




Production-Ready	Microservices
Building	Standardized	Systems	Across	an	Engineering	Organization

Susan	J.	Fowler



Production-Ready	Microservices
by	Susan	J.	Fowler

Copyright	©	2017	Susan	Fowler.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online
editions	are	also	available	for	most	titles	(http://oreilly.com/safari).	For	more	information,
contact	our	corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Editors:	Nan	Barber	and	Brian	Foster

Production	Editor:	Kristen	Brown

Copyeditor:	Amanda	Kersey

Proofreader:	Jasmine	Kwityn

Indexer:	Wendy	Catalano

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

December	2016:	First	Edition

http://oreilly.com/safari


Revision	History	for	the	First	Edition
2016-11-23:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491965979	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Production-Ready
Microservices,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,
Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information
and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all
responsibility	for	errors	or	omissions,	including	without	limitation	responsibility	for
damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and
instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or	the
intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-96597-9

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491965979


Preface

This	book	was	born	out	of	a	production-readiness	initiative	I	began	running	several	months
after	I	joined	Uber	Technologies	as	a	site	reliability	engineer	(SRE).	Uber ’s	gigantic,
monolithic	API	was	slowly	being	broken	into	microservices,	and	at	the	time	I	joined,	there
were	over	a	thousand	microservices	that	had	been	split	from	the	API	and	were	running
alongside	it.	Each	of	these	microservices	was	designed,	built,	and	maintained	by	an	owning
development	team,	and	over	85%	of	these	services	had	little	to	no	SRE	involvement,	nor	any
access	to	SRE	resources.

Hiring	SREs	and	building	SRE	teams	is	an	absurdly	difficult	task,	because	SREs	are	probably
the	hardest	type	of	engineers	to	find:	site	reliability	engineering	as	a	field	is	still	relatively
new,	and	SREs	must	be	experts	(at	least	to	some	degree)	in	software	engineering,	systems
engineering,	and	distributed	systems	architecture.	There	was	no	way	to	quickly	staff	all	of	the
teams	with	their	own	embedded	SRE	team,	and	so	my	team	(the	Consulting	SRE	Team)	was
born.	Our	directive	from	above	was	simple:	find	a	way	to	drive	high	standards	across	the	85%
of	microservices	that	had	no	SRE	involvement.

Our	mission	was	simple,	and	the	directive	was	vague	enough	that	it	allowed	me	and	my	team
a	considerable	amount	of	freedom	to	define	a	set	of	standards	that	every	microservice	at	Uber
could	follow.	Coming	up	with	high	standards	that	could	apply	to	every	single	microservice
running	within	this	large	engineering	organization	was	not	easy,	and	so,	with	some	help	from
my	amazing	colleague	Rick	Boone	(whose	high	standards	for	the	microservices	he	supported
inspired	this	book),	I	created	a	detailed	checklist	of	the	standards	that	I	believed	every	service
at	Uber	should	meet	before	being	allowed	to	host	production	traffic.

Doing	so	required	identifying	a	set	of	overall,	umbrella	principles	that	every	specific
requirement	would	fall	under,	and	we	came	up	with	eight	such	principles:	every	microservice
at	Uber,	we	said,	should	be	stable,	reliable,	scalable,	fault	tolerant,	performant,	monitored,
documented,	and	prepared	for	any	catastrophe.	Under	each	of	these	principles	were	separate
criteria	that	defined	what	it	meant	for	a	service	to	be	stable,	reliable,	scalable,	fault	tolerant,
performant,	monitored,	documented,	and	prepared	for	any	catastrophe.	Importantly,	we
demanded	that	each	principle	be	quantifiable,	and	that	each	criterion	provide	us	with
measurable	results	that	dramatically	increased	the	availability	of	our	microservices.	A	service
that	met	these	criteria,	a	service	that	fit	these	requirements,	we	deemed	production-ready.

Driving	these	standards	across	teams	in	an	effective	and	efficient	way	was	the	next	step.	I
created	a	careful	process	in	which	SRE	teams	met	with	business-critical	services	(services
whose	outages	would	bring	the	application	down),	ran	architecture	reviews	with	the	teams,	put
together	audits	of	their	services	(simple	checklists	that	said	“yes”	or	“no”	to	whether	the
service	met	each	production-readiness	requirement),	created	detailed	roadmaps	(step-by-step



guides	that	detailed	how	to	bring	the	service	in	question	to	a	production-ready	state),	and
assigned	production-readiness	scores	to	each	service.

Running	the	architecture	reviews	was	the	most	important	part	of	the	process:	my	team	would
gather	all	of	the	developers	working	on	a	service	in	a	conference	room	and	ask	them	to
whiteboard	the	architecture	of	their	service	in	30	minutes	or	less.	Doing	this	allowed	both	my
team	and	the	host	team	to	quickly	and	easily	identify	where	and	why	the	service	was	failing:
when	a	microservice	was	diagrammed	in	all	of	its	glory	(endpoints,	request	flows,
dependencies	and	all),	every	point	of	failure	stood	out	like	a	sore	thumb.

Every	architecture	review	produced	a	great	deal	of	work.	After	each	review,	we’d	work
through	the	checklist	and	see	if	the	service	met	any	of	the	production-readiness	requirements,
and	then	we’d	share	this	audit	out	with	the	managers	and	developers	of	the	team.	Scoring	was
added	to	the	audits	when	I	realized	that	the	production-ready	or	not	idea	was	simply	not
granular	enough	to	be	useful	when	we	evaluated	the	production-readiness	of	services,	so	each
requirement	was	assigned	a	certain	number	of	points	and	then	an	overall	score	given	to	the
service.

From	the	audits	came	roadmaps.	Roadmaps	contained	a	list	of	the	production-readiness
requirements	that	the	service	did	not	meet,	along	with	links	to	information	about	recent
outages	caused	by	not	meeting	that	requirement,	descriptions	of	the	work	that	needed	to	be
done	in	order	to	meet	the	requirement,	a	link	to	an	open	task,	and	the	name	of	the	developer(s)
assigned	to	the	relevant	task.

After	doing	my	own	production-readiness	check	on	this	process	(also	known	as	Susan-
Fowler ’s-production-readiness-process-as-a-service),	I	knew	that	the	next	step	would	need	to
be	the	automation	of	the	entire	process	that	would	run	on	all	Uber	microservices,	all	of	the
time.	At	the	time	of	the	writing	of	this	book,	this	entire	production-readiness	system	is	being
automated	by	an	amazing	SRE	team	at	Uber	led	by	the	fearless	Roxana	del	Toro.

Each	of	the	production-readiness	requirements	within	the	production-readiness	standards	and
the	details	of	their	implementation	came	out	of	countless	hours	of	careful,	deliberate	work	by
myself	and	my	colleagues	in	the	Uber	SRE	organization.	In	making	the	list	of	requirements,
and	in	trying	to	implement	them	across	all	Uber	microservices,	we	took	countless	notes,
argued	with	one	another	at	great	length,	and	researched	whatever	we	could	find	in	the	current
microservice	literature	(which	is	very	sparse,	and	almost	nonexistent).	I	met	with	a	wide
variety	of	microservice	developer	teams,	both	at	Uber	and	at	other	companies,	trying	to
determine	how	microservices	could	be	standardized	and	whether	there	existed	a	universal	set
of	standardization	principles	that	could	be	applied	to	every	microservice	at	every	company
and	produce	measurable,	business-impactful	results.	From	those	notes,	arguments,	meetings,
and	research	came	the	foundations	of	this	book.

It	wasn’t	until	after	I	began	sharing	my	work	with	site	reliability	engineers	and	software
engineers	at	other	companies	in	the	Bay	Area	that	I	realized	how	novel	it	was,	not	only	in	the
SRE	world,	but	in	the	tech	industry	as	a	whole.	When	engineers	started	asking	me	for	every



bit	of	information	and	guidance	I	could	give	them	on	standardizing	their	microservices	and
making	their	microservices	production-ready,	I	began	writing.

At	the	time	of	writing,	there	exists	very	little	literature	on	microservice	standardization	and
very	few	guides	to	maintaining	and	building	the	microservice	ecosystem.	Moreover,	there	are
no	books	that	answer	the	question	many	engineers	have	after	splitting	their	monolithic
application	into	microservices:	what	do	we	do	next?	The	ambitious	goal	of	this	book	is	to	fill
that	gap,	and	to	answer	precisely	that	question.	In	a	nutshell,	this	is	the	book	I	wish	that	I	had
when	I	began	standardizing	microservices	at	Uber.



Who	This	Book	Is	Written	For
This	book	is	primarily	written	for	software	engineers	and	site	reliability	engineers	who	have
either	split	a	monolith	and	are	wondering	“what’s	next?”,	or	who	are	building	microservices
from	the	ground	up	and	want	to	design	stable,	reliable,	scalable,	fault-tolerant,	performant
microservices	from	the	get-go.

However,	the	relevance	of	the	principles	within	this	book	is	not	limited	to	the	primary
audience.	Many	of	the	principles,	from	good	monitoring	to	successfully	scaling	an
application,	can	be	applied	to	improve	services	and	applications	of	any	size	and	architecture
at	any	organization.	Engineers,	engineering	managers,	product	managers,	and	high-level
company	executives	may	find	this	book	useful	for	a	variety	of	reasons,	including	determining
standards	for	their	application(s),	understanding	changes	in	organizational	structure	that
result	from	architecture	decisions,	or	for	determining	and	driving	the	architectural	and
operational	vision	of	their	engineering	organization(s).

I	do	assume	that	the	reader	is	familiar	with	the	basic	concepts	of	microservices,	with
microservice	architecture,	and	with	the	fundamentals	of	modern	distributed	systems	—
readers	who	understand	these	concepts	well	will	gain	the	most	from	this	book.	For	readers
unfamiliar	with	these	topics,	I’ve	dedicated	the	first	chapter	to	a	short	overview	of
microservice	architecture,	the	microservice	ecosystem,	organizational	challenges	that
accompany	microservices,	and	the	nitty-gritty	reality	of	breaking	a	monolithic	application
into	microservices.



What	This	Book	Is	Not
This	book	is	not	a	step-by-step	how-to	guide:	it	is	not	an	explicit	tutorial	on	how	to	do	each	of
the	things	covered	in	its	chapters.	Writing	such	a	tutorial	would	require	many,	many	volumes:
each	section	of	each	of	the	chapters	within	this	book	could	be	expanded	into	its	own	book.

As	a	result,	this	is	a	highly	abstract	book,	written	to	be	general	enough	that	the	lessons	learned
here	can	be	applied	to	nearly	every	microservice	at	nearly	every	company,	yet	specific	and
granular	enough	that	it	can	be	incorporated	into	an	engineering	organization	and	provide
real,	tangible	guidance	on	how	to	improve	and	standardize	microservices.	Because	the
microservice	ecosystem	will	differ	from	company	to	company,	there	isn’t	any	benefit	to	be
found	in	taking	a	step-by-step	authoritative	or	educational	approach.	Instead,	I’ve	decided	to
introduce	concepts,	explain	their	importance	to	building	production-ready	microservices,
offer	examples	of	each	concept,	and	share	strategies	for	their	implementation.

Importantly,	this	book	is	not	an	encyclopedic	account	of	all	the	possible	ways	that
microservices	and	microservice	ecosystems	can	be	built	and	run.	I	will	be	the	first	to	admit
that	there	are	many	valid	ways	to	build	and	run	microservices	and	microservice	ecosystems.
(For	example,	there	are	many	different	ways	to	test	new	builds	aside	from	the	staging-canary-
production	approach	that	I	introduce	and	advocate	for	in	Chapter	3,	Stability	and	Reliability).
But	some	ways	are	better	than	others,	and	I	have	tried	as	hard	as	possible	to	present	only	the
best	ways	to	build	and	run	production-ready	microservices	and	apply	each	production-
readiness	principle	across	engineering	organizations.

In	addition,	technology	moves	and	changes	remarkably	fast.	Whenever	and	wherever
possible,	I	have	tried	to	avoid	limiting	the	reader	to	an	existing	technology	or	set	of
technologies	to	implement.	For	example,	rather	than	advocating	that	every	microservice	use
Kafka	for	logging,	I	present	the	important	aspects	of	production-ready	logging	and	leave	the
choice	of	specific	technology	and	the	actual	implementation	to	the	reader.

Finally,	this	book	is	not	a	description	of	the	Uber	engineering	organization.	The	principles,
standards,	examples,	and	strategies	are	not	specific	to	Uber	nor	exclusively	inspired	by	Uber:
they	have	been	developed	and	inspired	by	microservices	of	many	technology	companies	and
can	be	applied	to	any	microservice	ecosystem.	This	is	not	a	descriptive	or	historical	account,
but	a	prescriptive	guide	to	building	production-ready	microservices.



How	To	Use	This	Book
There	are	several	ways	you	can	use	this	book.

The	first	approach	is	the	least	involved	one:	to	read	only	the	chapters	you	are	interested	in,
and	skim	through	(or	skip)	the	rest.	There	is	much	to	be	gained	from	this	approach:	you’ll
find	yourself	introduced	to	new	concepts,	gain	insight	on	concepts	you	may	be	familiar	with,
and	walk	away	with	new	ways	to	think	about	aspects	of	software	engineering	and
microservice	architecture	that	you	may	find	useful	in	your	day-to-day	life	and	work.

Another	approach	is	a	slightly	more	involved	one,	in	which	you	can	skim	through	the	book,
reading	carefully	the	sections	that	are	relevant	to	your	needs,	and	then	apply	some	of	the
principles	and	standards	to	your	microservice(s).	For	example,	if	your	microservice(s)	is	in
need	of	improved	monitoring,	you	could	skim	through	the	majority	of	the	book,	reading	only
Chapter	6,	Monitoring,	closely	and	then	use	the	material	in	this	chapter	to	improve	the
monitoring,	alerting,	and	outage	response	processes	of	your	service(s).

The	last	approach	you	could	take	is	(probably)	the	most	rewarding	one,	and	the	one	you
should	take	if	your	goal	is	to	fully	standardize	either	the	microservice	you	are	responsible	for
or	all	of	the	microservices	at	your	company	so	that	it	or	they	are	truly	production-ready.	If
your	goal	is	to	make	your	microservice(s)	stable,	reliable,	scalable,	fault	tolerant,
performant,	properly	monitored,	well	documented,	and	prepared	for	any	catastrophe,	you’ll
want	to	take	this	approach.	To	accomplish	this,	each	chapter	should	be	read	carefully,	each
standard	understood,	and	each	requirement	adjusted	and	applied	to	fit	the	needs	of	your
microservice(s).

At	the	end	of	each	of	the	standardization	chapters	(Chapters	3-7),	you	will	find	a	section	titled
“Evaluate	Your	Microservice,”	which	contains	a	short	list	of	questions	you	can	ask	about	your
microservice.	The	questions	are	organized	by	topic	so	that	you	(the	reader)	can	quickly	pick
out	the	questions	relevant	to	your	goals,	answer	them	for	your	microservice,	and	then
determine	what	steps	you	can	take	to	make	your	microservice	production-ready.	At	the	end	of
the	book,	you	will	find	two	appendixes	(Appendix	A,	Production-Readiness	Checklist,	and
Appendix	B,	Evaluate	Your	Microservice)	that	will	help	you	keep	track	of	the	production-
readiness	standards	and	the	“Evaluate	Your	Microservices”	questions	that	are	scattered
throughout	the	book.



How	This	Book	Is	Structured
As	the	title	suggests,	Chapter	1,	Microservices,	is	an	introduction	to	microservices.	It	covers
the	basics	of	microservice	architecture,	covers	some	of	the	details	of	splitting	a	monolith	into
microservices,	introduces	the	four	layers	of	a	microservice	ecosystem,	and	concludes	with	a
section	devoted	to	illuminating	some	of	the	organizational	challenges	and	trade-offs	that
come	with	adopting	microservice	architecture.

In	Chapter	2,	Production-Readiness,	the	challenges	of	microservice	standardization	are
presented,	and	the	eight	production-readiness	standards,	all	driven	by	microservice
availability,	are	introduced.

Chapter	3,	Stability	and	Reliability,	is	all	about	the	principles	of	building	stable	and	reliable
microservices.	The	development	cycle,	deployment	pipeline,	dealing	with	dependencies,
routing	and	discovery,	and	stable	and	reliable	deprecation	and	decommissioning	of
microservices	are	all	covered	here.

Chapter	4,	Scalability	and	Performance,	narrows	in	on	the	requirements	for	building	scalable
and	performant	microservices,	including	knowing	the	growth	scales	of	microservices,	using
resources	efficiently,	being	resource	aware,	capacity	planning,	dependency	scaling,	traffic
management,	task	handling	and	processing,	and	scalable	data	storage.

Chapter	5,	Fault	Tolerance	and	Catastrophe-Preparedness,	covers	the	principles	of	building
fault-tolerant	microservices	that	are	prepared	for	any	catastrophe,	including	common
catastrophes	and	failure	scenarios,	strategies	for	failure	detection	and	remediation,	the	ins	and
outs	of	resiliency	testing,	and	ways	to	handle	incidents	and	outages.

Chapter	6,	Monitoring,	is	all	about	the	nitty-gritty	details	of	microservice	monitoring	and	how
to	avoid	the	complexities	of	microservice	monitoring	through	standardization.	Logging,
creating	useful	dashboards,	and	appropriately	handling	alerting	are	all	covered	in	this	chapter.

Last	but	not	least	is	Chapter	7,	Documentation	and	Understanding,	which	dives	into
appropriate	microservice	documentation	and	ways	to	increase	architectural	and	operational
understanding	in	development	teams	and	throughout	the	organization,	and	also	contains
practical	strategies	for	implementing	production-readiness	standards	across	an	engineering
organization.

There	are	two	appendixes	at	the	end	of	this	book.	Appendix	A,	Production-Readiness
Checklist,	is	the	checklist	described	at	the	end	of	Chapter	7,	Documentation	and
Understanding,	and	is	a	concise	summary	of	all	the	production-readiness	standards	that	are
scattered	throughout	the	book,	along	with	their	corresponding	requirements.	Appendix	B,
Evaluate	Your	Microservice,	is	a	collection	of	all	the	“Evaluate	Your	Microservice”	questions
found	in	the	corresponding	sections	at	the	end	of	Chapters	3-7.



Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by
context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.
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How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.
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800-998-9938	(in	the	United	States	or	Canada)
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information.	You	can	access	this	page	at	http://bit.ly/prod-ready_microservices.
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Chapter	1.	Microservices

In	the	past	few	years,	the	technology	industry	has	witnessed	a	rapid	change	in	applied,
practical	distributed	systems	architecture	that	has	led	industry	giants	(such	as	Netflix,	Twitter,
Amazon,	eBay,	and	Uber)	away	from	building	monolithic	applications	to	adopting
microservice	architecture.	While	the	fundamental	concepts	behind	microservices	are	not	new,
the	contemporary	application	of	microservice	architecture	truly	is,	and	its	adoption	has	been
driven	in	part	by	scalability	challenges,	lack	of	efficiency,	slow	developer	velocity,	and	the
difficulties	with	adopting	new	technologies	that	arise	when	complex	software	systems	are
contained	within	and	deployed	as	one	large	monolithic	application.

Adopting	microservice	architecture,	whether	from	the	ground	up	or	by	splitting	an	existing
monolithic	application	into	independently	developed	and	deployed	microservices,	solves
these	problems.	With	microservice	architecture,	an	application	can	easily	be	scaled	both
horizontally	and	vertically,	developer	productivity	and	velocity	increase	dramatically,	and	old
technologies	can	easily	be	swapped	out	for	the	newest	ones.

As	we	will	see	in	this	chapter,	the	adoption	of	microservice	architecture	can	be	seen	as	a
natural	step	in	the	scaling	of	an	application.	The	splitting	of	a	monolithic	application	into
microservices	is	driven	by	scalability	and	efficiency	concerns,	but	microservices	introduce
challenges	of	their	own.	A	successful,	scalable	microservice	ecosystem	requires	that	a	stable
and	sophisticated	infrastructure	be	in	place.	In	addition,	the	organizational	structure	of	a
company	adopting	microservices	must	be	radically	changed	to	support	microservice
architecture,	and	the	team	structures	that	spring	from	this	can	lead	to	siloing	and	sprawl.	The
largest	challenges	that	microservice	architecture	brings,	however,	are	the	need	for
standardization	of	the	architecture	of	the	services	themselves,	along	with	requirements	for
each	microservice	in	order	to	ensure	trust	and	availability.



From	Monoliths	to	Microservices
Almost	every	software	application	written	today	can	be	broken	into	three	distinct	elements:	a
frontend	(or	client-side)	piece,	a	backend	piece,	and	some	type	of	datastore	(Figure	1-1).
Requests	are	made	to	the	application	through	the	client-side	piece,	the	backend	code	does	all
the	heavy	lifting,	and	any	relevant	data	that	needs	to	be	stored	or	accessed	(whether
temporarily	in	memory	of	permanently	in	a	database)	is	sent	to	or	retrieved	from	wherever
the	data	is	stored.	We’ll	call	this	the	three-tier	architecture.

Figure	1-1.	Three-tier	architecture

There	are	three	different	ways	these	elements	can	be	combined	to	make	an	application.	Most
applications	put	the	first	two	pieces	into	one	codebase	(or	repository),	where	all	client-side
and	backend	code	are	stored	and	run	as	one	executable	file,	with	a	separate	database.	Others
separate	out	all	frontend,	client-side	code	from	the	backend	code	and	store	them	as	separate
logical	executables,	accompanied	by	an	external	database.	Applications	that	don’t	require	an
external	database	and	store	all	data	in	memory	tend	to	combine	all	three	elements	into	one
repository.	Regardless	of	the	way	these	elements	are	divided	or	combined,	the	application
itself	is	considered	to	be	the	sum	of	these	three	distinct	elements.

Applications	are	usually	architected,	built,	and	run	this	way	from	the	beginning	of	their
lifecycles,	and	the	architecture	of	the	application	is	typically	independent	of	the	product
offered	by	the	company	or	the	purpose	of	the	application	itself.	These	three	architectural
elements	that	comprise	the	three-tier	architecture	are	present	in	every	website,	every	phone
application,	every	backend	and	frontend	and	strange	enormous	enterprise	application,	and	are
found	as	one	of	the	permutations	described.

In	the	early	stages,	when	a	company	is	young,	its	application(s)	simple,	and	the	number	of
developers	contributing	to	the	codebase	is	small,	developers	typically	share	the	burden	of
contributing	to	and	maintaining	the	codebase.	As	the	company	grows,	more	developers	are
hired,	new	features	are	added	to	the	application,	and	three	significant	things	happen.

First	comes	an	increase	in	the	operational	workload.	Operational	work	is,	generally	speaking,
the	work	associated	with	running	and	maintaining	the	application.	This	usually	leads	to	the
hiring	of	operational	engineers	(system	administrators,	TechOps	engineers,	and	so-called
“DevOps”	engineers)	who	take	over	the	majority	of	the	operational	tasks,	like	those	related	to
hardware,	monitoring,	and	on	call.



The	second	thing	that	happens	is	a	result	of	simple	mathematics:	adding	new	features	to	your
application	increases	both	the	number	of	lines	of	code	in	your	application	and	the	complexity
of	the	application	itself.

Third	is	the	necessary	horizontal	and/or	vertical	scaling	of	the	application.	Increases	in	traffic
place	significant	scalability	and	performance	demands	on	the	application,	requiring	that	more
servers	host	the	application.	More	servers	are	added,	a	copy	of	the	application	is	deployed	to
each	server,	and	load	balancers	are	put	into	place	so	that	the	requests	are	distributed
appropriately	among	the	servers	hosting	the	application	(see	Figure	1-2,	containing	a
frontend	piece,	which	may	contain	its	own	load-balancing	layer,	a	backend	load-balancing
layer,	and	the	backend	servers).	Vertical	scaling	becomes	a	necessity	as	the	application	begins
processing	a	larger	number	of	tasks	related	to	its	diverse	set	of	features,	so	the	application	is
deployed	to	larger,	more	powerful	servers	that	can	handle	CPU	and	memory	demands
(Figure	1-3).

Figure	1-2.	Scaling	an	application	horizontally



Figure	1-3.	Scaling	an	application	vertically

As	the	company	grows,	and	the	number	of	engineers	is	no	longer	in	the	single,	double,	or
even	triple	digits,	things	start	to	get	a	little	more	complicated.	Thanks	to	all	the	features,
patches,	and	fixes	added	to	the	codebase	by	the	developers,	the	application	is	now	thousands
upon	thousands	of	lines	long.	The	complexity	of	the	application	is	growing	steadily,	and
hundreds	(if	not	thousands)	of	tests	must	be	written	in	order	to	ensure	that	any	change	made
(even	a	change	of	one	or	two	lines)	doesn’t	compromise	the	integrity	of	the	existing
thousands	upon	thousands	of	lines	of	code.	Development	and	deployment	become	a
nightmare,	testing	becomes	a	burden	and	a	blocker	to	the	deployment	of	even	the	most	crucial
fixes,	and	technical	debt	piles	up	quickly.	Applications	whose	lifecycles	fit	into	this	pattern
(for	better	or	for	worse)	are	fondly	(and	appropriately)	referred	to	in	the	software
community	as	monoliths.

Of	course,	not	all	monolithic	applications	are	bad,	and	not	every	monolithic	application
suffers	from	the	problems	listed,	but	monoliths	that	don’t	hit	these	issues	at	some	point	in
their	lifecycle	are	(in	my	experience)	pretty	rare.	The	reason	most	monoliths	are	susceptible
to	these	problems	is	because	the	nature	of	a	monolith	is	directly	opposed	to	scalability	in	the
most	general	possible	sense.	Scalability	requires	concurrency	and	partitioning:	the	two	things
that	are	difficult	to	accomplish	with	a	monolith.



SCALING	AN	APPLICATION

Let’s	break	this	down	a	bit.

The	goal	of	any	software	application	is	to	process	tasks	of	some	sort.	Regardless	of	what	those	tasks	are,	we	can	make	a
general	assumption	about	how	we	want	our	application	to	handle	them:	it	needs	to	process	them	efficiently.

To	process	tasks	efficiently,	our	application	needs	to	have	some	kind	of	concurrency.	This	means	that	we	can’t	have	just
one	process	that	does	all	the	work,	because	then	that	process	will	pick	up	one	task	at	a	time,	complete	all	the	necessary
pieces	of	it	(or	fail!),	and	then	move	onto	the	next	—	this	isn’t	efficient	at	all!	To	make	our	application	efficient,	we	can
introduce	concurrency	so	that	each	task	can	be	broken	up	into	smaller	pieces.

The	second	thing	we	can	do	to	process	tasks	efficiently	is	to	divide	and	conquer	by	introducing	partitioning,	where	each
task	is	not	only	broken	up	into	small	pieces	but	can	be	processed	in	parallel.	If	we	have	a	bunch	of	tasks,	we	can	process
them	all	at	the	same	time	by	sending	them	to	a	set	of	workers	that	can	process	them	in	parallel.	If	we	need	to	process
more	tasks,	we	can	easily	scale	with	the	demand	by	adding	additional	workers	to	process	the	new	tasks	without	affecting
the	efficiency	of	our	system.

Concurrency	and	partitioning	are	difficult	to	support	when	you	have	one	large	application	that	needs	to	be	deployed	to
every	server,	which	needs	to	process	any	type	of	task.	If	your	application	is	even	the	slightest	bit	complicated,	the	only
way	you	can	scale	it	with	a	growing	list	of	features	and	increasing	traffic	is	to	scale	up	the	hardware	that	the	application	is
deployed	to.

To	be	truly	efficient,	the	best	way	to	scale	an	application	is	to	break	it	into	many	small,	independent	applications	that	each
do	one	type	of	task.	Need	to	add	another	step	to	the	overall	process?	Easy	enough:	just	make	a	new	application	that	only
does	that	step!	Need	to	handle	more	traffic?	Simple:	add	more	workers	to	each	application!

Concurrency	and	partitioning	are	difficult	to	support	in	a	monolithic	application,	which	prevents	monolithic	application
architecture	from	being	as	efficient	as	we	need	it	to	be.

We’ve	seen	this	pattern	emerge	at	companies	like	Amazon,	Twitter,	Netflix,	eBay,	and	Uber:
companies	that	run	applications	across	not	hundreds,	but	thousands,	even	hundreds	of
thousands	of	servers	and	whose	applications	have	evolved	into	monoliths	and	hit	scalability
challenges.	The	challenges	they	faced	were	remedied	by	abandoning	monolithic	application
architecture	in	favor	of	microservices.

The	basic	concept	of	a	microservice	is	simple:	it’s	a	small	application	that	does	one	thing
only,	and	does	that	one	thing	well.	A	microservice	is	a	small	component	that	is	easily
replaceable,	independently	developed,	and	independently	deployable.	A	microservice	cannot
live	alone,	however	—	no	microservice	is	an	island	—	and	it	is	part	of	a	larger	system,
running	and	working	alongside	other	microservices	to	accomplish	what	would	normally	be
handled	by	one	large	standalone	application.

The	goal	of	microservice	architecture	is	to	build	a	set	of	small	applications	that	are	each
responsible	for	performing	one	function	(as	opposed	to	the	traditional	way	of	building	one
application	that	does	everything),	and	to	let	each	microservice	be	autonomous,	independent,
and	self-contained.	The	core	difference	between	a	monolithic	application	and	microservices
is	this:	a	monolithic	application	(Figure	1-4)	will	contain	all	features	and	functions	within	one
application	and	one	codebase,	all	deployed	at	the	same	time,	with	each	server	hosting	a
complete	copy	of	the	entire	application,	while	a	microservice	(Figure	1-5)	contains	only	one
function	or	feature	and	lives	in	a	microservice	ecosystem	along	with	other	microservices	that
each	perform	one	function	or	feature.



Figure	1-4.	Monolith

Figure	1-5.	Microservices



There	are	numerous	benefits	to	adopting	microservice	architecture	—	including	(but	not
limited	to)	reduced	technical	debt,	improved	developer	productivity	and	velocity,	better
testing	efficiency,	increased	scalability,	and	ease	of	deployment	—	and	companies	that	adopt
microservice	architecture	usually	do	so	after	having	built	one	application	and	hitting
scalability	and	organizational	challenges.	They	begin	with	a	monolithic	application	and	then
split	the	monolith	into	microservices.

The	difficulties	of	splitting	a	monolith	into	microservices	depend	entirely	on	the	complexity
of	the	monolithic	application.	A	monolithic	application	with	many	features	will	take	a	great
deal	of	architectural	effort	and	careful	deliberation	to	successfully	break	up	into
microservices,	and	additional	complexity	is	introduced	by	the	need	to	reorganize	and
restructure	teams.	The	decision	to	move	to	microservices	must	always	become	a	company-
wide	effort.

There	are	several	steps	in	breaking	apart	a	monolith.	The	first	is	to	identify	the	components
that	should	be	written	as	independent	services.	This	is	perhaps	the	most	difficult	step	in	the
entire	process,	because	while	there	may	be	a	number	of	right	ways	to	split	the	monolith	into
component	services,	there	are	far	more	wrong	ways.	The	rule	of	thumb	in	identifying
components	is	to	pinpoint	key	overall	functionalities	of	the	monolith,	then	split	those
functionalities	into	small	independent	components.	Microservices	must	be	as	simple	as
possible	or	else	the	company	will	risk	the	possibility	of	replacing	one	monolith	with	several
smaller	monoliths,	which	will	all	suffer	the	same	problems	as	the	company	grows.

Once	the	key	functions	have	been	identified	and	properly	componentized	into	independent
microservices,	the	organizational	structure	of	the	company	must	be	restructured	so	that	each
microservice	is	staffed	by	an	engineering	team.	There	are	several	ways	to	do	this.	The	first
method	of	company	reorganization	around	microservice	adoption	is	to	dedicate	one	team	to
each	microservice.	The	size	of	the	team	will	be	determined	completely	by	the	complexity	and
workload	of	the	microservice	and	should	be	staffed	by	enough	developers	and	site	reliability
engineers	so	that	both	feature	development	and	the	on-call	rotation	of	the	service	can	be
managed	without	burdening	the	team.	The	second	is	to	assign	several	services	to	one	team	and
have	that	team	develop	the	services	in	parallel.	This	works	best	when	the	teams	are	organized
around	specific	products	or	business	domains,	and	are	responsible	for	developing	any
services	related	to	those	products	or	domains.	If	a	company	chooses	the	second	method	of
reorganization,	it	needs	to	make	sure	that	developers	aren’t	overworked	and	don’t	face	task,
outage,	or	operational	fatigue.

Another	important	part	of	microservice	adoption	is	the	creation	of	a	microservice	ecosystem.
Typically	(or,	at	least,	hopefully),	a	company	running	a	large	monolithic	application	will	have
a	dedicated	infrastructure	organization	that	is	responsible	for	designing,	building,	and
maintaining	the	infrastructure	that	the	application	runs	on.	When	a	monolith	is	split	into
microservices,	the	responsibilities	of	the	infrastructure	organization	for	providing	a	stable
platform	for	microservices	to	be	developed	and	run	on	grows	drastically	in	importance.	The



infrastructure	teams	must	provide	microservice	teams	with	stable	infrastructure	that	abstracts
away	the	majority	of	the	complexity	of	the	interactions	between	microservices.

Once	these	three	steps	have	been	completed	—	the	componentization	of	the	application,	the
restructuring	of	engineering	teams	to	staff	each	microservice,	and	the	development	of	the
infrastructure	organization	within	the	company	—	the	migration	can	begin.	Some	teams
choose	to	pull	the	relevant	code	for	their	microservice	directly	from	the	monolith	and	into	a
separate	service,	and	shadow	the	monolith’s	traffic	until	they	are	convinced	that	the
microservice	can	perform	the	desired	functionality	on	its	own.	Other	teams	choose	to	build
the	service	from	scratch,	starting	with	a	clean	slate,	and	shadow	traffic	or	redirect	after	the
service	has	passed	appropriate	tests.	The	best	approach	to	migration	depends	on	the
functionality	of	the	microservice,	and	I	have	seen	both	approaches	work	equally	well	in	most
cases,	but	the	real	key	to	a	successful	migration	is	thorough,	careful,	painstakingly
documented	planning	and	execution,	along	with	the	realization	that	a	complete	migration	of	a
large	monolith	can	take	several	long	years.

With	all	the	work	involved	in	splitting	a	monolith	into	microservices,	it	may	seem	better	to
begin	with	microservice	architecture,	skip	all	of	the	painful	scalability	challenges,	and	avoid
the	microservice	migration	drama.	This	approach	may	turn	out	all	right	for	some	companies,
but	I	want	to	offer	several	words	of	caution.	Small	companies	often	do	not	have	the	necessary
infrastructure	in	place	to	sustain	microservices,	even	at	a	very	small	scale:	good	microservice
architecture	requires	stable,	often	very	complex,	infrastructure.	Such	stable	infrastructure
requires	a	large,	dedicated	team	whose	cost	can	typically	be	sustained	only	by	companies	that
have	reached	the	scalability	challenges	that	justify	the	move	to	microservice	architecture.
Small	companies	simply	will	not	have	enough	operational	capacity	to	maintain	a
microservice	ecosystem.	Furthermore,	it’s	extraordinarily	difficult	to	identify	key	areas	and
components	to	build	into	microservices	when	a	company	is	in	the	early	stages:	applications	at
new	companies	will	not	have	many	features,	nor	many	separate	areas	of	functionality	that	can
be	split	appropriately	into	microservices.



Microservice	Architecture
The	architecture	of	a	microservice	(Figure	1-6)	is	not	very	different	from	the	standard
application	architecture	covered	in	the	first	section	of	this	chapter	(Figure	1-1).	Each	and
every	microservice	will	have	three	components:	a	frontend	(client-side)	piece,	some	backend
code	that	does	the	heavy	lifting,	and	a	way	to	store	or	retrieve	any	relevant	data.

The	frontend,	client-side	piece	of	a	microservice	is	not	your	typical	frontend	application,	but
rather	an	application	programming	interface	(API)	with	static	endpoints.	Well-designed
microservice	APIs	allow	microservices	to	easily	and	effectively	interact,	sending	requests	to
the	relevant	API	endpoint(s).	For	example,	a	microservice	that	is	responsible	for	customer
data	might	have	a	get_customer_information	endpoint	that	other	services	could	send	requests
to	in	order	to	retrieve	information	about	customers,	an	update_customer_information
endpoint	that	other	services	could	send	requests	to	in	order	to	update	the	information	for	a
specific	customer,	and	a	delete_customer_information	endpoint	that	services	could	use	to
delete	a	customer ’s	information.

Figure	1-6.	Elements	of	microservice	architecture

These	endpoints	are	separated	out	in	architecture	and	theory	alone,	not	in	practice,	for	they
live	alongside	and	as	part	of	all	the	backend	code	that	processes	every	request.	For	our
example	microservice	that	is	responsible	for	customer	data,	a	request	sent	to	the
get_customer_information	endpoint	would	trigger	a	task	that	would	process	the	incoming
request,	determine	any	specific	filters	or	options	that	were	applied	in	the	request,	retrieve	the
information	from	a	database,	format	the	information,	and	return	it	to	the	client	(microservice)
that	requested	it.

Most	microservices	will	store	some	type	of	data,	whether	in	memory	(perhaps	using	a	cache)
or	an	external	database.	If	the	relevant	data	is	stored	in	memory,	there’s	no	need	to	make	an
extra	network	call	to	an	external	database,	and	the	microservice	can	easily	return	any	relevant
data	to	a	client.	If	the	data	is	stored	in	an	external	database,	the	microservice	will	need	to	make
another	request	to	the	database,	wait	for	a	response,	and	then	continue	to	process	the	task.

This	architecture	is	necessary	if	microservices	are	to	work	well	together.	The	microservice
architecture	paradigm	requires	that	a	set	of	microservices	work	together	to	make	up	what



would	otherwise	exist	as	one	large	application,	and	so	there	are	certain	elements	of	this
architecture	that	need	to	be	standardized	across	an	entire	organization	if	a	set	of
microservices	is	to	interact	successfully	and	efficiently.

The	API	endpoints	of	microservices	should	be	standardized	across	an	organization.	That	is
not	to	say	that	all	microservices	should	have	the	same	specific	endpoints,	but	that	the	type	of
endpoint	should	be	the	same.	Two	very	common	types	of	API	endpoints	for	microservices	are
REST	or	Apache	Thrift,	and	I’ve	seen	some	microservices	that	have	both	types	of	endpoints
(though	this	is	rare,	makes	monitoring	rather	complicated,	and	I	don’t	particularly
recommend	it).	Choice	of	endpoint	type	is	reflective	of	the	internal	workings	of	the
microservice	itself,	and	will	also	dictate	its	architecture:	it’s	difficult	to	build	an	asynchronous
microservice	that	communicates	via	HTTP	over	REST	endpoints,	for	example,	which	would
necessitate	adding	a	messaging-based	endpoint	to	the	services	as	well.

Microservices	interact	with	each	other	via	remote	procedure	calls	(RPCs),	which	are	calls
over	the	network	designed	to	look	and	behave	exactly	like	local	procedure	calls.	The
protocols	used	will	be	dependent	on	architectural	choices	and	organizational	support,	as	well
as	the	endpoints	used.	A	microservice	with	REST	endpoints,	for	example,	will	likely	interact
with	other	microservices	via	HTTP,	while	a	microservice	with	Thrift	endpoints	may
communicate	with	other	microservices	over	HTTP	or	a	more	customized,	in-house	solution.





AVOID	VERSIONING	MICROSERVICES	AND	ENDPOINTS
A	microservice	is	not	a	library	(it	is	not	loaded	into	memory	at	compilation-time	or	during	runtime)	but	an
independent	software	application.	Due	to	the	fast-paced	nature	of	microservice	development,	versioning
microservices	can	easily	become	an	organizational	nightmare,	with	developers	on	client	services	pinning	specific
(outdated,	unmaintained)	versions	of	a	microservice	in	their	own	code.	Microservices	should	be	treated	as	living,
changing	things,	not	static	releases	or	libraries.	Versioning	of	API	endpoints	is	another	anti-pattern	that	should	be
avoided	for	the	same	reasons.

Any	type	of	endpoint	and	any	protocol	used	to	communicate	with	other	microservices	will
have	benefits	and	trade-offs.	The	architectural	decisions	here	shouldn’t	be	made	by	the
individual	developer	who	is	building	a	microservice,	but	should	be	part	of	the	architectural
design	of	the	microservice	ecosystem	as	a	whole	(we’ll	get	to	this	in	the	next	section).

Writing	a	microservice	gives	the	developer	a	great	deal	of	freedom:	aside	from	any
organizational	choices	regarding	API	endpoints	and	communication	protocols,	developers
are	free	to	write	the	internal	workings	of	their	microservice	however	they	wish.	It	can	be
written	in	any	language	whatsoever	—	it	can	be	written	in	Go,	in	Java,	in	Erlang,	in	Haskell
—	as	long	as	the	endpoints	and	communication	protocols	are	taken	care	of.	Developing	a
microservice	is	not	all	that	different	from	developing	a	standalone	application.	There	are
some	caveats	to	this,	as	we	will	see	in	the	final	section	of	this	chapter	(“Organizational
Challenges”),	because	developer	freedom	with	regard	to	language	choice	comes	at	a	hefty
cost	to	the	engineering	organization.

In	this	way,	a	microservice	can	be	treated	by	others	as	a	black	box:	you	put	some	information
in	by	sending	a	request	to	one	of	its	endpoints,	and	you	get	something	out.	If	you	get	what	you
want	and	need	out	of	the	microservice	in	a	reasonable	time	and	without	any	crazy	errors,	it
has	done	its	job,	and	there’s	no	need	to	understand	anything	further	than	the	endpoints	you
need	to	hit	and	whether	or	not	the	service	is	working	properly.

Our	discussion	of	the	specifics	of	microservice	architecture	will	end	here	—	not	because	this
is	all	there	is	to	microservice	architecture,	but	because	each	of	the	following	chapters	within
this	book	is	devoted	to	bringing	microservices	to	this	ideal	black-box	state.



The	Microservice	Ecosystem
Microservices	do	not	live	in	isolation.	The	environment	in	which	microservices	are	built,	are
run,	and	interact	is	where	they	live.	The	complexities	of	the	large-scale	microservice
environment	are	on	par	with	the	ecological	complexities	of	a	rainforest,	a	desert,	or	an	ocean,
and	considering	this	environment	as	an	ecosystem	—	a	microservice	ecosystem	—	is
beneficial	in	adopting	microservice	architecture.

In	well-designed,	sustainable	microservice	ecosystems,	the	microservices	are	abstracted	away
from	all	infrastructure.	They	are	abstracted	away	from	the	hardware,	abstracted	away	from
the	networks,	abstracted	away	from	the	build	and	deployment	pipeline,	abstracted	away	from
service	discovery	and	load	balancing.	This	is	all	part	of	the	infrastructure	of	the	microservice
ecosystem,	and	building,	standardizing,	and	maintaining	this	infrastructure	in	a	stable,
scalable,	fault-tolerant,	and	reliable	way	is	essential	for	successful	microservice	operation.

The	infrastructure	has	to	sustain	the	microservice	ecosystem.	The	goal	of	all	infrastructure
engineers	and	architects	must	be	to	remove	the	low-level	operational	concerns	from
microservice	development	and	build	a	stable	infrastructure	that	can	scale,	one	that	developers
can	easily	build	and	run	microservices	on	top	of.	Developing	a	microservice	within	a	stable
microservice	ecosystem	should	be	just	like	developing	a	small	standalone	application.	This
requires	very	sophisticated,	top-notch	infrastructure.

The	microservice	ecosystem	can	be	split	into	four	layers	(Figure	1-7),	though	the	boundaries
of	each	are	not	always	clearly	defined:	some	elements	of	the	infrastructure	will	touch	every
part	of	the	stack.	The	lower	three	layers	are	the	infrastructure	layers:	at	the	bottom	of	the	stack
we	find	the	hardware	layer,	and	on	top	of	that,	the	communication	layer	(which	bleeds	up	into
the	fourth	layer),	followed	by	the	application	platform.	The	fourth	(top)	layer	is	where	all
individual	microservices	live.



Figure	1-7.	Four-layer	model	of	the	microservice	ecosystem



Layer	1:	Hardware
At	the	very	bottom	of	the	microservice	ecosystem,	we	find	the	hardware	layer.	These	are	the
actual	machines,	the	real,	physical	computers	that	all	internal	tools	and	all	microservices	run
on.	These	servers	are	located	on	racks	within	datacenters,	being	cooled	by	expensive	HVAC
systems	and	powered	by	electricity.	Many	different	types	of	servers	can	live	here:	some	are
optimized	for	databases;	others	for	processing	CPU-intensive	tasks.	These	servers	can	either
be	owned	by	the	company	itself,	or	“rented”	from	so-called	cloud	providers	like	Amazon
Web	Services’	Elastic	Compute	Cloud	(AWS	EC2),	Google	Cloud	Platform	(GCP),	or
Microsoft	Azure.

The	choice	of	specific	hardware	is	determined	by	the	owners	of	the	servers.	If	your	company
is	running	your	own	datacenters,	the	choice	of	hardware	is	your	own,	and	you	can	optimize
the	server	choice	for	your	specific	needs.	If	you	are	running	servers	in	the	cloud	(which	is	the
more	common	scenario),	your	choice	is	limited	to	whatever	hardware	is	offered	by	the	cloud
provider.	Choosing	between	bare	metal	and	a	cloud	provider	(or	providers)	is	not	an	easy
decision	to	make,	and	cost,	availability,	reliability,	and	operational	expenses	are	things	that
need	to	be	considered.

Managing	these	servers	is	part	of	the	hardware	layer.	Each	server	needs	to	have	an	operating
system	installed,	and	the	operating	system	should	be	standardized	across	all	servers.	There	is
no	correct,	right	answer	as	to	which	operating	system	a	microservice	ecosystem	should	use:
the	answer	to	this	question	depends	entirely	on	the	applications	you	will	be	building,	the
languages	they	will	be	written	in,	and	the	libraries	and	tools	that	your	microservices	require.
The	majority	of	microservice	ecosystems	run	some	variant	of	Linux,	commonly	CentOS,
Debian,	or	Ubuntu,	but	a	.NET	company	will,	obviously,	choose	differently.	Additional
abstractions	can	be	built	and	layered	atop	the	hardware:	resource	isolation	and	resource
abstraction	(as	offered	by	technologies	like	Docker	and	Apache	Mesos)	also	belong	in	this
layer,	as	do	databases	(dedicated	or	shared).

Installing	an	operating	system	and	provisioning	the	hardware	is	the	first	layer	on	top	of	the
servers	themselves.	Each	host	must	be	provisioned	and	configured,	and	after	the	operating
system	is	installed,	a	configuration	management	tool	(such	as	Ansible,	Chef,	or	Puppet)
should	be	used	to	install	all	of	the	applications	and	set	all	the	necessary	configurations.

The	hosts	need	proper	host-level	monitoring	(using	something	like	Nagios)	and	host-level
logging	so	that	if	anything	happens	(disk	failure,	network	failure,	or	if	CPU	utilization	goes
through	the	roof),	problems	with	the	hosts	can	be	easily	diagnosed,	mitigated,	and	resolved.
Host-level	monitoring	is	covered	in	greater	detail	in	Chapter	6,	Monitoring.



SUMMARY	OF	LAYER 	1:	THE	HARDWARE	LAYER

The	hardware	layer	(layer	1)	of	the	microservice	ecosystem	contains:

The	physical	servers	(owned	by	the	company	or	rented	from	cloud	providers)

Databases	(dedicated	and/or	shared)

The	operating	system

Resource	isolation	and	abstraction

Configuration	management

Host-level	monitoring

Host-level	logging



Layer	2:	Communication
The	second	layer	of	the	microservice	ecosystem	is	the	communication	layer.	The
communication	layer	bleeds	into	all	of	the	other	layers	of	the	ecosystem	(including	the
application	platform	and	microservices	layers),	because	it	is	where	all	communication
between	services	is	handled;	the	boundaries	between	the	communication	layer	and	each	other
layer	of	the	microservice	ecosystem	are	poorly	defined.	While	the	boundaries	may	not	be
clear,	the	elements	are	clear:	the	second	layer	of	a	microservice	ecosystem	always	contains
the	network,	DNS,	RPCs	and	API	endpoints,	service	discovery,	service	registry,	and	load
balancing.

Discussing	the	network	and	DNS	elements	of	the	communication	layer	is	beyond	the	scope	of
this	book,	so	we	will	be	focusing	on	RPCs,	API	endpoints,	service	discovery,	service	registry,
and	load	balancing	in	this	section.

RPCs,	endpoints,	and	messaging
Microservices	interact	with	one	another	over	the	network	using	remote	procedure	calls
(RPCs)	or	messaging	to	the	API	endpoints	of	other	microservices	(or,	as	we	will	see	in	the
case	of	messaging,	to	a	message	broker	which	will	route	the	message	appropriately).	The
basic	idea	is	this:	using	a	specified	protocol,	a	microservice	will	send	some	data	in	a
standardized	format	over	the	network	to	another	service	(perhaps	to	another	microservice’s
API	endpoint)	or	to	a	message	broker	which	will	make	sure	that	the	data	is	send	to	another
microservice’s	API	endpoint.

There	are	several	microservice	communication	paradigms.	The	first	is	the	most	common:
HTTP+REST/THRIFT.	In	HTTP+REST/THRIFT,	services	communicate	with	each	other	over
the	network	using	the	Hypertext	Transfer	Protocol	(HTTP),	and	sending	requests	and
receiving	responses	to	or	from	either	specific	representational	state	transfer	(REST)
endpoints	(using	various	methods,	like	GET,	POST,	etc.)	or	specific	Apache	Thrift	endpoints
(or	both).	The	data	is	usually	formatted	and	sent	as	JSON	(or	protocol	buffers)	over	HTTP.

HTTP+REST	is	the	most	convenient	form	of	microservice	communication.	There	aren’t	any
surprises,	it’s	easy	to	set	up,	and	is	the	most	stable	and	reliable	—	mostly	because	it’s	difficult
to	implement	incorrectly.	The	downside	of	adopting	this	paradigm	is	that	it	is,	by	necessity,
synchronous	(blocking).

The	second	communication	paradigm	is	messaging.	Messaging	is	asynchronous
(nonblocking),	but	it’s	a	bit	more	complicated.	Messaging	works	the	following	way:	a
microservice	will	send	data	(a	message)	over	the	network	(HTTP	or	other)	to	a	message
broker,	which	will	route	the	communication	to	other	microservices.

Messaging	comes	in	several	flavors,	the	two	most	popular	being	publish–subscribe	(pubsub)
messaging	and	request–response	messaging.	In	pubsub	models,	clients	will	subscribe	to	a
topic	and	will	receive	a	message	whenever	a	publisher	publishes	a	message	to	that	topic.



Request–response	models	are	more	straightforward,	where	a	client	will	send	a	request	to	a
service	(or	message	broker),	which	will	respond	with	the	information	requested.	There	are
some	messaging	technologies	that	are	a	unique	blend	of	both	models,	like	Apache	Kafka.
Celery	and	Redis	(or	Celery	with	RabbitMQ)	can	be	used	for	messaging	(and	task	processing)
for	microservices	written	in	Python:	Celery	processes	the	tasks	and/or	messages	using	Redis
or	RabbitMQ	as	the	broker.

Messaging	comes	with	several	significant	downsides	that	must	be	mitigated.	Messaging	can
be	just	as	scalable	(if	not	more	scalable)	than	HTTP+REST	solutions,	if	it	is	architected	for
scalability	from	the	get-go.	Inherently,	messaging	is	not	as	easy	to	change	and	update,	and	its
centralized	nature	(while	it	may	seem	like	a	benefit)	can	lead	to	its	queues	and	brokers
becoming	points	of	failure	for	the	entire	ecosystem.	The	asynchronous	nature	of	messaging
can	lead	to	race	conditions	and	endless	loops	if	not	prepared	for.	If	a	messaging	system	is
implemented	with	protections	against	these	problems,	it	can	become	as	stable	and	efficient	as
a	synchronous	solution.

Service	discovery,	service	registry,	and	load	balancing
In	monolithic	architecture,	traffic	only	needs	to	be	sent	to	one	application	and	distributed
appropriately	to	the	servers	hosting	the	application.	In	microservice	architecture,	traffic	needs
to	be	routed	appropriately	to	a	large	number	of	different	applications,	and	then	distributed
appropriately	to	the	servers	hosting	each	specific	microservice.	In	order	for	this	to	be	done
efficiently	and	effectively,	microservice	architecture	requires	three	technologies	be
implemented	in	the	communication	layer:	service	discovery,	service	registry,	and	load
balancing.

In	general,	when	a	microservice	A	needs	to	make	a	request	to	another	microservice	B,
microservice	A	needs	to	know	the	IP	address	and	port	of	a	specific	instance	where
microservice	B	is	hosted.	More	specifically,	the	communication	layer	between	the
microservices	needs	to	know	the	IP	addresses	and	ports	of	these	microservices	so	that	the
requests	between	them	can	be	routed	appropriately.	This	is	accomplished	through	service
discovery	(such	as	etcd,	Consul,	Hyperbahn,	or	ZooKeeper),	which	ensures	that	requests	are
routed	to	exactly	where	they	are	supposed	to	be	sent	and	that	(very	importantly)	they	are	only
routed	to	healthy	instances.	Service	discovery	requires	a	service	registry,	which	is	a	database
that	tracks	all	ports	and	IPs	of	all	microservices	across	the	ecosystem.





DYNAMIC	SCALING	AND	ASSIGNED	PORTS
In	microservice	architecture,	ports	and	IPs	can	(and	do)	change	all	of	the	time,	especially	as	microservices	are
scaled	and	re-deployed	(especially	with	a	hardware	abstraction	layer	like	Apache	Mesos).	One	way	to	approach
the	discovery	and	routing	is	to	assign	static	ports	(both	frontend	and	backend)	to	each	microservice.

Unless	you	have	each	microservice	hosted	on	only	one	instance	(which	is	highly	unlikely),
you’ll	need	load	balancing	in	place	in	various	parts	of	the	communication	layer	across	the
microservice	ecosystem.	Load	balancing	works,	at	a	very	high	level,	like	this:	if	you	have	10
different	instances	hosting	a	microservice,	load-balancing	software	(and/or	hardware)	will
ensure	that	the	traffic	is	distributed	(balanced)	across	all	of	the	instances.	Load	balancing	will
be	needed	at	every	location	in	the	ecosystem	in	which	a	request	is	being	sent	to	an	application,
which	means	that	any	large	microservice	ecosystem	will	contain	many,	many	layers	of	load
balancing.	Commonly	used	load	balancers	for	this	purpose	are	Amazon	Web	Services	Elastic
Load	Balancer,	Netflix	Eureka,	HAProxy,	and	Nginx.

SUMMARY	OF	LAYER 	2:	THE	COMMUNICATION	LAYER

The	communication	layer	(layer	2)	of	the	microservice	ecosystem	contains:

Network

DNS

Remote	procedure	calls	(RPCs)

Endpoints

Messaging

Service	discovery

Service	registry

Load	balancing



Layer	3:	The	Application	Platform
The	application	platform	is	the	third	layer	of	the	microservice	ecosystem	and	contains	all	of
the	internal	tooling	and	services	that	are	independent	of	the	microservices.	This	layer	is	filled
with	centralized,	ecosystem-wide	tools	and	services	that	must	be	built	in	such	a	way	that
microservice	development	teams	do	not	have	to	design,	build,	or	maintain	anything	except
their	own	microservices.

A	good	application	platform	is	one	with	self-service	internal	tools	for	developers,	a
standardized	development	process,	a	centralized	and	automated	build	and	release	system,
automated	testing,	a	standardized	and	centralized	deployment	solution,	and	centralized	logging
and	microservice-level	monitoring.	Many	of	the	details	of	these	elements	are	covered	in	later
chapters,	but	we’ll	cover	several	of	them	briefly	here	to	provide	some	introduction	to	the
basic	concepts.

Self-service	internal	development	tools
Quite	a	few	things	can	be	categorized	as	self-service	internal	development	tools,	and	which
particular	things	fall	into	this	category	depends	not	only	on	the	needs	of	the	developers,	but
the	level	of	abstraction	and	sophistication	of	both	the	infrastructure	and	the	ecosystem	as	a
whole.	The	key	to	determining	which	tools	need	to	be	built	is	to	first	divide	the	realms	of
responsibility	and	then	determine	which	tasks	developers	need	to	be	able	to	accomplish	in
order	to	design,	build,	and	maintain	their	services.

Within	a	company	that	has	adopted	microservice	architecture,	responsibilities	need	to	be
carefully	delegated	to	different	engineering	teams.	An	easy	way	to	do	this	is	to	create	an
engineering	suborganization	for	each	layer	of	the	microservice	ecosystem,	along	with	other
teams	that	bridge	each	layer.	Each	of	these	engineering	organizations,	functioning	semi-
independently,	will	be	responsible	for	everything	within	their	layer:	TechOps	teams	will	be
responsible	for	layer	1,	infrastructure	teams	will	be	responsible	for	layer	2,	application
platform	teams	will	be	responsible	for	layer	3,	and	microservice	teams	will	be	responsible
for	layer	4	(this	is,	of	course,	a	very	simplified	view,	but	you	get	the	general	idea).

Within	this	organizational	scheme,	any	time	that	an	engineer	working	on	one	of	the	higher
layers	needs	to	set	up,	configure,	or	utilize	something	on	one	of	the	lower	layers,	there
should	be	a	self-service	tool	in	place	that	the	engineer	can	use.	For	example,	the	team	working
on	messaging	for	the	ecosystem	should	build	a	self-service	tool	so	that	if	a	developer	on	a
microservice	team	needs	to	configure	messaging	for	her	service,	she	can	easily	configure	the
messaging	without	having	to	understand	all	of	the	intricacies	of	the	messaging	system.

There	are	many	reasons	to	have	these	centralized,	self-service	tools	in	place	for	each	layer.	In
a	diverse	microservice	ecosystem,	the	average	engineer	on	any	given	team	will	have	no	(or
very	little)	knowledge	of	how	the	services	and	systems	in	other	teams	work,	and	there	is
simply	no	way	they	could	become	experts	in	each	service	and	system	while	working	on	their
own	—	it	simply	can’t	be	done.	Each	individual	developer	will	know	almost	nothing	except



her	own	service,	but	together,	all	of	the	developers	working	within	the	ecosystem	will
collectively	know	everything.	Rather	than	trying	to	educate	each	developer	about	the
intricacies	of	each	tool	and	service	within	the	ecosystem,	build	sustainable,	easy-to-use	user
interfaces	for	every	part	of	the	ecosystem,	and	then	educate	and	train	them	on	how	to	use
those.	Turn	everything	into	a	black	box,	and	document	exactly	how	it	works	and	how	to	use	it.

The	second	reason	to	build	these	tools	and	build	them	well	is	that,	in	all	honesty,	you	do	not
want	a	developer	from	another	team	to	be	able	to	make	significant	changes	to	your	service	or
system,	especially	not	one	that	could	cause	an	outage.	This	is	especially	true	and	compelling
for	services	and	systems	belonging	to	the	lower	layers	(layer	1,	layer	2,	and	layer	3).
Allowing	nonexperts	to	make	changes	to	things	within	these	layers,	or	requiring	(or	worse,
expecting)	them	to	become	experts	in	these	areas	is	a	recipe	for	disaster.	An	example	of	where
this	can	go	terribly	wrong	is	in	configuration	management:	allowing	developers	on
microservice	teams	to	make	changes	to	system	configurations	without	having	the	expertise	to
do	so	can	and	will	lead	to	large-scale	production	outages	if	a	change	is	made	that	affects
something	other	than	their	service	alone.

The	development	cycle
When	developers	are	making	changes	to	existing	microservices,	or	creating	new	ones,
development	can	be	made	more	effective	by	streamlining	and	standardizing	the	development
process	and	automating	away	as	much	as	possible.	The	details	of	standardizing	the	process	of
stable	and	reliable	development	itself	are	covered	in	Chapter	4,	Scalability	and	Performance,
but	there	are	several	things	that	need	to	be	in	place	within	the	third	layer	of	a	microservice
ecosystem	in	order	for	stable	and	reliable	development	to	be	possible.

The	first	requirement	is	a	centralized	version	control	system	where	all	code	can	be	stored,
tracked,	versioned,	and	searched.	This	is	usually	accomplished	through	something	like
GitHub,	or	a	self-hosted	git	or	svn	repository	linked	to	some	kind	of	collaboration	tool	like
Phabrictor,	and	these	tools	make	it	easy	to	maintain	and	review	code.

The	second	requirement	is	a	stable,	efficient	development	environment.	Development
environments	are	notoriously	difficult	to	implement	in	microservice	ecosystems,	due	to	the
complicated	dependencies	each	microservice	will	have	on	other	services,	but	they	are
absolutely	essential.	Some	engineering	organizations	prefer	when	all	development	is	done
locally	(on	a	developer ’s	laptop),	but	this	can	lead	to	bad	deploys	because	it	doesn’t	give	the
developer	an	accurate	picture	of	how	her	code	changes	will	perform	in	the	production	world.
The	most	stable	and	reliable	way	to	design	a	development	environment	is	to	create	a	mirror
of	the	production	environment	(one	that	is	not	staging,	nor	canary,	nor	production)
containing	all	of	the	intricate	dependency	chains.

Test,	build,	package,	and	release
The	test,	build,	package,	and	release	steps	in	between	development	and	deployment	should	be



standardized	and	centralized	as	much	as	possible.	After	the	development	cycle,	when	any	code
change	has	been	committed,	all	the	necessary	tests	should	be	run,	and	new	releases	should	be
automatically	built	and	packaged.	Continuous	integration	tooling	exists	for	precisely	this
purpose,	and	existing	solutions	(like	Jenkins)	are	very	advanced	and	easy	to	configure.	These
tools	make	it	easy	to	automate	the	entire	process,	leaving	very	little	room	for	human	error.

Deployment	pipeline
The	deployment	pipeline	is	the	process	by	which	new	code	makes	its	way	to	production
servers	after	the	development	cycle	and	following	the	test,	build,	package,	and	release	steps.
Deployment	can	quickly	become	very	complicated	in	a	microservice	ecosystem,	where
hundreds	of	deployments	per	day	are	not	out	of	the	ordinary.	Building	tooling	around
deployment,	and	standardizing	deployment	practices	for	all	development	teams	is	often
necessary.	The	principles	of	building	stable	and	reliable	(production-ready)	deployment
pipelines	are	covered	in	detail	in	Chapter	3,	Stability	and	Reliability.

Logging	and	monitoring
All	microservices	should	have	microservice-level	logging	of	all	requests	made	to	the
microservice	(including	all	relevant	and	important	information)	and	its	responses.	Due	to	the
fast-paced	nature	of	microservice	development,	it’s	often	impossible	to	reproduce	bugs	in	the
code	because	it’s	impossible	to	reconstruct	the	state	of	the	system	at	the	time	of	failure.	Good
microservice-level	logging	gives	developers	the	information	they	need	to	fully	understand
the	state	of	their	service	at	a	certain	time	in	the	past	or	present.	Microservice-level	monitoring
of	all	key	metrics	of	the	microservices	is	essential	for	similar	reasons:	accurate,	real-time
monitoring	allows	developers	to	always	know	the	health	and	status	of	their	service.
Microservice-level	logging	and	monitoring	are	covered	in	greater	detail	in	Chapter	6,
Monitoring.

SUMMARY	OF	LAYER 	3:	THE	APPLICATION	PLATFORM	LAYER

The	application	platform	layer	(layer	3)	of	the	microservice	ecosystem	contains:

Self-service	internal	development	tools

Development	environment

Test,	package,	build,	and	release	tools

Deployment	pipeline

Microservice-level	logging

Microservice-level	monitoring



Layer	4:	Microservices
At	the	very	top	of	the	microservice	ecosystem	lies	the	microservice	layer	(layer	4).	This	layer
is	where	the	microservices	—	and	anything	specific	to	them	—	live,	completely	abstracted
away	from	the	lower	infrastructure	layers.	Here	they	are	abstracted	from	the	hardware,	from
deployment,	from	service	discovery,	from	load	balancing,	and	from	communication.	The
only	things	that	are	not	abstracted	away	from	the	microservice	layer	are	the	configurations
specific	to	each	service	for	using	the	tools.

It	is	common	practice	in	software	engineering	to	centralize	all	application	configurations	so
that	the	configurations	for	a	specific	tool	or	set	of	tools	(like	configuration	management,
resource	isolation,	or	deployment	tools)	are	all	stored	with	the	tool	itself.	For	example,
custom	deployment	configurations	for	applications	are	often	stored	not	with	the	application
code	but	with	the	code	for	the	deployment	tool.	This	practice	works	well	for	monolithic
architecture,	and	even	for	small	microservice	ecosystems,	but	in	very	large	microservice
ecosystems	containing	hundreds	of	microservices	and	dozens	of	internal	tools	(each	with
their	own	custom	configurations),	this	practice	becomes	rather	messy:	developers	on
microservice	teams	are	required	to	make	changes	to	codebases	of	tools	in	the	layers	below,
and	oftentimes	will	forget	where	certain	configurations	live	(or	that	they	exist	at	all).	To
mitigate	this	problem,	all	microservice-specific	configurations	can	live	in	the	repository	of
the	microservice	and	should	be	accessed	there	by	the	tools	and	systems	of	the	layers	below.

SUMMARY	OF	LAYER 	4:	THE	MICROSERVICE	LAYER

The	microservice	layer	(layer	4)	of	the	microservice	ecosystem	contains:

The	microservices

All	microservice-specific	configurations



Organizational	Challenges
The	adoption	of	microservice	architecture	resolves	the	most	pressing	challenges	presented	by
monolithic	application	architecture.	Microservices	aren’t	plagued	by	the	same	scalability
challenges,	the	lack	of	efficiency,	or	the	difficulties	in	adopting	new	technologies:	they	are
optimized	for	scalability,	optimized	for	efficiency,	optimized	for	developer	velocity.	In	an
industry	where	new	technologies	rapidly	gain	market	traction,	the	pure	organizational	cost	of
maintaining	and	attempting	to	improve	a	cumbersome	monolithic	application	is	simply	not
practical.	With	these	things	in	mind,	it’s	hard	to	imagine	why	anyone	would	be	reluctant	to
split	a	monolith	into	microservices,	why	anyone	would	be	wary	about	building	a
microservice	ecosystem	from	the	ground	up.

Microservices	seem	like	a	magical	(and	somewhat	obvious)	solution,	but	we	know	better	than
that.	In	The	Mythical	Man-Month,	Frederick	Brooks	explained	why	there	are	no	silver	bullets
in	software	engineering,	an	idea	he	summarized	as	follows:	“There	is	no	single	development,
in	either	technology	or	management	technique,	which	by	itself	promises	even	one	order-of-
magnitude	improvement	within	a	decade	in	productivity,	in	reliability,	in	simplicity.”

When	we	find	ourselves	presented	with	technology	that	promises	to	offer	us	drastic
improvements,	we	need	to	look	for	the	trade-offs.	Microservices	promise	greater	scalability
and	greater	efficiency,	but	we	know	that	those	will	come	at	a	cost	to	some	part	of	the	overall
system.

There	are	four	especially	significant	trade-offs	that	come	with	microservice	architecture.	The
first	is	the	change	in	organizational	structure	that	tends	toward	isolation	and	poor	cross-team
communication	—	a	consequence	of	the	inverse	of	Conway’s	Law.	The	second	is	the	dramatic
increase	in	technical	sprawl,	sprawl	that	is	extraordinarily	costly	not	only	to	the	entire
organization	but	which	also	presents	significant	costs	to	each	engineer.	The	third	trade-off	is
the	increased	ability	of	the	system	to	fail.	The	fourth	is	the	competition	for	engineering	and
infrastructure	resources.



The	Inverse	Conway’s	Law
The	idea	behind	Conway’s	Law	(named	after	programmer	Melvin	Conway	in	1968)	is	this:	that
the	architecture	of	a	system	will	be	determined	by	the	communication	and	organizational
structures	of	the	company.	The	inverse	of	Conway’s	Law	(which	we’ll	call	the	Inverse
Conway’s	Law)	is	also	valid	and	is	especially	relevant	to	the	microservice	ecosystem:	the
organizational	structure	of	a	company	is	determined	by	the	architecture	of	its	product.	Over
40	years	after	Conway’s	Law	was	first	introduced,	both	it	and	its	inverse	still	appear	to	hold
true.	Microsoft’s	organizational	structure,	if	sketched	out	as	if	it	were	the	architecture	of	a
system,	looks	remarkably	like	the	architecture	of	its	products	—	the	same	goes	for	Google,
for	Amazon,	and	for	every	other	large	technology	company.	Companies	that	adopt
microservice	architecture	will	never	be	an	exception	to	this	rule.

Microservice	architecture	is	comprised	of	a	large	number	of	small,	isolated,	independent
microservices.	The	Inverse	Conway’s	Law	demands	that	the	organizational	structure	of	any
company	using	microservice	architecture	will	be	made	up	of	a	large	number	of	very	small,
isolated,	and	independent	teams.	The	team	structures	that	spring	from	this	inevitably	lead	to
siloing	and	sprawl,	problems	that	are	made	worse	every	time	the	microservice	ecosystem
becomes	more	sophisticated,	more	complex,	more	concurrent,	and	more	efficient.

Inverse	Conway’s	Law	also	means	that	developers	will	be,	in	some	ways,	just	like
microservices:	they	will	be	able	to	do	one	thing,	and	(hopefully)	do	that	one	thing	very	well,
but	they	will	be	isolated	(in	responsibility,	in	domain	knowledge,	and	experience)	from	the
rest	of	the	ecosystem.	When	considered	together,	all	of	the	developers	collectively	working
within	a	microservice	ecosystem	will	know	everything	there	is	to	know	about	it,	but
individually	they	will	be	extremely	specialized,	knowing	only	the	pieces	of	the	ecosystem	they
are	responsible	for.

This	poses	an	unavoidable	organizational	problem:	even	though	microservices	must	be
developed	in	isolation	(leading	to	isolated,	siloed	teams),	they	don’t	live	in	isolation	and	must
interact	with	one	another	seamlessly	if	the	overall	product	is	to	function	at	all.	This	requires
that	these	isolated,	independently	functioning	teams	work	together	closely	and	often	—
something	that	is	difficult	to	accomplish,	given	that	most	team’s	goals	and	projects	(codified
in	their	team’s	objectives	and	key	results,	or	OKRs)	are	specific	to	a	particular	microservice
they	are	working	on.

There	is	also	a	large	communication	gap	between	microservice	teams	and	infrastructure
teams	that	needs	to	be	closed.	Application	platform	teams,	for	example,	need	to	build	platform
services	and	tools	that	all	of	the	microservice	teams	will	use,	but	gaining	the	requirements
and	needs	from	hundreds	of	microservice	teams	before	building	one	small	project	can	take
months	(even	years).	Getting	developers	and	infrastructure	teams	to	work	together	is	not	an
easy	task.

There’s	a	related	problem	that	arises	thanks	to	Inverse	Conway’s	Law,	one	that	is	only	rarely



found	in	companies	with	monolithic	architecture:	the	difficulty	of	running	an	operations
organization.	With	a	monolith,	an	operations	organization	can	easily	be	staffed	and	on	call
for	the	application,	but	this	is	very	difficult	to	achieve	with	microservice	architecture	because
it	would	require	every	single	microservice	to	be	staffed	by	both	a	development	team	and	an
operational	team.	Consequently,	microservice	development	teams	need	to	be	responsible	for
the	operational	duties	and	tasks	associated	with	their	microservice.	There	is	no	separate	ops
org	to	take	over	the	on	call,	no	separate	ops	org	responsible	for	monitoring:	developers	will
need	to	be	on	call	for	their	services.



Technical	Sprawl
The	second	trade-off,	technical	sprawl,	is	related	to	the	first.	While	Conway’s	Law	and	its
inverse	predict	organizational	sprawl	and	siloing	for	microservices,	a	second	type	of	sprawl
(related	to	technologies,	tools,	and	the	like)	is	also	unavoidable	in	microservice	architecture.
There	are	many	different	ways	in	which	technical	sprawl	can	manifest.	We’ll	cover	a	few	of
the	most	common	ways	here.

It’s	easy	to	see	why	microservice	architecture	leads	to	technical	sprawl	if	we	consider	a	large
microservice	ecosystem,	one	containing	1,000	microservices.	Suppose	each	of	these
microservices	is	staffed	by	a	development	team	of	six	developers,	and	each	developer	uses
their	own	set	of	favorite	tools,	favorite	libraries,	and	works	in	their	own	favorite	languages.
Each	of	these	development	teams	has	their	own	way	of	deploying,	their	own	specified	metrics
to	monitor	and	alert	on,	their	own	external	libraries	and	internal	dependencies	they	use,
custom	scripts	to	run	on	production	machines,	and	so	on.

If	you	have	a	thousand	of	these	teams,	this	means	that	within	one	system	there	are	a	thousand
ways	to	do	one	thing.	There	will	be	a	thousand	ways	to	deploy,	a	thousand	libraries	to
maintain,	a	thousand	different	ways	of	alerting	and	monitoring	and	testing	and	handling
outages.	The	only	way	to	cut	down	on	technical	sprawl	is	through	standardization	at	every
level	of	the	microservice	ecosystem.

There’s	another	kind	of	technical	sprawl	associated	with	language	choice.	Microservices
infamously	come	with	the	promise	of	greater	developer	freedom,	freedom	to	choose
whichever	languages	and	libraries	one	wants.	This	is	possible	in	principle,	and	can	be	true	in
practice,	but	as	a	microservice	ecosystem	grows	it	often	becomes	impractical,	costly,	and
dangerous.	To	see	why	this	can	become	a	problem,	consider	the	following	scenario.	Suppose
we	have	a	microservice	ecosystem	containing	200	services,	and	imagine	that	some	of	these
microservices	are	written	in	Python,	others	in	JavaScript,	some	in	Haskell,	a	few	in	Go,	and	a
couple	more	in	Ruby,	Java,	and	C++.	For	each	internal	tool,	for	each	system	and	service
within	every	layer	of	the	ecosystem,	libraries	will	have	to	be	written	for	each	one	of	these
languages.

Take	a	moment	to	contemplate	the	sheer	amount	of	maintenance	and	development	that	will
have	to	be	done	in	order	for	each	language	to	receive	the	support	it	requires:	it’s
extraordinary,	and	very	few	engineering	organizations	could	afford	to	dedicate	the
engineering	resources	necessary	to	make	it	happen.	It’s	more	realistic	to	choose	a	small
number	of	supported	languages	and	ensure	that	all	libraries	and	tools	are	compatible	with	and
exist	for	these	languages	than	to	attempt	to	support	a	large	number	of	languages.

The	last	type	of	technical	sprawl	we	will	cover	here	is	technical	debt,	which	usually	refers	to
work	that	needs	to	be	done	because	something	was	implemented	in	a	way	that	got	the	job	done
quickly,	but	not	in	the	best	or	most	optimal	way.	Given	that	microservice	development	teams
can	churn	out	new	features	at	a	fast	pace,	technical	debt	often	builds	up	quietly	in	the



background.	When	outages	happen,	when	things	break,	any	work	that	comes	out	of	an	incident
review	will	only	rarely	be	the	best	overall	solution:	as	far	as	microservice	development	teams
are	concerned,	whatever	fixes	(or	fixed)	the	problem	quickly	and	in	the	moment	was	good
enough,	and	any	better	solutions	are	pawned	off	to	the	future.



More	Ways	to	Fail
Microservices	are	large,	complex,	distributed	systems	with	many	small,	independent	pieces
that	are	constantly	changing.	The	reality	of	working	with	complex	systems	of	this	sort	is	that
individual	components	will	fail,	they	will	fail	often,	and	they	will	fail	in	ways	that	nobody
could	have	predicted.	This	is	where	the	third	trade-off	comes	into	play:	microservice
architecture	introduces	more	ways	your	system	can	fail.

There	are	ways	to	prepare	for	failure,	to	mitigate	failures	when	they	occur,	and	to	test	the
limits	and	boundaries	of	both	the	individual	components	and	the	overall	ecosystem,	which	I
cover	in	Chapter	5,	Fault	Tolerance	and	Catastrophe-Preparedness.	However,	it	is	important
to	understand	that	no	matter	how	many	resiliency	tests	you	run,	no	matter	how	many	failures
and	catastrophe	scenarios	you’ve	scoped	out,	you	cannot	escape	the	fact	that	the	system	will
fail.	You	can	only	do	your	best	to	prepare	for	when	it	does.



Competition	for	Resources
Just	like	any	other	ecosystem	in	the	natural	world,	competition	for	resources	in	the
microservice	ecosystem	is	fierce.	Each	engineering	organization	has	finite	resources:	it	has
finite	engineering	resources	(teams,	developers)	and	finite	hardware	and	infrastructure
resources	(physical	machines,	cloud	hardware,	database	storage,	etc.),	and	each	resource
costs	the	company	a	great	deal	of	money.

When	your	microservice	ecosystem	has	a	large	number	of	microservices	and	a	large	and
sophisticated	application	platform,	competition	between	teams	for	hardware	and
infrastructure	resources	is	inevitable:	every	service,	every	tool	will	be	presented	as	equally
important,	its	scaling	needs	presented	as	being	of	the	highest	priority.

Likewise,	when	application	platform	teams	are	asking	for	specifications	and	needs	from
microservice	teams	so	that	they	can	design	their	systems	and	tools	appropriately,	every
microservice	development	team	will	argue	that	their	needs	are	the	most	important	and	will	be
disappointed	(and	potentially	very	frustrated)	if	they	are	not	included.	This	kind	of
competition	for	engineering	resources	can	lead	to	resentment	between	teams.

The	last	kind	of	competition	for	resources	is	perhaps	the	most	obvious	one:	the	competition
between	managers,	between	teams,	and	between	different	engineering
departments/organization	for	engineering	headcount.	Even	with	the	increase	in	computer
science	graduates	and	the	rise	of	developer	bootcamps,	truly	great	developers	are	difficult	to
find,	and	represent	one	of	the	most	irreplaceable	and	scarce	resources.	When	there	are
hundreds	or	thousands	of	teams	that	could	use	an	extra	engineer	or	two,	every	single	team
will	insist	that	their	team	needs	an	extra	engineer	more	than	any	of	the	other	teams.

There	is	no	way	to	avoid	competition	for	resources,	though	there	are	ways	to	mitigate
competition	somewhat.	The	most	effective	seems	to	be	organizing	or	categorizing	teams	in
terms	of	their	importance	and	criticality	to	the	overall	business,	and	then	giving	teams	access
to	resources	based	on	their	priority	or	importance.	There	are	downsides	to	this,	because	it
tends	to	result	in	poorly	staffed	development	tools	teams,	and	in	projects	whose	importance
lies	in	shaping	the	future	(such	as	adopting	new	infrastructure	technologies)	being	abandoned.



Chapter	2.	Production-Readiness

While	the	adoption	of	microservice	architecture	brings	considerable	freedom	to	developers,
ensuring	availability	across	the	microservice	ecosystem	requires	holding	individual
microservices	to	high	architectural,	operational,	and	organizational	standards.	This	chapter
covers	the	challenges	of	microservice	standardization,	introduces	availability	as	the	goal	of
standardization,	presents	the	eight	production-readiness	standards,	and	proposes	strategies	for
implementing	production-readiness	standardization	across	an	engineering	organization.



The	Challenges	of	Microservice	Standardization
The	architecture	of	a	monolithic	application	is	usually	determined	at	the	beginning	of	the
application’s	lifecycle.	For	many	applications,	the	architecture	is	determined	at	the	time	a
company	begins.	As	the	business	grows,	and	the	application	scales,	developers	who	are
adding	new	features	often	find	themselves	constrained	and	limited	by	the	choices	made	when
the	application	was	first	designed.	They	are	constrained	by	choice	of	language,	by	the
libraries	they	are	able	to	use,	by	the	development	tools	they	can	work	with,	and	by	the	need
for	extensive	regression	testing	to	ensure	that	every	new	feature	they	add	does	not	disturb	or
compromise	the	entirety	of	the	application.	Any	refactoring	that	happens	to	the	standalone,
monolithic	application	is	still	essentially	constrained	by	initial	architectural	decisions:	initial
conditions	exclusively	determine	the	future	of	the	application.

The	adoption	of	microservice	architecture	brings	a	considerable	amount	of	freedom	to
developers.	They	are	no	longer	tied	to	the	architectural	decisions	of	the	past,	they	can
architect	their	service	however	they	wish,	and	they	have	free	reign	in	decisions	of	language,
of	database,	of	development	tools,	and	the	like.	The	message	accompanying	the	adoption	of
microservice	architecture	is	usually	understood	and	heard	by	developers	as	follows:	build	an
application	that	does	one	thing	—	one	thing	only	—	and	does	that	one	thing	extraordinarily
well;	do	whatever	you	need	to	do,	build	it	however	you	want	—	just	make	sure	it	gets	the	job
done.

While	this	romantic	idealization	of	microservice	development	is	true	in	principle,	not	all
microservices	are	created	equal	—	nor	should	they	be.	Each	microservice	is	part	of	a
microservice	ecosystem,	and	complex	dependency	chains	are	a	necessary	inevitability.	When
you	have	100,	1,000,	or	even	10,000	microservices,	each	of	them	will	be	playing	a	small	role
in	a	very	large	system.	The	services	must	interact	seamlessly	with	one	another,	and	—	most
importantly	—	no	service	or	set	of	services	should	compromise	the	integrity	of	the	overall
system	or	product	that	they	comprise.	If	the	overall	system	or	product	is	to	be	any	good,	it
must	be	held	to	certain	standards,	and	consequently,	each	of	its	parts	must	abide	by	these
standards	as	well.

It’s	relatively	simple	to	determine	standards	and	give	requirements	to	a	microservice	team	if
we	focus	on	the	needs	of	that	specific	team	and	the	role	their	service	is	to	play.	We	can	say,
“your	microservice	must	do	x,	y,	and	z,	and	to	do	x,	y,	and	z	well,	you	need	to	make	sure	you
meet	this	set	S	of	requirements,”	giving	each	team	a	set	of	requirements	that	is	relevant	to
their	service,	and	to	their	service	alone.	Unfortunately,	this	approach	simply	isn’t	scalable	and
neglects	to	recognize	the	important	fact	that	a	microservice	is	but	a	very	small	piece	of	an
absurdly	large	and	distributed	puzzle.	We	must	define	standards	and	requirements	for	our
microservices,	and	they	must	be	general	enough	to	apply	to	every	single	microservice	yet
specific	enough	to	be	quantifiable	and	produce	measurable	results.	This	is	where	the	concept
of	production-readiness	comes	in.



Availability:	The	Goal	of	Standardization
Within	microservice	ecosystems,	service-level	agreements	(SLAs)	regarding	the	availability
of	a	service	are	the	most	commonly	used	methods	of	measuring	a	service’s	success:	if	a
service	is	highly	available	(that	is,	has	very	little	downtime),	then	we	can	say	with	reasonable
confidence	(and	a	few	caveats)	that	the	service	is	doing	its	job.

Calculating	and	measuring	availability	is	easy.	You	need	to	calculate	only	three	measurable
quantities:	uptime	(the	length	of	time	that	the	microservice	worked	correctly),	downtime	(the
length	of	time	that	the	microservice	was	not	working	correctly),	and	the	total	time	a	service
was	operational	(the	sum	of	uptime	and	downtime).	Availability	is	then	the	uptime	divided	by
the	total	time	a	service	was	operational	(uptime	+	downtime).

As	useful	as	it	is,	availability	is	not	in	itself	a	principle	of	microservice	standardization,	but
the	goal.	It	can’t	be	a	principle	of	standardization	because	it	gives	no	guidance	as	to	how	to
architect,	build,	or	run	the	microservice:	telling	developers	to	make	their	microservice	more
available	without	telling	them	how	(or	why)	to	do	so	is	useless.	Availability	alone	comes	with
no	concrete,	applicable	steps,	but	as	we	will	see	in	the	following	sections,	there	are	concrete,
applicable	steps	that	can	be	taken	toward	reaching	the	goal	of	building	an	available
microservice.



CALCULATING	AVAILABILITY

Availability	is	measured	in	so-called	nines	notation,	which	corresponds	to	the	percentage	of	time	that	a	service	is
available.	For	example,	a	service	that	is	available	99%	of	the	time	is	said	to	have	“two-nines	availability.”

This	notation	is	useful	because	it	gives	us	a	specific	amount	of	downtime	that	a	service	is	allowed	to	have.	If	your	service
is	required	to	have	four-nines	availability,	then	it	is	allowed	52.56	minutes	of	downtime	per	year,	which	is	4.38	minutes	of
downtime	per	month,	1.01	minutes	of	downtime	per	week,	and	8.66	seconds	of	downtime	per	day.

Here	are	the	availability	and	downtime	calculations	for	99%	availability	to	99.999%	availability:

99%	availability:	(two-nines)

3.65	days/year	(of	allowed	downtime)

7.20	hours/month

1.68	hours/week

14.4	minutes/day

99.9%	availability	(three-nines):

8.76	hours/year

43.8	minutes/month

10.1	minutes/week

1.44	minutes/day

99.99%	availability	(four-nines):

52.56	minutes/year

4.38	minutes/month

1.01	minutes/week

8.66	seconds/day

99.999%	availability	(five-nines):

5.26	minutes/year

25.9	seconds/month

6.05	seconds/week

864.3	milliseconds/day



Production-Readiness	Standards
The	basic	idea	behind	production-readiness	is	this:	a	production-ready	application	or	service
is	one	that	can	be	trusted	to	serve	production	traffic.	When	we	refer	to	an	application	or
microservice	as	“production-ready,”	we	confer	a	great	deal	of	trust	upon	it:	we	trust	it	to
behave	reasonably,	we	trust	it	to	perform	reliably,	we	trust	it	to	get	the	job	done	and	to	do	its
job	well	with	very	little	downtime.	Production-readiness	is	the	key	to	microservice
standardization,	the	key	to	achieving	availability	across	the	microservice	ecosystem.

However,	the	idea	of	production-readiness	as	stated	isn’t	useful	enough	on	its	own	to	serve	as
the	exhaustive	definition	we	need,	and	without	further	explication,	the	concept	isn’t	very
helpful.	We	need	to	know	exactly	what	requirements	every	service	must	meet	in	order	to	be
deemed	production-ready	and	to	be	trusted	to	serve	production	traffic	in	a	reliable,
appropriate	way	—	a	trust	that	can’t	be	given	freely,	but	has	to	be	earned.	The	requirements
must	themselves	be	principles	that	are	true	for	every	microservice,	for	every	application,	and
for	every	distributed	system:	standardization	without	principle	is	meaningless.

It	turns	out	that	there	is	a	set	of	eight	principles	that,	when	adopted	together,	fits	these	criteria.
Each	of	these	principles	is	quantifiable,	gives	rise	to	a	set	of	actionable	requirements,	and
produces	measurable	results.	They	are:	stability,	reliability,	scalability,	fault	tolerance,
catastrophe-preparedness,	performance,	monitoring,	and	documentation.	The	driving	force
behind	each	of	these	principles	is	that,	together,	they	contribute	to	and	drive	the	availability	of
a	microservice.

Availability	is,	in	some	ways,	an	emergent	property	of	a	production-ready	microservice.	It
emerges	from	building	a	scalable,	reliable,	fault-tolerant,	performant,	monitored,
documented,	and	catastrophe-prepared	microservice.	Any	one	of	these	principles	individually
is	not	enough	to	ensure	availability,	but	together	they	are:	building	a	microservice	with	these
principles	as	the	driving	architectural	and	operational	requirements	guarantees	a	highly
available	system	that	can	be	trusted	with	production	traffic.



Stability
With	the	introduction	of	microservice	architecture,	developers	are	given	freedom	to	develop
and	deploy	at	a	very	high	velocity.	New	features	can	be	added	and	deployed	each	day,	bugs
can	be	quickly	fixed,	any	old	technologies	swapped	out	for	the	newest	ones,	and	outdated
microservices	can	be	rewritten	and	the	old	versions	deprecated	and	decommissioned.	With
this	increased	velocity	comes	increased	instability,	and	in	microservice	ecosystems	the
majority	of	outages	can	usually	be	traced	back	to	a	bad	deployment	that	contained	buggy	code
or	other	serious	errors.	To	ensure	availability,	we	need	to	carefully	guard	against	this
instability	that	stems	from	increased	developer	velocity	and	the	constant	evolution	of	the
microservice	ecosystem.

Stability	allows	us	to	reach	availability	by	giving	us	ways	to	responsibly	handle	changes	to
microservices.	A	stable	microservice	is	one	in	which	development,	deployment,	the	addition
of	new	technologies,	and	the	decommissioning	and	deprecation	of	microservices	do	not	give
rise	to	instability	within	and	across	the	larger	microservice	ecosystem.	We	can	determine
stability	requirements	for	each	microservice	to	mitigate	the	negative	side	effects	that	may
accompany	each	change.

To	mitigate	any	problems	that	may	arise	from	the	development	cycle,	stable	development
procedures	can	be	put	into	place.	To	counteract	any	instability	introduced	by	deployment,	we
can	ensure	our	microservices	are	deployed	carefully	with	proper	staging,	canary	(a	small
pool	of	2%–5%	of	production	hosts),	and	production	rollouts.	To	prevent	the	introduction	of
new	technologies	and	the	deprecation	and	decommissioning	of	old	microservices	from
compromising	the	availability	of	other	services,	we	can	enforce	stable	introduction	and
deprecation	procedures.

STABILITY	REQUIREMENTS

The	requirements	of	building	a	stable	microservice	are:

A	stable	development	cycle

A	stable	deployment	process

Stable	introduction	and	deprecation	procedures

The	details	of	stability	requirements	are	covered	in	Chapter	3,	Stability	and	Reliability.



Reliability
Stability	alone	isn’t	enough	to	ensure	a	microservice’s	availability:	the	service	must	also	be
reliable.	A	reliable	microservice	is	one	that	can	be	trusted	by	its	clients,	by	its	dependencies,
and	by	the	microservice	ecosystem	as	a	whole.	A	reliable	microservice	is	one	that	has	truly
earned	the	trust	that	is	essential	and	required	in	order	for	it	to	serve	production	traffic.

While	stability	is	related	to	mitigating	the	negative	side	effects	accompanying	change,	and
reliability	is	related	to	trust,	the	two	are	inextricably	linked.	Each	stability	requirement	also
carries	a	reliability	requirement	alongside	it:	for	example,	developers	should	not	only	seek	to
have	stable	deployment	processes,	they	should	also	ensure	that	each	deployment	is	reliable
from	the	point	of	view	of	one	of	their	clients	or	dependencies.

The	trust	that	reliability	secures	can	be	broken	into	several	requirements,	the	same	way	we
determined	requirements	for	stability.	For	example,	we	can	make	our	deployment	processes
reliable	by	making	sure	that	our	integration	tests	are	comprehensive	and	our	staging	and
canary	deployment	phases	are	successful	so	that	every	change	introduced	into	production	can
be	trusted	not	to	contain	any	errors	that	might	compromise	its	clients	and	dependencies.

By	building	reliability	into	our	microservices,	we	can	protect	their	availability.	We	can	cache
data	so	that	it	will	be	readily	available	to	client	services,	helping	them	protect	their	SLAs	by
making	our	own	services	highly	available.	To	protect	our	own	SLA	from	any	problems	with
the	availability	of	our	dependencies,	we	can	implement	defensive	caching.

The	last	reliability	requirement	is	related	to	routing	and	discovery.	Availability	requires	that
the	communication	and	routing	between	different	services	be	reliable:	health	checks	should	be
accurate,	requests	and	responses	should	reach	their	destinations,	and	errors	should	be	handled
carefully	and	appropriately.

RELIABILITY	REQUIREMENTS

The	requirements	of	building	a	reliable	microservice	are:

A	reliable	deployment	process

Planning,	mitigating,	and	protecting	against	the	failures	of	dependencies

Reliable	routing	and	discovery

The	details	of	production-ready	reliability	requirements	are	covered	in	Chapter	3,	Stability	and	Reliability.



Scalability
Microservice	traffic	is	rarely	static	or	constant,	and	one	of	the	hallmarks	of	a	successful
microservice	(and	of	a	successful	microservice	ecosystem)	is	a	steady	increase	in	traffic.
Microservices	need	to	be	built	in	preparation	for	this	growth,	they	need	to	accommodate	it
easily,	and	they	need	to	be	able	to	actively	scale	with	it.	A	microservice	that	can’t	scale	with
growth	experiences	increased	latency,	poor	availability,	and	in	extreme	cases,	a	drastic
increase	in	incidents	and	outages.	Scalability	is	essential	for	availability,	making	it	our	third
production-readiness	standard.

A	scalable	microservice	is	one	that	can	handle	a	large	number	of	tasks	or	requests	at	the	same
time.	To	ensure	a	microservice	is	scalable,	we	need	to	know	both	(1)	its	qualitative	growth
scale	(e.g.,	whether	it	scales	with	page	views	or	customer	orders)	and	(2)	its	quantitative
growth	scale	(e.g.,	how	many	requests	per	second	it	can	handle).	Once	we	know	the	growth
scale,	we	can	plan	for	future	capacity	needs	and	identify	resource	bottlenecks	and
requirements.

The	way	a	microservice	handles	traffic	should	also	be	scalable.	It	should	be	prepared	for
bursts	of	traffic,	handle	them	carefully,	and	prevent	them	from	taking	down	the	service
entirely.	It’s	easier	said	than	done,	but	without	scalable	traffic	handling,	developers	can	(and
will)	find	themselves	looking	at	a	broken	microservice	ecosystem.

Additional	complexity	is	introduced	by	the	rest	of	the	microservice	ecosystem.	The	inevitable
additional	traffic	and	growth	from	a	service’s	clients	have	to	be	prepared	for.	Likewise,	any
dependencies	of	the	service	should	be	alerted	when	increases	in	traffic	are	expected.	Cross-
team	communication	and	collaboration	are	essential	for	scalability:	regularly	communicating
with	clients	and	dependencies	about	a	service’s	scalability	requirements,	status,	and	any
bottlenecks	ensures	that	any	services	relying	on	each	other	are	prepared	for	growth	and	for
potential	pitfalls.

Last	but	not	least,	the	way	a	microservice	stores	and	handles	data	needs	to	be	scalable	as	well.
Building	a	scalable	storage	solution	goes	a	long	way	toward	ensuring	the	availability	of	a
microservice,	and	is	one	of	the	most	essential	components	of	a	truly	production-ready	system.



SCALABILITY	REQUIREMENTS

The	requirements	of	building	a	scalable	microservice	are:

Well-defined	quantitative	and	qualitative	growth	scales

Identification	of	resource	bottlenecks	and	requirements

Careful,	accurate	capacity	planning

Scalable	handling	of	traffic

The	scaling	of	dependencies

Scalable	data	storage

The	details	of	production-ready	scalability	requirements	are	covered	in	Chapter	4,	Scalability	and	Performance.



Fault	Tolerance	and	Catastrophe-Preparedness
Even	the	simplest	of	microservices	is	a	fairly	complex	system.	As	we	know	quite	well,
complex	systems	fail,	they	fail	often,	and	any	potential	failure	scenario	can	and	will	happen	at
some	point	in	the	microservice’s	lifetime.	Microservices	don’t	live	in	isolation,	but	within
dependency	chains	as	part	of	a	larger,	incredibly	complex	microservice	ecosystem.	The
complexity	scales	linearly	with	the	number	of	microservice	in	the	overall	ecosystem,	and
ensuring	the	availability	of	not	only	an	individual	microservice,	but	the	ecosystem	as	a	whole,
requires	that	we	impose	yet	another	production-readiness	standard	onto	each	microservice.
Every	microservice	within	the	ecosystem	must	be	fault	tolerant	and	prepared	for	any
catastrophe.

A	fault-tolerant,	catastrophe-prepared	microservice	is	one	that	can	withstand	both	internal	and
external	failures.	Internal	failures	are	those	that	the	microservice	brings	on	itself:	for
example,	code	bugs	that	aren’t	caught	by	proper	testing	lead	to	bad	deploys,	causing	outages
that	affect	the	entire	ecosystem.	External	catastrophes,	such	as	datacenter	outages	and/or	poor
configuration	management	across	the	ecosystem,	lead	to	outages	that	affect	the	availability	of
every	microservice	and	the	entire	organization.

Failure	scenarios	and	potential	catastrophes	can	be	quite	adequately	(though	not	exhaustively)
prepared	for.	Identifying	failure	and	catastrophe	scenarios	is	the	first	requirement	of	building
a	fault-tolerant,	production-ready	microservice.	Once	these	scenarios	have	been	identified,	the
hard	work	of	strategizing	and	planning	for	when	they	will	occur	begins.	This	has	to	happen	at
every	level	of	the	microservice	ecosystem,	and	any	shared	strategies	should	be	communicated
across	the	organization	so	that	mitigation	is	standardized	and	predictable.

Standardization	of	failure	mitigation	and	resolution	at	the	organizational	level	means	that
incidents	and	outages	of	individual	microservices,	infrastructure	components,	or	the
ecosystem	as	a	whole	need	to	be	wrapped	into	carefully	executed,	easily	understandable
procedures.	Incident	response	procedures	need	to	be	handled	in	a	coordinated,	planned,	and
thoroughly	communicated	manner.	If	incidents	and	outages	are	handled	in	this	way,	and	the
structure	of	incident	response	is	well	defined,	organizations	can	avoid	lengthy	downtimes	and
protect	the	availability	of	the	microservices.	If	every	developer	knows	exactly	what	they	are
supposed	to	do	in	an	outage,	knows	how	to	mitigate	and	resolve	problems	quickly	and
appropriately,	and	knows	how	to	escalate	if	an	issue	is	beyond	their	capabilities	or	control,
then	the	time	to	mitigation	and	time	to	resolution	drop	drastically.

Making	failures	and	catastrophes	predictable	means	going	one	step	further	after	identifying
failure	and	catastrophe	scenarios	and	planning	for	them.	It	means	forcing	the	microservices,
the	infrastructure,	and	the	ecosystem	to	fail	in	any	and	all	known	ways	to	test	the	availability
of	the	entire	system.	This	is	accomplished	through	various	types	of	resiliency	testing.	Code
testing	(including	unit	tests,	regression	tests,	and	integration	tests)	is	the	first	step	in	testing
for	resiliency.	The	second	step	is	load	testing,	where	microservices	and	infrastructure
components	are	tested	for	their	ability	to	handle	drastic	changes	in	traffic.	The	last,	most



intense,	and	most	relevant	type	of	resiliency	testing	is	chaos	testing,	in	which	failure	scenarios
are	run	(both	scheduled	and	randomly)	on	production	services	to	ensure	that	microservices
and	infrastructure	components	are	truly	prepared	for	all	known	failure	scenarios.

FAULT	TOLERANCE	AND	CATASTROPHE-PREPAREDNESS	REQUIREMENTS

The	requirements	of	building	a	fault-tolerant	microservice	that	is	prepared	for	any	catastrophe	are:

Potential	catastrophes	and	failure	scenarios	are	identified	and	planned	for.

Single	points	of	failure	are	identified	and	resolved.

Failure	detection	and	remediation	strategies	are	in	place.

It	is	tested	for	resiliency	through	code	testing,	load	testing,	and	chaos	testing.

Traffic	is	managed	carefully	in	preparation	for	failure.

Incidents	and	outages	are	handled	appropriately	and	productively.

The	details	of	production-ready	fault	tolerance	and	catastrophe-preparedness	requirements	are	covered	in	Chapter	5,
Fault	Tolerance	and	Catastrophe-Preparedness.



Performance
In	the	context	of	the	microservice	ecosystem,	scalability	(which	we	covered	in	brief	detail
earlier),	is	related	to	how	many	requests	a	microservice	can	handle.	Our	next	production-
readiness	principle	—	performance	—	refers	to	how	well	the	microservice	handles	those
requests.	A	performant	microservice	is	one	that	handles	requests	quickly,	processes	tasks
efficiently,	and	properly	utilizes	resources	(such	as	hardware	and	other	infrastructure
components).

A	microservice	that	makes	a	large	number	of	expensive	network	calls,	for	example,	is	not
performant.	Neither	is	a	microservice	that	processes	and	handles	tasks	synchronously	in	cases
when	asynchronous	(nonblocking)	task	processing	would	increase	the	performance	and
availability	of	the	service.	Identifying	and	architecting	away	these	performance	problems	is	a
strict	production-readiness	requirement.

Similarly,	dedicating	a	large	number	of	resources	(like	CPU)	to	a	microservice	that	doesn’t
utilize	it	is	inefficient.	Inefficiency	reduces	performance:	if	it’s	not	clear	at	the	microservice
level	in	every	case,	it’s	painful	and	costly	at	the	ecosystem	level.	Underutilized	hardware
resources	affects	the	bottom	line,	and	hardware	is	not	cheap.	There’s	a	fine	line	between
underutilization	and	proper	capacity	planning,	and	so	the	two	must	be	planned	and	understood
together	in	order	for	the	availability	of	the	microservice	to	not	be	compromised	and	the	cost
of	underutilization	reasonable.

PERFORMANCE	REQUIREMENTS

The	requirements	of	building	a	performant	microservice	are:

Appropriate	service-level	agreements	(SLAs)	for	availability

Proper	task	handling	and	processing

Efficient	utilization	of	resources

The	details	of	production-ready	performance	requirements	are	covered	in	Chapter	4,	Scalability	and	Performance.



Monitoring
Another	principle	necessary	for	guaranteeing	microservice	availability	is	proper
microservice	monitoring.	Good	monitoring	has	three	components:	proper	logging	of	all
important	and	relevant	information;	useful	graphical	displays	(dashboards)	that	are	easily
understood	by	any	developer	in	the	company	and	that	accurately	reflect	the	health	of	the
services;	and	alerting	on	key	metrics	that	is	effective	and	actionable.

Logging	belongs	and	begins	in	the	codebase	of	each	microservice.	Determining	precisely
what	information	to	log	will	differ	for	each	service,	but	the	goal	of	logging	is	quite	simple:
when	faced	with	a	bug	—	even	one	from	many	deployments	in	the	past	—	you	want	and	need
your	logging	to	be	such	that	you	can	determine	from	the	logs	exactly	what	went	wrong	and
where	things	fell	apart.	In	microservice	ecosystems,	the	versioning	of	microservices	is
discouraged,	so	you	won’t	have	a	precise	version	to	refer	to	in	which	to	find	any	bugs	or
problems.	Code	is	revised	frequently,	deployments	happen	multiple	times	per	week,	features
are	added	constantly,	and	dependencies	are	ever-changing,	but	logs	will	stay	the	same,
preserving	the	information	needed	to	pinpoint	any	problems.	Just	make	sure	your	logs
contain	the	information	necessary	to	determine	possible	problems.

All	key	metrics	(such	as	hardware	utilization,	database	connections,	responses	and	average
response	times,	and	the	status	of	API	endpoints)	should	be	graphically	displayed	in	real	time
on	an	easily	accessible	dashboard.	Dashboards	are	an	important	component	of	building	a
well-monitored,	production-ready	microservice:	they	make	it	easy	to	determine	the	health	of
a	microservice	with	one	glance	and	enable	developers	to	detect	strange	patterns	and
anomalies	that	may	not	be	extreme	enough	to	trigger	alerting	thresholds.	When	used	wisely,
dashboards	allow	developers	to	determine	whether	or	not	a	microservice	is	working
correctly	simply	by	looking	at	the	dashboard,	but	developers	should	never	need	to	watch	the
dashboard	in	order	to	detect	incidents	and	outages,	and	rollbacks	to	stable	previous	builds
should	be	fully	automated.

The	actual	detection	of	failures	is	accomplished	through	alerting.	All	key	metrics	must	be
alerted	on,	including	(at	the	very	least)	CPU	and	RAM	utilization,	number	of	file	descriptors,
number	of	database	connections,	the	SLA	of	the	service,	requests	and	responses,	the	status	of
API	endpoints,	errors	and	exceptions,	the	health	of	the	service’s	dependencies,	information
about	any	database(s),	and	the	number	of	tasks	being	processed	(if	applicable).

Normal,	warning,	and	critical	thresholds	need	to	be	set	for	each	of	these	key	metrics,	and	any
deviation	from	the	norm	(i.e.,	hitting	the	warning	or	critical	thresholds)	should	trigger	an
alert	to	the	developers	who	are	on	call	for	the	service.	Thresholds	should	be	signal-
providing:	high	enough	to	avoid	noise,	but	low	enough	to	catch	any	and	all	real	problems.

Alerts	need	to	be	useful	and	actionable.	A	nonactionable	alert	is	not	a	useful	alert,	and	a	waste
of	engineering	hours.	Every	actionable	alert	—	that	is,	every	alert	—	should	be	accompanied
by	a	runbook.	For	example,	if	an	alert	is	triggered	on	a	high	number	of	exceptions	of	a



certain	type,	then	there	needs	to	be	a	runbook	containing	mitigation	strategies	that	any	on-call
developer	can	refer	to	while	attempting	to	resolve	the	problem.

MONITORING	REQUIREMENTS

The	requirements	of	building	a	properly	monitored	microservice	are:

Proper	logging	and	tracing	throughout	the	stack

Well-designed	dashboards	that	are	easy	to	understand	and	accurately	reflect	the	health	of	the	service

Effective,	actionable	alerting	accompanied	by	runbooks

Implementing	and	maintaining	an	on-call	rotation

The	details	of	production-ready	monitoring	requirements	are	covered	in	Chapter	6,	Monitoring.



Documentation
Microservice	architecture	carries	the	potential	for	increased	technical	debt	—	it’s	one	of	the
key	trade-offs	that	come	with	adopting	microservices.	As	a	rule,	technical	debt	tends	to
increase	with	developer	velocity:	the	more	quickly	a	service	can	be	iterated	on,	changed,	and
deployed,	the	more	frequently	shortcuts	and	patches	will	be	put	into	place.	Organizational
clarity	and	structure	around	the	documentation	and	understanding	of	a	microservice	cut
through	this	technical	debt	and	shave	off	a	lot	of	the	confusion,	lack	of	awareness,	and	lack	of
architectural	comprehension	that	tend	to	accompany	it.

Reducing	technical	debt	isn’t	the	only	reason	to	make	good	documentation	a	production-
readiness	principle:	doing	so	would	make	it	somewhat	of	an	afterthought	(an	important
afterthought,	but	an	afterthought	nonetheless).	No,	just	like	each	of	the	other	production-
readiness	standards,	documentation	and	its	counterpart	(understanding)	directly	and
measurably	influence	the	availability	of	a	microservice.

To	see	why	this	is	true,	we	can	think	about	how	teams	of	developers	work	together	and	share
their	knowledge	and	understanding	of	a	microservice.	You	can	do	this	yourself	by	sitting	one
of	your	development	teams	in	a	room,	in	front	of	a	whiteboard,	and	asking	them	to	sketch	the
architecture	and	all	important	details	of	the	service.	I	promise	you	will	be	surprised	by	the
result	of	this	exercise,	and	you	will	most	likely	find	that	knowledge	and	understanding	of	the
service	is	not	cohesive	or	coherent	across	the	group.	One	developer	will	know	one	thing
about	the	application	that	nobody	else	does,	while	a	second	developer	will	have	such	a
different	understanding	of	the	microservice	that	you	will	wonder	if	they	are	even	contributing
to	the	same	codebase.	When	it’s	time	for	code	changes	to	be	reviewed,	technologies	to	be
swapped,	or	features	to	be	added,	the	lack	of	alignment	of	knowledge	and	understanding	will
lead	to	the	design	and/or	evolution	of	microservices	that	are	not	production-ready,	containing
serious	flaws	that	undermine	the	service’s	ability	to	reliably	serve	production	traffic.

This	confusion	and	the	problems	that	it	creates	can	be	successfully	and	rather	easily	avoided
by	requiring	that	every	microservice	follow	a	very	strictly	standardized	set	of	documentation
requirements.	Documentation	needs	to	contain	all	the	essential	knowledge	(facts)	about	a
microservice,	including	an	architecture	diagram,	an	onboarding	and	development	guide,
details	about	the	request	flow	and	any	API	endpoints,	and	an	on-call	runbook	for	each	of	the
service’s	alerts.

Understanding	of	a	microservice	can	be	accomplished	in	several	ways.	The	first	is	by	doing
the	exercise	I	just	mentioned:	stick	the	development	team	in	a	conference	room,	and	ask	them
to	whiteboard	the	architecture	of	the	service.	Thanks	to	our	old	friend,	the	ever-present
increased	developer	velocity,	microservices	change	radically	at	different	times	throughout
their	lifecycle.	By	making	these	architecture	reviews	part	of	each	team’s	process	and
scheduling	them	regularly,	you	can	guarantee	that	knowledge	and	understanding	about	any
changes	in	the	microservice	will	be	disseminated	to	the	entire	team.



To	cover	the	second	aspect	of	microservice	understanding,	we	need	to	jump	up	by	one	level
of	abstraction	and	consider	the	production-readiness	standards	themselves.	A	great	deal	of
microservice	understanding	is	captured	by	determining	whether	a	microservice	is
production-ready	and	where	it	stands	with	regard	to	the	production-readiness	standards	and
their	individual	requirements.	This	can	be	accomplished	in	a	myriad	of	ways,	one	of	which	is
running	audits	of	whether	a	microservice	meets	the	requirements,	and	then	creating	a
roadmap	for	the	service	detailing	how	to	bring	it	to	a	production-ready	state.	Checking	the
requirements	can	also	be	automated	across	the	organization.	We’ll	dive	into	other	aspects	of
this	in	more	detail	in	the	next	section	on	the	implementation	of	production-readiness
standards	in	an	organization	that	has	adopted	microservice	architecture.

DOCUMENTATION	REQUIREMENTS

The	requirements	of	building	a	well-documented	microservice	are:

Thorough,	updated,	and	centralized	documentation	containing	all	of	the	relevant	and	essential	information	about	the
microservice

Organizational	understanding	at	the	developer,	team,	and	ecosystem	levels

The	details	of	production-ready	documentation	requirements	are	covered	in	Chapter	7,	Documentation	and
Understanding.



Implementing	Production-Readiness
We	now	have	a	set	of	standards	that	apply	to	every	microservice	in	any	microservice
ecosystem,	each	with	its	own	set	of	specific	requirements.	Any	microservice	that	satisfies
these	requirements	can	be	trusted	to	serve	production	traffic	and	guarantee	a	high	level	of
availability.

Now	that	we	have	the	production-readiness	standards,	the	question	that	remains	is	how	we	can
implement	them	in	a	specialized,	real-world	microservice	ecosystem.	Going	from	principle
to	practice	and	applying	theory	to	real-world	applications	always	presents	us	with	some
significant	level	of	difficulty.	However,	the	power	of	these	production-readiness	standards
and	the	requirements	they	impose	lies	in	their	remarkable	applicability	and	strict	granularity:
they	are	both	general	enough	to	apply	to	any	ecosystem,	yet	specific	enough	to	provide
concrete	strategies	for	implementation.

Standardization	requires	buy-in	from	all	levels	of	the	organization,	and	must	be	adopted	and
driven	both	from	the	top-down	and	from	the	bottom-up.	At	the	executive	and	leadership
(managerial	and	technical)	levels,	these	principles	need	to	be	driven	and	supported	as
architectural	requirements	for	the	engineering	organization.	On	the	ground	floor,	within
individual	development	teams,	standardization	needs	to	be	embraced	and	implemented.
Importantly,	standardization	needs	to	be	seen	and	communicated	not	as	a	hindrance	or	gate	to
development	and	deployment,	but	as	a	guide	for	production-ready	development	and
deployment.

Many	developers	may	resist	standardization.	After	all,	they	may	argue,	isn’t	the	point	of
adopting	microservice	architecture	to	provide	greater	developer	velocity,	freedom,	and
productivity?	The	answer	to	these	sorts	of	objections	is	not	to	deny	that	the	adoption	of
microservice	architecture	brings	freedom	and	velocity	to	development	teams,	but	to	agree
and	point	out	that	that	is	exactly	why	production-readiness	standards	need	to	be	in	place.
Developer	velocity	and	productivity	grind	to	a	halt	whenever	an	outage	brings	a	service
down,	whenever	a	bad	deploy	compromises	the	availability	of	a	microservice’s	clients	and
dependencies,	whenever	a	failure	that	could	have	been	avoided	with	proper	resiliency	testing
brings	the	entire	microservice	ecosystem	down.	If	we’ve	learned	anything	in	the	past	50	years
about	software	development,	we’ve	learned	that	standardization	brings	freedom	and	reduces
entropy.	As	Brooks	says	in	The	Mythical	Man-Month,	perhaps	the	greatest	collection	of
essays	on	the	practice	of	software	engineering,	“form	is	liberating.”

Once	the	engineering	organization	has	adopted	and	agreed	to	follow	production-readiness
standards,	the	next	step	is	to	evaluate	and	elaborate	on	each	standard’s	requirements.	The
requirements	presented	here	and	detailed	throughout	this	book	are	very	general	and	need	the
addition	of	context	and	organization-specific	details	and	implementation	strategies.	What
needs	to	be	done	is	to	work	through	each	production-readiness	standard	and	its	requirements
and	to	figure	out	how	each	requirement	can	be	implemented	in	the	engineering	organization.
For	example,	if	the	organization’s	microservice	ecosystem	has	a	self-service	deployment



tool,	then	implementing	a	stable	and	reliable	deployment	process	needs	to	be	communicated
in	terms	of	the	internal	deployment	tool	and	how	it	works.	Rebuilding	internal	tools	and/or
adding	features	to	them	may	also	come	out	of	this	exercise.

The	actual	implementation	of	the	requirements	and	determining	whether	or	not	a	given
microservice	meets	them	can	be	done	by	the	developers	themselves,	by	team	leads,	by
management,	or	by	operations	(systems,	DevOps,	or	site	reliability)	engineers.	At	both	Uber
and	the	several	other	companies	I	know	that	have	adopted	production-readiness
standardization,	the	implementation	and	enforcement	of	the	production-readiness	standards	is
driven	by	the	site	reliability	engineering	(SRE)	organizations.	Typically,	SREs	are
responsible	for	the	availability	of	the	services,	and	so	driving	these	standards	across	the
microservice	ecosystem	fits	in	quite	well	with	existing	responsibilities.	That	isn’t	to	say	that
the	developers	or	development	teams	have	no	responsibility	for	ensuring	their	services	are
production-ready;	rather,	SREs	inform,	drive,	and	enforce	production-readiness	within	the
microservice	ecosystem,	and	the	responsibility	of	implementation	falls	on	both	the	SREs
embedded	within	development	teams	and	on	the	developers	themselves.

Building	and	maintaining	a	production-ready	microservice	ecosystem	is	not	an	easy
challenge	to	undertake,	but	the	rewards	are	great,	and	the	impact	can	be	seen	so	clearly	in	the
increased	availability	of	each	microservice.	Implementing	production-readiness	standards	and
their	requirements	provides	measurable	results,	and	means	that	development	teams	can	work
knowing	that	the	services	they	depend	on	are	trustworthy,	that	they	are	stable,	reliable,	fault
tolerant,	performant,	monitored,	documented,	and	prepared	for	any	catastrophe.



Chapter	3.	Stability	and	Reliability

A	production-ready	microservice	is	stable	and	reliable.	Both	individual	microservices	and	the
overall	microservice	ecosystem	are	constantly	changing	and	evolving,	and	any	efforts	made
to	increase	the	stability	and	reliability	of	a	microservice	go	a	long	way	toward	ensuring	the
health	and	availability	of	the	overall	ecosystem.	In	this	chapter,	different	ways	to	build	and	run
a	stable	and	reliable	microservice	are	explored,	including	standardizing	the	development
process,	building	comprehensive	deployment	pipelines,	understanding	dependencies	and
protecting	against	their	failures,	building	stable	and	reliable	routing	and	discovery,	and
establishing	appropriate	deprecation	and	decommissioning	procedures	for	old	or	outdated
microservices	and/or	their	endpoints.



Principles	of	Building	Stable	and	Reliable	Microservices
Microservice	architecture	lends	itself	to	fast-paced	development.	The	freedom	offered	by
microservices	means	that	the	ecosystem	will	be	in	a	state	of	continuous	change,	never	static,
always	evolving.	Features	will	be	added	every	day,	new	builds	will	be	deployed	multiple	times
per	day,	and	old	technologies	will	be	swapped	for	newer	and	better	ones	at	an	astounding
pace.	This	freedom	and	flexibility	gives	rise	to	real,	tangible	innovation,	but	comes	at	a	great
cost.

Innovation,	increased	developer	velocity	and	productivity,	rapid	technological	advancement,
and	the	ever-changing	microservice	ecosystem	can	all	very	quickly	be	brought	to	a
screeching	halt	if	any	piece	of	the	microservice	ecosystem	becomes	unstable	or	unreliable.	In
some	cases,	all	it	takes	to	bring	the	entire	business	down	is	deploying	a	broken	build	or	a
build	containing	a	bug	to	one	business-critical	microservice.

A	stable	microservice	is	one	for	which	development,	deployment,	the	adoption	of	new
technologies,	and	the	decommissioning	or	deprecation	of	other	services	do	not	give	rise	to
instability	across	the	larger	microservice	ecosystem.	This	requires	putting	measures	into
place	to	protect	against	the	negative	consequences	that	may	be	introduced	by	these	types	of
changes.	A	reliable	microservice	is	one	that	can	be	trusted	by	other	microservices	and	by	the
overall	ecosystem.	Stability	goes	hand	in	hand	with	reliability	because	each	stability
requirement	carries	with	it	a	reliability	requirement	(and	vice	versa):	for	example,	stable
deployment	processes	are	accompanied	by	a	requirement	that	each	new	deployment	does	not
compromise	the	reliability	of	the	microservice	from	the	point	of	view	of	one	of	their	clients
or	dependencies.

There	are	several	things	that	can	be	done	to	ensure	that	a	microservice	is	stable	and	reliable.	A
standardized	development	cycle	can	be	implemented	to	protect	against	poor	development
practices.	The	deployment	process	can	be	designed	so	that	changes	to	the	code	are	forced	to
pass	through	multiple	stages	before	being	rolled	out	to	all	production	servers.	Dependency
failures	can	be	protected	against.	Health	checks,	proper	routing,	and	circuit	breaking	can	be
built	into	the	routing	and	discovery	channels	to	handle	anomalous	traffic	patterns.	Finally,
microservices	and	their	endpoints	can	be	deprecated	and/or	decommissioned	without	causing
any	failures	for	other	microservices.



A	PRODUCTION-READY	SERVICE	IS 	STABLE	AND	RELIABLE

It	has	a	standardized	development	cycle.

Its	code	is	thoroughly	tested	through	lint,	unit,	integration,	and	end-to-end	testing.

Its	test,	packaging,	build,	and	release	process	is	completely	automated.

It	has	a	standardized	deployment	pipeline,	containing	staging,	canary,	and	production	phases.

Its	clients	are	known.

Its	dependencies	are	known,	and	there	are	backups,	alternatives,	fallbacks,	and	caching	in	place	in	case	of	failures.

It	has	stable	and	reliable	routing	and	discovery	in	place.



The	Development	Cycle
The	stability	and	reliability	of	a	microservice	begins	with	the	individual	developer	who	is
contributing	code	to	the	service.	The	majority	of	outages	and	microservice	failures	are
caused	by	bugs	introduced	into	the	code	that	were	not	caught	in	the	development	phase,	in	any
of	the	tests,	or	at	any	step	in	the	deployment	process.	Mitigating	and	resolving	these	outages
and	failures	usually	entails	nothing	more	than	rolling	back	to	the	latest	stable	build,	reverting
whatever	commit	contained	the	bug,	and	re-deploying	a	new	(bug-less)	version	of	the	code.





THE	TRUE	COST	OF	UNSTABLE	AND	UNRELIABLE
DEVELOPMENT

A	microservice	ecosystem	is	not	the	Wild	West.	Every	outage,	every	incident,	and	every	bug	can	and	will	cost	the
company	thousands	(if	not	millions)	of	dollars	in	engineering	hours	and	lost	revenue.	Safeguards	need	to	be	in
place	during	the	development	cycle	(and,	as	we	will	see,	in	the	deployment	pipeline)	to	catch	every	bug	before	it
hits	production.

A	stable	and	reliable	development	cycle	has	several	steps	(Figure	3-1).

Figure	3-1.	The	development	cycle

First,	the	developer	makes	a	change	to	the	code.	This	will	usually	begin	with	checking	a	copy
of	the	code	out	from	a	central	repository	(usually	using	git	or	svn),	creating	an	individual
branch	where	they	will	make	changes,	adding	their	changes	to	their	branch,	and	running	any
unit	and	integration	tests.	This	stage	of	development	can	happen	anywhere:	locally	on	a
developer ’s	laptop	or	on	a	server	in	a	development	environment.	A	reliable	development



environment	—	one	that	accurately	mirrors	the	production	world	—	is	key,	especially	if
testing	the	service	in	question	requires	making	requests	to	other	microservices	or	reading	or
writing	data	to	a	database.

Once	the	code	has	been	committed	to	the	central	repository,	the	second	step	consists	in	having
the	change(s)	reviewed	carefully	and	thoroughly	by	other	engineers	on	the	team.	If	all
reviewers	have	approved	the	change(s),	and	all	lint,	unit,	and	integration	tests	have	passed	on
a	new	build,	the	change	can	be	merged	into	the	repository	(see	Chapter	5,	Fault	Tolerance	and
Catastrophe-Preparedness,	for	more	on	lint,	unit,	and	integration	tests).	Then,	and	only	then,
can	the	new	change	be	introduced	into	the	deployment	pipeline.





TEST	BEFORE	CODE	REVIEW
One	way	to	ensure	that	all	bugs	are	caught	before	they	hit	production	is	to	run	all	lint,	unit,	integration,	and	end-
to-end	tests	before	the	code	review	phase.	This	can	be	accomplished	by	having	developers	work	on	a	separate
branch,	kicking	off	all	tests	on	that	branch	as	soon	as	the	developer	submits	it	for	code	review,	and	then	only
allowing	it	to	reach	code	review	(or	only	allowing	it	to	be	built)	after	it	successfully	passes	all	tests.

As	mentioned	in	the	section	on	layer	4	of	the	microservice	ecosystem	in	Chapter	1,
Microservices,	a	lot	happens	in	between	the	development	cycle	and	the	deployment	pipeline.
The	new	release	needs	to	be	packaged,	built,	and	thoroughly	tested	before	reaching	the	first
stage	of	the	deployment	pipeline.



The	Deployment	Pipeline
There	is	a	great	deal	of	room	for	human	error	in	microservice	ecosystems,	especially	where
deployment	practices	are	concerned,	and	(as	I	mentioned	earlier)	the	majority	of	outages	in
large-scale	production	systems	are	caused	by	bad	deployments.	Consider	the	organizational
sprawl	that	accompanies	the	adoption	of	microservice	architecture	and	what	it	entails	for	the
deployment	process:	you	have,	at	the	very	least,	dozens	(if	not	hundreds	or	thousands)	of
independent,	isolated	teams	who	are	deploying	changes	to	their	microservices	on	their	own
schedules,	and	often	without	cross-team	coordination	between	clients	and	dependencies.	If
something	goes	wrong,	if	a	bug	is	introduced	into	production,	or	if	a	service	is	temporarily
unavailable	during	deployment,	then	the	entire	ecosystem	can	be	negatively	affected.	To
ensure	that	things	go	wrong	with	less	frequency,	and	that	any	failures	can	be	caught	before
being	rolled	out	to	all	production	servers,	introducing	a	standardized	deployment	pipeline
across	the	engineering	organization	can	help	ensure	stability	and	reliability	across	the
ecosystem.

I	refer	to	the	deployment	process	here	as	a	“pipeline”	because	the	most	trustworthy
deployments	are	those	that	have	been	required	to	pass	a	set	of	tests	before	reaching
production	servers.	We	can	fit	three	separate	stages	or	phases	into	this	pipeline	(Figure	3-2):
first,	we	can	test	a	new	release	in	a	staging	environment;	second,	if	it	passes	the	staging	phase,
we	can	deploy	it	to	a	small	canary	environment,	where	it	will	serve	5%–10%	of	production
traffic;	and	third,	if	it	passes	the	canary	phase,	we	can	slowly	roll	it	out	to	production	servers
until	it	has	been	deployed	to	every	host.

Figure	3-2.	Stages	of	a	stable	and	reliable	deployment	pipeline



Staging
Any	new	release	can	first	be	deployed	to	a	staging	environment.	A	staging	environment
should	be	an	exact	copy	of	the	production	environment:	it	is	a	reflection	of	the	state	of	the	real
world,	but	without	real	traffic.	Staging	environments	usually	aren’t	running	at	the	same	scale
as	production	(i.e.,	they	typically	aren’t	run	with	the	same	number	of	hosts	as	production,	a
phenomenon	also	known	as	host	parity),	because	running	what	would	amount	to	two	separate
ecosystems	can	present	a	large	hardware	cost	to	the	company.	However,	some	engineering
organizations	may	determine	that	the	only	way	to	accurately	copy	the	production	environment
in	a	stable	and	reliable	way	is	to	build	an	identical	staging	environment	with	host	parity.

For	most	engineering	organizations,	determining	the	hardware	capacity	and	scale	of	the
staging	environment	as	a	percentage	of	production	is	usually	accurate	enough.	The	necessary
staging	capacity	can	be	determined	by	the	method	we	will	use	to	test	the	microservice	within
the	staging	phase.	To	test	in	the	staging	environment,	we	have	several	options:	we	can	run
mock	(or	recorded)	traffic	through	the	microservice;	we	can	test	it	manually	by	hitting	its
endpoints	and	evaluating	its	responses;	we	can	run	automated	unit,	integration,	and	other
specialized	tests;	or	we	can	test	each	new	release	with	any	combination	of	these	methods.





TREAT	STAGING	AND	PRODUCTION	AS	SEPARATE
DEPLOYMENTS	OF	THE	SAME	SERVICE

You	may	be	tempted	to	run	staging	and	production	as	separate	services	and	store	them	in	separate	repositories.
This	can	be	done	successfully,	but	it	requires	that	changes	be	synchronized	across	both	services	and	repositories,
including	configuration	changes	(which	are	often	forgotten	about).	It’s	much	easier	to	treat	staging	and	production
as	separate	“deployments”	or	“phases”	of	the	same	microservice.

Even	though	staging	environments	are	testing	environments,	they	differ	from	both	the
development	phase	and	the	development	environment	in	that	a	release	that	has	been	deployed
to	staging	is	a	release	that	is	a	candidate	for	production.	A	candidate	for	production	must	have
already	successfully	passed	lint	tests,	unit	tests,	integration	tests,	and	code	review	before	being
deployed	to	a	staging	environment.

Deploying	to	a	staging	environment	should	be	treated	by	developers	with	the	same
seriousness	and	caution	as	deploying	to	production.	If	a	release	is	successfully	deployed	to
staging,	it	can	be	automatically	deployed	to	canaries,	which	will	be	running	production	traffic.

Setting	up	staging	environments	in	a	microservice	ecosystem	can	be	difficult,	due	to	the
complexities	introduced	by	dependencies.	If	your	microservice	depends	on	nine	other
microservices,	then	it	relies	on	those	dependencies	to	give	accurate	responses	when	requests
are	sent	and	reads	or	writes	to	the	relevant	database(s)	are	made.	As	a	consequence	of	these
complexities,	the	success	of	a	staging	environment	hinges	on	the	way	staging	is	standardized
across	the	company.

Full	staging
There	are	several	ways	that	the	staging	phase	of	the	deployment	pipeline	can	be	configured.
The	first	is	full	staging	(Figure	3-3),	where	a	separate	staging	ecosystem	is	running	as	a
complete	mirror	copy	of	the	entire	production	ecosystem	(though	not	necessarily	with	host
parity).	Full	staging	still	runs	on	the	same	core	infrastructure	as	production,	but	there	are
several	key	differences.	Staging	environments	of	the	services	are,	at	the	very	least,	made
accessible	to	other	services	by	staging-specific	frontend	and	backend	ports.	Importantly,
staging	environments	in	a	full-staging	ecosystem	communicate	only	with	the	staging
environments	of	other	services,	and	never	send	any	requests	or	receive	any	responses	from
any	services	running	in	production	(which	means	sending	traffic	to	production	ports	from
staging	is	off	limits).



Figure	3-3.	Full	staging

Full	staging	requires	every	microservice	to	have	a	fully	functional	staging	environment	that
other	microservices	can	communicate	with	when	new	releases	are	deployed.	Communicating
with	other	microservices	within	the	staging	ecosystem	can	be	accomplished	either	by	writing
specific	tests	that	are	kicked	off	when	a	new	build	is	deployed	to	the	staging	environment,	or
as	mentioned,	by	running	old	recorded	production	traffic	or	mock	traffic	through	the	service
being	deployed	along	with	all	upstream	and	downstream	dependencies.

Full	staging	also	requires	careful	handling	of	test	data:	staging	environments	should	never
have	write	access	to	any	production	databases,	and	granting	read	access	to	production
databases	is	discouraged	as	well.	Because	full	staging	is	designed	to	be	a	complete	mirror
copy	of	production,	every	microservice	staging	environment	should	contain	a	separate	test
database	that	it	can	read	from	and	write	to.





RISKS	OF	FULL	STAGING
Caution	needs	to	be	taken	when	implementing	and	deploying	full	staging	environments,	because	new	releases	of
services	will	almost	always	be	communicating	with	other	new	releases	of	any	upstream	and	downstream
dependencies	—	this	may	not	be	an	accurate	reflection	of	the	real	world.	Engineering	organizations	may	need	to
require	teams	to	coordinate	and/or	schedule	deployments	to	staging	to	avoid	the	deployment	of	one	service
breaking	the	staging	environment	for	all	other	related	services.

Partial	staging
The	second	type	of	staging	environment	is	known	as	partial	staging.	As	the	name	suggests,	it
is	not	a	complete	mirror	copy	of	the	production	environment.	Rather,	each	microservice	has
its	own	staging	environment,	which	is	a	pool	of	servers	with	(at	the	very	least)	staging-
specific	frontend	and	backend	ports,	and	when	new	builds	are	introduced	into	the	staging
phase,	they	communicate	with	the	upstream	clients	and	downstream	dependencies	that	are
running	in	production	(Figure	3-4).

Figure	3-4.	Partial	staging

Partial	staging	deployments	should	hit	all	production	endpoints	of	a	microservice’s	clients
and	dependencies	to	mimic	the	state	of	the	actual	world	as	accurately	as	possible.	Specific
staging	tests	will	need	to	be	written	and	run	to	accomplish	this,	and	every	new	feature	added
should	probably	be	accompanied	by	at	least	one	additional	staging	test	to	ensure	that	it	is
tested	thoroughly.



RISKS	OF	PARTIAL	STAGING
Because	microservices	with	partial	staging	environments	communicate	with	production	microservices,	extreme	care
must	be	taken.	Even	though	partial	staging	is	restricted	to	read-only	requests,	production	services	can	easily	be
taken	down	by	bad	staging	deploys	that	send	bad	requests	and/or	overload	production	services	with	too	many
requests.

These	types	of	staging	environments	should	also	be	restricted	to	read-only	database	access:	a
staging	environment	should	never	write	to	a	production	database.	However,	some
microservices	may	be	very	write-heavy,	and	testing	the	write	functionality	of	a	new	build	will
be	essential.	The	most	common	way	of	doing	this	is	to	mark	any	data	written	by	a	staging
environment	as	test	data	(this	is	known	as	test	tenancy),	but	the	safest	way	to	do	this	is	to
write	to	a	separate	test	database,	since	giving	write	access	to	a	staging	environment	still	runs
the	risk	of	altering	real-world	data.	See	Table	3-1	for	a	comparison	of	full	and	partial	staging
environments.

Table	3-1.	Full	versus	partial	staging	environments

Full	staging Partial	staging

Complete	copy	of	production	environment Yes No

Separate	staging	frontend	and	backend	ports Yes Yes

Access	to	production	services No Yes

Read	access	to	production	databases No Yes

Write	access	to	production	databases No Yes

Requires	automated	rollbacks No Yes

Staging	environments	(full	or	partial)	should	have	dashboards,	monitoring,	and	logging	just
like	production	environments	—	all	of	which	should	be	set	up	identically	to	the	dashboards,
monitoring,	and	logging	of	the	production	environment	of	the	microservice	(see	Chapter	6,
Monitoring).	The	graphs	for	all	key	metrics	can	be	kept	on	the	same	dashboard	as	all
production	metrics,	though	teams	may	opt	to	have	separate	dashboards	for	each	part	of	the
deployment	process:	a	staging	dashboard,	a	canary	dashboard,	and	a	production	dashboard.
Depending	on	how	dashboards	are	configured,	it	may	be	best	to	keep	all	graphs	for	all
deployments	on	one	dashboard	and	to	organize	them	by	deployment	(or	by	metric).
Regardless	of	how	a	team	decides	to	set	up	their	dashboards,	the	goal	of	building	good	and
useful	production-ready	dashboards	should	not	be	forgotten:	the	dashboard(s)	of	a
production-ready	microservice	should	make	it	easy	for	an	outsider	to	quickly	determine	the
health	and	status	of	the	service.

Monitoring	and	logging	for	the	staging	environment	should	be	identical	to	the	monitoring



and	logging	of	the	staging	and	production	deployments	so	that	any	failures	of	tests	and	errors
in	new	releases	that	are	deployed	to	staging	will	be	caught	before	they	move	to	the	next	phase
of	the	deployment	pipeline.	It’s	extremely	helpful	to	set	up	alerts	and	logs	so	that	they	are
differentiated	and	separated	by	deployment	type,	ensuring	that	any	alerts	triggered	by	failures
or	errors	will	specify	which	environment	is	experiencing	the	problem,	making	debugging,
mitigation,	and	resolution	of	any	bugs	or	failures	rather	easy	and	straightforward.

The	purpose	of	a	staging	environment	is	to	catch	any	bugs	introduced	by	code	changes	before
they	affect	production	traffic.	When	a	bug	is	introduced	by	the	code,	it	will	usually	be	caught
in	the	staging	environment	(if	it	is	set	up	correctly).	Automated	rollbacks	of	bad	deploys	are	a
necessity	for	partial	staging	environments	(though	are	not	required	for	full	staging
environments).	Establishing	when	to	revert	to	a	previous	build	should	be	determined	by
various	thresholds	on	the	microservice’s	key	metrics.

Since	partial	staging	requires	interacting	with	microservices	running	in	production,	bugs
introduced	by	new	releases	deployed	to	a	partial	staging	environment	can	bring	down	other
microservices	that	are	running	in	production.	If	there	aren’t	any	automated	rollbacks	in	place,
mitigating	and	resolving	these	problems	needs	to	be	done	manually.	Any	steps	of	the
deployment	process	that	need	manual	intervention	are	points	of	failure	not	only	for	the
microservice	itself,	but	for	the	entire	microservice	ecosystem.

The	last	question	a	microservice	team	needs	to	answer	when	setting	up	a	staging	environment
is	how	long	a	new	release	should	run	on	staging	before	it	can	be	deployed	to	canary	(and,
after	that,	to	production).	The	answer	to	this	question	is	determined	by	the	staging-specific
tests	that	are	run	on	staging:	a	new	build	is	ready	to	move	to	the	next	step	of	the	deployment
process	as	soon	as	all	tests	have	passed	without	failing.



Canary
Once	a	new	release	has	successfully	been	deployed	to	staging	and	passed	all	required	tests,	the
build	can	be	deployed	to	the	next	stage	in	the	deployment	pipeline:	the	canary	environment.
The	unique	name	for	this	environment	comes	from	a	tactic	used	by	coal	miners:	they’d	bring
canaries	with	them	into	the	coal	mines	to	monitor	the	levels	of	carbon	monoxide	in	the	air;	if
the	canary	died,	they	knew	that	the	level	of	toxic	gas	in	the	air	was	high,	and	they’d	leave	the
mines.	Sending	a	new	build	into	a	canary	environment	serves	the	same	purpose:	deploy	it	to	a
small	pool	of	servers	running	production	traffic	(around	5%–10%	of	production	capacity),
and	if	it	survives,	deploy	to	the	rest	of	the	production	servers.





CANARY	TRAFFIC	DISTRIBUTION
If	the	production	service	is	deployed	in	multiple	different	datacenters,	regions,	or	cloud	providers,	then	the	canary
pool	should	contain	servers	in	each	of	these	in	order	to	accurately	sample	production.

Since	a	canary	environment	serves	production	traffic,	it	should	be	considered	part	of
production.	It	should	have	the	same	backend	and	frontend	ports,	and	canary	hosts	should	be
chosen	at	random	from	the	pool	of	production	servers	to	ensure	accurate	sampling	of
production	traffic.	Canaries	can	(and	should)	have	full	access	to	production	services:	they
should	hit	all	production	endpoints	of	upstream	and	downstream	dependencies,	and	they
should	have	both	read	and	write	access	to	any	databases	(if	applicable).

As	with	staging,	the	dashboards,	monitoring,	and	logging	should	be	the	same	for	canaries	as
for	production.	Alerts	and	logs	should	be	differentiated	and	labeled	as	coming	from	the
canary	deployment	so	that	developers	can	easily	mitigate,	debug,	and	resolve	any	problems.





SEPARATE	PORTS	FOR	CANARIES	AND	PRODUCTION
Allocating	separate	frontend	and	backend	ports	for	canaries	and	production	so	that	traffic	can	be	directed
deliberately	may	seem	like	a	good	idea,	but	unfortunately	separating	out	the	traffic	in	this	fashion	defeats	the
purpose	of	canaries:	to	randomly	sample	production	traffic	on	a	small	pool	of	servers	to	test	a	new	release.

Automated	rollbacks	absolutely	need	to	be	in	place	for	canaries:	if	any	known	errors	occur,
the	deployment	system	needs	to	automatically	revert	to	the	last	known	stable	version.
Remember,	canaries	are	serving	production	traffic,	and	any	problems	that	happen	are
affecting	the	real	world.

How	long	should	a	new	release	sit	in	the	canary	pool	until	developers	can	be	satisfied	that	it	is
ready	for	production?	This	can	be	minutes,	hours,	or	even	days,	and	the	answer	is	determined
by	the	microservice’s	traffic	patterns.	The	traffic	of	every	microservice	is	going	to	have
some	sort	of	pattern,	no	matter	how	strange	your	microservice	or	business	may	be.	A	new
release	should	not	leave	the	canary	stage	of	deployment	until	a	full	traffic	cycle	has	been
completed.	How	a	“traffic	cycle”	is	defined	needs	to	be	standardized	across	the	entire
engineering	organization,	but	the	duration	and	requirements	of	the	traffic	cycle	may	need	to
be	created	on	a	service-by-service	basis.



Production
Production	is	the	real	world.	When	a	build	has	successfully	made	it	through	the	development
cycle,	survived	staging,	and	lived	through	the	coal	mines	of	the	canary	phase,	it	is	ready	to	be
rolled	out	to	the	production	deployment.	At	this	point	in	the	deployment	pipeline	—	the	very
last	step	—	the	development	team	should	be	completely	confident	in	the	new	build.	Any	errors
in	the	code	should	have	been	discovered,	mitigated,	and	resolved	before	making	it	this	far.

Every	build	that	makes	it	to	production	should	be	completely	stable	and	reliable.	A	build
being	deployed	to	production	should	have	already	been	thoroughly	tested,	and	a	build	should
never	be	deployed	to	production	until	it	has	made	it	through	the	staging	and	canary	phases
without	any	issues.	Deploying	to	production	can	be	done	in	one	fell	swoop	after	the	build	has
lived	through	the	canaries,	or	it	can	be	gradually	rolled	out	in	stages:	developers	can	choose
to	roll	out	to	production	by	percentage	of	hardware	(e.g.,	first	to	25%	of	all	servers,	then	to
50%,	then	75%,	and	finally	100%),	or	by	datacenter,	or	by	region,	or	by	country,	or	any
mixture	of	these.



Enforcing	Stable	and	Reliable	Deployment
By	the	time	a	new	candidate	for	production	has	made	it	through	the	development	process,	has
survived	the	staging	environment,	and	has	been	deployed	to	the	canary	phase	successfully,	the
chances	of	it	causing	a	major	outage	are	very	slim,	because	most	bugs	in	the	code	will	have
been	caught	before	the	candidate	for	production	is	rolled	out	to	production.	This	is	precisely
why	having	a	comprehensive	deployment	pipeline	is	essential	for	building	a	stable	and
reliable	microservice.

For	some	developers,	the	delay	introduced	by	the	deployment	pipeline	might	seem	like	an
unnecessary	burden	because	it	delays	their	code	changes	and/or	new	features	from	being
deployed	straight	to	production	minutes	after	they	have	been	written.	In	reality,	the	delay
introduced	by	the	phases	of	the	deployment	pipeline	is	very	short	and	easily	customizable,	but
sticking	to	the	standardized	deployment	process	needs	to	be	enforced	to	ensure	reliability.
Deploying	to	a	microservice	multiple	times	per	day	can	(and	does)	compromise	the	stability
and	reliability	of	the	microservice	and	any	other	services	within	its	complex	dependency
chain:	a	microservice	that	is	changing	every	few	hours	is	rarely	a	stable	or	reliable
microservice.

Developers	may	be	tempted	to	skip	the	staging	and	canary	phases	of	the	deployment	process
and	deploy	a	fix	straight	to	production	if,	for	example,	a	serious	bug	is	discovered	in
production.	While	this	solves	the	problem	quickly,	can	possibly	save	the	company	from
losing	revenue,	and	can	prevent	dependencies	from	experiencing	outages,	allowing
developers	to	deploy	straight	to	production	should	be	reserved	only	for	the	most	severe
outages.	Without	these	restrictions	in	place,	there	is	always	the	unfortunate	possibility	of
abusing	the	process	and	deploying	straight	to	production:	for	most	developers,	every	code
change,	every	deploy	is	important	and	may	seem	important	enough	to	bypass	staging	and
canary,	compromising	the	stability	and	reliability	of	the	entire	microservice	ecosystem.	When
failures	occur,	development	teams	should	instead	be	encouraged	to	always	roll	back	to	the
latest	stable	build	of	the	microservice,	which	will	bring	the	microservice	back	to	a	known
(and	reliable)	state,	which	can	run	in	production	without	any	issues	while	the	team	works	to
discover	the	root	cause	of	the	failure	that	occurred.





HOTFIXES	ARE	AN	ANTI-PATTERN
When	a	deployment	pipeline	is	in	place,	there	should	never	be	any	direct	deployment	to	production	unless	there	is
an	emergency,	but	even	this	should	be	discouraged.	Bypassing	the	initial	phases	of	the	deployment	pipeline	often
introduces	new	bugs	into	production,	as	emergency	code	fixes	run	the	risk	of	not	being	properly	tested.	Rather
than	deploying	a	hotfix	straight	to	production,	developers	should	roll	back	to	the	latest	stable	build	if	possible.

Stable	and	reliable	deployment	isn’t	limited	only	to	following	the	deployment	pipeline,	and
there	are	several	cases	in	which	blocking	a	particular	microservice	from	deploying	can
increase	availability	across	the	ecosystem.

If	a	service	isn’t	meeting	their	SLAs	(see	Chapter	2,	Production-Readiness),	all	deployment
can	be	postponed	if	the	downtime	quota	of	the	service	has	been	used	up.	For	example,	if	a
service	has	an	SLA	promising	99.99%	availability	(allowing	4.38	minutes	of	downtime	each
month),	but	has	been	unavailable	for	12	minutes	in	one	month,	then	new	deployments	of	that
microservice	can	be	blocked	for	the	next	three	months,	ensuring	that	it	meets	its	SLA.	If	a
service	fails	load	testing	(see	Chapter	5,	Fault	Tolerance	and	Catastrophe-Preparedness),	then
deployment	to	production	can	be	locked	until	the	service	is	able	to	appropriately	pass	any
necessary	load	tests.	For	business-critical	services,	whose	outages	would	stop	the	company
from	functioning	properly,	it	can	at	times	be	necessary	to	block	deployment	if	they	do	not
meet	the	production-readiness	criteria	established	by	the	engineering	organization.



Dependencies
The	adoption	of	microservice	architecture	is	sometimes	driven	by	the	idea	that	microservices
can	be	built	and	run	in	isolation,	as	fully	independent	and	replaceable	components	of	a	larger
system.	This	is	true	in	principle,	but	in	the	real	world,	every	microservice	has	dependencies,
both	upstream	and	downstream.	Every	microservice	will	receive	requests	from	clients	(other
microservices)	that	are	counting	on	the	service	to	perform	as	expected	and	to	live	up	to	its
SLAs,	as	well	as	downstream	dependencies	(other	services)	that	it	will	depend	on	to	get	the
job	done.

Building	and	running	production-ready	microservices	requires	developers	to	plan	for
dependency	failures,	to	mitigate	them,	and	to	protect	against	them.	Understanding	a	service’s
dependencies	and	planning	for	their	failures	is	one	of	the	most	important	aspects	of	building	a
stable	and	reliable	microservice.

To	understand	how	important	this	is,	let’s	consider	an	example	microservice	called	receipt-
sender,	whose	SLA	is	four-nines	(promising	99.99%	availability	to	upstream	clients).	Now,
receipt-sender	depends	on	several	other	microservices,	including	one	called	customers	(a
microservice	that	handles	all	customer	information),	and	one	called	orders	(a	microservice
that	handles	information	about	the	orders	each	customer	places).	Both	customers	and	orders
depend	on	other	microservices:	customers	depends	on	yet	another	microservice	we’ll	call
customers-dependency,	and	orders	on	one	we’ll	refer	to	as	orders-dependency.	The	chances
that	customers-dependency	and	orders-dependency	have	dependencies	of	their	own	are	very
high,	so	the	dependency	graph	for	receipt-sender	quickly	becomes	very,	very	complicated.

Since	receipt-sender	wants	to	protect	its	SLA	and	provide	99.99%	uptime	to	all	of	its	clients,
its	team	needs	to	make	sure	that	the	SLAs	of	all	downstream	dependencies	are	strictly	adhered
to.	If	the	SLA	of	receipt-sender	depends	on	customers	being	available	99.99%	of	the	time,	but
the	actual	uptime	of	customers	is	only	89.99%	of	the	time,	the	availability	of	receipt-sender	is
compromised	and	is	now	only	89.98%.	Each	one	of	the	dependencies	of	receipt-sender	can
suffer	the	same	hit	to	their	availability	if	any	of	the	dependencies	in	the	dependency	chain	do
not	meet	their	SLAs.

A	stable	and	reliable	microservice	needs	to	mitigate	dependency	failures	of	this	sort	(and	yes,
not	meeting	an	SLA	is	a	failure!).	This	can	be	accomplished	by	having	backups,	fallbacks,
caching,	and/or	alternatives	for	each	dependency	just	in	case	they	fail.

Before	dependency	failures	can	be	planned	for	and	mitigated,	the	dependencies	of	a
microservice	must	be	known,	documented,	and	tracked.	Any	dependency	that	could	harm	a
microservice’s	SLA	needs	to	be	included	in	the	architecture	diagram	and	documentation	of
the	microservice	(see	Chapter	7,	Documentation	and	Understanding)	and	should	be	included
on	the	service’s	dashboard(s)	(see	Chapter	6,	Monitoring).	In	addition,	all	dependencies
should	be	tracked	by	automatically	creating	dependency	graphs	for	each	service,	which	can	be
accomplished	by	implementing	a	distributed	tracking	system	across	all	microservices	in	the



organization.

Once	all	of	the	dependencies	are	known	and	tracked,	the	next	step	is	to	set	up	backups,
alternatives,	fallbacks,	or	caching	for	each	dependency.	The	right	way	to	do	this	is	completely
dependent	on	the	needs	of	the	service.	For	example,	if	the	functionality	of	a	dependency	can
be	filled	by	calling	the	endpoint	of	another	service,	then	failure	of	the	primary	dependency
should	be	handled	by	the	microservice	so	that	requests	are	sent	to	the	alternative	instead.	If
requests	that	need	to	be	sent	to	the	dependency	can	be	held	in	a	queue	when	the	dependency	is
unavailable,	then	a	queue	should	be	implemented.	Another	way	to	handle	dependency	failures
is	to	put	caching	for	the	dependency	into	place	within	the	service:	cache	any	relevant	data	so
that	any	failures	will	be	handled	gracefully.

The	type	of	cache	most	often	used	in	these	cases	is	a	Least	Recently	Used	(LRU)	cache,	in
which	relevant	data	is	kept	in	a	queue,	and	where	any	unused	data	is	deleted	when	the	cache’s
queue	fills	up.	LRU	caches	are	easy	to	implement	(often	a	single	line	of	code	for	each
instantiation),	efficient	(no	expensive	network	calls	need	to	be	made),	performant	(the	data	is
immediately	available),	and	do	a	decent	job	of	mitigating	any	dependency	failures.	This	is
known	as	defensive	caching,	and	it	is	useful	for	protecting	a	microservice	against	the	failures
of	its	dependencies:	cache	the	information	your	microservice	gets	from	its	dependencies,	and
if	the	dependencies	go	down,	the	availability	of	your	microservice	will	be	unaffected.
Implementing	defensive	caching	isn’t	necessary	for	every	single	dependency,	but	if	a	specific
dependency	or	set	of	dependencies	is	or	are	unreliable,	defensive	caching	will	prevent	your
microservice	from	being	harmed.



Routing	and	Discovery
Another	aspect	of	building	stable	and	reliable	microservices	is	to	ensure	that	communication
and	interaction	between	microservices	is	itself	stable	and	reliable,	which	means	that	layer	2
(the	communication	layer)	of	the	microservice	ecosystem	(see	Chapter	1,	Microservices)	must
be	built	to	perform	in	a	way	that	protects	against	harmful	traffic	patterns	and	maintains	trust
across	the	ecosystem.	The	relevant	parts	of	the	communication	layer	for	stability	and
reliability	(aside	from	the	network	itself)	are	service	discovery,	service	registry,	and	load
balancing.

The	health	of	a	microservice	at	both	the	host	level	and	the	service	level	as	a	whole	should
always	be	known.	This	means	that	health	checks	should	be	running	constantly	so	that	a	request
is	never	sent	to	an	unhealthy	host	or	service.	Running	health	checks	on	a	separate	channel	(not
used	for	general	microservice	communication)	is	the	easiest	way	to	ensure	that	health	checks
aren’t	ever	compromised	by	something	like	a	clogged	network.	Hardcoding	“200	OK”
responses	on	a	/health	endpoint	for	health	checks	isn’t	ideal	for	every	microservice	either,
though	it	may	be	sufficient	for	most.	Hardcoded	responses	don’t	tell	you	much	except	that	the
microservice	was	started	on	the	host	semi-successfully:	any	/health	endpoint	of	a
microservice	should	give	a	useful,	accurate	response.

If	an	instance	of	a	service	on	a	host	is	unhealthy,	the	load	balancers	should	no	longer	route
traffic	to	it.	If	a	microservice	as	a	whole	is	unhealthy	(with	all	health	checks	failing	on	either	a
certain	percentage	of	hosts	or	all	hosts	in	production),	then	traffic	should	no	longer	be	routed
to	that	particular	microservice	until	the	problems	causing	the	health	checks	to	fail	are
resolved.

However,	health	checks	shouldn’t	be	the	only	determining	factor	in	whether	or	not	a	service	is
healthy.	A	large	number	of	unhandled	exceptions	should	also	lead	to	a	service	being	marked
unhealthy,	and	circuit	breakers	should	be	put	into	place	for	these	failures	so	that	if	a	service
experiences	an	abnormal	amount	of	errors,	no	more	requests	will	be	sent	to	the	service	until
the	problem	is	resolved.	The	key	in	stable	and	reliable	routing	and	discovery	is	this:	preserve
the	microservice	ecosystem	by	preventing	bad	actors	from	serving	production	traffic	and
accepting	requests	from	other	microservices.



Deprecation	and	Decommissioning
One	often-forgotten,	often-ignored	cause	of	instability	and	unreliability	in	microservice
ecosystems	is	the	deprecation	or	decommissioning	of	a	microservice	or	one	of	its	API
endpoints.	When	a	microservice	is	no	longer	in	use	or	is	no	longer	supported	by	a
development	team,	its	decommissioning	should	be	undertaken	carefully	to	ensure	that	no
clients	will	be	compromised.	The	deprecation	of	one	or	more	of	a	microservice’s	API
endpoints	is	even	more	common:	when	new	features	are	added	or	old	ones	removed,	the
endpoints	often	change,	requiring	that	client	teams	are	updated	and	any	requests	made	to	the
old	endpoints	are	switched	to	new	endpoints	(or	removed	entirely).

In	most	microservice	ecosystems,	deprecation	and	decommissioning	is	more	of	a
sociological	problem	within	the	engineering	organization	than	a	technical	one,	making	it	all
the	more	difficult	to	address.	When	a	microservice	is	about	to	be	decommissioned,	its
development	team	needs	to	take	care	to	alert	all	client	services	and	advise	them	on	how	to
accommodate	the	loss	of	their	dependency.	If	the	microservice	being	decommissioned	is
being	replaced	by	another	new	microservice,	or	if	the	functionality	of	the	microservice	is
being	built	into	another	existing	microservice,	then	the	team	should	help	all	clients	update
their	microservices	to	send	requests	to	the	new	endpoints.	Deprecation	of	an	endpoint	follows
a	similar	process:	the	clients	must	be	alerted,	and	either	given	the	new	endpoint	or	advised	on
how	to	account	for	the	loss	of	the	endpoint	entirely.	In	both	deprecation	and
decommissioning,	monitoring	plays	a	critical	role:	endpoints	will	need	to	be	monitored
closely	before	the	service	or	endpoint	is	completely	decommissioned	and/or	deprecated	to
check	for	any	requests	that	might	still	be	sent	to	the	outdated	service	or	endpoint.

Conversely,	failing	to	properly	deprecate	an	endpoint	or	decommission	a	microservice	can
also	have	disastrous	effects	on	the	microservice	ecosystem.	This	happens	more	often	than
developers	would	care	to	admit.	In	an	ecosystem	containing	hundreds	or	thousands	of
microservices,	developers	are	often	shifted	between	teams,	priorities	change,	and	both
microservices	and	technologies	are	swapped	out	for	newer,	better	ones	all	of	the	time.	When
these	old	microservices	or	technologies	are	left	to	run,	without	any	(or	much)	involvement,
oversight,	or	monitoring,	any	failures	will	go	unnoticed,	and	any	failure	that	is	noticed	may
not	be	resolved	for	a	long	period	of	time.	If	a	microservice	is	going	to	be	left	to	fend	for
itself,	it	risks	compromising	its	clients	in	case	of	an	outage	—	such	microservices	should	be
decommissioned	rather	than	abandoned.

Nothing	is	more	disruptive	to	a	microservice	than	the	complete	loss	of	one	of	its
dependencies.	Nothing	causes	more	instability	and	unreliability	than	the	sudden,	unexpected
failure	of	one	of	its	dependencies,	even	if	the	failure	was	planned	for	by	another	team.	The
importance	of	stable	and	reliable	decommissioning	and	deprecation	can	honestly	not	be
emphasized	enough.



Evaluate	Your	Microservice
Now	that	you	have	a	better	understanding	of	stability	and	reliability,	use	the	following	list	of
questions	to	assess	the	production-readiness	of	your	microservice(s)	and	microservice
ecosystem.	The	questions	are	organized	by	topic,	and	correspond	to	the	sections	within	this
chapter.



The	Development	Cycle
Does	the	microservice	have	a	central	repository	where	all	code	is	stored?

Do	developers	work	in	a	development	environment	that	accurately	reflects	the	state	of
production	(e.g.,	that	accurately	reflects	the	real	world)?

Are	there	appropriate	lint,	unit,	integration,	and	end-to-end	tests	in	place	for	the
microservice?

Are	there	code	review	procedures	and	policies	in	place?

Is	the	test,	packaging,	build,	and	release	process	automated?



The	Deployment	Pipeline
Does	the	microservice	ecosystem	have	a	standardized	deployment	pipeline?

Is	there	a	staging	phase	in	the	deployment	pipeline	that	is	either	full	or	partial	staging?

What	access	does	the	staging	environment	have	to	production	services?

Is	there	a	canary	phase	in	the	deployment	pipeline?

Do	deployments	run	in	the	canary	phase	for	a	period	of	time	that	is	long	enough	to	catch
any	failures?

Does	the	canary	phase	accurately	host	a	random	sample	of	production	traffic?

Are	the	microservice’s	ports	the	same	for	canary	and	production?

Are	deployments	to	production	done	all	at	the	same	time,	or	incrementally	rolled	out?

Is	there	a	procedure	in	place	for	skipping	the	staging	and	canary	phases	in	case	of	an
emergency?



Dependencies
What	are	this	microservice’s	dependencies?

What	are	its	clients?

How	does	this	microservice	mitigate	dependency	failures?

Are	there	backups,	alternatives,	fallbacks,	or	defensive	caching	for	each	dependency?



Routing	and	Discovery
Are	health	checks	to	the	microservice	reliable?

Do	health	checks	accurately	reflect	the	health	of	the	microservice?

Are	health	checks	run	on	a	separate	channel	within	the	communication	layer?

Are	there	circuit	breakers	in	place	to	prevent	unhealthy	microservices	from	making
requests?

Are	there	circuit	breakers	in	place	to	prevent	production	traffic	from	being	sent	to
unhealthy	hosts	and	microservices?



Deprecation	and	Decommissioning
Are	there	procedures	in	place	for	decommissioning	a	microservice?

Are	there	procedures	in	place	for	deprecating	a	microservice’s	API	endpoints?



Chapter	4.	Scalability	and	Performance

A	production-ready	microservice	is	scalable	and	performant.	A	scalable,	performant
microservice	is	one	that	is	driven	by	efficiency,	one	that	can	not	only	handle	a	large	number
of	tasks	or	requests	at	the	same	time,	but	can	handle	them	efficiently	and	is	prepared	for	tasks
or	requests	to	increase	in	the	future.	In	this	chapter,	the	essential	components	of	microservice
scalability	and	performance	are	covered,	including	understanding	the	qualitative	and
quantitative	growth	scales,	hardware	efficiency,	identification	of	resource	requirements	and
bottlenecks,	capacity	awareness	and	planning,	scalable	handling	of	traffic,	the	scaling	of
dependencies,	task	handling	and	processing,	and	scalable	data	storage.



Principles	of	Microservice	Scalability	and	Performance
Efficiency	is	of	the	utmost	importance	in	real-world,	large-scale	distributed	systems
architecture,	and	microservice	ecosystems	are	no	exception	to	this	rule.	It’s	easy	to	quantify
the	efficiency	of	a	single	system	(like	a	monolithic	application),	but	evaluating	the	efficiency
and	achieving	greater	efficiency	in	a	large	ecosystem	of	microservices,	where	tasks	are
sharded	out	between	hundreds	(if	not	thousands)	of	small	services,	is	incredibly	difficult.	It’s
also	bounded	by	the	laws	of	computer	architecture	and	distributed	systems,	which	place	limits
on	the	efficiency	of	large-scale,	complex	distributed	systems:	the	more	distributed	your
system,	and	the	more	microservices	you	have	in	place	within	that	system,	the	less	of	a
difference	the	efficiency	of	one	microservice	will	have	on	the	entire	system.	Standardization
of	principles	that	will	increase	overall	efficiency	becomes	a	necessity.	Two	of	our
production-readiness	standards	—	scalability	and	performance	—	help	to	achieve	this	overall
efficiency,	and	increase	the	availability	of	the	microservice	ecosystem.

Scalability	and	performance	are	uniquely	intertwined	because	of	the	effects	they	have	on	the
efficiency	of	each	microservice	and	the	ecosystem	as	a	whole.	As	we	saw	in	Chapter	1,
Microservices,	in	order	to	build	a	scalable	application,	we	need	to	design	for	concurrency	and
partitioning:	concurrency	allows	each	task	to	be	broken	up	into	smaller	pieces,	while
partitioning	is	essential	for	allowing	these	smaller	pieces	to	be	processed	in	parallel.	So,
while	scalability	is	related	to	how	we	divide	and	conquer	the	processing	of	tasks,	performance
is	the	measure	of	how	efficiently	the	application	processes	those	tasks.

In	a	growing,	thriving	microservice	ecosystem,	where	traffic	is	increasing	steadily,	each
microservice	needs	to	be	able	to	scale	with	the	entire	system	without	suffering	from
performance	problems.	To	ensure	that	our	microservices	are	scalable	and	performant,	we
need	to	require	several	things	of	each	microservice.	We	need	to	understand	its	growth	scale,
both	quantitative	and	qualitative,	so	that	we	can	prepare	for	expected	growth.	We	need	to	use
our	hardware	resources	efficiently,	be	aware	of	resource	bottlenecks	and	requirements,	and	do
appropriate	capacity	planning.	We	need	to	ensure	that	a	microservice’s	dependencies	will
scale	with	it.	We	need	to	manage	traffic	in	a	scalable	and	performant	way.	We	need	to	handle
and	process	tasks	in	a	performant	manner.	Last	but	not	least,	we	need	to	store	data	in	a
scalable	way.



A	PRODUCTION-READY	SERVICE	IS 	SCALABLE	AND	PERFORMANT

Its	qualitative	and	quantitative	growth	scales	are	known.

It	uses	hardware	resources	efficiently.

Its	resource	bottlenecks	and	requirements	have	been	identified.

Capacity	planning	is	automated	and	performed	on	a	scheduled	basis.

Its	dependencies	will	scale	with	it.

It	will	scale	with	its	clients.

Its	traffic	patterns	are	understood.

Traffic	can	be	re-routed	in	case	of	failures.

It	is	written	in	a	programming	language	that	allows	it	to	be	scalable	and	performant.

It	handles	and	processes	tasks	in	a	performant	manner.

It	handles	and	stores	data	in	a	scalable	and	performant	way.



Knowing	the	Growth	Scale
Determining	how	a	microservice	scales	(at	a	very	high	level)	is	the	first	step	toward
understanding	how	to	build	and	maintain	a	scalable	microservice.	There	are	two	aspects	to
knowing	the	growth	scale	of	a	microservice,	and	they	both	play	important	roles	in
understanding	and	planning	for	the	scalability	of	a	service.	The	first	is	the	qualitative	growth
scale,	which	comes	from	understanding	where	the	service	fits	into	the	overall	microservice
ecosystem	and	which	key	high-level	business	metrics	it	will	be	affected	by.	The	second	is	the
quantitative	growth	scale,	which	is,	as	its	name	suggests,	a	well-defined,	measurable,	and
quantitative	understanding	of	how	much	traffic	a	microservice	can	handle.



The	Qualitative	Growth	Scale
The	natural	tendency	when	trying	to	determine	the	growth	scale	of	a	microservice	is	to	phrase
the	growth	scale	in	terms	of	requests	per	second	(RPS)	or	queries	per	second	(QPS)	that	the
service	can	support,	then	predicting	how	many	RPS/QPS	will	be	made	to	the	service	in	the
future.	The	term	“requests	per	second”	is	generally	used	when	talking	about	microservices,
and	“queries	per	second”	when	talking	about	databases	or	microservices	that	return	data	to
clients,	though	in	many	cases	they	are	interchangeable.	This	is	very	important	information,
but	it’s	useless	without	additional	context	—	specifically,	without	the	context	of	where	the
microservice	fits	into	the	overall	picture.

In	most	cases,	information	about	the	RPS/QPS	a	microservice	can	support	is	determined	by
the	state	of	the	microservice	at	the	time	the	growth	scale	is	initially	calculated:	if	the	growth
scale	is	calculated	by	only	looking	at	the	current	levels	of	traffic	and	how	the	microservice
handles	the	current	traffic	load,	making	any	inferences	about	how	much	traffic	the
microservice	can	handle	in	the	future	runs	the	risk	of	being	misguided.	There	are	several
approaches	one	could	take	to	get	around	this	problem,	including	load	testing	(testing	the
microservice	with	higher	loads	of	traffic),	which	can	present	a	more	accurate	picture	of	the
scalability	of	the	service,	and	analyzing	historical	traffic	data	to	see	how	the	traffic	level
grows	over	time.	But	there’s	something	very	key	missing	here,	something	that	is	an	inherent
property	of	microservice	architecture	—	namely,	that	microservices	do	not	live	alone	but	as
part	of	a	larger	ecosystem.

This	is	where	the	qualitative	growth	scale	comes	in.	Qualitative	growth	scales	allow	the
scalability	of	a	service	to	tie	in	with	higher-level	business	metrics:	a	microservice	may,	for
example,	scale	with	the	number	of	users,	with	the	number	of	people	who	open	a	phone
application	(“eyeballs”),	or	with	the	number	of	orders	(for	a	food	delivery	service).	These
metrics,	these	qualitative	growth	scales,	aren’t	tied	to	an	individual	microservice	but	to	the
overall	system	or	product(s).	At	the	business	level,	the	organization	will	have,	for	the	most
part,	some	idea	of	how	these	metrics	will	change	over	time.	When	these	higher-level	business
metrics	are	communicated	to	engineering	teams,	developers	can	interpret	them	as	they	relate
to	their	respective	microservices:	if	one	of	their	microservices	is	part	of	the	order	flow	for	a
food	delivery	service,	they	will	know	that	any	metrics	related	to	the	number	of	orders
expected	in	the	future	will	tell	them	what	kind	of	traffic	their	service	should	expect.

When	I	ask	microservice	development	teams	if	they	know	the	growth	scale	of	their	service,
the	usual	response	is,	“It	can	handle	x	requests	per	second.”	My	follow-up	questions	are
always	geared	toward	discovering	where	the	service	in	question	fits	into	the	overall	product:
When	are	requests	made?	Is	it	one	request	per	trip?	One	request	each	time	someone	opens	the
app?	One	request	every	time	a	new	user	signs	up	for	our	product?	When	these	context-filling
questions	are	answered,	the	growth	scale	becomes	clear	—	and	useful.	If	the	number	of
requests	made	to	the	service	is	directly	linked	to	the	number	of	people	who	open	a	phone
application,	then	the	service	scales	with	eyeballs,	and	we	can	plan	for	scaling	the	service	by



predicting	how	many	people	will	be	opening	the	application.	If	the	number	of	requests	made
to	the	service	is	determined	by	the	number	of	people	who	order	delivery	food,	then	the
service	scales	with	deliveries,	and	we	can	plan	and	predict	for	scaling	our	service	by	using
higher-level	business	metrics	about	how	many	future	deliveries	are	predicted.

There	are	exceptions	to	the	rules	of	qualitative	growth	scales,	and	determining	an	appropriate
qualitative	growth	scale	can	become	very	complicated	the	further	down	the	stack	the	service	is
found.	Internal	tools	tend	to	suffer	from	these	complications,	and	yet	they	tend	to	be	so
business-critical	that	if	they	aren’t	scalable,	the	rest	of	the	organization	quickly	hits	scalability
challenges.	It’s	not	easy	to	put	the	growth	scale	of	a	service	like	a	monitoring	or	alerting
platform	in	terms	of	business	metrics	(users,	eyeballs,	etc.),	so	platform	and/or	infrastructure
organizations	need	to	determine	accurate	growth	scales	for	their	services	in	terms	of	their
customers	(developers,	services,	etc.)	and	their	customers’	specifications.	Internal	tools	can
scale	with,	for	example,	number	of	deployments,	number	of	services,	number	of	logs
aggregated,	or	gigabytes	of	data.	These	are	more	complicated	because	of	the	inherent
difficulty	in	predicting	these	numbers,	but	they	must	be	just	as	straightforward	and	predictable
as	the	growth	scales	of	microservices	higher	in	the	stack.



The	Quantitative	Growth	Scale
The	second	part	of	knowing	the	growth	scale	is	determining	its	quantitative	aspects,	which	is
where	RPS/QPS	and	similar	metrics	come	into	play.	To	determine	the	quantitative	growth
scale,	we	need	to	approach	our	microservices	with	the	qualitative	growth	scale	in	mind:	the
quantitative	growth	scale	is	defined	by	translating	the	qualitative	growth	scale	into	a
measurable	quantity.	For	example,	if	the	qualitative	growth	scale	of	our	microservice	is
measured	in	“eyeballs”	(e.g.,	how	many	people	open	a	phone	application),	and	each	“eyeball”
results	in	two	requests	to	our	microservice	and	one	database	transaction,	then	our	quantitative
growth	scale	is	measured	in	terms	of	requests	and	transactions,	resulting	in	requests	per
second	and	transactions	per	second	as	the	two	key	quantities	determining	our	scalability.

The	importance	of	choosing	accurate	qualitative	and	quantitative	growth	scales	cannot	be
overemphasized.	As	we	will	soon	see,	the	growth	scale	will	be	used	when	making	predictions
about	the	service’s	operational	costs,	hardware	needs,	and	limitations.



Efficient	Use	of	Resources
When	considering	the	scalability	of	large-scale	distributed	systems	like	microservice
ecosystems,	one	of	the	most	useful	abstractions	we	can	make	is	to	treat	properties	of	our
hardware	and	infrastructure	systems	as	resources.	CPU,	memory,	data	storage,	and	the
network	are	similar	to	resources	in	the	natural	world:	they	are	finite,	they	are	physical	objects
in	the	real	world,	and	they	must	be	distributed	and	shared	between	various	key	players	in	the
ecosystem.	As	we	discussed	briefly	in	“Organizational	Challenges”,	hardware	resources	are
expensive,	valuable,	and	sometimes	rare,	which	leads	to	fierce	competition	for	resources
within	the	microservice	ecosystem.

The	organizational	challenge	of	resource	allocation	and	distribution	can	be	alleviated	by
giving	business-critical	microservices	a	greater	share	of	the	resources.	Resource	needs	can
be	prioritized	by	categorizing	various	microservices	within	the	ecosystem	according	to	their
importance	and	value	to	the	overall	business:	if	resources	are	scarce	across	the	ecosystem,	the
most	business-critical	services	can	be	given	higher	priority	with	regard	to	resource
allocation.

The	technical	challenge	of	resource	allocation	and	distribution	presents	some	difficulty,
because	many	decisions	need	to	be	made	about	the	first	layer	(the	hardware	layer)	of	the
microservice	ecosystem.	Microservices	can	be	given	dedicated	hardware	so	that	only	one
service	will	run	on	each	host,	but	this	can	be	rather	expensive	and	an	inefficient	use	of
hardware	resources.	Many	engineering	organizations	opt	to	share	hardware	among	multiple
microservices,	and	each	host	will	run	several	different	services	—	a	practice	that	is,	in	most
cases,	a	more	efficient	use	of	hardware	resources.





THE	DANGERS	OF	SHARED	HARDWARE	RESOURCES
While	running	many	different	microservices	on	one	machine	(that	is,	sharing	machines	between	microservices)	is
usually	a	more	efficient	use	of	hardware	resources,	care	must	be	taken	to	ensure	that	the	microservices	are
sufficiently	isolated	and	don’t	compromise	the	performance,	efficiency,	or	availability	of	their	neighboring
microservices.	Containerization	(using	Docker)	along	with	resource	isolation	can	help	prevent	microservices	from
being	harmed	by	badly	behaved	neighbors.

One	of	the	most	effective	ways	to	allocate	and	distribute	hardware	resources	across	a
microservice	ecosystem	is	to	fully	abstract	away	the	notion	of	a	host	and	replace	it	with
hardware	resources	using	resource	abstraction	technologies	like	Apache	Mesos.	Using	this
level	of	resource	abstraction	allows	resources	to	be	allocated	dynamically,	eliminating	many
of	the	pitfalls	associated	with	resource	allocation	and	distribution	in	large-scale	distributed
systems	like	microservice	ecosystems.



Resource	Awareness
Before	hardware	resources	can	be	efficiently	allocated	and	distributed	to	microservices
within	the	microservice	ecosystem,	it	is	important	to	identify	the	resource	requirements	and
resource	bottlenecks	of	each	microservice.	Resource	requirements	are	the	specific	resources
(CPU,	RAM,	etc.)	that	each	microservice	needs;	identifying	these	is	essential	for	running	a
scalable	service.	Resource	bottlenecks	are	the	scalability	and	performance	limitations	of	each
individual	microservice	that	are	dependent	on	features	of	its	resources.



Resource	Requirements
The	resource	requirements	of	a	microservice	are	the	hardware	resources	the	microservice
needs	in	order	to	run	properly,	to	process	tasks	efficiently,	and	to	be	scaled	vertically	and/or
horizontally.	The	two	most	important	and	relevant	hardware	resources	tend	to	be,
unsurprisingly,	CPU	and	RAM	(in	multithreaded	environments,	threads	become	the	third
important	resource).	Determining	the	resource	requirements	of	a	microservice	then	entails
quantifying	the	CPU	and	RAM	that	one	instance	of	the	service	needs	in	order	to	run.	This	is
essential	for	resource	abstraction,	for	resource	allocation	and	distribution,	and	for
determining	the	overall	scalability	and	performance	of	the	microservice.





IDENTIFYING	ADDITIONAL	RESOURCE	REQUIREMENTS
While	CPU	and	RAM	are	the	two	most	common	resource	requirements,	it’s	important	to	keep	an	eye	out	for	other
resources	that	a	microservice	may	need	within	the	ecosystem.	These	can	be	hardware	resources	like	database
connections	or	application	platform	resources	like	logging	quotas.	Being	aware	of	the	needs	of	a	specific
microservice	can	do	a	lot	to	improve	scalability	and	performance.

Calculating	the	specific	resource	requirements	of	a	microservice	can	be	a	tricky,	lengthy
process,	because	there	are	many	relevant	factors.	The	key	here,	as	I	mentioned	earlier,	is	to
determine	what	the	requirements	are	for	only	one	instance	of	the	service.	The	most	effective
and	efficient	way	to	scale	our	service	is	to	scale	it	horizontally:	if	our	traffic	is	about	to
increase,	we	want	to	add	a	few	more	hosts	and	deploy	our	service	to	those	new	hosts.	In	order
for	us	to	know	how	many	hosts	we	need	to	add,	we	need	to	know	what	our	service	looks	like
running	on	only	one	host:	how	much	traffic	can	it	handle?	how	much	CPU	does	it	utilize?	how
much	memory?	Those	numbers	will	tell	us	exactly	what	the	resource	requirements	of	our
microservice	are.



Resource	Bottlenecks
We	can	discover	and	quantify	the	performance	and	scalability	limitations	of	our
microservices	by	identifying	resource	bottlenecks.	A	resource	bottleneck	is	anything	inherent
about	the	way	the	microservice	utilizes	its	resources	that	limits	the	scalability	of	the
application.	This	could	be	an	infrastructure	bottleneck	or	something	within	the	architecture	of
the	service	that	prevents	it	from	being	scalable.	For	example,	the	number	of	open	database
connections	a	microservice	needs	can	be	a	bottleneck	if	it	nears	the	connection	limit	of	the
database.	Another	example	of	a	common	resource	bottleneck	is	when	microservices	need	to
be	vertically	scaled	(rather	than	horizontally	scaled,	where	more	instances/hardware	is	added)
when	they	experience	an	increase	in	traffic:	if	the	only	way	to	scale	a	microservice	is	to
increase	the	resources	of	each	instance	(more	CPU,	more	memory),	then	the	two	principles	of
scalability	(concurrency	and	partitioning)	are	abandoned.

Some	resource	bottlenecks	are	easy	to	identify.	If	your	microservice	can	only	be	scaled	to
meet	growing	traffic	by	deploying	it	to	machines	with	more	CPU	and	memory,	then	you	have
a	scalability	bottleneck	and	need	to	refactor	the	microservice	so	that	it	can	be	scaled
horizontally	rather	than	vertically,	using	concurrency	and	partitioning	as	your	guiding
principles.





THE	PITFALLS	OF	VERTICAL	SCALING
Vertical	scaling	isn’t	a	sustainable	or	scalable	way	to	architect	microservices.	It	may	appear	to	work	out	all	right
in	situations	where	each	microservice	has	dedicated	hardware,	but	it	will	not	work	well	with	the	new	hardware
abstraction	and	isolation	technologies	that	are	used	in	the	tech	world	today,	like	Docker	and	Apache	Mesos.
Always	optimize	for	concurrency	and	partitioning	if	you	want	to	build	a	scalable	application.

Other	resource	bottlenecks	are	not	as	obvious,	and	the	best	way	to	discover	them	is	to	run
extensive	load	testing	on	the	service.	We	will	cover	load	testing	in	much	greater	detail	in
“Resiliency	Testing”.



Capacity	Planning
One	of	the	most	important	requirements	of	building	a	scalable	microservice	is	ensuring	that	it
will	have	access	to	necessary	and	required	hardware	resources	as	it	scales.	Efficiently	using
resources,	planning	for	growth,	and	designing	a	microservice	for	perfect	efficiency	and
scalability	from	the	ground	up	is	all	quickly	made	useless	if	no	hardware	resources	are
available	when	the	microservice	needs	to	host	more	production	traffic.	This	challenge	is
especially	relevant	for	microservices	that	are	optimized	for	horizontal	scalability.

In	addition	to	the	technical	challenges	that	accompany	this	potential	problem,	engineering
organizations	are	often	faced	with	larger	organizational-level	and	business-relevant	issues
that	come	along	for	the	ride:	hardware	resources	cost	quite	a	bit	of	money,	businesses	and
individual	development	teams	within	them	have	budgets	to	adhere	to,	and	these	budgets
(which	tend	to	include	hardware)	need	to	be	planned	for	in	advance.	To	ensure	that
microservices	can	scale	properly	when	traffic	increases,	we	can	perform	scheduled	capacity
planning.	The	principles	of	capacity	planning	are	pretty	straightforward:	determine	the
hardware	needs	of	each	microservice	in	advance,	build	the	needs	into	the	budget,	and	make
sure	that	the	required	hardware	is	reserved.

To	determine	the	hardware	needs	of	each	service,	we	can	use	the	growth	scales	(both
quantitative	and	qualitative),	key	business	metrics	and	traffic	predictions,	the	known	resource
bottlenecks	and	requirements,	and	historical	data	about	the	microservice’s	traffic.	This	is
where	qualitative	and	quantitative	growth	scales	come	in	especially	handy,	because	they	allow
us	to	figure	out	precisely	how	the	scalability	behavior	of	our	microservices	relate	to	high-
level	business	predictions.	For	example,	if	we	know	that	(1)	our	microservice	scales	with
unique	visitors	to	the	overall	product,	(2)	each	unique	visitor	corresponds	to	a	certain	number
of	requests	per	second	made	to	our	microservice,	and	(3)	that	the	company	predicts	that	the
product	will	receive	20,000	new	unique	visitors	in	the	next	quarter,	then	we’ll	know	exactly
what	our	capacity	needs	will	be	for	the	next	quarter.

This	needs	to	be	built	into	the	budget	of	each	development	team,	each	engineering
organization,	and	each	company.	Running	this	exercise	on	a	scheduled	basis	before	budgeting
is	determined	can	help	engineering	organizations	make	sure	that	hardware	resources	are
never	unavailable	simply	because	resource	budgeting	wasn’t	completed	or	prepared	for.	The
important	thing	here	(from	both	the	engineering	and	business	perspectives)	is	to	recognize
the	cost	of	inadequate	capacity	planning:	microservices	that	can’t	scale	properly	because	of
hardware	shortages	lead	to	decreased	availability	within	the	entire	ecosystem,	which	leads	to
outages,	which	costs	the	company	money.



LEAD	TIME	FOR	NEW	HARDWARE	REQUESTS
One	potential	problem	that’s	commonly	overlooked	by	development	teams	during	the	capacity	planning	phase	is
that	the	hardware	that	is	needed	for	the	microservice	might	not	exist	at	the	time	of	planning	and	may	need	to	be
acquired,	installed,	and	configured	before	any	microservices	can	run	on	it.	Before	scheduling	capacity	planning,
take	care	to	find	out	the	exact	lead	time	needed	for	acquiring	new	hardware	in	order	to	avoid	long	shortages	in
critical	times,	and	allow	some	room	for	delays	in	the	process.

Once	the	hardware	resources	have	been	secured	and	dedicated	to	each	microservice,	capacity
planning	is	complete.	Determining	when	and	how	to	allocate	the	hardware	after	the	planning
phase	is,	of	course,	up	to	each	engineering	organization	and	their	development,
infrastructure,	and	operations	teams.

Capacity	planning	can	be	a	really	difficult	and	manual	task.	Like	most	manual	tasks	within
engineering,	it	introduces	new	modes	of	failure:	manual	calculations	can	be	off,	and	even	a
small	shortage	can	prove	disastrous	to	business-critical	services.	Automating	the	majority	of
the	capacity	planning	process	away	from	development	and	operations	teams	cuts	down	on
potential	errors	and	failures,	and	a	great	way	to	accomplish	this	is	to	build	and	run	a	capacity
planning	self-service	tool	within	the	application	platform	layer	of	the	microservice
ecosystem.



Dependency	Scaling
The	scalability	of	a	microservice’s	dependencies	can	present	a	scalability	problem	of	its	own.
A	microservice	that	is	architected,	built,	and	run	to	be	perfectly	scalable	in	every	way	still
faces	scalability	challenges	if	it’s	dependencies	cannot	scale	with	it.	If	even	one	critical
dependency	is	unable	to	scale	with	its	clients,	then	the	entire	dependency	chain	suffers.
Ensuring	that	all	dependencies	will	scale	with	a	microservice’s	expected	growth	is	essential
for	building	production-ready	services.

This	challenge	is	relevant	to	every	individual	microservice	and	every	part	of	the
microservice	ecosystem	stack,	which	means	that	microservice	teams	also	need	to	make	sure
that	their	service	isn’t	a	scalability	bottleneck	for	its	clients.	In	other	words,	additional
complexity	is	introduced	by	the	rest	of	the	microservice	ecosystem.	The	inevitable	additional
traffic	and	growth	from	a	microservice’s	clients	need	to	be	prepared	for.





QUALITATIVE	GROWTH	SCALES	AND	DEPENDENCY
SCALABILITY

When	dealing	with	incredibly	complex	dependency	chains,	making	sure	that	all	microservice	teams	tie	the
scalability	of	their	services	to	high-level	business	metrics	(using	the	qualitative	growth	scale)	can	make	sure	that
all	services	are	properly	prepared	for	expected	growth,	even	when	cross-team	communication	becomes	difficult.

The	problem	of	dependency	scaling	is	an	especially	strong	argument	for	the	implementation
of	scalability	and	performance	standards	across	every	part	of	the	microservice	ecosystem.
Most	microservices	do	not	live	in	isolation.	Nearly	every	single	microservice	is	a	small	part
of	large,	intertwined,	intricate	dependency	chains.	In	most	cases,	scaling	the	entire	overall
product,	the	organization,	and	the	ecosystem	effectively	requires	that	each	piece	of	the	system
scales	together	with	the	rest.	Having	a	small	number	of	super	efficient,	performant,	and
scalable	microservices	in	a	system	where	the	rest	of	the	services	aren’t	held	to	(and	don’t
meet)	the	same	standards	renders	the	efficiency	of	the	standardized	services	completely	moot.

Aside	from	standardization	across	the	ecosystem,	and	holding	each	microservice
development	team	to	high	scalability	standards,	it’s	important	that	development	teams	work
together	across	microservice	boundaries	to	ensure	that	each	dependency	chain	will	scale
together.	The	development	teams	responsible	for	any	dependencies	of	a	microservice	need	to
be	alerted	when	increases	in	traffic	are	expected.	Cross-team	communication	and
collaboration	are	essential	here:	regularly	communicating	with	clients	and	dependencies
about	a	service’s	scalability	requirements,	status,	and	any	bottlenecks	can	help	to	guarantee
that	any	services	that	rely	on	each	other	are	prepared	for	growth	and	aware	of	any	potential
scalability	bottlenecks.	A	strategy	that	I’ve	used	to	help	teams	accomplish	this	is	by	holding
architecture	and	scalability	overview	meetings	with	teams	whose	services	rely	on	one	another.
In	these	meetings,	we	cover	the	architecture	of	each	service	and	its	scalability	limitations,	then
discuss	together	what	needs	to	be	done	to	scale	the	entire	set	of	services.



Traffic	Management
As	services	scale,	and	the	number	of	requests	each	service	must	handle	grows,	a	scalable,
performant	service	must	also	handle	traffic	intelligently.	There	are	several	aspects	to
managing	traffic	in	a	scalable,	performant	way:	first	of	all,	the	growth	scale	(quantitative	and
qualitative)	needs	to	be	used	to	predict	future	increases	(or	decreases)	in	traffic;	second,	the
traffic	patterns	must	be	well	understood	and	prepared	for;	and	third,	microservices	need	to	be
able	to	intelligently	handle	increases	in	traffic,	as	well	as	surges	or	bursts	of	traffic.

We’ve	already	covered	the	first	aspect	earlier	in	this	chapter:	understanding	the	growth	scales
(both	quantitative	and	qualitative)	of	a	microservice	allows	us	to	understand	current	traffic
loads	on	the	service	as	well	as	prepare	for	future	traffic	growth.

Understanding	current	traffic	patterns	helps	when	interacting	with	the	service	on	the	ground
floor	in	a	lot	of	really	interesting	ways.	When	traffic	patterns	are	clearly	identified,	both	in
terms	of	the	requests	per	second	sent	to	the	service	over	time	and	all	key	metrics	(see
Chapter	6,	Monitoring,	for	more	about	key	metrics),	changes	to	the	service,	operational
downtimes,	and	deployments	can	be	scheduled	to	avoid	peak	traffic	times,	cutting	down	on
possible	future	outages	if	a	bug	is	deployed	and	on	potential	downtime	if	the	microservice	is
restarted	while	experiencing	peak	traffic	load.	Closely	monitoring	the	traffic	in	light	of	the
traffic	patterns	and	tuning	the	monitoring	thresholds	carefully	with	the	traffic	patterns	of	the
microservice	in	mind	can	help	catch	any	issues	and	incidents	quickly	before	they	cause	an
outage	or	lead	to	decreased	availability	(the	principles	of	production-ready	monitoring	are
covered	in	greater	detail	in	Chapter	6,	Monitoring).

When	we	can	predict	future	traffic	growth	and	understand	the	current	and	past	traffic	patterns
well	enough	to	know	how	the	patterns	will	change	with	expected	growth,	we	can	perform	load
testing	on	our	services	to	make	sure	that	they	behave	as	we	expect	under	heavier	traffic	loads.
The	details	of	load	testing	are	covered	in	“Resiliency	Testing”.

The	third	aspect	of	traffic	management	is	where	things	get	especially	tricky.	The	way	a
microservice	handles	traffic	should	be	scalable,	which	means	it	should	be	prepared	for	drastic
changes	in	traffic,	especially	bursts	of	traffic,	handle	them	carefully,	and	prevent	them	from
taking	down	the	service	entirely.	It’s	easier	said	than	done,	because	even	the	most	well-
monitored,	scalable,	and	performant	microservices	can	experience	monitoring,	logging,	and
other	general	issues	if	traffic	suddenly	spikes.	These	sorts	of	spikes	should	be	prepared	for	at
the	infrastructure	level,	within	all	monitoring	and	logging	systems,	and	by	the	development
team	as	part	of	the	service’s	resiliency	testing	suite.

There’s	one	additional	aspect	I	want	to	mention	that’s	related	to	management	of	traffic
between	and	across	various	locations.	Many	microservice	ecosystems	won’t	be	deployed	only
in	one	location,	one	datacenter,	or	one	city,	but	rather	across	multiple	datacenters	across	the
country	(or	even	the	world).	It’s	not	uncommon	for	datacenters	themselves	to	experience
large-scale	outages,	and	when	this	happens,	the	entire	microservice	ecosystem	can	(and



usually	will)	go	down	with	the	datacenter.	Distributing	and	routing	traffic	appropriately
between	datacenters	is	the	responsibility	of	the	infrastructure	level	(in	particular,	the
communication	layer)	of	the	microservice	ecosystem,	but	each	microservice	needs	to	be
prepared	to	re-route	traffic	from	one	datacenter	to	another	without	the	service	experiencing
any	decreased	availability.



Task	Handling	and	Processing
Every	microservice	in	the	microservice	ecosystem	will	need	to	process	tasks	of	some	sort.
That	is,	every	microservice	will	be	receiving	requests	from	upstream	client	services	who
either	need	some	sort	of	information	from	the	microservice	or	need	the	microservice	to
compute	or	process	something	and	then	return	information	about	that	computation	or
process,	and	then	the	microservice	will	need	to	fulfill	that	request	(usually	by	communicating
with	downstream	services	in	addition	to	doing	some	work	of	its	own)	and	return	any
requested	information	or	response	to	the	client	that	sent	the	request.



Programming	Language	Limitations
Microservices	can	accomplish	this	and	play	their	required	role	in	a	myriad	of	ways,	and	the
ways	in	which	they	will	perform	computations,	interact	with	downstream	services,	and
process	various	tasks	will	depend	on	the	language	that	the	service	is	written	in,	and
consequently,	on	the	architecture	of	the	service	(which	is,	in	many	ways,	determined	by	the
language).	For	example,	a	microservice	written	in	Python	has	a	number	of	ways	that	it	can
process	various	tasks,	some	of	which	require	the	use	of	asynchronous	frameworks	(like
Tornado)	and	others	which	can	utilize	messaging	technologies	like	RabbitMQ	and	Celery	to
efficiently	process	tasks.	For	these	reasons,	a	microservice’s	ability	to	handle	and	process
tasks	in	a	scalable	and	performant	manner	is	dictated	in	part	by	choice	of	language.





BEWARE	OF	SCALABILITY	AND	PERFORMANCE	LIMITATIONS	OF
PROGRAMMING	LANGUAGES

Many	programming	languages	are	not	optimized	for	the	performance	and	scalability	requirements	of	microservice
architecture,	or	do	not	have	scalable	or	performant	frameworks	that	allow	microservices	to	process	tasks
efficiently.

Because	of	the	limitations	introduced	by	language	choice	when	it	comes	to	a	microservice’s
ability	to	process	tasks	efficiently,	language	choice	becomes	extremely	important	in
microservice	architecture.	To	many	developers,	one	of	the	selling	points	of	the	adoption	of
microservice	architecture	is	the	ability	to	write	a	microservice	in	any	language,	and	this	is
usually	true,	but	with	a	caveat:	programming	language	constraints	need	to	be	taken	into
account,	and	language	choice	should	be	determined	not	by	whether	a	language	is	fashionable
or	fun	(or	even	whether	it	is	the	most	common	language	that	the	development	team	is	familiar
with),	but	with	the	performance	and	scalability	limitations	of	each	potential	language	held	as
the	deciding	factors.	There	is	no	one	“best”	language	to	write	a	microservice	in,	but	there	are
languages	that	are	better	suited	than	others	to	certain	types	of	microservices.



Handling	Requests	and	Processing	Tasks	Efficiently
Language	choice	aside,	production-readiness	standardization	requires	each	microservice	to
be	both	scalable	and	performant,	which	means	that	microservices	need	to	be	able	to	handle
and	process	a	large	number	of	tasks	at	the	same	time,	handle	and	process	those	tasks
efficiently,	and	be	prepared	for	tasks	and	requests	to	increase	in	the	future.	With	this	in	mind,
development	teams	should	be	able	to	answer	three	basic	questions	about	their	microservices:
how	their	microservice	processes	tasks,	how	efficiently	their	microservice	processes	those
tasks,	and	how	their	microservice	will	perform	as	the	number	of	requests	scales.

To	ensure	scalability	and	performance,	microservices	need	to	process	tasks	efficiently.	In
order	to	do	this,	they	need	to	have	both	concurrency	and	partitioning.	Concurrency	requires
that	the	service	can’t	have	one	single	process	that	does	all	of	the	work:	that	process	will	pick
up	one	task	at	a	time,	complete	the	steps	in	a	specific	order,	and	then	move	on	to	the	next,
which	is	a	relatively	inefficient	way	to	process	tasks.	Instead	of	architecting	our	service	to	use
a	single	process,	we	can	introduce	concurrency	so	that	each	task	is	broken	up	into	smaller
pieces.





WRITE	MICROSERVICES	IN	PROGRAMMING	LANGUAGES	THAT
ARE	OPTIMIZED	FOR	CONCURRENCY	AND	PARTITIONING

Some	languages	are	better	suited	for	efficient	(concurrent	and	partitioned)	task	handling	and	processing	than
others.	When	writing	a	new	microservice,	make	sure	that	the	language	the	service	is	being	written	in	won’t
introduce	scalability	and	performance	constraints	on	the	microservices.	Microservices	that	are	already	written	in
languages	with	efficiency	limitations	can	(and	should)	be	rewritten	in	more	appropriate	languages,	a	time
consuming	but	incredibly	rewarding	task	that	can	drastically	improve	scalability	and	performance.	For	example,	if
you	are	optimizing	for	concurrency	and	partitioning,	and	want	to	use	an	asynchronous	framework	to	help	you
accomplish	that,	writing	your	service	in	Python	(rather	than	C++,	Java,	or	Go	—	three	languages	built	for
concurrency	and	partitioning)	is	going	to	introduce	a	lot	of	scalability	and	performance	bottlenecks	that	will	be
difficult	to	mitigate.

Taking	the	smaller	pieces	of	these	tasks,	we	can	process	them	more	efficiently	using
partitioning,	where	each	task	is	not	only	broken	up	into	small	pieces	but	can	be	processed	in
parallel.	If	we	have	a	large	number	of	small	tasks,	we	can	process	then	all	at	the	same	time	by
sending	them	to	a	set	of	workers	that	can	process	them	in	parallel.	If	we	need	to	process	more
tasks,	we	can	easily	scale	with	the	increased	demand	by	adding	additional	workers	to	process
the	new	tasks	without	affecting	the	efficiency	of	our	system.	Together,	concurrency	and
partitioning	help	ensure	that	our	microservice	is	optimized	for	both	scalability	and
partitioning.



Scalable	Data	Storage
Microservices	need	to	handle	data	in	a	scalable	and	performant	way.	The	way	in	which	a
microservice	stores	and	handles	data	can	easily	become	the	most	significant	limitation	or
constraint	that	keeps	it	from	becoming	scalable	and	performant:	choosing	the	wrong	database,
the	wrong	schema,	or	a	database	that	doesn’t	support	test	tenancy	can	end	up	compromising
the	overall	availability	of	a	microservice.	Choosing	the	right	database	for	a	microservice	is	a
topic	that,	like	all	the	other	topics	covered	in	this	book,	is	incredibly	complex,	and	we	will
only	scratch	the	surface	in	this	chapter.	In	the	following	sections,	we’ll	take	a	look	at	several
things	to	consider	when	choosing	databases	in	microservice	ecosystems,	and	then	at	some
database	challenges	that	are	specific	to	microservice	architecture.



Database	Choice	in	Microservice	Ecosystems
Building,	running,	and	maintaining	databases	in	large	microservice	ecosystems	is	not	an	easy
task.	Some	companies	adopting	microservice	architecture	opt	to	allow	development	teams	to
choose,	build,	and	maintain	their	own	databases,	while	others	will	decide	on	at	least	one
database	option	that	works	for	the	majority	of	the	microservices	at	the	company,	and	build	a
separate	team	to	run	and	maintain	the	database(s)	so	that	developers	can	focus	solely	on	their
own	microservices.

If	we	think	about	microservice	architecture	as	being	composed	of	four	separate	layers	(see
“Microservice	Architecture”	for	more	details)	and	recognize	that,	thanks	to	the	Inverse
Conway’s	Law,	the	engineering	organizations	of	companies	that	adopt	microservice
architecture	will	mirror	the	architecture	of	its	product,	then	we	can	see	where	the
responsibility	for	choosing	the	appropriate	databases,	building	them,	running	them,	and
maintaining	them	lies:	either	in	the	application	platform	layer,	which	would	allow	databases	to
be	provided	as	a	service	to	microservice	teams,	or	the	microservice	layer,	where	the	database
used	by	a	microservice	is	considered	part	of	the	service.	I’ve	seen	both	of	these	setups	in
practice	at	various	companies,	and	some	work	better	than	others.	I’ve	also	noticed	that	one
approach	to	this	works	particularly	well:	offering	databases	as	a	service	within	the	application
platform	layer,	and	then	allowing	individual	microservice	development	teams	to	run	their
own	database	if	the	databases	offered	as	part	of	the	application	platform	do	not	fit	their
specific	needs.

The	most	common	types	of	databases	are	relational	databases	(SQL,	MySQL)	and	NoSQL
databases	(Cassandra,	Vertica,	MongoDB,	and	key-value	stores	like	Dynamo,	Redis,	and
Riak).	Choosing	between	a	relational	database	and	a	NoSQL	database,	and	then	choosing	the
specific	appropriate	database	for	a	microservice’s	needs	depends	on	the	answers	to	several
questions:

What	are	the	needed	transactions	per	second	of	each	microservice?

What	type	of	data	does	each	microservice	need	to	store?

What	is	the	schema	needed	by	each	microservice?	And	how	often	will	it	need	to	be
changed?

Do	the	microservices	need	strong	consistency	or	eventual	consistency?

Are	the	microservices	read-heavy,	write-heavy,	or	both?

Does	the	database	need	to	be	scaled	horizontally	or	vertically?

Regardless	of	whether	the	database	is	maintained	as	part	of	the	application	platform	or	by
each	individual	microservice	development	team,	database	choice	should	be	driven	by	the
answers	to	those	questions.	For	example,	if	the	database	in	question	needs	to	be	scaled



horizontally,	or	if	reads	and	writes	need	to	be	made	in	parallel,	then	a	NoSQL	database	should
be	chosen,	since	relational	databases	struggle	with	horizontal	scaling	and	parallel	reads	and
writes.



Database	Challenges	in	Microservice	Architecture
There	are	several	challenges	with	databases	that	are	specific	to	microservice	architecture.
When	databases	are	shared	among	microservices,	competition	for	resources	kicks	in,	and
some	microservices	may	utilize	more	than	their	fair	share	of	the	available	storage.	Engineers
building	and	maintaining	shared	databases	need	to	design	their	data	storage	solutions	so	that
the	database	can	be	easily	scaled	if	any	of	the	tenant	microservices	either	require	additional
space	or	are	running	the	risk	of	using	up	all	available	space.





WATCH	OUT	FOR	DATABASE	CONNECTIONS
Some	databases	have	strict	limitations	on	the	number	of	database	connections	that	can	be	open	simultaneously.
Make	sure	that	all	connections	are	closed	appropriately	to	avoid	compromising	both	a	service’s	availability	and
the	availability	of	the	database	to	all	microservices	that	use	it.

Another	challenge	microservices	often	face,	especially	once	they’ve	built	and	standardized
stable	and	reliable	development	cycles	and	deployment	pipelines,	is	the	handling	of	test	data
from	end-to-end	testing,	load	testing,	and	any	test	writes	done	in	staging.	As	mentioned	in
“The	Deployment	Pipeline”,	the	staging	phase	of	the	deployment	pipeline	requires	reading
and/or	writing	to	databases.	If	full	staging	has	been	implemented,	then	the	staging	phase	will
have	its	own	separate	test	and	staging	database,	but	partial	staging	requires	read	and	write
access	to	production	servers,	so	great	care	needs	to	be	taken	to	ensure	that	test	data	is	handled
appropriately:	it	needs	to	be	clearly	marked	as	test	data	(a	process	known	as	test	tenancy),	and
then	all	test	data	must	be	deleted	at	regular	intervals.



Evaluate	Your	Microservice
Now	that	you	have	a	better	understanding	of	scalability	and	performance,	use	the	following
list	of	questions	to	assess	the	production-readiness	of	your	microservice(s)	and	microservice
ecosystem.	The	questions	are	organized	by	topic,	and	correspond	to	the	sections	within	this
chapter.



Knowing	the	Growth	Scale
What	is	this	microservice’s	qualitative	growth	scale?

What	is	this	microservice’s	quantitative	growth	scale?



Efficient	Use	of	Resources
Is	the	microservice	running	on	dedicated	or	shared	hardware?

Are	any	resource	abstraction	and	allocation	technologies	being	used?



Resource	Awareness
What	are	the	microservice’s	resource	requirements	(CPU,	RAM,	etc.)?

How	much	traffic	can	one	instance	of	the	microservice	handle?

How	much	CPU	does	one	instance	of	the	microservice	require?

How	much	memory	does	one	instance	of	the	microservice	require?

Are	there	any	other	resource	requirements	that	are	specific	to	this	microservice?

What	are	the	resource	bottlenecks	of	this	microservice?

Does	this	microservice	need	to	be	scaled	vertically,	horizontally,	or	both?



Capacity	Planning
Is	capacity	planning	performed	on	a	scheduled	basis?

What	is	the	lead	time	for	new	hardware?

How	often	are	hardware	requests	made?

Are	any	microservices	given	priority	when	hardware	requests	are	made?

Is	capacity	planning	automated,	or	is	it	manual?



Dependency	Scaling
What	are	this	microservice’s	dependencies?

Are	the	dependencies	scalable	and	performant?

Will	the	dependencies	scale	with	this	microservice’s	expected	growth?

Are	dependency	owners	prepared	for	this	microservice’s	expected	growth?



Traffic	Management
Are	the	microservice’s	traffic	patterns	well	understood?

Are	changes	to	the	service	scheduled	around	traffic	patterns?

Are	drastic	changes	in	traffic	patterns	(especially	bursts	of	traffic)	handled	carefully	and
appropriately?

Can	traffic	be	automatically	routed	to	other	datacenters	in	case	of	failure?



Task	Handling	and	Processing
Is	the	microservice	written	in	a	programming	language	that	will	allow	the	service	to	be
scalable	and	performant?

Are	there	any	scalability	or	performance	limitations	in	the	way	the	microservice	handles
requests?

Are	there	any	scalability	or	performance	limitations	in	the	way	the	microservice
processes	tasks?

Do	developers	on	the	microservice	team	understand	how	their	service	processes	tasks,
how	efficiently	it	processes	those	tasks,	and	how	the	service	will	perform	as	the	number
of	tasks	and	requests	increases?



Scalable	Data	Storage
Does	this	microservice	handle	data	in	a	scalable	and	performant	way?

What	type	of	data	does	this	microservice	need	to	store?

What	is	the	schema	needed	for	its	data?

How	many	transactions	are	needed	and/or	made	per	second?

Does	this	microservice	need	higher	read	or	write	performance?

Is	it	read-heavy,	write-heavy,	or	both?

Is	this	service’s	database	scaled	horizontally	or	vertically?	Is	it	replicated	or	partitioned?

Is	this	microservice	using	a	dedicated	or	shared	database?

How	does	the	service	handle	and/or	store	test	data?



Chapter	5.	Fault	Tolerance	and
Catastrophe-Preparedness

A	production-ready	microservice	is	fault	tolerant	and	prepared	for	any	catastrophe.
Microservices	will	fail,	they	will	fail	often,	and	any	potential	failure	scenario	can	and	will
happen	at	some	point	within	the	microservice’s	lifetime.	Ensuring	availability	across	the
microservice	ecosystem	requires	careful	failure	planning,	preparation	for	catastrophes,	and
actively	pushing	the	microservice	to	fail	in	real	time	to	ensure	that	it	can	recover	from
failures	gracefully.

This	chapter	covers	avoiding	single	points	of	failure,	common	catastrophes	and	failure
scenarios,	handling	failure	detection	and	remediation,	implementing	different	types	of
resiliency	testing,	and	ways	to	handle	incidents	and	outages	at	the	organizational	level	when
failures	do	occur.



Principles	of	Building	Fault-Tolerant	Microservices
The	reality	of	building	large-scale	distributed	systems	is	that	individual	components	can	fail,
they	will	fail,	and	they	will	fail	often.	No	microservice	ecosystem	is	an	exception	to	this	rule.
Any	possible	failure	scenario	can	and	will	happen	at	some	point	in	a	microservice’s	lifetime,
and	these	failures	are	made	worse	by	the	complex	dependency	chains	within	microservice
ecosystems:	if	one	service	in	the	dependency	chain	fails,	all	of	the	upstream	clients	will	suffer,
and	the	end-to-end	availability	of	the	entire	system	will	be	compromised.

The	only	way	to	mitigate	catastrophic	failures	and	avoid	compromising	the	availability	of	the
entire	system	is	to	require	each	microservice	within	the	ecosystem	to	be	fault	tolerant	and
prepared	for	any	catastrophe.

The	first	step	involved	in	building	a	fault-tolerant,	catastrophe-prepared	microservice	is	to
architect	away	single	points	of	failure.	There	should	never	be	one	piece	of	the	ecosystem
whose	failure	can	bring	the	entire	system	to	a	halt,	nor	should	there	be	any	individual	piece
within	the	architecture	of	a	microservice	that	will	bring	the	microservice	down	whenever	it
fails.	Identifying	these	single	points	of	failure,	both	within	the	microservice	and	at	a	layer	of
abstraction	above	it,	can	prevent	the	most	glaring	failures	from	occurring.

Identifying	failure	scenarios	is	the	next	step.	Not	every	failure	or	catastrophe	that	befalls	a
microservice	is	a	glaringly	obvious	single	point	of	failure	that	can	be	architected	away.	Fault
tolerance	and	catastrophe-preparedness	require	that	a	microservice	withstand	both	internal
failures	(failures	within	the	microservice	itself)	and	external	failures	(failures	within	other
layers	of	the	ecosystem).	From	a	host	failure	to	the	failure	of	an	entire	datacenter,	from	a
database	to	a	service’s	distributed	task	queue,	the	number	of	ways	in	which	a	microservice	can
be	brought	down	by	the	failure	of	one	or	more	of	its	parts	is	overwhelming,	scaling	with	the
complexity	of	both	the	microservice	itself	and	the	microservice	ecosystem	as	a	whole.

Once	single	points	of	failure	have	been	architected	away	and	most	(if	not	all)	failure
scenarios	have	been	identified,	the	next	step	is	to	test	for	these	failures	to	see	whether	or	not
the	microservice	can	recover	gracefully	when	these	failures	occur,	and	determine	whether	or
not	it	is	resilient.	The	resiliency	of	a	service	can	be	tested	very	thoroughly	through	code
testing,	load	testing,	and	chaos	testing.

This	step	is	crucial:	in	a	complex	microservice	ecosystem,	merely	architecting	away	failure	is
not	enough	—	even	the	best	mitigation	strategy	can	turn	out	to	be	completely	useless	when
components	begin	to	fail.	The	only	way	to	build	a	truly	fault-tolerant	microservice	is	to	push
it	to	fail	in	production	by	actively,	repeatedly,	and	randomly	failing	each	component	that
could	cause	the	system	to	break.

Not	all	failures	can	be	predicted,	so	the	last	steps	in	building	fault-tolerant,	catastrophe-
prepared	microservices	are	organizational	in	nature.	Failure	detection	and	mitigation
strategies	need	to	be	in	place	and	should	be	standardized	across	each	microservice	team,	and
every	new	failure	that	a	service	experiences	should	be	added	to	the	resiliency	testing	suite	to



ensure	it	never	happens	again.	Microservice	teams	also	need	to	be	trained	to	handle	failures
appropriately:	dealing	with	outages	and	incidents	(regardless	of	severity)	should	be
standardized	across	the	engineering	organization.

A	PRODUCTION-READY	SERVICE	IS 	FAULT	TOLERANT	AND	PREPARED	FOR 	ANY
CATASTROPHE

It	has	no	single	point	of	failure.

All	failure	scenarios	and	possible	catastrophes	have	been	identified.

It	is	tested	for	resiliency	through	code	testing,	load	testing,	and	chaos	testing.

Failure	detection	and	remediation	has	been	automated.

There	are	standardized	incident	and	outage	procedures	in	place	within	the	microservice	development	team	and
across	the	organization.



Avoiding	Single	Points	of	Failure
The	first	place	to	look	for	possible	failure	scenarios	is	within	the	architecture	of	each
microservice.	If	there	is	one	piece	of	the	service’s	architecture	that	would	bring	down	the
entire	microservice	if	it	were	to	fail,	we	refer	to	it	as	a	single	point	of	failure	for	the
microservice.	No	one	piece	of	a	microservice’s	architecture	should	be	able	to	bring	down	the
service,	but	they	frequently	do.	In	fact,	most	microservices	in	the	real	world	don’t	have	just
one	single	point	of	failure	but	have	multiple	points	of	failure.

EXAMPLE:	MESSAGE	BROKER 	AS	A	SINGLE	POINT	OF	FAILURE

To	understand	what	a	single	point	of	failure	would	look	like	in	the	real	production	world,	let’s	consider	a	microservice
written	in	Python	that	uses	a	combination	of	Redis	(as	message	broker)	and	Celery	(as	task	processor)	for	distributed	task
processing.

Let’s	say	that	the	Celery	workers	(which	are	processing	the	tasks)	break	down	for	some	reason	and	are	unable	to
complete	any	of	their	work.	This	isn’t	necessarily	a	point	of	failure,	because	Redis	(acting	as	the	message	broker)	can
retry	the	tasks	when	the	workers	are	repaired.	While	the	workers	are	down,	Redis	stays	up,	and	the	tasks	build	up	in	the
queue	on	Redis,	waiting	to	be	distributed	to	the	Celery	workers	once	they	are	back	up	and	running.	This	microservice,
however,	hosts	a	lot	of	traffic	(receiving	thousands	of	requests	per	second),	and	the	queues	begin	to	back	up,	filling	up	the
entire	capacity	of	the	Redis	machine.	Before	you	know	it,	the	Redis	box	is	out	of	memory,	and	you	start	losing	tasks.	This
sounds	bad	enough,	but	the	situation	can	become	even	worse	than	it	might	at	first	appear,	because	your	hardware	might	be
shared	between	many	different	microservices,	and	now	every	other	microservice	that	is	using	this	Redis	box	as	a	message
broker	is	losing	all	of	their	tasks.

This	(the	Redis	machine	in	this	example)	is	a	single	point	of	failure,	and	it’s	a	real-world	example	I’ve	seen	many,	many
time	in	my	experience	of	working	with	developers	to	identify	single	points	of	failure	in	their	microservices.

It’s	easy	to	identify	points	of	failure	within	microservices	when	they	actually	fail,	and	we	need
to	fix	them	in	order	to	bring	the	microservice	back	up.	Waiting	for	the	failure,	however,	isn’t
the	best	approach	if	we	want	our	microservices	to	be	fault	tolerant	and	preserve	their
availability.	A	great	way	to	discover	points	of	failure	before	they	are	responsible	for	an
outage	is	to	run	architecture	reviews	with	microservice	development	teams,	ask	the
developers	on	each	team	to	draw	the	architecture	of	their	microservice	on	a	whiteboard,	and
then	walk	them	through	the	architecture,	asking,	“What	happens	if	this	piece	of	the
microservice	architecture	fails?”	(see	“Microservice	Understanding”	for	more	details	on
architecture	reviews	and	discovering	single	points	of	failure).





NO	ISOLATED	POINTS	OF	FAILURE
Due	to	the	complex	dependency	chains	that	exist	between	different	microservices	within	a	microservice
ecosystem,	a	point	of	failure	in	the	architecture	of	one	individual	microservice	is	often	a	point	of	failure	for	the
entire	dependency	chain,	and	in	extreme	cases,	for	the	entire	ecosystem.	There	are	no	isolated	points	of	failure
within	microservice	ecosystems,	which	makes	identifying,	mitigating,	and	architecting	away	points	of	failure
essential	for	achieving	fault-tolerance.

Once	any	single	(or	multiple)	points	of	failure	have	been	identified,	they	need	to	be	mitigated,
and	(if	possible)	architected	away.	If	the	point	of	failure	can	be	completely	architected	away
and	replaced	by	something	more	fault	tolerant,	then	the	problem	is	solved.	Sadly,	we	can’t
always	avoid	every	single	way	in	which	a	service	can	fail,	and	there	are	some	situations	in
which	we	can’t	architect	away	even	the	most	glaringly	obvious	points	of	failure.	For	example,
if	our	engineering	organization	mandates	the	use	of	a	certain	technology	that	works	well	for
the	rest	of	the	development	teams	but	represents	a	single	point	of	failure	for	our	service,	then
there	may	not	be	a	way	to	architect	it	away,	and	our	only	option	for	bringing	our	service
toward	a	fault-tolerant	state	is	to	find	ways	of	mitigating	any	negative	consequences	of	its
failure.



Catastrophes	and	Failure	Scenarios
If	we	know	anything	about	complex	systems	and	large-scale	distributed	system	architecture,
it’s	this:	that	the	system	will	break	in	any	way	that	it	can	be	broken,	and	any	failure	that	could
possibly	happen	will	almost	assuredly	happen	at	some	point	during	the	system’s	lifetime.

Microservices	are	complex	systems.	They	are	part	of	large-scale	distributed	systems
(microservice	ecosystems)	and	are	therefore	no	exception	to	this	rule.	Any	possible	failure
and	any	possible	catastrophe	will	almost	assuredly	happen	at	some	point	in	between	the	time	a
microservice’s	request	for	comments	(RFC)	is	written	up	and	the	time	the	microservice	is
being	deprecated	and	decommissioned.	Catastrophes	happen	all	of	the	time:	racks	fail	in
datacenters,	HVAC	systems	break,	production	databases	are	deleted	by	accident	(yes,	this
happens	more	than	most	developers	would	like	to	admit),	natural	disasters	wipe	out	entire
datacenters.	Any	failure	that	can	happen	will	happen:	dependencies	will	fail,	individual	servers
will	fail,	libraries	will	become	corrupted	or	lost	entirely,	monitoring	will	fail,	logs	can	and
will	be	lost	(seemingly	vanishing	into	thin	air).

Once	we’ve	identified,	mitigated,	and	(if	possible)	architected	away	any	glaringly	obvious
points	of	failures	in	our	microservice’s	architecture,	the	next	step	is	to	identify	any	other
failure	scenarios	and	potential	catastrophes	that	could	befall	our	microservice.	We	can
separate	these	types	of	failures	and	catastrophes	into	four	main	categories,	organizing	them
using	their	place	in	the	microservice	ecosystem	stack.	The	most	common	catastrophes	and
failure	scenarios	are	hardware	failures,	infrastructure	(communication-layer	and	application-
platform-layer)	failures,	dependency	failures,	and	internal	failures.	We’ll	look	closely	at
some	of	the	most	common	possible	failure	scenarios	within	each	of	these	categories	in	the
following	sections,	but	first	we’ll	cover	a	few	common	causes	of	failures	that	affect	every
level	of	the	microservice	ecosystem.

I	should	note	that	the	lists	of	possible	failure	scenarios	presented	here	are	not	exhaustive.	The
objective	here	is	to	present	the	most	common	scenarios	and	encourage	the	reader	to
determine	what	sorts	of	failures	and	catastrophes	their	microservice(s)	and	microservice
ecosystem(s)	may	be	susceptible	to,	and	then	(where	necessary)	refer	the	reader	to	other
chapters	within	this	book	where	some	of	the	relevant	topics	are	covered.	Most	of	the	failures
here	can	be	avoided	by	adopting	the	production-readiness	standards	(and	implementing	their
corresponding	requirements)	found	throughout	this	book,	so	I’ve	only	mentioned	a	few	of	the
failures,	and	haven’t	included	every	failure	that’s	covered	in	the	other	chapters.



Common	Failures	Across	an	Ecosystem
There	are	some	failures	that	happen	at	every	level	of	the	microservice	ecosystem.	These	sorts
of	failures	are	usually	caused	(in	some	way	or	other)	by	the	lack	of	standardization	across	an
engineering	organization,	because	they	tend	to	be	operational	(and	not	necessarily	technical)
in	nature.	Referring	to	them	as	“operational”	doesn’t	mean	that	they	are	less	important	or	less
dangerous	than	technical	failures,	nor	does	it	mean	that	resolving	these	failures	isn’t	within
the	technical	realm	and	isn’t	the	responsibility	of	microservice	development	teams.	These
types	of	failures	tend	to	be	the	most	serious,	have	some	of	the	most	debilitating	technical
consequences,	and	reflect	a	lack	of	alignment	across	the	various	engineering	teams	within	an
organization.	Of	these	types	of	failures,	the	most	common	are	insufficient	design	reviews	of
system	and	service	architecture,	incomplete	code	reviews,	poor	development	processes,	and
unstable	deployment	procedures.

Insufficient	design	reviews	of	system	and	microservice	architecture	lead	to	poorly	designed
services,	especially	within	large	and	complex	microservice	ecosystems.	The	reason	for	this	is
simple:	no	one	engineer	and	no	one	microservice	development	team	will	know	the	details	of
the	infrastructure	and	the	complexity	of	all	four	levels	of	the	ecosystem.	When	new	systems
are	being	designed,	and	new	microservices	are	being	architected,	it’s	vital	to	the	future	fault
tolerance	of	the	system	or	service	that	engineers	from	each	level	of	the	microservice
ecosystem	are	brought	into	the	design	process	to	determine	how	the	system	or	service	should
be	built	and	run	given	the	intricacies	of	the	entire	ecosystem.	However,	even	if	this	is	done
properly	when	the	system	or	service	is	first	being	designed,	microservice	ecosystems	evolve
so	quickly	that	the	infrastructure	is	often	practically	unrecognizable	after	a	year	or	two,	and
so	scheduled	reviews	of	the	architecture	with	experts	from	each	part	of	the	organization	can
help	to	ensure	that	the	system	or	microservice	is	up-to-date	and	fits	into	the	overall	ecosystem
appropriately.	For	more	details	on	architecture	reviews,	see	Chapter	7,	Documentation	and
Understanding.

Incomplete	code	reviews	are	another	common	source	of	failure.	Even	though	this	problem	is
not	specific	to	microservice	architecture,	the	adoption	of	microservice	architecture	tends	to
exacerbate	the	problem.	Given	the	higher	developer	velocity	that	comes	along	with
microservices,	developers	are	often	required	to	review	any	new	code	written	by	their
teammates	several	times	each	day	in	addition	to	writing	their	own	code,	attending	meetings,
and	doing	everything	else	that	they	need	to	accomplish	to	run	their	service(s).	This	requires
constant	context-switching,	and	it’s	easy	to	lose	attention	to	details	within	someone	else’s	code
when	you	barely	have	enough	time	to	review	your	own	before	deploying	it.	This	leads	to
countless	bugs	being	introduced	into	production,	bugs	that	cause	services	and	systems	to	fail,
bugs	that	could	have	been	caught	with	better	code	review.	There	are	several	ways	to	mitigate
this,	but	it	can’t	ever	be	completely	resolved	in	an	environment	with	high	developer	velocity.
Care	needs	to	be	taken	to	write	extensive	tests	for	each	system	and	service,	to	test	each	new
change	extensively	before	it	hits	production,	and	to	ensure	that,	if	bugs	aren’t	caught	before



they	are	deployed,	they’re	caught	elsewhere	in	the	development	process	or	in	the	deployment
pipeline,	which	leads	us	to	our	next	two	common	causes	of	failure.

One	of	the	leading	causes	of	outages	in	microservice	ecosystems	are	bad	deployments.	“Bad”
deployments	are	those	that	contain	bugs	in	the	code,	broken	builds,	etc.	Poor	development
processes	and	unstable	deployment	procedures	allow	failures	to	be	introduced	into
production,	bringing	down	any	system	or	service	that	the	failure-inducing	problem	is
deployed	to	along	with	any	(and	sometimes	all)	of	its	dependencies.	Putting	good	code	review
procedures	into	place,	and	creating	an	engineering	culture	where	both	code	review	is	taken
seriously	and	developers	are	given	adequate	time	to	focus	on	reviewing	their	teammates’
code	is	the	first	step	toward	avoiding	these	kinds	of	failures,	but	many	of	them	will	still	go
uncaught:	even	the	best	code	reviewers	can’t	predict	exactly	how	a	code	change	or	new
feature	will	behave	in	production	without	further	testing.	The	only	way	to	catch	these	failures
before	they	bring	the	system	or	service	down	is	to	build	stable	and	reliable	development
processes	and	deployment	pipelines.	The	details	of	building	stable	and	reliable	development
processes	and	deployment	pipelines	are	covered	in	Chapter	3,	Stability	and	Reliability.

SUMMARY:	COMMON	FAILURES	ACROSS	AN	ECOSYSTEM

The	most	common	failures	that	happen	across	all	levels	of	microservice	ecosystems	are:

Insufficient	design	reviews	of	system	and	service	architecture

Incomplete	code	reviews

Poor	development	processes

Unstable	deployment	procedures



Hardware	Failures
The	lowest	layer	of	the	stack	is	where	the	hardware	lies.	The	hardware	layer	is	comprised	of
the	actual,	physical	computers	that	all	of	the	infrastructure	and	application	code	run	on,	in
addition	to	the	racks	the	servers	are	stored	in,	the	datacenters	where	the	servers	are	running,
and	in	the	case	of	cloud	providers,	regions	and	availability	zones.	The	hardware	layer	also
contains	the	operating	system,	resource	isolation	and	abstraction,	configuration	management,
host-level	monitoring,	and	host-level	logging.	(For	more	details	about	the	hardware	layer	of
the	microservice	ecosystems,	turn	to	Chapter	1,	Microservices.)

Much	can	go	wrong	within	this	layer	of	the	ecosystem,	and	it	is	the	layer	that	genuine
catastrophes	(and	not	just	failures)	affect	the	most.	It’s	also	the	most	delicate	layer	of	the
ecosystem:	if	the	hardware	fails	and	there	aren’t	alternatives,	the	entire	engineering
organization	goes	down	with	it.	The	catastrophes	that	happen	here	are	pure	hardware	failures:
a	machine	dies	or	fails	in	some	way,	a	rack	goes	down,	or	an	entire	datacenter	fails.	These
catastrophes	happen	more	often	than	we	would	like	to	admit,	and	in	order	for	a	microservice
ecosystem	to	be	fault	tolerant,	in	order	for	any	individual	microservice	to	be	fault	tolerant
and	prepared	for	these	catastrophes,	these	failures	need	to	be	planned	for,	mitigated,	and
protected	against.

Everything	else	within	this	layer	that	lies	on	top	of	the	bare	machines	can	fail,	too.	Machines
need	to	be	provisioned	before	anything	can	run	on	them,	and	if	provisioning	fails,	then
utilizing	any	new	machines	(or,	in	some	cases,	even	old	machines)	won’t	be	able	to	happen.
Many	microservice	ecosystems	that	utilize	technologies	that	support	resource	isolation	(like
Docker)	or	resource	abstraction	and	allocation	(like	Mesos	and	Aurora)	can	also	break	or
fail,	and	their	failures	can	bring	the	entire	ecosystem	to	a	halt.	Failures	caused	by	broken
configuration	management	or	configuration	changes	are	extraordinarily	common	as	well,
and	are	often	difficult	to	detect.	Monitoring	and	logging	can	fail	miserably	here	as	well,	and
if	host-level	monitoring	and	logging	fails	in	some	way,	triaging	any	outages	becomes
impossible	because	the	data	needed	to	mitigate	any	problems	won’t	be	available.	Network
failures	(both	internal	and	external)	can	also	happen.	Finally,	operational	downtimes	of
critical	hardware	components	—	even	if	communicated	properly	throughout	the	organization
—	can	lead	to	outages	across	the	ecosystem.



SUMMARY:	COMMON	HARDWARE	FAILURE	SCENARIOS

Some	of	the	most	common	hardware	failure	scenarios	are:

Host	failure

Rack	failure

Datacenter	failure

Cloud	provider	failure

Server	provisioning	failure

Resource	isolation	and/or	abstraction	technology	failure

Broken	configuration	management

Failures	caused	by	configuration	changes

Failures	and	gaps	in	host-level	monitoring

Failures	and	gaps	in	host-level	logging

Network	failure

Operational	downtimes

Lack	of	infrastructure	redundancy



Communication-Level	and	Application	Platform–Level	Failures
The	second	and	third	layers	of	the	microservice	ecosystem	stack	are	comprised	of	the
communication	and	application	platform	layers.	These	layers	live	between	the	hardware	and
the	microservices,	bridging	the	two	as	the	glue	that	holds	the	ecosystem	together.	The
communication	layer	contains	the	network,	DNS,	the	RPC	framework,	endpoints,	messaging,
service	discovery,	service	registry,	and	load	balancing.	The	application	platform	layer	is
comprised	of	the	self-service	development	tools,	development	environment,	test	and	package
and	release	and	build	tools,	the	deployment	pipeline,	microservice-level	logging,	and
microservice-level	monitoring	—	all	critical	to	the	day-to-day	running	and	building	of	the
microservice	ecosystem.	Like	hardware	failures,	failures	that	happen	at	these	levels
compromise	the	entire	company,	because	every	aspect	of	development	and	maintenance
within	the	microservice	ecosystem	depends	critically	on	these	systems	running	smoothly	and
without	failure.	Let’s	take	a	look	at	some	of	the	most	common	failures	that	can	happen	within
these	layers.

Within	the	communication	layer,	network	failures	are	especially	common.	These	can	be
failures	of	the	internal	network(s)	that	all	remote	procedure	calls	are	made	over,	or	failures
of	external	networks.	Another	type	of	network-related	failure	arises	from	problems	with
firewalls	and	improper	iptables	entries.	DNS	errors	are	also	quite	common:	when	DNS	errors
happen,	communication	can	grind	to	a	halt,	and	DNS	bugs	can	be	rather	difficult	to	track
down	and	diagnose.	The	RPC	layer	of	communication	—	the	glue	that	holds	the	entire	delicate
microservice	ecosystem	together	—	is	another	(rather	infamous)	source	of	failure,	especially
when	there	is	only	one	channel	connecting	all	microservices	and	internal	systems;	setting	up
separate	channels	for	RPC	and	health	checks	can	mitigate	this	problem	a	bit	if	health	checks
and	other	related	monitoring	is	kept	separate	from	channels	that	handle	data	being	passed
between	services.	It’s	possible	for	messaging	systems	to	break	(as	I	mentioned	briefly	in	the
Redis-Celery	example	earlier	in	this	chapter),	and	messaging	queues,	message	brokers,	and
task	processors	often	live	in	microservice	ecosystems	without	any	backups	or	alternatives,
acting	as	frightening	points	of	failure	for	every	service	that	relies	on	them.	Failures	of
service	discovery,	service	registry,	and	load	balancing	can	(and	do)	happen	as	well:	if	any
part	of	these	systems	breaks	or	experiences	downtime	without	any	alternatives,	then	traffic
won’t	be	routed,	allocated,	and	distributed	properly.

Failures	within	the	application	platform	are	more	specific	to	the	way	that	engineering
organizations	have	set	up	their	development	process	and	deployment	pipeline,	but	as	a	rule,
these	systems	can	fail	just	as	often	and	as	catastrophically	as	every	other	service	within	the
ecosystem	stack.	If	development	tools	and/or	environments	are	working	incorrectly	when
developers	are	trying	to	build	new	features	or	repair	existing	bugs,	bugs	and	new	failure
modes	can	be	introduced	into	production.	The	same	goes	for	any	failures	or	shortcomings	of
the	test,	package,	build,	and	release	pipelines:	if	packages	and	builds	contain	bugs	or	aren’t
properly	put	together,	then	deployments	will	fail.	If	the	deployment	pipeline	is	unavailable,



buggy,	or	fails	outright,	then	deployment	will	grind	to	a	halt,	preventing	not	only	deployment
of	new	features	but	of	critical	bug-fixes	that	may	be	in	the	works.	Finally,	monitoring	and
logging	of	individual	microservices	can	contain	gaps	or	fail	as	well,	making	triaging	or
logging	any	issues	impossible.

SUMMARY:	COMMON	COMMUNICATION	AND	APPLICATION	PLATFORM	FAILURES

Some	of	the	most	common	communication	and	application	platform	failures	are:

Network	failures

DNS	errors

RPC	failures

Improper	handling	of	requests	and/or	responses

Messaging	system	failures

Failures	in	service	discovery	and	service	registry

Improper	load	balancing

Failure	of	development	tools	and	development	environment

Failures	in	the	test,	package,	build,	and	release	pipelines

Deployment	pipeline	failures

Failures	and	gaps	in	microservice-level	logging

Failures	and	gaps	in	microservice-level	monitoring



Dependency	Failures
Failures	within	the	top	level	of	the	microservice	ecosystem	(the	microservice	layer)	can	be
divided	into	two	separate	categories:	(1)	those	that	are	internal	to	a	specific	microservice	and
caused	by	problems	within	it,	and	(2)	those	that	are	external	to	a	microservice	and	caused	by
the	microservice’s	dependencies.	We’ll	cover	common	failure	scenarios	within	this	second
category	first.

Failures	and	outages	of	a	downstream	microservice	(that	is,	one	of	a	microservice’s
dependencies)	are	extraordinarily	common	and	can	dramatically	affect	a	microservice’s
availability.	If	even	one	microservice	in	the	dependency	chain	goes	down,	it	can	take	all	of	its
upstream	clients	down	with	it	if	there	are	no	protections	in	place.	However,	a	microservice
doesn’t	always	necessarily	need	to	experience	a	full-blown	outage	in	order	to	negatively
affect	the	availability	of	its	upstream	clients	—	if	it	fails	to	meet	its	SLA	by	just	one	or	two
nines,	the	availability	of	all	upstream	client	microservices	will	drop.





THE	TRUE	EXPENSE	OF	UNMET	SLAS
Microservices	can	cause	their	upstream	clients	to	fail	to	meet	their	SLAs.	If	a	service’s	availability	drops	by	one
or	two	nines,	all	upstream	clients	suffer,	all	thanks	to	how	the	math	works:	the	availability	of	a	microservice	is
calculated	as	its	own	availability	multiplied	by	the	availability	of	its	downstream	dependencies.	Failing	to	meet	an
SLA	is	an	important	(and	often	overlooked)	microservice	failure,	and	it’s	a	failure	that	brings	down	the
availability	of	every	other	service	that	depends	on	it	(along	with	the	services	that	depend	on	those	services).

Other	common	dependency	failures	are	those	caused	by	timeouts	to	another	service,	the
deprecation	or	decommissioning	of	a	dependency’s	API	endpoints	(without	proper
communication	regarding	the	deprecation	or	decommissioning	to	all	upstream	clients),	and
the	deprecation	or	decommissioning	of	an	entire	microservice.	In	addition,	versioning	of
internal	libraries	and/or	microservices	and	pinning	to	specific	versions	of	internal	libraries
and/or	services	is	very	much	discouraged	in	microservice	architecture	because	it	tends	to	lead
to	bugs	and	(in	extreme	cases)	serious	failures,	because	of	the	fast-paced	nature	of
microservice	development:	these	libraries	and	services	are	constantly	changing,	and	pinning
to	specific	versions	(along	with	versioning	of	these	services	and	libraries	in	general)	can	lead
to	developers	using	unstable,	unreliable,	and	sometimes	unsafe	versions	of	them.

Failures	of	external	dependencies	(third-party	services	and/or	libraries)	can	and	do	happen	as
well.	These	can	be	more	difficult	to	detect	and	fix	than	failures	of	internal	dependencies,
because	developers	will	have	little	to	no	control	over	them.	The	complexity	associated	with
depending	on	third-party	services	and/or	libraries	can	be	handled	properly	if	these	scenarios
are	anticipated	from	the	beginning	of	the	microservice’s	lifecycle:	choose	established	and
stable	external	dependencies,	and	try	to	avoid	using	them	unless	completely	necessary,	lest
they	become	a	single	point	of	failure	for	your	service.



SUMMARY:	COMMON	DEPENDENCY	FAILURE	SCENARIOS

Some	of	the	most	common	dependency	failure	scenarios	are:

Failures	or	outages	of	a	downstream	(dependency)	microservice

Internal	service	outages

External	(third-party)	service	outages

Internal	library	failures

External	(third-party)	library	failures

A	dependency	failing	to	meet	its	SLA

API	endpoint	deprecation

API	endpoint	decommissioning

Microservice	deprecation

Microservice	decommissioning

Interface	or	endpoint	deprecation

Timeouts	to	a	downstream	service

Timeouts	to	an	external	dependency



Internal	(Microservice)	Failures
At	the	very	top	of	the	microservice	ecosystem	stack	lie	the	individual	microservices.	To	the
development	teams,	these	are	the	failures	that	matter	the	most,	because	they	are	completely
dependent	on	good	development	practices,	good	deployment	practices,	and	the	ways	in	which
development	teams	architect,	run,	and	maintain	their	individual	microservices.

Assuming	that	the	infrastructure	below	the	microservice	layer	is	relatively	stable,	the	majority
of	incidents	and	outages	experienced	by	a	microservice	will	be	almost	solely	self-inflicted.
Developers	on	call	for	their	services	will	find	themselves	paged	almost	solely	for	issues	and
failures	whose	root	causes	are	found	within	their	microservice	—	that	is,	the	alerts	they	will
receive	will	have	been	triggered	by	changes	in	their	microservice’s	key	metrics	(see
Chapter	6,	Monitoring,	for	more	information	about	monitoring,	logging,	alerting,	and
microservice	key	metrics).

Incomplete	code	reviews,	lack	of	proper	test	coverage,	and	poor	development	processes	in
general	(specifically,	the	lack	of	a	standardized	development	cycle)	lead	to	buggy	code	being
deployed	to	production	—	failures	that	can	be	avoided	by	standardizing	the	development
process	across	microservice	teams	(see	“The	Development	Cycle”).	Without	a	stable	and
reliable	deployment	pipeline	containing	staging,	canary,	and	production	phases	in	place	to
catch	any	errors	before	they	are	fully	rolled	out	to	production	servers,	any	problems	not
caught	by	testing	in	the	development	phases	can	cause	serious	incidents	and	outages	for	the
microservice	itself,	its	dependencies,	and	any	other	parts	of	the	microservice	ecosystem	that
depend	on	it.

Anything	specific	to	the	microservice’s	architecture	can	also	fail	here,	including	any
databases,	message	brokers,	task-processing	systems,	and	the	like.	This	is	also	where	general
and	specific	code	bugs	within	the	microservice	will	cause	failures,	as	well	as	improper	error
and	exception	handling:	unhandled	exceptions	and	the	practice	of	catching	exceptions	are	an
often-overlooked	culprit	when	microservices	fail.	Finally,	increases	in	traffic	can	cause	a
service	to	fail	if	the	service	isn’t	prepared	for	unexpected	growth	(for	more	on	scalability
limitations,	turn	to	Chapter	4,	Scalability	and	Performance,	and	then	read	“Load	Testing”	of
the	current	chapter).



SUMMARY:	COMMON	MICROSERVICE	FAILURE	SCENARIOS

Some	of	the	most	common	microservice	failures	are:

Incomplete	code	reviews

Poor	architecture	and	design

Lack	of	proper	unit	and	integration	tests

Bad	deployments

Lack	of	proper	monitoring

Improper	error	and	exception	handling

Database	failure

Scalability	limitations



Resiliency	Testing
Architecting	away	single	points	of	failure	and	identifying	possible	failure	scenarios	and
catastrophes	isn’t	enough	to	ensure	that	microservices	are	fault	tolerant	and	prepared	for	any
catastrophe.	In	order	to	be	truly	fault	tolerant,	a	microservice	must	be	able	to	experience
failures	and	recover	from	them	gracefully	without	affecting	their	own	availability,	the
availability	of	their	clients,	and	the	availability	of	the	overall	microservice	ecosystem.	The
single	best	way	to	ensure	that	a	microservice	is	fault	tolerant	is	to	take	all	of	the	possible
failure	scenarios	that	it	could	be	affected	by,	and	then	actively,	repeatedly,	and	randomly	push
it	to	fail	in	production	—	a	practice	known	as	resiliency	testing.

A	resilient	microservice	is	one	that	can	experience	and	recover	from	failures	at	every	level	of
the	microservice	ecosystem:	the	hardware	layer	(e.g.,	a	host	or	datacenter	failure),	the
communication	layer	(e.g.,	RPC	failures),	the	application	layer	(e.g.,	a	failure	in	the
deployment	pipeline),	and	in	the	microservice	layer	(e.g.,	failure	of	a	dependency,	a	bad
deployment,	or	a	sudden	increase	in	traffic).	There	are	several	types	of	resiliency	testing	that,
when	used	to	evaluate	the	fault	tolerance	of	a	microservice,	can	ensure	that	the	service	is
prepared	for	any	known	failures	within	any	layer	of	the	stack.

The	first	type	of	resiliency	testing	we	will	look	at	is	code	testing,	which	is	comprised	of	four
types	of	tests	that	check	syntax,	style,	individual	components	of	the	microservice,	how	the
components	work	together,	and	how	the	microservice	performs	within	its	complex
dependency	chains.	(Code	testing	usually	isn’t	considered	part	of	the	resiliency	testing	suite,
but	I	wanted	to	include	it	here	for	two	reasons:	first,	since	it	is	crucial	for	fault	tolerance	and
catastrophe-preparedness,	it	makes	sense	to	keep	it	in	this	section;	second,	I’ve	noticed	that
development	teams	have	preferred	to	keep	all	testing	information	in	one	place.)	The	second	is
load	testing,	in	which	microservices	are	exposed	to	higher	traffic	loads	to	see	how	they
behave	under	increased	traffic.	The	third	type	of	resiliency	testing	is	chaos	testing,	which	is
the	most	important	type	of	resiliency	testing,	in	which	microservices	are	actively	pushed	to
fail	in	production.



Code	Testing
The	first	type	of	resiliency	testing	is	code	testing,	a	practice	almost	all	developers	and
operational	engineers	are	familiar	with.	In	microservice	architecture,	code	testing	needs	to	be
run	at	every	layer	of	the	ecosystem,	both	within	the	microservices	and	on	any	system	or
service	that	lives	in	the	layers	below:	in	addition	to	microservices,	service	discovery,
configuration	management,	and	related	systems	also	need	to	have	proper	code	testing	in
place.	There	are	several	types	of	good	code	testing	practices,	including	lint	testing,	unit
testing,	integration	testing,	and	end-to-end	testing.

Lint	tests
Syntax	and	style	errors	are	caught	using	lint	testing.	Lint	tests	run	over	the	code,	catching	any
language-specific	problems,	and	also	can	be	written	to	ensure	that	code	matches	language-
specific	(and	sometimes	team-specific	or	organization-specific)	style	guidelines.

Unit	tests
The	majority	of	code	testing	is	done	through	unit	tests,	which	are	small	and	independent	tests
that	are	run	over	various	small	pieces	(or	units)	of	the	microservice’s	code.	The	goal	of	unit
tests	is	to	make	sure	that	the	software	components	of	the	service	itself	(e.g.,	functions,	classes,
and	methods)	are	resilient	and	don’t	contain	any	bugs.	Unfortunately,	many	developers	only
consider	unit	tests	when	writing	tests	for	their	applications	or	microservices.	While	unit
testing	is	good,	it’s	not	good	enough	to	evaluate	the	actual	ways	in	which	the	microservice
will	behave	in	production.

Integration	tests
While	unit	tests	evaluate	small	pieces	of	the	microservice	to	ensure	that	the	components	are
resilient,	the	next	type	of	code	tests	are	integration	tests,	which	test	how	the	entire	service
works.	In	integration	testing,	all	of	the	smaller	components	of	the	microservice	(which	were
testing	individually	using	unit	tests)	are	combined	and	tested	together	to	make	sure	that	they
work	as	expected	when	they	need	to	work	together.

End-to-end	tests
For	a	monolithic	or	standalone	application,	often	unit	tests	and	integration	tests	are	good
enough	together	to	comprise	the	code	testing	aspect	of	resiliency	testing,	but	microservice
architecture	introduces	a	new	level	of	complexity	within	code	testing	due	to	the	complex
dependency	chains	that	exist	between	a	microservice,	its	clients,	and	its	dependencies.	Another
additional	set	of	tests	need	to	be	added	to	the	code	testing	suite	that	evaluate	the	behavior	of
the	microservice	with	respect	to	its	clients	and	dependencies.	This	means	that	microservice
developers	need	to	build	end-to-end	tests	that	run	just	like	real	production	traffic,	tests	that	hit
the	endpoints	of	their	microservice’s	clients,	hit	their	own	microservice’s	endpoints,	hit	the
endpoints	of	the	microservice’s	dependencies,	send	read	requests	to	any	databases,	and	catch



any	problems	in	the	request	flow	that	might	have	been	introduced	with	a	code	change.

Automating	code	tests
All	four	types	of	code	tests	(lint,	unit,	integration,	and	end-to-end)	should	be	written	by	the
development	team,	but	running	them	should	be	automated	as	part	of	the	development	cycle
and	the	deployment	pipeline.	Unit	and	integration	tests	should	run	during	the	development
cycle	on	an	external	build	system,	right	after	changes	have	made	it	through	the	code	review
process.	If	the	new	code	changes	fail	any	unit	or	integration	tests,	then	they	should	not	be
introduced	into	the	deployment	pipeline	as	a	candidate	for	production,	but	should	be	rejected
and	brought	to	the	attention	of	the	development	team	for	repair.	If	the	new	code	changes	pass
all	unit	and	integration	tests,	then	the	new	build	should	be	sent	to	the	deployment	pipeline	as	a
candidate	for	production.

SUMMARY	OF	CODE	TESTING

The	four	types	of	production-ready	code	testing	are:

Lint	tests

Unit	tests

Integration	tests

End-to-end	tests



Load	Testing
As	we	saw	in	Chapter	4,	Scalability	and	Performance,	a	production-ready	microservice	needs
to	be	both	scalable	and	performant.	It	needs	to	handle	a	large	number	of	tasks	or	requests	at
the	same	time	and	handle	them	efficiently,	and	it	also	must	be	prepared	for	tasks	or	requests	to
increase	in	the	future.	Microservices	that	are	unprepared	for	increases	in	traffic,	tasks,	or
requests	can	experience	severe	outages	when	any	of	these	gradually	or	suddenly	increase.

From	the	point	of	view	of	a	microservice	development	team,	we	know	that	traffic	to	our
microservice	will	mostly	likely	increase	at	some	time	in	the	future,	and	we	might	even	know
by	exactly	how	much	the	traffic	will	increase.	We	want	to	be	fully	prepared	for	these	increases
in	traffic	so	that	we	can	avoid	any	potential	problems	and/or	failures.	In	addition,	we	want	to
illuminate	any	possible	scalability	challenges	and	bottlenecks	that	we	might	not	be	aware	of
until	our	microservice	is	pushed	to	the	very	limits	of	its	scalability.	To	protect	against	any
scalability-related	incidents	and	outages,	and	to	be	fully	prepared	for	future	increases	in
traffic,	we	can	test	the	scalability	of	our	services	using	load	testing.

Fundamentals	of	load	testing
Load	testing	is	exactly	what	its	name	implies:	it	is	a	way	to	test	how	a	microservice	behaves
under	a	specific	traffic	load.	During	load	testing,	a	target	traffic	load	is	chosen,	the	target	load
of	test	traffic	is	run	on	the	microservice,	and	then	the	microservice	is	monitored	closely	to
see	how	it	behaves.	If	the	microservice	fails	or	experiences	any	issues	during	load	testing,	its
developers	will	be	able	to	resolve	any	scalability	issues	that	appear	in	load	tests	that	would
have	otherwise	harmed	the	availability	of	their	microservice	in	the	future.

Load	testing	is	where	the	growth	scales	and	resource	bottlenecks	and	requirements	that	were
covered	in	Chapter	4,	Scalability	and	Performance,	come	in	handy.	From	a	microservice’s
qualitative	growth	scale	and	the	associated	high-level	business	metrics,	development	teams
can	learn	how	much	traffic	their	microservice	should	be	prepared	to	handle	in	the	future.
From	the	quantitative	growth	scale,	developers	will	know	exactly	how	many	requests	or
queries	per	second	their	service	will	be	expected	to	handle.	If	the	majority	of	the	service’s
resource	bottlenecks	and	resource	requirements	have	been	identified,	and	the	bottlenecks
architected	away,	developers	will	know	how	to	translate	the	quantitative	growth	scale	(and,
consequently,	the	quantitative	aspects	of	future	increases	in	traffic)	into	terms	of	the	hardware
resources	their	microservice	will	require	in	order	to	handle	higher	traffic	loads.	Load	testing
after	all	of	this,	after	applying	the	scalability	requirements	and	working	through	them,	can
validate	and	ensure	that	the	microservice	is	ready	for	the	expected	increase	in	traffic.

Load	testing	can	be	used	the	other	way	around,	to	discover	the	quantitative	and	qualitative
growth	scales,	to	identify	resource	bottlenecks	and	requirements,	to	ensure	dependency
scaling,	to	determine	and	plan	for	future	capacity	needs,	and	the	like.	When	done	well,	load
testing	can	give	developers	deep	insight	into	the	scalability	(and	scalability	limitations)	of
their	microservice:	it	measures	how	the	service,	its	dependencies,	and	the	ecosystem	behave	in



a	controlled	environment	under	a	specified	traffic	load.

Running	load	tests	in	staging	and	production
Load	testing	is	most	effective	when	it	is	run	on	each	stage	of	the	deployment	pipeline.	To	test
the	load	testing	framework	itself,	to	make	sure	that	the	test	traffic	produces	the	desired	results,
and	to	catch	any	potential	problems	that	load	testing	might	cause	in	production,	load	testing
can	be	run	in	the	staging	phase	of	the	deployment	pipeline.	If	the	deployment	pipeline	is
utilizing	partial	staging,	where	the	staging	environment	communicates	with	production
services,	care	needs	to	be	taken	to	make	sure	that	any	load	tests	run	in	staging	do	not	harm	or
compromise	the	availability	of	any	production	services	that	it	communicates	with.	If	the
deployment	pipeline	contains	full	staging,	which	is	a	complete	mirror	copy	of	production	and
where	no	staging	services	communicate	with	any	services	in	production,	then	care	needs	to	be
taken	to	make	sure	that	load	testing	in	full	staging	produces	accurate	results,	especially	if
there	isn’t	host	parity	between	staging	and	production.

It’s	not	enough	to	load	test	only	in	staging.	Even	the	best	staging	environments	—	those	that
are	complete	mirror	copies	of	production	and	have	full	host	parity	—	still	are	not	production.
They’re	not	the	real	world,	and	very	rarely	are	staging	environments	perfectly	indicative	of
the	consequences	of	load	testing	in	production.	Once	you	know	the	traffic	load	you	need	to
hit,	you’ve	alerted	all	of	the	on-call	rotations	of	the	dependency	teams,	and	you’ve	tested	your
load	tests	in	staging,	you	absolutely	need	to	run	load	tests	in	production.





ALERT	DEPENDENCIES	WHEN	LOAD	TESTING
If	your	load	tests	send	requests	to	other	production	services,	be	sure	to	alert	all	dependencies	in	order	to	avoid
compromising	their	availability	while	running	load	tests.	Never	assume	that	downstream	dependencies	can	handle
the	traffic	load	you	are	about	to	send	their	way!

Load	testing	in	production	can	be	dangerous	and	can	easily	cause	a	microservice	and	its
dependencies	to	fail.	The	reason	why	load	testing	is	dangerous	is	the	same	reason	it	is
essential:	most	of	the	time,	you	won’t	know	exactly	how	the	service	being	tested	behaves
under	the	target	traffic	load,	and	you	won’t	know	how	its	dependencies	handle	increased
requests.	Load	testing	is	the	way	to	explore	the	unknowns	about	a	service	and	make	sure	that	it
is	prepared	for	expected	traffic	growth.	When	a	service	is	pushed	to	its	limits	in	production,
and	things	begin	to	break,	there	need	to	be	automated	pieces	in	place	to	make	sure	that	any
load	tests	can	be	quickly	shut	down.	After	the	limitations	of	the	service	have	been	discovered
and	mitigated	and	the	fixes	have	been	tested	and	deployed,	load	testing	can	resume.

Automating	load	testing
If	load	testing	is	going	to	be	required	for	all	microservices	within	the	organization	(or	even
just	a	small	number	of	business-critical	microservices),	leaving	the	implementation	and
methodology	of	the	load	testing	in	the	hands	of	development	teams	to	design	and	run	for
themselves	introduces	another	point	of	failure	into	the	system.	Ideally,	a	self-service	load-
testing	tool	and/or	system	should	be	part	of	the	application	platform	layer	of	the	microservice
ecosystem,	allowing	developers	to	use	a	trusted,	shared,	automated,	and	centralized	service.

Load	testing	should	be	scheduled	regularly,	and	viewed	as	an	integral	component	of	the	day-
to-day	function	of	the	engineering	organization.	The	scheduling	should	be	linked	to	traffic
patterns:	test	desired	traffic	loads	in	production	when	traffic	is	low,	and	never	during	peak
hours,	to	avoid	compromising	the	availability	of	any	services.	If	a	centralized	self-service
load	testing	system	is	being	used,	it	is	incredibly	useful	to	have	an	automated	process	for
validating	new	tests,	along	with	a	suite	of	trusted	(and	required)	tests	that	every	service	can
run.	In	extreme	cases,	and	when	a	self-service	load	testing	tool	is	reliable,	deployments	can	be
blocked	(or	gated)	if	a	microservice	fails	to	perform	adequately	under	load	tests.	Most
importantly,	every	load	test	performed	needs	to	be	sufficiently	logged	and	publicized
internally	so	that	any	problems	caused	by	load	testing	can	quickly	be	detected,	mitigated,	and
resolved.



SUMMARY	OF	LOAD	TESTING

Production-ready	load	testing	has	the	following	components:

It	uses	a	target	traffic	load	that	is	calculated	using	the	qualitative	and	quantitative	growth	scales	and	expressed	in
terms	of	RPS,	QPS,	or	TPS.

It	is	run	in	each	stage	of	the	deployment	pipeline.

Its	runs	are	communicated	to	all	dependencies.

It	is	fully	automated,	is	logged,	and	is	scheduled.



Chaos	Testing
In	this	chapter,	we’ve	seen	various	potential	failure	scenarios	and	catastrophes	that	can	happen
at	each	layer	of	the	stack.	We’ve	seen	how	code	testing	catches	small	potential	failures	at	the
individual	microservice	level,	and	how	load	testing	catches	failures	that	arise	from	scalability
limitations	at	the	microservice	level.	However,	the	majority	of	the	failure	scenarios	and
potential	catastrophes	lie	elsewhere	in	the	ecosystem	and	cannot	be	caught	by	any	of	these
kinds	of	tests.	To	test	for	all	failure	scenarios,	to	make	sure	that	microservices	can	gracefully
recover	from	any	potential	catastrophe,	there’s	one	additional	type	of	resiliency	testing	that
needs	to	be	in	place,	and	it’s	known	(quite	appropriately)	as	chaos	testing.

In	chaos	testing,	microservices	are	actively	pushed	to	fail	in	production,	because	the	only	way
to	make	sure	that	a	microservice	can	survive	a	failure	is	to	make	it	fail	all	of	the	time,	and	in
every	way	possible.	That	means	that	every	failure	scenario	and	potential	catastrophe	needs	to
be	identified,	and	then	is	needs	to	be	forced	to	happen	in	production.	Running	scheduled	and
random	tests	of	each	failure	scenario	and	potential	catastrophe	can	help	mimic	the	real	world
of	complex	system	failures:	developers	will	know	that	part	of	the	system	will	be	pushed	to	fail
on	a	scheduled	basis	and	will	prepare	for	those	scheduled	chaos	runs,	and	they’ll	also	be
caught	off	guard	by	randomly	scheduled	tests.





RESPONSIBLE	CHAOS	TESTING
Chaos	testing	must	be	well	controlled	in	order	to	avoid	chaos	tests	from	bringing	down	the	ecosystem.	Make	sure
your	chaos	testing	software	has	appropriate	permissions,	and	that	every	single	event	is	logged,	so	that	if
microservices	are	unable	to	gracefully	recover	(or	if	the	chaos	testing	goes	rogue),	pinpointing	and	resolving	the
problems	won’t	require	any	serious	sleuthing.

Like	load	testing	(and	many	of	the	other	systems	covered	in	this	book),	chaos	testing	is	best
provided	as	a	service,	and	not	implemented	in	various	ad	hoc	manners	across	development
teams.	Automate	the	testing,	require	every	microservice	to	run	a	suite	of	both	general	and
service-specific	tests,	encourage	development	teams	to	discover	additional	ways	their	service
can	fail,	and	then	give	them	the	resources	to	design	new	chaos	tests	that	push	their
microservices	to	fail	in	these	new	ways.	Make	sure	that	every	part	of	the	ecosystem	(including
the	chaos	testing	service)	can	survive	a	standard	set	of	chaos	tests,	and	break	each
microservice	and	piece	of	the	infrastructure	multiple	times,	again	and	again	and	again,	until
every	development	and	infrastructure	team	is	confident	that	their	services	and	systems	can
withstand	inevitable	failures.

Finally,	chaos	testing	is	not	just	for	companies	hosted	on	cloud	providers,	even	though	they
are	the	most	vocal	(and	common)	users.	There	are	very	few	differences	in	failure	modes	of
bare-metal	versus	cloud	provider	hardware,	and	anything	that	is	built	to	run	in	the	cloud	can
work	just	as	well	on	bare	metal	(and	vice	versa).	An	open	source	solution	like	Simian	Army
(which	comes	with	a	standard	suite	of	chaos	tests	that	can	be	customized)	will	work	for	the
majority	of	companies,	but	organizations	with	specific	needs	can	easily	build	their	own.

EXAMPLES	OF	CHAOS	TESTS

Some	common	types	of	chaos	tests:

Disable	the	API	endpoint	of	one	of	a	microservice’s	dependencies.

Stop	all	traffic	requests	to	a	dependency.

Introduce	latency	between	various	parts	of	the	ecosystem	to	mimic	network	problems:	between	clients	and
dependencies,	between	microservices	and	shared	databases,	between	microservices	and	distributed	task-processing
systems,	etc.

Stop	all	traffic	to	a	datacenter	or	a	region.

Take	out	a	host	at	random	by	shutting	down	one	machine.



Failure	Detection	and	Remediation
In	addition	to	the	resiliency	testing	suite,	in	which	microservices	are	tested	for	every	known
failure	and	catastrophe,	a	production-ready	microservice	needs	to	have	failure	detection	and
remediation	strategies	for	when	failures	do	happen.	We’ll	take	a	look	at	organizational
processes	that	can	be	used	across	the	ecosystem	to	triage,	mitigate,	and	resolve	incidents	and
outages,	but	first	we’ll	focus	on	several	technical	mitigation	strategies	in	this	section.

When	a	failure	does	happen,	the	goal	of	failure	detection	and	remediation	always	needs	to	be
the	following:	reduce	the	impact	to	users.	In	a	microservice	ecosystem,	the	“users”	are
whoever	may	be	using	the	service	—	this	could	be	another	microservice	(who	is	a	client	of
the	service)	or	an	actual	customer	of	the	product	(if	the	service	in	question	is	customer-
facing).	If	the	failure	in	question	was	(or	may	have	been)	introduced	into	production	by	a	new
deployment,	the	single	most	effective	way	to	reduce	the	impact	to	users	when	something	is
going	wrong	is	to	immediately	roll	back	to	the	last	stable	build	of	the	service.	Rolling	back	to
the	last	stable	build	ensures	that	the	microservice	has	been	returned	to	a	known	state,	a	state
that	wasn’t	susceptible	to	the	failures	or	catastrophes	that	were	introduced	with	the	newest
build.	The	same	holds	for	changes	to	low-level	configurations:	treat	configs	like	code,	deploy
them	in	various	successive	releases,	and	make	sure	that	if	a	config	change	causes	an	outage,
the	system	can	quickly	and	effortlessly	roll	back	to	the	last	stable	set	of	configurations.

A	second	strategy	in	case	of	failure	is	failing	over	to	a	stable	alternative.	If	one	of	a
microservice’s	dependencies	is	down,	this	would	mean	sending	requests	to	a	different
endpoint	(if	the	endpoint	is	broken)	or	a	different	service	(if	the	entire	service	is	down).	If	it’s
not	possible	to	route	to	another	service	or	endpoint,	then	there	needs	to	be	a	way	to	queue	or
save	the	requests	and	hold	them	until	problems	with	the	dependency	have	been	mitigated.	If	the
problem	is	relegated	to	one	datacenter,	or	if	a	datacenter	is	experiencing	failures,	the	way	to
fail	over	to	a	stable	alternative	would	be	to	re-route	traffic	to	another	datacenter.	Whenever
you	are	faced	with	various	ways	to	handle	failure,	and	one	of	those	choices	is	to	re-route
traffic	to	another	service	or	datacenter,	re-routing	the	traffic	is	almost	always	the	smartest
choice:	routing	traffic	is	easy	and	immediately	reduces	the	impact	to	users.

Importantly,	the	detection	aspect	of	“failure	detection	and	remediation”	can	only	really	be
accomplished	by	production-ready	monitoring	(see	Chapter	6,	Monitoring,	for	all	the	nitty-
gritty	monitoring	details).	Human	beings	are	horrible	at	detecting	and	diagnosing	system
failures,	and	introducing	engineers	into	the	failure	detection	process	becomes	a	single	point
of	failure	for	the	overall	system.	This	holds	for	failure	remediation	as	well:	most	of	the
remediation	within	large	microservice	ecosystems	is	done	by	engineers,	all	by	hand,	all	in	an
almost	painfully	manual	way,	introducing	a	new	point	of	failure	for	the	system	—	but	it
doesn’t	have	to	be	that	way.	To	cut	out	the	potential	and	possibility	for	human	error	in	failure
remediation,	all	mitigation	strategies	need	to	be	automated.	For	example,	if	a	service	fails
certain	healthchecks	or	its	key	metrics	hit	the	warning	and/or	critical	thresholds	after	a
deploy,	then	the	system	can	be	designed	to	automatically	roll	back	to	the	last	stable	build.	The



same	goes	for	traffic	routing	to	another	endpoint,	microservice,	or	datacenter:	if	certain	key
metrics	hit	specific	thresholds,	set	up	a	system	that	automatically	routes	the	traffic	for	you.
Fault	tolerance	absolutely	requires	that	the	potential	and	possibility	for	human	error	be
automated	and	architected	away	whenever	possible.



Incidents	and	Outages
Throughout	this	book,	I’ve	emphasized	the	availability	of	the	microservices	and	the	overall
ecosystem	as	the	goal	of	standardization.	Architecting,	building,	and	running	microservice
architecture	that	is	geared	toward	high	availability	can	be	accomplished	through	adopting	the
production-readiness	standards	and	their	related	requirements,	and	it’s	the	reason	I’ve
introduced	and	chosen	each	production-readiness	standard.	It’s	not	enough,	however,	for	the
individual	microservices	and	each	layer	of	the	microservice	ecosystem	stack	to	be	fault
tolerant	and	prepared	for	any	catastrophe.	The	development	teams	and	the	engineering
organization(s)	responsible	for	the	microservices	and	the	ecosystem	they	live	in	need	to	have
the	appropriate	organizational	response	procedures	in	place	for	handling	incidents	and
outages	when	they	happen.

Every	minute	that	a	microservice	is	down	brings	down	its	availability.	When	part	of	the
microservice	or	its	ecosystem	fails,	causing	an	incident	or	outage	to	happen,	every	minute
that	it	is	down	counts	against	its	availability	and	causes	it	to	fail	to	meet	its	SLA.	Failing	to
meet	an	SLA,	and	failing	to	meet	availability	goals,	incurs	a	serious	cost:	at	most	companies,
outages	mean	a	huge	financial	cost	to	the	business,	a	cost	that	is	usually	easy	to	quantify	and
share	with	development	teams	within	the	organization.	With	this	in	mind,	it’s	easy	to	see	how
the	length	of	the	time	to	detection,	the	time	to	mitigation,	and	the	time	to	resolution	of	outages
can	add	up	very	quickly	and	cost	the	company	money,	because	they	count	against	a
microservice’s	uptime	(and,	consequently,	its	availability).



Appropriate	Categorization
Not	all	microservices	are	created	equal,	and	categorizing	the	importance	and	impact	that	their
failures	will	have	on	the	business	makes	it	easier	to	properly	triage,	mitigate,	and	resolve
incidents	and	outages.	When	an	ecosystem	contains	hundreds	or	even	thousands	of
microservices,	there	will	be	dozens	or	even	hundreds	of	failures	per	week,	even	if	only	10
percent	of	the	microservices	experience	failures,	that’s	still	over	100	failures	in	an	ecosystem
of	1,000	services.	While	every	failure	needs	to	be	properly	handled	by	its	on-call	rotation,	not
every	failure	will	need	to	be	treated	as	an	all-hands-on-deck	emergency.

In	order	to	have	a	consistent,	appropriate,	effective,	and	efficient	incident	and	outage	response
process	across	the	organization,	it	is	important	to	do	two	things.	First,	it	is	incredibly	helpful
to	categorize	the	microservices	themselves	with	regard	to	how	their	failures	will	affect	the
ecosystem	so	that	it	will	be	easy	to	prioritize	various	incidents	and	failures	(this	also	helps
with	problems	related	to	competition	for	resources	—	both	engineering	resources	and
hardware	resources	—	within	the	organization).	Second,	incidents	and	outages	need	to	be
categorized	so	that	the	scope	and	severity	of	every	single	failure	will	be	understood	across
the	organization.

Categorizing	microservices
To	mitigate	the	challenges	of	competition	for	resources,	and	to	ensure	proper	incident
response	measures	are	taken,	each	microservice	within	the	ecosystem	can	(and	should)	be
categorized	and	ranked	according	to	its	criticality	to	the	business.	Categorization	doesn’t	need
to	be	perfect	at	first,	as	a	rough	categorization	rubric	will	do	the	job	just	fine.	The	key	here	is
to	mark	microservices	that	are	critical	to	the	business	as	having	the	highest	priority	and
impact,	and	then	every	other	microservice	will	have	a	lower	rank	and	priority	depending	on
how	close	or	far	it	is	to	the	most	critical	services.	Infrastructure	layers	are	always	of	the
highest	priority:	anything	within	the	hardware,	communication,	and	application	platform
layers	that	is	used	by	any	of	the	business-critical	microservices	should	be	the	highest	priority
within	the	ecosystem.

Categorizing	incidents	and	outages
There	are	two	axes	that	every	incident,	outage,	and	failure	can	be	plotted	against:	the	first	is
the	severity	of	the	incident,	outage,	or	failure,	and	the	second	is	its	scope.	Severity	is	linked	to
the	categorization	of	the	application,	microservice,	or	system	in	question.	If	the	microservice
is	business-critical	(i.e.,	if	either	the	business	or	an	essential	customer-facing	part	of	the
product	cannot	function	without	it),	then	the	severity	of	any	failure	it	experiences	should
match	the	service’s	categorization.	Scope,	on	the	other	hand,	is	related	to	how	much	of	the
ecosystem	is	affected	by	the	failure,	and	is	usually	split	into	three	categories:	high,	medium,
and	low.	An	incident	whose	scope	is	high	is	an	incident	that	affects	the	entire	business	and/or
an	external	(e.g.,	user-facing)	feature;	a	medium-scope	incident	would	be	one	that	affected
only	the	service	itself,	or	the	service	and	a	few	of	its	clients;	a	low-scope	incident	would	be



one	whose	negative	effects	are	not	noticed	by	clients,	the	business,	or	external	customers
using	the	product.	In	other	words,	severity	should	be	categorized	based	on	the	impact	to	the
business,	and	scope	should	be	categorized	based	on	whether	the	incident	is	local	or	global.

Let’s	go	through	a	few	examples	to	clarify	what	this	looks	like	in	practice.	We’ll	assign	four
levels	of	severity	to	each	failure	(0–4,	where	0	is	the	most	severe	incident	level	and	4	is	the
least	severe),	and	we’ll	stick	with	the	high-medium-low	levels	when	determining	scope.	First,
let’s	look	at	an	example	whose	severity	and	scope	are	very	easy	to	categorize:	a	complete
datacenter	failure.	If	a	datacenter	goes	completely	down	(for	whatever	reason),	the	severity	is
clearly	0	(it	affects	the	entire	business),	and	the	scope	is	high	(again,	it	affects	the	entire
business).	Now	let’s	look	at	another	scenario:	imagine	we	have	a	microservice	that	is
responsible	for	a	business-critical	function	in	the	product,	and	it	goes	down	for	30	minutes;	as
a	result	of	its	failure,	let’s	imagine	that	one	of	its	clients	suffers,	but	the	rest	of	the	ecosystem
remains	unaffected.	We’d	categorize	this	as	severity	0	(because	it	impacts	a	business-critical
feature)	and	scope	medium	(it	doesn’t	affect	the	whole	business,	only	itself	and	one	client
service).	Finally,	let’s	consider	an	internal	tool	responsible	for	generating	templates	for	new
microservices,	and	imagine	that	it	goes	down	for	several	hours	—	how	would	this	be
categorized?	Generating	templates	for	new	microservices	(and	spinning	up	new
microservices)	isn’t	business-critical	and	doesn’t	affect	any	user-facing	features,	so	this
wouldn’t	be	a	0	severity	problem	(it	probably	wouldn’t	be	a	1	or	a	2	either);	however,	since
the	service	itself	is	down,	we’d	probably	categorize	its	severity	as	a	3,	and	then	its	scope	as
low	(since	it	is	the	only	service	affected	by	its	failure).



The	Five	Stages	of	Incident	Response
When	failures	happen,	it’s	critical	to	the	availability	of	the	entire	system	that	there	are
standardized	incident	response	procedures	in	place.	Having	a	clear	set	of	steps	that	need	to	be
taken	when	an	incident	or	outage	occurs	cuts	down	on	the	time	to	mitigation	and	the	time	to
resolution,	which	in	turn	decreases	the	downtime	experienced	by	each	microservice.	Within
the	industry	today,	there	are	typically	three	standard	steps	in	the	process	of	responding	to	and
resolving	an	incident:	triage,	mitigate,	and	resolve.	Adopting	microservice	architecture,
however,	and	achieving	high	availability	and	fault	tolerance	requires	adopting	two	additional
steps	in	the	incident	response	process:	one	for	coordination,	and	another	for	follow-up.
Together,	these	steps	give	us	the	five	stages	of	incident	response	(Figure	5-1):	assessment,
coordination,	mitigation,	resolution,	and	follow-up.

Figure	5-1.	The	five	stages	of	incident	response

Assessment
Whenever	an	alert	is	triggered	by	a	change	in	a	service’s	key	metric	(see	Chapter	6,
Monitoring,	for	more	details	on	alerting,	key	metrics,	and	on-call	rotations),	and	the
developer	on	call	for	the	service	needs	to	respond	to	the	alert,	the	very	first	step	that	needs	to
be	taken	is	to	assess	the	incident.	The	on-call	engineer	is	the	first	responder,	triaging	every
problem	as	soon	as	it	triggers	an	alert,	and	his	job	is	to	determine	the	severity	and	scope	of
the	issue.

Coordination



Once	the	incident	has	been	assessed	and	triaged,	the	next	step	is	to	first	coordinate	with	other
developers	and	teams	and	then	begin	communicating	about	the	incident.	Very	few	developers
on	call	for	any	given	service	will	be	able	to	resolve	every	single	problem	with	the	service,
and	so	coordination	with	other	teams	who	can	resolve	the	issue	will	ensure	that	the	problem	is
mitigated	and	resolved	quickly.	This	means	that	there	need	to	be	clear	channels	of
communication	for	incidents	and	outages	so	that	any	high-severity,	high-scope	problem	can
receive	the	immediate	attention	that	it	requires.

During	the	incident	or	outage,	it’s	important	to	have	a	clear	record	of	communication
regarding	the	incident	for	several	reasons.	First,	recording	communication	during	the
incident	(in	chat	logs,	over	email,	etc.)	helps	in	diagnosing,	root-causing,	and	mitigating	the
incident:	everyone	knows	who	is	working	on	which	fix,	everyone	knows	what	possible
failures	have	been	eliminated	as	possible	causes,	and	once	the	root	has	been	identified,
everyone	knows	exactly	what	caused	the	problem.	Second,	other	services	that	depend	on	the
service	experiencing	the	incident	or	outage	need	to	be	apprised	of	any	problems	so	that	they
can	mitigate	its	negative	effects	and	ensure	that	their	own	service	is	protected	from	the	failure.
This	keeps	overall	availability	high,	and	prevents	one	service	from	bringing	down	entire
dependency	chains.	Third,	it	helps	when	postmortems	are	written	for	severe,	global	incidents
by	giving	a	clear,	detailed	record	of	exactly	what	happened	and	how	the	problem	was	triaged,
mitigated,	and	resolved.

Mitigation
The	third	step	is	mitigation.	After	the	problem	has	been	assessed	and	organizational
communication	has	begun	(ensuring	that	the	right	people	are	working	to	fix	the	problem),
developers	need	to	work	to	reduce	the	impact	of	the	incident	on	clients,	the	business,	and
anything	else	that	may	be	affected	by	the	incident.	Mitigation	is	not	the	same	as	resolution:	it	is
not	fixing	the	root	cause	of	the	problem	completely,	only	reducing	its	impact.	An	issue	is	not
mitigated	until	both	its	availability	and	the	availability	of	its	clients	are	no	longer
compromised	or	suffering.

Resolution
After	the	effects	of	the	incident	or	outage	have	been	mitigated,	engineers	can	work	to	resolve
the	root	cause	of	the	problem.	This	is	the	fourth	step	of	the	incident	response	process.	This
entails	actually	fixing	the	root	cause	of	the	problem,	which	may	not	have	been	done	when	the
problem	was	mitigated.	Most	importantly,	this	is	when	the	clock	stops	ticking.	The	two	most
important	quantities	that	count	against	a	microservice’s	SLA	are	time	to	detection	(TTD)	and
time	to	mitigation	(TTM).	Once	a	problem	has	been	mitigated,	it	should	no	longer	be
affecting	end	users	or	compromising	the	service’s	SLA,	and	so	time	to	resolution	(TTR)
rarely	(if	ever)	counts	against	a	service’s	availability.

Follow-up



Three	things	need	to	happen	in	the	fifth	and	final	follow-up	stage	of	incident	response:
postmortems	need	to	be	written	to	analyze	and	understand	the	incident	or	outage,	severe
incidents	and	outages	need	to	be	shared	and	reviewed,	and	a	list	of	action	items	needs	to	be	put
together	so	that	the	development	team(s)	can	complete	them	in	order	for	the	affected
microservice(s)	to	return	to	a	production-ready	state	(action	items	can	often	be	fit	into
postmortems).

The	most	important	aspect	of	incident	follow-up	is	the	postmortem.	In	general,	a	postmortem
is	a	detailed	document	that	follows	every	single	incident	and/or	outage	and	contains	critical
information	about	what	happened,	why	it	happened,	and	what	could	have	been	done	to	prevent
it.	Every	postmortem	should,	at	the	very	minimum,	contain	a	summary	of	what	happened,	data
about	what	happened	(time	to	detection,	time	to	mitigation,	time	to	resolution,	total	downtime,
number	of	affected	users,	any	relevant	graphs	and	charts,	etc.),	a	detailed	timeline,	a
comprehensive	root-cause	analysis,	a	summary	of	how	the	incident	could	have	been
prevented,	ways	that	similar	outages	can	be	prevented	in	the	future,	and	a	list	of	action	items
that	need	to	be	completed	in	order	to	bring	the	service	back	to	a	production-ready	state.
Postmortems	are	most	effective	when	they’re	blameless,	when	they	don’t	name	names	but
only	point	out	objective	facts	about	the	service.	Pointing	fingers,	naming	names,	and	blaming
developers	and	engineers	for	outages	stifles	the	organizational	learning	and	sharing	that	is
essential	for	maintaining	a	reliable,	sustainable	ecosystem.

Within	large	and	complex	microservice	ecosystems,	any	failure	or	problem	that	brings	one
microservice	down	—	whether	big	or	small	—	almost	certainly	can	(and	will)	affect	at	least
one	other	microservice	within	the	ecosystem.	Communicating	severe	incidents	and	outages
across	various	teams	(and	across	the	whole	organization)	can	help	catch	these	failures	in
other	services	before	they	occur.	I’ve	seen	how	effective	incidents	and	outage	reviews	can	be
when	done	properly,	and	have	watched	developers	attend	these	meetings	and	then	rush	off	to
their	microservice	afterward	to	fix	any	bugs	in	their	own	service	that	led	to	the	incidents
and/or	outages	that	were	reviewed.



Evaluate	Your	Microservice
Now	that	you	have	a	better	understanding	of	fault	tolerance	and	catastrophe-preparedness,	use
the	following	list	of	questions	to	assess	the	production-readiness	of	your	microservice(s)	and
microservice	ecosystem.	The	questions	are	organized	by	topic,	and	correspond	to	the	sections
within	this	chapter.



Avoiding	Single	Points	of	Failure
Does	the	microservice	have	a	single	point	of	failure?

Does	it	have	more	than	one	point	of	failure?

Can	any	points	of	failure	be	architected	away,	or	do	they	need	to	be	mitigated?



Catastrophes	and	Failure	Scenarios
Have	all	of	the	microservice’s	failure	scenarios	and	possible	catastrophes	been
identified?

What	are	common	failures	across	the	microservice	ecosystem?

What	are	the	hardware-layer	failure	scenarios	that	can	affect	this	microservice?

What	communication-layer	and	application-layer	failures	can	affect	this	microservice?

What	sorts	of	dependency	failures	can	affect	this	microservice?

What	are	the	internal	failures	that	could	bring	down	this	microservice?



Resiliency	Testing
Does	this	microservice	have	appropriate	lint,	unit,	integration,	and	end-to-end	tests?

Does	this	microservice	undergo	regular,	scheduled	load	testing?

Are	all	possible	failure	scenarios	implemented	and	tested	using	chaos	testing?



Failure	Detection	and	Remediation
Are	there	standardized	processes	across	the	engineering	organization(s)	for	handling
incidents	and	outages?

How	do	failures	and	outages	of	this	microservice	impact	the	business?

Are	there	clearly	defined	levels	of	failure?

Are	there	clearly	defined	mitigation	strategies?

Does	the	team	follow	the	five	stages	of	incident	response	when	incidents	and	outages
occur?



Chapter	6.	Monitoring

A	production-ready	microservice	is	one	that	is	properly	monitored.	Proper	monitoring	is	one
of	the	most	important	parts	of	building	a	production-ready	microservice	and	guarantees
higher	microservice	availability.	In	this	chapter,	the	essential	components	of	microservice
monitoring	are	covered,	including	which	key	metrics	to	monitor,	how	to	log	key	metrics,
building	dashboards	that	display	key	metrics,	how	to	approach	alerting,	and	on-call	best
practices.



Principles	of	Microservice	Monitoring
The	majority	of	outages	in	a	microservice	ecosystem	are	caused	by	bad	deployments.	The
second	most	common	cause	of	outages	is	the	lack	of	proper	monitoring.	It’s	easy	to	see	why
this	is	the	case.	If	the	state	of	a	microservice	is	unknown,	if	key	metrics	aren’t	tracked,	then
any	precipitating	failures	will	remain	unknown	until	an	actual	outage	occurs.	By	the	time	a
microservice	experiences	an	outage	due	to	lack	of	monitoring,	its	availability	has	already
been	compromised.	During	these	outages,	the	time	to	mitigation	and	time	to	repair	are
prolonged,	pulling	the	availability	of	the	microservice	down	even	further:	without	easily
accessible	information	about	the	microservice’s	key	metrics,	developers	are	often	faced	with
a	blank	slate,	unprepared	to	quickly	resolve	the	issue.	This	is	why	proper	monitoring	is
essential:	it	provides	the	development	team	with	all	of	the	relevant	information	about	the
microservice.	When	a	microservice	is	properly	monitored,	its	state	is	never	unknown.

Monitoring	a	production-ready	microservice	has	four	components.	The	first	is	proper
logging	of	all	relevant	and	important	information,	which	allows	developers	to	understand	the
state	of	the	microservice	at	any	time	in	the	present	or	in	the	past.	The	second	is	the	use	of
well-designed	dashboards	that	accurately	reflect	the	health	of	the	microservice,	and	are
organized	in	such	a	way	that	anyone	at	the	company	could	view	the	dashboard	and	understand
the	health	and	status	of	the	microservice	without	difficulty.	The	third	component	is	actionable
and	effective	alerting	on	all	key	metrics,	a	practice	that	makes	it	easy	for	developers	to
mitigate	and	resolve	problems	with	the	microservice	before	they	cause	outages.	The	final
component	is	the	implementation	and	practice	of	running	a	sustainable	on-call	rotation
responsible	for	the	monitoring	of	the	microservice.	With	effective	logging,	dashboards,
alerting,	and	on-call	rotation,	the	microservice’s	availability	can	be	protected:	failures	and
errors	will	be	detected,	mitigated,	and	resolved	before	they	bring	down	any	part	of	the
microservice	ecosystem.

A	PRODUCTION-READY	SERVICE	IS 	PROPERLY	MONITORED

Its	key	metrics	are	identified	and	monitored	at	the	host,	infrastructure,	and	microservice	levels.

It	has	appropriate	logging	that	accurately	reflects	the	past	states	of	the	microservice.

Its	dashboards	are	easy	to	interpret,	and	contain	all	key	metrics.

Its	alerts	are	actionable	and	are	defined	by	signal-providing	thresholds.

There	is	a	dedicated	on-call	rotation	responsible	for	monitoring	and	responding	to	any	incidents	and	outages.

There	is	a	clear,	well-defined,	and	standardized	on-call	procedure	in	place	for	handling	incidents	and	outages.



Key	Metrics
Before	we	jump	into	the	components	of	proper	monitoring,	it’s	important	to	identify
precisely	what	we	want	and	need	to	monitor:	we	want	to	monitor	a	microservice,	but	what
does	that	actually	mean?	A	microservice	isn’t	an	individual	object	that	we	can	follow	or	track,
it	cannot	be	isolated	and	quarantined	—	it’s	far	more	complicated	than	that.	Deployed	across
dozens,	if	not	hundreds,	of	servers,	the	behavior	of	a	microservice	is	the	sum	of	its	behavior
across	all	of	its	instantiations,	which	isn’t	the	easiest	thing	to	quantify.	The	key	is	identifying
which	properties	of	a	microservice	are	necessary	and	sufficient	for	describing	its	behavior,
and	then	determining	what	changes	in	those	properties	tell	us	about	the	overall	status	and
health	of	the	microservice.	We’ll	call	these	properties	key	metrics.

There	are	two	types	of	key	metrics:	host	and	infrastructure	metrics,	and	microservice	metrics.
Host	and	infrastructure	metrics	are	those	that	pertain	to	the	status	of	the	infrastructure	and	the
servers	on	which	the	microservice	is	running,	while	microservice	metrics	are	metrics	that	are
unique	to	the	individual	microservice.	In	terms	of	the	four-layer	model	of	the	microservice
ecosystem	as	described	in	Chapter	1,	Microservices,	host	and	infrastructure	metrics	are
metrics	belonging	to	layers	1–3,	while	microservice	metrics	are	those	belonging	to	layer	4.

Separating	key	metrics	into	these	two	different	types	is	important	both	organizationally	and
technically.	Host	and	infrastructure	metrics	often	affect	more	than	one	microservice:	for
example,	if	there	is	a	problem	with	a	particular	server,	and	the	microservice	ecosystem	shares
the	hardware	resources	among	multiple	microservices,	host-level	key	metrics	will	be	relevant
to	every	microservice	team	that	has	a	microservice	deployed	to	that	host.	Likewise,
microservice-specific	metrics	will	rarely	be	applicable	or	useful	to	anyone	but	the	team	of
developers	working	on	that	particular	microservice.	Teams	should	monitor	both	types	of	key
metrics	(that	is,	all	metrics	relevant	to	their	microservice),	and	any	metrics	relevant	to
multiple	microservices	should	be	monitored	and	shared	between	the	appropriate	teams.

The	host	and	infrastructure	metrics	that	should	be	monitored	for	each	microservice	are	the
CPU	utilized	by	the	microservice	on	each	host,	the	RAM	utilized	by	the	microservice	on	each
host,	the	available	threads,	the	microservice’s	open	file	descriptors	(FD),	and	the	number	of
database	connections	that	the	microservice	has	to	any	databases	it	uses.	Monitoring	these	key
metrics	should	be	done	in	such	a	way	that	the	status	of	each	metric	is	accompanied	by
information	about	the	infrastructure	and	the	microservice.	This	means	that	monitoring	should
be	granular	enough	that	developers	can	know	the	status	of	the	keys	metrics	for	their
microservice	on	any	particular	host	and	across	all	of	the	hosts	that	it	runs	on.	For	example,
developers	should	be	able	to	know	how	much	CPU	their	microservice	is	using	on	one
particular	host	and	how	much	CPU	their	microservice	is	using	across	all	hosts	it	runs	on.



MONITORING	HOST-LEVEL	METRICS	WHEN	RESOURCES	ARE
ABSTRACTED

Some	microservice	ecosystems	may	use	cluster	management	applications	(like	Mesos)	in	which	the	resources
(CPU,	RAM,	etc.)	are	abstracted	away	from	the	host	level.	Host-level	metrics	won’t	be	available	in	the	same
way	to	developers	in	these	situations,	but	all	key	metrics	for	the	microservice	overall	should	still	be	monitored	by
the	microservice	team.

Determining	the	necessary	and	sufficient	key	metrics	at	the	microservice	level	is	a	bit	more
complicated	because	it	can	depend	on	the	particular	language	that	the	microservice	is	written
in.	Each	language	comes	with	its	own	special	way	of	processing	tasks,	for	example,	and	these
language-specific	features	must	be	monitored	closely	in	the	majority	of	cases.	Consider	a
Python	service	that	utilizes	uwsgi	workers:	the	number	of	uwsgi	workers	is	a	necessary	key
metric	for	proper	monitoring.

In	addition	to	language-specific	key	metrics,	we	also	must	monitor	the	availability	of	the
service,	the	service-level	agreement	(SLA)	of	the	service,	latency	(of	both	the	service	as	a
whole	and	its	API	endpoints),	success	of	API	endpoints,	responses	and	average	response	times
of	API	endpoints,	the	services	(clients)	from	which	API	requests	originate	(along	with	which
endpoints	they	send	requests	to),	errors	and	exceptions	(both	handled	and	unhandled),	and	the
health	and	status	of	dependencies.

Importantly,	all	key	metrics	should	be	monitored	everywhere	that	the	application	is	deployed.
This	means	that	every	stage	of	the	deployment	pipeline	should	be	monitored.	Staging	must	be
closely	monitored	in	order	to	catch	any	problems	before	a	new	candidate	for	production	(a
new	build)	is	deployed	to	servers	running	production	traffic.	It	almost	goes	without	saying
that	all	deployments	to	production	servers	should	be	monitored	carefully,	both	in	the	canary
and	production	deployment	phases.	(For	more	information	on	deployment	pipelines,	see
Chapter	3,	Stability	and	Reliability.)

Once	the	key	metrics	for	a	microservice	have	been	identified,	the	next	step	is	to	capture	the
metrics	emitted	by	your	service.	Capture	them,	and	then	log	them,	graph	them,	and	alert	on
them.	We’ll	cover	each	of	these	steps	in	the	following	sections.



SUMMARY	OF	KEY	METRICS

Host	and	infrastructure	key	metrics:

CPU

RAM

Threads

File	descriptors

Database	connections

Microservice	key	metrics:

Language-specific	metrics

Availability

SLA

Latency

Endpoint	success

Endpoint	responses

Endpoint	response	times

Clients

Errors	and	exceptions

Dependencies



Logging
Logging	is	the	first	component	of	production-ready	monitoring.	It	begins	and	belongs	in	the
codebase	of	each	microservice,	nestled	deep	within	the	code	of	each	service,	capturing	all	of
the	information	necessary	to	describe	the	state	of	the	microservice.	In	fact,	describing	the	state
of	the	microservice	at	any	given	time	in	the	recent	past	is	the	ultimate	goal	of	logging.

One	of	the	benefits	of	microservice	architecture	is	the	freedom	it	gives	developers	to	deploy
new	features	and	code	changes	frequently,	and	one	of	the	consequences	of	this	newfound
developer	freedom	and	increased	development	velocity	is	that	the	microservice	is	always
changing.	In	most	cases,	the	service	will	not	be	the	same	service	it	was	12	hours	ago,	let	alone
several	days	ago,	and	reproducing	any	problems	will	be	impossible.	When	faced	with	a
problem,	often	the	only	way	to	determine	the	root	cause	of	an	incident	or	outage	is	to	comb
through	the	logs,	discover	the	state	of	the	microservice	at	the	time	of	the	outage,	and	figure
out	why	the	service	failed	in	that	state.	Logging	needs	to	be	such	that	developers	can
determine	from	the	logs	exactly	what	went	wrong	and	where	things	fell	apart.





LOGGING	WITHOUT	MICROSERVICE	VERSIONING
Microservice	versioning	is	often	discouraged	because	it	can	lead	to	other	(client)	services	pinning	to	specific
versions	of	a	microservice	that	may	not	be	the	best	or	most	updated	version	of	the	microservice.	Without
versioning,	determining	the	state	of	a	microservice	when	a	failure	or	outage	occurred	can	be	difficult,	but	thorough
logging	can	prevent	this	from	becoming	a	problem:	if	the	logging	is	good	enough	that	state	of	a	microservice	at
the	time	of	an	outage	can	be	sufficiently	known	and	understood,	the	lack	of	versioning	ceases	to	be	a	hindrance	to
quick	and	effective	mitigation	and	resolution.

Determining	precisely	what	to	log	is	specific	to	each	microservice.	The	best	guidance	on
determining	what	needs	to	be	logged	is,	somewhat	unfortunately,	necessarily	vague:	log
whatever	information	is	essential	to	describing	the	state	of	the	service	at	a	given	time.	Luckily,
we	can	narrow	down	which	information	is	necessary	by	restricting	our	logging	to	whatever
can	be	contained	in	the	code	of	the	service.	Host-level	and	infrastructure-level	information
won’t	(and	shouldn’t)	be	logged	by	the	application	itself,	but	by	services	and	tools	running	the
application	platform.	Some	microservice-level	key	metrics	and	information,	like	hashed	user
IDs	and	request	and	response	details	can	and	should	be	located	in	the	microservice’s	logs.

There	are,	of	course,	some	things	that	should	never,	ever	be	logged.	Logs	should	never
contain	identifying	information,	such	as	names	of	customers,	Social	Security	numbers,	and
other	private	data.	They	should	never	contain	information	that	could	present	a	security	risk,
such	as	passwords,	access	keys,	or	secrets.	In	most	cases,	even	seemingly	innocuous	things
like	user	IDs	and	usernames	should	not	be	logged	unless	encrypted.

At	times,	logging	at	the	individual	microservice	level	will	not	be	enough.	As	we’ve	seen
throughout	this	book,	microservices	do	not	live	alone,	but	within	complex	chains	of	clients
and	dependencies	within	the	microservice	ecosystem.	While	developers	can	try	their	best	to
log	and	monitor	everything	important	and	relevant	to	their	service,	tracking	and	logging
requests	and	responses	throughout	the	entire	client	and	dependency	chains	from	end-to-end
can	illuminate	important	information	about	the	system	that	would	otherwise	go	unknown
(such	as	total	latency	and	availability	of	the	stack).	To	make	this	information	accessible	and
visible,	building	a	production-ready	microservice	ecosystem	requires	tracing	each	request
through	the	entire	stack.

The	reader	might	have	noticed	at	this	point	that	it	appears	that	a	lot	of	information	needs	to	be
logged.	Logs	are	data,	and	logging	is	expensive:	they	are	expensive	to	store,	they	are
expensive	to	access,	and	both	storing	and	accessing	logs	comes	with	the	additional	cost
associated	with	making	expensive	calls	over	the	network.	The	cost	of	storing	logs	may	not
seem	like	much	for	an	individual	microservice,	but	if	the	logging	needs	of	all	the
microservices	within	a	microservice	ecosystem	are	added	together,	the	cost	is	rather	high.



LOGS	AND	DEBUGGING
Avoid	adding	debugging	logs	in	code	that	will	be	deployed	to	production	—	such	logs	are	very	costly.	If	any
logs	are	added	specifically	for	the	purpose	of	debugging,	developers	should	take	great	care	to	ensure	that	any
branch	or	build	containing	these	additional	logs	does	not	ever	touch	production.

Logging	needs	to	be	scalable,	it	needs	to	be	available,	and	it	needs	to	be	easily	accessible	and
searchable.	To	keep	the	cost	of	logs	down	and	to	ensure	scalability	and	high	availability,	it’s
often	necessary	to	impose	per-service	logging	quotas	along	with	limits	and	standards	on	what
information	can	be	logged,	how	many	logs	each	microservice	can	store,	and	how	long	the
logs	will	be	stored	before	being	deleted.



Dashboards
Every	microservice	must	have	at	least	one	dashboard	where	all	key	metrics	(such	as	hardware
utilization,	database	connections,	availability,	latency,	responses,	and	the	status	of	API
endpoints)	are	collected	and	displayed.	A	dashboard	is	a	graphical	display	that	is	updated	in
real	time	to	reflect	all	the	most	important	information	about	a	microservice.	Dashboards
should	be	easily	accessible,	centralized,	and	standardized	across	the	microservice	ecosystem.

Dashboards	should	be	easy	to	interpret	so	that	an	outsider	can	quickly	determine	the	health	of
the	microservice:	anyone	should	be	able	to	look	at	the	dashboard	and	know	immediately
whether	or	not	the	microservice	is	working	correctly.	This	requires	striking	a	balance
between	overloading	a	viewer	with	information	(which	would	render	the	dashboard
effectively	useless)	and	not	displaying	enough	information	(which	would	also	make	the
dashboard	useless):	only	the	necessary	minimum	of	information	about	key	metrics	should	be
displayed.

A	dashboard	should	also	serve	as	an	accurate	reflection	of	the	overall	quality	of	monitoring
of	the	entire	microservice.	Any	key	metric	that	is	alerted	on	should	be	included	in	the
dashboard	(we	will	cover	this	in	the	next	section):	the	exclusion	of	any	key	metric	in	the
dashboard	will	reflect	poor	monitoring	of	the	service,	while	the	inclusion	of	metrics	that	are
not	necessary	will	reflect	a	neglect	of	alerting	(and,	consequently,	monitoring)	best	practices.

There	are	several	exceptions	to	the	rule	against	inclusion	of	nonkey	metrics.	In	addition	to
key	metrics,	information	about	each	phase	of	the	deployment	pipeline	should	be	displayed,
though	not	necessarily	within	the	same	dashboard.	Developers	working	on	microservices	that
require	monitoring	a	large	number	of	key	metrics	may	opt	to	set	up	separate	dashboards	for
each	deployment	phase	(one	for	staging,	one	for	canary,	and	one	for	production)	to
accurately	reflect	the	health	of	the	microservice	at	each	deployment	phase:	since	different
builds	will	be	running	on	the	deployment	phases	simultaneously,	accurately	reflecting	the
health	of	the	microservice	in	a	dashboard	might	require	approaching	dashboard	design	with
the	goal	of	reflecting	the	health	of	the	microservice	at	a	particular	deployment	phase	(treating
them	almost	as	different	microservices,	or	at	least	as	different	instantiations	of	a
microservice).





DASHBOARDS	AND	OUTAGE	DETECTION
Even	though	dashboards	can	illuminate	anomalies	and	negative	trends	of	a	microservice’s	key	metrics,
developers	should	never	need	to	watch	a	microservice’s	dashboard	in	order	to	detect	incidents	and	outages.
Doing	so	is	an	anti-pattern	that	leads	to	deficiencies	in	alerting	and	overall	monitoring.

To	assist	in	determining	problems	introduced	by	new	deployments,	it	helps	to	include
information	about	when	a	deployment	occurred	in	the	dashboard.	The	most	effective	and
useful	way	to	accomplish	this	is	to	make	sure	that	deployment	times	are	shown	within	the
graphs	of	each	key	metric.	Doing	so	allows	developers	to	quickly	check	graphs	after	each
deployment	to	see	if	any	strange	patterns	emerge	in	any	of	the	key	metrics.

Well-designed	dashboards	also	give	developers	an	easy,	visual	way	to	detect	anomalies	and
determine	alerting	thresholds.	Very	slight	or	gradual	changes	or	disturbances	in	key	metrics
run	the	risk	of	not	being	caught	by	alerting,	but	a	careful	look	at	an	accurate	dashboard	can
illuminate	anomalies	that	would	otherwise	go	undetected.	Alerting	thresholds,	which	we	will
cover	in	the	next	section,	are	notoriously	difficult	to	determine,	but	can	be	set	appropriately
when	historical	data	on	the	dashboard	is	examined:	developers	can	see	normal	patterns	in	key
metrics,	view	spikes	in	metrics	that	occurred	with	outages	(or	led	to	outages)	in	the	past,	and
then	set	thresholds	accordingly.



Alerting
The	third	component	of	monitoring	a	production-ready	microservice	is	real-time	alerting.
The	detection	of	failures,	as	well	as	the	detection	of	changes	within	key	metrics	that	could
lead	to	a	failure,	is	accomplished	through	alerting.	To	ensure	this,	all	key	metrics	—	host-
level	metrics,	infrastructure	metrics,	and	microservice-specific	metrics	—	should	be	alerted
on,	with	alerts	set	at	various	thresholds.	Effective	and	actionable	alerting	is	essential	to
preserving	the	availability	of	a	microservice	and	preventing	downtime.



Setting	up	Effective	Alerting
Alerts	must	be	set	up	for	all	key	metrics.	Any	change	in	a	key	metric	at	the	host	level,
infrastructure	level,	or	microservice	level	that	could	lead	to	an	outage,	cause	a	spike	in
latency,	or	somehow	harm	the	availability	of	the	microservice	should	trigger	an	alert.
Importantly,	alerts	should	also	be	triggered	whenever	a	key	metric	is	not	seen.

All	alerts	should	be	useful:	they	should	be	defined	by	good,	signal-providing	thresholds.
Three	types	of	thresholds	should	be	set	for	each	key	metric,	and	have	both	upper	and	lower
bounds:	normal,	warning,	and	critical.	Normal	thresholds	reflect	the	usual,	appropriate	upper
and	lower	bounds	of	each	key	metric	and	shouldn’t	ever	trigger	an	alert.	Warning	thresholds
on	each	key	metric	will	trigger	alerts	when	there	is	a	deviation	from	the	norm	that	could	lead
to	a	problem	with	the	microservice;	warning	thresholds	should	be	set	such	that	they	will
trigger	alerts	before	any	deviations	from	the	norm	cause	an	outage	or	otherwise	negatively
affect	the	microservice.	Critical	thresholds	should	be	set	based	on	which	upper	and	lower
bounds	on	key	metrics	actually	cause	an	outage,	cause	latency	to	spike,	or	otherwise	hurt	a
microservice’s	availability.	In	an	ideal	world,	warning	thresholds	should	trigger	alerts	that
lead	to	quick	detection,	mitigation,	and	resolution	before	any	critical	thresholds	are	reached.
In	each	category,	thresholds	should	be	high	enough	to	avoid	noise,	but	low	enough	to	catch
any	and	all	real	problems	with	key	metrics.





DETERMINING	THRESHOLDS	EARLY	IN	THE	LIFECYCLE	OF	A
MICROSERVICE

Thresholds	for	key	metrics	can	be	very	difficult	to	set	without	historical	data.	Any	thresholds	set	early	in	a
microservice’s	lifecycle	run	the	risk	of	either	being	useless	or	triggering	too	many	alerts.	To	determine	the
appropriate	thresholds	for	a	new	microservice	(or	even	an	old	one),	developers	can	run	load	testing	on	the
microservice	to	gauge	where	the	thresholds	should	lie.	Running	“normal”	traffic	loads	through	the	microservice
can	determine	the	normal	thresholds,	while	running	larger-than-expected	traffic	loads	can	help	determine	warning
and	critical	thresholds.

All	alerts	need	to	be	actionable.	Nonactionable	alerts	are	those	that	are	triggered	and	then
resolved	(or	ignored)	by	the	developer(s)	on	call	for	the	microservice	because	they	are	not
important,	not	relevant,	do	not	signify	that	anything	is	wrong	with	the	microservice,	or	alert
on	a	problem	that	cannot	be	resolved	by	the	developer(s).	Any	alert	that	cannot	be
immediately	acted	on	by	the	on-call	developer(s)	should	be	removed	from	the	pool	of	alerts,
reassigned	to	the	relevant	on-call	rotation,	or	(if	possible)	changed	so	that	it	becomes
actionable.

Some	of	the	key	microservice	metrics	run	the	risk	of	being	nonactionable.	For	example,
alerting	on	the	availability	of	dependencies	can	easily	lead	to	nonactionable	alerts	if
dependency	outages,	increases	in	dependency	latency,	or	dependency	downtime	do	not	require
any	action	to	be	taken	by	their	client(s).	If	no	action	needs	to	be	taken,	then	the	thresholds
should	be	set	appropriately,	or	in	more	extreme	cases,	no	alerts	should	be	set	on	dependencies
at	all.	However,	if	any	action	at	all	should	be	taken,	even	something	as	small	as	contacting	the
dependency’s	on-call	or	development	team	in	order	to	alert	them	to	the	issue	and/or
coordinate	mitigation	and	resolution,	then	an	alert	should	be	triggered.



Handling	Alerts
Once	an	alert	has	been	triggered,	it	needs	to	be	handled	quickly	and	effectively.	The	root
cause	of	the	triggered	alert	should	be	mitigated	and	resolved.	To	quickly	and	effectively
handle	alerts,	there	are	several	steps	that	can	be	taken.

The	first	step	is	to	create	step-by-step	instructions	for	each	known	alert	that	detail	how	to
triage,	mitigate,	and	resolve	each	alert.	These	step-by-step	alert	instructions	should	live	within
an	on-call	runbook	within	the	centralized	documentation	of	each	microservice,	making	them
easily	accessible	to	anyone	who	is	on	call	for	the	microservice	(more	details	on	runbooks	can
be	found	in	Chapter	7,	Documentation	and	Understanding).	Runbooks	are	crucial	to	the
monitoring	of	a	microservice:	they	allow	any	on-call	developer	to	have	step-by-step
instructions	on	how	to	mitigate	and	resolve	the	root	causes	of	each	alert.	Since	each	alert	is
tied	to	a	deviation	in	a	key	metric,	runbooks	can	be	written	so	that	they	address	each	key
metric,	known	causes	of	deviations	from	the	norm,	and	how	to	go	about	debugging	the
problem.

Two	types	of	on-call	runbooks	should	be	created.	The	first	are	runbooks	for	host-level	and
infrastructure-level	alerts	that	should	be	shared	between	the	whole	engineering	organization
—	these	should	be	written	for	every	key	host-level	and	infrastructure-level	metric.	The
second	are	on-call	runbooks	for	specific	microservices	that	have	step-by-step	instructions
regarding	microservice-specific	alerts	triggered	by	changes	in	key	metrics;	for	example,	a
spike	in	latency	should	trigger	an	alert,	and	there	should	be	step-by-step	instructions	in	the	on-
call	runbook	that	clearly	document	how	to	debug,	mitigate,	and	resolve	spikes	in	the
microservice’s	latency.

The	second	step	is	to	identify	alerting	anti-patterns.	If	the	microservice	on-call	rotation	is
overwhelmed	by	alerts	yet	the	microservice	appears	to	work	as	expected,	then	any	alerts	that
are	seen	more	than	once	but	that	can	be	easily	mitigated	and/or	resolved	should	be	automated
away.	That	is,	build	the	mitigation	and/or	resolution	steps	into	the	microservice	itself.	This
holds	for	every	alert,	and	writing	step-by-step	instructions	for	alerts	within	on-call	runbooks
allows	executing	on	this	strategy	to	be	rather	effective.	In	fact,	any	alert	that,	once	triggered,
requires	a	simple	set	of	steps	to	be	taken	in	order	to	be	mitigated	and	resolved,	can	be	easily
automated	away.	Once	this	level	of	production-ready	monitoring	has	been	established,	a
microservice	should	never	experience	the	same	exact	problem	twice.



On-Call	Rotations
In	a	microservice	ecosystem,	the	development	teams	themselves	are	responsible	for	the
availability	of	their	microservices.	Where	monitoring	is	concerned,	this	means	that
developers	need	to	be	on	call	for	their	own	microservices.	The	goal	of	each	developer	on-
call	for	a	microservice	needs	to	be	clear:	they	are	to	detect,	mitigate,	and	resolve	any	issue
that	arises	with	the	microservice	during	their	on	call	shift	before	the	issue	causes	an	outage
for	their	microservice	or	impacts	the	business	itself.

In	some	larger	engineering	organizations,	site	reliability	engineers,	DevOps,	or	other
operations	engineers	may	take	on	the	responsibility	for	monitoring	and	on	call,	but	this
requires	each	microservice	to	be	relatively	stable	and	reliable	before	the	on-call
responsibilities	can	be	handed	off	to	another	team.	In	most	microservice	ecosystems,
microservices	rarely	reach	this	high	level	of	stability	because,	as	we’ve	seen	throughout	the
previous	chapters,	microservices	are	constantly	changing.	In	a	microservice	ecosystem,
developers	need	to	bear	the	responsibility	of	monitoring	the	code	that	they	deploy.

Designing	good	on-call	rotations	is	crucial	and	requires	the	involvement	of	the	entire	team.
To	prevent	burnout,	on-call	rotations	should	be	both	brief	and	shared:	no	fewer	than	two
developers	should	ever	be	on	call	at	one	time,	and	on-call	shifts	should	last	no	longer	than
one	week	and	be	spaced	no	more	frequently	than	one	month	apart.

The	on-call	rotations	of	each	microservice	should	be	internally	publicized	and	easily
accessible.	If	a	microservice	team	is	experiencing	issues	with	one	of	their	dependencies,	they
should	be	able	to	track	down	the	on-call	engineers	for	the	microservice	and	contact	them	very
quickly.	Hosting	this	information	in	a	centralized	place	helps	to	make	developers	more
effective	in	triaging	problems	and	preventing	outages.

Developing	standardized	on-call	procedures	across	an	engineering	organization	will	go	a
long	way	toward	building	a	sustainable	microservice	ecosystem.	Developers	should	be
trained	about	how	to	approach	their	on-call	shifts,	be	made	aware	of	on-call	best	practices,
and	be	ramped	up	for	joining	the	on-call	rotation	very	quickly.	Standardizing	this	process	and
making	on-call	expectations	completely	clear	to	every	developer	will	prevent	the	burnout,
confusion,	and	frustration	that	usually	accompanies	any	mention	of	joining	an	on-call
rotation.



Evaluate	Your	Microservice
Now	that	you	have	a	better	understanding	of	monitoring,	use	the	following	list	of	questions	to
assess	the	production-readiness	of	your	microservice(s)	and	microservice	ecosystem.	The
questions	are	organized	by	topic,	and	correspond	to	the	sections	within	this	chapter.



Key	Metrics
What	are	this	microservice’s	key	metrics?

What	are	the	host	and	infrastructure	metrics?

What	are	the	microservice-level	metrics?

Are	all	the	microservice’s	key	metrics	monitored?



Logging
What	information	does	this	microservice	need	to	log?

Does	this	microservice	log	all	important	requests?

Does	the	logging	accurately	reflect	the	state	of	the	microservice	at	any	given	time?

Is	this	logging	solution	cost-effective	and	scalable?



Dashboards
Does	this	microservice	have	a	dashboard?

Is	the	dashboard	easy	to	interpret?	Are	all	key	metrics	displayed	on	the	dashboard?

Can	I	determine	whether	or	not	this	microservice	is	working	correctly	by	looking	at	the
dashboard?



Alerting
Is	there	an	alert	for	every	key	metric?

Are	all	alerts	defined	by	good,	signal-providing	thresholds?

Are	alert	thresholds	set	appropriately	so	that	alerts	will	fire	before	an	outage	occurs?

Are	all	alerts	actionable?

Are	there	step-by-step	triage,	mitigation,	and	resolution	instructions	for	each	alert	in	the
on-call	runbook?



On-Call	Rotations
Is	there	a	dedicated	on-call	rotation	responsible	for	monitoring	this	microservice?

Is	there	a	minimum	of	two	developers	on	each	on-call	shift?

Are	there	standardized	on-call	procedures	across	the	engineering	organization?



Chapter	7.	Documentation	and
Understanding

A	production-ready	microservice	is	documented	and	understood.	Documentation	and
organizational	understanding	increase	developer	velocity	while	mitigating	two	of	the	most
significant	trade-offs	that	come	with	the	adoption	of	microservice	architecture:	organizational
sprawl	and	technical	debt.	This	chapter	explores	the	essential	elements	of	documenting	and
understanding	a	microservice,	including	how	to	build	comprehensive	and	useful
documentation,	how	to	increase	microservice	understanding	at	every	level	of	the
microservice	ecosystem,	and	how	to	implement	production-readiness	throughout	an
engineering	organization.



Principles	of	Microservice	Documentation	and	Understanding
I’m	going	to	open	this	final	chapter	on	the	last	principle	of	microservice	standardization	with
a	famous	story	from	Russian	literature.	While	it	may	seem	rather	unorthodox	to	quote
Dostoyevsky	in	a	book	on	software	architecture,	the	character	Grushenka	in	The	Brothers
Karamazov	captures	so	perfectly	what	I	believe	to	be	the	key	of	microservice	documentation
and	understanding:	“Just	know	one	thing,	Rakitka,	I	may	be	wicked,	but	still	I	gave	an	onion.”

My	favorite	part	of	Dostoyevsky’s	brilliant	novel	is	a	tale	told	by	the	character	Grushenka
about	an	old	woman	and	an	onion.	The	tale	goes	something	like	this:	there	was	once	an	old,
bitter	woman	who	was	very	selfish	and	heartless.	One	day,	she	happened	upon	a	beggar,	and
for	some	reason,	felt	a	great	deal	of	pity.	She	wanted	to	give	something	to	the	beggar,	but	all
she	had	was	an	onion,	so	she	gave	her	onion	to	the	beggar.	The	old	woman	eventually	died,
and	thanks	to	her	bitterness	and	coldness	of	heart,	ended	up	in	hell.	After	she	had	suffered	for
quite	some	time,	an	angel	came	to	save	her,	for	God	had	remembered	her	one	selfless	deed	in
life,	and	wanted	to	extend	the	same	kindness	in	return.	The	angel	reached	out	to	her	with	an
onion	in	his	hand.	The	old	woman	grabbed	the	onion,	but	to	her	dismay,	the	other	sinners
around	her	reached	for	the	onion	too.	Her	cold,	bitter	nature	kicked	in,	and	she	tried	to	fight
them	off,	not	wanting	any	of	them	to	have	any	piece	of	the	onion,	and	sadly,	as	she	tried	to
claw	the	onion	away	from	them,	the	onion	split	into	many	layers	and	she	and	the	other	sinners
fell	back	into	hell.

It’s	not	the	most	heartwarming	tale,	but	there’s	a	moral	to	Grushenka’s	story	that	I	have	found
remarkably	applicable	to	the	practice	of	microservice	documentation:	always	give	an	onion.

The	importance	of	thorough,	updated	documentation	for	every	microservice	cannot	be
emphasized	enough.	Ask	developers	working	in	a	microservice	ecosystem	what	their	main
concerns	are,	and	they’ll	rattle	off	a	list	of	features	still	to	be	implemented,	bugs	to	be	fixed,
dependencies	that	are	causing	trouble,	and	things	that	they	don’t	understand	about	their	own
service	and	the	dependencies	they	rely	on.	When	asked	to	go	into	greater	detail	about	the	latter
two	things,	they	tend	to	give	similar	answers:	they	don’t	understand	how	it	works,	it’s	a	black
box,	and	the	documentation	is	completely	useless.

Poor	documentation	of	dependencies	and	internal	tools	slows	developers	down	and	affects
their	ability	to	make	their	own	services	production-ready.	It	prevents	them	from	using
dependencies	and	internal	tools	correctly	and	wastes	countless	engineering	hours,	because
sometimes	the	only	way	to	figure	out	what	a	service	or	tool	does	(without	proper
documentation)	is	to	reverse-engineer	it	until	you	understand	how	it	works.

Poor	documentation	of	a	service	also	hurts	the	productivity	of	the	developers	who	are
contributing	to	it.	For	example,	the	lack	of	runbooks	for	an	on-call	shift	means	whoever	is	on
call	will	need	to	figure	out	each	problem	from	square	one	every	single	time.	Without	an
onboarding	guide,	each	new	developer	working	on	the	service	will	need	to	start	from	scratch
to	understand	how	the	service	works.	Single	points	of	failure	and	problems	with	the	service



will	go	unnoticed	until	they	cause	an	outage.	New	features	added	to	the	service	will	often	miss
the	big	picture	of	how	the	service	actually	works.

The	goal	of	good,	production-ready	documentation	is	to	create	and	maintain	a	centralized
repository	of	knowledge	about	the	service.	Sharing	that	knowledge	has	two	components:	the
bare	facts	about	the	service,	and	organizational	understanding	of	what	the	service	does	and
where	it	fits	into	the	organization	as	a	whole.	The	problem	of	poor	documentation	can	then	be
divided	into	two	subproblems:	lack	of	documentation	(the	facts)	and	lack	of	understanding.
Solving	these	two	subproblems	requires	standardizing	documentation	for	every	microservice
and	putting	organizational	structures	into	place	for	sharing	microservice	understanding.

Grushenka’s	tale	is	the	golden	rule	of	microservice	documentation:	always	give	an	onion.
Give	an	onion	for	your	sake,	for	the	sake	of	fellow	developers	working	on	your	service,	and
for	the	sake	of	the	developers	whose	services	depend	on	yours.

A	PRODUCTION-READY	SERVICE	IS 	DOCUMENTED	AND	UNDERSTOOD

It	has	comprehensive	documentation.

Its	documentation	is	updated	regularly.

Its	documentation	contains	a	description	of	the	microservice;	an	architecture	diagram;	contact	and	on-call
information;	links	to	important	information;	an	onboarding	and	development	guide;	information	about	the	service’s
request	flow(s),	endpoints,	and	dependencies;	an	on-call	runbook;	and	answers	to	frequently	asked	questions.

It	is	well	understood	at	the	developer,	team,	and	organizational	levels.

It	is	held	to	a	set	of	production-readiness	standards	and	meets	the	associated	requirements.

Its	architecture	is	reviewed	and	audited	frequently.



Microservice	Documentation
The	documentation	for	all	microservices	in	an	engineering	organization	should	be	stored	in	a
centralized,	shared,	and	easily	accessible	place.	Any	developer	on	any	team	should	be	able	to
find	the	documentation	for	every	microservice	without	any	difficulty.	An	internal	website
containing	the	documentation	for	all	microservices	and	internal	tools	tends	to	be	the	best
medium	for	this.





READMES	AND	CODE	COMMENTS	ARE	NOT	DOCUMENTATION
Many	developers	limit	the	documentation	of	their	microservices	to	a	README	file	in	their	repository	or	to
comments	scattered	throughout	the	code.	While	having	a	README	is	essential,	and	all	microservice	code	should
contain	appropriate	comments,	this	is	not	production-ready	documentation	and	requires	that	developers	check	out
and	search	through	the	code.	Proper	documentation	is	stored	in	a	centralized	place	(like	a	website)	where	the
documentation	for	all	microservices	in	the	engineering	organization	lives.

The	documentation	should	be	updated	regularly.	Any	time	a	significant	change	is	made	to	the
service,	the	documentation	should	be	updated.	For	example,	if	a	new	API	endpoint	is	added,
information	about	the	endpoint	must	be	added	to	the	documentation	as	well.	If	a	new	alert	is
added,	then	step-by-step	instructions	on	how	to	triage,	mitigate,	and	resolve	the	alert	should
also	be	added	to	the	service’s	on-call	runbook.	If	a	new	dependency	is	added,	then	information
about	that	dependency	should	be	added	to	the	documentation.	Always	give	an	onion.

The	best	way	to	accomplish	this	is	to	make	the	process	of	updating	documentation	part	of	the
development	workflow.	If	updating	documentation	is	seen	as	a	separate	task	aside	from	(and
secondary	to)	development,	then	it	will	never	get	done	and	will	become	part	of	the	technical
debt	of	the	service.	To	reduce	technical	debt,	developers	should	be	encouraged	(or,	if	need	be,
required)	to	accompany	every	significant	code	change	with	an	update	to	the	documentation.





MAKE	UPDATING	DOCUMENTATION	PART	OF	THE
DEVELOPMENT	CYCLE

If	updating	and	improving	documentation	is	viewed	as	secondary	to	writing	code,	it	will	often	be	pushed	off	and
become	part	of	the	technical	debt	of	the	service.	To	avoid	this,	make	documentation	updates	and	improvements	a
required	part	of	the	development	cycle	of	the	service.

Documentation	should	be	both	comprehensive	and	useful.	It	should	contain	all	of	the	relevant
and	important	facts	about	the	service.	After	reading	through	the	documentation,	a	developer
should	know	how	to	develop	and	contribute	to	the	service;	the	architecture	of	the	service;	the
contact	and	on-call	information	for	the	service;	how	the	service	works	(request	flows,
endpoints,	dependencies,	etc.);	how	to	triage,	mitigate,	and	fix	incidents	and	outages	as	well	as
resolve	alerts	generated	by	the	service;	and	answers	to	frequently	asked	questions	about	the
service.

Most	importantly,	documentation	should	be	written	clearly	and	should	be	easy	to	understand.
Jargon-heavy	documentation	is	useless,	documentation	that	is	overly	technical	and	doesn’t
explain	things	that	may	be	unique	to	the	service	is	also	useless,	as	is	documentation	that
doesn’t	go	into	any	significant	detail	at	all.	The	goal	in	writing	good,	clean,	and	clear
documentation	is	to	write	it	so	that	it	can	be	understood	by	any	developer,	manager,	product
manager,	or	executive	within	the	company.

Let’s	dive	a	little	bit	deeper	into	each	of	the	elements	of	production-ready	microservice
documentation.



Description
Each	microservice’s	documentation	should	begin	with	a	description	of	the	service.	It	should
be	short,	sweet,	and	to	the	point.	For	example,	if	there	is	a	microservice	called	receipt-sender
whose	purpose	is	to	send	a	receipt	after	a	customer	completes	an	order,	the	description	should
read:

Description:
After	a	customer	places	an	order,	receipt-sender	sends	a	receipt	to	the	customer	via	email.

This	is	essential	because	it	ensures	that	anyone	who	finds	the	documentation	will	know	what
role	the	microservice	plays	in	the	microservice	ecosystem.



Architecture	Diagram
The	description	of	the	service	should	be	followed	by	an	architecture	diagram.	This	diagram
should	detail	the	architecture	of	the	service,	including	its	components,	its	endpoints,	the
request	flow,	its	dependencies	(both	upstream	and	downstream),	and	information	about	any
databases	or	caches.	See	an	example	architecture	diagram	in	Figure	7-1.

Architecture	diagrams	are	essential	for	several	reasons.	It’s	nearly	impossible	to	understand
how	and	why	a	microservice	works	just	by	reading	through	the	code,	and	so	a	well-designed
architecture	diagram	is	an	easily	understandable	visual	description	and	summary	of	the
microservice.	These	diagrams	also	aid	developers	in	adding	new	features	by	abstracting	away
the	inner	workings	of	the	service	so	that	developers	can	see	where	and	how	new	features	will
(or	will	not)	fit.	Most	importantly,	they	illuminate	issues	and	problems	with	the	service	that
would	go	unnoticed	without	a	complete	visual	representation	of	its	architecture:	it’s	difficult
to	discover	a	service’s	points	of	failure	by	combing	through	lines	of	code,	but	they	tend	to
stick	out	like	sore	thumbs	in	an	accurate	architecture	diagram.

Figure	7-1.	Example	microservice	architecture	diagram



Contact	and	On-Call	Information
Chances	are,	anyone	looking	at	a	service’s	documentation	will	either	be	someone	on	the
service	team,	or	someone	on	a	different	team	who	is	experiencing	trouble	with	the	service	or
wants	to	know	how	the	service	works.	For	developers	in	the	second	group,	having	access	to
information	about	the	team	is	both	useful	and	necessary,	and	so	several	important	facts	should
be	included	in	a	contact	and	on-call	information	section	within	the	documentation.

This	section	should	include	the	names,	positions,	and	contact	information	of	everyone	on	the
team	(including	individual	contributors,	managers,	and	program/product	managers).	This
makes	it	easy	for	developers	on	other	teams	to	quickly	determine	who	they	should	contact	if
they	experience	a	problem	with	the	service	or	have	a	question	about	it.	This	information	is
useful,	for	example,	when	a	developer	is	experiencing	problems	with	one	of	their
dependencies:	knowing	who	to	contact	and	what	their	role	is	on	the	team	makes	cross-team
communication	easy	and	efficient.

Adding	information	about	the	on-call	rotation	(and	keeping	it	updated	so	that	it	reflects	who	is
on	call	for	the	service	at	any	given	time)	will	ensure	that	people	will	know	exactly	who	to
contact	for	general	problems	or	emergencies:	the	engineer	who	is	on	call	for	the	service.



Links
Documentation	needs	to	be	a	centralized	resource	for	all	the	information	about	a
microservice.	In	order	for	this	to	be	true,	the	documentation	needs	to	contain	links	to	the
repository	(so	that	developers	can	easily	check	out	the	code),	a	link	to	the	dashboard,	a	link	to
the	original	RFC	for	the	microservice,	and	a	link	to	the	most	recent	architecture	review	slides.
Any	extra	information	about	other	microservices,	technologies	used	by	the	microservice,	etc.,
that	may	be	useful	to	the	developer	should	be	included	in	a	links	section	of	the	documentation.



Onboarding	and	Development	Guide
The	purpose	of	an	onboarding	and	development	section	is	to	make	it	easy	for	a	new	developer
to	onboard	to	the	team,	begin	contributing	code,	add	features	to	the	microservice,	and
introduce	new	changes	into	the	deployment	pipeline.

The	first	part	of	this	section	should	be	a	step-by-step	guide	to	setting	up	the	service.	It	should
walk	a	developer	through	checking	out	the	code,	setting	up	the	environment,	starting	the
service,	and	verifying	that	the	service	is	working	correctly	(including	all	commands	or
scripts	that	need	to	be	run	in	order	to	accomplish	this).

The	second	part	should	guide	the	developer	through	the	development	cycle	and	deployment
pipeline	of	the	service	(details	of	a	production-ready	development	cycle	and	deployment
pipeline	can	be	found	in	“The	Development	Cycle”	and	“The	Deployment	Pipeline”).	This
should	include	the	technical	details	(e.g.,	commands	that	must	be	run,	along	with	several
examples)	of	each	of	the	steps:	how	to	check	out	the	code,	how	to	make	a	change	to	the	code,
how	to	write	a	unit	test	for	the	change	(if	necessary),	how	to	run	the	required	tests,	how	to
commit	their	changes,	how	to	send	changes	for	code	review,	how	to	make	sure	that	the
service	is	built	and	released	correctly,	and	then	how	to	deploy	(as	well	as	how	the	deployment
pipeline	is	set	up	for	the	service).



Request	Flows,	Endpoints,	and	Dependencies
The	documentation	should	also	contain	critical	information	about	request	flows,	endpoints,
and	dependencies	of	the	microservice.

Request	flow	documentation	can	consist	of	a	diagram	of	the	request	flows	of	the	application.
This	can	be	the	architecture	diagram,	if	the	request	flow	is	detailed	appropriately	within	the
architecture	diagram.	Any	diagram	should	be	accompanied	by	a	qualitative	description	of	the
types	of	requests	that	are	made	to	the	microservice	and	how	they	are	handled.

This	is	also	the	place	to	document	all	API	endpoints	of	the	service.	A	bulleted	list	of	the
endpoints	with	their	names	and	a	qualitative	description	of	each	along	with	their	responses	is
usually	sufficient.	It	must	be	clear	and	understandable	enough	that	another	developer	working
on	a	different	team	could	read	the	descriptions	of	your	service’s	API	endpoints	and	treat	your
microservice	as	a	black	box,	hitting	the	endpoints	successfully	and	receiving	the	expected
responses.

The	third	element	of	this	section	is	information	about	the	service’s	dependencies.	List	the
dependencies,	the	relevant	endpoints	of	these	dependencies,	and	any	requests	the	service
makes	to	them,	along	with	information	about	their	SLAs,	any	alternatives/caching/backups	in
place	in	case	of	failure,	and	links	to	their	documentation	and	dashboards.



On-Call	Runbooks
As	covered	in	Chapter	6,	Monitoring,	every	single	alert	should	be	included	in	an	on-call
runbook	and	accompanied	by	step-by-step	instructions	describing	how	it	should	be	triaged,
mitigated,	and	resolved.	The	on-call	runbook	should	be	kept	in	the	centralized	documentation
of	the	service,	in	an	on-call	runbook	section,	along	with	both	general	and	detailed	guidance	on
troubleshooting	and	debugging	new	errors.

A	good	runbook	will	begin	with	any	general	on-call	requirements	and	procedures,	and	then
contain	a	complete	list	of	the	service’s	alerts.	For	each	alert,	the	on-call	runbook	should
include	the	alert	name,	a	description	of	the	alert,	a	description	of	the	problem,	and	a	step-by-
step	guide	on	how	to	triage	the	alert,	mitigate	it,	and	then	resolve	it.	It	will	also	describe	any
organizational	implications	of	the	alert:	the	severity	of	the	problem,	whether	or	not	the	alert
signifies	an	outage,	and	information	about	how	to	communicate	any	incidents	and	outages	to
the	team,	and	if	necessary,	to	the	rest	of	the	engineering	organization.





WRITE	ON-CALL	RUNBOOKS	THAT	SLEEPY	DEVELOPERS	CAN
UNDERSTAND	AT	2	A.M.

Developers	on	call	for	a	service	may	(or,	more	realistically,	will)	be	paged	at	any	hour	of	the	day,	including	late
at	night	or	very	early	in	the	morning.	Write	your	on-call	runbooks	so	that	a	half-asleep	developer	will	be	able	to
follow	along	without	any	difficulty.

Writing	good,	clear,	easily	understandable	on-call	runbooks	is	extremely	important.	They
should	be	written	so	that	any	developer	who	is	on	call	for	the	service	or	who	is	experiencing
trouble	with	the	service	will	be	able	to	act	quickly,	diagnose	the	problem,	mitigate	the
incident,	and	resolve,	all	in	an	extremely	small	amount	of	time	in	order	to	keep	the	downtime
of	the	service	very,	very	low.

Not	every	alert	will	be	easily	mitigated	or	resolved,	and	most	outages	(aside	from	those
caused	by	code	bugs	introduced	by	a	recent	deployment)	haven’t	been	seen	before.	To	equip
developers	to	handle	these	problems	wisely,	add	a	general	troubleshooting	and	debugging
section	to	the	on-call	runbook	in	the	documentation	that	is	filled	with	tips	on	how	to	approach
new	problems	in	a	strategic	and	methodical	way.



FAQ
An	often	forgotten	element	of	documentation	is	a	section	devoted	to	answering	common
questions	about	the	service.	Having	a	“Frequently	Asked	Questions”	section	takes	the	burden
of	answering	common	questions	off	of	whomever	is	on	call	and,	consequently,	the	rest	of	the
team.

There	are	two	categories	of	questions	that	should	be	answered	here.	The	first	are	questions
that	developers	on	other	teams	ask	about	the	service.	The	way	to	approach	answering	these
questions	in	an	FAQ	setting	is	simple:	if	someone	asks	you	a	question,	and	you	think	it	might
be	asked	again,	add	it	to	the	FAQ.	The	second	category	of	questions	are	those	that	come	from
team	members,	and	the	same	approach	can	be	taken	here:	if	there’s	a	question	about	how	or
why	or	when	to	do	something	related	to	the	service,	add	it	to	the	FAQ.

SUMMARY:	ELEMENTS	OF	PRODUCTION-READY	MICROSERVICE	DOCUMENTATION

Production-ready	microservice	documentation	includes:

A	description	of	the	microservice	and	its	place	in	the	overall	microservice	ecosystem	and	the	business

An	architecture	diagram	detailing	the	architecture	of	the	service	and	its	clients	and	dependencies	at	a	high	level	of
abstraction

Contact	and	on-call	information	about	the	microservice’s	development	team

Links	to	the	repository,	dashboard(s),	the	RFC	for	the	service,	architecture	reviews,	and	any	other	relevant	or	useful
information

An	onboarding	and	development	guide	containing	details	about	the	development	process,	the	deployment	pipeline,
and	any	other	information	that	will	be	useful	to	developers	who	contribute	code	to	the	service

Detailed	information	about	the	microservice’s	request	flows,	SLA,	production-readiness	status,	API	endpoints,
important	clients,	and	dependencies

An	on-call	runbook	containing	general	incident	and	outage	response	procedures,	step-by-step	instructions	on	how
to	triage,	mitigate,	and	resolve	each	alert,	and	a	general	troubleshooting	and	debugging	section

A	“Frequently	Asked	Questions”	(FAQ)	section



Microservice	Understanding
Centralized,	updated,	and	thorough	documentation	is	only	one	part	of	production-ready
microservice	documentation	and	understanding.	Aside	from	writing	and	updating
documentation,	organizational	processes	should	be	put	into	place	to	ensure	that	microservices
are	well	understood	not	only	by	the	individual	development	teams	but	by	the	organization	as	a
whole.	In	many	ways,	a	well-understood	microservice	is	one	that	meets	every	production-
readiness	requirement.

Microservice	understanding	is	truly	indispensable	to	the	developer,	the	team,	and	the
organization.	While	the	notion	of	“understanding”	a	microservice	may	seem	too	vague	to	be
useful	at	first	glance,	the	concept	of	a	production-ready	microservice	can	be	used	to	guide
and	define	microservice	understanding	at	every	level.	Armed	with	production-readiness
standards	and	requirements,	along	with	a	realistic	understanding	of	organizational	complexity
and	the	challenges	that	microservice	architecture	brings	to	the	arena,	developers	can	quantify
their	understanding	of	each	microservice	and	(as	I’ve	urged	the	reader	earlier	in	this	chapter)
can	give	an	onion	to	the	rest	of	the	organization.

For	the	individual	developer,	this	translates	to	being	able	to	answer	questions	about	her
microservice.	For	example,	when	asked	if	her	microservice	is	scalable,	she	will	be	able	to
look	at	a	list	of	scalability	requirements	and	confidently	answer	“Yes,”	“No,”	or	something	in
between	(e.g.,	“It	meets	requirements	x	and	z,	but	y	has	not	yet	been	implemented”).	Likewise,
when	asked	if	her	microservice	is	fault	tolerant,	she’ll	be	able	to	rattle	off	all	failure
scenarios	and	possible	catastrophes,	then	explain	in	detail	how	she	has	prepared	for	these
using	various	types	of	resiliency	testing.

At	the	team	level,	understanding	signifies	that	the	team	is	aware	of	where	their	microservice
stands	with	regard	to	production-readiness	and	what	needs	to	be	accomplished	to	bring	their
service	to	a	production-ready	state.	This	has	to	be	a	cultural	element	of	each	team	in	order	for
it	to	be	successful:	production-readiness	standards	and	requirements	need	to	drive	the
decisions	made	by	the	team	and	be	seen	not	merely	as	boxes	to	check	off	on	a	checklist,	but
rather	as	principles	that	guide	the	team	toward	building	the	best	possible	microservice.

Understanding	needs	to	be	built	into	the	fabric	of	the	organization	itself.	This	requires	that
production-readiness	standards	and	requirements	become	part	of	the	organizational	process.
Before	a	service	is	even	built,	and	a	request	for	comments	(RFC)	is	sent	around	for	review,	the
service	can	be	evaluated	against	the	production-readiness	standards	and	requirements.
Developers,	architects,	and	operations	engineers	can	make	sure	that	the	service	is	built	for
stability,	reliability,	scalability,	performance,	fault	tolerance,	catastrophe-preparedness,
proper	monitoring,	and	appropriately	documented	and	understood	before	it	even	begins
running	—	ensuring	that	once	the	new	service	begins	to	host	production	traffic,	it	has	been
architected	and	optimized	for	availability	and	can	be	trusted	with	production	traffic.

It’s	not	enough	to	only	review	and	architect	for	production-readiness	at	the	beginning	of	a



microservice’s	lifecycle.	Existing	services	need	to	be	reviewed	and	audited	constantly	so	that
the	quality	of	each	microservice	is	kept	at	a	sufficiently	high	level,	ensuring	high	availability
and	trust	across	various	microservice	teams	and	the	entire	microservice	ecosystem.
Automating	these	production-readiness	audits	of	existing	services	and	internally	publicizing
the	results	can	help	to	establish	awareness	across	the	organization	about	the	quality	of	the
overall	microservice	ecosystem.



Architecture	Reviews
One	thing	I’ve	learned	after	driving	these	production-readiness	standards	and	their
requirements	across	over	a	thousand	different	microservices	and	their	development	teams	is
that	the	most	immediately	effective	way	to	accomplish	microservice	understanding	is	to	hold
scheduled	architecture	reviews	for	each	microservice.	A	good	architecture	review	is	a
meeting	where	any	and	all	developers	and	site	reliability	engineers	(or	other	operations
engineers)	working	on	the	service	meet	in	a	room,	draw	up	the	architecture	of	the	service	on
a	whiteboard,	and	thoroughly	evaluate	its	architecture.

Within	several	minutes	into	this	exercise,	it	tends	to	become	very	clear	precisely	what	the
scope	of	understanding	is	at	the	developer	and	team	levels.	Talking	through	the	architecture,
developers	will	quickly	discover	scalability	and	performance	bottlenecks,	previously
undiscovered	points	of	failure,	possible	outages	and	future	incidents	and	failures	and
catastrophe	scenarios,	and	new	features	that	should	be	added.	Poor	architectural	decisions	that
were	made	in	the	past	will	become	obvious,	and	old	technologies	that	should	be	replaced	by
newer	and/or	better	ones	will	stand	out.	To	ensure	that	evaluation	and	discussion	is	productive
and	objective,	it’s	helpful	to	bring	in	developers	from	other	teams	(especially	those	in
infrastructure,	DevOps,	or	site	reliability	engineering)	who	have	experience	in	large-scale
distributed	systems	architecture	(and	the	organization’s	specific	microservice	ecosystem)	and
will	be	able	to	point	out	problems	that	developers	may	not	notice.

Each	meeting	should	produce	a	new,	updated	architecture	diagram	for	the	service,	along	with
a	list	of	projects	to	tackle	in	the	coming	weeks	and	months.	The	new	diagram	should
definitely	be	added	to	the	documentation,	and	projects	can	be	included	in	each	service’s
roadmap	(see	“Production-Readiness	Roadmaps”)	and	objectives	and	key	results	(OKRs).

Because	microservice	development	moves	rather	quickly,	microservices	evolve	at	a	rapid
pace	and	the	lower	layers	of	the	microservice	ecosystem	will	be	constantly	changing.	In	order
to	keep	the	architecture	and	its	understanding	relevant	and	productive,	these	meetings	should
be	held	regularly.	I’ve	found	that	a	good	rule	of	thumb	is	to	schedule	them	so	that	they	align
with	OKR	and	project	planning.	If	projects	and	OKRs	are	planned	and	scheduled	quarterly,
then	quarterly	architecture	reviews	should	be	held	each	quarter	before	the	planning	cycle
begins.



Production-Readiness	Audits
To	make	sure	that	a	microservice	meets	production-readiness	standards	and	requirements	and
is	actually	production-ready,	the	team	can	run	a	production-readiness	audit	on	the	service.
Running	an	audit	is	quite	simple:	the	team	sits	down	with	a	checklist	of	the	production-
readiness	requirements	and	checks	off	whether	or	not	their	service	meets	each	requirement.
This	enables	understanding	of	a	service:	each	developer	and	team	will	know,	by	the	end	of	the
audit,	exactly	where	their	service	stands	and	where	things	can	be	improved.

The	structure	of	an	audit	should	mirror	the	production-readiness	standards	and	requirements
that	the	engineering	organization	has	adopted.	The	team	should	use	the	audits	to	quantify	the
stability,	reliability,	scalability,	fault	tolerance,	catastrophe-preparedness,	performance,
monitoring,	and	documentation	of	the	service.	As	I’ve	described	in	earlier	chapters,	each	of
these	standards	is	accompanied	by	a	set	of	requirements	that	can	be	used	to	bring	each	service
up	to	those	standards	—	developers	can	adjust	these	requirements	of	each	production-
readiness	standard	so	that	they	meet	the	needs	and	goals	of	the	organization.	The	exact
requirements	will	depend	on	the	details	of	the	company’s	microservice	ecosystem,	but	the
standards	and	their	basic	components	are	relevant	across	every	ecosystem	(see	Appendix	A
for	a	summary	checklist	containing	the	production-readiness	standards	and	their	general
requirements).



Production-Readiness	Roadmaps
Once	a	microservice	development	team	has	completed	a	thorough	production-readiness	audit
of	their	microservice	and	the	team	understands	whether	their	service	is	production-ready,	the
next	step	is	to	plan	how	to	bring	the	service	to	a	production-ready	state.	Audits	make	this	easy:
at	this	point,	the	team	has	a	checklist	of	which	production-readiness	requirements	their	service
doesn’t	meet,	and	all	that	is	left	to	do	is	to	satisfy	each	unfulfilled	requirement.

This	is	where	production-readiness	roadmaps	can	be	developed,	and	I’ve	found	them	to	be	an
extremely	useful	piece	of	the	production-readiness	and	microservice	understanding	process.
Each	microservice	is	different,	and	the	implementation	details	of	each	unsatisfied	requirement
will	vary	between	services,	so	producing	a	detailed	roadmap	that	documents	all	of	the
implementation	details	will	guide	the	team	toward	making	their	microservice	production-
ready.	Requirements	that	need	to	be	met	can	be	accompanied	by	the	technical	details,	problems
that	have	arisen	(outages	and	incidents)	that	are	related	to	the	requirement,	a	link	to	some
ticket	in	a	task-management	system,	and	the	name(s)	of	the	developer(s)	who	will	be	working
on	the	project.

The	roadmap	and	the	list	of	unsatisfied	production-readiness	requirements	it	contains	can
become	part	of	whatever	planning	and	(if	used	at	the	company)	OKRs	are	in	store	for	the
service.	Satisfying	production-readiness	requirements	works	best	when	the	process	goes	hand
in	hand	both	with	feature	development	and	with	the	adoption	of	new	technologies.	Making
each	service	in	the	microservice	ecosystem	stable,	reliable,	scalable,	performant,	fault
tolerant,	catastrophe-prepared,	monitored,	documented,	and	understood	is	a	straightforward,
quantifiable	way	to	guarantee	that	each	service	is	truly	production-ready,	ensuring	the
availability	of	the	entire	microservice	ecosystem.



Production-Readiness	Automation
Architecture	reviews,	audits,	and	roadmaps	solve	the	challenges	of	microservice
understanding	at	the	developer	and	team	levels,	but	understanding	at	an	organizational	level
requires	an	additional	component.	As	I’ve	presented	it	so	far,	all	of	the	work	that	goes	into
building	a	production-ready	microservice	is	mostly	manual,	requiring	developers	to
individually	follow	each	audit	step,	make	tasks	and	lists	and	roadmaps	and	check	off
individual	requirement	boxes.	Manual	work	like	this	often	gets	put	on	the	back	burner	to	join
the	rest	of	the	technical	debt,	even	in	the	most	productive	and	production-readiness	driven
teams.

One	of	the	key	principles	of	software	engineering	in	practice	is	this:	if	you	have	to	do
something	manually	more	than	once,	automate	it	so	that	you	never	have	to	do	it	again.	This
applies	to	operational	work,	it	applies	to	any	one-off,	ad	hoc	situations	and	anything	you	need
to	type	into	a	terminal,	and	not	surprisingly,	it	applies	to	enforcing	production-readiness
standards	across	an	engineering	organization.	Automation	is	the	best	onion	you	can	give	to
your	development	teams.

It’s	easy	to	make	a	list	of	the	production-readiness	requirements	for	every	microservice.	I’ve
done	it	myself	at	Uber,	I’ve	seen	other	developers	implement	the	very	same	production-
readiness	standards	in	this	book	at	their	own	companies,	and	I’ve	created	a	template	checklist
(Appendix	A,	Production-Readiness	Checklist)	that	you,	the	reader,	can	use.	A	list	like	this
makes	automating	the	checklist	rather	easy.	For	example,	to	check	for	fault	tolerance	and
catastrophe-preparedness,	you	can	run	automated	checks	to	ensure	that	the	proper	resiliency
tests	are	in	place,	are	running,	and	that	each	microservice	passes	the	tests	with	flying	colors.

The	difficulty	in	automating	each	of	these	production-readiness	checks	will	depend	entirely
on	the	complexity	of	your	internal	services	within	each	layer	of	the	microservice	ecosystem.
If	all	microservices	and	self-service	tools	have	decent	APIs,	automation	is	a	breeze.	If	your
services	have	trouble	communicating,	or	if	any	self-service	internal	tools	are	finicky	or
poorly	written,	you’re	going	to	have	a	bad	time	(and	not	just	with	production-readiness,	but
with	the	integrity	of	your	service	and	the	entire	microservice	ecosystem).

Automating	production-readiness	increases	organizational	understanding	in	several
extremely	important	and	effective	ways.	If	you	automate	these	checks	and	run	them	constantly,
teams	in	the	organization	will	always	know	where	each	microservice	stands.	Publicize	these
results	internally,	give	each	microservice	a	production-readiness	score	measuring	how
production-ready	their	service	is,	require	business-critical	services	to	have	a	high	minimum
production-readiness	score,	and	gate	deployments.	Production-readiness	can	be	made	part	of
the	engineering	culture,	and	this	is	one	surefire	way	you	can	accomplish	that.



Evaluate	Your	Microservice
Now	that	you	have	a	better	understanding	of	documentation,	use	the	following	list	of
questions	to	assess	the	production-readiness	of	your	microservice(s)	and	microservice
ecosystem.	The	questions	are	organized	by	topic,	and	correspond	to	the	sections	within	this
chapter.



Microservice	Documentation
Is	the	documentation	for	all	microservices	stored	in	a	centralized,	shared,	and	easily
accessible	place?

Is	the	documentation	easily	searchable?

Are	significant	changes	to	the	microservice	accompanied	by	updates	to	the
microservice’s	documentation?

Does	the	microservice’s	documentation	contain	a	description	of	the	microservice?

Does	the	microservice’s	documentation	contain	an	architecture	diagram?

Does	the	microservice’s	documentation	contain	contact	and	on-call	information?

Does	the	microservice’s	documentation	contain	links	to	important	information?

Does	the	microservice’s	documentation	contain	an	onboarding	and	development	guide?

Does	the	microservice’s	documentation	contain	information	about	the	microservice’s
request	flow,	endpoints,	and	dependencies?

Does	the	microservice’s	documentation	contain	an	on-call	runbook?

Does	the	microservice’s	documentation	contain	an	FAQ	section?



Microservice	Understanding
Can	every	developer	on	the	team	answer	questions	about	the	production-readiness	of	the
microservice?

Is	there	a	set	of	principles	and	standards	that	all	microservices	are	held	to?

Is	there	an	RFC	process	in	place	for	every	new	microservice?

Are	existing	microservices	reviewed	and	audited	frequently?

Are	architecture	reviews	held	for	every	microservice	team?

Is	there	a	production-readiness	audit	process	in	place?

Are	production-readiness	roadmaps	used	to	bring	the	microservice	to	a	production-
ready	state?

Do	the	production-readiness	standards	drive	the	organization’s	OKRs?

Is	the	production-readiness	process	automated?



Appendix	A.	Production-Readiness
Checklist

This	will	be	a	checklist	to	run	over	all	microservices	—	manually	or	in	an	automated	way.



A	Production-Ready	Service	Is	Stable	and	Reliable
It	has	a	standardized	development	cycle.

Its	code	is	thoroughly	tested	through	lint,	unit,	integration,	and	end-to-end	testing.

Its	test,	packaging,	build,	and	release	process	is	completely	automated.

It	has	a	standardized	deployment	pipeline,	containing	staging,	canary,	and	production
phases.

Its	clients	are	known.

Its	dependencies	are	known,	and	there	are	backups,	alternatives,	fallbacks,	and	caching	in
place	in	case	of	failures.

It	has	stable	and	reliable	routing	and	discovery	in	place.



A	Production-Ready	Service	Is	Scalable	and	Performant
Its	qualitative	and	quantitative	growth	scales	are	known.

It	uses	hardware	resources	efficiently.

Its	resource	bottlenecks	and	requirements	have	been	identified.

Capacity	planning	is	automated	and	performed	on	a	scheduled	basis.

Its	dependencies	will	scale	with	it.

It	will	scale	with	its	clients.

Its	traffic	patterns	are	understood.

Traffic	can	be	re-routed	in	case	of	failures.

It	is	written	in	a	programming	language	that	allows	it	to	be	scalable	and	performant.

It	handles	and	processes	tasks	in	a	performant	manner.

It	handles	and	stores	data	in	a	scalable	and	performant	way.



A	Production-Ready	Service	Is	Fault	Tolerant	and	Prepared
for	Any	Catastrophe

It	has	no	single	point	of	failure.

All	failure	scenarios	and	possible	catastrophes	have	been	identified.

It	is	tested	for	resiliency	through	code	testing,	load	testing,	and	chaos	testing.

Failure	detection	and	remediation	has	been	automated.

There	are	standardized	incident	and	outage	procedures	in	place	within	the	microservice
development	team	and	across	the	organization.



A	Production-Ready	Service	Is	Properly	Monitored
Its	key	metrics	are	identified	and	monitored	at	the	host,	infrastructure,	and	microservice
levels.

It	has	appropriate	logging	that	accurately	reflects	the	past	states	of	the	microservice.

Its	dashboards	are	easy	to	interpret	and	contain	all	key	metrics.

Its	alerts	are	actionable	and	are	defined	by	signal-providing	thresholds.

There	is	a	dedicated	on-call	rotation	responsible	for	monitoring	and	responding	to	any
incidents	and	outages.

There	is	a	clear,	well-defined,	and	standardized	on-call	procedure	in	place	for	handling
incidents	and	outages.



A	Production-Ready	Service	Is	Documented	and	Understood
It	has	comprehensive	documentation.

Its	documentation	is	updated	regularly.

Its	documentation	contains	a	description	of	the	microservice;	an	architecture	diagram;
contact	and	on-call	information;	links	to	important	information;	an	onboarding	and
development	guide;	information	about	the	service’s	request	flow(s),	endpoints,	and
dependencies;	an	on-call	runbook;	and	answers	to	frequently	asked	questions.

It	is	well	understood	at	the	developer,	team,	and	organizational	levels.

It	is	held	to	a	set	of	production-readiness	standards	and	meets	the	associated
requirements.

Its	architecture	is	reviewed	and	audited	frequently.



Appendix	B.	Evaluate	Your	Microservice

To	help	the	reader	evaluate	the	production-readiness	of	their	microservice(s)	and
microservice	ecosystem,	Chapters	3–7	conclude	with	a	short	list	of	questions	associated	with
the	production-readiness	standard	discussed.	The	questions	are	organized	by	topic,	and
correspond	to	the	sections	within	each	chapter.	All	of	the	questions	from	each	chapter	have
been	collected	here	for	easy	reference.



Stability	and	Reliability



The	Development	Cycle
Does	the	microservice	have	a	central	repository	where	all	code	is	stored?

Do	developers	work	in	a	development	environment	that	accurately	reflects	the	state	of
production	(e.g.,	that	accurately	reflects	the	real	world)?

Are	there	appropriate	lint,	unit,	integration,	and	end-to-end	tests	in	place	for	the
microservice?

Are	there	code	review	procedures	and	policies	in	place?

Is	the	test,	packaging,	build,	and	release	process	automated?



The	Deployment	Pipeline
Does	the	microservice	ecosystem	have	a	standardized	deployment	pipeline?

Is	there	a	staging	phase	in	the	deployment	pipeline	that	is	either	full	or	partial	staging?

What	access	does	the	staging	environment	have	to	production	services?

Is	there	a	canary	phase	in	the	deployment	pipeline?

Do	deployments	run	in	the	canary	phase	for	a	period	of	time	that	is	long	enough	to	catch
any	failures?

Does	the	canary	phase	accurately	host	a	random	sample	of	production	traffic?

Are	the	microservice’s	ports	the	same	for	canary	and	production?

Are	deployments	to	production	done	all	at	the	same	time,	or	incrementally	rolled	out?

Is	there	a	procedure	in	place	for	skipping	the	staging	and	canary	phases	in	case	of	an
emergency?



Dependencies
What	are	this	microservice’s	dependencies?

What	are	its	clients?

How	does	this	microservice	mitigate	dependency	failures?

Are	there	backups,	alternatives,	fallbacks,	or	defensive	caching	for	each	dependency?



Routing	and	Discovery
Are	health	checks	to	the	microservice	reliable?

Do	health	checks	accurately	reflect	the	health	of	the	microservice?

Are	health	checks	run	on	a	separate	channel	within	the	communication	layer?

Are	there	circuit	breakers	in	place	to	prevent	unhealthy	microservices	from	making
requests?

Are	there	circuit	breakers	in	place	to	prevent	production	traffic	from	being	sent	to
unhealthy	hosts	and	microservices?



Deprecation	and	Decommissioning
Are	there	procedures	in	place	for	decommissioning	a	microservice?

Are	there	procedures	in	place	for	deprecating	a	microservice’s	API	endpoints?



Scalability	and	Performance



Knowing	the	Growth	Scale
What	is	this	microservice’s	qualitative	growth	scale?

What	is	this	microservice’s	quantitative	growth	scale?



Efficient	Use	of	Resources
Is	the	microservice	running	on	dedicated	or	shared	hardware?

Are	any	resource	abstraction	and	allocation	technologies	being	used?



Resource	Awareness
What	are	the	microservice’s	resource	requirements	(CPU,	RAM,	etc.)?

How	much	traffic	can	one	instance	of	the	microservice	handle?

How	much	CPU	does	one	instance	of	the	microservice	require?

How	much	memory	does	one	instance	of	the	microservice	require?

Are	there	any	other	resource	requirements	that	are	specific	to	this	microservice?

What	are	the	resource	bottlenecks	of	this	microservice?

Does	this	microservice	need	to	be	scaled	vertically,	horizontally,	or	both?



Capacity	Planning
Is	capacity	planning	performed	on	a	scheduled	basis?

What	is	the	lead	time	for	new	hardware?

How	often	are	hardware	requests	made?

Are	any	microservices	given	priority	when	hardware	requests	are	made?

Is	capacity	planning	automated	or	is	it	manual?



Dependency	Scaling
What	are	this	microservice’s	dependencies?

Are	the	dependencies	scalable	and	performant?

Will	the	dependencies	scale	with	this	microservice’s	expected	growth?

Are	dependency	owners	prepared	for	this	microservice’s	expected	growth?



Traffic	Management
Are	the	microservice’s	traffic	patterns	well	understood?

Are	changes	to	the	service	scheduled	around	traffic	patterns?

Are	drastic	changes	in	traffic	patterns	(especially	bursts	of	traffic)	handled	carefully	and
appropriately?

Can	traffic	be	automatically	routed	to	other	datacenters	in	case	of	failure?



Task	Handling	and	Processing
Is	the	microservice	written	in	a	programming	language	that	will	allow	the	service	to	be
scalable	and	performant?

Are	there	any	scalability	or	performance	limitations	in	the	way	the	microservice	handles
requests?

Are	there	any	scalability	or	performance	limitations	in	the	way	the	microservice
processes	tasks?

Do	developers	on	the	microservice	team	understand	how	their	service	processes	tasks,
how	efficiently	it	processes	those	tasks,	and	how	the	service	will	perform	as	the	number
of	tasks	and	requests	increases?



Scalable	Data	Storage
Does	this	microservice	handle	data	in	a	scalable	and	performant	way?

What	type	of	data	does	this	microservice	need	to	store?

What	is	the	schema	needed	for	its	data?

How	many	transactions	are	needed	and/or	made	per	second?

Does	this	microservice	need	higher	read	or	write	performance?

Is	it	read-heavy,	write-heavy,	or	both?

Is	this	service’s	database	scaled	horizontally	or	vertically?	Is	it	replicated	or	partitioned?

Is	this	microservice	using	a	dedicated	or	shared	database?

How	does	the	service	handle	and/or	store	test	data?



Fault	Tolerance	and	Catastrophe-Preparedness



Avoiding	Single	Points	of	Failure
Does	the	microservice	have	a	single	point	of	failure?

Does	it	have	more	than	one	point	of	failure?

Can	any	points	of	failure	be	architected	away,	or	do	they	need	to	be	mitigated?



Catastrophes	and	Failure	Scenarios
Have	all	of	the	microservice’s	failure	scenarios	and	possible	catastrophes	been
identified?

What	are	common	failures	across	the	microservice	ecosystem?

What	are	the	hardware-layer	failure	scenarios	that	can	affect	this	microservice?

What	communication-layer	and	application-layer	failures	can	affect	this	microservice?

What	sorts	of	dependency	failures	can	affect	this	microservice?

What	are	the	internal	failures	that	could	bring	down	this	microservice?



Resiliency	Testing
Does	this	microservice	have	appropriate	lint,	unit,	integration,	and	end-to-end	tests?

Does	this	microservice	undergo	regular,	scheduled	load	testing?

Are	all	possible	failure	scenarios	implemented	and	tested	using	chaos	testing?



Failure	Detection	and	Remediation
Are	there	standardized	processes	across	the	engineering	organization(s)	for	handling
incidents	and	outages?

How	do	failures	and	outages	of	this	microservice	impact	the	business?

Are	there	clearly	defined	levels	of	failure?

Are	there	clearly	defined	mitigation	strategies?

Does	the	team	follow	the	five	stages	of	incident	response	when	incidents	and	outages
occur?



Monitoring



Key	Metrics
What	are	this	microservice’s	key	metrics?

What	are	the	host	and	infrastructure	metrics?

What	are	the	microservice-level	metrics?

Are	all	the	microservice’s	key	metrics	monitored?



Logging
What	information	does	this	microservice	need	to	log?

Does	this	microservice	log	all	important	requests?

Does	the	logging	accurately	reflect	the	state	of	the	microservice	at	any	given	time?

Is	this	logging	solution	cost-effective	and	scalable?



Dashboards
Does	this	microservice	have	a	dashboard?

Is	the	dashboard	easy	to	interpret?	Are	all	key	metrics	displayed	on	the	dashboard?

Can	I	determine	whether	or	not	this	microservice	is	working	correctly	by	looking	at	the
dashboard?



Alerting
Is	there	an	alert	for	every	key	metric?

Are	all	alerts	defined	by	good,	signal-providing	thresholds?

Are	alert	thresholds	set	appropriately	so	that	alerts	will	fire	before	an	outage	occurs?

Are	all	alerts	actionable?

Are	there	step-by-step	triage,	mitigation,	and	resolution	instructions	for	each	alert	in	the
on-call	runbook?



On-Call	Rotations
Is	there	a	dedicated	on-call	rotation	responsible	for	monitoring	this	microservice?

Is	there	a	minimum	of	two	developers	on	each	on-call	shift?

Are	there	standardized	on-call	procedures	across	the	engineering	organization?



Documentation	and	Understanding



Microservice	Documentation
Is	the	documentation	for	all	microservices	stored	in	a	centralized,	shared,	and	easily
accessible	place?

Is	the	documentation	easily	searchable?

Are	significant	changes	to	the	microservice	accompanied	by	updates	to	the
microservice’s	documentation?

Does	the	microservice’s	documentation	contain	a	description	of	the	microservice?

Does	the	microservice’s	documentation	contain	an	architecture	diagram?

Does	the	microservice’s	documentation	contain	contact	and	on-call	information?

Does	the	microservice’s	documentation	contain	links	to	important	information?

Does	the	microservice’s	documentation	contain	an	onboarding	and	development	guide?

Does	the	microservice’s	documentation	contain	information	about	the	microservice’s
request	flow,	endpoints,	and	dependencies?

Does	the	microservice’s	documentation	contain	an	on-call	runbook?

Does	the	microservice’s	documentation	contain	an	FAQ	section?



Microservice	Understanding
Can	every	developer	on	the	team	answer	questions	about	the	production-readiness	of	the
microservice?

Is	there	a	set	of	principles	and	standards	that	all	microservices	are	held	to?

Is	there	an	RFC	process	in	place	for	every	new	microservice?

Are	existing	microservices	reviewed	and	audited	frequently?

Are	architecture	reviews	held	for	every	microservice	team?

Is	there	a	production-readiness	audit	process	in	place?

Are	production-readiness	roadmaps	used	to	bring	the	microservice	to	a	production-
ready	state?

Do	the	production-readiness	standards	drive	the	organization’s	OKRs?

Is	the	production-readiness	process	automated?



Glossary

actionable	alert
An	alert	that,	when	triggered,	contains	a	step-by-step	process	that	the	on-call	rotation
can	follow	to	triage,	mitigate,	and	resolve	the	alert.

alerting
The	practice	of	notifying	an	on-call	developer	(or	developers)	when	one	of	a	service’s
key	metrics	has	reached	a	critical	or	warning	alert	threshold.

alert	threshold
Static	or	dynamic	quantities	that	are	set	for	each	key	metric	signifying	that	the	key	metric
in	question	is	at	a	normal,	warning,	or	critical	level;	reaching	the	threshold	should
trigger	an	actionable	alert.

application	platform	layer
The	third	layer	of	a	microservice	ecosystem,	containing	self-service	internal	tools,	the
development	environment,	test,	package,	build,	and	release	tools,	the	deployment
pipeline,	microservice-level	logging,	and	microservice-level	monitoring.

application	programming	interface	(API)
A	well-defined	client-side	interface	in	each	microservice	that	allows	other	services	to
interact	with	it	programmatically	by	sending	requests	to	static	endpoints.

architecture	diagram
A	high-level	visual	representation	of	the	architecture	of	a	microservice.

architecture	review
An	organizational	practice	and	process	for	evaluating,	understanding,	and	improving	the
architecture	of	a	microservice.

bare	metal
The	term	used	to	refer	to	servers	owned,	run,	and	maintained	by	the	organization	itself,
as	opposed	to	hardware	rented	from	so-called	cloud	providers.

canary
The	second	stage	of	the	deployment	pipeline	containing	a	small	percentage	of	servers
hosting	production	traffic	(2%–5%	of	production	traffic);	used	to	test	new	builds	that
have	made	it	through	staging	before	being	rolled	out	to	all	production	servers.

candidate	for	production



A	build	that	has	successfully	passed	all	lint,	unit,	integration,	and	end-to-end	tests	in	the
development	cycle	and	is	ready	to	be	introduced	into	the	deployment	pipeline.

capacity	planning
The	organizational	practice	of	planned	and	scheduled	resource	allocation.

cloud	providers
Companies	such	as	Amazon	Web	Services	(AWS),	Google	Cloud	Platform	(GCP),	and
Microsoft	Azure	that	allow	hardware	resources	to	be	rented	and	easily	accessible	over
secure	networks.

code	testing
Tests	that	check	syntax,	style,	individual	components	of	a	microservice,	how	the
components	work	together,	and	how	the	microservice	performs	within	its	complex
dependency	chains;	comprised	of	lint	tests,	unit	tests,	integration	tests,	and	end-to-
end	tests.

communication	layer
The	second	layer	of	the	microservice	ecosystem;	contains	the	network,	DNS,	RPC
frameworks,	endpoints,	messaging,	service	discovery,	service	registry,	and	load
balancing.

concurrency
Applications	and	microservices	that	have	concurrency	break	up	each	task	into	small
pieces,	rather	than	having	just	one	process	that	does	all	of	the	work;	essential	property
required	for	scalability.

continuous	integration
A	process	that	automatically	integrates,	tests,	packages,	and	builds	new	changes	to	code
on	a	scheduled	and	continuous	basis.

Conway’s	Law
An	informal	“law”	of	software	architecture	named	after	Melvin	Conway	stating	that	the
architectural	structure	of	a	company’s	products	is	determined	by	the	communication
patterns	of	the	organization;	see	also	Inverse	Conway’s	Law.

dashboard
A	visual,	graphical	display	on	an	internal	website	containing	graphs	and	charts	of	the
health,	status,	behavior,	and	key	metrics	of	an	application,	microservice,	or	system.

decommissioning
The	process	of	retiring	a	microservice	and/or	its	API	endpoints	so	that	they	will	no
longer	be	available	for	use	by	upstream	(client)	services.



dedicated	hardware
Servers	or	databases	that	host	or	store	data	for	only	one	application,	microservice,	or
system.

defensive	caching
The	practice	of	caching	the	data	from	a	microservice’s	downstream	dependencies	to
protect	that	microservice	from	suffering	stability	and	reliability	issues	if	the	downstream
dependency	is	unavailable.

dependency
A	name	for	any	other	microservice	that	a	microservice	makes	requests	to;	also	refers	to
libraries	that	a	microservice	depends	on;	also	used	to	refer	to	external	(third-party)
services	that	a	microservice	depends	on.

deployment
The	process	through	which	a	new	build	is	sent	to	servers	and	the	service	is	started.

deployment	pipeline
The	process	of	deploying	new	builds	in	three	stages	(to	staging,	to	canary,	and	then	to
production).

deprecation
When	a	microservice	and/or	its	endpoints	are	no	longer	being	maintained	by	a
development	team	and	no	longer	recommended	for	use	to	upstream	(client)	services.

developer	velocity
The	speed	at	which	development	teams	are	able	to	iterate,	roll	out	new	features,	and
deploy.

development	cycle
A	name	for	the	overall	process	associated	with	developing	an	application,	microservice,
or	system.

development	environment
A	system	containing	tools,	environment	variables,	and	processes	used	by	developers	to
write	code	for	microservices.

endpoint
In	this	book,	this	term	refers	to	the	static	API	endpoints	(HTTP,	Thrift,	etc.)	of
microservices	that	requests	are	routed	to.

end-to-end	tests



Tests	that	check	whether	changes	to	an	application,	service,	or	system	work	as	expected
by	testing	endpoints,	clients,	dependencies,	and	any	databases.

external	failures
Failures	within	the	lower	three	layers	of	the	microservice	ecosystem	stack.

full	staging
When	the	staging	phase	of	the	deployment	pipeline	runs	as	a	complete	mirror	copy	of
production.

growth	scale
A	name	given	to	the	measure	of	how	an	application,	microservice,	or	system	scales;
every	application,	microservice,	and	system	has	two	types	of	growth	scales,	a
quantitative	growth	scale	and	a	qualitative	growth	scale.

hardware	layer
The	first	layer	of	the	microservice	ecosystem;	contains	physical	servers,	operating
systems,	resource	isolation	and	abstraction,	configuration	management,	host-level
monitoring,	and	host-level	logging.

hardware	resources
See	resources.

horizontal	scaling
When	an	application	or	system	is	scaled	by	adding	more	servers	(or	other	hardware
resources).

host	and	infrastructure	metrics
Key	metrics	of	the	lower	three	layers	(hardware	layer,	communication	layer,	and
application	platform	layer)	of	the	microservice	ecosystem.

host	parity
When	two	separate	environments,	systems,	or	phases	of	the	deployment	pipeline	(e.g.,
staging	versus	production)	have	the	same	number	of	hosts	in	each	environment,	system,
datacenter,	or	deployment	phase.

infrastructure
A	term	used	in	this	book	to	refer	to	either	the	combination	of	the	application	platform
layer	and	the	communication	layer	or	the	three	lowest	layers	of	the	microservice
ecosystem	(hardware	layer,	communication	layer,	and	application	platform	layer.

integration	tests
These	test	how	the	components	of	the	microservice	(which	are	tested	individually	using
unit	tests)	work	together.



internal	failures
Failures	within	a	microservice.

Inverse	Conway’s	Law
The	inverse	of	Conway’s	Law,	which	states	that	the	organizational	structure	of	a
company	is	determined	by	the	architecture	of	its	product(s).

key	metrics
Properties	of	an	application,	microservice,	or	system	that	are	necessary	and	sufficient
for	describing	the	health,	status,	and	behavior	of	the	application,	microservice,	or
system.

lint	tests
Tests	that	check	syntax	and	style	errors;	part	of	a	code-testing	suite.

load	balancing
A	device	or	service	that	distributes	traffic	across	multiple	servers	or	microservices.

logging
The	practice	of	recording	the	events	of	an	application,	microservice,	or	system.

microservice
A	small,	replaceable,	modular,	independently	developed	and	independently	deployed
software	application	that	is	responsible	for	performing	one	function	within	a	larger
system.

microservice	ecosystem
A	term	for	the	overall	system	containing	the	microservices	and	infrastructure,	which	can
be	divided	into	four	layers	containing	the	microservices,	the	application	platform,	the
communication	layer,	and	the	hardware	layer.

microservice	layer
The	fourth	layer	of	the	microservice	ecosystem;	contains	the	microservices	and	all
microservice-specific	configurations.

microservice	metrics
The	key	metrics	unique	to	each	microservice	in	the	microservice	layer	of	the
microservice	ecosystem.

monitoring
The	practice	of	watching	and	tracking	the	status,	health,	and	behavior	of	an	application
or	microservice’s	key	metrics	over	a	long	period	of	time.

monolith



Large,	complex	software	systems	that	are	maintained,	run,	and	deployed	as	one	single
application	containing	all	application-related	code	and	features.

on-call	rotation
A	group	of	developers	or	operations	engineers	that	are	responsible	for	responding	to,
mitigating,	and	resolving	an	application,	microservice,	or	system’s	alerts,	incidents,	and
failures.

on-call	runbook
A	section	of	microservice	documentation	that	contains	general	incident	and	outage
response	procedures,	step-by-step	instructions	on	how	to	triage,	mitigate,	and	resolve
each	alert,	and	general	tips	on	how	to	debug	and	troubleshoot	the	microservice;	used	by
the	developers	or	operational	engineers	who	are	on	call	for	the	service.

operational	engineers
Engineers	whose	primary	responsibilities	are	for	the	operational	tasks	associated	with
running	a	software	application,	including	system	administrators,	TechOps,	DevOps,	and
site	reliability	engineers.

outage
A	period	of	time	during	which	an	application,	microservice,	or	other	system	is
inaccessible	(experiencing	downtime).

partial	staging
When	the	staging	phase	of	the	deployment	pipeline	is	not	a	complete	mirror	copy	of
production,	but	where	microservices	in	the	staging	environment	talk	to	the	production
versions	of	clients,	dependencies,	and	databases.

partitioning
The	process	and	architectural	practice	of	breaking	each	task	up	into	smaller	pieces	that
can	be	processed	in	parallel;	essential	property	of	scalability.

production
The	final	stage	of	the	deployment	pipeline	where	all	real-world	traffic	is	hosted;	also
used	to	refer	to	real-world	traffic	and	the	environment	hosting	that	traffic.

production-readiness	audit
The	process	of	evaluating	a	microservice’s	production-readiness	using	a	production-
readiness	checklist.

production-readiness	automation
A	method	for	ensuring	that	microservices	meet	the	production-readiness	standards	by
automatically	and	programmatically	checking	whether	each	microservice	adheres	to	the
requirements	associated	with	each	production-readiness	standard.



production-readiness	checklist
A	list	of	production-readiness	standards,	along	with	specific	requirements	that	can	be
implemented	to	achieve	each	production-readiness	standard.

production-readiness	roadmap
A	document	used	as	part	of	the	production-readiness	process	that	details	the	steps	that
need	to	be	taken	to	bring	a	microservice	to	a	production-ready	state.

production-readiness	score
A	score	assigned	to	microservices	that	is	calculated	based	on	how	well	the	microservice
in	question	meets	the	requirements	associated	with	each	production-readiness	standard.

publish–subscribe	messaging
An	asynchronous	messaging	paradigm	in	which	clients	subscribe	to	a	topic,	and	will
receive	a	message	whenever	a	publisher	publishes	a	message	to	that	topic.

qualitative	growth	scale
A	high-level,	qualitative	measure	of	how	an	application,	microservice,	or	system	scales
that	is	tied	to	high-level	business	metrics;	one	type	of	growth	scale.

quantitative	growth	scale
A	quantitative	measure	of	how	an	application,	microservice,	or	system	scales;	obtained
by	translating	the	qualitative	growth	scale	into	a	measurable	quantity;	one	type	of
growth	scale;	usually	expressed	in	terms	of	requests	per	second,	queries	per	second,	or
transactions	per	second	that	the	application,	microservice,	or	system	can	process.

remote	procedure	call	(RPC)
A	call	made	over	the	network	to	a	remote	server	that	is	designed	to	look	and	behave
exactly	like	a	local	procedure	call;	used	extensively	in	microservice	architecture	and	in
all	large-scale	distributed	systems.

repository
A	centralized	archive	where	all	the	source	code	for	an	application	or	service	is	stored.

request	flow
A	name	for	the	pattern	of	steps	that	are	taken	when	a	request	is	made	from	one
microservice	to	another.

request–response	messaging
A	messaging	paradigm	in	which	a	client	will	send	a	request	to	a	microservice	(or
message	broker)	which	will	respond	with	the	information	requested.

resource	allocation
Dividing	available	hardware	resources	across	microservice	ecosystems.



resource	bottlenecks
Scalability	limitations	caused	by	the	way	an	application,	microservice,	or	system	uses	its
resources.

resource	requirements
The	resources	required	by	an	application,	microservice,	or	system.

resources
An	abstraction	of	various	performance	properties	of	hardware	(servers),	like	CPU,
memory,	network,	etc.

self-service	internal	tools
Standardized	tools	in	the	application	platform	layer	of	a	microservice	ecosystem	that
are	built	to	help	developers	work	with	the	lower	layers	of	the	microservice	ecosystem	to
develop,	deploy,	and	run	their	microservices.

service	discovery
A	system	that	discovers	where	all	instances	of	a	microservice	are	hosted,	ensuring	that
traffic	is	routed	to	the	appropriate	servers	hosting	the	application.

service	registry
A	database	that	tracks	all	ports	and	IPs	all	of	microservices	and	systems	within	a
microservice	ecosystem.

shared	hardware
Servers	or	databases	that	are	used	to	host	or	store	data	for	more	than	one	application,
microservice,	or	system	simultaneously.

single	point	of	failure	(SPOF)
A	piece	of	an	application,	microservice,	or	system	that,	if	it	fails,	will	bring	down	the
application,	microservice,	or	system.

site	reliability	engineering	(SRE)
Operational	engineers	responsible	in	large	companies	for	the	reliability	of	the
applications,	microservices,	or	systems	within	the	engineering	organization(s).

splitting	the	monolith
The	name	given	to	the	process	of	breaking	a	large	monolithic	application	into	a	set	of
microservices.

staging
The	first	phase	of	a	deployment	pipeline	that	does	not	serve	production	traffic	and	is
used	to	test	new	builds;	usually	a	mirror	copy	of	production;	may	be	implemented	as
either	full	staging	or	partial	staging.



three-tier	architecture
A	basic	architecture	for	software	applications	consisting	of	a	frontend	(client-side)	piece,
a	backend	piece,	and	some	type	of	datastore.

unit	tests
Small,	independent	tests	that	run	over	small	pieces	(or	units)	or	a	microservice’s	code;
part	of	code	testing.

vertical	scaling
When	an	application	or	system	is	scaled	by	increasing	the	resources	(CPU,	RAM)	of
each	host	that	the	application	or	system	is	running	on.
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