders2016_07 check(OrderDate >= '2016-01-01' and OrderDate < '2016-08-01'),
 constraint CHK_Orders2016_08 check(OrderDate >= '2016-01-01' and OrderDate < '2016-09-01'),
 constraint CHK_Orders2016_09 check(OrderDate >= '2016-01-01' and OrderDate < '2016-10-01'),
 constraint CHK_Orders2016_10 check(OrderDate >= '2016-01-01' and OrderDate < '2016-11-01'),
 constraint CHK_Orders2016_11 check(OrderDate >= '2016-01-01' and OrderDate < '2016-12-01'),
 constraint CHK_Orders2016 check(OrderDate >= '2016-01-01' and OrderDate < '2017-01-01')
)
 on [FG2016]

 SQL Server evaluates all constraints during optimization and picks the most restrictive one.

 ■ Note Even though SQL Server does not prevent you from creating hundreds or even thousands of
 CHECK constraints per table, you should be careful about doing just that. An extremely large number of CHECK
constraints slows down query optimization. Moreover, in some cases optimization can fail due to stack size
limitations. With all that being said, such an approach works fine with a non-excessive number of constraints.

CHAPTER 16 ■ DATA PARTITIONING

367

 Tiered Storage and High Availability Technologies
 Even though we will discuss High Availability (HA) technologies in greater depth in Chapter 32 , it is
important to mention their compatibility with tiered storage and data movement in this chapter. There are
two different factors to consider: database files and filegroups management, and data movement overhead.
Neither of them affects the SQL Server failover cluster, where you have a single copy of the database.
However, such is not the case for transaction log – based HA technologies, such as AlwaysOn Availability
Groups, database mirroring, and log shipping.

 Neither of the High Availability technologies prevents you from creating database files. However, with
transaction log – based HA technologies, you should maintain exactly the same folder and disk structure on
all nodes, and SQL Server must be able to create new files in the same path everywhere. Otherwise, HA data
flow would be suspended.

 Another important factor is the overhead introduced by the index rebuild or DBCC SHRINKFILE
commands. They are very I/O intensive and generate a huge amount of transaction log records. All of these
records need to be transmitted to secondary nodes, which could saturate the network.

 There is one lesser-known problem, though. Transaction log – based HA technologies work with
transaction log records only. There is a set of threads, called REDO threads , which asynchronously replay
transaction log records and apply changes in the data files on the secondary nodes. Even with synchronous
synchronization, available in AlwaysOn Availability Groups and database mirroring, SQL Server
 synchronously saves (hardens) the log record in transaction logs only. The REDO threads apply changes in
the database files asynchronously .

 The performance of REDO threads is the limiting factor here. Data movement could generate
transaction log records faster than REDO threads can apply the changes in the data files. It is not uncommon
for the REDO process to require minutes or even hours to catch up. This could lead to extended system
downtimes in the case of failover, because the database in the new primary node stays in a recovery state
until the REDO stage is done.

 You should also be careful if you are using readable secondaries with AlwaysOn Availability Groups.
Even though the data is available during the REDO process, it is not up to date, and queries against primary
and secondary nodes will return different results.

 ■ Note Any type of heavy transaction log activity can introduce such a problem with readable secondaries.

 You should be careful implementing tiered storage when transaction log – based HA technologies are in
use. You should factor potential downtime during failover into availability SLA and minimize it by moving
data on an index-by-index basis, allowing the secondaries to catch up in between operations. You should
also prevent read-only access to secondaries during data movement.

 Implementing Sliding Window Scenario and Data Purge
 OLTP systems are often required to keep data for a specific length of time. For example, an order entry
system could keep orders for a year and have a process that is run the first day of every month to delete older
orders. With this implementation, called a sliding window scenario , you have a window on the data that
 slides and purges the oldest data based on a given schedule.

 The only way to implement a sliding window scenario with non-partitioned data is by purging the
data with DELETE statements. This approach introduces huge I/O and transaction log overhead. Moreover,
it could contribute to concurrency and blocking issues in the system. Fortunately, data partitioning
dramatically simplifies this task, making the purge a metadata-only operation.

http://dx.doi.org/10.1007/978-1-4842-1964-5_32

CHAPTER 16 ■ DATA PARTITIONING

368

 When you implement a sliding window scenario, you usually partition the data based on the purge
interval. Even though it is not a requirement, it helps you to keep the purge process on a metadata level. As
an example, in the order entry system just described you could partition the data on a monthly basis.

 In the case of partitioned views, the purge process is simple. You need to drop the oldest table, create
another table for the next partition period data, and then recreate the partitioned view. It is essential to have
the next partition period table predefined to make sure that there is always a place where the data can be
inserted.

 Partitioned table implementation is similar. You can purge old data by switching the corresponding
partition to a temporary table, which you can truncate afterward. For the next month’s data, you need to use
the split partition function.

 There is a catch, though. In order to keep the operation on a metadata level and reduce the time
that the schema modification (SCH-M) lock is held, you should keep the rightmost partition empty. This
prevents SQL Server from moving data during the split process, which can be very time consuming in case
with large tables.

 ■ Note Even a metadata-level partition switch can lead to locking and blocking in very active OLTP
systems. SQL Server 2014 introduces the concept of low-priority locks, which can be used to improve system
concurrency during such operations. We will discuss them in detail in Chapter 23 , “Schema Locks.”

 Let’s look at an example, assuming that it is now June 2016 and the purge process will run on July 1st.
As you can see in Listing 16-27 , the partition function pfOrderData has boundary values of 2016-07-01
and 2016-08-01. These values predefine two partitions: one for the July 2016 data and an empty rightmost
partition that you would split during the purge process.

 It is important to have both partitions predefined. The data will be inserted into the July 2016 partition
as of midnight of July 1st, before the purge process is running. The empty rightmost partition guarantees that
the partition split during the purge process will be done at the metadata level.

 There is also a dbo.OrderDataTmp table created in the script, which we will use as the destination for the
partition switch and purge. That table must reside in the same filegroup with the leftmost partition and have
the same schema and indexes defined.

 Listing 16-27. Sliding window scenario: Object creation

 create partition function pfOrderData(datetime2(0))
 as range right for values
 ('2015-07-01','2015-08-01','2015-09-01','2015-10-01','2015-11-01','2015-12-01'
 ,'2016-01-01','2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01'
 ,'2016-07-01','2016-08-01' /* One extra empty partition */);

 create partition scheme psOrderData as partition pfOrderData all to ([FG1]);

 create table dbo.OrderData
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
);

http://dx.doi.org/10.1007/978-1-4842-1964-5_23

CHAPTER 16 ■ DATA PARTITIONING

369

 create unique clustered index IDX_OrderData_OrderDate_OrderId
 on dbo.OrderData(OrderDate, OrderId)
 on psOrderData(OrderDate);

 create nonclustered index IDX_OrderData_CustomerId
 on dbo.OrderData(CustomerId)
 on psOrderData(OrderDate);

 create table dbo.OrderDataTmp
 (
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 OrderTotal money not null,
 CustomerId int not null,
 /* Other Columns */
);

 create unique clustered index IDX_OrderDataTmp_OrderDate_OrderId
 on dbo.OrderDataTmp(OrderDate, OrderId)
 on [FG1];

 create nonclustered index IDX_OrderDataTmp_CustomerId
 on dbo.OrderDataTmp(CustomerId)
 on [FG1];

 The purge process is shown in Listing 16-28 . It switches the leftmost partition to the temporary table
and splits the rightmost partition, creating a new empty partition for next month’s run.

 Listing 16-28. Sliding window scenario: Purge process

 -- Purging old partition
 alter table dbo.OrderData switch partition 1 to dbo.OrderDataTmp;
 truncate table dbo.OrderDataTmp;

 -- Creating new partition
 alter partition scheme psOrderData next used [FG1];
 alter partition function pfOrderData() split range('2016-09-01');

 Potential Issues
 Despite all of the benefits that data partitioning delivers, they do come at a cost. First, SQL Server requires
a partitioned column to be a part of the clustered index key in the partitioned table. This, in turn, adds that
column to the row-id and increases the row size in every nonclustered index. For example, in a table that
stores 365 million rows, a datetime -partitioned column adds 2.7 GB per nonclustered index, not counting
fragmentation overhead and non-leaf-level storage space.

CHAPTER 16 ■ DATA PARTITIONING

370

 ■ Tip Always choose the most storage-efficient data type based on the business requirements. In the
previous example, you can use smalldatetime (four bytes) or datetime2(0) (six bytes) instead of datetime
(eight bytes) if one-minute or one-second precisions are acceptable.

 Even though you can mitigate this space increase in some cases by implementing data compression on
the historical data, the row-id size increase can add new non-leaf levels to the indexes as well as extra reads
when SQL Server traverses index B-trees.

 Uniqueness support is another issue. You cannot create a unique constraint or index on a partitioned
view. With partitioned tables, SQL Server requires a partitioned column to be part of aligned unique
nonclustered indexes. This enforces uniqueness only in the single-partition scope. Although you could
define non-aligned unique indexes, it would prevent you from using a partition switch, which is one of the
greatest benefits of partitioned tables.

 Unfortunately, there is no easy solution for this problem. In cases where you need to support
uniqueness across multiple data partitions, you have to implement complex code, often using a
 SERIALIZEABLE transaction isolation level, and this can introduce blocking issues in the system. We will
discuss transaction isolation levels in greater depth in Chapter 17 , “Lock Types.”

 Ultimately, the biggest problem with data partitioning is that it changes the execution plans of the
queries. It can introduce suboptimal performance for some queries, which worked just fine when the data
had not been partitioned.

 Let’s look at one such example and create a non-partitioned table, then populate it with some random
data, as shown in Listing 16-29 .

 Listing 16-29. Potential issues with data partitioning: Creating a non-partitioned table

 create table dbo.Data
 (
 Id int not null,
 DateCreated datetime not null
 constraint DEF_Data_DateCreated default getutcdate(),
 DateModified datetime not null
 constraint DEF_Data_DateModified default getutcdate(),
 Placeholder char(500) null
);

 create unique clustered index IDX_Data_Id
 on dbo.Data(DateCreated, Id);

 create unique nonclustered index IDX_Data_DateModified_Id
 on dbo.Data(DateModified, Id);

 declare @StartDate datetime = '2016-01-01';

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,N6(C) as (select 0 from N5 as T1 cross join N2 as T2 cross join N1 as T3) -- 524,288 rows
 ,IDs(ID) as (select row_number() over (order by (select NULL)) from N6)
 insert into dbo.Data(ID, DateCreated, DateModified)

http://dx.doi.org/10.1007/978-1-4842-1964-5_17

CHAPTER 16 ■ DATA PARTITIONING

371

 select ID, dateadd(second,35 * Id,@StartDate),
 case
 when ID % 10 = 0
 then dateadd(second, 24 * 60 * 60 * (ID % 31) + 11200 + ID % 59 + 35 * ID,

@StartDate)
 else dateadd(second,35 * ID,@StartDate)
 end
 from IDs;

 Let’s assume that we have a process that reads modified data from the table and exports it somewhere.
While there are a few different ways to implement such a task, perhaps the simplest method is to use a query,
as shown in Listing 16-30 , with the @DateModified parameter representing the most recent DateModified
value from the previous record set read.

 Listing 16-30. Potential issues with data partitioning: Reading modified data

 select top (@Top) Id, DateCreated, DateModified, PlaceHolder
 from dbo.Data
 where DateModified > @LastDateModified
 order by DateModified, Id

 The execution plan of the query, which selects 100 rows, is shown in Figure 16-13 . The plan is very
efficient, and it utilizes a nonclustered index seek with a range scan. SQL Server finds the first row with a
 DateModified value that exceeds @LastDateModified and then scans the index, selecting the first 100 rows
from there.

 Figure 16-13. Execution plan with non-partitioned table

 Now, let’s partition the table on a monthly basis, as shown in Listing 16-31 .

 Listing 16-31. Potential issues with data partitioning: Partitioning the table

 create partition function pfData(datetime)
 as range right for values
 ('2016-02-01', '2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01','2016-08-01');

 create partition scheme psData as partition pfData all to ([FG1]);

 create unique clustered index IDX_Data_DateCreated_Id
 on dbo.Data(DateCreated,ID)
 on psData(DateCreated);

CHAPTER 16 ■ DATA PARTITIONING

372

 create unique nonclustered index IDX_Data_DateModified_Id_DateCreated
 on dbo.Data(DateModified, ID, DateCreated)
 on psData(DateCreated);

 If you run the code from Listing 16-30 again, the execution plan would change, as shown in
Figure 16-14 . As you can see, SQL Server decides to use a clustered index scan , which dramatically
decreases the performance of the query.

 Figure 16-15. Execution plan with index hint

 Figure 16-14. Execution plan with partitioned table

 The root cause of the problem is related to the fact that the data in clustered and nonclustered indexes
are now sorted on a partition-by-partition basis rather than across the entire table. You can think about
each partition as an individual table with its own set of data and indexes. SQL Server decides that, in such a
situation, a clustered index scan is the cheapest option with which to proceed.

 Let’s look at what happens if you force SQL Server to use a nonclustered index with an index hint, as
shown in Listing 16-32 .

 Listing 16-32. Potential issues with data partitioning: Using a nonclustered index with a hint

 declare
 @LastDateModified datetime = '2016-05-25'

 select top 100 Id, DateCreated, DateModified, PlaceHolder
 from dbo.Data with (index=IDX_Data_DateModified_Id_DateCreated)
 where DateModified > @LastDateModified
 order by DateModified, Id

 As you can see in Figure 16-15 , the execution plan is even less efficient than before. SQL Server located
and read all of the rows with a DateModified greater than @ LastDateModified from every partition, and it
performed a key lookup operation for all of them, sorting the data afterward.

CHAPTER 16 ■ DATA PARTITIONING

373

 There is no easy way to fix the problem. You can use non-aligned nonclustered indexes, which are
not partitioned. Unfortunately, you cannot use a partition switch in such cases, nor perform a piecemeal
database restore, making subsets of the data available to customers. Thus, the only option you have is code
re-factoring.

 ■ Tip You can drop a non-aligned nonclustered index before a partition switch and recreate it after the
switch is done.

 The $PARTITION system function returns a partition number for the value provided as a parameter.
You can use this function in a where clause in the query, which eliminates other partitions and produces
execution plans similar to the queries against non-partitioned tables. You can see the query, which reads
modified rows from partition 5, in Listing 16-33 .

 Listing 16-33. Potential issues with data partitioning: Selecting data from a single partition

 declare
 @LastDateModified datetime = '2016-05-25'

 select top 100 Id, DateCreated, DateModified, PlaceHolder
 from dbo.Data with (index=IDX_Data_DateModified_Id_DateCreated)
 where
 DateModified > @LastDateModified and
 $partition.pfData(DateCreated) = 5
 order by DateModified, Id

 As you can see in Figure 16-16 , the execution plan is very similar to the query that read modified data
from the non-partitioned table.

 Figure 16-16. Execution plan for the query: Selecting data from a single partition

 In some cases, you can use this behavior to optimize queries against partitioned tables. In our case, you
can have the following algorithm:

 1. Read the top 100 modified rows from every partition using the $PARTITION
function, limiting execution to the single-partition scope.

 2. Sort the rows read in the previous step and select the top 100 rows across all
partitions.

 3. Select data from the clustered index for the 100 rows returned by the previous
step.

CHAPTER 16 ■ DATA PARTITIONING

374

 The first step of the algorithm requires you to know the number of partitions in the table. You can use
 sys.partition_range_values DMV to find the number of boundary values in the partition function, which is
one less than the number of partitions in the table.

 The code in Listing 16-34 shows an optimized version of the query. Partitions CTE returns the
numbers that correspond to the partition numbers in the table, which are used as filters in the CROSS APPLY
operator of the Steps1and2 CTE. The CROSS APPLY operator implements the first step of the algorithm. The
 SELECT in the CROSS APPLY executes once per partition.

 The outer select statement in the Steps1and2 CTE sorts the data returned by the CROSS APPLY operator
across all partitions, which is the second step in the algorithm.

 Finally, the last SELECT outside of the CTE is the third step in the algorithm.

 Listing 16-34. Potential issues with data partitioning: Optimized query

 declare
 @LastDateModified datetime = '2016-05-25'
 ,@BoundaryValuesCount int

 -- Getting number of boundary values in partition function
 select @BoundaryValuesCount = max(boundary_id)
 from sys.partition_functions pf join sys.partition_range_values prf on
 pf.function_id = prf.function_id
 where pf.name = 'pfData'

 ;with Partitions(PartitionNum)
 as
 (
 select 1
 union all
 select PartitionNum + 1
 from Partitions
 where PartitionNum <= @BoundaryValuesCount
)
 ,Steps1and2(Id, DateCreated, DateModified)
 as
 (
 select top 100 PartData.ID, PartData.DateCreated, PartData.DateModified
 from Partitions p
 cross apply
 (-- Step 1 - runs once per partition
 select top 100 Id, DateCreated, DateModified
 from dbo.Data
 where
 DateModified > @LastDateModified and
 $Partition.pfData(DateCreated) = p.PartitionNum
 order by DateModified, ID
) PartData
 order by PartData.DateModified, PartData.Id
)
 -- Step 3 - CI seek as Key Lookup operation
 select s.Id, s.DateCreated, s.DateModified, d.Placeholder
 from Steps1and2 s join dbo.Data d on
 d.Id = s.Id and s.DateCreated = d.DateCreated
 order by s.DateModified, s.Id

CHAPTER 16 ■ DATA PARTITIONING

375

 You can see the execution plan of this query in Figure 16-17 . The plan is almost as efficient as the one
against non-partitioned tables.

 Figure 16-17. Execution plan of the optimized query

 Unfortunately, SQL Server underestimates the number of executions and rows returned by recursive
CTE. It can lead to further cardinality estimation errors and subefficient execution plans in some cases. You
can avoid this error by using a temporary table to store partition numbers, as shown in Listing 16-35 .

 Listing 16-35. Storing partition numbers in a temporary table

 declare
 @LastDateModified datetime = '2016-05-25',
 @BoundaryValuesCount int

 create table #Partitions(PartitionNum smallint not null primary key);

 -- Getting number of boundary values in partition function
 select @BoundaryValuesCount = max(boundary_id)
 from sys.partition_functions pf join sys.partition_range_values prf on
 pf.function_id = prf.function_id
 where pf.name = 'pfData';

 ;with Partitions(PartitionNum)
 as
 (
 select 1
 union all
 select PartitionNum + 1
 from Partitions
 where PartitionNum <= @BoundaryValuesCount
)
 insert into #Partitions(PartitionNum)
 select PartitionNum from Partitions;

CHAPTER 16 ■ DATA PARTITIONING

376

 ;with Steps1and2(Id, DateCreated, DateModified)
 as
 (
 select top 100 PartData.ID, PartData.DateCreated, PartData.DateModified
 from #Partitions p
 cross apply
 (
 select top 100 Id, DateCreated, DateModified
 from dbo.Data
 where
 DateModified > @LastDateModified and
 $Partition.pfData(DateCreated) = p.PartitionNum
 order by DateModified, ID
) PartData
 order by PartData.DateModified, PartData.Id
)
 -- Step 3 - CI seek as Key Lookup operation
 select s.Id, s.DateCreated, s.DateModified, d.Placeholder
 from Steps1and2 s join dbo.Data d on
 d.Id = s.Id and s.DateCreated = d.DateCreated
 order by s.DateModified, s.Id

 Alternatively, if the number of partitions is static and predefined, you can hardcode it in the Partitions
CTE, as shown in Listing 16-36 .

 Listing 16-36. Hardcoding partition numbers

 declare
 @LastDateModified datetime = '2016-05-25'

 ;with Partitions(PartitionNum)
 as
 (
 select v.V from (values(1),(2),(3),(4),(5),(6),(7),(8)) v(V)
)
 ,Steps1and2(Id, DateCreated, DateModified)
 as
 (
 select top 100 PartData.ID, PartData.DateCreated, PartData.DateModified
 from Partitions p
 cross apply
 (
 select top 100 Id, DateCreated, DateModified
 from dbo.Data
 where
 DateModified > @LastDateModified and
 $Partition.pfData(DateCreated) = p.PartitionNum
 order by DateModified, ID
) PartData
 order by PartData.DateModified, PartData.Id
)

CHAPTER 16 ■ DATA PARTITIONING

377

 -- Step 3 - CI seek as Key Lookup operation
 select s.Id, s.DateCreated, s.DateModified, d.Placeholder
 from Steps1and2 s join dbo.Data d on
 d.Id = s.Id and s.DateCreated = d.DateCreated
 order by s.DateModified, s.Id

 To review, data partitioning changes the execution plans of the queries. You should carefully test
systems in a staging environment using databases of a size and data distribution similar to that of
production. This will help to avoid unpleasant surprises when changes are implemented on production
servers.

 Summary
 Management of a large amount of data is a challenging task, especially when the data is not partitioned.
Keeping a large amount of data in the same place is not efficient for several different reasons. It increases
storage costs and introduces overhead due to the different workload and index management requirements
for the various parts of the data. Moreover, it prevents piecemeal database restore, which complicates
availability SLA compliance.

 There are two main data partitioning techniques available in SQL Server. Partitioned tables are available
in the Enterprise Edition of SQL Server. They allow you to partition table data into separate internal tables/
partitions, which are transparent to client applications. Each partition can be placed in its own filegroup and
have its own data compression. However, the database schema, indexes, and statistics are the same across
all partitions.

 Alternatively, you can partition the data by separating it between multiple tables, combining all of them
through a partitioned view using the union all operator. Every table can have its own schema and set of
indexes and maintain its own statistics. Partitioned views are supported in all editions of SQL Server.

 Although partitioned views are more flexible, such an implementation requires code re-factoring and
increases the system maintenance cost because of the large number of tables involved. You can reduce that
cost by combining partitioned tables and views together.

 Data partitioning helps reduce storage subsystem cost by implementing tiered storage. With such
an approach, you can place active operational data on a fast disk array while keeping old, rarely accessed
historical data on cheaper disks. You should design a strategy that allows you to move data between different
disk arrays when needed. Different versions and editions of SQL Server require different implementation
approaches for this task.

 You should be careful moving a large amount of data when transaction log – based High Availability
technologies are in use. A large amount of transaction log records leads to a REDO process backlog on
secondary nodes and can increase system downtime in case of a failover. Moreover, you should prevent
queries from accessing readable secondaries in case of a backlog.

 You can use data partitioning to improve the performance and concurrency of data import and purge
operations. Make sure to keep the rightmost partition empty when you are implementing a sliding window
scenario in the system.

 Finally, data partitioning comes at a cost. In the case of partitioned tables, a partition column must be
included in the clustered index, which increases the size of nonclustered index rows. Moreover, indexes
are sorted within individual partitions. This can lead to suboptimal execution plans and regressions after
partitioning has been implemented. The $PARTITION function can be used to access data in individual
partitions, and this can help with optimization.

 PART III

 Locking, Blocking, and
Concurrency

381© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_17

 CHAPTER 17

 Lock Types and Transaction
Isolation Levels

 The concurrency model is, perhaps, the least understood part of SQL Server internals. It can often be
confusing; you can encounter hard-to-explain blocking issues in almost every SQL Server installation.
Internally, however, the SQL Server concurrency model is based on several well-defined principles, which
we are going to discuss in this part of the book.

 This chapter starts with the key concept of SQL Server concurrency — locks . It will provide an overview
of the major lock types in SQL Server, explain their compatibility, and, finally, demonstrate how different
transaction isolation levels affect the lifetime of the locks in the system.

 PART III CODE

 All of the code examples in Part III of this book will rely on the Delivery.Orders table defined here.
This table has a clustered primary key on the OrderId column with no nonclustered indexes defined.

 create table Delivery. Orders
 (
 OrderId int not null identity(1,1),
 OrderDate smalldatetime not null,
 OrderNum varchar(20) not null,
 Reference varchar(64) null,
 CustomerId int not null,
 PickupAddressId int not null,
 DeliveryAddressId int not null,
 Amount smallmoney not null,
 ModTime datetime2(0) not null,
 Placeholder char(100) not null

 constraint PK_Orders
 primary key clustered(OrderId)
)

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

382

 Transactions and ACID
 Transactions are the units of work that read and modify data in a database and help to enforce the
consistency and durability of the data in a system. Every transaction in a properly implemented transaction-
management system has four different characteristics known as atomicity , consistency , isolation , and
 durability , often referenced as ACID .

• Atomicity guarantees that each transaction executes as an “all or nothing” approach.
All changes done within a transaction are either committed or rolled back in full.
Consider the classic example of transferring money between checking and savings
bank accounts. That action consists of two separate operations: decreasing the
balance of the checking account and increasing the balance of the savings account.
Transaction atomicity guarantees that both operations either succeed or fail
together, and a system will never be in the situation where money was deducted
from the checking account but was never added to the savings account.

• Consistency ensures that any database transaction brings the database from
one consistent state to another and that none of the defined database rules and
constraints are violated.

• Isolation ensures that the changes done in the transaction are isolated and invisible
to other transactions until the transaction is committed.

• Durability guarantees that after a transaction is committed, all changes done by the
transaction stay permanent and will survive a system crash. SQL Server achieves
durability by flushing transaction log records to disk at the commit stage.

 Isolation is, perhaps, the most complex requirement to implement. By the book, transaction isolation
should guarantee that the concurrent execution of multiple transactions brings the system to the same
state as if those transactions were executed serially. However, in most database systems such a rule is often
relaxed and is controlled by transaction isolation levels .

 Historically, SQL Server supports six isolation levels , which can be separated into two different
categories. Pessimistic isolation levels , such as READ UNCOMMITTED , READ COMMITTED , REPEATABLE READ , and
 SERIALIZABLE rely strictly on locking. Optimistic isolation levels —READ COMMITTED SNAPSHOT and SNAPSHOT—
 utilize row versioning in addition to locking.

 We will discuss pessimistic isolation levels in detail in this chapter and will cover optimistic isolation
levels in Chapter 21 of this book.

 Major Lock Types
 SQL Server uses locking to support the isolation requirement of the transaction. The locks are acquired
and held on the resources , such as data rows, pages, tables (objects), databases, and others. By default, SQL
Server uses row-level locking when acquiring locks on data rows, which minimizes possible concurrency
issues in the system. You should remember, however, that the only guarantee SQL Server provides is
enforcing data isolation and consistency based on transaction isolation levels. The locking behavior is not
documented, and in some cases SQL Server can choose to use a lower locking granularity than row-level
locking. Nevertheless, lock compatibility rules are always enforced, and an understanding of the locking
model is enough to troubleshoot and address the majority of concurrency issues in the system.

 Internally, SQL Server uses more than 20 different lock types. However, they can be grouped into several
major categories based on their type and usage.

http://dx.doi.org/10.1007/978-1-4842-1964-5_21

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

383

 Exclusive (X) Locks
 Exclusive (X) locks are acquired by writers —INSERT , UPDATE , DELETE , and MERGE statements that modify
data. These queries acquire an exclusive (X) lock on the affected rows and hold them until the end of the
transaction. As you can guess by the name— exclusive means exclusive —only one session can hold an
exclusive (X) lock on the resource at any given point in time. This behavior enforces the most important
concurrency rule in the system — multiple sessions cannot modify the same data simultaneously. That’s it.
Other sessions are unable to acquire exclusive (X) locks on the row until the first transaction is completed
and exclusive (X) lock on the modified row is released.

 Transaction isolation levels do not affect exclusive (X) lock behavior. Exclusive (X) locks are acquired
and held until the end of the transaction, even in READ UNCOMMITTED mode. The longer a transaction you
have, the longer the exclusive (X) locks would be held.

 Intent (I*) Locks
 Even though row-level locking improves consistency, keeping the locks on only the row level would be bad
from a performance standpoint. Consider a situation where a session needs to have exclusive access to
the table — for example, during the table alteration. In this case, if only row-level locking existed, the session
would have to scan the entire table, checking whether any row-level locks were held there. As you can
imagine, this would be an extremely inefficient process, especially on large tables.

 SQL Server addresses this situation by introducing the concept of intent (I*) locks . Intent locks are held
on the data page and table levels, and they indicate the existence of locks on the child objects. Let’s run
the code from Listing 17-1 and check what locks were held after we updated one row in the table. The code
uses sys.dm_tran_locks dynamic management view (DMV) , which returns information about current lock
requests in the system.

 Listing 17-1. Updating a row and checking the locks held

 set transaction isolation level read uncommitted
 begin tran
 update Delivery.Orders
 set Reference = 'New Reference'
 where OrderId = 100;

 select resource_type, resource_description,
 request_type, request_mode, request_status
 from sys.dm_tran_locks
 where request_session_id = @@spid;
 commit

 Figure 17-1 illustrates the output from this SELECT statement . As you can see, SQL Server held an
exclusive (X) lock on the row (key) and two intent exclusive (IX) locks —one each on the page and on the
object (table). Those intent exclusive (IX) locks indicate the existence of the exclusive (X) row-level lock
held. Finally, there is also the shared (S) lock on the database, which we will cover later in this chapter.

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

384

 The resource_description column indicates the resources on which those locks are acquired. For the
page, it indicates its physical location (page 944 in database file 1) and for the row (key) it indicates the hash
value of the index key.

 When a session needs to obtain object- or page-level locks , it could check the lock compatibility with
the other locks (intent or full) held on the table or page rather than scanning the table/page and checking
row-level locks there.

 Update (U) Locks
 SQL Server uses another lock type, update (U) locks , during data modifications, acquiring them while
searching for the rows that need to be updated. After an update (U) lock is acquired, SQL Server reads the
row and evaluates if the row needs to be updated by checking the row data against query predicates. If this
is the case, SQL Server converts update (U) to an exclusive (X) lock and performs the data modification.
Otherwise, the update (U) lock is released.

 Let’s look at the example and run the code seen in Listing 17-2 .

 Listing 17-2. Updating multiple rows using a clustered index key as the predicate

 begin tran
 update Delivery.Orders
 set Reference = 'New Reference'
 where OrderId in (1000, 5000);
 commit

 Figure 17-2 illustrates how locks were acquired and released during query execution. SQL Server
acquired an intent exclusive (IX) lock on the table and then intent update (IU) locks on the pages and update
(U) locks on the rows, converting them to intent exclusive (IX) and exclusive (X) locks afterward. The locks
were held until the end of the transactions and were released at the time of COMMIT .

 Figure 17-1. Exclusive (X) and intent exclusive (IX) locks

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

385

 Update (U) locks’ behavior depends on the execution plan. In some cases, SQL Server acquires update
(U) locks on all rows first, converting them to exclusive (X) locks afterward. In other cases — when, for
example, you update only one row based on the clustered index value — SQL Server can acquire an exclusive
(X) lock without an update (U) lock being used at all.

 The number of locks to acquire also greatly depends on the execution plan. Let’s run the UPDATE
Delivery.Orders SET Reference = 'Ref' WHERE OrderNum='1000' statement, filtering data based on
the OrderNum column. Figure 17-3 illustrates the locks that were acquired and released along with the total
number of locks processed.

 Figure 17-2. Update (U) and exclusive (X) locks

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

386

 There are no indexes on the OrderNum column, and SQL Server needs to perform a clustered index scan ,
acquiring an update (U) lock on every row from the table. More than one million locks have been acquired,
even though the statement updated just a single row.

 This behavior illustrates one of the typical blocking scenarios. Consider a situation where one of the
sessions held an exclusive (X) lock on a single row. If another session tried to update a different row by
running a nonoptimized UPDATE statement , SQL Server would acquire an update (U) lock on every row it
is scanning and eventually would be blocked from reading the row with the exclusive (X) lock held on it. It
does not matter that the second session does not need to update that row; SQL Server still needs to acquire
an update (U) lock to evaluate if the row needs to be updated.

 Shared (S) Locks
 Shared (S) locks are acquired by the readers —SELECT queries — in the system. As you can guess by the name, shared
(S) locks are compatible with each other, and multiple sessions can hold shared (S) locks on the same resource.

 Let’s run the code from Table 17-1 to illustrate that.

 Table 17-1. Shared (S) Locks

 Session 1 (SPID=53) Session 2 (SPID=55)

 set transaction isolation level repeatable read
 begin tran
 select OrderNum

from Delivery.Orders
where OrderId = 500;

 set transaction isolation level repeatable read
 begin tran
 select OrderNum

from Delivery.Orders
where OrderId = 500;

 select request_session_id, resource_type
 ,resource_description, request_type
,request_mode, request_status

 from sys.dm_tran_locks;
 commit; commit

 Figure 17-3. Locks during query execution

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

387

 Figure 17-4 illustrates the output from the sys.dm_tran_locks view. As you can see, both sessions
acquired shared (S) locks on the database, intent shared (IS) locks on the table and page (1:955), and shared
(S) locks on the row, all without blocking each other.

 Lock Compatibility, Behavior, and Lifetime
 Table 17-2 shows the lock compatibility matrix .

 The key lock compatibility rules are as follows:

• Intent (IS/IU/IX) locks are compatible with each other. Intent locks indicate the
existence of locks on the child objects, and multiple sessions can hold intent locks on
the object and page levels simultaneously.

• Exclusive (X) locks are incompatible with each other and any other lock types.
Multiple sessions cannot update the same row simultaneously. Moreover, readers
that acquire shared (S) locks cannot read uncommitted rows with exclusive (X) locks
held on them.

• Update (U) locks are incompatible with each other as well as with exclusive (X) locks.
Writers cannot evaluate if the row needs to be updated simultaneously nor access a
row that has an exclusive (X) lock held.

• Update (U) locks are compatible with shared (S) locks. Writers can evaluate if the
row needs to be updated without a block or being blocked by the readers. It is worth
noting that (S)/(U) lock compatibility is the main reason why SQL Server uses update
(U) locks internally. They reduce the blocking between readers and writers.

 Figure 17-4. Locks acquired by the sessions

 Table 17-2. Lock Compatibility Matrix (I*, S, U, X locks)

 (IS) (S) (IU) (U) (IX) (X)

 (IS) Yes Yes Yes Yes Yes No

 (S) Yes Yes Yes Yes No No

 (IU) Yes Yes Yes No Yes No

 (U) Yes Yes No No No No

 (IX) Yes No Yes No Yes No

 (X) No No No No No No

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

388

 As you already know, exclusive (X) lock behavior does not depend on transaction isolation level.
 Writers always acquire exclusive (X) locks and hold them until the end of the transaction. With the
exception of the SNAPSHOT isolation level, the same is true for update (U) locks; writers use them when
evaluating if rows need to be updated.

 The shared (S) locks’ behavior, on the other hand, depends on transaction isolation level.

 ■ Note SQL Server always works with the data in transaction context. In this case, when applications do not
start explicit transactions with BEGIN TRAN / COMMIT statements, SQL Server uses implicit transactions for the
duration of the statements. Even SELECT statements run within their own lightweight transactions. SQL Server
does not write them to the transaction log, although all locking and concurrency rules still apply.

 In the READ UNCOMMITTED isolation level, shared (S) locks are not acquired. Therefore, readers can read
the rows that have been modified by other sessions and have exclusive (X) locks held on them. This isolation
level reduces the blocking in the system by eliminating conflicts between readers and writers at the cost
of the data consistency. Readers would read the current (modified) version of the row regardless of what
happens next — if changes would be rolled back, or if a row is modified multiple times. This explains why this
isolation level is often called a dirty read .

 The code in Table 17-3 illustrates this. The first session runs a DELETE statement, acquiring an exclusive
(X) lock on the row. The second session runs a SELECT statement in READ UNCOMMITTED mode.

 In the READ UNCOMMITTED isolation level, readers do not acquire shared (S) locks. Session 2 would not be
blocked and would return the result set shown in Figure 17-5 . It does not include the row with OrderId=95 ,
which has been deleted in the uncommitted transaction in the first session, even though the transaction is
rolled back afterward.

 Table 17-3. Transaction Isolation Levels and Concurrency

 Session 1 Session 2

 begin tran
 delete from Delivery.Orders
 where OrderId = 95;

 -- Success / No Blocking
 set transaction isolation level read uncommitted;
 select OrderId, Amount
 from Delivery.Orders
 where OrderId between 94 and 96;

 rollback;

 Figure 17-5. READ UNCOMMITTED and shared (S) lock behavior

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

389

 It is worth noting again that exclusive (X) and update (U) locks’ behavior is not affected by transaction
isolation level. You will have writers/writers blocking even in READ UNCOMMITTED mode.

 In the READ COMMITTED isolation level, SQL Server acquires and releases shared (S) locks immediately
after the row has been read. This guarantees that transactions cannot read uncommitted data from the other
sessions. Let’s run the code from Listing 17-3 .

 Listing 17-3. Reading data in READ COMMITTED isolation level

 set transaction isolation level read committed;
 select OrderId, Amount
 from Delivery.Orders
 where OrderId in (90,91);

 Figure 17-6 illustrates how SQL Server acquires and releases the locks. As you can see, row-level locks
are acquired and released immediately.

 It is worth noting that in some cases, in READ COMMITTED mode, SQL Server can hold shared (S) locks for
the duration of the SELECT statement. One such example is a query that reads LOB data from the table.

 In the REPEATABLE READ isolation level, SQL Server acquires shared (S) locks and holds them until the
end of transaction. This guarantees that other sessions cannot modify the data after it is read. You can see
that behavior if you run the code from Listing 17-3 , changing the isolation level to REPEATABLE READ .

 Figure 17-7 illustrates how SQL Server acquires and releases the locks. As you can see, SQL Server
acquires both shared (S) locks first, releasing them at the end of transaction.

 Figure 17-6. Shared (S) locks’ behavior in READ COMMITTED mode

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

390

 In the SERIALIZABLE isolation level, shared (S) locks are also held until the end of transaction. However,
SQL Server uses another variation of the locks called range locks . Range locks (both shared and exclusive)
protect index key ranges rather than individual rows.

 Consider a situation where a Delivery.Orders table has just two rows, with OrderId values of 1 and
10. In the REPEATABLE READ isolation level, a SELECT statement would acquire two row-level locks. Other
sessions would not be able to modify those rows, but they could still insert the new row in between those
values. In the SERIALIZABLE isolation level , a SELECT statement would acquire a range shared (RangeS-S)
lock, preventing other sessions from inserting any rows in between OrderId of 1 and 10.

 Figure 17-8 illustrates how SQL Server acquires and releases locks in the SERIALIZABLE isolation level.

 Table 17-4 summarizes how SQL Server works with shared (S) locks in pessimistic isolation levels.

 Figure 17-8. Shared (S) locks’ behavior in the SERIALIZABLE isolation level

 Figure 17-7. Shared (S) locks’ behavior in REPEATABLE READ mode

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

391

 You can control isolation levels and locking behavior on the transaction level by using the SET
TRANSACTION ISOLATION LEVEL statement, or on the table level with the table locking hint. It is also possible
to use different isolation levels in the same query on a per-table basis, as it is shown in Listing 17-4 .

 Listing 17-4. Controlling locking behavior with table hints

 select c.CustomerName, sum(o.Total) as [Total]
 from dbo.Customers c with (READCOMMITTED)
 join dbo.Orders o with (SERIALIZABLE) on
 o.CustomerId = c.CustomerId
 group by
 c.CustomerName;

 You can control the type of locks acquired by readers with the (UPDLOCK) and (XLOCK) table hints.
Those hints force SELECT queries to use update (U) and exclusive (X) locks, respectively, rather than shared
(S) locks. This can be useful when you need to prevent multiple SELECT queries from accessing the data
simultaneously.

 Listing 17-5 demonstrates how you can implement custom counters in the system. The SELECT
statement uses an exclusive (X) lock, which will block other sessions from reading the same counter row
until the transaction is committed.

 ■ Note This code is shown for demonstration only, and it does not handle the situation where a specific
counter does not exist in the table. It is better to use a SEQUENCE object instead.

 Listing 17-5. Counters table management

 begin tran
 select @Value = Value
 from dbo.Counters with (XLOCK)
 where CounterName = @CounterName;

 update dbo.Counters
 set Value += @ReserveCount
 where CounterName = @CounterName;
 commit

 Table 17-4. Pessimistic Transaction Isolation Levels and Shared (S) Locks’ Behavior

 Transaction isolation level Table hint Shared lock behavior

 READ UNCOMMITTED (NOLOCK) (S) locks not acquired

 READ COMMITTED (default) (READCOMMITTED) (S) locks acquired and released
immediately

 REPEATABLE READ (REPEATABLEREAD) (S) locks acquired and held till
end of transaction

 SERIALIZABLE (SERIALIZABLE) or (XLOCK) Range locks acquired and held till
end of transaction

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

392

 Another locking hint (READPAST) allows sessions to skip rows with incompatible locks held rather than
being blocked. You will see an example of when such a hint is useful in Chapter 22 of this book.

 ■ Note For more information about table hints, go to http://msdn.microsoft.com/en-us/library/
ms187373.aspx .

 Transaction Isolation Levels and Data Consistency
 Finally, let’s analyze common data inconsistency issues that exist in multi-user environments.

 Dirty Reads : This issue arises when a transaction reads uncommitted (dirty) data
from other uncommitted transactions. It is unknown if those active transactions
would be committed or rolled back or if data is logically consistent. Think about the
example where a user transfers money from a checking to a savings account. There
are two physical operations with the data, decreasing checking and increasing
savings account balances, logically combined in one transaction. If another session
reads account balances in between the two updates, the results would be incorrect.

 From the locking prospective, this phenomenon could occur in the READ
UNCOMMITTED isolation level when sessions do not acquire shared (S) locks,
ignoring exclusive (X) locks from the other sessions. All other pessimistic
isolation levels use shared (S) locks and are protected from dirty reads.

 Non-Repeatable Reads : Subsequent attempts to read the same data from within the
same transaction return different results. This data inconsistency issue arises when
the other transactions modified or even deleted data between the reads. Consider
a situation where you render a report that displays a list of orders for a specific
customer along with some aggregated information (for example, total amount spent
by customer on a monthly basis). If another session modifies or, perhaps, deletes the
orders in between those queries, the result sets will be inconsistent.

 From the locking standpoint, such a phenomenon could occur when sessions
don’t protect/lock the data in between reads. This could happen in the READ
UNCOMMITTED isolation level that does not use shared (S) locks, as well as in the
 READ COMMITTED isolation level, where sessions acquire and release shared
(S) locks immediately. REPEATABLE READ and SERIALIZABLE isolation levels
hold the shared (S) locks until the end of the transaction, which prevents data
modifications once data is read.

 Phantom Reads : This phenomenon occurs when subsequent reads within the
same transaction return new rows (the ones that the transaction did not read
before). Think about the previous example where another session inserted a new
order in between the queries’ execution. Only the SERIALIZABLE isolation level
with range locks is free from such phenomenon.

 Two other phenomena are related to data movement due to a change of the index key value:

 Duplicated Reads : This issue occurs when a query returns the same row multiple
times. Think about the query that returns the list of the orders for the specific time
interval, scanning the index on the OrderDate column during the execution. If
another query changes the OrderDate value, moving the row from the processed
(scanned) to the non-processed part of the index, such a row will be read twice.

http://dx.doi.org/10.1007/978-1-4842-1964-5_22
http://msdn.microsoft.com/en-us/library/ms187373.aspx
http://msdn.microsoft.com/en-us/library/ms187373.aspx

CHAPTER 17 ■ LOCK TYPES AND TRANSACTION ISOLATION LEVELS

393

 This condition is similar to non-repeatable reads and can occur when readers
do not hold shared (S) locks after rows were read in READ UNCOMMITTED and READ
COMMITTED isolation levels.

 Skipped Rows : This phenomenon occurs when queries do not return some
of the rows. It could occur in a situation similar to the duplicated reads just
described, where rows have been moved from the non-processed to the
processed part of the index. Only the SERIALIZABLE isolation level, which locks
the index key range interval, is free from such phenomenon.

 Table 17-5 summarizes data inconsistency issues within different transaction isolation levels.

 SERIALIZABLE is the only pessimistic transaction isolation level that protects you from data
inconsistency issues. However, this isolation level introduces major concurrency issues due to excessive
locking in systems with volatile data. Fortunately, optimistic isolation levels, which we will discuss in
Chapter 21 , could address inconsistency phenomena without introducing excessive blocking in the system.

 Summary
 SQL Server uses locking to support data-isolation and -consistency rules, using row-level locking as the
highest degree of granularity.

 Exclusive (X) locks are acquired by writers when data is modified. Exclusive (X) locks are always
acquired and held until the end of transactions, regardless of the isolation level. Update (U) locks are
acquired when writers evaluate if data needs to be modified. These locks are converted into exclusive (X)
locks if rows need to be updated. Intent (I*) locks are acquired on the object and page levels, and they
indicate the existence of child row – level locks of the same type.

 With the exception of the READ UNCOMMITED isolation level, SQL Server acquires shared (S) locks while
reading data in pessimistic isolation levels. Transaction isolation level controls when shared (S) locks are
released. In the READ COMMITTED isolation level, these locks are released immediately after the row has been
read. In REPEATABLE READ and SERIALIZABLE isolation levels, shared (S) locks are held until the end of the
transaction. Moreover, in the SERIALIZABLE isolation level, SQL Server uses range locks, locking the ranges
of the index keys rather than individual rows.

 You can control transaction isolation levels with the SET TRANSACTION ISOLATION LEVEL statement on
the transaction level or with table locking hints on the per-table level in the individual queries.

 Table 17-5. Transaction Isolation Levels and Data Inconsistency Anomalies

 Dirty Reads Non-Repeatable Reads Duplicated Reads Phantom Reads Skipped Rows

 READ
UNCOMMITTED

 Yes Yes Yes Yes Yes

 READ
COMMITTED

 No Yes Yes Yes Yes

 REPEATABLE
READ

 No No No Yes Yes

 SERIALIZABLE No No No No No

http://dx.doi.org/10.1007/978-1-4842-1964-5_21

395© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_18

 CHAPTER 18

 Troubleshooting Blocking Issues

 Blocking is one of the most common problems encountered in systems. When blocking occurs, multiple
queries block each other, which increases the execution time of queries and introduces timeouts. All of this
negatively affects the user’s experience with the system.

 This chapter provides an overview of how you can troubleshoot blocking issues in a system.

 General Troubleshooting Approach
 Blocking occurs when multiple sessions compete for the same resource. Even though in some cases this is the
correct and expected behavior (for example, multiple sessions cannot update the same row simultaneously),
more often than not it happens because of unnecessary scans due to nonoptimized queries .

 Some degree of blocking always exists in systems, and it is completely normal. What is not normal,
however, is excessive blocking. From the end user’s standpoint, excessive blocking masks itself as a general
performance problem. The system is slow, queries are timing out, and there are deadlocks . With the exception
of deadlocks, slow performance is not necessarily a sign of blocking issues; there could easily be nonoptimized
queries by themselves. However, blocking issues can definitely contribute to a general system slowdown.

 ■ Note One of the easiest ways to find out if the system suffers from blocking is by looking at the lock waits
in the wait statistics, which we will discuss in Part V of this book.

 In a nutshell, to troubleshoot blocking issues you must follow these steps :

 1. Detect the queries involved in the blocking.

 2. Find out why blocking occurs.

 3. Fix the root cause of the issue.

 SQL Server provides you with several tools that can help you troubleshoot blocking issues in a
system. These tools can be separated into two different categories . The first category consists of dynamic
management views (DMVs) that you can use to troubleshoot what is happening in the system at present.
These tools are useful when you have access to the system at the time of blocking, and you want to perform
real-time troubleshooting.

 The second category of tools allows you to collect information about blocking problems in the system
and retain it for further analysis. Let’s look at both categories in detail.

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

396

 Troubleshooting Blocking Issues in Real Time
 The key tool for troubleshooting real-time blocking is the sys.dm_tran_locks dynamic management view,
which provides information about currently active requests to the Lock Manager. It returns you a list of
lock requests and their status, such as GRANT or WAIT , information about resources on which locks were
requested, and several other useful attributes.

 Table 18-1 shows you the code that leads to the blocking conditions.

 Figure 18-1 shows the partial output from the sys.dm_tran_locks , sys.dm_os_waiting_tasks , and
 sys.dm_exec_requests views at the time the blocking occurred. As you can see, Session 53 is waiting for a
shared (S) lock on the row with the exclusive (X) lock held by Session 52. The LCK_M_S wait type in the output
indicates the shared (S) lock wait. We will discuss wait types in more detail in Part V of this book.

 The information provided by the sys.dm_tran_locks view is a bit too cryptic to troubleshoot, and you
need to join it with other dynamic management views, such as sys.dm_exec_requests and sys.dm_os_
waiting_tasks , to gain a clearer picture. Listing 18-1 provides the required code.

 Table 18-1. Code That Leads to the Blocking Conditions

 Session 1 (SPID=52) Session 2 (SPID=53) Comments

 set transaction isolation level
read uncommitted
 begin tran

 delete from Delivery.Orders
 where OrderId = 95

 Session 1 acquires exclusive
(X) lock on the row with
OrderId=95

 select OrderId, Amount
 from Delivery.Orders with
(readcommitted)
 where OrderNum = ‘1000’

 Session 2 is blocked trying
to acquire shared (S) lock on
the row with OrderId=95

 rollback

 Figure 18-1. Output from the system views at time of blocking

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

397

 Listing 18-1. Getting more information about blocked and blocking sessions

 select
 tl.resource_type as [Resource Type]
 ,db_name(tl.resource_database_id) as [DB Name]
 ,case tl.resource_type
 when 'OBJECT' then object_name(tl.resource_associated_entity_id

,tl.resource_database_id)
 when 'DATABASE' then 'DB'
 else
 case when tl.resource_database_id = db_id()
 then
 (select object_name(object_id, tl.resource_database_id)
 from sys.partitions
 where hobt_id = tl.resource_associated_entity_id)
 else '(Run under DB context)'
 end
 end as [Object]
 ,tl.resource_description as [Resource]
 ,tl.request_session_id as [Session]
 ,tl.request_mode as [Mode]
 ,tl.request_status as [Status]
 ,wt.wait_duration_ms as [Wait (ms)]
 ,qi.sql
 ,qi.query_plan
 from
 sys. dm_tran_locks tl with (nolock) left outer join

sys.dm_os_waiting_tasks wt with (nolock) on
 tl.lock_owner_address = wt.resource_address and tl.request_status = 'WAIT'
 outer apply
 (
 select
 substring(s.text, (er.statement_start_offset / 2) + 1,
 ((case er.statement_end_offset
 when -1
 then datalength(s.text)
 else er.statement_end_offset
 end - er.statement_start_offset) / 2) + 1) as sql
 , qp.query_plan
 from
 sys.dm_exec_requests er with (nolock)
 cross apply sys.dm_exec_sql_text(er.sql_handle) s
 outer apply sys.dm_exec_query_plan(er.plan_handle) qp
 where
 tl.request_session_id = er.session_id
) qi
 where
 tl.request_session_id <> @@spid
 order by
 tl.request_session_id
 option (recompile)

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

398

 Figure 18-2 shows the results of the query. As you can see, it is much easier to understand, and it provides
you with more-useful information, including currently running batches and their execution plans. Keep in
mind that the execution plans obtained from the DMVs in this chapter do not include the actual execution
statistics metrics, such as the actual number of rows returned by operators and the number of their execution.

 ■ Note You need to run the query in the context of the database involved in the blocking to correctly resolve
the object names. Also of importance is that, for the sessions in which lock requests were granted, SQL and Query
Plan represent the currently executed batch, rather than the batch that triggered the original locking request.

 The sys.dm_tran_locks view returns one row for each active lock request in the system, which can
lead to very large result sets when you run it on busy servers. You can reduce the amount of information and
perform a self-join of this view based on the resource_description and resource_associated_entity_id
columns, and you can identify the sessions that compete for the same resources. Such an approach allows
you to filter the results and only see the sessions that are involved in the blocking chains.

 Listing 18-2 and Figure 18-3 illustrate the code and query results.

 Listing 18-2. Filtering out blocked and blocking session information

 select
 tl1.resource_type as [Resource Type]
 ,db_name(tl1.resource_database_id) as [DB Name]
 ,case tl1.resource_type
 when 'OBJECT' then object_name(tl1.resource_associated_entity_id

,tl1.resource_database_id)
 when 'DATABASE' then 'DB'
 else
 case when tl1.resource_database_id = db_id()
 then
 (select object_name(object_id, tl1.resource_database_id)
 from sys.partitions
 where hobt_id = tl1.resource_associated_entity_id)
 else '(Run under DB context)'
 end
 end as [Object]
 ,tl1.resource_description as [Resource]
 ,tl1.request_session_id as [Session]
 ,tl1.request_mode as [Mode]
 ,tl1.request_status as [Status]
 ,wt.wait_duration_ms as [Wait (ms)]

 Figure 18-2. Joining sys.dm_os_tran_locks with other DMVs

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

399

 ,qi.sql
 ,qi.query_plan
 from
 sys.dm_tran_locks tl1 with (nolock) join sys.dm_tran_locks tl2 with (nolock) on
 tl1.resource_associated_entity_id = tl2.resource_associated_entity_id
 left outer join sys.dm_os_waiting_tasks wt with (nolock) on
 tl1.lock_owner_address = wt.resource_address and tl1.request_status = 'WAIT'
 outer apply
 (
 select
 substring(s.text, (er.statement_start_offset / 2) + 1,
 ((case er.statement_end_offset
 when -1
 then datalength(s.text)
 else er.statement_end_offset
 end - er.statement_start_offset) / 2) + 1) as sql
 , qp.query_plan
 from
 sys.dm_exec_requests er with (nolock)
 cross apply sys.dm_exec_sql_text(er.sql_handle) s
 outer apply sys.dm_exec_query_plan(er.plan_handle) qp
 where
 tl1.request_session_id = er.session_id
) qi
 where
 tl1.request_status <> tl2.request_status and
 (
 tl1.resource_description = tl2.resource_description or
 (tl1.resource_description is null and tl2.resource_description is null)
)
 option (recompile)

 As you already know, blocking occurs when two or more sessions are competing for the same resource.
You need to answer two questions during troubleshooting:

 Why does the blocking session hold the lock on the resource?

 Why does the blocked session acquire the lock on the resource?

 It is usually easier to start troubleshooting by looking at the blocked session, where you have the blocked
statement and its execution plan available. In many cases, you can identify the root cause of the blocking
by analyzing its execution plan, which you can obtain from the dynamic management views (as was just
demonstrated) or by re-running the query.

 Figure 18-4 shows the execution plan of the blocked query from our example.

 Figure 18-3. Blocked and blocking sessions

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

400

 As you can see from the execution plan, the blocked query is scanning the entire table looking for orders
with the predicate on the OrderNum column . The query uses a READ COMMITTED transaction isolation level ,
and it acquires a shared (S) lock on every row in the table. As a result, at some point the query is blocked by
the first DELETE query that holds an exclusive (X) lock on one of the rows. It is worth noting that the query
would be blocked even if the row with the exclusive (X) lock held did not have OrderNum=’1000’ . SQL Server
cannot evaluate the predicate until the shared (S) lock is acquired and the row is read.

 You can resolve the problem by optimizing the query and adding an index on the OrderNum column,
which will replace the clustered index scan with a nonclustered index seek operator in the execution plan.
This will eliminate lock collision and blocking as long as the queries do not delete and select the same rows.

 Even though in many instances you can detect and resolve the root cause of the blocking by analyzing
and optimizing the blocked query, this is not always the case. Consider a situation where you have a session
that updated a large number of rows in a table and thus acquired and held a large number of exclusive (X)
locks on those rows. Other sessions that need to access those rows would be blocked, even in the case of
efficient execution plans that do not perform unnecessary scans. The root cause of the blocking in this case
is the blocking rather than the blocked session .

 Unfortunately, it is much harder to detect the statement that acquired the locks. The queries from Listings
 18-1 and 18-2 provide you with information about currently running statements in blocking sessions, rather
than intelligence about the statement that caused the blocking condition. Moreover, in some cases where
a client application has an error and keeps an uncommitted transaction idle , queries do not return any
information at all. You can see such a condition in Figures 18-2 and 18-3 , where both SQL statements and
execution plans were NULL . In such cases, you need to analyze what code in the blocking session has caused the
blocking. You can use the sys.dm_exec_sessions view to obtain information about the host and application
of the blocking session. When you know which statement the blocking session is currently executing, you
can analyze the client and T-SQL code to locate the transaction to which this statement belongs. One of the
previously executed statements in that transaction would be the one that caused the blocking condition.

 A blocked process report , which we are about to discuss, can also help during such troubleshooting.

 Collecting Blocking Information for Further Analysis
 Although DMVs can be very useful in providing information about the current state of the system, they
would not help much if you did not run them at the exact same time the blocking occurred. Fortunately, SQL
Server helps capture blocking information automatically via the blocked process report . This report provides
information about the blocking condition, which you may retain for further analysis.

 There is a configuration setting called blocked process threshold that specifies how often SQL Server
checks for blocking in the system and generates a report. Listing 18-3 shows the code that sets the threshold
to ten seconds.

 Figure 18-4. Execution plan for the blocked query

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

401

 Listing 18-3. Specifying blocking process threshold

 sp_configure 'show advanced options', 1;
 go
 reconfigure;
 go
 sp_configure 'blocked process threshold', 10; -- in seconds
 go
 reconfigure;
 go

 You need to fine-tune the value of the blocked process threshold in production. It is important to avoid
false positives and, at the same time, capture the problems. Microsoft suggests not going below five seconds
as the minimum value, and you obviously need to set the value to less than query timeout.

 There are a few ways to capture that report in the system. You can use SQL Trace — there is a “ Blocked
Process Report ” event in the “Errors and Warnings” section, as shown in Figure 18-5 .

 Alternatively, you can create an Extended Event Session using the blocked_process_report event,
as shown in Figure 18-6 . This session will provide you with several additional attributes other than what is
provided by SQL Trace.

 Figure 18-5. Blocked process report event in SQL Trace

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

402

 ■ Note We will discuss Extended Events in more detail in Part V of this book.

 The blocked process report contains XML that shows information about blocking and blocked
processes in the system (the most important of which are highlighted in boldface within Listing 18-4).

 Listing 18-4. Blocked process report XML

 <blocked-process-report monitorLoop="224">
 <blocked-process>
 <process id="process3e576c928" taskpriority="0" logused="0" waitresource="KEY: … "
 waittime="14102 " ownerId="…" transactionname="SELECT" lasttranstarted="…" XDES="…"
 lockMode="S" schedulerid="1" kpid="…" status="suspended" spid="53" sbid="0" ecid="0"
priority="0" trancount="0" lastbatchstarted="…" lastbatchcompleted="…" lastattention="…"
clientapp="…" hostname="…" hostpid="…" loginname="…" isolationlevel="read committed (2)"
xactid="…" currentdb="14" lockTimeout="…" clientoption1="…" clientoption2="…">
 <executionStack>
 <frame line="3" stmtstart="46" sqlhandle="…"/>
 <frame line="3" stmtstart="100" sqlhandle="…"/>
 </executionStack>
 <inputbuf>
 set transaction isolation level read committed
 select OrderId, Amount
 from Delivery.Orders
 where OrderNum = '1000'
 </inputbuf>
 </process>
 </blocked-process>
 <blocking-process>

 Figure 18-6. Capturing blocked process report with Extended Events

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

403

 < process status="sleeping" spid="54" sbid="0" ecid="0" priority="0" trancount="1"
lastbatchstarted="..." lastbatchcompleted="..." lastattention="..." clientapp="..."
hostname="..." hostpid="..." loginname="..." isolationlevel="read uncommitted (1)"
xactid="..." currentdb="14" lockTimeout="..." clientoption1="..." clientoption2="...">
 <executionStack/>
 <inputbuf>
 set transaction isolation level read uncommitted
 begin tran
 delete from Delivery.Orders
 where OrderId = 95
 </inputbuf>
 </process>
 </blocking-process>
 </blocked-process-report>

 As with real-time troubleshooting, you should analyze both blocking and blocked processes and find the root
cause of the problem. From the blocked-process standpoint, the most important information is the following:

 waittime : The length of time the query is waiting, in milliseconds

 lockMode : The type of lock being waited for

 isolationlevel : The transaction isolation level

 executionStack and inputBuf : The query and/or the execution stack. You will see
how to obtain the actual SQL statement involved in blocking in Listing 18-5 .

 From the blocking-process standpoint, you must look at the following:

 status : Status is whether the process is running , sleeping , or suspended . In a
situation in which the process is sleeping, there is an uncommitted transaction.
When the process is suspended, that process either waits for the resource (for
example, page from the disk) or there is a blocking chain involved. We will talk
more about the SQL Server execution model in Part V of this book.

 trancount : A trancount value greater than 1 indicates nested transactions. If the
process status is sleeping at the same time, then there is a good chance that the
client did not commit the nested transactions correctly (for example, the number of
 commit statements is less than the number of begin tran statements in the code).

 executionStack and inputBuf : As we already discussed, in some cases you need
to analyze what happens in the blocking process. Some common issues include
runaway transactions (for example, missing commit statements in the nested
transactions); long-running transactions with, perhaps, some UI involved; or
excessive scans (for example, a missing index on the referencing column in
the detail table leads to scans during a referential integrity check). Information
about queries from the blocking session could be useful here. Remember that in
cases of a blocked process, executionStack and inputBuf would correspond to the
queries that were running at the moment when the blocked process report was
generated rather than at the time of the blocking.

 Nevertheless, in a large number of cases, blocking occurs because of unnecessary scans due to
nonoptimized queries, and you can detect it by analyzing blocked queries. So, the next logical step is to look
at the blocked query execution plan and detect inefficiencies. You can either run the query and check the
execution plan or use DMVs and obtain an execution plan from sys.dm_exec_query_stats based on the
 sql_handle , stmtStart , and stmtEnd elements from the execution stack. Listing 18-5 and Figure 18-7 show
the code and query output for this strategy.

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

404

 Listing 18-5. Obtaining query text and execution plan

 declare
 @H varbinary(max) = /* Insert sql_handle from the top line of the execution stack */
 ,@S int = /* Insert stmtStart from the top line of the execution stack */
 ,@E int = /* Insert stmtEnd from the top line of the execution stack */

 select
 substring(qt.text, (qs.statement_start_offset / 2) + 1,
 ((case qs.statement_end_offset
 when -1 then datalength(qt.text)
 else qs.statement_end_offset
 end - qs.statement_start_offset) / 2) + 1) as sql
 ,qp.query_plan
 ,qs.creation_time
 ,qs.last_execution_time
 from
 sys.dm_exec_query_stats qs with (nolock)
 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
 outer apply sys.dm_exec_query_plan(qs.plan_handle) qp
 where
 qs.sql_handle = @H and
 qs.statement_start_offset = @S
 and qs.statement_end_offset = @E
 option (recompile)

 Figure 18-7. Getting information from sys.dm_exec_query_stats

 There are a couple of potential problems with the sys.dm_exec_query_stats view that you should be
aware of. First, this view relies on the execution plan cache. You would not be able to get the execution plan if it is
not in the cache; for example, if the query used a statement-level recompile with an option (recompile) clause.

 Second, there is a chance that you will have more than one cached plan returned. In some cases, SQL
Server keeps the execution statistics even after recompilation occurs, which could produce multiple rows in
the result set. Moreover, you may have multiple cached plans when sessions use different SET options. There
are two columns— creation_time and last_execution_time — that can help you pinpoint the right plan.

 This dependency on the plan cache during troubleshooting is the biggest downside of the blocked
process report. SQL Server eventually removes old plans from the plan cache after queries are recompiled
and/or plans are not reused. Therefore, the longer you wait with the troubleshooting, the less chance you
have that the plan would be present in the cache.

 One of the ways to address this issue is by building a monitoring solution based on Extended Events
and/or Event Notifications . This allows you to parse the blocked process report at the time of the blocking
and increases the chance that you will capture the right execution plan, compared to starting analysis later.
I have included an example showing how to set up monitoring with Event Notifications in the companion
materials of the book.

 SQL Server 2016 allows you to collect and persist information about running queries and their
execution plans and statistics in a new component called Query Store . The Query Store does not rely on the
plan cache, and it is extremely useful during system troubleshooting. We will discuss Query Store in greater
depth in Part V of this book.

CHAPTER 18 ■ TROUBLESHOOTING BLOCKING ISSUES

405

 Summary
 The process of troubleshooting blocking issues in a system requires you to detect the queries involved in the
blocking, find the root cause of the problem, and address the issue.

 The sys.dm_tran_locks data management view provides you with information about all of the active lock
requests in the system. It can help you detect blocking situations in real time. You can join this view with other
DMVs, such as sys.dm_exec_requests , sys.dm_exec_query_stats , sys.dm_exec_sessions , and sys.dm_os_
waiting_tasks , to obtain more information about the sessions and queries involved in the blocking conditions.

 SQL Server can generate a blocking process report that provides you with information about blocking,
which you can collect and retain for further analysis. You can use SQL Traces, Extended Events, and Event
Notifications to capture it.

 In a large number of cases, blocking occurs due to excessive scans introduced by nonoptimized queries.
You should analyze the execution plans of both blocking and blocked queries in order to detect and optimize
inefficiencies.

 Another common issue that results in blocking is incorrect transaction management in the code, which
includes runaway transactions and interaction with users in the middle of open transactions, among other things.

407© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_19

 CHAPTER 19

 Deadlocks

 A deadlock is a special blocking case when multiple sessions , or sometimes multiple execution threads
within a single session, block each other. When it happens, SQL Server terminates one of the sessions, thus
allowing others to continue.

 This chapter demonstrates why deadlocks occur in the system and explains how to troubleshoot and
resolve them.

 Classic Deadlock
 A classic deadlock occurs when two or more sessions are competing for the same set of resources. Let’s look at a
by-the-book example and assume that you have two sessions updating two rows in the table in the opposite order.

 As the first step, session 1 updates the row R1 and session 2 updates the row R2 . You know that at this point
both sessions acquire and hold exclusive (X) locks on the rows. You can see this happening in Figure 19-1 .

 Next, let’s assume that session 1 wants to update the row R2 . It will try to acquire an exclusive (X) lock
on R2 and will be blocked because of the exclusive (X) lock already held by session 2. If session 2 wants to
update R1 , the same thing will happen — it will be blocked because of the exclusive (X) lock held by session 1.
As you can see, at this point both sessions wait on each other and cannot continue the execution. This
represents the classic deadlock, shown in Figure 19-2 .

 Figure 19-1. Classic deadlock, step 1

CHAPTER 19 ■ DEADLOCKS

408

 There is the system task Deadlock Monitor that wakes up every five seconds and checks if there are any
deadlocks in the system. When a deadlock is detected, SQL Server rolls back one of the transactions. That
releases all locks held in that transaction and allows other sessions to continue.

 ■ Note The Deadlock Monitor wake-up interval goes down if there are deadlocks in the system. In some
cases, it could wake up as often as ten times per second.

 The choice of which session is chosen as the deadlock victim depends on a few things. By default, SQL
Server rolls back the session that uses less log space for the transaction. You can control it, up to a degree, by
setting deadlock priority for the session with the SET DEADLOCK_PRIORITY command.

 Deadlock Due to Nonoptimized Queries
 While the classic deadlock often happens when the data is highly volatile and the same rows are being
updated by multiple sessions, there is another common reason for deadlocks. They happen because of the
scans introduced by nonoptimized queries. Let’s look at an example and assume that you have a process that
updates an order row in an order entry system and, as a next step, queries how many orders the customer
has. Let’s see what happens when two such sessions are running in parallel using the READ COMMITTED
transaction isolation level.

 As a first step, two sessions run two UPDATE statements — one each. Both statements run fine without
blocking involved. As you may remember, the table has a clustered index on the OrderId column, so you will
have a clustered index seek operation in the execution plan. Figure 19-3 illustrates this step.

 Figure 19-2. Classic deadlock, step 2

CHAPTER 19 ■ DEADLOCKS

409

 At this point, both sessions hold exclusive (X) locks on their respective updated rows. For the second
step, the sessions each run SELECT statements based on the CustomerId filter. There are no nonclustered
indexes on the table, so the execution plan will have a clustered index scan operation . In the READ COMMITTED
isolation level, SQL Server acquires shared (S) locks when reading data, and, as a result, each session would
be blocked as soon as it tried to read the row with an exclusive (X) lock held. Figure 19-4 illustrates this.

 If you ran the query shown in Listing 19-1 at the time when both sessions were blocked and before the
Deadlock Monitor task woke up, you would see the results shown in Figure 19-5 .

 Figure 19-3. Deadlock due to scans, step 1

 Figure 19-4. Deadlock due to scans, step 2

CHAPTER 19 ■ DEADLOCKS

410

 Listing 19-1. Lock requests at the time when both sessions were blocked

 select
 tl.request_session_id as [SPID], tl.resource_type as [Resouce Type]
 ,tl.resource_description as [Resource], tl.request_mode as [Mode]
 ,tl.request_status as [Status], wt.blocking_session_id as [Blocked By]
 from
 sys.dm_tran_locks tl with (nolock) left outer join
 sys.dm_os_waiting_tasks wt with (nolock) on
 tl.lock_owner_address = wt.resource_address and
 tl.request_status = 'WAIT'
 where
 tl.request_session_id <> @@SPID and tl.resource_type = 'KEY'
 order by
 tl.request_session_id

 As you can see, the sessions block each other. It does not matter that the sessions were not going to
include those rows in the count calculation. SQL Server is unable to evaluate the CustomerId predicate until
shared (S) locks were acquired and rows were read.

 You will have such a deadlock in any transaction isolation level where readers acquire shared (S)
locks. It would not deadlock in the READ UNCOMMITTED isolation level, where shared (S) locks are not used.
However, you can still have deadlocks in the READ UNCOMMITTED isolation level due to the writer’s collision.
You can trigger it by replacing a SELECT statement with an UPDATE that introduces the scan operation in the
previous example.

 Query optimization helps to fix deadlocks caused by scans and nonoptimized queries. In the preceding
case, you can solve the problem by adding a nonclustered index on the CustomerId column. This would
change the SELECT statement plan and replace the clustered index scan with a nonclustered index seek . As
a result, the session would not need to read the rows that have been modified by another session and have
incompatible locks held.

 Key Lookup Deadlock
 In some cases, you can have a deadlock when multiple sessions are trying to read and update the same row
simultaneously.

 Let’s assume that you have a nonclustered index on the table, and one session wants to read the row
using this index. If the index is not covering and the session needs some data from the clustered index,
you would have an execution plan with the nonclustered index seek and key lookup operations. The session
would acquire shared (S) locks on the nonclustered index row first and on the clustered index row after that.

 Meanwhile, if you have another session that updates one of the columns that is part of the nonclustered
index based on the clustered key value, that session would acquire exclusive (X) locks in the opposite order;
that is, on the clustered index row first and on the nonclustered index row after that.

 Figure 19-5. Lock requests at the time of the deadlock

CHAPTER 19 ■ DEADLOCKS

411

 Figure 19-6 shows what happens after the first step. Both sessions successfully acquired locks on the
rows in the clustered and nonclustered indexes .

 In the next step, each session is trying to acquire a lock on the row in the other index, which would be
blocked, as shown in Figure 19-7 .

 If it happens in exactly the same moment, you would have a deadlock, and the session that reads the
data would be chosen as the deadlock victim. A solution here is to make the nonclustered index covering
and avoid the key lookup operation.

 Unfortunately, that solution would increase the size of the leaf rows in the nonclustered index and
introduce additional overhead during data modification and index maintenance. Alternatively, you can use
optimistic isolation levels and switch to READ COMMITTED SNAPSHOT mode. We will cover this approach in
greater detail in Chapter 21 , “Optimistic Isolation Levels.”

 Deadlock Due to Multiple Updates of the Same Row
 Another, similar, deadlock pattern can be introduced by multiple updates of the same row if the subsequent
update accesses or changes columns in the different nonclustered indexes. This could lead to a deadlock
situation similar to what you already saw where another session places a lock on the nonclustered index row
in between updates. A common scenario is when an AFTER UPDATE trigger updates the same row.

 Figure 19-6. Key lookup deadlock , step 1

 Figure 19-7. Key lookup deadlock , step 2

http://dx.doi.org/10.1007/978-1-4842-1964-5_21

CHAPTER 19 ■ DEADLOCKS

412

 Let’s look at a situation where you have a table with clustered and nonclustered indexes and the AFTER
UPDATE trigger defined. Let’s have session 1 update a column that does not belong to the nonclustered index.
This step is shown in Figure 19-8 . It acquires an exclusive (X) lock on the row for the clustered index only.

 The update fires the AFTER UPDATE trigger . Meanwhile, let’s assume that another session is trying to
select the same row using the nonclustered index. This session successfully acquires a shared (S) lock on the
nonclustered index row during the nonclustered index seek operation. However, it would be blocked when
trying to obtain a shared (S) lock on the clustered index row during the key lookup, as shown in Figure 19-9 .

 Finally, if the session 1 trigger tries to update the same row again, modifying the column that exists in
the nonclustered index, it would be blocked by the shared (S) lock held by session 2. Figure 19-10 illustrates
this situation.

 Figure 19-9. Deadlock due to multiple updates of the same row, step 2

 Figure 19-10. Deadlock due to multiple updates of the same row, step 3

 Figure 19-8. Deadlock due to multiple updates of the same row, step 1

CHAPTER 19 ■ DEADLOCKS

413

 Let’s prove this with the code shown in Listing 19-2 .

 Listing 19-2. Multiple updates of the same row

 create table dbo.T1
 (
 CI_Key int not null,
 NCI_Key int not null,
 CI_Col varchar(32),
 NCI_Included_Col int
);

 create unique clustered index IDX_T1_CI on dbo.T1(CI_Key);

 create nonclustered index IDX_T1_NCI
 on dbo.T1(NCI_Key)
 include (NCI_Included_Col);

 insert into dbo.T1(CI_Key,NCI_Key,CI_Col,NCI_Included_Col)
 values(1,1,'a',0), (2,2,'b',0), (3,3,'c',0), (4,4,'d',0);

 begin tran
 update dbo.T1 set CI_Col = 'abc' where CI_Key = 1;

 select
 l.re quest_session_id as [SPID], object_name(p.object_id) as [Object]

,i.name as [Index]
 ,l.resource_type as [Lock Type], l.resource_description as [Resource]
 ,l.request_mode as [Mode], l.request_status as [Status]
 ,wt.blocking_session_id as [Blocked By]
 from
 sys.dm_tran_locks l join sys.partitions p on
 p.hobt_id = l.resource_associated_entity_id
 join sys.indexes i on
 p.object_id = i.object_id and p.index_id = i.index_id
 left outer join sys.dm_os_waiting_tasks wt with (nolock) on
 l.lock_owner_address = wt.resource_address and
 l.request_status = 'WAIT'
 where
 resource_type = 'KEY' and request_session_id = @@SPID;

 update dbo.T1 set NCI_Included_Col = 1 where NCI_Key = 1

 select
 l.re quest_session_id as [SPID], object_name(p.object_id) as [Object]

,i.name as [Index]
 ,l.resource_type as [Lock Type], l.resource_description as [Resource]
 ,l.request_mode as [Mode], l.request_status as [Status]
 ,wt.blocking_session_id as [Blocked By]
 from
 sys.dm_tran_locks l join sys.partitions p on
 p.hobt_id = l.resource_associated_entity_id

CHAPTER 19 ■ DEADLOCKS

414

 join sys.indexes i on
 p.object_id = i.object_id and p.index_id = i.index_id
 left outer join sys.dm_os_waiting_tasks wt with (nolock) on
 l.lock_owner_address = wt.resource_address and
 l.request_status = 'WAIT'
 where
 resource_type = 'KEY' and request_session_id = @@SPID;
 commit

 The code in Listing 19-2 updates the row twice. If you looked at the row-level locks held after first
update, you would see only one lock held on the clustered index, as shown in Figure 19-11 .

 The second update , which updates the column that exists in the nonclustered index, places another
exclusive (X) there, as shown in Figure 19-12 . This proves that the lock on the nonclustered index row is not
acquired until the index column is actually updated.

 Now, let’s look at another session with SPID = 55 running the SELECT shown in Listing 19-3 in between
two updates, at a time when you have just one row-level lock held.

 Listing 19-3. The code that leads to the deadlock

 select CI_Key, CI_Col
 from dbo.T1 with (index = IDX_T1_NCI)
 where NCI_Key = 1

 As you can see in Figure 19-13 , the query successfully acquires the shared (S) lock on the nonclustered
index row and is blocked from trying to acquire the lock on the clustered index row.

 Figure 19-12. Row-level locks after the second update

 Figure 19-13. Row-level locks when SELECT query is blocked

 Figure 19-11. Row-level locks after the first update

CHAPTER 19 ■ DEADLOCKS

415

 If you now ran the second update in the original session with SPID = 56 , it would try to acquire an
exclusive (X) lock on the nonclustered index, and it would be blocked by the second (SELECT) session, as
shown in Figure 19-14 . This leads to the deadlock condition.

 The best method to avoid such problems is to eliminate multiple updates of the same rows. You can
use variables or temporary tables to store preliminary data and run the single UPDATE statement close to the
end of the transaction. Alternatively, you can change the code and assign some temporary value to NCI_
Included_Col as part of the first UPDATE statement, which would acquire exclusive (X) locks on both of the
indexes. SELECT from the second session would be unable to acquire the lock on the nonclustered index, and
the second update would run just fine.

 As a last resort, you could read the row using a plan that utilizes both indexes using an XLOCK locking
hint , which will place exclusive (X) locks on both rows, as shown in Listing 19-4 and Figure 19-15 . Obviously,
you need to consider the overhead this introduces.

 Listing 19-4. Obtaining exclusive (X) locks on the rows in both indexes

 begin tran
 declare
 @Dummy varchar(32)

 select @Dummy = CI_Col
 from dbo.T1 with (XLOCK index=IDX_T1_NCI)
 where NCI_Key = 1;

 select
 l.re quest_session_id as [SPID], object_name(p.object_id) as [Object]

,i.name as [Index]
 ,l.resource_type as [Lock Type], l.resource_description as [Resource]
 ,l.request_mode as [Mode], l.request_status as [Status]
 ,wt.blocking_session_id as [Blocked By]
 from
 sys.dm_tran_locks l join sys.partitions p on
 p.hobt_id = l.resource_associated_entity_id
 join sys.indexes i on
 p.object_id = i.object_id and p.index_id = i.index_id
 left outer join sys.dm_os_waiting_tasks wt with (nolock) on
 l.lock_owner_address = wt.resource_address and
 l.request_status = 'WAIT'
 where
 resource_type = 'KEY' and request_session_id = @@SPID;

 update dbo.T1 set CI_Col = 'abc' where CI_Key = 1;

 Figure 19-14. Row-level locks when second update is running (deadlock)

CHAPTER 19 ■ DEADLOCKS

416

 /* some code */

 update dbo.T1 set NCI_Included_Col = 1 where NCI_Key = 1;
 commit

 Deadlock Troubleshooting
 In a nutshell, deadlock troubleshooting is very similar to the blocking problems troubleshooting. You need
to analyze the processes and queries involved in the deadlock, identify the root cause of the problem, and,
finally, fix it.

 Similar to the blocking process report , there is the deadlock graph , which provides you with the information
about deadlock in an XML format. There are plenty of ways to obtain the deadlock graph , as follows:

• Trace Flag 1222: This trace flag saves deadlock information to the SQL Server error
log. You can enable it for all sessions with the DBCC TRACEON(1222,-1) command or
by using startup parameter -T1222. It is a perfectly safe method to use in production.

• xml_deadlock_report Extended Event

• Deadlock graph SQL Trace event. It is worth noting that SQL Profiler displays the
graphic representation of the deadlock. The Extract Event Data action from the event
context menu (right mouse click) allows you to extract an XML deadlock graph.

• You can create an event notification that fires when deadlock occurs.

 Starting with SQL Server 2008, every system has the system_health Extended Event session enabled by
default. This session captures basic server health information including the xml_deadlock_report event.
This could be a great place to start troubleshooting if no other collection methods were enabled.

 In SQL Server 2012 and above, you can access system_health session data from the Management node
in Management Studio, as shown in Figure 19-16 . You could analyze the target data by searching for the
 xml_deadlock_report event .

 Figure 19-15. Row-level locks after SELECT statement with (XLOCK) hint

CHAPTER 19 ■ DEADLOCKS

417

 ■ Note We will discuss Extended Events in more detail in Chapter 27 .

 An XML representation of the deadlock graph contains two different sections, as shown in Listing 19-5 .
The sections <process-list> and <resource-list> contain information about the processes and resources
involved in the deadlock.

 Listing 19-5. Deadlock graph format

 <deadlock-list>
 <deadlock victim="..." >
 <process-list>
 <process id="...">
 ...
 </process>
 <process id="...">
 ...
 </process>
 </process-list>
 <resource-list>
 < information about resource involved in the deadlock >
 ...
 </ information about resource involved in the deadlock >
 < information about resource involved in the deadlock >
 ...
 </ information about resource involved in the deadlock >
 </resource-list>
 </deadlock>
 </deadlock-list>

 Figure 19-16. Accessing system_health Extended Events session

http://dx.doi.org/10.1007/978-1-4842-1964-5_27

CHAPTER 19 ■ DEADLOCKS

418

 Let’s trigger a deadlock in the system by using the code shown in Table 19-1 . You need to run two
sessions in parallel, running the UPDATE statements first and then the SELECT statements .

 Each <process> node in the deadlock graph would show details for a specific process, as shown in
Listing 19-6 . I removed the values from some of the attributes to make it easier to read. I have highlighted in
bold the ones that are especially helpful during troubleshooting.

 Listing 19-6. Deadlock graph: <Process> node

 < process id="process3e4b29868" taskpriority="0" logused="264" waitresource="KEY: ..."
waittime="..." ownerId="..." transactionname="... " lasttranstarted="..." XDES="..."
 lockMode="S" schedulerid="..." kpid="..." status="suspended" spid="55" sbid="..."
ecid="..." priority="0" trancount="1" lastbatchstarted="..." lastbatchcompleted="..."
lastattention="..." clientapp="..." hostname="..." hostpid="..." loginname="..."
 isolationlevel="read committed (2)" xactid="..." currentdb="..." lockTimeout="..."
clientoption1="..." clientoption2="...">
 <executionStack>
 <frame procname="adhoc" line="1" stmtstart="26" sqlhandle="...">
 SELECT COUNT(*) [Cnt] FROM [Delivery].[Orders] WHERE [CustomerId]=@1
 </frame>
 </executionStack>
 <inputbuf>
 select count(*) as [Cnt]
 from Delivery.Orders
 where CustomerId = 766
 commit
 </inputbuf>
 </process>

 The id attribute uniquely identifies the process. Waitresource and lockMode provide information about
the lock type and the resource for which the process is waiting. In our example, you can see that the process
is waiting for the shared (S) lock on one of the rows (keys).

 The Isolationlevel attribute shows you the current transaction isolation level. Finally,
 executionStack and inputBuf allow you to find the SQL statement that was executed when the deadlock
occurred. In some cases, especially when stored procedures are involved, you would need to use the sys.
dm_exec_sql_text function to get the SQL statements in the same way as we did in Listing 18-5 in the
previous chapter.

 The <resource-list> section of deadlock graph contains information about the resources involved in
the deadlock. It is shown in Listing 19-7 .

 Table 19-1. Triggering Deadlock in the System

 Session 1 Session 2

 begin tran
 update Delivery.Orders
 set OrderStatusId = 1
 where OrderId = 100001;

 begin tran
 update Delivery.Orders
 set OrderStatusId = 1
 where OrderId = 100050;

 select count(*) as [Cnt]
 from Delivery.Orders
 where CustomerId = 317;

 commit

 select count(*) as [Cnt]
 from Delivery.Orders
 where CustomerId = 766;

 commit

http://dx.doi.org/10.1007/978-1-4842-1964-5_18#Par51

CHAPTER 19 ■ DEADLOCKS

419

 Listing 19-7. Deadlock graph: <Resource-list> node

 <resource-list>
 <keylock hobtid="72057594039500800" dbid="14" objectname="SqlServerInternals.
Delivery.Orders" indexname="PK_Orders" id="lock3e98b5d00" mode="X"
associatedObjectId="72057594039500800">
 <owner-list>
 <owner id="process3e6a890c8" mode="X"/>
 </owner-list>
 <waiter-list>
 <waiter id="process3e4b29868" mode="S" requestType="wait"/>
 </waiter-list>
 </keylock>
 <keylock hobtid="72057594039500800" dbid="14" objectname="SqlServerInternals.
Delivery.Orders" indexname="PK_Orders" id="lock3e98ba500" mode="X"
associatedObjectId="72057594039500800">
 <owner-list>
 <owner id="process3e4b29868" mode="X"/>
 </owner-list>
 <waiter-list>
 <waiter id="process3e6a890c8" mode="S" requestType="wait"/>
 </waiter-list>
 </keylock>
 </resource-list>

 The name of the XML element identifies the type of resource . Keylock , pagelock , and objectlock stand
for the row-level, page, and object locks, respectively. You can also see to which objects and indexes those
locks belong. Finally, the owner-list and waiter-list nodes provide information about the processes
that own and wait for the locks, along with the type of locks acquired and requested. You can correlate this
information with the data from the process-list section of the graph.

 As you have probably already guessed, the next steps are very similar to the blocked process
troubleshooting ; that is, you need to pinpoint the queries involved in the deadlock and find out why
deadlock occurred.

 There is one important factor to consider, however. In most cases, deadlock involves more than one
statement per session running in the same transaction. The deadlock graph provides you with information
about the last statement only—the one that triggered the deadlock.

 You can see the signs of the other statements in the resource-list node. It shows you that processes
held exclusive (X) locks on the rows, but it does not tell you about the statements that acquired them. It is
very useful to identify the statements involved in the deadlock while analyzing the root cause of the problem.

 In our example, when you look at the listing shown in Table 19-1 , you would see the two statements.
The UPDATE statement updates the single row—it acquires and holds an exclusive (X) lock there. You can see
that both processes own those exclusive (X) locks in the resource-list node of the deadlock graph.

 In the next step, you need to understand why SELECT queries are trying to obtain shared (S) locks on the
rows with exclusive (X) locks already held. You can look at the execution plans for the SELECT statements from
the process nodes by either running the queries or using the sys.dm_exec_query_stats DMV , as was shown
in Listing 18-5 in the previous chapter. As a result, you will get the execution plan shown in Figure 19-17 . The
figure also shows the number of locks acquired during query execution.

http://dx.doi.org/10.1007/978-1-4842-1964-5_18#Par51

CHAPTER 19 ■ DEADLOCKS

420

 As you can see, there is a clustered index scan in the plan, which gives you enough data for analysis.
 SELECT queries scanned the entire table. Because both processes were using the READ COMMITTED isolation
level , the queries tried to acquire a shared (S) lock on every row from the table and were blocked by the
exclusive (X) locks held by another session. It did not matter that those rows did not have the CustomerId
that the queries were looking for. In order to evaluate this predicate, queries had to read those rows, which
required acquiring shared (S) locks on them.

 You can solve this deadlock situation by adding a nonclustered index on the CustomerID column. This
would eliminate the clustered index scan and replace it with an index seek operator, as shown in Figure 19-18 .

 Instead of acquiring a shared (S) lock on every row of the table, the query would read only the rows that
belong to a specific customer. This would dramatically reduce the number of shared (S) locks to be acquired,
and it would prevent the query from being blocked by exclusive (X) locks on the rows that belong to different
customers.

 In some cases, you can have intra-query parallelism deadlocks — when the query with a parallel
execution plan deadlocks itself. Fortunately, these cases are rare and are usually introduced by a bug in SQL
Server rather than by application or database issues. You can detect these cases when a deadlock graph
has more than two processes with the same SPID and when resource-list has an exchangeEvent and/or
 threadPoll listed as resource(s) without any lock resources associated with them. When this happens, you
can work around the problem by reducing the degree of parallelism for the query with a MAXDOP hint. There
is also the chance that the issue has already been fixed in the latest service pack or cumulative update.

 Reducing the Chance of Deadlocks
 Finally, there are several practical bits of advice I can provide to help you to reduce the chance of deadlocks
in the system, as follows:

 1. Optimize the queries. Scans introduced by nonoptimized queries are the most
common causes of deadlocks. Correct indexes not only improve the performance of
the queries, but also reduce the number of rows that need to be read and locks that
need to be acquired, thus reducing the chance of lock collisions with other sessions.

 Figure 19-17. Execution plan for the query

 Figure 19-18. Execution plan for query with nonclustered index

CHAPTER 19 ■ DEADLOCKS

421

 2. Keep locks as short as possible. As you will recall, all exclusive (X) locks are held
until the end of the transaction. Make transactions short and try to update data
as close to the end of the transaction as possible to reduce the chance of lock
collision. In our example, you can change the code and swap around the SELECT
and UPDATE statements. This would solve the particular deadlock problem,
because the transactions would not have any statements that could be blocked
after exclusive (X) locks were acquired.

 3. Use the lowest transaction isolation level that provides the required data
consistency. This reduces the time that shared (S) locks are held. Even if you
swapped SELECT and UPDATE statements in our example, you could still have
a deadlock in the REPEATABLE READ or SERIALIZABLE isolation levels. With
those isolation levels, you would have shared (S) locks held until the end of the
transaction, and they would block UPDATE statements. In READ COMMITTED mode,
shared (S) locks are released after a row is read and UPDATE statements would not
be blocked. In some cases, you can switch to optimistic isolation levels, which we
will discuss in Chapter 22 .

 4. Avoid updating the row multiple times within the same transaction when
multiple indexes are involved. As you saw earlier in this chapter, SQL Server
does not place exclusive (X) locks on nonclustered index rows when index
columns are not updated. Other sessions can place incompatible locks there and
block subsequent updates, which would lead to deadlocks.

 5. Use retry logic. Wrap critical code into TRY..CATCH blocks and retry the action if
deadlock occurs . The error number for the exception caused by the deadlock is
1205. The code in Listing 19-8 shows how you can implement that.

 Listing 19-8. Using TRY..CATCH block to retry the operation in case of deadlock

 -- Declare and set variable to track number of retries to try before exiting.
 declare
 @retry int = 5

 -- Keep trying to update table if this task is selected as the deadlock victim.
 while (@retry > 0)
 begin
 begin try
 begin tran
 -- some code that can lead to the deadlock
 commit
 end try
 begin catch
 -- Check error number. If deadlock victim error, then reduce retry count
 -- for next update retry. If some other error occurred, then exit WHILE loop.
 if (error_number() = 1205)
 set @retry = @retry – 1;
 else
 set @retry = 0;

 if xact_state() <> 0
 rollback;
 end catch
 end

http://dx.doi.org/10.1007/978-1-4842-1964-5_22

CHAPTER 19 ■ DEADLOCKS

422

 Summary
 With the exception of intra-query parallelism deadlocks, which are considered to be a bug in the SQL Server
code, deadlocks occur when multiple sessions compete for the same set of resources.

 The key element in deadlock troubleshooting is the deadlock graph, which provides information about
the processes and resources involved in the deadlock. You can collect the deadlock graph by enabling trace
flag T1222 , capturing the xml_deadlock_report Extended Event and Deadlock graph SQL Trace event,
or setting up deadlock event notification in the system. In SQL Server 2008 and above, the xml_deadlock_
report event is included in the system_health Extended Event session, which is enabled by default in every
SQL Server installation.

 The deadlock graph will provide you with information about the queries that triggered the deadlock.
You should remember, however, that in the majority of cases deadlock involves multiple statements that
acquired and held locks within the same transaction.

 Even though deadlocks can happen for many reasons, more often than not they happen due to
excessive locking during scans in nonoptimized queries. Query optimization can help to address them.

423© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_20

 CHAPTER 20

 Lock Escalation

 Although row-level locking is great from a concurrency standpoint, it is expensive. In memory, a lock
structure uses 64 bytes in 32-bit and 128 bytes in 64-bit operating systems. Keeping information about
millions of row- and page-level locks would require SQL Server to allocate gigabytes of RAM to storing them.

 SQL Server reduces the number of locks held in memory with a technique called lock escalation , which
we will discuss in this chapter.

 Lock Escalation Overview
 Once a statement acquires at least 5,000 row- and page-level locks on the same object, SQL Server tries to
escalate, or perhaps better said, replace, those locks with a single table- or, in some cases, partition-level
lock. The operation would succeed if no other sessions held incompatible locks on the object or partition.

 When such an operation succeeds, SQL Server releases all row- and page-level locks held by the
transaction on the object (or partition), keeping the object- (or partition-) level lock only. If the operation
fails, SQL Server continues to use row-level locking and repeats escalation attempts after about every 1,250
new locks acquired. In addition to the number of locks taken, SQL Server can escalate locks when the total
number of locks in the instance exceeds memory or configuration thresholds.

 ■ Note The thresholds for number of locks, 5,000/1,250, is an approximation. The actual number of acquired
locks that triggers lock escalation vary.

 Let’s look at an example. The first session starts a transaction in the REPEATABLE READ transaction
isolation level and runs a SELECT statement that counts the number of rows in the Delivery.Orders table. As
you will remember, in this isolation level, SQL Server keeps shared (S) locks until the end of the transaction.

 Let’s disable lock escalation for this table with the ALTER TABLE SET (LOCK_ESCALATION=DISABLE)
command (more about this later) and look at the number of locks SQL Server acquires as well as at the
memory required to store them. We will use a WITH (ROWLOCK) hint to prevent the situation in which SQL
Server optimizes the locking by acquiring page-level shared (S) locks instead of row-level locks. In addition,
while the transaction is still active, let’s insert another row from a different session to demonstrate how lock
escalation affects concurrency in the system.

 Table 20-1 shows the code of both sessions along with the output from the dynamic management views
(DMVs). Figure 20-1 shows the Lock Memory (KB) system performance counter while the transaction is active.

CHAPTER 20 ■ LOCK ESCALATION

424

 As you can see, from a concurrency standpoint, the row-level locking is perfect. Sessions do not block
each other as long as they do not compete for the same rows. At the same time, keeping a large number
of locks is memory intensive, and memory is one of the most precious resources in SQL Server. This is

 Table 20-1. Test Code with Lock Escalation Disabled

 Session 1 Session 2

 alt er table Delivery.Orders set
(lock_escalation=disable);

 set transaction isolation level repeatable read
 begin tran

 select count(*) from Delivery.Orders with (rowlock);

 -- Success
 insert into Delivery.Orders
(OrderDate,OrderNum,CustomerId)
 values(getUTCDate(),’99999’,100);

 -- Result: 10,212,326
 select count(*) as [Lock Count]
from sys.dm_tran_locks;

 -- Result: 1,940,272 KB
 select sum(pages_kb) as [Memory, KB]
 from sys.dm_os_memory_clerks
 where type = 'OBJECTSTORE_LOCK_MANAGER';

 commit

 Figure 20-1. Lock Memory (KB) system performance counter

CHAPTER 20 ■ LOCK ESCALATION

425

especially important for non-Enterprise editions in which there is a limitation on the amount of memory
that can be utilized. In our example, SQL Server needs to keep millions of lock structures utilizing almost
two gigabytes of RAM. This number includes the row-level shared (S) locks as well as the page-level intent
shared (IS) locks. Moreover, there is the overhead of maintaining the locking information and the large
number of lock structures in the system.

 Let’s see what happens if we enable lock escalation with the ALTER TABLE SET (LOCK_
ESCALATION=TABLE) command and run the code shown in Table 20-2 . Figure 20-2 shows the output from the
 sys.dm_tran_locks view.

 Table 20-2. Test Code with Lock Escalation Enabled

 Session 1 Session 2

 alter table Delivery.Orders set (lock_escalation=table);
 set transaction isolation level repeatable read
 begin tran

 select count(*) from Delivery.Orders with (rowlock);

 -- The session is blocked
 insert into Delivery.Orders
(OrderDate,OrderNum,CustomerId)
 values(getUTCDate(),’100000’,100);

 select
 request_session_id as [SPID]
 ,resource_type as [Resource]
 ,request_mode as [Lock Mode]
 ,request_status as [Status]
 from sys.dm_tran_locks;
 commit

 Figure 20-2. Sys.dm_tran_locks output with lock escalation enabled

 SQL Server replaces the row- and page-level locks with an object-level shared (S) lock. Although this
is great from a memory-usage standpoint—there is just a single lock to maintain—it affects concurrency.
As you can see, the second session is blocked; it cannot acquire an intent exclusive (IX) lock on the table
because it is incompatible with the full shared (S) lock held by the first session. It is also worth mentioning
that the WITH (ROWLOCK) hint does not affect lock escalation behavior.

 Lock escalation is enabled by default and could introduce the blocking issues, which can be confusing
for developers and database administrators. Let’s talk about a few typical cases.

 The first case is reporting using the REPEATABLE READ or SERIALIZABLE isolation levels for data
consistency purposes. If reporting queries are reading large amounts of data when there are no sessions
updating the data, those queries can escalate shared (S) locks to the table level. Afterward, all writers would

CHAPTER 20 ■ LOCK ESCALATION

426

be blocked, even when trying to insert new data or modify data not read by reporting queries, as you saw
earlier in this chapter. One of the ways to address this issue is by switching to optimistic transaction isolation
levels , which we will discuss in the next chapter.

 The second case is the implementation of the purge process. Let’s assume that you need to purge a large
amount of data using a DELETE statement. If the implementation deletes a large number of rows at once, you
could have an exclusive (X) lock escalated to the table level. This blocks access to the table for all writers,
as well as for the readers in the READ COMMITTED , REPEATABLE READ , or SERIALIZABLE isolation levels, even
when those queries are working with a completely different set of data than the one you are purging.

 Finally, you can think about the process that inserts a large batch of rows with a single INSERT
statement. Similar to the purge process, it could escalate an exclusive (X) lock to the table level and block the
other sessions from accessing it.

 All of these patterns have one thing in common: they acquire and hold a large number of row- and
page-level locks as part of a single statement. This triggers lock escalation, which would succeed if there
were no other sessions holding incompatible locks on the table (or partition) level. This would then block
other sessions from acquiring incompatible intent or full locks on the table (or partition) until the first
session completes the transaction, regardless of whether the blocked sessions are trying to access the data
affected by the first session or not.

 It is worth repeating that lock escalation is triggered by the number of locks acquired by the statement,
rather than by the transaction. If the separate statements acquire less than 5,000 row- and page-level locks
each, lock escalation is not triggered, regardless of the total number of locks the transaction holds.
Listing 20-1 shows an example where multiple update statements run in a loop within a single transaction.

 Listing 20-1. Lock escalation and multiple statements

 declare
 @id int = 1

 begin tran
 while @id < 100000
 begin
 update Delivery.Orders
 set OrderStatusId = 1
 where OrderId between @id and @id + 4998;

 select @id += 4999
 end

 select count(*) as [Lock Count]
 from sys.dm_tran_locks
 where request_session_id = @@SPID;
 commit

 Figure 20-3 shows the output of the SELECT statement from Listing 20-1 . Even when the total number of
locks the transaction holds is far more than the threshold, lock escalation is not triggered.

 Figure 20-3. Number of locks held by the transaction

CHAPTER 20 ■ LOCK ESCALATION

427

 Lock Escalation Troubleshooting
 There are a few ways to troubleshoot blocking problems that occur because of lock escalation. One sign of
potential problems is a high percentage of intent lock waits in the wait statistics.

 You can monitor and capture lock escalations with Extended Events. Figure 20-4 illustrates the
 lock_escalation Extended Event and some of the available event fields.

 ■ Note We will talk about wait statistics analysis and Extended Events in Part V of this book.

 Figure 20-5 illustrates the data captured by the event.

 Figure 20-4. Lock_escalation Extended Event

CHAPTER 20 ■ LOCK ESCALATION

428

 Similarly, you can capture lock escalation events with SQL Traces. Figure 20-6 illustrates the output
from this event in the SQL Profiler application.

 SQL Trace provides the following attributes:

• EventSubClass indicates what triggered the lock escalation—number of locks or
memory threshold.

• IntegerData and IntegerData2 show the number of locks that existed at the time of
the escalation and how many locks were converted during the escalation process.
It is worth noting that in our example lock escalation occurred when the statement
acquired 6,248 rather than 5,000 locks.

• Mode tells what kind of lock was escalated.

 Figure 20-5. Lock_escalation Extended Event data

 Figure 20-6. Lock-escalation event in SQL Server Profiler

CHAPTER 20 ■ LOCK ESCALATION

429

• ObjectID is the object_id of the table for which lock escalation was triggered.

• ObjectID2 is the HoBT ID for which lock escalation was triggered.

• Type represents lock escalation granularity.

• TextData , LineNumber, and Offset provide the information on the batch and
statement that triggered lock escalation.

 There is also the Table Lock Escalations/sec performance counter in the “SQL Server Access Methods”
section, which can be useful for baselining the system.

 From the blocked-session standpoint, if you run the code shown in Listing 18-2 (Chapter 18), you will
see the results shown in Figure 20-7 .

 The key point here is that you have two object-level locks. The blocked session is trying to acquire an
intent lock on the object level while the blocking session holds an incompatible full lock.

 If you look at the blocked process report, you can see that the blocked process is waiting on the intent
lock on the object, as shown in Listing 20-2 .

 Listing 20-2. Blocked process report (partial)

 <blocked-process-report>
 <blocked-process>
 <process id="..." taskpriority="0" logused="0" waitresource="OBJECT: ..." waittime="..."
ownerId="..." transactionname="user_transaction" lasttranstarted="..." XDES="..."
 lockMode="IX" schedulerid="..." ...>

 Keep in mind that there could be other reasons for the sessions to acquire full object locks or be blocked
waiting for an intent lock on the table. You must correlate the information from the other venues (Extended
Events, SQL Traces, and so on) to be sure blocking occurs because of lock escalation.

 Although lock escalation can introduce blocking issues, it helps to preserve SQL Server memory.
Without lock escalation, the large number of locks held by the instance reduces the size of the buffer pool.
As a result, you have fewer data pages in the cache, which could lead to a higher number of physical I/O
operations and degrade the performance of the queries. In addition, SQL Server could terminate the queries
with error 1204 when there is no available memory to store the lock information. Figure 20-8 shows just such
an error message.

 Figure 20-7. Blocked and blocking sessions due to lock escalation

 Figure 20-8. Error 1204

http://dx.doi.org/10.1007/978-1-4842-1964-5_18

CHAPTER 20 ■ LOCK ESCALATION

430

 In SQL Server 2008 and above, you can control escalation behavior at the table level by using the ALTER
TABLE SET LOCK_ESCALATION statement. This option affects lock escalation behavior for all clustered and
nonclustered indexes defined on the table. Three options are available:

 DISABLE: This option disables lock escalation for a specific table.

 TABLE: SQL Server escalates locks to the table level. This is the default option.

 AUTO: SQL Server escalates locks to the partition level when the table is
partitioned or to the table level when the table is not partitioned. Use this option
with large partitioned tables, especially when there are large reporting queries
running on the old data.

 Unfortunately, SQL Server 2005 does not support this option, and the only way to disable lock
escalation in this version is by using documented trace flags T1211 or T1224 at the instance or session level.
Keep in mind that you need to have sysadmin rights to call the DBCC TRACEON command and set trace flags at
the session level.

 T1211 disables lock escalation, regardless of the memory conditions.

 T1224 disables lock escalation based on the number of locks threshold, although
lock escalation can still be triggered in cases of memory pressure.

 ■ Note You can read more about trace flags T1211 and T1224 in Books Online at http://technet.
microsoft.com/en-us/library/ms188396.aspx .

 As with the other blocking issues, you should find the root cause of why lock escalation occurs. You
should also think about the pros and cons of disabling lock escalation on particular objects in the system.
Although it could reduce the blocking in the system, SQL Server would use more memory to store lock
information. And, of course, you can consider code re-factoring as another option.

 In case lock escalation is triggered by the writers, you can reduce the batches to the point at which they
are acquiring less than 5,000 row- and page-level locks per object. You can still process multiple batches in
the same transaction — the 5,000 locks threshold is per statement. At the same time, you should remember
that smaller batches are usually less effective than large ones. You need to fine-tune the batch sizes and find
the optimal values. It is normal to have lock escalation triggered as long as object-level locks are not held for
an excessive period of time and/or it does not affect the other sessions.

 As for lock escalations triggered by readers, you should avoid situations in which many shared (S)
locks are held. One example is scans due to nonoptimized or reporting queries in the REPEATABLE READ
or SERIALIZABLE transaction isolation levels when queries hold shared (S) locks until the end of the
transaction. The example shown in Listing 20-3 runs the SELECT from the Delivery.Orders table using the
 REPEATABLE READ isolation level. Figure 20-9 shows the output of the query.

 Listing 20-3. Lock escalation triggered by nonoptimized query

 set transaction isolation level repeatable read
 begin tran
 select OrderId, OrderDate, Amount
 from Delivery.Orders
 where OrderNum = '1';

 select
 resource_type as [Resource Type]
 ,case resource_type

http://technet.microsoft.com/en-us/library/ms188396.aspx
http://technet.microsoft.com/en-us/library/ms188396.aspx

CHAPTER 20 ■ LOCK ESCALATION

431

 when 'OBJECT' then object_name(resource_associated_entity_id,resource_database_id)
 when 'DATABASE' then 'DB'
 else
 (select object_name(object_id, resource_database_id)
 from sys.partitions
 where hobt_id = resource_associated_entity_id)
 end as [Object]
 ,request_mode as [Mode]
 ,request_status as [Status]
 from sys.dm_tran_locks
 where request_session_id = @@SPID;
 commit

 Even if the query returned just a single row, you can see that shared (S) locks have been escalated to the
table level. Let’s take a look at the execution plan shown in Figure 20-10 .

 There are no indexes on the OrderNum column, and SQL Server uses the clustered index scan operator.
Even if the query returns just a single row, it acquires and holds shared (S) locks on all the rows it read. As
a result, lock escalation is triggered. If you add an index on the OrderNum column, it changes the execution
plan to a nonclustered index seek . Only one row is read, very few row- and page-level locks are acquired and
held, and lock escalation is not needed.

 In some cases, you may consider partitioning the tables and setting the lock escalation option to use
partition-level escalation, rather than table level, using the ALTER TABLE SET (LOCK_ESCALATION=AUTO)
statement. This could help in scenarios in which you must purge old data using the DELETE statement or run
reporting queries against old data in the REPEATABLE READ or SERIALIZABLE isolation levels. In those cases,
statements escalate the locks to partitions, rather than to tables, and queries that are not accessing those
partitions would not be blocked.

 In other cases, you can switch to optimistic isolation levels, which will be discussed in Chapter 21 .
Finally, you would not have any reader-related blocking issues in the READ UNCOMMITTED transaction
isolation level, where shared (S) locks are not acquired, although this method is not recommended because
of all the other data consistency issues it introduces.

 Figure 20-9. Selecting data in the REPEATABLE READ isolation level

 Figure 20-10. Execution plan of the query

http://dx.doi.org/10.1007/978-1-4842-1964-5_21

CHAPTER 20 ■ LOCK ESCALATION

432

 Summary
 SQL Server escalates locks to the object level after the statement acquires and holds about 5,000 row- and
page-level locks. When escalation succeeds, SQL Server keeps the single object-level lock, blocking other
sessions with incompatible lock types from accessing the table. If escalation fails, SQL Server repeats
escalation attempts after about every 1,250 new locks are acquired.

 Lock escalation fits perfectly into the “It Depends” category. It reduces the SQL Server Lock Manager
memory usage and the overhead of maintaining a large number of locks. At the same time, it could increase
blocking in the system because of the object- or partition-level locks held.

 You should keep lock escalation enabled unless you find that it introduces noticeable blocking issues
in the system. Even in those cases, however, you should perform root-cause analysis as to why blocking due
to lock escalation occurs and evaluate the pros and cons of disabling it. You should also look at the other
options available, such as code and database schema re-factoring, query tuning, or switching to optimistic
transaction isolation levels. Any of these options might be the better choice to solve blocking problems,
rather than disabling lock escalation.

433© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_21

 CHAPTER 21

 Optimistic Isolation Levels

 Optimistic transaction isolation levels were introduced in SQL Server 2005 as a new way to deal with blocking
problems and to address data consistency issues. With optimistic transaction isolation levels, queries read
“old” committed versions of rows while accessing the data modified by the other sessions, rather than being
blocked by the incompatibility of shared (S) and exclusive (X) locks.

 This chapter explains how optimistic isolation levels are implemented and how they affect the locking
behavior of the system.

 Row Versioning Overview
 With optimistic transaction isolation levels, when updates occur, SQL Server stores the old versions of the
rows in a special part of tempdb called version store . The original rows in the database are also modified with
14-byte pointers that reference the old versions of the rows. Depending on the situation, you can have more
than one version record stored in the version store for the row. Figure 21-1 illustrates this behavior.

 Now, when readers (and sometimes writers) access the row that holds an exclusive (X) lock, they read
the old version from the version store rather than being blocked, as shown in Figure 21-2 .

 Figure 21-1. Version store

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

434

 As you can guess, while optimistic isolation levels help reduce blocking, there are some tradeoffs. Most
significant among these is that they contribute to tempdb load. Using optimistic isolation levels on highly
volatile systems can lead to very heavy tempdb activity and can significantly increase tempdb size. We will
look at this issue in greater detail later in this chapter.

 There is overhead during data modification and retrieval. SQL Server needs to copy the data to tempdb
as well as maintain a linked list of the version records. Similarly, it needs to traverse that list when reading
data. This adds additional CPU and I/O load. You need remember these tradeoffs, especially when you host
the system in the Cloud, where I/O performance can quickly become a bottleneck in the system.

 Finally, optimistic isolation levels contribute to index fragmentation. When a row is modified, SQL
Server increases the row size by 14 bytes due to the versioning tag pointer. If a page is tightly packed and a
new version of the row does not fit into the page, it will lead to a page split and further fragmentation. This is
very similar to the insert/update pattern we discussed in Chapter 6 , “Index Fragmentation.” Those 14 bytes
will stay in the row, even after records are removed from the version store, until the index is rebuilt.

 ■ Tip If optimistic isolation levels are used, it is recommended that you reserve some space on the pages by
using a FILLFACTOR of less than 100. It reduces page splits due to row-size increases because of the version
store pointers.

 Optimistic Transaction Isolation Levels
 There are two optimistic transaction isolation levels: READ COMMITTED SNAPSHOT and SNAPSHOT. To be
precise, SNAPSHOT is a separate transaction isolation level, while READ COMMITTED SNAPSHOT is a database
option that changes the behavior of the readers in the READ COMMITTED transaction isolation level.

 Let’s examine these levels in depth.

 READ COMMITTED SNAPSHOT Isolation Level
 Both optimistic isolation levels need to be enabled on the database level. You can enable READ COMMITTED
SNAPSHOT (RCSI) with the ALTER DATABASE SET READ_COMMITTED_SNAPSHOT ON command. This statement
needs to acquire an exclusive (X) database lock in order to change the database option, and it will be blocked
if there are other users connected to the database. You can address this by running the ALTER DATABASE SET
READ_COMMITTED_SNAPSHOT ON WITH ROLLBACK AFTER X SECONDS command. This will roll back all active
transactions and terminate existing database connections, which allows the changing of the database option.

 Figure 21-2. Readers and version store

http://dx.doi.org/10.1007/978-1-4842-1964-5_6

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

435

 As already mentioned, RCSI changes the behavior of the readers in READ COMMITTED mode. It does not
affect the behavior of the writers, however.

 As you can see in Figure 21-3 , instead of acquiring shared (S) locks and being blocked by exclusive (X)
locks held on the row, readers use the old version of the row from the version store. Writers still acquire
update (U) and exclusive (X) locks in the same way as in pessimistic isolation levels. Again, as you can see,
blocking between writers from different sessions still exists, although writers do not block readers, in a
similar manner to the READ UNCOMMITTED mode.

 There is a major difference between the READ UNCOMMITTED and READ COMMITTED SNAPSHOT isolation
levels, however. READ UNCOMMITTED removes the blocking at the expense of data consistency. Many
consistency anomalies are possible, including reading uncommitted data, duplicated reads, and missed
rows. On the other hand, the READ COMMITTED SNAPSHOT isolation level provides you with full statement-
level consistency. Statements running in this isolation level do not access uncommitted data nor the data
committed after the statement started.

 As the obvious conclusion, you should avoid using the NOLOCK hint in queries that use the READ
COMMITTED SNAPSHOT isolation level. While using NOLOCK with READ UNCOMMITTED is a bad practice by itself,
it is completely useless in READ COMMITTED SNAPSHOT mode, which provides you with the same blocking
behavior without losing data consistency for the queries.

 ■ Tip Switching a database to the READ COMMITTED SNAPSHOT isolation level can be a great emergency
technique when the system is suffering from blocking issues. It removes writers/readers blocking without any
code changes, assuming that readers are running in the READ COMMITTED isolation level. Obviously, this is only
a temporary solution, and you need to detect and eliminate the root cause of the problem.

 SNAPSHOT Isolation Level
 SNAPSHOT is a separate transaction isolation level, and it needs to be set explicitly in the code with a SET
TRANSACTION ISOLATION LEVEL SNAPSHOT statement or by using a WITH (SNAPSHOT) table hint.

 By default, using the SNAPSHOT isolation level is prohibited. You must enable it with an ALTER DATABASE
SET ALLOW_SNAPSHOT_ISOLATION ON statement. This statement does not require an exclusive database lock,
and it can be executed with other users connected to the database.

 A SNAPSHOT isolation level provides transaction-level consistency. Transactions will see a snapshot of
the data at the moment when the transaction started, regardless of how long the transaction was active and
how many data changes were made via other transactions during that time.

 Figure 21-3. Read Committed Snapshot isolation level behavior

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

436

 In the example shown in Figure 21-4 , we have session 1, which starts the transaction and reads the row
at time T1 . At time T2 , we have session 2, which modifies the row in the implicit transaction. At this moment,
the old (original) version of the row is moved to the version store in tempdb .

 In the next step, we have session 3, which starts another transaction and reads the same row at time
 T3 . It sees the version of the row as modified and committed by session 2 (at time T2). At time T4 , we have
session 4, which modifies the row in the implicit transaction again. At this time, we have two versions of the
rows in the version store—one that existed between T2 and T4 and the original version that existed before
 T2 . Now, if session 3 runs the SELECT again, it would use the version that existed between T2 and T4 , because
this version was committed at the time the session 3 transaction started. Similarly, session 1 would use the
original version of the row that existed before T2 . At some point after session 1 and session 3 are committed,
the version store clean-up task would remove both records from the version store — assuming, of course, that
there are no other transactions that need them.

 The SERIALIZABLE and SNAPSHOT isolation levels provide the same level of protection against data
inconsistency issues; however, there is a subtle difference in their behavior. A SNAPSHOT isolation level
transaction sees data as of the beginning of a transaction. With the SERIALIZABLE isolation level, the
transaction sees data as of the time when the data was accessed for the first time. Consider a situation where
a session is reading data from a table in the middle of a transaction. If another session changed the data
in that table after the transaction started but before data was read, the transaction in the SERIALIZABLE
isolation level would see the changes while the SNAPSHOT transaction would not.

 A SNAPSHOT isolation level provides transaction-level data consistency with no blocking involved,
although it could generate an enormous amount of data in tempdb . If you have a session that deletes millions
of rows from the table, all of those rows need to be copied to the version store, even if the original DELETE
statement is running in a non- SNAPSHOT isolation mode, just to preserve the state of the data for possible
 SNAPSHOT or RCSI transactions.

 Now, let’s examine the writer’s behavior. Let’s assume that session 1 starts the transaction and updates
one of the rows. That session holds an exclusive (X) lock there, as shown in Figure 21-5 .

 Figure 21-4. Snapshot isolation level and readers behavior

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

437

 Session 2 wants to update all rows where Cancelled = 1 . It starts to scan the table, and when it needs
to read the data for OrderId = 10 , it reads the row from the version store; that is, the last committed version
before the session 2 transaction started. This version is the original (non-updated) version of the row, and it
has Cancelled = 0 , so session 2 does not need to update it. Session 2 continues scanning the rows without
being blocked by update (U) and exclusive (X) lock incompatibility.

 Similarly, session 3 wants to update all rows with Amount = 29.95 . When it reads the version of the row
from the version store, it determines that the row needs to be updated. Again, it does not matter that session 1
also changes the amount for the same row. At this point, a “new version” of the row has not been committed
and it is invisible to the other sessions. Now, session 3 wants to update the row in the database, tries to acquire
an exclusive (X) lock, and is blocked because session 1 already has an exclusive (X) lock there.

 There is another possibility, however. Let’s consider the following scenario, keeping in mind the
transaction consistency that a SNAPSHOT isolation level guarantees.

 In the example shown in Figure 21-6 , session 1 starts a transaction and updates one of the rows. In
the next step, session 2 starts another transaction. In fact, it does not really matter what session starts the
transaction first, as long as a new version of the row with OrderId = 10 is not committed.

 Figure 21-5. Snapshot isolation level and writer’s behavior (1)

 Figure 21-6. Snapshot isolation level and writer’s behavior (2)

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

438

 In either case, session 1 commits the transaction as the next step. At this point, the exclusive (X) lock
on the row is released. If session 2 tries to read that row, it would still use the version from the version store,
because it was the last committed version at the time that the session 2 transaction started. Nevertheless, if
session 2 tries to modify that row, it would generate the 3960 error and roll back the transaction, as shown in
Figure 21-7 .

 ■ Tip You can implement retry logic with TRY/CATCH statements to handle the 3960 error if business
requirements allow that.

 You need to keep this behavior in mind when you are updating the data in the SNAPSHOT isolation level
in a system with volatile data. If other sessions update the rows that you are modifying after the transaction is
started, you would end up with this error, even if you did not access those rows before the update. One of the
possible workarounds is using READCOMMITTED or other non-optimistic isolation level table hints as part of
the UPDATE statement, as shown in Listing 21-1 .

 Listing 21-1. Using READCOMMITTED hint to prevent 3960 error

 set transaction isolation level snapshotxs
 begin tran
 select count(*) from Delivery.Drivers;

 update Delivery.Orders with (readcommitted)
 set Cancelled = 1
 where OrderId = 10;
 commit

 SNAPSHOT isolation levels can change the behavior of the system. Let’s assume there is a table, dbo.
Colors , with two rows: Black and White . The code that creates the table is shown in Listing 21-2 .

 Listing 21-2. SNAPSHOT isolation level update behavior: Table creation

 create table dbo.Colors
 (
 Id int not null,
 Color char(5) not null
);

 insert into dbo.Colors(Id, Color) values(1,'Black'),(2,'White')

 Now, let’s run two sessions simultaneously. In the first session, we run the update that sets the color to
white for the rows where the color is currently black by using the UPDATE dbo.Colors SET Color='White'
WHERE Color='Black' statement. In the second session, let’s perform the opposite operation by using the
 UPDATE dbo.Colors SET Color='Black' WHERE Color='White' statement.

 Figure 21-7. Error 3960

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

439

 Let’s run both sessions simultaneously in READ COMMITTED or any other pessimistic transaction isolation
level. In the first step, as shown in Figure 21-8 , we have the race condition. One of the sessions places
exclusive (X) locks on the row it updated while the other session will be blocked when trying to acquire an
update (U) lock on the same row.

 Once the first session commits the transaction, the exclusive (X) lock will be released. At this point, the
row will have a Color value updated by the first session so that the second session updates two rows rather
than one, as shown in Figure 21-9 . In the end, both rows in the table will be either Black or White depending
on which session acquires the lock first.

 Figure 21-8. Pessimistic locking behavior: Step 1

 Figure 21-9. Pessimistic locking behavior: Step 2

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

440

 With the SNAPSHOT isolation level, however, this works a bit differently, as shown in Figure 21-10 . When
the first session updates the row, it moves the old version of the row to the version store. The second session
will read the row from there, rather than being blocked, and vice versa. As a result, the colors will be swapped.

 You need to be aware of RCSI and SNASPSHOT isolation level behavior, especially if you have code that
relies on blocking. One example is trigger-based implementation of referential integrity. You can have an ON
DELETE trigger on the referenced table, where you are running a SELECT statement, to check if there are any
rows in another table referencing deleted rows. With an optimistic isolation level, the trigger can skip the rows
that were inserted after the transaction started. The solution here again is using READ COMMITTED or other
pessimistic isolation level table hints as part of the SELECT in triggers on both referenced and referencing tables.

 ■ Note SQL Server uses a READ COMMITTED isolation level when validating foreign key constraints. This
means that you can still have blocking between writers and readers even with optimistic isolation levels,
especially if there are no indexes on the referencing column that lead to a table scan of the referencing table.

 Version Store Behavior
 As already mentioned, you need to monitor how optimistic isolation levels affect tempdb in your system. For
example, let’s run the DELETE FROM Delivery.Orders WITH (NOLOCK) statement that deletes all rows from
the Delivery.Orders table.

 The WITH (NOLOCK) hint forces the statement to run in the READ UNCOMMITTED transaction isolation
level. Even if there are no other transactions using optimistic isolation levels, there is still a possibility that
they will start before the DELETE transaction commits. As a result, SQL Server needs to maintain the version
store, regardless of whether there are any active transactions that use optimistic isolation levels.

 Figure 21-10. Snapshot isolation level locking behavior

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

441

 Figure 21-11 shows tempdb free space and version store size. As you can see, as soon as the deletion
starts, the version store grows and takes up all of the free space in tempdb .

 In Figure 21-12 , you can see the version store generation and cleanup rate. The generation rate
remained more or less the same during execution, while the cleanup task cleaned the version store after the
transaction was committed. By default, the cleanup task runs once per minute as well as before an auto-
growth event, in case tempdb is full.

 Figure 21-11. Tempdb free space and version store size

 Figure 21-12. Version generation and cleanup rates

CHAPTER 21 ■ OPTIMISTIC ISOLATION LEVELS

442

 There are three other performance counters related to optimistic isolation levels, as follows:

 1. Snapshot Transactions . This shows the total number of active snapshot
transactions.

 2. Update Conflict Ratio . This shows the ratio of the number of update conflicts to
the total number of update snapshot transactions.

 3. Longest Transaction Running Time . This shows the duration in seconds of the
oldest active transaction that is using row versioning.

 There are a few dynamic management views (DMVs) that can be useful in troubleshooting various
issues related to the version store and transactions in general. Look at the “Transaction-Related Dynamic
Management Views and Functions” section at http://technet.microsoft.com/en-us/library/ms178621.
aspx for further reading.

 Summary
 SQL Server uses a row-versioning model with optimistic isolation levels. Queries access “old” committed
versions of rows rather than being blocked by the incompatibility of shared (S), update (U), and exclusive (X)
locks. There are two optimistic transaction isolation levels available: READ COMMITTED SNAPSHOT and SNAPSHOT .

 READ COMMITTED SNAPSHOT is a database option that changes the behavior of readers in READ COMMITTED
mode. It does not change the behavior of writers—there is still blocking due to (U)/(U) and (U)/(X) locks’
incompatibility. READ COMMITTED SNAPSHOT does not require any code changes, and it can be used as an
emergency technique when a system is experiencing blocking issues.

 READ COMMITTED SNAPSHOT provides statement-level consistency; that is, the query reads a snapshot of
the data at the time the statement started.

 The SNAPSHOT isolation level is a separate transaction isolation level that needs to be explicitly specified
in the code. This level provides transaction-level consistency; that is, the query accesses a snapshot of the
data at the time the transaction started.

 With the SNAPSHOT isolation level, writers do not block each other, with the exception of a situation
where both sessions are updating the same rows. Such a situation leads either to blocking or to a 3960 error.

 While optimistic isolation levels reduce blocking, they can significantly increase tempdb load, especially
in OLTP systems where data is constantly changing. They also contribute to index fragmentation by adding
14-byte versioning tag pointers to the data rows. You should consider the tradeoffs of using them at the
implementation stage, perform tempdb optimization, and monitor the system to make sure that the version
store is not abused.

http://technet.microsoft.com/en-us/library/ms178621.aspx
http://technet.microsoft.com/en-us/library/ms178621.aspx

443© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_22

 CHAPTER 22

 Application Locks

 This chapter discusses another SQL Server locking feature called application locks , which allow you to place locks
on an application’s resources as identified by name. One of the most common scenarios where application locks
are beneficial is serializing access to T-SQL code in the client application, similar to critical sections and mutexes.

 Application Locks Overview
 Application locks allow an application to place a lock on an application resource , which is not related to
database objects and is identified by name only. The lock would follow the regular rules in terms of lock
compatibility, and it can be one of the following types: shared (S), update (U), exclusive (X), intent shared
(IS), and intent exclusive (IX).

 An application needs to call the sp_getapplock stored procedure to acquire the lock, using the
following parameters:

 @Resource: Specifies the name of the application lock

 @LockMode: Specifies the lock type

 @LockOwner: Should be one of two values— Transaction or Session— and control
the owner (and scope) of the lock.

 @LockTimeout: Specifies the timeout in milliseconds. If stored procedure cannot
acquire the lock within this interval, it would return an error.

 @DbPrincipal: Specifies security context (the caller needs to be a member of
 database_principal , dbo , or db_owner roles)

 This procedure returns a value greater than or equal to zero in the case of success, and a negative value
in the case of failure. As with regular locks, there is the possibility of deadlocks , although this would not roll
back the transaction of the session that is chosen as the victim, but would rather return an error code that
indicates the deadlock condition.

 An application needs to call the sp_releaseapplock stored procedure to release the application lock.
Alternatively, in cases where the @LockOwner of the lock is a transaction, the lock would be automatically
released when the transaction commits or rolls back. This is similar to regular locks.

 Application Locks Usage
 There is a concept in computer science called mutual execution . It signifies that multiple threads or processes
cannot execute specific code at the same time. As an example, think about a multi-threaded application in
which threads use shared objects. In those systems, you often need to serialize the code that accesses those
objects, preventing the race conditions where multiple threads read and update them simultaneously.

CHAPTER 22 ■ APPLICATION LOCKS

444

 Every development language has a set of synchronization primitives that can accomplish such tasks
(for example, mutexes and critical sections). Application locks do the same trick when you need to serialize
some part of the T-SQL code.

 As an example, let’s think about a system that collects some data, saves it into the database, and has a
set of application servers for data processing. Each application server reads the package of data, processes it,
and finally deletes processed data from the original table. Obviously, you do not want different application
servers processing the same rows, and serializing the data loading process is one of the available options. An
exclusive (X) table lock would not work, because it blocks any table access, rather than just the data loading.
Implementing serialization on the application server level is not a trivial task either. Fortunately, application
locks could help to solve the problem.

 Let’s assume that you have the table shown in Listing 22-1 . For simplicity’s sake, there is a column called
 Attributes that represents all of the row data.

 Listing 22-1. Table structure

 create table dbo.RawData
 (
 ID int not null,
 Attributes char(100) not null
 constraint DEF_RawData_Attributes default 'Row Data',
 ProcessingTime datetime not null
 constraint DEF_RawData_ProcessingTime default '2000-01-01',
 constraint PK_RawData
 primary key clustered(ID)
)

 There are two important columns: ID , which is the primary key, and ProcessingTime , which represents
the time at which the row was loaded for processing. You should use UTC rather than local time to support
situations in which application servers are residing in different time zones, as well as to prevent issues
when the clock is adjusted to Daylight Saving Time. This column also helps to prevent other sessions from
re-reading the data while it is still processing. It is better to avoid Boolean (bit) columns for such purposes,
because if the application server crashes the row would remain in the table forever. With the time column,
the system can read it again after some length of timeout.

 Now, let’s create the stored procedure that reads the data, as shown in Listing 22-2 .

 Listing 22-2. Stored procedure that reads the data

 create proc dbo.LoadRawData(@PacketSize int)
 as
 set nocount, xact_abort on

 declare
 @EarliestProcessingTime datetime
 ,@ResCode int

 declare
 @Data table
 (
 ID int not null primary key,
 Attributes char(100) not null
)

CHAPTER 22 ■ APPLICATION LOCKS

445

 begin tran
 exec @ResCode = sp_getapplock
 @Resource = 'LoadRowDataLock'
 ,@LockMode = 'Exclusive'
 ,@LockOwner = 'Transaction'
 ,@LockTimeout = 15000; -- 15 seconds
 if @ResCode >= 0 -- success
 begin
 -- We assume that app server processes the packet within 1 minute unless crashed
 select @EarliestProcessingTime = dateadd(minute,-1,getutcdate());
 ;with DataPacket(ID, Attributes, ProcessingTime)
 as
 (
 select top (@PacketSize) ID, Attributes, ProcessingTime
 from dbo.RawData
 where ProcessingTime <= @EarliestProcessingTime
 order by ID
)
 update DataPacket
 set ProcessingTime = getutcdate()
 output inserted.ID, inserted.Attributes into @Data(ID, Attributes);
 end
 -- we don't need to explicitly release application lock because @LockOwner is
 -- Transaction
 commit
 select ID, Attributes from @Data;

 The stored procedure obtains an exclusive (X) application lock at the beginning of the transaction. As
a result, all other sessions calling the stored procedure will be blocked until the transaction is committed
and the application lock is released. It guarantees that only one session can update and read the data
simultaneously from within the stored procedure. At the same time, other sessions can still work with the
table (for example, insert new rows or delete processed rows). Application locks are separate from data
locks, and sessions would not be blocked unless they were trying to obtain an application lock for the same
@Resource with the sp_getapplock call.

 Figure 22-1 demonstrates the output from the sys.dm_tran_locks data management view at the time
when two sessions were calling the dbo.LoadRawData stored procedure simultaneously. The session with
 SPID=58 successfully obtained an application lock, while the other session, with SPID=63 , is blocked. A
 resource_type value of APPLICATION indicates an application lock.

 It is worth mentioning that, if our goal is to simply guarantee that multiple sessions cannot read the
same rows simultaneously, rather than serializing the entire read process, there is another, simpler, solution.
You can use locking table hints, as shown in Listing 22-3 .

 Figure 22-1. Sys.dm_tran_locks output

CHAPTER 22 ■ APPLICATION LOCKS

446

 Listing 22-3. Serializing access to the data with table locking hints

 ;with DataPacket(ID, Attributes, ProcessingTime)
 as
 (
 select top (@PacketSize) ID, Attributes, ProcessingTime
 from dbo.RawData with (updlock, readpast)
 where ProcessingTime <= @EarliestProcessingTime
 order by ID
)
 update DataPacket
 set ProcessingTime = getutcdate()
 output inserted.ID, inserted.Attributes into @Data(ID, Attributes)

 The UPDLOCK hint forces SQL Server to use update (U) rather than shared (S) locks during SELECT
operations. This prevents other sessions from reading the same rows simultaneously. At the same time, the
 READPAST hint forces the sessions to skip the rows with incompatible locks held rather than being blocked.

 Although both implementations accomplish the same goal, they use different approaches. The latter
serializes access to the same rows by using data (row level) locks. Application locks serialize access to the
code and prevent multiple sessions from running the statement simultaneously. This can be very useful in
cases where you want to prevent some code from being executed in parallel.

 Summary
 Application locks allow an application to place a lock on an application resource; it is not related to database
objects and is identified by name. It is a useful tool that helps you to implement mutual execution code patterns,
serializing access to T-SQL code similar to critical sections and mutexes in the client applications.

 You can create application locks using the sp_getapplock stored procedure and release them using the
 sp_releaseapplock stored procedure. Application locks can have either session or transaction scope, and
they follow regular lock compatibility rules as the data locks.

447© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_23

 CHAPTER 23

 Schema Locks

 SQL Server uses two additional lock types, called schema locks , to prevent table and metadata alteration
during query execution. This chapter discusses schema locks in depth, along with other topics such as lock
partitioning, which occurs in systems with more than 16 CPUs, and low-priority locks, which were introduced
in SQL Server 2014 to reduce blocking during online index rebuilds and partition switch operations.

 Schema Modification Locks
 SQL Server needs to protect database metadata in order to prevent situations where the table structure is changed
in the middle of query execution. The problem is more complicated than it seems, however. Even though
exclusive (X) table locks can, in theory, block access to a table during an ALTER TABLE operation, they would not
work in a READ UNCOMMITTED isolation level where readers do not acquire intent shared (IS) table locks.

 SQL Server uses two additional lock types to address the problem: schema stability (Sch-S) and schema
modification (Sch-M) locks. Schema modification (Sch-M) locks are acquired before any metadata changes
and during the execution of a TRUNCATE TABLE statement. You can think about this lock type as a “super
lock.” It is incompatible with any other lock types, and it completely blocks access to the object.

 Similar to exclusive (X) locks, schema modification (Sch-M) locks are held until the end of the
transaction. You need to keep this in mind when you run DDL statements within explicit transactions.
While explicit transaction allows you to roll back all of the schema changes in case of an error, it also
prevents any access to the affected objects until the transaction is committed.

 ■ Important Many database schema-comparison tools use explicit transactions in the alteration script. This could
introduce serious blocking when you run the script on live servers while other users are accessing the system.

 SQL Server also uses schema modification (Sch-M) locks while altering the partition function. This
can seriously affect the availability of the system when such alterations introduce data movement or scans.
Access to the entire partitioned table is then blocked until the operation is completed.

 Schema stability (Sch-S) lock s are used during DML query compilation and execution. SQL Server
acquires them regardless of the transaction isolation level, even in READ UNCOMMITTED mode. Schema
stability (Sch-S) locks are compatible with any lock type other than schema modification (Sch-M) locks.

 SQL Server can perform some optimizations to reduce the number of locks acquired. While a schema
stability (Sch-S) lock is always used during query compilation, SQL Server can replace it with an intent
object lock during query execution. Let’s look at the example shown in Table 23-1 .

 The first session starts the transaction and alters the table, acquiring a schema modification (Sch-M)
lock there. In the next step, two other sessions run a SELECT statement in the READ UNCOMMITTED isolation
level and a DELETE statement, respectively.

CHAPTER 23 ■ SCHEMA LOCKS

448

 As you can see in Figure 23-1 , sessions 2 and 3 were blocked while waiting for schema stability (Sch-S)
locks that were required for query compilation.

 If you run that example a second time, when queries are compiled and plans are in the cache, you
would see a slightly different picture, as shown in Figure 23-2 .

 The second session would still wait for the schema stability (Sch-S) lock. There are no shared (S) locks in
the READ UNCOMMITTED mode, and the schema stability (Sch-S) lock is the only way to keep a schema stable
during execution. However, the session with the DELETE statement would wait for an intent exclusive (IX) lock
instead. That lock type needs to be acquired anyway, and it can replace a schema stability (Sch-S) lock because
it is also incompatible with schema modification (Sch-M) locks and prevents the schema from being altered.

 Mixing schema modification locks with other lock types in the same transaction increases the
possibility of deadlocks. Let’s assume that we have two sessions. The first one starts the transaction and
updates the row in the table. At this point, it holds an exclusive (X) lock on the row and two intent exclusive
(IX) locks, one each on the page and the table. If another session tries to read (or update) the same row,

 Table 23-1. Schema Locks: Query Compilation

 Session 1 (SPID=64) Session 2 (SPID=65) Session 3 (SPID=66)

 begin tran
 alter table Delivery.Orders
 add Dummy int;

 select count(*)
fro m Delivery.Orders

with (nolock);

 delete from Delivery.Orders
where OrderId = 1;

 select request_session_id
 ,resource_type, request_type

,request_mode, request_status
 from sys.dm_tran_locks
 where resource_type = 'OBJECT';
 rollback

 Figure 23-1. Schema locks during query compilation

 Figure 23-2. Schema locks when execution plans are cached

CHAPTER 23 ■ SCHEMA LOCKS

449

it will be blocked. At this point, it will wait for the shared (S) lock on the row and then will have the intent
shared (IS) locks held on the page and the table. That stage is illustrated in Figure 23-3 . (Page-level intent
locks are omitted.)

 If at this point the first session wants to alter the table, it will need to acquire a schema modification
(Sch-M) lock. This lock type is incompatible with any other lock type, and the session will be blocked by
the intent shared (IS) lock held by the second session, which leads to a deadlock condition, as shown in
Figure 23-4 .

 Multiple Sessions and Lock Compatibility
 One important point we have yet to cover is lock compatibility when more than two sessions are competing
for the same resource. Let’s look at a couple of examples.

 As you can see in Table 23-2 , the first session (SPID=55) holds a shared (S) lock on the row. The second
session (SPID=54) is trying to acquire an exclusive (X) lock on the same row, and it is being blocked due to
lock incompatibility. The third session (SPID=53) is reading the same row in the READ COMMITTED transaction
isolation level. This session has not been blocked.

 Figure 23-3. Deadlock due to mixed DDL and DML statements: Step 1

 Figure 23-4. Deadlock due to mixed DDL and DML statements: Step 2

CHAPTER 23 ■ SCHEMA LOCKS

450

 Table 23-2. Multiple Sessions and Lock Compatibility (READ COMMITTED Isolation Level)

 Session 1 (SPID=55) Session 2 (SPID=54) Session 3 (SPID=53)

 begin tran
 select OrderId, Amount
fr om Delivery.Orders
with (repeatableread)

 where OrderId = 1;

 -- Blocked
 delete from Delivery.Orders
where OrderId = 1;

 -- Success
select OrderId, Amount
fr om Delivery.Orders
with (readcommitted)

 where OrderId = 1;

 select
l.request_session_id as [SPID],
l.resource_description,
l.resource_type, l.request_mode,
l.request_status,
r.blocking_session_id

 fr om
sy s.dm_tran_locks l join
sy s.dm_exec_requests r on
l.r equest_session_id =

r.session_id
 where l.resource_type = 'KEY';
 rollback

 Figure 23-5. Lock compatibility with more than two sessions

 Figure 23-5 illustrates the row-level locks held on the row with OrderId=1 .

 As you can see in Figure 23-6 , the third session did not even try to acquire the shared (S) lock on the
row. There is already a shared (S) lock on the row held by the first session (SPID=55) , which guarantees that
the row has not been modified by uncommitted transactions. In a READ COMMITTED isolation level, a shared
(S) lock releases immediately after a row is read. As a result, session 3 (SPID=53) does not need to hold its
own shared (S) lock after reading the row, and it can rely on the lock from session 1.

CHAPTER 23 ■ SCHEMA LOCKS

451

 Let’s change our example and see what happens if the third session tries to read the row in a REPEATABLE
READ isolation level, where a shared (S) lock needs to be held until the end of the transaction, as shown in
Table 23-3 . In this case, the third session will need to acquire its own shared (S) lock, and it will be blocked
because of an incompatible exclusive (X) lock from the second session in the queue.

 Figure 23-7 illustrates the row-level locks requests at this point.

 Figure 23-6. Locks acquired during the operation

 Table 23-3. Multiple Sessions and Lock Compatibility (REPEATABLE READ Isolation Level)

 Session 1 (SPID=55) Session 2 (SPID=54) Session 3 (SPID=53)

 begin tran
select OrderId, Amount
from Delivery.Orders
with (repeatableread)

where OrderId = 1;

 -- Blocked
delete from Delivery.Orders
where OrderId = 1;

 -- Blocked
select OrderId, Amount
from Delivery.Orders
 with (repeatableread)
where OrderId = 1;

 select
l.request_session_id as [SPID],
l.resource_description,
l.resource_type, l.request_mode,
l.request_status,
r.blocking_session_id

 from
sys.dm_tran_locks l join
sys.dm_exec_requests r on
l.r equest_session_id =

r.session_id
 where l.resource_type = 'KEY';
rollback

CHAPTER 23 ■ SCHEMA LOCKS

452

 This leads as to a very important conclusion: In order to be granted, a lock needs to be compatible
with all of the lock requests on that resource, granted or not .

 It is also worth noting that the first scenario, where the third session ran in the READ COMMITTED isolation
level and did not acquire a lock on the resource, can be considered an internal optimization, which you
should not rely upon. In some cases, SQL Server still acquires another shared (S) lock on the resource in
 READ COMMITTED mode, even if there is another shared (S) lock already held. In such a case, the query would
be blocked, similar to the REPEATABLE READ isolation level example.

 Lock Partitioning
 The behavior we just observed means that lock requests are serialized, and thus requests on the same object
should not deadlock each other. Unfortunately, there is another factor that complicates matters. When a
system has 16 or more logical processors, SQL Server starts to use a technique called lock partitioning . This
term is a bit confusing, as it has nothing to do with table partitioning or lock escalation. When lock partitioning
is enabled, SQL Server starts to store the information about locks on a per-scheduler (logical CPU) basis. In this
mode, intent shared (IS), intent exclusive (IX), and schema stability (Sch-S) locks are acquired and stored on
a single partition based on the CPU (scheduler) where the batch is executing. All other lock types need to be
acquired on all of the partitions. This does not change anything from a lock compatibility standpoint. When a
session needs to acquire an exclusive (X) table lock, for example, it would go through all of the lock partitions
and be blocked if any partition held an incompatible intent lock on the table.

 However, there are two consequences about which you need to be aware. First, SQL Server needs more
memory to store lock information. Non-partitioned locks are stored separately in every partition, and if, for
example, a system has 20 CPUs, it would maintain 20 lock structures instead of just one. All lock types that
can be acquired on the row level are non-partitioned.

 The second issue is more complicated. Lock partitioning increases the chances of deadlocks when
object-level locks are involved.

 Let’s look at an example and assume that the first session updates a row in a system that uses lock
partitioning. If this batch is executing on CPU 2, the session acquires an intent exclusive (IX) table lock,
which is partitioned and stored on CPU 2 only. It also acquires a row-level exclusive (X) lock, which is not
partitioned and is stored across all CPUs. (I am omitting page-level intent locks again for simplicity’s sake.)

 The second session is trying to alter the table, and it needs to acquire a schema modification (Sch-M)
lock. This lock type is non-partitioned, so the session needs to acquire it on every CPU . It successfully
acquires and holds the locks on CPUs 0 and 1, and it is blocked on CPU 2 due the lock’s incompatibility with
the intent exclusive (IX) lock held there. Figure 23-8 illustrates this condition.

 Figure 23-7. Lock compatibility with more than two sessions

CHAPTER 23 ■ SCHEMA LOCKS

453

 If the first session now tries to acquire another intent table lock on CPUs 0 or 1, it would be blocked
because the second session already holds a schema modification (Sch-M) lock there. We again have a
deadlock, as shown in Figure 23-9 .

 While this could happen with any object–level, non-intent lock type, one of the most common scenarios
happens with partitioned table – related operations, such as a partition switch or a partition function
alteration. These operations require schema modification (Sch-M) locks, which can often lead to deadlocks
on busy systems when many sessions are accessing the same object.

 Unfortunately, there is very little you can do about it. Lock partitioning cannot be disabled through
documented approaches. The undocumented trace flag T1229 does the trick; however, using undocumented
trace flags is not recommended in production. Moreover, in those systems with a large number of CPUs,
disabling lock partitioning can lead to performance issues resulting from excessive serialization during
lock structures management.

 With lock partitioning in place, the best option that you have is to implement retry logic using TRY/
CATCH around DDL statements. A SET DEADLOCK_PRIORITY boost could also help reduce the chance that a
DDL session will be chosen as the deadlock victim.

 Figure 23-8. Deadlock due to lock partitioning: Step 1

 Figure 23-9. Deadlock due to lock partitioning: Step 2

CHAPTER 23 ■ SCHEMA LOCKS

454

 In cases where you have a dedicated data access tier and full control around it, you can also use
application locks, which are not subject to lock partitioning, to serialize access to the table. With such an
implementation, all DML queries would need to acquire shared (S) application locks, while DDL code would
use exclusive (X) application locks. Obviously, this method introduces a fair amount of extra work for the
implementation.

 Information about lock partitions is available in the sys.dm_tran_locks DMV via the resource_lock_
partition column, in the resource_2 field of the lock_acquired Extended Event, and in the BigIntData1
column in the SQL Trace Locks event. It is also available in the deadlock graph.

 Low-Priority Locks
 SQL Server 2014 introduced the concept of low-priority locks , which can improve concurrency in the system
during online index rebuilds and partition switch operations. You already know that a partition switch
acquires a schema modification (Sch-M) lock. The same is also true with an online index rebuild. Even
though it holds an intent shared (IS) table lock during the rebuild process, it needs to acquire a shared (S)
table lock at the beginning and a schema modification (Sch-M) lock in the final phase of execution. Both
locks are held for a very short time; however, they can introduce blocking issues in busy OLTP environments.

 Consider a situation where you start an online index rebuild at a time when you have another active
transaction modifying data in a table. That initial transaction will hold an intent exclusive (IX) lock on the
table, which prevents the online index rebuild from acquiring a shared (S) table lock. The lock request will
wait in the queue and block all other transactions that want to modify data in the table, and it still needs to
acquire an intent exclusive (IX) lock there. Figure 23-10 illustrates this situation.

 This blocking condition clears only after the first transaction is completed and the online index rebuild
acquires and releases a shared (S) table lock. A similar blocking condition could occur in the final stage of
an online index rebuild when it needs to acquire a schema modification (Sch-M) lock to replace an index
reference in the metadata. Both readers and writers will be blocked while the index rebuild waits for the
schema modification (Sch-M) lock to be granted.

 While this behavior occurs in every version of SQL Server , you can mitigate blocking issues in SQL
Server 2014 and 2016 by using low-priority locks. Low-priority locks do not block other sessions that want to
acquire incompatible lock types while they are waiting for such locks to be acquired. Conceptually, you can
think of low-priority locks as staying in a different locking queue than regular locks. Figure 23-11 illustrates
this concept.

 Figure 23-10. Blocking during the initial stage of an index rebuild

CHAPTER 23 ■ SCHEMA LOCKS

455

 ■ Important It is essential to remember that as soon as a low-priority lock is acquired it will then behave the
same as a regular lock, preventing other sessions from acquiring incompatible locks on the resource.

 Figure 23-12 shows the output of the query from Listing 18-1 in Chapter 18 . It demonstrates how low-
priority locks are shown in the sys.dm_tran_locks data management view output. It is worth noting that the
view does not provide the wait time of those locks.

 You can specify lock priority with a WAIT_AT_LOW_PRIORITY clause in the ALTER INDEX and ALTER TABLE
statements, as shown in Listing 23-1 .

 Listing 23-1. Specifying lock priority

 alter index PK_Customers on Delivery.Customers rebuild
 with
 (
 online=on
 (
 wait_at_low_priority (max_duration=10 minutes, abort_after_wait=blockers)
)
);

 alter table Delivery.Orders
 switch partition 1 to Delivery.OrdersTmp
 with
 (
 wait_at_low_priority (max_duration=60 minutes, abort_after_wait=self)
)

 Figure 23-11. Low-priority locks

 Figure 23-12. Low-priority locks in the sys.dm_tran_locks data management view

http://dx.doi.org/10.1007/978-1-4842-1964-5_18

CHAPTER 23 ■ SCHEMA LOCKS

456

 As you can see, WAIT_AT_LOW_PRIORITY has two options. The MAX_ DURATION setting specifies the
lock wait time in minutes. The ABORT_AFTER_WAIT setting defines the session behavior if a lock cannot be
obtained within the specified time limit. The possible values are as follows:

 NONE : The low-priority lock is converted to a regular lock. It behaves as a
regular lock does after conversion. It will block sessions, which want to acquire
incompatible lock types while waiting for the lock to be acquired. The session
continues to wait until the lock is acquired.

 SELF : The operation is aborted if a lock cannot be granted within the time
specified by the MAX_DURATION setting.

 BLOCKERS : All sessions that held locks on the resource are aborted, and the
session that is waiting for a low-priority lock is able to acquire it.

 ■ Note Omitting the WAIT_AT_LOW_PRIORITY clause works the same way as specifying WAIT_AT_LOW_
PRIORITY(MAX_DURATION=0 MINUTES, ABORT_AFTER_WAIT=NONE) .

 Very active OLTP tables always have a large number of concurrent sessions accessing them. Therefore,
there is always the possibility that a session will not be able to acquire a low-priority lock even with a
 prolonged MAX_DURATION specified. You may consider using the ABORT_AFTER_WAIT=BLOCKERS option, which
will allow the operation to complete, especially when client applications have proper exception handling
and retry logic implemented.

 Summary
 SQL Server uses schema locks to protect metadata from alteration during query compilation and execution.
There are two types of schema locks in SQL Server: schema stability (Sch-S) and schema modification
(Sch-M) locks.

 Schema stability (Sch-S) locks are acquired on objects referenced by queries during query compilation
and execution. In some cases, however, SQL Server can replace schema stability (Sch-S) locks with intent
table locks, which also protect the table schema. Schema stability (Sch-S) locks are compatible with any
other lock type, with the exception of schema modification (Sch-M) locks.

 Schema modification (Sch-M) locks are incompatible with any other lock type. SQL Server uses them
during DDL operations. If a DDL operation needs to scan or modify the data (for example, adding a trusted
foreign key constraint to the table or altering a partition function on a non-empty partition), the schema
modification (Sch-M) lock would be held for the duration of the operation. This can take a long time on large
tables and can cause severe blocking issues in the system. You need to keep this in mind when designing
systems with DDL and DML operations running in parallel.

 SQL Server uses lock partitioning on systems that have 16 or more logical processors. With lock
partitioning, SQL Server maintains separate lock structures on a per-processor basis. Intent and schema
stability locks are held within a single lock partition, while other lock types are acquired and held across all
partitions. This increases the amount of memory required to store lock information, and it can increase the
chances of deadlocks occurring when DDL and DML statements are running in parallel.

 SQL Server 2014 and 2016 support low-priority locks, which can be used to reduce blocking during online
index rebuild and partition switch operations. These locks do not block other sessions that are requesting
incompatible lock types at the time when the low-priority lock is waiting for the lock to be acquired.

457© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_24

 CHAPTER 24

 Designing Transaction Strategies

 This rather short chapter provides a set of generic guidelines for how you can design transaction strategies
and improve concurrency in the systems.

 Considerations and Code Patterns
 Blocking occurs when multiple sessions compete for the same set of resources. Sessions are trying to acquire
incompatible locks on them, which leads to lock collision and blocking.

 As you already know, SQL Server acquires the locks when it processes data. It does not matter how many
rows need to be modified or returned to the client. What matters is how many rows SQL Server accesses
during the statement execution. It is entirely possible that a query that selected or updated just a single row
acquired thousands or even millions of locks because of an index scan operator in the execution plan.

 Proper query optimization and index tuning reduce the number of rows SQL Server needs to access
during query executions. This, in turn, reduces the number of locks to acquire and the chance that lock
collisions will occur.

 ■ Tip Optimize the queries. It will help to improve concurrency, performance, and user experience in the
system.

 Another method for reducing the chance of lock collision is reducing the length of time locks are held.
Exclusive (X) locks are always held until the end of the transaction. The same is true for shared (S) locks in
the REPEATABLE READ and SERIALIZABLE isolation levels. The longer locks are held, the bigger the chance is
that lock collision and blocking will occur.

 You need to make transactions as short as possible and avoid any long-time operations or interactions
with users through the UI while a transaction is active. You also need to be careful when dealing with external
resources using CLR or linked servers. For example, when a linked server is down, it can take a long time
before a connection timeout occurs, and you want to avoid a situation where locks are kept all that time.

 ■ Tip Make transactions as short as possible.

 Update the data as close to the end of the transaction as possible. This reduces the time that exclusive
(X) locks are held. In some cases, it might make sense to use temporary tables as the staging place, inserting
data there and updating the actual tables at the very end of the transaction.

CHAPTER 24 ■ DESIGNING TRANSACTION STRATEGIES

458

 One particular instance when this technique is useful is an UPDATE statement that is impossible or
unpractical to optimize. Consider a situation where the statement scans a large number of rows but updates
just a handful of them. You can change the code, storing the clustered index key values of the rows that need
to be updated in a temporary table, later running an UPDATE based on those collected key values.

 Listing 24-1 shows an example of a statement that could lead to a clustered index scan during execution.
SQL Server will need to acquire an update (U) lock on every row of the table.

 Listing 24-1. Reducing blocking with temporary table: Original statement

 update dbo. Orders
 set
 Cancelled = 1
 where
 (PendingCancellation = 1) or
 (Paid = 0 and OrderDate < @MinUnpaidDate) or
 (Status = 'BackOrdered' and EstimatedStockDate > @StockDate)

 You can change the code to be similar to that shown in Listing 24-2 . The SELECT statement either
acquires shared (S) locks or does not acquire row-level locks at all, depending on the isolation level. The
 UPDATE statement is optimized, and it acquires just a handful of update (U) and exclusive (X) locks.

 Listing 24-2. Reducing blocking with a temporary table: Using a temporary table to stage key values for the
update

 create table #OrdersToBeCancelled
 (OrderId int not null primary key);

 insert into #OrdersToBeCancelled(OrderId)
 select OrderId
 from dbo.Orders
 where
 (PendingCancellation = 1) or
 (Paid = 0 and OrderDate < @MinUnpaidDate) or
 (Status = 'BackOrdered' and EstimatedStockDate > @StockDate);

 update dbo.Orders
 set Cancelled = 1
 where OrderId in (select OrderId from #OrdersToBeCancelled);

 You need to remember that while this approach helps to reduce blocking, creating and populating
temporary tables can introduce significant I/O overhead, especially when there is a large amount of data
involved. This method should be considered as the last resort; creating the correct indexes is the better
option in most cases.

 ■ Tip Modify data as close to the end of the transaction as possible.

 You should avoid updating a row multiple times within the same transaction, especially when UPDATE
statements modify data in the different nonclustered indexes. Remember that SQL Server acquires locks
on a per-index basis when index rows are updated. Having multiple updates increases the chances of a
deadlock occurring when other sessions are accessing the updated rows.

CHAPTER 24 ■ DESIGNING TRANSACTION STRATEGIES

459

 ■ Tip Do not update data rows multiple times in a single transaction.

 You need to understand whether lock escalation affects your system, especially in cases of OLTP
workload. You can monitor object-level blocking conditions and locking waits and correlate it with
 lock escalation Extended and Trace Events. Remember that lock escalation helps to reduce memory
consumption and improve performance in the system. You should analyze why lock escalation occurs and
how it affects the system before making any decisions. In many cases, it is better to change the code and
workflows rather than disable it.

 ■ Tip Monitor lock escalation in the system.

 You should avoid mixing statements that can lead to row- and object-level locks in the same transaction
in general, and mixing DML and DDL statements in particular. This pattern can lead to deadlock conditions
as well as to blocking between intent and full object-level locks. This is especially important when servers
have 16 or more logical CPUs, which enables lock partitioning.

 ■ Tip Do not mix DDL and DML statements in one transaction.

 You need to analyze the root cause of deadlocks if you have them in your system. In most cases, query
optimization and code re-factoring would help to address them. However, in some cases, especially if lock
partitioning is involved, you can consider implementing retry logic around critical use cases in the system.

 ■ Tip Find the root cause of deadlocks. Implement retry logic if query optimization and code re-factoring do
not address them.

 Choosing Transaction Isolation Level
 Choosing the right transaction isolation level is not a trivial task. You should find the right balance between
blocking and tempdb overhead, and between the required level of data consistency and the isolation in
the system. The system must provide reliable data to the customers, and you should not compromise by
choosing an isolation level that cannot guarantee it just because you want to reduce blocking.

 You should choose the minimally required isolation level that provides the required data consistency.
In many cases, the default READ COMMITTED isolation level is good enough , especially if queries are optimized
and do not perform unnecessary scans. Avoid using REPEATABLE READ or SERIALIZABLE isolation levels in
OLTP systems unless you have legitimate reasons to do so. These isolation levels hold shared (S) locks until
the end of the transaction, which can lead to severe blocking issues with volatile data. They can also trigger
shared (S) lock escalation during the scans.

 As a general rule, it is better to avoid the READ UNCOMMITTED isolation level. Even though many database
professionals are trying to reduce blocking by switching to this isolation level, either explicitly or with NOLOCK
hints, this is rarely the right choice. First, READ UNCOMMITTED does not address the blocking issues introduced
by writers. They still acquire update (U) locks during scans. Most important, however, is that by using READ
UNCOMMITTED , you are stating that data consistency is not required at all, and that it is not only about reading

CHAPTER 24 ■ DESIGNING TRANSACTION STRATEGIES

460

uncommitted data. SQL Server can choose execution plans that use allocation map scans on large tables,
which can lead to missing rows and duplicated reads resulting from page splits, especially in busy systems
with volatile data.

 In a majority of the cases, optimistic isolation levels, especially READ COMMITTED SNAPSHOT, are a better
choice than READ UNCOMMITTED , REPEATABLE READ , or SERIALIZABLE , even in OLTP systems. It provides
statement-level data consistency without readers/writers blocking involved. Historically, I have been very
cautious suggesting RCSI in OLTP systems due to its tempdb overhead; however, nowadays it becomes a
lesser issue with modern hardware and solid state-based disk arrays. You should still factor additional index
fragmentation and tempdb overhead into your analysis though. It is also worth noting that READ COMMITTED
SNAPSHOT is enabled in Microsoft Azure SQL Databases.

 As a general rule, I recommend you do not use the SNAPSHOT isolation level in OLTP systems due to its
excessive tempdb usage unless transaction-level consistency is absolutely required. It could be a good choice
for data warehouse and reporting systems where data is static most of the time.

 You should be very careful with transaction management if you enable the SNAPSHOT isolation level in
the database. Bugs and uncommitted transactions can prevent tempdb version store clean up and lead to
the excessive growth of tempdb data files. It can happen even if you do not use SNAPSHOT transactions in the
system, as long as the ALLOW_SNAPSHOT_ISOLATION database setting is enabled.

 Optimistic isolation levels, however, often mask poorly optimized queries in the system. Even though
those queries contribute to the bad system performance, they are not involved in the blocking conditions
and are often ignored. It is not uncommon to see cases where people solve the readers/writers blocking by
enabling READ COMMITTED SNAPSHOT and do not address the root cause of the blocking afterward. You should
remember it and perform query optimization regardless of whether you have blocking in the system or not.

 For data warehouse systems, transaction strategy greatly depends on how data is updated. For static
read-only data, any isolation level will work, because readers do not block other readers. You can even
switch the database to read-only mode so as to reduce the locking overhead. Otherwise, optimistic isolation
levels are a good choice. They provide either transaction- or statement-level consistency for report queries,
and they eliminate possible blocking with the writers involved.

 Last but not least, it is completely normal to use different isolation levels in a system and even within
the same transaction. You need to analyze the use cases and choose the right transaction strategy on case-
by-case basis.

 Summary
 Query optimization helps to improve concurrency in a majority of the cases. Properly optimized queries
acquire fewer locks, which reduces the chance of lock collisions and blocking in the system. You should
also keep transactions as short as possible and modify data close to the end of the transaction to reduce the
length of time locks are held.

 Business requirements should dictate the data consistency and isolation rules in the system. You should
choose the minimally required isolation level that satisfies them. Do not use READ UNCOMMITTED unless it is
absolutely necessary in order to avoid the consistency issues it introduces.

 Optimistic isolation levels could be acceptable even with an OLTP workload as long as the system can
handle additional tempdb overhead. It is better to use READ COMMITTED SNAPSHOT unless transactional-level
consistency is required.

 Every system is unique, and it is impossible to provide generic advice that can be applied everywhere.
However, a good understanding of SQL Server concurrency models will help you to design the right
transaction strategies and address any blocking issues in the systems.

 PART IV

 Query Life Cycle

463© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_25

 CHAPTER 25

 Query Optimization and Execution

 SQL Server Query Processor is perhaps the least visible and least well-known part of SQL Server. It does not
expose a large set of public features, and it allows very limited control in a documented and supported way.
It accepts a query as input, compiles and optimizes it to generate the execution plan, and finally executes it.

 This chapter discusses the query life cycle and provides a high-level overview of the query optimization
process. It explains how SQL Server executes queries, discusses several commonly used operators, and
addresses query and table hints that you can use to fine-tune some aspects of query optimization.

 Query Life Cycle
 Every query submitted to SQL Server goes through a process of compilation and execution. That process
consists of the steps shown in Figure 25-1 .

 Figure 25-1. Query life cycle

 When SQL Server receives a query, it goes through the parsing stage. SQL Server compiles and validates
the query’s syntax and transforms it into a structure called a logical query tree . That tree consists of various
 logical relational algebraic operators, such as inner and outer joins, aggregations, and others.

 In the next step, called binding , SQL Server binds logical tree nodes to the actual database objects,
converting the logical tree to a bound tree . It validates that all objects referenced in the query are valid, that
they exist in the database, and that all columns are correct. Finally, SQL Server loads various metadata
properties associated with tables and columns; for example, CHECK and NOT NULL constraints.

 Query Optimizer uses the bound tree as input during the optimization stage when the actual execution
plan is generated. The execution plan is also a tree-like structure and is comprised of physical operators; it is
used by SQL Server to execute a query. Physical operators perform the actual work during query execution,
and they are different from logical operators. For example, a logical inner join can be transformed to one of
three physical joins, such as a nested loop, merge, or hash join.

 One of the key elements that you need to remember is that Query Optimizer is not looking for the best
execution plan that exists for the query. Query optimization is a complex and expensive process, and it is
often impossible to evaluate all possible execution strategies.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

464

 For example, inner joins are commutative, and thus the result of (A join B) is equal to result of
 (B join A) . Therefore, there are two possible ways that SQL Server can perform a two-table join; six ways
that it can do three-table joins, and N! , which is (N * (N - 1) * (N - 2) * ..), combinations for an
 N -table join. For a ten-table join, the number of possible combinations is 3,628,800, which is impossible to
evaluate in a reasonable time period. Moreover, there are multiple physical join operators, which increases
that number even further.

 Optimization time is another important factor. For example, it is impractical to spend an extra ten
seconds on optimization only to find an execution plan that saves just a fraction of a second during execution.

 ■ Important The goal of query optimization is to find a good enough execution plan, quickly enough .

 SQL is a declarative language in which you should focus on what needs to be done rather than how to
achieve it . As a general rule, you should not expect that the way you write a query will affect the execution
plan. SQL Server applies various heuristics that transform the query internally by removing contradicting
parts, changing join orders, and performing other re-factoring steps.

 As with other general rules, they are correct only up to a point. It is often possible to improve the
performance of a query by re-factoring and simplifying it, removing correlated subqueries, or splitting a complex
query down into a few simple ones. As you know, cardinality estimation errors quickly progress and grow
through the execution plan, which can lead to suboptimal performance, especially with very complex queries.

 Moreover, you should not expect an execution plan for a particular query to always be the same
and to rely on it as such. Query Optimizer algorithms change with every version of SQL Server , and even
with service pack releases. Even when this is not the case, statistics and data distribution changes lead to
recompilation and potentially different execution plans.

 You can control the execution plan’s shape with query and table hints and plan guides. We will discuss
hints in more detail later in this chapter and plan guides in the following chapter.

 In the end, having the correct indexes and an efficient database schema is the best way to achieve
predictability and good system performance. They simplify execution plans and make queries more efficient.

 Query Optimization
 The query optimization process consists of multiple phases, as shown in Figure 25-2 .

 Figure 25-2. Query optimization phases

 During the simplification stage, SQL Server transforms the query tree in a way that simplifies the
optimization process further. Query Optimizer removes contradictions in the queries, performs computed
column matching, and works with joins, picking an initial join order based on the statistics and cardinality
data.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

465

 Listing 25-1 provides an example of removing contradicting parts in a query. Both tables, dbo.
NegativeNumbers and dbo.PositiveNumbers , have CHECK constraints that dictate the domain scope for the
values. SQL Server can detect domain-value contradictions, and it understands that an inner join operation
will not return any data. It generates the execution plan, which does not access tables at all, as shown in
Figure 25-3 .

 Listing 25-1. Removing contradicting parts from the execution plan

 create table dbo.PositiveNumbers
 (
 PositiveNumber int not null
 constraint CHK_PositiveNumbers check (PositiveNumber > 0)
);

 create table dbo.NegativeNumbers
 (
 NegativeNumber int not null
 constraint CHK_NegativeNumbers check (NegativeNumber < 0)
);

 select *
 from dbo.PositiveNumbers e join dbo.NegativeNumbers o on
 e.PositiveNumber = o.NegativeNumber

 Figure 25-3. Execution plan for the query

 After the simplification phase is completed, Query Optimizer checks if there is a trivial plan available
for the query. This happens either when a query has only one plan available to execute or when the choice of
plan is obvious. Listing 25-2 shows such an example.

 Listing 25-2. Query with trivial execution plan

 create table dbo.Data
 (
 ID int not null,
 Col1 int not null,
 Col2 int not null,
 constraint PK_Data primary key clustered(ID)
);

 select ID, Col1, Col2 from dbo.Data where ID = 11111;

 SQL Server generates the trivial execution plan, which uses a clustered index seek operator, as shown in
Figure 25-4 .

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

466

 Even though there are technically two different execution plan choices, clustered index seek and
 clustered index scan , Query Optimizer does not consider the scan option because it is clearly more
expensive. Moreover, adding nonclustered indexes on Col1 or Col2 would introduce additional, non-
optimal execution plan choices. Nevertheless, Query Optimizer is still able to detect it and generates a trivial
execution plan instead. You can check if an execution plan is trivial in the properties of the root operator or
in the XML representation of the plan.

 If a trivial plan was not found, SQL Server checks whether any auto-updated statistics are outdated and
triggers a statistics update if needed. If the statistics need to be updated synchronously, which is the default
option, Query Optimizer waits until the statistics update is finished. Otherwise, an optimization is done
based on old, outdated statistics while statistics are updated asynchronously in another thread. After that,
SQL Server starts a cost-based optimization, which includes a few different stages. Each stage explores more
rules, and, as a consequence, it can take a longer time to execute.

 Stage 0 is called Transaction Processing , and it is targeted at scenarios that have
an OLTP workload with multiple (at least three) table joins selecting a relatively
small number of rows using indexes. This stage usually uses nested loop joins,
although in some cases it may consider a hash join instead. Only a limited
number of optimization rules are explored during this stage.

 Stage 1 is called Quick Plan , and it applies most of the optimization rules
available in SQL Server. It may be run twice, looking for serial and parallel
execution plans, if needed. Most queries in SQL Server find the execution plan
during this stage.

 Stage 2 is called Full Optimization , and it performs the most comprehensive
and, therefore, longest-running analysis, exploring all of the optimization rules
available.

 Each stage has its own entry and termination conditions. For example, Stage 0 requires a query to have
at least three-table joins; otherwise, it will not be executed. Alternatively, if the cost of the plan exceeds
some threshold during optimization, the stage is terminated and Query Optimizer moves on to the next,
more comprehensive, stage. Optimization can be completed at any stage, as soon as a “good enough” plan is
found.

 You can examine the details of the optimization process by using undocumented trace flag T8675 .
The usual disclaimer about undocumented trace flags applies here: be careful, and do not use them in
production. You will also need to use trace flag T3604 to redirect output to the console.

 Figure 25-5 illustrates the optimization statistics for one of the queries. As you can see, SQL Server
performed Stage 0 and Stage 1 optimizations, generating the execution plan after Stage 1.

 Figure 25-4. Trivial execution plan

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

467

 ■ Note The documented data management view (DMV) sys.dm_exec_query_optimizer_info allows you
to retrieve Query Optimizer–related statistics. While this DMV provides a great overview in the server scope,
it does not allow you to filter information for the specific session, which makes it very hard to use in busy
environments. You can get more information about this DMV at http://technet.microsoft.com/en-us/
library/ms175002.aspx .

 Finally, when Query Optimizer is satisfied with the optimization results, it generates the execution plan.
 As you can guess, SQL Server analyzes and explores a large number of alternative execution strategies

during the query optimization stage. Those alternatives, which are part of the query tree, are stored in the
part of Query Optimizer called Memo . SQL Server performs a cost estimation for every group in Memo,
which allows it to locate the least expensive alternative when generating an execution plan.

 The cost calculation is based on a complex mathematical model that considers various factors, such as
cardinality, row size, expected memory usage, number of sequential and random I/O operations, parallelism
overhead, and others. The costing numbers and plan cost are meaningless by themselves; they should be
used for comparison only.

 There are quite a few assumptions in the costing model that help to make it more consistent, as follows:

 Random I/O is anticipated to be evenly distributed across the database files. For
example, if an execution plan requires performing ten RID lookup operations
in a heap table, the costing model would expect that ten random physical I/O
operations would be required. In reality, the data might reside on the same data
pages, which could lead to a situation where Query Optimizer overcosts some
operators in the plan.

 Query Optimizer expects all queries to start with cold cache and perform
physical I/O when accessing the data. This may be incorrect in production
systems where data pages are often cached in the buffer pool. In some rare
cases, this assumption could lead to a situation where SQL Server chooses a less
efficient plan that requires less I/O at the cost of higher CPU or memory usage.

 Query Optimizer assumes that sequential I/O performance is significantly
faster than random I/O performance. While this is usually true for magnetic
hard drives, it is not exactly the case with solid-state media, where random I/O
performance is much closer to sequential I/O, as compared to magnetic hard

 Figure 25-5. Optimization statistics returned by trace flag 8675

http://technet.microsoft.com/en-us/library/ms175002.aspx
http://technet.microsoft.com/en-us/library/ms175002.aspx

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

468

drives. SQL Server does not take drive type into account and overcosts random
I/O operations in the case of solid-state-based disk arrays. It can generate
execution plans with a clustered index scan instead of a nonclustered index seek
and key lookup , which could be less efficient with SSD-based disk subsystems
for some of the queries. It is also worth noting that the same thing could happen
with modern high-performance disk arrays with a large number of drives and
very good random I/O performance.

 With all that being said, the costing model in SQL Server generally produces correct and consistent
results. However, as with any mathematical model, the quality of the output highly depends on the quality
of the input data. For example, it is impossible to provide correct cost estimations when the cardinality
estimations are incorrect due to outdated statistics. Keeping statistics up to date helps SQL Server generate
efficient execution plans.

 Query Execution
 SQL Server generates an execution plan in the final stage of query optimization. The execution plan is then
passed to the query executor , which, as you can guess by its name, executes the query.

 The execution plan is a tree-like structure that includes a set of operators , sometimes called iterators .
Typically, SQL Server uses a row-based execution model where each operator generates a single row by
requesting the row from one or more children and passing the generated row to its parent.

 ■ Note SQL Server 2012 introduced a new batch mode execution model, which is used with some data
warehouse queries. We will talk about this execution model in Part VIII of this book.

 Let’s look at an example that illustrates a row-based execution model, assuming that you have the query
shown in Listing 25-3 .

 Listing 25-3. Row-based execution: Sample query

 select top 10 c.CustomerId, c.Name, a.Street, a.City, a.State, a.ZipCode
 from dbo.Customers c join dbo.Addresses a on
 c.PrimaryAddressId = a.AddressId
 order by c.Name

 This query would produce the execution plan shown in Figure 25-6 . SQL Server selects all of the data
from the dbo.Customers table, sorts it based on the Name column, getting the first ten rows, joins it with the
 dbo.Addresses data, and returns it to the client.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

469

 Let’s look at how SQL Server executes such a query on an operator-by-operator basis. The SELECT
operator, which is the parent operator in the execution plan, calls the GetRow() method of the Top operator.
The Top operator, in turn, calls the GetRow() method of the nested loop join .

 As you know, a join needs to get data from two different sources to produce output. As a first step, it calls
the GetRow() method of the Sort operator. In order to do sorting, SQL Server needs to read all of the rows first;
therefore, the Sort operator calls the GetRow() method of the Clustered Index Scan operator multiple times,
accumulating the results. The Scan operator, which is the lowest operator in the execution plan tree, returns
one row from the dbo.Customers table per call. Figure 25-6 shows just two GetRow() calls for simplicity’s sake.

 When all of the data from the dbo.Customers table has been read, the Sort operator performs the sorting
and returns the first row back to the Join operator, which then calls the GetRow() method of the Clustered
Index Seek operator on the dbo.Addresses table. If there is a match, the Join operator concatenates data from
both inputs and passes the resulting row back to the Top operator, which, in turn, passes it to SELECT .

 The SELECT operator returns a row to the client and requests the next row by calling the GetRow()
method of the Top operator again. The process repeats until the first ten rows are selected. It is worth
mentioning that the operators kept their state, and the Sort operator preserves the sorted data and can return
all subsequent rows without accessing the Clustered Index Scan operator again, as shown in Figure 25-7 .

 Figure 25-6. Row-based model: Getting the first row in the output

 Figure 25-7. Row-based model: Getting the subsequent row

 ■ Note There are two other methods, Open() and Close() , called for each operator during execution. The
 Open() method initializes the operator before the first GetRow() call. The Close() method performs clean up at
the end of the execution.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

470

 As you probably noticed, there are two kinds of operators. The first group, called non-blocking
operators , consumes the row from the children and produces the output immediately. The second group,
called blocking operators , must consume all rows from the children before producing the output. In our
example, the Sort operator is the only blocking operator, as it consumes all of the dbo.Customers table’s rows
before sorting. Another common blocking operator, Hash , is used during hash joins and aggregations, which
we will discuss later in this chapter.

 Even though blocking operators are completely normal and cannot be avoided in many cases, there
are a couple of issues associated with them. The first issue is memory usage. Every operator, blocking or
non-blocking, requires some memory to execute; however, blocking operators can use a large amount of
memory when they accumulate and process rows. That memory is called a memory grant , and it needs to
be allocated to the queries before they start execution. We will discuss this process in detail in Chapter 28 ,
“System Troubleshooting.”

 Correct memory grant size estimation is very important. Overestimation and underestimation both
negatively affect the system. Overestimation wastes server memory, and it can increase how long a query
waits for a memory grant. Underestimation, on the other hand, can force SQL Server to perform sorting or
hashing operations in tempdb rather than in memory, which is significantly slower. This condition is called
 tempdb spill .

 Memory estimation for an operator depends on the cardinality and average row size estimation. Either
error leads to an incorrect memory grant request. The typical sources of cardinality estimation errors are
inaccurate statistics, non-SARGable predicates and functions in where clauses and join conditions, and
Query Optimizer model limitations. They can often be addressed by statistics maintenance and query
simplification and optimization. However, dealing with row-size estimation errors is a bit trickier.

 SQL Server knows the size of the fixed-length data portion of the row. For variable-length columns,
however, it estimates that data populates, on average, 50 percent of the defined column size. For example, if
you had two columns defined as varchar(100) and nvarchar(200) , SQL Server would estimate that every
data row stores 50 and 200 bytes in those columns, respectively. For (n)varchar(max) and varbinary(max)
columns, SQL Server uses 4,000 bytes as the base figure.

 ■ Tip You can improve row-size estimation by defining variable-length columns to be two times larger than
the average size of the data stored there.

 Let’s look at an example and create two tables, as shown in Listing 25-4 .

 Listing 25-4. Variable-length columns and memory grant: Table creation

 create table dbo.Data1
 (
 ID int not null,
 Value varchar(100) not null,
 constraint PK_Data1 primary key clustered(ID)
);

 create table dbo.Data2
 (
 ID int not null,
 Value varchar(200) not null,
 constraint PK_Data2 primary key clustered(ID)
);

http://dx.doi.org/10.1007/978-1-4842-1964-5_28

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

471

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Data1(ID, Value)
 select Num, replicate('0',100) from Nums;

 insert into dbo.Data2(ID, Value)
 select ID, Value from dbo.Data1;

 In the next step, let’s run two identical queries against those tables, as shown in Listing 25-5 . I am using
the variable as a way to discard the result set.

 Listing 25-5. Variable-length columns and memory grant: Queries

 declare
 @V varchar(200)

 select @V = Value from dbo.Data1 where ID < 42000 order by Value, ID desc;
 select @V = Value from dbo.Data2 where ID < 42000 order by Value, ID desc;

 As you can see in Figure 25-8 , an incorrect memory grant forced SQL Server to spill data to tempdb ,
which increased the execution time.

 Figure 25-8. Variable-length columns and memory grant: Execution plan

 ■ Tip You can monitor data spills to tempdb with Sort and Hash Warnings in SQL Trace and Extended Events.
You can also specify the minimum and maximum sizes of the memory grant with the MIN_GRANT_PERCENT and
 MAX_GRANT_PERCENT query hints if you are using SQL Server 2012 SP3, SQL Server 2014 SP2, or SQL Server
2016.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

472

 Blocking operators can negatively affect the performance of queries when they are present in parallel
sections of the execution plan. The Parallelism operator , which merges data from parallel executing threads,
would wait until all threads were finished with their execution. Thus, the execution time would depend on
the slowest thread. Blocking operators can contribute to delays, especially in the case of tempdb spills. Such
conditions often happen when a parallel thread workload has been unevenly distributed due to cardinality
estimation errors.

 ■ Tip You can see the distribution of workload between threads when you open the Properties window for
the operators in the parallel section of the graphical execution plan in SQL Server Management Studio.

 In some cases, adding indexes can remove blocking operators from execution plans. For example, if
you added the index CREATE INDEX IDX_Customers_Name ON dbo.Customers(Name) , SQL Server would not
need to sort customer data anymore, and the query from Listing 25-3 would end up with an execution plan
without blocking operators, as shown in Figure 25-9 .

 Figure 25-9. Execution plan without blocking operators

 There are three ways in which you can analyze execution plans in SQL Server Management Studio.
The most common method is graphical execution plan representation, which can be enabled through the
 Include Actual Execution Plan menu item in the Query menu. A graphical execution plan represents an
execution plan tree rotated 90 degrees counter-clockwise. The top root element of the tree is the leftmost
icon on the plan, with children nodes to the right side of the parents.

 When you select an operator in the plan, a small pop-up window shows some of the properties of the
operator. However, you can get a more comprehensive picture by opening the operator’s Properties window
in Management Studio.

 ■ Tip SentryOne “Plan Explorer” is a great freeware tool that simplifies execution-plan analysis. You can
download it from: http://sentryone.com .

 In addition to a graphical representation of the execution plan, SQL Server can display it as text or as
XML. A text representation places each operator onto individual lines that display parent – child relationships
with indents and | symbols. A text execution plan may be useful when you need to share a compact and
easy-to-understand representation of the execution plan without worrying about image size and the scale of
the graphical execution plan.

http://sentryone.com

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

473

 An XML execution plan represents operators as XML nodes, with child operator nodes nested in parent
nodes. It is the most complete representation of the execution plan and includes a large set of attributes
that are omitted in other modes. However, an XML execution plan is complex and requires some time and
practice before it becomes easy to understand.

 In addition to the actual execution plan, SQL Server can provide an estimated execution plan without
running the actual query. This allows you to obtain the execution plan shape quickly for analysis. However, it
does not include actual row and execution counts, which are very helpful during query performance tuning.

 Table 25-1 shows different commands that generate estimated and actual execution plans in graphical,
text, and XML modes.

 Table 25-1. Commands That Generate Actual and Estimated Execution Plans

 Plan Type Command / Menu Item Execute a query Include Estimated
Row and Execution
Count

 Include Actual Row
and Execution Count

 Graphical Display Estimated Execution
Plan

 No Yes No

 Include Actual Execution
Plan

 Yes Yes Yes

 Text SET SHOWPLAN_TEXT ON No No No

 SET SHOWPLAN_ALL ON No Yes No

 SET STATISTICS PROFILE
ON

 Yes Yes Yes

 XML SET SHOWPLAN_XML ON No Yes No

 SET STATISTICS PROFILE
XML

 Yes Yes Yes

 ■ Important You should always pay attention to the difference between actual and estimated row counts in
execution plans. A large discrepancy between these two values is often a sign of cardinality estimation errors
resulting from inaccurate statistics.

 Operators
 SQL Server uses two types of operators: logical and physical . These operators are used during the different
stages of the query life cycle in different types of query trees. SQL Server uses logical operators during the
parsing and binding stages and replaces them with physical operators during optimization. For example, an
 inner join logical operator can be replaced with one of three physical join operators in the execution plan.

 It is impossible to cover all physical operators in this chapter; however, we will discuss a few common
ones that you will often encounter in execution plans.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

474

 Joins
 There are multiple variations of physical join operators in SQL Server that dictate how join predicates are
matched and what is included in the resulting row. However, in terms of algorithms, there are just three join
types: nested loop , merge, and hash joins.

 Nested Loop Join
 A nested loop join is the simplest join algorithm. As with any join type, it accepts two inputs, which are
called outer and inner tables . The algorithm for an inner nested loop join is shown in Listing 25-6 , and the
algorithm for an outer nested loop join is shown in Listing 25-7 .

 Listing 25-6. Inner nested loop join algorithm

 for each row R1 in outer table
 for each row R2 in inner table
 if R1 joins with R2
 return join (R1, R2)

 Listing 25-7. Outer nested loop join algorithm

 for each row R1 in outer table
 for each row R2 in inner table
 if R1 joins with R2
 return join (R1, R2)
 else
 return join (R1, NULL)

 As you can see, the cost of the algorithm depends on the size of the inputs, and it is proportional to its
multiplication; that is, the size of the outer input multiplied by the size of the inner input. The cost grows
quickly with the size of the inputs; therefore, a nested loop join is efficient when at least one of the inputs is
small. In cases of an equality join predicate, it is also beneficial to have the predicate column(s) in the inner
table indexed. This helps to avoid an index scan operation during execution.

 A nested loop join does not require join keys to have an equality predicate. SQL Server evaluates the
join predicate between every row from both inputs. In fact, it does not require a join predicate at all. For
example, the CROSS JOIN logical operator would lead to a nested loop physical join where all rows from both
inputs are joined together.

 Merge Join
 The merge join works with two sorted inputs. It compares two rows, one at time, and returns their join to the
client if they are equal. Otherwise, it discards the lesser value and moves on to the next row in the input.

 Contrary to nested loop joins, a merge join requires at least one equality predicate on the join keys.
Listing 25-8 shows the algorithm for the inner merge join.

 Listing 25-8. Inner merge join algorithm

 /* Pre-requirements: Inputs I1 and I2 are sorted */
 get first row R1 from input I1
 get first row R2 from input I2
 while not end of either input
 begin

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

475

 if R1 joins with R2
 begin
 return join (R1, R2)
 get next row R2 from I2
 end
 else if R1 < R2
 get next row R1 from I1
 else /* R1 > R2 */
 get next row R2 from I2
 end

 The cost of the merge join algorithm is proportional to the sum of the sizes of both inputs, which makes
it more efficient on large inputs as compared to a nested loop join. However, a merge join requires both
inputs to be sorted, which is often the case when inputs are indexed on the join-key column.

 In some cases, SQL Server may decide to sort input(s) using the Sort operator before a merge join. The
cost of the sort obviously needs to be factored in along with the cost of the join operator during the analysis.
You can also consider creating indexes to pre-sort the data.

 Hash Join
 Unlike the nested loop join, which works best on small inputs, and the merge join, which excels on sorted
inputs, a hash join is designed to handle large, unsorted inputs. The hash join algorithm consists of two
different phases.

 During the first, or build, phase, a hash join scans one of the inputs (usually the smaller one), calculates
the hash values of the join keys, and places them into the hash table. Next, in the second, or probe, phase,
the hash join scans the second input and checks, or probes , if the hash value of the join key from the second
input exists in the hash table. When this is the case, SQL Server evaluates the join predicate for the row from
the second input and all rows from the first input that belong to the same hash bucket.

 This comparison must be done, because the algorithm that calculates the hash values does not
guarantee the uniqueness of the hash value of individual keys, which leads to hash collision when multiple
keys generate the same hash. Even though there is the possibility of additional overhead from the extra
comparison operations due to hash collisions, such situations are relatively rare.

 Listing 25-9 shows the algorithm of an inner hash join.

 Listing 25-9. Inner hash join algorithm

 /* Build Phase */
 for each row R1 in input I1
 begin
 calculate hash value on R1 join key
 insert hash value to appropriate bucket in hash table
 end
 /* Probe Phase */
 for each row R2 in input I2
 begin
 calculate hash value on R2 join key
 for each row R1 in hash table bucket
 if R1 joins with R2
 return join (R1, R2)
 end

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

476

 As you can guess, a hash join requires memory to store the hash table. The performance of a hash join
greatly depends on correct memory grant estimation. When the memory estimation is incorrect, the hash
join stores some hash table buckets in tempdb , which can greatly reduce the performance of the operator.

 When this happens, SQL Server tracks where the buckets are located: either in memory or on disk. For
each row from the second input, it checks where the hash bucket is located. If it is in memory, SQL Server
processes the row immediately. Otherwise, it stores the row in another internal temporary table in tempdb .

 After the first pass is done, SQL Server discards in-memory buckets, replacing them with the buckets
from disk, and repeats the probe phase for all of the remaining rows from the second input that were stored
in the internal temporary table. If there still wasn’t enough memory to accommodate all hash buckets, some
of them would be spilled on-disk again.

 The number of times this happens is called the recursion level . SQL Server tracks it and eventually
switches to a special bailout algorithm, which is less efficient, although it’s guaranteed to complete at some
point.

 ■ Tip You can monitor hash table spills to tempdb with Hash Warnings in SQL Trace and Extended Events.

 Similar to a merge join, hash joins require at least one equality predicate in the join condition.

 Comparing Join Types
 As usual, the choice of join operator fits into the “It Depends” category. Each join type has its own pros and
cons, which makes it good for some use cases and not so good for others.

 Table 25-2 compares different join types in various scenarios.

 Table 25-2. Join type comparison

 Nested Loop Join Merge Join Hash Join

 Best use case Small inputs. Preferable
with index on join key in
inner table.

 Medium-to-large
inputs sorted on
index key.

 Medium-to-large inputs.

 Requires sorted input No Yes No

 Requires equality predicate No Yes Yes

 Blocking operator No No Yes (Build phase only)

 Uses memory No No Yes

 Uses tempdb No No (with exception
of many-to-many
joins)

 Yes, in case of spills

 Preserves order Yes (outer input) Yes No

 One of the common mistakes people make during performance tuning is relying strictly on the number
of logical reads produced by the query. Even though that number is a great performance characteristic, it
could be misleading in the case of joins. For example, it is entirely possible that a hash join produces fewer
reads as compared to a nested loop. However, it would not factor in CPU usage and memory overhead or the
performance implications of tempdb spills and bailouts.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

477

 The merge join is another great example. While it is more efficient than a nested loop on sorted inputs,
it is easy to overlook the overhead of the Sort operation, which often prepares input for the merge join.

 As usual, you should keep join behaviors and the pros and cons of each join type in mind, factoring this
into your analysis.

 Aggregates
 Aggregates perform a calculation on a set of values and return a single value. A typical example of aggregates
in SQL is the MIN() function, which returns the minimal value from the group of values it processes.

 SQL Server supports two types of aggregate operators: stream and hash aggregates.

 Stream Aggregate
 A stream aggregate performs the aggregation based on sorted input; for example, when data is sorted on a
column that is specified in a group by clause. Listing 25-10 shows the stream aggregate algorithm.

 Listing 25-10. Stream aggregate algorithm

 /* Pre-requirement: input is sorted */
 for each row R1 from input
 begin
 if R1 does not match current group by criteria
 begin
 return current aggregate results (if any)
 clear current aggregate results
 set current group criteria to match R1
 end
 update aggregate results with R1 data
 end
 return current aggregate results (if any)

 Because of the sorted-input requirement, SQL Server often uses a stream aggregate together with the
 Sort operator. Let’s look at an example and create a table with some sales information for a company. After
that, let’s run the query, which calculates the total amount of sales for each customer. The code to perform
this is shown in Listing 25-11 .

 Listing 25-11. Query that uses stream aggregate

 create table dbo.Orders
 (
 OrderID int not null,
 CustomerId int not null,
 Total money not null,
 constraint PK_Orders primary key clustered(OrderID)
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

478

 ,Nums(Num) as (select row_number() over (order by (select null)) from N4)
 insert into dbo.Orders(OrderId, CustomerId, Total)
 select Num, Num % 10 + 1, Num from Nums;

 select Customerid, sum(Total) as [Total Sales]
 from dbo.Orders
 group by CustomerId;

 You can see the execution plan of the query in Figure 25-10 . There is no index on the CustomerId
column, and SQL Server needs to add a Sort operator to guarantee sorted input for the Stream Aggregate
operator .

 Figure 25-10. Execution plan of the query with stream aggregate

 Hash Aggregate
 A hash aggregate is very similar to a hash join. It is targeted toward large input and requires memory to store
the hash table. The hash aggregate algorithm is shown in Listing 25-12 .

 Listing 25-12. Hash aggregate algorithm

 for each row R1 from input
 begin
 calculate hash value of R1 group columns
 check for a matching row in hash table
 if matching row exists
 update aggregate results of matching row
 else
 insert new row into hash table
 end
 return all rows from hash table with aggregate results

 Similar to a hash join, a hash table can be spilled to tempdb , which negatively affects the performance of
the aggregate.

 Comparing Aggregates
 As with joins, stream and hash aggregates are targeted toward different use cases. A stream aggregate works
best with sorted input—either because of existing indexes or when the amount of data is small and can be
easily sorted. A hash aggregate, on the other hand, is targeted toward large, unsorted inputs.

 Table 25-3 compares hash and stream aggregates.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

479

 You should consider the cost of the Sort operator during performance tuning if it is used only to support
a stream aggregate pre-requirement. The cost of sorting usually exceeds the cost of stream aggregation itself.
You can often remove it by creating indexes, which would sort the data in the order required for a stream
aggregate.

 Spools
 Spool operators , in a nutshell, are internal in-memory or in- tempdb caches/temporary tables. SQL Server
often uses spools for performance reasons to cache the results of complex subexpressions that need to be
used several times during query execution.

 Let’s look at an example and use the table we created in Listing 25-11 . We will run a query that returns
information about all of the orders, together with the total amount of sales on a per-customer basis, as
shown in Listing 25-13 .

 Listing 25-13. Table Spool example

 select OrderId, CustomerID, Total, sum(Total) over(partition by CustomerID) as [Customer
Sales]
 from dbo.Orders

 The execution plan for the query is shown in Figure 25-11 . As you can see, SQL Server scans the table,
sorts the data based on the CustomerID order, and uses a Table Spool operator to cache the results. This
allows SQL Server to access the cached data and avoid an expensive sorting operation later.

 Table 25-3. Aggregate Comparison

 Stream Aggregate Hash Aggregate

 Best use case Small-size input where data can be sorted with
the Sort operator or pre-sorted input

 Medium-to-large unsorted input

 Requires sorted input Yes No

 Blocking No. However, it often requires a blocking Sort
operator.

 Yes

 Uses memory No Yes

 Uses tempdb No Yes, in case of spills

 Figure 25-11. Execution plan of the query

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

480

 Even though a Table Spool operator is shown in the execution plan several times, it is essentially the
same spool/cache. SQL Server builds it the first time and uses its data later.

 SQL Server uses spools for Halloween Protection when modifying the data. Halloween Protection helps
you avoid situations where data modifications affect what data need to be updated. The classic example of
such a situation is shown in Listing 25-14 . Without Halloween Protection, the INSERT statement would fall
into an infinite loop, reading the rows it has been inserting.

 Listing 25-14. Halloween Protection

 create table dbo.HalloweenProtection
 (
 Id int not null identity(1,1),
 Data int not null
);

 insert into dbo.HalloweenProtection(Data)
 select Data from dbo.HalloweenProtection;

 The execution plan of the INSERT statement is shown in Figure 25-12 . SQL Server uses the Table Spool
operator to cache the data from the table prior to the INSERT to avoid an infinite loop during execution.

 Figure 25-12. Halloween Protection execution plan

 As I mentioned in Chapter 11 , “User-Defined Functions,” it is important to use the WITH SCHEMABINDING
option when you define scalar user-defined functions. This option forces SQL Server to analyze if a user-
defined function performs data access and avoids extra Halloween Protection – related Spool operators in the
execution plan.

 Listing 25-15 shows an example of code that creates two user-defined functions, using them in the
 where clause of UPDATE statements.

 Listing 25-15. Halloween Protection and user-defined functions

 create function dbo.ShouldUpdateData(@Id int)
 returns bit
 as
 return (1);
 go

 create function dbo.ShouldUpdateDataSchemaBound(@Id int)
 returns bit
 with schemabinding
 as
 return (1);
 go

 update dbo.HalloweenProtection set Data = 0 where dbo.ShouldUpdateData(ID) = 1;
 update dbo.HalloweenProtection set Data = 0 where dbo.ShouldUpdateDataSchemaBound(ID) = 1;

http://dx.doi.org/10.1007/978-1-4842-1964-5_11

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

481

 Neither of these functions accesses the data, and therefore cannot introduce the Halloween effect.
However, SQL Server does not know that in the case of non-schema-bound functions, and it adds a Spool
operator to execution plan, as shown in Figure 25-13 .

 Figure 25-13. Halloween Protection and user-defined functions: Execution plans

 Spool temporary tables are usually referenced as worktables in the I/O statistics for the queries. You
should analyze table spool – related reads during query performance tuning. While spools can improve the
performance of queries, there is the management and tempdb overhead introduced by the unnecessary
spools. You can often remove them by creating appropriate indexes on the tables.

 SQL Server 2016 introduced the new query hint NO_PERFORMANCE_SPOOL , which can prevent Spool
operators from being added to the execution plan. This could be helpful in some cases, especially in
systems with a very heavy tempdb load, when the overhead of creating an internal spool temporary table
is unacceptable. However, this hint changes the execution plan’s shape and can degrade the performance
of queries in other cases. Use it with great care, and always analyze how it affects the execution plans and
performance of the queries.

 Parallelism
 SQL Server can execute queries using multiple CPUs simultaneously. Even though parallel query execution
can reduce the response time of queries, it comes at a cost. Parallelism always introduces the overhead of
managing multiple execution threads.

 Let’s look at an example and create two tables, as shown in Listing 25-16 . The script inserts 65,536 rows
into table dbo.T1 and 1,048,576 rows into table dbo.T2 .

 Listing 25-16. Parallelism : Table creation

 create table dbo.T1
 (
 T1ID int not null,
 Placeholder char(100),
 constraint PK_T1 primary key clustered(T1ID)
);

 create table dbo.T2
 (
 T1ID int not null,
 T2ID int not null,
 Placeholder char(100)
);

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

482

 create unique clustered index IDX_T2_T1ID_T2ID
 on dbo.T2(T1ID, T2ID);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.T1(T1ID)
 select Num from Nums;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N3)
 insert into dbo.T2(T1ID, T2ID)
 select T1ID, Num from dbo.T1 cross join Nums;

 In the next step, let’s run two SELECT statements, as shown in Listing 25-17 .

 Listing 25-17. Parallelism: Test queries

 select count(*)
 from
 (
 select t1.T1ID, count(*) as Cnt
 from dbo.T1 t1 join dbo.T2 t2 on
 t1.T1ID = t2.T1ID
 group by t1.T1ID
) s
 option (maxdop 1);

 select count(*)
 from
 (
 select t1.T1ID, count(*) as Cnt
 from dbo.T1 t1 join dbo.T2 t2 on
 t1.T1ID = t2.T1ID
 group by t1.T1ID
) s;

 We force a serial execution plan for the first query using MAXDOP 1 as a query hint. The second query has
a parallel execution plan. Figure 25-14 illustrates this scenario.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

483

 As you can see, the response (elapsed) time of the first query is much slower than that of the second
query: 245 milliseconds versus 90 milliseconds. However, the total CPU time of the first query is much
lower compared to second query: 240 milliseconds versus 655 milliseconds. We are using CPU resources for
parallelism management.

 A parallel execution plan does not necessarily mean that all operators are executing in parallel. An
execution plan can have both parallel and serial execution zones. The parallel plan shown in Figure 25-14
runs a subquery in a parallel zone and an outer COUNT(*) calculation serially.

 The Parallelism operator, sometimes called Exchange , manages parallelism during query execution. It
accepts the input data from one or more producer threads and distributes it across one or more consumer
threads, and it can run in three different modes.

 In distribute streams mode, the Parallelism operator accepts data from one producer thread and
distributes it across multiple consumer threads. This mode is usually the entry point to the parallel
execution zone in the plan. Figure 25-15 illustrates this concept.

 Figure 25-14. Parallel execution: Query plans

 Figure 25-15. Parallelism: Distribute streams mode

 Figure 25-16. Parallelism: Gather streams mode

 In gather streams mode, the Parallelism operator merges the data from multiple producer threads and
passes it to a single consumer thread. This mode is usually the exit point from the parallel execution zone in
the plan. Figure 25-16 illustrates this idea.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

484

 Finally, in repartition streams mode, the Parallelism operator accepts data from multiple producer
threads and distributes it across multiple consumer threads. This happens in the middle of a parallel zone
of the plan when the data needs to be redistributed between execution threads. Figure 25-17 illustrates this
concept.

 Table 25-4. Data Redistribution Methods in Parallelism

 Redistribution Method Description

 Broadcast Send row to all consumer threads

 Round Robin Send row to the next consumer thread in sequence

 Demand Send row to the next consumer thread that requests the row

 Range Use range function to determine which consumer thread should get a row

 Hash Use hash function to determine which consumer thread should get a row

 Figure 25-17. Parallelism: Repartition streams mode

 There are several different ways that data can be distributed between consumer threads. Table 25-4
summarizes these methods.

 The Parallelism operator uses a different execution model than other operators use. It uses a push-
based model, with producer threads pushing rows to it. It is the opposite of a pull-based model, where the
parent operator calls the GetRow() method of a child operator to get the data.

 An evenly distributed workload is the key element for the good performance of parallel execution plans.
You can see the number of rows processed by each thread in the “Actual Number of Rows” section of the
operator’s Properties window in Management Studio. That information is not displayed in a tool-tip in the
graphical execution plans. Thread 0 is the parallelism-management thread, which always shows zero as the
number of rows.

 Uneven data distribution and outdated statistics are common causes of uneven workload distribution
between threads. Figure 25-18 shows how workload distribution changes after a statistics update on one of
the tables. The left side shows the distribution before the statistics update, and the right side shows it after
the update.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

485

 Query and Table Hints
 Query Optimizer usually does a good job of generating decent execution plans. However, in some cases you
can decide to fine-tune the shape of the execution plan with query and table hints. For example, query and
table hints allow you to force Query Optimizer to choose specific indexes or join types for the query.

 Query hints are a great, but very dangerous, tool. They can help you improve the quality of execution
plans; however, they could also significantly decrease the performance of the system when applied
incorrectly. You should have a very good understanding of how SQL Server works and know your system and
data before using them.

 The supportability of the system is another very important factor. You should document cases
where hints are used and periodically re-evaluate if they are still required. The amount of data and data-
distribution changes can lead to situations where plans forced by hints become suboptimal. For example,
consider a situation where a hint forces Query Optimizer to use a nested loop join. This join type will work
more inefficiently as the amount of data and the size of inputs grows.

 Forcing Query Optimizer to use a specific index is another example. The choice of index can become
inefficient in the case of data selectivity changes, and it would prevent Query Optimizer from using other
indexes that were created later. Moreover, the code would be broken and queries would error out if you ever
dropped or renamed the index referenced by the hint.

 As a general rule, you should only use hints as a last resort. If you do, make sure that the statistics are up
to date and that the query cannot be optimized, simplified, or re-factored before applying them.

 In cases of parameter sniffing, it is usually better to use the OPTIMIZE FOR hint or statement-level
recompile rather than force specific index usage with an index hint. We will discuss these approaches in
greater depth in the next chapter.

 INDEX Table Hint
 INDEX is, perhaps, one of the most commonly used table hints. It forces Query Optimizer to use a specific
index for data access. It requires you to specify either the name or ID of the index as a parameter. In most
cases, the name of the index is the better choice for supportability reasons. There are two exceptions,
however, where index ID is the better option: forcing a clustered index or heap table scan. You can consider
using 1 and 0 respectively as the ID in those cases.

 SQL Server can use either Scan or Seek access methods with an index. Listing 25-18 shows an example
of INDEX hint usage, which forces SQL Server to use the IDX_Orders_OrderDate index in the query.

 Figure 25-18. Workload distribution before and after a statistics update

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

486

 Listing 25-18. INDEX query hint

 select OrderId, OrderDate, CustomerID, Total
 from dbo.Orders with (Index = IDX_Orders_OrderDate)
 where OrderDate between @StartDate and @EndDate

 One of the legitimate use cases for an INDEX query hint is to force SQL Server to use one of the
composite indexes in those cases where correct cardinality estimation is impossible. Consider a case where
a table stores location information for multiple devices that belong to different accounts, as shown in
Listing 25-19 . Let’s assume that DeviceId is unique only within a single account.

 Listing 25-19. Composite indexes and uneven data distribution: Table creation

 create table dbo.Locations
 (
 AccountId int not null,
 DeviceId int not null,
 UtcTimeTag datetime2(0) not null,
 /* Other Columns */
);

 create unique clustered index IDX_Locations_AccountId_UtcTimeTag_DeviceId
 on dbo.Locations(AccountId, UtcTimeTag, DeviceId);

 create unique nonclustered index IDX_Locations_AccountId_DeviceId_UtcTimeTag
 on dbo.Locations(AccountId, DeviceId, UtcTimeTag);

 It is common to have data distributed very unevenly in multi-tenant systems where some accounts have
hundreds or even thousands of devices while others have just a few of them. Let’s assume that we would like
to select the data that belongs to a subset of devices for a specific time frame, as shown in Listing 25-20 .

 Listing 25-20. Composite indexes and uneven data distribution: Query

 select DeviceId, UtcTimeTag /* Other Columns */
 from dbo.Locations
 where
 AccountId = @AccountID and
 UtcTimeTag between @StartTime and @StopTime and
 DeviceID in (select DeviceID from #ListOfDevices);

 SQL Server has two different choices for the execution plan. The first choice uses a nonclustered index
seek and a key lookup , which is better when you need to select data for a very small percentage of the
devices in the account. In all other cases, it is more efficient to use a clustered index seek with AccountId and
 UtcTimeTag as seek predicates, and to perform a range scan for all devices that belong to the account.

 Unfortunately, SQL Server would not have enough data to perform a correct cardinality estimation in
either case. It can estimate the selectivity of particular AccountID data based on the histogram from either
index; however, it is not enough to estimate cardinality for the list of devices.

 One possible solution is to write code that calculates the number of devices in the #ListOfDevices table
and compare it to the total number of devices per account, forcing SQL Server to use a specific index with an
 INDEX hint based on the comparison results.

 It is worth mentioning that such a system design is not optimal. It would be better to make DeviceId
unique system-wide rather than just in the account scope. This would allow you to make DeviceId the
leftmost column in the nonclustered index, which would help SQL Server with cardinality estimations based
on the list of devices. This approach, however, would still not factor time parameters into such estimations.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

487

 FORCE ORDER Hint
 A FORCE ORDER query hint preserves the join order in the query. When this hint is specified, SQL Server
always joins tables in the order in which joins are listed in the from clause of the query. However, SQL Server
would choose the least expensive join type in each case.

 Listing 25-21 shows an example of such a hint. SQL Server will perform joins in the following order:
 ((TableA join TableB) join TableC).

 Listing 25-21. FORCE ORDER hint

 select /* Columns */
 from
 TableA join TableB on TableA.ID = TableB.AID
 join TableC on TableB.ID = TableC.BID
 option (force order)

 LOOP, MERGE, and HASH JOIN Hints
 You can specify join types with LOOP , MERGE , and HASH hints on both query and individual join levels. It
is possible to specify more than one join type in the query hint and allow SQL Server to choose the least
expensive one. A join operator hint takes precedence over a query hint if both are specified. Finally, a join
type hint forces join orders in a way similar to a FORCE ORDER hint.

 Listing 25-22 shows an example of using join type hints. SQL Server will perform joins in the following
order: ((TableA join TableB) join TableC). It will use a nested loop join to join TableA and TableB , and
either a nested loop or merge join for the TableC join.

 Listing 25-22. Join type hints

 select /* Columns */
 from
 TableA inner loop join TableB on TableA.ID = TableB.AID
 join TableC on TableB.ID = TableC.BID
 option (loop join, merge join)

 FORCESEEK/FORCESCAN Hints
 A FORCESEEK hint prevents SQL Server from using index scan operators. It can be used on both query and
individual table levels and can be combined with an INDEX hint if needed. SQL Server would generate an
error if an execution plan without index scans cannot be created. You can also specify an optional list of
columns for SEEK predicates.

 The opposite hint, FORCESCAN , prevents SQL Server from using index seek operators and forces it to scan
data. Both of these hints were introduced in SQL Server 2008 SP1.

 NOEXPAND/EXPAND VIEWS Hints
 NOEXPAND and EXPAND VIEWS hints control how SQL Server handles indexed views. This behavior is edition-
specific. By default, non-Enterprise editions of SQL Server expand indexed views to their definition and do
not use data from them, even when views are referenced in the queries. You should specify a NOEXPAND hint
to avoid this.

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

488

 ■ Tip Always specify a NOEXPAND hint when you reference an indexed view in the query if there is a
possibility that the database might be moved to a non-Enterprise edition of SQL Server.

 Listing 25-23 shows an example of NOEXPAND and INDEX hints, which force SQL Server to use the
nonclustered index created on the indexed view.

 Listing 25-23. NOEXPAND and INDEX hints

 select CustomerID, ArticleId, TotalSales
 from dbo.vArticleSalesPerCustomer

with (NOEXPAND, Index=IDX_vArticleSalesPerCustomer_CustomerID)
 where CustomerID = @CustomerID

 Alternatively, the EXPAND VIEWS hint allows SQL Server to expand an indexed view to its definition in
the Enterprise Edition. To be honest, I cannot think of use cases when such behavior is beneficial.

 FAST N Hints
 A FAST N hint tells SQL Server to generate an execution plan with the goal of quickly returning the number of
rows specified as a parameter. This can generate an execution plan with non-blocking operators, even when
such a plan is more expensive compared to one that uses blocking operators.

 One possible use case for such a hint is an application that is loading a large amount of data in the
background (perhaps caching it) and wants to display the first page of the data to the user as quickly as
possible. Listing 25-24 shows an example of a query that uses such a hint.

 Listing 25-24. FAST N hint

 select o.OrderId, OrderNumber, OrderData, CustomerId, CustomerName, OrderTotal
 from dbo.vOrders
 where OrderDate > @StartDate
 order by OrderDate desc
 option (FAST 50)

 ■ Note You can see full list of query and table hints at http://technet.microsoft.com/en-us/library/
ms181714.aspx .

 Summary
 The query life cycle consists of four different stages: parsing, binding, optimization, and execution. A query
is transformed numerous times using tree-like structures, starting with a logical query tree at the parsing
stage and finishing with the execution plan after optimization.

 Query optimization is done in several phases. With the exception of the trivial plans search, SQL Server
uses a cost-based model, evaluating the cost of access methods, resource usage, and a few other factors.

 The quality of execution plans greatly depends on the correctness of input data. Accurate and up-
to-date statistics are a key factor that improves cardinality estimations and allows SQL Server to generate

http://technet.microsoft.com/en-us/library/ms181714.aspx
http://technet.microsoft.com/en-us/library/ms181714.aspx

CHAPTER 25 ■ QUERY OPTIMIZATION AND EXECUTION

489

efficient execution plans. However, as with any model, there are limitations. In some cases, you need to
re-factor, split, and simplify queries to overcome such restrictions.

 An execution plan consists of physical operators, which, with the exception of Parallelism , use a
poll-based, row-based model. Each parent operator requests data from its children on a row-by-row basis.
Starting with SQL Server 2012, there is another batch mode execution model available, which is used with
columnstore indexes and some data warehouse queries.

 There are two types of operators: blocking and non-blocking. Non-blocking operators serve rows back
to parents as soon as they get them. Blocking operators acquire and cache all rows from children before
returning rows to parents.

 Blocking operators require memory to store data. In cases where the memory estimation is incorrect,
data is spilled to tempdb . Such spills reduce the performance of queries and can be monitored with Sort and
Hash Warnings in SQL Trace and Extended Events.

 The two most common cases of incorrect memory grant sizes are incorrect cardinality and row-size
estimates. You can improve these by keeping statistics up to date and defining variable-length data columns
to be about twice as big as the actual data stored there. You should also avoid non-SARGable predicates in
the join conditions, especially when a query joins a large number of tables.

 You can control some aspects of query optimization by using query and table hints. However, you
should be very careful when using them, documenting and periodically re-evaluating their usage. This
helps to avoid subefficient execution plans due to data size or distribution changes, which invalidate the
correctness of the hints’ use.

491© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_26

 CHAPTER 26

 Plan Caching

 Query optimization is a resource-intensive process that could introduce a significant CPU load on busy
servers. SQL Server tries to minimize such load by caching plans in a special part of the process memory
called the plan cache .

 This chapter talks about plan caching in detail and consists of two parts. The first part provides a high-
level overview of plan caching and discusses several issues associated with it. The second part dives deeper
into plan cache internals and discusses the various data management views (DMVs) that you can use for
plan cache monitoring.

 Plan Caching Overview
 SQL Server prevents unnecessary recompilations of queries by caching plans in a special area of the memory
called the plan cache . In addition to prepared parameterized queries and ad-hoc queries and batches, it
caches plans of various objects, such as stored procedures, triggers, user-defined functions, and a few others.

 SQL Server does not cache actual execution plans, but rather caches a set of other plan-related entities,
mainly compiled plans . Every time a query needs to be executed, SQL Server generates an actual execution
plan from the compiled plan, which is an inexpensive operation as compared to compiled plan creation.
 Execution plans are run-time structures and are unique for each query execution; that is, if multiple sessions
need to execute the same compiled plan, multiple execution plans would be generated, at one per session.

 ■ Note SQL Server documentation and other resources often ignore the difference between compiled
and execution plans. They often refer to plan cache as the memory area that caches execution plans. This is
completely normal, and you should not be confused by this description.

 A compiled plan is generated for the entire batch and includes plans for individual statements from
the batch. In this chapter, I typically reference query- or statement-level plans; however, plans for multi-
statement batches behave in the same way.

 In addition to compiled plans, SQL Server caches other structures, such as compiled plan stubs , shell
queries , and a couple of others. We will talk about all of them in detail later in this chapter.

 The number of cached plans does not directly affect the performance of SQL Server. However, plan
cache uses memory and, therefore, can reduce the size of the buffer pool, which, in turn, can increase the
number of physical reads and decrease system performance.

 SQL Server uses different algorithms to determine which plans should be removed from the cache in
case of memory pressure . For ad-hoc queries, this selection is based strictly on how often a plan is reused.
For other types of plans, the cost of plan generation is also factored into the decision. We will talk about plan
cache memory management later in this chapter.

CHAPTER 26 ■ PLAN CACHING

492

 SQL Server recompiles queries when it suspects that currently cached plans are no longer valid. One
such case is when the schema of the objects referenced by the plan changes. This could include the creation
or dropping of columns, indexes, constraints, triggers, and statistics defined in a table.

 Another case relates to stale statistics. SQL Server checks to see if the statistics are outdated when it
looks up a plan from the cache, and it recompiles the query if they are. That recompilation, in turn, triggers a
statistics update.

 Temporary tables can increase the number of recompilations triggered by outdated statistics. As you
will remember, SQL Server outdates statistics based on the number of modifications of the statistics
(and index) columns. For regular tables, the statistics update thresholds are as follows:

 When a table is empty, SQL Server outdates statistics when you add data to it.

 When a table has less than 500 rows, SQL Server outdates statistics after every
500 changes to the statistics columns.

 When a table has 500 or more rows, SQL Server outdates statistics after every
500+ changes (or 20 percent of the total number of rows in the table) to the
statistics columns in cases where the database compatibility level is less than 130
(SQL Server 2016). For databases with a compatibility level of 130 or when trace
flag T2371 is enabled, that threshold is dynamic and is based on the total number
of rows in the table.

 However, for temporary tables there is another threshold value of six changes, which can lead to
unnecessary recompilations in some cases. The KEEP PLAN query hint eliminates that threshold, and it
makes the behavior of the temporary tables the same as the regular ones.

 Another query hint, KEEPFIXED PLAN , prevents query recompilation in cases of outdated statistics.
Queries would be recompiled only when the schemas of the underlying tables are changed or the
recompilation is forced; for example, when a stored procedure is called using the WITH RECOMPILE clause.

 The plan cache can store multiple plans for the same queries, batches, or T-SQL objects. Some of the
 SET options, such as ANSI_NULL_DLFT_OFF , ANSI_NULL_DLFT_ON , ANSI_NULL , ANSI_PADDING , ANSI_WARNING ,
 ARITHABORT , CONCAT_NULL_YELDS_NULL , DATEFIRST , DATEFORMAT , FORCEPLAN , DATEFORMAT , LANGUAGE , NO_
BROWSETABLE , NUMERIC_ROUNDABORT , and QUOTED_IDENTIFIER , affect plan reuse. Plans generated with one set
of SET options cannot be reused by sessions that use a different set of SET options.

 Unfortunately, different client libraries and development environments have different default SET
options. For example, by default ARITHABORT is OFF in ADO.Net and ON in Management Studio. Remember
this when you troubleshoot inefficient queries submitted by client applications. You could get different
execution plans when you run those queries in Management Studio. When your database works with
multiple client applications developed in different languages, you should consider specifying SET options in
the same way at the session level after establishing the connection to SQL Server.

 ■ Tip You can change the default SET options for queries running in Management Studio to match the client
applications via the Options menu item in the Tools menu.

 Another common reason for duplicated plans in cache is using unqualified object names without
specifying the object’s schema. In that case, SQL Server resolves objects based on the default schema of the
database’s users, and, therefore, statements like SELECT * FROM Orders could reference completely different
tables for different users, which prevents plan reuse. Alternatively, SELECT * FROM Sales.Orders always
references the same table regardless of the default database schema for the user.

 ■ Important Always specify the schema when you reference tables and stored procedures. It reduces the
size of the plan cache and speeds up the compilation process.

CHAPTER 26 ■ PLAN CACHING

493

 Finally, SQL Server does not cache plans if the batch or object includes string literals greater than 8 KB
in size. For example, the plan for the following query is not going to be cached when a constant used in the
 WHERE clause has more than 8,192 characters:

 SELECT * FROM Table1 WHERE Col='<insert more than 8,192 characters here>'

 We will dive deeper into plan cache internals later in this chapter after discussing a few practical
questions related to plan caching.

 Parameter Sniffing
 Plan caching can significantly reduce CPU load on systems by eliminating unnecessary query compilations.
However, it also introduces a few problems. The most widely known problem is called parameter sniffing .
SQL Server sniffs parameter values at the time of optimization and generates and caches a plan that
is optimal for those values. Nothing is wrong with this behavior. However, in some cases, when data is
unevenly distributed, it leads to a situation where the generated and cached plan is optimal only for atypical,
rarely used parameter values. These cached plans could be suboptimal for further calls that use more
common values as parameters.

 Most database professionals have experienced a situation where some queries or stored procedures
suddenly took a much longer time to complete than before, even though there were no recent deployments
to production. In most cases, these situations happened due to parameter sniffing when queries were
recompiled because of a statistics update.

 Let’s look at an example and create the table shown in Listing 26-1 . We will populate it with data in such
a way that most rows have the Country value set to 'USA'. Then, we will create a nonclustered index on the
 Country column.

 Listing 26-1. Parameter sniffing: Table creation

 create table dbo.Employees
 (
 ID int not null,
 Number varchar(32) not null,
 Name varchar(100) not null,
 Salary money not null,
 Country varchar(64) not null,
 constraint PK_Employees primary key clustered(ID)
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.Employees(ID, Number, Name, Salary, Country)
 select Num, convert(varchar(5),Num)
 ,'USA Employee: ' + convert(varchar(5),Num), 40000, 'USA'
 from Nums;

CHAPTER 26 ■ PLAN CACHING

494

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,Nums(Num) as (select row_number() over (order by (select null)) from N3)
 insert into dbo.Employees(ID, Number, Name, Salary, Country)
 select 65536 + Num, convert(varchar(5),65536 + Num)
 ,'Canada Employee: ' + convert(varchar(5),Num), 40000, 'Canada'
 from Nums;

 create nonclustered index IDX_Employees_Country
 on dbo.Employees(Country);

 As the next step, let’s create a stored procedure that calculates the average salary for employees
in a specific country. The code to do this is shown in Listing 26-2 . Even though we are using a stored
procedure in this example, the same situation could happen with parameterized queries called from client
applications.

 Listing 26-2. Parameter sniffing : Stored procedure

 create proc dbo.GetAverageSalary @Country varchar(64)
 as
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @Country;

 With the current data distribution, when the stored procedure is called with @Country='USA' , the
optimal execution plan is a clustered index scan . However, for @Country='Canada' , the better execution plan
is a nonclustered index seek with key lookup operations.

 Let’s call the stored procedure twice: the first time with @Country='USA' and the second time with
 @Country='Canada' , as shown in Listing 26-3 .

 Listing 26-3. Parameter sniffing: Calling a stored procedure

 exec dbo.GetAverageSalary @Country='USA';
 exec dbo.GetAverageSalary @Country='Canada';

 As you can see in Figure 26-1 , SQL Server compiles the stored procedure and caches the plan with the
first call, then reuses it later. Even though such a plan is less efficient with the @Country='Canada' parameter
value, it may be acceptable when those calls are rare, which is expected with such a data distribution.

CHAPTER 26 ■ PLAN CACHING

495

 Now, let’s take a look at what happens if we swap those calls when the plan is not cached. Listing 26-4
shows the code for achieving this. We will use the DBCC FREEPROCCACHE command, which clears the plan
cache. Another instance when this might happen is with a statistics update that forces a query to recompile.

 ■ Important Do not use the DBCC FREEPROCCACHE command in production.

 Listing 26-4. Parameter sniffing: Calling a stored procedure with a different order of parameters

 dbcc freeproccache
 go
 exec dbo.GetAverageSalary @Country='Canada';
 exec dbo.GetAverageSalary @Country='USA';

 As you can see in Figure 26-2 , SQL Server now compiles and caches the plan based on the
 @Country='Canada' parameter value. Even though this plan is more efficient when the stored procedure
is called with @Country='Canada' , it is highly inefficient for @Country='USA' calls.

 Figure 26-1. Parameter sniffing: Cached plan for @Country='USA'

CHAPTER 26 ■ PLAN CACHING

496

 There are a few ways to address the issue. You can force the recompilation of either stored procedure
using EXECUTE WITH RECOMPILE or a statement-level recompile with the OPTION (RECOMPILE) clause.
Obviously, a statement-level recompile is better, because it performs the recompilation on a smaller scope.
SQL Server sniffs the parameter values at the time of the recompilation, generating the optimal execution
plan for each parameter value. Listing 26-5 shows the statement-level recompile approach.

 Listing 26-5. Parameter sniffing: Statement-level recompile

 alter proc dbo.GetAverageSalary @Country varchar(64)
 as
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @Country
 option (recompile);
 go
 exec dbo.GetAverageSalary @Country='Canada';
 exec dbo.GetAverageSalary @Country='USA';

 As you can see in Figure 26-3 , SQL Server does not cache the execution plan and instead recompiles the
statement on every call, generating the most efficient execution plan for every parameter value.

 Figure 26-2. Parameter sniffing: Cached plan for @Country='Canada'

CHAPTER 26 ■ PLAN CACHING

497

 Figure 26-3. Parameter sniffing: Statement-level recompile

 The statement-level recompile may be a good option to use when the queries do not execute very often
or, in the case of complex queries, when the compilation time is just a fraction of the total execution time.
However, it is hardly the best approach for frequently executed OLTP queries due to the extra CPU load that
recompilation introduces.

 Another option is using an OPTIMIZE FOR hint, which forces SQL Server to optimize a query for the
specific parameter values provided in the hint. Listing 26-6 illustrates such an approach.

 Listing 26-6. Parameter sniffing: OPTIMIZE FOR hint

 alter proc dbo.GetAverageSalary @Country varchar(64)
 as
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @Country
 option (optimize for(@Country='USA'));
 go
 exec dbo.GetAverageSalary @Country='Canada';
 exec dbo.GetAverageSalary @Country='USA';

 As you can see in Figure 26-4 , SQL Server ignores the parameter value during compilation and
optimizes the query, then caches the execution plan for the @Country='USA' value.

 Figure 26-4. Parameter Sniffing: OPTIMIZE FOR hint

CHAPTER 26 ■ PLAN CACHING

498

 Unfortunately, the OPTIMIZE FOR hint introduces supportability issues, and it can lead to suboptimal
execution plans in cases where the data distribution has changed. Listing 26-7 shows such an example. Let’s
consider a situation, albeit an unrealistic one, where a company and all of its employees moved from the
United States to Germany.

 Listing 26-7. Parameter sniffing: OPTIMIZE FOR and data distribution change

 update dbo.Employees set Country='Germany' where Country='USA';
 exec dbo.GetAverageSalary @Country='Germany';

 Statistics are outdated at the time of the update, which forces SQL Server to recompile the statement
in the stored procedure. At this point, there are no rows in the table with Country='USA', and the
recompilation produces a suboptimal execution plan, as shown in Figure 26-5 . As a side note, the query uses
more reads than before as a result of the index fragmentation introduced by the update.

 Figure 26-5. Parameter sniffing: OPTIMIZE FOR and data-distribution change

 Figure 26-6. Parameter sniffing: OPTIMIZE FOR UNKNOWN hint

 SQL Server 2008 introduced another optimization hint, OPTIMIZE FOR UNKNOWN , which helps to address
such situations. With this hint, SQL Server performs an optimization based on the most statistically common
value in the table. Listing 26-8 shows the code involved in doing this.

 Listing 26-8. Parameter sniffing: OPTIMIZE FOR UNKNOWN hint

 alter proc dbo.GetAverageSalary @Country varchar(64)
 as
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @Country
 option (optimize for(@Country UNKNOWN));
 go
 exec dbo.GetAverageSalary @Country='Canada';

 Figure 26-6 illustrates the execution plan. Germany is the most statistically common value in the table,
and therefore SQL Server generates an execution plan that is optimal for such a parameter value.

CHAPTER 26 ■ PLAN CACHING

499

 You can achieve the same results as an OPTIMIZE FOR UNKNOWN hint by using local variables instead
of parameters. This method also works with SQL Server 2005, where the OPTIMIZE FOR UNKNOWN hint is
not supported. Listing 26-9 illustrates this approach. It introduces the same execution plan as that in
Figure 26-6 — one with a c lustered i ndex s can .

 Listing 26-9. Parameter sniffing: Using local variables

 alter proc dbo.GetAverageSalary @Country varchar(64)
 as
 declare
 @CountryTmp varchar(64) = @Country;
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @CountryTmp;

 SQL Server 2016 allows you to control parameter sniffing on the database level through database
scoped configuration by using the ALTER DATABASE SCOPED CONFIGURATION SET PARAMETER_SNIFFING
command. Disabling parameter sniffing is equivalent to use the OPTIMIZE FOR UNKNOWN hint with all queries.
Another command, ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE , allows you to clear
the procedure plan cache for the database.

 You can troubleshoot issues introduced by parameter sniffing by analyzing cached plans with the sys.
dm_exec_query_stats view and the sys.dm_exec_query_plan function. We will discuss this in more detail,
including how to obtain execution plans for currently running statements, both later in this chapter and in
Chapter 28 .

 SQL Server 2016 introduces the new component called Query Store , which allows you to capture
execution plans and runtime statistics of the queries in the system. Moreover, it helps you to avoid
parameter sniffing issues by permitting you to force specific execution plans for queries. We will discuss the
Query Store in detail in Chapter 29 of this book.

 Plan Reuse
 Plans cached by SQL Server must be valid for any combination of parameters during future calls that reuse
the plan. In some cases, this can lead to situations where a cached plan is suboptimal for a specific set of
parameter values.

 One of the code patterns that often leads to such situations is the implementation of stored procedures
that search for data based on a set of optional parameters. A typical implementation of such a stored
procedure is shown in Listing 26-10 . This code also creates two nonclustered indexes on the dbo.Employees
table.

 Listing 26-10. Plan reuse: Creation of stored procedure and indexes

 create proc dbo.SearchEmployee
 (@Number varchar(32) = null, @Name varchar(100) = null)
 as
 select Id, Number, Name, Salary, Country
 from dbo.Employees
 where
 ((@Number is null) or (Number=@Number)) and
 ((@Name is null) or (Name=@Name));
 go

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
http://dx.doi.org/10.1007/978-1-4842-1964-5_29

CHAPTER 26 ■ PLAN CACHING

500

 create unique nonclustered index IDX_Employees_Number
 on dbo.Employees(Number);
 create nonclustered index IDX_Employees_Name
 on dbo.Employees(Name);

 A plan cached by SQL Server should work with any combination of input parameters, regardless of their
values at the time when the query was compiled. If you were to call stored procedures multiple times using
the code from Listing 26-11 , SQL Server would decide to generate and cache a plan with an IDX_Employees_
Number index scan and key lookup operations.

 Listing 26-11. Plan reuse: Stored procedure calls

 exec dbo.SearchEmployee @Number = '10000';
 exec dbo.SearchEmployee @Name = 'Canada Employee: 1';
 exec dbo.SearchEmployee @Number = '10000', @Name = 'Canada Employee: 1';
 exec dbo.SearchEmployee @Number = NULL, @Name = NULL;

 Figure 26-7 demonstrates Listing 26-11 ’s execution plan for the stored procedure calls. As you can
see, the query does not use the IDX_Employees_Number nonclustered index seek operation, even when the
 @Number parameter has a NOT NULL value, because this plan would not be valid when @Number is NULL .
Moreover, when @Number is not provided, SQL Server has to perform a key lookup operation for every row in
the table, which is highly inefficient.

 Figure 26-7. Plan reuse: Execution plans for the stored procedure calls

 Similar to with parameter sniffing issues, you can address this problem with statement-level
recompilation using the OPTION (RECOMPILE) clause. Figure 26-8 shows the execution plans in that case.

CHAPTER 26 ■ PLAN CACHING

501

 As you can see, SQL Server recompiles the query on every call, and therefore it can choose the most
beneficial execution plan for every parameter set. It is worth mentioning again that plans are not cached in
cases where a statement-level recompile is used.

 Even though a statement-level recompile solves the problem, it introduces the overhead of constant
recompilations, which you would like to avoid when stored procedures are called very often. One of the
options that you have available is to write multiple queries using IF statements that cover all possible
combinations of parameters. SQL Server would cache the plan for each statement in that case.

 Listing 26-12 shows such an approach; however, it quickly becomes unmanageable with a large number
of parameters. The number of combinations to cover is equal to the number of parameters squared.

 Figure 26-8. Plan reuse: Execution plans with statement-level recompile

CHAPTER 26 ■ PLAN CACHING

502

 Listing 26-12. Plan reuse: Covering all possible parameter combinations

 alter proc dbo.SearchEmployee
 (@Number varchar(32) = null, @Name varchar(100) = null)
 as
 if @Number is null and @Name is null
 select Id, Number, Name, Salary, Country
 from dbo.Employees;
 else if @Number is not null and @Name is null
 select Id, Number, Name, Salary, Country
 from dbo.Employees
 where Number=@Number;
 else if @Number is null and @Name is not null
 select Id, Number, Name, Salary, Country
 from dbo.Employees
 where Name=@Name;
 else
 select Id, Number, Name, Salary, Country
 from dbo.Employees
 where Number=@Number and Name=@Name;

 In the case of a large number of parameters, dynamic SQL becomes the only option. SQL Server will
cache the execution plans for each dynamically generated SQL statement. Listing 26-13 shows such an
approach. Remember that using dynamic SQL breaks ownership chaining, and it always executes in the
security context of CALLER .

 Listing 26-13. Plan reuse: Using dynamic SQL

 alter proc dbo.SearchEmployee
 (@Number varchar(32) = null, @Name varchar(100) = null)
 as
 declare
 @SQL nvarchar(max) = N'
 select Id, Number, Name, Salary, Country
 from dbo.Employees
 where 1=1' +
 case when @Number is not null then N' and Number=@Number' else N‘’ end +
 case when @Name is not null then N' and Name=@Name' else N” end;

 exec sp_executesql @Sql, N'@Number varchar(32), @Name varchar(100)'
 ,@Number=@Number, @Name=@Name;

 ■ Important Always use parameters with the sp_executesql procedure to avoid SQL Injection.

 Remember this behavior when you are using filtered indexes. SQL Server will not generate and cache a
plan that uses a filtered index in cases where that index cannot be used with some combination of parameter
values. Listing 26-14 shows an example. SQL Server will not generate a plan, which is using the IDX_Data_
UnprocessedData index, when the @Processed parameter is set to zero, because this plan would not be valid
for a non-zero @Processed parameter value.

CHAPTER 26 ■ PLAN CACHING

503

 Listing 26-14. Plan reuse: Filtered indexes (non-functional demo)

 create unique nonclustered index IDX_Data_UnprocessedData
 on dbo.RawData(ID)
 include(Processed)
 where Processed = 0;

 -- Cached Plan for the query would not use filtered index
 select top 100 *
 from dbo.RawData
 where ID > @ID and Processed = @Processed
 order by ID;

 Plan Caching for Ad-Hoc Queries
 SQL Server caches plans for ad-hoc queries (and batches), which use constants rather than parameters in
the WHERE clause. Listing 26-15 shows an example of ad-hoc queries.

 Listing 26-15. Ad-hoc queries

 select * from dbo.Customers where LastName='Smith'
 go
 select * from dbo.Customers where LastName='Smith'
 go
 SELECT * FROM dbo.Customers WHERE LastName='Smith'
 go
 select * from dbo.Customers where LastName = 'Smith'
 go

 SQL Server reuses plans for ad-hoc queries only in cases where the queries are exactly the same and a
complete character-for-character match with each other. For example, the four queries from Listing 26-15
would introduce three different plans. The first and second queries are identical and share a plan. The two
other queries would not reuse that plan due to the keywords’ upper- and lowercase mismatch and the extra
space characters around the equality operator in the WHERE clause.

 Because of the nature of ad-hoc queries , they do not reuse plans very often. Unfortunately, cached
plans for ad-hoc queries can consume a large amount of memory. Let’s look at an example and run 1,000
simple ad-hoc batches, as shown in Listing 26-16 , checking the plan cache state afterward. The script clears
the content of the cache with the DBCC FREEPROCCACHE command; do not run this on a production server.

 Listing 26-16. Ad-hoc queries’ memory usage: Running ad-hoc queries

 dbcc freeproccache
 go

 declare
 @SQL nvarchar(max)
 ,@I int = 0
 while @I < 1000

CHAPTER 26 ■ PLAN CACHING

504

 begin
 select @SQL =
 N'declare @C int;select @C=ID from dbo.Employees where ID='
 + convert(nvarchar(10),@I);
 exec(@SQL);
 select @I += 1;
 end
 go

 select
 p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.[text]
 from
 sys.dm_exec_cached_plans p cross apply
 sys.dm_exec_sql_text(p.plan_handle) t
 where
 p.cacheobjtype like 'Compiled Plan%' and
 t.[text] like '%Employees%'
 order by
 p.objtype desc;

 As you can see in Figure 26-9 , there are 1,000 plans cached, each of which uses 32 KB of memory, or 32
MB total. As you can guess, ad-hoc queries in busy systems can lead to excessive plan cache memory usage.

 Figure 26-9. Plan cache content after query execution

 SQL Server 2008 introduced a server-side configuration setting called Optimize for ad-hoc workloads .
When this setting is enabled, SQL Server caches small, less-than-300-byte structures, called compiled plan
stubs , instead of actual compiled plans. A compiled plan stub is a placeholder that is used to keep track of
which ad-hoc queries were executed. When the same query runs a second time, SQL Server replaces the
compiled plan stub with the actual compiled plan and reuses it going forward.

 The Optimize for ad-hoc workloads setting is disabled by default. However, it should be enabled in most
systems. Even though it introduces slight CPU overhead on the second ad-hoc query recompilation, it could
significantly decrease plan cache memory usage on systems with heavy ad-hoc activity. That memory would
be available for the buffer pool, which could reduce the number of physical I/O operations and improve
system performance.

 You can enable this setting with the code shown in Listing 26-17 . In addition, it can be enabled in the
Advanced tab of the Server Properties window in Management Studio.

 Listing 26-17. Enabling Optimize for ad-hoc activity setting

 exec sys.sp_configure N'optimize for ad hoc workloads', N'1';
 reconfigure with override;

CHAPTER 26 ■ PLAN CACHING

505

 Figure 26-10. Plan cache content when Optimize for ad-hoc workload is enabled

 If you ran the code from Listing 26-16 with the Optimize for ad-hoc workloads setting enabled, you
would see the plan cache content shown in Figure 26-10 . As you can see, it now uses just 272 KB of memory
rather than the 32 MB it used to before.

 Figure 26-11. Plan cache content after parameterization occurred

 Auto-Parameterization
 In some cases, SQL Server may decide to replace some constants in ad-hoc queries with parameters and
cache compiled plans as if the queries were parameterized. When this happens, similar ad-hoc queries that
use different constants can reuse cached plans.

 Listing 26-18 shows two queries that could be parameterized and will share a compiled plan.

 Listing 26-18. Parameterization

 select ID, Number, Name from dbo.Employees where ID = 5
 go
 select ID, Number, Name from dbo.Employees where ID = 10
 go

 Internally, SQL Server stores the compiled plan as shown below:

 (@1 tinyint)SELECT [ID],[Number],[Name] FROM [dbo].[Employees] WHERE [ID]=@1

 By default, SQL Server defines a parameter data type based on a constant value, choosing the smallest
data type where the value fits. For example, the query SELECT ID, Number, Name FROM dbo.Employees
WHERE ID = 10000 would introduce another cached plan, as shown below:

 (@1 smallint)SELECT [ID],[Number],[Name] FROM [dbo].[Employees] WHERE [ID]=@1

 When parameterization occurs, SQL Server stores another structure in the plan cache, called a shell
query , in addition to the compiled plan of the parameterized query. The shell query uses about 16 KB of
memory and stores information about the original query, linking it to the compiled plan.

 In Figure 26-11 , you can see the content of plan cache after we run the queries from Listing 26-18 . As
you can see, it stores the compiled plan and two shell queries.

CHAPTER 26 ■ PLAN CACHING

506

 By default, SQL Server uses simple parameterization, and it is very conservative in parameterizing
queries. Simple parameterization only happens when a cached plan is considered safe to parameterize ,
which means that the plan would be the same in terms of plan shape and cardinality estimations, even when
constant/parameter values have changed. For example, a plan with a n onclustered i ndex s eek and k ey l ookup
on a unique index is safe because it would never return more than one row, regardless of the parameter
value. Conversely, the same operation on a non-unique index is not safe. Different parameter values lead
to different cardinality estimations, which makes a c lustered i ndex s can the better choice for some of them.
Moreover, there are many language constructs that prevent simple parameterization, such as IN , TOP ,
 DISTINCT , JOIN , UNION , subqueries, and quite a few others.

 Alternatively, SQL Server can use forced parameterization, which can be enabled at the database
level with the ALTER DATABASE SET PARAMETERIZATION FORCED command or on the query level with a
 PARAMETERIZATION FORCED hint. In this mode, SQL Server auto-parameterizes most ad-hoc queries, with
very few exceptions.

 As might be expected, forced parameterization comes with a set of benefits and drawbacks. While on
one hand it can significantly reduce the size of the plan cache and CPU load, it also increases the chance of
suboptimal execution plans due to parameter sniffing issues.

 Another problem with forced parameterization is that SQL Server replaces constants with parameters
without giving you any control about the constants you want to parameterize. This is especially critical for
filtered indexes, where parameterization can prevent SQL Server from generating and caching a plan that
utilizes them by replacing constant values in the statements with parameters. I am including one such
example in the companion materials of the book.

 One of the good use cases for forced parameterization is the complex ad-hoc queries submitted by a
client application in cases where the choice of execution plan does not depend on constant values. While it
is better to change the client application and parameterize queries, it is not always possible.

 Listing 26-19 shows an example of such a query. Every query execution leads to a compilation, and
it adds an entry to the plan cache. Such a query benefits from forced parameterization, because the most
optimal execution plan for the query is a c lustered i ndex s eek, and it does not change based on the constant/
parameter value.

 Listing 26-19. Example of a query that benefits from forced parameterization

 select top 100 RecId, /* Other Columns */
 from dbo.RawData
 where RecID > 432312 -- Client application uses different values at every call
 order by RecId

 With all that being said, you should be careful with forced parameterization when you enable it at the
database level. It is safer to enable it on the individual query level if needed.

 Plan Guides
 Query hints can be extremely useful in helping to resolve various plan caching – related issues. Unfortunately,
in some cases you are unable to modify the query text, either because you do not have access to the
application code or because the recompilation and redeployment is impossible or impractical.

 You can solve such problems by using plan guides, which allow you to add hints to the queries or even
force specific execution plans without changing a query’s text. You can create them with the sp_create_
plan_guide stored procedure and manage them with the sp_control_plan_guide stored procedure.

CHAPTER 26 ■ PLAN CACHING

507

 Figure 26-12. Execution plan with Object plan guide

 There are three types of plan guides available, as follows:

 An Object plan guide allows you to specify a hint for a query that exists in a T-SQL
object, such as a stored procedure, trigger, or user-defined function.

 A SQL plan guide allows you to specify a hint for a particular SQL query, either
standalone or as part of a batch.

 A Template plan guide allows you to specify a type of parameterization—forced
or simple—for a particular query template, overriding the database setting.

 The code in Listing 26-20 removes the query hint from the dbo.GetAverageSalary stored procedure
and creates a plan guide with an OPTIMIZE FOR UNKNOWN hint. The @Stmt parameter should specify a query
where a hint needs to be added, and @module_or_batch should specify the name of the object.

 Listing 26-20. Object plan guide

 alter proc dbo.GetAverageSalary @Country varchar(64)
 as
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @Country;
 go

 exec sp_create_plan_guide
 @type = N'OBJECT'
 ,@name = N'object_plan_guide_demo'
 ,@stmt = N'select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = @Country'
 ,@module_or_batch = N'dbo.GetAverageSalary'
 ,@params = null
 ,@hints = N'OPTION (OPTIMIZE FOR (@Country UNKNOWN))';

 Now, if you ran the stored procedure for @Country = 'Canada' , you would get the execution plan
shown in Figure 26-12 . It is similar to what you had with the query hint within the stored procedure. You can
see in the properties of the top operator in the graphical plan, as well as in its XML representation, that a
plan guide was used during optimization.

CHAPTER 26 ■ PLAN CACHING

508

 Listing 26-21 shows an example of a SQL plan guide, which set the MAXDOP option for the query. In this
mode, the @module_or_batch parameter should be set to null .

 Listing 26-21. SQL plan guide

 exec sp_create_plan_guide
 @type = N'SQL'
 ,@name = N'SQL_plan_guide_demo'
 ,@stmt = N'select Country, count(*) as [Count]
 from dbo.Employees
 group by Country'
 ,@module_or_batch = NULL
 ,@params = null
 ,@hints = N'OPTION (MAXDOP 2)' ;

 Working with Template plan guides is a bit more complex. Unlike SQL and Object plan guides,
where the @stmt parameter should be a character-for-character match with the queries, a Template plan
guide requires you to provide the template for the query. Fortunately, you can use another system stored
procedure, sp_get_query_template , to prepare it.

 Let’s look at an example and assume that we want SQL Server to auto-parameterize the query from
Listing 26-22 . Even though the execution plan for the query is safe—a clustered index seek on a unique index
would always return one row — the TOP clause prevents SQL Server from parameterizing it. You can see the ad-
hoc cached plan in Figure 26-13 .

 Listing 26-22. Template plan guide: Sample query

 select top 1 ID, Number, Name from dbo.Employees where ID = 5;
 go

 select p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.[text]
 from sys.dm_exec_cached_plans p cross apply
 sys.dm_exec_sql_text(p.plan_handle) t
 where t.[text] like '%Employees%'
 order by p.objtype desc
 option (recompile);

 Figure 26-13. Plan cache before the Template plan guide is created

 Listing 26-23 shows you how to create a template plan guide and override the PARAMETERIZATION
database option.

 Listing 26-23. Template plan guide : Creating a plan guide

 declare
 @stmt nvarchar(max)
 ,@params nvarchar(max)

CHAPTER 26 ■ PLAN CACHING

509

 -- Getting template for the query
 exec sp_get_query_template
 @querytext = N'select top 1 ID, Number, Name from dbo.Employees where ID = 5;'
 ,@templatetext = @stmt output
 ,@params = @params output;

 -- Creating plan guide
 exec sp_create_plan_guide
 @type = N'TEMPLATE'
 ,@name = N'template_plan_guide_demo'
 ,@stmt = @stmt
 ,@module_or_batch = null
 ,@params = @params
 ,@hints = N'OPTION (PARAMETERIZATION FORCED)'

 Now, if you ran the code from Listing 26-22 , the statement would be parameterized, as shown in
Figure 26-14 .

 Figure 26-14. Plan cache after Template plan guide is created

 As a final option, you can force SQL Server to use a specific execution plan by specifying it in the plan
guide or using the USE PLAN query hint. Listing 26-24 shows an example of both approaches. The full XML
plan is omitted to conserve space in the book.

 Listing 26-24. Forcing XML query plan

 -- Using USE PLAN query hint
 select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = 'Germany'
 option (use plan N'<?xml version="1.0"?>
 <ShowPlanXML><!-- Actual execution plan here --></ShowPlanXML>');
 go

 -- Using Plan Guide
 declare
 @Xml xml = N'<?xml version="1.0"?>
 <ShowPlanXML><!-- Actual execution plan here --> </ShowPlanXML>';

 declare
 @XmlAsNVarchar nvarchar(max) = convert(nvarchar(max),@Xml)

CHAPTER 26 ■ PLAN CACHING

510

 exec sp_create_plan_guide
 @type = N'SQL'
 ,@name = N'xml_plan_guide_demo'
 ,@stmt = N'select Avg(Salary) as [Avg Salary]
 from dbo.Employees
 where Country = ''Germany'''
 ,@module_or_batch = NULL
 ,@params = null
 ,@hints = @XmlAsNVarchar;

 While both the query hint and the plan guide force SQL Server to use a specific execution plan, in SQL
Server 2008 and above, they exhibit different behaviors when the plan becomes incorrect. Query Optimizer
will ignore an incorrect plan guide and generate a plan as if the plan guide has not been specified. A query
with a USE PLAN hint, on the other hand, would generate an error. An example of such an error is shown
here. SQL Server 2005, however, simply fails the query if an invalid plan guide is specified.

 Msg 8712, Level 16, State 0, Line 1
 Index 'tempdb.dbo.Employees.IDX_Employees_Country', specified in the USE PLAN hint, does not
exist. Specify an existing index, or create an index with the specified name.

 You need to be careful when you change the schemas of the objects referenced in plan guides and
 USE PLAN hints. It is entirely possible to invalidate plans, even when your changes do not directly affect the
indexes and columns used by a query. For example, unique indexes or constraints can eliminate some of the
assertions in the plan and, therefore, invalidate a plan when you drop them. Another common example is
changes in partition schemas and functions.

 Starting with SQL Server 2008, you can use the sys.fn_validate_plan_guide system function to check
if a plan guide is still valid. The code in Listing 26-25 shows an example of this.

 Listing 26-25. Validating plan guides

 select pg.plan_guide_id, pg.name, pg.scope_type_desc, pg.is_disabled, vpg.message
 from sys.plan_guides pg cross apply
 (select message from sys.fn_validate_plan_guide(pg.plan_guide_id)) vpg;

 The sys.fn_validate_plan_guide function returns a row if the plan guide is incorrect. You can see an
example of its output in Figure 26-15 .

 Figure 26-15. Validating plan guides

 As a final note, plan guides are only supported in the Standard, Enterprise, and Developer editions of SQL
Server. You can still create plan guides in the unsupported editions, but Query Optimizer will ignore them.

CHAPTER 26 ■ PLAN CACHING

511

 Plan Cache Internals
 SQL Server separates plan cache into four different memory areas called cache stores . Each cache store
caches different entities and plans, as follows:

 The SQL Plans cache store (internal name CACHESTORE_SQLCP) stores plans
for parameterized and ad-hoc queries and batches, as well as for auto-
parameterized plans.

 The Object Plans cache store (CACHESTORE_OBJCP) stores plans for T-SQL objects,
such as stored procedures, triggers, and user-defined functions.

 The Extended Stored Procedures cache store (CACHESTORE_XPROC) stores plans for
extended stored procedures.

 The Bound Trees cache store (CACHESTORE_PHDR) stores bound trees generated
during the query optimization stage.

 ■ Note SQL Server uses other cache stores that are not associated with plan cache. You can examine their
content by using the sys.dm_os_memory_cache_counters data management view.

 You can monitor the size of each cache store with a SELECT statement, as shown in Listing 26-26 .

 Listing 26-26. Checking a cache store’s size

 select type as [Cache Store], sum(pages_in_bytes) / 1024.0 as [Size in KB]
 from sys.dm_os_memory_objects
 where type in ('MEMOBJ_CACHESTORESQLCP','MEMOBJ_CACHESTOREOBJCP'
 ,'MEMOBJ_CACHESTOREXPROC','MEMOBJ_SQLMGR')
 group by type ;

 Each cache store uses a hash table in which hash buckets keep zero or more plans. There are about
40,000 buckets in both the Object Plan store and the SQL Plan store in 64-bit instances, and about 10,000
buckets in 32-bit instances of SQL Server. The size of the Bound Trees cache store is about 1/10th of that
number, and the number of buckets in the Extended Stored Procedures store is always 127. You can examine
the cache store properties with the sys.dm_os_memory_cache_hash_tables view.

 SQL Server uses a very simple algorithm to calculate the hash value for a plan based on the following
formula: (object_id * database_id) mod hash_table_size .

 For parameterized and ad-hoc queries, object_id is the internal hash of the query or batch. It is
entirely possible that one bucket stores multiple plans for the same object or query. As we have already
discussed, different SET options, database users, and quite a few other factors can prevent plan reuse. SQL
Server compares multiple plan attributes when looking for the right plan in the cache. We will discuss how to
analyze plan attributes later in this chapter.

 Compiled plans cached for multi-statement batches are basically the arrays of individual statement-
level plans. When a statement from a batch needs to be recompiled, SQL Server recompiles the individual
statement rather than the entire batch.

 SQL Server treats a cached batch plan as a single unit. The entire batch must be a character-for-
character match with original batch that produced the cached plan in order for that plan to be reused. SQL
Server generates an execution plan from the compiled plan for the entire batch.

 The amount of memory that can be used by the plan cache depends on the version of SQL Server being
used (see Table 26-1).

CHAPTER 26 ■ PLAN CACHING

512

 Visible memory is different in 32-bit and 64-bit instances of SQL Server. 32-bit instances of SQL Server
have at most 2 GB or 3 GB of visible memory, depending on the presence of a /3GB switch in the boot.ini
file. Even when AWE (Address Windows Extension) memory is in use, memory above 4 GB can be used for
the buffer pool only. No such limitation exists on 64-bit instances of SQL Server.

 SQL Server starts to remove plans from the cache in cases of memory pressure. There are two kinds
of memory pressure: local and global . Local memory pressure happens when one of the cache stores
grows too big and starts using too much SQL Server process memory. Global memory pressure happens
when Windows forces SQL Server to reduce its physical memory usage, or when the size of all cache stores
combined reaches 80 percent of the plan cache pressure limit.

 Local memory pressure is triggered when one of the cache stores starts to use too much memory. In
SQL Server 2005-2008R2, where single-page and multi-page allocations are treated separately, memory
pressure occurs when a cache store reaches 75 percent of the plan cache pressure limit in a single-page
allocation or 50 percent in a multi-page allocation. In SQL Server 2012 and above, there is only one memory
allocator, called the any-size page allocator , and memory pressure is triggered when a cache store grows to
62.5 percent of the plan cache pressure limit.

 Local memory pressure can also be triggered based on the number of plans in the SQL and Object Plan
cache stores. That number is about four times the hash table size, which is 40,000 or 160,000 plans on 32-bit
and 64-bit instances respectively.

 Both local and global memory pressure remove plans from the cache using an algorithm called eviction
policy , which is based on plan cost. For ad-hoc plans, the cost starts with zero and increments by one with
every plan reuse. Other types of plans measure the cost of resources required to produce them. It is based on
I/O, memory, and context switches in the units, called ticks , as shown here:

 I/O : Each I/O operation costs 1 tick, with a maximum of 19.

 Memory : Each 16 pages of memory costs 1 tick, with a maximum of 4.

 Context Switches : Each switch costs 1 tick, with a maximum of 8.

 When not under memory pressure, costs are not decreased until the total size of all cached plans
reaches 50 percent of the buffer pool size. At that point, the Lazy Writer process starts periodically
scanning plan caches, decrementing the cost of each plan by one on each scan, removing plans with zero
cost. Alternatively, each plan reuse increments its cost by one for ad-hoc queries, or by the original plan
generation cost for other types of plans.

 Listing 26-27 shows you how to examine the current and original costs of cached entries in SQL and
Object Plan cache stores.

 Listing 26-27. Examining original and current costs of cache entries

 select
 q.Text as [SQL], p.objtype, p.usecounts, p.size_in_bytes, mce.Type as [Cache Store]
 ,mce.original_cost, mce.current_cost, mce.disk_ios_count
 ,mce.pages_kb /* Use pages_allocation_count in SQL Server prior 2012 */
 ,mce.context_switches_count, qp.query_plan

 Table 26-1. Plan Cache Pressure Limit Calculation Formula

 SQL Server Version Cache Pressure Limit

 SQL Server 2005 RTM, SP1 75% of visible target memory from 0-8 GB + 50% of visible target
memory from 8 GB-64 GB + 25% of visible target memory > 64 GB

 SQL Server 2005 SP2+, SQL Server
2008/2008R2, SQL Server 2012 - 2016

 75% of visible target memory from 0-4 GB + 10% of visible target
memory from 8 GB-64 GB + 5% of visible target memory > 64 GB

CHAPTER 26 ■ PLAN CACHING

513

 from
 sys.dm_exec_cached_plans p with (nolock) join
 sys.dm_os_memory_cache_entries mce with (nolock) on
 p.memory_object_address = mce.memory_object_address
 cross apply sys.dm_exec_sql_text(p.plan_handle) q
 cross apply sys.dm_exec_query_plan(p.plan_handle) qp
 where
 p.cacheobjtype = 'Compiled plan' and
 mce.type in (N'CACHESTORE_SQLCP',N'CACHESTORE_OBJCP')
 order by
 p.usecounts desc

 Examining Plan Cache
 There are several data management views that provide plan cache – related information. Let’s look at some of
them in depth.

 As you already saw, the sys.dm_exec_cached_plans view provides information about every plan
stored in the SQL and Object Plan cache stores. The key column in the view is plan_handle , which uniquely
identifies the plan. In the case of a batch, that value remains the same even when some statements from the
batch are recompiled. In addition to plan_handle , this view provides information about the type of plan
(Compiled Plan, Compiled Plan Stub, and so forth) in the cacheobjtype column, type of object (Proc, Ad-
Hoc query, Prepared, Trigger, and so on) in the objtype column, reference and use counts, memory size,
and a few other attributes.

 The data management function sys.dm_exec_plan_attributes accepts plan_handle as a parameter
and returns a set of attributes for a particular plan. Those attributes include references to the database and
object to which the plan belongs, the user_id of the session that submits the batch, and quite a few other
attributes.

 One of the attributes, sql_handle , links the plan to the batch for which the plan has been compiled. You
can use it together with the sys.dm_exec_sql_text function to obtain its SQL text.

 Each attribute has a flag if it is included in the cache key . SQL Server reuses plans only when both the
 sql_handle and cache key of the cached plan match the values from the submitted batch. Think about the
 set_option attribute as an example. It is included in the cache key; therefore, different SET options would
lead to different cache key values, which would prevent plan reuse.

 One SQL batch, identified by sql_handle , can have multiple plans, identified by plan_handle —one for
each cache key attribute’s value. Listing 26-28 illustrates an example of this.

 Listing 26-28. SQL_Handle and plan_handle relations

 set quoted_identifier off
 go
 select top 1 ID from dbo.Employees where Salary > 40000;
 go
 set quoted_identifier on
 go
 select top 1 ID from dbo.Employees where Salary > 40000
 go
 ;with PlanInfo(sql_handle, plan_handle, set_options)
 as
 (

CHAPTER 26 ■ PLAN CACHING

514

 select pvt.sql_handle, pvt.plan_handle, pvt.set_options
 from
 (select p.plan_handle, pa.attribute, pa.value
 from sys.dm_exec_cached_plans p with (nolock) outer apply
 sys.dm_exec_plan_attributes(p.plan_handle) pa
 where cacheobjtype = 'Compiled Plan') as pc
 pivot (max(pc.value) for pc.attribute
 in ("set_options", "sql_handle")) as pvt
)
 select pi.sql_handle, pi.plan_handle, pi.set_options, b.text
 from
 PlanInfo pi cross apply
 sys.dm_exec_sql_text(convert(varbinary(64),pi.sql_handle)) b

 Figure 26-16 shows two different plans for the same SQL batch, resulting from the difference in SET options.

 Figure 26-16. Plan_handle and sql_handle

 You can obtain an XML representation of the execution plan with the sys.dm_exec_query_plan
function, which accepts plan_handle as a parameter. However, it does not return a query plan if the XML
plan has more than 128 nested levels, because of XML data-type limitations. In that case, you can use the
 sys.dm_exec_text_query_plan function, which returns a text representation of the XML plan instead.

 You can retrieve information about currently executed requests by using the sys.dm_exec_requests
view. Listing 26-29 shows the query, which returns the data on currently running requests from user
sessions, sorted by their running time in descending order.

 Listing 26-29. Using sys.dm_exec_requests

 select
 er.session_id, er.user_id, er.status, er.database_id, er.start_time
 ,er.total_elapsed_time, er.logical_reads, er.writes
 ,substring(qt.text, (er.statement_start_offset/2)+1,
 ((case er.statement_end_offset
 when -1 then datalength(qt.text)
 else er.statement_end_offset
 end - er.statement_start_offset) /2) +1) as [SQL]
 ,qp.query_plan, er.*
 from
 sys.dm_exec_requests er with (nolock)
 cross apply sys.dm_exec_sql_text(er.sql_handle) qt
 cross apply sys.dm_exec_query_plan(er.plan_handle) qp
 where
 er.session_id > 50 and /* Excluding system processes */
 er.session_id <> @@SPID
 order by
 er.total_elapsed_time desc

CHAPTER 26 ■ PLAN CACHING

515

 The sys.dm_exec_query_stats , sys.dm_exec_procedure_stats , and sys.dm_exec_trigger_stats
views provide aggregated performance statistics for queries, procedures, and triggers that have cached plans.
They return one row for every cached plan per object, as long as the plan stays in the cache. These views are
extremely useful during performance troubleshooting. We will discuss their use in depth in Chapter 28 .

 Sys.dm_exec_query_stats is supported in SQL Server 2005 and above. Sys.dm_exec_procedure_stats
and sys.dm_exec_trigger_stats were introduced in SQL Server 2008.

 ■ Note You can find more information about execution-related DMOs at http://technet.microsoft.com/
en-us/library/ms188068.aspx .

 Summary
 Query optimization is an expensive process that increases CPU load on busy systems. SQL Server reduces
such load by caching plans in a special part of memory called the plan cache. It includes plans for T-SQL
objects, such as stored procedures, triggers, and user-defined functions; ad-hoc queries and batches; and a
few other plan-related entities.

 SQL Server reuses plans for ad-hoc queries and batches only when there is a character-for-character
match of the query/batch texts. Moreover, different SET options and/or references to unqualified objects
could prevent plan reuse.

 Caching plans for ad-hoc queries can significantly increase plan cache memory usage. It is
recommended that you enable the server-side Optimize for ad-hoc workloads configuration setting if you are
using SQL Server 2008 and above.

 SQL Server sniffs parameters and generates and caches plans that are optimal for the parameter values
at the time of compilation. In cases of uneven data distribution, this could lead to performance issues when
cached plans are not optimal for the typically submitted parameter values. You can address such issues with
a statement-level recompile, OPTIMIZE FOR query hints, or, in SQL Server 2016, with Query Store.

 You can specify hints directly in queries. Alternatively, you can use plan guides, which allow you to
apply hints or force specific execution plans without changing the query text.

 Cached plans should be valid for every possible combination of parameters. This can lead to
suboptimal plans when a query has OR conditions to support optional parameter values. You can address
such issues with a statement-level recompile, or by building SQL dynamically and omitting OR conditions.

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
http://technet.microsoft.com/en-us/library/ms188068.aspx
http://technet.microsoft.com/en-us/library/ms188068.aspx

 PART V

 Practical Troubleshooting

519© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_27

 CHAPTER 27

 Extended Events

 Extended Events is a highly scalable performance monitoring and troubleshooting solution introduced in
SQL Server 2008. It is targeted as a replacement for SQL Traces, which was deprecated in SQL Server 2012.
Extended Events are lightweight, and they have the flexibility to allow for troubleshooting of some scenarios
that were not possible with SQL Traces.

 This chapter provides an overview of the Extended Events framework and shows you how to work with
them.

 Extended Events Overview
 Even though SQL Traces events are extremely easy to set up, they have serious limitations. All event types
generate output in the same format. The same columns in the output could provide different data for
different SQL Traces events. For example, in the SQL:Batch Completed event, the TextData column contains
the text of the SQL batch. Alternatively, in the Lock:Acquired event , the same column shows a resource
where a lock was acquired. It is complicated to analyze the output of the traces that collect different events.

 Performance is another important factor. A SQL Server component called Trace Controller manages
SQL Traces defined by all trace consumers . It keeps an internal bitmap that shows event types that are
consumed by currently active traces and, therefore, need to be collected. Other SQL Server components,
which in this context are called trace producers , analyze that bitmap and fire corresponding events when
needed.

 Trace producers do not know what data columns are included in the trace. Data for all of the columns is
collected and passed to the controller, which evaluates trace filters and discards unneeded events and data
columns.

 This architecture introduces unnecessary overhead. Consider a situation where you want to capture
long-running SQL statements from a specific session. SQL Traces would have very few columns defined and
collect just a handful of events. Trace producers , however, would fire events for each SQL statement that
comes to the system. The trace controller would do all further filtering and column removal.

 The Extended Events framework has been designed with the goal of addressing these limitations in
mind. Similar to SQL Traces, it includes event sessions that define the boundaries for event collection. They
specify event types and data that needs to be collected, predicates that are used in filters, and targets where
the data is stored. SQL Server can write events to targets either synchronously, in the same thread where the
event occurs, or asynchronously, buffering data in the memory reserved for each event session.

 Extended Events uses an XML format. Each event type has its own set of data columns. For example, the
 sql_statement_completed event provides the number of reads and writes, CPU time, duration, and other
execution statistics for a query. You can collect additional attributes — for example, the tsql stack — by executing
operators called actions. In contrast to SQL Traces, Extended Events does not collect unnecessary data; that
is, only a small set of event data columns and specified actions are collected.

CHAPTER 27 ■ EXTENDED EVENTS

520

 When SQL Server triggers an event , it checks for any active event sessions that consume such an event.
When such sessions exist, SQL Server collects the event data columns and, if predicates were defined,
collects the information needed for their evaluation. If predicate evaluation succeeds and the event needs
to be fired, SQL Server collects all of the actions, passes data to synchronous targets , and buffers data for
asynchronous targets. Figure 27-1 illustrates this process.

 Figure 27-1. Extended Events life cycle

 Finally, it is worth noting that Extended Events support in SQL Server 2008 is rather limited, and it does
not include all of the events that exist in SQL Traces. Moreover, Management Studio in SQL Server 2008 does
not include a UI to work with Extended Events. Fortunately, those limitations have been addressed in SQL
Server 2012 and above, where all SQL Traces events have corresponding Extended Events, and Management
Studio provides the tools to manage and analyze Extended Events data.

 ■ Note You can download the SQL Server 2008 Extended Events Management Studio Add-In developed
by Jonathan Kehayias from the SqlSkills.com website at http://www.sqlskills.com/free-tools/ , or from
CodePlex. Moreover, Jonathan wrote an excellent tutorial on Extended Events called “An XEvent a Day,” which is
available at http://www.sqlskills.com/blogs/jonathan/category/xevent-a-day-series/ .

 Extended Events Objects
 The Extended Events framework consists of several different objects. Let’s examine them in detail.

 Packages
 SQL Server combines Extended Events objects into packages . You can think of packages as containers for
metadata information. Each Extended Events object is referenced by a two-part name, which includes
package and object names. Packages do not define a functional boundary for the events. It is completely
normal to use objects from different packages together.

 Different versions of SQL Server have a different number of packages available and expose them
with the sys.dm_xe_packages view. You can examine them with the code shown in Listing 27-1 . The
 Capabilities column is a bitmask that describes the properties of the package. The leftmost bit indicates
if the package is private, and thus if objects from that package are used by SQL Server internally and are
not accessible to users. For example, the SecAudit package is private and is used by SQL Server for audit
functions. This package cannot be referenced in any user-defined Extended Events session.

http://www.sqlskills.com/free-tools/
http://www.sqlskills.com/blogs/jonathan/category/xevent-a-day-series/

CHAPTER 27 ■ EXTENDED EVENTS

521

 Listing 27-1. Examining Extended Events packages

 select
 dxp.guid, dxp.name, dxp.description, dxp.capabilities
 ,dxp.capabilities_desc, os.name as [Module]
 from
 sys.dm_xe_packages dxp join sys.dm_os_loaded_modules os on
 dxp.module_address = os.base_address

 Figure 27-2 shows the output of this query in SQL Server 2016.

 Figure 27-2. Extended Events packages in SQL Server 2016

 Events
 Events correspond to specific points in SQL Server code; for example, completion of a SQL statement,
acquiring and releasing a lock, deadlock conditions, and others.

 Different versions of SQL Server expose a different number of events. Moreover, the number of events
may increase with service pack releases. For example, SQL Server 2008 SP2 exposes 253 events, SQL Server
2012 RTM exposes 617 events, SQL Server 2012 SP1 exposes 625 events, SQL Server 2014 RTM exposes 870
events, and SQL Server 2016 RTM exposes 1,301 events.

 In SQL Server 2012 and above, every SQL Traces event has a corresponding Extended Event. The
opposite, however, is not true. SQL Traces is deprecated in SQL Server 2012, and the new SQL Server
features do not expose troubleshooting capabilities through SQL Traces, using Extended Events instead.

 You can analyze available events with the sys.dm_xe_objects view , as shown in Listing 27-2 . Figure 27-3
shows the partial output of a query from SQL Server 2016.

 Listing 27-2. Examining Extended Events

 select xp.name as [Package], xo.name as [Event], xo.Description
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
 where
 (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages
 (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects
 xo.object_type = 'event'
 order by
 xp.name, xo.name

CHAPTER 27 ■ EXTENDED EVENTS

522

 Each event has a set of associated columns that belong to one of three categories , as follows:

 Read Only columns contain static information about an event, such as the event
GUID, schema version, and other static information.

 Data columns contain run-time event data. For example, sql_statement_
completed events expose various execution statistics- related data columns, such
as the number of I/O operations, CPU time, and other run-time event data.

 Customizable columns allow you to change their values during event session
creation, and they control the behavior of the event. For example, the collect_
statement column of sql_statement_completed events controls if a SQL
statement is collected when an event is fired. It is enabled by default; however,
you can change its value and disable statement collection on busy servers.
Alternatively, the collect_parameterized_plan_handle column is disabled by
default, but it could be enabled if needed.

 You can examine event columns with the sys.dm_xe_object_columns view . Listing 27-3 shows you how
to obtain column information for the sql_statement_completed event.

 Listing 27-3. Examining Extended Events columns

 select
 dxoc.column_id, dxoc.name, dxoc.type_name as [Data Type]
 ,dxoc.column_type as [Column Type], dxoc.column_value as [Value], dxoc.description
 from
 sys.dm_xe_object_columns dxoc
 where
 dxoc.object_name = 'sql_statement_completed'

 The set of available columns changes based on the SQL Server version in use. Figure 27-4 shows the
output of the preceding query in SQL Server 2008, and Figure 27-5 shows it in SQL Server 2012 and above. It
is worth noting that the VERSION column value in the event data is different in those cases.

 Figure 27-3. Extended Events events in SQL Server 2016

CHAPTER 27 ■ EXTENDED EVENTS

523

 Predicates
 Predicates define Boolean conditions for when an event needs to be fired. For example, if you want to collect
information about CPU-intensive queries, you can define a predicate on the cpu_time column of the sql_
statement_completed event, capturing only the statements with CPU time that exceeds some predefined
threshold.

 Even though predicates look very similar to column filters in SQL Traces, there is a subtle difference
between them. SQL Traces evaluates column filters after an event is collected and passed to the trace
controller. In contrast, Extended Events collects the minimally required amount of data to evaluate
predicates and does not execute actions or fire events if the predicates were evaluated as False .

 Predicates can be defined against either the event data columns or global attributes, such as session_
id , database_id , and many others. You can see a list of the available global attributes by using the query
shown in Listing 27-4 . Figure 27-6 shows the partial output of this query in SQL Server 2016.

 Figure 27-4. sql_statement_completed event columns in SQL Server 2008

 Figure 27-5. sql_statement_completed event columns in SQL Server 2012 and above

CHAPTER 27 ■ EXTENDED EVENTS

524

 Listing 27-4. Examining global attributes

 select xp.name as [Package], xo.name as [Predicate], xo.Description
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
 where
 (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages
 (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects
 xo.object_type = 'pred_source'
 order by
 xp.name, xo.name

 Figure 27-6. Global attributes that can be used in predicates

 Figure 27-7. Comparison functions that can be used in predicates

 Predicates can use the basic arithmetic operations and comparison functions provided by the Extended
Events framework. You can examine the list of available functions by using the query shown in Listing 27-5 .
Figure 27-7 shows the partial output of this query in SQL Server 2016.

 Listing 27-5. Examining comparison functions

 select xp.name as [Package], xo.name as [Comparison Function], xo.Description
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
 where
 (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages
 (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects
 xo.object_type = 'pred_compare'
 order by
 xp.name, xo.name

CHAPTER 27 ■ EXTENDED EVENTS

525

 In contrast to Transact SQL, Extended Events supports short-circuit predicate evaluation, similar to
development languages like C# or Java. When you have multiple predicates defined with logical OR and AND
conditions, SQL Server stops the evaluation as soon as the result is definitive. For example, if you have two
predicates using the logical AND operator, and the first predicate is evaluated as False , SQL Server does not
evaluate the second predicate.

 ■ Tip Collecting global attributes data adds slight overhead to predicate evaluation. It is helpful to write
multiple predicates in such a way that the event data columns are evaluated prior to the global attributes, thus
preventing global attribute data collection due to short-circuiting.

 SQL Server maintains the predicate state within an event session. For example, the package0.counter
attribute stores the number of times the predicate was evaluated. You can rely on the predicate state if you
want to create event sessions that sample the data; for example , collecting data for every one hundredth or,
perhaps, the first ten occurrences of the event.

 Actions
 Actions provide you with the ability to collect additional information with the events. Available actions
include session_id , client_app_name , query_plan_hash , and many others. Actions are executed after
predicates are evaluated, and only if an event is going to be fired.

 SQL Server executes actions synchronously in the same thread as the events, which adds overhead to
event collection. The amount of overhead depends on the action. Some of them — for example, session_id
or cpu_id— are relatively lightweight. Others, such as sql_text or callstack , can add significant overhead to
SQL Server when they are collected with frequently fired events. The same applies to execution plan – related
events and actions. They can add considerable overhead to the server.

 ■ Important Even though individual Extended Events are lightweight compared to SQL Traces events, they
can still add considerable overhead to the server when used incorrectly. Do not add unnecessary load to SQL
Server, and collect only those events and actions that are required for troubleshooting.

 You can examine the list of available actions by using the query shown in Listing 27-6 . Figure 27-8
shows the partial output of the query when run in SQL Server 2016.

 Listing 27-6. Examining actions

 select xp.name as [Package], xo.name as [Action], xo.Description
 from sys.dm_xe_packages xp join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
 where
 (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages
 (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects
 xo.object_type = 'action'
 order by
 xp.name, xo.name

CHAPTER 27 ■ EXTENDED EVENTS

526

 Types and Maps
 In the Extended Events framework, data attributes are strongly typed with either types or maps. Types
represent scalar data types, such as integer, character, or GUID. Maps , on the other hand, are enumerators
that convert integer keys into a human-readable representation.

 You can think of wait types as an example of Extended Events maps. The list of available wait types is
pre-defined, and SQL Server can return an integer wait type key with events. The wait_types map allows
you to convert this code into an easy-to-understand wait type definition.

 You can see the list of available types and maps by using the query shown in Listing 27-7 . Figure 27-9
shows the partial output of the query when run in SQL Server 2016.

 Listing 27-7. Examining types and maps

 select xo.object_type as [Object], xo.name, xo.description, xo.type_name, xo.type_size
 from sys.dm_xe_objects xo
 where xo.object_type in ('type','map')

 Figure 27-9. Extended Events types and maps

 Figure 27-8. Extended Events actions

 You can examine the list of map values for a type with the sys.dm_xe_map_values view. Listing 27-8
shows you how to obtain values for the wait_types map. Figure 27-10 shows the partial output of the query.

CHAPTER 27 ■ EXTENDED EVENTS

527

 Listing 27-8. Examining wait_types map

 select name, map_key, map_value
 from sys.dm_xe_map_values
 where name = 'wait_types'
 order by map_key

 Figure 27-10. wait_types map keys values

 Figure 27-11. SQL Server 2012-2016 Extended Events targets

 Targets
 When all event data is collected and the event is fired, it goes to the targets , which allow you to store and
retain raw event data or perform some data analysis and aggregation.

 Similar to packages, some targets are private and cannot be used in an Extended Events session’s
definition. You can examine the list of public targets by using the code shown in Listing 27-9 .

 Listing 27-9. Examining public targets

 select
 xp.name as [Package], xo.name as [Action], xo.Description
 ,xo.capabilities_desc as [Capabilities]
 from
 sys.dm_xe_packages xp join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
 where
 (xp.capabilities is null or xp.capabilities & 1 = 0) and -- exclude private packages
 (xo.capabilities is null or xo.capabilities & 1 = 0) and -- exclude private objects
 xo.object_type = 'target'
 order by
 xp.name, xo.name

 The set of available targets is pretty much the same in different versions of SQL Server. Target names,
however, are different between SQL Server 2008/2008R2 and subsequent versions. Figure 27-11 shows the
list of available targets in SQL Server 2012-2016.

CHAPTER 27 ■ EXTENDED EVENTS

528

 Now, let’s look at targets in greater depth. Some of the most useful are listed here:

 The ring_buffer target stores data in an in-memory ring buffer of a predefined
size. When it is full, new events override the oldest ones in the buffer. Therefore,
events can be consumed indefinitely. However, only the newest events are
retained. This target is most useful when you need to perform troubleshooting
and do not need to retain event data afterward. This is an asynchronous target
(more about this later) and is supported in all versions of SQL Server.

 The asynchronous_file_target (SQL Server 2008/2008R2) and event_file
(SQL Server 2012-2016) targets store events in the file using a proprietary binary
format. These targets are most useful when you want to retain raw event data
collected by a session. These targets are asynchronous.

 The etw_classic_sync_target is a file-based target that writes data in a format
that can be used by ETW-enabled readers. This target is used when you need
to correlate SQL Server events with event-tracing events that are generated by
Windows Kernel and other non-SQL Server components. (These scenarios are
outside of the scope of this book.) This is a synchronous target and is supported
in all versions of SQL Server.

 The synchronous_event_counter (SQL Server 2008/2008R2) and the event_
counter (SQL Server 2012-2016) targets count the number of occurrences of
each event in an event session. This target is useful when you need to analyze
the particular metrics from a workload without introducing the overhead of full
event collection. You can think about counting the number of queries in the
system as an example. These targets are synchronous.

 The synchronous_bucketizer (SQL Server 2008/2008R2), asynchronous_
bucketizer (SQL Server 2008/2008R2), and histogram (SQL Server 2012-2016)
targets allow you to count the number of specific events, grouping the results
based on a specified event data column or action. For example, you can count
the number of queries in the system on a per-database basis. The bucketizer
targets in SQL Server 2008/2008R2 can be either synchronous or asynchronous,
while the histogram target is asynchronous.

 The pair_matching target helps you to troubleshoot situations in which one
of the expected events does not occur for some reason. One such example is
troubleshooting orphaned transactions by looking for database_transaction_
begin events without corresponding database_transaction_end events. The
 pair_matching target discards all matching event pairs, keeping only events that
do not match. This is an asynchronous target and is supported in all versions of
SQL Server.

 Each target has its own set of properties that need to be configured with event sessions. For example,
the ring_buffer target requires you to specify the amount of memory and/or number of events to keep as
well as the maximum number of occurrences of each event type in the buffer. Listing 27-10 shows you how
to examine the configuration parameters of a target, using the event_file target as an example. Figure 27-12
shows the output of this query.

CHAPTER 27 ■ EXTENDED EVENTS

529

 Listing 27-10. Examining target configuration parameters

 select
 oc.column_id, oc.name as [Column], oc.type_name
 ,oc.Description, oc.capabilities_desc as [Capabilities]
 from
 sys.dm_xe_objects xo join sys.dm_xe_object_columns oc on
 xo.package_guid = oc.object_package_guid and
 xo.name = oc.object_name
 where
 xo.object_type = 'target' and
 xo.name = 'event_file'
 order by
 oc.column_id

 Figure 27-12. Event_file target configuration settings

 ■ Note You can read more about targets and their configuration settings at http://technet.microsoft.
com/en-us/library/bb630339.aspx . Remember that configuration settings vary in different versions of SQL
Server.

 You can use multiple event targets in one event session. For example, you can combine the event_file
target with the ring_buffer , using the latter for real-time troubleshooting while retaining events in the file.

 As you have already seen, targets can be either synchronous or asynchronous. SQL Server writes data to
synchronous targets in the execution thread that fires an event. For asynchronous targets, SQL Server buffers
events in the memory , periodically flushing them out to the targets. The EVENT_RETENTION_MODE event
session configuration setting controls what happens with new events when buffers are full, as follows:

 The NO_EVENT_LOSS option indicates that all events must be retained and event
loss is unacceptable. SQL Server execution threads wait until buffers are flushed
and have the free space to accommodate the new events. As you can guess, this
option can introduce a major performance impact on SQL Server. Think about
an event session that collects information about acquired and released locks,
using the event_file target as an example. That event session can collect an
enormous amount of events, and I/O throughput quickly becomes a bottleneck
when the event data is saved.

 The ALLOW_SINGLE_EVENT_LOSS option allows a session to lose a single event
when the buffers are full. This option reduces the performance impact on SQL
Server while minimizing the loss of event data collected.

 The ALLOW_MULTIPLE_EVENT_LOSS option allows a session to lose multiple events
when the buffers are full. This option minimizes the performance impact on SQL
Server at the cost of the potential loss of a large number of events.

http://technet.microsoft.com/en-us/library/bb630339.aspx
http://technet.microsoft.com/en-us/library/bb630339.aspx

CHAPTER 27 ■ EXTENDED EVENTS

530

 Creating Events Sessions
 Now, it is time to bring everything together and look at Extended Events sessions. We will focus on a T-SQL
implementation; however, you can use Management Studio with SQL Server 2012 and above, or Jonathan
Kehayias’ SSMS Add-In with SQL Server 2008 if you prefer to work through the UI.

 Each Extended Events session specifies the events to collect, targets for collected data, and several
configuration properties. Listing 27-11 shows a statement that creates an Extended Events session that
collects information about tempdb spills using the hash_warning and sort_warning events. This code works
in SQL Server 2012 and above, as SQL Server 2008/2008R2 does not support hash_warning or sort_warning
events. However, the syntax of the CREATE EVENT SESSION command is the same in every version of SQL
Server.

 Listing 27-11. Creating an event session

 create event session [TempDB Spills]
 on server
 add event sqlserver.hash_warning
 (
 action (sqlserver.session_id, sqlserver.plan_handle, sqlserver.sql_text)
 where (sqlserver.is_system=0)
),
 add event sqlserver.sort_warning
 (
 action (sqlserver.session_id, sqlserver.plan_handle, sqlserver.sql_text)
 where (sqlserver.is_system=0)
)
 add target package0.event_file
 (set filename='c:\ExtEvents\TempDB_Spiils.xel', max_file_size=25),
 add target package0.ring_buffer
 (set max_memory=4096)
 with -- Extended Events session properties
 (
 max_memory=4096KB
 ,event_retention_mode=allow_single_event_loss
 ,max_dispatch_latency=15 seconds
 ,track_causality=off
 ,memory_partition_mode=none
 ,startup_state=off
);

 As already mentioned, for asynchronous targets, SQL Server stores collected events in a set of memory
 buffers , using multiple buffers to separate the collection and processing of events. The number of buffers
and their size depends on the max_memory and memory_partition_mode settings. SQL Server uses the
following algorithm, rounding the buffer size up to the next 64 KB boundary:

 memory_partition_mode = none : SQL Server uses three central buffers with
the size of max_memory / 3 rounded up to next 64 KB boundary. For example, a
 max_memory of 4000 KB would create three buffers of 1344 KB each, regardless of
the server configuration.

CHAPTER 27 ■ EXTENDED EVENTS

531

 memory_partition_mode = per_node : SQL Server creates a separate set of three
buffers each per NUMA node. For example, on a server with two NUMA nodes,
a max_memory of 4000 KB would create six buffers, three per node, at a size of 704
KB per buffer.

 memory_partition_mode = per_cpu : SQL Server creates the number of buffers
based on this formula, 2.5 * (number of CPUs) , and partitions them on a
per-CPU basis. For example, on a server with 20 CPUs, a max_memory of 4000 KB
would create 50 buffers of 128 KB each.

 Partitioning by NUMA node or CPU allows multiple CPUs to store events in a separate set of buffers, which
helps reduce contentions and, therefore, the performance impact of Extended Events sessions that collect a
very large number of events. There is a caveat, however. An event needs to be able to fit into the buffer in order
to be collected. As you may have noticed, buffer partitioning increases the number of buffers, and this reduces
their size. This is usually not a problem, because most of the events are relatively small. However, it is also
possible to define a very large event that would not fit into the buffer. Make sure that you increase max_memory
when you partition events on a server with a large number of NUMA nodes and/or CPUs.

 ■ Note You can examine the largest_event_dropped_size column of the sys.dm_xe_sessions view to
check if the buffers are big enough to fit the events.

 SQL Server flushes the event session data to asynchronous targets when the buffers are full and/or
based on a time interval specified by the max_dispatch_latency setting, which is 30 seconds by default.

 The startup_state option controls whether an event session should start automatically on SQL Server
startup.

 Finally, the track_causality option allows you to track the sequence of events and see how different
events lead to each other. An example of such a scenario is a SQL statement that triggers a file read event,
which in turn triggers a wait event with PAGELATCHIO wait, and so forth. When this option is enabled, SQL
Server adds a unique activity ID that is a combination of the GUID value, which remains the same for the
task, and the event sequence number.

 After an event session is created , you can start or stop it with the ALTER EVENT SESSION command , or
drop it with the DROP EVENT SESSION command , as shown in Listing 27-12 .

 Listing 27-12. Working with an event session

 -- Starting Event Session
 alter event session [TempDB Spills] on server state=start;
 -- Stopping Event Session
 alter event session [TempDB Spills] on server state=stop;
 -- Dropping Event Session
 drop event session [TempDB Spills] on server;

 Working with Event Data
 Management Studio 2012 and above provides you with a UI to monitor a live stream of event data or to
examine data already collected in the targets. This UI is very convenient and flexible, and it allows you to
customize the layout of a grid that shows events, letting you group and aggregate event data and export it
into the database table , event, or CSV files. You should be careful, however, when connecting to a live stream

CHAPTER 27 ■ EXTENDED EVENTS

532

of events, because event sessions can generate events faster than Management Studio can consume them.
When this happens, Management Studio disconnects from the live stream of data to avoid a negative impact
on server performance.

 In this section, I will not discuss how to work with the Management Studio UI , but rather will focus on
T-SQL implementation. I would encourage you, however, to experiment with Management Studio. Even
though the Extended Events management UI has some limitations, it is more than sufficient in a large
number of cases.

 The key Extended Events data management views that can be used to examine event sessions and data
include the following:

 The sys.dm_xe_sessions view provides information about active event sessions.
It shows the configuration parameters of the sessions as well as execution
statistics, such as the number of dropped events or the amount of time that event
collection contributed to blocking if the NO_EVENT_LOSS option was used.

 The sys.dm_xe_session_targets view returns information about targets.
One of the key columns of the view is event_data . Some targets — for example,
 ring_buffer or histogram— expose collected event data in this column. For
other targets, such as event_file , the event_data column contains metadata
information, such as the file name and session statistics.

 The sys.dm_xe_sessions_object_columns view exposes configuration values for
objects bound to the session. You can use this view to obtain the configuration
properties for the targets; for example, the event file path.

 ■ Note You can find more information about Extended Events DMVs at http://technet.microsoft.com/
en-us/library/bb677293.aspx .

 Now, let’s look at how to access data collected in different targets.

 Working with the ring_buffer Target
 Ring_buffer event data is exposed through the event_data column in the sys.dm_xe_session_targets
view. Listing 27-13 shows how to parse data collected by the TempDB Spill event session, which we defined
in Listing 27-11 .

 Listing 27-13. Examining ring_buffer target data

 ;with TargetData(Data)
 as
 (
 select convert(xml,st.target_data) as Data
 from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on
 s.address = st.event_session_address
 where s.name = 'TempDB Spills' and st.target_name = 'ring_buffer'
)
 ,EventInfo([Event Time],[Event],SPID,[SQL],PlanHandle)
 as
 (

http://technet.microsoft.com/en-us/library/bb677293.aspx
http://technet.microsoft.com/en-us/library/bb677293.aspx

CHAPTER 27 ■ EXTENDED EVENTS

533

 select
 t.e.value('@timestamp','datetime') as [Event Time]
 ,t.e.value('@name','sysname') as [Event]
 ,t.e.value('(action[@name="session_id"]/value)[1]','smallint') as [SPID]
 ,t.e.value('(action[@name="sql_text"]/value)[1]','nvarchar(max)') as [SQL]
 ,t.e.value('xs:hexBinary((action[@name="plan_handle"]/value)[1])'
 ,'varbinary(64)') as [PlanHandle]
 from
 TargetData cross apply
 TargetData.Data.nodes('/RingBufferTarget/event') as t(e)
)
 select
 ei.[Event Time], ei.[Event], ei.SPID, ei.SQL, qp.Query_Plan
 from
 EventInfo ei outer apply
 sys.dm_exec_query_plan(ei.PlanHandle) qp

 If you forced a tempdb spill with the code from Listings 3-6, 3-7, and 3-8 in Chapter 3 , you would see
results similar to what is shown in Figure 27-13 .

 Figure 27-13. Examining ring_buffer target data

 Unfortunately, the sys.dm_xe_session_targets view has a limitation that limits the size of the
 target_data column XML output to 4 MB. This can lead to a situation where some of the events from the
 ring_buffer target are not present in the view. This could happen even when the configured size of the
 ring_buffer is less than 4 MB; events are stored in binary format internally, and XML serialization can
significantly increase the output size, making it larger than 4 MB. It is safer to use file-based targets to avoid
this “missing events” situation.

 Working with event_file and asynchronous_file_target Targets
 The sys.fn_xe_file_target_read_file table-valued function allows you to read the content of the
 asynchronous_file_target and event_file targets.

 Similar to SQL Traces, Extended Events’ file-based targets can generate multiple rollover files. You can
read data from an individual file by specifying the exact file name in the first parameter of the function,
 @path . Alternatively, you can read data from all of the files by using @path with wildcards.

 The SQL Server 2008/2008R2 asynchronous_file_target creates another file type called a metadata
file . You should provide the path to this file as the second parameter of the function, @mdpath . Though
SQL Server 2012-2016 does not use metadata files, this function still has such a parameter for backward-
compatibility reasons. You can use NULL instead.

 Finally, the third and fourth parameters allow you to specify the point at which to start reading. The
third parameter, @initial_file_name , is the first file to read. The fourth parameter, @initial_offset , is
the starting offset in the file. This function skips all of the data from the file up to the offset value. Both the
file name and offsets are included in the result set, which allows you to implement code that reads only the
newly collected data.

http://dx.doi.org/10.1007/978-1-4842-1964-5_3

CHAPTER 27 ■ EXTENDED EVENTS

534

 Listing 27-14 illustrates how you can read data from the event_file target generated by a TempDB
Spills session in SQL Server 2016.

 Listing 27-14. Reading data from the event_file target

 ;with TargetData(Data, File_Name, File_Offset)
 as
 (
 select convert(xml,event_data) as Data, file_name, file_offset
 from sys.fn_xe_file_target_read_file('c:\extevents\TempDB_Spiils*.xel', null, null

 ,null)
)
 ,EventInfo([Event Time], [Event], SPID, [SQL], PlanHandle, File_Name, File_Offset)
 as
 (
 select
 Data.value('/event[1]/@timestamp','datetime') as [Event Time]
 ,Data.value('/event[1]/@name','sysname') as [Event]
 ,Data.value('(/event[1]/action[@name="session_id"]/value)[1]','smallint') as [SPID]
 ,Data.value('(/event[1]/action[@name="sql_text"]/value)[1]','nvarchar(max)')

 as [SQL]
 ,Data.value('xs:hexBinary((/event[1]/action[@name="plan_handle"]/value)[1])'
 ,'varbinary(64)') as [PlanHandle]
 ,File_Name, File_Offset
 from TargetData
)
 select ei.[Event Time], ei.File_Name, ei.File_Offset, ei.[Event], ei.SPID, ei.SQL
 ,qp_Query_Plan
 from EventInfo ei outer apply sys.dm_exec_query_plan(ei.PlanHandle) qp

 For active sessions, you can obtain the path to the target file from the sys.dm_xe_session_object_
columns view . However, this path does not include rollover information, which SQL Server appends to the
file name when it is created. You need to transform it by adding a wildcard to the path. Listing 27-15 shows
how you can do this with SQL Server 2012-2016.

 Listing 27-15. Reading the path to the event_file target file in SQL Server 2012 – 2016

 declare
 @dataFile nvarchar(260)

 -- Get path to event data file
 select
 @dataFile = left(column_value,len(column_value) - charindex('.',reverse(column_value)))

 + '*.' + right(column_value, charindex('.',reverse(column_value))-1)
 from
 sys.dm_xe_session_object_columns oc join sys.dm_xe_sessions s on
 oc.event_session_address = s.address
 where
 s.name = 'TempDB Spills' and
 oc.object_name = 'event_file' and
 oc.column_name = 'filename';

CHAPTER 27 ■ EXTENDED EVENTS

535

 You can use a similar approach to obtain the path to the metadata file in SQL Server 2008/2008R2. The
 metadatafile path, however, could be NULL in the sys.dm_xe_session_object_columns view if you did not
specify it as a parameter of the target, and you will need to use the same file name as that of the event file,
replacing the extension with xem if this is the case.

 Working with event_counter and synchronous_event_counter Targets
 The synchronous_event_counter (SQL Server 2008/2008R2) and event_counter (SQL Server 2012-2016)
targets allow you to count the number of occurrences of specific events. Both targets provide data in a very
simple XML format, which can be accessed through the event_data column in the sys.dm_xe_session_
targets view.

 Listing 27-16 creates an event session that counts the number of reads from and writes to tempdb files;
this will work in SQL Server 2012-2016. This same code will work in SQL Server 2008/2008R2 if you replace
the target name with synchronous_event_counter .

 Listing 27-16. Creating a session that counts number of reads and writes to/from tempdb files

 create event session [FileStats]
 on server
 add event sqlserver.file_read_completed (where(sqlserver.database_id = 2)),
 add event sqlserver.file_write_completed (where(sqlserver.database_id = 2))
 add target package0.event_counter
 with
 (
 event_retention_mode=allow_single_event_loss
 ,max_dispatch_latency=5 seconds
);

 After you start the session , you can examine the data collected with the code shown in Listing 27-17 .
You should change the target name to synchronous_event_counter in the TargetData CTE if you are
working with SQL Server 2008/2008R2.

 Listing 27-17. Examining session data

 ;with TargetData(Data)
 as
 (
 select convert(xml,st.target_data) as Data
 from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on
 s.address = st.event_session_address
 where s.name = 'FileStats' and st.target_name = 'event_counter'
)
 ,EventInfo([Event],[Count])
 as
 (
 select t.e.value('@name','sysname') as [Event], t.e.value('@count','bigint') as [Count]
 from
 TargetData cross apply
 Targ etData.Data.nodes

('/CounterTarget/Packages/Package[@name="sqlserver"]/Event') as t(e)
)
 select [Event], [Count] from EventInfo;

CHAPTER 27 ■ EXTENDED EVENTS

536

 Working with histogram , synchronous_ bucketizer , and
 asynchronous_ bucketizer Targets
 Histogram or bucketizer targets group occurrences of specific event types based on event data. Let’s
consider a scenario where you have a SQL Server instance with a large number of databases, and you want to
find out which databases are not in use. You could analyze the index usage statistics; however, that method
is not bulletproof and can provide incorrect results for rarely used databases if the statistics were unloaded
due to a SQL Server restart, index rebuild, or for other reasons.

 Extended Events can help you in this scenario. There are two simple ways to achieve your goal. You
can analyze the activity against different databases by capturing the sql_statement_starting and rpc_
starting events. Alternatively, you can look at database-level shared (S) locks, which are acquired by any
sessions accessing a database. With either approach, histogram or bucketizer targets allow you to count the
occurrences of these events, grouping them by database_id .

 Let’s look at the second approach and implement an event session that tracks database-level locks. As a
first step, let’s analyze the data columns of the lock_acquired event with the query shown in Listing 27-18 .
Figure 27-14 shows partial results of the query.

 Listing 27-18. Examining lock_acquired event data columns

 select column_id, name, type_name
 from sys.dm_xe_object_columns
 where column_type = 'data' and object_name = 'lock_acquired'

 Figure 27-14. Lock_acquired event data columns

 As you can see, the resource_type and owner_type columns ’ data types are maps. You can examine all
possible values with the queries shown in Listing 27-19 . Figure 27-15 shows partial results of the queries .

 Listing 27-19. Examining lock_resource_type and lock_owner_type maps

 select name, map_key, map_value
 from sys.dm_xe_map_values
 where name = 'lock_resource_type'
 order by map_key;

 select name, map_key, map_value
 from sys.dm_xe_map_values
 where name = 'lock_owner_type'
 order by map_key;

CHAPTER 27 ■ EXTENDED EVENTS

537

 Lock_acquired events with an owner_type of DATABASE and resource_type of SharedXActWorkspace
would fire every time that a session accesses a database. Listing 27-20 creates an event session that captures
these events using SQL Server 2012-2016. This approach works in SQL Server 2008/2008R2 if you change the
target name.

 Listing 27-20. Creating an event session

 create event session DBUsage
 on server
 add event sqlserver.lock_acquired
 (
 where
 database_id > 4 and -- Users DB
 owner_type = 4 and -- SharedXactWorkspace
 resource_type = 2 and -- DB-level lock
 sqlserver.is_system = 0
)
 add target package0.histogram
 (
 set
 slots = 32 -- Based on # of DB
 ,filtering_event_name = 'sqlserver.lock_acquired'
 ,source_type = 0 -- event data column
 ,source = 'database_id' -- grouping column
)
 with
 (
 event_retention_mode=allow_single_event_loss
 ,max_dispatch_latency=30 seconds
);

 Histogram and/or bucketizer targets , have four different parameters, as follows:

 slots indicates the maximum number of different values (groups) to retain. SQL
Server ignores all new values (groups) as soon as that number is reached. You
should be careful and always reserve enough slots to keep information for all
groups that might be present in the data. In our example, you should have a slot
value that exceeds the number of databases in the instance. SQL Server rounds
the provided value to the next power of two in order to improve performance.

 source contains the name of the event column or action that provides data for
grouping.

 Figure 27-15. lock_resource_types and lock_owner_types values

CHAPTER 27 ■ EXTENDED EVENTS

538

 source_type is the type of the object by which you are grouping, and it can
be either 0 or 1, which indicate a grouping by event data column or action,
respectively. The default value is 1, which is action.

 filtering_event_name is an optional value that specifies the event from an
event session that you are using as the data source for grouping. It should be
specified if you group by event data column, and it could be omitted when
grouping by action. In the latter case, grouping can be done based on actions
from multiple events.

 You can access histogram or bucketizer event data through the event_data column in the sys.dm_xe_
session_targets view. Listing 27-21 shows the code that analyzes the results of the DBUsage event , session.

 Listing 27-21. Examining histogram data

 ;with TargetData(Data)
 as
 (
 select convert(xml,st.target_data) as Data
 from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on
 s.address = st.event_session_address
 where s.name = 'DBUsage' and st.target_name = 'histogram'
)
 ,EventInfo([Count],[DBID])
 as
 (
 select t.e.value('@count','int'), t.e.value('((./value)/text())[1]','smallint')
 from
 TargetData cross apply
 TargetData.Data.nodes('/HistogramTarget/Slot') as t(e)
)
 select e.dbid, d.name, e.[Count]
 from sys.databases d left outer join EventInfo e on
 e.DBID = d.database_id
 where d.database_id > 4
 order by e.Count

 Finally, it is worth noting that this approach can result in false positives by counting the locks acquired
by various maintenance tasks, such as CHECKDB , backups, and others, as well as by SQL Server Management
Studio .

 Working with the pair_matching Target
 The pair_matching target maintains information about unmatched events when a begin event does not
have a corresponding end event, dropping out events from the target when they have a match. Think of
orphaned transactions where database_transaction_begin events do not have corresponding database_
transaction_end events, as an example. Another case is a query timeout when the sql_statement_
starting event does not have a corresponding sql_statement_completed event.

 Let’s look at the latter example and create an event session, as shown in Listing 27-22 . The pair_
matching target requires you to specify matching criteria based on the event data column and/or actions.
It is also worth noting that in some cases — for example, with ADO.Net SQL Client library — you also need to
capture rpc_starting and rpc_completed events during troubleshooting.

CHAPTER 27 ■ EXTENDED EVENTS

539

 Listing 27-22. Creating an event session with a pair_matching target

 create event session [Timeouts]
 on server
 add event sqlserver.sql_statement_starting (action (sqlserver.session_id)),
 add event sqlserver.sql_statement_completed (action (sqlserver.session_id))
 add target package0.pair_matching
 (
 set
 begin_event = 'sqlserver.sql_statement_starting'
 ,begin_matching_columns = 'statement'
 ,begin_matching_actions = 'sqlserver.session_id'
 ,end_event = 'sqlserver.sql_statement_completed'
 ,end_matching_columns = 'statement'
 ,end_matching_actions = 'sqlserver.session_id'
 ,respond_to_memory_pressure = 0
)
 with
 (
 max_dispatch_latency=10 seconds
 ,track_causality=on
);

 You can examine pair_matching data through the event_data column in the sys.dm_xe_session_
targets view. Listing 27-23 illustrates such an approach.

 Listing 27-23. Examining pair_matching target data

 ;with TargetData(Data)
 as
 (
 select convert(xml,st.target_data) as Data
 from sys.dm_xe_sessions s join sys.dm_xe_session_targets st on
 s.address = st.event_session_address
 where s.name = 'Timeouts' and st.target_name = 'pair_matching'
)
 select
 t.e.value('@timestamp','datetime') as [Event Time]
 ,t.e.value('@name','sysname') as [Event]
 ,t.e.value('(action[@name="session_id"]/value/text())[1]','smallint') as [SPID]
 ,t.e.value('(data[@name="statement"]/value/text())[1]','nvarchar(max)') as [SQL]
 from
 TargetData cross apply TargetData.Data.nodes('/PairingTarget/event') as t(e)

 System_health and AlwaysOn_Health Sessions
 One of the great features of the Extended Events framework is the system_health event session, which is
created and is running on every SQL Server installation by default. This session captures various types of
information about the status and resource usage of SQL Server components, high severity and internal
errors, excessive waits for resources or locks, and quite a few other events. The session uses ring_buffer and
 event_file targets to store the data.

CHAPTER 27 ■ EXTENDED EVENTS

540

 The system_health session is started on SQL Server startup by default. It gives you an idea of what
recently happened in a SQL Server instance as you begin troubleshooting. Moreover, recent critical events
have already been collected without requiring you to set up any monitoring routines.

 One such example is deadlock troubleshooting . The system_health session collects the xml_deadlock_
report event. Therefore, when customers complain about deadlocks, you can analyze already-collected data
without waiting for the next deadlock to occur.

 The Enterprise Edition of SQL Server 2012-2016 and Standard Edition of SQL Server 2016 introduced
another default Extended Events session called AlwaysOn_health . As you can guess by the name, this session
collects information about AlwaysOn Availability Groups – related events, such as errors and failovers. This
session is enabled only when SQL Server participates in an AlwaysOn Availability Group.

 Finally, SQL Server 2016 has another event session called telemetry_xevents that collect various
telemetry data, storing it in a ring_buffer target. The majority of the information belongs to the new SQL
Server 2016 features, such as row-level security, stretch databases, and temporal tables; however, some
of the information is related to regular operations, such as database creation, missing statistics and join
predicates, and others.

 You can examine events collected by system_health , AlwaysOn_health , and telemetry_xevents
sessions by scripting them in SQL Server Management Studio. You can even modify session definitions if
needed. Be careful, however, because those changes can be overwritten during SQL Server upgrades or
service pack installations.

 Using Extended Events
 Let’s look at a couple of practical examples of how you can use Extended Events during troubleshooting.

 Detecting Expensive Queries
 You can detect expensive queries in the system by capturing sql_statement_completed and rpc_completed
events that have execution metrics that exceed some thresholds. This approach allows you to capture
queries that do not have an execution plan cached and that are not exposed by the sys.dm_exec_query_
stats view. However, you will need to perform additional work aggregating and analyzing the collected data
afterward when choosing what queries need to be optimized.

 It is very important to find the right threshold values that define expensive queries in your system. Even
though you do not want to capture an excessive amount of information, it is important to collect the right
information. Optimization of relatively inexpensive, but very frequently executed, queries can provide much
better results when compared to the optimization of expensive but rarely executed queries. Analysis of the
 sys.dm_exec_query_stats view data can help you detect some of those queries, and it should be used in
parallel with Extended Events.

 Listing 27-24 shows an event session that captures queries that use more than five seconds of CPU time
or that issued more than 10,000 logical reads or writes. Obviously, you need to fine-tune filters based on your
system workload, avoiding the collection of excessive amounts of data.

 Listing 27-24. Capturing expensive queries

 create event session [Expensive Queries]
 on server
 add event sqlserver.sql_statement_completed
 (
 action (sqlserver.plan_handle)
 where
 (

CHAPTER 27 ■ EXTENDED EVENTS

541

 (
 cpu_time >= 5000000 or -- Time in microseconds
 logical_reads >= 10000 or writes >= 10000
) and sqlserver.is_system = 0
)
),
 add event sqlserver.rpc_completed
 (
 where
 (
 (
 cpu_time >= 5000000 or -- Time in microseconds
 logical_reads >= 10000 or writes >= 10000
) and sqlserver.is_system = 0
)
)
 add target package0.event_file
 (set filename = 'c:\ExtEvents\Expensive Queries.xel')
 with
 (event_retention_mode=allow_single_event_loss);

 Listing 27-25 shows the query that extracts the data from the event_file target.

 Listing 27-25. Extracting expensive queries information

 ;with TargetData(Data, File_Name, File_Offset)
 as
 (
 select convert(xml,event_data) as Data, file_name, file_offset
 from sys.fn_xe_file_target_read_file('c:\extevents\Expensive*.xel',null, null, null)
)
 ,EventInfo([Event], [Event Time], [CPU Time], [Duration], [Logical Reads], [Physical Reads]
 ,[Writes], [Rows], [Statement], [PlanHandle], File_Name, File_Offset)
 as
 (
 select
 Data.value('/event[1]/@name','sysname') as [Event]
 ,Data.value('/event[1]/@timestamp','datetime') as [Event Time]
 ,Data.value('((/event[1]/data[@name="cpu_time"]/value/text())[1])','bigint')

 as [CPU Time]
 ,Data.value('((/event[1]/data[@name="duration"]/value/text())[1])','bigint')

 as [Duration]
 ,Data.value('((/event[1]/data[@name="logical_reads"]/value/text())[1])'
 ,'int') as [Logical Reads]
 ,Data.value('((/event[1]/data[@name="physical_reads"]/value/text())[1])'
 ,'int') as [Physical Reads]
 ,Data.value('((/event[1]/data[@name="writes"]/value/text())[1])','int') as [Writes]
 ,Data.value('((/event[1]/data[@name="row_count"]/value/text())[1])','int') as [Rows]
 ,Data.value('((/event[1]/data[@name="statement"]/value/text())[1])','nvarchar(max)')

 as [Statement]

CHAPTER 27 ■ EXTENDED EVENTS

542

 ,Data.value('xs:hexBinary(((/event[1]/action[@name="plan_handle"]/value/text())[1]))'
 ,'varbinary(64)') as [PlanHandle]
 ,File_Name, File_Offset
 from TargetData
)
 select
 ei.[Event], ei.[Event Time]
 ,ei.[CPU Time] / 1000 as [CPU Time (ms)]
 ,ei.[Duration] / 1000 as [Duration (ms)]
 ,ei.[Logical Reads], ei.[Physical Reads], ei.[Writes], ei.[Rows], ei.[Statement]
 ,ei.[PlanHandle], ei.File_Name, ei.File_Offset, qp.Query_Plan
 from EventInfo ei outer apply sys.dm_exec_query_plan(ei.PlanHandle) qp

 Further steps depend on your objectives. In some cases, you can see the obvious optimization targets
when you analyze raw event data. In other situations, you will need to perform additional analysis and look
at the frequency of executions, aggregating data based on query_hash or query_plan_hash actions data.

 You may also consider creating a process that runs based on a schedule, extracting newly collected data
and persisting it in a table. This approach increases the chances of capturing query plans if they are still in
the plan cache. You can use ring_buffer rather than event_file as the target in such an implementation.

 Monitoring Page Split Events
 Extended Events can help you to address problems that were hard and sometimes even impossible to
troubleshoot with other methods. One such example is the monitoring of page split events, which allows you
to identify indexes that suffer from page splits and fragmentation.

 Capturing actual page splits is a tricky process. Even though SQL Server 2012 exposes the page_split
event, it does not differentiate between page splits that occur during new page allocations in ever-
increasing indexes and regular page splits. Fortunately, you can use the LOP_DELETE_SPLIT operation of the
 transaction_log event instead. This operation marks the deletion of the rows on the original page at the
time of the split event.

 Listing 27-26 shows the code that creates the Extended Events session that captures page split information
in one of the databases. The session uses the histogram target, counting events on a per-index bases.

 Listing 27-26. Capturing page-split events

 create event session PageSplits_Tracking
 on server
 add event sqlserver.transaction_log
 (
 where operation = 11 -- lop_delete_split
 and database_id = 17
)
 add target package0.histogram
 (
 set
 filtering_event_name = 'sqlserver.transaction_log',
 source_type = 0, -- event column
 source = 'alloc_unit_id'
)

 The code in Listing 27-27 shows how to extract the data from the target.

CHAPTER 27 ■ EXTENDED EVENTS

543

 Listing 27-27. Analyzing page-split information

 ;with Data(alloc_unit_id, splits)
 as
 (
 sel ect c.n.value('(value)[1]', 'bigint') as alloc_unit_id, c.n.value('(@count)[1]'

,'bigint') as splits
 from
 (
 select convert(xml,target_data) target_data
 from sys.dm_xe_sessions s with (nolock) join sys.dm_xe_session_targets t on
 s.address = t.event_session_address
 where s.name = 'PageSplits_Tracking' and t.target_name = 'histogram'
) as d cross apply
 target_data.nodes('HistogramTarget/Slot') as c(n)
)
 select
 s.name + '.' + o.name as [Table], i.index_id, i.name as [Index]
 ,d.Splits, i.fill_factor as [Fill Factor]
 from
 Data d join sys.allocation_units au with (nolock) on
 d.alloc_unit_id = au.allocation_unit_id
 join sys.partitions p with (nolock) on
 au.container_id = p.partition_id
 join sys.indexes i with (nolock) on
 p.object_id = i.object_id and p.index_id = i.index_id
 join sys.objects o with (nolock) on
 i.object_id = o.object_id
 join sys.schemas s on
 o.schema_id = s.schema_id

 You can also use this technique during index FILLFACTOR tuning when analyzing how different values
affect page splits in real time.

 Extended Events in Azure SQL Databases
 Extended Events are also supported in Microsoft Azure SQL Databases v12. Even though the list of exposed
events is relatively small, it supports the events that are helpful during the troubleshooting of common
performance problems, such as detecting inefficient queries, blocking issues, tempdb spills, excessive
memory grants, and a few others.

 At the time when this book was written, SQL Azure supported three event targets: such as ring_buffer ,
 event_counter , and event_file . You can analyze the list of supported Extended Events objects by querying
the catalog views using the queries from this chapter.

 You can create Extended Events sessions in SQL Databases and query targets, as with the regular SQL
Server. There are a couple of minor differences in the syntax, however. First, you have to use the CREATE
EVENT SESSION ON DATABASE rather than the ON SERVER clause. SQL Databases scope events to the database
rather than to the server level. The naming convention for database management views is also different. You
should add _database to the name; for example, use the sys.dm_xe_database_sessions view instead of the
 sys.dm_xe_sessions view.

CHAPTER 27 ■ EXTENDED EVENTS

544

 ■ Note You can read about Extended Events support in Azure SQL Databases at https://azure.
microsoft.com/en-us/documentation/articles/sql-database-xevent-db-diff-from-svr/

 Summary
 Extended Events is a lightweight and highly scalable monitoring and debugging infrastructure that will
replace SQL Traces in future versions of SQL Server. It addresses the usability limitations of SQL Traces,
and it places less overhead on SQL Server by collecting only the information required and by performing
predicate analysis at a very early stage of event execution.

 SQL Server exposes new Extended Events with every new release. Starting with SQL Server 2012, all SQL
Traces events have corresponding Extended Events. Moreover, new SQL Server features do not provide any
SQL Traces support, relying on Extended Events instead.

 Extended Events provides data in XML format. Every event type has its own schema, which includes
specific data columns for that event type. You can add additional information to event data with a global set
of available actions, and you can apply predicates to event data, filtering out events that you do not need.

 Event data can be stored in multiple in-memory and on-disk targets, which allows you to collect raw
event data or perform some analysis and aggregation, such as counting and grouping events or tracking an
unmatched pair of events.

 The system_health event session provides information about general SQL Server component health,
resource usage, and high severity errors. This session is created and is running by default on every instance
of SQL Server. One of the collected events is xml_deadlock_report , which allows you to obtain a deadlock
graph for recent deadlocks without needing to set up a SQL Traces event or a T1222 trace flag.

 Extended Events is a great technology that allows you to troubleshoot very complex scenarios that are
impossible to troubleshoot using other methods. Even though the learning curve is steep, it is very beneficial
to learn and use Extended Events.

https://azure.microsoft.com/en-us/documentation/articles/sql-database-xevent-db-diff-from-svr/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-xevent-db-diff-from-svr/

545© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_28

 CHAPTER 28

 System Troubleshooting

 Things do not always work as expected. System performance can degrade over time when the amount
of data and load increases, or sometimes a server can become unresponsive and stop accepting any
connections at all. In either case, you need to find and fix such problems quickly while working under
pressure and stress.

 In this chapter, we will talk about the SQL Server execution model and discuss system troubleshooting
based on wait statistics analysis. I will show you how to detect common issues frequently encountered in
systems.

 Looking at the Big Picture
 Even though this chapter focuses on the troubleshooting of database-related issues, you need to remember
that databases and SQL Server never live in a vacuum. There are always customers who use client
applications. Those applications work with single or multiple databases from one or more instances of SQL
Server. SQL Server, in turn, runs on physical or virtual hardware, with data stored on disks often shared with
other customers and database systems. Finally, all system components use the network for communication
and network-based storage access.

 From the customers’ standpoint, most problems present themselves as general performance issues.
Client applications feel slow and unresponsive, queries time out, and, in some cases, applications cannot
even connect to the database. Nevertheless, the root cause of the problem could be anywhere. Hardware
could be malfunctioning or incorrectly configured; the database might have inefficient schemas, indexing, or
code; SQL Server could be overloaded; or client applications could have bugs or design issues.

 ■ Important You should always look at all of the components of a system during troubleshooting to identify
the root cause of the problem.

 The performance of a system depends on its slowest component. For example, if SQL Server uses SAN
storage, you should look at the performance of both the storage subsystem and the network. If network
throughput is not sufficient to transmit data, improving SAN performance wouldn’t help much. You could
achieve better results by optimizing network throughput or by reducing the amount of network traffic with
extra indexes or database schema changes.

 Another example is client-side data processing when a large amount of data needs to be transmitted
to client applications. While you could improve application performance by upgrading the network, you
could obtain much better results by moving the data processing to SQL and/or application servers, thereby
reducing the amount of data travelling over the wire.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

546

 In this chapter, we will focus on troubleshooting the database portion of the system. However, I
would still like to mention the various components and configuration settings that you should analyze
during the initial stage of performance troubleshooting. Do not consider this list to be a comprehensive
guide on hardware and software configuration. Be sure to do further research using Microsoft MSDN
documentation, white papers, and other resources, especially when you need to deploy, configure, or
troubleshoot complex infrastructures.

 Hardware and Network
 As a first step in troubleshooting, it is beneficial to look at the SQL Server hardware and network
configuration. There are several aspects of this involved. First, it makes sense to analyze if the server is
powerful enough to handle the load. Obviously, this is a very subjective question that often cannot be
answered based solely on the server specifications. However, in some cases you will see that the hardware is
clearly underpowered.

 One example of when this happens is with systems developed by independent software vendors (ISV)
and deployed in an Enterprise environment. Such deployments usually happen in stages. Decision makers
evaluate system functionality under a light load during the trial/pilot phase. It is entirely possible that the
database has been placed into second-grade hardware or an underprovisioned virtual machine during trials
and stayed there even after full deployment.

 SQL Server is a very I/O-intensive application, and a slow or misconfigured I/O subsystem often
becomes a performance bottleneck. One very important setting that is often overlooked is partition
alignment. Old versions of Windows created partitions right after 63 hidden sectors on a disk, which striped
the disk allocation unit across multiple stripe units in RAID arrays. With such configurations, a single I/O
request to a disk controller leads to multiple I/O operations in order to access data from the different RAID
stripes.

 Fortunately, partitions created in Windows Server 2008 and above are aligned by default. However,
Windows does not realign existing partitions created in older versions of Windows when you upgrade
operating systems or attach disks to servers. It is possible to achieve a 20 to 40 percent I/O performance
improvement by fixing an incorrect partition alignment without making any other changes to the system.

 Windows allocation unit size also comes into play. Most SQL Server instances would benefit from 64 KB
units; however, you should take the RAID stripe size into account. Use the RAID stripe size recommended by
the manufacturer; however, make sure that the Windows allocation unit resides on a single RAID stripe. For
example, a 1 MB RAID stripe size works fine with 64 KB Windows allocation units, hosting 16 allocation units
per stripe when disk partitions are aligned.

 ■ Tip You can read more about partition alignments at http://technet.microsoft.com/en-us/library/
dd758814.aspx .

 Finally, you need to analyze network throughput. Network performance depends on the slowest link
in the topology. For example, if one of the network switches in the path between SQL Server and a SAN has
two-gigabit uplink, the network throughput would be limited to two gigabits, even when all other network
components in the topology are faster than that. This is especially important in cases of network-based
storage, when every physical I/O operation utilizes the network and, as a general rule, you would like to
have network throughput be faster than disk performance. Moreover, always remember to factor in the
distance information travels over a network. Accessing remote data adds extra latency and slows down
communication.

http://technet.microsoft.com/en-us/library/dd758814.aspx
http://technet.microsoft.com/en-us/library/dd758814.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

547

 Operating System Configuration
 You should look at the operating system configuration as the next step. It is especially important in the case
of a 32-bit OS where the amount of user memory available to processes is limited. It is crucial that you check
that 32-bit version of SQL Server can use extended memory, that the “Use AWE Memory” setting is enabled,
and that the SQL Server startup account has Lock Pages in Memory permission. Nevertheless, the 32-bit
version of SQL Server can use extended memory for the buffer pool only. This limits the amount of memory
that can be utilized by other components, such as the plan cache and lock manager. It is always beneficial
to upgrade to a 64-bit version of SQL Server, especially because Microsoft dropped support of the 32-bit
SQL Server version starting with SQL Server 2016.

 You should check which software is installed and which processes are running on the server. Non-
essential processes use memory and contribute to server CPU load. Think about antivirus software, as an
example. It is better to protect the server from viruses by restricting user access and revoking administrator
permissions than to have antivirus software constantly running on the server. If company policy requires
that you have antivirus up and running, make sure that the system and user databases are excluded from
the scan. You should also exclude the folders with FILESTREAM and FILETABLES data from the scan if you use
those technologies in the system.

 Using development and troubleshooting tools locally on the server is another commonly encountered
mistake. Developers and database administrators often run Management Studio, SQL Profiler, and other
tools on a server during deployment and troubleshooting. These tools reduce the amount of memory
available to SQL Server and contribute to unnecessary load. It is always better to access SQL Server remotely
whenever possible.

 Also, check if SQL Server is virtualized. Virtualization helps reduce IT costs, improves the availability
of the system, and simplifies management. However, virtualization adds another layer of complexity during
performance troubleshooting. Work with system administrators or use third-party tools to make sure that
the host is not overloaded, even when performance metrics in a guest virtual machine appear normal.

 Another common problem related to virtualization is resource overallocation. As an example, it is
possible to configure a host in such a way that the total amount of memory allocated for all guest virtual
machines exceeds the amount of physical memory installed on the host. That configuration leads to artificial
memory pressure and introduces performance issues for a virtualized SQL Server. Again, you should work
with system administrators to address such situations.

 SQL Server Configuration
 It is typical to have multiple databases hosted on a SQL Server instance. Database consolidation helps
lower IT costs by reducing the number of servers that you must license and maintain. All those databases,
however, use the same pool of SQL Server resources, contribute to its load, and affect each other. Heavy SQL
Server workload from one system can negatively impact the performance of other systems.

 You can analyze such conditions by examining resource-intensive and frequently executed queries on
the server scope. If you detect a large number of such queries coming from different databases, you may
consider optimizing all of them or to separate the databases onto different servers. We will discuss how to
detect such queries later in this chapter.

 You should also check if multiple SQL Server instances are running on the same server and how they
affect the performance of each other. This condition is a bit trickier to detect and requires you to analyze
various performance counters and DMOs from multiple instances. One of the most common problems
in this situation happens when multiple SQL Server instances compete for memory, introducing memory
pressure on each other. It might be beneficial to set and fine-tune the minimum and maximum memory
settings for each instance based on requirements and load.

 It is also worth noting that various Microsoft and third-party products often install separate SQL Server
instances without your knowledge. Always check to see if this is the case on non-dedicated servers.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

548

 Finally, check the tempdb configuration and make sure that it is optimal, as we have already discussed in
Chapter 13 , “Temporary Objects and TempDb.”

 DATABASE CONSOLIDATION

 It is impossible to avoid a discussion of the database consolidation process when we talk about SQL
Server installations hosting multiple databases. Even though it is not directly related to the topic of this
chapter, I would like to review several aspects of the database consolidation process here.

 There is no universal consolidation strategy that can be used with every project. You should analyze the
amount of data, load, hardware configuration, and business and security requirements when making
this decision. However, as a general rule, you should avoid consolidating OLTP and data warehouse/
reporting databases onto the same server when they are working under a heavy load. Data warehouse
queries usually process large amounts of data, which leads to heavy I/O activity and flushes the content
of the buffer pool. Taken together, this negatively affects the performance of other systems.

 Listing 28-1 shows you how to get information about buffer pool usage on a per-database basis.
Similarly, you can get information about I/O activity for each database file with the sys.dm_io_virtual_
file_stats function. We will discuss this function in greater detail later in this chapter.

 Listing 28-1. Buffer-pool usage on a per-database basis

 select database_id as [DB ID], db_name(database_id) as [DB Name]
 ,convert(decimal(11,3),count(*) * 8 / 1024.0) as [Buffer Pool Size (MB)]
 from sys.dm_os_buffer_descriptors with (nolock)
 group by database_id
 order by [Buffer Pool Size (MB)] desc;

 You should also analyze the security requirements when consolidating databases. Some security
features, such as Audit, work on the server scope and add performance overhead for all of the
databases on the server. Transparent Data Encryption (TDE) is another example. Even though it is a
database-level feature, SQL Server encrypts tempdb when either of the databases has TDE enabled,
which also introduces performance overhead for other systems.

 As a general rule, you should avoid consolidating databases with different security requirements on the
same instance of SQL Server. Using multiple instances of SQL Server, perhaps virtualizing them, is a
better choice, even when such instances or virtual machines run on the same server/host.

 Database Options
 Every production database should have the Auto Shrink option disabled. As we have already discussed, Auto
Shrink periodically triggers the database shrink process, which introduces unnecessary I/O load and heavy
index fragmentation. Moreover, this operation is practically useless, because further data modifications and
index maintenance make database files grow yet again.

 The Auto Close option forces SQL Server to remove any database-related objects from memory when
the database does not have any connected users. As you can guess, it leads to extra physical I/O and query
compilations as users reconnect to the database afterward. With the rare exception of very infrequently
accessed databases, the Auto Close setting should be disabled.

http://dx.doi.org/10.1007/978-1-4842-1964-5_13

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

549

 It is better to have multiple data files in filegroups with volatile data. This helps avoid allocation map
contention, similar to what happens in the case of tempdb . We will discuss the symptoms of such contention
later in this chapter.

 MY FIVE-MINUTE CONFIGURATION CHECKLIST

 There are several items that I usually check during the initial system analysis stage. These allow me to
quickly locate some of the SQL Server and database configuration issues.

 OS Version and Edition. The big red flags are the use of old (Windows Server
2003/2008) and/or 32-bit editions of the OS.

 SQL Server Version and Edition. As with the OS, I’d check if the system is using
64-bit SQL Server. I would also validate service pack and CU level. I do not advocate
upgrading to the latest CU immediately; however, it is important to find out if the
system is running on a supported version of the product/service pack and what the
known issues are of that build.

 Is Instant File Initialization enabled? It needs to be enabled in most systems.

 What trace flags are in use? In a majority of the systems prior to SQL Server 2016,
I would enable T1118 (disabling mixed extent allocation) and T2371 (make statistics
update threshold dynamic). I would also suggest you enable T4199 (enable Query
Optimizer hotfixes), even though it could require regression testing and system
monitoring. As you will remember, in SQL Server 2016, T2371 and T4199 are not
required for databases with a compatibility level of 130. Another useful trace flag is
 T3226 , which prevents SQL Server from storing successful backup information in the
log, ballooning its size.

 SQL Server memory configuration . More on this later.

 Is the Optimize for ad-hoc workload setting enabled? It needs to be enabled in most
systems.

 High-level configuration of the disk subsystem, which includes raid level, stripe size,
and partition alignment. In reality, in the majority of cases, I analyze this configuration
at the same time as I look at I/O subsystem latency, throughput, and redundancy. It is
also impossible to avoid a discussion about data and log files placement. As you know,
separation of data and log files to different disk arrays is good practice, and it provides
better data recoverability in the event of a disaster. However, you should also consider
I/O system performance and throughput. In some cases, when the storage subsystem
does not have enough spindles, you can get better performance by placing all files onto
a single drive rather than spreading spindles across multiple drives. Nevertheless, you
need to consider the increased risk of data loss with this approach.

 Number of tempdb data files , and data/log files’ auto-growth parameters.

 User database options. It includes Auto Shrink and Auto Close, which both should be
disabled, and Page Verify , which should be set to CHECKSUM . I’d look at statistics
update parameters, correlating them with the statistics maintenance plan in the future.
I also check if the Allow Snapshot Isolation option is enabled. The key is avoiding

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

550

unnecessary tempdb overhead by enabling and not using it. Obviously, the database
recovery model also needs to be analyzed at the time of Disaster Recovery strategy
analysis.

 Database files’ auto-growth parameters and number of VLFs (virtual log files) in the
transaction log. Data files in the same filegroup should have the same initial sizes
and auto-growth parameters specified in MB rather than percentage. The number of
VLFs should be manageable, which we will discuss in Chapter 30 , “Transaction Log
Internals.” In some cases, I would consider enabling trace flag T1117 to guarantee
that all files in the filegroup would auto-grow at same time. In SQL Server 2016, this
behavior is controlled by the AUTOGROW_ALL_FILES filegroup setting rather than by the
trace flag.

 This list is just the starting point of analysis and does not cover anything beyond basic configuration
issues, nor does it provide you with any information about bottlenecks and system health. Nevertheless,
it is useful as an initial stage of system troubleshooting.

 Resource Governor Overview
 The Enterprise Edition of SQL Server comes with another useful feature called Resource Governor . It allows
you to separate different workload patterns and sessions into separate workload groups . The classification
is done through a user-defined function called a classifier function , which SQL Server calls at the login stage.
The classifier function performs classification based on user-defined criteria; for example, login, host, or
application name.

 Workload groups allow you to specify several parameters, such as MAXDOP , maximum number of
concurrent requests to execute, percentage of the workspace memory available for query memory grant
(more on this later), and a couple of others. Moreover, each workload group is associated with the resource
pool , which allows you to customize or throttle resource usage for associated workgroups.

 SQL Server documentation refers to resource pools as the virtual SQL Server instances inside the main
one. I do not think it is accurate though. Resource pools do not provide enough isolation from each other;
they, however, do allow you to configure some parameters, such as setting affinity, limiting CPU bandwidth,
and controlling workspace memory for memory grants. In SQL Server 2014 and 2016, you can also control
disk throughput. Resource Governor, however, does not allow you to control buffer pool usage; it is
shared across all pools.

 There are two system workload groups and resource pools: internal and default . As you can guess by
the names, the first one handles internal workload. The second one is responsible for all non-classified
 workload . In reality, you can change the parameters of the default workload group—for example, reducing
the size of the maximum memory grant — without creating other user-defined workload groups and pools.

 Figure 28-1 illustrates an example of Resource Governor configuration. It represents a scenario that
separates customer-facing OLTP and internal reporting activity, thus preventing a situation where reporting
queries saturate disk throughput and CPU. Another common example is creating a separate workload and
resource pool for maintenance activity, thereby mitigating the impact of index maintenance or database
consistency checks by limiting disk throughput for those operations.

http://dx.doi.org/10.1007/978-1-4842-1964-5_30

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

551

 Resource Governor configuration is a complex topic that is outside of the scope of this book. You can
read more about it at http://msdn.microsoft.com/en-us/library/bb933866.aspx .

 SQL Server Execution Model
 From a high level, the architecture of SQL Server includes five different components , as shown in
Figure 28-2 .

 Figure 28-1. Example of Resource Governor configuration

 Figure 28-2. High-level SQL Server architecture

 The Protocol layer handles communications between SQL Server and client applications. The data
is transmitted in an internal format called Tabular Data Stream (TDS) using one of the standard network
communication protocols, such as TCP/IP or Named Pipes. Another communication protocol, called shared
memory , can be used when both SQL Server and the client application run locally on the same server. The
shared memory protocol does not utilize the network and is more efficient than the others.

 Different editions of SQL Server have different protocols enabled after installation. For example,
the SQL Server Express Edition has all network protocols disabled by default, and it would not be able to
serve network requests until you enable them. You can enable and disable protocols in the SQL Server
Configuration Manager utility.

http://msdn.microsoft.com/en-us/library/bb933866.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

552

 The Query Processor layer is responsible for query optimization and execution. We have already
discussed various aspects of its behavior in previous chapters.

 The Storage Engine consists of components related to data access and data management in SQL Server.
It works with the data on disk, handles transactions and concurrency, manages the transaction log, and
performs several other functions.

 SQL Server includes a set of Utilities that are responsible for backup and restore operations, bulk
loading of data, full-text index management, and several other actions.

 Finally, the vital component of SQL Server is the SQL Server Operating System (SQLOS) . SQLOS is the
layer between SQL Server and Windows, and it is responsible for scheduling and resource management,
synchronization, exception handling, deadlock detection, CLR hosting, and more. For example, when any
SQL Server component needs to allocate memory, it does not call the Windows API function directly, but
rather requests memory from SQLOS, which in turn uses the memory allocator component to fulfill the
request.

 ■ Note The Enterprise Edition of SQL Server 2014-2016 includes another major component called
 In-Memory OLTP Engine . We will discuss this component in more detail in Part VIII, “In-Memory OLTP.”

 SQLOS was initially introduced in SQL Server 7.0 to improve the efficiency of scheduling in SQL Server
and to minimize context and kernel mode switching. The major difference between Windows and SQLOS
is the scheduling model. Windows is a general-purpose operating system that uses preemptive scheduling.
It controls what processes are currently running, suspending and resuming them as needed. Alternatively,
with the exception of CLR code , SQLOS uses cooperative scheduling, where processes yield voluntarily on a
regular basis.

 SQLOS creates a set of schedulers when it starts. The number of schedulers is equal to the number of
logical CPUs in the system, plus one extra scheduler for the Dedicated Admin Connection, which we will
discuss later in this chapter. For example, if a server has two quad-core CPUs with hyper-threading enabled,
SQL Server creates 17 schedulers. Each scheduler can be in either an ONLINE or OFFLINE stage based on
the process affinity settings and core-based licensing model.

 Even though the number of schedulers matches the number of CPUs in the system, there is no strict
one-to-one relationship between them unless the process affinity is set. In some cases, and under heavy
load, it is possible to have more than one scheduler running on the same CPU. Alternatively, when process
affinity is set, schedulers are bound to CPUs in a strict one-to-one relationship.

 Each scheduler is responsible for managing working threads called workers . The maximum number
of workers in a system is specified by the Max Worker Thread configuration option . The default value of
 zero indicates that SQL Server calculates the maximum number of worker threads based on the number of
schedulers in the system. In a majority of cases, you do not need to change this default value.

 Each time there is a task to execute, it is assigned to a worker in an idle state. When there are no idle
workers, the scheduler creates a new one. It also destroys idle workers after 15 minutes of inactivity or in
case of memory pressure. It is also worth noting that each worker would use 512 KB of RAM in 32-bit and
2 MB of RAM in 64-bit SQL Server for the thread stack.

 Workers do not move between schedulers. Moreover, a task is never moved between workers. SQLOS,
however, can create child tasks and assign them to different workers; for example, in the case of parallel
execution plans.

 Each task can be in one of six different states:

 Pending : Task is waiting for an available worker.

 Done : Task is completed.

 Running : Task is currently executing on the scheduler.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

553

 Runnable : Task is waiting for the scheduler to be executed.

 Suspended : Task is waiting for external event or resource.

 Spinloop : Task is processing a spinlock. We will discuss spinlocks later in this
chapter.

 Each scheduler has at most one task in a running state. In addition, it has two different queues—one
for runnable tasks and one for suspended tasks. When the running task needs some resources—a data
page from a disk, for example—it submits an I/O request and changes its state to suspended . It stays in
the suspended queue until the request is fulfilled and the page is read. After that, the task is moved to the
 runnable queue, where it is ready to resume execution.

 A grocery store is, perhaps, the closest real-life analogy to the SQL Server execution model. Think of
cashiers as representing schedulers. Customers in checkout lines are similar to tasks in the runnable queue.
A customer who is currently checking out is similar to a task in the running state.

 If an item is missing a UPC code , a cashier sends a store worker to do a price check. The cashier
suspends the checkout process for the current customer, asking her or him to step aside (to the suspended
queue). When the worker comes back with the price information, the customer who had stepped aside
moves to the end of the checkout line (end of the runnable queue).

 It is worth mentioning that the SQL Server process is much more efficient than real life, where others
wait patiently in line during a price check. However, a customer who is forced to move to the end of the
runnable queue would probably disagree with such a conclusion.

 Figure 28-3 illustrates the typical task life cycle of the SQL Server execution model. The total task
execution time can be calculated as a summary of the time the task spent in the running state (when it ran
on the scheduler), in the runnable state (when it waited for an available scheduler), and in the suspended
state (when it waited for a resource or external event).

 Figure 28-3. Task life cycle

 SQL Server tracks the cumulative time tasks spend in a suspended state for different types of waits and
exposes this through the sys.dm_os_wait_stats view. This information is collected as of the time of the
last SQL Server restart or since it was cleared with the DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)
command.

 Listing 28-2 shows how to find the top wait types in a system, which are the wait types for which workers
spent the most time waiting. It filters out some nonessential wait types mainly related to internal SQL Server
processes. Even though it is beneficial to analyze some of them during advanced performance tuning, you
rarely focus on them during the initial stage of system troubleshooting.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

554

 ■ Note Every new version of SQL Server introduces new wait types. You can see a list of wait types at
 http://msdn.microsoft.com/en-us/library/ms179984.aspx . Make sure to select the appropriate version of
SQL Server.

 Listing 28-2. Detecting top wait types in the system

 ;with Waits
 as
 (
 select
 wait_type, wait_time_ms, waiting_tasks_count,signal_wait_time_ms
 ,wait_time_ms - signal_wait_time_ms as resource_wait_time_ms
 ,100. * wait_time_ms / SUM(wait_time_ms) over() as Pct
 ,row_number() over(order by wait_time_ms desc) AS RowNum
 from sys.dm_os_wait_stats with (nolock)
 where
 wait_time_ms > 0 and
 wait_type not in /* Filtering out non-essential system waits */
 (N'CLR_SEMAPHORE',N'LAZYWRITER_SLEEP',N'RESOURCE_QUEUE', N'DBMIRROR_DBM_EVENT'
 ,N'SLEEP_TASK',N'SLEEP_SYSTEMTASK',N'SQLTRACE_BUFFER_FLUSH',N'FSAGENT'
 ,N'DBMIRROR_EVENTS_QUEUE', N'DBMIRRORING_CMD', N'DBMIRROR_WORKER_QUEUE'
 ,N'WAITFOR',N'LOGMGR_QUEUE',N'CHECKPOINT_QUEUE',N'FT_IFTSHC_MUTEX'
 ,N'REQUEST_FOR_DEADLOCK_SEARCH',N'HADR_CLUSAPI_CALL',N'XE_TIMER_EVENT'
 ,N'BROKER_TO_FLUSH',N'BROKER_TASK_STOP',N'CLR_MANUAL_EVENT',N'HADR_TIMER_TASK'
 ,N'CLR_AUTO_EVENT',N'DISPATCHER_QUEUE_SEMAPHORE',N'HADR_LOGCAPTURE_WAIT'
 ,N'FT_IFTS_SCHEDULER_IDLE_WAIT',N'XE_DISPATCHER_WAIT',N'XE_DISPATCHER_JOIN'
 ,N'HADR_NOTIFICATION_DEQUEUE',N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',N'MSQL_XP'
 ,N'HADR_WORK_QUEUE',N'ONDEMAND_TASK_QUEUE',N'BROKER_EVENTHANDLER'
 ,N'SLEEP_BPOOL_FLUSH',N'KSOURCE_WAKEUP',N'SLEEP_DBSTARTUP',N'DIRTY_PAGE_POLL'
 ,N'BROKER_RECEIVE_WAITFOR',N'MEMORY_ALLOCATION_EXT',N'SNI_HTTP_ACCEPT'
 ,N'PREEMPTIVE_OS_LIBRARYOPS',N'PREEMPTIVE_OS_COMOPS',N'WAIT_XTP_HOST_WAIT'
 ,N'PREEMPTIVE_OS_CRYPTOPS',N'PREEMPTIVE_OS_PIPEOPS',N'WAIT_XTP_CKPT_CLOSE'
 ,N'PREEMPTIVE_OS_AUTHENTICATIONOPS',N'PREEMPTIVE_OS_GENERICOPS',N'CHKPT'
 ,N'PREEMPTIVE_OS_VERIFYTRUST',N'PREEMPTIVE_OS_FILEOPS',N'QDS_ASYNC_QUEUE'
 ,N'PREEMPTIVE_OS_DEVICEOPS',N'HADR_FILESTREAM_IOMGR_IOCOMPLETION'
 ,N'PREEMPTIVE_XE_GETTARGETSTATE',N'SP_SERVER_DIAGNOSTICS_SLEEP'
 ,N'BROKER_TRANSMITTER',N'PWAIT_ALL_COMPONENTS_INITIALIZED'
 ,N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',N'PWAIT_DIRECTLOGCONSUMER_GETNEXT'
 ,N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP',N'SERVER_IDLE_CHECK'
 ,N'SLEEP_DCOMSTARTUP',N'SQLTRACE_WAIT_ENTRIES',N'SLEEP_MASTERDBREADY'
 ,N'SLEEP_MASTERMDREADY',N'SLEEP_TEMPDBSTARTUP',N'XE_LIVE_TARGET_TVF'
 ,N'WAIT_FOR_RESULTS',N'WAITFOR_TASKSHUTDOWN',N'PARALLEL_REDO_WORKER_SYNC'
 ,N'PARALLEL_REDO_WORKER_WAIT_WORK',N'SLEEP_MASTERUPGRADED'
 ,N'SLEEP_MSDBSTARTUP',N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG')
)
 select
 w1.wait_type as [Wait Type]
 ,w1.waiting_tasks_count as [Wait Count]

http://msdn.microsoft.com/en-us/library/ms179984.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

555

 Figure 28-4. Output of the script on a production server

 ,convert(decimal(12,3), w1.wait_time_ms / 1000.0) as [Wait Time]
 ,convert(decimal(12,1), w1.wait_time_ms / w1.waiting_tasks_count)
 as [Avg Wait Time]
 ,convert(decimal(12,3), w1.signal_wait_time_ms / 1000.0)
 as [Signal Wait Time]
 ,convert(decimal(12,1), w1.signal_wait_time_ms / w1.waiting_tasks_count)
 as [Avg Signal Wait Time]
 ,convert(decimal(12,3), w1.resource_wait_time_ms / 1000.0)
 as [Resource Wait Time]
 ,convert(decimal(12,1), w1.resource_wait_time_ms / w1.waiting_tasks_count)
 as [Avg Resource Wait Time]
 ,convert(decimal(6,3), w1.Pct) as [Percent]
 ,convert(decimal(6,3), w1.Pct + IsNull(w2.Pct,0)) as [Running Percent]
 from
 Waits w1 cross apply
 (
 select sum(w2.Pct) as Pct
 from Waits w2
 where w2.RowNum < w1.RowNum
) w2
 where
 w1.RowNum = 1 or w2.Pct <= 99
 order by
 w1.RowNum
 option (recompile);

 Figure 28-4 illustrates the output of a script from a production server at the beginning of the
troubleshooting process. We will talk about wait types from output later in this chapter.

 There are other useful SQLOS-related data management views, as follows:

 sys.dm_os_waiting_tasks returns a list of currently suspended tasks, including
wait type, waiting time, and the resource for which it is waiting. It also includes
the ID of the blocking session, if any.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

556

 The sys.dm_exec_requests view provides a list of requests currently executing
on SQL Server. This includes information about the session that submits the
request; the current status of request; information about the current wait type if a
task is suspended; SQL and plan handles; execution statistics; and several other
attributes. In SQL Server 2016, you can use it together with the new function,
 sys.dm_exec_input_buffer , to obtain information about currently running SQL
statements. In earlier versions of SQL Server, you can use the sys.dm_exec_sql_
text function for such a purpose.

 The sys.dm_exec_session_wait_stats view , introduced in SQL Server 2016,
provides the aggregated wait statistics on a per-session level. Keep in mind that
information is updated after the wait has ended, and you need to analyze data
from sys.dm_os_waiting_tasks and/or sys.dm_exec_requests views when you
troubleshoot waits from currently running sessions. You can also use the sqlos.
wait_info Extended Event in earlier versions of SQL Server to track session waits.

 The sys.dm_os_schedulers view returns information about schedulers,
including their status, workers, and task information.

 The sys.dm_os_threads view provides information about workers.

 The sys.dm_os_tasks view provides information about tasks, including their
state and some execution statistics.

 Wait Statistics Analysis and Troubleshooting
 The process of analyzing the top waits in the system is called wait statistics analysis . This is one of the
frequently used troubleshooting and performance-tuning techniques in SQL Server. Figure 28-5 illustrates a
typical wait statistics analysis troubleshooting cycle.

 Figure 28-5. Wait statistics analysis troubleshooting cycle

 As a first step, look at the wait statistics, which detect the top waits in the system. This narrows down
the area of concern for further analysis. After that, you confirm the problem using other tools, such as DMV,
Windows Performance Monitor, SQL Traces, and Extended Events, and detect the root cause of the problem.
When the root cause is confirmed, you fix it and analyze the wait statistics again, choosing a new target for
analysis and improvement.

 This is a never-ending process. Waits always exist in systems, and there is always space for
improvement. However, a generic 80/20 Pareto principle can be applied to almost any troubleshooting and
optimization process. You achieve an 80 percent effect or improvement by spending 20 percent of your time.
At some point, further optimization does not provide a sufficient return on investment, and it is better to
spend your time and resources elsewhere.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

557

 Even though wait statistics can help you detect problematic areas in a system, it is not always easy to
find the root cause of a problem. Different issues affect and often mask each other.

 Figure 28-6 illustrates such a situation. Bad system performance due to a slow and unresponsive
I/O subsystem often occurs due to missing indexes and nonoptimized queries that overload it. Those
queries require SQL Server to scan a large amount of data, which flushes the content of the buffer pool and
contributes to CPU load. Moreover, missing indexes introduce locking and blocking in the system.

 Figure 28-6. Everything is related

 Ad-hoc queries and recompilations contribute to CPU load and increase plan cache size, which in turn
leaves less memory for the buffer pool. It also increases I/O subsystem load due to the extra physical I/O
required.

 Let’s look at different issues frequently encountered in systems and discuss how we can detect and
troubleshoot them.

 I/O Subsystem and Nonoptimized Queries
 The most common root cause of issues related to a slow and/or overloaded I/O subsystem is nonoptimized
queries, which require SQL Server to scan a large amount of data. When SQL Server does not have enough
physical memory to cache all of the required data in the buffer pool, which is typically the case for large
systems, physical I/O occurs and constantly replaces data in the buffer pool.

 ■ Tip You can add or allocate more physical memory to the server that hosts SQL Server when an I/O
subsystem is overloaded. Extra memory increases the size of the buffer pool and the amount of data SQL
Server can cache. It reduces the physical I/O required to scan the data. While it does not fix the root cause of
the problem, it can work as an emergency fix and buy you some time. Remember that non-Enterprise editions
of SQL Server have limitations in the amount of memory that they can utilize. Lastly, data compression in
Enterprise Edition can also reduce the size of the data that needs to be cached.

 Figure 28-7 illustrates a situation with nonoptimized queries, and it shows the metrics and tools that
can be used to diagnose and fix these problems.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

558

 PAGEIOLATCH_* wait types occur when SQL Server is waiting for an I/O subsystem to bring a data page
from disk to the buffer pool. A large percentage of those waits indicate heavy physical I/O activity in the
system. Other I/O wait types, such as IO_COMPLETION , ASYNC_IO_COMPLETION , BACKUPIO , WRITELOG , and
 LOGBUFFER , relate to non-data pages’ I/O. These wait types may occur for various reasons. IO_COMPLETION
often indicates slow tempdb I/O performance during sort and hash operators. BACKUPIO is a sign of the slow
performance of a backup disk drive, and it often occurs with an ASYNC_IO_COMPLETION wait type. WRITELOG
and LOGBUFFER waits are a sign of bad transaction log I/O throughput.

 When all of these wait types are present together, it is easier to focus on reducing PAGEIOLATCH waits and
data-related I/O. This will reduce the load on the I/O subsystem and, in turn, can improve the performance
of non-data–related I/O operations.

 It has become common nowadays for servers to have enough physical memory to cache an entire
active data set in the buffer pool. Such systems usually have a relatively low percentage of PAGEIOLATCH waits
present. Queries in these systems introduce a low amount of physical I/O activity, and even nonoptimized
queries can have acceptable execution times. One sign of such a condition in OLTP systems is having
a significant amount of parallelism CXPACKET waits and a low percentage of PAGEIOLATCH waits, with or
without non-data page I/O-related waits present. You will need to confirm the situation by looking at query
execution statistics, which we will discuss later in this chapter.

 Nonoptimized queries without physical disk activity do not necessarily introduce a visible performance
impact on the system. There is a hidden danger in this situation, however: the amount of data growth. It can
reach the tipping point when data does not fit into memory anymore and the system starts to experience
performance issues because of the excessive disk activity that the situation introduced. Moreover,
nonoptimized queries can contribute to concurrency issues even without physical I/O being involved.
Nevertheless, you should analyze whether optimizing such queries would provide you with sufficient ROI for
your efforts.

 The sys.dm_io_virtual_file_stats function provides you with I/O statistics for data and log files,
including information about a number of I/O operations, the amount of data processed, and I/O stalls,
which is the time that SQL Server waited for I/O operations to complete. This can help you detect most
I/O-intensive databases and data files, which is especially useful when a SQL Server instance hosts a large
number of databases. This view is also useful when you work on database consolidation projects.

 Listing 28-3 shows you a query that obtains information about I/O statistics for all of the databases on a
server. Figure 28-8 illustrates the partial output of this query when run against one of the production servers.

 Listing 28-3. Using sys.dm_io_virtual_file_stats

 select
 fs.database_id as [DB ID], fs.file_id as [File Id], mf.name as [File Name]
 ,mf.physical_name as [File Path], mf.type_desc as [Type], fs.sample_ms as [Time]
 ,fs.num_of_reads as [Reads], fs.num_of_bytes_read as [Read Bytes]
 ,fs.num_of_writes as [Writes], fs.num_of_bytes_written as [Written Bytes]

 Figure 28-7. Nonoptimized queries troubleshooting

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

559

 ,fs.num_of_reads + fs.num_of_writes as [IO Count]
 ,convert(decimal(5,2),100.0 * fs.num_of_bytes_read /
 (fs.num_of_bytes_read + fs.num_of_bytes_written)) as [Read %]
 ,convert(decimal(5,2),100.0 * fs.num_of_bytes_written /
 (fs.num_of_bytes_read + fs.num_of_bytes_written)) as [Write %]
 ,fs.io_stall_read_ms as [Read Stall], fs.io_stall_write_ms as [Write Stall]
 ,case when fs.num_of_reads = 0
 then 0.000
 else convert(decimal(12,3),1.0 * fs.io_stall_read_ms / fs.num_of_reads)
 end as [Avg Read Stall]
 ,case when fs.num_of_writes = 0
 then 0.000
 else convert(decimal(12,3),1.0 * fs.io_stall_write_ms / fs.num_of_writes)
 end as [Avg Write Stall]
 from
 sys.dm_io_virtual_file_stats(null,null) fs join
 sys.master_files mf with (nolock) on
 fs.database_id = mf.database_id and fs.file_id = mf.file_id
 join sys.databases d with (nolock) on
 d.database_id = fs.database_id
 where
 fs.num_of_reads + fs.num_of_writes > 0;

 Figure 28-8. Sys_dm_io_virtual_file_stats output

 Unfortunately, sys.dm_io_virtual_file_stats provides cumulative statistics as of the time of a SQL
Server restart, without any way to clear it. If you need to get a snapshot of the current load in the system, you
should run this function several times and compare how the results changed between calls. I’m including
the code that implements such an approach in the companion materials of this book.

 You can analyze various system performance counters using the PhysicalDisk object to obtain
information about current I/O activity, such as the number of requests and the amount of data being read
and written. These counters, however, are most useful when compared against the baseline, which we will
discuss later in this chapter.

 Performance counters from the SQL Server:Buffer Manager object provide various metrics related to
the buffer pool and data-page I/O. One of the most useful counters is page life expectancy , which indicates
the average time a data page stays in the buffer pool. Historically, Microsoft suggested that values above
300 seconds were acceptable and good enough ; however, this is hardly the case with modern servers, which

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

560

use large amounts of memory. One approach to defining the lowest acceptable value for the counter is
by multiplying 300 seconds by every 4 GB of buffer pool memory. For example, a server that uses 56 GB
of memory for the buffer pool should have a page life expectancy greater than 4,200 seconds (56/4*300).
However, as with other counters, it is better to compare the current value against a baseline than to rely on a
statically defined threshold.

 The page read/sec and page write/sec counters show the number of physical data pages that were read
and written, respectively. Checkpoint pages/sec and lazy writer/sec indicate the activity of the checkpoint
and lazy writer processes that save dirty pages to disks. High numbers in those counters and a low value for
page life expectancy could be a sign of memory pressure. However, a high number of checkpoints could
transpire because of a large number of transactions in the system, and you should include the transactions/
sec counter in the analysis.

 In a scenario where servers have enough physical memory to cache the active data set in memory, you
would notice the high value of the page life expectancy and low value of the page read/sec counters. The
values of page write/sec and checkpoint pages/sec would depend on the volatility of the data in the system.

 The buffer cache hit ratio indicates the percentage of pages that are found in the buffer pool without
the requirement of performing a physical read operation. A low value for this counter indicates a constant
buffer pool flush and is a sign of a large amount of physical I/O. However, a high value in the counter is
meaningless. Read-ahead reads often bring data pages to memory, increasing the buffer cache hit ratio value
and masking the problem. In the end, page life expectancy is a more reliable counter for this analysis.

 ■ Note You can read more about performance counters from the buffer manager object at http://technet.
microsoft.com/en-us/library/ms189628.aspx .

 The full scans/sec and range scan/sec performance counters from the SQL Server:Access Methods
object provide you with information about the scan activity in the system. Their values, however, can be
misleading. While scanning a large amount of data negatively affects performance, small range scans or full
scans of small temporary tables are completely acceptable. As with other performance counters, it is better
to compare counter values against a baseline rather than relying on absolute values.

 There are several ways to detect I/O-intensive queries using standard SQL Server tools. One of the most
common approaches is by capturing system activity using SQL Traces or Extended Events, filtering the data
by the number of reads and/or writes. You can also analyze query duration; however, you should be careful
with such an approach. The longest-running queries are not necessarily the most I/O-intensive ones. There
are other factors that can increase query execution time. Think about locking and blocking, as an example.

 This approach, however, requires you to perform additional analysis after the data is collected. You
should check how frequently queries are executed when determining targets for optimization.

 Another very simple and powerful method of detecting resource intensive queries is the sys.
dm_exec_query_stats data management view. SQL Server tracks various statistics, including the number
of executions and I/O operations and elapsed and CPU times, and exposes them through that view.
Furthermore, you can join it with other data management objects and obtain the SQL text and execution
plans for those queries. This simplifies the analysis, and it can be helpful during the troubleshooting of
various performance and plan cache issues in the system.

 Listing 28-4 shows a query that returns the 50 most I/O-intensive queries, which have been plan cached
at the moment of execution. It is worth noting that sys.dm_exec_query_stats has slightly different columns
in the result set in different versions of SQL Server. The query in Listing 28-5 works in SQL Server 2008R2
and above. You can remove the last four columns from the SELECT list to make it compatible with SQL Server
2005-2008.

http://technet.microsoft.com/en-us/library/ms189628.aspx
http://technet.microsoft.com/en-us/library/ms189628.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

561

 Listing 28-4. Using sys.dm_exec_query_stats

 select top 50
 substring(qt.text, (qs.statement_start_offset/2)+1,
 ((
 case qs.statement_end_offset
 when -1 then datalength(qt.text)
 else qs.statement_end_offset
 end - qs.statement_start_offset)/2)+1) as SQL
 ,qp.query_plan as [Query Plan]
 ,qs.execution_count as [Exec Cnt]
 ,(qs.total_logical_reads + qs.total_logical_writes) / qs.execution_count as [Avg IO]
 ,qs.total_logical_reads as [Total Reads], qs.last_logical_reads as [Last Reads]
 ,qs.total_logical_writes as [Total Writes], qs.last_logical_writes as [Last Writes]
 ,qs.total_worker_time as [Total Worker Time], qs.last_worker_time as [Last Worker Time]
 ,qs.total_elapsed_time / 1000 as [Total Elapsed Time]
 ,qs.last_elapsed_time / 1000 as [Last Elapsed Time]
 ,qs.last_execution_time as [Last Exec Time]
 ,qs.total_rows as [Total Rows], qs.last_rows as [Last Rows]
 ,qs.min_rows as [Min Rows], qs.max_rows as [Max Rows]
 from
 sys.dm_exec_query_stats qs with (nolock)
 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
 cross apply sys.dm_exec_query_plan(qs.plan_handle) qp
 order by
 [Avg IO] desc

 As you can see in Figure 28-9 , it allows you to easily define optimization targets based on resource
usage and the number of executions. For example, the second query in the result set is the best candidate for
optimization because of how frequently it runs.

 Figure 28-9. Sys.dm_exec_query_stats results

 Unfortunately, sys.dm_exec_query_stats does not return any information for queries that do not have
compiled plans cached. Usually this is not an issue, because our optimization targets are not only resource
intensive, but are also frequently executed queries. Plans of these queries usually stay in the cache because
of their frequent reuse. However, SQL Server does not cache plans in cases of statement-level recompiles,
and therefore sys.dm_exec_query_stats misses such queries. You should use Extended Events and/or SQL
Traces to capture them. I usually start with queries from the sys.dm_exec_query_stats function output and
crosscheck the optimization targets with Extended Events later.

 The new SQL Server 2016 component called Query Store addresses such an issue. It captures and
persists execution statistics and execution plans for those queries without any dependencies on the plan
cache. We will discuss Query Store in depth in the next chapter.

 Query plans can be removed from the cache, and therefore they are not included in the sys.dm_exec_
query_stats results in cases of a SQL Server restart, memory pressure, or recompilations due to a statistics
update, as well as in a few other cases. It is beneficial to analyze the creation_time and last_execution_
time columns in addition to the number of executions.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

562

 SQL Server 2008 and above provide stored procedure – level execution statistics with the sys.dm_exec_
procedure_stats view. It provides similar metrics as sys.dm_exec_query_stats , and it can be used to
determine the most resource intensive stored procedures in the system. Listing 28-5 shows a query that
returns the 50 most I/O-intensive stored procedures, which have plan cached at the moment of execution.

 Listing 28-5. Using sys.dm_exec_procedure_stats

 select top 50
 db_name(ps.database_id) as [DB]
 ,object_name(ps.object_id, ps.database_id) as [Proc Name]
 ,ps.type_desc as [Type]
 ,qp.query_plan as [Plan]
 ,ps.execution_count as [Exec Count]
 ,(ps.total_logical_reads + ps.total_logical_writes) / ps.execution_count as [Avg IO]
 ,ps.total_logical_reads as [Total Reads], ps.last_logical_reads as [Last Reads]
 ,ps.total_logical_writes as [Total Writes], ps.last_logical_writes as [Last Writes]
 ,ps.total_worker_time as [Total Worker Time], ps.last_worker_time as [Last Worker Time]
 ,ps.total_elapsed_time / 1000 as [Total Elapsed Time]
 ,ps.last_elapsed_time / 1000 as [Last Elapsed Time]
 ,ps.last_execution_time as [Last Exec Time]
 from
 sys.dm_exec_procedure_stats ps with (nolock)
 cross apply sys.dm_exec_query_plan(ps.plan_handle) qp
 order by
 [Avg IO] desc

 SQL Server 2016 introduces another view, sys.dm_exec_function_stats , which allows you to track
execution statistics of scalar user-defined functions. It works with T-SQL, CLR, and In-Memory OLTP scalar
functions; however, it does not capture table-valued functions’ execution statistics.

 The sys.dm_exec_function_stats view returns information similar to that returned by sys.dm_exec_
procedure_stats. In fact, the code from Listing 28-5 would work as long as you replaced the DMV name
there.

 There are plenty of tools available on the market to help you automate the data collection and analysis
process, including the SQL Server Management Data Warehouse. All of them help you to achieve the same
goal and find optimization targets in the system.

 Finally, it is worth mentioning that the data warehouse and reporting systems usually play by
different rules. In those systems, it is typical to have I/O-intensive queries that scan large amounts of
data. Performance tuning of such systems can require different approaches than those found in OLTP
environments, and they often lead to database schema changes rather than index tuning.

 Parallelism
 Parallelism is perhaps one of the most confusing aspects of troubleshooting. It exposes itself with the
 CXPACKET wait type , which often can be seen in the list of top waits in the system. The CXPACKET wait type ,
which stands for Class eXchange , occurs when parallel threads are waiting for other threads to complete
their execution.

 Let’s consider a simple example and assume that we have a parallel plan with two threads followed by
the exchange/repartition streams operator. When one parallel thread finishes its work, it waits for the other
thread to complete. The waiting thread does not consume any CPU resources; it just waits, generating the
 CXPACKET wait type.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

563

 The CXPACKET wait type merely indicates that there is parallelism in the system, and, as usual, this fits
into the “It Depends” category. It is beneficial when large and complex queries utilize parallelism, because it
can dramatically reduce their execution time. However, there is always overhead associated with parallelism
management and exchange operators. For example, if a serial plan finishes in one second on a single CPU,
the execution time of the parallel plan that uses two CPUs would always exceed 0.5 seconds. There is always
extra CPU time required for parallelism management. Even though the response (elapsed) time of the
parallel plan would be smaller, the CPU time would always be greater than in the case of the serial plan.
You want to avoid such overhead when a large number of OLTP queries are waiting for the available CPU to
execute. Having a high percentage of SOS_SCHEDULER_YIELD and CXPACKET waits is a sign of such a situation.

 One common misconception suggests that you should completely disable parallelism in cases where
you have a large percentage of CXPACKET waits in an OLTP system and then set the server-level MAXDOP setting
to 1. However, this is not the right way to deal with parallelism waits. You need to investigate the root cause
of the parallelism in the OLTP system and analyze why SQL Server has generated parallel execution plans. In
most cases, it occurs due to complex and/or nonoptimized queries. Query optimization simplifies execution
plans and removes parallelism.

 Moreover, any OLTP system has some legitimate complex queries that would benefit from parallelism. It
is better to increase the Cost Threshold for Parallelism configuration option rather than to disable parallelism
by setting the MAXDOP setting to 1. This would allow you to utilize parallelism with complex and expensive
queries while keeping low-cost OLTP queries running serially.

 There is no generic advice for how the Cost Threshold for Parallelism value needs to be set. By default,
it is set to five, which is very low nowadays. You should analyze the activity and cost of the queries in your
system to find the optimal value for this setting. Check the cost of the queries that you want to run serially
and in parallel, and adjust the threshold value accordingly. You can see that cost in the properties of the root
(top) operator in the execution plan.

 Speaking of the MAXDOP setting, in general it should not exceed the number of logical CPUs per hardware
NUMA node. However, in some data warehouse systems, you can consider using a MAXDOP setting that exceeds
this number. Again, you should analyze and test your workload to find the optimal value for this setting.

 Memory-Related Wait Types
 SQL Server allocates query memory grants from a special part of the buffer pool called workspace memory . The
maximum size of workspace memory is limited to 75 percent of the buffer pool size. By default, the maximum
query memory grant size cannot exceed 25 percent of workspace memory; however, you can control it through
the REQUEST_MAX_MEMORY_GRANT_PERCENT setting in the Resource Governor workload group.

 As you already know, every query uses a small amount of memory to execute. In addition, sort and hash
operators require additional memory to run, which can be separated into two groups, as follows:

 Required memory is needed to store internal data structures that are required for
the operation. The query would not run without this memory available.

 Additional memory is used to store the data rows in memory during the
operation. The amount of additional memory is based on row size and
cardinality estimations. The query could run if the amount of additional memory
is insufficient, spilling the data to tempdb when needed.

 The amount of required memory is also affected by parallelism. Each worker needs to create its own set
of internal data structures for sort or hash operators. Moreover, exchange operators will need some memory
to buffer the rows.

 After the size of the memory grant is calculated, SQL Server checks if it exceeds the maximum size limit
and reduces it if needed. After that, it requests memory from the MEMORYCLERK_SQLQERESERVATIONS memory
clerk, which uses a thread synchronization object called Resource Semaphore to allocate the memory. We
will talk about memory clerks and SQL Server memory allocation later in this chapter.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

564

 When memory cannot be allocated, Resource Semaphore puts the queries in the wait queues, which
leads to RESOURCE_SEMAPHORE waits. Internally, Resource Semaphore uses two wait queues, ranking queries
based on the memory grant size and query cost. One queue, called Small-query Resource Semaphore, stores
the queries that require less than 5 MB and cost less than 3 cost units. The second queue stores all other
queries.

 When Resource Semaphore receives the new request, it first checks if any query is waiting, then
processes requests based on the first come, first served principle. It favors the small-query queue over the
regular one, which reduces the waiting time for the small queries that do not require a large amount of
memory.

 Large memory grants consume system memory and can prevent queries from being immediately
executed. Unfortunately, sometimes SQL Server overestimates the size of the memory grants required for
the queries, usually because of cardinality overestimations. A common case for such an error is a complex
query with a large number of joins and non-SARGable predicates, and/or functions in join conditions and
the WHERE clause. SQL Server has to apply heuristics during the cardinality estimations, which may produce
incorrect results for the actual data.

 You should monitor the situation of the memory grants in the system. Even a small percentage of
 RESOURCE_SEMAPHORE waits can indicate serious performance issues. This can be a sign of memory pressure
and poorly optimized and extremely inefficient queries.

 You can confirm the problem by looking at the memory grants pending performance counter in the
 SQL Server:Memory Manager object. This counter shows the number of queries waiting for memory grants.
Ideally, the counter value should be zero all the time.

 The sys.dm_exec_query_resource_semaphores view shows the statistics for both Resource Semaphore
queues, including granted and available workspace memory, number of queries in the waiting queue, and
a few other parameters. You can also look at the sys.dm_exec_query_memory_grants view, which provides
information about memory grant requests, both pending and outstanding. Listing 28-6 illustrates how you
can obtain information about them, along with the query text and execution plan.

 Listing 28-6. Obtaining query information from the sys.dm_exec_query_memory_grants view

 select
 mg.session_id, t.text as [SQL], qp.query_plan as [Plan], mg.is_small, mg.dop
 ,mg.query_cost, mg.request_time, mg.required_memory_kb, mg.requested_memory_kb
 ,mg.wait_time_ms, mg.grant_time, mg.granted_memory_kb, mg.used_memory_kb

,mg.max_used_memory_kb
 from
 sys.dm_exec_query_memory_grants mg with (nolock)
 cross apply sys.dm_exec_sql_text(mg.sql_handle) t
 cross apply sys.dm_exec_query_plan(mg.plan_handle) as qp

 SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016 have several enhancements that
simplify memory grant troubleshooting. The sys.dm_exec_query_stats view provides memory grant-
related statistics in the output columns. There is also the query_memory_grant_usage Extended Event, which
you can use to track memory allocation in real time. Finally, Query Store in SQL Server 2016 collects memory
grant metrics along with other parameters.

 If you run older builds of SQL Server, you can obtain information about memory grants from the cached
execution plans. As with other metrics, memory grant information there lacks actual execution statistics,
and it also shows information about memory grant requests that are required for the serial execution plans,
without parallelism overhead involved.

 Listing 28-7 shows how you can obtain memory grant information from the cached execution plans
using the sys.dm_exec_cached_plans view. Alternatively, you can obtain similar information by using the
 sys.dm_exec_query_stats view and the sys.dm_exec_query_plan function.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

565

 Listing 28-7. Getting memory grant information from the cached plans

 ;with xmlnamespaces(default 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')
 ,Statements(PlanHandle, ObjType, UseCount, StmtSimple)
 as
 (
 select cp.plan_handle, cp.objtype, cp.usecounts, nodes.stmt.query('.')
 from sys.dm_exec_cached_plans cp with (nolock)
 cross apply sys.dm_exec_query_plan(cp.plan_handle) qp
 cross apply qp.query_plan.nodes('//StmtSimple') nodes(stmt)
)
 select top 50
 s.PlanHandle, s.ObjType, s.UseCount
 ,p.qp.value('@CachedPlanSize','int') as CachedPlanSize
 ,mg.mg.value('@SerialRequiredMemory','int') as [SerialRequiredMemory KB]
 ,mg.mg.value('@SerialDesiredMemory','int') as [SerialDesiredMemory KB]
 from Statements s
 cross apply s.StmtSimple.nodes('.//QueryPlan') p(qp)
 cross apply p.qp.nodes('.//MemoryGrantInfo') mg(mg)
 order by
 mg.mg.value('@SerialRequiredMemory','int') desc

 You can restrict the maximum size of the memory grant by using the MAX_GRANT_PERCENT query hint,
which is supported in SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016, or by restricting
the REQUEST_MAX_MEMORY_GRANT_PERCENT setting in the Resource Governor workload group. However, the
best approach is simplifying and optimizing the queries in a way that removes memory-intensive operators,
such as hashes, sorts, and sometimes parallelism, from the execution plan. You can often achieve it by index
tuning and query re-factoring.

 CXMEMTHREAD is another memory-related wait type that you can encounter in systems. These waits occur
when multiple threads are trying to allocate memory from unallocated memory HEAP simultaneously. You can
often observe a high percentage of these waits in systems with a large number of ad-hoc queries, where SQL
Server constantly allocates and de-allocates plan cache memory. Enabling the Optimize for Ad-hoc Workloads
configuration setting can help address this problem if plan cache memory allocation is the root cause.

 SQL Server has three categories of memory objects. Some of them are created globally on the server
scope. Others are partitioned on a per-NUMA node or per-CPU basis. In SQL Server prior to 2016, you can
use startup trace flag T8048 to switch per-NUMA node to per-CPU partitioning, which can help reduce
 CXMEMTHREAD waits at the cost of extra memory usage. SQL Server 2016, on the other hand, promotes such
partitioning to the per-NUMA level and then to the per-CPU level automatically when it detects contention,
and therefore T8048 is not required.

 ■ Note You can read more about Non-Uniform Memory Access (NUMA) architecture at http://technet.
microsoft.com/en-us/library/ms178144.aspx .

 Listing 28-8 shows you how to analyze the memory allocations of memory objects. You may consider
applying the T8048 trace flag if top memory consumers are per-NUMA node partitioned and you can see a large
percentage of CXMEMTHREAD waits in the system. This is especially important in scenarios with servers that have
more than eight CPUs per NUMA node, where older versions of SQL Server have known issues of per-NUMA
node memory object scalability. As I already mentioned, this trace flag is not required in SQL Server 2016.

http://technet.microsoft.com/en-us/library/ms178144.aspx
http://technet.microsoft.com/en-us/library/ms178144.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

566

 Listing 28-8. Analyzing memory-object partitioning and memory usage

 select type, pages_in_bytes
 ,case
 when (creation_options & 0x20 = 0x20)
 then 'Global PMO. Cannot be partitioned by CPU/NUMA Node. T8048 not applicable.'
 when (creation_options & 0x40 = 0x40)
 then 'Partitioned by CPU. T8048 not applicable.'
 when (creation_options & 0x80 = 0x80)
 then 'Partitioned by Node. Use T8048 to further partition by CPU.'
 else 'Unknown'
 end as [Partitioning Type]
 from sys.dm_os_memory_objects
 order by pages_in_bytes desc

 ■ Note You can read an article published by the Microsoft CSS Team that explains how to debug
 CXMEMTHREAD wait types at http://blogs.msdn.com/b/psssql/archive/2012/12/20/how-it-works-
cmemthread-and-debugging-them.aspx .

 High CPU Load
 As strange as it sounds, low CPU load on a server is not necessarily a good sign. It indicates that the server
is under-utilized. Even though under-utilization leaves systems with room to grow, it increases the IT
infrastructure and operational costs; there are more servers to host and maintain. Obviously, high CPU load
is not good either. Constant CPU pressure on SQL Server makes systems unresponsive and slow.

 There are several indicators that can help you detect that a server is working under CPU pressure.
These include a high percentage of SOS_SCHEDULER_YIELD waits, which occur when a worker is waiting in a
runnable state. You can analyze the % processor time and processor queue length performance counters and
compare the signal and resource wait times in the sys.dm_os_wait_stats view, as shown in Listing 28-9 .
Signal waits indicate the waiting times for the CPU, while resource waits indicate the waiting times for
resources, such as for pages from disk. Although Microsoft recommends that the signal wait type should not
exceed 25 percent, I believe that 15 to 20 percent is a better target on busy systems.

 Listing 28-9. Comparing signal and resource waits

 select
 sum(signal_wait_time_ms) as [Signal Wait Time (ms)]
 ,convert(decimal(7,4), 100.0 * sum(signal_wait_time_ms) /
 sum (wait_time_ms)) as [% Signal waits]
 ,sum(wait_time_ms - signal_wait_time_ms) as [Resource Wait Time (ms)]
 ,convert(decimal(7,4), 100.0 * sum(wait_time_ms - signal_wait_time_ms) /
 sum (wait_time_ms)) as [% Resource waits]
 from
 sys.dm_os_wait_stats with (nolock)

 Plenty of factors can contribute to CPU load in a system, and bad T-SQL code is at the top of the list.
Imperative processing, cursors, XQuery, multi-statement user-defined functions, and complex calculations
are especially CPU-intensive.

http://blogs.msdn.com/b/psssql/archive/2012/12/20/how-it-works-cmemthread-and-debugging-them.aspx
http://blogs.msdn.com/b/psssql/archive/2012/12/20/how-it-works-cmemthread-and-debugging-them.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

567

 The process of detecting the most CPU-intensive queries is very similar to that for detecting
nonoptimized queries. You can use the sys.dm_exec_query_stats view, as was shown in Listing 28-4 . You
can sort the data by the total_worker_time column, which detects the most CPU-intensive queries with
plans currently cached. Alternatively, you can use Extended Events, filtering data by CPU time rather than by
I/O metrics.

 Constant recompilation is another source of CPU load. You can check the batch requests/sec , SQL
compilations/sec, and SQL recompilations/sec performance counters and calculate plan reuse with the
following formula:

 Plan Reuse = (Batch Requests/Sec - (SQL Compilations/Sec - SQL Recompilations/Sec)) / Batch
Requests/Sec

 Low plan reuse in OLTP systems indicates heavy ad-hoc activity and often requires code re-factoring
and the parameterization of queries. However, nonoptimized queries are still the major contributor to CPU
load. With nonoptimized queries, SQL Server processes a large amount of data, which burns CPU cycles
regardless of other factors. In most cases, query optimization reduces the CPU load in the system.

 Obviously, the same is true for bad T-SQL code. You should reduce the amount of imperative data
processing, avoid multi-statement functions, and move calculations and XML processing to the application
side if at all possible.

 Locking and Blocking
 Excessive locking and blocking issues in a system presents various LCK_M_* wait types. Each lock type has its
own corresponding wait type. For example, LCK_M_U indicates update (U) lock waits, which can be a sign of
nonoptimized data modification queries.

 We have already covered how to troubleshoot locking and blocking issues in a system. You need to
detect which processes participated in the blocking chain with the blocked process report , deadlock graph
events, and sys.dm_tran_locks view and find the root cause of the blocking. In most cases, it happens due
to nonoptimized queries.

 Worker Thread Starvation
 In rare cases, SQL Server can experience worker thread starvation , a situation where there are no available
workers to assign to new tasks. One scenario where this can happen is when a task acquires and holds a lock
on a critical resource that is blocking a large number of other tasks/workers, which stays in a suspended
state. When the number of workers in the system reaches the limit defined by the Maximum Worker Thread
threshold, SQL Server is not able to create new workers, and new tasks remain unassigned, generating
 THREADPOOL waits.

 Blocking is not the only reason why this situation could occur. It is also possible to reach the limit
of worker threads in systems when the server is under memory pressure and/or does not have enough
memory available. In those cases, workers stay assigned for a longer time, waiting for memory grants
(check RESOURCE_SEMAPHORE waits) or performing a large number of physical I/O operations. Finally, heavy
concurrent workload from a large number of users can also exhaust the workers pool.

 As usual, you need to find the root cause of the problem. While it is possible to increase the Maximum
Worker Thread number in the SQL Server configuration, this may or may not help. For example, in the
blocking scenario just described, there is a good chance that newly created workers will be blocked in the
same way as existing ones are. It is better to investigate the root cause of the blocking problem and address it
instead.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

568

 You can check a blocking condition and locate the blocking session by analyzing the results of the sys.
dm_os_waiting_tasks or sys.dm_exec_requests views. Listing 28-10 demonstrates the first approach. Keep
in mind that the sys.dm_exec_requests view does not show tasks that do not have workers assigned and
waiting with the THREADPOOL wait type. It is also worth noting that worker thread starvation may prevent
any connections to the server. In that case, you need to use a Dedicated Admin Connection (DAC) for
troubleshooting. We will discuss DAC later in this chapter.

 Listing 28-10. Using sys.dm_os_waiting_tasks

 select session_id, wait_type, wait_duration_ms, blocking_session_id, resource_description
 from sys.dm_os_waiting_tasks with (nolock)
 order by wait_duration_ms desc

 As you can see in Figure 28-10 , the ID of the blocking session is 51.

 Figure 28-10. Sys.dm_os_waiting_tasks result

 For the next step, you can use the sys.dm_exec_sessions and sys.dm_exec_connections views to get
information about the blocking session, as shown in Listing 28-11 . You can troubleshoot why the lock is held
and/or terminate the session with the KILL command if needed.

 Listing 28-11. Getting information about a blocking session

 select
 ec.session_id, s.login_time, s.host_name, s.program_name, s.login_name
 ,s.original_login_name, ec.connect_time, qt.text as [SQL]
 from
 sys.dm_exec_connections ec with (nolock)
 join sys.dm_exec_sessions s with (nolock) on
 ec.session_id = s.session_id
 cross apply sys.dm_exec_sql_text(ec.most_recent_sql_handle) qt
 where
 ec.session_id = 51 -- session id of the blocking session

 It is worth mentioning that even though increasing the Maximum Worker Thread setting does not
necessarily solve the problem, it is always worth upgrading to a 64-bit version of Windows and SQL Server.
A 64-bit version of SQL Server has more worker threads available by default, and it can utilize more memory
for query grants and other components. It reduces memory grant waits and makes SQL Server more
efficient, and therefore allows tasks to complete execution and frees up workers faster.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

569

 Workers, however, consume memory, which reduces the amount of memory available to other SQL
Server components. This is not usually an issue, unless SQL Server is running on a server with very little
physical memory available. You should consider adding more memory to the server if this is the case. After
all, it is a cheap solution nowadays.

 ASYNC_NETWORK_IO Waits
 The ASYNC_NETWORK_IO wait type occurs when SQL Server generates data faster than the client application
consumes it. While this could be a sign of insufficient network throughput, in a large number of cases ASYNC_
NETWORK_IO waits accumulate because of incorrect or inefficient client code.

 One such example is reading an excessive amount of data from the server. The client application reads
unnecessary data or, perhaps, performs client-side filtering, which adds extra load and exceeds network
throughput.

 Another pattern includes reading and simultaneously processing the data, as shown in Listing 28-12 .
The client application consumes and processes rows one by one, keeping SqlDataReader open. Therefore,
the worker waits for the client to consume all rows, generating the ASYNC_NETWORK_IO wait type.

 Listing 28-12. Reading and processing of the data: Incorrect implementation

 using (SqlConnection connection = new SqlConnection(connectionString))
 {
 SqlCommand command = new SqlCommand(cmdText, connection);
 connection.Open();
 using (SqlDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 ProcessRow((IDataRecord)reader);
 }
 }

 The correct way of handling such a situation is by reading all rows first as fast as possible and processing
them after all rows have been read. Listing 28-13 illustrates this approach.

 Listing 28-13. Reading and processing of the data: Correct implementation

 List<Orders> orderRows = new List<Orders>();
 using (SqlConnection connection = new SqlConnection(connectionString))
 {
 SqlCommand command = new SqlCommand(cmdText, connection);
 connection.Open();
 using (SqlDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 orderRows.Add(ReadOrderRow((IDataRecord)reader));
 }
 }
 ProcessAllOrderRows(orderRows);

 You could easily duplicate such behavior by running a test in Management Studio, connecting to a SQL
Server instance locally. It would use the shared memory protocol without any network traffic being involved.
You could clear wait statistics on the server using the DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)
command, and run a SELECT statement that reads a large amount of data, displaying it in the result grid. If you

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

570

checked the wait statistics after execution, you would see a large number of ASYNC_NETWORK_IO waits due to
the slow grid performance, even though Management Studio was running locally on a SQL Server box. After
that, you should repeat the test with the Discard Results After Execution configuration setting enabled. You
should see the ASYNC_NETWORK_IO waits disappear.

 You should check network performance and analyze the client code if you see a large percentage of
 ASYNC_NETWORK_IO waits in the system.

 Latches and Spinlocks
 Latches are lightweight synchronization objects that protect the consistency of SQL Server internal data
structures. As the opposite of locks, which protect transactional data consistency, latches prevent the
corruption of the data structures in memory.

 Consider a situation where multiple sessions need to update different rows on the same data page.
Those sessions would not block each other, because they don’t acquire incompatible locks on the same
objects. SQL Server, however, must prevent the situation where multiple sessions simultaneously update
a data page structure in-memory, making it inconsistent and corrupting it. Moreover, SQL Server needs to
prevent other sessions from accessing the data page structure at the time of modification. SQL Server uses
latches to achieve this.

 There are five different latch types in SQL Server, as follows:

 KP – Keep latch ensures that the referenced structure cannot be destroyed. It is
compatible with any other latch type, with the exception of the Destroy (DT) latch.

 SH – Shared latch is required when thread needs to read the data structure.
Shared latches are compatible with each other, along with the Keep (KP) and
Update (UP) latches.

 UP – Update latch allows other threads to read the structure but prevents the
updating of the structure. SQL Server uses them in some scenarios to improve
concurrency, similar to update (U) locks. Update latches are compatible with
Keep (KP) and Shared (SH) latches and incompatible with any other type.

 EX – Exclusive latch is required when a thread modifies the data structure.
Conceptually, Exclusive (EX) latches are similar to exclusive (X) locks, and they
are incompatible with other latch types, with the exception of Keep (KP) latches.

 DT – Destroy latch is required to destroy the data structure. For example, a
Destroy latch is acquired at the time the lazy writer process removes a data page
from the buffer pool. These latches are incompatible with any other latch type.

 When the thread cannot obtain a latch on the data structure, it is placed into the FIFO queue, where it
stays suspended, generating one of the latch-related wait types, until a latch can be obtained. We will discuss
those types shortly.

 In systems with 32 or more logical processors, SQL Server can partition some of the latches on a per-
CPU basis. These partitioned latches are called superlatches , or sometimes sub-latches . In this scenario, each
logical CPU maintains its own state and waiters list for the latch object, which improves the performance of
acquiring shared (SH) latches on the referenced structures. Acquiring exclusive (EX) latches, on the other
hand, requires synchronization across all superlatch partitions and, therefore, is more expensive compared
to regular latches.

 SQL Server dynamically promotes and demotes latches to/from superlatches based on activity.
Latches on frequently read data structures — for example, root pages of the indexes — are quickly promoted
to superlatches. Heavy modifications, such as page splits, could demote those superlatches back to regular
latches.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

571

 The wait types generated by latches can belong to three different classes. Moreover, in each class, SQL
Server uses different wait types based on latch type. You can determine latch type by the postfix on the wait
type name. For example, PAGELATCH_EX wait type indicates exclusive (EX) latch on the data page structure,
while PAGELATCH_SH indicates shared (SH) latch.

 The three wait type classes are the following:

 PAGEIOLATCH – indicates I/O-related latches. SQL Server uses these latches/wait
types while waiting for data pages to be read from disk to the buffer pool. A large
percentage of such wait types could indicate a large amount of nonoptimized
queries and/or a suboptimal disk system. We have already covered how to
troubleshoot those conditions in this chapter.

 PAGELATCH – indicates buffer pool – related latches, which occur when threads
need to access or modify data and allocation map pages in the buffer pool.

 LATCH – all other latches not related to the buffer pool

 There are two main scenarios that can lead to PAGELATCH waits. The first is allocation map contention,
which most often happens in tempdb , or sometimes in user tables with highly volatile data. As we already
discussed in this book, you can address it by increasing the number of data files in tempdb and/or affected
filegroups and, in SQL Server prior 2016, by enabling trace flag T1118 , which prevents mixed extents
allocation.

 The second scenario involves ever-increasing or ever-decreasing indexes on the data, with very high
concurrent insert activity. Consider a situation where you have a table that has an index on the identity
column and accepts hundreds or thousands of inserts per second. While this design greatly reduces index
fragmentation, all sessions insert data to the same data pages, acquiring exclusive PAGELATCH_EX latches
and blocking each other. This condition is called hot spots , and the only way to address it is by changing the
database schema and removing ever-increasing/ever-decreasing indexes.

 When you see a large percentage of PAGELATCH waits, you should locate the resources where contention
occurs. You can monitor the wait_resource column in the sys.dm_exec_requests view or the resource_
description columns in the sys.dm_os_waiting_tasks view for corresponding wait types. The information
in those columns includes the database ID, file ID, and page number, which will allow you to identify the
root cause of the issue. For example, allocation map contention in tempdb often occurs on PFS (2:1:1) and
 SGAM (2:1:3) pages.

 As a general rule, you do not need to focus on LATCH wait types during wait statistics analysis unless you
see a high percentage of such wait types. In those cases, you can look at latch statistics in the system by using
the sys.dm_os_latch_stats view, as shown in Listing 28-14 . Figure 28-11 illustrates the output from one of
the servers.

 As a side note, you can clear latch statistics on your server with the DBCC SQLPERF('sys.dm_os_latch_
stats', CLEAR) command.

 Listing 28-14. Analyzing latch statistics

 ;with Latches
 as
 (
 select latch_class, wait_time_ms, waiting_requests_count
 ,100. * wait_time_ms / SUM(wait_time_ms) over() as Pct
 ,row_number() over(order by wait_time_ms desc) AS RowNum
 from sys.dm_os_latch_stats with (nolock)
 where latch_class not in (N'BUFFER',N'SLEEP_TASK') and wait_time_ms > 0
)

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

572

 select
 l1.latch_class as [Latch Type]
 ,l1.waiting_requests_count as [Wait Count]
 ,convert(decimal(12,3), l1.wait_time_ms / 1000.0) as [Wait Time]
 ,convert(decimal(12,1), l1.wait_time_ms /
 l1.waiting_requests_count) as [Avg Wait Time]
 ,convert(decimal(6,3), l1.Pct) as [Percent]
 ,convert(decimal(6,3), l1.Pct + IsNull(l2.Pct,0))
 as [Running Percent]
 from
 Latches l1 cross apply
 (
 select sum(l2.Pct) as Pct
 from Latches l2
 where l2.RowNum < l1.RowNum
) l2
 where
 l1.RowNum = 1 or l2.Pct < 99
 option (recompile);

 Figure 28-11. Latch statistics

 Unfortunately, latch types are poorly documented . Even though they are listed at https://msdn.
microsoft.com/en-us/library/ms175066.aspx , many of them are documented as Internal Use Only . I
outline several common latch types in Table 28-1 .

 You can read more about latches and latch-contention troubleshooting at http://www.microsoft.com/en-us/
download/details.aspx?id=26665 .

https://msdn.microsoft.com/en-us/library/ms175066.aspx
https://msdn.microsoft.com/en-us/library/ms175066.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=26665
http://www.microsoft.com/en-us/download/details.aspx?id=26665

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

573

 Table 28-1. Common Latch Types

 Latch Type Description

 LOG_MANAGER Access to internal transaction log manager structures,
usually when log is growing. Analyze why transaction log is
not truncated. We will discuss transaction log internals and
troubleshooting in Chapter 30 .

 ACCESS_METHODS_DATASET_PARENT

ACCESS_METHODS_SCAN_RANGE_GENERATOR

ACCESS_METHODS_SCAN_KEY_GENERATOR

NESTING_TRANSACTION_FULL

 Parallelism-related latches. Troubleshoot unnecessary
parallelism.

 ACCESS_METHODS_HOBT_VIRTUAL_ROOT Access to the root index page. Can indicate a large amount of
page splits in the index.

 ACCESS_METHODS_HOBT_COUNT Update of page/row count information in metadata tables.
Can indicate heavy data modifications on individual table(s)
from multiple sessions.

 FGCB_ADD_REMOVE Occurs during adding, removing, growing, and shrinking
files in the filegroup. Check if Instant File Initialization is
enabled and Auto Shrink database option is disabled.

 TRACE_CONTROLLER SQL Traces-related latches. Reduce the number of trace events
running on the server and switch to Extended Events if possible.

 Lastly, SQL Server uses another type of synchronization object — spinlocks . These are used when access
to the data structure needs to be held for a very short amount of time. SQL Server uses spinlocks in a manner
similar to latches while protecting internal data structures. The main difference between them is that when
a thread is unable to acquire the spinlock, it spins constantly through a loop, periodically checking if the
resource is available rather than giving the CPU to another thread, as latches do. This helps to avoid thread
context switching, which is a relatively expensive operation.

 Usually, you do not need to worry about spinlocks during system troubleshooting unless you
experience a rare case of spinlock collision, which can occur on very busy systems with a large number of
CPUs. Such a condition can present itself as a disproportional increase of CPU utilization as compared to
the system throughput. For example, a 10 percent increase in transaction throughput led to 50 percent more
load to the CPU. As you can guess, there are other cases that can lead to such conditions, and the best way to
confirm that the system is suffering from spinlock collision is by comparing the system state to the baseline.
You can obtain that baseline from the undocumented sys.dm_os_spinlock_stats view along with the
 spinlock_backoff Extended Event.

 Troubleshooting of spinlock collision is a very advanced topic, which is outside of the scope of this
book. You can read about it in the following white paper: https://www.microsoft.com/en-us/download/
details.aspx?id=26666 .

 Wait Statistics: Wrapping Up
 Table 28-2 shows symptoms of the most common problems you will encounter in systems, and it illustrates
the steps you can take to address these problems.

http://dx.doi.org/10.1007/978-1-4842-1964-5_30
https://www.microsoft.com/en-us/download/details.aspx?id=26666
https://www.microsoft.com/en-us/download/details.aspx?id=26666

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

574

 Table 28-2. Common Problems, Symptoms, and Solutions

 Problem Symptoms / Monitoring Targets Further Actions

 Overloaded I/O
Subsystem

 PAGEIOLATCH , IO_COMPLETION ,
 WRITELOG , LOGBUFFER, BACKUPIO waits.
 sys.dm_io_virtual_file_stats
stalls.
 Low page life expectancy , High
 page read/sec, page write/sec
performance counters

 Check I/O subsystem configuration and
throughput, especially in cases of non – data
page I/O waits. Detect and optimize I/O-
intensive queries using Query Store, sys.dm_
exec_query_stats , SQL Traces, and Extended
Events.

 CPU Load High CPU load, SOS_SCHEDULER_
YIELD waits, high percentage of signal
waits

 Possible non-efficient T-SQL code. Detect and
optimize CPU-intensive queries using Query
Store, sys.dm_exec_query_stats , SQL Traces,
and Extended Events. Check recompilation and
plan reuse in OLTP systems.

 Query Memory
Grants

 RESOURCE_SEMAPHORE waits. Non-
zero Memory Grants Pending value.
Pending requests in sys.dm_exec_
memory_grants .

 Detect and optimize queries that require large
memory grants. Perform general query tuning.

 HEAP Memory
Allocation
Contention

 CXMEMTHREAD waits Enable the Optimize for Ad-hoc Workloads
configuration setting. Analyze which memory
objects consume the most memory, and switch
to per-CPU partitioning with the T8048 trace
flag if appropriate. Apply the latest service pack.

 Parallelism in
OLTP Systems

 CXPACKET waits Find the root cause of parallelism; most likely
nonoptimized or reporting queries. Perform
query optimization for the nonoptimized
queries that should not have parallel plans.
Tune and increase Cost Threshold for
Parallelism value.

 Locking and
Blocking

 LCK_M_* waits. Deadlocks. Detect queries involved in blocking with
 sys.dm_tran_locks , blocking process report ,
and deadlock graph . Eliminate root cause of
blocking, most likely nonoptimized queries or
client-code issues.

 ASYNC_
NETWORK_IO
Waits

 ASYNC_NETWORK_IO waits, Network
performance counters

 Check network performance. Review and re-
factor client code (loading excessive amount
of data and/or loading and processing data
simultaneously).

 Worker Thread
Starvation

 THREADPOOL waits Detect and address root cause of the problem
(blocking and/or load). Upgrade to 64-bit
version of SQL Server. Increasing Maximum
Working Thread value may or may not help.

 Allocation-Map
Contention

 PAGELATCH waits Detect resource that lead to contention using
 sys.dm_os_waiting_tasks and sys.dm_exec_
requests . Add more data files. In the case of
 tempdb , use T1118 (not required in SQL Server
2016) and utilize temporary object caching.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

575

 This list is by no means complete; however, it should serve as a good starting point.

 ■ Note Read “SQL Server 2005 Performance Tuning using the Waits and Queues” white paper for more
details about wait statistics-based performance troubleshooting methodology. It is available for download at
 http://technet.microsoft.com/en-us/library/cc966413.aspx . Even though this white paper was written
to address SQL Server 2005, the information within it applies to any newer version of SQL Server as well.

 Memory Management and Configuration
 It is impossible to discuss system troubleshooting and SQLOS without covering how SQL Server works with
the memory. Let’s start with memory configuration.

 Memory Configuration
 As you know, SQL Server tries to allocate and use as much memory as is possible and required for
operations. It does not allocate all the memory at start time; the allocation occurs on as needed basis — for
example, when SQL Server reads data pages to the buffer pool or stores compiled plans in the cache.
It is common to see instances that consume hundreds of gigabytes or even terabytes of memory. This
is completely normal and, in a nutshell, is a good thing — it reduces the amount of physical I/O and
recompilations and improves the performance of the system. In reality, adding more memory to the
servers is often the fastest and cheapest way to improve performance of the system.

 Non-Enterprise editions of SQL Server have a limit on the amount of memory they can utilize. Standard
edition can use at most 128 GB of RAM in SQL Server 2014-2016 or 64 GB of RAM in earlier versions. Express
edition is limited to 1 GB.

 You can check SQL Server memory usage by analyzing performance counters from the SQL Server:
Memory Manager object. Total Server Memory (KB) indicates how much memory SQL Server is consuming.
 Target Server Memory (KB) indicates the ideal amount of memory SQL Server wants to consume. A situation
where Total Server Memory (KB) is significantly less than Target Server Memory (KB) can indicate memory
pressure. Alternatively, you can use the sys.dm_os_process_memory view to obtain this information.

 It is recommended you set the Maximum Server Memory setting in the SQL Server configuration. In
SQL Server 2012 and above, this setting applies to all SQL Server internal components. In SQL Server prior to
2012, this setting controls the size of the buffer pool, and you need to reduce it to factor in the memory usage
of the other components. In a majority of cases, those components will require an extra 1 to 2 GB of RAM
reserved.

 The Maximum Server Memory value should leave enough memory for the OS and applications running
on the server. It is best to fine-tune it on each individual server. As a rule of thumb, you can start by reserving
4 GB for the first 16 GB of RAM and 1 GB per every 8 GB thereafter. For example, a server with 128 GB of
RAM would lead to (128-16) / 8 + 4 = 110 GB of RAM to start with. Obviously, reduce this number, reserving
memory for other applications, in case of non-dedicated SQL Server instances.

 After the initial Maximum Server Memory value is set, you should monitor the memory/available
mbytes performance counter, fine-tuning the Maximum Server Memory value as needed. You should always
keep at least 500 MB of available memory (and even more on servers with a large amount of RAM installed)
to avoid memory pressure situations.

 It is also beneficial to give the SQL Server startup account the Lock Pages in Memory permission to
prevent a situation where SQL Server memory is paged to disk. You can set it up in Group Policy (gpedit.msc)
editor. Lock Pages in Memory is supported in both Enterprise and Standard editions; however, in Standard
Edition of SQL Server 2005 and 2008 it requires a certain service pack level to work.

http://technet.microsoft.com/en-us/library/cc966413.aspx

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

576

 The 32-bit edition of SQL Server requires you to enable the Lock Pages in Memory privilege and the
 AWE Enable setting to utilize the extended memory of about 4 GB. However, I purposefully do not dive into
memory configuration in 32-bit editions; there is absolutely no reason nowadays to use 32-bit OS and SQL
Server. The 64-bit edition provides better performance, and it is beneficial to upgrade. It is worth mentioning
again that SQL Server 2016 does not even come with a 32-bit edition.

 Memory Allocation
 All memory allocations in SQL Server are done through SQLOS. Internally, SQLOS partitions the memory
into memory nodes based on the server’s NUMA configuration. For example, a server with four NUMA
nodes will have four memory nodes. A server without NUMA hardware will have just a single memory node.

 Each memory node has a memory allocator component that is responsible for memory allocations,
performing them by calling various Windows API methods. Prior to SQL Server 2012, memory nodes
used different memory allocators for single- and multi-page allocations, called single-page allocator and
 multi-page allocator . Starting with SQL Server 2012, there is just one memory allocator called any size page
allocator , which handles both types of allocations. You can track memory usage and allocations on a per-
memory node basis with the sys.dm_os_memory_nodes view.

 There is another key element of SQL Server memory architecture called memory clerks . Each major
component of SQL Server has its own memory clerk, which works as the proxy between the component and
the memory allocator. When the component needs the memory, it requests the corresponding memory
clerk, which in turn gets the memory from the memory allocator. Each memory clerk tracks the allocation
statistics, which allows you to determine memory usage by the individual components.

 Listing 28-15 shows the code that returns the ten largest memory consumers on the server. Figure 28-
12 shows the output from one of the production servers. In SQL Server prior to 2012, you should replace
the pages_kb column with the summary of the single_page_kb and multi_pages_kb columns due to the
different memory allocators SQL Server uses.

 Listing 28-15. Analyzing memory clerks (SQL Server 2012 and above)

 select top 10
 [type] as [Memory Clerk]
 ,convert(decimal(16,3),sum(pages_kb) / 1024.0) as [Memory Usage(MB)]
 from sys.dm_os_memory_clerks with (nolock)
 group by [type]
 order by sum(pages_kb) desc

 Figure 28-12. Latch statistics

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

577

 Some of the common memory clerks are the following:

 MEMORYCLERCK_SQLBUFFERPOOL clerk shows the memory usage of the buffer pool.
It is normal to have high memory usage by this clerk.

 CACHESTORE_SQLCP clerk displays memory usage of ad-hoc, auto-parameterized,
and prepared plans. High memory usage by this clerk often indicates a large
amount of ad-hoc queries in the system. Check if Optimize for Ad-hoc Workload
setting is enabled and then parameterize the queries.

 CACHESTORE_OBJCP clerk is responsible for memory usage of compiled execution
plans for stored procedures, functions, and triggers.

 CACHESTORE_PHDR clerk indicates memory usage of bound trees, the structures
created by Query Optimizer.

 USERSTORE_TOKENPERM clerk shows memory usage of security token store. Some
SQL Server versions have known bugs related to USERSTORE_TOKENPERM growth.
Apply the latest service pack if you experience large memory usage by this
clerk. As a temporary solution, you can clear the token store by using the DBCC
FREESYSTEMCACHE(‘TokenAndPermUserStore’) command.

 OBJECTSTORE_LOCK_MANAGER clerk displays the memory usage of the Lock
Manager. A large amount of memory consumed by the Lock Manager can
indicate a suboptimal transaction strategy in the system; for example, the use of
large batch updates in long-running transactions.

 MEMORYCLERK_SQLQERESERVATIONS clerk is responsible for query memory
grants reservation. A large amount of memory consumed by this clerk indicates
excessive memory grants that reduce the size of the buffer pool. It is beneficial to
analyze why queries require such memory grants if it happens.

 Finally, the DBCC MEMORYSTATUS command provides information about SQL Server memory usage along
with memory node and memory clerk statistics. Even though this information is very detailed, in many
cases it is easier to use the sys.dm_os_memory_clerks and sys.dm_os_memory_nodes views to perform the
filtering, grouping, and aggregation in the queries.

 What to Do When the Server Is Not Responding
 Situations where SQL Server stops responding, or where it is not accepting user requests, do not happen very
often. Nevertheless, they do sometimes happen, and the first and most important rule is to not panic. SQL
Server always treats data consistency as its top priority, and it is highly unlikely that something will happen
to the data.

 As a first step, you should validate that the problem is not an infrastructure-related one. You should
check that the server and network are up and running and that the problem is not isolated to a particular
client workstation or subset of the network. It is entirely possible that the problem is not related to SQL
Server at all. For example, changes in a firewall configuration or a network switch malfunction could block
communication between SQL Server and client applications.

 Next, you should check the SQL Server error log. Some conditions, such as prolonged worker thread
starvation, leave error messages in the log, notifying the system administrator about the problem. Moreover,
such conditions could introduce unhandled internal exceptions and mini-dumps. Unfortunately, there is no
guarantee that SQL Server will recover after such exceptions, and in some cases you will need to restart it.
The key point of a restart, however, is performing a root-cause analysis of the problem. You need to analyze
the error logs and default trace, do the research, and, in some cases, open a support case with Microsoft to
make sure that the problem is detected and addressed.

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

578

 ■ Note Unhandled exceptions often occur because of bugs in SQL Server, which may already be fixed in the
most recent service packs and cumulative updates. Consider applying them, and then open a support case with
Microsoft CSS if this does not help.

 You might need to connect to SQL Server for further troubleshooting. Fortunately, SQL Server 2005
introduced a special connection called Dedicated Admin Connection (DAC) that can be used for such a
purpose. SQL Server reserves a private scheduler and a small amount of memory for DAC, which will allow
you to connect even when SQL Server does not accept regular connections.

 By default, DAC is available only locally. In some cases, when a server is completely overloaded, the
operating system does not have adequate resources to handle user sessions, which prevents you from using
DAC in local mode. You can change the configuration setting to allow a remote DAC connection with the
code shown in Listing 28-16 . Obviously, it is better to enable this setting during initial server configuration
rather than waiting until problems occur.

 Listing 28-16. Enabling remote admin connection

 exec sp_configure 'remote admin connections', 1
 go
 reconfigure
 go

 You can connect to SQL Server with DAC by using the ADMIN: server-name prefix in the Management
Studio connection box or with the -A option in sqlcmd . Only members of the sysadmin server role are
allowed to connect, and only one session can use a DAC connection at any point in time.

 ■ Important You should use the connection dialog initiated from the Query window when you use DAC from
Management Studio. Object Explorer uses multiple database connections by design, and therefore it cannot use
DAC. Make sure that Intellisense and other Management Studio plugins are disabled before you attempt this
connection.

 A DAC connection can utilize a limited amount of resources, and it has a few restrictions on what
operations can be done. For example, DAC does not support parallel query execution or backup/restore
functions. It is designed for troubleshooting, and you should use DAC only for such a purpose.

 We have already discussed worker thread starvation as one reason SQL Server may become
unresponsive. Another possibility is run-away queries , which consume a major part of the resources on the
server. You can detect such queries via the sys.dm_exec_requests view, as shown in Listing 28-17 .

 Listing 28-17. Detecting run-away queries

 select top 10
 er.session_id, er.start_time, er.cpu_time, er.status, er.command, er.blocking_session_id
 ,er.wait_time, er.wait_type, er.last_wait_type, er.logical_reads
 ,substring(qt.text, (er.statement_start_offset/2)+1,
 ((case er.statement_end_offset
 when -1 then datalength(qt.text)
 else er.statement_end_offset
 end - er.statement_start_offset)/2)+1) as SQL

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

579

 from
 sys.dm_exec_requests er with (nolock)
 cross apply sys.dm_exec_sql_text(er.sql_handle) qt
 order by cpu_time desc

 You can terminate a session with a run-away query using the KILL command. You should be careful,
however, and analyze what the session is doing. SQL Server rolls back the active session transaction when
you terminate it, which could be time- and resource-consuming in the case of heavy data modifications. It is
entirely possible that allowing a session to finish a task is a faster and better option.

 You can also consider using Resource Governor to prevent tasks from consuming all SQL Server
resources. This could be especially useful if a server hosts multiple databases that belong to multiple
systems. You can separate connections to different systems between resource pools, configured in such a
way that leaves some resources available for every system.

 Working with Baseline
 As you have already observed, I regularly mention the baseline in this chapter. Creating a baseline is an
essential task for any database and IT professional. It allows you to be proactive and detect problems in the
early stages before they become visible and impact system health and performance.

 Many performance counters and metrics have very limited use by themselves. Some of them have
a threshold or bad value that indicates a problem; however, a good value does not always guarantee that
a system is healthy. It is always beneficial to look at dynamics and trends and monitor how values are
changing.

 Consider the page life expectancy counter. The value of 10,000 is perfectly healthy for a server with
64 GB of memory. However, if it were 50,000 last week, this would indicate that something has changed.
Perhaps the last deployment dropped some indexes or introduced nonoptimized queries that triggered a
heavy I/O load. Monitoring the page life expectancy value over time allows you to be proactive and to start
investigating and addressing the problem before it starts affecting other parts of the system.

 Another good example is I/O subsystem performance. Every I/O subsystem has some breaking point
where performance starts to drop exponentially with load increase. It is always beneficial to determine the
limits before the initial deployment and to monitor how I/O load changes over time, making sure that there
is still room to grow. The baseline will help you with monitoring and analysis.

 ■ Tip You can use the DiskSpd utility for stress testing the I/O subsystem before the initial deployment. You
can download it from https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223 .

 There are plenty of tools on the market that can help you automate baseline creation and monitoring.
However, you can easily implement it manually by collecting and persisting metrics on a regular basis using
various data management objects and Windows performance counters exposed through the sys.dm_os_
performance_counters view. We have already discussed quite a few of them, and obviously you can expand
upon these with other information as needed.

 It is very important to capture information for the system workload, which includes the number of
connections, number of batches and transactions per second, size of the database, and other similar metrics.
This will help you analyze trends, correlate workload with system load, and perform capacity analysis when
needed.

 It is also very beneficial to capture information about the performance of the system-critical parts
of the code. Application developers can collect and persist the response time of the most critical queries
and/or stored procedures, which will allow you to monitor trends, making sure that critical code performs
satisfactorily all of the time.

https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223

CHAPTER 28 ■ SYSTEM TROUBLESHOOTING

580

 Finally, creating a baseline is a very helpful first step in system troubleshooting. It helps you evaluate
that you achieved desirable results, and you can then demonstrate them to management or customers.

 Summary
 Databases do not live in a vacuum. They are a part of a large ecosystem that includes various hardware
and software components. The slowness and unresponsiveness of client applications are not necessarily
database- or SQL Server – related. The root cause of the problem can be anywhere in the system, from
hardware misconfiguration to incorrect application code.

 It is important to check the entire system infrastructure as an initial step in the troubleshooting process.
This includes the performance characteristics of the hardware, network topology and throughput, operating
system and SQL Server configuration, processes, and databases running on the server.

 SQL Server consists of several major components, including the protocol layer, query processor, storage
engine, utilities, and SQL Server Operating System (SQLOS). SQLOS is the layer between Windows and all
other SQL Server components, and it is responsible for scheduling, resource management, and several other
low-level tasks.

 SQLOS creates a number of schedulers equal to the number of logical processors in the system. Every
scheduler is responsible for managing a set of workers that perform a job. Every task is assigned to one or
more workers for the duration of the execution.

 Tasks stay in one of three major states during execution: running (currently executing on scheduler),
 runnable (waiting for scheduler to execute), and suspended (waiting for the resource). SQL Server tracks
the cumulative waiting time for the different types of waits and exposes this information to the users. Wait
statistics analysis is a common performance troubleshooting technique that analyzes top system wait types
and eliminates the root causes of waits.

 It is essential that you create a baseline by collecting and monitoring various performance and load
metrics in the system. A baseline helps you to be proactive in detecting and resolving problems in the early
stages before they start affecting the users. It shows how system behavior and load changes over time, which
helps in capacity analysis and prevents situations where a system outgrows the hardware.

581© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_29

 CHAPTER 29

 Query Store

 Query Store is a new SQL Server 2016 component that collects execution plans and runtime statistics for
the queries in the system. It helps you to detect suboptimal queries, shows how execution plans evolve over
time, and allows you to force specific plans in order to address parameter sniffing–related issues.

 This chapter provides an overview of the Query Store, explains how it is integrated into the query
processing pipeline, and demonstrates how you can use it during system monitoring and performance
troubleshooting.

 Why Query Store?
 Even though every database system is unique, there are several common tasks and problems each database
professional has to deal with. Performance tuning is, perhaps, the most common one.

 Performance tuning is a complex process. It covers many topics, such as hardware, OS and SQL Server
setup and configuration, and application and database design , among other things. Query optimization
is one of the top tasks in the list. The key challenge here is choosing what queries to optimize. It is neither
possible nor feasible to optimize all queries in the system, and you need to focus on those that will provide
you with the best return on investment. In reality, this means frequently executed queries that introduce
heavy I/O activity and/or consume a large amount of CPU power and memory.

 It is not always easy to detect such queries. Even though SQL Server keeps runtime execution statistics
for cached execution plans, it has a few limitations. Plans can be removed from the cache for various reasons
or not be cached at all; for example; when statement-level recompile is used. Finally, plan cache runtime
statistics are not persisted in the database and will be cleared upon SQL Server restart.

 You can address some of those limitations by capturing query runtime statistics with Extended Events;
however, it will require complex analysis afterward and can also introduce performance overhead on already
busy servers.

 The second common type of problem database professionals have to address is performance regression
introduced by parameter sniffing. As you will remember from Chapter 26 , SQL Server recompiles queries
because of statistics updates, and atypical parameter values at recompilation can lead to inefficient
execution plans being cached and reused.

 It is possible to proactively protect critical queries from such issues. However, this usually requires
index or query hints, plan guides, or code changes. Any of these approaches has downsides, especially in the
maintainability arena. In reality, database professionals usually deal with these problems reactively, after
they have occurred in the system and users have reported performance issues.

 Fortunately, the Query Store helps to address both of these challenges. You can consider it to be the SQL
Server flight data recorder ; when the Query Store is enabled, SQL Server captures and persists the runtime
statistics and execution plans of the queries in the database. It shows you how execution plans evolve over
time and allows you to force a specific execution plan for the query.

http://dx.doi.org/10.1007/978-1-4842-1964-5_26

CHAPTER 29 ■ QUERY STORE

582

 Query Store is available in every edition of SQL Server 2016 and in Microsoft Azure SQL Databases. It
introduces some overhead to SQL Server when it is enabled; however, such overhead is relatively small. We
will discuss how to monitor such overhead later in the chapter.

 Query Store Configuration
 Query Store is a database-level feature and is disabled by default. You can enable it in SQL Server
Management Studio (SSMS) or in T-SQL with the ALTER DATABASE SET QUERY_STORE = ON command.

 Query Store can run in two operation modes. In the default, READ_WRITE mode, SQL Server collects
and persists execution plans and runtime statistics in the Query Store and allows you to work with it. In
 READ_ONLY mode, you can query the data from the Query Store; however, SQL Server does not collect any
new information there. You can set the operation mode using the ALTER DATABASE SET QUERY_STORE
(OPERATION_MODE = mode) command.

 The SSMS interface is a bit confusing. You can access the Query Store configuration through Query
Store page of the Database Properties window. There are two Operation Mode settings available within
the General group, as shown in Figure 29-1 . Operational Mode (Actual) shows whether the Query Store is
enabled as well as its current mode. Operational Mode (Requested) allows you to choose the new value or
disable the Query Store, which will take effect after you apply the changes.

 Figure 29-1. Query Store configuration in SSMS

CHAPTER 29 ■ QUERY STORE

583

 In order to reduce the overhead, the Query Store keeps recently captured information in the in-memory
cache, flushing it to disk based on the schedule defined by the DATA_FLUSH_INTERVAL_SECONDS setting (Data
Flush Interval (Minutes) in SSMS), with a default value of 15 minutes. In a nutshell, this value controls the
amount of captured data, which will be lost in the event of a SQL Server crash.

 The Query Store aggregates runtime statistics over a fixed time interval controlled by the INTERVAL_
LENGTH_MINUTES setting (Statistics Collection Interval in SSMS), with a default value of 60 minutes. Reducing
this interval provides you with better granularity; however, it could increase the disk space required to store
the information. Unfortunately, SQL Server does not allow you to specify an arbitrary value and you should
choose one of the following: 1, 5, 10, 15, 30, 60, or 1440 minutes.

 You can control the size of Query Store’s on-disk tables with the MAX_STORAGE_SIZE_MB (Max Size (MB)
in SSMS) setting. Once the size is reached, the Query Store becomes read-only. By default, SQL Server 2016
RTM allows Query Store to use up to 100 MB of disk space. You should remember that Query Store tables
are placed into the primary filegroup and take this into consideration when you design database layout and
your Disaster Recovery strategy.

 The Query Store cleanup policy can be configured with STALE_QUERY_THRESHOLD_DAYS (Stale Query
Threshold (Days) in SSMS) and SIZE_BASED_CLEANUP_POLICY (Size Based Cleanup Mode in SSMS)
settings. The first one specifies how long information is retained in the Query Store. The second controls
the automatic cleanup process, which runs when the Query Store is about 80 percent full and removes
information about the least expensive queries.

 ■ Important SQL Server 2016 RTM has a bug that prevents automatic data cleanup in editions other
than Enterprise and Developer. You should disable it in the affected editions by using the ALTER DATABASE
SET QUERY_STORE (CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 0), SIZE_BASED_CLEANUP_

MODE = OFF) command and implement manual cleanup, as we will discuss later in this chapter. The bug
is fixed in CU1.

 The QUERY_CAPTURE_MODE setting (Query Store Capture Mode in SSMS) controls which queries are
captured. It has one of three values: ALL , NONE , or AUTO . The first two values are self-explanatory. The last one
triggers an internal algorithm that filters out insignificant queries.

 Finally, the MAX_PLAN_PER_QUERY setting sets a limit on the number of plans maintained for each query.
This setting is unavailable in SSMS.

 The sys.database_query_store_options view provides you with information about current Query
Store configuration settings and its size.

 Query Store Internals
 Internally, the Query Store consists of two related parts: plan store and runtime statistics store . SQL Server
interacts with them during both query compilation and execution stages. When a query is compiling, SQL
Server works with the plan store, updating its data and checking if there is a forced plan available. During
query execution, SQL Server updates its execution statistics in the runtime statistics store.

 As you already know, each store consists of both an in-memory cache and disk data. The new
information is placed into the cache and asynchronously written to disk based on a schedule defined by
the DATA_FLUSH_INTERVAL_SECONDS setting . In-memory cache can be also flushed manually with the sys.
sp_query_store_flush_db stored procedure. SQL Server combines the data from both sources when you
query the data from the Query Store.

 Figure 29-2 illustrates a high-level SQL Server Query Store workflow.

CHAPTER 29 ■ QUERY STORE

584

 The Query Store is fully integrated into the query processing pipeline, as shown in Figure 29-3 .

 Figure 29-2. High-level SQL Server Query Store workflow

 Figure 29-3. Query-processing pipeline

 When a query needs to be executed, SQL Server looks up the execution plan in the plan cache. If a plan
is found, SQL Server checks if the query needs to be recompiled due to a statistics update or other factors, or
if there is a new forced plan created or old forced plan dropped from the Query Store.

 During compilation, SQL Server checks if the query has a forced plan available. When that happens,
the query essentially gets compiled with the forced plan, similar to when the USE PLAN hint is used. If the
resulting plan is valid, it is cached in the plan cache and reused afterward.

CHAPTER 29 ■ QUERY STORE

585

 If the forced plan is no longer valid—for example, when the user has dropped an index referenced in
the forced plan—SQL Server does not fail the query, but rather compiles it again without the forced plan and
caches the new plan afterward. The Query Store, on the other hand, persists both plans, marking the forced
plan as invalid. All of this happens transparently to the applications.

 You can access the Query Store data through several views, as shown in Figure 29-4 .

 Figure 29-4. Query Store views

 The plan store–related views include the following:

 sys.query_store_query provides information about queries, their compilation
statistics, and last execution time. You can read about this view at https://msdn.
microsoft.com/en-us/library/dn818156.aspx .

 sys.query_store_query_text shows information about query text. More
information about this view is available at https://msdn.microsoft.com/en-us/
library/dn818159.aspx .

 sys.query_context_setting contains information about context settings
associated with the query. It includes SET options, default schema for the session,
language, and other attributes. As you will remember from Chapter 26 , SQL
Server generates and caches separate execution plans based on these settings.
This level of detail helps you to diagnose cases where the plan cache contains
a large number of plans for the same query. The documentation is available at
 https://msdn.microsoft.com/en-us/library/dn818148.aspx .

https://msdn.microsoft.com/en-us/library/dn818156.aspx
https://msdn.microsoft.com/en-us/library/dn818156.aspx
https://msdn.microsoft.com/en-us/library/dn818159.aspx
https://msdn.microsoft.com/en-us/library/dn818159.aspx
http://dx.doi.org/10.1007/978-1-4842-1964-5_26
https://msdn.microsoft.com/en-us/library/dn818148.aspx

CHAPTER 29 ■ QUERY STORE

586

 sys.query_store_plan provides information about query execution plans. The
 is_forced_plan column indicates if the plan is forced. Last_force_failure_
reason provides the reason why the forced plan was not applied to the query.
You can read about this view at https://msdn.microsoft.com/en-us/library/
dn818155.aspx .

 As you can see, each query can have multiple entries in the sys.query_store_query and sys.query_
store_plan views based on session context options, recompilations, and other factors.

 The runtime statistics store is represented by two views, as follows:

 sys.query_store_runtime_stats_interval contains information about
statistics collection intervals. As you should remember, the Query Store
aggregates execution statistics over fixed time intervals defined by the INTERVAL_
LENGTH_MINUTES setting. The MSDN link is https://msdn.microsoft.com/en-
us/library/dn818147.aspx .

 sys.query_store_runtime_stats references the sys.query_store_plan view
and contains information about runtime statistics for a specific plan during a
particular sys.query_store_runtime_stats_interval interval. It provides
information about count of executions, CPU time and duration of the calls,
logical and physical I/O statistics, transaction log usage, degree of parallelism,
memory grant size, and a few other useful metrics. You can read more at
 https://msdn.microsoft.com/en-us/library/dn818158.aspx .

 Finally, the Query Store allows you to collect data from the In-Memory OLTP workload. When Query
Store is enabled, SQL Server automatically collects queries, plans, and optimization statistics for In-Memory
OLTP objects without any additional configuration changes required. However, runtime statistics are not
collected by default, and you need to explicitly enable this with the sys.sp_xtp_control_query_exec_stats
stored procedure.

 Keep in mind that the collection of runtime statistics introduces overhead, which can degrade the
performance of the In-Memory OLTP workload. It is also important to remember that SQL Server does not persist
the In-Memory OLTP runtime statistics collection setting, and it will be disabled upon SQL Server restart.

 ■ Note We will discuss In-Memory OLTP in detail in Part VIII of this book.

 Usage Scenarios
 SQL Server provides you with a rich set of tools with which to work with Query Store in both SSMS and
T-SQL . Let’s look at them in detail.

 As a first step, let’s collect some data and emulate performance regression resulting from parameter
sniffing. I will use the table and stored procedure defined in Listings 26-1 and 26-2 in Chapter 26 , calling
them in two sessions, as shown in Listing 29-1 .

https://msdn.microsoft.com/en-us/library/dn818155.aspx
https://msdn.microsoft.com/en-us/library/dn818155.aspx
https://msdn.microsoft.com/en-us/library/dn818147.aspx
https://msdn.microsoft.com/en-us/library/dn818147.aspx
https://msdn.microsoft.com/en-us/library/dn818158.aspx
http://dx.doi.org/10.1007/978-1-4842-1964-5_26

CHAPTER 29 ■ QUERY STORE

587

 Listing 29-1. Emulating peformance regression resulting from parameter sniffing

 -- Session 1
 while 1 = 1
 begin
 exec dbo.GetAverageSalary @Country='USA';
 waitfor delay '0:00:01.000';
 end;

 -- Session 2
 dbcc freeproccache;
 exec dbo.GetAverageSalary @Country='CANADA';

 Working with Query Store in SSMS
 After you have enabled Query Store in the database, you can see the Query Store folder in the Object
Explorer, as shown in Figure 29-5 . This folder contains four interactive reports that allow you to analyze
collected data, force execution plans for the queries, and perform several other actions.

 Figure 29-5. Query Store folder in Object Explorer

 The Regressed Queries report, shown in Figure 29-6 , displays the queries that have performance
regressed over time. You can configure regression criteria and a time frame for the analysis, along with
several other parameters.

CHAPTER 29 ■ QUERY STORE

588

 You can choose the query to display in the graph on the top left. The top right portion of report
illustrates collected execution plans for the selected query. You can click on the dots representing different
execution plans and see them at the bottom. You can also compare different execution plans if needed.

 The Force Plan button allows you to force a selected plan for the query. It calls the sys.sp_query_
store_force_plan stored procedure internally. Similarly, the Unforce Plan button removes the forced plan
by calling the sys.sp_query_store_unforce_plan stored procedure.

 The Regressed Queries report is a great tool with which to troubleshoot parameter sniffing–related
issues in the system and quickly fix them by forcing specific execution plans.

 The Top Resource Consuming Queries report, shown in Figure 29-7 , allows you to detect the most
resource intensive queries in the system. In a nutshell, it works in a manner similar to the sys.dm_exec_
query_stats view; however, it does not have that view’s limitations, such as dependency on the plan cache.
This report is a great tool that helps you to quickly identify optimization targets in the system.

 Figure 29-6. Regressed Queries report

CHAPTER 29 ■ QUERY STORE

589

 The Overall Resource Consumption report shows you statistics and resource usage of the workload over
time intervals. It allows you to detect and analyze spikes in resource usage and drill down to the queries that
introduce such spikes. Figure 29-8 illustrates the output of the report.

 Figure 29-7. Top Resource Consuming Queries report

CHAPTER 29 ■ QUERY STORE

590

 The Tracked Queries report allows you to monitor execution plans and statistics for individual queries.
It provides similar information as the Regressed Queries and Top Resource Consuming Queries reports but in
the scope of individual queries. Figure 29-9 illustrates this.

 Figure 29-8. Overall Resource Consumption report

CHAPTER 29 ■ QUERY STORE

591

 Working with Query Store from T-SQL
 Even though SSMS provides a rich set of tools with which to work with the Query Store, in some cases it is
beneficial to use T-SQL and work with the Query Store data directly. Let’s look at several common scenarios
in which this is helpful.

 The first very common task is searching for the most resource intensive queries while choosing targets
for further performance optimizations. You already saw how to get execution statistics from the sys.dm_
exec_query_stats view in the previous chapter. As you remember, this view depends on the plan cache, and
you often need to cross-check the data with Extended Events during analysis. Query Store can provide you
with similar information without any plan cache dependencies, which dramatically simplify the process.

 Listing 29-2 illustrates the code that returns information for 50 recent, most I/O-intensive queries in
the system. As you already know, the Query Store aggregates execution statistics over time intervals, and
therefore you need to aggregate data from multiple sys.query_store_runtime_stats rows. The output will
include data for all intervals that ended within the last 24 hours, grouping it by queries and their execution
plans.

 Listing 29-2. Getting information about most expensive queries

 select top 50
 q.query_id, qt.query_sql_text, qp.plan_id, qp.query_plan
 ,sum(rs.count_executions) as [Execution Cnt]
 ,convert(int,sum(rs.count_executions *
 (rs.avg_logical_io_reads + avg_logical_io_writes)) /
 sum(rs.count_executions)) as [Avg IO]
 ,convert(int,sum(rs.count_executions *
 (rs.avg_logical_io_reads + avg_logical_io_writes))) as [Total IO]
 ,convert(int,sum(rs.count_executions * rs.avg_cpu_time) /

 Figure 29-9. Tracked Queries report

CHAPTER 29 ■ QUERY STORE

592

 sum(rs.count_executions)) as [Avg CPU]
 ,convert(int,sum(rs.count_executions * rs.avg_cpu_time)) as [Total CPU]
 ,convert(int,sum(rs.count_executions * rs.avg_duration) /
 sum(rs.count_executions)) as [Avg Duration]
 ,convert(int,sum(rs.count_executions * rs.avg_duration))
 as [Total Duration]
 ,convert(int,sum(rs.count_executions * rs.avg_physical_io_reads) /
 sum(rs.count_executions)) as [Avg Physical Reads]
 ,convert(int,sum(rs.count_executions * rs.avg_physical_io_reads))
 as [Total Physical Reads]
 ,convert(int,sum(rs.count_executions * rs.avg_query_max_used_memory) /
 sum(rs.count_executions)) as [Avg Memory Grant Pages]
 ,convert(int,sum(rs.count_executions * rs.avg_query_max_used_memory))
 as [Total Memory Grant Pages]
 ,convert(int,sum(rs.count_executions * rs.avg_rowcount) /
 sum(rs.count_executions)) as [Avg Rows]
 ,convert(int,sum(rs.count_executions * rs.avg_rowcount)) as [Total Rows]
 ,convert(int,sum(rs.count_executions * rs.avg_dop) /
 sum(rs.count_executions)) as [Avg DOP]
 ,convert(int,sum(rs.count_executions * rs.avg_dop)) as [Total DOP]
 from
 sys.query_store_query q join sys.query_store_plan qp on
 q.query_id = qp.query_ id
 join sys.query_store_query_text qt on
 q.query_text_id = qt.query_text_id
 join sys.query_store_runtime_stats rs on
 qp.plan_id = rs.plan_id
 join sys.query_store_runtime_stats_interval rsi on
 rs.runtime_stats_interval_id = rsi.runtime_stats_interval_id
 where
 rsi.end_time >= dateadd(day,-1,getdate())
 group by
 q.query_id, qt.query_sql_text, qp.plan_id, qp.query_plan
 order by
 [Avg IO] desc;

 Obviously, you can choose different criteria than average I/O. You can also add predicates to the WHERE
and/or HAVING clauses of the query to narrow down the results. For example, you can add the filter by DOP if
you want to detect queries that use parallelism in OLTP environments, then optimize them or fine-tune the
 Cost Threshold for Parallelism value.

 ■ Important SQL Server 2016 RTM has a bug that sometimes corrupts the text representation of the
execution plan returned by the sys.query_store_plan view when it is joined with the other views in the same
statement. You can implement a workaround by obtaining the plan_id first and then querying the sys.query_
store_plan view, without any joins involved. The bug is fixed in one of the CU releases.

 Listing 29-3 returns information about query regressions that occurred in the last 72 hours. It uses a
two-times increase of the average query duration as the regression criteria and returns one row per query
with the plans that have the lowest and highest average durations. You can use query_id from the output to
perform further analysis of the regression.

CHAPTER 29 ■ QUERY STORE

593

 Listing 29-3. Getting information about regressions

 ;with Regressions(query_id, query_text_id, plan1_id, plan2_id, plan1
 ,plan2, dur1, dur2, row_num)
 as
 (
 select
 q.query_id, q.query_text_id, qp1.plan_id, q2.plan_id
 ,qp1.query_plan, q2.query_plan, rs1.avg_duration, q2.avg_duration
 ,row_number() over (partition by qp1.plan_id order by rs1.avg_duration)
 from
 sys.query_store_query q join sys.query_store_plan qp1 on
 q.query_id = qp1.query_id
 join sys.query_store_runtime_stats rs1 on
 qp1.plan_id = rs1.plan_id
 join sys.query_store_runtime_stats_interval rsi1 on
 rs1.runtime_stats_interval_id = rsi1.runtime_stats_interval_id
 cross apply
 (
 select top 1
 qp2.query_plan, qp2.plan_id, rs2.avg_duration
 from
 sys.query_store_plan qp2
 join sys.query_store_runtime_stats rs2 on
 qp2.plan_id = rs2.plan_id
 join sys.query_store_runtime_stats_interval rsi2 on
 rs2.runtime_stats_interval_id =
 rsi2.runtime_stats_interval_id
 where
 q.query_id = qp2.query_id and
 qp1.plan_id <> qp2.plan_id and
 rsi1.start_time < rsi2.start_time and
 rs1.avg_duration * 2 <= rs2.avg_duration
 order by
 rs2.avg_duration desc
) q2
 where
 rsi1.start_time >= dateadd(day,-3,getdate())
)
 select
 r.query_id, qt.query_sql_text, r.plan1_id, r.plan1, r.plan2_id, r.plan2
 ,r.dur1, r.dur2
 from
 Regressions r join sys.query_store_query_text qt on
 r.query_text_id = qt.query_text_id
 where
 r.row_num = 1
 order by
 r.dur2 / r.dur1 desc;

CHAPTER 29 ■ QUERY STORE

594

 You can also use the Query Store to detect queries that pollute the plan cache. Listing 29-4 illustrates
how you can get information about queries that generate multiple execution plans because of different
context settings. The two most common conditions when it happens are sessions that use different SET
options and queries that reference objects without schema names.

 Listing 29-4. Queries with multiple context settings

 select
 q.query_id, qt.query_sql_text
 ,count(distinct q.context_settings_id) as [Context Setting Cnt]
 ,count(distinct qp.plan_id) as [Plan Count]
 from
 sys.query_store_query q join sys.query_store_query_text qt on
 q.query_text_id = qt.query_text_id
 join sys.query_store_plan qp on
 q.query_id = qp.query_id
 group by
 q.query_id, qt.query_sql_text
 having
 count(distinct q.context_settings_id) > 1
 order by
 count(distinct q.context_settings_id);

 Listing 29-5 shows how to find similar queries that have duplicated query_hash values and a low
execution count. Usually, these queries belong to a non-parameterized ad-hoc workload in the system.
You should parameterize these queries in the code, or, if that is impossible, you can consider forcing
parameterization on the database level or with plan guides, as we discussed in Chapter 26 .

 Listing 29-5. Detecting queries with the same hash

 select top 100
 q.query_hash
 ,count(*) as [Query Count]
 ,avg(rs.count_executions) as [Avg Exec Count]
 from
 sys.query_store_query q join sys.query_store_plan qp on
 q.query_id = qp.query_id
 join sys.query_store_runtime_stats rs on
 qp.plan_id = rs.plan_id
 group by
 q.query_hash
 having
 count(*) > 1
 order by
 [Avg Exec Count] asc, [Query Count] desc

 As you can see, the information from Query Store provides you with endless possibilities for analysis
and performance tuning in your system.

http://dx.doi.org/10.1007/978-1-4842-1964-5_26

CHAPTER 29 ■ QUERY STORE

595

 Managing and Monitoring Query Store
 Even though Query Store should not introduce noticeable performance overhead to the system, it is
important to monitor its health and performance impact. This will allow you to fine-tune Query Store
parameters in a way that minimizes performance overhead and provides you with granular enough data for
analysis.

 The Query Store size depends on the data retention policy, which is controlled by the STALE_QUERY_
THRESHOLD_DAYS and SIZE_BASED_CLEANUP_POLICY settings, and the collection mode, which is specified by
the QUERY_CAPTURE_MODE and MAX_PLAN_PER_QUERY settings. Moreover, the size of the runtime statistics store
greatly depends on the aggregation interval, which is defined by the INTERVAL_LENGTH_MINUTES value. The
shorter the aggregation interval is, the more data there will be saved to the store.

 It is important to define the aggregation interval in the way that fits your needs. Keeping the INTERVAL_
LENGTH_MINUTES value unnecessarily small generates an excessive amount of data, which makes analysis
more complicated. For example, if you want to create a general baseline of your system, an aggregation
interval of one day would suffice. However, if you need a detailed analysis of how the workload changes
during the day, you should use one hour, or even lower intervals. As usual, the key is avoiding the collection
of unnecessary information in the system.

 You can analyze the size of the Query Store and its state by using the sys.database_query_store_
options view, as shown in Listing 29-6 . You should monitor the Query Store’s free space by analyzing the
 current_storage_size_mb and max_storage_size_mb values. Remember: Query Store will switch to read-
only mode when it is full.

 Listing 29-6. Analyzing Query Store state

 select actual_state_desc, desired_state_desc, current_storage_size_mb
 ,max_storage_size_mb, readonly_reason, interval_length_minutes
 ,stale_query_threshold_days, size_based_cleanup_mode_desc
 ,query_capture_mode_desc
 from sys.database_query_store_options

 You can purge data from the Query Store by using the ALTER DATABASE SET QUERY_STORE CLEAR
statement, or in Management Studio. Alternatively, you can clear the Query Store on a per-query basis by
using the sys.sp_query_store_remove_query stored procedure, as shown in Listing 29-7 . This code clears
all queries that are older than three days and were executed only once. On a side note, the sys.sp_query_
store_remove_plan stored procedure allows you to remove an individual plan from the Query Store.

 Listing 29-7. Removing queries from the Query Store

 declare
 @RecId int = -1
 ,@QueryId int
 declare
 @Queries table
 (
 RecId int not null identity(1,1) primary key,
 QueryId int not null
)

CHAPTER 29 ■ QUERY STORE

596

 insert into @Queries(QueryId)
 select p.query_id
 from sys.query_store_plan p join sys.query_store_runtime_stats rs on
 p.plan_id = rs.plan_id
 group by
 p.query_id
 having
 sum(rs.count_executions) < 2 and
 max(rs.last_execution_time) < dateadd(day,-72,getdate());

 while 1 = 1
 begin
 select top 1 @RecId = RecId, @QueryID = QueryId
 from @Queries
 where RecId > @RecId
 order by RecID;

 if @@rowcount = 0
 break;
 exec sys.sp_query_store_remove_query @QueryID;
 end;

 There are several ways in which you can monitor Query Store performance. There are several
performance counters in the SQL Server:Query Store object that allow you to track Query Store CPU usage
and disk activity.

 The Query Store exposes a large number of Extended Events. One of them, query_store_plan_
forcing_failed , fires in situations where a forced plan cannot be applied. An instance where it could
happen is when changing the database name. SQL Server keeps execution plans using a three-part object
reference, and renaming the database would invalidate the plans.

 Finally, SQL Server 2016 RTM exposes 19 Query Store–related wait types, which you can identify by
the QDS prefix in the name. These waits should not be present in the system in a large amount, with the
exception of QDS_PERSIST_TASK_MAIN_LOOP_SLEEP and QDS_ASYNC_QUEUE waits. These waits are normal, and
you should filter them out as non-essential waits during wait statistics analysis.

 Summary
 The Query Store is SQL Server 2016’s “flight data recorder” that captures execution plans and statistics for
the queries in the system. It is fully integrated into the query processing pipeline and does not depend on the
plan cache.

 Internally, the Query Store consists of two stores: the plan store, which contains information about
execution plans, and the runtime statistics store, which collects runtime execution statistics aggregated by
specific time intervals. Both stores consist of in-memory cache and disk tables. The newly collected data
is stored in-memory and flushed to disk based on a schedule. The Query Store disk tables are stored in the
 primary filegroup.

 The Query Store is extremely helpful when you need to address parameter sniffing–related performance
issues. It shows you how plans evolve over time and allows you to force a specific execution plan to a query.
You can work with the Query Store through the set of interactive reports available in Management Studio or
though the set of database views from T-SQL.

 The Query Store should not introduce noticeable performance overhead to the system. You could
monitor its impact through the set of performance counters and Extended Events. You should also prevent
the Query Store from reaching its maximum size and becoming read-only, which can happen if automatic
cleanup tasks are disabled.

 PART VI

 Inside the Transaction Log

599© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_30

 CHAPTER 30

 Transaction Log Internals

 As you already know, every database in SQL Server has one or more transaction log files in addition to data
files. The transaction log stores information about all of the changes made in the database, and it allows SQL
Server to recover databases to transactionally consistent states in case of an unexpected shutdown or crash.

 In this chapter, we will examine the internal structure of the transaction log, discuss how SQL Server
logs data modifications, and review how it performs database crash recovery. We will also cover how to
diagnose excessive transaction log growth and discuss a few best practices related to log management and
I/O file placement.

 Data Modifications, Logging, and Recovery
 SQL Server always keeps databases in a transactionally consistent state. Data modifications done from
within transactions must either be committed or be rolled back in full. SQL Server never allows data to be
transactionally inconsistent by applying just a subset of the changes from uncommitted transactions.

 This is true even when SQL Server shuts down unexpectedly. Every time SQL Server restarts, it runs
a recovery process on every database in the instance. SQL Server rolls back (undo) all changes from
uncommitted transactions and re-applies (redo) all changes done by committed transactions if they had not
been saved into data files at the time of the shutdown or crash.

 The same process happens when you restore a database from the backup. There is no guarantee that all
transactions had been completed at the time the backup was run. Therefore, SQL Server needs to recover the
database as the final step of the restore process.

 The transaction log guarantees the transactional consistency of the data in the database. It consists of
the stream of log records generated by data modification operations. Every log record has a unique, auto-
incrementing log sequence number (LSN) , and it also describes the data change. The log record includes
information about the operation and affected row; the old and new version of the data; the transaction that
performed the modification; and so forth. Moreover, some internal operations, such as CHECKPOINT , generate
their own log records.

 Every data page keeps the LSN of the last log record that modified it. At the recovery stage, SQL Server
can compare the LSNs of the log records from both the log and the data pages and find out if the most recent
changes were saved to the data files. There is enough information stored in a log record to undo or redo the
operation if needed.

 SQL Server uses write-ahead logging , which guarantees that log records are written to the log file before dirty
data pages are saved to the database. In Chapter 1 , I mentioned that log records are saved synchronously with
data modifications, while data pages are saved asynchronously during the CHECKPOINT process. That is not 100
percent accurate, however. SQL Server caches log records in a small memory cache called the log buffer , saving
multiple log records at once. This helps reduce the number of physical I/O operations required.

 Internally, the log buffer consists of 128 60KB structures called log blocks . SQL Server writes the log
block to the transaction log file in a single I/O operation. This does not mean, however, that SQL Server waits

http://dx.doi.org/10.1007/978-1-4842-1964-5_1

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

600

until the entire log block is full; the size of the data in the write request may vary from 512 bytes to 60 KB.
Moreover, SQL Server can have multiple outstanding log write requests in the queue. The maximum number
of allowed requests depends on the SQL Server version.

 Unfortunately, SQL Server documentation is a bit confusing and often references log blocks as log
buffers, stating that every database has many of them. In the end, what matters is that every database caches
log records in memory before flushing them to disk in batches of up to 60 KB.

 Now, let’s look at how data modifications work in greater detail. Let’s assume that we have a system
with an empty log buffer, and the last LSN in the transaction log is 7213, as shown in Figure 30-1 . Let’s also
assume that there are two active transactions: T1 and T2 . Each of these transactions has BEGIN TRAN log
records already saved in the transaction log.

 Figure 30-1. Data modifications: Initial state

 Figure 30-2. Data modifications: T1 updates one of the rows

 As a first step, let’s assume that transaction T1 updates one of the rows from page (1:24312). As you can
see in Figure 30-2 , this operation generates a new log record, which has been placed into the log buffer. In
addition, it modifies the data page, marking it as dirty, updating the LSN in the page header, and changing
the data row. While the log record has not yet been saved (hardened) to the log file, it is not critical as long as
the data page has not been saved in the data file. Both log record and modifications on the data page will be
gone if there is a SQL Server crash, which is fine, because the transaction has not been committed.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

601

 Next, let’s assume that transaction T2 inserts a new row into page (1:26912) and transaction T1 deletes
another row on the same page. These operations generate two log records, which are placed into the log
buffer , as shown in Figure 30-3 .

 Figure 30-3. Data modifications: T1 and T2 change data on another page

 As you can see, all log records are still in the log buffer . Now, let’s assume that transaction T2 wants to
commit. This action generates another log record and forces SQL Server to flush the content of the log block
to the disk, as shown in Figure 30-4 . SQL Server hardens COMMIT and all preceding log records from the log
buffer into the transaction log, regardless of the transactions that generated them.

 ■ Note To be exact, the COMMIT operation marks the part of the log buffer that includes COMMIT and all
preceding log records as “Ready to Flush.” Another SQL Server Process, log writer , continuously scans the log
buffers and flushes “Ready to Flush” regions to the transaction log.

 Figure 30-4. Data modifications: Commit

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

602

 Client applications would receive confirmation that the transaction was committed only after all log
records were hardened. Even though the data page (1:26912) would still be dirty and would not have been
saved into the data file, hardened log records on the disk would have enough information to re-apply (redo)
all of the changes done by the committed T2 transaction. Thus, it guarantees no data loss if there were to be a
SQL Server crash.

 At this point, the system has log records hardened in the transaction log, even though the data pages in
the data files have yet to be updated. The next CHECKPOINT process saves dirty data pages and marks them as
clean in the buffer pool. CHECKPOINT also generates its own log record, as shown in Figure 30-5 .

 Figure 30-5. Data modifications: CHECKPOINT

 Figure 30-6. Data modifications: ROLLBACK

 At this time, pages in the data file store data from uncommitted transaction T1 . However, log records
in the transaction log have enough information to undo the changes if needed. When this is the case,
SQL Server performs compensation operations , which execute the opposite actions of the original data
modifications and generate compensation log records.

 Figure 30-6 shows such an example. SQL Server performed a compensation update, generating a
compensation log record with an LSN of 7219, to reverse the changes made by the original update operation
with an LSN of 7214. It also generated a compensation insert with an LSN of 7920 to compensate for the
delete operation with an LSN of 7216.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

603

 A write-ahead logging mechanism guarantees that dirty data pages are never saved into the data
files until the corresponding log records are hardened in the transaction log. The opposite, however, is
not true. The CHECKPOINT process is asynchronous, and there is a delay in between when log records are
hardened and when pages in the data files are updated. Moreover, CHECKPOINT does not analyze whether
the transactions that modified data pages were actually committed. Therefore, some pages in the data files
reflect changes from uncommitted transactions.

 The goal of the recovery process is to make the database transactionally consistent. SQL Server analyzes
the transaction log, making sure that all changes from committed transactions are saved into the data files
and all changes from uncommitted transactions are rolled back.

 The recovery process consists of three different phases, as follows:

 1. During the analysis phase, SQL Server locates the last CHECKPOINT operation in
the log file, which is the last time dirty pages were saved into the data file. SQL
Server builds a list of pages that were modified after CHECKPOINT as well as a list
of transactions that were uncommitted at the time SQL Server stopped.

 2. During the redo phase, SQL Server analyzes the transaction log from the initial
LSN of the oldest active transaction at the moment of the crash, which is stored
in the database boot page, and applies the changes to the data. Even though
some of the changes could already be saved to the data files, SQL Server acquires
locks on the modified rows, similar to with a regular workload. At the end of the
redo phase, the database is in the state that it was in at the time when SQL Server
shut down unexpectedly.

 3. Finally, during the undo phase, SQL Server rolls back all active, uncommitted
transactions.

 Figure 30-7 shows an example of a recovery scenario for the database. SQL Server will redo and commit
transactions T2 and T3 and roll back transaction T4 .

 Figure 30-7. Database recovery

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

604

 The recovery process uses a single thread per database. The Enterprise Edition of SQL Server supports
 fast recovery , which makes the database available to users after the redo stage.

 There are two transaction log–related wait types you need to monitor in the system. WRITELOG waits
occur when SQL Server flushes log blocks to the disk that is waiting for them to be hardened. An excessive
amount of such waits indicate that the log drive does not have enough throughput to handle the log
generation rate.

 LOGBUFFER waits occur when SQL Server is waiting for the space in the log buffer to save the record.
Even though it could happen shortly after database startup when SQL Server constructs a log buffer, usually
these waits indicate that the log buffer is full and SQL Server is waiting until records are flushed to the disk
that is generating WRITELOG waits in parallel.

 You should analyze transaction log drive performance and throughput when you have these waits in
the system. You can also look at data from sys.dm_io_virtual_file_stats and disk-related performance
counters during analysis.

 You could improve transaction log throughput by reducing the amount of generated log records
and write operations. In many cases, it can be done by improving transaction management in the client
application. An excessive amount of data modifications in the implicit individual transactions would
generate an enormous amount of log records and force SQL Server to flush the log buffer on each commit.
Changing the code to perform data modifications in a single explicit transaction would address this issue.
Alternatively, if you are using SQL Server 2014–2016 and can tolerate the small amount of data loss, you can
switch to delayed durability for transactions, which we are about to discuss.

 Delayed Durability
 Delayed durability , also known as lazy commit , was introduced in SQL Server 2014. As already discussed,
by default a commit operation is synchronous. SQL Server flushes the content of the log buffer, hardening
log records into a log file at the time of commit, and it sends a confirmation to the client only after a
commit record is written to disk. Delayed durability changes this behavior by making the commit operation
asynchronous. The client receives the confirmation that the transaction is committed immediately, without
waiting for the commit record to be hardened to disk. The commit record stays in a log buffer until its
content is flushed, which happens in one of the following cases:

 The log block is full.

 A fully durable transaction in the same database is committed. The commit
record from such a transaction flushes the content of the log block to disk.

 A CHECKPOINT operation occurs.

 A sp_flush_log stored procedure is completed successfully.

 If SQL Server crashed before the commit record were hardened, the data modifications from that
transaction would be rolled back at recovery as if the transaction had never been committed at all. However,
other transactions would be able to see the data modifications done by such a transaction in between the
time of commit and the SQL Server crash.

 Data loss is also possible with a regular SQL Server shutdown. Even though SQL Server tries to flush log
buffers at the time of shutdown, there is no guarantee that this operation will succeed.

 Delayed durability may be a good choice for systems that experience a bottleneck in transaction
log writes and that can tolerate a small data loss. There is a small risk, however. In some rare cases, the
 CHECKPOINT process can flush the dirty data pages before the transaction log records are hardened. If SQL
Server crashed at exactly the same moment, it would bring the database to a corrupted and transactionally
inconsistent state after restart. You should evaluate that risk if you decided to use delayed durability.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

605

 One database option, DELAYED_DURABILITY , controls the behavior of delayed durability in the database
scope. It may have one of these three options:

 DISABLED : This option disables delayed durability for database transactions
regardless of the transaction durability mode. All transactions in the database
are always fully durable. This is the default option and matches the behavior of
previous versions of SQL Server.

 FORCED : This option forces delayed durability for database transactions regardless
of the transaction durability mode.

 ALLOWED : Delayed durability is controlled at the transaction level. Transactions
are fully durable unless delayed durability is specified.

 It is worth noting that in the case of cross-database or distributed transactions, all transactions are
fully durable regardless of their settings. The same applies to Change Tracking and Change Data Capture
technologies. Any transaction that updates tables that are enabled for either of these technologies will be
fully durable. Delayed durability is also not supported with transactional replication.

 You can control transaction durability by specifying the durability mode in the COMMIT operator.
Listing 30-1 shows an example of a transaction that uses delayed durability. As was already mentioned, the
 DELAYED_DURABILITY database option can override that setting.

 Listing 30-1. Transaction with delayed durability

 begin tran
 /* Do something */
 commit with (delayed_durability=on)

 Any other SQL Server technologies that work with the transaction log would see and process commit
records from transactions with delayed durability only after those records were hardened in the log and,
therefore, became durable in the database. For example, if a database backup finished in between a
transaction commit and log buffer flush, the commit log record would not be included in the backup, and,
therefore, the transaction would be rolled back at the time of a restore.

 Another example is AlwaysOn Availability Groups. Secondary nodes would receive commit records only
after those records were hardened in the log on the primary node and were transmitted over the network.

 Virtual Log Files
 Even though a transaction log can have multiple files, SQL Server works with it in a sequential manner
while writing and reading a stream of log records. As a result, SQL Server does not benefit from the multiple
physical log files.

 ■ Note You can benefit from the multiple log files in some edge cases. For example, placing multiple log files
onto separate disk arrays will allow SQL Server to zero-initialize log files in parallel during database creation or
restore operation.

 Internally, SQL Server divides every physical log file into smaller sections called virtual log files (VLF) .
SQL Server uses virtual log files as a unit of management; they can be either active or inactive.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

606

 A VLF is active when it stores the active portion of the transaction log , which contains the stream of log
records required to keep the database transactionally consistent in the event of a transaction rollback or
unexpected SQL Server shutdown. For now, do not focus on what keeps a log active; we will examine this
later in this chapter. An inactive VLF contains the truncated (inactive) and unused parts of the transaction
log.

 Figure 30-8 shows an example of a transaction log and virtual log files.

 Figure 30-8. Transaction log and virtual log files

 Figure 30-9. A transaction log is a wraparound file

 Table 30-1. Allocation Size and Number of VLFs Created (Prior to SQL Server 2014)

 Allocation Size Number of VLFs Created

 < 64 MB 4 VLFs

 64 MB – 1 GB 8 VLFs

 > 1 GB 16 VLFs

 Transaction log truncation does not reduce the size of the log file on disk. Truncation means that parts
of transaction log (one or more VLFs) are marked as inactive and ready for reuse. It clears up the internal
space in the log, keeping log file size intact.

 A transaction log is a wraparound file. When the end of the logical log file reaches the end of the
physical file, the log wraps around it, as shown in Figure 30-9 .

 SQL Server creates new virtual log files every time the log grows. The number of VLFs depends on the
newly allocated space size and SQL Server version. The algorithm for SQL Server prior to 2014 is shown in
Table 30-1 .

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

607

 In SQL Server 2014 and 2016, the algorithm has changed a bit. It analyzes the current size of the log file,
and if the growth is less than 1/8th the size of the current log size, it generates one VLF file. Otherwise, it uses
the old algorithm.

 You can examine virtual log files with the DBCC LOGINFO command. Figure 30-10 illustrates the output
of such a command running against the master database on one SQL Server instance. It shows that the
database has one physical log file with FileId = 2 and three virtual log files. Other columns indicate the
following:

 Status is the status of the VLF. Values of 0 and 2 indicate inactive and active
VLFs, respectively.

 FileSize is the size of the VLF in bytes.

 StartOffset is the starting offset of the VLF in the file.

 CreateLSN is the LSN at the moment when the VLF was created. Zero means that
the VLF was created at database creation time.

 FSeqNo is the order of usage of the VLFs. The VLF with the highest FSeqNo is the
file where the current log records are written.

 Parity can be one of two possible values : 64 and 128. SQL Server switches the
parity value every time a VLF is reused. SQL Server uses the parity value to detect
where to stop processing log records during a crash recovery.

 Figure 30-10. DBCC LOGINFO output

 Database Recovery Models
 There are three database recovery models that affect transaction log management and truncation behavior:
 SIMPLE , FULL , and BULK LOGGED . While SQL Server logs enough information to roll back transactions and/or
perform crash recovery regardless of the recovery model, such models control when a log is truncated and
when VLFs become inactive. You cannot access and redo any actions from the inactive part of the log, and
therefore truncation affects the amount of potential work loss if data files are unavailable.

 It is again worth mentioning that transaction log truncation does not reduce the size of the log file, but
rather marks VLFs as inactive and ready for reuse.

 In the SIMPLE recovery model , SQL Server truncates the transaction log at CHECKPOINT . Let’s assume
that you have a system with three active VLFs, as shown in Figure 30-11 . The oldest active LSN is in VLF4 .
Therefore, there is the possibility that SQL Server will need to access log records from VLF4 and VLF5 in case
of transaction rollbacks, which requires SQL Server to keep VLF4 and VLF5 active.

 There are no log records from the active transactions in VLF3 , although some of the dirty data pages in
the buffer pool may have corresponding log records stored there. SQL Server needs to access those records
in case of a crash recovery to be able to redo the changes; therefore, VLF3 should also be kept active.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

608

 When SQL Server performs a CHECKPOINT , all of the dirty data pages are saved into the data file. As
a result, crash recovery does not need to redo any changes related to log records from VLF3 , and it can
be truncated and marked as inactive. However, VLF4 must be kept active to support the rollback of the
transactions that have corresponding log records stored in VLF4 . Figure 30-12 illustrates this point.

 Figure 30-11. SIMPLE recovery model: Initial stage

 Figure 30-12. SIMPLE recovery model: Log truncation after CHECKPOINT

 Thus, in the SIMPLE recovery model, the active part of transaction log starts with VLF, which contains
the oldest LSN of the oldest active transaction or the last CHECKPOINT . It is also worth noting that if
transaction replication is enabled, VLFs can be truncated only after the Replication Log Reader has
processed transactions from there.

 ■ Note An active database backup defers transaction log truncation until it is completed.

 As you can guess, even though SQL Server supports crash recovery in the SIMPLE model, you should
keep both data and log files intact to avoid data loss and to keep the database transactionally consistent.

 Alternatively, with the FULL or BULK LOGGED recovery models SQL Server supports transaction log
backups, which allow you to recover the database and avoid data loss regardless of the state of the data files,
as long as the transaction log is intact. This assumes, of course, that a proper set of backups is available. We
will discuss the backup and recovery process in greater detail in the next chapter.

 In the FULL and BULK LOGGED recovery models , SQL Server requires you to perform a transaction log
backup in order to trigger log truncation. Moreover, truncation can be delayed if you have other processes
that need to read the transaction log records. Think about transactional replication, database mirroring, and
AlwaysOn Availability Groups as examples of such processes.

 Figure 30-13 shows one example. Both minimum and current LSNs are in VLF5 , although the LSN of
the last transaction log backup is in VLF3 . Therefore, the active portion of the transaction log includes VLF3 ,
 VLF4 , and VLF5 .

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

609

 After another transaction log backup, SQL Server can truncate VLF3 . However, VLF4 must remain active,
as the Replication Log Reader has yet to process some of the log records from VLF4 . Figure 30-14 illustrates
this point.

 Figure 30-13. FULL and BULK LOGGED recovery models: Initial stage

 Figure 30-14. FULL and BULK LOGGED recovery models: Log truncation

 As you can see, in the FULL or BULK LOGGED recovery models, the active part of transaction log starts with
VLF, which contains the oldest of the following:

 LSN of the last log backup

 LSN of the oldest active transaction

 LSN of the process that reads transaction log records

 ■ Important FULL database backup does not truncate the transaction log. You must perform a transaction
log backup in order to do so.

 The difference between the FULL and BULK LOGGED recovery models is in how SQL Server logs minimally
logged operations, such as CREATE INDEX , ALTER INDEX REBUILD , BULK INSERT , INSERT INTO , INSERT
SELECT , and a couple of others. In the FULL recovery model, those operations are fully logged. SQL Server
writes log records for every data row affected by the operation. Alternatively, in the BULK LOGGED recovery
model, SQL Server does not log minimally logged operations on a row-by-row basis; rather, it logs the
extents allocation instead. All minimally logged operations generate new (or a copy of existing) objects, and
extents deallocation rolls back the changes. The non-minimally logged operations are always fully logged
in the BULK LOGGED model, like they are in the FULL recovery model. It is also worth noting that the SIMPLE
recovery model logs minimally logged operations in a manner similar to the BULK LOGGED recovery model.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

610

 The BULK LOGGED recovery model reduces transaction log load during minimally logged operations,
but it comes at price. First, SQL Server is not able to perform point-in-time recovery if bulk operations were
running at a particular time. Moreover, SQL Server must have access to the data files while performing log
backups, and it stores data pages/extents modified by minimally logged operations as part of the backup file.
This can increase the size of the log backups and lead to data loss if data files become unavailable in between
log backups.

 Choosing the right recovery model is a very important decision that affects the potential amount of data
loss in case of disaster. It is an essential part of designing Backup and Disaster Recovery strategies, which we
will discuss in the next chapter.

 TempDB Logging
 All user objects in tempdb must be transactionally consistent. SQL Server must be able to roll back
transactions that change data in tempdb in the same way as in the users’ databases. However, tempdb is
always recreated at SQL Server startup. Therefore, logging in tempdb does not need to support the redo stage
of crash recovery. Log records in tempdb store just the old values from the modified data rows, omitting new
values .

 This behavior makes tempdb a good candidate to be a staging area for ETL processes. Data modifications
in tempdb are more efficient as compared to ones in users’ databases because of the lower amount of logging
involved. Log records are not part of transaction log activity in users’ databases, which reduces the size of log
backups. Moreover, those modifications are not transmitted over the network if any transaction log–based
High Availability technologies are in use.

 As we discussed in Chapter 13 , “Temporary Objects and TempDB,” using tempdb as a staging area
introduces a set of challenges during implementation. All of the data stored in tempdb would be lost in the
case of a SQL Server restart or failover to another node. The code must be aware of such a possibility and
handle it accordingly.

 Excessive Transaction Log Growth
 Excessive transaction log growth is a common problem that junior or accidental database administrators
have to handle. It happens when SQL Server is unable to truncate the transaction log and reuse the space in
the log file. In such a case, the log file continues to grow until it fills the entire disk, switching the database to
read-only mode with this 9002 error: “Transaction log full.”

 There are plenty of reasons why SQL Server is unable to truncate the transaction log. You can examine
the log_reuse_wait_desc column in the sys.databases view to discover the reason why the transaction log
cannot be reused. You can see the query, which checks log_reuse_wait_desc for the users’ databases, in
Listing 30-2 . The output of the query is shown in Figure 30-15 .

 Listing 30-2. Check log_reuse_wait_desc for users’ databases

 select database_id, name, recovery_model_desc, log_reuse_wait_desc
 from sys.databases
 where database_id >= 5

http://dx.doi.org/10.1007/978-1-4842-1964-5_13

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

611

 For databases in the FULL or BULK LOGGED recovery models, one of the most common reasons the
transaction log is not truncated is the lack of log backups. It is a common misconception that a FULL
database backup truncates the transaction log. It is not true, and you must perform a log backup in order to
do so. The Log_reuse_wait_desc value of LOG_BACKUP indicates that you need to perform a log backup in
order to truncate the transaction log.

 The Log_reuse_wait_desc value of ACTIVE_TRANSACTION indicates that there are long and/or
uncommitted transactions in the system. SQL Server is unable to truncate the transaction log past the LSN of
the oldest uncommitted transaction, regardless of the database recovery model in use.

 The query in Listing 30-3 returns a list of the five oldest uncommitted transactions in the current
database. It returns the time when the transaction was started, information about the session, and log usage
statistics. On a side note, you can use the same query and change the order by clause to the Log Used
column if you need to locate transactions that consume the most log space.

 Listing 30-3. Finding five oldest active transactions in the system

 select top 5
 ses_tran.session_id as [Session Id], es.login_name as [Login], es.host_name as [Host]
 ,es.program_name as [Program], es.login_time as [Login Time]
 ,db_tran.database_transaction_begin_time as [Tran Begin Time]
 ,db_tran.database_transaction_log_record_count as [Log Records]
 ,db_tran.[database_transaction_log_bytes_used] as [Log Used]
 ,db_tran.[database_transaction_log_bytes_reserved] as [Log Rsrvd]
 ,sqlText.text as [SQL], qp.query_plan as [Plan]
 from
 sys.dm_tran_database_transactions db_tran join
 sys.dm_tran_session_transactions ses_tran on
 db_tran.transaction_id = ses_tran.transaction_id
 join sys.dm_exec_sessions es on
 es.[session_id] = ses_tran.[session_id]
 left outer join sys.dm_exec_requests er on
 er.session_id = ses_tran.session_id
 join sys.dm_exec_connections ec on
 ec.session_id = ses_tran.session_id
 cross apply
 sys.dm_exec_sql_text (ec.most_recent_sql_handle) sqlText
 cross apply
 sys.dm_exec_query_plan (er.plan_handle) qp
 where
 db_tran.database_id = DB_ID()
 order by
 db_tran.database_transaction_begin_time;

 Figure 30-15. Log_reuse_wait_desc output

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

612

 As I already mentioned, SQL Server has many processes that read the transaction log, such as
transactional replication, change data capture, database mirroring, AlwaysOn Availability Groups, and
others. Any of these processes can prevent transaction log truncation when there is a backlog. While it rarely
happens when everything is working as expected, you may experience this issue if there is an error.

 A common example of this situation is an unreachable secondary node in an Availability Group or
database mirroring session. Log records, which have not been sent to the secondaries, will remain part of the
active transaction log. This prevents its truncation. The Log_reuse_wait_desc column value would indicate
this condition.

 ■ Note You can see the list of possible log_reuse_wait_desc values at http://technet.microsoft.com/
en-us/library/ms178534.aspx .

 If you experience a 9002 Transaction log full error, the key point is to not panic. The worst thing you can
do is to perform an action that makes the database transactionally inconsistent. For example, shutting down
SQL Server or detaching the database and deleting the transaction log file afterward will do just that. If the
database has not been shut down cleanly, SQL Server may not be able to recover it, because the transaction
log would be missing.

 Creating another log file could be the fastest and simplest way to address this issue; however, it is hardly
the best option in the long run. Multiple log files complicate database management. Moreover, it is hard to
drop log files. SQL Server does not allow you to drop log files if they store an active portion of the log.

 You must understand why the transaction log cannot be truncated and react accordingly. You can
perform a log backup, identify and kill sessions that keep uncommitted active transactions, or remove an
unreachable secondary node from the availability group depending on the root cause of the problem.

 Transaction Log Management
 It is better to manage transaction log size manually than to allow SQL Server to auto-grow it. Unfortunately,
it is not always easy to determine optimal log size. On one hand, you want the transaction log to be big
enough to avoid auto-growth events. On the other hand, you would like to keep the log small, saving disk
space and reducing the time required to zero-initialize the log when the database is restored from a backup.

 You should also keep some space reserved in the log file if you are using any High Availability or other
technologies that rely on transaction log records. SQL Server is not able to truncate transaction log during
log backups if something goes wrong with those processes. Moreover, you should implement a monitoring
and notification framework that alerts you to such conditions and gives you time to react before the
transaction log becomes full.

 Another important factor is the number of VLFs in the log files. You should avoid situations where the
transaction log becomes overly fragmented and has a large number of small VLFs. Similarly, you should
avoid situations where the log has too few but very large VLFs.

 For databases that require a large transaction log, you can pre-allocate space using 4,000 MB chunks,
which generates 16 VLFs of 250 MB each. If a database does not require a large (more than 4,000 MB)
transaction log, you can pre-allocate log space in one operation based on the size requirements.

 ■ Note There is a bug in SQL Server 2005–2008R2 that incorrectly grows the transaction log if its size is in
multiples of 4 GB. You can use multiples of 4,000 MB instead. This bug has been fixed in SQL Server 2012 and
in cumulative updates/service packs for older versions of SQL Server.

http://technet.microsoft.com/en-us/library/ms178534.aspx
http://technet.microsoft.com/en-us/library/ms178534.aspx

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

613

 You should still allow SQL Server to auto-grow the transaction log in case of an emergency. However,
choosing the right auto-growth size is tricky. For databases with large transaction logs, it is wise to use 4,000
MB so as to reduce the number of VLFs . However, zeroing out 4,000 MB of newly allocated space can be
time consuming. Remember that SQL Server always zeroes out transaction logs, even when Instant File
Initialization is enabled. All database activities that write to the log file are blocked during the auto-growth
process. This is another argument for manual transaction log size management.

 ■ Tip The decision of what auto-growth size should be used depends on the performance of the I/O
subsystem. You should analyze how long zero-initialization takes and find a sweet spot where the auto-growth
time and the size of the generated VLFs are acceptable. 1 GB for auto-growth could work in many cases.

 It is also worth noting that the Management Studio database creation dialog uses inefficient default
transaction log auto-growth parameters, which leads to an excessive number of VLFs in the database.
You need to change these parameters when you create the new database through Management Studio.
Fortunately, this problem has been addressed in SQL Server 2016.

 SQL Server writes to the transaction log synchronously in the case of data modifications. OLTP systems
with volatile data and heavy transaction log activity should have the transaction log stored on a disk array
with good write performance and low latency. Transaction log I/O performance is less important when
the data is static; for example, in data warehouse systems. However, you should consider how it affects the
performance and duration of the processes that refresh data there.

 Best practices suggest you store the transaction log on a dedicated disk array optimized for sequential
write performance. This is great advice for situations where an underlying I/O subsystem has enough power
to accommodate multiple high-performance disk arrays. In some cases, however, when faced with budget
constraints and not enough disk drives, you can achieve better I/O performance by storing data and log files
on a single disk array. You should remember, however, that keeping data and log files on the same disk array
could lead to data loss in case of a disk array failure.

 Another important factor is the number of databases. When you place transaction logs from multiple
active databases onto a single disk array, log I/O access becomes random rather than sequential. You should
factor in such behavior when testing your I/O subsystem and then choose test scenarios that represent the
workload that you expect to have in production.

 Most important, you should store the transaction log to a highly redundant disk array. It is impossible to
recover the database in a transactionally consistent state if the transaction log has been corrupted.

 Summary
 SQL Server uses a transaction log to store information about all data modifications made to the database.
It allows SQL Server to keep the database transactionally consistent, even in the event of an unexpected
shutdown or crash.

 SQL Server uses a write-ahead logging mechanism, which guarantees that log records are always saved
into the log file before the updated data pages are saved to the data files. SQL Server uses a small buffer to
cache log records in memory, saving all of them at once when needed.

 The transaction log is a wraparound file, which internally consists of multiple virtual log files. Every
virtual log file can either be active or inactive. Transaction log truncation marks some VLFs as inactive,
making them ready for reuse. In the SIMPLE recovery model, SQL Server truncates the transaction log at the
 CHECKPOINT . In the FULL and BULK LOGGED recovery models, SQL Server truncates the transaction log during
log backups.

CHAPTER 30 ■ TRANSACTION LOG INTERNALS

614

 There are a number of issues that can prevent transaction log truncation. The most common ones are
lack of transaction log backups in the FULL and BULK LOGGED recovery models, or long-running uncommitted
transactions. You can examine what prevents log truncation by analyzing the log_reuse_wait_desc column
in the sys.databases view.

 You should avoid situations where the transaction log has too many or too few VLFs . Either
circumstance negatively affects system performance. For databases that require large transaction log files,
you can pre-allocate the transaction log with 4,000 MB chunks, which makes 16 VLFs of about 250 MB each.

 It is recommended that you manage the transaction log size manually to avoid log auto-growth.
However, you should still keep auto-growth enabled to avoid a “9002: Transaction Log Full” error.
Auto-growth size should be specified in MB rather than as a percentage. You need to fine-tune the size based
on the I/O performance of the system.

 Fast transaction log throughput is essential for good performance, especially with OLTP systems.
You must store the transaction log on a fast disk array, minimizing writing latency. Most important, that
array must be redundant. It is impossible to recover the database in a transactionally consistent state if the
transaction log is corrupted.

615© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_31

 CHAPTER 31

 Backup and Restore

 In the technology world, it is just a matter of time before disaster happens. A database could become
corrupted due to a user error, hardware malfunction, or software bug. A disk array could fail, making databases
unavailable to users. An engineer could accidentally change the LUN configuration in a SAN array and affect
the database it stores. A natural disaster could affect the availability of a datacenter. In any of these instances, it
is essential to recover the database and bring the system online with minimal data loss and downtime.

 This chapter discusses how SQL Server performs database backup and restore and covers several
important use cases that can be used during the database recovery process. It also provides several ideas on
how to design backup strategies in a way that minimizes system downtime and data loss.

 Database Backup Types
 There are three different types of database backups available in SQL Server.

 A full database backup backs up the whole database. SQL Server performs a CHECKPOINT as the first step
of database backup, backs up all allocated extents from the data files, and, finally, backs up the portion of the
transaction log required in order to recover the database after a restore. That portion includes all log records,
starting from the oldest of these events:

 The last CHECKPOINT .

 The beginning of the oldest active transaction.

 The beginning of the unscanned portion of the log if there are any processes
that rely on the transaction log scan, such as transactional replication, database
mirroring, AlwaysOn Availability Groups, and others.

 A full database backup represents the database at the time when the backup operation was finished. It is
supported in every recovery model.

 A differential backup backs up those extents that have been modified since the last full backup. SQL Server
tracks which extents have been changed with a set of allocation map pages called a differential changed map
(DCM) . SQL Server clears these map pages only during a full database backup. Therefore, differential backups
are cumulative, and each of them stores all extents that have been modified since the last full, rather than last
differential, backup. Like a full database backup, differential backups work in every recovery model.

 A log backup backs up the active portion of the transaction log, starting with the LSN of the last full or
log backup. This backup type is only supported in the FULL or BULK LOGGED recovery models. It is an essential
part of transaction log management and is required in order to trigger log truncation. It is worth reiterating
that the full database backup does not truncate the transaction log in the FULL or BULK LOGGED recovery
models. You should perform a log backup to truncate the transaction log.

 If a log backup were running at the same time as a full database backup, log truncation would be
deferred until the full backup was complete.

CHAPTER 31 ■ BACKUP AND RESTORE

616

 For a database in the BULK LOGGED recovery model, log backups also store data from extents that were
allocated during minimally logged bulk-copy operations , such as CREATE INDEX , ALTER INDEX REBUILD ,
 BULK INSERT , INSERT INTO , INSERT SELECT , and a few others. These extents are tracked with another set of
allocation map pages called a bulk changed map (BCM) . SQL Server must be able to access data files with
those extents in order for the log backup to succeed.

 In contrast to differential backups, log backups are incremental. Each subsequent log backup stores the
portion of the transaction log starting at the point where the previous log backup finished. You must apply all
log backups one by one during the restore process.

 The sequence of log backups contains log records for all operations performed by SQL Server since
last full backup. This allows you to redo the work and recover the database, even when database files are
corrupted or unavailable. Moreover, it supports point-in-time recovery and allows you to recover the
database up to a particular time. One case where this is beneficial is upon the accidental deletion of data or a
database object. We will talk about such a situation later in this chapter.

 ■ Important The database in the BULK LOGGED recovery model does not support point-in-time recovery if
the transaction log contains bulk logged operations running at the same time.

 A special kind of log backup, called tail-log backup , is used when you need to recover a database after
a disaster. It backs up log records that have not been backed up since the last log backup, and it prevents
potential data loss during recovery. We will talk about tail-log backups in detail later in this chapter.

 A continuous sequence of backups is called a backup chain . A backup chain starts with a full database
backup, and it is required in order to restore the database up to the point of failure and/or a point in time.

 Figure 31-1 shows an example of a backup chain and a tail-log backup.

 Figure 31-1. Backup chain and tail-log backup

 Backing Up the Database
 You can backup and restore the database using Management Studio UI, T-SQL, and PowerShell, as well as
with third-party tools. In this chapter, we will focus on the T-SQL implementation.

 Listing 31-1 shows the T-SQL statements that perform a full database backup using the BACKUP
DATABASE command with a disk as the destination.

 Listing 31-1. Performing a full database backup

 backup database OrderEntryDb
 to disk = N'e:\backups\OrderEntry.bak'
 with format, init,
 name = N'OrderEntryDb-Full Database Backup',
 stats = 5, checksum, compression;

CHAPTER 31 ■ BACKUP AND RESTORE

617

 SQL Server allows you to store multiple backups in a single file. You should be extremely careful with
this approach, however. While it reduces the number of files on the disk and simplifies their management, it
is possible to override existing backups and invalidate the backup chain.

 You should design your backup placement in a way that reduces the amount of data that needs to be
copied over the network in case of disaster. Do not store backups from different log chains in the same file.
Moreover, do not store differential backups together with other, redundant differential and/or log backups. This
reduces both the size of the backup file and the time it takes to copy the file over a network in case of disaster.

 The FORMAT and INIT options tell SQL Server to override all existing backups in the backup file.
 The CHECKSUM option forces SQL Server to validate the checksum on the data pages and generate a

checksum of the backup file. This helps to validate that the data pages have not been corrupted by the I/O
subsystem after they were saved to disk. This option, however, should not be used as a replacement for a
regular database consistency check with the DBCC CHECKDB command. BACKUP WITH CHECKSUM does not
test the integrity of the database objects and allocation map pages, nor does it test pages that do not have a
 CHECKSUM generated.

 Finally, the COMPRESSION option forces SQL Server to compress the backup. Backup compression can
significantly reduce the size of the backup file, although it uses more CPU resources during the backup and restore
processes. It is recommended that you use backup compression unless the system is heavily CPU-bound or the
database is encrypted. In the latter case, backup compression does not introduce any space savings.

 Backup compression is available in the Enterprise and Standard editions of SQL Server 2008R2 and
above as well as in the Enterprise Edition of SQL Server 2008. It is worth mentioning that every edition of
SQL Server can restore a compressed backup.

 ■ Note You can look at all of the available BACKUP command options at http://technet.microsoft.com/
en-us/library/ms186865.aspx .

 You can perform a differential backup using the DIFFERENTIAL option , as shown in Listing 31-2 .

 Listing 31-2. Performing a differential database backup

 backup database OrderEntryDb
 to disk = N'e:\backups\OrderEntry.bak'
 with differential, noformat, noinit,
 name = N'OrderEntryDb-Differential Database Backup',
 stats = 5, checksum, compression;

 Now, our backup file OrderEntry.bak has two backups: one FULL and another DIFFERENTIAL . Finally,
Listing 31-3 shows you how to perform a transaction log backup by placing it into another file.

 Listing 31-3. Performing a transaction log backup

 backup log OrderEntryDb
 to disk = N'e:\backups\OrderEntry.trn'
 with format, init,
 name = N'OrderEntryDb-Transaction Log Backup',
 stats = 5, checksum, compression;

 You must have BACKUP DATABASE and BACKUP LOG permissions granted in order to perform the
backups. By default, those permissions are granted to the members of the sysadmin server role, db_owner ,
and db_backupoperator database roles. Moreover, the SQL Server startup account should have adequate
permissions to write a backup file to the designated location.

http://technet.microsoft.com/en-us/library/ms186865.aspx
http://technet.microsoft.com/en-us/library/ms186865.aspx

CHAPTER 31 ■ BACKUP AND RESTORE

618

 You can specify multiple destination backup files and allow SQL Server to stripe backup across
all of them. This can improve the performance of backup and subsequent restore operations if the I/O
performance of the backup drive becomes a bottleneck.

 The COPY_ONLY option allows you to perform a backup without breaking the log chain. One possible
use case for such option is a situation where you need to bring a copy of the database to a development
environment.

 SQL Server stores the information about every backup and restore operation on a server instance
in a set of tables defined in the msdb database. A description of these tables is outside of the scope of this
book. You can read the Books Online article “Backup History and Header Information” at http://msdn.
microsoft.com/en-us/library/ms188653.aspx for more details.

 Finally, SQL Server writes information about every backup to the error log file. This could quickly
balloon the size of the log file if backups are running frequently. You can disable this behavior with trace flag
 T3226 . This makes error logs more compact at the cost of requiring a query against msdb to obtain a backup
history.

 Restoring the Database
 You can restore a database with the RESTORE DATABASE command . You can see an example of this command
in action in Listing 31-4 . It restores the OrderEntryDB database at a new destination (the MOVE option
controls this), and it applies differential and transaction log backups after that.

 Listing 31-4. Restoring the database

 -- Initial FULL backup
 restore database OrderEntryDbDev
 from disk = N'C:\Backups\OrderEntry.bak' with file = 1,
 move N'OrderEntryDB' to N'c:\backups\OrderEntryDB.mdf',
 move N'OrderEntryDB_log' to N'c:\backups\OrderEntryDB_log.ldf',
 norecovery, nounload, stats = 5;

 -- Differential backup
 restore database OrderEntryDbDev
 from disk = N'C:\Backups\OrderEntry.bak' with file = 2,
 norecovery, nounload, stats = 5;

 -- Transaction Log backup
 restore log OrderEntryDbDev
 from disk = N'C:\Backups\OrderEntry.trn'
 with nounload, norecovery, stats = 10;

 restore database OrderEntryDbDev with recovery;

 When the backup file stores multiple backups, you should specify a file number by using the WITH FILE
option. As I noted earlier, be careful with this approach and make sure that your backup routine does not
accidentally override existing backups in the file.

 Each RESTORE operation should have a database recovery option specified. When a backup is restored
with the RECOVERY option , SQL Server recovers the database by performing both the redo and undo recovery
stages, and it makes the database available to the users. No further backups can be restored. Alternatively,
the NORECOVERY option performs only the redo stage of database recovery, and it leaves the database in the
 RESTORING state. It allows you to restore further backups from the log chain.

http://msdn.microsoft.com/en-us/library/ms188653.aspx
http://msdn.microsoft.com/en-us/library/ms188653.aspx

CHAPTER 31 ■ BACKUP AND RESTORE

619

 ■ Important The UI interface in Management Studio uses the RECOVERY option by default. Always pay
attention to this setting when using the Database Restore UI in Management Studio.

 Accidental use of the RECOVERY option would require you to repeat the restore process from the
beginning, which could be very time consuming in the case of large databases. It is safer to restore all
backups with the T-SQL RESTORE command using the NORECOVERY option all of the time. Finally, you can
recover the database and bring it online with the RESTORE DATABASE WITH RECOVERY command, as was
shown in Listing 31-4 .

 We will discuss how to restore the database after a disaster later in this chapter. Now, let’s cover a couple
of useful options that you can use during a restore.

 Restore to a Point in Time
 You can restore the database to a point in time using the STOPAT option . This option accepts a date/time
value or a variable as a parameter and restores the database to its state as of that time. Alternatively, you can
use the STOPATMARK and STOPBEFOREMARK options, which allow you to restore the database by stopping at a
particular LSN or named transaction.

 One common use case for these options is the recovery of an accidentally dropped object. Let’s look at
the example shown in Listing 31-5 and create the database with table dbo.Invoices , populate it with some
data, and perform a full database backup.

 Listing 31-5. Point-in-time restore: Database creation

 create database MyDB
 go

 create table MyDB.dbo.Invoices(InvoiceId int not null);
 insert into MyDB.dbo.Invoices values(1),(2),(3) ;
 go

 backup database MyDB
 to disk = N'c:\backups\MyDB.bak'
 with noformat, init,
 name = N'MyDB-Full Database Backup', stats = 5;

 Now, let’s assume that somebody accidentally dropped the dbo.Invoices table using the DROP TABLE
dbo.Invoices command. If the database is active and other data has been modified over time, the best
course of action would be to restore another copy of the database from the backup to the point in time when
the table was dropped and then copy the data from the newly restored to the original database.

 As a first step in the recovery process, let’s make a backup of the transaction log, as shown in Listing 31-6 .
Obviously, in a real system, it is possible that you already have the log backup that covers the time when the
table was dropped.

 Listing 31-6. Point-in-time restore: Backing up the log

 backup log MyDB
 to disk = N'c:\backups\MyDB.trn'
 with noformat, init,
 name = N'MyDB-Transaction Log Backup’, stats = 5;

CHAPTER 31 ■ BACKUP AND RESTORE

620

 The tricky part is finding the time when the table was dropped. One of the options that you have is
analyzing the system default trace, which captures such events. You can use the fn_trace_gettable system
function, as shown in Listing 31-7 .

 Listing 31-7. Point-in-time restore: Analyzing the system trace

 declare
 @TraceFilePath nvarchar(2000)

 select @TraceFilePath = convert(nvarchar(2000),value)
 from ::fn_trace_getinfo(0)
 where traceid = 1 and property = 2;

 select
 StartTime, EventClass
 ,case EventSubClass
 when 0 then 'DROP'
 when 1 then 'COMMIT'
 when 2 then 'ROLLBACK'
 end as SubClass
 ,ObjectID, ObjectName, TransactionID
 from ::fn_trace_gettable(@TraceFilePath, default)
 where EventClass = 47 and DatabaseName = 'MyDB'
 order by StartTime desc

 As you can see in Figure 31-2 , there are two rows in the output. One of them corresponds to the time
when the object was dropped. The other one relates to the time when the transaction was committed.

 Figure 31-2. Output from the default system trace

 You can use the time from the output to specify the STOPAT parameter of the RESTORE command, as
shown in Listing 31-8 . It is also possible to perform a point-in-time restore in the Management Studio
Database Restore UI. However, that option does not allow you to specify milliseconds in the STOPAT value.

 Listing 31-8. Point-in-time restore: Using the STOPAT parameter

 restore database MyDBCopy
 from disk = N'C:\Backups\MyDB.bak' with file = 1,
 move N'MyDB' to N'c:\db\MyDBCopy.mdf',
 move N'MyDB_log' to N'c:\db\MyDBCopy.ldf',
 norecovery, stats = 5;

 restore log MyDBCopy
 from disk = N'C:\Backups\MyDB.trn' with file = 1,
 norecovery, stats = 5,
 stopat = N'2016-03-10T06:21:27.697';

 restore database MyDBCopy with recovery;

CHAPTER 31 ■ BACKUP AND RESTORE

621

 While the system default trace is a very simple option, there is a downside. The time of the event in the
trace is not precise enough, and it could be a few milliseconds apart from the time that you need to specify
as the STOPAT value. Therefore, there is no guarantee that you would restore the most recent table data at the
time of deletion. Moreover, there is a chance that the DROP OBJECT event has been overwritten or that the
trace is disabled on the server.

 One of the workarounds available for this is to use an undocumented system function, fn_dump_dblog ,
which returns the content of the transaction log backup file. You need to find the LSN that belongs to the
 DROP TABLE statement and restore a copy of the database using the STOPBEFOREMARK option . Listing 31-9
shows the code that calls the fn_dump_dblog function. Figure 31-3 shows the output of the query.

 Listing 31-9. Point-in-time restore: Using the fn_dump_dblog function

 select [Current LSN], [Begin Time], Operation,[Transaction Name], [Description]
 from fn_dump_dblog
 (default, default, default, default, 'C:\backups\mydb.trn',default, default, default
 ,default, default, default, default, default, default, default, default, default, default
 ,default, default, default, default, default, default, default, default, default, default
 ,default, default, default, default, default, default, default, default, default, default
 ,default, default, default, default, default, default, default, default, default, default
 ,default, default, default, default, default, default, default, default, default, default
 ,default, default, default, default, default, default, default, default, default, default)
 where [Transaction Name] = 'DROPOBJ';

 Figure 31-3. Fn_dump_dblog output

 Listing 31-10 shows a RESTORE statement that uses the LSN from this output. You should specify the
 lsn:0x prefix in the STOPBEFOREMARK parameter. It tells SQL Server that you are using an LSN in hexadecimal
format.

 Listing 31-10. Point-in-time restore: Using the STOPBEFOREMARK parameter

 restore log MyDBCopy
 from disk = N'C:\Backups\MyDB.trn'
 with file = 1, norecovery, stats = 5,
 stopbeforemark = 'lsn:0x 00000024:00000178:0001';

 Analyzing transaction log records is a tedious and time consuming job. However, it provides the most
accurate results. Moreover, you can use such a technique when data is accidentally deleted by the DELETE
statement. Such an operation is not logged in the system default trace, and analyzing transaction log content
is the only option available. Fortunately, there are third-party tools available that can simplify the process of
searching for the LSN of the operation in the log.

 Restore with STANDBY
 When you finish a restore process using the NORECOVERY option, the database stays in the RESTORING state
and it is unavailable to users. The STANDBY option allows you to access the database in read-only mode.

CHAPTER 31 ■ BACKUP AND RESTORE

622

 As mentioned previously, SQL Server performs the redo stage of recovery as the final step of the
restore process. The undo stage of recovery is deferred until a restore is called with the RECOVERY option.
The STANDBY option forces SQL Server to perform the undo stage using a temporary undo file to store the
compensation log records generated during the undo process. The compensation log records do not become
part of the database transaction log, and you can restore additional log backups or recover the database if
needed.

 Listing 31-11 illustrates the use of the RESTORE WITH STANDBY operator. It is worth mentioning that you
should not specify RECOVERY/NORECOVERY options in this mode.

 Listing 31-11. Restore with STANDBY option

 restore log MyDBCopy
 from disk = N'C:\Backups\MyDB.trn'
 with file = 1, stats = 5,
 standby = 'C:\Backups\undo.trn';

 The STANDBY option can be used together with point-in-time restore. This can help you avoid
unnecessary restores when you need to locate the LSN to use with the STOPBEFOREMARK option. Think
about a situation where the log file has multiple DROP OBJECT transactions, and you do not know which
one dropped the table that you wish to recover. In this case, you can perform multiple restores using
both the STOPBEFOREMARK and STANDBY options, querying the database until you find the right spot for
recovery.

 Alternatively, you can use the STANDBY option together with STOPAT to analyze the database state at a
specific time.

 Designing a Backup Strategy
 Every production system has two requirements that affect and shape backup strategy implementation.
The first is the Recovery Point Objective (RPO) , which dictates how much data loss is acceptable in the case
of disaster. The second requirement is the Recovery Time Objective (RTO) , which defines the acceptable
downtime for the recovery process.

 RPO and RTO metrics are usually included in the Service Level Agreements defined for the system.
When RPO and RTO are not formally documented, you can determine them by interviewing stakeholders
and gathering information about their expectations.

 Non-technical stakeholders often have unrealistic expectations when defining RPO and RTO
requirements. They often request zero data loss and zero system downtime. It is impossible to guarantee or
achieve such goals in real life. Moreover, very small RPO/RTO adds additional load to the server and is often
impractical and very expensive to implement. It is your job to educate stakeholders and work with them to
define realistic RPO and RTO based on business requirements.

 The RPO dictates the recovery model that the database should use. Table 31-1 shows possible data loss
and recovery points for the different database recovery models, assuming that backup files are available and
the backup chain is intact. Obviously, if both the data and log files are corrupted, restoring the last backup is
the only option, regardless of the recovery model.

CHAPTER 31 ■ BACKUP AND RESTORE

623

 In the SIMPLE recovery model , all changes since the last full or differential backup must be redone.
Therefore, this model is not the best candidate for databases with volatile data that needs to be protected.
However, the SIMPLE recovery model is perfectly acceptable when the data is static; for example, in data
warehouse and/or reporting systems where the data is refreshed based on some schedule. You can use the
 SIMPLE recovery model by performing a full database backup after each data refresh.

 Another possible use case for the SIMPLE recovery model is a database with data that can be easily
and quickly reconstructed from other sources. In these cases, you might consider using this model to
avoid transaction log maintenance. It is also worth noting that databases in the SIMPLE recovery model do
not support features that rely on transaction log scans, such as database mirroring, AlwaysOn Availability
Groups, log shipping, and others.

 The FULL and BULK LOGGED recovery models log regular (non-bulk copy) operations in the same way
as each other and have the same transaction log maintenance requirements. Even though the BULK LOGGED
recovery model improves the performance of bulk-copy operations due to minimal logging, it is exposed to
data loss in cases of data file corruption. You should avoid using the BULK LOGGED recovery model because
of this. Nevertheless, you may consider switching the database from the FULL to the BULK LOGGED recovery
model for the duration of bulk-copy operations (for example, during index rebuild) and then switching the
database back to the FULL recovery model afterward.

 ■ Important You should perform a full or log backup immediately after you switch the database back to the
 FULL recovery model.

 Neither of these recovery models would survive transaction log corruption and keep the database
transactionally consistent. You should store the transaction log on a highly redundant disk array in order
to minimize the chance of such situations. Neither solution, however, is 100 percent redundant. You
should make regular log backups to minimize possible data loss. The frequency of log backups helps control
possible data loss and indicates how much work must be redone in instances of transaction log corruption .
For example, if you performed a log backup every hour, you would only lose up to one hour’s work when
restoring the last log backup.

 Table 31-1. Data Loss Based on the Database Recovery Model

 Recovery Model Description Data Files Corruption Log Corruption

 SIMPLE Log backups are not supported.
The database can be restored
to the point of the last full or
differential backup.

 Changes since the last full or differential backup
must be redone.

 FULL All operations are fully recorded
in the transaction log.

 No data loss Changes since the last
LOG backup must be
redone. BULK LOGGED Bulk copy operations are

minimally logged. All other
operations are fully logged.

 No data loss if bulk-copy
operations did not occur
since the last log backup.
Otherwise, changes since
the last LOG backup must
be redone.

CHAPTER 31 ■ BACKUP AND RESTORE

624

 ■ Important The intervals between log backups should not exceed the time specified by the Recovery Point
Objective requirement. You should also consider log backup duration when designing a backup strategy.

 While it is relatively easy to define a backup strategy based on the RPO, it is much trickier with RTO,
which specifies the maximum duration of the recovery process and therefore the system downtime. That
time depends on a few factors, such as network throughput, which dictates how much time is required to
transmit backup files over the network, as well as on the size and number of backup files. Moreover, this
duration changes over time as the database and load grows. You should regularly test the database recovery
process, making sure that it still meets RTO requirements.

 Figure 31-4 shows a recovery scenario for a database that has multiple differentials and log backups. As
a first step during recovery, you should make a tail-log backup, which backs up the portion of the transaction
log that has not been backed up since the last log backup. After that, you should restore the last full backup,
most recent differential backup, and all log backups taken afterward, including the tail-log backup.

 Figure 31-4. Recovery sequence

 Let’s assume that the example shown in Figure 31-4 represents a database with the primary filegroup
residing on disk M: , secondary filegroup on disk N: , and transaction log on disk L: . All backup files are
stored on disk V: . Listing 31-12 shows the script that recovers the database after a disaster when disk N:
becomes corrupted and unavailable. The data files from the secondary filegroup are moved to disk M: . In this
example, SQL Server must redo all data modifications that occurred in between the time of the differential
backup D2 and the time of failure.

 Listing 31-12. Restoring the database after a disaster

 -- Backing up Tail-Log. Database will be left in RESTORING stage
 backup log RecoveryDemo
 to disk = N'V:\RecoveryDemo-tail-log.trn'
 with no_truncate, noformat, init,
 name = N'RecoveryDemo-Tail-log backup',
 norecovery, stats = 5;

 -- Restoring FULL backup moving files from SECONDARY FG to M: drive
 restore database RecoveryDemo
 from disk = N'V:\RecoveryDemo-F1.bak' with file = 1,
 move N'RecoveryDemo_Secondary' to N'M:\RecoveryDemo_Secondary.ndf',
 norecovery, stats = 5;

 -- Restoring DIFF backup
 restore database RecoveryDemo

CHAPTER 31 ■ BACKUP AND RESTORE

625

 from disk = N'V:\RecoveryDemo-F2.bak' with file = 1,
 norecovery, stats = 5;

 -- Restoring L5 Log backup
 restore log RecoveryDemo
 from disk = N'V:\RecoveryDemo-L5.trn' with file = 1,
 norecovery, stats = 5;

 -- Restoring L6 Log backup
 restore log RecoveryDemo
 from disk = N'V:\RecoveryDemo-L6.trn' with file = 1,
 norecovery, stats = 5;

 -- Restoring tail-log backup
 restore log RecoveryDemo
 from disk = N'V:\RecoveryDemo-tail-log.trn' with file = 1,
 norecovery, stats = 5;

 -- Recovering database
 restore database RecoveryDemo with recovery;

 You can take multiple restore paths while recovering the database. In addition to the method just
shown, you can also use differential backup D1 , applying log backups L3 – L7 and the tail-log backup. As
another option, you can use only log backups after you have restored a full backup without using any
differential backups at all. However, the time required for the restore process greatly depends on the amount
of transaction log records that need to be replayed. Differential backups allow you to reduce the amount of
time involved and speed up the restore process.

 You should design a backup strategy and find the right combination of full, differential, and log backups
that allows you to restore the database within the time defined by the RTO requirements . The key point here
is to define the schedule of full and differential backups because the frequency of log backups depends on
RPO and possible data loss.

 ■ Tip Remember to enable Instant File Initialization, which prevents the zeroing-out of data files during the
database creation stage of restore.

 You should create differential backups often enough to minimize the number of log backups that
need to be restored and log records that need to be replayed in case of recovery. Differential backups are
cumulative, though, and you should avoid the situation where they store a large amount of data modified
since the last full backup. It would be better to perform full backups more often in that case.

 As an example, consider a database that collects some data from external sources, keeping one week of
the most recent data and purging it on a daily basis using a sliding window pattern implementation. In this
schema, one-seventh of the data is changing on a daily basis.

 Let’s assume that a full backup is taken weekly and differential backups are taken daily. If the size of the
full backup is 1 TB, the incremental backups would grow at a rate of 140–150 GB per day. In that case, if a
disaster happened on the seventh day after the last full backup, you would need to restore 1 TB of full backup
and about 850 GB of differential backups before applying log backups, which is very time consuming and
redundant. It would be much more efficient to perform full backups on a daily basis in that case.

CHAPTER 31 ■ BACKUP AND RESTORE

626

 The location of backup files is another important factor that affects recovery time. It could be very time
consuming to copy a large amount of data over the network. Consider keeping multiple copies of backup
files when it is appropriate—off-site, on-site, and perhaps even locally on the server.

 Make sure that you have enough free space on disk to store backup files and implement alerting in the
system in case backup fails. Remember that failed log backups would prevent truncation of the transaction
log and would force the transaction log to grow.

 When fast system recovery is crucial, you can consider striping backup across multiple local DAS drives,
copying backup files to other servers and offsite locations afterward. This will protect you from various types
of failures and provide the best performance of backup and restore processes.

 I/O subsystem and network performance are usually the biggest bottlenecks during backup and restore.
Backup compression helps to reduce the size of the data that needs to be transmitted over the network or
read from disk. Always use backup compression if the database is not encrypted and the server can handle
the extra CPU load introduced by compression.

 You should remember that backup compression affects the duration of backup and restore operations.
SQL Server spends extra time compressing and decompressing data; however, this can be mitigated by a
smaller backup file and thus a smaller amount of data being transmitted over the network and/or read from
disk. You need to validate that you can still achieve RTO after you enable backup compression in the system.

 One of the key elements of a good backup strategy is backup validation. It is not enough to back up the
database. You should make sure that backup files are not corrupted and that the database can be restored
from them. You can validate backup files by restoring them on another server.

 ■ Tip You can also perform database consistency checks by running DBCC CHECKDB after the backup is
restored on another server. This helps reduce the load on the production server.

 Another good practice that ensures the safety of a backup is storing a redundant set of backup files. Do
not delete backup files with old differential and log backups after you make a new differential backup. Such a
strategy may help you to recover the database when the most recent backup is corrupted.

 Finally, databases do not live in a vacuum. It is not enough to recover a database after a disaster; it must
also be available to the client applications. Backup and Disaster Recovery strategies should incorporate
other elements from the database ecosystem and support database restore on another SQL Server. Those
elements include server logins, SQL Jobs, Database Mail profiles, procedures in the master database, and a
few others. They should be scripted and tested together with the backup strategy.

 Partial Database Availability and Piecemeal Restore
 Partial database availability is an Enterprise Edition feature that allows you to keep part of the
database online during a disaster or to restore the database on a filegroup-by-filegroup basis, making these
filegroups available to users one by one. Partial database availability works on per-filegroup basis and
requires a PRIMARY filegroup and transaction log file to be available and online.

 ■ Tip Do not place user objects in the PRIMARY filegroup. This reduces the size of the PRIMARY filegroup and
the time required to restore it in case of a disaster.

 Partial database availability is especially beneficial in cases of data partitioning. Different data in the
system may have different RTO requirements. For example, it is not uncommon to have the recovery time
requirement for current critical operation data in minutes, while the recovery time for older, historical data
is listed in hours or even days. Piecemeal restore allows you to perform a partial database restore and quickly
bring operational data online without waiting for historical data to be restored.

CHAPTER 31 ■ BACKUP AND RESTORE

627

 Let’s assume that we have the database OrderEntryDB with four filegroups: Primary , Entities ,
 OperationalData , and HistoricalData . The Primary filegroup resides on the M: drive, Entities and
 OperationalData reside on the N: drive, and HistoricalData resides on the S: drive. Listing 31-13 shows
the database layout for this.

 Listing 31-13. Partial DB availability: Database layout

 create database OrderEntryDB
 on primary
 (name = N'OrderEntryDB', filename = N'M:\OrderEntryDB.mdf'),
 filegroup Entities
 (name = N'OrderEntryDB_Entities', filename = N'N:\OrderEntryDB_Entities.ndf'),
 filegroup OperationalData
 (name = N'OrderEntryDB_Operational', filename = N'N:\OrderEntryDB_Operational.ndf'),
 filegroup HistoricalData
 (name = N'OrderEntryDB_Historical', filename = N'S:\OrderEntryDB_Historical.ndf')
 log on
 (name = N'OrderEntryDB_log', filename = N'L:\OrderEntryDB_log.ldf');

 In the first example, let’s assume that the S: drive is corrupted and the HistoricalData filegroup
becomes unavailable. Let’s see how you can recover the data from this filegroup and move the files to
another drive.

 As a first step, shown in Listing 31-14 , you need to mark the corrupted file as being offline. This
operation terminates all database connections, although users can reconnect to the database immediately
afterward.

 Listing 31-14. Partial DB availability: Mark file as offline

 alter database OrderEntryDb modify file(name = OrderEntryDB_Historical, offline);

 At this point, all of the data in the HistoricalData filegroup is unavailable to users. However, users can
still work with the data from the other filegroups.

 If you queried the sys.database_files view with the query shown in Listing 31-15 , you would see that
the data files from the HistoricalData filegroup have an OFFLINE state. Figure 31-5 shows this state.

 Listing 31-15. Partial DB availability : Querying state of the files

 select file_id, name, state_desc, physical_name
 from sys.database_files

 Figure 31-5. Partial DB availability: Data files’ state after marking one file as offline

CHAPTER 31 ■ BACKUP AND RESTORE

628

 In the next step, you should make a tail-log backup, as shown in Listing 31-16 . It does not matter that
the database is still online and that other sessions are generating log records. The OrderEntryDB_Historical
file is offline, and therefore none of the newly generated log records would apply to the data in that file. It is
worth mentioning that you should not use the NORECOVERY option when making a tail-log backup because
 NORECOVERY switches the database to a RESTORING state.

 Listing 31-16. Partial DB availability: Making tail-log backup

 backup log OrderEntryDB
 to disk = N'V:\OrderEntryDB-tail-log.trn'
 with no_truncate, init,
 name = N'OrderEntryDB-Tail-log backup';

 As a next step, you should restore a full backup from the current log chain, restoring individual files as
shown in Listing 31-17 .

 Listing 31-17. Partial DB availability: Restoring a full backup

 restore database OrderEntryDB
 file = N'OrderEntryDB_Historical'
 from disk = N'V:\OrderEntryDB.bak' with file = 1,
 move N'OrderEntryDB_Historical' to N'P:\OrderEntryDB_Historical.ndf',
 norecovery, stats = 5;

 If you ran the query that shows the state of the files from Listing 31-15 again, you would see the results
shown in Figure 31-6 . Only one file would be in the RESTORING stage, while all other files would be online
and available to users.

 Figure 31-6. Partial DB availability: Data files’ state after applying a full backup

 Finally, you should restore all other differential and log backup files, finishing with the tail-log backup.
You do not need to specify each individual file here. SQL Server will restore only files that are in the
 RESTORING state. Review the code for doing this, shown in Listing 31-18 .

 Listing 31-18. Partial DB availability : Restoring other backup files

 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB.trn' with file = 1,
 norecovery, stats = 5;

CHAPTER 31 ■ BACKUP AND RESTORE

629

 -- Restoring tail-log backup
 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB-tail-log.trn' with file = 1,
 norecovery, stats = 5;

 restore database OrderEntryDB with recovery;

 The database is recovered, and all files are now online, as shown in Figure 31-7 .

 Figure 31-7. Partial DB availability : Data files’ state after restore

 You can use the same sequence of actions while recovering individual files in the non-Enterpise
Editions of SQL Server, although the database switches to RESTORING state and would not be available to
users during this process.

 The same technique can be applied when you want to perform a piecemeal restore of the database,
bringing it online on a filegroup-by-filegroup basis. You could use a RESTORE statement, specifying the list of
the filegroups, and use the PARTIAL option. Listing 31-19 shows you how to perform a piecemeal restore of
the Primary , Entities, and OperationalData filegroups.

 Listing 31-19. Piecemeal filegroup restore: Restoring Primary, Entities, and OperationalData filegroups

 restore database OrderEntryDB
 filegroup='Primary', filegroup='Entities', filegroup='OperationalData'
 from disk = N'V:\OrderEntryDB.bak' with file = 1,
 move N'OrderEntryDB' to N'M:\OrderEntryDB.mdf',
 move N'OrderEntryDB_Entities' to N'N:\OrderEntryDB_Entities.ndf',
 move N'OrderEntryDB_Operational' to N'N:\OrderEntryDB_Operational.ndf',
 move N'OrderEntryDB_log' to N'L:\OrderEntryDB_log.ldf',
 norecovery, partial, stats= 5;

 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB.trn' with file = 1,
 norecovery, stats = 5;

 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB-tail-log.trn' with file = 1,
 norecovery, stats = 5;

 restore database OrderEntryDB with recovery;

 At this point, files from the restored filegroups are online, while the historical data file is in a RECOVERY_
PENDING state. You can see the results of the query from Listing 31-15 in Figure 31-8 .

CHAPTER 31 ■ BACKUP AND RESTORE

630

 Finally, you can bring the HistoricalData filegroup online by using the RESTORE statements shown in
Listing 31-20 .

 Listing 31-20. Piecemeal filegroup restore: Restoring the HistoricalData filegroup

 restore database OrderEntryDB
 filegroup='HistoricalData'
 from disk = N'V:\OrderEntryDB.bak' with file = 1,
 move N'OrderEntryDB_Historical' to N'S:\OrderEntryDB_Historical.ndf',
 norecovery, stats = 5;

 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB.trn' with file = 1,
 norecovery, stats = 5;

 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB-tail-log.trn' with file = 1,
 norecovery, stats = 5;

 restore database OrderEntryDB with recovery;

 A piecemeal restore greatly improves the availability of the system; however, you should design the data
layout in such a way that allows you to utilize it. Usually, this implies the use of data partitioning techniques,
which we discussed in Chapter 16 , “Data Partitioning.”

 Partial Database Backup
 SQL Server allows you to back up individual files and filegroups as well as exclude read-only filegroups from
a backup. You can back up read-only filegroups separately and exclude them from regular full backups,
which could dramatically reduce the size of backup files and backup time.

 Listing 31-21 marks the HistoricalData filegroup as read-only, and it backs up the data from this
filegroup. After that, it performs a full backup for read-write filegroups only using the READ_WRITE_
FILEGROUPS option and log backup.

 Listing 31-21. Partial backup: Performing backups

 alter database OrderEntryDB modify filegroup HistoricalData readonly;

 backup database OrderEntryDB
 filegroup = N'HistoricalData'

 Figure 31-8. Piecemeal filegroup restore : Data files state after Primary, Entities, and OperationalData
filegroups are restored

http://dx.doi.org/10.1007/978-1-4842-1964-5_16

CHAPTER 31 ■ BACKUP AND RESTORE

631

 to disk = N'V:\OrderEntryDB-hd.bak'
 with noformat, init,
 name = N'OrderEntryDB-HistoricalData Backup', stats = 5;

 backup database OrderEntryDB read_write_filegroups
 to disk = N'V:\OrderEntryDB-rw.bak'
 with noformat, init,
 name = N'OrderEntryDB-R/W FG Full', stats = 5;

 backup log OrderEntryDB
 to disk = N'V:\OrderEntryDB.trn'
 with noformat, init,
 name = N'OrderEntryDB-Transaction Log ', stats = 5;

 You can exclude the HistoricalData filegroup from all further full backups as long as you keep the
filegroup read-only.

 If you need to restore the database after a disaster, you could perform a piecemeal restore of read-write
filegroups, as shown in Listing 31-22 .

 Listing 31-22. Partial backup: Piecemeal restore of read-write filegroups

 restore database OrderEntryDB
 filegroup='Primary', filegroup='Entities', filegroup='OperationalData'
 from disk = N'V:\OrderEntryDB-rw.bak' with file = 1,
 move N'OrderEntryDB' to N'M:\OrderEntryDB.mdf',
 move N'OrderEntryDB_Entities' to N'N:\OrderEntryDB_Entities.ndf',
 move N'OrderEntryDB_Operational' to N'N:\OrderEntryDB_Operational.ndf',
 move N'OrderEntryDB_log' to N'L:\OrderEntryDB_log.ldf',
 norecovery, partial, stats = 5;

 restore database OrderEntryDB
 from disk = N'V:\OrderEntryDB-rw.bak' with file = 1,
 norecovery, stats = 5;

 restore log OrderEntryDB
 from disk = N'V:\OrderEntryDB.trn' with file = 1
 norecovery, stats = 5;

 restore database OrderEntryDB with recovery;

 The Primary , Entities, and OperationData filegroups are now online, and the HistoricalData
filegroup is in the RECOVERY_PENDING state, as shown in Figure 31-9 .

 Figure 31-9. Partial backup : Data files state after piecemeal restore of read-write filegroups

CHAPTER 31 ■ BACKUP AND RESTORE

632

 You can bring the HistoricalData filegroup online by performing a restore of the original filegroup
backup file, as shown in Listing 31-23 .

 Listing 31-23. Partial backup: Read-only filegroup restore

 restore database OrderEntryDB
 filegroup='HistoricalData'
 from disk = N'V:\OrderEntryDB-hd.bak' with file = 1,
 move N'OrderEntryDB_Historical' to N'S:\OrderEntryDB_Historical.ndf',
 recovery, stats = 5;

 Microsoft Azure Integration
 SQL Server includes several backup-related features that are integrated with Microsoft Azure. Let’s look at
them in detail.

 Backup to Microsoft Azure
 Starting with SQL Server 2012 SP1 CU2, you can back up directly to or restore from Microsoft Azure Blob
Storage by specifying the URL location as part of the BACKUP and RESTORE commands. Listing 31-24 shows an
example of this process.

 Listing 31-24. Backup to and restore from Windows Azure Blob Storage

 create credential MyCredential
 with identity = 'mystorageaccount', secret = '<Secret Key>';

 backup database MyDb
 to url = 'https://mystorageaccount.blob.core.windows.net/mycontainer/MyDb.bak'
 with credential = 'MyCredential', stats = 5;

 restore database MyDb
 from url = 'https://mystorageaccount.blob.core.windows.net/mycontainer/MyDb.bak'
 with credential = 'MyCredential', recovery, stats = 5;

 Storing a database backup in Azure Blob Storage is a great option when you run SQL Server in a virtual
machine in Microsoft Azure. However, for on-premises installations, you need to consider the upload and
download bandwidth that you have available. Uploading and downloading large, multi-gigabyte backup files
can take hours or even days, which makes it impractical and leads to prolonged downtime in case of disaster.
With all that being said, storing backup files in Microsoft Azure can still be an option for small and non–
mission critical databases with RTOs that allow prolonged downtime.

 In addition to the BACKUP TO URL command, you can use the Microsoft SQL Server Backup to Microsoft
Windows Azure Too l , which will work with any version and edition of SQL Server. This tool works separately
from SQL Server. It intercepts backup files being written to the folders based on specified rules, and it
uploads the files to Azure Blob Storage.

 Unfortunately, the Microsoft SQL Server Backup to Microsoft Windows Azure Tool does not keep a local
copy of backup files. You should consider the available bandwidth and RTO requirements if you decided to
use it.

CHAPTER 31 ■ BACKUP AND RESTORE

633

 ■ Note You can download the Microsoft SQL Server Backup to Microsoft Windows Azure Tool from
 https://www.microsoft.com/en-us/download/details.aspx?id=40740 .

 With all that being said, storing backup files in the Cloud can be a good option when you need a
cost-effective, redundant solution for on-premises installations. Nonetheless, it is better to implement this
separately from the SQL Server backup process, uploading a local copy of the backup files afterward. This
approach allows you to quickly recover a database from a disaster by using the local copy of the backup files
while keeping another copy of the files in the Cloud for redundancy purposes.

 Managed Backup to Microsoft Azure
 SQL Server 2014 introduced the concept of managed backup to Microsoft Azure Blob Storage. This can
be enabled at the instance or database levels. SQL Server automatically performs full and transaction log
backups based on the following criteria and retains them for up to 30 days:

 Full backup is performed in any of the following situations: the last full backup
was taken more than a week previously, there is log growth of 1 GB or more since
the last full backup, or the backup chain is broken.

 Transaction log backup is taken every two hours, when 5 MB of log space is used,
or when transaction log backup is lagging behind the full backup.

 SQL Server 2014 managed backup does not work with databases in the SIMPLE or BULK LOGGED recovery
models, nor with system databases. These limitations have been removed in SQL Server 2016.

 Managed backup backs up files to Microsoft Azure Blob Storage only. Local storage is not supported. All
considerations that we discussed in the “Backup to Microsoft Azure” section also apply to managed backups.

 ■ Note You can read more about managed backups at https://msdn.microsoft.com/en-us/library/
dn449496.aspx . Make sure to select the appropriate version of SQL Server. There are significant changes in the
configuration between SQL Server 2014 and 2016.

 File Snapshot Backup for Database Files in Azure
 Starting with SQL Server 2014, you can store database files in Microsoft Azure Blob Storage with both
on-premises and SQL Server in Azure VM installations. This provides you the option of using cheap and
redundant storage in those systems that can tolerate lower I/O performance and higher latency of the Blob
Storage.

 As an additional enhancement, SQL Server 2016 allows you to utilize Azure Blob Snapshot capabilities
as part of the database backup and restore processes. This approach works very differently from traditional
backups. As the opposite of the regular backup files, which contain a copy of the data pages and log records,
Blob Snapshots store a read-only copy of all database files at the time of snapshot creation.

 Figure 31-10 illustrates the concept of file snapshot backups . Only full and log backups are supported.
However, both of these types are very similar and contain a copy of all database files. The difference between
them is that full backup initializes the backup chain while log backup truncates the log after the operation.

https://www.microsoft.com/en-us/download/details.aspx?id=40740
https://msdn.microsoft.com/en-us/library/dn449496.aspx
https://msdn.microsoft.com/en-us/library/dn449496.aspx

CHAPTER 31 ■ BACKUP AND RESTORE

634

 The restore process copies database files from the snapshot, always creating a new copy of the database.
As you can guess, this allows you to run the RESTORE DATABASE command using the log-backup snapshot as
the source. It contains a copy of the database files, and you do not need to restore the full backup first.

 For a point-in-time restore, you should use two adjacent backup sets performing two restore operations.
First, you need to restore the database from the first backup set using the RESTORE DATABASE WITH
NORECOVERY command. This command will create a new copy of the database as of the time of the backup
set. Next, you need to restore the log from the second backup set using the RESTORE LOG WITH STOPAT
statement. This command replays the portion of the transaction log starting from the previously restored
backup set and up to the time specified in the STOPAT option. Figure 31-11 illustrates that.

 Figure 31-10. File snapshot backups

 Figure 31-11. File snapshot point-in-time restore

 Listing 31-25 shows the code that implements this process.

 Listing 31-25. File snapshot backup and point-in-time restore

 -- Performing full and log database backups
 backup database MyDb /* T1 in Figure 31-11 */
 to url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb.bak'
 with file_snapshot;

CHAPTER 31 ■ BACKUP AND RESTORE

635

 backup log MyDb /* T2 in Figure 31-11 */
 to url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-08-00.trn'
 with file_snapshot;

 backup log MyDb /* T4 in Figure 31-11 */
 to url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-10-00.trn'
 with file_snapshot;

 -- Point in time restore at 10am /* T4 in Figure 31-11 */
 restore database /* T2 in Figure 31-11 */
 from url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-08-00.trn'
 with norecovery, replace;

 restore log /* T4 in Figure 31-11 */
 from url = 'https://mystorageaccountname.blob.core.windows.net/mycontainername/MyDb_2016-03-
11-11-00.trn'
 with recovery, stopat = '2016-03-11T10:00:00.000';

 As you can guess, the restore process utilizes file copy operations under the hood and needs to replay
a very limited amount of transaction log records. This can provide a very significant time reduction as
compared to the traditional restore process, and it simplifies the design of the backup strategy. You should
add Azure storage costs into the equation, however. Even though Blob Storage is relatively cheap, its cost can
be significant with a large number of snapshots, especially with large databases.

 Finally, file snapshot backups require you to manage backup sets from within SQL Server. The manual
deletion of snapshot files can invalidate the backup set. You should use the sys.sp_delete_backup and sys.
sp_delete_backup_file_snapshot system stored procedures for such an action.

 ■ Note You can read more about file snapshot backups at https://msdn.microsoft.com/en-us/library/
mt169363.aspx .

 Summary
 A full database backup stores a copy of the database that represents its state at the time when the backup
finished. Differential backup stores extents that have been modified since the last full backup. Log backups
store the portion of the transaction log starting from the last full or the end of the last log backup.

 Full and differential backups are supported in every recovery model, while log backup is supported only
in the FULL or BULK LOGGED recovery models.

 Differential backups are cumulative. Every backup contains all of the extents modified since the last full
backup. You can restore the latest differential backup when needed. Conversely, log backups are incremental
and do not contain the part of the transaction log backed up by previous backups.

 A full backup and a sequence of log backups make up a backup chain. You should restore all of the
backups from a chain in the right order when restoring a database. You can use the COPY_ONLY option with
full or log backups to keep the backup chain intact.

 The frequency of log backups is dictated by the Recovery Point Objective (RPO) requirements. The log
should be backed up in intervals that do not exceed the allowable data loss for a system.

https://msdn.microsoft.com/en-us/library/mt169363.aspx
https://msdn.microsoft.com/en-us/library/mt169363.aspx

CHAPTER 31 ■ BACKUP AND RESTORE

636

 A Recovery Time Objective (RTO) specifies the maximum acceptable duration of the recovery process,
which affects full and differential backup schedules. You should also factor in the time required to transmit
files over the network when designing a backup strategy. Backup compression can help reduce this time and
improve the performance of backup and restore operations, but at a cost of extra CPU load and extra time as
the compression and decompression of data takes place.

 You should validate backup files and make sure that your backup strategy is valid and meets the RTO
and RPO requirements. The duration of the backup and restore processes changes over time along with
database size and load.

 SQL Server Enterprise Edition supports piecemeal restore, which allows you to restore data on
per-filegroup basis, keeping part of the database online. This feature greatly improves the availability of
the system and helps to reduce the recovery time of critical operational data when the data is properly
partitioned.

 You can exclude read-only data from regular full backups, which can reduce backup time and the size
of backup files. Consider putting read-only data into a separate filegroup and marking it as read-only when
appropriate.

637© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_32

 CHAPTER 32

 High Availability Technologies

 A High Availability (HA) strategy helps improve the availability of the system due to hardware, software, or
network malfunctions. Even though it sounds similar to a backup and Disaster Recovery (DR) strategy, it
is not the same. A High Availability strategy serves as the first level of defense, making a hardware failure
or software crash transparent to users. Disaster recovery, on the other hand, deals with situations where
a system needs to be recovered after a disaster that was not prevented by the High Availability strategy in use.

 Think about a situation in which a system is hosted within a single datacenter. It may have a High
Availability strategy that implements server redundancy within the datacenter, which keeps the system
online in case of a server failure. However, it would not necessarily protect the system from a simultaneous
malfunction of multiple servers, nor from datacenter-level disasters. A Disaster Recovery strategy will help
you recover from the latter case, restoring or rebuilding the system on different hardware or in a different
datacenter.

 This chapter provides you with an overview of the different High Availability technologies available in
SQL Server and explains the principles they were built upon. You should not view this chapter as a definitive
guide on SQL Server High Availability implementations, which easily merit their own book.

 This chapter does not cover High Availability technologies that are not SQL Server–based, such as SAN
replication and virtualization technologies. You should research and evaluate those technologies if they are
applicable to your environment.

 SQL Server Failover Cluster
 Perhaps the best-known High Availability technology in SQL Server is a SQL Server failover cluster . Until SQL
Server 2005, a failover cluster was the only High Availability technology that supported automatic failover in
case of a server failure.

 Starting with SQL Server 2012, Microsoft changed the name of this technology, calling it an AlwaysOn
Failover Cluster. However, I will continue to use the old name in this chapter to avoid confusion with
 AlwaysOn Availability Groups .

 A SQL Server failover cluster is installed as a resource group of the Windows Server Failover Clustering
(WSFC) cluster. WSFC should be installed and configured prior to SQL Server failover cluster installation.

 With both WSFC and SQL Server failover clusters, the group of individual servers, called nodes , shares
a set of resources, such as disks or databases in a SQL Server instance. However, only one node at time owns
the resource. If a node fails, ownership is transferred to another node through a process called failover .

 The simple installation of a failover cluster consists of two different nodes, each of which has a SQL
Server instance installed. The nodes work with a single copy of the users’ and system databases placed on
shared storage. The cluster provides a virtual SQL Server name and IP address, which can be used by client
applications. These resources are different from those assigned to a Windows Server Failover Clustering
cluster. Figure 32-1 illustrates a simple failover cluster.

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

638

 One of the SQL Server instances is active and handles all user requests. Another node provides hot
standby. When something happens to the active node, the SQL Server cluster fails over to the second node,
formerly the passive node, and starts from there. This process, in a nutshell, is a SQL Server instance restart.
The new active node performs a crash recovery of all of the databases in the instance, preventing clients
from connecting to the databases until this process is complete.

 The duration of crash recovery and failover greatly depends on the amount of data modified by active
transactions at the time of the failover. With short OLTP transactions, failover could be in the under-a-
minute range. However, it is possible that failover can take much longer, as with active transactions that
modified a large amount of data and need to be rolled back by a crash recovery process.

 In-Memory OLTP, which we will discuss in Part VIII of this book, could also affect failover time. SQL
Server loads all data from durable memory-optimized tables into the memory during database startup,
which can be time consuming if there is a large amount of data.

 A SQL Server failover cluster works on the instance level and protects the entire instance. It
includes system and user databases, SQL Server configuration settings, logins and security, and SQL
Agent jobs. Entire SQL Server instance fails over, it is impossible to have some databases running on a SQL
Server instance installed on one node of the cluster and other databases running on another SQL Server
instance installed on a different node.

 Failover clustering requires that all databases be placed into shared storage. Starting with Windows
Server 2012R2, you can use SMB shares to store the data. Nevertheless, storage becomes the single point of
failure.

 ■ Important Always use highly redundant storage with failover clustering. Moreover, consider combining
a SQL Server failover cluster with other High Availability technologies that allow you to store copies of the
databases on a different storage devices. It increases the availability of the system and minimizes possible data
loss in case of a storage failure.

 Figure 32-1. Two-node WSFC with a single SQL Server failover cluster instance

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

639

 The system databases also use shared storage . Fortunately, starting with SQL Server 2012, you can put
 tempdb onto the local drive, which can significantly improve the performance of the cluster, especially if you
place it on the solid state–based storage.

 While it is relatively easy to set up Windows clusters, which host a single SQL Server cluster instance,
they double the number of servers that you will need. Even though you are generally not required to buy
another SQL Server license if a passive node is used for High Availability only, there are still the hardware,
electricity, and maintenance costs to consider.

 ■ Note Work with Microsoft licensing specialists to determine the exact licensing requirements for your High
Availability configuration. Licensing requirements vary based on SQL Server version and existence of a Software
Assurance agreement.

 One of the ways to reduce the cost of a failover cluster solution is by using multi-instance failover
 clusters . In this configuration, one Windows cluster hosts multiple SQL Server failover cluster instances.

 Figure 32-2 shows an example of a two-node multi-instance cluster. There are two cluster instances of
SQL Server: vSales and vAccounting . The CNode1 cluster node is the active node for the vSales instance,
and the CNode2 is the active node for the vAccounting instance.

 In an ideal situation, when all cluster nodes are up and running, multiple SQL Server clusters would
not affect each other’s performance. Each SQL Server cluster instance is running on a separate node.
Unfortunately, the situation becomes much more complex when one of the servers becomes unavailable,
and the SQL Server instance fails over to another node, as shown in Figure 32-3 . Both SQL Server cluster
instances are running on the same server, competing for CPU and memory and affecting each other’s
performance.

 Figure 32-2. Two-node multi-instance cluster

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

640

 One of the typical approaches to reducing possible performance implications in case of a failover in a
multi-instance cluster is by building a cluster configuration that reserves some nodes to pick up the load in
case of a failover. With such an approach, a cluster with multiple active instances would have one or more
reserved passive nodes. If one of the active nodes failed, the instance from that node could fail over to the
reserved, formerly passive node without affecting the performance of the other SQL Server cluster instances.
Figure 32-4 shows an example of a two-instance cluster with one reserved passive node.

 Unfortunately, you cannot implement configurations with reserved passive nodes in the Standard
Edition of SQL Server, which supports two-node failover clusters only.

 Figure 32-3. Two-node multi-instance cluster: One-node failure

 Figure 32-4. Multi-instance cluster with one reserved passive node

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

641

 You should carefully plan multi-instance cluster configurations , assuming that multiple instances
might end up running on the same node. You should buy hardware that can handle the load, then set up the
minimum and maximum server memory for each instance on each node. It is better to set up the minimum
server memory based on a worst-case scenario that assumes multiple instances are running simultaneously.
The maximum server memory can be set up based on the best-case scenario, when there is only one
instance running on the node.

 Remember to keep some memory reserved for the OS when you set up the SQL Server Maximum Server
Memory configuration option. We already discussed how to choose the right value for this setting in Chapter
 28 . Do not forget that in SQL Server versions prior to 2012, memory settings controlled the memory usage of
the buffer pool only. You should factor in non-buffer pool memory when you set the memory settings.

 Dealing with CPU configuration is more challenging. You can set up an affinity mask for the different
instances, which restricts an instance from using some of the logical CPUs. However, this is not the best
approach when you have only one instance running on a node and you would like to have as much CPU
power available to the instance as possible. It is better to use the Windows System Resource Manager or
Windows System Center and throttle CPU activity if needed.

 You can monitor SQL Server cluster instances similar to how you monitor non-clustered ones. You
should use a virtual SQL Server instance name, which ensures that the monitoring target always represents
an active SQL Server instance, regardless of the cluster node where it is currently running.

 ■ Note You can read more about SQL Server failover clustering at http://technet.microsoft.com/en-us/
library/hh270278.aspx .

 Database Mirroring and AlwaysOn Availability Groups
 The SQL Server failover cluster provides great instance-level protection. However, it does not protect against
storage failure. Only one copy of the data is stored, and storage failure can lead to data loss.

 That problem can be mitigated by another set of technologies, such as database mirroring and
 AlwaysOn Availability Groups , which allow you to persist a byte-by-byte copy of the databases on two or, in
the case of AlwaysOn Availability Groups, several servers.

 Database mirroring works on the database level. AlwaysOn Availability Groups work on the database
group level, which may include one or more databases. Every database can participate in a single mirroring
or AlwaysOn session. Each SQL Server instance, however, can host multiple mirrored databases or
AlwaysOn Availability Groups.

 The database scope is the key difference between these technologies and SQL Server failover clustering,
which works on the SQL Server instance level. Only the database(s) are replicated between the nodes. While
on the one hand this provides you with flexibility and allows you to replicate different databases to different
servers, it also introduces administration overhead. You need to perform server configuration, set up logins
and security, configure SQL Agent jobs, and perform other server-level actions individually on each server in
the infrastructure.

 Technologies Overview
 Both mirroring and the AlwaysOn Availability Groups work by sending a stream of log records from primary
to secondary servers, which are sometime called nodes . In database mirroring, these servers are called
the principal and the mirror . All data modifications must be done on the primary server. With database
mirroring, the database on the mirror server is inaccessible to the clients. With AlwaysOn Availability
Groups, clients can access and read data from the secondary servers when it is enabled in the configuration.

http://dx.doi.org/10.1007/978-1-4842-1964-5_28
http://technet.microsoft.com/en-us/library/hh270278.aspx
http://technet.microsoft.com/en-us/library/hh270278.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

642

 The technology can work in either synchronous or asynchronous modes, which are also called
 synchronous and asynchronous commits . A synchronous commit guarantees no data loss for committed
transactions as long as data replication is up to date and both servers can communicate with each other.
With synchronous commits, the primary server does not send an acknowledgment that a transaction
is committed to the client until the secondary server hardens a COMMIT log record in its transaction log.
Figure 32-5 illustrates the step-by-step commit process in this mode.

 Let me reiterate that a synchronous commit only guarantees that there will be no data loss when
both servers are online and the process is up to date. If, for example, the secondary server goes offline, the
primary server continues to run and commit transactions, keeping the database on the secondary server
in SUSPENDED state. It is building a send queue of the log records, which needs to be sent to the secondary
server when it comes back online. If something happened with the primary server at this point, the data
modifications since the time when the secondary server disconnected could be lost.

 When the secondary server comes back online, synchronization switches to the SYNCHRONIZING state,
and the primary server starts sending log records from the send queue to the secondary server. Data loss is
still possible at this point. Only after all log records have been sent to the secondary server does the process
switch to a SYNCHRONIZED state, which guarantees that no data loss will occur in synchronous commit mode.

 The connectivity between the servers and the size of the send queue both affect transaction log
truncation. SQL Server defers log truncation until all records from VLF are sent to the secondary servers.
While in most cases this does not introduce any issues with log management, this is not the case when the
secondary server is offline. The send queue will grow and the transaction log will not be able to truncate
until the secondary server is online again and log records are transmitted over the network.

 ■ Tip Consider dropping database mirroring or removing the secondary server from the AlwaysOn
Availability Group if you see prolonged secondary server downtime.

 As you can see in Figure 32-5 , steps 2, 4, 5, and 6 introduce extra latency, which depends on network
and mirror server I/O performance. In some heavily loaded OLTP systems, such latency is unacceptable.
You can avoid it by using asynchronous commit , which with database mirroring is called high performance
mode. In this mode, the primary server sends log records to the secondary server, and it does not wait for
acknowledgment before committing transactions, as illustrated in Figure 32-6 .

 Figure 32-5. Synchronous commit

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

643

 Network latency with asynchronous commit does not affect the performance of the primary server,
although there is a possibility of data loss based on log records that are in the send queue at the time when
the primary server crashed.

 Although both the primary and secondary server databases are byte-to-byte copies of each other,
the process does not update the data files at the time when it hardens the log records in the transaction
log. SQL Server applies the changes to the data files on the secondary server by replaying the log records
asynchronously, regardless of the commit mode. Synchronous commit only guarantees that log records
are synchronously hardened in the transaction log. It does not guarantee or provide synchronous
changes of the data files.

 On secondary servers, SQL Server uses the set of threads called redo threads to replay the log records
and apply the changes to the data files. The number of active redo threads depends on technology, SQL
Server version, number of worker threads in the system, and, most important, number of synchronized
databases and their workload. A large number of mirrored or synchronized databases can exhaust the pool
of worker threads and affect the performance of the system.

 The portion of the transaction log that has yet to be replayed is called the redo queue . You should
monitor the sizes of both the send queue on the primary server and the redo queue on the secondary server.
The size of the send queue indicates possible data loss in cases of primary server failure. The size of the
redo queue indicates how many log records must be replayed, and thus how long it could take to bring the
mirrored database back online after failover.

 The SQLServer:Database Mirroring performance counters provide information about database
mirroring performance along with send and redo queue statistics. The SQL Server:Availability Replica and
 SQL Server:Database Replica counters provide AlwaysOn Availability Groups–related information.

 You need to test how database maintenance affects the size of the redo queue. Some operations, such as
an index rebuild or database shrink, can generate an enormous amount of log records, which in turn makes
the redo queue very big. This can lead to a long crash recovery process in case of a failover, which could
prevent you from meeting the availability requirements defined in the SLA.

 ■ Tip See https://msdn.microsoft.com/en-us/library/ms190030.aspx for more details about
database mirroring monitoring. More information about AlwaysOn Availability Groups monitoring is available at
 https://msdn.microsoft.com/en-us/library/ff877954.aspx .

 Figure 32-6. Asynchronous commit

https://msdn.microsoft.com/en-us/library/ms190030.aspx
https://msdn.microsoft.com/en-us/library/ff877954.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

644

 One very useful feature of these technologies is automatic page repair. When SQL Server detects that
a data page is corrupted, it replaces this corrupted page with a fresh copy of the page from the other server.
This is an asynchronous process, and a query that accessed the corrupted page and triggered a page repair
could be interrupted and receive an error until the page is repaired in the background.

 ■ Note You can read more about automatic page repair at http://technet.microsoft.com/en-us/
library/bb677167.aspx .

 Database mirroring and AlwaysOn Availability Groups support situations where the mirror server is
running a newer version of SQL Server than the primary server is running. For example, you can have the
primary server running SQL Server 2012 and the secondary server running SQL Server 2016. This is an
extremely useful feature, as it allows you to upgrade SQL Server almost transparently to your users. You can
perform an in-place upgrade of the secondary server, failover, and upgrade the former primary server. Keep
in mind that it is impossible to fail back to the older version of SQL Server after failover, and also remember
to update all statistics in the database with the sp_updatestats stored procedure after an upgrade.

 Database Mirroring: Automatic Failover and Client Connectivity
 Synchronous database mirroring is available in two different modes: high protection and high availability .
The only difference between these two modes is automatic failover support. SQL Server supports automatic
failover in high availability mode; however, it requires you to have a third SQL Server instance, witness ,
which helps to support quorum in the configuration.

 ■ Note The quorum indicates that the servers that participated in the database mirroring session agreed on
their roles; that is, which server worked as the principal and which worked as the mirror. In practice, quorum
can be established as long as at least two servers (from principal, mirror, and witness) can communicate with
each other. We will discuss what happens with mirroring when one or more servers are unavailable later in this
chapter.

 You can use any edition of SQL Server, including the Express Edition, as the witness. It is critical,
however, that the witness instance be installed on another physical server to avoid the situation where a
hardware malfunction of a single physical server kicks multiple SQL Server instances offline and prevents a
quorum from being established.

 Table 32-1 shows the similarities and differences among different database mirroring modes.

 Table 32-1. Database Mirroring Modes

 High Performance High Protection High Availability

 Commit Asynchronous Synchronous

 SQL Server edition Enterprise Edition only Enterprise and Standard editions

 Data loss Possible Not possible when DB is in SYNCHRONIZED state

 Automatic failover Not supported Not supported Supported with witness
server

 Performance impact None Network and mirror I/O subsystem latency

http://technet.microsoft.com/en-us/library/bb677167.aspx
http://technet.microsoft.com/en-us/library/bb677167.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

645

 Let’s look at a few possible failover scenarios in High Availability mode. The key point here is that, at any
point in time, servers must have a quorum, and thus at least two servers must be able to connect to each other.

 First, let’s assume that the principal and witness servers lost the connection to the mirror server. The
principal and witness servers still have a quorum, and the principal server continues to work on mirroring
in SUSPENDED state. If at this stage the principal server lost its connection to the witness server, and therefore
did not have a quorum, the principal server would shut down.

 ■ Tip Consider placing the witness instance close to the principal server to avoid connectivity issues
between them and unnecessary failovers and shutdowns. It is also beneficial to fail back to a former principal
server that is close to a witness instance, when the server is back online.

 Now, let’s assume that the principal server goes offline. In this case, the mirror and witness server can
see each other and thus have a quorum, so automatic failover occurs and the mirror server becomes the new
principal server. If the old principal server were to come back online and see both servers, it would become
the mirror server and synchronize itself with the new principal server. Otherwise, it would shut itself down
to avoid a split brain situation where two different servers allow clients to connect to different copies of the
same database, changing the data simultaneously.

 If the witness server goes offline, mirroring continues to work without the ability to perform automatic
failover. This is similar to high protection mode, with the exception that if the principal server lost its
connection to the mirror server without the witness server being available, the principal server would shut
down to avoid a split brain situation.

 In high protection mode, a loss of connectivity between the principal and mirror servers would not stop
the principal server. If the principal goes down, you have to perform a manual failover to make the mirror
server the new principal server. There is one caveat, though. If you performed a manual failover and at
some point the principal server came back online without connectivity to the former mirror server, it would
continue to behave as the principal server, which is a split brain situation.

 The .Net SQL client automatically obtains and caches a mirror server name when it is connected to the
principal server. If a failover happened after the mirror server name was cached, the client application would
be able to reconnect to the mirror server, which would become the new principal server. However, if the
failover occurred before the mirror server name was cached, the application would be unable to connect to
the former principal server, which would now work as the mirror server and keep the database in RESTORING
state. The application would be unable to obtain information about the new principal server and, therefore,
would be unable to connect to the database.

 You can avoid such situations by specifying the mirror server name in an additional connection string
property, Failover Partner . The SQL client tries to connect to the server specified there only in cases when it
is unable to connect to the principal server. When the principal server is online, the SQL client ignores the
mirror server name specified in this property and caches the mirror server name as it was retrieved from the
principal server.

 You should be careful when removing database mirroring. The SQL client will be able to connect to the
database after mirroring is removed only when it runs on the server specified in the Server Name property
of the connection string. You will get a “Database is not configured for database mirroring” error if it runs on
the server specified as a Failover Partner .

 Database mirroring failover is usually faster than failover cluster failover. Contrary to a failover cluster,
which restarts the entire SQL Server instance, database mirroring performs crash recovery on a single
database. However, the actual duration of the failover process depends on the size of the redo queue and the
number of log records that need to be replayed.

 The PARTNER TIMEOUT database setting controls the database mirroring failover detection time, which
is ten seconds by default. You can change this with the ALTER DATABASE SET PARTNER TIMEOUT command.
It is beneficial to increase this setting if the network latency between the principal server and the mirror
server is high; for example, when servers reside in different datacenters and/or in the Cloud.

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

646

 Another example of when you should increase this setting is when you set up the database mirroring
with a SQL Server failover cluster instance as one of the database mirroring partners. The cluster failover
process usually takes longer than ten seconds, and keeping the default PARTNER TIMEOUT setting can trigger
unnecessary database mirroring failovers. You should set the PARTNER FAILOVER value to be greater than the
typical cluster failover time.

 The database on the mirror server stays in RESTORING state; therefore, clients are unable to access it.
However, it is possible to create a read-only database snapshot on the mirror server so you can access it for
reporting purposes. This snapshot represents the database as of the last CHECKPOINT on the primary server.

 ■ Note Coverage of database snapshots is beyond the scope of this book. You can read more about this
topic at http://technet.microsoft.com/en-us/library/ms175158.aspx .

 Database mirroring has been deprecated in SQL Server 2012. AlwaysOn Availability Groups are a great
replacement for database mirroring; however, in SQL Server 2012 and 2014, they included only to Enterprise
Edition.

 The Standard Edition of SQL Server 2016, on the other hand, supports Basic Availability Groups , which
allow you to create a one-database, two-server replica similar to database mirroring. Basic Availability
Groups, however, support asynchronous commit, which is not the case with database mirroring.

 ■ Note You can read more about database mirroring at http://technet.microsoft.com/en-us/library/
ms189852.aspx .

 AlwaysOn Availability Groups
 As the opposite to database mirroring, AlwaysOn Availability Groups require and rely on the Windows Server
Failover Clustering (WSFC) cluster. While this can make their infrastructure and setup more complicated as
compared to database mirroring, it also simplifies the deployment of client applications. They can connect
to the AlwaysOn Availability Group through the listener , which virtualizes a SQL Server instance in a way
similar to the SQL Server failover cluster.

 The AlwaysOn Availability Group consists of one primary node (or replica) with read/write access.
In Enterprise Edition, you can have up to four secondary nodes with SQL Server 2012, and up to eight
secondary nodes with SQL Server 2014–2016. The three nodes in the availability group can use synchronous
commit. You need two nodes in order to support automatic failover. As I already mentioned, the Standard
Edition of SQL Server 2016 supports two-node Basic Availability Groups.

 Figure 32-7 shows an example of an AlwaysOn Availability Group configuration with three nodes.

http://technet.microsoft.com/en-us/library/ms175158.aspx
http://technet.microsoft.com/en-us/library/ms189852.aspx
http://technet.microsoft.com/en-us/library/ms189852.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

647

 In fact, the availability group can consist of a single primary node only. This behavior helps abstract the
availability group infrastructure from applications. For example, you can set up a single-node availability
group and create a listener, virtualizing a SQL Server instance during the initial stage of deployment. After
that, system administrators can start changing connection strings using the listener as the server without
having to worry about the availability group infrastructure’s state while you are adding other nodes there.

 Another useful example is changing database options that require single-user access, such as enabling
the READ COMMITTED SNAPSHOT isolation level. It is impossible to switch the database to SINGLE_USER mode
with database mirroring enabled. You can remove database mirroring and reestablish it later, although you
will need to check all connection strings, making sure that the principal server is always specified as the
 Server rather than the Failover Partner . However, an AlwaysOn Availability Group allows you to remove all
secondary nodes without having to worry about connection strings. While it is still not possible to switch
a database that participates in an AlwaysOn Availability Group to SINGLE_USER mode, you can remove the
database from availability group, change the database options, and add the database back to availability
group in a matter of seconds with minimal impact on client applications.

 Unlike database mirroring, which works on a single-database scope, AlwaysOn Availability Groups can
include multiple databases. This guarantees that all of the databases in the group will be failed over together
and will always have the same primary node. This behavior is helpful when a system requires multiple
databases residing on the same server in order to be operational.

 AlwaysOn Availability Groups allow read-only access to secondary nodes and also allow you to perform
database backups from them. Moreover, an application can specify that it only needs read-only access in the
connection string and the AlwaysOn Availability Group routes it to a readable secondary node automatically.

 ■ Note You can read about client connections to AlwaysOn Availability Groups at http://technet.
microsoft.com/en-us/library/hh510184.aspx .

 This behavior helps reduce the load on the primary server, although you should be careful and always
monitor the size of the redo queue. It is entirely possible for the REDO process on secondaries to fall behind
and serve clients data that is not up to date and is different from the database on the primary node. It is also
important to remember that the failover process under such conditions can take a long time. Even though
you would not have any data loss with a synchronous commit, the database would not be available until the
crash recovery process finished.

 Figure 32-7. AlwaysOn Availability Group

http://technet.microsoft.com/en-us/library/hh510184.aspx
http://technet.microsoft.com/en-us/library/hh510184.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

648

 You should also be careful with SQL Server Agent jobs in the case of readable secondaries. Jobs are able
to access the databases on readable secondaries and read the data from there. This could lead to situations
where you have the same jobs running on multiple nodes, even though you want them to run only on the
primary node.

 As a solution, in SQL Server 2014 and above you can use the sys.fn_hadr_is_primary_replica
function that provides you with the status of the replica. In SQL Server 2012 you can check the Role_Desc
column of the sys.dm_hadr_availability_replica_states view for one of the databases in the availability
group, checking and validating if the node is primary. You can use it in every job or, alternatively, create
another job that runs every minute and enable or disable jobs based on the state of the node.

 You can include a SQL Server instance running inside a virtual machine in the Microsoft Azure Cloud
as a member of the availability group. This can help you add another geographically redundant node to
your High Availability solution. You need to be careful with this approach, however, and make sure that the
Cloud-based SQL Server instance can handle the load.

 Internet connectivity is another factor to consider. It should have enough bandwidth to transmit log
records and be stable enough to keep the Microsoft Azure node online and connected most of the time.
Remember that the transaction log will not be truncated when connectivity goes down, and some records
were not transmitted to the secondary nodes.

 AlwaysOn Availability Groups provide a great alternative to database mirroring. Unfortunately, this
feature is not supported in the Standard Edition of SQL Server 2012–2014.

 ■ Note You can read about AlwaysOn Availability Groups at http://technet.microsoft.com/en-us/
library/hh510230.aspx .

 Log Shipping
 Log shipping allows you to maintain a copy of the database on one or more secondary servers. In a nutshell,
log shipping is a very simple process. You perform log backups based on some schedule, copy those backup
files to a shared location, and restore them on one or more secondary servers. Optionally, you can have
a separate server that monitors the log shipping process, retains information about backup and restore
operations, and sends alerts if attention is required.

 Figure 32-8 illustrates a log shipping configuration.

 Figure 32-8. Log shipping

http://technet.microsoft.com/en-us/library/hh510230.aspx
http://technet.microsoft.com/en-us/library/hh510230.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

649

 Log shipping does not protect against data loss. Log backups are done on a schedule, and if the
transaction log on the primary server were corrupted you would lose all changes since the last log backup.

 Log shipping is often used together with other High Availability technologies. One of the common
scenarios is using it with a failover cluster instance, shipping the log to the secondary servers in remote off-
site locations. This provides geo-redundancy for the data tier in the systems at a low implementation cost.

 Log shipping is also useful in scenarios where you purposely do not want to have up-to-date data on the
secondary servers. This could help you to recover data from accidental deletions on the primary server.

 There is no automatic failover support with log shipping. Manual failover consists of a few steps. First,
you need to disconnect users from the database and, perhaps, switch the database to RESTRICTED_USER or
 SINGLE_USER mode to avoid client connections during the failover process. Next, you need to back up the
remaining part of the log that is on the primary server. It might be beneficial to use the NORECOVERY option
during backup if you expect to fail back to the primary server later. Finally, you should apply all remaining
log backups on the secondary server and recover the database to bring it online. Obviously, you should also
change the connection strings to point to the new server.

 Secondary servers keep the database in RESTORING state, preventing clients from accessing it. You can
work around this by using the STANDBY option, which gives you read-only access to the database. However,
clients will lose connectivity during the time it takes log backups to be restored. You should also consider
the SQL Server licensing model, which requires you to purchase another license when the server is used for
anything but supporting high availability.

 You should design a log shipping strategy and backup schedule in a way that allows you to avoid a
backlog when log backups are transmitted over the network and are restored more slowly than they were
generated.

 Make sure that the shared locations you use for backup storage have enough space to accommodate
your backup files. You can reduce the storage size and transmission time and improve the performance of
the backup and restore process by using backup compression if it is supported by your SQL Server version
and edition, and if you have adequate CPU resources to handle the compression overhead.

 Log shipping is, perhaps, the easiest solution to set up and maintain. It is also not uncommon to see
custom log shipping–like implementations that allow you to implement additional business requirements
and address the limitations of native SQL Server log shipping. Nevertheless, you should keep in mind
possible data loss and consider combining it with other technologies if such data loss is unacceptable or if
automatic failover is required.

 ■ Note You can read more about log shipping at http://technet.microsoft.com/en-us/library/
ms187103.aspx .

 Replication
 In contrast to the technologies that we have already discussed in this chapter, replication is far more than
a High Availability solution. The main goal of replication is to copy and replicate data across multiple
databases. Even though it can be used as a High Availability technology, this is hardly its main purpose.

 Replication works in the scope of publications , which are collections of database objects. Replication
is a good choice if you want to protect just a subset of the data in the database; for example, a few critical
tables. Another key difference between replication and other High Availability techniques is that replication
allows you to implement a solution where data can be modified in multiple places. It could require
the implementation of a complex conflict detection mechanism and, in some cases, have a negative
performance impact, although this is a small price to pay in some scenarios.

http://technet.microsoft.com/en-us/library/ms187103.aspx
http://technet.microsoft.com/en-us/library/ms187103.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

650

 There are three major types of replication available in SQL Server, as follows:

 Snapshot replication generates and distributes a snapshot of the data based on
some schedule. One example when this could be useful is a set of tables that are
updated based on a schedule, perhaps once per week. You may consider using
snapshot replication to distribute the data from those tables after the update.
Another example involves a small table with highly volatile data. In this case,
when you do not need to have an up-to-date copy of the data on the secondary
servers, snapshot replication would carry much less overhead as compared to
other replication types.

 Merge replication allows you to replicate and merge changes across multiple
servers, such as in scenarios where those servers are infrequently connected
to each other. One possible example is a company with a central server and
separate servers in branch offices. The data can be updated in every branch
office and merged/distributed across the servers using merge replication.
Unfortunately, merge replication requires changes in the database schema and
the use of triggers, which can introduce performance issues.

 Transactional replication allows you to replicate changes between different
servers with relatively low latency, usually in seconds. By default, secondary
servers, called subscribers , are read-only, although you have the option to
update data there. A special kind of transactional replication, called peer-to-peer
replication , is available in the Enterprise Edition of SQL Server, and it allows
you to build a solution with multiple updateable databases hosted on different
servers and replicating data between each other.

 Transaction replication is the most appropriate replication type to be used as a High Availability
technology for updateable data. Figure 32-9 illustrates the components used in transactional replication.
The primary server, called the publisher , is accessed by a special job known as the Log Reader Agent , which is
constantly scanning the transaction log of the database configured for replication and harvesting log records
that represent changes in the publications. Those log records are converted to logical operations (INSERT ,
 UPDATE , DELETE) and are stored in another distribution database, usually on another server called distributor ,
which runs the Log Reader Agent job. Finally, the distributor either pushes those changes to subscribers or,
alternatively, subscribers will pull them from the distributor based on the replication configuration.

 Figure 32-9. Transactional replication with push subscriptions

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

651

 Peer-to-peer replication , shown in Figure 32-10 , allows you to build a distributed and scalable solution
with multiple updateable databases residing on different servers called nodes . It is an Enterprise Edition
feature that is based on transaction replication, and therefore it has a very low latency to distribute the
changes between nodes. One scenario where it is useful is with a system with multiple datacenters. You can
host individual SQL Server instances in every datacenter and redirect clients to the nearest one. Peer-to-peer
replication synchronizes data across all nodes and handles the situation when a node temporarily loses
connectivity with other nodes.

 The biggest downside of replication is its complexity. Setting up and monitoring a complex replication
topology is by far a more complex task than other High Availability solutions. Moreover, it often requires the
implementation of a complex conflict resolution mechanism, and it can require changes in the application
logic and database schema to minimize conflicts.

 I would suggest avoiding the use of replication for High Availability purposes, unless you need to protect
a very small subset of data in the database or have other use cases that would benefit from replication
besides high availability.

 ■ Note You can read more about replication at http://technet.microsoft.com/en-us/library/
ms151198.aspx

 Designing a High Availability Strategy
 The process of designing a High Availability strategy mixes art, science, and politics all together. It is an
iterative process of collecting and often adjusting requirements, setting the right expectations, and building
a solution that fits into the budget.

 Figure 32-10. Peer-to-peer replication

http://technet.microsoft.com/en-us/library/ms151198.aspx
http://technet.microsoft.com/en-us/library/ms151198.aspx

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

652

 Requirements gathering is the first stage of the process. Like a backup strategy, you have to deal
with RPO and RTO metrics. Usually, you can get them from the Service Level Agreement (SLA).
Alternatively, if those metrics were not present in the SLA, you should work with the system’s
stakeholders to define them.

 ■ Note System availability requirements are usually measured in “groups of nines.” For example, five nines ,
or 99.999 percent availability, means that system should be available 99.999 percent of time, which translates
to 5.26 minutes of downtime per year. Four nines , or 99.99 availability, translates to 52.56 minutes of downtime
per year. Three nines , or 99.9 percent availability, allows 8.76 hours of downtime annually.

 Working with stakeholders is a tricky process. While stakeholders usually want zero downtime and zero
data loss, this is neither technically possible nor financially feasible. For example, none of the existing High
Availability technologies can provide zero downtime. There is always some period of time when a system is
inaccessible during the failover process.

 Zero data loss, on the other hand, is achievable, but it comes at a cost. Synchronous commit in database
mirroring or AlwaysOn Availability Groups adds overhead and extra latency to the transactions that modify
the data. In some cases, with high-end OLTP systems, such overhead is not acceptable.

 In either case, the budget is another critical factor to consider. Implementing a High Availability strategy
always leads to additional expenses. In most cases, you need to buy new servers, software licenses, and
network and storage equipment. These purchases, in turn, require extra rack space and use more AC power
for the new hardware and for air conditioning it. Moreover, you need to have the manpower available to
implement and maintain the solution.

 The budget places constraints on what you are able to achieve. It is impossible to implement 99.999
or even 99.99 availability in a system if the budget does not allow you to buy the required hardware
and software licenses. You should work together with the system’s stakeholders and either adjust the
requirements and expectations or obtain the extra budget when needed.

 Another important action is defining the scope of the High Availability solution. For example, it is very
important to understand if the required availability level must be achieved around the clock, or just during
business hours. Another important question to resolve is whether the solution should be geographically
redundant. That requirement can dramatically increase the complexity and cost of the solution.

 It is very important to not start the implementation until you have collected and analyzed all of the
requirements, including budget constraints. Taken together, the requirements will dictate what technology
or technologies you will be able to use for the implementation.

 Table 32-2 compares the High Availability technologies available in different versions and editions of
SQL Server.

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

653

 Table 32-2. Comparison of SQL Server High Availability Technologies

 Failover Cluster Log Shipping Database Mirroring AlwaysOn AG Replication

 SQL Server
version

 2005–2016 2005–2016 2005–2016
 Deprecated in
2012–2016

 2012–2016 2005–2016

 Standard
edition
support

 2 nodes only Supported Synchronous only Not supported
in 2012–2014.
SQL Server
2016 supports
basic AG.

 Supported

 Unit of
protection

 Instance Database Database Group of
databases. (One
DB in basic AG)

 Publication
(Subset of data)

 Data loss No data loss but
not protected
against storage
failure

 Data loss
based on
log backup
schedule

 No data loss with
synchronous
mirroring

 No data
loss with
synchronous
commit

 Data loss based
on latency

 Single point
of failure

 Storage No No No No

 Failover Automatic Manual Automatic (Requires
witness)

 Automatic Manual

 Failover time
 (best-case
scenario)

 Minutes (crash-
recovery of all
databases in the
instance)

 N/A Seconds
 (crash recovery of a
single database)

 Seconds
 (crash recovery
of all databases
in AG)

 N/A

 Performance
overhead

 No overhead No overhead Overhead of
synchronous
commit

 Overhead of
synchronous
commit

 Additional load
to transaction
log

 Obviously, you are not restricted to the use of a single High Availability technology. It is often beneficial
to combine technologies, using a few of them together to be protected from different kinds of failures.
For example, if an AlwaysOn Availability Group is not an option due to SQL Server version or edition
incompatibility, you can use a failover cluster together with database mirroring or log shipping. A failover
cluster will protect you from a server malfunction, while the second technology protects you against a
storage system failure.

 In cases where data loss is not allowed, the choices are limited to either database mirroring or
AlwaysOn Availability Groups with synchronous commit. Even though a failover cluster uses a single copy
of the database, and therefore you cannot lose data due to replication (or synchronization) latency, it is not
protected against storage failure. Unfortunately, synchronous commit could introduce unacceptable latency
in some of the edge cases.

 This is an example of a situation where you need to work with the stakeholders and reach a
compromise. For example, in some cases it could be good enough to have a failover cluster with data stored
on a highly redundant disk array with asynchronous commit to another server.

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

654

 The unit of protection is another very important factor to consider. If an AlwaysOn Availability Groups
are unavailable, synchronous database mirroring could be a great option that guarantees zero data loss and
does not have a single point of failure. However, it works within the scope of a single database, which could
be problematic if the system consists of multiple databases that should reside on the same server. A failover
cluster is the only option besides an AlwaysOn Availability Group that guarantees that multiple databases
will always fail over together.

 You can still use database mirroring in such a scenario by implementing a routine that monitors the
principal server database location and fails over the databases if needed. One possible implementation is a
SQL Agent job that runs every minute and queries the State or State_Desc columns in the sys.databases
view for one of the databases in the group. The job could fail over other databases in the group when it
detects that the database is in RESTORING state, which means that it was failed over to a different server.

 It is extremely important to test your High Availability strategy and perform failover after it is
implemented in production. The situation where everything works perfectly the first time is extremely rare.
You may encounter security issues, incorrect settings in application connection strings, missing objects on
the servers, and quite a few other issues that prevent the system from working as expected after failover. Even
though testing of the failover process can lead to system downtime, it is better to have a controlled outage
with all personnel on deck than a situation where the system does not work after an unplanned disaster.

 Finally, you should regularly reevaluate and test your High Availability and Disaster Recovery strategies.
Database size and activity growth can invalidate your HA implementation, making it impossible to meet
RPO and RTO requirements. It is especially important when secondary (standby) servers are less powerful
than the primary ones. It is entirely possible that the system would not be able to keep up with the load after
a failover in such cases.

 Summary
 Even though High Availability and Disaster Recovery strategies are interconnected, they are not the same.
A High Availability strategy increases the availability of the system by handling hardware or software
malfunctions transparently to users. A Disaster Recovery strategy deals with situations that the High
Availability strategy was unable to handle and when the system needs to be recovered after a disaster.

 A SQL Server failover cluster protects you from server failures by implementing a clustered model using
a SQL Server instance as the shared resource. Only one server/node can handle users’ requests at any given
time; however, a Windows Server Failover Clustering cluster can host multiple SQL Server clusters. Even
though running multiple instances of a SQL Server failover cluster is a common practice that helps to reduce
the cost of the solution, you should avoid situations where the cluster does not have spare passive nodes and
multiple SQL Server instances running on the same node after failover with unacceptable performance.

 A SQL Server failover cluster uses shared storage, which becomes the single point of failure. You should
combine the failover cluster with other High Availability technologies that store the data on different storage
devices to minimize the possibility of data loss resulting from storage failure.

 Database mirroring and AlwaysOn Availability Groups allow you to maintain a byte-to-byte copy
of the database on another server(s) by constantly sending transaction log records over the network.
With synchronous commit, SQL Server does not commit the transaction on the primary server until the
log record is hardened on the secondary server. This approach guarantees no data loss for committed
transactions, although it adds extra latency to the transactions. With asynchronous commit, log records are
sent asynchronously and data loss is possible. Data loss is possible even with synchronous commit if the
secondary server is offline or data is not fully synchronized.

 AlwaysOn Availability Groups allow the creation of an infrastructure with one primary server that
handles read/write activity and multiple secondary servers that allow read-only access to the databases.
AlwaysOn Availability Groups should be installed underneath the Windows Server Failover Clustering
cluster, although every node uses separate storage for the databases.

CHAPTER 32 ■ HIGH AVAILABILITY TECHNOLOGIES

655

 Log shipping allows the maintenance of a copy of the database on multiple secondary servers by
applying a continuous stream of log backups. It does not protect against data loss for the period since the last
backup was applied.

 Replication allows you to replicate a subset of data from the database across multiple databases,
allowing read/write access in each location. Transaction replication has low latency for the changes to be
distributed across subscribers. However, setting up and monitoring a complex replication topology is a very
challenging task.

 Designing a High Availability strategy is an iterative and interactive process that requires you to work
with other members of the technical team as well as with stakeholders. You must make sure that RTO and
RPO requirements are realistic and achievable within the budget allocated to the project.

 The choice of High Availability technology depends on the requirements and budget as well as on
the version and edition of SQL Server installed. You are not restricted to a single technology—it is often
beneficial to combine a few technologies together.

 You should consider the performance implications of the technologies that use synchronous commit,
especially if the system has a performance SLA that dictates latency for some OLTP transactions.

 It is extremely important to test your High Availability technology and perform failover after it is
implemented in production. It is better to find and fix any issues in a controlled environment than to fight
with them after a disaster occurs.

 You should regularly reevaluate the High Availability solution you implement based on database size
and activity growth, especially if your secondary standby servers are less powerful than your primary ones.

 PART VII

 Columnstore Indexes

659© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_33

 CHAPTER 33

 Column-Based Storage and
Batch Mode Execution

 Columnstore indexes are an Enterprise Edition feature introduced in SQL Server 2012. They are part of the
new family of technologies called x Velocity (formerly known as VertiPaq), which optimizes the performance
of analytical queries that scan and aggregate large amounts of data.

 Columnstore indexes use a different storage format for data, storing compressed data on a per-column
rather than a per-row basis. This storage format benefits query processing in data warehousing, reporting,
and analytics environments where, although they typically read a very large number of rows, queries work
with just a subset of the columns from a table.

 The design and implementation of data warehouse systems is a very complex process that is not
covered in this book. This chapter, however, will reference common database design patterns frequently
encountered in such systems. Moreover, it will provide an overview of columnstore indexes and their storage
format, discuss batch mode execution, and outline several tips that can improve the performance of data
warehouse solutions.

 Data Warehouse Systems Overview
 Data warehouse systems provide the data that is used for analysis, reporting, and decision support purposes.
In contrast to OLTP (online transactional processing) systems, which are designed to support operational
activity and which process simple queries in short transactions, data warehouse systems handle complex
queries that usually perform aggregations and process large amounts of data.

 For example, consider a company that sells articles to customers. A typical OLTP query from the
company’s Point-of - Sale (POS) system might have the following semantics: Provide a list of orders that were
placed by this particular customer this month . Alternatively, a typical query in a data warehouse system
might read as follows: Provide the total amount of sales year to date, grouping the results by article categories
and customer regions .

 There are other differences between data warehouse and OLTP systems. Data in OLTP systems is
usually volatile. Such systems serve a large number of requests simultaneously, and they often have a
performance SLA associated with the customer-facing queries. Alternatively, the data in data warehouse
systems is relatively static and is often updated based on a set schedule, such as at night or during weekends.
These systems usually serve a small number of customers, typically business analysts, managers, and
executives who can accept the longer execution time of the queries due to the amount of data that needs to
be processed.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

660

 To put things into perspective, the response time of the short OLTP queries usually needs to be in the
milliseconds range. However, for complex data warehouse queries, a response time in seconds or even
minutes is often acceptable.

 The majority of companies start by designing or purchasing an OLTP system that supports the
operational activities of the business. Reporting and analysis is initially accomplished based on OLTP data;
however, as the business grows, that approach becomes more and more problematic. Database schemas
in OLTP systems rarely suit reporting purposes. Reporting activity adds load to the server and degrades the
performance and customer experience in the system.

 Data partitioning can help address some of these issues; however, there are limits on what can be
achieved with such an approach. At some point, the separation of operational and analysis data becomes
the only option that can guarantee the acceptable performance of both solutions as well as the ability to
meet availability SLA. In many cases, it leads to the physical separation of the data between OLTP and data
warehouse databases.

 It is important to remember that the data warehouse workload is usually processing a large amount of
data, and this adds a heavy load on the I/O subsystem and can flush content of the buffer pool on the server.
It is usually better to place OLTP and large data warehouse databases on different servers unless you have
enough memory in the buffer pool to cache data from both systems.

 OPERATIONAL ANALYTICS

 It is also impossible to avoid mentioning another category of tasks called operational analytics , which
has become very popular nowadays. Consider a Point-of-Sale system in which you want to monitor up-
to-date sales and dynamically adjust articles’ sale price based on their popularity. This requires you to
run analytical queries on recent OLTP data.

 SQL Server 2016 helps you to improve performance in such a scenario by mixing column-based and
row-based indexes on the same table. OLTP queries use regular B-Tree indexes while operational
analytics queries utilize columnstore indexes. We will talk about this approach in the next chapter while
focusing on the classic data warehouse implementation in this chapter.

 OLTP systems usually become the source of the data for data warehouses. The data from OLTP systems
is transformed and loaded into a data warehouse with ETL (Extract Transform and Load) processes . This
transformation is key; that is, database schemas in OLTP and data warehouse systems do not and should not
match.

 A typical data warehouse database consists of several dimensions tables and one or a few facts tables.
 Facts tables store facts or measures of the business, while dimensions tables store the attributes or properties
of facts. In our Point-of-Sale system, the information relating to sales becomes facts while the list of articles,
customers, and branch offices become dimensions in the model.

 Large facts tables can store millions or even billions of rows and use terabytes of disk space.
Dimensions, on the other hand, are significantly smaller.

 A typical data warehouse database design follows either a star or a snowflake schema. A star schema
consists of a facts table and a single layer of dimensions tables. A snowflake schema, on the other hand,
normalizes dimensions tables even further.

 Figure 33-1 shows an example of a star schema.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

661

 Figure 33-2 shows an example of a snowflake schema for the same data model.

 Figure 33-1. Star schema

 Figure 33-2. Snowflake schema

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

662

 A typical query in data warehouse systems selects data from a facts table and joins it with one or more
dimensions tables. SQL Server detects star and snowflake database schemas, and it uses a few optimization
techniques to try to reduce the number of rows to scan and the amount of I/O required for a query. It pushes
predicates toward the lowest operators in the execution plan tree, trying to evaluate them as early as possible
so as to reduce the number of rows that need to be selected. Other optimizations include a cross join of
dimensions tables and hash joins that pre-filter with bitmap filters.

 ■ Note Defining foreign key constraints between facts and dimensions tables helps SQL Server detect
star and snowflake schemas more reliably. You may consider creating foreign key constraints using the WITH
NOCHECK option if the overhead of constraint validation at the creation stage is unacceptable.

 Even with all optimizations, however, query performance in large data warehouses is not always
sufficient. Scanning gigabytes or terabytes of data is time consuming even on today’s hardware. Part of the
problem is the nature of query processing in SQL Server; that is, operators request and process rows one by
one, which is not always efficient in the case of a large number of rows.

 Some of these problems can be addressed with columnstore indexes and batch mode execution, which
I will cover next.

 Columnstore Indexes and Batch Mode Execution Overview
 As already mentioned, the typical data warehouse query joins facts and dimensions tables and performs
some calculations and aggregations while accessing just a subset of the facts table’s columns. Listing 33-1
shows an example of a query in the database that follows the star schema design pattern, as was shown in
Figure 33-1 .

 Listing 33-1. Typical query in data warehouse environment

 select a.ArticleCode, sum(s.Quantity) as [Units Sold]
 from dbo.FactSales s join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 join dbo.DimDates d on
 s.DateId = d.DateId
 where d.AnYear = 2016
 group by a.ArticleCode

 As you can see, this query needs to perform a scan of a large amount of data from the facts table;
however, it uses just three table columns. With regular row-based execution, SQL Server accesses rows one
by one, loading the entire row into memory, regardless of how many columns from the row are required.

 You can reduce the storage size of the table, and therefore the number of I/O operations, by
implementing page compression. However, page compression works in the scope of a single page. Each
page will maintain a separate copy of the compression dictionary, which is used for all rows on the page.
Maintaining the dictionaries and compressing large batches of rows on a per-column basis will lead to
significantly better compression results.

 Finally, there is another, less obvious problem. Even though access to in-memory data is orders of
magnitude faster than access to data on disk, it is still slow as compared to CPU cache access time. With
row mode execution, SQL Server constantly reloads CPU cache data with new rows copied from the main
memory. This overhead is usually not a problem with an OLTP workload and simple queries; however, it
becomes very noticeable with data warehouse queries that process millions or even billions of rows.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

663

 Column-Based Storage and Batch Mode Execution
 SQL Server addresses these problems with columnstore indexes and batch mode execution. Columnstore
indexes store data on a per-column rather than a per-row basis. Figure 33-3 illustrates this approach.

 Figure 33-3. Row-based and column-based storage

 Figure 33-4. Row mode execution

 Data in columnstore indexes is heavily compressed using algorithms that provide significant space
savings, even when compared to page compression. We will compare the results of different compression
methods later in this chapter. Moreover, SQL Server can skip columns that are not requested by a query, and
it does not load data from those columns into memory.

 The new data storage format of columnstore indexes allows SQL Server to implement a new batch
mode execution model that significantly reduces the CPU load and execution time of data warehouse
queries. In this mode, SQL Server processes data in groups of rows, or batches, rather than one row at a time.
The size of the batches varies to fit into the CPU cache, which reduces the number of times that the CPU
needs to request external data from memory or other components. Moreover, the batch approach improves
the performance of aggregations, which can be calculated on a per-batch rather than a per-row basis.

 In contrast to row mode execution, where data values are copied between operators, batch mode
processing tries to minimize such copies by creating and maintaining a special bitmap that indicates if a row
is still valid in the batch.

 To illustrate this approach, let’s consider the query in Listing 33-2 .

 Listing 33-2. Sample query

 select ArticleId, sum(Quantity)
 from dbo.FactSales
 where UnitPrice >= 10.00
 group by ArticleId

 With regular row mode execution, SQL Server scans a clustered index and applies a filter on every row.
For rows that have UnitPrice >= 10.00 , it passes another row of two columns (ArticleId and Quantity) to
the aggregate operator. Figure 33-4 shows this process.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

664

 Alternatively, with batch mode execution, the filter operator would set an internal bitmap that shows
the validity of the rows. A subsequent aggregate operator would process the same batch of rows, ignoring
non-valid ones. No data copying is involved. Figure 33-5 shows such an approach. It is also worth noting that
only the ArticleId , Quantity , and UnitPrice columns would be loaded into the batch.

 Figure 33-5. Batch mode execution

 Figure 33-6. Parallelism in row mode execution

 ■ Note In a real system, SQL Server can push a predicate that evaluates if UnitPrice >= 10 to the
 columnstore index scan operator, preventing unnecessary rows from being loaded into the batch. However, let’s
assume that this is not the case in our example.

 SQL Server handles parallelism in row mode and batch mode executions very differently. As you know,
in row mode execution, an exchange operator distributes rows between different parallel threads using
one of the distribution algorithms available. However, after the distribution, a row never migrates from one
thread to another until another exchange operator gathers or repartitions the data.

 Figure 33-6 illustrates this by demonstrating an exchange operator that uses the Range redistribution
method to distribute data to three parallel threads that perform hash joins . The first letter of a join key value
would control to which thread row it is distributed and where it is processed.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

665

 SQL Server takes a different approach with batch mode execution. In that mode, every operator has a
queue of work items (batches) to process. Worker threads from a shared pool pick items from queues and
process them while migrating from operator to operator. Figure 33-7 illustrates this method.

 Figure 33-7. Parallelism in batch mode execution

 One of the common issues that increases the response time of parallel queries in row mode execution
is uneven data distribution. Exchange operators wait for all parallel threads to complete; thus, the execution
time depends on the slowest thread. Some threads have more work to do than others when data is unevenly
distributed. Batch mode execution eliminates such problems. Every thread picks up work items from the
shared queue until the queue is empty.

 Columnstore Indexes and Batch Mode Execution in Action
 Let’s look at several examples related to columnstore index behavior and performance. Listing 33-3 creates
a set of tables for the database schema shown in Figure 33-1 and populates it with test data. As a final step,
it creates a nonclustered columnstore index on the facts table. Based on the performance of your computer,
this could take several minutes to complete.

 It is also worth noting that nonclustered columnstore indexes are implemented and behave differently
in SQL Server 2012/2014 and 2016. These indexes make tables read-only in SQL Server 2012/2014, which is
not the case in SQL Server 2016. We will discuss their internal implementation in detail in the next chapter.

 Listing 33-3. Test database creation

 create table dbo.DimBranches
 (
 BranchId int not null primary key,
 BranchNumber nvarchar(32) not null,
 BranchCity nvarchar(32) not null,
 BranchRegion nvarchar(32) not null,
 BranchCountry nvarchar(32) not null
);

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

666

 create table dbo.DimArticles
 (
 ArticleId int not null primary key,
 ArticleCode nvarchar(32) not null,
 ArticleCategory nvarchar(32) not null
);

 create table dbo.DimDates
 (
 DateId int not null primary key,
 ADate date not null,
 ADay tinyint not null,
 AMonth tinyint not null,
 AnYear smallint not null,
 AQuarter tinyint not null,
 ADayOfWeek tinyint not null
);

 create table dbo.FactSales
 (
 DateId int not null
 foreign key references dbo.DimDates(DateId),
 ArticleId int not null
 foreign key references dbo.DimArticles(ArticleId),
 BranchId int not null
 foreign key references dbo.DimBranches(BranchId),
 OrderId int not null,
 Quantity decimal(9,3) not null,
 UnitPrice money not null,
 Amount money not null,
 DiscountPcnt decimal (6,3) not null,
 DiscountAmt money not null,
 TaxAmt money not null,
 constraint PK_FactSales primary key (DateId, ArticleId, BranchId, OrderId)
 with (data_compression = page)
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N2 as T1 cross join N4 as T2) -- 1,024 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 ,Dates(DateId, ADate)
 as
 (
 select ID, dateadd(day,ID,'2014-12-31')
 from IDs
 where ID <= 727
)
 insert into dbo.DimDates(DateId, ADate, ADay, AMonth, AnYear, AQuarter, ADayOfWeek)

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

667

 select DateID, ADate, Day(ADate), Month(ADate), Year(ADate), datepart(qq,ADate),
datepart(dw,ADate)

 from Dates;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N3)
 insert into dbo.DimBranches(BranchId, BranchNumber, BranchCity, BranchRegion, BranchCountry)
 select ID, convert(nvarchar(32),ID), 'City', 'Region', 'Country' from IDs where ID <= 13;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.DimArticles(ArticleId, ArticleCode, ArticleCategory)
 select ID, convert(nvarchar(32),ID), 'Category ' + convert(nvarchar(32),ID % 51)
 from IDs
 where ID <= 1021;

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,N6(C) as (select 0 from N5 as T1 cross join N4 as T2) -- 16,777,216 rows
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6)
 insert into dbo.FactSales(DateId, ArticleId, BranchId, OrderId, Quantity, UnitPrice, Amount
 ,DiscountPcnt, DiscountAmt, TaxAmt)
 select ID % 727 + 1, ID % 1021 + 1, ID % 13 + 1, ID, ID % 51 + 1, ID % 25 + 0.99
 ,(ID % 51 + 1) * (ID % 25 + 0.99), 0, 0, (ID % 25 + 0.99) * (ID % 10) * 0.01
 from IDs;

 create nonclustered columnstore index IDX_FactSales_ColumnStore
 on dbo.FactSales(DateId, ArticleId, BranchId, Quantity, UnitPrice, Amount);

 Let’s run several tests that select data from a facts table and join it with one of the dimensions tables using
different indexes and different degrees of parallelism, which leads to serial and parallel execution plans. I am
running the queries in SQL Server 2012, 2014, and 2016 on 4-vCPU virtual machines with 8 GB of RAM allocated.

 The first query, shown in Listing 33-4 , performs a clustered index scan using a serial execution plan with
row mode execution.

 Listing 33-4. Test query: Clustered index scan with MAXDOP=1

 select a.ArticleCode, sum(s.Amount) as [TotalAmount]
 from dbo.FactSales s with (index = 1) join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 group by a.ArticleCode
 option (maxdop 1)

 All versions of SQL Server produce identical execution plans, as shown in Figure 33-8 .

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

668

 Table 33-1 shows the execution statistics for the queries in my environment.

 Table 33-1. Execution Statistics: Clustered Index Scan and MAXDOP=1

 Logical Reads CPU Time (ms) Elapsed Time (ms)

 SQL Server 2012 46,254 4,594 4,660

 SQL Server 2014 46,245 4,564 4,656

 SQL Server 2016 46,781 4,484 4,608

 Figure 33-9. Execution plan with a columnstore index scan and MAXDOP=1 (SQL Server 2012 and 2014)

 Figure 33-8. Execution plan with clustered index scan and MAXDOP=1

 In the next step, let’s remove the index hint and allow SQL Server to pick a columnstore index with
which to access the data, still using the serial execution plan. The query is shown in Listing 33-5 .

 Listing 33-5. Test query: Columnstore index scan with MAXDOP=1

 select a.ArticleCode, sum(s.Amount) as [TotalAmount]
 from dbo.FactSales s join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 group by a.ArticleCode
 option (maxdop 1)

 SQL Server 2012 and 2014 generated an identical execution plan, as shown in Figure 33-9 . The plan
utilizes a columnstore index scan via row mode execution.

 One of SQL Server 2016’s enhancements is the ability to use batch mode execution in serial plans when
the database compatibility level is set to 130. In this mode, SQL Server generates the execution plan shown
in Figure 33-10 . The plan utilizes a columnstore index scan in batch mode.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

669

 With a database compatibility level of less than 130, SQL Server generates the plan shown in Figure 33-11 . This
plan uses row mode execution and is less efficient as compared to SQL Server 2012 and 2014. The difference in the
plan results from the different (updateable) nature of nonclustered columnstore indexes in SQL Server 2016.

 Figure 33-10. Execution plan with a columnstore index scan and MAXDOP=1 in SQL Server 2016 with
compatibility level of 130

 Figure 33-11. Execution plan with a columnstore index scan and MAXDOP=1 in SQL Server 2016 with
compatibility level less than 130

 It is worth noting that the ability to use batch mode execution in serial plans depends on the database
compatibility level rather than on the cardinality estimation model. SQL Server 2016 will be able to use it
even when the legacy cardinality estimator is enabled in the database scoped configuration, as long as the
database compatibility level is set to 130.

 Table 33-2 shows the execution statistics for the queries. In SQL Server 2012 and 2014, even with row
mode execution, the columnstore index scan introduces more than four times the reduction of the number
of reads, and it allowed the query to complete almost two times faster as compared to the clustered index
scan. In SQL Server 2016, the query is an order of magnitude faster with batch mode execution.

 Table 33-2. Execution Statistics: Columnstore Index Scan and MAXDOP=1

 Logical Reads CPU Time (ms) Elapsed Time (ms)

 SQL Server 2012 10,030 2,703 2,746

 SQL Server 2014 12,522 2,563 2,604

 SQL Server 2016
compatibility level < 130

 29,914 6,985 7,023

 SQL Server 2016
compatibility level = 130

 29,914 407 475

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

670

 Unfortunately, this is not the case with row mode execution in SQL Server 2016, where the plan is
less efficient than the clustered index scan. Make sure that queries against the tables with columnstore
indexes can utilize parallelism in case if you upgrade to SQL Server 2016 and decide to keep the
database compatibility level less than 130.

 In the next group of tests, we will remove the MAXDOP hint and allow SQL Server to generate parallel
execution plan for the queries. As the first step, we will run the query while forcing the clustered index scan
with the code shown in Listing 33-6 .

 Listing 33-6. Test query: Clustered index scan with parallel execution plan

 select a.ArticleCode, sum(s.Amount) as [TotalAmount]
 from dbo.FactSales s with (index = 1) join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 group by a.ArticleCode

 Figure 33-12 illustrates the execution plan for the query running in SQL Server 2012. Even though
SQL Server generated a parallel execution plan, it used row mode execution for all operators.

 Figure 33-12. Execution plan with clustered index scan in SQL Server 2012

 Figure 33-13. Execution plan with clustered index scan in SQL Server 2014 and SQL Server 2016 with a
database compatibility level of less than 130

 If you ran the same query in SQL Server 2014 or in SQL Server 2016 with a database compatibility level
of less than 130, you would see different results, as shown in Figure 33-13 . SQL Server still used row mode
execution during the clustered index scan; however, hash join and hash aggregate operators were used in
batch mode execution. It is worth repeating that in SQL Server 2012 and 2014, batch mode execution works
only in parallel execution plans.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

671

 Unfortunately, in SQL Server 2016, forcing a non-columnstore index with an index hint on those tables
with a columnstore index prevents batch mode execution in databases with a compatibility level of 130.
This behavior provides the user with finer control over execution and resource consumption in operational
analytics scenarios; however, in our example it led to a less efficient execution plan, as shown in Figure 33-14 .

 Figure 33-14. Execution plan with clustered index scan in SQL Server 2016 with a database compatibility
level of 130

 Table 33-3. Execution Statistics: Clustered Index Scan and Parallel Execution Plan

 Logical Reads CPU Time (ms) Elapsed Time (ms)

 SQL Server 2012 46,907 5,531 1,825

 SQL Server 2014 47,147 4,704 1,716

 SQL Server 2016
compatibility level < 130

 47,623 4,657 1,673

 SQL Server 2016
compatibility level = 130

 47,435 5,656 1,819

 Table 33-3 shows the execution statistics for the queries.

 Finally, let’s remove the index hint and allow SQL Server to use a columnstore index and parallel
execution plan. This query is shown in Listing 33-7 .

 Listing 33-7. Test query: Columnstore index scan with parallel execution plan

 select a.ArticleCode, sum(s.Amount) as [TotalAmount]
 from dbo.FactSales s join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 group by a.ArticleCode

 Figure 33-15 illustrates the execution plan of this query in SQL Server 2012. As you can see, it utilizes
batch mode execution. It is worth noting that the exchange/parallelism (repartition streams) operators in the
execution plan do not move data between different threads, which you can see by analyzing the operators’
 actual number of rows properties. SQL Server 2012 keeps them in the plan to support cases where a hash
table spills to tempdb , which would force SQL Server to switch to row mode execution.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

672

 Figure 33-16 shows the execution plan of this query in SQL Server 2014 and 2016. As you can see,
the execution plan is significantly simpler and does not include parallelism/exchange operators. Both
SQL Server 2014 and 2016 support batch mode execution even in cases of tempdb spills. SQL Server 2016
generates the same plan regardless of database compatibility level.

 Figure 33-15. Execution plan with a columnstore index scan and batch mode execution (SQL Server 2012)

 Figure 33-16. Execution plan with a columnstore index scan and batch mode execution (SQL Server 2014
and 2016)

 Table 33-4. Execution Statistics: Columnstore Index Scan and Parallel Execution Plan

 Logical Reads CPU Time (ms) Elapsed Time (ms)

 SQL Server 2012 10,048 482 180

 SQL Server 2014 25,784 480 181

 SQL Server 2016 29,952 469 178

 Table 33-4 illustrates the execution statistics for the queries. It is worth noting that, even though SQL
Server 2014/2016’s performance improvements are marginal in batch mode execution, this situation would
change if there were a tempdb spill, when SQL Server 2012 would switch to row mode execution.

 As you can see, columnstore indexes significantly reduce the I/O load in the system as well as the CPU
and elapsed times of the queries. The difference is especially noticeable in the case of batch mode execution,
where the query ran orders of magnitude faster as compared to a row mode clustered index scan.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

673

 Every new version of SQL Server increases the number of operators and use cases that support batch
mode execution. As an example, batch mode support in SQL Server 2012 is extremely limited. It does not
support any join types with the exception of inner hash joins; it does not support scalar aggregates, nor does
it support the union all operator, and it has quite a few other limitations.

 In SQL Server 2014, batch mode execution supports all join types and outer joins, explores different
join orders during the query optimization stage, and supports scalar aggregates and the union all operator.
Moreover, the execution algorithms for various operators have been improved. For example, the hash join
operator in SQL Server 2014 can now spill to tempdb without switching to row mode execution, which was
impossible in SQL Server 2012.

 SQL Server 2016 improves the situation even further. It supports batch mode execution with sort
operators, allows the pushing of string predicates to the scan operator in some cases, and has many other
enhancements, including the ability to use batch mode execution in serial execution plans.

 All these improvements make upgrading to the latest SQL Server version in data warehouse
environments worth the effort, especially in the case of SQL Server 2012, where batch mode execution
support is very limited and requires non-trivial query re-factoring.

 Column-Based Storage
 There are several types of columnstore indexes available in different versions of SQL Server. Even though
they have different requirements and behavior, all of them share a column-based storage format under the
hood. We will talk about different columnstore index types in subsequent chapters.

 It is important to mention that regardless of the type of columnstore indexes, SQL Server does not allow
you to define more than one columnstore index per table.

 Storage Format
 Each data column in column-based storage is stored separately in a set of structures called row groups .
Each row group stores data for up to approximately one million or, to be precise, 2^20=1,048,576 rows.
SQL Server tries to populate row groups completely during index creation, leaving the last row group
partially populated. For example, if a table has five million rows, SQL Server creates four row groups of
1,048,576 rows each and one row group with 805,696 rows.

 In practice, you can have more than one partially populated row group when multiple threads create
columnstore indexes using parallel execution plans. Each thread will work with its own subset of data,
creating separate row groups. Moreover, in the case of partitioned tables, each table partition has its own set
of row groups.

 After row groups are built, SQL Server combines all column data on a per-row group basis and encodes
and compresses these groups. The rows within a row group can be rearranged if that helps to achieve a
better compression rate.

 Column data within a row group is called a segment . SQL Server loads an entire segment to memory
when it needs to access columnstore data. SQL Server also keeps information about the data stored in each
segment in segment metadata—for example, minimum and maximum values—and can skip segments that
do not have the required data.

 Figure 33-17 illustrates the index creation process. It shows a columnstore index with four columns and
three row groups. Two row groups are populated in full, and the last one is partially populated.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

674

 During encoding, SQL Server replaces all values in the data with 64-bit integers using one of two
encoding algorithms. The first algorithm, called dictionary encoding , stores distinct values from the data in
a separate structure called a dictionary . Every value in a dictionary has a unique ID assigned. SQL Server
replaces the actual value in the data with an ID from the dictionary.

 SQL Server creates one global dictionary , which is shared across all segments that belong to the same
index partition. Moreover, SQL Server can create local dictionaries for individual segments using values that
are not present in the global dictionary.

 Figure 33-18 illustrates dictionary encoding. For simplicity’s sake, it shows neither multiple row groups
nor local dictionaries in order to focus on the main idea of the algorithm.

 Figure 33-17. Building a columnstore index

 Figure 33-18. Dictionary encoding

 The second type of encoding, called value-based encoding , is mainly used for numeric and integer data
types that do not have enough duplicated values. With this condition, dictionary encoding is inefficient.
The purpose of value-based encoding is to convert integer and numeric values to a smaller range of 64-bit
integers. This process consists of the following two steps.

 In the first step, numeric data types are converted to integers using the minimum positive exponent
that allows this conversion. Such an exponent is called magnitude . For example, for a set of values such as
0.8, 1.24, and 1.1, the minimum exponent is 2, which represents a multiplier of 100. After this exponent is
applied, values would be converted to 80, 124, and 110 respectively. The goal of this process is to convert all
numeric values to integers.

 Alternatively, for integer data types, SQL Server chooses the smallest negative exponent that can be
applied to all values without losing their precision. For example, for the values 1340, 20, and 2,340, that
exponent is -1, which represents a divider of 10. After this operation, the values would be converted to 134,
2, and 234 respectively. The goal of such an operation is to reduce the interval between the minimum and
maximum values stored in the segment.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

675

 During the second step, SQL Server chooses the base value , which is the minimum value in the
segment, and subtracts it from all other values. This makes the minimum value in the segment number 0.

 Figure 33-19 illustrates the process of value-based encoding.

 Figure 33-19. Value-based encoding

 Figure 33-20. dbo.FactSales table allocation units

 After encoding, SQL Server compresses the data and stores it as a LOB allocation unit. We have
discussed how this type of data is stored in Chapter 1 , “Data Storage Internals.”

 Listing 33-8 shows a query that displays allocation units for the dbo.FactSales table we created earlier
in the chapter.

 Listing 33-8. dbo.FactSales table allocation units

 select i.name as [Index], p.index_id, p.partition_number as [Partition]
 ,p.data_compression_desc as [Compression], u.type_desc, u.total_pages
 from sys.partitions p join sys.allocation_units u on
 p.partition_id = u.container_id
 join sys.indexes i on
 p.object_id = i.object_id and p.index_id = i.index_id
 where p.object_id = object_id(N'dbo.FactSales')

 As you can see in Figure 33-20 , the columnstore index is stored as LOB_DATA . It is worth noting that
this index has IN_ROW_DATA allocation units; however, these allocation units do not store any data. It is
impossible to have LOB_DATA allocation in the index without an IN_ROW_DATA allocation present.

 Compression and Storage Size
 As you already know, the data in columnstore indexes is heavily compressed and can introduce significant
space savings compared even to page compression. Moreover, SQL Server 2014 introduces another
compression option called archival compression . It can be applied on an entire index or on individual
partitions by specifying a DATA_COMPRESSION=COLUMNSTORE_ARCHIVE columnstore index property, and it
reduces storage space even further. It uses the Xpress 8 compression library, which is an internal Microsoft
implementation of the LZ77 algorithm. This compression works directly with binary data without any
knowledge of the underlying SQL Server data structures.

http://dx.doi.org/10.1007/978-1-4842-1964-5_1

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

676

 Archival compression works transparently with other SQL Server features. Columnstore data is
compressed at the time it is saved on disk and decompressed before it is loaded into memory.

 Let’s compare the results of different compression methods. I created four different tables with the same
schema, as shown in Listing 33-9 . The first two tables were heaps with no nonclustered indexes defined.
The first table was uncompressed and the second one was compressed with page compression. The third
and fourth tables had clustered columnstore indexes (more about them in the next chapter) compressed
with the COLUMNSTORE and COLUMNSTORE_ARCHIVE compression methods respectively. Each table had almost
62 million rows generated based on the dbo.FactResellerSales table from the AdventureWorksDW2012
database.

 Listing 33-9. Schema of test tables

 create table dbo.FactSalesBig
 (
 ProductKey int not null,
 OrderDateKey int not null,
 DueDateKey int not null,
 ShipDateKey int not null,
 CustomerKey int not null,
 PromotionKey int not null,
 CurrencyKey int not null,
 SalesTerritoryKey int not null,
 SalesOrderNumber nvarchar(20) not null,
 SalesOrderLineNumber tinyint not null,
 RevisionNumber tinyint not null,
 OrderQuantity smallint not null,
 UnitPrice money not null,
 ExtendedAmount money not null,
 UnitPriceDiscountPct float not null,
 DiscountAmount float not null,
 ProductStandardCost money not null,
 TotalProductCost money not null,
 SalesAmount money not null,
 TaxAmt money not null,
 Freight money not null,
 CarrierTrackingNumber nvarchar(25) null,
 CustomerPONumber nvarchar(25) null,
 OrderDate datetime null,
 DueDate datetime null,
 ShipDate datetime null
)

 Table 33-5 compares the on-disk size of all four compression methods.

 Table 33-5. On-disk Data Size for Different Compression Methods

 HEAP Table

 (no compression)

 HEAP Table

 (page compression)

 Columnstore
Compression

 Archival Compression

 10,504 MB 2,440 MB 831 MB 362 MB

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

677

 Obviously, different table schemas and data lead to different compression results; however, in most
cases you will achieve significantly greater space savings when archival compression is implemented.

 Archival compression introduces additional CPU overhead at the compression and decompression
stages. Let’s run a query that performs a MAX() aggregation on 20 columns in a table. The result of the query
is meaningless; however, it forces SQL Server to read data from 20 different column segments in each row
group in the table. Listing 33-10 shows the query.

 Listing 33-10. Test query

 select max(ProductKey),max(OrderDateKey),max(DueDateKey),max(ShipDateKey),max(CustomerKey)
 ,max(PromotionKey),max(CurrencyKey),max(SalesTerritoryKey),max(SalesOrderLineNumber)
 ,max(RevisionNumber),max(OrderQuantity),max(UnitPrice),max(ExtendedAmount)
 ,max(UnitPriceDiscountPct),max(DiscountAmount),max(ProductStandardCost)
 ,max(TotalProductCost)
 ,max(SalesAmount),max(TaxAmt),max(Freight)
 from dbo.FactSalesBig;

 Table 33-6 illustrates the execution times of the query against the tables with different columnstore
compression methods. Even though the data compressed with archival compression uses significantly less
space on disk, it takes longer for the query to complete because of the decompression overhead involved.
Obviously, the results would vary based on the CPU and I/O performance of the system.

 Table 33-6. Execution Time for Different Compression Methods

 COLUMNSTORE Compression

 (Elapsed/CPU time)

 COLUMNSTORE_ARCHIVE Compression

 (Elapsed/CPU time)

 1,458 ms / 4,733 ms 1,774 ms / 6,098 ms

 Archival compression is a great choice for static, rarely accessed data, and I would like to reiterate that
it can be used on a per-index partition basis. It is common for data warehouses to retain data for a long time,
even though historical data is rarely accessed. You may wish to consider applying archival compression on
partitions that store old data and benefit from the disk space savings it achieves.

 Metadata
 SQL Server provides several columnstore index–related catalog and data management views. Two catalog
views, described next, work in SQL Server 2012–2016. We will look at other views in the next chapter.

 sys.column_store_segments
 The sys.column_store_segments view returns one row for each column per segment.

 Listing 33-11 shows a query that returns information about the IDX_FactSales_ColumnStore
columnstore index that is defined on the dbo.FactSales table. There are a couple of things that you should
note here. First, the view does not return the object_id or index_id of the index. This is not a problem, as a
table can have only one columnstore index defined. However, you need to use the sys.partitions view to
obtain the object_id when it is required.

 Second, like regular B-Tree indexes, nonclustered columnstore indexes include a row-id , which is either
the address of a row in a heap table or a clustered index key value. In the latter case, all columns from the
clustered index are included in the columnstore index, even when you do not explicitly define them in the
 CREATE COLUMNSTORE INDEX statement. However, these columns would not exist in the sys.index_columns
view, and you would need to use an outer join if you wanted to obtain the column name.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

678

 Listing 33-11. Examining the sys.column_store_segments view

 select p.partition_number as [partition], c.name as [column], s.column_id, s.segment_id
 ,p.data_compression_desc as [compression], s.version, s.encoding_type, s.row_count
 , s.has_nulls, s.magnitude,s.primary_dictionary_id, s.secondary_dictionary_id,
 , s.min_data_id, s.max_data_id, s.null_value
 , convert(decimal(12,3),s.on_disk_size / 1024.0 / 1024.0) as [Size MB]
 from sys.column_store_segments s join sys.partitions p on
 p.partition_id = s.partition_id
 join sys.indexes i on
 p.object_id = i.object_id
 left join sys.index_columns ic on
 i.index_id = ic.index_id and
 i.object_id = ic.object_id and
 s.column_id = ic.index_column_id
 left join sys.columns c on
 ic.column_id = c.column_id and
 ic.object_id = c.object_id
 where i.name = 'IDX_FactSales_ColumnStore'
 order by p.partition_number, s.segment_id, s.column_id

 Figure 33-21 shows the partial output of this query. Column 8, which does not have column name
displayed, represents the OrderId column, which is a part of the clustered index and has not been explicitly
defined in the columnstore index.

 Figure 33-21. sys.column_store_segments output

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

679

 The columns in the output represent the following:

 column_id is the ID of a column in the index that you can join with the sys.
index_columns view. As you have seen, only columns that are explicitly included
in an index have corresponding sys.index_columns rows.

 partition_id references the partition to which a row group (and, therefore,
a segment) belongs. You can use it in a join with the sys.partitions view to
obtain the object_id of the index.

 segment_id is the ID of the segment, which is basically the ID of a row group. The
first segment/row group in a partition has ID of 0.

 version represents a columnstore segment format. SQL Server 2012, 2014, and
2016 return 1 as its value.

 encoding_type represents the encoding used for this segment. It can have one of
the following four values:

 Value-based encoding has encoding_type = 1

 Dictionary encoding of non-strings has encoding_type = 2

 Dictionary encoding of string values has encoding_type = 3

 No encoding has encoding_type = 4

 row_count represents number of rows in the segment.

 has_null indicates if the data has null values.

 magnitude is the magnitude used for value-based encoding. For other encoding
types, it returns -1.

 min_data_id and max_data_id represent the minimum and maximum values
in a column within the segment. SQL Server analyzes these values during
query execution and eliminates segments that do not store values that satisfy
query predicates. This process works in a way similar to partition elimination in
partitioned tables.

 null_value represents the value used to indicate nulls.

 on_disk_size indicates the size of a segment in bytes.

 sys.column_store_dictionaries
 The sys.column_store_dictionaries view provides information about the dictionaries used by a
columnstore index. Listing 33-12 shows the code that you can use to examine the list of dictionaries.
Figure 33-22 illustrates the query output.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

680

 Listing 33-12. Examining the sys.column_store_dictionaries view

 select p.partition_number as [partition], c.name as [column], d.column_id, d.dictionary_id
 ,d.version, d.type, d.last_id, d.entry_count
 ,convert(decimal(12,3),d.on_disk_size / 1024.0 / 1024.0) as [Size MB]
 from sys.column_store_dictionaries d join sys.partitions p on
 p.partition_id = d.partition_id
 join sys.indexes i on
 p.object_id = i.object_id
 left join sys.index_columns ic on
 i.index_id = ic.index_id and
 i.object_id = ic.object_id and
 d.column_id = ic.index_column_id
 left join sys.columns c on
 ic.column_id = c.column_id and
 ic.object_id = c.object_id
 where i.name = 'IDX_FactSales_ColumnStore'
 order by p.partition_number, d.column_id

 The columns in the output represent the following:

 column_id is the ID of a column in the index.

 dictionary_id is the ID of a dictionary.

 version represents a dictionary format. SQL Server 2012, 2014, and 2016 return 1
as its value.

 type represents the type of values stored in a dictionary. It can have one of the
following three values:

 Dictionary containing integer values is specified by type = 1

 Dictionary containing string values is specified by type = 3

 Dictionary containing float values is specified by type = 4

 last_id is the last data ID in a dictionary.

 entry_count contains the number of entries in a dictionary.

 on_disk_size indicates the size of a dictionary in bytes.

 Figure 33-22. sys.column_store_dictionaries output

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

681

 Design Considerations and Best Practices for Columnstore
Indexes
 The subject of designing efficient data warehouse solutions is very broad and impossible to cover completely
in this book. However, it is equally impossible to avoid such a discussion entirely.

 Reducing Data Row Size
 Regardless of the indexing technologies in use, most I/O activity in data warehouse systems is related to
scanning facts tables’ data. The efficient design of facts tables is one of the key factors in data warehouse
performance.

 It is always advantageous to reduce the size of a data row, and it is even more critical in the case of facts
tables in data warehouses. By making data rows smaller, we reduce the size of the table on-disk and the
number of I/O operations during a scan. Moreover, it reduces the memory footprint of the data and makes
batch mode execution more efficient because of better utilization of the internal CPU cache.

 As you will remember, one of the key factors in reducing data size is the use of correct data types for
values. You can think about storing Boolean values in int data types, or using datetime when a value
requires up to the minute precision as examples of bad design. Always use the smallest data type that can
store column values and that provides the required precision for the data.

 Giving SQL Server as Much Information as Possible
 Knowledge is power. The more SQL Server knows about the data, the better the chances are that an efficient
execution plan is generated.

 Unfortunately, the nullability of columns is one of the most obvious but frequently overlooked factors.
Defining columns as NOT NULL when appropriate helps Query Optimizer and in some cases reduces the
storage space required for the data. It also allows SQL Server to avoid unnecessary encoding in columnstore
indexes and during batch mode execution.

 Consider a bigint column as an example. When this column is defined as NOT NULL , the value fits into
a single CPU register, and therefore operations on the value can be performed more quickly. Alternatively,
a nullable bigint column requires another, 65th bit to indicate NULL values. When this is the case, SQL
Server avoids cross-register data storage by storing some of the row values (usually the highest or lowest
values) in main memory using special markers to indicate it in the data that resides in the CPU cache. As you
can probably guess, this approach adds extra load during execution. As a general rule, it is better to avoid
nullable columns in data warehouse environments. It is also beneficial to use CHECK constraints and UNIQUE
constraints or indexes when overhead introduced by constraints or unique indexes is acceptable.

 Maintaining Statistics
 Creating and maintaining statistics is a good practice that benefits any SQL Server system. As you know, up-
to-date statistics help Query Optimizer generate more efficient execution plans.

 Columnstore indexes behave differently than B-Tree indexes do regarding statistics. SQL Server creates
a statistics object at the time of columnstore index creation; however, it is neither populated nor updated
afterward. SQL Server relies on segment information, B-Tree indexes (when available), and column-level
statistics when deciding if a columnstore index needs to be used.

 It is beneficial to create missing column-level statistics on the columns that participate in a columnstore
index and are used in query predicates and as join keys.

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

682

 Remember to update statistics, keeping them up to date after you load new data to a data warehouse.
Statistics rarely update automatically on very large tables.

 Avoiding String Columns in Fact Tables
 Generally, you should minimize the use of string columns in facts tables. String data uses more space, and
SQL Server performs extra encoding when working with such data during batch mode execution. Moreover,
queries with predicates on string columns may have less efficient execution plans that also require
significantly larger memory grants as compared to their non-string counterparts. SQL Server 2012 and 2014
do not push string predicates down toward the lowest operators in execution plans.

 Let’s look at an example of such behavior. The code shown in Listing 33-13 adds an ArticleCategory
column to the dbo.FactSales table, populating it with values from the dbo.DimArticles table. As a final
step, the code recreates the columnstore index, adding a new column there. Obviously, you should not
design database schemas this way, as you don’t want to keep redundant attributes in facts tables.

 Listing 33-13. String columns in facts tables: Table schema changes

 drop index IDX_FactSales_ColumnStore on dbo.FactSales;
 alter table dbo.FactSales add ArticleCategory nvarchar(32) not null default '';
 go

 update t
 set t.ArticleCategory = a.ArticleCategory
 from dbo.FactSales t join dbo.DimArticles a on
 t.ArticleId = a.ArticleId;

 create nonclustered columnstore index IDX_FactSales_ColumnStore
 on dbo.FactSales(DateId, ArticleId, BranchId, Quantity, UnitPrice, Amount, ArticleCategory);

 As a next step, let’s run two similar queries that calculate the total amount of sales for a particular
branch and article category. The queries are shown in Listing 33-14 . The first query uses a dbo.DimArticle
dimensions table for category filtering, while the second query uses an attribute from the facts table.

 Listing 33-14. String columns in facts tables: Test queries

 select sum(s.Amount) as [Sales]
 from dbo.FactSales s join dbo.DimBranches b on
 s.BranchId = b.BranchId
 join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 where
 b.BranchNumber = N'3' and
 a.ArticleCategory = N'Category 4';

 select sum(s.Amount) as [Sales]
 from dbo.FactSales s join dbo.DimBranches b on
 s.BranchId = b.BranchId
 where
 b.BranchNumber = N'3' and
 s.ArticleCategory = N'Category 4';

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

683

 The partial execution plan for the first query, performed in SQL Server 2012, is shown in Figure 33-23 . As
you can see, SQL Server pushes both predicates on the BranchId and ArticleId columns to the columnstore
index scan operator , filtering out unnecessary rows during a very early stage of the execution. SQL Server 2014
and 2016 would generate a slightly different plan; however, they would use the same approach, evaluating
predicates during a columnstore index scan.

 Table 33-7. Execution Times of the First Query

 CPU Time (ms) Elapsed Time (ms)

 SQL Server 2012 61 22

 SQL Server 2014 32 11

 SQL Server 2016 28 10

 Figure 33-24. Execution plan for a query that uses a string attribute in the facts table to filter the article
category (prior to SQL Server 2016)

 Table 33-7 shows execution times of the queries in my environment. As you can see, SQL Server 2014
and 2016 are slightly faster than SQL Server 2012; however, all versions of SQL Server ran efficiently.

 Figure 33-23. Execution plan for a query that uses a dimensions table to filter the article category

 With the second query, neither SQL Server 2012 nor 2014 pushed a string predicate on the
 ArticleCategory column to the columnstore index scan operator. Both versions of SQL Server used an
additional filter operator afterward. This introduced the overhead of loading unnecessary rows during the
index scan. You can see a partial execution plan of the second query in Figure 33-24 .

 SQL Server 2016 generates a different execution plan that pushes the string predicate toward the
columnstore index scan operator, as shown in Figure 33-25 .

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

684

 As you can see in Table 33-8 , in SQL Server 2016, the execution time of the second query did not
change. This was not the case in SQL Server 2012 and 2014, where evaluating the string predicate in the filter
operator slowed down queries dramatically.

 Figure 33-25. Execution plan for a query that uses a string attribute in the facts table to filter the article
category (SQL Server 2016)

 Obviously, in some cases string attributes become part of the facts and should be stored in facts tables.
However, in a large number of cases, you can add another dimensions table and replace the string value in
the facts table with a synthetic, integer-based ID key that references a new table.

 You already saw one such example of this with the ArticleCategory data. As another example, you
may consider a situation where the facts table needs to specify the currency of a sale. Rather than storing a
currency code (USD, EUR, GBP, and so forth) in a facts table, you can create a dbo.DimCurrency dimensions
table and reference it with a tinyint or smallint CurrencyID column. This approach can significantly
improve the performance of queries against facts tables in data warehouse environments, especially in SQL
Server prior to 2016.

 Summary
 Columnstore indexes are an Enterprise Edition feature introduced in SQL Server 2012. In contrast to B-Tree
indexes that store data on a per-row basis, columnstore indexes store unsorted and compressed data on a
per-column basis.

 Columnstore indexes are beneficial in data warehouse environments where typical queries perform a
scan and aggregation of data from facts tables, selecting just a subset of table columns.

 Table 33-8. Execution Times of the Second Query

 CPU Time (ms) Elapsed Time (ms)

 SQL Server 2012 266 90

 SQL Server 2014 187 65

 SQL Server 2016 30 11

CHAPTER 33 ■ COLUMN-BASED STORAGE AND BATCH MODE EXECUTION

685

 Columnstore indexes reduce the I/O load and memory usage during query execution. Only the
columns that are referenced in a query are processed. Moreover, SQL Server introduced a batch mode
execution model that utilizes columnstore indexes. Rather than accessing data on a row-by-row basis, in
batch mode execution SQL Server performs operations against a batch of rows, keeping them in the fast CPU
cache whenever possible. Batch mode execution can significantly improve query performance and reduce
query execution time.

 Several factors improve the efficiency of data warehouse database systems. You should endeavor to
reduce row and column sizes by using appropriate data types; avoid nullable columns; use CHECK and
 UNIQUE constraints when appropriate, and avoid using string columns in facts tables when possible.

687© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_34

 CHAPTER 34

 Columnstore Indexes

 This chapter provides an overview of the different columnstore index types available in various versions of
SQL Server. It discusses their internal structure as well as best practices for data loading and maintenance.

 Columnstore Index Types
 As mentioned in the previous chapter, there are several different types of columnstore indexes supported in
SQL Server. Unfortunately, the terminology is quickly become confusing and version-specific. For example,
 nonclustered columnstore indexes in SQL Server 2012/2014 and in SQL Server 2016 are, in a nutshell, very
different objects; however, they are called the same thing in the documentation.

 Table 34-1 shows what types of columnstore indexes are supported in different versions of SQL Server.

 Table 34-1. Columnstore Index Types Available in SQL Server

 SQL Server 2012 SQL Server 2014 SQL Server 2016

 Read-only nonclustered columnstore indexes on heap/B-Tree
clustered indexes
 (they make a table read-only)

 Updateable nonclustered
columnstore indexes on heap/
B-Tree clustered indexes.

 Clustered columnstore index as the single index on the table

 Clustered columnstore index with
nonclustered B-Tree indexes

 Clustered columnstore index on
memory-optimized tables
 (will be covered in the Chapter 35)

 ■ Note You can read more about columnstore index features supported in different versions of SQL Server at
 https://msdn.microsoft.com/en-us/library/dn934994.aspx .

 Regardless of the type, columnstore indexes have several limitations in common. They cannot have
more than 1,024 columns or include sparse columns. You cannot define them as UNIQUE or use them with
the tables that utilize FILESTREAM or replication, nor can they be created on an indexed view.

http://dx.doi.org/10.1007/978-1-4842-1964-5_35
https://msdn.microsoft.com/en-us/library/dn934994.aspx

CHAPTER 34 ■ COLUMNSTORE INDEXES

688

 Moreover, the following data types are not supported: binary , varbinary , (n)text , image ,
 (n)varchar(max) , timestamp , CLR , sql_variant , and xml . In addition, SQL Server 2012 does not support
the following data types: uniqueidentifier , decimal , and numeric with precision greater than 18 digits, or
 datetimeoffset with precision greater than 2 digits.

 Let’s look at the different types of columnstore indexes in depth.

 Read-Only Nonclustered Columnstore Indexes
(SQL Server 2012–2014)
 Read-only nonclustered columnstore indexes were introduced in SQL Server 2012, and they were the
only columnstore index type supported in this version. In this section, I will refer to them as nonclustered
columnstore indexes (NCCI); however, I would like to repeat that they are implemented and behave
differently from nonclustered columnstore indexes in SQL Server 2016.

 A nonclustered columnstore index can include up to 1,024 non-sparse columns. Due to the nature of the
index, it does not matter in what order the columns are specified; that is, data is stored on a per-column basis.

 Similar to B-Tree nonclustered indexes, nonclustered columnstore indexes include a row-id, which is
either a clustered index key value or the physical location of a row in a heap table. This behavior allows SQL
Server to use the columnstore index scan operation to perform a key lookup afterward. It is worth repeating
that columnstore indexes do not support seek operations, because the data in those indexes is not sorted, as
you saw in the previous chapter.

 Listing 34-1 shows an example of a query that uses a columnstore index scan with key lookup operators,
using the dbo.FactSales table defined in the previous chapter.

 Listing 34-1. Query that triggers key lookup operation

 select OrderId, Amount, TaxAmt
 from dbo.FactSales
 where ArticleId = 10

 Figure 34-1 shows the execution plan for this query. You can see that the OrderId column is included
in the output list of the columnstore index scan. That column has not been explicitly defined in the
columnstore index; however, it is part of the clustered index key in the table.

 Figure 34-1. Execution plan for this query

CHAPTER 34 ■ COLUMNSTORE INDEXES

689

 The creation of a columnstore index is a very memory intensive operation . When you create a
columnstore index in SQL Server 2012, it requests a memory grant of a size that you can roughly estimate
with the following formula:

 Memory Grant Request (MB) =
 (4.2 * Number of columns in the index + 68) * (Degree of Parallelism) +
 (Number of text columns in the index * 34)

 For example, the columnstore index created in Listing 33-3 in the previous chapter requested a memory
grant of 394 MB in my environment, which is fairly close to the (4.2 * 7 (6 index columns + OrderId) +
68) * 4 = 390 MB calculated with the formula. The size of the memory grant does not depend on the size of
the table. As you will see later, SQL Server processes data in batches of about one million rows each.

 The index creation process fails in cases of insufficient memory. There are two ways to solve this
problem besides adding more memory to the server. The first is to reduce the degree of parallelism with the
 MAXDOP index option. While this option reduces the memory requirements for a query, it increases the index
creation time proportionally to the decrease of DOP.

 The second option is to change the REQUEST_MAX_MEMORY_GRANT_PERCENT property of the workload
group in Resource Governor. By default, the size of the query memory grant is limited to 25 percent of the
available workspace memory, which you can increase for the duration of the CREATE INDEX statement .

 The index creation algorithm has been improved in SQL Server 2014. In contrast to SQL Server 2012,
which uses a degree of parallelism that matches either the server or index DOP options, SQL Server 2014
automatically adjusts the DOP based on available memory. This behavior decreases the chance that the
index creation process will fail due to an out-of-memory condition.

 The biggest limitation of nonclustered columnstore indexes is that a table with such an index becomes
read-only. You cannot change data in the table after the index is created. This limitation, however, is
not as critical in a data warehouse environment where data is usually static and updated on schedule.
Unfortunately, this limitation prevents nonclustered columnstore indexes from being used in operational
analytics scenarios in SQL Server 2012 and 2014.

 Tables with columnstore indexes support a partition switch, which is a great option for importing data
into the table. You can create a staging table, use it as the target for data import, then add a columnstore
index to the staging table when the import is completed, and then switch the staging table to be the new
partition in the main read-only table as the last step of the operation. Listing 34-2 shows an example of this.

 Listing 34-2. Importing data into a table with a nonclustered columnstore index using a staging table and
partition switch

 create partition function pfFacts(int) as range left for values (1,2,3,4,5);
 create partition scheme psFacts as partition pfFacts all to ([FG2016]);
 go

 create table dbo.FactTable
 (
 DateId int not null,
 ArticleId int not null,
 OrderId int not null,
 Quantity decimal(9,3) not null,
 UnitPrice money not null,
 Amount money not null,
 constraint PK_FactTable
 primary key clustered(DateId, ArticleId, OrderId)
 on psFacts(DateId)
);

CHAPTER 34 ■ COLUMNSTORE INDEXES

690

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows
 ,IDs(ID) as (select ROW_NUMBER() over (order by (select NULL)) from N5)
 insert into dbo.FactTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount)
 select ID % 4 + 1, ID % 100, ID, ID % 10 + 1, ID % 15 + 1 , ID % 25 + 1
 from IDs;

 create nonclustered columnstore index IDX_FactTable_Columnstore
 on dbo.FactTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount)
 on psFacts(DateId);

 create table dbo.StagingTable
 (
 DateId int not null,
 ArticleId int not null,
 OrderId int not null,
 Quantity decimal(9,3) not null,
 UnitPrice money not null,
 Amount money not null,

 constraint PK_StagingTable
 primary key clustered (DateId, ArticleId, OrderId)
 on [FG2016],

 constraint CHK_StagingTable check(DateId = 5)
);

 /*** Step 1: Importing data into a staging table ***/
 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N2 as T2) -- 1,024 rows
 ,IDs(ID) as (select ROW_NUMBER() over (order by (select null)) from N5)
 insert into dbo.StagingTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount)
 select 5, ID % 100, ID, ID % 10 + 1, ID % 15 + 1 , ID % 25 + 1
 from IDs;

 /*** Step 2: Creating nonclustered columstore index ***/
 create nonclustered columnstore index IDX_StagingTable_Columnstore
 on dbo.StagingTable(DateId, ArticleId, OrderId, Quantity, UnitPrice, Amount)
 on [FG2016];

 /*** Step 3: Switching a staging table to be the new partition of the main table ***/
 alter table dbo.StagingTable switch to dbo.FactTable partition 5;

CHAPTER 34 ■ COLUMNSTORE INDEXES

691

 ■ Tip You can use a partitioned view that combines data from updatable tables and read-only tables with
columnstore indexes. However, using the UNION ALL clause in SQL Server 2012 disables batch mode execution.

 Clustered Columnstore Indexes (SQL Server 2014–2016)
 The read-only nature of nonclustered columnstore indexes in SQL Server 2012 seriously affected the
adoption of the technology. Even though data partitioning and partition switches could help to work around
this limitation, they require complex and often cumbersome implementations.

 Starting with SQL Server 2014, you can store data in column-based storage using clustered columnstore
indexes (CCI) . In SQL Server 2014, a CCI is a single instance of the data in a table, and tables with clustered
columnstore indexes cannot have any other indexes defined—neither B-Tree nor nonclustered columnstore
indexes. In SQL Server 2016, however, you can define nonclustered B-Tree indexes on tables with clustered
columnstore indexes. Finally, neither SQL Server 2014 nor 2016 allows you to define triggers on the table.

 In SQL Server 2014, clustered columnstore indexes have several other limitations in addition to the
list provided in the beginning of this chapter. A table cannot reference other tables nor be referenced
with foreign key constraints. You cannot query tables with clustered columnstore indexes on readable
secondaries in AlwaysOn Availability Groups.

 SQL Server 2016 removes those limitations; however, supporting uniqueness, referential integrity, and
primary key constraints will require the creation of nonclustered B-Tree indexes.

 There are still some features that do not work with clustered columnstore indexes. For example,
replication, change tracking, and change data capture are not supported, even in SQL Server 2016.

 You can create a clustered columnstore index with the CREATE CLUSTERED COLUMNSTORE INDEX
command . You do not need to specify any columns in the statement—the index will include all table
columns. This adds further restrictions on the column data types, as we discussed in the beginning of this
chapter.

 Internal Structure
 Clustered columnstore indexes use the same storage format as nonclustered columnstore indexes use,
storing columnstore data in row groups. However, they have two additional elements that support data
modifications. The first is delete bitmap , which indicates which rows were deleted from a table. The second
structure is delta store , which includes newly inserted rows. Both delta store and delete bitmap use the
B-Tree format to store data. Moreover, SQL Server 2016 uses several other structures to support nonclustered
B-Tree indexes. We will discuss these later.

 ■ Note SQL Server’s use of delete bitmaps and delta stores is transparent to users, which makes the relevant
terminology confusing. You will often see delta stores referenced as another row group in documentation and
technical articles. Moreover, a delete bitmap is often considered a part of a delta store and/or row group.

 To avoid confusion, I will use the following terminology in this chapter. The term row group references data
stored in a column-based storage format. I will explicitly reference delta stores and delete bitmaps as two
separate sets of internal objects as needed.

CHAPTER 34 ■ COLUMNSTORE INDEXES

692

 Figure 34-2 illustrates the structure of a clustered columnstore index in a table that has two partitions.
Each partition can have a single delete bitmap and multiple delta stores. This structure makes each partition
self-contained and independent from other partitions, which allows you to perform a partition switch on
tables that have clustered columnstore indexes defined.

 Figure 34-2. Clustered columnstore index structure

 It is worth noting that delete bitmaps and delta stores are created on demand . For example, a delete
bitmap would not be created unless some of the rows in the row groups were deleted.

 Every time you delete a row that is stored in a row group (not in a delta store), SQL Server adds
information about the deleted row to the delete bitmap. Nothing happens to the original row. It is still stored
in a row group. However, SQL Server checks the delete bitmap during query execution and excludes deleted
rows from the processing.

 As already mentioned, when you insert data into a columnstore index, it goes into a delta store, which
uses a B-Tree format. Updating a row that is stored in a row group does not change the row data. Such an
update triggers the deletion of the row, which is, in fact, insertion to a delete bitmap, and insertion of a new
version of a row to a delta store. However, any data modifications of the rows in a delta store are done the
same way as in regular B-Tree indexes—by updating and deleting actual rows there. You will see one such
example later in this chapter.

 Each delta store can be in either an open or a closed state. Open delta stores accept new rows and allow
modifications and deletions of data. SQL Server closes a delta store when it reaches 1,048,576 rows, which
is the maximum number of rows that can be stored in a row group. Another SQL Server process, called tuple
mover , runs every five minutes and converts closed delta stores to row groups that store data in a column-
based storage format.

 Alternatively, you can force the conversion of closed delta stores to row groups by reorganizing an index
with the ALTER INDEX REORGANIZE command. While both approaches achieve the same goal of converting
closed delta stores to row groups, their implementation is slightly different. Tuple mover is a single-threaded
process that works in the background, preserving system resources. Alternatively, index reorganizing runs in
parallel using multiple threads. This approach can significantly decrease conversion time at a cost of extra
CPU load and memory usage.

 ■ Note You can disable the background tuple mover process with trace flag T634 .

CHAPTER 34 ■ COLUMNSTORE INDEXES

693

 Neither tuple mover nor index reorganizing prevent other sessions from inserting new data into a table.
New data will be inserted into different and open delta stores. However, deletions and data modifications
would be blocked for the duration of the operation. In some cases, you may consider forcing index
reorganization manually to reduce execution, and therefore locking, time.

 You can examine the state of row groups and delta stores with the sys.column_store_row_groups view.
Figure 34-3 illustrates the output of this view, which returns the combined information of all columnstore
index objects. Rows in OPEN or CLOSED state correspond to delta stores. Rows in COMPRESSED state correspond
to row groups with data in a column-based storage format. Finally, the deleted_rows column provides
statistics about deleted rows stored in a delete bitmap.

 Figure 34-3. Sys.column_store_row_groups view output

 As you can see, the second row in the view output from Figure 35-2 shows the closed delta store that
has yet to be picked up by the tuple mover process. The situation will change after the tuple mover process
converts the closed delta store to a row group on its next scheduled run. Figure 34-4 shows the output from
a view in SQL Server 2014 after this occurs. As you can see, the row_group_id of the converted row group
changed. Tuple mover created a new row group, dropping the closed delta store afterward. It is worth
noting that in SQL Server 2016 the old row group will be present in the output in TOMBSTONE state until it is
deallocated.

 Figure 34-4. Sys.column_store_row_groups view output after tuple mover process execution

 Data Load
 Two different types of data load can insert data into a columnstore index. The first type is bulk insert ,
which is used by the BULK INSERT operator, the bcp utility, and other applications that utilize the bulk
insert API. The second type, called trickle inserts, are regular INSERT operations that do not use the bulk
insert API.

 Bulk insert operations provide the number of rows in the batch as part of the API call. SQL Server
inserts data into newly created row groups if that size exceeds a threshold of 102,400 rows. Depending
on the size of the batch, one or more row groups can be created, and some rows may be stored in a delta
store.

 Table 34-2 illustrates how data from different batches are distributed between row groups and delta
stores.

CHAPTER 34 ■ COLUMNSTORE INDEXES

694

 SQL Server loads columnstore data to memory on a per-segment basis, and, as you remember,
segments represent data for a single column in a row group. It is more efficient to load and process a smaller
number of fully populated segments as compared to a large number of partially populated segments. An
excessive number of partially populated row groups negatively affect SQL Server performance. I will provide
an example of this later in the chapter.

 If you bulk load data to a table with a clustered columnstore index, you will achieve the best results by
choosing a batch size that is divisible by 1,048,576 rows. This will guarantee that every batch produces one
or several fully populated row groups, reduce the total number of row groups in a table, and improve query
performance. Do not exceed this number, however, because the batch would not fit into a single row group.

 Batch size is less important for non-bulk operations . Trickle inserts go directly to a delta store. In some
cases, SQL Server can still create row groups on the fly in a manner to similar a bulk insert when the size of
the insert batch is close to or exceeds 1,048,576 rows. You should not rely on this behavior, however.

 Delta Store and Delete Bitmap
 Let’s analyze the structure of delta stores and delete bitmaps and look at the format of their rows. As a first
step, let’s create a table, populate it with data, and define a clustered columnstore index there. Finally, we
will look at segments and row groups with the sys.column_store_segments and sys.column_store_row_
groups views.

 Listing 34-3 shows the code that does just that. I am using the MAXDOP=1 option during the index
creation stage to minimize the number of partially populated row groups in the index.

 Listing 34-3. Delta store and delete bitmap: Test table creation

 create table dbo.CCI
 (
 Col1 int not null,
 Col2 varchar(4000) not null,
);

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
 ,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
 ,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
 ,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
 ,N6(C) as -- 1,048,592 rows
 (
 select 0 from N5 as T1 cross join N3 as T2

 Table 34-2. Batch Size and Data Distribution During Bulk Insert

 Batch size Rows added to row groups
 (column-based storage)

 Rows added to delta store
 (row-based storage)

 99,000 0 99,000

 150,000 150,000 0

 1,048,577 1,048,576 1

 2,100,000 1,048,576; 1,048,576 2,848

 2,250,000 1,048,576; 1,048,576; 152,848 0

CHAPTER 34 ■ COLUMNSTORE INDEXES

695

 union all
 select 0 from N3
)
 ,IDs(ID) as (select row_number() over (order by (select null)) from N6)
 insert into dbo.CCI(Col1,Col2)
 select ID, 'aaa' from IDS;

 create clustered columnstore index IDX_CS_CLUST on dbo.CCI
 with (maxdop=1);

 select g.state_description, g.row_group_id, s.column_id
 ,s.row_count, s.min_data_id, s.max_data_id, g.deleted_rows
 from
 sys.column_store_segments s join sys.partitions p on
 s.partition_id = p.partition_id
 join sys.column_store_row_groups g on
 p.object_id = g.object_id and s.segment_id = g.row_group_id
 where p.object_id = object_id(N'dbo.CCI')
 order by g.row_group_id, s.column_id;

 Figure 34-5 shows the output from the sys.column_store_segments and sys.column_store_row_
groups views. The columnstore index has two row groups and does not have a delta store or delete bitmap.
You can see Col1 values that are stored in both row groups in the min_data_id and max_data_id columns for
the rows that have column_id=1 .

 Figure 34-5. Delta store and delete bitmap: Sys.column_store_segments and sys.column_store_row_groups
output

 In the next step, shown in Listing 34-4 , we will perform some data modifications in the table. The first
statement inserts two new rows into the table. The second statement deletes three rows, including one of the
rows that we just inserted. Finally, we will update another newly inserted row.

 Listing 34-4. Delta store and delete bitmap: Data modifications

 insert into dbo.CCI(Col1,Col2)
 values (2000000,replicate('c',4000)), (2000001, replicate('d',4000));

 delete from dbo.CCI
 where Col1 in
 (100 -- Row group 0
 ,16150 -- Row group 1
 ,2000000 -- Newly inserted row (Delta Store)
);

 update dbo.CCI

CHAPTER 34 ■ COLUMNSTORE INDEXES

696

 set Col2 = replicate('z',4000)
 where Col1 = 2000001; -- Newly inserted row (Delta Store)

 Now, it is time to find the data pages that are used by the delta store and delete bitmap. We will use the
undocumented sys.dm_db_database_page_allocations data management function, as shown in Listing
 34-5 . This function returns us the information about object page allocations.

 Listing 34-5. Delta store and delete bitmap: Analyzing page allocations

 select object_id, index_id, partition_id, allocation_unit_type_desc as [Type]
 ,is_allocated,is_iam_page,page_type,page_type_desc
 ,allocated_page_file_id as [FileId]
 ,allocated_page_page_id as [PageId]
 from sys.dm_db_database_page_allocations(db_id(),object_id('dbo.CCI'),null,null,'DETAILED')

 You can see the output of this query in Figure 34-6 . As you know, SQL Server stores columnstore
segments in LOB_DATA allocation units. Delta store and delete bitmap use IN_ROW_DATA allocation.

 Figure 34-6. Delta store and delete bitmap: Allocation units

 Let’s look at the data pages using the DBCC PAGE command with the code shown in Listing 34-6 .
Obviously, the database, file, and page IDs would be different in your environment.

 Listing 34-6. Delta store and delete bitmap: Analyzing page data

 dbcc traceon(3604); -- Redirecting output to console
 dbcc page -- Analyzing content of a page
 (9 -- Database Id
 ,1 -- FileId
 ,306 -- PageId
 ,3 -- Output style
)

 Figure 34-7 shows the partial content of a data page that is a delta store page. As you can see, SQL Server
stores data in regular row-based storage. There is one internal column, CSILOCATOR , in addition to two table
columns. CSILOCATOR is used as an internal unique identifier of the row in the delta store.

CHAPTER 34 ■ COLUMNSTORE INDEXES

697

 Finally, it is worth noting that the row with Col1=2000000 , which we inserted and deleted after the
clustered columnstore index was created, is not present in the delta store. SQL Server deletes (and updates)
rows in the B-Tree delta store the same way as in regular B-Tree tables.

 You can use the same approach to examine the content of a deleted bitmap data page. In my case, the
page ID is 308.

 Figure 34-8 shows the partial output of the DBCC PAGE command. As you can see, the delete bitmap
includes two columns that uniquely identify a row. The first column is a row group id and the second
column is the offset of the row in the segment. Do not be confused by the fact that the column names match
table columns. DBCC PAGE uses table metadata to prepare the output.

 Figure 34-7. Delta store and delete bitmap: Delta store data page

CHAPTER 34 ■ COLUMNSTORE INDEXES

698

 It is worth noting that in SQL Server 2014 delta stores are page compressed. As we already discussed
in Chapter 4 , compression can increase the row size and, in some edge cases, disallow the creation of
columnstore indexes with a very large number of columns. Page compression for delta stores has been
removed in SQL Server 2016 to address this problem.

 Delete bitmaps, on the other hand, use page compression in both SQL Server 2014 and 2016.

 Columnstore Index Maintenance
 Updateable columnstore indexes require maintenance that is similar to that of regular B-Tree indexes,
even though the reasons for doing the maintenance are different. Columnstore indexes do not become
fragmented; however, they can suffer from a large number of partially populated row groups. Another issue
is the overhead of delta store and delete bitmap scans during query execution.

 Let’s run several tests and look at the issues involved in detail.

 Figure 34-8. Delta store and delete bitmap: Delete bitmap page

http://dx.doi.org/10.1007/978-1-4842-1964-5_4

CHAPTER 34 ■ COLUMNSTORE INDEXES

699

 Excessive Number of Partially Populated Row Groups
 For this test, I created two tables with a structure similar to the table we defined in Listing 33-9 in the
previous chapter when we tested archival compression. I bulk inserted almost 62 million rows with the bcp
utility, using 1,000,000-row batches and 102,500-row batches respectively.

 Figure 34-9 illustrates the row groups in both tables after the import.

 Figure 34-9. Row groups after bulk import

 During the tests, I ran the query from Listing 33-10. The query required SQL Server to perform MAX()
aggregation on 20 columns from the table by scanning all row groups and column segments.

 Table 34-3 illustrates the execution time and number of I/O operations for the query against both tables.
As you can see, the query against the table with partially populated row groups took a considerably longer
time to execute.

 Table 34-3. Execution Statistics for the Tables with Fully and Partially Populated Row Groups

 Fully populated row groups Partially populated row
groups

 SQL Server 2014 Elapsed / CPU Time 1,735 ms / 6,202 ms 2,450 ms / 7,418 ms

 Logical Reads 177,812 192,533

 SQL Server 2016 Elapsed / CPU Time 1,405 ms / 5,500 ms 1,603 ms / 6,162 ms

 Logical Reads 118,197 192,533

 It is worth noting that the performance of batch inserts was also affected by smaller batch sizes. In the
case of 1,000,000-row batches, my system was able to insert about 143,750 rows per second, compared to
129,830 rows per second in the case of the 102,500-row batches.

 Loading data in smaller batches puts new data into the delta store and produces fully populated row
 groups afterward. However, insert performance is seriously affected. For example, when I inserted data in
99,999-row batches, my system was able to insert only 55,500 rows per second.

 Large Delta Stores
 For the next step, let’s look at how large delta stores affect the performance of queries. SQL Server needs to
scan these delta stores during query execution.

 For this test, I inserted 1,000,000 rows in small batches into the delta store of the first table from the
previous test (the table that had row groups fully populated). After that, I rebuilt the columnstore index,
comparing the execution time of the test query before and after the index rebuild.

CHAPTER 34 ■ COLUMNSTORE INDEXES

700

 The index rebuild process moved all data from the delta store to row groups. You can see the status of
the row groups and the delta store before (on the left side) and after (on the right side) the index rebuild in
Figure 34-10 .

 Figure 34-10. Row groups and delta store after insertion of 1,000,000 rows

 Table 34-4. Execution Time and Delta Store Size

 Empty delta store
 (Elapsed / CPU time)

 1,000,000 rows in delta store
 (Elapsed / CPU time)

 SQL Server 2014 1,767 ms / 6,235 ms 2,557 ms / 8,781 ms

 SQL Server 2016 1,507 ms / 5,723 ms 2,916 ms / 8,512 ms

 Figure 34-11. Row groups after deletion of 30,000,000 rows

 Table 34-4 illustrates the execution times of the test query in both scenarios, and it shows the overhead
introduced by the large delta store scan during query execution. It is worth noting that this overhead is bigger in
SQL Server 2016 where the delta store is not using page compression and requires more I/O operations to scan.

 Large Delete Bitmap
 Finally, let’s see how delete bitmaps affect query performance. For that test, I deleted almost 30,000,000 rows
from a table.

 You can see the row groups’ information in Figure 34-11 .

CHAPTER 34 ■ COLUMNSTORE INDEXES

701

 The test query needs to validate that rows have not been deleted during query execution. Similar to
the previous test, this adds considerable overhead. Table 34-5 shows the execution time of the test query,
comparing it to the execution time of the query before the data deletion.

 Table 34-5. Execution Time and Delete Bitmap

 Empty delete bitmap
 (Elapsed / CPU time)

 Delete bitmap with large number of rows
 (Elapsed / CPU time)

 SQL Server 2014 1,767 ms / 6,235 ms 3,995 ms / 11,421 ms

 SQL Server 2016 1,507 ms / 5,723 ms 3,049 ms / 10,611 ms

 Index Maintenance Options
 You can address all of these performance issues by rebuilding the columnstore index, which you can trigger
with the ALTER INDEX REBUILD command. The index rebuild forces SQL Server to remove deleted rows
physically from the index and to merge the delta stores’ and row groups’ data. All column segments are
recreated with row groups fully populated.

 Similar to index creation, the index rebuild process is very resource intensive. Moreover, as with the
regular index rebuild process, it holds a schema modification (Sch-M) lock on the table, thus preventing
other sessions from accessing it. Unfortunately, a columnstore index rebuild is an offline operation, and so
you cannot use the ONLINE=ON clause with it.

 Similar to B-Tree indexes, you can mitigate the overhead of an index rebuild by utilizing table/index
partitioning . You can rebuild indexes on a partition basis and only do so for partitions that have volatile data.
Old facts table data in most data warehouse solutions is relatively static, and ETL processes usually load new
data only. Partitioning by date in this scenario localizes modifications within the scope of one or very few
partitions. This can help you dramatically reduce the overhead of an index rebuild.

 As we already discussed, columnstore indexes support an online index reorganize process, which you
can trigger with the ALTER INDEX REORGANIZE command. The term index reorganize is a bit vague here; you
can think of it as a tuple mover process running on demand. In SQL Server 2014 , the only action performed
by index reorganization, by default, is compressing and moving the data from closed delta stores to row
groups. Delete bitmap and open delta stores stay intact.

 In SQL Server 2016 , index reorganize also performs additional defragmentation, as follows:

 It removes deleted rows from row groups that have 10 or more percent of the
rows logically deleted.

 It merges closed row groups together, keeping the total number of rows less than
or equal to 1,024,576.

 Both processes can be done together. For example, if you have two row groups, one that has
500,000 total with 100,000 deleted rows and one that has 750,000 total with 250,000 deleted rows, the
defragmentation process will merge them into another row group with 900,000 rows total, physically
removing all deleted rows from the merged row group.

 You can use the ALTER INDEX REORGANIZE WITH (COMPRESS_ALL_ROW_GROUPS = ON) statement to close
and compress all open row groups. SQL Server does not merge row groups during this operation.

 In contrast to a single-threaded tuple mover process, the ALTER INDEX REORGANIZE operation uses all
available system resources while it is running. This can significantly speed up the execution process and
reduce the time during which other sessions cannot modify or delete data in a table. It is worth noting again
that insert processes are not blocked during this time.

CHAPTER 34 ■ COLUMNSTORE INDEXES

702

 A columnstore index’s maintenance strategy should depend on the volatility of the data and the ETL
processes implemented in the system. You should rebuild indexes when a table has a considerable amount
of deleted rows and/or a large number of partially populated row groups.

 It is also advantageous to rebuild partition(s) that still have a large number of rows in open delta stores
after the ETL process has completed, especially if the ETL process does not use a bulk insert API.

 Nonclustered B-Tree Indexes (SQL Server 2016)
 As I already mentioned, in SQL Server 2014, the clustered columnstore index is the only copy of the data
in the table. You cannot create any other columnstore or B-Tree indexes there. This restriction has been
removed in SQL Server 2016, which allows you to define nonclustered B-Tree indexes on tables with
 clustered columnstore indexes.

 Nonclustered B-Tree indexes, in a nutshell, allow you to optimize OLTP queries against those tables.
Consider a situation where you store all current and historical data in a system that handles OLTP activity
against current hot data and analysis/reporting activity against historical data. One of the common
implementations in this schema is the use of partitioned views that store historical data in tables with
column-based storage.

 There are still cases, however, when you need to run OLTP queries against historical data. For example,
in Point-of-Sale systems customers may want to look up the old order record. Nonclustered B-Tree indexes
can help you to optimize those queries and avoid scanning the columnstore index.

 Nonclustered B-Tree indexes also allow you to define and enforce primary key and unique constraints
on the clustered columnstore index tables. They also allow such tables to reference or be referenced by
foreign key constraints. All of this helps to improve data quality in data warehouse systems.

 When a table with a clustered columnstore index is partitioned, which is usually the case, SQL Server
also partitions nonclustered B-Tree indexes, aligning them with the columnstore index. This may prevent
you from defining the uniqueness of the index unless you include a partition column in the index key.

 Figure 34-12 shows the partition of the clustered columnstore index with a nonclustered B-Tree index
created. Nonclustered B-Tree indexes use the columnstore index locator as the row-id, which references the
rows in the clustered columnstore index.

 Figure 34-12. Partition of the table with clustered columnstore and nonclustered B-Tree indexes

 There are cases when rows in the columnstore indexes can be moved to different locations; for example,
when delta stores are compressed or row groups are merged. When it happens, SQL Server does not update
the row-id in the nonclustered indexes but rather uses another internal component, called the mapping
index , which contains information about old and new row locations.

CHAPTER 34 ■ COLUMNSTORE INDEXES

703

 Let’s look at the following example. Listing 34-7 shows code that creates a table with clustered
columnstore and nonclustered B-Tree indexes and populates it with some data.

 Listing 34-7. Query that uses nonclustered B-Tree index

 create table dbo.CCIWithNI
 (
 Col1 int not null,
 Col2 int not null,
 Col3 int not null
);

 insert into dbo.CCIWithNI(Col1, Col2, Col3)
 values(1,1,1), (2,2,2);

 create clustered columnstore index CCI_CCIWithNI on dbo.CCIWithNI;

 insert into dbo.CCIWithNI(Col1, Col2, Col3)
 values(100,100,100),(200,200,200);

 create nonclustered index IDX_CCIWithNI_Col3 on dbo.CCIWithNI(Col3);

 At this stage, the columnstore index will have one compressed row group and one open delta store. You
can examine it with the new SQL Server 2016 data management view sys.dm_db_column_store_row_group_
physical_stats , which provides you with information about row groups in columnstore indexes.

 Listing 34-8 shows the query that uses this view. Figure 34-13 illustrates the output of the query.

 Listing 34-8. Analyzing the row groups in the index

 select object_id, index_id, partition_number, row_group_id,generation, state_desc
 ,total_rows, deleted_rows
 from sys.dm_db_column_store_row_group_physical_stats
 where object_id = object_id(N'dbo.CCIWithNI');

 Figure 34-13. Columnstore index row groups

 Another new SQL Server 2016 view— sys.internal_partitions —provides information about internal
columnstore index objects. You can see the query that uses this view in Listing 34-9 .

 Listing 34-9. Columnstore index internal objects

 select ip.object_id, ip.index_id, ip.partition_id, ip.row_group_id, ip.internal_object_type
 ,ip.internal_object_type_desc, ip.rows, ip.data_compression_desc, ip.hobt_id
 from sys.internal_partitions ip
 where ip.object_id = object_id(N'dbo.CCIWithNI');

 Figure 34-14 illustrates the output of this query. As you can see, at this stage the clustered columnstore
index has delta store and delete bitmap without a mapping index present.

CHAPTER 34 ■ COLUMNSTORE INDEXES

704

 Let’s look at the internal structure of a nonclustered B-Tree index. Listing 34-10 shows a query that
returns information about index page allocation. It is using the nonclustered index ID (2) as the parameter of
the call. Figure 34-15 shows the output of the query.

 Listing 34-10. Getting page allocation information

 select object_id, index_id, partition_id, allocation_unit_type_desc as [Type], is_allocated
 ,is_iam_page, page_type, page_type_desc, allocated_page_file_id as [FileId]
 ,allocated_page_page_id as [PageId], rowset_id, allocation_unit_id
 from sys.dm_db_database_page_allocations(db_id(), object_id('dbo.
CCIWithNI'),2,null,'DETAILED')
 where is_allocated = 1;

 Figure 34-14. Columnstore index internal objects

 Figure 34-15. Nonclustered index page allocation

 Now, when we know the file and page IDs of the index, we can examine it with the DBCC PAGE
command, as shown in Listing 34-11 . Obviously, you will get different values when you run the previous
query in your environment.

 Listing 34-11. Analyzing index page

 dbcc traceon(3604); -- Redirecting output to console
 dbcc page -- Analyzing content of a page
 (10 -- Database Id
 ,1 -- FileId
 ,14568 -- PageId
 ,3 -- Output style
);

 Figure 34-16 illustrates the data from the index page. DBCC PAGE incorrectly assumes that the second
index column is uniquifier . In reality, this column is known as the columnstore index original locator ,
which is an eight-byte value that consists of a row_group_id in the high four bytes and the offset within the
row group in the low four bytes. For example, the decimal value 4,294,967,297 is 0x0000 0001 0000 0001
in hexadecimal format, which corresponds to row_group_id=1 and offset=1 .

 Figure 34-16. Nonclustered index page

CHAPTER 34 ■ COLUMNSTORE INDEXES

705

 Let’s run the ALTER INDEX REORGANIZE statement, closing and compressing the delta store, as shown in
Listing 34-12 .

 Listing 34-12. Reorganizing the index

 alter index CCI_CCIWithNI on dbo.CCIWithNI reorganize
 with (compress_all_row_groups = on);

 If you looked at the columnstore index’s row groups and internal objects again, using the code from
Listings 34-9 and 34-10, you would see the output shown in Figure 34-17 . As you can see, the delta store is
now compressed into the new row group (the old row group is in TOMBSTONE state and will be eventually
deallocated). Moreover, SQL Server creates a mapping index to indicate that rows from the old delta store
have been moved.

 Figure 34-17. Row groups and internal objects after ALTER INDEX REORGANIZE

 It is worth mentioning that if you look at the nonclustered index page again, the row-id of the rows will
not have changed. SQL Server will use the mapping index to locate the new location of the rows.

 Internally, the mapping index can track the movement of individual rows along with multiple rows’
movements and row group ID changes. As you can see, in our case we have just the single row in the
mapping index even though the old delta store had two rows.

 When a row in a columnstore index is moved, SQL Server keeps track of the row’s original locator
in an internal nullable column in the columnstore index. This column is created when you add the first
nonclustered B-Tree index to the table. This original locator value uniquely identifies corresponding rows
in nonclustered B-Tree indexes and is used when you, for example, delete the row from a table. The original
locator value is not populated until the row is moved.

 ■ Note You can see the original locator column if you examine the contents of the delta store data page or
look at columnstore index segment information with the sys.column_store_segments view. That column has a
 column_id of 65,535.

 The Query Optimizer could use nonclustered B-Tree indexes for OLTP queries that perform point
lookups or small range scans. In cases where nonclustered indexes do not cover the queries, SQL Server will
get the data from the clustered columnstore index. This operation is shown as a key lookup in the execution
plans even though it is different than the key lookup performed on clustered B-Tree indexes.

 Listing 34-13 shows a query that could benefit from the IDX_CCIWithNI_Col3 index we defined earlier.
Figure 34-18 shows the execution plan of this query, assuming you populated the table with enough data for
a nonclustered index seek to become more efficient than a columnstore index scan . Alternatively, you can
force this execution plan using the WITH (INDEX=IDX_CCIWithNI_Col3) hint.

CHAPTER 34 ■ COLUMNSTORE INDEXES

706

 Listing 34-13. Query that uses nonclustered B-Tree index

 select Col1, Col2, Col3
 from dbo.CCIWithNI
 where Col3 = 42

 Nonclustered B-Tree indexes need to be maintained in the same way as indexes on B-Tree tables. One
thing worth noting is that a rebuild of the clustered columnstore index rearranges rows in the row groups,
changing their location. SQL Server will rebuild nonclustered B-Tree indexes and remove mapping indexes
as part of this operation.

 Updateable Nonclustered Columnstore Indexes
(SQL Server 2016)
 SQL Server 2016 supports updateable nonclustered columnstore indexes on B-Tree tables. Those indexes
can be beneficial in operational analytics scenarios when you need to run reporting/analytics queries
against tables with heavy OLTP workload. You can think about a system that should display an operational
dashboard with up-to-date information as an example.

 Despite the name, nonclustered columnstore indexes in SQL Server 2016 are very different from those
in an SQL Server 2012/2014 implementation. Similar to clustered columnstore indexes, they use delta store
and delete bitmap to support data modifications. Their delta stores, however, are not limited to 1,048,576
rows and can grow up to about 33.5 million rows (2^25) when you insert a large number of rows in between
tuple mover executions.

 There is another structure called delete buffer that is used as temporary storage for information
about deleted rows. It reduces the overhead that delete bitmap managements would introduce to OLTP
transactions.

 Internally, the delete buffer is implemented as a B-Tree index with a structure that mimics the table
row-id, which is either a clustered index key or the location of the row in the heap table. This approach
allows SQL Server to avoid a lookup of the columnstore index row locator, which is used in delete bitmap
during DELETE and UPDATE operations.

 The tuple mover process updates delete bitmap based on the data from delete buffer during the ALTER
INDEX REORGANIZE command or when the number of rows there exceeds 1,048,576. At any given point in
time, the union of delete buffer and delete bitmap represents all deleted rows in the index.

 Figure 34-19 illustrates all components of a B-Tree table partition with a nonclustered columnstore
index.

 Figure 34-18. Execution plan with nonclustered B-Tree index seek

CHAPTER 34 ■ COLUMNSTORE INDEXES

707

 Listing 34-14 shows the code that creates a table with a B-Tree clustered index and inserts three rows
there. As the next step, the code creates a nonclustered columnstore index and deletes one row from the table.
Finally, the code examines the state of the row groups and internal partitions in the columnstore index.

 Listing 34-14. Nonclustered columnstore index: Table creation

 create table dbo.CIWithNCI
 (
 Col1 int not null,
 Col2 int not null,
 Col3 int not null,
 constraint PK_CIWithNCI
 primary key clustered(Col1, Col2)
);

 insert into dbo.CIWithNCI(Col1, Col2, Col3)
 values(1,10,100), (2, 20, 200), (3, 30, 300);

 create nonclustered columnstore index NCI_CIWithNCI
 on dbo.CIWithNCI(Col2, Col3);

 delete from dbo.CIWithNCI where Col1 = 3;

 select object_id, index_id, partition_number, row_group_id
 ,generation, state_desc, total_rows, deleted_rows
 from sys.dm_db_column_store_row_group_physical_stats
 where object_id = object_id(N'dbo.CIWithNCI');

 select ip.object_id, ip.index_id, ip.partition_id, ip.row_group_id, ip.internal_object_type
 ,ip.internal_object_type_desc, ip.rows, ip.data_compression_desc, ip.hobt_id
 from sys.internal_partitions ip
 where ip.object_id = object_id(N'dbo.CIWithNCI');

 Figure 34-20 illustrates the output of the two SELECT statements . As you can see, there is one deleted
row in the delete buffer; however, delete bitmap is empty. It is also worth noting that SQL Server preallocates
extra delete buffer to reduce the overhead of switching buffers during the tuple mover execution.

 Figure 34-19. Partition of the table with a nonclustered columnstore index

CHAPTER 34 ■ COLUMNSTORE INDEXES

708

 Let’s examine the structure of delete buffer. As a first step, we need to locate the data page that belongs
to it by using the sys.dm_db_database_page_allocations function. We can use the hobt_id of delete buffer
to filter the output, as shown in Listing 34-15 . Obviously, you will have a different hobt_id when you run this
example.

 Listing 34-15. Nonclustered columnstore index: Obtaining page_id of delete buffer

 select object_id, index_id, partition_id, allocation_unit_type_desc as [Type], is_allocated
 ,is_iam_page, page_type, page_type_desc, allocated_page_file_id as [FileId]
 ,allocated_page_page_id as [PageId], rowset_id, allocation_unit_id
 from sys.dm_db_database_page_allocations(db_id(),object_id('dbo.CIWithNCI'),null,null
 ,'DETAILED')
 where is_allocated = 1 and rowset_id in (72057594067222528)

 Figure 34-21 illustrates the output of this query.

 Figure 34-20. Row group state and internal partitions

 Figure 34-21. Delete buffer page allocation

 Now that we know file and page IDs, let’s look at the internal structure of a delete buffer using the DBCC
PAGE command, as shown in Listing 34-16 .

 Listing 34-16. Nonclustered columnstore index: Analyzing delete buffer data page

 dbcc traceon(3604); -- Redirecting output to console
 dbcc page -- Analyzing content of a page
 (10 -- Database Id
 ,1 -- FileId
 ,10880 -- PageId
 ,3 -- Output style
)

 Figure 34-22 shows the partial output with the row data. As you can see, it includes three columns.
Ignore the column names— DBCC PAGE obtains them from the table metadata, which cannot be applied to
the delete buffer structure.

CHAPTER 34 ■ COLUMNSTORE INDEXES

709

 The first two left-most columns match the structure of the clustered index. The last column indicates
the columnstore index generation value at the time when the row was deleted. This helps SQL Server to
isolate row groups to which the deleted row may belong.

 As with any other index, nonclustered columnstore indexes introduce overhead during data
modifications. An INSERT operation requires SQL Server to insert the row into the delta store. A DELETE
operation populates the delete buffer. Finally, an UPDATE operation performs both of these actions.

 In some cases, you can reduce overhead by defining a filter on the index. The filter condition
requirements are the same as with regular B-Tree filtered indexes and support simple comparison logic.
It is possible to define the filter on a static condition; for example, OrderStatus=’COMPLETED’ . However,
you cannot use function calls and non-deterministic expressions, such as OrderDate < DATEADD(HOUR,-
24,GETUTCDATE()) .

 Another useful option is COMPRESSION_DELAY , which allows you to specify a time interval in minutes
for how long a row group should stay in the CLOSED state before it is compressed. Consider a system that
handles a high rate of inserts and performs some processing when updating the data afterward. Setting
 COMPRESSION_DELAY to a value that exceeds the typical processing time would exclude old (deleted) versions
of the rows from compression and improve the performance of the columnstore index.

 Metadata
 SQL Server 2014 and 2016 provide several catalog and data management views in addition to the sys.
column_store_segments and sys.column_store_dictionaries views, which we already discussed in the
previous chapter. Let’s look at them in detail.

 sys.column_store_row_groups (SQL Server 2014–2016)
 The sys.column_store_row_groups view returns information about row groups in columnstore indexes. You
have already seen this view in action many times in this chapter.

 The columns in the output represent the following:

 object_id and index_id provide information about the object and index to
which the row group belongs.

 partition_number is the number of partition in the table.

 row_group_id is the ID of the row group within the partition.

 delta_store_hobt_id is the hobt_id of the open delta store.

 state and state_description show the state of the row group.

 total_rows and deleted_rows show the number of total and deleted rows in the
row group.

 size_in_bytes indicates the size of the row group on disk.

 Figure 34-22. Delete-buffer data page

CHAPTER 34 ■ COLUMNSTORE INDEXES

710

 You should monitor the total number of rows and number of deleted rows in the row groups, rebuilding
or reorganizing indexes when needed. As you should remember, small row groups and a large number of
deleted rows in the row groups would negatively affect the performance of the queries.

 sys.dm_db_column_store_row_group_physical_stats (SQL Server 2016)
 The sys.dm_db_column_store_row_group_physical_stats view also returns information about row groups
in the columnstore index. Some of the columns in the output match the sys.column_store_row_groups
view; however, there are several additional columns that can be useful during analysis and troubleshooting.

 The columns in the output represent the following:

 object_id , index_id , partition_number , row_group_id , delta_store_hobt_id ,
 has_vertipaq_optimization , and creation_time provide information about the
row group and hobt_id of the open delta store.

 state and state_description show the state of the row group.

 total_rows , deleted_rows , and size_in_bytes provide information about row
count and row group size.

 transition_to_compressed_state provides the reason why a row group was
compressed.

 trim_reason indicates why a row group has less than 1,048,576 rows.

 generation shows the sequence number in which the row group has been
created.

 You can use the transition_to_compressed_state and trim_reason columns to troubleshoot the
situation when a columnstore index has a large number of partially populated row groups in the system.

 sys.internal_partitions (SQL Server 2016)
 The sys.internal_partitions view provides information about internal columnstore objects, such as
delete bitmap, delete buffer, delta store, and mapping indexes. We have used this view in this chapter.

 The columns in the output represent the following:

 object_id , index_id, partition_id , and partition_number provide
information about object, index, and partition of the internal columnstore
object.

 internal_object_type and internal_object_type_desc show the type of the
internal object.

 row_group_id indicates the row group for the delta store. It is NULL for all other
object types, which exist on a per-partition basis.

 rows provides the number of rows in the object.

 data_compression and data_compression_desc provide information about the
data compression of the internal object.

 This view is useful for the low-level monitoring of columnstore indexes. For example, a large number of
rows in mapping indexes or a delete buffer could indicate that the index would benefit from a rebuild. It is
worth noting that all internal objects are recreated when you rebuild the index.

CHAPTER 34 ■ COLUMNSTORE INDEXES

711

 sys.dm_db_column_store_row_group_operational_stats
(SQL Server 2016)
 The sys.dm_db_column_store_row_group_operational_stats view provides you with low-level statistics
on columnstore index usage, returning information on a per–row group basis. The output includes the
following columns:

 object_id , index_id , partition_number , and row_group_id indicate the row
group in the output.

 scan_count and delete_buffer_scan_count indicate how many times the row
group and delete buffer were scanned since the last SQL Server restart.

 index_scan_count shows how many times a partition has been scanned. The
value in the output is the same for all row groups on the partition.

 rowgroup_lock_count , rowgroup_lock_wait_count , and rowgroup_lock_wait_in_
ms provide cumulative locking-related statistics since the last SQL Server restart.

 Design Considerations
 The choice between columnstore and B-Tree indexes depends on several factors. The most important factor,
however, is the type of workload in the system. These indexes are targeted to different use cases, and each
has its own set of strengths and weaknesses.

 Columnstore indexes shine with data warehouse workloads where queries need to scan a large amount
of data in a table. However, they are not a good fit for cases where you need to select one or a handful of rows
using point lookup or small range scan operations. An index scan is the only access method supported by
columnstore indexes, and SQL Server will scan all the data even if your query needs to select just a single
row from a table. The amount of data to scan can be reduced by partition and segment eliminations. In
either case, however, a scan would be far less efficient than the use of a B-Tree index seek operation.

 Most large data warehouse systems would benefit from columnstore indexes, even though their
implementation requires some work in order to get the most from them. You often need to change a
database schema to fit into star or snowflake patterns and/or to normalize facts tables and remove string
attributes from them. In the case of SQL Server 2012, you need to change ETL processes to address the
read-only limitation of nonclustered columnstore indexes, and you must often re-factor queries to utilize
batch mode execution.

 Clustered columnstore indexes simplify the conversion process. You can continue to use existing ETL
processes and insert data directly into facts tables. There is a hidden danger in this approach, however. Even
though clustered columnstore indexes are fully updateable, they are optimized for large bulk load operations. As
you have seen, excessive data modifications and a large number of partially populated row groups could and will
negatively affect the performance of queries. In the end, you should either fine-tune ETL processes or frequently
rebuild indexes to avoid such performance overhead. In some cases, especially with frequently modified or
deleted data, you need to rebuild indexes on a regular basis, regardless of the quality of the ETL processes.

 Table partitioning becomes a must have element in this scenario. It allows you to perform index
maintenance in the partition scope, which can dramatically reduce the overhead of such operations. It also
allows you to save storage space and reduce the solution cost by implementing archival compression on the
partitions that store old data.

 The question of columnstore index usage in OLTP environments is more complex than it may seem.
Even though tables with clustered columnstore indexes are updateable, they are not good candidates for
active and volatile OLTP data. Unfortunately, performance issues are easy to overlook at the beginning of
development; after all, any solution performs good enough with a small amount of data. However, as the
amount of data increases, performance issues become noticeable and force the re-factoring of systems.

CHAPTER 34 ■ COLUMNSTORE INDEXES

712

 Nevertheless, there are some legitimate uses for columnstore indexes even in OLTP environments.
Almost all OLTP systems provide some reporting and analysis capabilities to customers. The mixed workload
can be easily supported with updatable nonclustered columnstore indexes; however, this option will work
only in SQL Server 2016 .

 In SQL Server 2012/2014 , you may consider using columnstore indexes on tables that store old and
static historical data while using regular B-Tree tables for volatile operational data. You can combine data
from all tables with a partitioned view, hiding the data layout from client applications. However, it will
require a complex and thoughtful design process, deep knowledge of the system workload, and considerable
effort to implement.

 In some cases, especially if data is static and read-only, nonclustered columnstore indexes could be a
better choice than clustered columnstore indexes in SQL Server 2012/2014 . Even though they require extra
storage space for B-Tree representation of the data, you can benefit from regular B-Tree indexes to support
some use cases and OLTP queries. Obviously, in SQL Server 2016 you can create nonclustered B-Tree
indexes on tables that have clustered columnstore indexes in that scenario.

 Finally, it is worth remembering that columnstore indexes are an Enterprise Edition–only feature.
Moreover, they are not a transparent feature, as are data compression and table partitioning, that can be
removed from the database relatively easily if necessary. Implementation of columnstore indexes leads to
specific database schema and code patterns, which can be less efficient in the case of B-Tree indexes. Think
about the over-normalization of facts tables, changes in ETL processes, and batch mode execution query
re-factoring as examples of those patterns.

 Columnstore indexes are also available in Microsoft Azure; however, you need to use the premium tier
of SQL Databases to utilize them.

 Summary
 Even though SQL Server supports just two types of columnstore indexes—clustered and nonclustered—they
work and behave very differently in the different SQL Server versions.

 In SQL Server 2012 and 2014, nonclustered columnstore indexes are essentially read-only. With the
exception of a partition switch, you cannot update data in the table once a nonclustered columnstore index
is created. It is the only columnstore index type supported in SQL Server 2012.

 The clustered columnstore indexes introduced in SQL Server 2014 address the major limitation of
nonclustered columnstore indexes in SQL Server 2012/2014, which prevent any modifications of the data
in the table. Clustered columnstore indexes are updateable, and in SQL Server 2014 they are the only
instance of the data that is stored in the table. No other indexes can be created on a table that has a clustered
columnstore index defined.

 SQL Server 2016 allows you to create nonclustered B-Tree indexes on tables with a clustered
columnstore index. Moreover, it allows you to create updateable nonclustered columnstore indexes in
B-Tree tables.

 Clustered and nonclustered columnstore indexes share the same storage format for column-based
data. Two types of internal objects support data modifications in updateable columnstore indexes. A delete
bitmap indicates what rows were deleted. A delta store stores new rows. Both delta stores and delete bitmaps
use a B-Tree format to store the data.

 The update of rows stored in column-based row groups is implemented as the deletion of old rows,
which is insertion to a delete bitmap, and the insertion of a new version of the rows to the delta store.
Deletion and modification of the data in a delta store deletes or updates rows in the delta store B-Tree.

 Delta stores can store up to 1,048,576 rows. Although, in SQL Server 2016, delta stores of nonclustered
columnstore indexes can exceed this size if heavy inserts occurred in between tuple mover executions. After
this limit is reached, the delta store is closed and converted to a row group in column-based storage format
by a background process called tuple mover. Alternatively, you can force this conversion with the ALTER
INDEX REORGANIZE command .

CHAPTER 34 ■ COLUMNSTORE INDEXES

713

 A large amount of data in delta stores and/or delete bitmaps negatively affects query performance. You
should monitor their size and rebuild the indexes to address performance issues. You should partition tables
to minimize index maintenance overhead.

 Bulk insert operations with a batch size that exceeds 102,400 rows create new, compressed row groups
and insert data there. A large number of partially populated row groups is another factor that negatively
affects query performance. You should import data in batches with a size divisible by 1,048,576 rows to avoid
this situation. Alternatively, you can rebuild indexes after ETL operations are completed.

 Columnstore indexes do not support any access methods with the exception of an index scan. They are
targeted at data warehouse workloads, and they should be used with extreme care in OLTP environments.
In SQL Server 2012 and 2014, you can use them in tables with historical data, storing active OLTP data in
B-Tree tables and combining all data with partitioned views. In SQL Server 2016, you can mix B-Tree and
columnstore indexes on the same table when you need to support operational analytics or systems with a
mixed workload.

 PART VIII

 In-Memory OLTP Engine

 In-Memory OLTP is a complex and fascinating subject that easily merits a book by itself.
Unfortunately, it is impossible to cover all aspects of the technology in this book.

 The next three chapters will provide you with a good overview of In-Memory OLTP and explain
how it works under the hood. Those chapters, however, do not unravel some of the low-level
implementation details, nor do they talk about the deployment and management of In-Memory
OLTP solutions.

 Apress has already published my Expert SQL Server In-Memory OLTP book that elucidates
In-Memory OLTP implementation in SQL Server 2014. The second edition of the book will be
published in 2017, and it will describe SQL Server 2016 implementation. Consider reading those
books for a deeper dive into the technology.

717© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_35

 CHAPTER 35

 In-Memory OLTP Internals

 Hekaton was the code name of an In-Memory OLTP Engine introduced in SQL Server 2014. It is an Enterprise
Edition feature, and it is available only in the 64-bit version of SQL Server. Hekaton is Greek for one hundred,
which was the target performance improvement goal of the project. Even though this goal has yet to be achieved,
it is not uncommon to see a 10X–40X system throughput increase when In-Memory OLTP is used.

 This chapter discusses the internal architecture of In-Memory OLTP and explains how In-Memory
OLTP stores and works with data in-memory and persists it on-disk.

 Why In-Memory OLTP ?
 Way back when SQL Server and other major databases were originally designed, hardware was very
expensive. Servers used to have just one or very few CPUs and a small amount of installed memory.
Database servers had to work with data that resided on disk and load it to memory on demand.

 The situation has dramatically changed over time. During the last 30 years, memory prices have
dropped by a factor of ten every five years. Hardware has become more affordable. It is now entirely possible
to buy a server with 32 cores and 1 TB of RAM for less than $50,000. While it is also true that databases have
become larger, it is often possible that active operational data fits into the memory.

 Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load on the I/O
subsystem and improves system performance. However, when systems work under heavy concurrent load,
it is often not enough. SQL Server manages and protects page structures in memory, which introduces large
overhead and does not scale well. Even with row-level locking, multiple sessions cannot modify data on the
same data page simultaneously and must wait for each other.

 Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can modify data rows on
the same data page, holding exclusive (X) locks on different rows simultaneously. However, they cannot
update on-page and in-row data simultaneously, because it could corrupt the page structure. As you already
know, SQL Server addresses this problem by protecting pages with latches. They protect internal SQL Server
data structures by serializing access to them; only one thread can update data on the data page in memory at
any given point of time.

 In the end, this limits the improvements that can be achieved with the current database systems
architecture. Although you can scale hardware by adding more CPUs with a larger number of logical cores
per CPU, that serialization quickly becomes a bottleneck and limiting factor in improving system scalability.

 Likewise, you cannot improve performance by increasing the CPU clock speed, as the silicon chips
would melt down. Therefore, the only feasible way to improve database system performance is by reducing
the number of CPU instructions that need to be executed to perform an action.

 Unfortunately, code optimization is not enough by itself. Consider a situation where you need to update
a row in a table. Even when you know the clustered key value, that operation needs to traverse the clustered
index tree, obtaining latches and locks on the data pages and a row. In some cases, it needs to update
nonclustered indexes, obtaining the latches and locks there. All of this generates log records and requires
writing them and the dirty data pages to disk.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

718

 All of these actions can lead to a hundred thousand or even millions of CPU instructions to execute.
Code optimization can help reduce this number to some degree; however, it is impossible to reduce it
dramatically without changing the system architecture and the way the system stores and works with data.

 All these trends and architectural limitations led the Microsoft team to the conclusion that a true In-
Memory solution should be built using the different design principles and architecture other than the classic
SQL Server Database Engine. The In-Memory OLTP Engine is based on three design goals, as follows:

 Optimize data storage for main memory. Data in In-Memory OLTP is not
stored on on-disk data pages nor does it mimic an on-disk storage structure
when loaded into memory. This permits the elimination of the complex buffer
pool structure and the code that manages it. Moreover, indexes are not persisted
on disk, and they are recreated upon startup when memory-resident tables’ data
is loaded into memory.

 Eliminate latches and locks. All In-Memory OLTP internal data structures are
latch- and lock-free. In-Memory OLTP uses a new multi-version concurrency
control (MVCC) to provide transaction consistency. From a user standpoint,
it behaves in a way similar to the regular SNAPSHOT transaction isolation level;
however, it does not use locking under the hood. This schema allows multiple
sessions to work with the same data without locking and blocking each other
and improves the scalability of the system allowing fully utilize modern
multi-CPU/multi-core hardware.

 Using native compilation. T-SQL is an interpreted language that provides
great flexibility at the cost of CPU overhead. Even a simple statement requires
hundreds of thousands of CPU instructions to execute. The In-Memory OLTP
Engine addresses this by compiling row access logic and stored procedures into
native machine code.

 It is also worth mentioning that the In-Memory OLTP design has been targeted toward OLTP workload.
As all of us know, specialized solutions designed for particular tasks and workload usually outperform
general purpose systems in the targeted areas. The same is true for In-Memory OLTP. It shines with the
large and very busy OLTP systems that support hundreds or even thousands of concurrent users. At the
same time, In-Memory OLTP is not necessarily the best choice for a data warehouse workload, where other
SQL Server components could outperform it. SQL Server 2016, however, allows you to create columnstore
indexes on in-memory data, which can help in a system with a mixed workload.

 The In-Memory OLTP Engine is fully integrated into the SQL Server Engine, which is the key
differentiator of Microsoft implementation as compared to other in-memory database solutions. You do
not need to perform complex system re-factoring, splitting data between in-memory and conventional
database servers, nor do you need to move all of the data from the database into memory. You can separate
in-memory and disk data on a table-by-table basis, which allows you to move active operational data into
memory, keeping other tables and historical data on disk. In some cases, that conversion can be even done
transparently to client applications.

 The first release of In-Memory OLTP in SQL Server 2014 had a large number of limitations and
supported just a subset of the SQL Server data types and features. It often required you to perform complex
code and schema re-factoring to utilize the technology. Fortunately, SQL Server 2016 removes many of those
limitations, as we will discuss in this book.

 In-Memory OLTP Engine Architecture and Data Structures
 In-Memory OLTP is fully integrated into SQL Server, and other SQL Server features and client applications
can access it transparently. Internally, however, it works and behaves very differently than the Storage
Engine.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

719

 It is important to define the terminology before we discuss In-Memory OLTP internals. I will use the
following terms and definitions:

 Memory-optimized tables refer to tables with the new data structure that is used
by In-Memory OLTP.

 On-disk tables refer to regular SQL Server tables that are stored in database data
files using 8 KB data pages. All tables that we discussed previously in this book
were on-disk tables.

 Interop refers to the ability to reference memory-optimized tables from
interpreted T-SQL code.

 Natively-compiled modules refer to stored procedures, triggers, and scalar user-
defined functions compiled into machine code. Those modules will be covered
in the Chapter 37 .

 Figure 35-1 shows the architecture of the SQL Server engine, including the In-Memory OLTP part. As
you can see, memory-optimized tables do not share memory with on-disk tables. However, you can access
both types of tables from T-SQL and client applications through the Interop Engine. Natively-compiled
modules, on the other hand, work only with memory-optimized tables and are unable to access on-disk
table data.

 Figure 35-1. SQL Server Engine architecture

 In-Memory OLTP stores data in a separate FILESTREAM -based filegroup. SQL Server 2014 In-Memory
OLTP implementation relies on FILESTREAM for all file management. With SQL Server 2016, the FILESTREAM
filegroup is only used as the container, and all file management and garbage collection is done by the
In-Memory OLTP Engine. This makes file management more efficient and allows SQL Server to encrypt in-
memory data when you enable Transparent Data Encryption (TDE) in the database.

 ■ Note You can read more about FILESTREAM at http://technet.microsoft.com/en-us/library/
gg471497.aspx .

 You specify a filegroup that contains memory-optimized tables’ data by using the CONTAINS MEMORY_
OPTIMIZED_DATA keyword, as shown in Listing 35-1 . All In-Memory OLTP files used by the database will
reside in the S:\HKData\Hekaton_InMemory folder after you run the script.

http://dx.doi.org/10.1007/978-1-4842-1964-5_37
http://technet.microsoft.com/en-us/library/gg471497.aspx
http://technet.microsoft.com/en-us/library/gg471497.aspx

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

720

 Listing 35-1. Creating a database with the In-Memory OLTP filegroup

 create database [HekatonDB] on
 primary
 (name = N'HekatonDB', filename = N'M:\HekatonDB.mdf'),
 filegroup [OnDiskData]
 (name = N'Hekaton_OnDisk', filename = N'M:\Hekaton_OnDisk.ndf'),
 filegroup [InMemoryData] contains memory_optimized_data
 (name = N'Hekaton_InMemory', filename = N'S:\HKData\Hekaton_InMemory')
 log on
 (name = N'HekatonDB_log', filename = N'L:\HekatonDB_log.ldf')

 It is also worth mentioning that you cannot drop an In-Memory OLTP filegroup from the database once
it has been created. It may prevent you from restoring the database on the lower-than-Enterprise editions of
SQL Server even after you have removed all In-Memory OLTP objects from there.

 Memory-Optimized Tables
 Even though the creation of memory-optimized tables is very similar to the creation of on-disk tables and
can be done with a regular CREATE TABLE statement, SQL Server works very differently with memory-
optimized tables. Every time a memory-optimized table is created, SQL Server generates and compiles a
DLL that is responsible for the manipulation of table row data. The In-Memory OLTP Engine is generic, and
it does not access or modify row data directly. Rather, it calls DLL methods instead.

 As you can guess, this approach adds limitations on the alterability of the table. Alteration of the table
would require SQL Server to recreate a DLL and change the format of data rows. It is not supported in SQL
Server 2014, and the schema of a memory-optimized table is static and cannot be altered in any way after it
is created. The same is true for indexes. SQL Server requires you to define indexes inline in a CREATE TABLE
statement. You cannot add or drop an index or change an index’s definition after a table is created.

 SQL Server 2016 allows you to alter table schemas and indexes. This, however, creates a new table
object in-memory, copying data from the old table. This is offline operation, which can be time- and
resource-consuming and requires you to have enough memory to accommodate multiple copies of the data.

 ■ Tip You can combine multiple ADD or DROP operations into a single ALTER statement to reduce the number
of table rebuilds.

 Indexes on memory- optimized tables are not persisted on-disk. SQL Server recreates them at the
time when it starts the database and loads memory-optimized data into memory. As with on-disk tables,
unnecessary indexes in memory-optimized tables slow down data modifications and use extra memory in
the system.

 Each memory-optimized table has a DURABILITY option. The default SCHEMA_AND_DATA option
indicates that the data in the tables is fully durable and persists on disk for recovery purposes. Operations
on such tables are logged in the transaction log, which allows SQL Server to support database transactional
consistency and recreate the data in the event of a SQL Server crash or unexpected shutdown.

 SCHEMA_ONLY is another option and indicates that data in memory-optimized tables is not durable
and would be lost in the event of a SQL Server restart or crash. Operations against non-durable memory-
optimized tables are not logged in the transaction log. Non-durable tables are extremely fast and can
be used if you need to store temporary data in use cases similar to when you would use temporary tables
in tempdb . As the opposite to temporary tables, SQL Server persists the schemas of non-durable memory-
optimized tables, and you do not need to recreate them in the event of SQL Server restart.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

721

 Memory-optimized tables support at most eight indexes. Durable memory-optimized tables should
have a unique primary key constraint defined. Non-durable memory-optimized tables do not require the
primary key constraint; however, they should still have at least one index to link the rows together.

 In SQL Server 2014 , indexes cannot include nullable columns nor be defined as UNIQUE with the
exception of the primary key constraint. Moreover, you cannot index text columns unless they have BIN2
collation. You should remember that these collations are case- and accent-sensitive, which could introduce
some side effects, especially if you migrate to In-Memory OLTP, converting on-disk tables to memory-
optimized ones.

 Other SQL Server 2014 limitations include missing support of foreign key, check, and unique
constraints and DML triggers. All of these limitations have been removed in SQL Server 2016.

 Neither SQL Server 2014 nor 2016 support IDENTITY columns with SEED and INCREMENT different than (1,1).
 Listing 35-2 shows code that creates a memory-optimized table. You can define a table as memory-

optimized by specifying the MEMORY_OPTIMIZED=ON option of the CREATE TABLE statement. Ignore index
properties for now; we will discuss them later in this chapter. As I already mentioned, you do not need to
store varchar columns in BIN2 collation in SQL Server 2016.

 Listing 35-2. Creating a memory-optimized table

 create table dbo.Customers
 (
 CustomerID int not null
 constraint PK_Customers
 primary key nonclustered hash with (bucket_count = 131072),
 Name varchar(128) collate Latin1_General_100_BIN2 not null,
 City varchar(64) collate Latin1_General_100_BIN2 not null,
 SSN char(9) not null,
 DateOfBirth date not null,

 index IDX_Customers_City nonclustered hash(City)
 with (bucket_count = 16384),

 index IDX_Customers_Name nonclustered(Name)
)
 with (memory_optimized = on, durability = schema_and_data)

 High Availability Technology Support
 Memory-optimized tables are fully supported in AlwaysOn Failover Clusters and Availability Groups, as well
as with log shipping. However, in the case of a failover cluster, data from durable memory-optimized tables
must be loaded into memory in case of a failover, which could increase failover time.

 In the case of AlwaysOn Availability Groups, only durable memory-optimized tables are replicated to
secondary nodes. You can access and query those tables on the readable secondary nodes if needed. Data
from non-durable memory-optimized tables, on the other hand, is not replicated and will be lost in the case
of a failover.

 SQL Server 2016 supports snapshot and transaction replication for memory-optimized tables. In SQL
Server 2014 , you can set up transactional replication on databases with memory-optimized tables; however,
those tables cannot be used as articles in publications.

 In-Memory OLTP is not supported in database mirroring sessions. This does not appear to be a big
limitation, however. In-Memory OLTP is an Enterprise Edition feature that allows you to replace database
mirroring with AlwaysOn Availability Groups.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

722

 Data Row Structure
 Data and index formats in memory-optimized tables are different from those in on-disk tables. Storage is
optimized for byte-addressable memory using in-memory pointers rather than for block-addressable disk
data using in-file offsets. With the exception of nonclustered (range) indexes, which we will discuss later, in-
memory objects do not use in-memory data pages. Data rows have pointers to the next row in the row chain.

 The 8,060-byte limit for the maximum in-row data size still applies. Moreover, in SQL Server 2014 ,
memory-optimized tables do not support off-row storage, which limits the data types that can be used in
tables; only the following data types are supported in SQL Server 2014:

 bit

 Integer types: tinyint , smallint , int , bigint

 Floating point types: float , real , numeric , and decimal

 Money types: money and smallmoney

 Date/time types: smalldatetime , datetime , datetime2 , date , and time

 uniqueidentifiers

 Non-LOB string types: (n)char(N) , (n)varchar(N) , and sysname

 Non-LOB binary types: binary(N) and varbinary(N)

 As was already mentioned, in SQL Server 2014 you cannot use data types that can use LOB storage in
on-disk tables, such as (n)varchar(max) , varbinary(max), xml , clr , (n)text , and image . Moreover, there is
no concept of row-overflow storage in SQL Server 2014 , so the entire row must fit into 8,060 bytes, including
variable-length data. It is impossible to create memory-optimized tables with a row that could exceed that
size; for example, a row with two varchar(5000) columns.

 SQL Server 2016 supports off-row storage and allows data rows to exceed 8,060 bytes. The (n)varchar(max)
and varbinary(max) data types are now supported. There is still no support for xml , clr , (n)text , and image
data types; however, in some cases you can store them as varbinary(max) .

 As the opposite to on-disk tables, the decision of what columns need to be stored off-row is made at
table-creation stage. The data from row-overflow and LOB columns are always stored off-row regardless
of the row size. (max) columns are always stored in LOB storage. If the table schema allows the row size to
exceed 8,060 bytes, the largest variable-length (N) columns are pushed to row-overflow storage. In both
cases, the main in-row structure uses an eight-byte identifier to reference them. We will discuss off-row
storage in more detail later in this chapter.

 Figure 35-2 illustrates the structure of a data row in a memory-optimized table. As you can see, it
consists of two sections: Row Header and Payload .

 Figure 35-2. The structure of a data row in a memory-optimized table

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

723

 A SQL Server instance maintains the Global Transaction Timestamp value, which is auto-incremented
at the time of the transaction pre-commit validation (more on this in the next chapter), and it is unique for
every committed transaction. The first two eight-byte elements in the row header, BeginTs and EndTs , define
the data row lifetime. BeginTs stores the Global Transaction Timestamp of the transaction that inserted a
row, and EndTs stores the timestamp of the transaction that deleted a row. A special value called Infinity is
used as EndTs for rows that have not been deleted.

 In addition, BeginTs and EndTs control the visibility of a row for a transaction. A transaction can see a
row only when the transaction logical start time (Global Transaction Timestamp value at the moment the
transaction starts) is between BeginTs and EndTs timestamps of the row.

 Every statement in a transaction has a unique four-byte StmtId value. The third element in a row header
is the StmtId of the statement that is inserted a row. It works as a Halloween protection technique , similar
to table spools in on-disk tables, and it allows the statement to skip rows it inserted. You can think about
the INSERT INTO T SELECT FROM T statement as the classic example of such a situation, as we discussed in
Chapter 25 .

 In contrast to on-disk tables, where nonclustered indexes are separate data structures, all indexes in
memory-optimized tables reference actual data rows. Each new index that is defined on a table adds a
pointer to a data row. For example, if a table has two indexes defined, every data row in the table would have
two eight-byte pointers that reference the next data rows in the index row chains. This, in a nutshell, makes
every index in memory-optimizing tables covering; that is, when SQL Server locates a row through an index,
it finds the actual data row rather than the separate index row structure.

 The next element in the header, the two-byte IdxLinkCount , indicates how many indexes (pointers)
reference the row. SQL Server uses it to detect rows that can be deallocated by the garbage collection
process. We will talk about garbage collection later in this chapter.

 An array of eight-byte index pointers is the last element of the row header. As you can guess, every
memory-optimized table should have at least one index to link data rows together. At most, you can define
eight indexes per memory-optimized table, including the primary key.

 The actual row data is stored in the Payload section of the row. As already mentioned, the Payload
format may vary depending on the table schema. SQL Server works with Payload through a DLL that is
generated and compiled at the time of table creation.

 A key principle of In-Memory OLTP is that Payload data is never updated. When a table row needs to be
updated, In-Memory OLTP sets the EndTs attribute of the original row to the Global Transaction Timestamp
of the transaction and inserts the new version of the data row with the new BeginTs and EndTs values of
Infinity. We will see how this works in more depth in the next chapter.

 Hash Indexes
 Hash indexes are one of two index types supported by In-Memory OLTP. They consist of an array of hash
buckets, each of which contains a pointer to a data row. SQL Server applies a hash function to the index key
columns, and the result of the function determines to which bucket a row belongs. All rows that have the
same hash value and belong to the same bucket are linked together through a chain of index pointers in the
data rows.

 Figure 35-3 illustrates an example of a memory-optimized table with two hash indexes defined on the
 Name and City columns. Solid arrows represent pointers in the index on the Name column. Dotted arrows
represent pointers in the index on the City column. For simplicity’s sake, let’s assume that the hash function
generates a hash value based on the first letter of the string.

http://dx.doi.org/10.1007/978-1-4842-1964-5_25

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

724

 Let’s assume that you need to run a query that selects all rows with Name='Ann' in the transaction that
started when the Global Transaction Timestamp was 65. SQL Server calculates the hash value for Ann , which
is 'A', and finds the corresponding bucket in the hash index, which is displayed on the left side in Figure 35-3 .
It follows the pointer from that bucket, which references a row with Name='Adam' . This row has BeginTs of 10
and EndTs of Infinity; therefore, it is visible to the transaction. However, the Name value does not match the
predicate, and the row is ignored.

 In the next step, SQL Server follows the pointer from the Adam index pointer array, which references
the first Ann row. This row has BeginTs of 50 and EndTs of Infinity; therefore, it is visible to the transaction
and needs to be selected.

 As a final step, SQL Server follows the next pointer in the index. Even though the last row also has
 Name='Ann' , it has EndTs of 50 and is invisible to the transaction.

 Obviously, the performance of queries that scan an index chain greatly depends on the number of rows
in the chain. The greater the number of rows that need to be processed, the slower the query is.

 There are two factors that affect index chain size in hash indexes. The first factor is index selectivity.
Duplicate key values generate the same hash and belong to the same index chain. Therefore, indexes with
low selectivity are less efficient.

 Another factor is the number of hash buckets in the index, which you should specify during the index
creation stage. In an ideal situation, the number of buckets in an array would match the number of unique
key values in the index, and every unique key value would have its own bucket. The hash function in SQL
Server, however, does not guarantee that. It is better to define the number of buckets to be about 1.5–2
times larger than the index cardinality, which is the number of unique key values in the index.

 ■ Note Internally, SQL Server rounds up the number of buckets specified for an index to the next power of
two. For example, a hash index defined with BUCKET_COUNT=100000 would have 131,072 buckets in the hash
array.

 You should analyze the data and include a projection of future system growth into the analysis when
determining the optimal bucket count for the hash index. Underestimation and overestimation are both
bad. Underestimation increases the size of the index chain while overestimation wastes system memory.
However, in the big picture it is better to overestimate than to underestimate the bucket count.

 Figure 35-3. Hash indexes

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

725

 Unfortunately, it is impossible to change a bucket count after the table has been created. In SQL Server
2014 , the only option for changing the bucket count is by dropping and recreating the table. SQL Server
2016 allows you to change the bucket count by rebuilding the index via the ALTER TABLE operation, which
rebuilds the table in the background.

 You can monitor hash index–related statistics with the sys.dm_db_xtp_hash_index_stats data
management view. This view provides information about the total number of buckets, the number of empty
buckets, and the average and maximum row chain lengths. You can read more about that view at http://
msdn.microsoft.com/en-us/library/dn296679.aspx .

 Hash indexes have different SARGability rules than do indexes defined on on-disk tables. They are
efficient only in the case of a point-lookup (equality) search and equality joins , which allow SQL Server to
calculate the corresponding hash value and find a bucket in a hash array.

 In the case of composite hash indexes, SQL Server calculates the hash value for the combined value of
all key columns. A hash value calculated on a subset of the key columns would be different, and, therefore, to
be useful a query should have equality predicates on all key columns from the index.

 This behavior is different from that of indexes on on-disk tables. Consider a situation where you want
to define an index on the (LastName, FirstName) columns. In the case of on-disk tables, that index can
be used for a seek operation, regardless of whether the predicate on the FirstName column is specified in
the WHERE clause of a query. Alternatively, a composite hash index on a memory-optimized table requires
queries to have equality predicates on both LastName and FirstName in order to calculate a hash value that
allows for choosing the right hash bucket in the array.

 Let’s look at the example and create on-disk and memory-optimized tables with composite indexes on
the (LastName, FirstName) columns, populating them with the same data shown in Listing 35-3 . As before,
I am using binary collation in the code to make it compatible with both SQL Server 2014 and 2016.

 Listing 35-3. Composite hash index: Test tables creation

 create table dbo.CustomersOnDisk
 (
 CustomerId int not null identity(1,1),
 FirstName varchar(64) collate Latin1_General_100_BIN2 not null,
 LastName varchar(64) collate Latin1_General_100_BIN2 not null,
 Placeholder char(100) null,
 constraint PK_CustomersOnDisk primary key clustered(CustomerId)
);

 create nonclustered index IDX_CustomersOnDisk_LastName_FirstName
 on dbo.CustomersOnDisk(LastName, FirstName);

 create table dbo.CustomersMemoryOptimized
 (
 CustomerId int not null identity(1,1)
 constraint PK_CustomersMemoryOptimized
 primary key nonclustered hash with (bucket_count = 4096),
 FirstName varchar(64) collate Latin1_General_100_BIN2 not null,
 LastName varchar(64) collate Latin1_General_100_BIN2 not null,
 Placeholder char(100) null,

 index IDX_CustomersMemoryOptimized_LastName_FirstName
 nonclustered hash(LastName, FirstName) with (bucket_count = 1024),
)
 with (memory_optimized = on, durability = schema_only);
 go

http://msdn.microsoft.com/en-us/library/dn296679.aspx
http://msdn.microsoft.com/en-us/library/dn296679.aspx

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

726

 -- Inserting cross-joined data for all first and last names 50 times
 -- using GO 50 command in Management Studio
 ;with FirstNames(FirstName)
 as
 (
 select Names.Name
 from (values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'), ('Brian'),('Cristopher')
 ,('Cathy')
 ,('Daniel'),('Donny'),('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry')
 ,('Henry'),('Ida')
 ,('John'),('Jimmy'),('Jenny'),('Jack'),('Kathy'),('Kim'),('Larry'),('Mary'),('Max')
 ,('Nancy')
 ,('Olivia'),('Olga'),('Peter'),('Patrick'),('Robert'),('Ron'),('Steve'),('Shawn')

,('Tom'),('Timothy')
 ,('Uri'),('Vincent')) Names(Name)
)
 ,LastNames(LastName)
 as
 (
 select Names. Name
 from (values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'), ('Davis'),('Miller')
 ,('Wilson')
 ,('Moore'),('Taylor'),('Anderson'),('Jackson'),('White'),('Harris')) Names(Name)
)
 insert into dbo.CustomersOnDisk(LastName, FirstName)
 select LastName, FirstName from FirstNames cross join LastNames
 go 50

 insert into dbo.CustomersMemoryOptimized(LastName, FirstName)
 select LastName, FirstName from dbo.CustomersOnDisk;

 For the first test, let’s run SELECT statements against both tables, specifying both LastName and
 FirstName as predicates in the queries, as shown in Listing 35-4 .

 Listing 35-4. Composite hash index: Selecting data using both index columns as predicates

 select CustomerId, FirstName, LastName
 from dbo.CustomersOnDisk
 where FirstName = 'Brian' and LastName = 'White';

 select CustomerId, FirstName, LastName
 from dbo.CustomersMemoryOptimized
 where FirstName = 'Brian' and LastName = 'White';

 As you can see in Figure 35-4 , SQL Server is able to use an index seek operation in both cases.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

727

 In the next step, let’s check what happens if you remove the filtering by FirstName from the queries. The
code is shown in Listing 35-5 .

 Listing 35-5. Composite hash index: Selecting data using leftmost index column only

 select CustomerId, FirstName, LastName
 from dbo.CustomersOnDisk
 where LastName = 'White';

 select CustomerId, FirstName, LastName
 from dbo.CustomersMemoryOptimized
 where LastName = 'White';

 In the case of the on-disk index, SQL Server is still able to utilize an index seek operation . This is not the
case for the composite hash index defined on the memory-optimized table. You can see the execution plans
for the queries in SQL Server 2014 in Figure 35-5 . SQL Server 2016 will generate a slightly different plan for
the second query, scanning the dbo.CustomersMemoryOptimized table in a different way. We will discuss it
later in this chapter.

 Figure 35-4. Composite hash index: Execution plans where queries use both index columns as predicates

 Figure 35-5. Composite hash index: Execution plans where queries use the leftmost index column only
(SQL Server 2014)

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

728

 Nonclustered (Range) Indexes
 Nonclustered indexes are another type of index supported by In-Memory OLTP. In contrast to hash indexes,
which are optimized to support point-lookup searches, nonclustered indexes help you search data based on
a range of values. They have a similar structure to regular B-Tree indexes on on-disk tables, and they do not
require you to guess and pre-define number of buckets as you must do with hash indexes.

 TERMINOLOGY ISSUE

 Nonclustered indexes were introduced in SQL Server 2014 CTP 2, and documentation and whitepapers
for that version widely used the term range indexes . However, in the production release of SQL Server
2014, Microsoft changed the terminology and started to use the term nonclustered indexes instead.

 That terminology can be confusing because hash indexes are also not clustered. In fact, the concept of
clustered indexes cannot be applied to In-Memory OLTP. Data rows are not stored in any particular order
nor grouped together on the data pages in memory.

 It is also worth mentioning that the minimal index_id value of In-Memory OLTP indexes is 2, which
corresponds to nonclustered indexes in on-disk tables.

 Nonclustered indexes use a lock- and latch-free variation of B-Tree called Bw-Tree , which was designed
by Microsoft Research in 2011. Similar to B-Trees, index pages in a Bw-Tree contain a set of ordered index
key values. However, Bw-Tree pages do not have a fixed size and are unchangeable after they are built. The
maximum page size, however, is still 8 KB.

 Rows from a leaf level of the nonclustered index contain pointers to the actual chain of the rows with
the same index key values. This works in a similar manner to hash indexes, where multiple rows and/or
versions of a row are linked together. Each index in the table adds a pointer to the index pointer array in the
row, regardless of its type: hash or nonclustered.

 Root and intermediate levels in nonclustered indexes are called internal pages . Similar to B-Tree
indexes, internal pages point to the next level in the index. However, instead of pointing to the actual data
page, internal pages use a logical page ID (PID) , which is a position (offset) in a separate array-like structure
called a mapping table . In turn, each element in the mapping table contains a pointer to the actual index
page.

 As already mentioned, pages in nonclustered indexes are unchangeable once they are built. SQL Server
builds a new version of the page when it needs to be updated and replaces the page pointer in the mapping
table, which avoids changing internal pages that reference old (obsolete) pages. We will discuss this process
in detail shortly.

 Figure 35-4 shows an example of a nonclustered index and a mapping table. Each index row from the
internal page stores the highest key value on the next-level page as well as the PID. This is different from a
B-Tree index, where intermediate and root level index rows store the lowest key value of the next-level page
instead. Another difference is that the pages in a Bw-Tree are not linked into a double-linked list. Each page
knows the PID of the next page on the same level and does not know the PID of the previous page. Even
though it appears as a pointer (arrow) in Figure 35-6 , that link is done through the mapping table, similar to
links to pages on the next level.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

729

 Even though a Bw-Tree looks very similar to a B-Tree, there is one conceptual difference: The leaf level
of an on-disk B-Tree index consists of separate index rows for each data row in the index. If multiple data
rows have the same index key value, each row would have an individual index row stored.

 Alternatively, in-memory nonclustered indexes store one index row (pointer) to the row chain that
includes all of the data rows that have the same key value. Only one index row (pointer) per key value is
stored in the index. You can see this in Figure 35-6 , where the leaf level of the index has single rows for the
key values of Ann and Nancy, even though the row chain includes more than one data row for each value.

 Every time SQL Server needs to change a leaf level index page, it creates one or two delta records that
represent the changes. INSERT and DELETE operations generate a single insert or delete delta record, while
an UPDATE operation generates two delta records, one each for deleting old and inserting new values. Delta
records create a chain of memory pointers with the last pointer going to the actual index page. SQL Server
also replaces a pointer in the mapping table with the address of the first delta record in the chain.

 Figure 35-7 shows an example of a leaf-level page and delta records if the following actions occurred in
the sequence: R1 index row was updated, R2 row was deleted, and R3 row was inserted.

 Figure 35-6. Nonclustered index

 Figure 35-7. Delta records and nonclustered index leaf page

 SQL Server uses an InterlockedCompareExchange mechanism to guarantee that multiple sessions
cannot update the same pointer chain and thus overwrite each other’s changes, thereby losing references
to each other’s objects. InterlockedCompareExchange functions change the value of the pointer, checking
that the existing (pre-update) value matches the expected (old) value provided as another parameter. Only
when the check succeeds is the pointer value updated. All of those operations are completed as a single CPU
instruction.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

730

 Let’s look at an example, which assumes that we have two sessions in which we want to insert new delta
records for the same index page simultaneously. As a first step, shown in Figure 35-8 , the sessions create
delta records and set their pointers to a page based on the address from the mapping table.

 Figure 35-8. Data modifications and concurrency: Step 1

 Figure 35-9. Data modifications and concurrency : Steps 2 and 3

 In the next step, both sessions call the InterlockedCompareExchange function, trying to
update the mapping table by changing the reference from a page to the newly created delta records.
 InterlockedCompareExchange serializes the update of the mapping table element and changes it only if
its current pre-update value matches the old pointer (address of the page) provided as the parameter. The
first InterlockedCompareExchange call would succeed. The second call, however, would fail because the
mapping table element would reference the delta record from another session rather than the page.

 Figure 35-9 illustrates such a scenario.

 At this time, the second session will need to repeat the action. It will read the address of the Session
1 delta page from the mapping table and repoint its own delta page to reference this delta page. Finally, it
will call InterlockedCompareExchange again using the address of the Session 1 delta page as the old pointer
value during the call. Figure 35-10 illustrates that.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

731

 As you can see, with the exception of a very short serialization during the InterlockedCompareExchange
call, there is no locking or latching of the data during the modifications.

 ■ Note SQL Server uses the same approach with InterlockedCompareExchange in cases where the
pointers chain needs to be preserved; for example, when it creates another version of a row during an update.

 The internal and leaf pages of nonclustered indexes consist of two areas: header and data. The header
 area includes information about the page, such as the following:

 PID : The position (offset) in the mapping table

 Page Type : The type of the page, such as leaf, internal, delta, or special

 Right Page PID : The position (offset) of the next page in the mapping table

 Height : The number of levels from the current page to the leaf level of the index

 The Number of key values (index rows) stored on the page.

 Delta records statistics : Includes the number of delta records and space used by
the delta key values.

 The Max value of a key on the page.

 The data area of the page includes either two or three arrays depending on the index keys’ data types .
The arrays are as follows:

 Values : An array of eight-byte pointers. Internal pages in the index store the
PID of next level pages. Leaf-level pages store pointers to the first row in the
row chain with the corresponding key value. It is worth noting that even though
PID requires four bytes to store a value, SQL Server uses eight-byte elements to
preserve the same page structure between internal and leaf pages.

 Keys : An array of key values stored on the page

 Offsets : An array of two-byte offsets where individual key values in key arrays
start. Offsets are stored only if keys have variable-length data.

 Figure 35-10. Data modifications and concurrency : Final steps

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

732

 Delta records, in a nutshell, are one-record index data pages. The structure of delta data pages is similar
to the structure of internal and leaf pages. However, instead of arrays of values and keys, delta data pages
store operation code (INSERT or DELETE), a single key value, a pointer to the data row, and another pointer to
either a leaf-level index page or the next delta record in a chain.

 Figure 35-11 shows an example of a leaf-level index page with an inserted delta record.

 Figure 35-12. Page splitting : Initial state

 Figure 35-11. Leaf-level index page with an inserted delta record

 SQL Server needs to traverse and analyze all delta records when accessing an index page. As you can
guess, a long chain of delta records affects performance. When this is the case, SQL Server consolidates delta
records and rebuilds an index page, creating a new one. The newly created page will have the same PID and
replace the old page, which will be marked for garbage collection. Replacement of the page is accomplished
by changing a pointer in the mapping table. SQL Server does not need to change internal pages, because
they use the mapping table to reference leaf-level pages.

 The process of rebuilding is triggered at the moment a new delta record is created for pages that already
have 16 delta records in a chain. The action described by the delta record, which triggers the rebuild, will be
incorporated into the newly created page.

 Two other processes can create new or delete existing index pages in addition to delta record
consolidation. The first process, page splitting , occurs when a page does not have enough free space to
accommodate a new data row. Let’s look at this situation in more detail.

 Figure 35-12 shows the internal and leaf pages of a nonclustered index. Let’s assume that one of the
sessions wants to insert a row with a key of value Bob.

 When the delta record is created, SQL Server adjusts the delta records statistics on the index page and
detects that there is no space on the page to accommodate the new index value once the delta records are
consolidated. It triggers a page split process, which is done in two atomic steps.

 In the first step, SQL Server creates two new leaf-level pages and splits the old page’s values between
them. After that, it repoints the mapping table to the first newly created page and marks the old page and the
delta records for garbage collection.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

733

 Figure 35-13 illustrates this state. At this point, there are no references to the second newly created leaf-
level page from internal pages. The first leaf-level page, however, maintains the link between pages (through
the mapping table), and SQL Server is able to access and scan the second page if needed.

 Figure 35-13. Page splitting : First step

 Figure 35-14. Page splittin g: Second step

 Figure 35-15. Page merging : First step

 During the second step, SQL Server creates another internal page with key values that represent the
new leaf-level page’s layout. When the new page is created, SQL Server switches the pointer in the mapping
table and marks the old internal page for garbage collection. Figure 35-14 illustrates this action.

 Another process, page merging , occurs when a delete operation leaves an index page less than 10
percent from the maximum page size, which is 8 KB now, or when an index page contains just a single row.

 Let’s assume that we have a page layout as shown in Figure 35-14 , and we want to delete the index key
value Bob , which means that all data rows with the name Bob have been deleted. In our example, this leaves
an index page with the single value Boris , which triggers page merging.

 In the first step, SQL Server creates a delete delta record for Bob and another special kind of delta record
called merge delta . Figure 35-15 illustrates the layout after the first step.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

734

 During the second step of page merging, SQL Server creates a new internal page that does not reference
the page with which it is about to merge. After that, SQL Server switches the mapping table to point to the
newly created internal page and marks the old page for garbage collection. Figure 35-16 illustrates this
action.

 Figure 35-16. Page merging: Second step

 Figure 35-17. Page merging: Third (final) step

 Finally, SQL Server builds a new leaf-level page, copying the Boris value there. After the new page is
created, it updates the mapping table and marks the old pages and delta records for garbage collection.

 Figure 35-17 shows the final data layout after page merging is completed.

 Indexing considerations for nonclustered indexes are similar to those for on-disk nonclustered indexes.
You should remember, however, that In-Memory OLTP in SQL Server 2014 requires binary sorting for the
indexes, which is case- and accent-sensitive.

 Finally, the sys.dm_db_xtp_index_stats view returns statistics for the indexes defined on memory-
optimized tables. Indexes on memory-optimized tables are recreated when SQL Server loads data into
memory; therefore, the statistics are collected and kept since that time. Some of the output columns are as
follows:

 scans_started shows the number of times that row chains in the index were
scanned. Due to the nature of the index, every operation, such as SELECT , INSERT ,
 UPDATE , and DELETE , requires SQL Server to scan a row chain and increment this
column.

 rows_returned represents the cumulative number of rows returned to a client.

 rows_touched represents the cumulative number of rows accessed in the index.

 rows_expired shows the number of detected stale rows. We will discuss this in
greater detail in the “Garbage Collection” section.

 rows_expired_removed returns the number of stale rows that have been
unlinked from the index row chains. We will also discuss this in more detail in
the “Garbage Collection” section.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

735

 You can read more about the sys.dm_db_xtp_index_stats view at http://msdn.microsoft.com/en-
us/library/dn133081.aspx .

 Hash Indexes Versus Nonclustered Indexes
 As you already know, hash indexes are useful only for point-lookup searches and equality joins in cases
where queries use equality predicates on all index columns. Nonclustered indexes, on the other hand,
can be used on a much wider scope, which often makes the choice obvious. You should use nonclustered
indexes when your queries benefit from scenarios other than point-lookups.

 The situation is less obvious in the case of point-lookups. With hash indexes, SQL Server can locate the
hash bucket, which is the entry point to the data row chain, in a single step by calling the hash function and
calculating the hash value. With nonclustered indexes, SQL Server has to traverse the Bw-Tree to find a leaf
page, and the number of steps depends on the height of the index and number of delta records there.

 Even though nonclustered indexes require more steps to find an entry point to the data row chain, the
chain can be smaller compared to hash indexes. Row chains in nonclustered indexes are built based on
unique index key values. In hash indexes, row chains are built based on a non-unique hash key and can be
larger due to hash collisions, especially when the bucket_count is insufficient.

 With a sufficient number of buckets, hash indexes outperform nonclustered indexes. However, an
insufficient number of buckets and long row chains significantly degrade their performance, making them
less efficient than nonclustered indexes. In the end, it all depends on correct bucket_count estimation.
Unfortunately, the volatility of the data makes this task complicated and requires you to factor future data
growth into your analysis.

 In some cases, when data is relatively static, you can create hash indexes, overestimating the number
of buckets there. Consider catalog entities; for example, a Customers table and the CustomerId and Phone
columns there. Hash indexes on those columns would improve performance of point-lookup searches and
joins. Even though the customer base is growing over time, that growth rate is usually not excessive, and
reserving one million empty buckets could be sufficient for a long period of time. It will use about 8 MB of
memory per index, which should be acceptable in most cases.

 Choosing the hash index for the OrderId column in an Orders table, on the other hand, is more
dangerous. Load growth and changes in data retention rules can make the original bucket_count
insufficient. This still can be acceptable if you are planning to monitor the system and can afford the
downtime while rebuilding the index; however, a nonclustered index could be the safer choice in this
scenario.

 To summarize, for point-lookup and equality join use cases, create hash indexes only when you can
correctly estimate the number of buckets and factor future data growth into the analysis. You should also
monitor them and be able to afford the downtime involved in rebuilding the indexes when the bucket_count
becomes insufficient. Otherwise, use nonclustered indexes, which are the safer choice and do not depend
on bucket count.

 Statistics on Memory-Optimized Tables
 In-Memory OLTP statistics update behavior is very different in SQL Server 2014 and 2016. In both versions,
SQL Server creates index- and column-level statistics on memory-optimized tables; however, in SQL Server
2014 it does not update the statistics automatically. This behavior leads to a very interesting situation:
indexes on memory-optimized tables are created with the tables, and therefore the statistics are created at
the time when the table is empty and are never updated automatically afterward.

 You need to keep this behavior in mind while designing a statistics maintenance strategy in systems that
use SQL Server 2014. You should update statistics after data is loaded into the table when SQL Server or the
database restarts. Moreover, if the data in a memory-optimized table is volatile, which is usually the case,
you should manually update statistics on a regular basis.

http://msdn.microsoft.com/en-us/library/dn133081.aspx
http://msdn.microsoft.com/en-us/library/dn133081.aspx

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

736

 You can update individual statistics with the UPDATE STATISTICS command. Alternatively, you can use
the sp_updatestats stored procedure to update all statistics in the database. The sp_updatestats stored
procedure always updates all statistics on memory-optimized tables, which is different from how it works for
on-disk tables, where such a stored procedure skips statistics that do not need to be updated.

 SQL Server 2016 , on the other hand, supports automatic statistics updates in the databases that use a
compatibility level of 130. It works essentially the same way with on-disk tables, with one exception. With
on-disk tables, SQL Server keeps statistics modification counters at the column level and would not count
data modification toward the statistics update threshold if the statistics columns were not updated. In
memory-optimized tables, statistics modification counters are maintained at the row level.

 ■ Important You should manually update statistics once to enable the automatic statistics update after you
upgrade from SQL Server 2014 to SQL Server 2016.

 Memory Consumers and Off-Row Storage
 In-Memory OLTP database objects allocate memory from separate memory heaps called varheap. Varheaps
are the data structures that respond to and track memory allocation requests from various database objects
and can grow and shrink in size when needed. All database objects that consume memory are called
 memory consumers.

 The separation of per-varheap memory consumers allows you to track memory usage on a per-object
basis. It also helps SQL Server to optimize some internal operations. For example, it allows the garbage
collection process to quickly deallocate the memory when you drop or alter the table. Moreover, SQL Server
2016 can perform a table scan by going through the allocated memory in the table varheap. This operation is
faster than traversing index row chains, and it also supports parallel execution plans when running in Query
Interop mode.

 It is worth repeating that the varheap scan is the only operation that can lead to parallel execution plans.
It happens only in Query Interop mode and requires SQL Server 2016. SQL Server does not support parallel
plans in natively-compiled code.

 As an example, if you run the second query from Listing 35-5 in SQL Server 2016, you would get the
execution plan shown in Figure 35-18 . As you can see, SQL Server uses the table scan operator rather than
the index scan used in SQL Server 2014.

 Figure 35-18. Composite hash index: Execution plans where query use the leftmost index column only
(SQL Server 2016)

 You can get detailed information about database-level memory consumers with the sys.dm_db_xtp_
memory_consumers view. The memory_consumer_type column indicates the type of memory consumer and
can have one of three possible values, as follows:

• VARHEAP (2) indicates the database heap that is used to store data rows, pages of
nonclustered indexes, and other objects.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

737

• HASH (3) indicates memory used by the hash table in hash indexes.

• PGPOOL (4) shows the database page pool used by runtime operations.

 Let’s create a table with one hash index and one nonclustered index and look at memory consumers, as
shown in Listing 35-6 .

 Listing 35-6. Analyzing memory consumers

 create table dbo.MemoryConsumers
 (
 ID int not null
 constraint PK_MemoryConsumers
 primary key nonclustered hash with (bucket_count=1024),
 Name varchar(256) not null,
 index IDX_Name nonclustered(Name)
)
 with (memory_optimized=on, durability=schema_only);

 select
 i.name as [Index], i.index_id, a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
 ,c.memory_consumer_desc as [description], c.allocation_count as [allocs]
 ,c.allocated_bytes, c.used_bytes
 from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and a.xtp_object_id = c.xtp_object_id
 left outer join sys.indexes i on
 c.object_id = i.object_id and
 c.index_id = i.index_id and
 a.minor_id = 0
 where
 c.object_id = object_id('dbo.MemoryConsumers');

 Figure 35-19 shows the output of this query. The xtp_object_id column represents the internal In-
Memory OLTP object_id , which is different than the SQL Server object_id .

 Figure 35-19. Memory consumers information

 As you can see in Figure 35-19 , the table has three memory consumers. The range index heap stores
internal and leaf pages of the nonclustered index. The hash index heap stores the hash table of the hash
index. Finally, the table heap stores actual table rows. Figure 35-20 illustrates this.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

738

 Let’s alter the table and add off-row storage columns, as shown in Listing 35-7 . Obviously, this code
requires SQL Server 2016 to run.

 Listing 35-7. Altering the table

 alter table dbo.MemoryConsumers add
 RowOverflowCol varchar(8000),
 LOBCol varchar(max);

 Now, if you get the list of memory consumers using the query from Listing 35-6 , you would see the
output as shown in Figure 35-21 . It is worth noting that the xtp_object_id column of the USER_TABLE has
changed because the ALTER TABLE operation rebuilt the table internally.

 Figure 35-20. Table memory consumers

 Figure 35-21. Memory consumers after table alteration

 As you can see, both off-row columns introduce their own range index heap and table heap memory
consumers. In addition, LOB column adds the LOB page allocator memory consumer (more about this
later). The minor_id column indicates the column_id in the table to which memory consumers belong.

 As you can guess from the output, SQL Server 2016 stores row-overflow and LOB columns in separate
internal tables. These tables consist of an eight-byte artificial primary key implemented as a nonclustered
index and off-row column value. The main row references the off-row column through that artificial key,
which is generated when the main row is created. It is worth repeating that this reference is done though the
artificial value rather than the memory pointer.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

739

 This approach allows In-Memory OLTP to decouple off-row columns from the main row by using a
different lifetime for them. For example, if you update the main row data without touching off-row columns,
SQL Server would not generate new versions of the off-row column rows. Vice versa, when only off-row data
is modified, the main row stays intact.

 In-Memory OLTP stores LOB data in the memory provided by the LOB page allocator memory
consumer. This consumer is not limited to 8,060-byte row allocations and can allocate a large amount of
memory to store the data. The rows in the table heap of LOB columns contain pointers to the row data in the
LOB page allocator.

 Let’s run several DML statements with imaginary Global Transaction Timestamp values, as shown in
Listing 35-8 .

 Listing 35-8. Modifying data in the table

 -- Global Transaction Timestamp: 100
 insert into dbo.MemoryConsumers(ID, Name, RowOverflowCol, LobCol)
 values
 (1,'Ann','A1',replicate(convert(varchar(max),'1'),100000))
 (2,'Bob','B1',replicate(convert(varchar(max),'2'),100000));

 -- Global Transaction Timestamp: 110
 update dbo.MemoryConsumers set RowOverflowCol = 'B2' where ID = 2;

 -- Global Transaction Timestamp: 120
 update dbo.MemoryConsumers set Name= 'Greg' where ID = 2;

 -- Global Transaction Timestamp: 130
 update dbo.MemoryConsumers set LobCol = replicate(convert(varchar(max),'3'),100000)
where ID = 1;

 -- Global Transaction Timestamp: 140
 delete from dbo.MemoryConsumers where ID = 1;

 Figure 35-22 illustrates the state of the data and the links between the rows. It omits hash table and
nonclustered index structures in the main table for simplicity’s sake, along with the internal pages of
nonclustered indexes for off-row columns.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

740

 The decoupling of in-row and off-row data reduces the overhead of creating extra row versions during
data modifications. However, it will add additional overhead when you insert and delete the data. SQL
Server should create several row objects during the insert stage and update the EndTs of multiple rows
during deletion. It also needs to maintain nonclustered Bw-Tree indexes for off-row columns.

 Moreover, indexes defined in the table are not covering the queries that select off-row data . SQL
Server needs to traverse nonclustered indexes on off-row columns to obtain their values. Conceptually, it
looks very similar to key lookup operations in on-disk tables but done in the reverse direction—from the
main data row to nonclustered indexes. Even though the overhead is significantly smaller compared to
on-disk tables, it is still overhead you’d like to avoid.

 You should avoid off-row storage unless you have legitimate reasons to use such columns. It is clearly
a bad idea to define text columns as (n)varchar(max) just in case when you do not store a large amount of
data there. Do not forget that In-Memory OLTP would use off-row storage based on table definition rather
than size of the data. In our example, RowOverflowCol data is stored off-row even though we used just two
character values there.

 Columnstore Indexes (SQL Server 2016)
 In-Memory OLTP is a specialized solution targeted for an OLTP workload. The technology can dramatically
improve the performance of OLTP systems that deal with volatile data and process a large number of small
transactions in parallel. It does not necessarily perform well in data warehouse and reporting scenarios,
where queries scan and process a large amount of static data.

 Unfortunately, the line between OLTP and data warehouse workloads is very thin nowadays. Almost
every OLTP system has some amount of reporting and analytical workload, and switching to In-Memory
OLTP could affect the performance of such queries. It is possible to address some of these challenges by
partitioning the data, keeping hot data in memory-optimized tables and cold data in B-Tree or columnstore
indexes on disk. However, this approach would not work very well with operational analytics, which scans
and aggregates the hot data.

 Figure 35-22. In-row and off-row storage

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

741

 In SQL Server 2016 , you can solve this problem by creating clustered columnstore indexes on memory-
optimized tables. These indexes are updatable and have a structure similar to on-disk clustered columnstore
indexes that use compressed segments merged into the row groups. Do not be confused by the definition of
columnstore indexes as clustered , however. As the opposite of on-disk tables, clustered columnstore indexes
on memory-optimized tables are separate data structures that keep a copy of the data. In this context,
 clustered means that those indexes include all columns from the table.

 Memory-optimized tables with clustered columnstore indexes have a hidden column— columnstore
RID —that is used as the row locator in the columnstore index. In-Memory OLTP uses this column as the row
locator in the delete bitmap, which is implemented as an internal table with a nonclustered range index. As
with on-disk columnstore indexes, it consists of rowgroup ID and position of the row in the rowgroup. It is
worth noting that the delete bitmap in In-Memory OLTP is called a deleted rows table.

 Memory-optimized columnstore indexes do not have a dedicated delta store. The most recent rows in a
memory-optimized table become the delta store, as shown in Figure 35-23 .

 Figure 35-23. Clustered columnstore index on memory-optimized table

 When you create a clustered columnstore index, In-Memory OLTP uses another memory consumer
for the rows in the delta store. All new versions of the rows from INSERT or UPDATE operations are allocated
from this varheap. There is a background process that wakes up about every two minutes and estimates the
number of rows in the delta store. In cases where this estimate exceeds one million rows, the process creates
a new rowgroup by compressing and encoding the rows in the delta store and then moves them to the
varheap of the main table. It is also worth noting that columnstore indexes on memory-optimized tables do
not support COLUMNSTORE_ARCHIVE compression.

 You can add a delay to compression by using the COMPRESSION_DELAY index option. This option could
be beneficial when the system performs some post-processing that modifies or deletes rows shortly after
insert. Deleted versions of the rows in that scenario would not be included in the columnstore index.

 Let’s look at an example and create a table with a clustered columnstore index, as shown in Listing 35-9 .
The index has the COMPRESSION_DELAY=60 option, which defers compression for new rows for an hour.

 Listing 35-9. Creating a table with a clustered columnstore index

 create table dbo.OrdersCCI
 (
 OrderId int not null
 constraint PK_OrdersCCI
 primary key nonclustered,

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

742

 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 Amount money not null,
 index CCI_OrdersCCI clustered columnstore with (compression_delay=60)
)
 with (memory_optimized=on, durability=schema_and_data);

 Figure 35-24 shows memory consumers for the table after I inserted some data there. You can use the
query from Listing 35-6 to get memory consumer information.

 Figure 35-24. Clustered columnstore index and memory consumers

 Figure 35-25. Rowgroups’ Status

 The HKCS_COMPRESSED consumer stores compressed rowgroups. Besides that, you can see primary key
range index heap and two other table heap consumers—the one with memory_consumer_id=74 is for the delta
store and the one with memory_consumer_id=75 is for the table data. DELETED_ROWS_TABLE consumers are
responsible for storing the delete bitmap. Other memory consumers are used by internal columnstore objects.

 You can analyze the state of the rowgroups by using the sys.dm_db_column_store_row_group_
physical_stats view, as shown in Listing 35-10 .

 Listing 35-10. Obtaining the rowgroups’ status

 select row_group_id, state_desc, total_rows, deleted_rows, trim_reason_desc, created_time
 from sys.dm_db_column_store_row_group_physical_stats
 where object_id = object_id('dbo.OrdersCCI')
 order by row_group_id

 Figure 35-25 shows partial output of the query. The trip_reason_desc column indicates the reason
why a rowgroup has less than 1,048,576 rows. The value of SPILLOVER indicates that the rowgroup contains
rows left over after all full rowgroups were created. The value of STATS_MISTMATCH indicates that the estimate
of the number of rows in the delta store was incorrect.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

743

 You should also monitor the deleted_rows value, which indicates how many rows are stored in the
delete bitmap. Consider increasing the COMPRESSION_DELAY if you see a large number there. It is also worth
mentioning that SQL Server drops the rowgroup and moves non-deleted rows back to the delta store
varheap after 90 percent of the rows in the rowgroup have been deleted.

 There are several limitations related to columnstore indexes in In-Memory OLTP. The most important
are the following:

 The columnstore index cannot be created in cases where the table uses off-row
storage, and therefore the row size cannot exceed 8,060 bytes.

 Memory-optimized tables with columnstore indexes cannot be altered. You
should drop the index, alter the table, and recreate the index afterward.

 Columnstore indexes on memory-optimized tables cannot be rebuilt or
reorganized.

 Archive compression is not supported.

 Obviously, the system should have enough memory to accommodate columnstore indexes. These
indexes, however, are heavily compressed and could use just a fraction of the memory used by non-
compressed rows.

 Finally, it is important to note that SQL Server can utilize columnstore indexes only in Query Interop
mode. These indexes are never used from natively-compiled code.

 Garbage Collection
 In-Memory OLTP is a row-versioning system. Data modifications generate new versions of rows rather than
updating row data. Every row has two timestamps (BeginTs and EndTs) that indicate row lifetime: when the
row was created and when it was deleted. Transactions can only see the versions of rows that were valid at
the time when the transaction started. In practice, this means that the transaction’s logical start time (Global
Transaction Timestamp value at the start of the transaction) is between the BeginTs and EndTs timestamps
of the row.

 At some point, when the EndTs timestamp of a row is older than the logical start time of the oldest active
transaction in the system, the row becomes stale. Stale rows are invisible to active transactions in the system,
and eventually they need to be deallocated in order to reclaim system memory and speed up index chain
navigation. This process is called garbage collection .

 SQL Server has a system thread dedicated to performing garbage collection; however, the user sessions’
threads do most of the work. When a user thread is scanning a row chain in the index and detects a stale row,
the thread unlinks that row from the chain and decrements the reference counter (IdxLinkCount) in the row
header. As already discussed, this counter indicates the number of chains in which the row is present. The
row can be deallocated only after it is removed from all chains.

 The user thread does not deallocate stale rows immediately, however. When a transaction is completed,
the thread puts information about this transaction into the queue used by the garbage collector. Every
transaction keeps information about the rows it created or deleted, which is available to the garbage
collector thread.

 The garbage collector thread, called the idle worker thread, periodically goes through that queue,
analyzes stale rows, and builds work items, which are collections of rows that need to be deallocated. These
work items, in turn, are inserted into other queues that are partitioned on a per–logical CPU basis. User (and
sometimes idle worker) threads pick up work items and deallocate the rows, reclaiming system memory in
the process.

 When you use off-row storage in SQL Server 2016, the garbage collection process treats internal tables
with off-row data as individual tables. It processes and deallocates the rows from those separately from the
main tables.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

744

 You can monitor statistics about the garbage collection process with the sys.dm_xtp_gc_stats view.
This view returns various pieces of information about stale rows, statistics about garbage collection scans,
and a few other metrics. You can read more about this view at https://msdn.microsoft.com/en-us/
library/dn268336.aspx .

 The sys.dm_xtp_gc_queue_stats view provides information about the garbage collection work item
queue, including how many work items have been enqueued and dequeued, how many items are still in
the queue, and a couple of other attributes. More information about this view is available at https://msdn.
microsoft.com/en-us/library/dn268336.aspx .

 ■ Note You can read about the garbage collection process in detail in my Expert SQL Server In-Memory
OLTP book.

 Data Durability and Recovery
 The data from durable memory-optimized tables is stored separately from that in on-disk tables. SQL Server
uses a streaming mechanism to store In-Memory OLTP data which is based on FILESTREAM technology and
is optimized for sequential I/O operations. In fact, In-Memory OLTP does not use random I/O operations at
all; that is, all In-Memory OLTP I/O operations are sequential.

 SQL Server 2014 In-Memory OLTP implementation relies on FILESTREAM for all file management. With
SQL Server 2016, the FILESTREAM filegroup is only used as a container, and all file management and garbage
collection is done by the In-Memory OLTP Engine.

 In-Memory OLTP stores data in multiple file pairs: data files and delta files, which often referenced
as checkpoint files . Each pair of data and delta files covers operations for a range of Global Transaction
Timestamp values and logs operations on the rows that have BeginTs in this range. Every time you insert a
row, it is saved into a data file. Every time you delete a row, the information about the deleted row is saved
into a delta file. An update generates two operations—insert and delete—and saves this information to
both files.

ON-DISK AND MEMORY-OPTIMIZED TABLES: DIFFERENT STORAGE

CONCEPTS

 There is a conceptual difference in how on-disk and memory-optimized data are stored. On-disk tables
store the single, most recent version of the row. Multiple updates of the data row change the same row
object multiple times. Deletion of the row removes it from the database. Finally, it is always possible to
locate a data row in a data file when needed.

 On the other hand, memory-optimized files store multiple versions of the row. Multiple updates of
the data row generate multiple row objects, each of them having a different lifetime. It is impossible
to predict where a data row is stored in the files. Nor are there use cases for such an operation. The
purpose of data and delta files is to provide data durability.

 SQL Server 2016 uses another type of checkpoint file called a large data file. These files are very similar
to data files and are used to store LOB column data and compressed columnstore rowgroups. The data from
row-overflow columns, on the other hand, is stored in regular data files.

https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

745

 Figure 35-26 provides a high-level overview of the information stored in data and delta files. Large data
files, in a nutshell, have the same format but can have significantly larger payload size. They also use delta
files to indicate row versions that have already been deleted.

 Figure 35-27. Database with multiple data and delta files

 Figure 35-27 shows an example of a database with four pairs of data and delta files. The vertical
rectangles with a solid fill represent data files. The rectangles with a dotted fill represent delta files.

 Using a separate delta file to log deletions allows SQL Server to avoid modifications in data and large
data files and random I/O in cases where rows are deleted. All data, large data, and delta files are append-
only. Moreover, when files are closed they become read-only. The size of the data files depends on the
amount of memory and number of logical cores installed on the server. It is also worth noting that SQL
Server pre-allocates checkpoint files when you create the first memory-optimized table in the database, even
when that table is non-durable.

 When SQL Server needs to load In-Memory OLTP data to memory—after a restart, for example—it
loads only the non-deleted versions of rows, using the delta files as the filter. It checks that a row from a data
file is not deleted and is not referenced in the delta files. Based on the results of this check, a row is either
loaded into memory or discarded.

 Figure 35-26. Data in checkpoint files

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

746

 The process of loading data is highly scalable. SQL Server creates one thread per logical CPU, and each
thread processes an individual pair of data and delta files. In a large number of cases, the performance of
the I/O subsystem becomes the limiting factor in data loading performance. Keep in mind that In-Memory
OLTP data needs to be loaded to the memory before the database becomes available at startup or after
restore.

 Figure 35-28 illustrates the data loading process.

 Figure 35-28. Loading data to memory

 ■ Important Place the In-Memory OLTP filegroup into a fast disk array optimized for sequential access.
Moreover, you can create multiple containers in the In-Memory OLTP filegroup by placing them into different
disk drives with different I/O paths to parallelize and speed up the data load.

 Having a large percentage of deleted rows, and therefore large delta files, adds unnecessary storage
overhead and slows down the data loading process. SQL Server addresses this situation with a process
called a merge . A background task periodically analyzes whether adjacent active checkpoint file pairs can be
merged together in such a way that active, non-deleted rows from the merged data files would fit into a new
data file.

 In the example shown in Figure 35-27 , the first data file, which covers the timestamp range of 1–1000,
contains about 40 percent of the active rows. The second data file, which covers the timestamp range of
1001–1650, has about 50 percent of the active rows. Those files can be merged together to cover a timestamp
of 1–1650. Figure 35-29 illustrates the data and delta files after a merge.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

747

 SQL Server uses a similar merge process to combine adjacent large data files. As you should remember,
LOB data rows are decoupled from the main rows and have their own lifetime. Therefore, large data files
need to be merged separately from the data files.

 After the merge process is completed, garbage collection will eventually remove old data and delta files
and reclaim the disk space. It does not happen immediately, however. SQL Server needs to make sure that
the original files are no longer needed for recovery in case of disaster.

 The In-Memory OLTP CHECKPOINT is a separate process from the Storage Engine CHECKPOINT , and it
has its own truncation LSN, which can prevent the transaction log from being truncated. In addition to a
manual CHECKPOINT operation, which also closes all active data files, it can be triggered under the following
conditions:

 Transaction log growth since the last checkpoint exceeds 512 MB in SQL
Server 2014 or 1.5 GB in SQL Server 2016. It is also worth mentioning that these
thresholds do not differentiate between on-disk and memory-optimized tables’
log generation.

 The last automatic or manual CHECKPOINT occurred six hours previously.

 A CHECKPOINT operation persists the current Global Transaction Timestamp value and the information
about all active checkpoint files. SQL Server 2014 and 2016 use slightly different approaches in how to track
checkpoint files. SQL Server 2014 relies mainly on the transaction log while SQL Server 2016 creates another
type of checkpoint file called the root file .

 The In-Memory OLTP checkpoint process is continuous . The process constantly analyzes the
transaction log records generated by In-Memory OLTP and populates data, large data, and delta files in
between checkpoints. This helps avoid bursts in I/O activity for In-Memory OLTP–related checkpoints.

 In SQL Server 2014, the checkpoint process is single-threaded. In SQL Server 2016, the operation is
multi-threaded. Multiple checkpoint threads are scanning the transaction log in about 1 MB segments and
populating checkpoint files in parallel.

 Finally, In-Memory OLTP is integrated with the database backup and restore functions. It supports
piecemeal restore. However, the In-Memory OLTP filegroup should be backed up and restored together
with the PRIMARY filegroup. In most cases, it is not a problem because In-Memory OLTP usually contains
system critical data that should be online in order for the system to be functional during a piecemeal restore.
However, you should analyze how this requirement affects your Backup and Disaster Recovery strategies.

 Figure 35-29. Merge process

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

748

 ■ Note You can read more about data durability, the checkpoint process, and checkpoint file pairs’ lifetime in
my book Expert SQL Server In-Memory OLTP .

 SQL Server 2016 Features Support
 In-Memory OLTP is fully integrated with many SQL Server 2016 features.

 As we already discussed in Chapter 29 , Query Store automatically collects queries, plans, and
optimization statistics for In-Memory OLTP objects without any additional configuration changes required.
However, runtime statistics is not collected by default, and you need to explicitly enable it with the
 sys.sp_xtp_control_query_exec_stats stored procedure.

 Keep in mind that the collection of runtime statistics adds overhead, which can degrade the
performance of the In-Memory OLTP workload. It is also important to remember that SQL Server does not
persist the In-Memory OLTP runtime statistics collection settings, and it will be disabled in case of a SQL
Server restart.

 You can use system-versioned temporal tables with memory-optimized tables by using on-disk
 history tables to store old row versions. When you enable system versioning in memory-optimized table,
SQL Server creates a memory-optimized staging table and synchronously populates it during UPDATE and
 DELETE operations. The data from the staging table is asynchronously moved to the on-disk history table by
a background process called the data flush task . This task wakes up every minute with a light workload and
can adjust its schedule to run every 5 seconds under a heavy workload.

 By default, the data flush task moves the data from the staging table when it reaches 8 percent of the size
of the current memory-optimized table. You can also force data movement manually by calling the
 sys.sp_xtp_flush_temporal_history stored procedure.

 Memory-optimized tables can be configured for row-level security. The configuration process is
essentially the same as with on-disk tables; however, any inline table-valued function that is used as a
security predicate must be natively-compiled. We will talk about native compilation in Chapter 37 .

 Finally, In-Memory OLTP is supported in the premium tiers of SQL Databases in Microsoft Azure. All
In-Memory OLTP features will work, considering the limitations on the amount of memory the tiers provide.
You should be careful, however, with non-durable tables in SQL Databases. Transient database failovers in
Azure will erase the data from those tables.

 Memory Usage Considerations
 It is obvious that In-Memory OLTP uses server memory. No further data modifications are possible when
memory cannot be allocated. Moreover, if SQL Server did not have enough memory for In-Memory OLTP
data at database startup, the database would not come online. Be sure to remember this when you need to
restore a database backup with In-Memory OLTP data on another server that has less memory available, or
when you have secondary nodes in a High Availability solution that are less powerful than the primary ones.

 In-Memory OLTP memory usage can affect the performance of other SQL Server components. For
example, SQL Server would have less memory available for the buffer pool, and this would degrade the
performance of queries against on-disk tables due to the greater amount of physical I/O involved. In-
Memory OLTP can consume a maximum of 80 percent of SQL Server memory. However, you can reduce this
number by limiting memory usage in the Resource Governor resource pool and binding the database there
using the sys.sp_xtp_bind_db_resource_pool stored procedure.

http://dx.doi.org/10.1007/978-1-4842-1964-5_29
http://dx.doi.org/10.1007/978-1-4842-1964-5_37

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

749

 ■ Note You can read more about binding the database to the resource pool at https://msdn.microsoft.
com/en-us/library/dn465873.aspx .

 In a cases of excessive memory usage, you should analyze which objects are consuming the most
memory in In-Memory OLTP. You can use the sys.dm_db_xtp_table_memory_stats view to detect these
tables. Listing 35-11 shows a query that analyzes memory usage on a per-table basis. Figure 35-30 illustrates
the output of the query.

 Figure 35-30. Memory usage information

 Listing 35-11. Detecting memory usage of memory-optimized tables

 select object_name(object_id) as [Object Name], *
 from sys.dm_db_xtp_table_memory_stats

 ■ Note SQL Server Management Studio includes a “Memory Usage by Memory-Optimized Objects” standard
report that provides similar information.

 After you detect the memory consuming tables, you should analyze why they are using memory and
look at the data and memory consumers in the table. In cases where a table is storing a large amount of data,
you could consider partitioning the data by moving part of it to on-disk tables.

 ■ Tip Adding more memory to the server can be the easiest and cheapest option in the long term. It is often
easier and cheaper to upgrade hardware than to invest hundreds of hours redesigning and re-factoring the code
and database schema.

 Estimating the amount of memory required for memory-optimized tables is not a trivial task. You
should estimate the memory requirements of several different components :

 Row data size consists of a 24-byte header, an index pointers array, which is eight
bytes per index, and the payload (actual row data) size. For example, if your
table has 1,000,000 rows and three indexes, and each row is about 200 bytes on
average, you will need (24 + 3 * 8 + 200) * 1,000,000 = ~236.5 MB of memory to
store row data without any versioning overhead included in this number. Do
not forget that every off-row column adds an extra 54+ bytes to store off-row row
header and row identifiers.

 Hash indexes use eight bytes per bucket. If a table has two hash indexes defined
with 1,500,000 buckets each, SQL Server will create indexes with 2,097,152
buckets, rounding the number of buckets specified in the index properties to
the next power of two. Those two indexes will use 2,097,152 * 2 * 8 = 32 MB of
memory.

https://msdn.microsoft.com/en-us/library/dn465873.aspx
https://msdn.microsoft.com/en-us/library/dn465873.aspx

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

750

 Nonclustered indexes’ memory usage is based on the number of unique index
keys and index key size. If a table has a range index with 250,000 unique
key values, and each key value on average uses 30 bytes, it would use (30 +
8(pointer)) * 250,000 = ~9 MB of memory. You can ignore the page header and
non-leaf pages in your estimation, as their sizes are insignificant compared to
leaf-level row size.

 Row-versioning memory estimation depends on the duration of the longest
transactions and the average number of data modifications (inserts and updates)
per second. For example, if some processes in a system have ten-second
transactions and, on average, the system handles 1,000 data modifications per
second, you can estimate: 10 * 1,000 * 248(row size) = ~2.4 MB of memory for
row-versioning storage.

 Obviously, these numbers outline the minimally required amount of memory and do not include
memory used by columnstore indexes. You should also factor in future growth and changes in workload and
reserve some additional memory just to be safe.

 It is almost impossible to estimate the exact disk storage space required for In-Memory OLTP data. It
depends on the workload, rate of change of the data, and frequency of the CHECKPOINT and merge processes.
As a general rule, you should reserve at least two to three times more space on disk than the space used by
data rows in-memory. Remember that indexes do not take up any disk space, and they are recreated when
the data is loaded into memory.

 Summary
 Project Hekaton, released as part of SQL Server 2014, is the new latch- and lock-free In-Memory OLTP
Engine that provides exceptional throughput for OLTP workload. It is fully integrated into SQL Server, and
it lets you store a subset of critical database tables in memory while keeping other tables on disk. You can
access in-memory data through the T-SQL Query Interop Engine or through natively-compiled stored
procedures, which we will discuss in Chapter a .

 There are plenty of limitations in the first release of the In-Memory OLTP Engine in SQL Server 2014.
To name just a few, memory-optimized tables support only a subset of SQL Server data types, rows cannot
exceed 8,060 bytes, and no off-row storage is supported. Indexed text columns should have BIN2 collations.
The majority of these limitations have been removed in SQL Server 2016.

 SQL Server 2016 supports row-overflow and LOB columns, storing them in separate internal tables.
The choice of which columns will be stored off-row depends on the table schema rather than on data size.
These columns introduce performance and storage overhead, and you should avoid them unless absolutely
necessary.

 The In-Memory OLTP Engine supports two types of indexes. Hash indexes are useful for equality
searches. Nonclustered (range) indexes are similar to regular B-Tree indexes. At most, a table can have eight
indexes, including the unique primary key. With the exception of columnstore indexes, which are supported
in SQL Server 2016, In-Memory OLTP does not persist indexes on disk; they are recreated when data is
loaded to memory.

 SQL Server uses a pairs of checkpoint files to provide data durability. Data files contain inserted
versions of rows. Delta files contain information about deleted rows. Each pair of files covers a particular
time range and uses a streaming append-only mechanism to maintain the files. SQL Server merges files that
cover adjacent time ranges as the percentage of deleted rows grows. SQL Server 2016 also uses large data
files to store LOB data and columnstore indexes.

CHAPTER 35 ■ IN-MEMORY OLTP INTERNALS

751

 Memory-optimized tables can be either durable or non-durable. Data modifications of the data from
durable tables are logged in the transaction log and saved in checkpoint files. That data is included in
database backups and is synchronized with secondary nodes in AlwaysOn Availability Groups. Data from
non-durable tables is not saved in checkpoint files, nor are data modifications logged in the transaction log.

 You should monitor the memory usage of memory-optimized tables. Transactions in the In-Memory
OLTP Engine will fail if SQL Server cannot allocate memory. Neither SQL Server nor the database would
start if server does not have enough memory to load memory-optimized data.

753© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_36

 CHAPTER 36

 Transaction Processing in
In-Memory OLTP

 This chapter discusses transaction processing in In-Memory OLTP. It elucidates which isolation levels
are supported by technology, talks about the lifetime of In-Memory OLTP transactions, and explains how
In-Memory OLTP addresses concurrency phenomena encountered in the database systems. Finally, this
chapter provides an overview of transaction logging in In-Memory OLTP.

 Transaction Isolation Levels and Data Consistency
 The concurrency model implemented in In-Memory OLTP is quite complex. Before we dive deeper into
its internal implementation, it is beneficial to remember the level of data consistency provided by different
transaction isolation levels. We discussed this in detail in Part III of this book. However, let’s review several
points before we start to look at the implementation details in In-Memory OLTP.

 Any transaction isolation level resolves write/write conflicts. Multiple transactions cannot update the
same row simultaneously. Different outcomes are possible, and in some cases SQL Server uses blocking
to prevent transactions from accessing uncommitted changes until the transaction that is making these
changes has been committed. In other cases, SQL Server rolls back one of the transactions due to an update
conflict. In-Memory OLTP uses the latter method to resolve write/write conflicts and aborts the transaction.
We will discuss this situation in detail later, so let’s focus now on read data consistency.

 There are three major data inconsistency issues that are possible in multi-user environments, as
follows:

 Dirty Reads : A transaction reads uncommitted (dirty) data from other
uncommitted transactions.

 Non-Repeatable Reads : Subsequent attempts to read the same data from within
the same transaction return different results. This data inconsistency issue arises
when the other transactions modified, or even deleted, data between the reads
done by the affected transaction.

 Phantom Reads : This phenomenon occurs when subsequent reads within the
same transaction return new rows (ones that the transaction did not read before).
This happens when another transaction inserted the new data in between the
reads done by the affected transaction.

 Table 36-1 shows the data inconsistency issues that are possible for different transaction isolation levels.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

754

 With the exception of the SNAPSHOT isolation level , SQL Server uses locking to address data
inconsistency issues when dealing with on-disk tables. It blocks sessions from reading or modifying data
to prevent data inconsistency. Such behavior also means that, in the case of a write/write conflict, the last
modification wins. For example, when two transactions are trying to modify the same row, SQL Server blocks
one of the transactions until another transaction is committed, allowing the blocked transaction to modify
the data afterward. No errors or exceptions would be raised; however, changes from the first transaction
would be lost.

 The SNAPSHOT isolation level uses a row-versioning model where all data modifications done by
other transactions are invisible to the transaction. Though it is implemented differently in on-disk than in
memory-optimized tables, logically it behaves the same. Aborting and rolling back the transactions resolves
write/write conflicts in this model.

 SERIALIZABLE VERSUS SNAPSHOT ISOLATION LEVELS

 While SERIALIZABLE and SNAPSHOT isolation levels provide the same level of protection against data
inconsistency issues, there is a subtle difference in their behavior. A SNAPSHOT isolation level transaction
sees data as of the beginning of a transaction. With the SERIALIZABLE isolation level, the transaction
sees data as of the time when the data was accessed for the first time.

 Consider a situation where a session is reading data from a table in the middle of a transaction. If
another session changed the data in that table after the transaction started but before data was
read, the transaction in the SERIALIZABLE isolation level would see the changes while the SNAPSHOT
transaction would not.

 Transaction Isolation Levels in In-Memory OLTP
 In-Memory OLTP supports three transaction isolation levels: SNAPSHOT , REPEATABLE READ , and
 SERIALIZABLE . However, In-Memory OLTP uses a completely different approach to enforcing data
consistency rules as compared to on-disk tables. Rather than block or being blocked by other sessions, In-
Memory OLTP validates data consistency at the transaction COMMIT time and throws an exception and rolls
back the transaction if rules were violated.

• In the SNAPSHOT isolation level, any changes done by other sessions are invisible to
the transaction. A SNAPSHOT transaction always works with a snapshot of the data as
of the time when transaction started. The only validation at the time of commit is
checking for primary key violations, which is called snapshot validation .

 Table 36-1. Transaction Isolation Levels and Data Inconsistency Issues

 Isolation Level Dirty Reads Non-Repeatable Reads Phantom Reads

 READ UNCOMMITTED YES YES YES

 READ COMMITTED NO YES YES

 REPEATABLE READ NO NO YES

 SERIALIZABLE NO NO NO

 SNAPSHOT NO NO NO

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

755

 Table 36-2. Concurrency in the REPEATABLE READ Transaction Isolation Level

 Session 1 Session 2 Results

 begin tran
 select ID, Col
 from dbo.HKData
 with (repeatableread)

 update dbo.HKData
 set Col = -2
 where ID = 2

 select ID, Col
 from dbo.HKData
 with (repeatableread)

 Return old version of a row (Col = 2)

 commit Msg 41305, Level 16, State 0, Line 0
 The current transaction failed to commit
due to a repeatable read validation failure.

 begin tran
 select ID, Col
 from dbo.HKData
 with (repeatableread)

(continued)

• In the REPEATABLE READ isolation level, In-Memory OLTP validates that the rows
that were read by the transaction have not been modified or deleted by the other
transactions. A REPEATABLE READ transaction would not be able to commit if this
was the case. This action is called repeatable read validation .

• In the SERIALIZABLE isolation level, SQL Server performs repeatable read validation
and also checks for phantom rows that were possibly inserted by the other sessions.
This process is called serializable validation .

 Let’s look at a few examples that demonstrate this behavior. As a first step, shown in Listing 36-1 , let’s
create a memory-optimized table and insert a few rows there.

 Listing 36-1. Data consistency and transaction isolation levels: Table creation

 create table dbo.HKData
 (
 ID int not null
 constraint PK_HKData
 primary key nonclustered hash with (bucket_count=64),
 Col int not null
)
 with (memory_optimized=on, durability=schema_only);

 insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);

 Table 36-2 shows how concurrency works in the REPEATABLE READ transaction isolation level. It is
important to note that SQL Server starts a transaction at the moment of first data access rather than at the
time of the BEGIN TRAN statement. Therefore, the session 1 transaction starts at the time when the first
 SELECT operator executes.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

756

 As you can see, with memory-optimized tables, other sessions were able to modify data that was read by the
active REPEATABLE READ transaction. This led to a transaction abort at the time of COMMIT when the repeatable
read validation failed. This is a completely different behavior than that of on-disk tables, where other sessions are
blocked, unable to modify data until the REPEATABLE READ transaction successfully commits.

 It is also worth noting that in the case of memory-optimized tables, the REPEATABLE READ isolation level
protects you from the phantom read phenomenon, which is not the case with on-disk tables.

 As a next step, let’s repeat these tests in the SERIALIZABLE isolation level . You can see the code and the
results of the execution in Table 36-3 .

 Table 36-3. Concurrency in the SERIALIZABLE Transaction Isolation Level

 Session 1 Session 2 Results

 begin tran
 select ID, Col
 from dbo.HKData
 with (serializable)

 update dbo.HKData
 set Col = -2
 where ID = 2

 select ID, Col
 from dbo.HKData
 with (serializable)

 Return old version of a row (Col = 2)

 commit Msg 41305, Level 16, State 0, Line 0
 The current transaction failed to commit due
to a repeatable read validation failure.

 begin tran
 select ID, Col
 from dbo.HKData
 with (serializable)

 insert into dbo.HKData
 values(10,10)

 select ID, Col
 from dbo.HKData
 with (serializable)

 Does not return new row (10,10)

 commit Msg 41325, Level 16, State 0, Line 0
 The current transaction failed to commit due
to a serializable validation failure.

 Session 1 Session 2 Results

 insert into dbo.HKData
 values(10,10)

 select ID, Col
 from dbo.HKData
 with (repeatableread)

 Does not return new row (10,10)

 commit Success

Table 36-2. (continued)

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

757

 As you can see, the SERIALIZABLE isolation level prevents the session from committing a transaction
when another session inserted a new row and violated the serializable validation. Like the REPEATABLE READ
isolation level, this behavior is different from that of on-disk tables, where the SERIALIZABLE transaction
successfully blocks other sessions until it is done.

 Finally, let’s repeat the tests in the SNAPSHOT isolation level. The code and results are shown in
Table 36-4 .

 Table 36-4. Concurrency in the SNAPSHOT Transaction Isolation Level

 Session 1 Session 2 Results

 begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

 update dbo.HKData
 set Col = -2
 where ID = 2

 select ID, Col
 from dbo.HKData
 with (snapshot)

 Return old version of a row (Col = 2)

 commit Success

 begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

 insert into dbo.HKData
 values(10,10)

 select ID, Col
 from dbo.HKData
 with (snapshot)

 Does not return new row (10,10)

 commit Success

 The SNAPSHOT isolation level behaves in a similar manner to its behavior in on-disk tables, and it
protects from the non-repeatable reads and phantom reads phenomena. As you can guess, it does not need
to perform repeatable read and serializable validations at the commit stage and therefore reduces the load
on SQL Server. However, there is still snapshot validation, which checks for primary key violations and is
done in any transaction isolation level.

 Table 36-5 shows the code that leads to the primary key violation condition. In contrast to on-disk
tables, the exception is raised at the commit stage rather than at the time of the second INSERT operation.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

758

 It is worth mentioning that the error number and message are the same as with the serializable
validation failure even though SQL Server validated the different rule.

 Write/write conflicts work the same way regardless of the transaction isolation level in In-Memory
OLTP. SQL Server does not allow a transaction to modify a row that has been modified by other
uncommitted transactions. Table 36-6 illustrates this behavior. It uses the SNAPSHOT isolation level; however,
the behavior does not change with different isolation levels.

 Table 36-5. Primary Key Violation

 Session 1 Session 2 Results

 begin tran
 insert into dbo.HKData
 with (snapshot)
 (ID, Col)
 values(100,100)

 begin tran
 insert into dbo.HKData
 with (snapshot)
 (ID, Col)
 values(100,100)

 commit Successfully commit the first session

 commit Msg 41325, Level 16, State 1, Line 0
 The current transaction failed to commit
due to a serializable validation failure.

 Table 36-6. Write/Write Conflicts in In-Memory OLTP

 Session 1 Session 2 Results

 begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

 begin tran
 update dbo.HKData
 with (snapshot)
 set Col = -3
 where ID = 2
 commit

 update dbo.HKData
 with (snapshot)
 set Col = -2
 where ID = 2

 Msg 41302, Level 16, State 110, Line 1
 The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.
 Msg 3998, Level 16, State 1, Line 1
 Uncommittable transaction is detected
at the end of the batch. The transaction is
rolled back.
 The statement has been terminated.

(continued)

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

759

 Cross-Container Transactions
 Any access to memory-optimized tables from interpreted T-SQL is done through the Query Interop Engine
and leads to cross-container transactions . You can use different transaction isolation levels for on-disk and
memory-optimized tables. However, not all combinations are supported. Table 36-7 illustrates possible
combinations for transaction isolation levels in cross-container transactions.

 Session 1 Session 2 Results

 begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

 begin tran
 update dbo.HKData
 with (snapshot)
 set Col = -3
 where ID = 2

 update dbo.HKData
 with (snapshot)
 set Col = -2
 where ID = 2

 Msg 41302, Level 16, State 110, Line 1
 The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.
 Msg 3998, Level 16, State 1, Line 1
 Uncommittable transaction is detected
at the end of the batch. The transaction is
rolled back.
 The statement has been terminated.

 commit Successful commit of session 2 transaction

Table 36-6. (continued)

 Table 36-7. Isolation Levels for Cross-Container Transactions

 Isolation Levels for On-Disk Tables Isolation Levels for Memory-Optimized Tables

 READ UNCOMMITTED , READ COMMITTED ,
 READ COMMITTED SNAPSHOT

 SNAPSHOT , REPEATABLE READ , SERIALIZABLE

 REPEATABLE READ , SERIALIZABLE SNAPSHOT only

 SNAPSHOT Not supported

 As you already know, internal implementations of REPEATABLE READ and SERIALIZABLE isolation levels
are very different for on-disk and memory-optimized tables. Data consistency rules with on-disk tables rely
on locking while In-Memory OLTP uses pre-commit validation. It leads to a situation in cross-container
transactions where SQL Server only supports SNAPSHOT isolation levels for memory-optimized tables when
on-disk tables require REPEATABLE READ or SERIALIZABLE isolation.

 Moreover, SQL Server does not allow access to memory-optimized tables when on-disk tables require
 SNAPSHOT isolation. Cross-container transactions, in a nutshell, consist of two internal transactions: one for
on-disk and another one for memory-optimized tables. It is impossible to start both transactions at exactly
the same time and guarantee the state of the data at the moment the transaction starts.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

760

 As the general guideline, it is recommended to use the READ COMMITTED / SNAPSHOT combination in
cross-container transactions during a regular workload. This combination provides minimal blocking
and the least pre-commit overhead and should be acceptable in a large number of use cases. Other
combinations are more appropriate during data migrations when it is important to avoid non-repeatable
and phantom reads phenomena.

 As you may have already noticed, SQL Server requires you to specify the transaction isolation level with
a table hint when you are accessing memory-optimized tables. This does not apply to individual statements
that execute outside of the explicitly started (with BEGIN TRAN) transaction. Those statements are called
 autocommitted transactions, and each of them executes in a separate transaction that is active for the
duration of the statement execution. Listing 36-2 illustrates code with three statements. Each of them will
run in their own autocommitted transactions.

 Listing 36-2. Autocommitted Transactions

 delete from dbo.HKData;

 insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);

 select ID, Col from dbo.HKData;

 An isolation level hint is not required for statements running in autocommitted transactions. When the
hint is omitted, the statement runs in the SNAPSHOT isolation level.

 SQL Server allows you to keep a NOLOCK hint while accessing memory-optimized tables from
autocommitted transactions. That hint is ignored. A READUNCOMMITTED hint, however, is not supported and
triggers an error.

 There is a useful database option, MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT , which is disabled
by default. When this option is enabled, SQL Server allows you to omit the isolation level hint in non-
autocommitted transactions. SQL Server uses the SNAPSHOT isolation level, as with autocommitted
transactions, if the isolation level hint is not specified when the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT
option is enabled. Consider enabling this option when you port an existing system to In-Memory OLTP and
have T-SQL code that accesses tables that become memory-optimized.

 Transaction Lifetime
 Although I have already discussed a few key elements used by In-Memory OLTP to manage data access and
the concurrency model, let’s review them here.

• Global Transaction Timestamp is an auto-incremented value that uniquely identifies
every transaction in the system. SQL Server increments and obtains this value at the
transaction commit stage.

• Every row has BeginTs and EndTs timestamps, which correspond to the Global
Transaction Timestamp of the transaction that created or deleted this version
of a row.

 At the time when a new transaction starts, In-Memory OLTP generates a TransactionId value that
uniquely identifies the transaction. Moreover, In-Memory OLTP assigns the logical start time to the
transaction, which represents the Global Transaction Timestamp value at the time when transaction
starts. This dictates what version of the rows is visible to the transaction. The logical start time should be in
between the BeginTs and EndTs in order for the row to be visible.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

761

 When the transaction issues a COMMIT statement, In-Memory OLTP increments the Global Transaction
Timestamp value and assigns it to the transaction’s logical end time . The logical end time will become the
BeginTs for the rows inserted and EndTs for the rows deleted by the transaction after it is committed.

 Figure 36-1 shows the lifetime of a transaction that works with memory-optimized tables.

 Figure 36-1. Transaction lifetime

 Figure 36-2. Data in the dbo.HKData table after insert

 When a transaction is active and it needs to delete a row, it updates the EndTs timestamp with the
 TransactionId value. The INSERT operation creates a new row with the BeginTs of the TransactionId and
the EndTs of Infinity . Finally, the UPDATE operation consists of delete and insert operations internally. It is
also worth noting that during data modifications, transactions raise an error if there are any uncommitted
versions of the rows they were modifying. This prevents write/write conflicts when multiple sessions modify
the same data.

 When another transaction—call it Tx1 —encounters uncommitted rows with a TransactionId in
BeginTs or EndTs timestamps (TransactionId has a flag that indicates such a condition), it checks the status
of the transaction with TransactionId . If that transaction is committing and the logical end time is already
set, those uncommitted rows may become visible for the Tx1 transaction, which leads to a situation called
 commit dependency . Tx1 is not blocked; however, it does not return data to the client nor commit until the
original transaction on which it has a commit dependency commits itself. I will talk more about commit
dependencies shortly.

 Let’s look at transaction lifetime in detail. Figure 36-2 shows the data rows after we created and
populated the dbo.HKData table in Listing 36-1 , assuming that the rows were created by a transaction with
the Global Transaction Timestamp of 5. (The hash index structure is omitted for simplicity’s sake.)

 Let’s assume that you have a transaction that started at the time when the Global Transaction
Timestamp value was 9 and the TransactionId generated was -8. (I am using a negative value for
 TransactionId to illustrate the difference between two types of timestamps in the figures.)

 Let’s assume that the transaction performs the operations shown in Listing 36-3 . The explicit
transaction has already started, and the BEGIN TRAN statement is not included in the listing. All three
statements are executing in the context of a single active transaction.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

762

 Listing 36-3. Data modification operations

 insert into dbo.HKData with (snapshot) (ID, Col) values(10,10);
 update dbo.HKData with (snapshot) set Col = -2 where ID = 2;
 delete from dbo.HKData with (snapshot) where ID = 4;

 Figure 36-3 illustrates the state of the data after data modifications. An INSERT statement created a new
row, a DELETE statement updated the EndTs value in the row with ID=4 , and an UPDATE statement changed
the EndTs value of the row with ID=2 and created a new version of the row with the same ID .

 Figure 36-3. Data in the dbo.HKData table after modifications

 Figure 36-4. Start of validation phase

 It is important to note that the transaction maintains a write set , or pointers to rows that have been
inserted and deleted by a transaction, which is used to generate transaction log records.

 In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation levels, transactions
maintain a read set of the rows read by a transaction and use it for repeatable read validation. Finally, in
the SERIALIZABLE isolation level, transactions maintain a scan set , which contains information about the
predicates used by the queries in the transaction. The scan set is used for serializable validation.

 When a COMMIT request is issued, the transaction starts the validation phase. First, it autoincrements
the current Global Transaction Timestamp value, which becomes the logical end time of the transaction.
Figure 36-4 illustrates this state, assuming that the new Global Transaction Timestamp value is 11. Note that
the BeginTs and EndTs timestamps in the rows still have a TransactionId at this stage.

 At this moment, the rows modified by transaction become visible to other transactions in the system
even though the transaction has yet to be committed, which can lead to commit dependencies. Again, we
will talk about them shortly.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

763

 As the next step, the transaction starts a validation phase. SQL Server performs several validations
based on the isolation level of the transaction, as shown in Table 36-8 .

 Table 36-8. Validations Done in the Different Transaction Isolation Levels

 Snapshot Validation Repeatable Read Validation Serializable Validation

 Checking for primary key
violations

 Checking for non-repeatable
reads

 Checking for phantom
reads

 SNAPSHOT YES NO NO

 REPEATABLE READ YES YES NO

 SERIALIZABLE YES YES YES

 Figure 36-5. Commit dependency: Successful commit

 ■ Important Repeatable read and serializable validations add overhead to the system. Do not use
 REPEATABLE READ and SERIALIZABLE isolation levels unless you have a legitimate use case for such data
consistency.

 After the required rules have been validated, the transaction waits for the commit dependencies to clear
and the transaction on which it depends to commit. If those transactions fail to commit for any reason—
for example, validation rules violation—the dependent transaction is also rolled back and error 41301 is
generated.

 Figure 36-5 illustrates a commit dependency scenario. Transaction Tx2 can access uncommitted rows
from transaction Tx1 during Tx1 validation and commit phases, and therefore Tx2 has a commit dependency
on Tx1 . After the Tx2 validation phase is completed, Tx2 has to wait for Tx1 to commit and the commit
dependency to clear before entering the commit phase.

 If Tx1 , for example, failed to commit due to serializable validation violation, Tx2 would be rolled back
with Error 41301, as shown in Figure 36-6 .

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

764

 Commit dependency is technically a case of blocking in In-Memory OLTP. However, the validation and
commit phases of the transactions are relatively short, and that blocking should not be excessive.

 SQL Server allows a maximum of eight commit dependencies on a single transaction. When this
number is reached, other transactions that try to take a dependency would fail with error 41839.

 ■ Note You can track commit dependencies using the dependency_acquiredtx_event and waiting_for_
dependenciestx_event extended events.

 When all commit dependencies are cleared, the transaction moves to the commit phase, generates one
or more log records, and saves them to the transaction log, moving to the post-commit phase afterward.

 At the post-commit state, the transaction replaces the BeginTs and EndTs timestamps with the
logical end time value and decrements the commit dependencies counters in the dependent transactions.
Figure 36-7 illustrates the final state of the transaction.

 Figure 36-6. Commit dependency: Validation error

 Figure 36-7. Completed transaction

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

765

 Referential Integrity Enforcement (SQL Server 2016)
 It is impossible to enforce referential integrity in pure SNAPSHOT isolation level, because transactions
are completely isolated from each other. Consider a situation where a transaction deletes a row that is
referenced by a newly inserted row in another transaction that started after the original one. In-Memory
OLTP addresses this problem by maintaining read and/or scan sets in the SNAPSHOT isolation level for tables
and queries that are affected by referential integrity validation.

 In contrast to REPEATABLE READ and SERIALIZABLE transactions, these sets are maintained only for
affected tables rather than for the entire transaction. They would include all rows that were read and all
predicates that were applied during a referential integrity check.

 This behavior can lead to issues when a referencing table does not have an index on the foreign key
column(s). Similar to on-disk tables, SQL Server will have to scan the entire referencing (detail) table when
you delete a row in the referenced (master) table. In addition to the performance impact, the transaction will
maintain the read set, which includes all rows it read during the scan, regardless if those rows referenced
a deleted row or not. If any other transactions update or delete any rows from the read set, the original
transaction would fail with a repeatable read rule violation error.

 Let’s look at an example and create two tables with the code seen in Listing 36-4 .

 Listing 36-4. Referential integrity validation: Tables’ creation

 create table dbo.Branches
 (
 BranchId int not null
 constraint PK_Branches
 primary key nonclustered hash with (bucket_count = 4)
)
 with (memory_optimized = on, durability = schema_only);

 create table dbo.Transactions
 (
 TransactionId int not null
 constraint PK_Transactions
 primary key nonclustered hash with (bucket_count = 4),
 BranchId int not null
 constraint FK_Transactions_Branches
 foreign key references dbo.Branches(BranchId),
 Amount money not null
)
 with (memory_optimized = on, durability = schema_only);

 insert into dbo.Branches(BranchId) values(1),(10);
 insert into dbo.Transactions(TransactionId,BranchId,Amount)
 values(1,1,1),(2,1,20);

 The dbo.Transactions table has a foreign key constraint referencing the dbo.Branches table. There
are no rows, however, referencing the row with BranchId = 10 . As the next step, let’s run the code shown in
Listing 36-5 , deleting this row and leaving the transaction active.

 Listing 36-5. Referential integrity validation: First session code

 begin tran
 delete from dbo.Branches with (snapshot) where BranchId = 10;

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

766

 The DELETE statement would validate the foreign key constraint and would complete successfully. The
 dbo.Transactions table, however, does not have an index on the BranchId column, and the validation will
require a scan of the entire table, as you can see in Figure 36-8 .

 Figure 36-8. Referential integrity validation: Execution plan of DELETE statement

 At this time all rows from the dbo.Transactions table would be included in the transaction read set.
If another session updated one of the rows from the read set with the code shown in Listing 36-6 , it would
succeed and the first session would fail to commit as a result of a repeatable read rule violation error.

 Listing 36-6. Referential integrity validation: Second session code

 update dbo.Transactions with (snapshot)
 set Amount = 30
 where TransactionId = 2;

 Similar to on-disk tables, you should always create an index on the foreign key columns in the
referencing table to avoid this problem.

 Transaction Logging
 As mentioned in the previous chapter, transaction logging in In-Memory OLTP is more efficient than the
Storage Engine. Both engines share the same transaction log and perform write-ahead logging (WAL);
however, the log records’ formats and algorithms are very different.

 With on-disk tables, SQL Server generates transaction log records on a per-index basis. For example,
when you insert a single row into a table with clustered and nonclustered indexes, it will log INSERT
operations in every individual index separately. Moreover, it will log internal operations, such as extent and
page allocations, page splits, and a few others.

 All log records are saved in a transaction log and hardened on disk pretty much synchronously at the
time when they were created. As you already know, every database caches transaction log records in the log
buffers; however, this cache is very small, and it is flushed on disk during COMMIT and CHECKPOINT operations.

 Finally, SQL Server has to include before-update (undo) and after-update (redo) versions of the row to
the log records. The checkpoint process is asynchronous and does not check the state of the transaction that
modified the page. It is entirely possible for the checkpoint to save the dirty data pages from uncommitted
transactions, and the undo part of the log records are required to roll back the changes.

 Transaction logging in In-Memory OLTP addresses these inefficiencies. The first major difference is that
In-Memory OLTP generates and saves log records at the time of the transaction COMMIT rather than during
each data row modification. Therefore, rolled back transactions do not generate any log activity.

 The format of a log record is also different and much more efficient. Log records do not include any undo
information. Dirty data from uncommitted transactions will never materialize on disk, and therefore In-Memory
OLTP log data does not need to support the undo stage of crash recovery or log uncommitted changes.

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

767

 In-Memory OLTP generates log records based on the transaction’s write set. All data modifications
are combined in one or very few log records based on the write set and inserted rows’ size. Moreover, data
modifications in non-durable memory-optimized tables are not logged at all.

 Let’s examine this behavior and run the code shown in Listing 36-7 . It starts a transaction and inserts
500 rows into a memory-optimized table. Then, it examines the content of the transaction log using the
undocumented sys.fn_dblog system function.

 Listing 36-7. Transaction logging in In-Memory OLTP: Memory-optimized table logging

 create table dbo.HKData
 (
 ID int not null,
 Col int not null,

 constraint PK_HKData
 primary key nonclustered hash(ID) with (bucket_count=1024),
)
 with (memory_optimized=on, durability=schema_and_data);

 declare
 @I int = 1

 begin tran
 while @I <= 500
 begin
 insert into dbo.HKData with (snapshot) (ID, Col) values(@I, @I);
 set @I += 1;
 end
 commit;

 select * from sys.fn_dblog(null, null) order by [Current LSN];

 Figure 36-9 illustrates the content of the transaction log. You can see the single transaction record for
the In-Memory OLTP transaction.

 Figure 36-9. Transaction log content after the In-Memory OLTP transaction

 Let’s repeat this test with an on-disk table of a similar structure. Listing 36-8 shows the code that creates
a table and populates it with data.

 Listing 36-8. Transaction logging in In-Memory OLTP: On-disk table logging

 create table dbo.DiskData
 (
 ID int not null,
 Col int not null,
 constraint PK_DiskData primary key nonclustered(ID)
);

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

768

 declare
 @I int = 1

 begin tran
 while @I <= 500
 begin
 insert into dbo.DiskData(ID, Col) values(@I, @I);
 set @I += 1;
 end
 commit;

 As you can see in Figure 36-10 , the same transaction generated more than 1,000 log records.

 Figure 36-11. In-Memory OLTP transaction log record details

 Figure 36-10. Transaction log content after on-disk table modification

 You can use another undocumented function, sys.fn_dblog_xtp , to examine the logical content of an
In-Memory OLTP log record. Listing 36-9 shows the code that utilizes this function, and Figure 36-11 shows
the output of that code. You should use the LSN of the LSN_HK log record from the Listing 36-7 output as the
parameter of the function.

 Listing 36-9. Analyzing an In-Memory OLTP log record

 select [Current LSN], object_name(table_id) as [Table]
 ,operation_desc, tx_end_timestamp, total_size
 from sys.fn_dblog_xtp
 (
 '0x0000001f:0000593b:0002'
 ,'0x0000001f:0000593b:0002'
)

CHAPTER 36 ■ TRANSACTION PROCESSING IN IN-MEMORY OLTP

769

 Finally, it is worth stating again that any data modification made on non-durable tables
(DURABILITY=SCHEMA_ONLY) is not logged in the transaction log, nor is its data persisted on disk. This makes
these tables great candidates to be the staging tables in ETL processes. You should obviously remember that
data in non-durable tables do not survive server crashes or failover; you should handle these conditions in
the ETL code.

 Summary
 In-Memory OLTP supports three transaction isolation levels: SNAPSHOT , REPEATABLE READ , and
 SERIALIZABLE . In contrast to on-disk tables, where non-repeatable and phantom reads are addressed by
acquiring and holding locks, In-Memory OLTP validates data consistency rules at the transaction commit
stage. An exception will be raised and the transaction will be rolled back if rules were violated.

 Repeatable read and serializable validation add overhead to transaction processing. It is recommended
to use the SNAPSHOT isolation level during a regular workload unless REPEATABLE READ or SERIALIZABLE data
consistency is required.

 SQL Server 2016 performs repeatable read and serializable validations to enforce referential integrity in
the system. Always create an index on the foreign key columns in referencing tables to improve performance
and avoid validation errors.

 You can use different transaction isolation levels for on-disk and memory-optimized tables in cross-
container transactions; however, not all combinations are supported. The recommended practice is to use
the READ COMMITTED isolation level for on-disk tables and the SNAPSHOT isolation level for memory-optimized
tables.

 SQL Server does not require you to specify a transaction isolation level when you access memory-
optimized tables through the Interop Engine in autocommitted (single-statement) transactions. SQL Server
automatically promotes such transactions to the SNAPSHOT isolation level. However, you should specify an
isolation level hint when a transaction is explicitly started with a BEGIN TRAN statement. You can avoid this
by enabling the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This option is useful when you
port an existing system to use with In-Memory OLTP.

 Transaction logging in In-Memory OLTP is more efficient than on-disk tables. Transactions are logged
at the time of COMMIT based on the transaction write set. Log records are compact and contain information
about multiple row-related operations.

 In-Memory OLTP does not log any data modifications made in non-durable memory-optimized tables.
It makes them a great choice to be staging tables in ETL processes.

771© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5_37

 CHAPTER 37

 In-Memory OLTP Programmability

 This chapter focuses on the programmability aspects of the In-Memory OLTP Engine in SQL Server. It
describes the process of native compilation and provides an overview of the natively-compiled modules and
 T-SQL features that are supported in In-Memory OLTP. Finally, it discusses several questions related to the
design of new systems and migration of existing systems to the In-Memory OLTP architecture.

 Native Compilation
 As you already know, memory-optimized tables can be accessed from regular T-SQL code using the Query
Interop Engine. This approach is very flexible. As long as you work within the supported feature set, the
location of data is transparent. The code does not need to know, nor does it need to worry about, if it works
with on-disk or with memory-optimized tables.

 Unfortunately, this flexibility comes at a cost. T-SQL is an interpreted and CPU-intensive language.
Even a simple T-SQL statement requires thousands, and sometimes millions, of CPU instructions to execute.
Even though in-memory data location dramatically speeds up data access and eliminates latching and
locking contentions, the overhead of T-SQL interpretation and execution limits the level of performance
improvements achievable with In-Memory OLTP.

 ■ Note The native compilation does not help in operational analytics scenarios in SQL Server 2016.
Columnstore indexes can only be utilized in Query Interop mode.

 In practice, it is possible to see a 2X–4X system throughput increase when memory-optimized data
is accessed through the Interop Engine. To improve performance even further, In-Memory OLTP utilizes
native compilation. As a first step, it converts any row data manipulation and access logic into C code, which
is compiled into DLLs and loaded into SQL Server process memory. Those DLLs (one per table) consist
of native CPU instructions, and they execute without any further code interpretation overhead of T-SQL
statements.

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

772

 Consider a simple situation where you need to read the value of a fixed-length column from a data
row. In the case of on-disk tables, SQL Server obtains the starting offset and length of the column from the
system catalogs and performs the required manipulations to convert the sequence of bytes to the required
data type. With memory-optimized tables, the DLL already knows what the column offset and data type are.
 SQL Server can read data from a pre-defined offset in a row using a pointer of the correct data type without
any further overhead involved. As you can guess, this approach dramatically reduces the number of CPU
instructions required for the operation.

 On the flip side, this approach brings some limitations. You cannot change the format of a row after the
DLL is generated. The compiled code would not know anything about the changes. This problem is more
complicated than it seems, and simple recompilation of the DLL does not address it.

 Consider a situation where you need to add another nullable column to a table. This is a metadata-level
operation for on-disk tables and does not change the data in existing table rows. T-SQL would be able to
detect that column data is not present by analyzing the various data row properties at runtime.

 The situation is far more complicated in the case of memory-optimized tables and natively-compiled
code. It is easy to generate a new version of the DLL that knows about new data column; however, that is
not enough. The DLL needs to handle different versions of rows and different data formats depending on
the presence of column data. While this is technically possible, it adds extra logic to the DLL, which leads
to additional processing instructions, which slows data access. Moreover, the logic to support multiple data
formats would remain in the code forever, degrading performance even further with each table alteration.

 The only way to address this problem is to convert all existing data rows into the new format, rebuilding
the table. This is exactly what table alteration performs in SQL Server 2016. In SQL Server 2014 this operation
is not supported, so you need to implement it manually by creating another table and copying data there.
Keep in mind that you cannot rename memory-optimized tables, and you will need to either change the
code referencing the new table name or recreate the original table by persisting data in the staging table
during the process. You can also use synonyms to reference the new table under the old name.

 To reduce the overhead of T-SQL interpretation even further, the In-Memory OLTP Engine allows you to
perform native compilation of stored procedures and, in SQL Server 2016, DML triggers and scalar table-
valued functions. These modules are compiled in the same way as table-related DLLs and are also loaded
to SQL Server process memory. We will discuss natively-compiled stored procedures and other modules in
greater detail later in the chapter.

 Native compilation utilizes both the SQL Server and In-Memory OLTP Engines. As a first step, SQL
Server parses the T-SQL code and generates an execution plan using Query Optimizer. At the end of this
stage, SQL Server generates a structure called MAT (Mixed Abstract Tree) , which represents metadata,
imperative logic, expressions, and query plans.

 As a next step, In-Memory OLTP transforms MAT to another structure called PIT (Pure Imperative Tree) ,
which is used to generate source code that is compiled and linked into the DLL.

 Figure 37-1 illustrates the process of native compilation in SQL Server.

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

773

 The code generated for native compilation uses plain C language and is very efficient. It is very hard
to read, however. For example, every method is implemented as a single function, which does not call
other functions but rather implements its code inline using GOTO as a control-flow statement. You should
remember the intention has never been to generate human-readable code. It is used as the source for native
compilation only.

 Binary DLL files are not persisted in a database backup. SQL Server recreates table-related DLLs on
database startup and stored procedure–related DLLs at the time of first call. This approach addresses
security risks from hackers, who can substitute DLLs with malicious copies.

 SQL Server places binary DLLs and all other native compilation–related files in an XTP subfolder under
the main SQL Server data directory. It groups files on a per-database basis by creating another level of
subfolders. Figure 37-2 shows the contents of a folder for a database (with ID=9) that contains several In-
Memory OLTP objects.

 Figure 37-1. Native compilation in SQL Server

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

774

 All of the file names start with the prefix xtp_ followed either by the p (stored procedure, scalar function,
or trigger) or t (table) character, which indicates the object type. The two last parts of the name include the
database and object IDs for the object.

 File extensions determine the type of the file, such as the following:

 *.mat.xml files store an XML representation of the MAT structure.

 *.c files are the source file generated by the C code generator.

 *.obj are the object files generated by the C compiler.

 *.pub are symbol files produced by the C compiler.

 *.out are log files from the C compiler.

 *.dll are natively-compiled DLLs generated by the C linker. These files are
loaded into SQL Server memory and used by the In-Memory OLTP Engine.

 Listing 37-1 shows how to obtain a list of the natively-compiled objects loaded into SQL Server memory.
It also returns the list of tables and stored procedures from the database to show the correlation between a
DLL file name and object IDs.

 Listing 37-1. Obtaining a list of natively-compiled objects loaded into SQL Server memory

 select
 s.name + '.' + o.name as [Object Name], o.object_id
 from
 (select schema_id, name, object_id

 Figure 37-2. Folder with natively-compiled objects

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

775

 from sys.tables
 where is_memory_optimized = 1
 union all
 select schema_id, name, object_id
 from sys.procedures
) o join sys.schemas s on
 o.schema_id = s.schema_id;

 select base_address, language, description, name
 from sys.dm_os_loaded_modules
 where description = 'XTP Native DLL';

 Figure 37-3 illustrates the output of the code.

 Figure 37-3. Natively-compiled objects loaded into SQL Server memory

 SQL Server 2016 allows you to ALTER natively-compiled modules. This is online operation; SQL
Server uses an old version of the module during the compilation and replaces it with the new DLL when
compilation is completed. Alteration is not supported in SQL Server 2014, and the only choice you have is
dropping and recreating the stored procedure.

 Natively-Compiled Modules
 Natively-compiled stored procedures are stored procedures that are compiled into native code. They are
extremely efficient, and they can provide major performance improvements when working with memory-
optimized tables, as compared to interpreted T-SQL statements, which access those tables through the
Query Interop component. In addition, SQL Server 2016 allows you to natively compile triggers and scalar
user-defined functions.

 ■ Note In this chapter, I will reference regular interpreted (non-natively compiled) modules as T-SQL
modules .

 Natively-compiled modules can access only memory-optimized tables. Moreover, they support a smaller
set of T-SQL features as compared to the Query Interop Engine. We will talk about those limitations in more
detail shortly after we discuss when SQL Server compiles and how it optimizes natively-compiled modules

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

776

 Optimization of Natively-Compiled Modules
 Interpreted T-SQL stored procedures and other modules are compiled at the time of first execution.
Additionally, they can be recompiled after they are evicted from the plan cache and in a few other cases,
such as outdated statistics, changes in database schema, or recompilation, that are explicitly requested in
the code.

 This behavior is different from natively-compiled modules, which are compiled at creation time. They
are never recompiled except for SQL Server or database restart. In these cases, recompilation occurs at the
time of the first call.

 SQL Server does not sniff parameters at the time of compilation, optimizing statements for UNKNOWN
values. It uses memory-optimized table statistics during optimization, which may or may not be up to date,
especially in SQL Server 2014 where statistics are not updated automatically.

 Fortunately, cardinality estimation errors have a smaller impact on performance in the case of natively-
compiled modules. Contrary to on-disk tables, where such errors can lead to highly inefficient plans due
to the high number of key or RID lookup operations , all indexes in memory-optimized tables reference
the same data row and, in a nutshell, are covering indexes for in-row columns. Moreover, errors will not
affect the choice of join strategy— nested loop is the only physical join type supported in natively-compiled
modules in SQL Server 2014 and 2016.

 Outdated statistics at the time of compilation, however, can still lead to inefficient plans. One such
example is a query with multiple predicates on indexed columns. SQL Server needs to know the index’s
selectivity to choose the most efficient index.

 It is better to recompile natively-compiled modules if the data in the table has significantly changed.
In SQL Server 2016 , you can do it by calling the sp_recompile stored procedure. Unfortunately, it is not
supported in SQL Server 2014 , so you have to recreate natively-compiled stored procedure with the
following set of actions:

 1. Update statistics to reflect the current data distribution in the table(s).

 2. Script permissions assigned to natively-compiled stored procedures.

 3. Drop and recreate procedures. Those actions force recompilation.

 4. Assign required permissions to the procedures.

 Finally, it is worth mentioning that the presence of natively-compiled modules often requires you to
adjust the deployment process in the system. It is common to create all database schema objects, including
tables and stored procedures, at the beginning of deployment. While the time of deployment does not matter
for T-SQL modules, such a strategy compiles natively-compiled modules at a time when database tables are
empty. You should recompile (or recreate) natively-compiled modules later; after the tables are populated
with data and statistics are updated.

 Creating Natively-Compiled Stored Procedures
 Natively-compiled stored procedures and other modules execute as atomic blocks, which is an all or nothing
approach. Either all statements in the module succeed or all of them fail.

 When a natively-compiled stored procedure is called outside of the context of an active transaction, it
starts a new transaction and either commits or rolls it back at the end of the execution.

 In cases where a procedure is called in the context of an active transaction, SQL Server creates a
savepoint at the beginning of the procedure’s execution. In case of an error in the procedure, SQL Server rolls
back the transaction to the created savepoint. Based on the severity and type of the error, the transaction is
either going to be able to continue and commit or became doomed and uncommittable. The same is true for
natively-compiled DML triggers, which always execute in the context of an active transaction.

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

777

 Let’s look at an example and create a memory-optimized table and natively-compiled stored procedure,
as shown in Listing 37-2 . Do not focus on unfamiliar constructs in the stored procedure body. I will explain
those shortly.

 Listing 37-2. Atomic blocks and transactions: Objects’ creation

 create table dbo.MOData
 (
 ID int not null
 primary key nonclustered hash with (bucket_count=16),
 Value int null
)
 with (memory_optimized=on, durability=schema_only);

 insert into dbo.MOData(ID, Value) values(1,1), (2,2)
 go

 create proc dbo.AtomicBlockDemo
 (
 @ID1 int not null
 ,@Value1 bigint not null
 ,@ID2 int
 ,@Value2 bigint
)
 with native_compilation , schemabinding, execute as owner
 as
 begin atomic
 with (transaction isolation level = snapshot, language=N'us_english')
 update dbo.MOData set Value = @Value1 where ID = @ID1;
 if @ID2 is not null
 update dbo.MOData set Value = @Value2 where ID = @ID2;
 end;

 At this point, the dbo.MOData table has two rows with values (1,1) and (2,2) . Now, let’s start the
transaction and call a stored procedure twice, as shown in Listing 37-3 .

 Listing 37-3. Atomic blocks and transactions: Calling stored procedure

 begin tran
 exec dbo.AtomicBlockDemo 1, -1, 2, -2;
 exec dbo.AtomicBlockDemo 1, 0, 2, 999999999999999;

 The first call of the stored procedure succeeds, while the second call triggers an arithmetic overflow
error , as shown here:

 Msg 8115, Level 16, State 0, Procedure AtomicBlockDemo, Line 49

 Arithmetic overflow error converting bigint to data type int.

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

778

 You can check that the transaction is still active and committable with this select: SELECT @@TRANCOUNT
AS [@@TRANCOUNT], XACT_STATE() AS [XACT_STATE()] . It would return the following results:

 @@TRANCOUNT XACT_STATE()
 ----------- ------------
 1 1

 If you commit the transaction and check the content of the table, you will see that the data reflects the
changes caused by the first stored procedure call. Even though the first update statement from the second
call succeeded, SQL Server rolled it back because the natively-compiled stored procedure executed as an
atomic block. You can see the data in the table below.

 ID Value
 ----------- -----------
 1 -1
 2 -2

 As a second example, let’s trigger a critical error, which dooms the transaction, making it
uncommittable. One such situation is a write/write conflict. You can trigger it by executing the code in
Listing 37-4 in two different sessions.

 Listing 37-4. Atomic blocks and transactions: Write/write conflict

 begin tran
 exec dbo.AtomicBlockDemo 1, 0, null, null;

 When you run the code in the second session, it triggers the following exception:

 Msg 41302, Level 16, State 110, Procedure AtomicBlockDemo, Line 13
 The current transaction attempted to update a record that has been updated since this
transaction started. The transaction was aborted.
 Msg 3998, Level 16, State 1, Line 1
 Uncommittable transaction is detected at the end of the batch. The transaction is rolled
back.

 If you check @@TRANCOUNT in the second session, you will see that SQL Server terminated the transaction
as follows.

 @@TRANCOUNT

 0

 As you can see, when an atomic block executes in the context of an active transaction, severe errors in
the atomic block roll back the entire transaction while non-critical errors roll back the transaction to the
savepoint that corresponds to the beginning of the block.

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

779

 You should specify that the natively-compiled module is an atomic block by using BEGIN ATOMIC..END
at the top level of the module. It has two required and three optional settings , as follows:

 TRANSACTION ISOLATION LEVEL is the required setting that controls transaction
isolation level in the atomic block. You can use SNAPSHOT , REPEATABLEREAD , or
 SERIALIZABLE isolation levels.

 LANGUAGE setting is required. It dictates the date/time format and system
messages language in the block.

 DATEFORMAT is optional and it allows you to override the default date format
associated with the language.

 DATEFIRST is optional and it overrides the default value associated with the
language.

 DELAYED_DURABILITY is optional and it specifies the durability option for the
transaction if it is started by the atomic block.

 It is also worth noting that atomic blocks are not supported in interpreted T-SQL modules.
 All natively-compiled objects are schema-bound, and they require you to specify the SCHEMABINDING

option . Finally, in SQL Server 2014 , natively-compiled stored procedures do not support the EXECUTE AS
CALLER execution context and require you to specify EXECUTE AS OWNER , EXECUTE AS USER , or EXECUTE AS
SELF contexts in the definition. This limitation is removed in SQL Server 2016 , and execution context is
optional.

 ■ Note You can read about execution context at http://technet.microsoft.com/en-us/library/
ms188354.aspx .

 As you have already seen in Listing 37-2 , you can specify the required parameters by using the NOT NULL
construct in the module’s definition. SQL Server raises an error if you do not provide the parameter values at
the time of the call.

 Finally, it is recommended that you avoid type conversion and do not use named parameters when you
call natively-compiled stored procedures. It is more efficient to use exec Proc value [..,value] rather
than the exec Proc @Param=value [..,@Param=value] calling format.

 ■ Note You can detect inefficient parameterization with the hekaton_slow_parameter_parsing extended
event.

 Natively-Compiled Triggers and User-Defined Functions
(SQL Server 2016)
 SQL Server 2016 allows you to create natively-compiled scalar user-defined functions and DML triggers on
memory-optimized tables. As with natively-compiled stored procedures, these modules cannot access on-
disk objects.

 Listing 37-5 shows the code that creates both types of objects.

http://technet.microsoft.com/en-us/library/ms188354.aspx
http://technet.microsoft.com/en-us/library/ms188354.aspx

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

780

 Listing 37-5. Natively-compiled trigger and user-defined function

 create trigger NativelyCompiledTrigger on dbo.MemoryOptimizedTable
 with native_compilation, schemabinding
 after insert
 as
 begin atomic with
 (
 transaction isolation level = snapshot, language = N'English'
)
 if @@rowcount = 0
 return;
 /* Trigger Body */
 end
 go

 create function dbo.NativelyCompiledScalarFunction(@Param1 int not null)
 returns int
 with native_compilation, schemabinding
 as
 begin atomic with
 (
 transaction isolation level = snapshot, language = N'us_english'
)
 declare
 @Result int = 0
 /* Function Body */
 return @Result;
 end

 As with T-SQL triggers and scalar user-defined functions, you should consider the overhead these
modules introduce. Let’s run a couple of tests and compare the performance of interpreted T-SQL and
natively-compiled scalar functions. Listing 37-6 creates two very simple functions that just run an empty
 WHILE loop without any data access.

 Listing 37-6. Natively-compiled versus interpreted function: Functions’ creation

 create function dbo.ScalarInterpret(@LoopCnt int)
 returns int
 as
 begin
 declare
 @I int = 0
 while @I < @LoopCnt
 select @I += 1;
 return @I;
 end
 go

 create function dbo.ScalarNativelyCompiled(@LoopCnt int)
 returns int
 with native_compilation, schemabinding

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

781

 as
 begin atomic with (transaction isolation level = snapshot, language = N'us_english')
 declare
 @I int = 0
 while @I < @LoopCnt
 select @I += 1;
 return @I;
 end

 As the next step, let’s call the functions running a 1,000,000-execution loop inside them, as shown in
Listing 37-7 .

 Listing 37-7. Natively-compiled versus interpreted function: Running the loop within the function

 select dbo.ScalarInterpret(1000000);
 select dbo.ScalarNativelyCompiled(1000000);

 Table 37-1 illustrates the execution time in my environment. As you can see, the natively-compiled
function is orders of magnitude faster than its interpreted T-SQL counterpart.

 Table 37-1. Execution Time When Functions Run 1,000,000-Execution Loop

 Interpreted T-SQL Function Natively-Compiled Function

 454 ms 5 ms

 Table 37-2. Execution Time of 1,000,000 Function Calls

 Interpreted T-SQL Function Natively-Compiled Function

 12,344 ms 11,392 ms

 Let’s run another test and call the functions in the loop, as shown in Listing 37-8 . The functions do not
execute a WHILE loop internally but rather being invoked 1,000,000 times. Table 37-2 shows the execution
time in my environment.

 Listing 37-8. Natively-compiled versus interpreted function: Multiple calls

 declare
 @Dummy int
 ,@I int = 0

 while @I < 1000000
 begin
 select @Dummy = dbo.ScalarInterpret(0);
 select @I += 1;
 end;

 set @I = 0;
 while @I < 1000000
 begin
 select @Dummy = dbo.ScalarNativelyCompiled(0);
 select @I += 1;
 end;

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

782

 Even though natively-compiled functions are significantly faster than interpreted T-SQL functions, the
execution overhead is very similar in both cases. You should avoid scalar user-defined functions in your
code even when they are natively-compiled.

 SQL Server 2016 also allows you to mark inline table-valued functions as natively-compiled. However,
they behave differently than other modules. When you mark these functions as natively-compiled, SQL Server
just validates that they are using the language constructs supported by native compilation. The functions are not
actually compiled but rather are embedded into the other natively-compiled modules that reference them.

 When you call natively-compiled inline table-valued functions from T-SQL via Query Interop, SQL
Server treats them as regular T-SQL inline table-valued functions, embedding their statement to the
referenced query.

 Listing 37-9 illustrates a natively- compiled inline table-valued function.

 Listing 37-9. Natively-compiled inline table-valued function

 create function dbo.NativeCompiledInlineTVF(@Param datetime)
 returns table
 with native_compilation, schemabinding
 as
 return
 (
 select count(*) as Result
 from dbo.MemoryOptimizedTable
 where DateCol >= @Param
)

 Supported T-SQL Features
 Natively-compiled modules support only a limited set of T-SQL constructs. In SQL Server 2014, the list of
limitations is extensive. Fortunately, many of those limitations were removed in SQL Server 2016.

 Let’s look at the supported features in different areas.

 Control Flow
 The following control flow options are supported:

 IF and WHILE

 Assigning a value to a variable with the SELECT and SET operators.

 RETURN

 TRY / CATCH / THROW (RAISERROR is not supported). It is recommended that you use
a single TRY / CATCH block for the entire stored procedure for better performance.

 It is possible to declare variables as NOT NULL as long as they have an initializer as
part of the DECLARE statement.

 SQL Server 2016 supports nested natively-compiled modules execution. For
example, natively-compiled stored procedure can call another natively-compiled
procedure or function.

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

783

 Operators
 The following operators are supported:

 Comparison operators, such as = , < , <= , > , >= , and <> .

 Unary and binary operators, such as + , - , * , / , and %. The + operators are
supported for both numbers and strings.

 Bitwise operators, such as & , | , ~ , and ̂ .

 Logical operators, such as AND , OR , and NOT . However, in SQL Server 2014 , the
 OR and NOT operators are not supported in the WHERE and HAVING clauses of the
query.

 SQL Server 2016 supports IN , BETWEEN , and EXISTS operators.

 Built-In Functions
 The following built-in functions are supported:

 Math functions: SQL Server 2016 supports all mathematical functions. In SQL
Server 2014 , the following functions are supported: ACOS , ASIN , ATAN , ATN2 , COS ,
 COT , DEGREES , EXP , LOG , LOG10 , PI , POWER , RAND , SIN , SQRT , SQUARE , and TAN

 Date/time functions: CURRENT_TIMESTAMP , DATEADD , DATEDIFF , DATEFROMPARTS ,
 DATEPART , DATETIME2FROMPARTS , DATETIMEFROMPARTS , DAY , EOMONTH , GETDATE ,
 GETUTCDATE , MONTH , SMALLDATETIMEFROMPARTS , SYSDATETIME , SYSUTCDATETIME ,
and YEAR

 String functions: LEN , LTRIM , RTRIM , and SUBSTRING

 Error functions: ERROR_LINE , ERROR_MESSAGE , ERROR_NUMBER , ERROR_PROCEDURE ,
 ERROR_SEVERITY , and ERROR_STATE

 NEWID and NEWSEQUENTIALID

 CAST and CONVERT . However, it is impossible to convert between a non-unicode
and a unicode string.

 ISNULL

 SCOPE_IDENTITY

 You can use @@ROWCOUNT within a natively-compiled stored procedure; however,
its value is reset to 0 at the beginning and end of the procedure.

 SQL Server 2016 supports the @@SPID function.

 SQL Server 2016 supports the following security functions: IS_MEMBER , IS_
ROLEMEMBER , IS_SRVROLEMEMBER , ORIGINAL_LOGIN , SESSION_USER , CURRENT_USER ,
 SUSER_ID , SUSER_SID , SUSER_SNAME , SYSTEM_USER , SUSER_NAME , USER , USER_ID ,
 USER_NAME , and CONTEXT_INFO .

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

784

 Query Surface Area
 The following query surface area functions are supported:

 SELECT , INSERT , UPDATE , and DELETE. SQL Server 2016 supports the SELECT
DISTINCT operator and allows you to use the OUTPUT clause with INSERT , UPDATE ,
and DELETE operators.

 SQL Server 2016 supports UNION and UNION ALL operators.

 CROSS JOIN and INNER JOIN are the only join types supported in SQL Server
2014. SQL Server 2016 also supports LEFT OUTER JOIN and RIGHT OUTER JOIN .
You can use joins only with SELECT operators.

 Expressions in the SELECT list and WHERE and HAVING clauses are supported as
long as they use supported operators.

 SQL Server 2016 supports subqueries in FROM and WHERE clauses and scalar
subqueries in the SELECT clause.

 IS NULL and IS NOT NULL

 GROUP BY is supported with the exception of grouping by string or binary data.

 TOP and ORDER BY . However, you cannot use these with WITH TIES and PERCENT
in the TOP clause. Moreover, the TOP operator is limited to 8,192 rows when
the TOP <constant> is used, or an even lesser number of rows in the case of
joins. You can address this last limitation by using a TOP <variable> approach.
However, it is less efficient in terms of performance.

 The native compilation in SQL Server 2016 still has several limitations and unsupported T-SQL
constructs. You can think about unsupported CASE and MERGE statements as examples .

 Execution Statistics
 By default, SQL Server does not collect execution statistics for natively-compiled stored procedures because
of the performance impact it introduces. You can enable such a collection at the procedure level with the
 exec sys.sp_xtp_control_proc_exec_stats 1 command. Moreover, you can use the exec sys.sp_xtp_
control_query_exec_stats 1 command to enable a collection at the statement level. SQL Server does not
persist these settings, and you will need to re-enable statistics collection after each SQL Server restart.

 ■ Note Do not collect execution statistics unless you are troubleshooting performance.

 As you can guess, the collection of execution statistics introduces overhead in the system. Do not enable
it unless you are performing troubleshooting, and be sure to disable it as soon as troubleshooting is done.

 Listing 37-10 shows the code that returns execution statistics for stored procedures using the sys.
dm_exec_procedure_stats view.

 Listing 37-10. Analyzing stored procedure execution statistics

 select top 50
 object_name(object_id) as [Proc Name]
 ,execution_count as [Exec Cnt]

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

785

 ,total_worker_time as [Total CPU]
 ,convert(int,total_worker_time / 1000 / execution_count) as [Avg CPU]
 ,total_elapsed_time as [Total Elps]
 ,convert(int,total_elapsed_time / 1000 / execution_count) as [Avg Elps]
 ,cached_time as [Cached]
 ,last_execution_time as [Last Exec Time]
 ,sql_handle
 ,plan_handle
 ,total_logical_reads as [Reads]
 ,total_logical_writes as [Writes]
 from sys.dm_exec_procedure_stats
 order by [Avg CPU] desc

 Figure 37-4 illustrates the output of the code from Listing 37-10 . As you can see, neither the sql_handle
nor plan_handle columns are populated. Execution plans for natively-compiled stored procedures are
embedded into the code and are not cached in the plan cache, nor are I/O-related statistics provided.
Natively-compiled stored procedures work with memory-optimized tables only, and therefore there is no
I/O involved.

 Figure 37-4. Data from sys.dm_exec_procedure_stats view

 Listing 37-11 shows the code that obtains execution statistics for individual statements using the sys.
dm_exec_query_stats view.

 Listing 37-11. Analyzing stored procedure statement execution statistics

 select top 50
 substring(qt.text, (qs.statement_start_offset/2)+1,
 ((case qs.statement_end_offset
 when -1 then datalength(qt.text)
 else qs.statement_end_offset
 end - qs.statement_start_offset)/2)+1) as [SQL]
 ,qs.execution_count as [Exec Cnt]
 ,qs.total_worker_time as [Total CPU]
 ,convert(int,qs.total_worker_time / 1000 / qs.execution_count) as [Avg CPU]
 ,total_elapsed_time as [Total Elps]
 ,convert(int,qs.total_elapsed_time / 1000 / qs.execution_count) as [Avg Elps]
 ,qs.creation_time as [Cached]
 ,last_execution_time as [Last Exec Time]
 ,qs.plan_handle
 ,qs.total_logical_reads as [Reads]
 ,qs.total_logical_writes as [Writes]
 from
 sys.dm_exec_query_stats qs
 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
 where
 qs.plan_generation_num is null
 order by
 [Avg CPU] desc

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

786

 Figure 37-5 illustrates the output of the code from Listing 37-11 . Like procedure execution statistics ,
it is impossible to obtain the execution plans of the statements. However, you can analyze the CPU time
consumed by individual statements and the frequency of their execution.

 Interpreted T-SQL and Memory-Optimized Tables
 The Query Interop component provides transparent, memory-optimized table access to interpreted T-SQL
code. In interpreted mode, SQL Server treats memory-optimized tables pretty much the same way as it
does on-disk tables. It optimizes queries and caches execution plans, regardless of where table is located.
The same set of operators is used during query execution. From a high level, when the operator’s GetRow()
method is called, it is routed either to the Storage Engine or to the In-Memory OLTP Engine, depending on
the underlying table type.

 Most T-SQL features are supported in interpreted mode. There are still a few exceptions that are not
supported in either version of SQL Server:

 TRUNCATE TABLE

 MERGE operator with memory-optimized table as the target

 Context connection from CLR code

 Referencing memory-optimized tables in indexed views. You can reference
memory-optimized tables in partitioned views, combining data from memory-
optimized and on-disk tables.

 DYNAMIC and KEYSET cursors, which are automatically downgraded to STATIC

 Cross-database queries and transactions

 Linked servers

 As you can see, the list of limitations is pretty small. However, the flexibility of Query Interop access
comes at a cost. Natively-compiled modules are usually several times more efficient as compared to their
interpreted T-SQL counterparts. In some cases—for example, joins between memory-optimized and on-disk
tables—Query Interop is the only choice; however, it is usually preferable to use natively-compiled modules
when possible.

 Memory-Optimized Table Types and Variables
 SQL Server allows you to create memory-optimized table types. Table variables of these types are called
 memory-optimized table variables . In contrast to regular disk-based table variables, memory-optimized
table variables live in memory only and do not utilize tempdb .

 Memory-optimized table variables provide great performance. They can be used as a replacement
for disk-based table variables and in some cases temporary tables. Obviously, they have the same set of
functional limitations as memory-optimized tables.

 Contrary to disk-based table types, you can define indexes on memory-optimized table types. The same
statistics-related limitations still apply. However, as we already discussed, due to the nature of indexes on

 Figure 37-5. Data from the sys.dm_exec_query_stats view

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

787

memory-optimized tables, cardinality estimation errors yield a much lower negative impact as compared to
those of on-disk tables.

 SQL Server does not support inline declaration of memory-optimized table variables. For example, the
code shown in Listing 37-12 would not compile and would raise an error. The reason behind this limitation
is that SQL Server compiles a DLL for every memory-optimized table type, which would not work in the case
of inline declarations.

 Listing 37-12. (Non-functional) inline declaration of memory-optimized table variables

 declare
 @IDList table
 (
 ID int not null
 primary key nonclustered hash with (bucket_count=1024)
)
 with (memory_optimized=on)

 Msg 319, Level 15, State 1, Line 91
 Incorrect syntax near the keyword 'with'. If this statement is a common table expression,
an xmlnamespaces clause, or a change tracking context clause, the previous statement must
be terminated with a semicolon.

 You should define and use a memory-optimized table type instead, as shown in Listing 37-13 .

 Listing 37-13. Creating a memory-optimized table type and table variable

 create type dbo.mtvIDList as table
 (
 ID int not null
 primary key nonclustered hash with (bucket_count=1024)
)
 with (memory_optimized=on)
 go

 declare
 @IDList dbo.mtvIDList

 Using memory-optimized table variables and table-valued parameters as the replacement for tempdb
temporary objects improves performance of the system and reduces tempdb load. It requires very few code
changes. For example, you can switch from on-disk to memory-optimized TVP by marking the table type as
memory-optimized. It is completely transparent to the other code.

 As you might remember, in Chapter 13 we tested several methods of importing a batch of rows into the
database. On-disk table-valued parameters outperformed all other methods, including the SqlBulkCopy
class. By changing the table type definition to become memory-optimized, I was able to reduce the import
time another 40 percent as compared to on-disk implementation.

 You can use memory-optimized table variables to imitate row-by-row processing using cursors, which
are not supported in natively-compiled stored procedures. Listing 37-14 illustrates an example of using a
memory-optimized table variable to imitate a static cursor. Obviously, it is better to avoid cursors and use
set-based logic if at all possible.

http://dx.doi.org/10.1007/978-1-4842-1964-5_13

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

788

 Listing 37-14. Using a memory-optimized table variable to imitate a cursor

 create type dbo.MODataStage as table
 (
 ID int not null
 primary key nonclustered hash with (bucket_count=1024),
 Value int null
)
 with (memory_optimized=on)
 go

 create proc dbo.CursorDemo
 with native_compilation, schemabinding, execute as owner
 as
 begin atomic
 with (transaction isolation level = snapshot, language=N'us_english')
 declare
 @tblCursor dbo.MODataStage
 ,@ID int = -1
 ,@Value int
 ,@RC int = 1

 /* Staging data in temporary table to imitate STATIC cursor */
 insert into @tblCursor(ID, Value)
 select ID, Value from dbo. MOData ;

 while @RC = 1
 begin
 select top 1 @ID = ID, @Value = Value
 from @tblCursor
 where ID > @ID
 order by ID;

 select @RC = @@rowcount
 if @RC = 1
 begin
 /* Row processing */
 update dbo.MOData set Value = Value * 2 where ID = @ID
 end
 end
 end

 In-Memory OLTP: Implementation Considerations
 As with any new technology, the adoption of In-Memory OLTP comes at a cost. You will need to acquire
and/or upgrade to SQL Server 2014 or 2016, spend time learning the technology, and if you are updating an
existing system, re-factor code and test the changes. It is important to perform a cost/benefits analysis and
determine if In-Memory OLTP provides you with adequate benefits to outweigh the costs.

 In-Memory OLTP is hardly a magical solution that can help you improve server performance by simply
flipping a switch and moving data into memory. It is designed to address a specific set of problems, such as
latch and lock contentions on very active OLTP systems. It is less beneficial in the case of data warehouse

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

789

systems with low concurrent activity, large amounts of data, and queries that require complex aggregations.
While in some cases it is still possible to achieve performance improvements by moving data into memory,
you can often obtain better results by implementing on-disk columnstore indexes, indexing views, data
compression, and other database schema changes.

 This remains true even in SQL Server 2016, which supports columnstore indexes on memory-
optimized tables. Such indexes are targeted toward systems with a mixed workload, and they help with the
performance of reporting and analytics queries that work in parallel with OLTP workload. You should not
treat In-Memory OLTP columnstore indexes as an in-memory data warehouse solution.

 It is also worth remembering that most performance improvements are achieved by using natively-
compiled modules, which can rarely be used in data warehouse workloads due to the limited set of T-SQL
features that they support. Moreover, SQL Server 2016 does not use columnstore indexes from natively-
compiled code.

 Another important factor is whether you plan to use In-Memory OLTP during the development of new
or the migration of existing systems, and it also greatly depends on the version of SQL Server being used. You
need to make changes in existing systems to address the limitations of technology. In SQL Server 2014 the
list of limitations is extensive and includes missing support of triggers, foreign key constraints, check and
unique constraints, calculated columns, and quite a few other restrictions.

 I would like to discuss a few less obvious items that can greatly increase the migration cost in SQL
Server 2014 . The first is the 8,060-byte maximum row size limitation in memory-optimized tables without
any off-row data storage support. Such a limitation can lead to a significant amount of work when the
existing active OLTP tables use LOB data types, such as (n)varchar(max) or xml . While it is possible to
change the data types by limiting the size of the strings and/or storing xml as text or in binary format and/
or storing large objects in separate tables, such changes are complex, time consuming, and require careful
planning. Do not forget that In-Memory OLTP in SQL Server 2014 does not allow you to create a table if there
is a possibility that the size of a row exceeds 8,060 bytes. For example, you cannot create a table with three
 varchar(3000) columns.

 The indexing of memory-optimized tables is another important factor. SQL Server 2014 requires the
binary collation of indexed text columns. This is a breaking change in system behavior, and it often requires
non-trivial changes in the code and some sort of data conversion.

 Consider a situation where an application performs a search on the Name column, which uses case-
insensitive collation. You will need to convert all values to upper- or lowercase in order to be able to utilize a
nonclustered index after the table becomes memory-optimized. That will change the user experience in the
system.

 It is also worth noting that using binary collations for data will lead to changes in the T-SQL code.
You will need to specify collations for variables in stored procedures and other T-SQL routines, unless you
change the database collation to be a binary one. However, if the database and server collations do not
match, you will need to specify a collation for the columns in temporary tables created in tempdb .

 You should also remember that nonclustered Bw-Tree indexes behave differently than B-Tree indexes
on on-disk tables. Nonclustered Bw-Tree indexes are implemented as a single-linked list, and they would
not help much if the data needed to be accessed in the opposite sorting order of an index key. To make
matter worse, an index or table scan of large memory-optimized tables can be less efficient as compared to
such scans of on-disk tables, especially when data resides in the buffer pool. All of that often requires you to
re-evaluate your index strategy when a table is moved from disk into memory in both versions of SQL Server.

 SQL Server 2016 addresses many of technology limitations that existed in SQL Server 2014. However,
there are still limitations as compared to on-disk tables. Most notable are missing support for xml and clr
data types, calculated columns, and different off-row storage behavior. Upgrading to SQL Server 2016 could
be the easiest and cheapest way to address the technology limitations in SQL Server 2014.

 There are plenty of other factors to consider. However, the key point is that you should perform a
thorough analysis before starting a migration to In-Memory OLTP. Such a migration can have a very
significant cost impact, and it should not be done unless it benefits the system.

 SQL Server Management Studio provides a set of tools that can help you analyze if In-Memory OLTP
will improve your application’s performance and identify the objects that would benefit the most from the

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

790

conversion. While these tools can be beneficial during the initial analysis stage, you should not make a
decision based solely on the tools’ output. Take into account all of the other factors and considerations we
have already discussed in this chapter.

 ■ Note You can read about the In-Memory OLTP ARM tool at http://msdn.microsoft.com/en-us/
library/dn205133.aspx .

 New development, on the other hand, is a very different story. You can design a new system and
database schema while taking In-Memory OLTP limitations into account. It is also possible to adjust some
functional requirements during the design phase. As an example, it is much easier to store data in a case-
sensitive way from the beginning as compared to changing the behavior of existing systems after they are
deployed to production, in the case if you use SQL Server 2014.

 You should remember, however, that In-Memory OLTP is an Enterprise Edition feature, and it requires
powerful hardware with a large amount of memory. It is an expensive feature because of its licensing costs.
Moreover, it is impossible to “set it and forget it.” Database professionals should actively participate in
monitoring and tuning the system after deployment. They need to monitor system memory usage, analyze
data and recreate hash indexes if bucket counts need to be changed, update statistics, redeploy natively-
compiled modules, and perform other tasks as well.

 All of that makes In-Memory OLTP a bad choice for independent software vendors who develop
products that need be deployed to a large number of customers. Moreover, it is not practical to support two
versions of a system—with and without In-Memory OLTP—because of the increase in development and
support costs.

 Finally, if you are using the Enterprise Edition of SQL Server or the premium tier of SQL Database in
Microsoft Azure, you can benefit from some of the In-Memory OLTP features, even if you decided that In-
Memory OLTP migration is not cost-effective for your organization’s needs. You can use memory-optimized
table variables and/or non-durable memory-optimized tables as a staging area and for the replacement of
on-disk temporary tables. This will improve the performance of calculations and ETL processes that need to
store a temporary copy of the data.

 Another possibility is using memory-optimized tables as session state storage for ASP.Net applications
and/or as distributed cache for client applications, avoiding the purchase of expensive third-party solutions.
You can use either durable or non-durable tables in this scenario. Durable tables will provide you with
transparent failover, while non-durable tables will have incredibly fast performance. Obviously, you should
remember the 8,060-byte maximum row size limitation and address it in code if you are using SQL Server
2014.

 ■ Note My Expert SQL Server In-Memory OLTP book covers many other questions related to the deployment,
monitoring, and management of the systems utilizing In-Memory OLTP.

 Summary
 SQL Server uses native compilation to minimize the processing overhead of the interpreted T-SQL language.
It generates separate DLLs for every memory-optimized object and loads it into process memory.

 SQL Server 2014 supports the native compilation of regular T-SQL stored procedures. SQL Server
2016 also supports the native compilation of DML triggers and scalar user-defined functions. It compiles
them into DLLs at creation time or, in the case of a server or database restart, at the time of the first call.
SQL Server optimizes natively-compiled modules and embeds an execution plan into the code. That plan

http://msdn.microsoft.com/en-us/library/dn205133.aspx
http://msdn.microsoft.com/en-us/library/dn205133.aspx

CHAPTER 37 ■ IN-MEMORY OLTP PROGRAMMABILITY

791

never changes unless the module is recompiled after a SQL Server or database restart. You should drop and
recreate the module in SQL Server 2014 or recompile it with the sp_recompile stored procedure in SQL
Server 2016 if data distribution has been significantly changed after compilation.

 While natively-compiled modules are incredibly fast, they support a limited set of T-SQL language
features. You can avoid such limitations by using interpreted T-SQL code that accesses memory-optimized
tables through the Query Interop component of SQL Server. Almost all T-SQL language features are
supported in this mode.

 Memory-optimized table types and memory-optimized table variables are the in-memory analog of
table types and table variables. They live in-memory only, and they do not use tempdb . You can use memory-
optimized table variables as a staging area for the data and to pass a batch of rows to a T-SQL routine.
Memory-optimized table types allow you to create indexes similar to memory-optimized tables.

 In-Memory OLTP is an Enterprise Edition feature that requires the monitoring and tuning of systems in
the post-deployment stage. It makes In-Memory OLTP a bad choice for independent software vendors who
develop systems that need to be deployed to multiple customers.

 The migration of existing systems could be a very time consuming and expensive process that requires
you to address various limitations and differences in the behavior of memory-optimized and on-disk
tables and indexes. You should perform a cost/benefit analysis, making sure that the benefits of migration
overweigh its implementation costs.

793

 A
 ACCESS_METHODS_DATASET_PARENT

latch type , 573
 ACCESS_METHODS_HOBT_COUNT

latch type , 573
 ACCESS_METHODS_HOBT_VIRTUAL_ROOT

latch type , 573
 ACCESS_METHODS_SCAN_KEY_GENERATOR

latch type , 573
 ACCESS_METHODS_SCAN_RANGE_GENERATOR

latch type , 573
 ACID transaction characteristics , 382
 Actions in Extended Events , 519, 525
 Active node , 638
 ACTIVE_TRANSACTION log_reuse_

wait_desc value , 611
 Actual number of rows in the

execution plan, 58
 Ad-hoc queries , 503
 Adjacency list in hierarchies , 328
 AFTER Triggers , 195
 Aligned indexes , 341
 Allocation map pages , 19, 274, 290
 Allocation unit on disk , 546
 Allocation units , 20, 338
 ALTER DATABASE SET ALLOW_SNAPSHOT_

ISOLATION command , 435
 ALTER DATABASE SET PARTNER

TIMEOUT command , 645
 ALTER DATABASE SET QUERY_STORE

command , 582
 ALTER DATABASE SET QUERY_STORE

CLEAR command , 595
 ALTER DATABASE SET READ_COMMITTED_

SNAPSHOT command , 434
 ALTER INDEX REBUILD , 146
 ALTER INDEX REORGANIZE , 146
 ALTER TABLE REBUILD statement , 28, 36
 ALTER TABLE SET (LOCK_ESCALATION)

command , 423

 ALTER TABLE SET (REMOTE_DATA_ ARCHIVE)
command , 120

 ALTER TABLE SET (SYSTEM_VERSIONING)
command , 113

 Always Encrypted , 132
 AlwaysOn Availability Groups , 641, 721
 AlwaysOn Failover Cluster , 637
 AlwaysOn_Health Extended Events session , 540
 Analysis phase of crash-recovery , 603
 Anchor value in page compression , 102
 Any size memory allocator , 576
 Application domain in .Net , 293
 Application locks , 443
 Application-versioned temporal tables , 11
 Assemblies (.Net) , 293
 ASYNC_IO_COMPLETION wait type , 558
 ASYNC_NETWORK_IO wait type , 569
 asynchronous_bucketizer Extended

Event target , 528, 536
 Asynchronous commit , 642
 asynchronous_fi le_target Extended

Event target , 528, 533
 Atomic blocks , 776
 Atomicity transaction characteristic , 382
 Atomization of nodes (XQUERY) , 252
 Auto Close database option , 548
 Autocommitted transactions , 760
 Auto Create Statistics database option , 62
 AUTOGROW_ALL_FILES fi legroup option , 5
 AUTOGROW_SINGLE_FILE fi legroup option , 5
 Automatic page repair , 644
 Auto-parameterization , 125, 505
 Auto Shrink database option , 8, 548
 Auto Update Statistics Asynchronously

database option , 69
 Auto Update Statistics database option , 62
 avg_fragmentation_in_percent in sys.dm_db_

index_physical_stats , 143, 146
 avg_page_space_used_in_percent in sys.dm_db_

index_physical_stats , 143
 AVG_RANGE_ROWS in statistics histogram , 57

 Index

© Dmitri Korotkevitch 2016
D. Korotkevitch, Pro SQL Server Internals, DOI 10.1007/978-1-4842-1964-5

■ INDEX

794

 B
 Backup chain , 616
 BACKUPIO wait type , 558
 BACKUP operator , 616
 Backup to Microsoft Azure , 632
 Backup to Microsoft Windows Azure Tool , 632
 Backup to URL , 632
 Base value in value-based encoding

in column-based storage , 675
 Basic AlwaysOn Availability Groups , 646
 Batch mode execution , 663
 BCM pages , 21, 616
 BEGIN ATOMIC..END statement , 779
 BeginTs timestamp , 723, 743, 760
 Blocked process report , 400, 567
 Blocked process threshold

confi guration option , 400
 Blocking operators , 470
 BLOCK predicate in row-level security policy , 127
 Bounding box approach with spatial data , 324
 Bound query tree , 463
 B-Tree , 36, 789
 BUCKET_COUNT hash index property , 724, 735
 Bulk changed map pages , 21, 616
 Bulk insert into the tables with

columnstore indexes , 693
 BULK LOGGED database

recovery model , 608
 Bw-Tree , 728, 789

 C
 CACHESTORE_OBJCP cache store , 511, 577
 CACHESTORE_PHDR cache store , 511, 577
 Cache stores in plan cache , 511
 CACHESTORE_SQLCP cache store , 511, 577
 CACHESTORE_XPROC cache store , 511
 Calculated columns , 93
 Cardinality estimation

model , 55, 69, 166, 233, 273, 277
 CardinalityEstimatorModelVersion

execution plan property , 70
 CD row format , 98
 CHECK constraints , 188, 344, 366
 CHECK OPTION in a views , 224
 Checkpoint fi les , 744
 CHECKPOINT process , 22, 599, 603, 607, 747
 CHECKSUM backup option , 617
 CHECKSUM() function , 164
 CI record , 103
 Classifi er function in Resource Governor , 550
 CLEAR PROCEDURE_CACHE

database scoped confi guration , 499

 Close() method of the execution plan operator , 469
 Closure tables in hierarchies , 329
 CLR Integration , 293
 Clustered columnstore indexes , 691, 740
 Clustered index design considerations , 155
 Clustered indexes , 36
 Code reuse , 227
 Column-based storage , 663, 673
 Column Encryption Key (CEK) , 133
 Column Encryption Setting connection

string property , 133, 134
 Column-level statistics , 58, 681
 Column Master Key (CMK) , 133
 Column-off set array , 10
 COLUMN_SET column , 108
 COLUMNSTORE_ARCHIVE

compression option , 675, 741
 COLUMNSTORE compression option , 676
 Columnstore indexes , 663
 Columnstore index maintenance , 698
 Columnstore index types , 687
 COLUMNS_UPDATE() function , 207
 Commit dependency , 761
 Common Table Expressions (CTE) , 237
 Compensation log records , 602, 622
 Compiled plan , 491
 Compiled plan stub , 504
 Composite indexes , 45, 725
 Compound indexes , 45
 COMPRESS() function , 241
 COMPRESSION backup option , 617
 COMPRESSION_DELAY

columnstore index option , 709, 741
 Compression information (CI) Record , 103
 Consistency transaction characteristic , 382
 CONTAINS MEMORY_ OPTIMIZED_DATA

fi legroup option , 719
 CONTEXT_INFO() function , 209
 COPY_ONLY backup option , 618
 Cost-based optimization stages , 466
 Costing model assumptions

during optimization , 467
 Cost Th reshold for Parallelism confi guration

setting , 592, 563
 Covering indexes , 81
 Crash-recovery process , 603, 638, 643
 CREATE STATISTICS command , 62
 Cross-containter transactions in

In-Memory OLTP , 759
 CROSS JOIN operator , 474
 CSILOCATOR column , 696
 Current table in temporal tables , 112
 CXMEMTHREAD wait type , 565
 CXPACKET wait type , 558, 562

■ INDEX

795

 D
 DataAccessKind addribute in CLR , 301
 Database compatibility level , 62, 79, 241, 668
 Database consolidation , 548
 Database is not confi gured for

database mirroring error , 645
 Database mirroring , 641, 721
 Database recovery models , 607
 Data compression , 97
 Data fi le , 3
 Data fi les in In-Memory OLTP , 744
 Data fl ush task , 748
 Data page , 8
 Data row , 8
 Data row in memory-optimized tables , 722
 Data warehouse overview , 659
 Data warehouse workload , 167, 660
 DBCC CHECKDB command , 617
 DBCC FREEPROCCACHE command , 495
 DBCC FREESYSTEMCACHE(‘TokenAndPerm

UserStore’) command , 577
 DBCC IND command , 11
 DBCC LOGINFO command , 607
 DBCC MEMORYSTATUS command , 577
 DBCC PAGE command , 11
 DBCC SHOW_STATISTICS command , 56
 DBCC SHRINKFILE command , 153, 362
 DBCC SQLPERF('sys.dm_os_latch_ stats',

CLEAR) command , 571
 DBCC SQLPERF('sys.dm_os_wait_stats',

CLEAR) command , 553
 DBCC UPDATEUSAGE command , 68
 DCM pages , 21, 615
 DDL triggers , 204
 Deadlock , 407
 Deadlock graph , 416, 567
 Deadlock Monitor task , 408
 DECOMPRESS() function , 241
 Dedicated admin connection

(DAC) , 245, 552, 568, 578
 Delayed durability , 604, 779
 Delete bitmap in columnstore indexes , 691, 741
 Delete bitmap structure , 694
 Delete buff er in columnstore indexes , 706
 Deleted rows table in columnstore indexes , 741
 deleted virtual table , 197
 Delta fi les in In-Memory OLTP , 744
 Delta record , 729
 Delta store in columnstore indexes , 691
 Delta store structure , 694
 Density vector , 56
 Designing a backup strategy , 622
 Designing a high availability strategy , 651
 Detecting suboptimal queries , 174

 Deterministic encryption , 134
 Dictionary compression in page compression , 102
 Dictionary encoding in column-based storage , 674
 Dictionary in column-based storage , 674
 Diff erential change map pages , 21, 615
 DIFFERENTIAL database backup , 617
 Dimension tables , 660
 Dirty reads data inconsistency issue , 392, 753
 DISTINCT_EQ_ROWS in statistics histogram , 56
 Distribution database in replication , 650
 Distributor in replication , 650
 DML triggers , 195
 DONE worker thread state , 552
 Duplicated reads data inconsistency issue , 392
 Durability option in memory-optimized tables , 720
 Durability transaction characteristic , 382
 Dynamic Data Masking , 136

 E
 EndTs timestamp , 723, 743, 760
 EQ_ROWS in statistics histogram , 56
 Error 1204 , 429
 Error 1205 , 421
 Error 3960 , 438
 Error 41301 , 763
 Error 41839 , 764
 Error 9002 , 610
 -E startup parameter , 290
 Estimated execution plan , 473
 Estimated number of rows in the execution plan , 58
 etw_classic_sync_target Extended Event target , 528
 event_counter Extended Event target , 528, 535
 EVENTDATA() function , 205, 207
 event_fi le Extended Event target , 528, 533
 EVENT_RETENTION_MODE Extended Events

session confi guration setting , 529
 Event sessions in Extended Events , 519
 Events in Extended Events , 521
 Eviction policy algorithm , 512
 Exchange operator , 483
 Exclusive (X) lock , 383
 Execution model (SQL Server) , 551
 Execution plan , 463, 472
 EXECUTE WITH RECOMPILE clause , 496
 EXISTS() method (XQUERY) , 254
 EXPAND VIEWS query hint , 487
 Exponential backoff algorithm , 78
 Extended Events , 519
 Extended Events session , 530
 Extents , 19
 EXTERNAL_ACCESS CLR assemblies , 294
 External index fragmentation , 143
 Extract Transform and

Load (ETL) processes , 660

■ INDEX

796

 F
 Facts tables , 660
 Failover cluster , 637, 721
 Failover Partner connection string property , 645
 Failover process , 637
 Fast database recovery , 604
 FAST N query hint , 488
 FGCB_ADD_REMOVE latch type , 573
 Filegroups , 3
 File Snapshot Backup , 633
 FILLFACTOR index option , 145, 543
 Filtered indexes , 87, 109, 502, 506, 709
 Filtered statistics , 90
 Filter function for Stretch Database , 118, 120
 FILTER predicate in row-level security policy , 127
 Fixed-length data types , 9
 fn_dump_dblog system function , 621
 fn_hadr_is_primary_replica system function , 648
 fn_trace_gettable system function , 620
 Forced parameterization , 506
 Forced plan in Query Store , 584
 FORCE ORDER query hint , 487
 FORCESCAN table hint , 487
 FORCESEEK table hint , 487
 Foreign key constraints , 184, 662, 721
 FORMAT backup option , 617
 FOR SYSTEM_TIME clause of the SELECT , 114
 Forwarded row , 33
 Forwarding pointer , 33
 fragment_count in sys.dm_db_index_

physical_stats , 143
 FULL database backup , 609, 617
 FULL database recovery model , 608

 G
 Garbage collection in In-Memory OLTP , 743
 Geography data type , 295, 319
 Geometry data type , 295, 319
 GetRow() method of the execution

plan operator , 469, 786
 Ghost cleanup task , 23
 Global allocation map (GAM) pages , 19, 274
 Global temporary tables , 270
 Global transaction timestamp , 723, 743, 760

 H
 Halloween protection , 480, 723
 Hash aggregate , 478
 HASHBYTE() function , 148
 Hash collision , 471
 Hash indexes , 723, 735
 Hash index heap , 737

 Hash join operator , 475
 Hash join query hint , 487
 Hash warning , 471, 530
 Header byte , 98
 Heap tables , 31
 Hekaton , 717
 HierarchyID data type , 295, 328
 High availability database mirroring mode , 644
 High availability technologies , 637
 High performance database mirroring mode , 642
 High protection database mirroring mode , 644
 Histogram in statistics , 56, 336, 340
 Histogram Extended Event target , 528, 536
 History table in temporal tables , 112, 748
 HKCS_COMPRESSED allocator varheap , 742
 Hot spots during inserts , 160, 571

 I
 IAM chain , 20
 IAM pages , 20, 33, 274
 IAM scan , 33, 40
 Identity , 160
 Idle worker thread , 743
 IdxLinkCount element in

memory-optimized table row , 723, 743
 Included columns in the indexes , 81
 Incremental statistics , 340
 Index allocation map pages , 20, 33, 274
 Index consolidation , 172
 Indexed views , 219
 Indexes on calculated columns , 96
 Index intersection , 165
 Index fragmentation , 143, 363, 434
 Index rebuild , 146, 454
 Index reorganize , 146
 Index seek , 41
 Index table hint , 485
 Index usage statistics , 169
 Infi nity Global Transaction Timestamp value , 723
 INIT backup option , 617
 Inline table-valued functions , 235, 782
 In-row allocation units , 20, 338
 Inserted virtual table , 197
 Instant File Initialization , 6, 549
 Instead of triggers , 195, 224, 348
 Intent (I*) lock , 383
 InterlockedCompareExchange functions , 729
 Intermediate level of the index , 37, 728
 Internal index fragmentation , 143
 Internal index pages , 728
 IO_COMPLETION wait type , 558
 I/O stalls , 558
 IsDeterministric attribute in CLR , 301
 ISJSON() function , 264

■ INDEX

797

 Isolation transaction characteristic , 382
 IsPrecise attribute in CLR, ,301
 Iterators in the execution plan , 468

 J
 Join elimination process , 216
 JSON , 262
 JSON_MODIFY() function , 264
 JSON_QUERY() function , 264
 JSON_VALUE() function , 264

 K
 KEEPFIXED PLAN query hint , 492
 KEEP PLAN query hint , 270, 492
 Key lookup deadlock , 410
 Key lookup operation , 49, 81

 L
 Latches , 570
 LATCH wait type , 571
 Lazy commit , 604
 Lazy writer process , 23, 505
 LCK_M_* wait types , 567
 Leaf level of the index , 36, 728
 LEGACY_CARDINALITY_ESTIMATION

database scoped confi guration , 70
 Listener in AlwaysOn Availability Groups , 646
 LOB allocation units , 20, 338, 353, 675
 LOB data pages , 16
 LOB page allocator , 738
 LOB storage in In-Memory OLTP , 722
 Local temporary tables , 269
 Lock compatibility , 387
 Lock escalation , 423
 Lock Pages in Memory

permission , 547, 575
 Lock partitioning , 452
 Lock types

 exclusive (X) lock , 383
 intent (I*) lock , 383
 range locks , 390
 schema modifi cation

(Sch-M) lock , 146, 192, 348, 447
 schema stability (Sch-S) lock , 447
 shared (S) lock , 386
 update (U) lock , 384

 LOG_BACKUP log_reuse_wait_desc value , 611
 Log blocks , 599
 Log buff er , 599, 766
 LOGBUFFER wait type , 558, 604
 LOG database backup , 608, 617
 Logical query tree , 463

 Logical end time for In-Memory
OLTP transaction , 761

 Logical start time for In-Memory
OLTP transaction , 723, 760

 LOG_MANAGER latch type , 573
 Logon triggers , 206
 Log Reader Agent job , 650
 Log sequence number (LSN) , 599, 621
 Log shipping , 648, 721
 Log writer process , 601
 Long Data Region , 98
 Loop join operator , 474, 776
 Loop join query hint , 487
 Low-priority locks , 454

 M
 Magnitude in value-based encoding

in column-based storage , 674
 Managed backup , 633
 Mapping index in columnstore indexes , 702
 Mapping table in range indexes , 728
 Maps in Extended Events , 526
 Masking function in dynamic data masking , 136
 Materialized path in hierarchies , 330
 Materialized views , 219
 MaxByteSize attribute in CLR , 308
 MAXDOP confi guration setting , 563
 MAX_GRANT_PERCENT query hint , 471, 565
 Maximum server memory

confi guration option , 575, 641
 Max worker thread confi guration option , 552
 Memory allocator , 576
 MEMORYCLERCK_SQLBUFFERPOOL

memory clerk , 577
 Memory clerks , 576
 MEMORYCLERK_SQLQERESERVATIONS

memory clerk , 563, 577
 Memory confi guration , 575
 Memory consumers in In-Memory OLTP , 736
 Memory grant , 65, 470, 550, 564, 682, 689
 Memory nodes , 576
 MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT

database option , 760
 MEMORY_OPTIMIZED = ON option in

CREATE TABLE statement , 721
 Memory-optimized tables , 638, 720
 Memory-optimized table types , 786
 Memory-optimized table-valued parameters , 787
 Memory-optimized table variables , 786
 Memory pressure , 505
 Merge delta , 733
 Merge join operator , 474
 Merge join query hint , 487
 Merge of checkpoint fi les , 746

■ INDEX

798

 Merge replication , 650
 Merry-go-round scan , 40
 MIN_GRANT_PERCENT query hint , 471
 Minimally logged operations , 609
 Mirror server in database mirroring , 641
 Mixed extents , 19
 Mixed OLTP and Data Warehouse workload , 167
 MIXED_PAGE_ALLOCATION database option , 20
 MODIFY() method (XQUERY) , 260
 MOVE database restore option , 618
 Multi-instance failover cluster , 639
 Multi-page memory allocator , 576
 Multi-statement user-defi ned function , 229
 Mutual execution concept , 443

 N
 Named Pipes protocol , 551
 Native compilation , 771
 Natively-compiled inline

table-valued functions , 235, 782
 Natively-compiled modules , 775
 Natively-compiled scalar

user-defi ned functions , 779
 Natively-compiled stored procedures , 776
 Natively-compiled triggers , 779
 Nested loop join , 474, 776
 Nested sets in hierarchies , 330
 Nested triggers , 208
 NESTING_TRANSACTION_FULL latch type , 573
 New cardinality estimator , 70, 92, 233
 NEWID() function , 148, 161
 NEWISEQUENTIALID() function , 163
 Nodes in cluster , 637
 NODES() method (XQUERY) , 257
 NOEXPAND table hint , 223, 487
 NOLOCK table hint , 391, 760
 Non-blocking operators , 470
 Nonclustered B-Tree indexes on tables with

clustered columnstore indexes , 702
 Nonclustered columnstore

indexes (read-only) , 688
 Nonclustered columnstore

indexes (updateable) , 706
 Nonclustered index design considerations , 165
 Nonclustered indexes , 46
 Nonclustered indexes in

memory-optimized tables , 728, 735
 Non-preemptive scheduling , 294
 Non-repeatable reads data

inconsistency issue , 392, 753
 NO_PERFORMANCE_SPOOL query hint , 481
 NORECOVERY database

restore option , 618
 Null bitmap , 10

 O
 Object plan guide , 507
 OBJECTPROPERTY() function , 219
 OBJECTSTORE_LOCK_MANAGER

memory clerk , 577
 OLTP workload , 167
 OPENJSON , 265, 285
 Open() method of the execution plan operator , 469
 OPENXML , 260
 Operational analytics , 660, 689, 706, 740, 771
 Operators in the execution plan , 468
 Optimistic transaction isolation levels , 153, 433
 Optimization for UNKNOWN values , 776
 Optimize for ad-hoc workloads confi guration

setting , 504, 549, 565
 OPTIMIZE FOR query hint , 497
 OPTIMIZE FOR UNKNOWN query hint , 498
 Ordered index scan , 38
 Overall Resource Consumption

Query Store report , 589
 Ownership chaining , 295, 502

 P
 Packages in Extended Events , 520
 PAD_INDEX index option , 145
 PAGE compression , 97, 102, 112, 336, 676
 Page free space (PFS) pages , 20, 31
 PAGEIOLATCH wait type , 558, 571
 PAGELATCH wait type , 558, 571
 Page merging , 733
 Page split , 142, 732
 Page verify database option , 549
 pair_matching Extended Event target , 528, 538
 Parallelism , 39, 96, 481, 562, 664
 Parallelism operator , 483
 Parameterization , 125
 Parameterization forced query hint , 506
 Parameterized views , 235
 Parameter sniffi ng , 493, 581, 776
 PARAMETER_SNIFFING database

scoped confi guration , 499
 Parsing during query optimization , 463
 Partial database availability , 626
 Partial database backup , 336, 630
 Partial database restore option , 629
 Partition alignment in disk subsystem , 546
 Partitioned tables , 338
 Partitioned views , 224, 342
 $PARTITION function , 373
 Partition function , 338
 Partition scheme , 338
 Partition switch , 340, 689
 PARTNER TIMEOUT database option , 645

■ INDEX

799

 Passive node , 638
 PATH secondary XML index , 250
 Payload in In-Memory OLTP row , 722
 Peer-to-peer replication , 651
 Pending worker thread state , 552
 Performance counters:

 batch requests/sec performance counter , 567
 buff er cache hit ratio performance counter , 560
 checkpoint pages/sec

performance counter , 560
 full scans/sec performance counter , 560
 lazy writer /sec performance counter , 560
 memory available/mbytes performance

counter , 575
 memory grants pending

performance counter , 564
 page life expectancy performance counter , 560
 page read/sec performance counter , 560
 page write/sec performance counter , 560
 physicalDisk performance object , 560
 processor queue length

performance counter , 567
 % processor time performance counter , 567
 range scan/sec performance counter , 560
 SQL compilations/sec

performance counter , 567
 SQL recompilations/sec

performance counter , 567
 SQL Server:Access Methods

performance object , 560
 SQL Server:Availability Replica

performance object , 643
 SQL Server:Buff er Manager

performance object , 560
 SQL Server:Database Mirroring

performance object , 643
 SQL Server:Database Replica

performance object , 643
 SQL Server:Memory Manager

performance object, – 563 , 575
 SQL Server:Query Store

performance object , 596
 Target Server Memory (KB)

performance counter , 575
 Total Server Memory (KB)

performance counter , 575
 transactions/sec performance counter , 560

 Perform Volume Maintenance Task permission , 6
 Period columns in temporal tables , 112
 Permission sets for .Net assemblies , 294
 Persisted calculated columns , 93
 Phantom reads data inconsistency issue , 392, 753
 Piecemeal restore , 336, 626, 747
 Plan cache and plan caching , 88, 491
 Plan guides , 506

 Plan reuse calculation , 567
 Plan store in Query Store , 583
 Point in time recovery , 619
 Point-lookup , 42, 135, 725
 Policy function in row-level security , 126
 Predicates in Extended Events , 523
 Preemptive scheduling , 294
 Prefi x compression in page compression , 102
 Principal server in database mirroring , 641
 Primary key constraints , 181, 721
 Primary node in AlwaysOn Availability Groups , 641
 Primary XML indexes , 244
 Property secondary XML index , 250
 Proportional fi ll algorithm , 5
 Protocol layer , 551
 Publisher in replication , 650

 Q
 Query execution , 468
 Query Interop in In-Memory

OLTP , 719, 736, 743, 771, 786
 Query life cycle , 463
 QUERY() method (XQUERY) , 257
 Query optimization , 463
 Query store , 404, 581, 748
 Quorum in database mirroring , 644

 R
 Randomized encryption , 134
 RANGE_HI_KEY in statistics histogram , 56
 RANGE_HI_ROWS in statistics histogram , 56
 Range indexes in memory-optimized

tables , 728, 735
 Range index varheap , 737
 RANGE LEFT partition function parameter , 339, 356
 Range locks , 390
 RANGE RIGHT partition function

parameter , 339, 356
 Range scan , 42
 Read-ahead technique , 142
 READ COMMITTED SNAPSHOT transaction

isolation (RCSI) level , 434
 READCOMMITTED table hint , 391, 438
 READ COMMITTED transaction isolation level , 389
 Read-only fi legroups , 630
 READPAST table hint , 392, 446
 READ UNCOMMITTED transaction

isolation level , 388, 435
 READ_WRITE_ FILEGROUPS backup option , 630
 Recovery database restore option , 618
 Recovery Point Objective (RPO) , 622, 652
 Recovery Time Objective (RTO) , 622, 626, 652
 Recursive triggers , 209

■ INDEX

800

 Redo phase of crash-recovery , 603
 Redo queues on secondary node , 643
 Redo threads , 367, 643
 Redundant indexes , 172
 Referential integrity , 184, 765
 Regressed Queries Store report , 587
 REMOTE_DATA_ARCHIVE_OVERRIDE

table hint , 125
 REPEATABLEREAD table hint , 391
 REPEATABLE READ transaction

isolation level , 389, 754
 Repeatable read validation , 755, 763, 765
 Replication , 649
 REQUEST_MAX_MEMORY_GRANT_PERCENT

workload group setting in
Resource Governor , 563, 689

 Resource Governor , 550
 Resource pool in Resource Governor , 550
 RESOURCE_SEMAPHORE wait type , 564, 567
 Resource semaphore , 564
 RESTORE database , 618
 RESTORE DATABASE WITH RECOVERY

command , 619
 RESTORE from URL , 632
 RID lookup operation , 49
 ring_buff er Extended Event target , 528, 532
 Root level of the index , 37, 81, 728
 Row-based execution model , 468
 Row-based storage , 663
 Row chain in In-Memory OLTP , 722
 Row compression , 97, 98
 @@ROWCOUNT , 199
 Row groups in column-based storage , 673, 691
 Row header in In-Memory OLTP , 722
 Row-id in nonclustered indexes , 47
 Row-level locking , 382
 Row-level security , 126, 748
 Row mode execution , 663
 Row-overfl ow allocation units , 20, 338
 Row-overfl ow data pages , 14
 Row-overfl ow storage in In-Memory OLTP , 722
 Runnable tasks queue , 553
 Runnable worker thread state , 553
 Running worker thread state , 552
 Runtime statistics store in Query Store , 583

 S
 SAFE CLR assemblies , 294
 SA_MANAGE_VOLUME_NAME permission , 6
 SARGability rules for hash indexes , 725
 SARGable predicates , 42, 85, 172, 231
 Scalar user-defi ned function , 229, 779
 Scan set in In-Memory OLTP transaction , 762
 Schedulers (SQLOS) , 552

 SCHEMA_AND_DATA durability option , 720
 SCHEMABINDING option , 127, 219, 235, 779
 Schema modifi cation

(Sch-M) lock , 146, 192, 348, 447
 SCHEMA_ONLY durability option , 720
 Schema stability (Sch-S) lock , 447
 Secondary node in AlwaysOn

Availability Groups , 641
 Secondary XML indexes , 244
 Security policy in row-level security , 126
 Segments in column-based storage , 673
 SELECT * , 17, 87, 108
 SELECT FOR JSON , 263
 SELECT FOR XML , 261
 Semi-structured data (XML and JSON) , 241
 Sequence objects , 160
 SERIALIZABLE table hint , 391
 SERIALIZABLE transaction

isolation level , 390, 436, 549, 754
 Serializable validation , 755, 763
 Service Level Agreement (SLA) , 337, 622, 652
 session_context() function , 130, 209
 SET CONTEXT_INFO statement , 209
 SET DEADLOCK_PRIORITY statement , 408
 SET TRANSACTION ISOLATION

LEVEL statement , 391
 Shallow backup of stretch database , 119
 Shared global allocation

map (SGAM) pages , 19, 274
 Shared memory protocol , 551
 Shared (S) lock , 386
 Shell query , 505
 Short-circuit predicate evaluation , 525
 Short Data Region , 98
 Signing .Net assemblies , 297
 Simple database recovery model , 607
 Simple parameterization , 506
 Single-page memory allocator , 576
 Singleton lookup , 42
 Skipped rows data inconsistency issue , 393
 Sliding Windows scenario , 367
 Slot array , 9
 Snapshot replication , 650, 721
 Snapshot table hint , 435
 Snapshot transaction isolation level , 435, 754
 Snapshot validation , 754, 763
 Snowfl ake database schema , 660
 Sort warning , 471, 530
 SOS_SCHEDULER_YIELD wait type , 563, 566
 Sparse columns , 106, 243
 Sparse vector , 106
 Spatial data types , 319
 Spatial index - T6533 , 319
 Spinlocks , 573
 Spinloop worker thread state , 553

■ INDEX

801

 Split brain situation , 645
 Spool operator , 479
 SQL:COLUMN() function (XQUERY) , 254
 SQL Database in Microsoft Azure , 118
 SQL plan guide , 507
 SQL Server failover cluster , 637, 721
 SQL Server Operating System (SQLOS) , 552
 SQL trace , 519
 SQL:VARIABLE() function (XQUERY) , 254
 STANDBY database restore option , 621
 Star database schema , 660
 Startup stored procedure , 288
 Statistics , 55, 270, 277, 681, 735
 STATISTICS_NORECOMPUTE index option , 62
 Statistics recompilation threshold , 62, 89, 270
 Statistics update threshold , 62, 89, 270, 736
 Status bits A , 10
 Status bits B , 10
 Steps in statistics object , 56
 StmtId element in memory-optimized

table row , 723
 STOPAT database restore option , 619
 STOPATMARK database restore option , 619
 STOPBEFOREMARK database restore option , 619
 Stream aggregate , 477
 Stretch Databases , 118
 Striping backups , 628
 Sub-latches , 570
 Subscriber in replication , 650
 Superlatches , 570
 SUSPENDED node state in database mirroring

and AlwaysOn Availability Groups , 642
 Suspended tasks queue , 553
 SUSPENDED worker thread state , 553
 SYNCHRONIZING node state in database mirroring

and AlwaysOn Availability Groups , 642
 synchronous_bucketizer Extended

Event target , 528, 536
 Synchronous commit , 642
 synchronous_event_counter

Extended Event target , 528, 535
 sys.check_constraints catalog view , 192
 sys.column_store_dictionaries catalog view , 679
 sys.column_store_row_groups

catalog view , 693, 709
 sys.column_store_segments catalog view , 677, 705
 sys.database_fi les catalog view , 627
 sys.database_query_store_options view , 583, 595
 sys.databases catalog view , 610, 654
 sys.dm_clr_tasks data management view , 294
 sys.dm_db_column_store_row_group_operational_

stats data management view , 711
 sys.dm_db_column_store_row_group_physical_

stats data management view , 703, 710, 742

 sys.dm_db_database_page_allocations data
management function , 696

 sys.dm_db_index_operational_stats data
management function , 104, 169

 sys.dm_db_index_physical_stats data
management function , 143

 sys.dm_db_index_usage_stats data
management view , 169

 sys.dm_db_missing_indexes data
management view , 177

 sys.dm_db_stats_properties data
management view , 68

 sys.dm_db_xtp_hash_index_stats data
management view , 725

 sys.dm_db_xtp_index_stats view data
management view , 734

 sys.dm_db_xtp_memory_consumers data
management view , 736

 sys.dm_db_xtp_table_memory_stats data
management view , 749

 sys.dm_exec_cached_plans data
management view , 513, 564

 sys.dm_exec_connections data
management view , 568

 sys.dm_exec_function_stats data
management view , 562

 sys.dm_exec_input_buff er data
management function , 556

 sys.dm_exec_plan_attributes
data management function , 513

 sys.dm_exec_procedure_stats data
management view , 176, 515, 562, 784

 sys.dm_exec_query_memory_grants data
management function , 564

 sys.dm_exec_query_optimizer_info
data management view , 467

 sys.dm_exec_query_plan data management
function , 514, 564

 sys.dm_exec_query_resource_semaphores
data management function , 564

 sys.dm_exec_query_stats data management
view , 175, 294, 403, 515, 540, 560, 788

 sys.dm_exec_request
view , 210, 294, 396, 514, 556, 568

 sys.dm_exec_sessions data
management view , 210, 400, 568

 sys.dm_exec_session_wait_stats
data management view , 556

 sys.dm_exec_sql_text data
management function , 404, 418, 556

 sys.dm_exec_text_query_plan data
management function , 514

 sys.dm_exec_trigger_stats data
management view , 176, 515

■ INDEX

802

 sys.dm_hadr_availability_replica_states
data management view , 648

 sys.dm_io_virtual_fi le_stats data
management function , 558, 604

 sys.dm_os_latch_stats data management view , 571
 sys.dm_os_memory_cache_counters

data management view , 511
 sys.dm_os_memory_cache_hash_tables

data management view , 511
 sys.dm_os_memory_clerks data

management view , 576
 sys.dm_os_memory_* data management views , 294
 sys.dm_os_memory_nodes data

management view , 576, 577
 sys.dm_os_performance_counters data

management view , 579
 sys.dm_os_process_memory

data management view , 575
 sys.dm_os_schedulers data management view , 556
 sys.dm_os_spinlock_stats data

management view , 573
 sys.dm_os_tasks data management view , 556
 sys.dm_os_threads data management view , 556
 sys.dm_os_waiting_tasks data

management view , 396, 556, 568
 sys.dm_os_wait_stats data

management view , 511, 566
 sys.dm_tran_database_transactions data

management view , 611
 sys.dm_tran_locks data

management view , 383, 396, 445, 454, 567
 sys.dm_tran_session_transactions data

management view , 611
 sys.dm_xe_map_values data management view , 526
 sys.dm_xe_object_columns data

management view , 521
 sys.dm_xe_objects data management view , 521
 sys.dm_xe_packages data management view , 520
 sys.dm_xe_sessions data management view , 532
 sys.dm_xe_sessions_object_columns data

management view , 532
 sys.dm_xe_targets data management view , 532
 sys.dm_xtp_gc_queue_stats

data management view , 744
 sys.dm_xtp_gc_stats data management view , 744
 sys.fn_dblog function , 767
 sys.fn_dblog_xtp function , 768
 sys.fn_validate_plan_guide function , 510
 sys.fn_xe_fi le_target_read_fi le

table-valued function , 533
 sys.foreign_keys catalog view , 187
 sys.foreign_key_columns catalog view , 187
 sys.indexes catalog view , 183, 184
 sys.internal_partitions view , 703, 710
 sys.internal_tables view , 244

 sys.partition_range_values view , 374
 sys.processes view , 210
 sys.query_context_settings view , 585
 sys.query_store_plan view , 585
 sys.query_store_query_text view , 585
 sys.query_store_query view , 585
 sys.query_store_runtime_stats_interval view , 585
 sys.query_store_runtime_stats view , 585
 sys.server_triggers catalog view , 206
 sys.sp_autostats system stored procedure , 62
 sys.sp_control_ plan_guide stored procedure , 506
 sys.sp_create_ plan_guide stored procedure , 506
 sys.sp_delete_backup_fi le_snapshot

stored procedure , 635
 sys.sp_delete_backup stored procedure , 635
 sys.sp_describe_parameter_encryption

stored procedure , 133
 sys.sp_estimate_data_ compression_savings

stored procedure , 106
 sys.sp_fl ush_log stored procedure , 604
 sys.sp_getapplock stored procedure , 443
 sys.sp_get_query_template stored procedure , 508
 sys.sp_query_store_fl ush_db stored procedure , 583
 sys.sp_query_store_force_plan

stored procedure , 588
 sys.sp_query_store_remove_plan

stored procedure , 595
 sys.sp_query_store_remove_query

stored procedure , 595
 sys.sp_query_store_unforce_plan

stored procedure , 588
 sys.sp_rda_reauthorize_db stored procedure , 119
 sys.sp_rda_set_rpo_duration stored procedure , 118
 sys.sp_recompile stored procedure , 776
 sys.sp_releaseapplock stored procedure , 443
 sys.sp_set_session_context stored procedure , 211
 sys.sp_settriggerorder stored procedure , 209
 sys.sp_updatestats system

stored procedure , 68, 644, 736
 sys.sp_xml:preparedocument stored procedure , 260
 sys.sp_xml:removedocument stored procedure , 260
 sys.sp_xtp_bind_db_resource_pool

stored procedure , 748
 sys.sp_xtp_control_proc_exec_stats

stored procedure , 784
 sys.sp_xtp_control_query_exec_stats

stored procedure , 586, 748, 784
 sys.sp_xtp_fl ush_temporal_history

stored procedure , 748
 sys.stats catalog view , 60
 System default trace , 620
 system_health Extended

Event Session , 416, 539
 System-versioned temporal tables , 11, 748
 sys.triggers catalog view , 206

■ INDEX

803

 T
 Table alteration , 25
 Table heap , 737
 Table spool operator , 479
 Table variables , 276, 786
 Table-valued parameters , 281, 787
 Tabular data stream (TDS) protocol , 551
 Tail-log backup , 616, 624
 Targets in Extended Events , 520, 527
 TCP/IP protocol , 551
 telemetry_xevents Extended Events session , 540
 tempdb database , 269, 287
 tempdb transaction logging , 610
 tempdb performance , 289, 434
 tempdb spill , 65, 290, 470
 Template plan guide , 507
 Temporal tables , 11, 748
 Temporary object caching , 274
 Temporary tables , 269
 text() function (XQUERY) , 251
 Text In Row table option , 16
 THREADPOOL wait type , 567
 Tiered storage , 352
 Top Resource Consuming Queries Store report , 588
 Trace consumers in SQL Traces , 519
 Trace controller in SQL Traces , 519
 TRACE_CONTROLLER latch type , 573
 Trace fl ags:

 T634 , 692
 T1117 , 6, 291, 550
 T1118 , 20, 290, 549
 T1211 , 430
 T1222 , 416
 T1224 , 430
 T1229 , 453
 T2312 , 70
 T2371 , 63, 549
 T3226 , 549, 618
 T3604 , 446
 T4199 , 79, 549
 T6533 , 319
 T6534 , 319
 T8048 , 565
 T8649 , 96
 T8675 , 446
 T9481 , 70

 Trace produces in SQL traces , 519
 Tracked Queries Store report , 590
 Transactional replication , 650, 721
 TransactionId in In-Memory OLTP , 760
 Transaction isolation levels , 382, 383
 Transaction lifetime in In-Memory OLTP , 760
 Transaction log , 1, 599, 766

 Transaction log growth , 610
 Transaction log record , 104, 599
 Transaction log truncation , 606, 642
 Transactions , 279, 382
 Trickle insert into the tables with

columnstore indexes , 693
 Triggers , 153, 779
 Trivial execution plans , 465
 Troubleshooting blocking conditions , 395
 Trusted constraints , 192, 217
 TRUSTWORTHY database property , 299
 Tuple mover process , 692
 Typed XML , 244
 Types in Extended Events , 526

 U
 Uniform extents , 19
 UNIQUE constraints , 183
 Uniqueidentifi ers , 160
 Uniquifi er , 155
 UNSAFE CLR assemblies , 294
 Untyped XML , 243
 UPDATE() function , 207
 UPDATE STATISTICS command , 68, 736
 Undo fi le , 622
 Undo phase of crash-recovery , 603
 UNMASK permission , 136
 Updatable views , 224
 Update (U) lock , 384
 UPDLOCK table hint , 391, 446
 Use AWE Memory setting , 547
 USE PLAN query hint , 509, 584
 User-defi ned CLR types , 312
 User-defi ned functions

(UDF) , 93, 191, 300, 480, 562, 779
 User-defi ned table types , 281, 786
 User-defi ned T-SQL types , 311
 USERSTORE_TOKENPERM memory clerk , 577

 V
 Value-based encoding in

column-based storage , 674
 VALUE() method (XQUERY) , 251
 VALUE secondary XML index , 250
 Varheaps , 736
 Variable-length data types , 9
 Versioning tag pointer to version store , 10, 201
 Version store clean-up task , 436, 441
 Version store in tempdb , 104, 152, 201, 433, 440
 VertiPaq technology , 659
 Views , 213
 Virtual log fi les (VLF) , 550, 605

■ INDEX

804

 W
 Wait statistics analysis , 556
 Wait types , 553
 Windows Server Failover

Clustering (WSFC) cluster , 637
 Windows System Center , 642
 Windows System Resource Manager (WSRM) , 642
 WITH CHECK/WITH NOCHECK

constraint option , 192
 WITH FILE database restore option , 618
 Witness server in database mirroring , 644
 Workers in SQLOS , 552
 Worker threads , 552
 Worker thread starvation , 567
 Workload groups in Resource Governor , 550

 Workspace memory , 563
 Write-ahead logging , 599, 766
 WRITELOG wait type , 558, 604
 Write set in In-Memory OLTP transaction , 762
 Write/write confl ict in

In-Memory OLTP , 758

 X, Y, Z
 XLOCK table hint , 391
 XML data type , 243
 XML indexes , 244
 XML schema , 243
 XPATH , 251
 XQUERY , 250
 xVelocity technology , 659

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part I: Tables and Indexes
	Chapter 1: Data Storage Internals
	Database Files and Filegroups
	Data Pages and Data Rows
	Large Objects Storage
	Row-Overflow Storage
	LOB Storage

	SELECT * and I/O
	Extents and Allocation Map Pages
	Data Modifications
	Much Ado about Data Row Size
	Table Alteration
	Summary

	Chapter 2: Tables and Indexes: Internal Structure and Access Methods
	Heap Tables
	Clustered Indexes
	Composite Indexes
	Nonclustered Indexes
	Summary

	Chapter 3: Statistics
	Introduction to SQL Server Statistics
	Column-Level Statistics
	Statistics and Execution Plans
	Statistics and Query Memory Grants
	Statistics Maintenance
	New Cardinality Estimator (SQL Server 2014–2016)
	Comparing Cardinality Estimators: Up-to-Date Statistics
	Comparing Cardinality Estimators: Outdated Statistics
	Comparing Cardinality Estimators: Indexes with Ever-Increasing Key Values
	Comparing Cardinality Estimators: Joins
	Comparing Cardinality Estimators: Multiple Predicates
	Choosing the Model

	Query Optimizer Hotfixes and Trace Flag T4199
	Summary

	Chapter 4: Special Indexing and Storage Features
	Indexes with Included Columns
	Filtered Indexes
	Filtered Statistics
	Calculated Columns
	Data Compression
	Row Compression
	Page Compression
	Performance Considerations

	Sparse Columns
	Summary

	Chapter 5: SQL Server 2016 Features
	Temporal Tables
	Stretch Databases
	Configuring Stretch Database
	Querying Stretch Databases
	Stretch Database Pricing

	Row-Level Security
	Performance Impact
	Blocking Modifications

	Always Encrypted
	Always Encrypted Overview
	Programmability
	Security Considerations and Key Management

	Dynamic Data Masking
	Performance and Security Considerations

	Combining Security Features
	Summary

	Chapter 6: Index Fragmentation
	Types of Fragmentation
	FILLFACTOR and PAD_INDEX
	Index Maintenance
	Designing an Index Maintenance Strategy
	Patterns That Increase Fragmentation
	Summary

	Chapter 7: Designing and Tuning the Indexes
	Clustered Index Design Considerations
	Identities, Sequences, and Uniqueidentifiers

	Nonclustered Index Design Considerations
	Optimizing and Tuning Indexes
	Detecting Unused and Inefficient Indexes
	Index Consolidation
	Detecting Suboptimal Queries

	Summary

	Part II: Other Things That Matter
	Chapter 8: Constraints
	Primary Key Constraints
	Unique Constraints
	Foreign Key Constraints
	Check Constraints
	Wrapping Up
	Summary

	Chapter 9: Triggers
	DML Triggers
	DDL Triggers
	Logon Triggers
	UPDATE() and COLUMNS_UPDATED() Functions
	Nested and Recursive Triggers
	First and Last Triggers
	CONTEXT_INFO and SESSION_CONTEXT
	Summary

	Chapter 10: Views
	Views
	Indexed (Materialized) Views
	Partitioned Views
	Updatable Views
	Summary

	Chapter 11: User-Defined Functions
	Much Ado About Code Reuse
	Multi-Statement Functions
	Inline Table-Valued Functions
	Summary

	Chapter 12: XML and JSON
	To Use or Not to Use XML or JSON? That Is the Question!
	XML Data Type
	Working with XML Data
	value() Method
	exists() Method
	query() Method
	nodes() Method
	modify() Method

	OPENXML
	SELECT FOR XML

	Working with JSON Data (SQL Server 2016)
	SELECT FOR JSON
	Built-In Functions
	OPENJSON

	Summary

	Chapter 13: Temporary Objects and TempDB
	Temporary Tables
	Table Variables
	User-Defined Table Types and Table-Valued Parameters
	Regular Tables in TempDB
	Optimizing TempDB Performance
	Summary

	Chapter 14: CLR
	CLR Integration Overview
	Security Considerations
	Performance Considerations
	Summary

	Chapter 15: CLR Types
	User-Defined CLR Types
	Spatial Data Types
	HierarchyId
	Summary

	Chapter 16: Data Partitioning
	Reasons to Partition Data
	When to Partition?
	Data Partitioning Techniques
	Partitioned Tables
	Partitioned Views
	Comparing Partitioned Tables and Partitioned Views
	Using Partitioned Tables and Views Together

	Tiered Storage
	Moving Non-Partitioned Tables Between Filegroups
	Moving Partitions Between Filegroups
	Moving Data Files Between Disk Arrays
	Tiered Storage in Action
	Tiered Storage and High Availability Technologies

	Implementing Sliding Window Scenario and Data Purge
	Potential Issues
	Summary

	Part III: Locking, Blocking, and Concurrency
	Chapter 17: Lock Types and Transaction Isolation Levels
	Transactions and ACID
	Major Lock Types
	Exclusive (X) Locks
	Intent (I*) Locks
	Update (U) Locks
	Shared (S) Locks

	Lock Compatibility, Behavior, and Lifetime
	Transaction Isolation Levels and Data Consistency
	Summary

	Chapter 18: Troubleshooting Blocking Issues
	General Troubleshooting Approach
	Troubleshooting Blocking Issues in Real Time
	Collecting Blocking Information for Further Analysis
	Summary

	Chapter 19: Deadlocks
	Classic Deadlock
	Deadlock Due to Nonoptimized Queries
	Key Lookup Deadlock
	Deadlock Due to Multiple Updates of the Same Row
	Deadlock Troubleshooting
	Reducing the Chance of Deadlocks
	Summary

	Chapter 20: Lock Escalation
	Lock Escalation Overview
	Lock Escalation Troubleshooting
	Summary

	Chapter 21: Optimistic Isolation Levels
	Row Versioning Overview
	Optimistic Transaction Isolation Levels
	READ COMMITTED SNAPSHOT Isolation Level
	SNAPSHOT Isolation Level

	Version Store Behavior
	Summary

	Chapter 22: Application Locks
	Application Locks Overview
	Application Locks Usage
	Summary

	Chapter 23: Schema Locks
	Schema Modification Locks
	Multiple Sessions and Lock Compatibility
	Lock Partitioning
	Low-Priority Locks
	Summary

	Chapter 24: Designing Transaction Strategies
	Considerations and Code Patterns
	Choosing Transaction Isolation Level
	Summary

	Part IV: Query Life Cycle
	Chapter 25: Query Optimization and Execution
	Query Life Cycle
	Query Optimization
	Query Execution
	Operators
	Joins
	Nested Loop Join
	Merge Join
	Hash Join
	Comparing Join Types

	Aggregates
	Stream Aggregate
	Hash Aggregate
	Comparing Aggregates

	Spools
	Parallelism

	Query and Table Hints
	INDEX Table Hint
	FORCE ORDER Hint
	LOOP, MERGE, and HASH JOIN Hints
	FORCESEEK/FORCESCAN Hints
	NOEXPAND/EXPAND VIEWS Hints
	FAST N Hints

	Summary

	Chapter 26: Plan Caching
	Plan Caching Overview
	Parameter Sniffing
	Plan Reuse
	Plan Caching for Ad-Hoc Queries
	Auto-Parameterization
	Plan Guides
	Plan Cache Internals
	Examining Plan Cache
	Summary

	Part V: Practical Troubleshooting
	Chapter 27: Extended Events
	Extended Events Overview
	Extended Events Objects
	Packages
	Events
	Predicates
	Actions
	Types and Maps
	Targets

	Creating Events Sessions
	Working with Event Data
	Working with the ring_buffer Target
	Working with event_file and asynchronous_file_target Targets
	Working with event_counter and synchronous_event_counter Targets
	Working with histogram, synchronous_ bucketizer, and asynchronous_ bucketizer Targets
	Working with the pair_matching Target

	System_health and AlwaysOn_Health Sessions
	Using Extended Events
	Detecting Expensive Queries
	Monitoring Page Split Events

	Extended Events in Azure SQL Databases
	Summary

	Chapter 28: System Troubleshooting
	Looking at the Big Picture
	Hardware and Network
	Operating System Configuration
	SQL Server Configuration
	Database Options

	Resource Governor Overview
	SQL Server Execution Model
	Wait Statistics Analysis and Troubleshooting
	I/O Subsystem and Nonoptimized Queries
	Parallelism
	Memory-Related Wait Types
	High CPU Load
	Locking and Blocking
	Worker Thread Starvation
	ASYNC_NETWORK_IO Waits
	Latches and Spinlocks
	Wait Statistics: Wrapping Up

	Memory Management and Configuration
	Memory Configuration
	Memory Allocation

	What to Do When the Server Is Not Responding
	Working with Baseline
	Summary

	Chapter 29: Query Store
	Why Query Store?
	Query Store Configuration
	Query Store Internals
	Usage Scenarios
	Working with Query Store in SSMS
	Working with Query Store from T-SQL

	Managing and Monitoring Query Store
	Summary

	Part VI: Inside the Transaction Log
	Chapter 30: Transaction Log Internals
	Data Modifications, Logging, and Recovery
	Delayed Durability
	Virtual Log Files
	Database Recovery Models
	TempDB Logging
	Excessive Transaction Log Growth
	Transaction Log Management
	Summary

	Chapter 31: Backup and Restore
	Database Backup Types
	Backing Up the Database
	Restoring the Database
	Restore to a Point in Time
	Restore with STANDBY

	Designing a Backup Strategy
	Partial Database Availability and Piecemeal Restore
	Partial Database Backup
	Microsoft Azure Integration
	Backup to Microsoft Azure
	Managed Backup to Microsoft Azure
	File Snapshot Backup for Database Files in Azure

	Summary

	Chapter 32: High Availability Technologies
	SQL Server Failover Cluster
	Database Mirroring and AlwaysOn Availability Groups
	Technologies Overview
	Database Mirroring: Automatic Failover and Client Connectivity
	AlwaysOn Availability Groups

	Log Shipping
	Replication
	Designing a High Availability Strategy
	Summary

	Part VII: Columnstore Indexes
	Chapter 33: Column-Based Storage and Batch Mode Execution
	Data Warehouse Systems Overview
	Columnstore Indexes and Batch Mode Execution Overview
	Column-Based Storage and Batch Mode Execution
	Columnstore Indexes and Batch Mode Execution in Action

	Column-Based Storage
	Storage Format
	Compression and Storage Size
	Metadata
	sys.column_store_segments
	sys.column_store_dictionaries

	Design Considerations and Best Practices for Columnstore Indexes
	Reducing Data Row Size
	Giving SQL Server as Much Information as Possible
	Maintaining Statistics
	Avoiding String Columns in Fact Tables

	Summary

	Chapter 34: Columnstore Indexes
	Columnstore Index Types
	Read-Only Nonclustered Columnstore Indexes (SQL Server 2012–2014)
	Clustered Columnstore Indexes (SQL Server 2014–2016)
	Internal Structure
	Data Load
	Delta Store and Delete Bitmap
	Columnstore Index Maintenance
	Excessive Number of Partially Populated Row Groups
	Large Delta Stores
	Large Delete Bitmap
	Index Maintenance Options

	Nonclustered B-Tree Indexes (SQL Server 2016)

	Updateable Nonclustered Columnstore Indexes (SQL Server 2016)
	Metadata
	sys.column_store_row_groups (SQL Server 2014–2016)
	sys.dm_db_column_store_row_group_physical_stats (SQL Server 2016)
	sys.internal_partitions (SQL Server 2016)
	sys.dm_db_column_store_row_group_operational_stats (SQL Server 2016)

	Design Considerations
	Summary

	Part VIII: In-Memory OLTP Engine
	Chapter 35: In-Memory OLTP Internals
	Why In-Memory OLTP?
	In-Memory OLTP Engine Architecture and Data Structures
	Memory-Optimized Tables
	High Availability Technology Support
	Data Row Structure
	Hash Indexes
	Nonclustered (Range) Indexes
	Hash Indexes Versus Nonclustered Indexes
	Statistics on Memory-Optimized Tables
	Memory Consumers and Off-Row Storage
	Columnstore Indexes (SQL Server 2016)
	Garbage Collection

	Data Durability and Recovery
	SQL Server 2016 Features Support
	Memory Usage Considerations
	Summary

	Chapter 36: Transaction Processing in In-Memory OLTP
	Transaction Isolation Levels and Data Consistency
	Transaction Isolation Levels in In-Memory OLTP
	Cross-Container Transactions
	Transaction Lifetime
	Referential Integrity Enforcement (SQL Server 2016)
	Transaction Logging
	Summary

	Chapter 37: In-Memory OLTP Programmability
	Native Compilation
	Natively-Compiled Modules
	Optimization of Natively-Compiled Modules
	Creating Natively-Compiled Stored Procedures
	Natively-Compiled Triggers and User-Defined Functions (SQL Server 2016)
	Supported T-SQL Features
	Control Flow
	Operators
	Built-In Functions
	Query Surface Area

	Execution Statistics

	Interpreted T-SQL and Memory-Optimized Tables
	Memory-Optimized Table Types and Variables
	In-Memory OLTP: Implementation Considerations
	Summary

	Index

