

Professional	CSS3

Table	of	Contents

Professional	CSS3
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Foundations	and	Tools
Choosing	the	right	IDE

Speeding	up	the	programming	process	with	snippets/Emmet
Keyboard	shortcuts

Cross	browser	compatibility	–	which	browsers	should	you	install?
How	to	use	inspector
Key	shortcuts

Preprocessor	–	why	should	you	use	them?
Nesting	elements	in	preprocessors
Using	variables	to	parametrize	your	CSS	code
Using	mixins	in	preprocessors
Mathematical	operations
Logic	operations	and	loops
Joining	of	multiple	files
Less	–	a	short	introduction
CSS	with	Stylus
SASS	–	the	most	mature	preprocessor
Short	comparison

SASS	foundation
Variables	–	where	and	how	to	use
Simple	mixins	–	where	and	how	to	use	(@mixin,	@include)
Extending	classes	(@extend)

Importing	files	(@import)
Using	of	&	in	SASS
Compass	features

Simple	automatization	(with	Gulp)
Pixelperfect	layouts	tools

Pixelfperfect	plugin
MeasureIT	plugin

Checking	compatibility
Good	assumptions	in	code
Creating	proper	selectors

Using	IDs
Using	classes
Grouping	selectors
Interesting	selectors

Adjacent	sibling	combinatory	+
Child	combinator	">"
Adjacent	sibling	combinatory	~
Getting	elements	by	attributes
Attributes	with	exact	value	[attribute="value"]
Attributes	which	begin	with	[attribute^="value"]

Whitespace	separated	attribute	values	[attribute~="value"]
Attribute	values	ending	with	[attribute$="value"]
Attributes	containing	strings	[attribute*="value"]
Using	!important	in	CSS

Preparing	your	project
Files	structure
How	to	keep	variables	in	a	project
How	and	where	to	keep	mixins	(local	and	global)
Keep	typography	styles	in	a	separate	file
Views	of	specific	elements

Summary
2.	Mastering	of	Fundamentals

Traditional	box	model
Padding/margin/border/width/height
Omitting	problems	with	the	traditional	box	model	(box-sizing)

Floating	elements
Possibilities	of	floating	elements
Most	known	floating	problems
Defining	clear	fix/class/mixins
Example	of	using	floating	elements

Display	types
Block	elements
Inline	elements
Inline-block	display

Where	can	you	use	other	types	of	elements	–	navigation
Where	can	you	use	other	types	of	elements	–	problem	of	equal	boxes

CSS	elements	positioning
Static,	relative,	absolute,	fixed	–	differences
Lists	with	fixed	images	(on	the	right	or	left)	and	descriptions

Summary
3.	Mastering	of	Pseudoelements	and	Pseudoclasses

Pseudoclasses
How	can	we	check	:active,	:hover	state?
Usage	–	multilevel	menu
Usage	–	CSS	hover	rows

Usage	of	pseudoclasses
How	to	use	:first-child,	:last-child,	:nth-child()
Usage	–	styling	table
Exploring	:nth-child	parameters
How	to	use	:nth-last-child
How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-last-of-type
Empty	elements	with	the	:empty	pseudoclass

Supporting	forms	styling	with	pseudoclasses
Validation	with	:valid	and	:invalid
Adding	input	statuses	:focus,	:checked,	:disabled
Additional	aspect	–	colorize	the	placeholder

Drawing	primitives	with	CSS
How	to	draw	a	rectangle/square
How	to	draw	a	circle
How	to	draw	a	ring
How	to	draw	a	triangle	with	CSS

Pseudoelements
What	is	:before	and	:after?
Where	can	we	use	:before	and	:after?
First	letter	and	first	line	–	simple	text	manipulation
How	to	change	selection	color?	Usage	of	::selection

Summary
4.	Responsive	Websites	–	Prepare	Your	Code	for	Specific	Devices

The	foundation	of	responsive	websites
Desktop	first	methodology
Mobile	first	methodology
Adjusting	the	viewport	in	HTML
Choosing	the	right	viewport
Above	the	fold

Media	queries	–	where	can	you	use	it
How	to	build	media	queries
How	media	queries	work?
Media	queries	for	specific	views/devices

How	to	choose	proper	media	queries	for	mobile	devices
Usage	sample	–	main	navigation
Summary

5.	Using	Background	Images	in	CSS
CSS	backgrounds

Repeating	of	background
Background	size
Background	position
Multiple	backgrounds
How	to	create	and	use	sprites
Usage	of	base64

Retina	problems
Summary

6.	Styling	Forms
Forms	–	the	most	known	issues
Forms	–	enable	superpowers

How	to	style	simple	input
Don't	forget	about	placeholders
Complex	form	based	on	input[type="text"]	and	labels
How	to	style	textarea
Styling	of	select	(drop	down)

Summary
7.	Resolving	Classic	Problems

Centering	elements
Inline	elements	–	horizontal	centering
Block	elements	–	centering	in	both	axes
Using	transform	in	centering

Dealing	with	opacity
Opacity	versus	RGBA	–	differences	and	where	can	we	use	them
Opacity	in	the	past	–	fallback	for	old	IE	versions

Summary
8.	Usage	of	Flexbox	Transform

Flexbox
Flexbox	property	align-items
Flexbox	property	flex-wrap
Flexbox	property	justify-content
Flexbox	property	align-content
Flexbox	property	flex-direction
Usage	of	flexbox	–	creating	page	structure
Usage	of	flexbox	–	change	order	of	boxes	in	mobile/tablet	view

More	about	transform
Summary

9.	Calc,	Gradients,	and	Shadows
The	calc()	method

Gradients	in	CSS
Linear	gradients
Using	gradient	mixins
Radial	gradients

How	to	add	box-shadow
How	to	add	text-shadow
Additional	font	and	text	features

Using	non-standard	fonts	in	browsers
Using	CSS	animations

Data	attribute
Issue	–	bold	on	hover	moves	the	navigation

Summary
10.	Don't	Repeat	Yourself	–	Let's	Create	a	Simple	CSS	Framework

File	structure
Short	forms	of	useful	elements
Other	mixins

Clearfix
Media	queries

Media	queries	template
Grids

Standard	grids	16/12
Standard	reusable	structures

Reusable	multilevel	menus
How	to	create	reusable	buttons

Gathering	other	reusable	mixins
Primitives

Let's	test	and	use	our	framework
Remember!
Summary

11.	Mailers	Fundamentals
Testing	your	mailer
Back	to	tables

Resetting	styles
Targeting	specific	devices	through	media	queries

CSS	properties	in	e-mail	templates
Responsive	e-mail	templates

Inlining	the	e-mail	template
Tips	for	e-mail	template	development

The	e-mail	template	framework	INK	by	ZURB
Testing	with	Litmus
Summary

12.	Scalability	and	Modularity
Building	scalable	and	modular	code
CSS	methodologies

SMACSS
Base	rules
Layout	rules
Module	rules
State	rules
Theme	rules
Summary	of	SMACSS

OOCSS
Using	OOCSS	in	our	sample
Summary	of	OOCSS

Block	Element	Modifier	(BEM)
Using	BEM	in	our	sample
Using	BEM	in	SASS
How	to	use	modifier?

Which	methodology	should	you	use?
Maybe	your	own	methodology?
Summary

13.	Code	Optimization
Self-optimization

A	few	steps	before	you	push	code	live
Using	short	forms

Short	forms	of	paddings/margins
Short	forms	of	borders
Short	forms	in	fonts	styling
Short	forms	in	backgrounds

Checking	repetitions
Summary

14.	Final	Automatization	and	Processes	Optimization
Gulp
Jade	as	your	templating	engine

Installing	and	using	Jade
Basics	of	Jade
Mixins	in	Jade
Include	and	extend	functions	in	Jade
Jade	in	gulp.js

UnCSS
Integrating	UnCSS	in	Gulp

Minifying	CSS
Final	automatizer
Summary

Index

Professional	CSS3

Professional	CSS3
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	May	2016

Production	reference:	1260516

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-094-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Piotr	Sikora

Reviewer

Ed	Wheeler

Commissioning	Editor

Priya	Singh

Acquisition	Editor

Prachi	Bisht

Content	Development	Editor

Rashmi	Suvarna

Technical	Editor

Shivani	K.	Mistry

Copy	Editors

Sameen	Siddiqui

Roshni	Banerjee

Project	Coordinator

Judie	Jose

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Abhinash	Sahu

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
Piotr	Sikora	is	lead	frontend	developer	at	Nitro	Digital,	based	in	Kielce,	Poland.	He	started
working	on	web	projects	when	he	was	in	high	school.	Over	the	years,	he	has	been	a	Flash
developer,	project	manager,	and	team	supervisor.	He	loves	digital	projects	and	dealing	with
all	things	digital.

Piotr	is	a	b-boy	(break	dancer)	and	has	learned	a	lot	of	artistic	stuff	from	dance.	He	teaches
dance	in	his	free	time.

I	would	like	to	thank	my	wife	and	daughter	for	giving	me	great	inspiration	and	motivating	me
to	write	this	book.	I	also	give	deep	thanks	to	my	parents,	who	always	supports	me.

I	would	also	like	to	thank	all	my	friends	and	mentors	that	I've	had	over	the	years—mentors
such	as	Wojciech	Świderski	of	the	Apollo13	team	who	showed	me	how	to	think	in	CSS	and
JavaScript;	Krzysztof	Łosiak	of	Reborn	team	for	first	web	ideas	and	knowledge	sharing;	the
Nitro	Digital	team	for	their	support,	cooperation	and	still	new	possibilities;	the	Broken	Glass
2	crew	for	providing	inspiration,	creative	and	open-minded	thinking.	Without	you	guys,
writing	this	book	would	have	been	impossible!

About	the	Reviewer
Ed	Wheeler	works	as	a	frontend	developer	focused	on	building	reusable	and	scalable
interfaces	for	websites.	With	over	10	years	of	experience	in	building	frontend	code,	Ed	has
helped	small,	medium,	and	large	organizations	alike.	Ed	has	also	been	the	technical	reviewer
for	Packt	Publishing's	video	series	Mastering	CSS.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book
library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
CSS	is	often	perceived	as	a	simple	language.	In	fact,	while	being	declarative	and	apparently
simple,	it	is	pretty	hard	to	maintain.	For	a	growing	large-scale	web	application,
maintainability	is	crucial.	This	book	is	about	ways	to	leverage	known	tricks	and	hacks,	new
CSS	level	3	module	techniques,	preprocessors,	and	other	tools	to	create	really	high-quality
products.	This	will	include	examples	on	techniques	such	as	float	handling	and	component-
based	CSS.

What	this	book	covers
Chapter	1,	Foundations	and	Tools,	is	about	the	tools	that	will	help	you	build	better	CSS	code.	It
describes	the	features	of	preprocessors	before	providing	foundational	knowledge	about
SASS.	In	this	chapter,	you	will	get	basic	knowledge	about	automatization	of	repeatable
processes	in	frontend	development	with	GULP.js.	You	will	also	find	an	example	of	file
structures,	which	you	can	use	to	divide	a	project	into	files	that	are	small	and	easy	to	edit	and
maintain.

Chapter	2,	Mastering	of	Fundamentals,	helps	you	master	the	box	model,	floating	CSS,
positioning	troubleshooting,	and	display	types.	After	this	chapter,	you	will	be	more	aware	of
foundations	of	HTML	and	CSS.

Chapter	3,	Mastering	of	Pseudoelements	and	Pseudoclasses,	describes	pseudoclasses	and
pseudoelements	and	how	you	can	use	them.	It	will	cover	the	problem	of	drawing	primitives
and	how	to	use	them	as	a	part	of	optimized	CSS	code.

Chapter	4,	Responsive	Websites	–	Prepare	Your	Code	for	Specific	Devices,	provides
knowledge	about	RWD	and	how	to	prepare	projects.	It	will	cover	problems	of	modern
websites	and	optimization	techniques.

Chapter	5,	Using	Background	Images	in	CSS,	addresses	the	fact	that	images	are	on	almost
every	webpage.	This	chapter	will	teach	you	how	to	craft	an	optimal	website	with	images
displayed	correctly	on	a	wide	spectrum	of	modern	devices,	including	mobile	phones	and
tablets.

Chapter	6,	Styling	Forms,	teaches	you	about	styling	forms	and	which	elements	of	CSS	you	can
and	cannot	use.

Chapter	7,	Resolving	Classic	Problems,	is	about	troubleshooting	classic	problems	in	CSS:
dealing	with	opacity,	transforms,	and	centering	elements.

Chapter	8,	Usage	of	Flexbox	Transform,	teaches	you	about	new	features	of	CSS	and	where	to
use	them.

Chapter	9,	Calc,	Gradients,	and	Shadows,	will	provide	information	about	calc	function,	which
will	help	you	with	math	operations	in	CSS.	This	chapter	will	reveal	the	gradient	functions	and
how	can	you	use	them	in	HTML	layouts.	In	this	chapter,	you	will	also	get	a	basic	knowledge
about	CSS	shadows	and	its	usage.	After	this	chapter,	you	will	know	how	to	add	shadow	to
boxes	and	texts.

Chapter	10,	Don't	Repeat	Yourself	–	Let's	Create	a	Simple	CSS	Framework,	is	about	building
reusable	code	and	how	to	later	use	it	as	a	foundation	for	your	own	projects.	This	chapter	will
cover	problems	related	to	creating	basic	CSS	frameworks.

Chapter	11,	Mailers	Fundamentals,	is	a	short	introduction	to	mailers	and	problems	that	can
occur	during	the	mailer	building	process.	The	chapter	is	focused	on	fundamental	knowledge.

Chapter	12,	Scalability	and	Modularity,	teaches	you	how	to	prepare	scalable	code	in	CSS.

Chapter	13,	Code	Optimization,	is	about	the	final	process	that	takes	place	after	building	CSS
code.	It's	mainly	about	optimization	and	minification	tools.	It	covers	the	problems	involved	in
preparing	your	code	before	you	start	coding	and	during	the	creation	of	CSS	code.

Chapter	14,	Final	Automatization	and	Processes	Optimization,	is	about	the	automatization	of
operations	over	CSS	code.

What	you	need	for	this	book
To	use	this	book,	it	is	recommended	you	install	your	favorite	IDE,	which	should	support	the
following:

HTML
SASS
CSS

For	better	understanding	of	the	code	and	its	debugging,	you	will	need	a	browser	such	as:

Google	Chrome
Mozilla	Firefox
Internet	Explorer	9+

Additionally,	you	will	need	the	following:

Ruby	(to	install	SASS)
SASS
Node.js	(to	install	Gulp.js)
Gulp.js

Who	this	book	is	for
This	book	is	meant	for	all	frontend	developers	who	want	to	learn	how	to	use	the	features	of
CSS	and	SASS.	The	book	covers	a	number	of	topics	that	can	be	interesting	for	developers	at
each	level.	If	you	are	a	beginner,	it	will	introduce	you	to	CSS	and	SASS.	If	you	an
intermediate/expert	programmer,	this	book	can	be	a	good	refresher	of	some	CSS	and	SASS
features.	Additionally,	the	final	chapter	is	for	all	developers	who	want	to	start	working	as	a
frontend	developer	and	want	to	automatize	a	bunch	of	tasks	such	as	the	minification	of	CSS
code.

Conventions
In	this	book,	you	will	find	a	number	of	tools.	Mainly	it	will	be	SASS	and	CSS	code	but	as	you
know	CSS	is	not	working	by	itself	and	we	will	be	using	basic	HTML	structures.	Additionally
there	will	be	a	bunch	of	JS	code	which	will	describe	Gulp.js	taks.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"With	preprocessor,	each
@import	makes	a	merging	for	you,	and	in	this	place	you	will	have	a	content	of	mentioned	file
"

A	block	of	code	is	set	as	follows:

@import	"typography.css"

@import	"blocks.css"

@import	"main.css"

@import	"single.css"

Any	command-line	input	or	output	is	written	as	follows:

npm	init

npm	install	gulp-compass	gulp	--save-dev

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"The	easiest	way	to	invoke
inspector	is	to	right-click	on	an	element	and	choose	Inspect	."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Professional-CSS3.	We	also	have	other	code	bundles	from
our	rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check
them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Professional-CSS3
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used
in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/ProfessionalCSS3_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/ProfessionalCSS3_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we
would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Foundations	and	Tools
It	is	important	to	learn	about	the	foundations	in	each	area.	You	need	to	have	basic	information
to	be	a	professional.	Good	usage	of	tools	is	almost	as	important	as	the	foundation.	Without
good	tools,	your	foundation	won't	be	used	well.

This	chapter	is	about	tools	that	will	help	to	build	better	CSS	code.	It	describes	features	of
preprocessors	and	finally	the	foundation	knowledge	about	SASS.	In	this	chapter,	you	can	get
basic	knowledge	about	automatization	of	repeatable	processes	in	frontend	development	with
GULP.js.	Finally,	you	can	find	an	example	of	file	structure,	which	will	partialize	your	project
into	small,	easy	to	edit,	and	maintainable	files.

In	this	chapter,	we	will:

Learn	about	the	usage	of	preprocessors.
Create	a	CSS	project	with	a	proper	structure.

Choosing	the	right	IDE
Building	CSS	code	is	pretty	simple.	If	you	want	to	start,	you	just	need	a	simple	text	editor	and
start	writing	your	code.	If	you	want	to	speed	up	the	process,	you	will	need	to	choose	the	right
text	editor	or	integrated	development	environment	(IDE).	Currently	the	most	popular
editors/IDEs	for	frontend	developers	are	as	follows:

Sublime	Text
Atom
WebStorm/PHPStorm
Eclipse/Aptana
Brackets

Your	choice	will	be	based	on	price	and	quality.	You	should	use	the	editor	that	you	feel	most
comfortable	with.

Speeding	up	the	programming	process	with	snippets/Emmet
When	you	are	creating	a	code,	you	have	parts	of	codes	that	you	repeat	in	all	projects/files.
You	will	need	to	create	snippets	that	will	help	you	to	speed	up	the	process	of	writing	code.	As
a	frontend	developer,	I	recommend	you	to	get	a	basic	knowledge	about	Emmet	(previously
Zen	Coding).	This	is	a	collection	of	HTML/CSS	snippets,	which	will	help	you	build	code
faster.	How	to	use	it?	It	is	basically	included	in	modern	frontend	editors	(Sublime	Text,	Atom,
Brackets,	WebStorm,	and	so	on).	If	you	want	to	check	how	Emmet	works	in	CSS	you	need	to
start	a	declaration	of	some	class	for	example	.className,	open	the	brackets	({})	and	write	for
example:

pl

Then	press	the	Tab	button,	which	will	trigger	the	Emmet	snippet.	As	a	result,	you	will	get	the
following:

padding-left

Following	are	examples	of	the	most	used	properties	and	values:

Emmet	form Result

bg Background

bgc Background	color

m Margin

ml,	mr,	mt,	mb Margin-left,	margin-right,	margin-top,	margin-bottom

ml20px Margin-left:	20px

c Color

fl Float:	left

p20px20p Padding:	20px	20%

tac Text-align:	center

tdn
Text-decoration:	none

ttu Text-transform:	uppercase

dib Display:	inline-block

! !important

For	a	better	understanding	of	Emmet	and	to	get	a	full	list	of	features,	it	is	recommended	to
check	the	official	website	of	the	project	at:	http://emmet.io/.

http://emmet.io/

Keyboard	shortcuts
Do	you	remember	when	you	learned	the	most	impressive	keyboard	shortcuts	Ctrl	+	C	,Ctrl	+
V?	It	helped	you	to	save	about	2	seconds	each	time	you	wanted	to	make	an	operation	of
copying	and	pasting	some	text	or	any	other	element.	But	what	about	automizing	some
processes	in	building	code?	Yeah,	it's	going	to	be	helpful	and	you	can	do	it	with	keyboard
shortcuts.

Shortcuts	that	you	should	know	in	your	IDE	are	as	follows:

Duplicating	line
Deleting	line
Moving	line
Formatting	code

Cross	browser	compatibility	–	which	browsers
should	you	install?
To	test	your	code,	you	will	need	all	the	modern	web	browsers.	In	your	list,	you	should	have
the	following	browsers:

Google	Chrome	(newest	version)
Mozilla	Firefox	(newest	version)
Mozilla	Firefox	developers	edition	(newest	version)
Opera	(newest	version)
Safari	(newest	version)
Internet	Explorer

Internet	Explorer	(IE)	is	the	biggest	issue	in	frontend	developers'	lives	because	you	will	need
a	bunch	of	IEs	on	your	machine,	for	example,	9,	10,	and	11.	The	list	is	getting	smaller	because
back	in	the	days	the	list	was	longer.	IE6,	7,	8,	9,	and	so	on.	Now	IE6,	7,	and	8	are	mostly	not
supported	by	the	biggest	web	projects	like	YouTube	and	Facebook.	But	it	sometimes	occurs	in
big	companies	in	which	the	changing	of	operating	systems	is	a	pretty	complicated	process.

To	easily	test	your	code	on	a	bunch	of	browsers,	it	is	good	to	use	online	tools	dedicated	for
this	test:

https://crossbrowsertesting.com/
https://www.browserling.com/
https://www.browserstack.com/

But	an	easy	and	free	way	to	do	it	is	to	create	a	virtual	machine	on	your	computer	and	use	the
system	and	browser	which	you	need.	To	collect	the	required	versions	of	IE,	you	can	refer	to
http://modern.ie.	With	modern.ie,	you	can	select	the	IE	version	you	need	and	your	version	of
virtual	machine	platform	(VirtualBox,	Parallels,	Vagrant,	VMware).

https://crossbrowsertesting.com/
https://www.browserling.com/
https://www.browserstack.com/
http://modern.ie

How	to	use	inspector
Dealing	with	HTML	and	CSS	code	is	almost	impossible	nowadays	without	inspector.	In	this
tool,	you	can	see	the	markup	and	CSS.	Additionally,	you	can	see	the	box	model.	This	is	well
known	too	in	browsers	for	web	developers.	A	few	years	ago,	everybody	was	using	Firebug
dedicated	for	Firefox.	Now	each	modern	browser	has	its	own	built-in	inspector,	which	helps
you	to	debug	a	code.

The	easiest	way	to	invoke	inspector	is	to	right-click	on	an	element	and	choose	Inspect.	In
Chrome,	you	can	do	it	with	a	key	shortcut.	In	Windows,	you	have	to	press	F12.	In	MAC	OSX,
you	can	use	cmd	+	alt	+	I	to	invoke	inspector.

Key	shortcuts
For	faster	using	of	your	browser,	it's	good	to	know	some	key	combinations	that	will	speed	up
the	process.

Key	combination Function

Ctrl	+	R,	cmd	+	R Reload

Ctrl	+	Shift	+	R,	cmd	+	shift	+	R Reload	with	cache

cmd	+	I,	F12 Inspector

Ctrl	+	U,	cmd	+	alt	+	U Source	of	page

Preprocessor	–	why	should	you	use	them?
A	preprocessor	is	a	program	that	will	build	CSS	code	from	other	syntax	similar	or	almost
identical	to	CSS.	The	main	advantages	of	preprocessors	are	as	follows:

Code	nesting
Ability	of	using	variables
Ability	of	creating	mixins
Ability	of	using	mathematical/logical	operations
Ability	of	using	loops	and	conditions
Joining	of	multiple	files

Nesting	elements	in	preprocessors
Preprocessors	give	you	the	advantage	of	building	code	with	nesting	of	declarations.	In	simple
CSS,	you	have	to	write	the	following:

.class	{

		property:	value;

}

.class	.insideClass	{

		property:	value;

}

In	the	preprocessor,	you	just	need	to	write	the	following:

.class	{

		property:	value;

		.insideClass	{

				property:	value;

		}

}

Or	in	SASS	with	the	following	indentation:

.class

		property:	value

		.insideClass

				property:	value

And	it	will	simply	compile	to	code:

.class	{

		property:	value;

}

.class	.insideClass	{

		property:	value;

}

The	proper	usage	of	nesting	will	give	you	the	best	results.	You	need	to	know	that	good	CSS
code.

Using	variables	to	parametrize	your	CSS	code
In	good	CSS	code,	there	is	no	possibility	to	use	variables	in	all	browsers.	Sometimes	you	are
using	same	value	in	the	few	places,	but	when	you	have	change	requests	from	client/project
manager/account	manager,	you	just	immediately	need	to	change	some	colors/margins,	and	so
on.	In	CSS,	usage	of	variables	is	not	supported	in	old	versions	of	Internet	Explorer.	Usage	of
variables	is	possible	with	CSS	preprocessors.

Using	mixins	in	preprocessors
In	classic	programming	language,	you	can	use	functions	to	execute	some	math	operations	or
do	something	else	like	displaying	text.	In	CSS,	you	haven't	got	this	feature,	but	in
preprocessors	you	can	create	mixins.	For	example,	you	need	prefixes	for	border-radius	(old
IE,	Opera	versions):

-webkit-border-radius:	50%;

-moz-border-radius:	50%;

border-radius:	50%;

You	can	create	a	mixin	(in	SASS):

@mixin	borderRadius($radius)	{

		-webkit-border-radius:	$radius;

		-moz-border-radius:	$radius;

		border-radius:	$radius;

}

And	then	invoke	it:

@include	borderRadius(20px)

Mathematical	operations
In	preprocessors,	you	can	use	math	operations	like	the	following:

Addition
Subtraction
Multiplying
Dividing

As	an	example,	we	can	create	simple	grid	system.	You	will	need,	for	example,	10	columns
with	a	resolution	of	1,000	pixels:

$wrapperWidth:	1000px;

$columnsNumber:	10;

$innerPadding:	10px;

$widthOfColumn	=	$wrapperWidth	/	$columnsNumber;

.wrapper	{

		width:	$wrapperWidth;

}

.column	{

		width:	$widthOfColumn;

		padding:	0	10px;

}

Logic	operations	and	loops
Without	a	logical	operator's	comparison	of	operations	and	loops,	you	cannot	create	a	good
program	in	classic	programming	language.	The	same	applies	to	preprocessors.	You	need
them	to	automatize	the	creation	of	classes/mixins,	and	so	on.	The	following	is	the	list	of
possible	operators	and	loops.

The	list	of	comparison	operators	is	as	follows:

<:	less	than
>:	greater	than
==:	equal	to
!=:	not	equal	to
<=:	less	or	equal	than
>=:	greater	or	equal	than

The	list	of	logical	operators	is	as	follows:

and

or

not

The	list	of	loops	is	as	follows:

if

for

each

while

Joining	of	multiple	files
In	classic	CSS,	you	can	import	files	into	one	CSS	document.	But	in	a	browser,	it	still	makes
additional	requests	to	the	server.	So,	let's	say	when	you	have	a	file	with	the	following	content:

@import	"typography.css"

@import	"blocks.css"

@import	"main.css"

@import	"single.css"

It	will	generate	four	additional	requests	to	CSS	files.	With	a	preprocessor,	each	@import
makes	a	merging	for	you,	and	in	this	place	you	will	have	the	content	of	the	mentioned	file.	So,
finally,	you	have	four	files	in	one.

Less	–	a	short	introduction
Less	is	a	preprocessor	mainly	used	in	a	Bootstrap	framework.	It	has	all	the	features	of	a
preprocessor	(mixins,	math,	nesting,	and	variables).

One	of	the	good	features	is	the	quick	invoking	of	declared	mixins.	For	example,	you	have
created	a	class:

.text-settings	{

		font-size:	12px;

		font-family:	Arial;

		text-align:	center;

}

Then	you	can	add	declared	properties	with	its	values	in	other	elements	declared	in	your	less
file	(it	works	like	a	mixin):

p	{

		.text-settings;

		color:	red;

}

You	will	finally	get	the	following:

p	{

		font-size:	12px;

		font-family:	Arial;

		text-align:	center;

		color:	red;

}

CSS	with	Stylus
Stylus	has	two	versions	of	code	(like	SASS):	one	with	braces/semicolons	and	the	other
without	braces/semicolons.	Additionally	(over	SASS),	you	can	omit	colons.	If	it	continues	to
be	developed	and	still	retains	its	present	features,	it's	going	to	be	the	biggest	competitor	for
SASS.

SASS	–	the	most	mature	preprocessor
SASS	stands	for	Syntactically	Awesome	Stylesheets.	It	first	appeared	in	2006	and	was	mainly
connected	to	Ruby	on	Rails	(RoR)	projects.	Agile	methodology	used	in	RoR	had	an	influence
on	frontend	development.	This	is	currently	the	best	known	CSS	preprocessor	used	in	the
Foundation	framework	with	the	combination	of	Compass.	A	new	version	of	the	Twitter
Bootstrap	(fourth	version)	framework	is	going	to	be	based	on	SASS	too.

In	SASS,	you	can	write	code	in	a	CSS-like	version	called	SCSS.	This	version	of	code	looks
pretty	similar	to	CSS	syntax:

a	{

		color:	#000;

		&:hover	{

				color:	#f00;

		}

}

The	second	version	of	code	is	SASS.	It	uses	indentations	and	is	the	same	as	the	preceding
code,	but	written	in	SASS:

a	

		color:	#000;

		

		&:hover	

									color:	#f00;

You	can	see	bigger	differences	in	mixins.	To	invoke	a	mixin	in	SCSS,	write	the	following:

@include	nameOfMixin()

To	invoke	a	mixin	in	SASS,	write	the	following:

+nameOfMixin()

As	you	can	see,	SASS	is	a	shorter	version	than	SCSS.	Because	of	the	shortcuts	and	the
automatization	processes	it	is	highly	recommend	to	use	SASS	over	SCSS—write	Less—get
more.

Personally	I'm	using	SASS.	Why?	The	first	reason	is	its	structure.	It	looks	very	similar	to
Jade	(an	HTML	preprocessor).	Both	of	them	are	based	on	indentation	and	it	is	easy	stylize
Jade	code.	The	second	reason	is	the	shorter	versions	of	functions	(especially	mixins).	And	the
third	reason	is	its	readability.	Sometimes,	when	your	code	is	bigger,	the	nesting	in	SCSS
looks	like	a	big	mess.	If	you	want,	for	example,	to	change	a	nested	class	to	be	in	any	other
element,	you	have	to	change	your	{}.	In	SASS,	you	are	just	dealing	with	indentation.

Short	comparison
I've	been	working	a	lot	with	Less	and	SASS.	Why	did	I	finally	chose	SASS?	Because	of	the
following	reasons:

It's	a	mature	preprocessor
It	has	very	good	math	operations
It	has	extensions	(Compass,	Bourbon)

Usage	of	Compass	is	recommended	because:

It	has	a	collection	of	modern	mixins
It	creates	sprites

Most	preprocessors	have	the	same	options	and	the	reason	you	will	choose	one	is	your	own
preferences.	In	this	book,	I	will	be	using	SASS	and	Compass.	In	the	following	table,	you	can
find	a	short	comparison:

	 Less Stylus SASS

Variables Yes Yes Yes

Nesting Yes Yes Yes

Mixins Yes Yes Yes

Math Yes Yes Yes

Additional	collections	of	mixins No No Yes	(Compass/Bourbon)

SASS	foundation
Using	the	SASS	preprocessor	is	really	simple.	You	can	use	it	in	two	ways:	SCSS	and	SASS
itself.	Using	the	SASS	preprocessor	is	really	simple.	You	can	use	it	in	two	ways:	SCSS	and
SASS.	The	SCSS	syntax	looks	like	extended	CSS.	You	can	nest	your	definitions	using	new
braces.	SASS	syntax	is	based	on	indent	(similar	for	example	to	Python	language).

Variables	–	where	and	how	to	use
Using	variables	is	the	essential	feature	of	SASS,	which	is	mostly	impossible	in	CSS	that	is
used	on	most	modern	browsers.	Variables	can	be	used	in	every	element	that	you	want	to
parametrize,	such	as	colors,	margins,	paddings,	and	fonts.

To	define	variables	in	SASS,	you	just	need	to	do	it	with	the	$	sign	and	add	the	name	of	your
variable	after	it.

In	SCSS:

$color_blue:	blue;

Usage:

.className	{

		color:	$color_blue;

}

Simple	mixins	–	where	and	how	to	use	(@mixin,	@include)
As	mentioned	in	the	previous	section,	variables	can	be	used	to	parametrize	the	code.	The
second	best	known	feature	is	to	add	some	predefined	block	of	code	that	you	can	invoke	with
some	shorter	version.

In	SCSS,	you	can	predefine	it	this	way:

@mixin	animateAll($time)	{

		-webkit-transition:	all	$time	ease-in-out;

		-moz-transition:	all	$time	ease-in-out	;

		-o-transition:	all	$time	ease-in-out;

		transition:	all	$time	ease-in-out;

}

And	then	invoke	with:

@include	animateAll(5s)

In	the	SASS	version:

=animateAll($time)

		-webkit-transition:	all	$time	ease-in-out

		-moz-transition:	all	$time	ease-in-out

		-o-transition:	all	$time	ease-in-out

		transition:	all	$time	ease-in-out

And	invoke	it	with:

+animateAll(5s)

Example:

SASS:

.animatedElement

		+animateAll(5s)

Compiled	CSS:

.animatedElement	{

				-webkit-transition:	all	5s	ease-in-out;

				-moz-transition:	all	5s	ease-in-out;

				-o-transition:	all	5s	ease-in-out;

				transition:	all	5s	ease-in-out;

}

Extending	classes	(@extend)
What	does	@extend	make	in	SASS	code?	For	example,	you	have	a	part	of	code	that	is
repeating	in	all	fonts:

.font-small	{

		font-family:	Arial;

		font-size:	12px;

		font-weight:	normal;

}

And	you	don't	want	to	repeat	this	part	of	code	in	the	next	selector.	You	will	write	in	SASS:

.font-small-red	{

		@extend	.font-small;

		color:	red;

}

The	code	it	will	generate	will	look	like	the	following:

.font-small,	.font-small-red	{

				font-family:	Arial;

				font-size:	12px;

				font-weight:	normal;

}

.font-small-red	{

				color:	red;

}

This	SASS	feature	is	great	to	build	optimized	code.	Remember	to	use	it	in	your	project	over
mixins,	which	will	generate	more	code.

Importing	files	(@import)
In	CSS,	you	could	import	CSS	files	into	one	root	file	with	@import.	For	example:

@import	"typography.css"

@import	"grid.css"

In	SASS,	you	can	import	SASS/SCSS	files	into	one	with	an	automatic	merge	option.	In	case
you	have,	for	example,	two	files	that	you	want	to	include	in	one	SASS	file,	you	need	to	write
the	following	code:

@import	"typography"

@import	"grid"

As	you	can	see	in	the	preceding	code,	you	don't	need	to	add	an	extension	of	the	file	into
import	as	it	automatically	loads	the	SASS	or	SCSS	file.	The	only	thing	you	need	to	remember
is	to	have	only	one	file	in	this	example	named,	typography.

Let's	check	how	it	will	behave	in	real	code.	Imagine	that	we	have	two	files,	_typography.sass
and	_grid.sass.

File	_grid.sass:

.grid-1of2

		float:	left

		width:	50%

.grid-1of4

		float:	left

		width:	25%

.grid-1of5

		float:	left

		width:	20%

File	_typography.sass:

body

		font-size:	12px

h1,	h2,	h3,	h4,	h5,	h6

		font:

				family:	Arial

h1

		font:

				size:	36px

h2

		font:

				size:	32px

h3

		font:

				size:	28px

h4

		font:

				size:	24px

h5

		font:

				size:	20px

h6

		font:

				size:	16px

Now	let's	create	a	style.sass	file:

@import	_typography

@import	_grid

After	compilation	of	style.sass,	you	will	see	a	style.css	file:

body	{

				font-size:	12px;

}

h1,	h2,	h3,	h4,	h5,	h6	{

				font-family:	Arial;

}

h1	{

				font-size:	36px;

}

h2	{

				font-size:	32px;

}

h3	{

				font-size:	28px;

}

h4	{

				font-size:	24px;

}

h5	{

				font-size:	20px;

}

h6	{

				font-size:	16px;

}

.grid-1of2	{

				float:	left;

				width:	50%;

}

.grid-1of4	{

				float:	left;

				width:	25%;

}

.grid-1of5	{

				float:	left;

				width:	2%;

}

As	you	can	see,	two	files	are	merged	into	one	CSS,	so,	additionally,	we	made	a	small
optimization	of	code	because	we	reduced	the	number	of	requests	to	the	server.	In	case	of	three
files,	we	have	three	requests	(style.css,	then	typography.css,	and	grid.css).	Now	there	will
be	only	one	request.

Using	of	&	in	SASS
Sometimes,	in	nesting,	you	will	need	to	use	the	name	of	the	selector	that	you	are	currently
describing.	As	a	best	description	of	the	problem,	you	need	to	first	describe	a	link:

a	{

		color:	#000;

}

and	then:

a:hover	{

		color:	#f00;

}

In	SCSS,	you	can	use	&	to	do	that:

a	{

		color:	#000;

&:hover	{

				color:	#f00;

		}

}

In	SASS:

a

		color:	#000

		&:hover

				color:	#f00

You	can	resolve	with	this	element	other	problems	like	combining	names:

.classname	{}

.classname_inside	{}

In	SCSS:

.classname	{

		&_inside	{

		}

}

In	SASS:

.classname

		&_inside

This	option	has	been	possible	since	SASS	3.5.	It	will	be	very	helpful	in	creating	code	build	in

BEM	methodologies.

Compass	features
Compass	is	a	very	useful	SASS	framework,	especially	when	you	are	working	with	a	big	list
of	icons/reusable	images.	What	you	need	to	do	is	gather	all	the	images	in	one	folder	in	your
project.	For	example,	yourfolder/envelope.png	and	yourfloder/star.png.

Then	in	your	SASS	code:

@import	"compass/utilities/sprites"

@import	"yourfolder/*.png"

@include	all-yourfolder-sprites

Then	in	your	code,	you	can	use	images	as	an	example:

.simple-class-envelope

		@extend	.yourfolder-envelope

.simple-class-star

		@extend	.yourfolder-star

And	it	will	add	a	code	to	your	classes:

.simple-class-envelope	{

		background-image:	url('spriteurl.png');

		background-position:	-100px	-200px;

}

Where	-100px	and	-200px	are	examples	of	offset	in	your	sprite.

Simple	automatization	(with	Gulp)
Every	time	we	are	compiling	project	files	(for	example,	Compass,	Jade,	image	optimization,
and	so	on),	we	are	thinking	about	how	we	can	automatize	and	speed	up	the	process.	The	first
idea—some	terminal	snippets	and	compiling	invokers.	But	we	can	use	grunt.js	and	gulp.js.
What	are	Grunt	and	Gulp?	In	short—task	runners.	You	can	define	a	list	of	tasks,	which	you
repeat	all	the	time,	group	them	into	some	logical	structure,	and	run.

In	most	projects,	you	can	use	them	to	automatize	a	process	of	SASS/Compass	compilation.

I	assume	that	you	have	installed	Node.js,	Ruby,	sass,	and	Compass.	If	not,	I	recommend	you	to
do	this	first.	To	install	all	of	the	listed	software,	you	need	to	visit:

https://nodejs.org/en/	to	install	Node.js
https://www.ruby-lang.org/en/	to	install	Ruby
http://sass-lang.com/	to	install	SASS
http://compass-style.org/	to	install	Compass
http://gulpjs.com/	to	install	Gulp	globally	on	your	machine

On	these	pages,	you	can	find	guides	and	tutorials	on	how	to	install	all	of	this	software.

Then	you	will	need	to	create	a	basic	structure	for	your	project.	It	is	best	to	create	folders:

src:	In	this	folder	we	will	keep	our	source	files
dist:	In	this	folder	we	will	keep	our	compiled	files

In	the	src	folder,	please	create	a	css	folder,	which	will	keep	our	SASS	files.

Then	in	the	root	folder,	run	the	following	command	line:

npm	init

npm	install	gulp-compass	gulp	--save-dev

In	gulpfile.js	add	the	following	lines	of	code:

var	gulp	=	require('gulp'),

				compass	=	require('gulp-compass');

gulp.task('compass',	function	()	{

				return	gulp.src('src/styles/main.sass')

								.pipe(compass({

												sass:	'src/styles',

												image:	'src/images',

												css:	'dist/css',

												sourcemap:	true,

												style:	'compressed'

								}));

});

gulp.task('default',	function	()	{

https://nodejs.org/en/
https://www.ruby-lang.org/en/
http://sass-lang.com/
http://compass-style.org/
http://gulpjs.com/

				gulp.watch('src/css/**/*.sass',	['compass']);

});

Now	you	can	run	your	automatizer	with	the	following	in	your	command	line:

gulp

This	will	run	the	default	task	from	your	gulpfile.js,	which	will	add	a	watcher	to	the	files
with	.sass	extensions,	which	are	located	in	the	src/css	folder.	Every	time	you	change	any	file
in	this	location,	your	task	compass	will	run.	It	means	that	it	will	run	the	compass	task	and	create
a	sourcemap	for	us.	We	could	use	a	default	compass	command,	but	gulp.js	is	a	part	of	the
modern	frontend	developer	workflow.	We	will	be	adding	new	functions	to	this	automatizer	in
the	next	chapters.

Let's	analyze	the	code	a	little	deeper:

gulp.task('default',	function	()	{

				gulp.watch('src/css/**/*.sass',	['compass']);

});

The	preceding	code	defines	the	default	task.	It	appends	a	watcher,	which	checks	the
src/css/**/*.sass	location	for	sass	files.	It	means	that	every	file	in	a	src/css	folder	and	any
subsequent	folder,	for	example,	src/css/folder/file.sass,	will	have	a	watcher.	When	files
in	this	location	are	changed,	the	task	defined	in	the	array	[compass]will	run.	Our	task
compass	is	the	only	element	in	the	array	but	it,	of	course,	can	be	extended	(we	will	do	this	in
the	next	chapters).

Now	let's	analyze	the	task	compass:

gulp.task('compass',	function	()	{

				return	gulp.src('src/styles/main.sass')

								.pipe(compass({

												sass:	'src/styles',

												image:	'src/images',

												css:	'dist/css',

												sourcemap:	true,

												style:	'compressed'

						}));

});

It	will	compile	the	gulp.src('src/styles/main.sass)file	and	save	the	compiled	file	in	pipe
(gulp.dest('style.css')).	The	compass	task	is	defined	in	pipe:

.pipe(compass({

												sass:	'src/styles',

												image:	'src/images',

												css:	'dist/css',

												sourcemap:	true,

												style:	'compressed'

						}))

The	first	line	of	this	task	defines	the	source	folder	for	SASS	files.	The	second	line	defines	the
images	folder.	The	third	line	sets	the	destination	of	the	CSS	file.	The	fourth	line	is	set	to
generate	a	source	map	for	the	file	(for	easier	debugging).The	fifth	line	defines	the	style	of	the
saved	CSS	file;	in	this	case,	it	will	be	compressed	(it	means	that	it	will	be	ready	for
production	code).

Pixelperfect	layouts	tools
In	a	common	workflow,	a	graphic	designer	creates	the	design	of	a	website/application.	Then,
next	in	the	process	is	the	HTML/CSS	coding.	After	the	development	process,	the	project	is	in
the	quality	assurance	(QA)	phase.	Sometimes	it's	focused	only	on	the	functional	side	of	the
project,	but	in	a	good	workflow,	it	checks	of	graphic	design	phase.	During	the	QA	process,
the	designer	is	involved,	he/she	will	find	all	pixels	that	are	not	good	in	your	code.	How	would
check	all	the	details	in	a	pixelperfect	project?

The	question	is	about	mobile	projects.	How	to	check	if	it	is	still	pixel	perfect	when	it	needs	to
be	flexible	in	browsers?	You	will	need	to	make	it	in	described	ranges.	For	example,	you	have
to	create	HTML/CSS	for	the	web	page,	which	has	three	views	for	mobile,	tablet,	and	desktop.
You	will	need	plugins,	which	will	help	you	to	build	pixel	perfect	layouts.

Pixelfperfect	plugin
Pixelperfect	plugin	will	help	you	to	compare	design	with	your	HTML/CSS	in	your	browser.
This	plugin	is	available	on	Firefox	and	Chrome.	To	work	with	it,	you	need	to	make	a
screenshot	of	your	design	and	add	it	in	a	plugin.	Then	you	can	set	a	position	of	image	and
opacity.	This	plugin	is	one	of	the	most	used	by	frontend	developers	to	create	pixel	perfect
HTML	layouts.

MeasureIT	plugin
This	plugin	will	help	you	to	keep	proper	distances	between	elements,	fonts,	and	so	on.	As	you
can	see	in	the	following	screenshot,	it	looks	like	a	ruler	over	your	web	page.	It	is	easy	to	use
—just	click	on	the	plugin	icon	in	the	browser	and	then	click	on	the	website	(it	will	start	the
ruler),	and	move	the	cursor	to	the	place	to	which	you	want	to	know	the	distance,	and	voila!

Checking	compatibility
Some	CSS	features	don't	work	in	all	browsers.	Some	new	properties	need	browser-specific
prefixes	(like	-ms,	-o,	-webkit)	to	work	properly	across	all	modern	browsers.	But	how	to
check	if	you	can	use	some	properties	in	your	project?	Of	course,	you	can	check	it	yourself,
but	the	easiest	way	is	to	check	it	on	http://caniuse.com/.	You	can	open	this	web	page	and	check
which	properties	you	can	use.

http://caniuse.com/

Good	assumptions	in	code
While	you	are	creating	CSS	code,	you	have	to	remember	initial	assumptions	that	will	help
you	to	keep	clear	and	very	readable	code.	These	assumptions	are	as	follows:

Naming	convention—You	need	to	remember	that	your	code	needs	to	be	the	exact	names
of	classes.
Use	comments,	but	not	everywhere,	only	in	places	where	they	are	needed.	Yeah,	but	when
they	are	needed?	They	are	especially	needed	when	you	have	some	exception	or	when	you
have	some	quick	fixes	for	browsers.	With	comments,	you	can	describe	blocks	of	code,
which	describes	the	views,	for	example,	of	footer/header,	or	any	other	element.
Try	to	keep	code	which	is	readable	and	logical.	But	how	does	unlogical	code	look	like?
Look	at	the	following	two	examples:

Example	1	is	as	follows:

.classname	{

		font-size:	12px;

		color:	red;

		font-weight:	bold;

		text-align:	center;

		margin:	10px;

		padding-left:	2px;

		text-transform:	uppercase;

}

Example	2	is	as	follows:

.classname	{

		margin:	10px;

		padding-left:	2px;

		font-size:	12px;

		font-weight:	bold;

		text-align:	center;

		text-transform:	uppercase;

		color:	red;

}

Which	code	looks	better?	Yeah,	of	course,	the	second	example	because	it	has	grouped
declarations.	First	the	description	of	the	box	model,	then	the	font	and	text	behaviors,	and
finally	color.	You	can	try	to	keep	it	in	another	hierarchy	which	will	be	more	readable	for	you.

Using	sample	2	in	SASS:

.classname

		margin:	10px

		padding:

				left:	2px

		font:

				size:	12px

				weight:	bold

		text:

				align:	center

				transform:	uppercase

		color:	red

Isn't	it	shorter	and	more	logical?

Create	proper	selectors	(this	will	be	described	later	in	this	chapter).
Create	an	elastic	structure	for	your	files.

Creating	proper	selectors
The	main	problem	of	the	CSS	coder	is	creating	proper	selectors.	Knowledge	about	priors	in
selectors	is	mandatory.	It	will	help	you	to	omit	the	!important	statement	in	your	code	and	will
help	you	to	create	smaller	and	more	readable	files.

Using	IDs
Using	of	IDs	in	CSS	is	rather	bad	behavior.	The	foundation	of	HTML	says	that	an	ID	is	unique
and	should	be	used	only	once	in	an	HTML	code.	It	is	good	to	omit	IDs	in	CSS	and	use	them
only	when	it	is	the	only	way	to	style	some	element:

#id_name	{

		property:	value;

}

Usage	of	IDs	in	CSS	code	is	bad	behavior	because	selectors	based	on	ID	are	stronger	than
selectors	based	on	classes.	This	is	confusing	in	legacy	code	when	you	see	that	some	part	of
the	code	is	still	preceded	by	another	selector	because	it	is	added	in	the	ID's	parents-based
selector	as	follows:

#someID	.class	{

				/*	your	code	*/

}

It	is	good	to	omit	this	problem	in	your	projects.	First,	think	twice	if	a	selector	based	on	an	ID
is	a	good	idea	in	this	place	and	if	this	cannot	be	replaced	with	any	other	"weaker"	selector.

Using	classes
Classes	are	the	best	friends	of	the	HTML/CSS	coder.	They	are	reusable	elements	that	you	can
define	and	then	reuse	as	much	as	you	want	in	your	HTML	code,	for	example:

.class_name	{

		property:	value;

}

Grouping	selectors
You	can	group	and	nest	selectors.	First,	let's	nest	them:

.class_wrapper	.class_nested	{

		property:	value;

}

Then	let's	group	them:

.class_wrapper_one,

.class_wrapper_two	{

		property:	value;

}

Interesting	selectors
In	CSS	code,	you	need	to	be	a	selector	specialist.	It	is	a	very	important	skill	to	make	a	right
selector	that	will	match	a	specific	element	in	the	DOM	structure.	Let's	provide	a	little	bit	of
fundamental	knowledge	about	selectors.

Adjacent	sibling	combinatory	+

The	plus	sign	in	CSS	can	be	used	in	selectors	in	which	you	will	need	to	select	an	element	right
after	the	element	on	the	left	side	of	the	plus	sign,	for	example:

p	+	a	{

		property:	value;

}

This	selector	will	return	a,	which	is	right	after	the	p	selector,	like	in	the	following	example:

<p>Text</p>

<a>Text

But	it	won't	work	in	the	following	case:

<p>Text</p>

<h1>Text</h1>

<a>Text

Child	combinator	">"

With	element	(>)	in	the	selector,	you	can	match	every	element	that	is	right	into	the	element.
Let's	analyze	the	following	example:

p	>a	{

				property:	value;

}

This	selector	will	return	all	<a>	elements	which	are	into<p>	element	but	are	not	nested	deeper,
for	example:

<p>

<a>text

</p>

But	this	won't	work	in	the	following	case:

<p>

<a>text

</p>

Adjacent	sibling	combinatory	~

With	~,	you	can	create	a	selector	that	will	match	every	element	that	is	parallel	in	the	DOM
structure,	for	example:

p	~	a	{

				color:	pink;

}

This	selector	will	work	in	the	following	cases:

<p></p>

<a>

and:

<p>Text</p>

Text

<a>Text

Getting	elements	by	attributes

Sometimes,	there	is	no	way	to	create	a	selector	based	on	elements,	classes,	and	IDs.	So	this	is
the	moment	when	you	need	to	search	for	any	other	possibility	to	create	the	right	selector.	It	is
possible	to	get	elements	by	their	attributes	(data,	href,	and	so	on):

[attribute]	{

				property:	value;

}

It	will	return	the	following:

<p	attribute>text</p>

And	will	also	return	the	following:

<p	attribute="1">text</p>

Attributes	with	exact	value	[attribute="value"]

In	real	CSS/HTML	code,	there	are	examples	when	you	will	need	a	selector	which	is	based	on
attributes	with	an	exact	value	like	inputs	with	the	type	as	text	or	when	elements	data	attribute	is
set	with	some	value.	It	is	possible	with	a	selector	which	is	similar	to	this	example	code:

input[type="text"]	{

				background:	#0000ff;

}

will	match:

<input	type="text">

Attributes	which	begin	with	[attribute^="value"]

This	selector	is	very	useful	when	you	want	to	match	elements	with	attributes	that	begin	with
some	specific	string.	Let's	check	an	example:

<div	class="container">

				<div	class="grid-1of4">Grid	2</div>

				<div	class="grid-1of2">Grid	1</div>

				<div	class="grid-1of4">Grid	3</div>

</div>

SASS	code:

.grid-1of2

width:	50%

		background:	blue

.grid-1of4

width:	25%

		background:	green

[class^="grid"]

		float:	left

Compiled	CSS:

.grid-1of2	{

				width:	50%;

				background:	blue;

}

.grid-1of4	{

				width:	25%;

				background:	green;

}

[class^="grid"]	{

				float:	left;

}

Let's	analyze	this	fragment	in	SASS	code:

[class^="grid"]

		float:	left

This	selector	will	match	every	element	that	has	an	attribute	with	a	grid	word	in	the	beginning
of	this	attribute.	This	will	match	in	our	case:	.grid-1of2	and	.grid-1of4.	Of	course,	we
could	do	it	with	SASS:

.grid-1of2,	.grid-1of4

float:	left

And	get	it	in	compiled	code:

.grid-1of2,	.grid-1of4	{

				float:	left;

}

But	let's	imagine	that	we	have	about	10	or	maybe	40	classes	like	the	following:

.grid-2of4

		width:	50%

.grid-3of4

		width:	75%

.grid-1of5

		width:	20%

.grid-2of5

		width:	40%

.grid-3of5

		width:	60%

.grid-4of5

		width:	80%

In	compiled	CSS:

.grid-2of4	{

				width:	50%;

}

.grid-3of4	{

				width:	75%;

}

.grid-1of5	{

				width:	20%;

}

.grid-2of5	{

				width:	40%;

}

.grid-3of5	{

				width:	60%;

}

.grid-4of5	{

				width:	80%;

}

And	now	we	want	to	apply	a	float:	left	to	these	elements	like:

.grid-1of2,	.grid-1of4,	.grid-2of4,	.grid-3of4,	.grid-1of5,	.grid-2of5,	.grid-

3of5,	.grid-4of5

		float:	left

In	CSS:

.grid-1of2,	.grid-1of4,	.grid-2of4,	.grid-3of4,	.grid-1of5,	.grid-2of5,	.grid-

3of5,	.grid-4of5	{

				float:	left;

}

It	is	easier	to	use	a	selector	based	on	[attribute^="value"]	and	match	all	of	the	elements
with	a	class	which	starts	with	a	grid	string:

[class^="grid"]

		float:	left

Whitespace	separated	attribute	values	[attribute~="value"]
With	this	selector	you	can	match	all	elements	which	in	list	of	"attributes"	that	contains	a	string
described	as	a	"value".	Let's	analyze	the	following	example.

HTML:

<div	class="container">

				<div	data-style="green	font10">Element	green	font10</div>

				<div	data-style="black	font24">Element	black	font24</div>

				<div	data-style="blue	font17">Element	blue	font17</div>

</div>

Now	in	SASS:

[data-style~="green"]

		color:	green

[data-style~="black"]

		color:	black

[data-style~="blue"]

		color:	blue

[data-style~="font10"]

		font:

				size:	10px

[data-style~="font17"]

		font:

				size:	17px

[data-style~="font24"]

		font:

				size:	24px

Compiled	CSS:

[data-style~="green"]	{

				color:	green;

}

[data-style~="black"]	{

				color:	black;

}

[data-style~="blue"]	{

				color:	blue;

}

[data-style~="font10"]	{

				font-size:	10px;

}

[data-style~="font17"]	{

				font-size:	17px;

}

[data-style~="font24"]	{

				font-size:	24px;

}

And	the	effect	in	the	browser	is	as	follows:

Attribute	values	ending	with	[attribute$="value"]
In	one	of	the	previous	sections,	we	had	an	example	of	a	selector	based	on	beginning	of	an
attribute.	But	what	if	we	need	an	attribute	ending?	With	this	feature	comes	a	selector	based	on
a	pattern	[attribute$="value"].	Let's	check	the	following	example	code:

<div	class="container">

				Contact	form

				Contact	page

				Recommendation	form

</div>

SASS:

[href$="form"]

		color:	yellowgreen

font:

				weight:	bold

Compiled	CSS:

[href$="form"]	{

		color:	yellowgreen;

		font-weight:	bold;	

}

The	effect	in	the	browser	is	as	follows:

With	the	selector	[href$="form"],we	matched	all	elements	whose	attribute	href	ends	with	the
string	form.

Attributes	containing	strings	[attribute*="value"]
With	this	selector,	you	can	match	every	element	that	contains	a	string	in	a	value	in	any	place.
Let's	analyze	the	following	example	code.

HTML:

<div	class="container">

				Contact	form

				Contact	form

				Recommendation	form

				Recommendation	and	contact	

form

</div>

SASS:

[href*="contact"]

		color:	yellowgreen

		font:

				weight:	bold

Compiled	CSS:

[href*="contact"]	{

				color:	yellowgreen;

				font-weight:	bold;

}

In	the	browser	we	will	see:

With	the	selector	[href*="contact"],	we	matched	every	element	that	contains	the	contact
string	in	the	value	of	the	attribute	href.

Using	!important	in	CSS
Hah…	the	magic	word	in	CSS,	which	you	can	see	in	some	special	cases.	With	!important,
you	can	even	overwrite	inline	code	added	by	JavaScript	in	your	HTML.

How	to	use	it?	It	is	very	simple:

element	{

				property:	value	!important;

}

Remember	to	use	it	properly	and	in	cases	where	you	really	need	it.	Don't	overuse	it	in	your
code	because	it	can	have	a	big	impact	in	the	future,	especially	in	cases	when	somebody	will
read	your	code	and	will	try	to	debug	it.

Preparing	your	project
Starting	your	project	and	planning	it	is	one	of	the	most	important	processes.	You	need	to
create	a	simple	strategy	for	keeping	variables	and	mixins	and	also	create	a	proper	file
structure.	This	chapter	is	about	the	most	known	problems	in	planning	your	file	structure	and
the	partialization	of	files	in	your	project.

Files	structure
The	most	important	thing	when	you	are	starting	a	project	is	to	make	a	good	plan	of	its
process.	First,	you	will	need	to	separate	settings:

Fonts
Variables
Mixins

Then	you	will	need	to	partialize	your	project.	You	will	need	to	create	files	for	repeatable
elements	along	all	sites:

Header
Footer
Forms

Then	you	will	need	to	prepare	next	partialization—specific	views	of	styling	and	elements,	for
example:

View	home
View	blog
View	single	post
View	contact	page

How	to	keep	variables	in	a	project
What	can	you	keep	in	variables?	Yeah,	that	is	a	good	question,	for	sure:

Colors	(of	fonts,	backgrounds,	and	elements)
Global	font	sizes	(like	H1-H6,	p,	and	so	on)
Grid	dividers
Global	paddings/margins

How	and	where	to	keep	mixins	(local	and	global)
In	this	file,	you	can	collect	your	mostly	used	mixins.	I've	divided	it	into	local	and	global.	In
global	mixins,	I'm	gathering	the	most	used	mixins	I'm	using	along	all	projects.

In	local	mixins,	I	recommend	to	gather	those	mixins	that	you	will	use	only	in	this	project:

Dedicated	gradient
Font	styling	including	font	family	size	and	so	on
Hover/active	states	and	so	on

Keep	typography	styles	in	a	separate	file
This	file	is	dedicated	for	all	the	most	important	text	elements:

h1-h6
p

a

strong

span

Additionally,	you	can	add	classes	like	the	following:

.h1-h6

.red	.blue	(or	any	other	which	you	know	that	will	repeat	in	your	texts)

.small,	.large

Why	should	you	use	classes	like	.h1-.h6?

Yeah,	it's	a	pretty	obvious	question.	Sometimes	you	cannot	repeat	h1-h6	elements,	but,	for
example,	on	a	blog,	you	need	to	make	them	the	same	font	style	as	h1.	This	is	the	best	usage	of
this	style,	for	example	(HTML	structure):

<h1>	Main	title</h1>

<h2>Subtitle</h2>

<p>...	Text	block	...	</p>

<h2>Second	subtitle</h2>

<p>...	Text	block	...	</p>

<p	class="h2">Something	important</p>

<p>...	Text	block	...	</p>

<p	class="h1">Something	important</p>

<p>...	Text	block	...	</p>

Views	of	specific	elements
In	the	following	listed	files,	you	can	gather	all	elements	that	are	visible	in	some	specific
views.	For	example,	in	a	blog	structure,	you	can	have	a	view	of	single	post	or	page	view.	So
you	need	to	create	files:

_view_singlepost.sass

_view_singlepage.sass

_view_contactpage.sass

Tip

Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
Click	on	Code	Downloads	&	Errata.
Enter	the	name	of	the	book	in	the	Search	box.
Select	the	book	for	which	you're	looking	to	download	the	code	files.
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Summary
In	this	chapter,	you	gathered	information	about	the	fundamentals	of	modern	CSS	workflow.
We	started	with	choosing	an	IDE	and	then	we	focused	on	speeding	up	the	process	through	the
usage	of	snippets,	preprocessors,	and	processes	automatization.

In	the	next	chapter,	we	will	focus	on	the	basics	of	CSS	theory,	box	models,	positions,	and
displaying	modes	in	CSS.

Chapter	2.	Mastering	of	Fundamentals
This	chapter	will	master	the	box	model,	floating	troubleshooting	positioning,	and	display
types.	After	this	chapter,	you	will	be	more	aware	of	the	foundations	of	HTML	and	CSS.

In	this	chapter,	we	will	cover	the	following	topics:

Gaining	knowledge	about	the	traditional	box	model
Basics	of	floating	elements
Foundations	of	positioning	elements	on	a	web	page
Gaining	knowledge	about	display	types

Traditional	box	model
An	understanding	of	the	box	model	is	the	foundation	of	CSS	theories.	You	have	to	know	the
impact	of	width,	height,	margin,	and	borders	on	the	size	of	the	box	and	how	you	can	manage
it	to	match	the	elements	on	a	website.	The	main	questions	for	coders	and	frontend	developers
in	interviews	are	based	on	box	model	theories.	Let's	begin	this	important	chapter,	which	will
be	the	foundation	for	every	upcoming	subject.

Padding/margin/border/width/height
The	ingredients	of	the	final	width	and	height	of	the	box	are	as	follows:

Width
Height
Margins
Paddings
Borders

For	better	understanding	of	the	box	model,	the	following	is	an	image	from	Google	Chrome
inspector:

For	more	clarity	and	better	understanding	of	the	box	model,	let's	analyze	the	following
image:

In	the	preceding	image,	you	can	see	that	in	the	box	model,	we	have	the	following	four	edges:

Content	edge
Padding	edge
Border	edge
Margin	edge

The	width	and	height	of	the	box	are	based	on	the	following:

Width/height	of	content
Padding
Border
Margin

The	width	and	height	of	content	in	the	box	with	default	box-sizing	are	controlled	by	the
following	properties:

Min-width
Max-width
Width
Min-height
Max-height
Height

An	important	thing	about	the	box	model	is	how	background	properties	will	behave.	The
background	will	be	included	in	the	content	section	and	in	the	padding	section	(to	the	padding
edge).

Let's	get	a	code	and	try	to	point	to	all	elements	of	the	box	model.

HTML	code:

<div	class="element">

		Lorem	ipsum	dolor	sit	amet	consecteur

</div>

CSS	code:

.element	{

			background:	pink;

			padding:	10px;

			margin:	20px;

		width:	100px;

		height:	100px;

			border:	solid	10px	black;

}

In	the	browser,	we	will	see	the	following:

The	view	from	the	inspector	of	Google	Chrome	is	as	follows:

Let's	check	how	the	areas	of	the	box	model	are	placed	in	the	following	specific	example:

The	basic	task	for	the	interviewed	frontend	developer	is:

The	box/element	is	described	with	the	styles:

.box	{

				width:	100px;

				height:	200px;

				border:	10px	solid	#000;

				margin:	20px;

				padding:	30px;

}

Please	count	the	final	width	and	height	(the	real	space	which	is	needed	for	this	element)	of
this	element.

So,	as	you	can	see,	the	problem	is	to	count	the	width	and	height	of	the	box.

The	ingredients	of	width	are	as	follows:

Width
Border	left
Border	right
Padding	left
Padding	right

Additionally	for	the	width	of	space	taken	by	the	box:

Margin	left
Margin	right

The	ingredients	of	height	are	as	follows:

Height
Border	top
Border	bottom
Padding	top
Padding	bottom

Additionally	for	height	of	space	taken	by	the	box:

Margin	top
Margin	bottom

Therefore,	when	you	sum	the	elements,	you	will	have	the	following	equations:

Width:

Box	width	=	width	+	borderLeft	+	borderRight	+	paddingLeft	+	paddingRight

Box	width	=	100px	+	10px	+	10px	+	30px	+	30px	=	180px

Space	width:

width	=	width	+	borderLeft	+	borderRight	+	paddingLeft	+	paddingRight	+		

marginLeft	+	marginRight	

width	=	100px	+	10px	+	10px	+	30px	+	30px	+	20px	+	20	px	=	220px

Height:

Box	height	=	height	+	borderTop	+	borderBottom	+	paddingTop	+	paddingBottom

Box	height		=	200px	+	10px	+	10px	+	30px	+	30px	=	280px

Space	height:

Space	height	=	height	+	borderTop	+	borderBottom	+	paddingTop	+	paddingBottom	+		

marginTop	+	marginBottom

Space	height	=	200px	+	10px	+	10px	+	30px	+	30px	+	20px	+	20px	=	320px

You	can	check	it	in	the	real	browser	as	shown	in	the	following:

Omitting	problems	with	the	traditional	box	model	(box-
sizing)
Basic	theory	of	the	box	model	is	pretty	hard	to	learn.	You	need	to	remember	all	the	elements
of	width/height,	even	if	you	set	the	width	and	height.	The	hardest	thing	for	beginners	to
understand	is	padding,	which	shouldn't	be	counted	as	a	component	of	width	and	height.	It
should	be	inside	the	box	and	it	should	impact	on	this	value.	To	change	these	behaviors	with
CSS3,	supported	since	Internet	Explorer	8,	comes	box-sizing.

You	can	set	the	value	as	follows:

box-sizing:	border-box

What	does	it	give	to	you?	Finally,	the	counting	of	box	width	and	height	will	be	easier	because
box	padding	and	the	border	are	inside	the	box.	So	if	we	are	taking	our	previous	class:

.box	{

				width:	100px;

				height:	200px;

				border:	10px	solid	#000;

				margin:	20px;

				padding:	30px;

}

We	can	count	the	width	and	height	easily:

Width	=	100px

Height	=	200px

Additionally,	the	space	taken	by	the	box:

Space	width	=	140px	(because	the	20px	margin	is	on	both	sides	left	and	right)
Space	height	=	240px	(because	the	20px	margin	is	on	both	sides	top	and	bottom)

The	following	is	a	sample	from	Google	Chrome:

Therefore,	if	you	do	not	want	to	repeat	all	the	problems	of	the	traditional	box	model,	you
should	use	it	globally	for	all	elements.	Of	course,	it's	not	recommended	for	old	projects,	for
example,	a	new	client	who	needs	some	small	changes	in	the	old	project.	If	you	add	the
following	code:

*	{

width:	100px;

}

You	can	cause	more	harm	than	good	because	of	the	inheritance	of	this	property	for	all
elements,	which	are	now	based	on	the	traditional	box	model.	But	for	all	new	projects,	you
should	use	it.

Floating	elements
Floating	boxes	are	the	most	used	in	modern	layouts.	The	theory	of	floating	boxes	was	used
especially	in	grid	systems	and	inline	lists	in	CSS	frameworks.	For	example,	class	and	mixin
inline	lists	(in	the	Zurb	Foundation	framework)	are	based	on	floats.

Possibilities	of	floating	elements
Elements	can	be	floated	to	the	left	and	right	side.	Of	course,	there	is	a	method	to	reset	floats
too.	The	possible	values	are	as	follows:

float:	left;	//	will	float	element	to	left

float:	right;	//	will	float	element	to	right

float:	none;	//	will	reset	float	

Most	known	floating	problems
When	you	are	using	floating	elements,	you	can	have	some	issues.	The	most	known	problems
with	floated	elements	are	as	follows:

Too	big	elements	(because	of	width,	margin	left/right,	padding	left/right,	and	badly
counted	width,	which	is	based	on	the	box	model)
Not	cleared	floats

All	of	these	problems	provide	specific	effects,	which	you	can	easily	recognize	and	then	fix.

Elements	which	are	too	big	can	be	recognized	when	they	are	not	in	one	line,	as	they	should
be.	What	you	should	check	first	is	if	the	box-sizing:	border-box	is	applied,	and	then	check
width,	padding,	and	margin.

You	can	easily	recognize	floats	that	are	not	cleared	when	the	floating	structure	of	some
elements	from	next	container	are	floated.	This	means	that	you	have	no	clear	fix	in	your
floating	container.

Defining	clear	fix/class/mixins
When	I	started	developing	HTML	and	CSS	code,	there	was	a	method	to	clear	the	floats	with
.cb	or	.clear	classes,	both	of	which	were	defined	as	follows:

.clearboth,	.cb	{

				clear:	both

}

This	element	was	added	in	a	container	right	after	all	the	floated	elements.	This	is	important	to
remember	about	clearing	the	floats	because	containers	that	contains	floating	elements	won't
inherit	the	height	of	the	highest	floating	element	(which	will	have	a	height	equal	to	0),for
example:

<div	class="container">

				<div	class="float">

								…	content	...

				</div>

				<div	class="float">

								…	content	...

				</div>

				<div	class="clearboth"></div>

</div>

CSS	looks	like	the	following:

.float	{

				width:	100px;

				height:	100px;

				float:	left;

}

.clearboth	{

				clear:	both

}

Nowadays,	there	is	a	better	and	faster	way	to	clear	floats.	You	can	do	this	with	the	clear	fix
element,	which	can	be	defined	as	follows:

.clearfix:after	{

				content:	"";

				visibility:	hidden;

				display:	block;

				height:	0;

				clear:	both;

}

And	you	can	use	it	in	HTML	code:

<div	class="container	clearfix">

				<div	class="float">

								...	content	...

				</div>

				<div	class="float">

								...	content	...

				</div>

</div>

</div>

The	main	reason	to	switch	on	clear	fix	is	that	you	save	one	tag	(with	the	clearboth	class).
Recommended	usage	is	based	on	the	clear	fix	mixin,	which	you	can	define	in	SASS	as
follows:

=clear	fix

&:after

				content:	""

				visibility:	hidden

				display:	block

				height:	0

				clear:	both

Therefore,	every	time	you	need	to	clear	floating	in	some	container,	you	need	to	invoke	it.	For
example,	let	us	take	the	previous	code:

<div	class="container">

<div	class="float">

								…	content	...

</div>

<div	class="float">

								…	content	...

</div>

</div>

The	container	can	be	described	as	follows:

.container

		+clear	fix

Example	of	using	floating	elements
The	most	known	usage	of	float	elements	is	grids.	A	grid	is	mainly	used	to	structure	the	data
displayed	on	a	web	page.	In	this	chapter,	let's	check	just	a	short	draft	of	a	grid.	In	the
upcoming	chapters,	we	will	focus	on	automatization	of	creating	the	grid	with	mixins.

Let	us	create	some	HTML	code:

<div	class="row">

				<div	class="column_1of2">

								Lorem

				</div>

				<div	class="column_1of2">

								Lorem

				</div>

</div>

<div	class="row">

				<div	class="column_1of3">

								Lorem

				</div>

				<div	class="column_1of3">

								Lorem

				</div>

				<div	class="column_1of3">

								Lorem

				</div>

</div>

<div	class="row">

				<div	class="column_1of4">

								Lorem

				</div>

				<div	class="column_1of4">

								Lorem

				</div>

				<div	class="column_1of4">

								Lorem

				</div>

				<div	class="column_1of4">

								Lorem

				</div>

</div>

And	also	create	some	SASS	code:

*

		box-sizing:	border-box

=clear	fix

&:after

				content:	""

				visibility:	hidden

				display:	block

				height:	0

				clear:	both

.row

		+clear	fix

.column_1of2

		background:	orange

		width:	50%

		float:	left

&:nth-child(2n)

				background:	red

.column_1of3

		background:	orange

		width:	(100%	/	3)

		float:	left

&:nth-child(2n)

				background:	red

.column_1of4

		background:	orange

		width:	25%

		float:	left

&:nth-child(2n)

				background:	red

The	final	effect	is	as	follows:

As	you	can	see,	we	created	a	structure	of	a	basic	grid.	In	places	where	HTML	code	is	placed
Lorem	here	is	a	full	lorem	ipsum	to	illustrate	the	grid	system.

Display	types
There	are	a	few	display	types	in	CSS	whose	definition	and	behaviors	are	the	foundation	of
frontend	developers.	The	most	known	and	basic	display	values	are	as	follows:

Inline
Block
Inline-block
Table/table-cell
Flex	(this	will	be	described	further	in	this	book)

Block	elements
Block	elements	always	start	from	a	new	line.	The	most	important	properties	of	block
elements	are	width	and	height,	which	can	be	changed	from	CSS	code.	For	better
understanding,	let's	check	the	following	screenshot:

It	is	easy	to	see	that	all	the	block	elements	are	taking	as	much	width	as	they	can.

The	mainly	used	HTML	block-level	elements	are	as	follows:

address

article

aside

blockquote

canvas

div

footer

form

h1,	h2,	h3,	h4,	h5,	h6
header

main

nav

ol

output

p

pre

section

table

ul

video

Inline	elements
Inline	elements	can	be	described	as	elements	that	take	as	much	space	as	they	need.	It	can	be
best	described	using	the	following	image:

The	mainly	used	HTML	inline-level	elements	are	as	follows:

acronym

cite

code

dfn

strong

samp

var

a

bdo

br

img

map

object

script

span

sub

sup

button

input

label

select

textarea

Inline-block	display
Inline	elements	are	elements	that	gather	properties	of	inline	and	block	elements.	Inline
elements	take	as	much	space	as	they	need,	but	additionally	you	can	set	their	width,	height,	and
padding.	On	the	following	image	which	is	added	(after	the	code	listings),	you	can	see	the
following	code:

<body>

<p>	Block	element	</p>

Inline	element

<p	class="width300">	Block	element	width	300	</p>

Inline	element	width	300

	Block	element	width	300	

</body>

Described	with	SASS	code:

p,	span

		background:	red

&.width300

				width:	300px

.dib

		display:	inline-block

Compiled	to	CSS:

p,	span	{

		background:	red;

}

p.width300,	

span.width300	{

				width:	300px;

}

.dib	{

		display:	inline-block;

}

As	you	can	easily	see,	the	first	element	is	a	block	element	and	it	takes	as	much	width	as	it	can.
The	second	element	is	inline.	The	third	is	a	block	element	with	a	set	width	(300	pixels).	The

fourth	element	is	inline	with	a	set	width	(300	pixels)	but	it	is	not	applied	to	this	element
because	it	has	no	proper	display	type.	In	addition,	the	last	element	is	a	span	whose	normal
display	type	is	inline	but	is	set	in	CSS	to	inline	block.	After	this	operation,	you	can	set	the
width	of	the	element,	and,	additionally,	it	naturally	floats	to	the	previous	inline	element.

Where	can	you	use	other	types	of	elements	–	navigation
The	most	known	problem	related	to	types	of	display	is	inline	navigations.	For	better
understanding,	let's	create	a	markup	as	follows:

<nav	class="main-navigation">

				

								

												First	element

								

								

												Second	element

								

								

													Third	element

								

				

</nav>

The	easiest	way	to	make	the	elements	in	one	line	is	to	use	float:left,	for	example:

.main-navigation

		ul

				+clear	fix	/*	This	will	prevent	problems	of	cleared	float	*/

				list-style:	none

		li

				float:	left

The	second	idea	is	to	use	display:	inline-block	on	the	li	element:

.main-navigation

		ul

				list-style:	none

		li

				display:	inline-block

Where	can	you	use	other	types	of	elements	–	problem	of	equal
boxes
There	is	a	one	problem,	which	is	repeating	on	web	pages,	and	you	will	need	to	append	some
JavaScript	code	to	apply	the	same	height.	It	was	necessary	to	do	that	back	in	the	days.	Firstly,
the	heights	of	boxes	were	measured	and	then	the	bigger	height	was	set	as	the	height,	which
would	be	applied	to	another	box.	Finally,	the	height	would	be	applied	to	all	equalized	boxes.

Nowadays,	you	can	use	a	table-cell	value	of	display.

HTML	code:

<div	class="equalizer">

				<div	class="equalized">

								Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.

				</div>

				<div	class="equalized">

								Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.

				</div>

				<div	class="equalized">

								Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.	Nam,	soluta	

voluptatem	accusamus	totam	possimus	corporis	inventore	consequuntur	unde	ut	

deserunt	reiciendis	quis	aspernatur,	ea	quisquam	numquam	veniam	illo,	cum	culpa.

				</div>

</div>

SASS	code:

.equalizer

		display:	table

		background:	orange

.equalized

		display:	table-cell

		width:	300px

		background:	yellow

The	effect	in	the	browser	is	as	shown	in	the	following:

CSS	elements	positioning
Understanding	of	positions	in	CSS	is	one	of	the	key	skills	of	frontend	developers.	It	helps	you
to	change	the	behavior	of	each	element	on	a	web	page.	Additionally,	with	a	mix	of	positions,
you	can	change	the	behavior	of	the	inner	(child)	elements.

Static,	relative,	absolute,	fixed	–	differences
The	position	static	is	a	default	value	of	the	position,	which	includes	every	element	on	a	web
page.

The	position	relative	is	making	an	element	relative	to	itself.	You	can	easily	understand	it	with
the	following	code:

<p>

				Lorem

					ipsum

</p>

And	create	the	SASS:

span

		position:	relative

		top:	-10px

What	you	should	see	before	appending	the	styles	is	as	shown	in	the	following:

In	addition,	after	appending	the	styles	you	will	see	the	following:

As	you	can	see,	when	we	change	the	position	to	relative	and	move	it	with	property	top,	left,
right,	or	bottom,	we	will	move	the	element	from	its	current	position.

Additionally,	relatively	positioned	elements	can	be	set	as	a	scope	for	inner	elements	with	the
position	absolute,	for	example,	HTML:

<div	class="relative">

				<div	class="absolute"></div>

</div>

SASS:

.relative

		width:	200px

		height:	200px

		background:	orange

		position:	relative

.absolute

		width:	40px

		height:	40px

		background:	red

		position:	absolute

		left:	100px

		top:	30px

The	effect	in	the	browser	is	as	shown	in	the	following:

The	orange	box	is	a	.relative	element.	The	smaller	box	is	absolutely	positioned	and	related
with	the	relative	element.

The	position	absolute	can	be	used	as	in	the	preceding	example.	But	what	will	happen	when
there	isn't	a	parent	relative	element?	Absolutely	positioned	elements	will	be	related	with
HTML	DOM	elements.

Fixed	elements	are	strictly	fixed	to	the	browser.	So	when	you	apply	position:	fixed	to	any
element	and	give	it	top:	0	and	left:	0,	this	element	will	be	stuck	to	the	top-left	corner	of	the
browser.	Even	when	the	scroll	action	is	done,	the	element	won't	change	its	position	related	to
the	browser.

The	following	code	will	show	you	how	fixed	elements	are	behaving.

HTML:

<body>

<div	class="fixed">

				position:	fixed

</div>

				Lorem

				Ipsum

				Dolor

				Sit

				Amet

</body>

SASS:

body

		padding-top:	100px

		background:	red

.fixed

		position:	fixed

		text-align:	center

		top:	0

		left:	0

		height:	100px

		width:	100%

		background:	blue

ul

		height:	2000px

As	you	can	see	in	the	preceding	code,	the	body	element	has	padding-top,	which	is	equal	to	the
height	of	the	.fixed	element.	This	is	caused	by	the	fixed	element	that	normally	when	you
remove	the	padding	fixed	element	will	be	over	the	body	content	(it	will	cover	this	element).
The	following	screenshot	shows	the	browser	before	the	scroll	action	and	the	next	screenshot
shows	the	browser	after	the	scroll	action.	Both	screenshots	contain	the	border	of	the	browser
to	show	the	proper	scroll	action.

Important	properties,	which	you	can	add	to	elements	with	positions,
relative/fixed/absolute,	are	as	follows:

Left
Right
Top
Bottom
Z-index

A	common	problem	during	the	coding	of	the	position	is	overriding	the	left	value	by
applying	the	right	value.	A	sample	code	is	as	follows:

.element

		position:	absolute

		left:	10px

		right:	20px

The	.element	will	be	still	stuck	to	its	left	position.	How	do	you	append	it	to	the	right	position?

.element

		position:	absolute

		left:	auto

		right:	20px

Lists	with	fixed	images	(on	the	right	or	left)	and	descriptions
This	is	a	pretty	common	problem	relating	to	lists.	Lists	of	articles	with	fixed	images	(with
fixed	width	and	height)	on	the	one	side	and	with	elastic	content	on	the	right	could	be	pretty
problematic	without	the	positions	relative	and	absolute.	Following	is	an	example.

HTML:

<article>

				<div	class="image">

								

				</div>

				<div	class="content">

								<p	class="header">Header</p>

								<p	class="description">Lorem	ipsum	dolor	sit	amet,	consectetur	

adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	

aliqua</p>

				</div>

</article>

SASS:

*

		box-sizing:	border-box

article

		position:	relative

		padding:	10px

				left:	220px

		height:	220px

		background:	red

		.image

				position:	absolute

				left:	10px

				top:	10px

				background:	#000

				width:	200px

				height:	200px

		.content

				width:	100%

CSS	code	after	compilation:

*	{

				box-sizing:	border-box;

}

article	{

				position:	relative;

				padding:	10px;

				padding-left:	220px;

				height:	220px;

				background:	red;

}

article	.image	{

				position:	absolute;

				left:	10px;

				top:	10px;

				background:	#000;

				width:	200px;

				height:	200px;

}

article	.content	{

				width:	100%;

}

The	effect	in	the	browser	is	as	shown	in	the	following:

The	effect	after	resize	of	the	browser	is	as	shown	in	the	following:

When	you	want	to	get	the	image	on	the	right	side,	you	will	need	to	make	the	following
changes:

article

		position:	relative

		padding:	10px

				right:	220px	//	change	here

height:	220px

		background:	red

		.image

				position:	absolute

				right:	10px	//	change	here

top:	10px

				background:	#000

				width:	200px

				height:	200px

Compiled	CSS:

*	{

				box-sizing:	border-box;

}

article	{

				position:	relative;

				padding:	10px;

				padding-right:	220px;

				height:	220px;

				background:	red;

}

article	.image	{

				position:	absolute;

				right:	10px;

				top:	10px;

				background:	#000;

				width:	200px;

				height:	200px;

}

The	effect	in	the	browser	is	as	shown	in	the	following:

Summary
This	chapter	builds	strong	fundamentals	for	professional	usage	of	CSS.	You	gathered	the
knowledge	about	the	box	model,	positions,	and	floating	elements.	The	next	chapter	is	going	to
be	a	story	about	pseudoclasses.

Chapter	3.	Mastering	of	Pseudoelements	and
Pseudoclasses
Adding	simple	interactions	on	websites	using	CSS	is	known	since	pseudoclasses	are	available.
Knowledge	about	how	this	feature	can	be	used	on	websites	is	very	important.	Pseudoelements
can	be	used	in	browsers	such	as	Internet	Explorer	8/9	+	and	can	help	with	some	repeatable
elements	on	web	pages	that	were	in	most	cases	added	with	empty	spans	and	divs,	for
example,	graphical	details	such	as	arrows	in	buttons,	triangles,	and	so	on.	With
pseudoelements,	you	can	add	these	elements	without	creating	DOM	elements.

Drawing	primitives	is	a	very	important	skill,	especially	when	you	link	them	with
pseudoelements	into	which	you	can	add	them.	Adding	triangles	or	some	other	specific
elements	can	be	a	very	important	feature	as	you	don't	have	to	cut	these	graphical	elements	as	a
background	or	img	element.

This	chapter	will	master	pseudoelements,	pseudoclasses,	and	the	drawing	of	primitives	in
CSS	code.	Finally,	in	each	section,	you	can	combine	these	elements	into	practical	and	reusable
code.

In	this	chapter,	we	will:

Learn	the	use	of	pseudoclasses
Learn	the	use	of	pseudoelements
Learn	how	to	draw	primitives
Create	a	lot	of	reusable	mixins	in	SASS

Pseudoclasses
Pseudoclasses	are	used	in	CSS	to	describe	elements,	behavior	after	specific	actions.	Actions
supported	by	pseudoclasses	are	as	follows:

Mouse	hover
Mouse	click/touch
Input	focus

Another	use	of	pseudoclasses	is	matching	elements	in	a	specific	container	described	by	the
order	in	this	container:

First	child,	last	child
Any	child
Any	child	of	type

The	most	important	feature	of	pseudoclasses	you	can	see	on	links	(<a>	elements	with	href
attribute).

How	can	we	check	:active,	:hover	state?
Hover	state	can	be	checked	whenever	you	move	your	mouse	pointer	over	the	link.	The	easiest
use	of	this	property	can	be	checked	with	the	following	code:

HTML:

	Title	of	link

SASS:

a

		color:	#000

		background:	#fff

a:hover

		color:	#fff

		background:	#000

Generated	CSS	code:

a	{

				color:	#000;

				background:	#fff;

}

a:hover	{

				color:	#fff;

				background:	#000;

}

With	the	preceding	code,	whenever	you	hover	the	mouse	over	the	link,	the	color	and
background	of	the	link	will	be	changed.

Usage	–	multilevel	menu
A	multilevel	menu	is	the	most	use	of	action	of	hover	state.	Drop-down	menus	can	be
developed	with	simple	HTML	and	CSS.	You	can	see	it	on	almost	every	website.	Understanding
how	to	build	it	can	be	the	foundation	for	more	complex	solutions.	Let's	build	a	multilevel
navigation	and	base	it	on	the	following:

HTML	code:

				

								Level	one	-	item	one

								

												Level	two	-	item	one

												Level	two	-	item	two

												Level	two	-	item	three

												Level	two	-	item	four

								

				

				

								Level	two	-	item	one

								

												Level	two	-	item	one

												Level	two	-	item	two

												Level	two	-	item	three

												Level	two	-	item	four

								

				

				

								Level	one	-	item	three

								

												Level	three	-	item	one

												Level	three	-	item	two

												Level	three	-	item	three

												Level	three	-	item	four

								

				

SASS	code:

ul

		list-style:	none

		padding:	0

ul	>	li

		float:	left

		display:	inline-block

		position:	relative

		margin-right:	10px

		&:hover

				ul

						display:	block

						width:	200px

ul	ul

		display:	none

		position:	absolute

		left:	0

		li

				display:	block

Compiled	CSS:

ul	{

				list-style:	none;

				padding:	0;

}

ul	>li	{

				float:	left;

				display:	inline-block;

				position:	relative;

				margin-right:	10px;

}

ul	>li:hover	ul	{

				display:	block;

				width:	200px;

}

ul	ul	{

				display:	none;

				position:	absolute;

				left:	0;

}

ul	ul	li	{

				display:	block;

}

The	effect	without	hover	on	any	element	can	be	seen	in	the	following	screenshot:

After	hovering	on	the	second	element:

Usage	–	CSS	hover	rows
In	short	HTML	tables,	it's	easy	to	read	all	the	content.	But	in	cases	where	you	have	a	lot	of	data
(especially	on	financial	websites)	allocated	in	a	lot	of	rows	and	columns,	it's	easy	to	make	the
table	unreadable.	There	are	a	few	methods	to	simplify	the	reading	process.	The	easiest	way	is
to	add	a	hover	action	for	all	rows.	Every	time	you	point	to	a	row,	it	will	change	the
background	color.	Let's	use	the	following	HTML	code:

<table>

				<thead>

				<tr>

								<th>	Col	one	header</th>

								<th>	Col	two	header</th>

								<th>	Col	three	header</th>

				</tr>

				</thead>

				<tbody>

				<tr>

								<td>	Col	one	header</td>

								<td>	Col	two	header</td>

								<td>	Col	three	header</td>

				</tr>

				<tr>

								<td>	Col	one	header</td>

								<td>	Col	two	header</td>

								<td>	Col	three	header</td>

				</tr>

				<tr>

								<td>	Col	one	header</td>

								<td>	Col	two	header</td>

								<td>	Col	three	header</td>

				</tr>

				<tr>

								<td>	Col	one	header</td>

								<td>	Col	two	header</td>

								<td>	Col	three	header</td>

				</tr>

				</tbody>

</table>

Let's	assume	that	the	count	of	rows	(tr	elements	in	tbody)	is	almost	infinite.	This	can	bring	us
a	really	long	table.	For	ease	of	readability,	we	can	add	a	hover	action	for	each	row	as	follows:

SASS:

tbody

		tr:hover

				background:	#d3d3d3

Compiled	CSS:

tbody	tr:hover	{

				background:	#d3d3d3;

}

Every	time	you	hover	over	each	row,	you	can	see	the	effect	as	shown	in	the	following
screenshot	(the	gray	row	is	hovered	over):

Usage	of	pseudoclasses
New	pseudoclasses	are	opening	new	horizons	for	CSS/HTML	coders.	Most	of	the	features
like	first-child,	last-child,	and	nth-child,	were	added	with	JavaScript	code.	For
example,	using	jQuery	code,	you	could	get	a	list	element	and	add	specific	classes	to	the
first/last/nth	element,	and	then	to	properly	create	a	selector,	you	could	add	a	CSS	code.

But	when	it	is	natively	supported	by	a	browser,	it	is	better	to	use	CSS.	Let's	gather	basic
knowledge	about	this	feature.

How	to	use	:first-child,	:last-child,	:nth-child()
A	short	introduction	to	these	pseudoelements	is	as	follows:

:first-child:	This	points	to	the	element	that	is	the	first	child	of	its	parent
:last-child:	This	points	to	the	element	that	is	the	last	child	of	its	parent
:nth-child():	This	points	to	the	element	that	matches	the	pattern	wrapped	in	()

The	easiest	way	to	check	how	it	works	is	to	create	an	unordered	list	with	new	elements:

				Element	one

			Element	two

			Element	three

			Element	four

			Element	five

			Element	six

			Element	seven

			Element	eight

Let's	assume	that	we	need	to	stylize	elements	of	the	list.	The	first	style	we	need	to	add	is	only
related	to	the	first	element	of	the	list.	The	easiest	way	to	do	that	is	to	add	a	specific	class	to	this
element	as	follows:

<li	class="first_element>Element	one

Then	add	a	specific	CSS/SASS	code	for	it:

SASS	code:

.first_element

		color:	#f00

Compiled	CSS:

.first_element	{

				color:	#f00;

}

With	usage	of	new	pseudoclasses:

li:first-child

		color:	#00f

Or:

li:nth-child(1)

		color:	#00f

Compiled	to:

li:first-child	{

				color:	#00f;

}

li:nth-child(1)	{

				color:	#00f;

}

The	second	style	we	need	to	append	is	to	make	the	blue	text	color	for	the	last	element.	Easiest
way	is	to	change	the	HTML	code:

<li	class="last_element">Element	eight

And	then	add	a	specific	CSS/SASS	code	for	it:

.last_element

		color:	#00f

Compiled	to:

.last_element	{

		color:	#00f;

}

With	the	use	of	new	pseudoclasses:

li:last-child

		color:	#00f

Compiled	to:

li:last-child	{

		color:	#00f;	

}

In	this	case,	we	don't	care	about	the	count	of	the	elements	in	the	list.	The	last	element	of	the	list
will	always	have	the	preceding	CSS	code.

Add	a	styling	for	the	eighth	element	as	follows:

li:nth-child(8)

		color:	#00f

Compiled:

li:nth-child(8)	{

		color:	#00f;	

}

In	this	case,	we	care	about	the	count	elements.	The	eighth	element	of	the	list	will	always	have
the	preceding	CSS	code.

Let's	assume	that	we	want	to	make	the	fifth	element	orange.	The	easiest	way	to	do	that	is	to
change	the	HTML	code:

<li	class="fifth_element">Element	five

And	then	append	the	CSS	code:

.fifth_element

		color:	orange

With	pseudoclasses,	we	can	draw	SASS	like	this:

li:nth-child(5)

		color:	orange

Code	in	browser:

Usage	–	styling	table
Practical	examples	are	best	for	learning.	The	most	repeatable	case	where	we	can	use	all
properties	of	pseudoclasses	is	tables.	Let's	get	the	following	HTML	code:

<table>

				<thead>

				<tr>

								<th>	Col	one	header</th>

								<th>	Col	two	header</th>

								<th>	Col	three	header</th>

				</tr>

				</thead>

				<tbody>

				<tr>

								<td>	Col	one	content</td>

								<td>	Col	two	content</td>

								<td>	Col	three	content</td>

				</tr>

				<tr>

								<td>	Col	one	content</td>

								<td>	Col	two	content</td>

								<td>	Col	three	content</td>

				</tr>

				<tr>

								<td>	Col	one	content</td>

								<td>	Col	two	content</td>

								<td>	Col	three	content</td>

				</tr>

				<tr>

								<td>	Col	one	content</td>

								<td>	Col	two	content</td>

								<td>	Col	three	content</td>

				</tr>

				</tbody>

</table>

Let's	make	zebra	styling	for	the	table;	this	makes	reading	a	table	easier:

tbody

		tr:nth-child(2n)

				background:	#d3d3d3

Compiled	CSS:

tbody	tr:nth-child(2n)	{

				background:	#d3d3d3;

}

This	style	will	add	a	gray	background	to	every	second	element	in	the	table,	as	shown	in	the
following	screenshot:

Exploring	:nth-child	parameters
As	a	parameter	of	the	:nth-child	based	selector,	you	can	use	any	of	the	following:

Even:	This	will	match	all	even	elements
Odd:	This	will	match	all	odd	elements

Additionally,	you	can	use	an	an+b	parameter,	for	example:

3n+1:	This	will	match	elements	with	indexes	(counting	from	1):	1,	4,	7,	10,…
–n+5:	This	will	match	elements	from	1	to	5
2n+4:	This	will	match	elements:	4,	6,	8,	10,	12,	…

How	to	use	:nth-last-child
This	pseudoclass	works	similar	to	nth-child.	The	difference	is	that	nth-child	is	getting	the
start	of	its	work	at	the	beginning	of	the	list	and	nth-last-child	is	starting	at	the	end	of	the
list:

Even:	This	will	match	all	even	elements	starting	at	the	last	element
Odd:	This	will	match	all	odd	elements	starting	at	the	last	element

You	can	use	an	an+b	parameter,	as	we	used	in	nth-child:

3n+1:	This	will	match	elements	with	indexes	(counting	from	last	element):	1,	4,	7,	10,	…
–n+5:	This	will	match	the	last	five	elements
2n+4:	This	will	match	elements:	4,	6,	8,	10,	12,	…	(counting	from	the	last	element)

How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-
last-of-type
These	pseudoclasses	are	related	to	elements	in	the	container	in	which	are	gathered	a	few
elements.	It	works	similar	to	the	nth-child	mechanism.	For	better	understanding,	let's	begin
with	the	following	HTML	code:

<div	class="parent">

				First	span

				First	strong

				Second	span

				Second	strong

				Third	span

				Third	strong

				Fourth	span

				Fourth	strong

				Fifth	span

</div>

SASS	code:

.parent

		span

				&:first-of-type

						color:	red

				&:last-of-type

						color:	red

		strong

				&:nth-of-type(2)

						color:	pink

				&:nth-last-of-type(2)

						color:	magenta

Compiled	to	CSS:

.parent	span:first-of-type	{

				color:	red;

}

.parent	span:last-of-type	{

				color:	red;

}

.parent	strong:nth-of-type(2)	{

				color:	pink;

}

.parent	strong:nth-last-of-type(2)	{

				color:	magenta;

}

Let's	bring	some	explanation:

.parent	span:first-of-type:	This	will	match	the	first	element	in	.parent	div	(<div
class="parent">),	which	is	span
.parent	span:last-of-type:	This	will	match	the	last	element	in	.parent,	which	is	span
.parent	strong:nth-of-type(2):	This	will	match	the	second	element,	which	is	strong
.parent	strong:nth-last-of-type(2):	This	will	match	the	second	element	counting	from
the	last	element,	which	is	strong	as	shown	in	the	following	screenshot:

Empty	elements	with	the	:empty	pseudoclass
Sometimes	you	will	need	to	deal	with	lists	in	which	you	need	to	treat	empty	elements	with	one
CSS	block	of	code	and	elements	with	content	with	another	block	of	code.	The	easiest	way	is	to
add	an	empty	class	to	its	elements	and	you	can	do	it	without	interference	in	the	HTML	code.
Let's	get	the	HTML	code:

				<li	class="box">Black	text

				<li	class="box">

				<li	class="box">Black	text

				<li	class="box">

				<li	class="box">

				<li	class="box">Black	text

				<li	class="box">

And	SASS	code:

ul

		list-style:	none

.box

		background:	white

		color:	black

		text-align:	center

		height:	100px

		width:	100px

		float:	left

.box:empty

		color:	black

		background:	black

Compiled	to	CSS:

ul	{

				list-style:	none;

}

.box	{

				background:	white;

				color:	black;

				text-align:	center;

				height:	100px;

				width:	100px;

				float:	left;

}

.box:empty	{

				color:	black;

				background:	black;

}

This	will	show	us	the	following	view	in	the	browser:

It's	easily	to	analyze	the	preceding	code.	All	empty	elements	(which	have	no	child)	have	a
black	background.	All	elements	with	children	have	a	white	background	and	black	text.

Supporting	forms	styling	with	pseudoclasses
You	can	support	the	validation	and	simple	interaction	of	forms	with	CSS	code.	In	the
following	sections,	you	will	see	how	to	use	CSS	selectors	for	simple	validation	and	simple
interactions	of	inputs.	With	proper	CSS	code,	you	can	also	check	if	any	element	is	required	or
disabled.	Let's	see	how	this	is	done.

Validation	with	:valid	and	:invalid
Earlier	validation	was	done	with	JavaScript	code.	With	proper	CSS	code,	you	can	do	it	only
with	good	selectors.	Let's	check	it	with	the	HTML	and	CSS	code:

HTML	code:

<form	class="simple_validation">

				<input	type="number"	min="5"	max="10"	placeholder="Number">

				<input	type="email"	placeholder="Email">

				<input	type="text"	required	placeholder="Your	name"/>

</form>

SASS	code:

.simple_validation

		padding:	10px

		width:	400px

		box-sizing:	border-box

		&:valid

				background:	lightgreen

		&:invalid

				background:	lightcoral

		input

				display:	block

				margin:	10px	0

				width:	100%

				box-sizing:	border-box

				&:valid

						border:	3px	solid	green

				&:invalid

						border:	3px	solid	red

Compiled	CSS:

.simple_validation	{

				padding:	10px;

				width:	400px;

				box-sizing:	border-box;

}

.simple_validation:valid	{

				background:	lightgreen;

}

.simple_validation:invalid	{

				background:	lightcoral;

}

.simple_validation	input	{

				display:	block;

				margin:	10px	0;

				width:	100%;

				box-sizing:	border-box;

}

.simple_validation	input:valid	{

				border:	3px	solid	green;

}

.simple_validation	input:invalid	{

				border:	3px	solid	red;

}

In	the	preceding	example,	you	can	check	how	valid	and	invalid	pseudoclasses	work.	Every
time	you	input	e-mail	into	e-mail	string,	which	is	not	e-mail	address,	the	input	will	have	a	red
border	and	the	background	of	the	form	will	change	its	color	to	light	red	(lightcoral).	It's	the
same	in	the	case	of	an	input	with	number,	which	needs	to	be	in	the	range	from	5	to	10.
Additionally,	to	input	with	type	text,	there	is	added	attribute	required.	If	there	is	no	input,	it	has
an	:invalid	pseudoclass.

Adding	input	statuses	:focus,	:checked,	:disabled
Focus	pseudoclasses	are	related	to	inputs	that	currently	receive	focus.	Remember	that	this	can
be	done	by	the	user	with	a	mouse	pointer	and	a	keyboard	with	the	Tab	key.	Pseudoclass
checked	is	related	to	inputs	type	checkbox	and	radio	and	matches	the	elements	which	state	is
changed	to	checked.	To	show	how	it	exactly	works,	let's	modify	the	HTML	code	we	used	in
the	previous	section:

HTML	code:

<form	class="simple_validation">

				<input	type="number"	min="5"	max="10"	placeholder="Number">

				<input	type="email"	placeholder="Email">

				<input	type="text"	required	placeholder="Your	name"/>

				<input	type="checkbox"	id="newsletter"></input>

				<label	for="newsletter">checked</label>

</form>

SASS	code:

.simple_validation

		padding:	10px

		width:	400px

		box-sizing:	border-box

		&:valid

				background:	lightgreen

		&:invalid

				background:	lightcoral

		label

				display:	inline-block

				&:before

						content:	'Not	'

		input

				display:	block

				margin:	10px	0

				width:	100%

				box-sizing:	border-box

				&:valid

						border:	3px	solid	green

				&:invalid

						border:	3px	solid	red

				&:focus

						background:	orange

						color:	red

						border:	3px	solid	orange

				&[type="checkbox"]

						display:	inline-block

						width:	20px

						&:checked

								&	+	label

										color:	red

										&:before

												content:	'Is	'

Compiled	CSS:

.simple_validation	{

				padding:	10px;

				width:	400px;

				box-sizing:	border-box;

}

.simple_validation:valid	{

				background:	lightgreen;

}

.simple_validation:invalid	{

				background:	lightcoral;

}

.simple_validation	label	{

				display:	inline-block;

}

.simple_validation	label:before	{

				content:	"Not	";

}

.simple_validation	input	{

				display:	block;

				margin:	10px	0;

				width:	100%;

				box-sizing:	border-box;

}

.simple_validation	input:valid	{

				border:	3px	solid	green;

}

.simple_validation	input:invalid	{

				border:	3px	solid	red;

}

.simple_validation	input:focus	{

				background:	orange;

				color:	red;

				border:	3px	solid	orange;

}

.simple_validation	input[type="checkbox"]	{

				display:	inline-block;

				width:	20px;

}

.simple_validation	input[type="checkbox"]:checked	+	label	{

				color:	red;

}

.simple_validation	input[type="checkbox"]:checked	+	label:before	{

				content:	"Is	";

}

The	preceding	example	adds	more	interactivity	to	the	form.	The	first	new	feature	is	the
changing	color	of	the	focused	element	to	red	and	its	background/border	to	orange.	The
second	feature	is	the	interaction	related	to	the	checkbox.	After	changing	its	status	to	checked,
it	changes	the	:before	element	(this	will	be	better	described	in	the	next	section).	At	init,	the
:before	element	is	set	to	"Not".	With	HTML	code	gives	fully	"Not	checked".	After	the
checkbox	is	checked,	the	before	element	is	changed	to	"Is"	and	shows	the	full	string	equal	to
"Is	checked".

Let's	check	how	it	will	look	in	the	browser.	The	following	screenshot	appears	at	the	start	of
the	page:

The	following	one	will	appear	when	the	checkbox	is	checked:

There	is	a	visible	change	of	the	label's	before	element,	as	shown	in	the	following	screenshot,
which	also	shows	the	focus	of	input:

The	validated	form	is	as	follows:

Additional	aspect	–	colorize	the	placeholder
Yes,	of	course!	You	will	need	to	stylize	the	placeholder.	You	can	do	it	but	this	property	is
additionally	prefixed:

For	Internet	Explorer:

:-ms-input-placeholder

For	Firefox:

:-moz-placeholder

For	WebKit	browsers:

::-webkit-input-placeholder

Drawing	primitives	with	CSS
Drawing	primitives	is	the	easiest	and	main	case	in	graphic	fundamentals.	In	CSS,	it	can	be
used	in	common	cases	such	as	adding	details	to	buttons	or	any	other	DOM	elements.	Let's
learn	the	basics	of	drawing	primitives	in	CSS.

How	to	draw	a	rectangle/square
The	easiest	primitive	to	draw	in	CSS	is	a	rectangle.	Let's	draw	a	simple	rectangle	using	the
following	code:

HTML	code:

<div	class="rectangle"></div>

SASS	code:

.rectangle

width:	100px

height:	200px

background:	black

Compiled	CSS:

.rectangle	{

				width:	100px;

				height:	200px;

				background:	black;

}

This	will	draw	a	rectangle	in	the	browser	as	follows:

To	draw	a	square,	we	need	to	create	the	following	code:

HTML	code:

<div	class="square"></div>

SASS	code:

.square

width:	100px

height:	100px

background:	black

Compiled	CSS:

.square	{

				width:	100px;

				height:	100px;

				background:	black;

}

Reusable	mixins	for	square	and	rectangle:

=rectangle($w,	$h,	$c)

		width:	$w

		height:	$h

		background:	$c

=square($w,	$c)

		width:	$w

		height:	$w

		background:	$c

How	to	draw	a	circle
Drawing	a	circle	is	pretty	simple.	The	method	is	based	on	the	border	radius	and	a	simple
rectangle,	which	is	shown	in	the	following	example:

HTML	code:

<div	class="circle"></div>

SASS	code:

.circle

				width:	100px

				height:	100px

				border-radius:	50%

				background:	black

Compiled	CSS:

.circle	{

				width:	100px;

				height:	100px;

				border-radius:	50%;

				background:	black;

}

In	the	browser,	you	will	see	the	following:

SASS	mixin:

=circle($size,	$color)

		width:	$size

		height:	$size

		border-radius:	50%

		background:	$color

How	to	draw	a	ring
Drawing	a	ring	is	very	similar	to	drawing	a	circle.	The	pattern	is	the	same,	but	with	a	proper
border.	Let's	start	with	the	initial	ring	markup:

HTML	code:

<div	class="ring"></div>

SASS	code:

.ring

		width:	100px

		height:	100px

		border-radius:	50%

		border:	2px	solid	black

		background:	none

Compiled	CSS:

.ring	{

				width:	100px;

				height:	100px;

				border-radius:	50%;

				border:	2px	solid	black;

				background:	none;

}

In	the	browser,	you	will	see	the	following:

SASS	mixin:

=ring($size,	$color,	$width)

		width:	$size

height:	$size

border-radius:	50%

		border:	$width	solid	$color

background:	none

How	to	draw	a	triangle	with	CSS
Drawing	a	triangle	is	based	on	a	trick	with	borders:

HTML	code:

<div	class="triangle-up"></div>

<div	class="triangle-down"></div>

<div	class="triangle-left"></div>

<div	class="triangle-right"></div>

The	br	elements	are	used	only	for	displaying	all	elements	in	different	lines.

SASS	code:

.triangle-up

				width:	0	

				height:	0

				border-left:	10px	solid	transparent	

				border-right:	10px	solid	transparent

				border-bottom:	10px	solid	black

.triangle-down	

				width:	0	

				height:	0	

				border-left:	10px	solid	transparent

				border-right:	10px	solid	transparent

				border-top:	10px	solid	black

.triangle-left	

				width:	0	

				height:	0

				border-top:	10px	solid	transparent	

				border-bottom:	10px	solid	transparent

				border-left:	10px	solid	black	

.triangle-right	

				width:	0

				height:	0

				border-top:	10px	solid	transparent

				border-bottom:	10px	solid	transparent

				border-right:	10px	solid	black

Compiled	CSS:

.triangle-up	{

				width:	0;

				height:	0;

				border-left:	10px	solid	transparent;

				border-right:	10px	solid	transparent;

				border-bottom:	10px	solid	black;

}

.triangle-down	{

				width:	0;

				height:	0;

				border-left:	10px	solid	transparent;

				border-right:	10px	solid	transparent;

				border-top:	10px	solid	black;

}

.triangle-left	{

				width:	0;

				height:	0;

				border-top:	10px	solid	transparent;

				border-bottom:	10px	solid	transparent;

				border-left:	10px	solid	black;

}

.triangle-right	{

				width:	0;

				height:	0;

				border-top:	10px	solid	transparent;

				border-bottom:	10px	solid	transparent;

				border-right:	10px	solid	black;

}

In	the	browser,	you	will	see	the	following:

SASS	mixins:

=triangleRight($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height/2	0	$height/2	$width

		border-color:	transparent	transparent	transparent	$color

=triangleLeft($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height/2	$width	$height/2	0

		border-color:	transparent	$color	transparent	transparent

=triangleTop($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	0	$width/2	$height	$width/2

		border-color:	transparent	transparent	$color	transparent

=triangleBottom($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height	$width/2	0	$width/2

		border-color:	$color	transparent	transparent	transparent

Pseudoelements
Using	pseudoelements	is	really	important	to	omit	repeatable	code	elements	that	need	specific
HTML	code.	The	main	purpose	of	pseudoelements	is	to	reduce	DOM	elements	in	the	HTML
code.

What	is	:before	and	:after?
:before	and	:after	are	pseudoelements	that	you	can	add	to	an	HTML	element.	An	element	is
added	as	an	inline	element	into	a	selected	element.	To	get	the	foundation	of	before	and	after
pseudoelements,	you	can	draw	the	HTML	code	as	follows:

<a>Element

And	append	the	SASS	code	as	follows:

a

		border:	1px	solid	#000

		&:before

				content:	'before'

				color:	orange

		&:after

				content:	'after'

				color:	orange

Compiled	CSS:

a	{

				border:	1px	solid	#000;

}

a:before	{

				content:	"before";

				color:	orange;

}

a:after	{

				content:	"after";

				color:	orange;

}

The	output	of	the	preceding	code	is	as	follows:

Where	can	we	use	:before	and	:after?
Let's	assume	a	task	where	we	need	to	apply	to	every	element	in	a	list	some	text	at	the	end	of
the	text.	For	example,	we	have	a	list	like	the	following:

				Mike

				Ravi

				Adam

				Greg

				Anna

We	need	to	add	that	each	one	is	a	frontend	developer:

ul

		li

&:before

content:	"My	name	is	"

						color:	#f00

&:after

content:	".	I'm	Front	End	Developer"

						color:	#f00

Compiled	CSS:

ul	li:before	{

				content:	"My	name	is	";

				color:	#f00;

}

ul	li:after	{

				content:	".	I'm	Front	End	Developer";

				color:	#f00;

}

In	the	browser,	you	will	see	the	following:

Let's	make	our	previous	code	reusable	and	let's	create	a	button	with	an	arrow	at	the	right.	The
HTML	code	will	look	like	the	following:

Button

Let's	reuse	our	previously	created	mixin	for	triangle	creation	into	the	CSS	code	in	the	last	line
of	the	following	SASS	code:

=triangleRight($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height/2	0	$height/2	$width

		border-color:	transparent	transparent	transparent	$color

a

		display:	inline-block

		border:	1px	solid	#000

				radius:	5px

		padding:	10px	40px	10px	10px

		position:	relative

		text-decoration:	none

		color:	#000

		&:after

				display:	block

				position:	absolute

				right:	10px

				top:	50%

				margin-top:	-5px

				content:	''

				+triangleRight(10px,	10px,	#000)

Compiled	CSS:

a	{

				display:	inline-block;

				border:	1px	solid	#000;

				border-radius:	5px;

				padding:	10px	40px	10px	10px;

				position:	relative;

				text-decoration:	none;

				color:	#000;

}

a:after	{

				display:	block;

				position:	absolute;

				right:	10px;

				top:	50%;

				margin-top:	-5px;

				content:	"";

				width:	0;

				height:	0;

				border-style:	solid;

				border-width:	5px	0	5px	10px;

				border-color:	transparent	transparent	transparent	#000;

}

It	will	give	us	the	following	result	in	the	browser:

First	letter	and	first	line	–	simple	text	manipulation
On	webpages,	in	some	cases,	you	will	need	to	add	a	style	to	the	first	line	of	the	text	and	the
first	letter	of	the	text.	With	CSS,	you	have	to	use	the	proper	selector	to	do	that.	Let's	use	the
following	HTML	code:

<p>Paragraph	lorem	ipsm	Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	

elit.	Totam	nisi	soluta	doloribus	ducimus	repellat	dolorum	quas	atque,	tempora	

quae,	incidunt	at	eius	eaque	sit,	culpa	eum	ut	corporis	repudiandae.</p>

In	SASS	file:

p

		&:first-letter

				color:	orange

				font:

						weight:	bold

						size:	20px

		&:first-line

				color:	pink

Compiled	CSS:

p:first-letter	{

				color:	orange;

				font-weight:	bold;

				font-size:	20px;

}

p:first-line	{

				color:	pink;

}

The	preceding	code	will	change	the	color	of	the	first	line	of	the	text	to	pink.	The	first	letter
will	be	changed	to	orange	color,	bold,	and	20px	size.

How	to	change	selection	color?	Usage	of	::selection
Companies	have	their	own	color	palette.	Sometimes	you	will	need	to	customize	the	color	of
selection	on	the	page.	This	is	possible	with	the	:selection	pseudoelement:

SASS	code:

::-moz-selection,

::selection

background:	red

color:	white

Compiled	CSS:

::-moz-selection,

::selection	{

				background:	red;

				color:	white;

}

With	the	preceding	code,	every	time	you	select	something	on	the	page,	the	selection	will
change	its	color	to	red	and	font	color	to	white.

Summary
In	this	chapter,	you	learned	the	basics	of	pseudoclasses,	pseudoelements,	and	the	drawing	of
primitives	in	CSS	code.	As	a	front	end	developer,	you	will	use	these	CSS	elements	very	often.
Pseudoclasses	give	you	the	basic	interactivity	(hover,	active)	and	expand	the	possibilities	of
selectors	(:nth-child,	:first-child,	:last-child).	With	pseudoelements,	you	can	expand
the	possibilities	of	HTML	with	CSS	code	(:before,	:after,	:first-letter,	:first-line)	and
you	can	set	styles	to	selection.

In	the	next	chapter,	you	will	get	basic	knowledge	about	media	queries,	which	are	the
foundation	for	responsive	websites.

Chapter	4.	Responsive	Websites	–	Prepare	Your
Code	for	Specific	Devices
In	this	chapter,	you	will	gain	knowledge	about	responsive	web	design	(RWD)	and	how	to
prepare	projects.	It	will	cover	problems	of	modern	websites	and	optimization	techniques.	This
chapter	will	be	the	base	of	knowledge	about	media	queries—how	to	prepare	them	and	how	to
adjust	specific	devices.

In	this	chapter,	we	will	cover	the	following	topics:

RWD	methodologies
Using	media	queries

The	foundation	of	responsive	websites
Almost	all	modern	websites	can	be	displayed	on	desktop	and	mobile	devices	(phones,	tablets).
Proper	adjusting	of	CSS	and	HTML	code	is	the	main	assumption	for	creating	a	responsive
website.	The	basic	responsive	website	building	process	was	based	on	adjustments	of	code,
which	once	done,	the	site	properly	displayed	on	all	devices.	Now	the	responsiveness	of
responsive	websites	is	a	little	bit	enhanced.	It's	not	only	the	creation	of	CSS/HTML/JS	code
and	thinking	about	the	design	aspects	but	also	the	thinking	about	performance	on	mobile
devices.	Mobile	devices	with	a	web	browser	are	now	the	main	equipment	on	which	people
browse	websites.	Let's	look	at	the	main	approaches	for	creating	responsive	websites.

Desktop	first	methodology
This	methodology	was	used	back	in	the	day	as	the	main	approach	in	CSS	frameworks.	The
main	purpose	of	HTML	and	CSS	code	was	to	see	a	web	page	in	a	desktop	browser.	Then
provide	the	mobile	version	which	was	based	on	the	desktop	code.	The	final	process	was	about
adjusting	the	code	for	mobiles.	It	seemed	like	cutting	the	functionality	of	the	website	and
adjusting	the	desktop	view	for	a	smaller	mobile	gadget.

Mobile	first	methodology
This	methodology	is	used	in	all	modern	CSS	frameworks	(Twitter	bootstrap,	Foundation
framework).	Firstly,	code	is	prepared	for	mobile	devices	and	then	it's	scaled	for	larger
devices,	from	tablets	to	desktop	screens.	This	approach	is	more	common	right	now	and	is
better	because	code	for	mobile	devices	doesn't	have	to	be	a	combination	of	CSS	tricks,	HTML
duplications,	and	JS	mechanisms	like	it	was	in	the	desktop	first	methodology.

Which	methodology	is	proper	for	you?	It	all	depends	on	the	project	type.	Not	in	all	cases	you
are	making	a	project	from	beginning	to	end.	Sometimes,	you	have	some	legacy	code,	which
you	need	to	adjust	to	mobile.	In	this	case,	you	are	always	forced	to	use	the	desktop	first
methodology.	In	cases	in	which	you	can	write	code	from	scratch,	it	is	recommended	to	use	the
mobile	first	methodology.

Adjusting	the	viewport	in	HTML
An	important	element	of	responsive	websites	is	the	proper	HTML	viewport	meta	tag.	A
viewport	description	should	be	added	in	the	head	section	of	an	HTML	document.	It	describes
how	webpage	should	behave	on	mobile	devices.	There	is	a	bunch	of	mostly	used	viewports,
which	we	will	analyze	later.	The	mostly	used	is	the	viewport	that	looks	like	the	following:

<head>

				<!--	...	-->

				<meta	name="viewport"	content="width=device-width,	initial-scale=1.0">

				<!--	...	-->

</head>

It	means	that	whenever	you	open	your	project	on	a	mobile	device,	it	will	have	the	width	of	the
device	and	the	project	will	have	an	initial	scale	equal	to	1.	A	little	bit	more	enhanced	viewport
looks	like	the	following:

<head>

				<!--	...	-->

				<meta	name="viewport"content="width=device-width,	initial-scale=2.0">

				<!--	...	-->

</head>

The	main	difference	between	the	first	and	second	viewports	is	the	max	scale.	This	means	that
after	a	zoom	action,	which	is	invoked	after	a	double	tap	on	a	mobile	device	or	a	pinch
gesture,	it	will	be	scaled,	but	the	maximum	range	of	this	scale	is	set	to	2.	A	safer	option	for	a
viewport	is	as	follows:

<head>

				<!--	...	-->

				<meta	name="viewport"content="width=device-width,	initial-scale=1.0,	

maximum-scale=1">

				<!--	...	-->

</head>

Why	safer?	For	example,	in	cases	in	which	we	have	some	fixed	windows	over	the	content,
they	won't	be	scaled	too	and	won't	deliver	a	bad	experience	for	the	user:

<head>

				<!--	...	-->

				<meta	name="viewport"content="width=600,	initial-scale=1.0">

				<!--	...	-->

</head>

This	viewport	setting	will	scale	the	website	such	that	it	will	behave	like	a	webpage	opened	on
a	desktop,	with	a	set	width	of	browser	equal	to	600.	The	initial	scale	is	set	like	in	preceding
example	and	is	equal	to	1.

Choosing	the	right	viewport
So	the	question	is:	which	viewport	is	recommended?	This	is	a	good	question.	The	best
experience	can	be	preserved	with	the	following:

<head>

				<!--	...	-->

				<meta	name="viewport"content="width=device-width,	initial-scale=1.0,	

maximum-scale=2.0">

				<!--	...	-->

</head>

Why?	Because	we	are	scaling	the	website	to	the	device	width	and	we	are	not	stopping	the
zooming	of	the	page.	But	the	safest	choice	is	as	follows:

<head>

				<!--	...	-->

				<meta	name="viewport"content="width=device-width,	initial-scale=1.0,	

maximum-scale=1">

				<!--	...	-->

</head>

This	will	prevent	zooming,	which	can	be	annoying	to	adjust,	especially	in	old	projects	in
which	we	have	old	school	types	of	modal	windows.

Above	the	fold
This	methodology	is	strictly	connected	with	optimization	of	your	code.	It's	related	to	the
mobile	and	desktop	versions	of	webpages	also.	Modern	webpages	load	a	lot	of	stuff:	CSS
files,	JS	files,	images,	and	media	files	such	as	videos	and	sounds.	With	such	a	long	queue,	you
can	see	that	when	the	processing	time	of	page	loading	is,	for	example,	10	seconds	long,	you
cannot	see	the	content	till	all	files	are	loaded.	In	the	case	of	informational	pages,	you	should
see	the	header	and	main	content	first,	but	it	is	almost	impossible	in	such	a	long	queue.

The	aforementioned	fold	methodology	separates	specific	style	attachments,	which	describe
the	most	important	elements	on	the	page,	such	as	title,	subtitle,	and	text	content.	It	needs	to
separate	these	style	attachments	and	include	them	inline	in	the	head	section,	for	example:

<head>

				<!--	...	-->

				<style>

								/*	here	we	have	a	section	for	inline	most	important	styles	*/

				</style>

				<!--	...	-->

				<link	rel="stylesheet"type="text/css"href="link_to_rest_of_styles.css">

				<!--	...	-->

</head>

It	means	that	this	inline	section	will	be	first	parsed	by	the	browser	and,	in	the	long	loading
process,	it	will	first	prepare	the	most	important	elements	for	the	reader	and	then	will	load	the
rest	of	needed	by	page	resources.

Media	queries	–	where	can	you	use	it
Media	queries	are	filters	set	in	CSS	code,	which	help	to	describe	the	website	for	a	bunch	of
displays	(screen,	print).	In	media	queries,	the	mostly	used	filters	are	min/max	width,	min/max
height,	min/max	pixel	ratio,	and	min/max	aspect	ratio.

How	to	build	media	queries
It's	pretty	simple	to	first	create	a	media	query	and	then	create	more	complicated	filters.	The
basic	media	query	looks	like	the	following:

@media	screen	and	(min-width:	640px)

		.element

				background:	#000

Compiled	CSS:

@media	screen	and	(min-width:	640px)	{

				.element	{

								background:	#000;

				}

}

With	this	media	query,	you	are	filtering	all	CSS	declarations	for	a	screen	whose	minimal
width	is	640px.	Let's	try	to	make	it	more	complex	and	let's	try	to	create	some	more	media
queries	for	specific	devices.

How	media	queries	work?
Media	queries	are	filters,	as	mentioned	previously.	But	let's	try	to	see	it	in	code	and	browser.
This	simple	chapter	will	show	you	how	to	adjust	the	code	for	specific	screen	resolutions	and
will	be	the	foundation	for	creating	more	advanced	media	queries:

<div	class="mobile_only">Mobile	only</div>

<div	class="tablet_only">Tablet	only</div>

<div	class="desktop_only">Desktop	only</div>

<div	class="mobile_and_tablet">Mobile	and	tablet</div>

<div	class="tablet_and_desktop">Tablet	and	desktop</div>

<div	class="all">All	views</div>

The	code	will	now	look	like	the	following	(without	any	styling):

Now	we	need	to	make	some	approaches:

Mobile	view	is	all	resolutions	to	400px	in	width
Tablet	view	is	all	resolutions	to	700px	in	width
Desktop	view	is	all	resolutions	since	701px	in	width

Now,	based	on	the	preceding	approaches,	let's	create	style	and	media	queries:

Compiled	CSS:

.mobile_only,

.tablet_only,

.desktop_only,

.mobile_and_tablet,

.tablet_and_desktop	{

				display:	none;

}

/*	Mobile	only	*/

@media	screen	and	(max-width:	400px)	{

body	{

								background:	red;

				}

				.mobile_only	{

								display:	block;

				}

}

/*	Mobile	and	tablet	*/

@media	screen	and	(max-width:	700px)	{

				.mobile_and_tablet	{

								display:	block;

				}

}

/*	Tablet	only	*/

@media	screen	and	(min-width:	401px)	and	(max-width:	700px)	{

body	{

								background:	blue;

				}

				.tablet_only	{

								display:	block;

				}

}

/*	Tablet	and	desktop	*/

@media	screen	and	(min-width:	401px)	{

				.tablet_and_desktop	{

								display:	block;

				}

}

/*	Desktop	only	*/

@media	screen	and	(min-width:	701px)	{

body	{

								background:	green;

				}

				.desktop_only	{

								display:	block;

				}

}

Now	let's	check	it	in	a	browser	with	350px	width:

In	the	preceding	view,	we	can	see	all	elements	described	in	CSS	files	with	the	following
comments:

/*	Mobile	only	*/

/*	Mobile	and	tablet	*/

The	output	of	a	browser	with	550px	width	will	be	as	follows:

In	the	preceding	view,	we	can	see	all	elements	described	in	CSS	files	with	the	following
comments:

/*	Tablet	only	*/

/*	Mobile	and	tablet	*/

/*	Tablet	and	desktop	*/

The	output	in	a	browser	with	850px	width	is	as	follows:

In	the	preceding	view,	we	can	see	all	elements	described	in	CSS	files	with	the	following
comments:

/*	Tablet	and	desktop	*/

/*	Desktop	only*/

The	previous	code	reveals	how	the	media	query	filters	are	working	exactly.	How	can	you
create	a	code	that	will	be	visible	in	specific	views	and	how	can	you	create	approaches	for	real
projects?	In	the	next	projects,	we	will	study	what	we	can	filter	because	media	queries	are	not
only	related	to	the	width	of	the	device.	Let's	begin!

Media	queries	for	specific	views/devices
Media	queries	can	be	used	in	many	different	cases.	As	mentioned	previously,	we	can	use
media	queries	for	specific	min	and	max	width:

@media	screen	and	(min-width:	640px)

@media	screen	and	(max-width:	640px)

In	the	preceding	media	queries,	the	first	example	is	for	all	resolutions	with	min-width	640
pixels	and	the	second	one	is	for	all	resolutions	with	max-width	640	pixels.	Frontend
developers	deals	with	pixel	ratios	on	basic	desktops	and	screens	with	a	bigger	density,	such	as
retina.	How	to	filter	them	with	CSS?	Let's	check	this	media	query:

@media	(-webkit-min-device-pixel-ratio:	2)

As	we	know,	retina	devices	have	a	pixel	ratio	equal	to	2.	We	can	also	build	more	complicated
filters	with	ranges:

@media	screen	and	(min-width:	640px)	and	(max-width:	1024px)

In	this	case,	we	are	filtering	all	resolutions	whose	width	matches	the	filter	min-width	640
pixels	to	1024	pixels.	But	how	can	we	write	a	media	query	filter	that	will	match	some	specific
devices?	Let's	assume	that	we	want	to	write	code	for	new-generation	iPad	with	retina	display:

@media	only	screen	

and	(min-device-width:	768px)	

and	(max-device-width:	1024px)	

and	(-webkit-min-device-pixel-ratio:	2)

As	we	know,	mobile	devices	have	two	orientations:	landscape	and	portrait.	So	how	can	we
match	this	case	in	media	queries?	For	portrait	view,	use	the	following:

@media	only	screen	

and	(min-device-width:	768px)	

and	(max-device-width:	1024px)	

and	(orientation:	portrait)	

and	(-webkit-min-device-pixel-ratio:	2)

And	for	landscape	view,	use	the	following:

@media	only	screen	

and	(min-device-width:	768px)	

and	(max-device-width:	1024px)	

and	(orientation:	landscape)	

and	(-webkit-min-device-pixel-ratio:	1)

With	media	queries,	you	can	filter	print	views	also.	To	do	so,	you	need	to	append	the	code
like	the	following:

@media	print

How	to	choose	proper	media	queries	for	mobile	devices
For	creating	a	good	filter	in	media	queries	and	setting	good	ranges	in	them,	you	have	to	first
choose	the	devices	and	resolutions.	Then	you	have	to	create	proper	media	queries	based	on
the	most	trendy	resolutions.	Back	in	the	day,	there	was	a	smaller	spectrum	of	devices	and
standard	resolutions.	So	the	main	settings	were	as	follows:

@media	(max-width:	768px)

		//	Cover	small	devices

		.element

				font-size:	12px

@media	(min-width:	768px)	and	(max-width:	1024px)

		//	Cover	medium	devices

		.element

				font-size:	14px

@media	(min-width:	1024px)

		//	Cover	large	devices

		.element

				font-size:	16px

Compiled	CSS:

@media	(max-width:	768px)	{

				.element	{

								font-size:	12px;

				}

}

@media	(min-width:	768px)	and	(max-width:	1024px)	{

				.element	{

								font-size:	14px;

				}

}

@media	(min-width:	1024px)	{

				.element	{

								font-size:	16px;

				}

}

Of	course,	in	every	project,	you	could	add	some	specific	media	queries	for	exceptions	so	that
after	the	quality	analysis	process,	there	could	appear	more	of	the	filters	in	CSS	file.

Nowadays,	the	approach	is	to	cover	as	many	devices	as	possible	in	one	step	of	media	query:

@media	only	screen

		.element

				font-size:	16px

@media	only	screen	and	(max-width:	640px)

		//	Cover	small	devices

		.element

				font-size:	12px

@media	only	screen	and	(min-width:	641px)

		//	Cover	devices	which	resolution	is	at	minimum	medium

		.element

				font-size:	14px

@media	only	screen	and	(min-width:	641px)	and	(max-width:	1024px)

		//	Cover	medium	devices

		.element

				font-size:	15px

@media	only	screen	and	(min-width:	1025px)

		//	Cover		devices	which	resolution	is	at	minimum	large

		.element

				font-size:	16px

Compiled	CSS:

@media	only	screen	{

				.element	{

								font-size:	16px;

				}

}

@media	only	screen	and	(max-width:	640px)	{

				.element	{

								font-size:	12px;

				}

}

@media	only	screen	and	(min-width:	641px)	{

				.element	{

								font-size:	14px;

				}

}

@media	only	screen	and	(min-width:	641px)	and	(max-width:	1024px)	{

				.element	{

								font-size:	15px;

				}

}

@media	only	screen	and	(min-width:	1025px)	{

				.element	{

								font-size:	16px;

				}

}

For	better	coverage	and	better	code	writing,	let's	add	to	this	media	queries	list	one	max-width
step:

@media	only	screen	and	(max-width:	1024px)

				.element

								font-size:	15px

Compiled	CSS:

@media	only	screen	and	(min-width:	1025px)	{

				.element	{

								font-size:	16px;

				}

}

This	media	query	will	cover	small	and	medium	devices	at	once.	Currently,	the	most	known
resolution	of	desktop	websites	is	1280px.	Let's	add	this	range	to	the	media	queries:

@media	only	screen	and	(min-width:	1025px)	and	(max-width:	1280px)	{}	

@media	only	screen	and	(min-width:	1281px)	{}

SASS	mixins	for	media	queries

Let's	create	media	queries	for	mixins,	which	will	help	us	to	keep	the	code	clear.	As	we	know,
we	have	to	add	the	display	type	and	the	breakpoint	as	parameters:

@mixin	mq($display,	$breakpoint)

@media	#{$display}	and	(#{$breakpoint})

@content

Now	let's	gather	our	standard	breakpoints:

@mixin	mq($display,	$breakpoint)

		@media	#{$display}	and	#{$breakpoint}

				@content

$mq_small_only:	"(max-width:	640px)"

$mq_medium_only:	"(min-width:	641px)	and	(max-width:	1024px)"

$mq_small_and_medium:	"(max-width:	1024px)"

+mq("screen",	$mq_small_only)

		.slider

				width:	100%

				height:	300px

+mq("screen",	$mq_medium_only)

		.slider

				width:	100%

				height:	400px

+mq("screen",	$mq_small_and_medium)

		.slider

				max-width:	1200px

				width:	100%

Compiled	CSS:

@media	screen	and	(max-width:	640px)	{

				.slider	{

								width:	100%;

								height:	300px;

				}

}

@media	screen	and	(min-width:	641px)	and	(max-width:	1024px)	{

				.slider	{

								width:	100%;

								height:	400px;

				}

}

@media	screen	and	(max-width:	1024px)	{

				.slider	{

								max-width:	1200px;

								width:	100%;

				}

}

The	preceding	code	is	a	choice	of	three	steps,	but	you	can	add	another	as	an	exercise	to	cover
all	steps	from	the	previous	section.

Usage	sample	–	main	navigation
Let's	imagine	that	we	want	to	resolve	the	classic	problem	related	to	navigation.	It	is	in	most
cases	inline	in	desktop	view,	but	it	is	changed	in	mobile	views	into	list	element	under	element.
Let's	start	with	HTML:

<nav	class="main-navigation">

				

								

												First	element

								

								

												Second	element

								

								

													Third	element

								

				

</nav>

In	SASS	code,	we	will	use	previously	created	mixins	for	media	queries	and	clear	fix.	The
following	is	the	full	SASS	file:

@mixin	mq($display,	$breakpoint)

@media	#{$display}	and	#{$breakpoint}

@content

$mq_small_only:	"(max-width:	640px)"

$mq_medium_only:	"(min-width:	641px)	and	(max-width:	1024px)"

$mq_small_and_medium:	"(max-width:	1024px)"

=clear	fix

		&:after

				content:	"	"

				visibility:	hidden

				display:	block

				height:	0

				clear:	both

body

		padding:	0

		margin:	0

.main-navigation

		ul

				+clearfix	/*	This	will	prevent	problems	of	cleared	float	*/

				list-style:	none

				padding:	0

				background:	greenyellow

				border:

						bottom:	1px	solid	darkgreen

		li

				float:	left

				display:	block

		a

				padding:	10px

				width:	100%

				display:	block

				background:	greenyellow

				text-decoration:	none

				color:	darkgreen

				&:hover

						background:	darkgreen

						color:	greenyellow

+mq("screen",	$mq_small_and_medium)

		.main-navigation

				ul

						list-style:	none

						border:	none

				li

						float:	none

						width:	100%

				a

						border:

								bottom:	1px	solid	darkgreen

Compiled	CSS:

body	{

				padding:	0;

				margin:	0;

}

.main-navigation	ul	{

				list-style:	none;

				padding:	0;

				background:	greenyellow;

				border-bottom:	1px	solid	darkgreen;

}

.main-navigation	ul:after	{

				content:	"";

				visibility:	hidden;

				display:	block;

				height:	0;

				clear:	both;

}

.main-navigation	li	{

				float:	left;

				display:	block;

}

.main-navigation	a	{

				padding:	10px;

				width:	100%;

				display:	block;

				background:	greenyellow;

				text-decoration:	none;

				color:	darkgreen;

}

.main-navigation	a:hover	{

				background:	darkgreen;

				color:	greenyellow;

}

@media	screen	and	(max-width:	1024px)	{

				.main-navigation	ul	{

								list-style:	none;

								border:	none;

				}

				.main-navigation	li	{

								float:	none;

								width:	100%;

				}

				.main-navigation	a	{

								border-bottom:	1px	solid	darkgreen;

				}

}

The	preceding	screenshot	is	made	in	desktop	view	related	to	global	CSS.	The	next	screenshot
is	related	to	@media	screen	and	(max-width:	1024px).	As	you	can	see,	we	changed	the	method
of	display	of	the	navigation	and	additionally	gave	more	flexibility	for	touch	devices.	The
bigger	items	in	navigation	are	easier	to	click	(in	this	example,	the	buttons	are	longer):

Summary
In	this	chapter,	you	learned	the	main	approaches	for	creating	responsive	websites	and	what
mobile	and	desktop	first	mean.	Then	we	expanded	the	knowledge	with	the	basics	of
performance	of	responsive	websites.	Finally,	you	gained	basic	knowledge	about	media
queries	and	how	to	create	them	to	cover	all	specific	display	types.	In	the	next	chapter,	you	will
gain	knowledge	about	images	in	CSS	code.

In	the	next	chapter,	you	will	also	gain	knowledge	about	CSS	backgrounds	and	new	features
that	you	can	use.	We	will	be	repeating	images,	cutting	images,	and	positioning	them	into	the
container.	Let's	check	what	we	can	do	with	backgrounds.

Chapter	5.	Using	Background	Images	in	CSS
Background	images	are	on	almost	all	pages.	This	chapter	will	describe	how	to	craft	an
optimal	website	with	images	displayed	correctly	on	the	wide	spectrum	of	modern	devices
including	mobile	phones	and	tablets.

In	this	chapter,	we	will	cover	the	following	topics:

Usage	of	background	images
How	to	set	proper	position	for	background	images
How	to	set	the	size	of	a	background	position
Images	on	retina	and	mobile	devices

CSS	backgrounds
CSS	backgrounds	are	very	useful	in	modern	web	browsers.	When	should	you	use	a
background	and	when	should	you	use	the	img	tag?	It's	a	simple	question—every	image	that	is
an	element	of	content	should	be	inserted	into	the	img	tag	and	every	image	that	is	an	element	of
a	layout	should	be	moved	to	the	CSS	background.

In	this	chapter,	we	will	try	to	always	use	the	same	image	to	illustrate	how	each	property	and
value	is	working.	This	image	will	be	a	bordered	circle	that	will	definitely	show	the	correct
aspect	ratio	(if	it	is	bad,	it	will	look	more	like	ellipsis),	and	with	the	border,	you	can	check
how	the	repeating	of	images	will	work.	The	width	and	height	of	the	image	are	equal	to	90
pixels.

Repeating	of	background
There	are	many	options	available	when	working	with	a	background.	The	first	is	image	repeat.
The	default	value	is	to	repeat	an	image	in	both	the	x	and	y	axes.	So	when	you	set,	for	example:

Background-image:	url(/*	here	url	to	your	img*/)

Our	SASS	example:

.container

		width:	1000px

		height:	500px

		border:	3px	solid	red

		background-image:	url(image.jpg)

Compiled	CSS:

.container	{

				width:	1000px;

				height:	500px;

				border:	3px	solid	red;

				background-image:	url(image.jpg);

}

For	all	containers,	the	border	is	red	so	as	to	allow	a	better	view	of	the	scope	of	the	container.

HTML:

<body>

<div	class="container">

</div>

</body>

This	code	will	bring	us	the	following	view:

For	all	containers,	the	border	is	red	so	as	to	allow	a	better	view	of	the	scope	of	the	container.
It	means	that	the	image	is	repeated	in	the	background	in	both	x	and	y	axes.	Let's	add	the
following	code	and	check	how	it	will	compile	and	what	impact	on	our	view	we	will	see:

.container

		width:	1000px

		height:	500px

		border:	3px	solid	red

		background:

				image:	url(image.jpg)

				repeat:	repeat

Compiled	CSS:

.container	{

				width:	1000px;

				height:	500px;

				border:	3px	solid	red;

				background-image:	url(image.jpg);

				background-repeat:	repeat;

}

Another	option	that	we	can	use	and	the	behavior	of	background-repeat:

-	repeat-x:	This	will	repeat	background	x	axis

-	repeat-y:	This	will	repeat	background	y	axis

-	no-repeat:	This	will	not	repeat	the	background

Background	size
With	new	CSS	features,	you	can	set	the	background	size.	Size	can	be	set	as	follows:

background-size:	30px	50px

Let's	get	the	previous	HTML	code	and	append	the	new	SASS	code:

.container

		width:	1000px

		height:	500px

		border:	3px	solid	red

		background:

				image:	url(image.jpg)

				repeat:	repeat

				size:	30px	50px

Compiled	CSS:

.container	{

				width:	1000px;

				height:	500px;

				border:	3px	solid	red;

				background-image:	url(image.jpg);

				background-repeat:	repeat;

				background-size:	30px	50px;

}

The	output	of	this	code	will	be	as	follows:

If	we	want	to	set	the	full	width	of	the	container	for	an	image	and	automatically	count	its	height
to	maintain	the	aspect	ratio	of	image,	perform	the	following:

background-size:	100%	auto

We	can,	of	course,	change	the	fill	option	from	the	x	axis	to	the	y	axis.	Let's	change	the	100%
value	to	height	and	auto	for	width:

.container

		width:	1000px

		height:	500px

		border:	3px	solid	red

		background:

				image:	url(image.jpg)

				repeat:	repeat

				size:	100%	auto

Compiled	to:

.container	{

				width:	1000px;

				height:	500px;

				border:	3px	solid	red;

				background-image:	url(image.jpg);

				background-repeat:	repeat;

				background-size:	100%	auto;

}

The	output	will	be	as	follows:

The	contain	value	will	change	its	width	and	height	to	contain	the	container.	With	this	option,
the	aspect	ratio	will	be	maintained:

background-size:	contain

The	cover	value	will	change	its	width	and	height	to	cover	the	container.	With	this	option,	the
aspect	ratio	will	be	maintained:

background-size:	cover

Background	position
In	most	designs,	you	will	need	to	set	the	position	of	the	background	in	a	box.	The	background
position	can	be	set	with	CSS	as	follows:

background-position:	top	left

background-position:	right

If	you	want	to	center	the	position	of	the	background	in	both	axes	perform	the	following:

background-position:	center	center

If	you	want	to	align	the	background	to	bottom	right	perform	the	following:

background-position:	bottom	right

To	set	the	background	offset	in	pixels	perform	the	following:

background-position:	600px	200px

Multiple	backgrounds
Back	in	the	days,	using	multiple	backgrounds	was	related	to	adding	new	DOM	elements	with
separate	backgrounds.	All	these	elements	would	be	positioned	absolutely	in	a	relative
container.	Nowadays,	we	can	use	multiple	backgrounds	in	one	container	using	CSS	without
any	additional	HTML	code.

Let's	use	the	same	HTML	code	and	same	image	and	let's	position	this	image	in	a	container	in
the	following	positions:

top	left
top	center
top	right
left	center
center	center
right	center
bottom	left
bottom	center
bottom	right

CSS	code:

				.container	{

				width:	1000px;

				height:	500px;

				border:	3px	solid	red;

				background-image:

												url(image.jpg),	/*	URL	of	image	#1	*/

												url(image.jpg),	/*	URL	of	image	#2	*/

												url(image.jpg),	/*	URL	of	image	#3	*/

												url(image.jpg),	/*	URL	of	image	#4	*/

												url(image.jpg),	/*	URL	of	image	#5	*/

												url(image.jpg),	/*	URL	of	image	#6	*/

												url(image.jpg),	/*	URL	of	image	#7	*/

												url(image.jpg),	/*	URL	of	image	#8	*/

												url(image.jpg);	/*	URL	of	image	#9	*/

				background-repeat:	no-repeat;

				background-position:

												left	top,	/*	position	of	image	#1	*/

												center	top,	/*	position	of	image	#2	*/

												right	top,	/*	position	of	image	#	3*/

												left	center,	/*	position	of	image	#4	*/

												center	center,	/*	position	of	image	#5	*/

												right	center,	/*	position	of	image	#6	*/

												bottom	left,	/*	position	of	image	#7	*/

												bottom	center,	/*	position	of	image	#8	*/

												bottom	right;	/*	position	of	image	#1	*/

				background-size:

												50px	auto,	/*	size	of	image	#1	*/

												auto	auto,	/*	size	of	image	#2	*/

												auto	auto,	/*	size	of	image	#3	*/

												auto	auto,	/*	size	of	image	#4	*/

												200px	auto,	/*	size	of	image	#5	*/

												auto	auto,	/*	size	of	image	#6	*/

												auto	auto,	/*	size	of	image	#7	*/

												auto	auto,	/*	size	of	image	#8	*/

												50px	auto;	/*	size	of	image	#9	*/

}

Now,	let's	describe	it	in	SASS:

.container

		width:	1000px

		height:	500px

		border:	3px	solid	red

		background:

				image:	url(image.jpg),	url(image.jpg),	url(image.jpg),	url(image.jpg),	

url(image.jpg),url(image.jpg),	url(image.jpg),	url(image.jpg),	url(image.jpg)

				repeat:	no-repeat

				position:	left	top,	center	top,	right	top,	left	center,	center	center,	right	

center,	bottom	left,	bottom	center,	bottom	right

				size:	50px	auto,	auto	auto,	auto	auto,	auto	auto,	200px	auto,	auto	auto,	

auto	auto,	auto	auto,	50px	auto

The	final	view	will	be	as	shown	in	the	following:

How	to	create	and	use	sprites
What	is	a	sprite?	A	sprite	is	an	image	with	images	in	short.	But	how	can	you	use	it	in	your
code	and	why	should	you	use	it	in	your	CSS?	Because	it	can	make	your	website	faster	and	it	is
rather	simple	to	create.	Let's	check	the	following	image:

This	is	a	basic	sprite	with	set	offsets	in	the	x	and	y	axes.	So	how	can	we	extract	IMG	3	from
this	big	image?

.image3

		display:	inline-block

		width:	100px

		height:	100px

		background:

				image:	url(image.jpg)

				repeat:	no-repeat

				position:	-200px	0

Compiled	CSS:

.image3	{

				display:	inline-block;

				width:	100px;

				height:	100px;

				background-image:	url(image.jpg);

				background-repeat:	no-repeat;

				background-position:	-200px	0;

}

To	understand	the	sprite	grid	better,	let's	get	the	object	with	the	name	IMG	6:

.image6

		display:	inline-block

		width:	100px

		height:	100px

		background:

				image:	url(image.jpg)

				repeat:	no-repeat

				position:	-200px	-100px

Compiled:

.image6	{

				display:	inline-block;

				width:	100px;

				height:	100px;

				background-image:	url(image.jpg);

				background-repeat:	no-repeat;

				background-position:	-200px	-100px;

}

Okay.	But	creating	sprites	is	pretty	boring	and	time-consuming.	How	can	this	process	be
automatized?	It's	pretty	easy	with	Compass.	All	we	need	to	do	is	to	gather	all	the	images	in	a
folder	with	the	name	newsprite.	The	best	format	for	sprites	is	PNG	to	keep	the	proper
transparency.	Let's	assume	that	we	have	the	following	three	PNG	files	in	this	folder:

circle-blue.png

circle-red.png

circle-white.png

The	images	will	be	as	follows:

Now	we	will	need	to	add	a	little	change	into	our	automatizer:

var	gulp	=	require('gulp'),

				compass	=	require('gulp-compass');

gulp.task('compass',	function	()	{

				return	gulp.src('src/styles/main.sass')

								.pipe(compass({

												sass:	'src/styles',

												image:	'src/images',

												css:	'dist/css',

												generated_images_path:	'dist/images',

												sourcemap:	true,

												style:	'compressed'

								}))

								.on('error',	function(err)	{

												console.log(err);

								});

});

gulp.task('default',	function	()	{

				gulp.watch('src/styles/**/*.sass',	['compass']);

				gulp.watch('src/images/**/*',	['compass']);

});

We	changed	the	following	line,	which	defines	the	destination	for	images:

generated_images_path:	'dist/images'

Now	we	need	to	add	a	code	to	the	run	sprite	creator	in	compass:

@import	"compass"

@import	"newsprite/*.png"

@include	all-newsprite-sprites(true)

In	the	first	line	of	the	preceding	code,	we	are	importing	the	compass	library.	In	the	second	line,
we	are	mapping	our	images	as	sprites.	In	the	third	line,	we	are	importing	a	folder	with
sprites.	The	value	in	brackets	gives	dimensions	in	classes	in	compiled	CSS	code.	Now	let's
analyze	the	compiled	CSS:

.newsprite-sprite,	

.newsprite-circle-blue,	

.newsprite-circle-red,	

.newsprite-circle-white	{

				background-image:	url('../images/newsprite-s70c66611b2.png');

				background-repeat:	no-repeat

}

.newsprite-circle-blue	{

				background-position:	0	0;

				height:	90px;

				width:	90px

}

.newsprite-circle-red	{

				background-position:	0	-90px;

				height:	90px;

				width:	90px

}

.newsprite-circle-white	{

				background-position:	0	-180px;

				height:	90px;

				width:	90px

}

As	you	can	see,	the	generated	code	is	related	to	the	files	structure	and	names,	for	example:

.newsprite-circle-red

Where:

newsprite:	This	is	a	folder/sprite	name
circle-white:	This	is	file	name

Compass	is	prefixing	the	generated	sprite	image,	for	example:

background-image:	url('../images/newsprite-s70c66611b2.png');

And	the	generated	file:

Now	let's	change	the	code	a	little	bit	and	let's	use	sprite-map.	Firstly,	we	will	need	to	create
HTML	code	to	finally	see	the	effect	in	browser:

<div	class="element-circle-white"></div>

<div	class="element-circle-red"></div>

<div	class="element-circle-blue"></div>

Then	in	SASS	file:

@import	"compass/utilities/sprites"

$circles:	sprite-map("newsprite/*.png",	$spacing:	2px,	$layout:	diagonal)

.element-circle-blue

		background-image:	sprite-url($circles)

		background-position:	sprite-position($circles,	circle-blue)

		@include	sprite-dimensions($circles,	circle-blue)

.element-circle-red

		background-image:	sprite-url($circles)

		background-position:	sprite-position($circles,	circle-red)

		@include	sprite-dimensions($circles,	circle-red)

.element-circle-white

		background-image:	sprite-url($circles)

		background-position:	sprite-position($circles,	circle-white)

		@include	sprite-dimensions($circles,	circle-white)

.element-circle-blue,

.element-circle-red,

.element-circle-white

		float:	left

Generated	CSS:

.element-circle-blue	{

				background-image:	url('../images/newsprite-s31a73c8e82.png');

				background-position:	0	-180px;

				height:	90px;

				width:	90px

}

.element-circle-red	{

				background-image:	url('../images/newsprite-s31a73c8e82.png');

				background-position:	-90px	-90px;

				height:	90px;

				width:	90px

}

.element-circle-white	{

				background-image:	url('../images/newsprite-s31a73c8e82.png');

				background-position:	-180px	0;

				height:	90px;

				width:	90px

}

.element-circle-blue,	.element-circle-red,	.element-circle-white	{

				float:	left

}

In	the	preceding	code,	we	are	not	adding	all	classes	with	their	dimensions	like	we	did
previously.	This	is	important	when	you	do	not	want	to	add	a	lot	of	unused	code.	Now	we	are
only	using	the	part	of	sprite	that	is	needed.	Let's	analyze	it	a	little	deeper:

$circles:	sprite-map("newsprite/*.png",	$spacing:	2px,	$layout:	diagonal)

This	line	of	code	defines	our	image	(which	was	@import	"newsprite/*.png").	The	second
parameter	defines	the	spacing	between	images	in	sprite	($spacing:	2px);	in	this	case	it	is

2px.	And	the	last	parameter	is	defining	the	layout	style.	In	this	case,	the	images	in	sprite	will
look	like	the	following:

With	this	parameter,	we	can	use	the	following	values:

Vertical:	Elements	of	sprite	will	be	placed	in	one	vertical	line
Horizontal:	Elements	of	sprite	will	be	placed	in	a	horizontal	line
Diagonal:	Elements	of	sprite	will	be	placed	in	a	diagonal	line
Smart:	Elements	will	be	adjusted	to	get	at	as	small	an	area	as	it	is	possible

Let's	analyze	the	next	part	of	the	code:

		background-image:	sprite-url($circles)

		background-position:	sprite-position($circles,	circle-red)

		@include	sprite-dimensions($circles,	circle-red)

In	the	first	line	of	the	preceding	code,	we	are	getting	the	$circle	variable,	which	is	defined	as
follows:

$circles:	sprite-map("newsprite/*.png",	$spacing:	2px,	$layout:	diagonal)

This	line	adds	the	background	image.	The	second	line	is	getting	the	position	of	the	image	with
name	circle-red	defined	in	the	$circle	variable	(sprite).	The	last	line	includes	the	width	and
height	of	circle-red	in	this	class.

In	the	browser,	we	can	see	the	following	view:

Usage	of	base64
This	is	a	technique	strictly	connected	with	page	load	optimization	and	minification	of	requests
sent	to	the	server.	Conceptually,	optimization	was	related	with	making	count	requests	as	small
as	possible.	So	let's	assume	that	we	have	10	image	backgrounds,	which	we	need	to	load	on	a
page.	The	first	request	is	for	CSS	and	the	next	10	requests	to	the	server	are	for	images.	But
how	can	we	make	it	work	in	one	request?	We	can	use	base64	coding.

Let's	observe	at	how	it	looks	in	theory:

data:[<mime	type>][;charset=<charset>][;base64],<encoded	data>

This	is	the	main	method	in	which	we	encode	the	image.	Finally,	it	looks	like	the	following:

background-image:	url(data:image/gif;base64,<encoded	data>)

Hey!	But	how	can	I	change	my	image	to	encoded	data?	This	is	an	excellent	question	at	a	great
time.	Open	your	terminal	and	try	to	do	it	with	the	following	command:

openssl	base64	-in	<imgfile>	-out	<outputfile>

After	this	operation,	all	you	need	to	do	is	to	copy	the	output	file	content	to	<encode	data>
from	the	previous	command.

Retina	problems
Retina	is	the	high-resolution	display.	The	only	problem	with	this	display	is	how	to	double	the
device	width	and	height	and	then	squeeze	it	into	the	keeping	container.	This	sounds	easy.	The
easiest	way	is	to	move	as	many	elements	as	can	be	moved	to	fonts	and	HTML
elements/pseudoelements.	But	how	can	we	deal	with	background	images	in	CSS?

Let's	start	with	the	basics.	For	a	normal	screen,	we	need	the	image	with	standard	dimensions.
The	image	width	and	height	are	equal	to	90	pixels.

HTML:

<div	class="element"></div>

SASS:

.element

		background:

				image:	url(img/circle-blue.png)

				repeat:	no-repeat

		width:	90px

		height:	90px

Complied	CSS:

.element	{

				background-image:	url(img/circle-blue.png);

				background-repeat:	no-repeat;

				width:	90px;

				height:	90px;

}

In	case	we	want	to	display	this	image	properly	on	the	retina	display,	we	need	to	change	a	code.
This	change	is	related	with	the	density	of	the	retina	display.	The	pixel	ratio	in	the	retina
display	is	equal	to	2.	All	we	need	to	change	is	the	width	and	height	of	the	element	and	adjust
the	background	image	in	this	box:

.element

		background:

				image:	url(img/circle-blue.png)

				repeat:	no-repeat

				size:	50%	50%

		width:	45px

		height:	45px

Compiled	CSS:

.element	{

				background-image:	url(img/circle-blue.png);

				background-repeat:	no-repeat;

				background-size:	50%	50%;

				width:	45px;

				height:	45px;

}

Now	.element	is	ready	to	display	on	the	retina	display	with	the	correct	quality.	But	it	will	be
two	times	smaller	than	needed.	All	we	need	to	do	in	this	case	is	to	start	with	a	bigger
resolution	of	the	image—it	should	be	two	times	bigger.	For	example,	the	design	is	prepared
for	the	browser,	and	in	the	browser,	the	main	wrapper	width	should	be	1000px;	so	you	should
ask	the	designer	to	design	the	width	of	this	wrapper	equal	to	200px.	In	bigger	designs,	you	are
cutting	slices,	which	will	be	needed	on	the	retina	display.	Then	you	should	cut	images	for
standard	density.	You	can	leave	only	the	retina	images	but	it	can	affect	performance	because
bigger	images	will	always	be	downloaded	in	the	browser.	To	omit	this	problem,	it	is	good	to
add	a	proper	media	query.	In	the	described	example,	we	are	globally	adding	a	normal	version
of	the	file	(img/circle-blue.png)	in	the	case	of	the	retina	display,	which	is	recognized	by	the
media	query	so	that	a	two	times	bigger	image	will	be	loaded	(img/circle-blue@2x.png).

.element

		background:

				image:	url(img/circle-blue.png)

				repeat:	no-repeat

		width:	45px

		height:	45px

@media	(-webkit-min-device-pixel-ratio:	2),	(min-resolution:	192dpi)

		.element

				background:

						image:	url(img/circle-blue@2x.png)

						repeat:	no-repeat

						size:	50%	50%

				width:	45px

				height:	45px

Compiled	CSS:

.element	{

				background-image:	url(img/circle-blue.png);

				background-repeat:	no-repeat;

				width:	45px;

				height:	45px;

}

@media	(-webkit-min-device-pixel-ratio:	2),	(min-resolution:	192dpi)	{

				.element	{

								background-image:	url(img/circle-blue@2x.png);

								background-repeat:	no-repeat;

								background-size:	50%	50%;

								width:	45px;

								height:	45px;

				}

}

Take	the	following	part	of	the	code:

background-size:	50%	50%

This	part	of	code	can	be	swapped	with	the	following:

background-size:	contain

The	image	in	this	case	will	adjust	to	the	width	and	height	of	the	box	into	which	the
background	is	added.

Summary
In	this	chapter,	you	gained	a	basic	knowledge	about	background	images.	You	also	learned
how	to	position	background	images,	set	their	sizes,	and	how	to	resolve	the	main	performance
problems	with	sprites	and	base64	encoding.

In	the	next	chapter,	you	will	gain	basic	knowledge	about	the	styling	of	forms.	You	will	also
gain	in-depth	knowledge	about	treating	inputs	with	CSS	code.

Chapter	6.	Styling	Forms
Styling	forms	is	one	of	the	most	challenging	tasks,	especially	when	the	form	needs	to	be
created	as	desktop	and	mobile.	Why?

In	this	chapter,	we	will	cover	the	following	topics:

How	to	create	a	good	structure	for	easy	styling
Using	form	selectors
How	to	style	forms
What	is	possible	and	what	not	with	CSS	in	forms

Forms	–	the	most	known	issues
Do	you	know	any	frontend	developer	who	hasn't	built	any	form	in	HTML/CSS?	Do	you	know
any	of	them	who	like	to	do	this	work?	Yeah…	It's	not	simple	to	adjust	it,	but	you	need	to	learn
to	understand	what	you	can	do	with	HTML/CSS	and	where	you	need	to	use	JavaScript	code	to
make	it	easier	or	even	possible.

The	most	known	restrictions	are	as	follows:

Usage	of	pseudoelements	:before	and	:after	is	not	allowed	because	the	input	has	no
content	(:before	and	:after	appear	before	or	after	the	content)
Usage	of	global	input	styles	is	not	good	because	of	lots	of	types	of	inputs	(text,
password,	submit)
Styling	of	displayed	elements	in	the	selected	box	is	not	possible	at	all	(sometimes	it	is
easier	to	use	some	JavaScript	plugin	to	enable	additional	structure,	which	is	easier	for
styling)

Forms	–	enable	superpowers
As	mentioned	previously,	in	the	input,	there	is	no	way	to	use	:before	and	:after
pseudoelements.	But	a	quick	trick	to	do	that,	which	will	be	better	described	in	the	following
sections,	is	to	wrap	it	in	some	other	elements.	It	always	helps	to	keep	some	label	and	input
groups	and	additionally	allows	to	append	the	:before	and	:after	pseudoelements.

For	example,	take	the	following	bare	HTML	form	code:

<form>

				<input	type="text"	placeholder="Login"/>

				<input	type="password"	placeholder="Password"/>

</form>

Now	you	just	need	to	add	wrapping	elements:

<form>

				<div	class="inputKeeper">

								<input	type="text"	placeholder="Login"/>

				</div>

				<div	class="inputKeeper">

								<input	type="password"	placeholder="Password"/>

				</div>

</form>

Where	is	the	difference?	It	is	easy	to	see	it.	The	first	form	output	is	as	follows:

The	second	form	is	as	follows:

How	to	style	simple	input
Styling	input	is	based	on	the	selectors	<input>	<select>	<textarea>.	But	there	is	a	problem
with	<input>	types.	It	will	gather	all	types:

<input	type="text">

<input	type="submit">

<input	type="password">

<input	type="checkbox">

For	password	input:

input[type="password"]

For	submit	input:

input[type="submit"]

Let's	gather	these	inputs	into	one	mostly	appeared	on	websites'	login	form.

HTML	code:

<form>

				<input	type="text"	placeholder="login"/>

				<input	type="password"	placeholder="password"/>

				<input	type="submit"	/>

</form>

In	a	browser,	it	will	appear	like	the	following:

Let's	change	the	structure	a	little	bit	with	wrapping	divs:

<form>

				<div	class="loginWrapper">

								<input	type="text"	placeholder="login"/>

				</div>

				<div	class="passwordWrapper">

								<input	type="password"	placeholder="password"/>

				</div>

				<div	class="submitWrapper">

								<input	type="submit"	/>

				</div>

</form>

Now	we	have	a	base	code	to	start	styling:

Now	we	can	start	creating	styles:

SASS:

*

box-sizing:	border-box

form

width:	300px

input

margin-bottom:	5px

width:	100%

input[type="text"]

		border:	2px	solid	blue

input[type="password"]

		border:	2px	solid	green

input[type="submit"]

		background:	#000

color:	#fff

width:	100%

Generated	CSS:

*	{

				box-sizing:	border-box;

}

form	{

				width:	300px;

}

input	{

				margin-bottom:	5px;

				width:	100%;

}

input[type="text"]	{

				border:	2px	solid	blue;

}

input[type="password"]	{

				border:	2px	solid	green;

}

input[type="submit"]	{

				background:	#000;

				color:	#fff;

				width:	100%;

}

Now,	after	getting	knowledge	about	proper	selectors	and	adding	basic	CSS,	our	form	looks
like	the	following:

Let's	look	at	the	Submit	button.	We	need	to	remove	its	border.	In	this	iteration,	let's	add	some
pseudoelements.	Let's	update	our	SASS	code	as	follows:

=ring($size,	$color,	$width)

		width:	$size

height:	$size

border-radius:	50%

		border:	$width	solid	$color

background:	none

=triangleRight($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height/2	0	$height/2	$width

		border-color:	transparent	transparent	transparent	$color

*

		box-sizing:	border-box

form

		width:	300px

input

		margin-bottom:	5px

		width:	100%

input[type="text"]

		border:	2px	solid	blue

input[type="password"]

		border:	2px	solid	green

input[type="submit"]

		background:	#000

		color:	#fff

		width:	100%

.loginWrapper,

.passwordWrapper,

.submitWrapper

		position:	relative

		&:after

				content:	''

				display:	inline-block

				position:	absolute

				top:	50%

				right:	10px

.loginWrapper,

.passwordWrapper

		&:after

				margin-top:	-6px

				right:	10px

				+ring(4px,	#000,	2px)

.submitWrapper

		&:after

				margin-top:	-3px

				right:	10px

				+triangleRight(6px,	6px,	#fff)

Generated	CSS:

*	{

				box-sizing:	border-box;

}

form	{

				width:	300px;

}

input	{

				margin-bottom:	5px;

				width:	100%;

}

input[type="text"]	{

				border:	2px	solid	blue;

}

input[type="password"]	{

				border:	2px	solid	green;

}

input[type="submit"]	{

				background:	#000;

				color:	#fff;

				width:	100%;

}

.loginWrapper,

.passwordWrapper,

.submitWrapper	{

				position:	relative;

}

.loginWrapper:after,

.passwordWrapper:after,

.submitWrapper:after	{

				content:	"";

				display:	inline-block;

				position:	absolute;

				top:	50%;

				right:	10px;

}

.loginWrapper:after,

.passwordWrapper:after	{

				margin-top:	-6px;

				right:	10px;

				width:	4px;

				height:	4px;

				border-radius:	50%;

				border:	2px	solid	#000;

				background:	none;

}

.submitWrapper:after	{

				margin-top:	-3px;

				right:	10px;

				width:	0;

				height:	0;

				border-style:	solid;

				border-width:	3px	0	3px	6px;

				border-color:	transparent	transparent	transparent	#fff;

}

The	resulting	output	is	as	follows:

As	we	can	see,	we	omitted	the	problem	with	:before	and	:after	pseudoelements.

Don't	forget	about	placeholders
With	HTML5,	we	have	a	support	in	all	browsers'	placeholder	attribute.	It	gives	us	an
opportunity	to	add	a	description	of	the	following:

::-webkit-input-placeholder

		color:	red

::-moz-placeholder

		color:	red

::-ms-input-placeholder

		color:	red

Compiled	CSS:

::-webkit-input-placeholder	{

				color:	red;

}

::-moz-placeholder	{

				color:	red;

}

::-ms-input-placeholder	{

				color:	red;

}

The	resulting	output	is	as	follows:

Complex	form	based	on	input[type="text"]	and	labels
So	let's	start	with	the	styling	of	complex	and	elastic	forms.	Let's	assume	that	we	need	to	create
a	form	with	labels	and	inputs,	where	labels	are	always	on	the	left	and	inputs	are	resizing.	Let's
bring	the	HTML	structure:

<form	class=""	action="index.html"	method="post">

				<fieldset>

								<legend>Personal	data</legend>

								<div	class="fieldKeeper">

												<label	for="input_name">Your	name</label>

												<input	id="input_name"	type="text"	name="name"	value="">

								</div>

								<div	class="fieldKeeper">

												<label	for="input_surname">Your	surname</label>

												<input	id="input_surname"	type="text"	name="name"	value="">

								</div>

								<div	class="fieldKeeper">

												<label	for="input_address">Address</label>

												<input	id="input_address"	type="text"	name="name"	value="">

								</div>

				</fieldset>

				<fieldset>

								<legend>Login	data</legend>

								<div	class="fieldKeeper">

												<label	for="input_login">Login</label>

												<input	id="input_login"	type="text"	name="name"	value=""	

placeholder="Your	login">

								</div>

								<div	class="fieldKeeper">

												<label	for="input_password">Password</label>

												<input	id="input_password"	type="password"	name="password"	value=""	

placeholder="Password">

								</div>

								<div	class="fieldKeeper">

												<label	for="input_password_confirm">Confirm	password</label>

												<input	id="input_password_confirm"	type="password"	

name="confirm_password"	value=""	placeholder="Confirmed	password">

								</div>

				</fieldset>

</form>

The	preceding	code	will	look	like	the	following	in	a	browser:

As	you	can	see,	it	now	behaves	almost	like	it	should	but	its	inputs	are	not	in	100%	of	width.
When	you	change	it	to	100%,	the	label	will	be	moved	over	the	input.	So	what	we	can	do	is	to
wrap	the	input	in	an	additional	div	and	use	a	trick	with	padding	and	position	absolute/relative.
Let's	change	our	HTML	code	into	first	fieldset:

<fieldset>

				<legend>Login	data</legend>

				<div	class="fieldKeeper">

								<label	for="input_login">Login</label>

								<div	class="inputKeeper">

												<input	id="input_login"	type="text"	name="name"	value=""	

placeholder="Your	login">

								</div>

				</div>

				<div	class="fieldKeeper">

								<label	for="input_password">Password</label>

								<div	class="inputKeeper">

												<input	id="input_password"	type="password"	name="password"	value=""	

placeholder="Password">

								</div>

				</div>

				<div	class="fieldKeeper">

								<label	for="input_password_confirm">Confirm	password</label>

								<div	class="inputKeeper">

											<input	id="input_password_confirm"	type="password"	

name="confirm_password"	value=""

																			placeholder="Confirmed	password">

								</div>

				</div>

</fieldset>

After	this	change	in	the	first	fieldset	only,	you	will	see	how	the	code	behaves	with	and
without	an	additional	inputKeeper	div.	Let's	use	the	following	SASS	code:

.fieldKeeper

		position:	relative

fieldset

		width:	auto

		border:	2px	solid	green

legend

		text-transform:	uppercase

		font:

				size:	10px

				weight:	bold

label

		position:	absolute

		width:	200px

		display:	inline-block

		left:	0

		font:

				size:	12px

.inputKeeper

		padding:

				left:	200px

input

		width:	100%

Compiled	CSS:

.fieldKeeper	{

				position:	relative;

}

fieldset	{

				width:	auto;

				border:	2px	solid	green;

}

legend	{

				text-transform:	uppercase;

				font-size:	10px;

				font-weight:	bold;

}

label	{

				position:	absolute;

				width:	200px;

				display:	inline-block;

				left:	0;

				font-size:	12px;

}

.inputKeeper	{

				padding-left:	200px;

}

input	{

				width:	100%;

}

Now	what	you	can	see	in	the	browser	is	as	follows:

And	on	a	bigger	screen,	you	will	see	the	following:

As	we	can	see,	position	absolute	for	label	without	an	additional	wrapper	caused	the	problem
with	overlaying	the	label	over	the	input.	An	additional	wrapper	gives	us	an	opportunity	to	add
a	padding.	In	place	of	this	padding,	we	can	push	a	label	with	position	absolute.	After
appending	wrappers	to	the	second	section,	it	should	look	in	the	browser	like	the	following:

How	to	style	textarea
Styling	of	textarea	is	pretty	simple	and	very	comparable	to	the	styling	of	text	input.	One	of
the	differences	is	the	opportunity	to	resize	textarea.	This	is	same	as	the	input[type="text"]
textarea	which	can	have	a	placeholder	so	that	you	can	add	a	styling	for	it.	Let's	prepare	simple
HTML	code	for	short	investigation	about	textarea:

<textarea	placeholder="Here	describe	your	skills"></textarea>

Now	in	the	browser,	you	will	see	the	following:

Remember	not	to	add	any	space	or	end	of	line	in	between	the	opening	and	closing	tags
because	it	will	be	treated	as	a	content	of	textarea.	This	will	cause	a	problem	with	the
placeholder.

And	SASS	code:

textarea

		width:	300px

		height:	150px

		resize:	none

		border:	2px	solid	green

Compiled	CSS:

textarea	{

				width:	300px;

				height:	150px;

				resize:	none;

				border:	2px	solid	green;

}

In	the	browser,	you	will	see	the	following:

As	values	of	property	resize,	you	can	use	the	following	ones:

none:	This	disables	resizement	in	both	axes
vertical:	This	enables	vertical	resizement	and	blocks	horizontal	resizement
horizontal:	This	enables	horizontal	resizement	and	blocks	vertical	resizement
both:	This	enables	resizement	in	both	axes

Styling	of	select	(drop	down)
Hell	yeah…	the	styling	of	select	(drop	down)	is	not	as	simple	as	it	should	be.	In	most	cases,
you	will	need	to	use	some	JavaScript	plugin	to	make	it	easier.	But	what	can	you	do	with	the
simple	CSS/HTML	code?	Let's	get	the	following	code:

<select>

				<option>Please	choose	one	option...</option>

				<option>Option	one</option>

				<option>Option	two</option>

				<option>Option	three</option>

				<option>Option	four</option>

				<option>Option	five</option>

</select>

The	preceding	code	will	generate	an	unstyled	select	box	like	the	following:

And	after	focus	action,	it	gives	the	following	output:

What	can	we	do	with	it	now?	Let's	try	to	add	more	flavor.	Firstly,	let's	wrap	it	into	additional
elements:

<div	class="selectWrapper">

				<select>

								<option>Please	choose	one	option...</option>

								<option>Option	one</option>

								<option>Option	two</option>

								<option>Option	three</option>

								<option>Option	four</option>

								<option>Option	five</option>

				</select>

</div>

Now	let's	add	an	SASS	code:

=triangleBottom($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height	$width/2	0	$width/2

		border-color:	$color	transparent	transparent	transparent

.selectWrapper

		width:	300px

		border:	2px	solid	green

		overflow:	hidden

		position:	relative

		&:after

				content:	''

				position:	absolute

				+triangleBottom(10px,	6px,	red)

				right:	5px

				margin-top:	-3px

				top:	50%

select

		background:	#fff

		color:	black

		font:

				size:	14px

		border:	none

		width:	105%

Compiled	CSS:

.selectWrapper	{

				width:	300px;

				border:	2px	solid	green;

				overflow:	hidden;

				position:	relative;

}

.selectWrapper:after	{

				content:	"";

				position:	absolute;

				width:	0;

				height:	0;

				border-style:	solid;

				border-width:	6px	5px	0	5px;

				border-color:	red	transparent	transparent	transparent;

				right:	5px;

				margin-top:	-3px;

				top:	50%;

}

select	{

				background:	#fff;

				color:	black;

				font-size:	14px;

				border:	none;

				width:	105%;

}

As	you	can	see,	this	approach	is	pretty	tricky.	We	made	select	a	little	bit	wider	than	the
container	to	move	the	native	controls	out.	Then	we	added	an	overflow	hidden	to	container.
Additionally,	we	added	the	after	element	to	add	a	triangle.

Summary
In	this	chapter,	you	gained	knowledge	about	styling	forms.	It's	pretty	tricky	to	deal	with	all	of
them	but	as	you	can	see	there	is	always	some	solution	(for	example,	with	additional	wrappers)
to	do	that.	I	recommend	you	to	create	a	simple	framework	with	which	you	can	deal	with
forms.	It	makes	you	fully	prepared	to	style	forms.

In	the	next	chapter,	we	will	try	to	resolve	the	most	repeatable	classic	problems	with	CSS,	such
as	the	centering	of	elements,	dealing	with	display	types	and	many	more.	It	will	be	a	show	of
old	school	and	new	school	methodologies	possible	with	new	CSS	features.

Chapter	7.	Resolving	Classic	Problems
As	a	frontend	developer,	you	are	always	dealing	with	classic	CSS	problems.	The	most	known
and	repeatable	issues	are	centering	elements	in	both	axes	and	opacity.	With	current	CSS,	you
can	do	it	pretty	simple,	but	you	need	to	have	a	foundation	to	know	how	to	do	it.	Knowledge
about	fallbacks	of	previous	versions	of	browsers	can	be	used	in	some	other	further
techniques.	That's	why	they	are	added	to	this	chapter.

In	this	chapter,	we	will:

Learn	how	to	center	elements	in	both	axes
Learn	how	to	deal	with	opacity
Gather	both	the	preceding	tricks	and	create	an	effect	similar	to	the	trendy	lightbox	effect

Centering	elements
Centering	elements	is	an	aspect	known	since	the	first	CSS	versions.	There	were	always	some
element/elements	on	a	page	that	needed	to	be	centered	vertically	or	horizontally	in	some
container	or	in	a	browser.	The	easiest	way	to	center	some	elements	was	to	append	the	element
into	a	table	element	and	add	to	it	vertical	align	and	horizontal	align	attributes	in	HTML:

<td	valign="middle"	align="center>		</td>

But	how	can	we	do	this	in	modern	CSS?	There	are	two	kinds	of	centering:

Horizontal
Vertical

Let's	resolve	this	problem.

Inline	elements	–	horizontal	centering
Let's	assume	that	we	have	a	text	that	we	need	to	center.	It	is	very	simple.	We	just	need	to	add
text-align:	center	and	that's	it.	In	the	example	that	we	will	implement,	the	background	for
our	container	is	set	to	red	and	the	element's	background	is	set	to	white	to	see	how	it	works.

Let's	start	with	this	HTML	code:

<p	class="container">

				Centered

</p>

And	SASS	code:

.container

		background:	red

		padding:	20px

.element

		background:	white

CSS:

.container	{

				background:	red;

				padding:	20px;

}

.element	{

				background:	white;

}

What	we	will	see	in	browser	is	as	follows:

To	center	the	box,	as	mentioned	previously,	we	need	to	add	text-align:	center	to	the
container:

SASS:

.container

		text-align:	center

		background:	red

		padding:	20px

.element

		background:	white

Now	in	the	browser,	we	can	see	the	following:

Let's	assume	that	we	have	both	block	elements	and	we	want	to	adjust	them	as	in	the	preceding
example.	What	do	we	need	to	do?	We	need	to	change	the	display	type	to	inline	or	inline-
block.	Let's	change	the	HTML	code	a	little	bit:

<div	class="container">

				<div	class="element">Centered</div>

</div>

Now	with	the	SASS	code	added	previously,	our	example	will	behave	similar	to	the	following
screenshot:

As	we	can	see	in	the	preceding	screenshot,	the	block	element	is	taking	the	full	possible	weight.
What	we	need	to	do	is	to	modify	the	SASS	code:

.container

		text-align:	center

		background:	red

		padding:	20px

.element

		background:	white

		display:	inline-block

CSS:

.container	{

				text-align:	center;

				background:	red;

				padding:	20px;

}

.element	{

				background:	white;

				display:	inline-block;

}

Now	in	the	browser,	we	can	see	the	following:

Block	elements	–	centering	in	both	axes
Let's	start	with	the	code	from	the	previous	chapter,	which	will	be	the	base	for	our	CSS	styling.
This	is	the	element	in	container:

<div	class="container">

				<div	class="element">Centered</div>

</div>

The	SASS	code	with	colors	is	added	for	better	visibility	of	the	problems:

.container

		background:	black

.element

		width:	400px

		height:	400px

		background:	red

CSS:

.container	{

				background:	black;

}

.element	{

				width:	400px;

				height:	400px;

				background:	red;

}

In	the	starting	point,	our	code	in	the	browser	will	like	the	following:

As	we	can	see	in	the	preceding	screenshot,	our	container	with	Centered	content	is	now	on	the
left	side	of	black	container.	Let's	assume	that	this	is	the	container	for	the	page	that	needs	to	be
centered	and	stuck	to	the	top	of	the	page:

.container

		background:	black

		height:	800px

.element

		width:	400px

		height:	400px

		background:	red

		margin:	0	auto

Compiled:

.container	{

				background:	black;

				height:	800px;

}

.element	{

				width:	400px;

				height:	400px;

				background:	red;

				margin:	0	auto;

}

The	most	important	line	is	the	one	in	bold.	This	makes	our	container	centered,	as	shown	in	the
following	screenshot:

So	what	can	we	do	to	center	it	in	both	axes?	The	old	school	way,	with	the	known	width	and

height	of	the	element,	is	to	add	the	container	relative	position	to	the	element	absolute	position.
The	element	needs	to	be	moved	from	the	top	and	left	by	50%.	Then	we	need	to	shift	the
element	with	a	half	of	the	known	height	to	the	top	and	left	side	using	negative	margins:

.container

		position:	relative

.element

		position:	absolute

		width:	100px

		height:	100px

		left:	50%

		right:	50%

		margin-left:	-50px

		margin-top:	-50px

CSS:

.container	{

				position:	relative;

}

.element	{

				position:	absolute;

				width:	100px;

				height:	100px;

				left:	50%;

				right:	50%;

				margin-left:	-50px;

				margin-top:	-50px;

}

The	output	will	be	as	follows:

As	you	can	see	in	the	preceding	screenshot,	the	element	is	centered	in	both	axes.	The	biggest
issue	is	the	static	width	and	height	of	the	element.	Yes,	of	course,	there	is	a	way	to	add	a
JavaScript	code	to	achieve	it,	but	it's	better	to	use	native	CSS	functions.	So	let's	try	to	make	it
with	the	transform	property.

Using	transform	in	centering
In	the	previous	section,	we	have	been	trying	to	resolve	the	problem	of	centering	elements.
Let's	extend	it	with	the	transform	declaration.	We	will	dig	deeper	into	transform	in	the	next
chapter	to	understand	how	it	works	with	rotation	and	scale,	but	for	this	chapter,	we	need	to	add
the	following	code:

.container

		position:	relative

.element

		position:	absolute

		left:	50%

		right:	50%

		transform:	translate(-50%,	-50%)

The	last	line	in	the	preceding	code	is	making	the	same	effect	as	it	did	in	the	previous	section,
defining	the	negative	left	and	top	margins.	The	best	feature	of	this	code	is	that	we	can	add	it
everywhere	without	knowledge	of	the	width	and	height.	In	the	next	chapter,	we	will	learn
about	flexbox,	which	can	be	used	for	the	centering	of	elements.

Dealing	with	opacity
Opacity	occurs	in	projects	very	often.	For	example,	when	you	are	creating	some	model
windows	on	a	page	or	lightbox-like	gallery.	It	is	used	on	the	layer	added	under	the	main
window	(overlay	element),	which,	in	most	cases,	has	added	an	onclick	event	listener	in
JavaScript,	which	hides	the	window	upon	clicking.	How	can	you	create	this	effect?	How	was	it
done	in	the	past?	Let's	start	with	a	simple	HTML	code:

<header>	Header	</header>

<main>	Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.	Architecto	

dolore	doloremque	dolores	iure	laudantium	magni	mollitia	quam	ratione,	

temporibus	ut?	Aperiam	necessitatibus	perspiciatis	qui	ratione	vel!	Adipisci	

eligendi	sint	unde.	</main>

<footer>	Footer	</footer>

SASS:

header,	footer,	main

		padding:	50px

		text-align:	center

header,	footer

		background:	red

main

		background:	green

Compiled:

header,	footer,	main	{

				padding:	50px;

				text-align:	center;

}

header,	footer	{

				background:	red;

}

main	{

				background:	green;

}

Now	it	will	look	like	the	following:

What	we	need	to	do	is	to	add	a	layer	with	opacity	over	the	actually	visible	container.	Let's
append	this	code	after	the	currently	added	code:

<div	class="window_container">

				<div	class="window">Content	of	our	window</div>

</div>

What	we	need	to	do	now	is	to	change	the	container	position	to	fixed	and	change	the	position
of	the	element	to	absolute.	Let's	add	a	little	bit	more	code	to	add	more	styling	for	better
visibility	of	effects	of	our	work:

.window_container

		position:	fixed

		width:	100%

		height:	100%

		top:	0

		left:	0

		background:	black

.window

		position:	absolute

		width:	200px

		height:	200px

		background:	white

		top:	50%

		left:	50%

		-webkit-transform:	translate(-50%,	-50%)

		-moz-transform:	translate(-50%,	-50%)

		-ms-transform:	translate(-50%,	-50%)

		-o-transform:	translate(-50%,	-50%)

		transform:	translate(-50%,	-50%)

Compiled:

.window_container	{

				position:	fixed;

				width:	100%;

				height:	100%;

				top:	0;

				left:	0;

				background:	black;

}

.window	{

				position:	absolute;

				width:	200px;

				height:	200px;

				background:	white;

				top:	50%;

				left:	50%;

				-webkit-transform:	translate(-50%,	-50%);

				-moz-transform:	translate(-50%,	-50%);

				-ms-transform:	translate(-50%,	-50%);

				-o-transform:	translate(-50%,	-50%);

				transform:	translate(-50%,	-50%);

}

In	the	browser,	we	will	see	the	white	centered	block	on	a	black	container	as	follows:

The	preceding	code	is	going	to	be	the	base	in	the	next	section,	where	we	will	see	the
differences	between	opacity	and	rgba.

Opacity	versus	RGBA	–	differences	and	where	can	we	use
them
Let's	try	to	make	the	.window_container	element	added	previously	into	the	HTML/SASS
structure	be	transparent.	The	easiest	way	to	do	it	is	add	opacity:	.5.	So	let's	try	to	add	the
following	code	to	our	current	SASS	code:

.window_container

		opacity:	.5

		position:	fixed

		width:	100%

		height:	100%

		top:	0

		left:	0

		background:	black

CSS:

.window_container	{

				opacity:	0.5;

				position:	fixed;

				width:	100%;

				height:	100%;

				top:	0;

				left:	0;

				background:	black;

}

The	effect	in	browser	will	be	as	shown	in	the	following	screenshot:

As	we	can	see	in	the	preceding	screenshot,	opacity	is	inherited	by	the	element	inside	our
.window_container.	It's	not	the	way	we	want	to	have	it,	so	we	have	to	change	the	CSS	(SASS)
or	HTML	code.	If	we	want	to	change	the	HTML	code,	we	can	do	it	this	way:

<div	class="window_container">	</div>

<div	class="window">Content	of	our	window</div>

And	the	SASS	code	will	be	changed	in	the	window	description.	We	will	change	only	the
position	to	fixed:

.window

		position:	fixed

The	effect	in	the	browser	will	be	as	follows:

As	we	can	see	in	the	preceding	screenshot,	in	the	browser,	the	effect	is	achieved	but	our
HTML	structure	is	a	little	bit	confusing.	We	have	parallely	added	two	elements	into	the	HTML
code,	which	are	related	to	one	element.	So	let's	get	back	to	the	code	from	the	beginning	of	our
chapter	where	.window	is	in	the	.window_container.	This	is	the	place	where	we	will	use	rgba.
Be	sure	that	the	HTML	code	responsible	for	the	window	looks	like	the	following:

<div	class="window_container">

				<div	class="window">Content	of	our	window</div>

</div>

What	we	need	to	do	is	to	change	the	definition	of	the	background	color	of	the
window_container	and	append	our	rgba.	As	we	know,	we	can	define	colors	of	elements	in
few	ways:

Adding	color	names	(black,	white,	red,	...)
Hex	colors	definition	(#ff00ff,	#fff	...)
RGB	(rgb(0,0,0),	rgb(255,255,255))	based	on	R(ed)G(reen)B(lue)
HSL	(hsl(100,	90%,	50%))	based	on	H(ue)	S(aturation)	L(ightness)
RGBA	(rgb(0,0,0,	.4),	rgb(255,255,255,	.7))	based	on	R(ed)G(reen)B(lue)	+	alpha
channel
HSLA	(hsl(100,	90%,	50%,	.8))	based	on	H(ue)	S(aturation)	L(ightness)	+	alpha
channel

In	our	case,	we	will	use	rgba.	The	final	SASS	code	for	window_container	is	as	follows:

.window_container

		position:	fixed

		width:	100%

		height:	100%

		top:	0

		left:	0

		background:	rgba(0,0,0,.5)

.window

		position:	fixed

		width:	200px

		height:	200px

		background:	white

		top:	50%

		left:	50%

		-webkit-transform:	translate(-50%,	-50%)

		-moz-transform:	translate(-50%,	-50%)

		-ms-transform:	translate(-50%,	-50%)

		-o-transform:	translate(-50%,	-50%)

		transform:	translate(-50%,	-50%)

Compiled:

.window_container	{

				position:	fixed;

				width:	100%;

				height:	100%;

				top:	0;

				left:	0;

				background:	rgba(0,	0,	0,	0.5);

}

.window	{

				position:	fixed;

				width:	200px;

				height:	200px;

				background:	white;

				top:	50%;

				left:	50%;

				-webkit-transform:	translate(-50%,	-50%);

				-moz-transform:	translate(-50%,	-50%);

				-ms-transform:	translate(-50%,	-50%);

				-o-transform:	translate(-50%,	-50%);

				transform:	translate(-50%,	-50%);

}

As	you	can	see,	the	opacity	declaration	is	removed.	Color	is	defined	as	RGBA.	The	rest	of
code	is	the	same.	The	code	in	the	browser	will	look	like	the	following:

Opacity	in	the	past	–	fallback	for	old	IE	versions
Fallback	for	old	browsers	was	done	in	a	similar	way	as	it	was	when	you	wanted	to	use	border
radius—you	needed	to	use	images.	How	was	it	finally	done?	When	the	graphics	were	cut	in
graphic	software,	the	overlay	was	cut	as	a	small	transparent	image,	for	example,	PNG	1px	per
1px.	Then	it	was	added	as	a	background	and	repeated	in	x	and	y	axes.

/*	FALLBACK	*/

.window_container

		background-image:	url(<1x1.png>)

		background-repeat:	repeat

Summary
In	this	chapter,	you	gained	knowledge	about	the	most	known,	classic	issues	in	CSS:	centering
and	opacity.	You	resolved	this	problem	and	gained	knowledge	about	the	pros	and	cons	of	the
solutions.	Additionally,	you	learned	how	the	opacity	problem	was	resolved	in	old	browsers.

In	the	next	chapter,	you	will	learn	about	modern	CSS	aspects	like	flexbox	gradients,	shadows,
transforms,	and	data	attributes.	You	will	also	learn	about	some	tricks	that	you	can	apply	to
your	code	using	this	feature.	Let's	move	on	to	the	next	chapter.

Chapter	8.	Usage	of	Flexbox	Transform
CSS	is	still	developing.	Each	year,	as	a	frontend	developer,	you	need	to	watch	current	trends
and	new	properties	that	you	can	set	for	the	elements.	Of	course,	there	is	a	bunch	of
restrictions,	but	in	some	cases,	those	restrictions	don't	exist,	for	example,	in	new	browsers	or
selected	mobile	apps	or	because	of	set	requirements.	In	this	chapter,	we	will	cover	the
following	topics:

Flexbox
Transform	properties

Flexbox
Flexbox	is	the	one	of	the	loudest	and	most	modern	layout	methodologies	used	in	current	CSS
projects.	With	flexbox,	you	can	create	a	structure	for	your	web	page,	which	is	more	elastic
than	projects	based	on	floating	boxes.	Why?	We	will	check	and	make	an	investigation	in	this
chapter.	What	you	need	to	remember	is	that	Internet	Explorer	supports	flexbox	since	its	11th
version.

Let's	look	at	the	basics	of	flexbox:

As	you	can	see	in	the	preceding	screenshot,	there	is	new	dictionary	related	to	flexbox:

Main	axis	(green	arrow)
Main	start	(red	line)
Main	end	(red	line)
Main	size	(black	line)
Cross	axis	(green	arrow)
Cross	start	(red	line)

Cross	end	(red	line)
Cross	size	(black	line)

Initialization	of	flexbox	is	very	simple.	You	just	need	to	add	the	following	code	to	your
container:

.flexContainer

		display:	-webkit-box

		display:	-moz-box

		display:	-ms-flexbox

		display:	-webkit-flex

		display:	flex

The	compiled	code	is:

.flexContainer	{

				display:	-webkit-box;

				display:	-moz-box;

				display:	-ms-flexbox;

				display:	-webkit-flex;

				display:	flex;

}

The	usage	of	flexbox	still	needs	prefixes	for	cross-browser	compatibility.	This	is	a	good
reason	to	create	reusable	mixins:

=displayFlex

		display:	-webkit-box

		display:	-moz-box

		display:	-ms-flexbox

		display:	-webkit-flex

		display:	flex

Now	we	can	create	the	same	.flexContainer	like	the	following:

.flexContainer

		+displayFlex

The	compiled	code	is:

.flexContainer	{

				display:	-webkit-box;

				display:	-moz-box;

				display:	-ms-flexbox;

				display:	-webkit-flex;

				display:	flex;

}

Let's	create	a	few	elements	within	the	container:

<div	class="flexContainer">

				<div	class="flexElement">Element	1</div>

				<div	class="flexElement">Element	2</div>

				<div	class="flexElement">Element	3</div>

</div>

And	let's	decorate	a	little	bit	our	CSS	code	to	see	how	the	flexbox	behaves:

=displayFlex

		display:	-webkit-box

		display:	-moz-box

		display:	-ms-flexbox

		display:	-webkit-flex

		display:	flex

.flexContainer

		+displayFlex

		background:	red

The	compiled	code	is:

.flexContainer	{

				display:	-webkit-box;

				display:	-moz-box;

				display:	-ms-flexbox;

				display:	-webkit-flex;

				display:	flex;

				background:	red;

}

Now	we	will	see	in	the	browser	the	following	view:

You	can	see	from	the	preceding	screenshot	that	the	container	is	not	reaching	the	full	possible
height	in	the	browser,	but	it	does	reach	its	full	width.	Inside	the	elements	are	floated	to	the	left
side.	Now	let's	change	the	SASS	code	a	little	bit:

.flexContainer

		+displayFlex

		height:	100%

		background:	red

.blue

		background:	blue

.green

		background:	green

.yellow

		background:	yellow

The	compiled	code	is:

.flexContainer	{

				display:	-webkit-box;

				display:	-moz-box;

				display:	-ms-flexbox;

				display:	-webkit-flex;

				display:	flex;

				height:	100%;

				background:	red;

}

.blue	{

				background:	blue;

}

.green	{

				background:	green;

}

.yellow	{

				background:	yellow;

}

And	let's	add	a	color	class	to	our	HTML	code:

<div	class="flexContainer">

				<div	class="flexElement	blue">Element	1</div>

				<div	class="flexElement	green">Element	2</div>

				<div	class="flexElement	yellow">Element	3</div>

</div>

And	in	the	browser,	you	will	see	the	following:

As	you	can	see	in	the	preceding	screenshot,	the	container	has	a	full	width	and	height,	and
inside	the	elements	are	behaving	like	inline	elements	but	with	the	full	height	inherited	from
the	container.	This	is	because	of	the	property	called	align-item,	whose	default	value	is
stretch.	Let's	dig	a	little	bit	more	into	the	values	of	this	property.

Flexbox	property	align-items
This	is	one	of	the	properties	that	we	can	add	to	flexContainer.	It	has	a	few	values	that	we	can
set.	For	now,	we	know	how	the	default	stretch	value	behaves.	Let's	study	the	rest	of	the
possible	values.	Before	all	the	values,	let's	change	HTML	and	CSS	code	a	little	bit	to	see	better
all	the	behaviors.

Let's	modify	the	HTML	code	as	follows:

<div	class="flexContainer">

				<div	class="flexElement	blue	h200px">Element	1</div>

				<div	class="flexElement	green	h300px">Element	2</div>

				<div	class="flexElement	yellow	h100px">Element	3</div>

</div>

Let's	append	the	following	SASS	code:

.h100px

		height:	100px

.h200px

		height:	200px

.h300px

		height:	300px

The	CSS	file	is:

.h100px	{

				height:	100px;

}

.h200px	{

				height:	200px;

}

.h300px	{

				height:	300px;

}

Different	values	of	flex	that	can	be	used	are	as	follows:

stretch	(default)

Tip

For	this	value	stretch,	you	need	to	remove	classes	that	are	adding	the	height	of	boxes
(h100px,	h200px,	h300px).

flex-start

flex-end

center

baseline

In	this	case,	for	a	better	understanding	of	this	behavior,	let's	change	our	code	to	see	how	the
baseline	is	designated:

<div	class="flexContainer">

				<div	class="flexElement	blue	h200px">Element	1</div>

				<div	class="flexElement	green	h300px">Element	2	Lorem	ipsum	dolor	sit	amet,	

consectetur	adipisicing	elit.	Possimus	necessitatibus	est	quis	sequi,	sapiente	

quos	corporis,	dignissimos	libero	quibusdam	beatae	ipsam	quaerat?	Excepturi	

magni	voluptas	dicta	inventore	necessitatibus	omnis	officia.</div>

				<div	class="flexElement	yellow	h100px">Element	3</div>

</div>

And	in	SASS	the	code	can	be	written	as:

.h100px

		height:	100px

		font-size:	30px

		margin-top:	20px

.h200px

		height:	200px

		font-size:	20px

.h300px

		height:	300px

		font-size:	8px

The	CSS	code	will	be:

.h100px	{

				height:	100px;

				font-size:	30px;

				margin-top:	20px;

}

.h200px	{

				height:	200px;

				font-size:	20px;

}

.h300px	{

				height:	300px;

				font-size:	8px;

}

The	output	of	the	preceding	code	is	as	follows:

The	position	of	the	box	from	the	top	is	set	from	the	baseline	designated	by	first	line	of	text	in
the	box.	Purposeful	there	is	added	a	margin-top	for	box	described	as	h100px	box	to	see	that
the	baseline	is	counted	for	from	any	of	the	boxes	in	the	set	of	children.

Okay.	But	how	this	example	will	behave	when	we	will	add	a	box	without	a	text	content?	Let's
modify	HTML	code	as	follows:

<div	class="flexContainer">

				<div	class="flexElement	blue	h200px">Element	1</div>

				<div	class="flexElement	yellow	h100px	w100px"></div>

				<div	class="flexElement	green	h300px">Element	2	Lorem	ipsum	dolor	sit	amet,	

consectetur	adipisicing	elit.	Possimus	necessitatibus	est	quis	sequi,	sapiente	

quos	corporis,	dignissimos	libero	quibusdam	beatae	ipsam	quaerat?	Excepturi	

magni	voluptas	dicta	inventore	necessitatibus	omnis	officia.</div>

				<div	class="flexElement	yellow	h100px">Element	3</div>

</div>

And	let's	add	the	w100px	class	in	SASS	code:

.w100px

		width:	100px

CSS:

.w100px	{

				width:	100px;

}

The	output	of	the	preceding	code	is	as	follows:

As	we	can	see	in	the	preceding	screenshot,	the	baseline	is	designated	by	the	bottom	line	of	the
yellow	empty	box.

Flexbox	property	flex-wrap
One	of	the	next	properties	that	we	can	set	for	the	flex	container	is	flex-wrap.	This	property	is
related	to	wrapping	in	the	box.	We	can	set	nowrap,	wrap,	and	wrap-reverse	as	values.	How	do
they	behave?

nowrap	(default)

wrap

wrap-reverse

As	you	can	see,	wrap	and	wrap-reverse	work	in	the	same	way	but	with	one	simple	difference:
wrap-reverse	is	changing	the	order	of	flex	items.

Flexbox	property	justify-content
The	justify-content	property	is	related	to	the	container	too:

flex-start

flex-end

center

space-between

space-around

Flexbox	property	align-content
The	alignment	of	items	is	related	to	flexContainer.	You	need	to	remember	that	the	effects
will	be	visible	when	you	have	at	least	two	lines	of	items.	So	let's	change	the	following
example	code:

HTML:

<div	class="flexContainer">

				<div	class="flexElement	blue	h100px">Element	1</div>

				<div	class="flexElement	green	h200px">Element	2</div>

				<div	class="flexElement	blue	h100px">Element	3</div>

				<div	class="flexElement	green	h200px">Element	4</div>

				<div	class="flexElement	blue	h100px">Element	5</div>

				<div	class="flexElement	green	h200px">Element	6</div>

</div>

The	SASS	code	is:

=displayFlex

		display:	-webkit-box

		display:	-moz-box

		display:	-ms-flexbox

		display:	-webkit-flex

		display:	flex

.flexContainer

		height:	600px

		width:	900px

		+displayFlex

		flex-wrap:	wrap

		background:	red

.blue

		background:	blue

.green

		background:	green

.yellow

		background:	yellow

.h100px

		height:	100px

		font-size:	30px

		margin-top:	20px

.h200px

		height:	200px

		font-size:	20px

.h300px

		height:	300px

		font-size:	8px

.w100px

		width:	100px

.flexElement

		width:	300px

The	CSS	code	is:

.flexContainer	{

				height:	600px;

				width:	900px;

				display:	-webkit-box;

				display:	-moz-box;

				display:	-ms-flexbox;

				display:	-webkit-flex;

				display:	flex;

				flex-wrap:	wrap;

				background:	red;

}

.blue	{

				background:	blue;

}

.green	{

				background:	green;

}

.yellow	{

				background:	yellow;

}

.h100px	{

				height:	100px;

				font-size:	30px;

				margin-top:	20px;

}

.h200px	{

				height:	200px;

				font-size:	20px;

}

.h300px	{

				height:	300px;

				font-size:	8px;

}

.w100px	{

				width:	100px;

}

.flexElement	{

				width:	300px;

}

flex-start

flex-end

center

space-between

space-around

stretch

In	the	last	example,	all	classes	have	been	removed	relating	to	height:	h100px,	h200px.

Flexbox	property	flex-direction
The	different	properties	of	flexbox	are	as	follows:

row

row-reverse

column

column-reverse

Useful	mixins	that	you	can	add	to	your	collection	are	as	follows:

=displayFlex

		display:	-webkit-box

		display:	-moz-box

		display:	-ms-flexbox

		display:	-webkit-flex

		display:	flex

=flexOrder($number)

		-webkit-box-ordinal-group:	$number

		-moz-box-ordinal-group:	$number

		-ms-flex-order:	$number

		-webkit-order:	$number

		order:	$number

Usage	of	flexbox	–	creating	page	structure
When	you	are	starting	to	work	on	a	project,	you	are	taking	prepared	layout	as	a	graphic	file
and	you	need	to	make	it	available	and	interactive	in	the	browser.	Let's	begin	with	the	currently
most	known	structure:

<div	class="flexContainer">

				<header>Header</header>

				<aside>Side	menu</aside>

				<main>Content</main>

				<footer>Footer	-	Copyright	fedojo.com</footer>

</div>

So	we	want	to	take	the	header	on	the	top	aside	from	the	left	main	on	the	right	and	footer	on
the	bottom:

.flexContainer

		+displayFlex

		-webkit-flex-flow:	row	wrap

		flex-flow:	row	wrap

		&	>	*

				padding:	10px

				flex:	1	100%

		header

				background:	red

		footer

				background:	lightblue

		main

				background:	yellow

				flex:	3	1	auto

		aside

				background:	green

				flex:		0	0	auto

The	CSS	file	is:

.flexContainer	{

				display:	-webkit-box;

				display:	-moz-box;

				display:	-ms-flexbox;

				display:	-webkit-flex;

				display:	flex;

				-webkit-flex-flow:	row	wrap;

				flex-flow:	row	wrap;

}

.flexContainer	>	*	{

				padding:	10px;

				flex:	1	100%;

}

.flexContainer	header	{

				background:	red;

}

.flexContainer	footer	{

				background:	lightblue;

}

.flexContainer	main	{

				background:	yellow;

				flex:	3	auto;

}

.flexContainer	aside	{

				background:	green;

				flex:	1	auto;

}

The	effect	in	browser	will	be	as	follows:

When	you	wish	to	change	the	sidebar	width	to	a	static	value,	you	can	append	a	small	change
into	the	SASS	declaration	of	the	side	menu:

aside

		background:	green

		flex:		0	0	auto

		width:	100px

And	it	will	be	in	CSS:

.flexContainer	aside	{

				background:	green;

				flex:	0	auto;

				width:	100px;

}

This	will	keep	the	left	column	static	width.

Usage	of	flexbox	–	change	order	of	boxes	in	mobile/tablet	view
When	you	are	creating	HTML	layout	adjustment	to	a	desktop	and	mobile,	a	few	possibilities
may	occur	where	you	need	to	change	the	order	of	the	boxes.	Easy	examples	for	a	desktop	are
as	follows:

First	element	needs	to	be	on	the	top
Second	element	needs	to	be	on	the	bottom

Easy	examples	for	a	mobile	are	as	follows:

Second	element	needs	to	be	on	the	top
First	element	needs	to	be	on	the	bottom

Let's	use	the	following	HTML	code:

<div	class="container">

				<div	class="first">First</div>

				<div	class="second">Second</div>

</div>

And	let's	create	a	few	lines	of	SASS	code:

=displayFlex

		display:	-webkit-box

		display:	-moz-box

		display:	-ms-flexbox

		display:	-webkit-flex

		display:	flex

=flexOrder($number)

		-webkit-box-ordinal-group:	$number

		-moz-box-ordinal-group:	$number

		-ms-flex-order:	$number

		-webkit-order:	$number

		order:	$number

.container	>	*

		padding:	20px

.first

		background:	lightblue

.second

		background:	lightcyan

@media	screen	and	(max-width:	600px)

		

		.container

				+displayFlex

				-webkit-flex-flow:	row	wrap

				flex-flow:	row	wrap

				&	>	*

						width:	100%

				.first

						+flexOrder(2)

				.second

						+flexOrder(1)

In	CSS:

.container	>	*	{

				padding:	20px;

}

.first	{

				background:	lightblue;

}

.second	{

				background:	lightcyan;

}

@media	screen	and	(max-width:	600px)	{

				.container	{

								display:	-webkit-box;

								display:	-moz-box;

								display:	-ms-flexbox;

								display:	-webkit-flex;

								display:	flex;

								-webkit-flex-flow:	row	wrap;

								flex-flow:	row	wrap;

				}

				.container	>	*	{

								width:	100%;

				}

				.container	.first	{

								-webkit-box-ordinal-group:	2;

								-moz-box-ordinal-group:	2;

								-ms-flex-order:	2;

								-webkit-order:	2;

								order:	2;

				}

				.container	.second	{

								-webkit-box-ordinal-group:	1;

								-moz-box-ordinal-group:	1;

								-ms-flex-order:	1;

								-webkit-order:	1;

								order:	1;

				}

}

On	the	desktop,	when	the	viewport	width	is	wider	than	600px,	you	can	see	the	following:

And	on	a	view	smaller	than	600px,	you	can	see	the	following:

More	about	transform
Transformations	are	very	useful	for	frontend	developers	because	of	basic	graphic	operations
that	you	can	perform	using	only	CSS.	In	previous	versions	of	CSS,	it	was	only	possible	with
JavaScript.	In	one	of	the	previous	chapters,	we	used	transform	for	centering	elements	in	the
container.	Let's	now	try	to	understand	it	more	and	check	what	else	we	can	do	with	it:

The	HTML	file	is:

<table>

				<tr>

								<td>no	transform</td>

								<td><div	class="transform_none">no	transform</div></td>

				</tr>

				<tr>

								<td>rotate</td>

								<td><div	class="transform_rotate">rotate</div></td>

								<td><div	class="transform_rotatex">rotateX</div></td>

								<td><div	class="transform_rotatey">rotateY</div></td>

								<td><div	class="transform_rotatez">rotateZ</div></td>

				</tr>

				<tr>

								<td>skew</td>

								<td><div	class="transform_skew">skew</div></td>

								<td><div	class="transform_skewx">skewX</div></td>

								<td><div	class="transform_skewy">skewY</div></td>

				</tr>

				<tr>

								<td>scale</td>

								<td><div	class="transform_scale">scale</div></td>

								<td><div	class="transform_scalex">scaleX</div></td>

								<td><div	class="transform_scaley">scaleY</div></td>

								<td><div	class="transform_scalez">scaleZ</div></td>

				</tr>

				<tr>

								<td>translate</td>

								<td><div	class="transform_translate">translate</div></td>

								<td><div	class="transform_translatex">translateX</div></td>

								<td><div	class="transform_translatey">translateY</div></td>

								<td><div	class="transform_translatez">translateZ</div></td>

				</tr>

				<tr>

								<td>multiple</td>

								<td><div	class="transform_multiple01">multiple</div></td>

				</tr>

</table>

The	SASS	file	is:

table

		border-collapse:	collapse

		td,	th

				border:	1px	solid	black

div[class^="transform_"]

		width:	100px

		height:	100px

		background:	lightblue

		line-height:	100px

		text:

				align:	center

				transform:	uppercase

		font:

				weight:	bold

				size:	10px

		display:	inline-block

td

		text-align:	center

		vertical-align:	middle

		width:	150px

		height:	150px

.transform_

		/*	Rotate	*/

		&rotate

				transform:	rotate(25deg)

		&rotatex

				transform:	rotateX(25deg)

		&rotatey

				transform:	rotateY(25deg)

		&rotatez

				transform:	rotateZ(25deg)

		/*	Skew	*/

		&skew

				transform:	skew(10deg,	10deg)

		&skewx

				transform:	skewX(10deg)

		&skewy

				transform:	skewY(10deg)

		/*	Scale	*/

		&scalex

				transform:	scaleX(1.2)

		&scale

				transform:	scale(1.2)

		&scaley

				transform:	scaleY(1.2)

		/*	Translate	*/

		&translate

				transform:	translate(10px,	10px)

		&translatex

				transform:	translate(10%)

		&translatey

				transform:	translate(10%)

		&translatez

				transform:	translate(10%)

		/*	Multiple	*/

		&multiple01

				transform:	rotateX(25deg)	translate(10px,	10px)	skewX(10deg)

The	CSS	file	is:

table	{

				border-collapse:	collapse;

}

table	td,	table	th	{

				border:	1px	solid	black;

}

div[class^="transform_"]	{

				width:	100px;

				height:	100px;

				background:	lightblue;

				line-height:	100px;

				text-align:	center;

				text-transform:	uppercase;

				font-weight:	bold;

				font-size:	10px;

				display:	inline-block;

}

td	{

				text-align:	center;

				vertical-align:	middle;

				width:	150px;

				height:	150px;

}

.transform_	{

				/*	Rotate	*/

				/*	Skew	*/

				/*	Scale	*/

				/*	Translate	*/

				/*	Multiple	*/

}

.transform_rotate	{

				transform:	rotate(25deg);

}

.transform_rotatex	{

				transform:	rotateX(25deg);

}

.transform_rotatey	{

				transform:	rotateY(25deg);

}

.transform_rotatez	{

				transform:	rotateZ(25deg);

}

.transform_skew	{

				transform:	skew(10deg,	10deg);

}

.transform_skewx	{

				transform:	skewX(10deg);

}

.transform_skewy	{

				transform:	skewY(10deg);

}

.transform_scalex	{

				transform:	scaleX(1.2);

}

.transform_scale	{

				transform:	scale(1.2);

}

.transform_scaley	{

				transform:	scaleY(1.2);

}

.transform_translate	{

				transform:	translate(10px,	10px);

}

.transform_translatex	{

				transform:	translate(10%);

}

.transform_translatey	{

				transform:	translate(10%);

}

.transform_translatez	{

				transform:	translate(10%);

}

.transform_multiple01	{

				transform:	rotateX(25deg)	translate(10px,	10px)	skewX(10deg);

}

The	effect	in	the	browser	will	be	as	follows:

In	the	preceding	example,	there	is	a	bunch	of	possible	transforms	in	the	sample	view	in	the
browser.	In	the	first	line,	you	can	see	the	element	without	any	transforms.	In	each	of	the	next
lines,	you	can	check	the	following:

rotate
skew
scale
translate
multiple

Important	aspects	of	transforms	are	the	units	that	can	be	used	in	each	of	the	transform	types:

rotate:	degrees,	for	example,	rotate(20deg,	40deg).
skew:	degrees,	for	example,	skew(30deg,	50deg).
scale:	number,	where	1	=	100%,	for	example,	scale(1.5,	1.5).
translate:	units	related	to	width,	such	as	pixels	percentages,	for	example,
translate(50%,	50%).	Important	information:	percentages	are	related	to	the	dimensions
of	the	transformed	object.

In	the	last	line	of	the	preceding	screenshot,	there	is	a	sample	which	shows	how	transforms	can
be	chained	in	one	line.	This	sample	can	be	used	when	you	need	to	append	more	than	one
transform.

Summary
In	this	chapter,	you	gained	knowledge	about	the	main	features	of	modern	CSS.	You	learned
how	flexbox	works	and	how	you	can	use	it	in	your	projects.	You	analyzed	two-dimensional
transforms,	which	you	can	use	in	your	projects.	This	chapter	is	an	introduction	to	the	new
CSS	features	and	will	help	you	to	understand	possibilities.

In	the	next	chapter,	we	will	focus	on	gradients,	shadows,	and	animations.	We	will	create	a
linear	and	radial	gradient	box	and	text	shadows,	and	additionally	gain	knowledge	about	the
calc	function.

Chapter	9.	Calc,	Gradients,	and	Shadows
In	the	previous	chapter,	we	analyzed	flexbox	and	simple	structures	based	on	flexbox	model.	In
this	chapter,	we	will	focus	on	the	following	aspects	of	CSS:

Calc	function
Gradients
Shadows
CSS	Animations.
Usage	of	data-attribute

Let's	begin!

The	calc()	method
Have	you	ever	had	a	problem	with	mixing	units?	For	example,	say	you	needed	to	make	an
equation	60%-10px?	These	operations	could	be	very	helpful	in	old	browsers	and	this	is
possible	right	now	with	the	calc()	method	in	CSS.	How	can	you	use	it?	Let's	resolve	a
problem	with	two	floating	boxes;	one	has	a	static	width	and	the	second	is	adjusting	to	the
possible	max	width.	The	code	is	as	follows:

HTML:

<div	class="container">

				<div	class="first">First</div>

				<div	class="second">Second</div>

</div>

SASS:

		&:after

				content:	""

				display:	table

				clear:	both

.container

		+clearfix

		&	>	*

				float:	left

				height:	200px

				padding:	10px

				box-sizing:	border-box

.first

		width:	100px

		background:	red

.second

		width:	calc(100%	-	100px)

		background:	blue

Compiled	CSS:

.container:after	{

				content:	"";

				display:	table;

				clear:	both;

}

.container	>*	{

				float:	left;

				height:	200px;

				padding:	10px;

				box-sizing:	border-box;

}

.first	{

				width:	100px;

				background:	red;

}

.second	{

				width:	calc(100%	-	100px);

				background:	blue;

}

Here's	the	end	result:

The	calc()	function	gives	us	the	opportunity	to	make	simple	equations	such	as	percent	minus
pixels.	In	this	simple	example,	you	can	see	that	we	don't	need	to	use	tricks	with	paddings	and
absolute	positions.	You	can	use	the	calc()	function	in	good	way	and	the	problem	will	be
resolved.

Gradients	in	CSS
Experienced	frontend	developers	remember	the	time	when	gradients	were	done	as
background	images.	Yes!	That	was	the	only	idea	to	imitate	gradients	in	browsers.	You	needed
to	cut	1px	width	and	the	gradient's	height	(if	it	was	a	vertical	gradient;	in	the	case	of
horizontal,	it	was	1px	height	and	width	was	designated	by	the	width	of	the	gradient)	from	the
PSD	file.	Then,	you	had	to	add	it	in	CSS	and	repeat	your	magic	image	in	the	background.

Now,	you	can	do	it	in	CSS!	Let's	begin	with	linear	gradients.

Linear	gradients
Linear	gradients	can	be	of	two	types:	from	top-to-bottom	or	from	left-to-right.	Let's	begin
with	a	vertical	gradient:

background:	linear-gradient(to	bottom,	#000	0%,	#f00	100%)

This	code	will	generate	a	linear	gradient	from	top-to-bottom.	At	the	top,	the	color	will	be
black	and	it	will	be	red	at	the	bottom.

However,	it	cannot	be	so	easy	to	be	a	frontend	developer.	That's	why	you	need	to	remember
about	prefixes:

background:	-webkit-gradient(linear,	left	top,	left	bottom,	color-stop(0%,	

#000),	color-stop(100%,	#f00))

background:	-moz-linear-gradient(top,	#000	0%,	#f00	100%)

background:	-webkit-linear-gradient(top,	#000	0%,	#f00	100%)

background:	-o-linear-gradient(top,	#000	0%,	#f00	100%)

background:	-ms-linear-gradient(top,	#000	0%,	#f00	100%)

background:	linear-gradient(to	bottom,	#000	0%,	#f00	100%)

As	you	can	see,	the	definition	with	prefixes	takes	up	a	lot	of	code,	especially	when	you	need	a
fallback	for	IE9	(the	last	line	with	the	filter	definition).

The	basic	horizontal	gradient	definition	is	as	follows:

background:	linear-gradient(left,	#fff,	#000)	

This	example	will	generate	a	gradient	from	left-to-right	with	white	on	the	right	and	black	on
the	left.

Here's	the	prefixed	version:

background:	-webkit-gradient(linear,	left	top,	right	top,	from(#fff),	to(#000))

background:	-webkit-linear-gradient(left,	#fff,	#000)

background:	-moz-linear-gradient(left,	#fff,	#000)

background:	-ms-linear-gradient(left,	#fff,	#000)

background:	-o-linear-gradient(left,	#fff,	#000)

background:	linear-gradient(left,	#fff,	#000)

What	about	multicolor	gradients?	Of	course,	it	is	possible:

background:	linear-gradient(to	right,	black,	red,	white)

Here's	the	effect:

You	can	also	rotate	the	gradient:

HTML:

<div	class="gradient-04"></div>

SASS:

div[class^="gradient-"]

		height:	200px

		width:	200px

		margin-bottom:	20px

.gradient-04

		background:	linear-gradient(45deg	,	black,	red,	white)

CSS:

div[class^="gradient-"]	{

				height:	200px;

				width:	200px;

				margin-bottom:	20px;

}

.gradient-04	{

				background:	linear-gradient(45deg,	black,	red,	white);

}

Here's	the	effect	in	the	browser:

What	if	you	want	to	change	the	balance	between	colors?	For	example,	maybe	you	want	a
higher	concentration	of	black	color	in	your	gradient?	This	is	also	possible:

SASS:

.gradient-05

		background:	linear-gradient(to	right,	black	40%,	red	50%,	white	100%)

CSS:

.gradient-05	{

				background:	linear-gradient(to	right,	black	40%,	red	50%,	white	100%);

}

Here's	the	effect	in	the	browser:

To	understand	this,	you	need	to	check	this	example	step	by	step:

black	40%:This	line	means	that	black	color	will	be	finished	in	40%	of	width	of	

the	box

red	50%:This	means	that	red	color	will	be	finished	in	50%	of	width	of	the	box

white	100%:This	means	that	white	color	will	be	finished	in	100%	of	width	of	the	

box

Using	gradient	mixins
In	this	chapter,	you	can	get	these	mixins	and	use	them	in	your	projects.	I	don't	like	to	write
long	code	every	time—just	write	it	once	and	then	repeat	the	short	version.	That's	why	I
prepared	these	two	simple	gradients:

=linearGradientFromTop($startColor,	$endColor)

		background:	$startColor

		background:	-webkit-gradient(linear,	left	top,	left	bottom,	color-stop(0%,	

$startColor),	color-stop(100%,	$endColor))

		background:	-moz-linear-gradient(top,	$startColor	0%,	$endColor	100%)

		background:	-webkit-linear-gradient(top,	$startColor	0%,	$endColor	100%)

		background:	-o-linear-gradient(top,	$startColor	0%,	$endColor	100%)

		background:	-ms-linear-gradient(top,	$startColor	0%,	$endColor100%)

		background:	linear-gradient(to	bottom,	$startColor	0%,	$endColor	100%)

		filter:	progid:DXImageTransform.Microsoft.gradient(startColorstr='#

{$startColor}',	endColorstr='#{$endColor}',GradientType=0)

=linearGradientFromLeft($startColor,	$endColor)

		background-color:	$startColor

background:	-webkit-gradient(linear,	left	top,	right	top,	from($startColor),	

to($endColor))

		background:	-webkit-linear-gradient(left,	$startColor,	$endColor)

		background:	-moz-linear-gradient(left,	$startColor,	$endColor)

		background:	-ms-linear-gradient(left,	$startColor,	$endColor)

		background:	-o-linear-gradient(left,	$startColor,	$endColor)

		background:	linear-gradient(left,	$startColor,	$endColor)

		filter:	progid:DXImageTransform.Microsoft.gradient(startColorStr='#

{$startColor}',	endColorStr='#{$endColor}',	gradientType='1')

One	of	the	most	important	things	in	the	preceding	examples	of	mixins	is	that	you	need	to	use
the	full	representation	of	hex	colors.	You	can't	use,	for	example,	#f00	for	red	color.	You	have
to	use	#ff0000.	It's	because	of	IE9	and	lower	fallback	which	does	not	respect	this	shorter
version	of	color	representation	in	gradients.	Another	important	thing	in	this	mixin	is	the	first
line,	which	sets	only	the	background	color.	This	is	a	fallback	for	all	browsers	that	don't
respect	any	prefixed/non-prefixed	versions	of	gradients.	With	it	the	color	is	set	only	to	the
color	which	is	set	as	a	$startColor.	The	second	line	in	the	mixin	is	related	to	old	versions	of
browsers	based	on	WebKit.	The	last	line	relates	to	old	IE	(9	and	lower).	Of	course,	you	don't
have	to	keep	this	code	in	your	projects	if	it's	not	used	or	not	needed.	You	can	modify	it	to
match	your	project's	requirements.

Radial	gradients
In	some	projects,	you	will	need	to	add	radial	gradients.	The	radial	gradient	standard	function
looks	like	this:

radial-gradient()

Or	you	can	use:

background:	repeating-radial-gradient()

Let's	check	an	example	code	and	the	possibilities	of	gradients'	usage:

HTML:

<table>

				<tr>

								<td><div	class="gradient-04"></div></td>

								<td><div	class="gradient-05"></div></td>

								<td><div	class="gradient-06"></div></td>

				</tr>

				<tr>

								<td><div	class="gradient-07"></div></td>

								<td><div	class="gradient-08"></div></td>

								<td><div	class="gradient-09"></div></td>

				</tr>

				<tr>

								<td><div	class="gradient-10"></div></td>

								<td><div	class="gradient-11"></div></td>

								<td><div	class="gradient-12"></div></td>

				</tr>

</table>

SASS:

div[class^="gradient-"]

		height:	200px

		width:	200px

		margin-bottom:	20px

//

.gradient-04

		background:	red

		background:	-webkit-radial-gradient(50%	50%,	closest-side,	red,	black)

		background:	-o-radial-gradient(50%	50%,	closest-side,	red,	black)

		background:	-moz-radial-gradient(50%	50%,	closest-side,	red,	black)

		background:	radial-gradient(closest-side	at	50%	50%,	red,	black)

.gradient-05

		background:	red

		background:	-webkit-radial-gradient(10%	10%,	closest-side,	red,	black)

		background:	-o-radial-gradient(10%	10%,	closest-side,	red,	black)

		background:	-moz-radial-gradient(10%	10%,	closest-side,	red,	black)

		background:	radial-gradient(closest-side	at	10%	10%,	red,	black)

.gradient-06

		background:	red

		background:	-webkit-radial-gradient(50%	10%,	closest-side,	red,	black)

		background:	-o-radial-gradient(50%	10%,	closest-side,	red,	black)

		background:	-moz-radial-gradient(50%	10%,	closest-side,	red,	black)

		background:	radial-gradient(closest-side	at	50%	10%,	red,	black)

.gradient-07

		background:	red

		background:	-webkit-radial-gradient(50%	50%,	closest-corner,	red,	black)

		background:	-o-radial-gradient(50%	50%,	closest-corner,	red,	black)

		background:	-moz-radial-gradient(50%	50%,	closest-corner,	red,	black)

		background:	radial-gradient(closest-corner	at	50%	50%,	red,	black)

.gradient-08

		background:	red

		background:	-webkit-radial-gradient(10%	10%,	closest-corner,	red,	black)

		background:	-o-radial-gradient(10%	10%,	closest-corner,	red,	black)

		background:	-moz-radial-gradient(10%	10%,	closest-corner,	red,	black)

		background:	radial-gradient(closest-corner	at	10%	10%,	red,	black)

.gradient-09

		background:	red

		background:	-webkit-radial-gradient(50%	10%,	closest-corner,	red,	black)

		background:	-o-radial-gradient(50%	10%,	closest-corner,	red,	black)

		background:	-moz-radial-gradient(50%	10%,	closest-corner,	red,	black)

		background:	radial-gradient(closest-corner	at	50%	10%,	red,	black)

.gradient-10

		background:	red

		background:	-webkit-repeating-radial-gradient(50%	50%,	closest-corner,		red,	

black)

		background:	-o-repeating-radial-gradient(50%	50%,	closest-corner,	red,	black)

		background:	-moz-repeating-radial-gradient(50%	50%,	closest-corner,	red,	

black)

		background:	repeating-radial-gradient(closest-corner	at	50%	50%,	red,	black)

.gradient-11

		background:	red

		background:	-webkit-repeating-radial-gradient(10%	10%,	closest-corner,	red,	

black)

		background:	-o-repeating-radial-gradient(10%	10%,	closest-corner,	red,	black)

		background:	-moz-repeating-radial-gradient(10%	10%,	closest-corner,	red,	

black)

		background:	repeating-radial-gradient(closest-corner	at	10%	10%,	red,	black)

.gradient-12

		background:	red

		background:	-webkit-repeating-radial-gradient(50%	10%,	closest-corner,	red,	

black)

		background:	-o-repeating-radial-gradient(50%	10%,	closest-corner,	red,	black)

		background:	-moz-repeating-radial-gradient(50%	10%,	closest-corner,	red,	

black)

		background:	repeating-radial-gradient(closest-corner	at	50%	10%,	red,	black)

CSS:

div[class^="gradient-"]	{

				height:	200px;

				width:	200px;

				margin-bottom:	20px;

}

.gradient-04	{

				background:	red;

				background:	-webkit-radial-gradient(50%	50%,	closest-side,	red,	black);

				background:	-o-radial-gradient(50%	50%,	closest-side,	red,	black);

				background:	-moz-radial-gradient(50%	50%,	closest-side,	red,	black);

				background:	radial-gradient(closest-side	at	50%	50%,	red,	black);

}

.gradient-05	{

				background:	red;

				background:	-webkit-radial-gradient(10%	10%,	closest-side,	red,	black);

				background:	-o-radial-gradient(10%	10%,	closest-side,	red,	black);

				background:	-moz-radial-gradient(10%	10%,	closest-side,	red,	black);

				background:	radial-gradient(closest-side	at	10%	10%,	red,	black);

}

.gradient-06	{

				background:	red;

				background:	-webkit-radial-gradient(50%	10%,	closest-side,	red,	black);

				background:	-o-radial-gradient(50%	10%,	closest-side,	red,	black);

				background:	-moz-radial-gradient(50%	10%,	closest-side,	red,	black);

				background:	radial-gradient(closest-side	at	50%	10%,	red,	black);

}

.gradient-07	{

				background:	red;

				background:	-webkit-radial-gradient(50%	50%,	closest-corner,	red,	black);

				background:	-o-radial-gradient(50%	50%,	closest-corner,	red,	black);

				background:	-moz-radial-gradient(50%	50%,	closest-corner,	red,	black);

				background:	radial-gradient(closest-corner	at	50%	50%,	red,	black);

}

.gradient-08	{

				background:	red;

				background:	-webkit-radial-gradient(10%	10%,	closest-corner,	red,	black);

				background:	-o-radial-gradient(10%	10%,	closest-corner,	red,	black);

				background:	-moz-radial-gradient(10%	10%,	closest-corner,	red,	black);

				background:	radial-gradient(closest-corner	at	10%	10%,	red,	black);

}

.gradient-09	{

				background:	red;

				background:	-webkit-radial-gradient(50%	10%,	closest-corner,	red,	black);

				background:	-o-radial-gradient(50%	10%,	closest-corner,	red,	black);

				background:	-moz-radial-gradient(50%	10%,	closest-corner,	red,	black);

				background:	radial-gradient(closest-corner	at	50%	10%,	red,	black);

}

.gradient-10	{

				background:	red;

				background:	-webkit-repeating-radial-gradient(50%	50%,	closest-corner,	red,	

black);

				background:	-o-repeating-radial-gradient(50%	50%,	closest-corner,	red,	

black);

				background:	-moz-repeating-radial-gradient(50%	50%,	closest-corner,	red,	

black);

				background:	repeating-radial-gradient(closest-corner	at	50%	50%,	red,	

black);

}

.gradient-11	{

				background:	red;

				background:	-webkit-repeating-radial-gradient(10%	10%,	closest-corner,	red,	

black);

				background:	-o-repeating-radial-gradient(10%	10%,	closest-corner,	red,	

black);

				background:	-moz-repeating-radial-gradient(10%	10%,	closest-corner,	red,	

black);

				background:	repeating-radial-gradient(closest-corner	at	10%	10%,	red,	

black);

}

.gradient-12	{

				background:	red;

				background:	-webkit-repeating-radial-gradient(50%	10%,	closest-corner,	red,	

black);

				background:	-o-repeating-radial-gradient(50%	10%,	closest-corner,	red,	

black);

				background:	-moz-repeating-radial-gradient(50%	10%,	closest-corner,	red,	

black);

				background:	repeating-radial-gradient(closest-corner	at	50%	10%,	red,	

black);

}

Here's	the	effect	in	the	browser:

How	to	add	box-shadow
Back	in	the	day,	shadow	features	weren't	available	in	CSS.	This	feature	gives	you	the
opportunity	to	append	the	shadow	effect	to	boxes	(with	box-shadow)	and	text	(with	text-
shadow).	How	is	box-shadow	created?	Let's	check	the	parameters	of	this	property	in	CSS:

box-shadow:	horizontal-shadow	vertical-shadow	blur	spread	color

Before	all	parameters	you	can	add	inset.	With	this	property	shadow	will	be	inside	element.

The	easiest	way	to	understand	this	is	to	check	how	it	behaves	in	the	browser:

HTML:

<div	class="container">

				<div	class="box_container">

								<div	class="box__bottom_right">bottom	right</div>

				</div>

				<div	class="box_container">

								<div	class="box__bottom_left">bottom	left</div>

				</div>

				<div	class="box_container">

								<div	class="box__top_right">top	right</div>

				</div>

				<div	class="box_container">

								<div	class="box__top_left">top	left</div>

				</div>

				<div	class="box_container">

								<div	class="box__blurred">blurred</div>

				</div>

				<div	class="box_container">

								<div	class="box__notblurred">notblurred</div>

				</div>

				<div	class="box_container">

								<div	class="box__spreaded">spreaded</div>

				</div>

				<div	class="box_container">

								<div	class="box__innershadow">inner	shadow</div>

				</div>

</div>

SASS:

=clearfix

		&:after

				content:	""

				display:	table

				clear:	both

.container

		+clearfix

		width:	800px

		&	>	*

				float:	left

.box_container

		width:	200px

		height:	200px

		position:	relative

div[class^="box__"]

		width:	100px

		height:	100px

		position:	absolute

		background:	lightblue

		top:	50%

		left:	50%

		line-height:	100px

		font:

				size:	10px

		text:

				align:	center

		transform:	translate(-50%,-50%)

.box__bottom_right

		box-shadow:	5px	5px	5px	0	#000

.box__bottom_left

		box-shadow:	-5px	5px	5px	0	#000

.box__top_right

		box-shadow:	5px	-5px	5px	0	#000

.box__top_left

		box-shadow:	-5px	-5px	5px	0	#000

.box__blurred

		box-shadow:	0px	0px	10px	0	#000

.box__notblurred

		box-shadow:	0px	0px	0	0	#000

.box__spreaded

		box-shadow:	0px	0px	0	5px	#000

.box__innershadow

		box-shadow:	inset	0px	0px	5px	0px	#000

CSS:

.container	{

				width:	800px;

}

.container:after	{

				content:	"";

				display:	table;

				clear:	both;

}

.container	>	*	{

				float:	left;

}

.box_container	{

				width:	200px;

				height:	200px;

				position:	relative;

}

div[class^="box__"]	{

				width:	100px;

				height:	100px;

				position:	absolute;

				background:	lightblue;

				top:	50%;

				left:	50%;

				line-height:	100px;

				font-size:	10px;

				text-align:	center;

				transform:	translate(-50%,	-50%);

}

.box__bottom_right	{

				box-shadow:	5px	5px	5px	0	#000;

}

.box__bottom_left	{

				box-shadow:	-5px	5px	5px	0	#000;

}

.box__top_right	{

				box-shadow:	5px	-5px	5px	0	#000;

}

.box__top_left	{

				box-shadow:	-5px	-5px	5px	0	#000;

}

.box__blurred	{

				box-shadow:	0px	0px	10px	0	#000;

}

.box__notblurred	{

				box-shadow:	0px	0px	0	0	#000;

}

.box__spreaded	{

				box-shadow:	0px	0px	0	5px	#000;

}

.box__innershadow	{

				box-shadow:	inset	0px	0px	5px	0px	#000;

}

Here's	the	effect	in	the	browser:

In	this	example,	you	can	check	how	to	set	vertical	and	horizontal	shadows.	Additionally,	you
can	set	blur	spread	and	its	color.	Adding	a	positive	value	to	vertical	and	horizontal	shadow
moves	the	shadow	to	the	bottom	and	right,	respectively.	When	you	are	adding	a	negative
value,	it	will	move	to	the	top	and	left.

How	to	add	text-shadow
Adding	a	shadow	for	boxes	is	pretty	simple.	But	how	do	we	add	a	shadow	to	text?	It	is
possible	with	the	text-shadow	property.	It	works	in	much	the	same	way	as	box-shadow.	Here's
the	definition:

text-shadow:	horizontal-shadow	vertical-shadow	blur-radius	color

Let's	create	an	example	based	on	the	previous	chapter's	code	to	better	understand	the	text-
shadow	property:

HTML:

<div	class="container">

				<div	class="box_container">

								<div	class="box__bottom_right">bottom	right</div>

				</div>

				<div	class="box_container">

								<div	class="box__bottom_left">bottom	left</div>

				</div>

				<div	class="box_container">

								<div	class="box__top_right">top	right</div>

				</div>

				<div	class="box_container">

								<div	class="box__top_left">top	left</div>

				</div>

				<div	class="box_container">

								<div	class="box__blurred">blurred</div>

				</div>

				<div	class="box_container">

								<div	class="box__notblurred">notblurred</div>

				</div>

</div>

SASS:

=clearfix

		&:after

				content:	""

				display:	table

				clear:	both

.container

		+clearfix

		width:	00px

		&>*

				float:	left

.box_container

		width:	100px

		height:	100px

		position:	relative

div[class^="box__"]

		width:	100px

		height:	100px

		position:	absolute

		background:	lightblue

		top:	50%

		left:	50%

		line-height:	100px

		font:

				size:	10px

		text:

				align:	center

		transform:	translate(-50%,-50%)

.box__bottom_right

		text-shadow:	5px	5px	5px	#000

.box__bottom_left

		text-shadow:	-5px	5px	5px	#000

.box__top_right

		text-shadow:	5px	-5px	5px	#000

.box__top_left

		text-shadow:	-5px	-5px	5px	#000

.box__blurred

		text-shadow:	0px	0px	10px	#000

.box__notblurred

		text-shadow:	5px	5px	0	red

CSS:

.container	{

				width:	0px;

}

.container:after	{

				content:	"";

				display:	table;

				clear:	both;

}

.container	>*	{

				float:	left;

}

.box_container	{

				width:	100px;

				height:	100px;

				position:	relative;

}

div[class^="box__"]	{

				width:	100px;

				height:	100px;

				position:	absolute;

				background:	lightblue;

				top:	50%;

				left:	50%;

				line-height:	100px;

				font-size:	10px;

				text-align:	center;

				transform:	translate(-50%,	-50%);

}

.box__bottom_right	{

				text-shadow:	5px	5px	5px	#000;

}

.box__bottom_left	{

				text-shadow:	-5px	5px	5px	#000;

}

.box__top_right	{

				text-shadow:	5px	-5px	5px	#000;

}

.box__top_left	{

				text-shadow:	-5px	-5px	5px	#000;

}

.box__blurred	{

				text-shadow:	0px	0px	10px	#000;

}

.box__notblurred	{

				text-shadow:	5px	5px	0	red;

}

Here's	the	effect	in	the	browser:

Additional	font	and	text	features
Font	features	in	CSS	have	changed	a	lot	in	the	past	5	years.	Back	in	the	day,	there	was	no
opportunity	to	use	non-standard	fonts	and	as	it	was	described	safe	for	internet.	This	was	one
of	the	issues	that	made	Flash	technology	trendier,	not	only	because	of	full	Flash	pages	but
because	of	Scalable	Inman	Flash	Replacement	(SIFR).	With	SIFR,	you	just	needed	to	attach
your	font	in	Adobe	Flash	and	compile	the	file;	you	could	then	use	your	font	on	the	website.
But	you	had	a	webpage	in	HTML	with	Flash	instances.	Then,	there	was	a	methodology	based
on	JavaScript	called	cufon.	You	could	use	your	font	to	visit	the	cufon	page,	compile	your
font,	and	then	attach	cufon.js	on	your	website	and	your	compiled	font	(JS	file).	In	JavaScript,
you	needed	to	add	which	font	should	be	swapped	and	finally	your	font	was	visible	on	the
website.

Nowadays,	we	can	use	font-face	and	use	custom	fonts	in	the	web	version.

Using	non-standard	fonts	in	browsers
If	you	want	to	use	your	font	in	the	browser,	you	need	to	prepare	it.	The	basic	definition	of
font-face	is	based	on	this	example	in	raw	CSS:

@font-face	{

				font-family:	font_name;

				src:	url(your_font.woff);

}

If	you	want	to	use	your	font	now,	you	will	need	to	append	this	sample	code	in	your	CSS:

.classOfElement	{

				font-family:	font_name;

}

The	main	question	is,	How	can	I	prepare	my	font	to	use	it	in	the	browser	if	I	have	another	font
format?	If	you	have	a	font,	you	can	use	fontsquirrel.com	to	generate	the	final	view	of	CSS
ready	to	use.	Of	course,	there	are	a	few	other	sources	where	you	can	search	for	fonts:

Google	Fonts	(https://www.google.com/fonts)
Typekit	(https://typekit.com/fonts)

Here,	you	can	find	fonts	ready	to	use	in	your	project.

https://www.google.com/fonts
https://typekit.com/fonts

Using	CSS	animations
CSS	animations	are	a	very	useful	feature.	You	don't	need	to	use	JavaScript	for	easy
animations	and	CSS	animations	are	supported	by	the	GPU	(short	for	Graphic	Processing
Unit).	What	can	we	do	with	CSS	animations?	Let's	check	the	following	example:

<div	class="container">

				<div	class="rollin"></div>

</div>

SASS:

.container

		width:	600px

		border:	1px	solid	#000

.rollin

		width:	100px

		height:	100px

		background:	#000

		animation:

				duration:	1s

				name:	roll_in

				iteration-count:	1

				delay:	1s

				fill-mode:	backwards

@keyframes	roll_in

		from

				margin-left:	100%

				opacity:	.3

		to

				margin-left:	0%

				opacity:	1

Here's	the	generated	CSS:

.container	{

				width:	600px;

				border:	1px	solid	#000;

}

.rollin	{

				width:	100px;

				height:	100px;

				background:	#000;

				animation-duration:	1s;

				animation-name:	roll_in;

				animation-iteration-count:	1;

				animation-delay:	1s;

				animation-fill-mode:	backwards;

}

@keyframes	roll_in	{

from	{

								margin-left:	100%;

								opacity:	0.3;

				}

to	{

								margin-left:	0%;

								opacity:	1;

				}

}

Here's	the	effect	in	the	browser:

You	can	see	the	progress	of	animations,	described	in	the	SASS/CSS	file.

The	properties	of	CSS	animations	are:

animation-name:	This	property	defines	which	@keyframs	definition	should	be	used,	for
example:	animation-name:	roll_in
animation-delay:	This	property	defines	the	delay	between	the	element	loading	and	the
animation	starting,	for	example:	animation-delay:	2s
animation-duration:	This	property	defines	the	length	of	the	animation,	for	example:
animation-duration:	2s

animation-iteration-count:	This	property	defines	how	many	times	the	animation
should	be	repeated,	for	example:	animation-	iteration-count:	2
animation-fill-mode:	This	property	defines	how	the	element	will	behave	with	regard	to
the	delay	time,	for	example:	animation-	fill-mode:	backward

How	can	I	add	an	animation	on	hover?	Let's	create	an	example:

HTML:

Element

SASS:

.animation_hover

		display:	inline-block

		padding:	20px

		background:	#d3d3d3

		text-decoration:	none

		color:	black

		transition:

				duration:	.5s

				property:	all

		&:hover

				background:	blue

				color:	white

CSS:

.animation_hover	{

				display:	inline-block;

				padding:	20px;

				background:	#d3d3d3;

				text-decoration:	none;

				color:	black;

				transition-duration:	0.5s;

				transition-property:	all;

}

.animation_hover:hover	{

				background:	blue;

				color:	white;

}

Here's	the	end	result	in	the	browser:

You	can	see	the	element	before	and	after	a	hover	action.	Also,	there	is	a	transition	that	adds	a
little	animation	flavor	to	this	button.	What	is	important	in	this	animation	declaration?

transition-property

The	preceding	declaration	gives	a	list	of	values	that	should	be	animated.	An	example	of	this
list	might	be:

Color,	background-color

This	list	means	that	the	color	and	the	background	color	will	be	animated.	When	you	want	to
animate	all	properties,	you	can	use	all	as	a	value.

Data	attribute
Data	attribute	is	mainly	related	to	HTML	code	and	JavaScript.	With	data	attribute,	you	can
describe	DOM	elements	and	use	these	values	in	scripts,	for	example,	for	sorting,	animation,
or	any	other	purpose.	But	how	can	it	help	you	in	CSS	code?	Let's	consider	the	following
example.

Issue	–	bold	on	hover	moves	the	navigation
This	is	a	pretty	common	issue	on	websites.	Let's	imagine	that	you	have	inline	elements	that
react	to	a	hover.	After	hovering,	the	element	changes	its	font-weight	from	normal	to	bold.
The	effect	is	that	every	element	after	the	hovered	element	is	shifted	to	the	right.	Let's	begin
with	the	HTML	code:

				First

				Second

				Third

				Fourth

				Fifth

SASS:

li,	a

		display:	inline-block

		text-align:	center

a:hover

		font-weight:	bold

CSS:

li,	a	{

				display:	inline-block;

				text-align:	center;

}

a:hover	{

				font-weight:	bold;

}

CSS:

li,	a	{

				display:	inline-block;

				text-align:	center;

}

a:hover	{

				font-weight:	bold;

}

The	effect	in	the	browser	without	and	with	hover	action	is:

The	red	rulers	are	pointed	shifts	in	structure.	Now,	let's	use	our	antidotum.	First,	we	need	to
slightly	change	our	HTML	code.	This	change	is	related	to	the	data-alt	attribute	and	its	value.
As	a	value,	we	are	duplicating	the	value	of	the	DOM	element:

HTML:

<ul	class="bold_list_fix">

				First

				Second

				Third

				Fourth

				Fifth

SASS:

.bold_list_fix

		a::after

				display:	block

				content:	attr(data-alt)

				font-weight:	bold

				height:	1px

				color:	transparent

				overflow:	hidden

				visibility:	hidden

CSS:

.bold_list_fix	a::after	{

				display:	block;

				content:	attr(data-alt);

				font-weight:	bold;

				height:	1px;

				color:	transparent;

				overflow:	hidden;

}

Voilà!	Problem	solved.	As	you	can	see,	the	trick	is	based	on	the	:after	pseudo	element	that	is

now	kept	as	an	invisible	element.	The	content	is	set	by	taking	an	attribute	from	the	HTML
code	with	attr(data-alt).	To	this	content,	the	bold	feature	is	added.	This	gives	us	enough
space,	which	wasn't	taken	up	in	the	previous	code.	Finally,	the	elements	don't	shift	to	the	right.

Summary
In	this	chapter,	we	discussed	CSS	gradients	so	you	don't	need	to	make	gradients	with	images.
We	analyzed	the	use	of	box-shadow	and	text-shadow.	We	created	a	simple	animation	and
analyzed	its	parameters.	Additionally,	we	used	data-attribute	in	CSS	code.

In	the	next	chapter,	we	will	discuss	DRY	(short	for	Don't	Repeat	Yourself)	in	CSS	and	try	to
create	a	basic	framework	that	will	be	a	starter	for	your	projects.

Chapter	10.	Don't	Repeat	Yourself	–	Let's
Create	a	Simple	CSS	Framework
How	many	times	have	you	done	some	work,	only	to	repeat	it	in	the	next	project?	How	many
times	have	you	thought	about	elements	that	are	repeatable?	All	the	time	when	you	are	coding,
you	should	think	how	many	operations	you	can	omit	the	next	time	you're	working	on	the
same	or	another	project.	This	means	that	you	need	to	use	the	following:

Automatization
Code	templates	or	frameworks

This	chapter	is	about	building	reusable	code	and	how	to	finally	use	it	as	a	foundation	for
projects.	In	this	chapter,	we	will	cover	the	following	topics:

Making	a	plan	for	a	small	and	simple	CSS	framework
Creating	your	own	grid	system
Creating	reusable	elements

Remember	that	this	code	can	and	should	be	extended.	Showed	process	should	make	you	more
aware	about	how	you	can	help	yourself	with	frameworks	you've	already	created	but	that	can
still	evolve	with	your	code.	Of	course,	you	can	use	other	frameworks.

File	structure
File	structure	is	very	important	when	you	are	planning	a	system/framework.	When	you	start
creating	something,	it	needs	an	evolution.	So	according	to	development	process	your	system
is	evolving.	It	changes	a	lot	when	your	system	is	evolving.	So,	let's	create	a	simple	structure:

Useful	mixins:
Short	forms	of	useful	elements
Inline	list
Primitives
Clearfix
Simple	gradient	generators

Grid	mixins:
n	of	n	grid

Forms:
Input/textarea	styling	helpers
Input	placeholders

Buttons:
Inline	(with	auto-width)
Full-width

Standard	navigation:
One	level
Two	level

We	will	use	mixins	instead	of	already	created	classes.	Why?	We	want	to	reduce	CSS	code	as
much	as	we	can	so	that,	when	we	generate	full	12	grid,	we	will	produce	12	classes	in	each
breakpoint	in	media	queries.	As	frontend	developers,	we	want	to	create	as	much	code	as
needed.	Of	course,	we	can	reuse	some	classes	and	extend	them	with	SASS,	but	the	main
approach	of	this	framework	is	simple	and	reusable	mixins.

Short	forms	of	useful	elements
In	CSS	code	(and	not	only	CSS),	you	wish	to	get	the	final	effect	more	quickly	each	time	you
repeat	a	part	of	the	code.	So	why	don't	you	create	short	forms	for	some	CSS	declarations	as
well?	Let's	check	what	we	can	make	shorter:

/*	Text	decoration	*/

=tdn

		text-decoration:	none

=tdu

		text-decoration:	underline

/*	Text	align	*/

=tac

		text-align:	center

=tar

		text-align:	right

=tal

		text-align:	left

/*	Text	transform	*/

=ttu

		text-transform:	uppercase

=ttl

		text-transform:	lowercase

/*	Display	*/

=di

		display:	inline

=db

		display:	block

=dib

		display:	inline-block

/*	Margin	0	auto	*/

=m0a

		margin:	0	auto

Now,	each	time	you	want	to	make	some	text	uppercase,	you	are	just	using	code:

.sampleClass

		+ttu

Here's	the	compiled	CSS:

.sampleClass	{

				text-transform:	uppercase;

}

Another	example	of	usage	of	short	mixins	is	a	element	which	will	be	displayed	as	a	block
element	and	text	will	be	centered:

.sampleClass

		+db

		+tac

Here's	the	compiled	CSS:

.sampleClass	{

				display:	block;

				text-align:	center;

}

Other	mixins
There	are	other	mixins	that	are	good	for	our	framework:

Gradients
Animation
Clearfix

Lets	begin	with	gradient	mixins:

=linearGradientFromTop($startColor,	$endColor)

		background:	$startColor	/*	Old	browsers	*/

		background:	-moz-linear-gradient(top,		$startColor	0%,	$endColor	100%)

		background:	-webkit-gradient(linear,	left	top,	left	bottom,	color-stop(0%,	

$startColor),	color-stop(100%,	$endColor))

		background:	-webkit-linear-gradient(top,		$startColor	0%,	$endColor	100%)

		background:	-o-linear-gradient(top,		$startColor	0%,	$endColor	100%)

		background:	-ms-linear-gradient(top,		$startColor	0%,	$endColor	100%)

		background:	linear-gradient(to	bottom,		$startColor	0%,	$endColor	100%)

		filter:	progid:DXImageTransform.Microsoft.gradient(startColorstr='#

{$startColor}',	endColorstr='#{$endColor}',GradientType=0)	

=linearGradientFromLeft($startColor,	$endColor)

		background-color:	$startColor

		background:	-webkit-gradient(linear,	left	top,	right	top,	from($startColor),	

to($endColor))

		background:	-webkit-linear-gradient(left,	$startColor,	$endColor)

		background:	-moz-linear-gradient(left,	$startColor,	$endColor)

		background:	-ms-linear-gradient(left,	$startColor,	$endColor)

		background:	-o-linear-gradient(left,	$startColor,	$endColor)

		background:	linear-gradient(left,	$startColor,	$endColor)

		filter:	progid:DXImageTransform.Microsoft.gradient(startColorStr='#

{$startColor}',	endColorStr='#{$endColor}',	gradientType='1')

Animate	all:

=animateAll($time)

		-webkit-transition:	all	$time	ease-in-out

		-moz-transition:	all	$time	ease-in-out

		-o-transition:	all	$time	ease-in-out

		transition:	all	$time	ease-in-out

Clearfix
Don't	forget	to	add	clearfix	to	your	mixins	in	your	private	SASS	framework.	You	will	be
using	it	as	an	invocation	of	a	mixin	or	as	a	class,	and	all	the	other	elements	will	extend	the
previously	created	class:

=clearfix

		&:after

				content:	"	"

				visibility:	hidden

				display:	block

				height:	0

				clear:	both

Each	time	you	wish	to	create	a	reusable	clearfix	class,	you	can	do	it	this	way:

.clearfix

		+clearfix

Here's	the	compiled	CSS:

.clearfix:after	{

				content:	"	";

				visibility:	hidden;

				display:	block;

				height:	0;

				clear:	both;

}

Or	a	shorter	version	can	be	written	as:

.cf

		+clearfix

Here's	the	compiled	CSS:

.cf:after	{

				content:	"	";

				visibility:	hidden;

				display:	block;

				height:	0;

				clear:	both;

}

Now,	you	can	extend	it	with	@extend	in	SASS	code:

.element

		@extend	.cf

Here's	the	compiled	CSS:

.cf:after,	.element:after	{

				content:	"	";

				visibility:	hidden;

				display:	block;

				height:	0;

				clear:	both;

}

Center	an	absolute	element	in	an	other	relative	element:

/*	Absolute	center	vertically	and	horizontally	*/

=centerVH

		position:	absolute

		top:	50%

		left:	50%

		-ms-transform:	translate(-50%,-50%)

		-webkit-transform:	translate(-50%,-50%)

		transform:	translate(-50%,-50%)

Media	queries
In	each	responsive	web	project,	you	will	need	to	create	media	queries.	You	need	to	choose
steps	that	you	will	implement	and	then	start	creating	the	project	based	on	these	steps.

Media	queries	template
Media	queries	are	rather	simple	to	use	and	create.	The	main	problem	with	media	queries	is
reusable	steps	that	you	can	keep	in	one	place.	In	some	projects,	you	will	need	to	add	a	few
more	queries	because	of	project	visibility	problems	or	some	extra	code	that	will	affect	your
code.	Let's	focus	on	how	to	make	it	once	with	some	settings	and	then	use	it	in	our	code.

The	basic	settings	are	focused	on	the	following:

Mobile	devices	(phones)
Mobile	devices	(tablets)
Desktop	devices
Desktop	devices	(large)

In	some	cases,	you	can	extend	this	list	with	mobile	device	position	(portrait	and	landscape),
but	a	smaller	number	of	media	queries	is	better	and	easier	for	maintenance.	So	how	can	we
keep	the	sizes?

$small:	320px
$medium:	768px
$large:	1024px

Grids
In	standard	HTML/CSS	projects	the	most	repeatable	element	is	grid.	Of	course,	you	can	use
somebody	else's	grid	or	take	it	from	a	CSS	framework	such	as	Bootstrap	or	Foundation.	Is	it
hard	to	create	it	from	scratch?	Not	really.	In	this	chapter,	we	will	create	a	basic	grid	system
and	will	use	it	to	see	how	it	creates	rows	and	columns.

Standard	grids	16/12
The	standard	grid	is	based	on	a	16-column	or	12-column	system.	What	are	the	advantages	of
both	systems?	It	depends	on	your	structure.	For	example,	after	analyzing	the	layout,	say	you
need:

3-column	composition
2-column	composition
6-column	composition

So,	you	can	use	the	12-columns	system.	However,	as	you	can	see,	you	need	to	stick	to	this
system,	so	how	can	you	create	your	own	code	so	it's	more	elastic?	You	can	use	the	following
naming	convention:

.grid-NofK

Here,	N	is	the	number	of	columns	and	K	is	the	divider,	for	example:

.grid-3of12

.grid-5of6

When	you	are	working	with	grids,	you	need	to	remember	that	sometimes	you	need	to	push
some	columns	from	the	left.	This	is	the	case	when	you	need	to	create	.push	classes:

.push-NofK

What	are	the	pros	of	this	naming	convention?	There	is	no	static	divider.	In	classic	grids,	you
have	a	grid	with	12	columns	or	16	columns	and	their	combinations.	Here's	a	sample	of	grids
written	class	by	class:

Grid	of	12:

.grid-1of12	{

				width:	8.33%

}

.push-1of12	{

				margin-left:	8.33%

}

.grid-2of12	{

				width:	16.66%

}

.push-2of12	{

				margin-left:	16.66%

}

.grid-3of12	{

				width:	25%

}

.push-3of12	{

				margin-left:	25%

}

.grid-4of12	{

				width:	33.33%

}

.push-4of12	{

				margin-left:	33.33%

}

.grid-5of12	{

				width:	41.66%

}

.push-5of12	{

				margin-left:	41.66%

}

.grid-6of12	{

				width:	50%

}

.push-6of12	{

				margin-left:	50%

}

.grid-7of12	{

				width:	58.33%

}

.push-7of12	{

				margin-left:	58.33%

}

.grid-8of12	{

				width:	66.66%

}

.push-8of12	{

				margin-left:	66.66%

}

.grid-9of12	{

				width:	75%

}

.push-9of12	{

				margin-left:	75%

}

.grid-10of12	{

				width:	83.33%

}

.push-10of12	{

				margin-left:	83.33%

}

.grid-11of12	{

				width:	91.66%

}

.push-11of12	{

				margin-left:	91.66%

}

.grid-12of12	{

				width:	100%

}

.push-12of12	{

				margin-left:	100%

}

Grid	of	16:

.grid-1of16	{

				width:	6.25%

}

.push-1of16	{

				margin-left:	6.25%

}

.grid-2of16	{

				width:	12.5%

}

.push-2of16	{

				margin-left:	12.5%

}

.grid-3of16	{

				width:	18.75%

}

.push-3of16	{

				margin-left:	18.75%

}

.grid-4of16	{

				width:	25%

}

.push-4of16	{

				margin-left:	25%

}

.grid-5of16	{

				width:	31.25%

}

.push-5of16	{

				margin-left:	31.25%

}

.grid-6of16	{

				width:	37.5%

}

.push-6of16	{

				margin-left:	37.5%

}

.grid-7of16	{

				width:	43.75%

}

.push-7of16	{

				margin-left:	43.75%

}

.grid-8of16	{

				width:	50%

}

.push-8of16	{

				margin-left:	50%

}

.grid-9of16	{

				width:	56.25%

}

.push-9of16	{

				margin-left:	56.25%

}

.grid-10of16	{

				width:	62.5%

}

.push-10of16	{

				margin-left:	62.5%

}

.grid-11of16	{

				width:	68.75%

}

.push-11of16	{

				margin-left:	68.75%

}

.grid-12of16	{

				width:	75%

}

.push-12of16	{

				margin-left:	75%

}

.grid-12of16	{

				width:	81.25%

}

.push-12of16	{

				margin-left:	81.25%

}

.grid-12of16	{

				width:	87.5%

}

.push-12of16	{

				margin-left:	87.5%

}

.grid-12of16	{

				width:	93.75%

}

.push-12of16	{

				margin-left:	93.75%

}

.grid-12of16	{

				width:	100%

}

.push-12of16	{

				margin-left:	100%

}

That	was	a	lot	of	writing...

Now,	we	need	to	create	a	code	that	we	can	use	in	media	queries	and	on	responsive	websites.	In
the	most	popular	CSS	frameworks	such	as	Bootstrap	and	Foundation,	you	can	use	classes	for
phones/tablets/desktops:

<div	class="small-2	medium-4	large-5">

</div>

For	example,	when	the	divider	is	set	to	12,	you	will	see	this	box	on	small	devices	with	2
columns	wide,	on	medium	devices	4	columns	wide,	and	on	large	documents	5	columns	wide.
We	can	create	all	of	these	classes,	but	I	recommend	you	create	a	mixin	that	we	can	invoke	in
each	element	described	in	CSS.

The	SASS	Code	will	look	like	this:

=grid($columns,	$divider)

		width:	percentage($columns/$divider)

=push($columns,	$divider)

		margin-left:	percentage($columns/$divider)

How	can	we	use	it	in	SASS	code?	Let's	imagine	that	we	have	a	block	based	on	grid	16	and	we
want	to	give	it	width	of	12	of	16	and	push	it	with	2	of	16:

.gridElement

		+grid(12,	16)

		+push(2,	16)

Here's	the	compiled	CSS:

.gridElement	{

				width:	75%;

				margin-left:	12.5%;

}

Standard	reusable	structures
As	a	frontend	developer,	you	are	always	struggling	with	repeatable	elements.	In	almost	all
cases,	you	feel	as	if	you	are	trying	to	reinvent	the	wheel,	so	what	can	you	do	to	not	repeat
yourself?	Let's	create	a	few	standard	and	reusable	structures.

Reusable	multilevel	menus
A	multilevel	menu	is	the	most	reusable	code.	All	bigger	websites	have	a	menu	that	you	can
describe	as	reusable	code.

Let's	begin	with	the	HTML	code:

<ul	class="menu-multilevel">

				

								Level	one	-	item	one

								

												Level	two	-	item	one

												Level	two	-	item	two

												Level	two	-	item	three

												Level	two	-	item	four

								

				

				

								Level	two	-	item	one

								

												Level	two	-	item	one

												Level	two	-	item	two

												Level	two	-	item	three

												Level	two	-	item	four

								

				

				

								Level	one	-	item	three

								

												Level	three	-	item	one

												Level	three	-	item	two

												Level	three	-	item	three

												Level	three	-	item	four

								

				

SASS	code:

ul.menu-multilevel

		list-style:	none

		padding:	0

ul.menu-multilevel	>	li

		float:	left

		display:	inline-block

		position:	relative

		margin-right:	10px

		&:hover

				ul

						display:	block

						width:	200px

ul.menu-multilevel	ul

		display:	none

		position:	absolute

		left:	0

		li

				display:	block

Here's	the	compiled	CSS:

ul.menu-multilevel	{

				list-style:	none;

				padding:	0;

}

ul.menu-multilevel	>	li	{

				float:	left;

				display:	inline-block;

				position:	relative;

				margin-right:	10px;

}

ul.menu-multilevel	>	li:hover	ul	{

				display:	block;

				width:	200px;

}

ul.menu-multilevel	ul	{

				display:	none;

				position:	absolute;

				left:	0;

}

ul.menu-multilevel	ul	li	{

				display:	block;

}

Now,	let's	rebuild	this	code	a	little	to	create	a	reusable	mixin	in	SASS:

=memuMultilevel

		list-style:	none

		padding:	0

		&	>	li

				float:	left

				display:	inline-block

				position:	relative

				margin-right:	10px

				&:hover

						ul

								display:	block

								width:	200px

		&	ul

				display:	none

				position:	absolute

				left:	0

				li

						display:	block

To	use	it,	you	will	need	to	invoke	a	mixin	like	this:

ul.menu-multilevel

		+memuMultilevel

The	generated	CSS:

ul.menu-multilevel	{

				list-style:	none;

				padding:	0;

}

ul.menu-multilevel	>	li	{

				float:	left;

				display:	inline-block;

				position:	relative;

				margin-right:	10px;

}

ul.menu-multilevel	>	li:hover	ul	{

				display:	block;

				width:	200px;

}

ul.menu-multilevel	ul	{

				display:	none;

				position:	absolute;

				left:	0;

}

ul.menu-multilevel	ul	li	{

				display:	block;

}

How	to	create	reusable	buttons
Buttons	are	the	next	elements	that	you	can	see	and	reuse.	Let's	think	about	button	parameters.
For	sure,	we	need	to	have	the	opportunity	to	set	the	background	and	font	color.	We	need	to
have	an	opportunity	to	change	the	border	color	and	padding.

Let's	begin	with	a	simple	CSS	definition:

.button	{

				padding:	5px	10px;

				background:	#ff0000;

				color:	#fff;

}

So	based	on	this,	the	mixin	can	look	as	follows	in	SASS:

=button($bgc,	$fc)

		display:	inline-block

		background:	$bgc

		color:	$fc

Here:

$bgc:	Background	color
$fc:	Font	color

To	use	this	mixin,	you	just	need	to	execute	this:

.button

		padding:	5px	10px

		+button(#ff0000,	#fff)

Here's	the	compiled	CSS:

.button	{

				padding:	5px	10px;

				display:	inline-block;

				background:	#ff0000;

				color:	#fff;

}

How	can	you	extend	this	mixin?	Let's	think	about	other	values	that	you	can	parameterize.	For
sure,	a	border	radius.	So,	let's	add	a	new	mixin:

=roundedButton($bgc,	$fc,	$bc,	$br)

		background:	$bgc

		color:	$fc

		border-color:	$bc

		border-radius:	$br

Here:

$bc:	border	color
$br:	border	radius

Let's	use	this	mixin:

.roundedButton

		+roundedButton(black,	white,	red,	5px)

Here's	the	compiled	CSS:

.roundedButton	{

				background:	black;

				color:	white;

				border-color:	red;

				border-radius:	5px;

}

If	you	need	to	create	a	bunch	of	buttons	with	three	sizes,	you	can	do	it	like	this:

.button

		+button(#ff0000,	#fff)

		.small

				padding:	5px	10px

		.medium

				padding:	10px	20px

		.large

				padding:	15px	30px

Here's	the	compiled	CSS:

.button	{

				display:	inline-block;

				background:	#ff0000;

				color:	#fff;

}

.button	.small	{

				padding:	5px	10px;

}

.button	.medium	{

				padding:	10px	20px;

}

.button	.large	{

				padding:	15px	30px;

}

Gathering	other	reusable	mixins
What	we	need	is	a	bunch	of	useful	and	reusable	mixins.	What	can	be	additionally	helpful?
Let's	think:

Primitives
Inline	lists

Primitives
As	you	can	remember	from	one	of	the	previous	chapters,	we	have	been	using	primitives.	List
of	mixins	which	creates	primitives	can	be	very	useful	and	helpful	part	of	our	framework.	We
will	we	have	mixins	for:

Rectangle	(with	and	without	a	fill)
Circle/ring
Triangle

Let's	have	a	quick	reminder:

=rectangle($w,	$h,	$c)

		width:	$w

		height:	$h

		background:	$c

=square($w,	$c)

		width:	$w

		height:	$w

		background:	$c

=circle($size,	$color)

		width:	$size

		height:	$size

		border-radius:	50%

		background:	$color

=ring($size,	$color,	$width)

		width:	$size

		height:	$size

		border-radius:	50%

		border:	$width	solid	$color

		background:	none

=triangleRight($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height/2	0	$height/2	$width

		border-color:	transparent	transparent	transparent	$color

=triangleLeft($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height/2	$width	$height/2	0

		border-color:	transparent	$color	transparent	transparent

=triangleTop($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	0	$width/2	$height	$width/2

		border-color:	transparent	transparent	$color	transparent

=triangleBottom($width,	$height,	$color)

		width:	0

		height:	0

		border-style:	solid

		border-width:	$height	$width/2	0	$width/2

		border-color:	$color	transparent	transparent	transparent

Let's	test	and	use	our	framework
To	check	how	our	framework	is	working	and	how	easy	it	is	to	append	all	of	our	stuff,	let's
create	a	blog	template.	In	this	template,	let's	include	views:

List	of	posts
Single	post
Single	page

Let's	create	regions:

Header
Footer
Content

Here's	our	simplified	design:

Let's	begin	with	the	simple	structure	of	a	blog	page	(the	Home	page):

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="utf-8">

				<title></title>

				<link	rel="stylesheet"	href="css/master.css"	media="screen"	title="no	title"	

charset="utf-8">

</head>

<body>

<header>

				<h1>FEDojo.com</h1>

				<h2>Front	End	Developers	Blog</h2>

</header>

<nav>

				

								Home

								About

								Contact

				

</nav>

<main>

				<article	class="main--article">

								

												

												

								

								<h3>Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit</h3>

								<p>

												sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	

Ut	enim	ad	minim	veniam,	quis	nostrud

												exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	

consequat.	Duis	aute	irure	dolor	in	reprehenderit

												in	voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	

Excepteur	sint	occaecat	cupidatat	non

												proident,	sunt	in	culpa	qui	officia	deserunt	mollit	anim	id	est	

laborum.

								</p>

								Read	more

				</article>

</main>

<footer>

				<div	class="wrapper">

								<div	class="column">

												Left	column

								</div>

								<div	class="column">

												Right	column

								</div>

				</div>

</footer>

</body>

</html>

As	you	can	see,	we	have	a	structure	based	on	tags:

Header
Nav
Main
Footer

This	is	our	file	structure:

Let's	describe	the	header:

header

		h1

				+tac

				margin-bottom:	0

		h2

				+tac

				font-size:	16px

				margin-top:	0

				margin-bottom:	30px

Describing	the	footer:

footer

		width:	100%

		background:	#d3d3d3

		padding:	50px	0

		.wrapper

				+m0a	/*	margin	0	auto	*/

				+clearfix

				max-width:	$wrapper

		.column

				width:	50%

				float:	left

Describing	the	navigation:

nav

		background:	black

		text-align:	center

		ul

				+navigation

		a

				color:	white

				+ttu

				padding:	10px

In	the	fed	directory,	we	store	our	reusable	code	(our	framework).	In	the	remaining
directories,	we	store	code	related	to	the	project.	In	describing	the	structure,	we	store	styles	of
elements	that	repeat	on	all	views.	In	the	views	directory,	we	will	keep	styles	for	elements
related	to	specific	views.

Remember!
When	you	are	creating	some	reusable	code	or	even	any	other	code,	you	need	to	leave
comments.	For	some	reason,	there	is	a	current	(and	discourteous)	trend	for	programmers	not
to	add	comments	"their	code	doesn't	need	additional	description."	Another	school	of	thought
is,	"That's	my	code.	I	understand	what	I	am	writing".	Do	you	think	it	is	fair	to	leave	it	as	it	is?
Of	course,	the	answer	is	no!	Even	your	memory	isn't	perfect.	You	can	forget	what	you	mean
in	your	code	and	what	the	purpose	was.	It	is	recommended	you	at	least	write	short	comments
for	yourself	and	other	people	who	will	work	on	the	project.

In	the	golden	era	of	Github	and	Bitbucket,	you	can	share	your	code	in	seconds	and	work	with
another	programmer	from	another	part	of	the	world	who	can	fork	your	code	or	contribute	to
your	project.

Summary
As	you	can	see,	there	are	a	lot	of	reusable	structures	that	you	can	decorate	each	time	you
create	a	new	project.	It's	better	to	write	something	once	and	then	add	some	new	functionalities,
rather	than	write	something	every	time	and	describe	repeatable	elements.

In	the	next	chapter,	we	will	try	to	create	a	simple	CSS	framework	with	components	ready	to
use!

Chapter	11.	Mailers	Fundamentals
This	chapter	is	about	building	mailers	and	the	fundamental	aspects	of	creating	the	right
structure.	Because	building	the	right	structure	for	a	mailer	is	not	easy	and	it	is	still	related	to
the	old	school	thinking	about	HTML	structure,	there	are	only	a	handful	of	tutorials	that	show
how	to	do	it	from	beginning	to	end.	Why?	Let's	begin!

In	this	chapter,	we	will	cover:

Creating	a	simple	structure	for	a	mailer
Finding	out	what	is	and	isn't	possible	in	mailers
Comparing	the	most	known	mailer	clients,	including	Outlook	and	Gmail
Getting	back	to	the	old	school	thinking	of	HTML	structure	based	on	tables

Testing	your	mailer
The	process	of	testing	e-mail	is	complicated	because	of	the	bunch	of	e-mail	clients	which	you
need	to	install	on	your	computer.	This	is	of	course	related	to	operating	systems	which	you
will	need	to	install	the	following:

Microsoft	Outlook	2007/2010/2013
Microsoft	Outlook	2003/Express
Microsoft	Outlook.com
iPhone	Mail
Apple	Mail
Gmail
Yahoo!	e-mail

This	bunch	of	e-mail	clients	is	rather	long	and	it	is	going	to	be	problematic	to	test	all	of	them.
But	you	can	use	in	your	workflow	some	email	testers.	There	is	a	list	of	online	tools	which
you	can	use	for	example	Litmus	which	will	be	described	later	in	this	chapter.

Back	to	tables
Tables	structure	is	the	most	popular	methodology	of	building	bulletproof	e-mail	templates.	It
looks	like	a	blast	from	the	past.	So,	let's	bring	the	flavor	of	the	past	and	let's	start	creating	the
right	structure:

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"/>

				<meta	name="viewport"	content="width=device-width"/>

				<meta	name="format-detection"	content="telephone=no">

				<title>Untitled	Document</title>

</head>

<body>

<style	type="text/css">

				.class	{}	/*	here	will	be	your	code	*/

</style>

<table	width="100%"	border="0"	cellspacing="0"	cellpadding="0">

				<!--	HERE	your	content	-->

</table>

</body>

</html>

You	might	ask,	"But	where	is	the	HTML5	declaration	and	why	aren't	styles	included	with	the
link	rel	tag?"	It	is	because	of	the	old	HTML	interpreters	included	in	e-mail	clients	and	the	use
of	a	newer	doctype	can	create	problems	with	compatibility.	For	now,	we	have	a	skeleton.	Let's
begin	writing	the	styles:

So	why	are	we	using	this	part	of	the	code?

<meta	name="format-detection"	content="telephone=no">

This	code	is	related	to	an	iOS-specific	problem.	It	changes	the	behavior	of	an	input	telephone
number,	which	(on	iOS)	is	detected	and	changed	to	an	interactive	link	that	you	can	click	and
start	a	phone	call.

Resetting	styles
In	CSS	code,	there	is	a	lot	of	code	that	should	be	used	to	reset	a	behavior	over	all	browsers.
The	same	situation	occurs	in	mailers.	There	is	a	bunch	of	declarations	that	you	should	append
to	your	style	section	and	that	will	help	you	to	provide	a	bulletproof	mailer.	So	what	can	we
add	as	a	resetter?

body	{

				margin:	0;

				padding:	0;

				min-width:	100%	!important;

}

The	first	declaration	with	removal	of	the	margin	and	padding	is	very	important.	This
declaration	is	known	from	standard	Internet	browsers.	As	you	can	see,	the	min-width	occurs
too.	As	described	in	the	code,	this	is	very	important	line	to	check!	In	the	value,	there	is	100%
!important.	Yes!	There	is	no	space	between	the	value	and	!important.	The	following	code	is
a	part	of	reset	styles	for	emailers:

body,

table,

td,

a	{

				-webkit-text-size-adjust:	100%;	//	IOS	specific

-ms-text-size-adjust:	100%;	//	Windows	mobile

}

.ExternalClass	{

				width:	100%;

}

.ExternalClass,

.ExternalClass	p,

.ExternalClass	span,

.ExternalClass	font,

.ExternalClass	td,

.ExternalClass	div	{

				line-height:	100%;

}

What	is	ExternalClass?	This	class	is	related	to	templates	that	will	be	displayed	in	Outlook	or
Hotmail.	It's	a	good	approach	to	set	this	bunch	of	classes	into	your	<style>	tag.	This	will
minimize	the	problems	that	can	occur	on	specific	e-mail	clients.	The	following	code	contains
mso-	prefixes.	This	means	that	it	is	related	to	Microsoft	Office.

table	{

				mso-table-lspace:	0pt;

				mso-table-rspace:	0pt;

}

This	code	is	related	to	Microsoft	Outlook.	It	will	reset	the	additional	space	in	the	border:

#outlook	a{

				padding:0;

}

h1,

h2,

h3,

h4,

h5,

h6	{

				color:	<your_color>!important;

}

h1	a,

h2	a,

h3	a,

h4	a,

h5	a,

h6	a	{

				color:	<your_color>!important;

}

h1	a:active,

h2	a:active,

h3	a:active,

h4	a:active,

h5	a:active,

h6	a:active	{

				color:	<your_color>!important;

}

h1	a:visited,

h2	a:visited,

h3	a:visited,

h4	a:visited,

h5	a:visited,

h6	a:visited	{

				color:	<your_color>!important;

}

img{

				-ms-interpolation-mode:bicubic;

				border:	0;

				height:	auto;

				line-height:	100%;

				outline:	none;

				text-decoration:	none;

}

Targeting	specific	devices	through	media	queries
To	build	a	bulletproof	mailer,	you	will	need	to	use	specific	code	for	some	specific	e-mail
clients	and	devices.	This	is	more	difficult	to	do	because	of	the	problems	with	debugging
(there	is	no	good	debugger/inspector	to	check	behaviors	live).	Which	devices	do	we	need?
Let's	create	a	list:

iPad	or	iPhone	with	retina	and	non-retina	display
Android	devices	with:

Low	density	(pixel	ratio	smaller	than	1)
Medium	density	(pixel	ratio	equal	to	1)
High	density	(pixel	ratio	greater	than	1)

@media	only	screen	and	(max-device-width:	480px)	{

}

This	set	with	which	you	will	match	tablets	and	small	screens:

@media	only	screen	and	(min-device-width:	768px)	and	(max-device-width:	1024px)	

{

}

Retina	display	is	known	from	iOS	devices	such	as	iPhones,	iPods,	and	iPads.	These	devices
can	be	targeted	with	this	media	query:

@media	only	screen	and	(-webkit-min-device-pixel-ratio:	2)	{

}

Target	low	density	Android	layouts:

@media	only	screen	and	(-webkit-device-pixel-ratio:	.75)	{

}

Target	medium	density	Android	layouts:

@media	only	screen	and	(-webkit-device-pixel-ratio:	1)	{

}

Target	high	density	Android	layouts:

@media	only	screen	and	(-webkit-device-pixel-ratio:	1.5)	{

}

If	you	want	to	target	Outlook	2007	and	2010,	you	will	need	to	use	an	HTML	conditional
construction.	This	will	look	like	this:

<!--[if	gte	mso	9]>

<style>

				/*	Your	code	here	*/

</style>

<![endif]-->

CSS	properties	in	e-mail	templates
It	is	important	to	remember	which	properties	you	can	use	and	what	the	exceptions	are.	This
knowledge	will	keep	you	from	a	lot	of	nervous	situations.	Let's	list	them:

Property Problems	for	specific	client/device

direction -

font -

font-family -

font-style -

font-

variant
-

font-size -

font-weight -

letter-

spacing
-

line-height (iOS)	Default	size	of	font	is	13px

text-align
(Outlook)	Don't	append	line-height	to	TD	element.	It	is	recommended	to
append	this	property	to	P	element.

text-

decoration
-

text-indent -

background (Outlook)	No	support	for	background	images

background-

color
-

border -

padding

(Outlook)	Padding	is	not	supported	for	elements:

<p>

<div>

<a>

width

(Outlook)	Width	is	not	supported	for	elements:

<p>

<div>

<a>

list-style-

type
-

border-

collapse
-

table-

layout
-

As	you	can	see,	there	are	a	lot	of	properties	that	don't	work	the	same	way	on	all	e-mail	clients.
This	is	a	big	problem,	but	with	a	basic	knowledge	you	will	be	aware	which	element	can	be
described	in	CSS.	The	biggest	problem	in	mailers	is	positioning,	which	is	not	supported.	So
for	example	in	most	cases	when	the	text	overflows	some	image	you	will	need	to	use	image
which	includes	your	text.

Responsive	e-mail	templates
This	part	of	the	book	can	start	a	big	discussion	because	the	building	of	responsive	e-mails	is
not	possible	at	all	in	all	e-mail	clients.	This	is	a	working	draft	that	can	be	used	as	a	base	for
your	e-mailers:

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

								"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head>

				<title>Our	responsive	template</title>

				<meta	charset="utf-8">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge"/>

				<style	type="text/css">

								@media	screen	and	(max-width:	525px)	{

												.wrapper	{

																width:	100%	!important;

												}

												.content	{

																padding:	10px	5%	10px	5%	!important;

																text-align:	left;

												}

								}

</style>

</head>

<body	style="margin:	0	!important;

padding:	0	!important;">

<table	border="0"

							cellpadding="0"

							cellspacing="0"

							width="100%">

				<tr>

								<td	bgcolor="#ffffff"

												align="center"

												style="padding:	10px;">

												<table	border="0"

																			cellpadding="0"

																			cellspacing="0"

																			width="500"

																			class="wrapper">

																<tr>

																				<td>

																								<table	width="100%"

																															border="0"

																															cellspacing="0"

																															cellpadding="0">

																												<tr>

																																<td	align="left"

																																				style="font-size:	40px;

																font-family:	Helvetica,	Arial,	sans-serif;

			color:	#000000;

																padding-top:	10px;"

																																	class="content">Header	of	our	mailer

																																</td>

																												</tr>

																												<tr>

																																<td	align="left"

																																				style="padding:	20px	0	0	0;

														font-size:	16px;

														line-height:	25px;

														font-family:	Helvetica,	Arial,	sans-serif;

														color:	#000000;

														padding-bottom:	30px;"

class="content">Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	Sed

																																				varius,	leo	a	ullamcorper	feugiat,	ante	

purus	sodales	justo,	a	faucibus	libero	lacus

																																				a	est.	Aenean	at	mollis	ipsum.

																																</td>

																												</tr>

																												<tr>

																																<td	align="center"	class="content">

																																				<table	width="100%"

																																											border="0"

																																											cellspacing="0"

																																											cellpadding="0">

																																								<tr>

																																												<td	align="left">

																																																<table

																																																						border="0"

																																																						cellspacing="0"

																																																						cellpadding="0">

																																												<tr>

																																														<td	align="center"

																																														bgcolor="#000"><a	href="#"

																																														target="_blank"

																																														style="font-size:	20px;

																								font-family:	Helvetica,	Arial,	sans-serif;

																								color:	#ffffff;

																								text-decoration:	none;

																								color:	#ffffff;

																								text-decoration:	none;

																								padding:	10px	20px;

				display:	inline-block;">

																																																				Lorem	ipsum	click

																																																								

																																																								</td>

																																																				</tr>

																																																</table>

																																												</td>

																																								</tr>

																																				</table>

																																</td>

																												</tr>

																								</table>

																				</td>

																</tr>

												</table>

								</td>

				</tr>

</table>

</body>

</html>

As	you	can	see,	there	is	a	lot	of	code…	but	the	effect	is	not	so	great	when	we	want	to	compare
it	to	the	normal	website.	The	following	screenshot	shows	how	it	will	look	in	a	desktop
browser	with	width	greater	than	520px:

In	smaller	browsers	(smaller	than	520	px),	you	will	see	this:

Inlining	the	e-mail	template
The	inlining	of	an	e-mail	template	is	a	very	important	process	before	pushing	your	project
when	you	are	using	a	separate	CSS	file	or	the	CSS	code	is	written	in	the	<style>	section
—http://foundation.zurb.com/e-mails/inliner-v2.html.

http://foundation.zurb.com/e-mails/inliner-v2.html

Tips	for	e-mail	template	development
Like	the	other	processes	related	to	frontend	development,	this	should	start	with	the	prepared
designs.	Real	web	designers	know	where	the	borders	are	for	a	good	website	and	should	know
where	the	borders	related	to	the	e-mailers	are	located.	There	are	a	lot	of	restrictions	in	global
e-mailers'	creation	process.	That's	why	the	designer	involved	in	this	process	should	know	the
features	that	can	be	used	in	HTML	e-mail	templates.

The	e-mail	template	framework	INK	by	ZURB
This	development	process	is	simpler,	with	some	framework	that	gathers	tested	fragments	of
code.	ZURB,	after	creating	the	great	Front	End	framework	called	Foundation,	created	INK	as
a	framework	for	e-mail	templates.	For	full	information	about	this	framework,	it	is
recommended	that	you	visit	http://foundation.zurb.com/e-mails.html.

Creation	of	Email	template	based	on	INK	is	very	developer	friendly.	Framework	gathered	a
lot	of	easy	to	use	components	like	grid	system,	buttons,	thumbnails	which	you	can	easily	add
to	your	template.	Additionally	there	is	a	list	of	adjustable	parameters	like	gutter,	global
paddings	and	margins.	For	deeper	understanding	of	ZURB	INK2	framework	it	is
recommended	to	check	official	documentation:	http://foundation.zurb.com/emails/docs/.

http://foundation.zurb.com/e-mails.html
http://foundation.zurb.com/emails/docs/

Testing	with	Litmus
Testing	of	email	templates	is	pretty	complicated	when	you	want	to	gather	all	of	testing
environments.	Its	going	to	be	easier	when	you	will	use	Litmus	which	makes	a	screenshots	of
your	email	template	in	most	known	email	clients.

After	creating	of	your	template	you	will	need	to	copy	your	HTML	code	and	paste	it	into	the
system.	If	your	e-mail	has	some	images	hosted	on	some	server	you	can	send	an	email	to	your
account	in	Litmus.	Litmus	creates	on	application	side	your	dedicated	email	address.	When	you
send	email	to	this	address	you	can	test	this	email	in	Litmus.

As	you	can	see	on	screen	above	you	can	check	your	code	in	most	known	email	clients.
Screenshot	was	made	on	trial	version	of	Litmus	account	that	why	some	of	views	are	not
activated.

Summary
Preparing	bulletproof	e-mail	templates	is	a	complicated	process.	Why?	As	you	can	see,
HTML	and	CSS	behave	pretty	strangely	and	are	not	logical	when	you	are	familiar	with
standard	web	browsers.	Of	course,	all	of	these	processes	can	be	described	and	there	is	a
workflow	that	will	help	you	to	build	the	mailer	without	nervous	situations.	The	list	of
restrictions	brought	by	e-mail	templates	is	very	long,	but	good	knowledge	of	the	basics	and
experience	in	e-mail	template	development	can	make	you	a	specialist	in	this	frontend	niche.

In	the	next	chapter,	we	will	discuss	the	scalability	and	modularity	of	CSS	code.	You	will	get	to
know	more	about	methodologies	and	naming	conventions.	Let's	start!

Chapter	12.	Scalability	and	Modularity
In	this	chapter,	we'll	cover	the	most	well-known	CSS	methodologies	in	the	process	of	creating
modular	and	scalable	code.	This	is	a	very	interesting	subject	because	there	are	a	lot	of
methodologies.	Each	has	its	pros	and	cons.	In	this	chapter,	we	will	get	a	basic	knowledge
about	them.

We	will	cover	the	following	topics:

Building	scalable	and	modular	code
CSS	methodologies
SMACSS
BEM
OOCSS
How	to	choose	the	right	methodology?

Building	scalable	and	modular	code
The	process	of	building	good	code	is	unique	to	each	developer.	But	how	can	you	build	easily
scalable	CSS	code?	Additionally,	this	code	needs	to	be	modular.

The	most	important	thing	in	methodologies	is	the	naming	convention.	You	can	use	a	proper
methodology	for	your	project,	but	you	can	use	it	in	the	wrong	way	and	append	bad	class
names.	Have	you	ever	seen	projects	that	have	classes	with	a	name	and	definition	similar	to	this
one:

.padding-0	{

				padding:	10px;

}

As	you	can	see,	the	class	name	is	created	to	make	padding	with	value	0,	but	finally	it	has	a
value	not	equal	to	0.	This	can	be	an	example	of	a	bad	naming	convention.	There	can	be	more
examples	of	badly	used	names:

.marginTop10	{

				padding-top:	50px;

}

The	second	important	thing	in	methodologies	is	the	structure	of	classes/elements	in	document
and	nesting	levels.	Some	sources	say	that	the	maximum	nesting	levels	shouldn't	be	greater
than	five,	while	others	say	three.	For	the	sake	of	readability,	code	should	have	a	fully	flat
structure	(with	one	level).

Let's	check	the	popular	CSS	methodologies	and	learn	their	best	features.

CSS	methodologies
CSS	methodologies	are	built	to	make	the	process	of	building	code	more	predictable	and	more
organized.	The	most	well-known	methodologies	are	as	follows:

Scalable	and	Modular	Architecture	for	CSS	(SMACSS)
Object	Oriented	CSS	(OOCSS)
Block	Element	Modifier	(BEM)

Each	of	these	methodologies	has	different	features.	Let's	check	what	these	popular
methodologies	can	offer.

SMACSS
SMACSS	was	created	by	Jonathan	Snook.	It's	more	of	a	framework	than	a	methodology:

For	the	official	website	of	the	project,	visit	https://smacss.com/.

SMACSS	is	based	on	the	following	rules:

Base	rules
Layout	rules
Module	rules
State	rules
Theme	rules

Base	rules

Base	rules	are	related	elements:

header	(h1-h6)
links	(a,	a:hover,	a:active)
forms	(form,	input)

https://smacss.com/

All	of	these	rules	are	related	to	HTML	elements	and	should	not	require	the	!important
statement.

Layout	rules

Layout	rules	are	related	to	the	main	blocks	in	the	structure,	such	as	these:

header

footer

content

side	menu
article

These	elements	are	described	with	IDs	as	follows:

CSS:

#header	{

				display:	inline-block;

}

#footer	{

				display:	inline-block;

				padding:	10px;

}

Module	rules

Module	rules	are	related	to	components	or	blocks	on	the	website.	Let's	take	an	example
fragment	of	a	previously	created	structure	for	a	blog	post.	Here,	we	will	have	a	better
overview	of	how	to	use	the	SMACSS	modules	in	this	specific	case:

To	describe	it	in	CSS,	we	will	need	to	use	selectors	based	on	the	following:

.module	>	element	/	class

Let's	build	an	HTML	for	it:

<article	class="article">

				

				<h1>Lorem	ipsum	dolor	sit	amet,	consecteur	adisiciping	elit</h1>

				<p>	Lorem	ipsum	…	</p>

				Read	more

</article>

Let's	create	selectors	based	on	module	rules:

.article	>img	{

				/*	Image	in	top	*/

}

.article	>	h1	{

				/*	Post	header	*/

}

.article	>	p	{

				/*	Post	excerpt	*/

}

.article	>	a	{

				/*	Read	more	button	*/

}

It's	pretty	easy	and	obvious	how	to	create	all	of	this.

State	rules

State	rules	are	related	to	elements'	states.	There	are	a	bunch	of	possible	state	rules	classes.
Here's	a	list	of	possible	rules:

is-collapsed

is-error

is-active

is-tab-active

The	easiest	way	to	describe	state	rules	is	an	example	with	a	simple	navigation:

<nav>

				

								<li	class="is-active">Home

												

																Home	1.1

																Home	1.2

												

								

								About

								Contact

								

</nav>

To	describe	an	element	in	a	menu	which	is	currently	active,	you	can	use	the	class	is-active.
This	convention	is	easy	to	read	and	gives	you	the	opportunity	for	the	right	class	names.

Theme	rules

Theme	rules	are	related	to	specific	views.	For	example,	you	created	a	page	with	an	element:

The	HTML	is	as	follows:

<body>

				<div	class="alert">

								Alert

				</div>

</body>

All	we	know	in	the	beginning	is	that	.alert	is	a	window	and	needs	to	stick	to	the	browser	like
a	lightbox	window.

The	CSS	(in	alert.css)	is	as	follows:

.alert	{

				width:	300px;

				height:	300px;

				position:	fixed;

				left:	50%;

				top:	50%;

				transform:	translate(-50%,	-50%);

}

Now	we	need	to	add	a	specific	theme	for	this	.alert	(in	theme.css):

.alert	{

				background:	red;

				color:	black;

}

As	we	can	see	in	alert.css,	we	keep	the	definition	of	static	elements	that	won't	be	changed	in
theme.css.	Theme	rules	kept	in	theme.css	are	theming	our	component;	in	this	case,	it	is	an
alert	window.

Summary	of	SMACSS

SMACSS	is	a	really	good	methodology	due	to	the	following	reasons:

It	has	base	rules	that	gather	definitions	of	main	elements
It	has	state	rules	that	describe	the	states	of	elements	with	the	is-	convention
It	uses	IDs	for	main	elements	in	CSS

OOCSS
OOCSS	is	a	project	or	methodology	started	by	Nicole	Sullivan:

Visit	the	official	website	of	the	project	at	http://oocss.org/	for	more	information.

The	main	principles	of	OOCSS	are	as	follows:

Separate	structure	and	skin
Separate	container	and	content

What	does	it	mean?	Let's	try	to	dig	a	little	bit	deeper.

This	means	that	it	is	better	to	describe	an	element	that	is	nested	in	another	element	with	a
separate	class	than	nested	in	a	container.	When	you	create	a	code	like	this:

<div	class="product">

				<h1>Name	of	product</h1>

				<p>Description</p>

</div>

http://oocss.org/

You	shouldn't	base	your	CSS	on	selectors:

.product	h1	{}

.product	p	{}

But	rather	on	small	change	in	markup:

<div	class="product">

				<h1	class="product-name">Name	of	product</h1>

				<p	class="product-desc">Description</p>

</div>

And	then	describe	it	in	CSS	with	selectors:

.product-name	{}

.product-desc	{}

It	gives	you	the	possibility	to	move	the	class	.product-name	to	any	element	in	the	HTML
structure	and	the	visual	features	will	be	changed	too,	as	described.	This	gives	you	more
flexibility	and	reusable	code.

Using	OOCSS	in	our	sample

Let's	try	to	use	OOCSS	in	our	sample	code	to	describe	the	blog	post:

<article	class="article">

				

				<h1	class="article-h1">Lorem	ipsum	dolor	sit	amet,	consecteur	adisiciping	

elit</h1>

				<p	class="article-p">	Lorem	ipsum	…	</p>

				Read	more

</article>

In	your	CSS,	it	will	look	like	this:

.article	{	/**/}

.article-image	{	/**/	}

.article-h1	{	/**/	}

.article-p	{	/**/	}

.article-btn	{	/**/	}

Summary	of	OOCSS

Let's	summarize	OOCSS:

You	can	reuse	classes	anywhere	in	your	HTML	and	you	don't	need	to	think	about	which
module	it	was	described	in
The	methodology	is	very	mature

Block	Element	Modifier	(BEM)
The	next	methodology	is	built	by	Yandex.	In	the	BEM	methodology,	every	element	is
described	with	a	class.	Nesting	isn't	needed	because	of	the	flat	CSS	structure.	The	naming
convention	is	based	on:

Visit	the	official	website	of	the	project	at	https://en.bem.info/	for	more	information.

https://en.bem.info/

Using	BEM	in	our	sample

Let's	try	to	use	BEM	in	our	sample	code	to	describe	the	blog	post:

<article	class="article">

				

				<h1	class="article__h1">Lorem	ipsum	dolor	sit	amet,	consecteur	adisiciping	

elit</h1>

				<p	class="article__p">	Lorem	ipsum	…	</p>

				Read	more

</article>

Now	in	your	CSS,	it	will	look	like	this:

.article	{	/**/}

.article__image	{	/**/	}

.article__h1	{	/**/	}

.article__p	{	/**/	}

.article__btn	{	/**/	}

Using	BEM	in	SASS

It	shouldn't	be	hard	to	build	BEM	code	in	SASS.	Let's	try	to	describe	the	code	from	the
previous	code:

.article

		&__image

				/*	Image	in	top	*/

		&__h1

				/*	Post	header	*/

		

		&__p

				/*	Post	paragraph	*/

		

		&__btn

				/*	Post	button	*/

How	to	use	modifier?

The	preceding	code	example	is	based	on	blocks	and	elements	from	the	BEM	methodology.
How	can	we	add	M	with	its	modifier?	When	can	we	use	it?	Let's	imagine	that	we	have	two
articles:	one	article	with	an	image	on	the	left	and	a	second	with	an	image	on	the	right-hand
side	of	the	block.	With	the	BEM	methodology,	we	can	use	a	modifier.	Let's	take	the	previous
CSS	code	and	append	the	modifier:

.article	{	/**/}

.article__image	{	/**/	}

.article__h1	{	/**/	}

.article__p	{	/**/	}

.article__btn	{	/**/	}

.article--imgleft	{	/**/}

.article--imgleft__image	{	/**/	}

.article--imgleft__h1	{	/**/	}

.article--imgleft__p	{	/**/	}

.article--imgleft__btn	{	/**/	}

As	we	can	see,	the	modifier	is	defined	as	imgleft	and	is	added	to	the	block	using	two	dashes.
The	modifier	can	help	you	to	avoid	creating	new	code	for	the	new	block.	It	can	work	like	a
decorator	implemented	in	CSS.

Which	methodology	should	you	use?
This	is	a	very	good	question.	For	sure,	you	need	to	use	the	methodology	that	works	for	you.
But	which	one	is	suitable?	The	best	CSS	methodology	is	the	one	that	can	be	easily	debugged.
When	is	it?	For	sure,	when	you	don't	need	to	dig,	for	example,	10	rules	for	one	element.	The
best	readability	in	CSS	can	be	achieved	when	the	rule	is	strictly	related	to	the	elements	on	the
page.

Maybe	your	own	methodology?
Yes!	If	you	want	to	create	something	new	and	best	for	your	project,	create	your	own
methodology.	However,	do	not	reinvent	the	wheel	and	do	not	try	to	rename	the	well-known
methodologies	to	build	your	own.	A	deep	understanding	of	these	three	methodologies	can	be
the	key	for	you	to	create	a	small,	unnamed	mash-up	that	fits	your	requirements.

Summary
Choosing	the	proper	methodology	for	your	code/project	should	be	easier	now.	In	this
chapter,	we	acquainted	ourselves	with	CSS	methodologies	and	tried	to	define	their
approaches.	The	most	important	thing	is	to	understand	them	and	know	how	to	apply	them	to
your	code.	It	can	be	useful	in	the	process	of	debugging	some	other	code.

In	the	next	chapter,	we	will	focus	on	CSS	code	optimization.	We	will	use	Gulp.js	to	prepare
your	code	for	testing	and	final	optimized	projects.

Chapter	13.	Code	Optimization
This	chapter	is	about	building	code	and	the	processes	that	are	related	to	every	step	of	creating
the	code	in	general.	There	are	a	few	general	stages	of	this	process	and	we	will	study	how	we
can	optimize	code	at	each	of	these	steps.

In	this	chapter,	we	will	cover	the	following	topics:

Code	optimization	at	each	step	of	creation
How	to	keep	code	in	your	repository
How	to	optimize	SASS	code
How	to	use	short	forms	in	CSS/SASS	code
How	to	prepare	code	for	production

Self-optimization
The	optimization	process	starts	when	you	start	writing	code.	Awareness	of	what	you	can
optimize	and	how	it	should	appear	during	writing	a	code	is	essential.	After	the	writing
process,	when	you	start	optimization,	it	can	be	pretty	hard	to	refactor	and	restructure	the	code.
But	it	is	easy	to	build	code	and	automatically	append	optimization	processes.	Which	of	these
processes	can	you	perform	during	the	writing	of	code?

Usage	of	short	forms
Omit	usage	of	!important
Omit	usage	of	IDs

A	few	steps	before	you	push	code	live
In	the	code	creation	process,	there	are	a	few	repeatable	steps:

Writing	code
Testing	code
Pushing	code	live

The	processes	are	sometimes	repeatable,	especially	when	they	are	related	to	projects	built	in
The	Lean	Startup	methodology	by	Eric	Ries	and	projects	with	multiple	stages.	You	need	to
remember	these	few	steps	before	you	push	code	live:

Check	whether	short	forms	are	used
Check	whether	elements/declarations	are	duplicated
Check	whether	elements/declarations	are	used	in	HTML	(zombie	selectors)
Check	the	appearance	of	!important	(if	possible,	try	to	omit	them)
Check	whether	the	code	is	minified

This	list	is	pretty	basic.	In	the	next	sections,	we	will	run	through	the	optimization	processes
and	usage,	for	checking	all	the	possibilities.

Using	short	forms
Short	forms	are	very	helpful	to	minify	code	during	writing	and	after	the	building	process.
Using	short	forms	in	CSS,	you	can	save	a	lot	of	characters	and	make	the	code	slimmer.	Let's
look	at	an	overview	of	short	forms.

Short	forms	of	paddings/margins

How	many	times	have	you	been	writing	paddings	and	margins	with	full	forms?	How	many
times	does	it	happen	that	you	are	reading	somebody's	code	and	seeing	that	they	are	not	using
short	forms	for	margins	and	paddings	makes	you	nervous?	Yes!	It	can	make	you	nervous
because	it	is	a	waste	of	CSS!	Let's	start	with	simple	description	of	an	element's	padding	in
SASS:

.element

		padding:

				top:	10px

				right:	20px

				bottom:	30px

				left:	40px

It	will	give	you	CSS	code	like	this:

.element	{

				padding-top:	10px;

				padding-right:	20px;

				padding-bottom:	30px;

				padding-left:	40px;

}

Here's	a	short	way	to	describe	it	in	CSS:

.element	

		padding:	10px	20px	30px	40px

In	general,	padding	can	be	described	as	follows:

padding:	top	right	bottom	left

You	can	do	the	same	thing	with	margins:

.element

margin:

				top:	10px

				right:	20px

				bottom:	30px

				left:	40px

It	will	give	you	CSS	code	like	this:

.element	{

				margin-top:	10px;

				margin-right:	20px;

				margin-bottom:	30px;

				margin-left:	40px;

}

Here's	a	short	way	to	describe	it	in	CSS:

.element

margin:	10px	20px	30px	40px

In	general,	the	margin	can	be	described	as	follows:

margin:	top	right	bottom	left

Let's	use	another	example:

.element

		margin:

				top:	10px

				right:	20px

				bottom:	10px

				left:	20px

Compiled	to	CSS:

.element	{

		margin-top:	10px;

		margin-right:	20px;

		margin-bottom:	10px;

		margin-left:	20px;	

}

As	you	can	see,	there	are	two	pairs	of	values.	When	the	value	of	the	top	margin/padding	is
repeated	in	the	bottom	value	and	the	left	value	is	equal	to	the	right	value,	you	can	use	the	short
version:

.element

		margin:	10px	20px

When	compiled	to	CSS,	it	looks	like	this:

.element	{

		margin:	10px	20px;	

}

As	you	can	see,	the	version	is	minified	and	finally	based	on	the	pattern:

margin:	top_bottom_value	left_right_value

Short	forms	of	borders

Let's	start	with	the	basic	description	of	a	border,	and	then	we	can	extend	it:

.element

				border:

				style:	solid

				color:	#000

				width:	10px

Here's	the	compiled	CSS:

.element	{

		border-style:	solid;

		border-color:	#000;

		border-width:	10px;	

}

This	class	will	create	a	border	around	the	box,	which	will	be	solid	with	10px	width	and	its
color	will	be	black.	So,	let's	create	a	class	that	will	include	all	the	borders	(top,	right,	bottom,
and	left)	with	a	defined	style	color	and	width:

.element

		border:

				top:

						style:	solid

						color:	#000

						width:	1px

				right:

						style:	solid

						color:	#f00

						width:	2px

				bottom:

						style:	solid

						color:	#0f0

						width:	3px

				left:

						style:	solid

						color:	#00f

						width:	4px

CSS:

.element	{

		border-top-style:	solid;

		border-top-color:	#000;

		border-top-width:	1px;

		border-right-style:	solid;

		border-right-color:	#f00;

		border-right-width:	2px;

		border-bottom-style:	solid;

		border-bottom-color:	#0f0;

		border-bottom-width:	3px;

		border-left-style:	solid;

		border-left-color:	#00f;

		border-left-width:	4px;	

}

So	if	you	want	to	make	this	a	little	bit	shorter,	you	can	use	a	mix	of	global	definitions	of
shorten	border.	The	code	is	as	follows:

.element

		border:	1px	solid	#000

CSS:

.element	{

		border:	1px	solid	#000;	

}

And	directions.	The	code	will	look	like	this:

.element

border:

				top:	1px	dotted	#000

				right:	2px	solid	#f00

				bottom:	3px	dashed	#0f0

				left:	4px	double	#00f

Compiled:

.element	{

				border-top:	1px	dotted	#000;

				border-right:	2px	solid	#f00;

				border-bottom:	3px	dashed	#0f0;

				border-left:	4px	double	#00f;

}

There	is	a	way	to	describe	style/width/color	in	the	same	way	we	define	padding	and	border:

.element

		border:

				style:	dotted	solid	dashed	double

				width:	1px	2px	3px	4px

				color:	#000	#f00	#0f0	#00f

Compiled:

.element	{

				border-style:	dotted	solid	dashed	double;

				border-width:	1px	2px	3px	4px;

				border-color:	#000	#f00	#0f0	#00f;

}

Now,	let's	gather	information	about	border-radius.	The	global	definition	of	border	radius	is
as	follows:

SASS:

.element

		border-radius:	5px

CSS:

.element	{

				border-radius:	5px;

}

Describe	each	corner	in	another	line	and	another	value:

.element

		border:

				top:

						left-radius:	5px

						right-radius:	6px

				bottom:

						left-radius:	7px

						right-radius:	8px

CSS:

.element	{

		border-top-left-radius:	5px;

		border-top-right-radius:	6px;

		border-bottom-left-radius:	7px;

		border-bottom-right-radius:	8px;	

}

Now,	the	preceding	code	can	be	described	this	way	to	make	it	shorter:

.element

		border-radius:	5px	6px	7px	8px

CSS:

.element	{

		border-radius:	5px	6px	7px	8px;

}

Short	forms	in	fonts	styling

Fonts	are	described	in	every	paragraph	header	link.	As	you	can	see,	it's	good	to	use	shorthand
for	so	many	repeated	occurrences	in	the	code.	Here,	we	have	a	simple	description	of	the	font
and	line	height	of	a	sample	element:

.element

font:

				size:	12px

				family:	Arial

				weight:	bold

		line-height:	1.5

CSS:

.element	{

		font-size:	12px;

		font-family:	Arial;

		font-weight:	bold;

		line-height:	1.5;	

}

Let's	use	a	short	form	based	on	pattern:

font:	font_family	font_size/line_height	font_weight

With	this	short	form,	our	five	lines	in	SASS	(four	lines	in	CSS)	are	changed	to	one	line:

.element

		font:	Arial	12px/1.5	bold

After	compilation,	the	code	is	as	follows:

.element	{

		font:	Arial	12px/1.5	bold;	

}

Short	forms	in	backgrounds

Background	is	one	of	the	most	commonly	used	CSS	features.	The	main	use	of	background	is:

.element

		background:

				color:	#000

				image:	url(path_to_image.extension)

				repeat:	no-repeat

				attachment:	fixed

				position:	top	left

This	code	will	give	us	the	following	output:

.element	{

		background-image:	url(path_to_image.extension);

		background-repeat:	no-repeat;

		background-attachment:	fixed;

		background-position:	top	left;	

}

It's	a	lot	of	code!	The	short	form	is	described	in	this	order:

background-color

background-image

background-repeat

background-attachment

background-position

Example:

background:	url	color	repeating	attachment	position-x	position-y;

If	we	want	to	describe	our	element	with	this	short	form,	we	just	need	to	make	it	this	way:

.element

		background:	#000	url(path_to_image.extension)	no-repeat	fixed	top	left

After	SASS	compilation	in	CSS,	we	will	get	the	following:

.element	{

		background:	#000	url(path_to_image.extension)	no-repeat	fixed	top	left;	

}

Checking	repetitions
When	you	are	creating	the	code	in	CSS,	you	need	to	be	aware	of	the	repetitions	of	your	code.
The	code	can	look	a	little	bit	weird	for	professional	developers,	but	we	can	treat	it	as	a	great
sample	of	the	code	review	process.	Let's	analyze	it.

HTML:

<section>

				click	it

				click	it

				click	it

</section>

CSS:

section	.button	{

				padding:	5px	10px;	/*	Repeated	padding	*/

				font-size:	12px;	/*	Repeated	font	size	*/

				color:	white;	/*	Repeated	color	*/

				background:	black;

}

section	.buttonBlue	{

				padding:	5px	10px;	/*	Repeated	padding	*/

				font-size:	12px;	/*	Repeated	font	size	*/

				color:	white;	/*	Repeated	color	*/

				background:	blue;

}

section	.buttonGreen	{

				padding:	5px	10px;	/*	Repeated	padding	*/

				font-size:	12px;	/*	Repeated	font	size	*/

				color:	white;	/*	Repeated	color	*/

				background:	green;

}

As	you	can	see,	the	repetitions	are	commented	and	we	will	create	a	general	class	now:

section	.button	{

				padding:	5px	10px;

				font-size:	12px;

				color:	white;

				background:	black;

}

section	button.button_blue	{

				background:	blue;

}

section	button.button_green	{

				background:	green;

}

We	will	need	to	append	small	changes	in	the	HTML	code:

<section>

				click	it

				click	it

				click	it

</section>

To	minify	it	in	SASS:

section

		.button

				padding:	5px	10px

				font-size:	12px

				color:	white

				background:	black

				&.button_blue

						background:	blue

				&.button_green

						background:	green

Here's	another	method	to	deal	with	repetitions	without	changing	the	markup:

article	.h1	{

				font-family:	Arial;	/*	Repeated	font	family	*/

				padding:	10px	0	15px	0;	/*	Repeated	padding	*/

				font-size:	36px;

				line-height:	1.5;	/*	Repeated	line	height	*/

				color:	black;	/*	Repeated	color	*/

}

article	.h2	{

				font-family:	Arial;	/*	Repeated	font	family	*/

				padding:	10px	0	15px	0;	/*	Repeated	padding	*/

				font-size:	30px;

				line-height:	1.5;	/*	Repeated	line	height	*/

				color:	black;	/*	Repeated	color	*/

}

article	.h3	{

				font-family:	Tahoma;	/*	Oryginal	font	family	*/

				padding:	10px	0	15px	0;	/*	Repeated	padding	*/

				font-size:	24px;

				line-height:	1.5;	/*	Repeated	line	height	*/

				color:	black;	/*	Repeated	color	*/

}

Let's	gather	the	repetitions:

font-family:	Arial;	

padding:	10px	0	15px	0;	

line-height:	1.5;	

color:	black;	

Let's	add	a	value	that	will	be	overwritten	in	custom	element	.h3:

font-family:	Tahoma;

Now,	let's	describe	the	selectors	and	overwrite	the	values	in	separate	selectors:

article	.h1,

article	.h2,

article	.h3	{

				padding:	10px	0	15px	0;

				line-height:	1.5;

				color:	black;

				font-family:	Arial;

}

article	.h1	{

				font-size:	36px;

}

article	.h2	{

				font-size:	30px;

}

article	.h3	{

				font-size:	24px;

				font-family:	Tahoma;

}

Let's	change	it	to	SASS	code:

article

.h1,

		.h2,

		.h3

				padding:	10px	0	15px	0

				line-height:	1.5

						color:	black

				font:

						family:	Arial

		.h1

				font:

						size:	36px

		.h2

				font:

						size:	30px

		.h3

				font:

						size:	24px

						family:	Tahoma

Let's	do	the	same	with	@extend:

article

		.h1

				padding:	10px	0	15px	0

				line-height:	1.5

				color:	black

				font:

						family:	Arial

						size:	36px

		.h2

				@extend	.h1

				font:

						size:	30px

		.h3

				@extend	.h1

				font:

						size:	24px

						family:	Tahoma

The	process	of	checking	the	repetitions	is	easy	when	you	are	creating	the	code	yourself,	but	it
can	be	harder	when	you	are	working	with	other	developers	or	when	you	are	working	on	a
project	which	was	started	by	somebody	else.	This	process	makes	the	code	shorter,	so	it	can	be
treated	as	a	process	of	code	optimization.	With	these	techniques,	you	can	append	changes	to
your	code.

Summary
In	this	chapter,	we	discussed	the	process	of	CSS	code	optimization.	With	this	knowledge,	you
can	minify	your	code	and	you	can	think	about	optimization	processes	during	the	creation	of
code.	This	knowledge	will	make	you	a	more	aware	frontend	developer	who	knows	how	code
can	be	minified	in	a	jiffy.

In	the	next	chapter,	we	will	discuss	the	final	automatizations	that	you	can	use	in	CSS	and
frontend	projects!

Chapter	14.	Final	Automatization	and	Processes
Optimization
In	this	last	chapter,	we	will	discuss	a	final	automatization	of	repeatable	processes	during	the
creation	of	CSS	code.	There	are	a	lot	of	processes	that	can	be	automatized,	but	awareness	of
whether	it	can	be	done	and	knowledge	of	the	tools	to	be	used	is	essential.	In	this	chapter,	we
will	focus	on	tools	and	how	to	implement	automatizations	in	the	Gulp	task	runner.

In	this	chapter,	we	will	cover	the	following	topics:

Images	on	retina	and	mobile	devices
How	to	recognize	unused	CSS
How	to	minify	the	code
How	to	make	a	screenshots	from	the	list	of	pages	for	quicker	overview
How	to	use	the	basics	of	Jade	templating	and	append	its	compilation	into	Gulp

Gulp
At	the	beginning	of	this	book,	I	introduced	Gulp	as	a	starter	for	SASS.	But	using	Gulp	just	to
compile	SASS	can	be	a	waste	of	time.	In	this	chapter,	we	will	add	more	tasks	to	Gulp,	which
can	be	used	as	a	frontend	developer	and	which	will	help	you	to	optimize	your	code.

Jade	as	your	templating	engine
Writing	HTML	files	can	be	problematic	in	the	case	of	bigger	projects.	The	maintenance	of
repeatable	elements	of	a	page,	such	as	main	navigation	footer	sidebars,	can	be	a	problem
when	you	need	to	work	with,	for	example,	10	files.	Each	time	you	want	to	change	something
in	the	footer,	you	will	need	to	update	10	files.	The	situation	becomes	more	complicated	when
a	project	has	50	templates.	You	can	start	using,	for	example,	PHP	or	any	language	that
includes	files	with	repeatable	parts	of	code	or	use	one	of	the	template	languages.	There	are
multiple	templating	systems.	Some	of	the	well-known	and	trendy	ones	are	listed	here:

Handlebars
HAML
Jade
Slim

Let's	focus	on	Jade.	Why?	Because	of	the	following	features:

Mixins	support
Master	templates
Partialization	of	files
Indented	syntax	(similar	to	SASS)

Installing	and	using	Jade
Jade	is	installed	by	node	package	manager.	You	can	install	it	with	the	following	command:

npm	install	jade	--global

If	you	want	to	compile	some	file,	you	just	need	to	invoke	the	HTML	file	as	follows:

jade	filename.html

For	more	information,	I	recommend	you	to	check	the	official	documentation	of	the	Jade
templating	system	at	http://jade-lang.com/.

http://jade-lang.com/

Basics	of	Jade
It	is	good	to	have	a	theoretical	introduction,	but	let's	try	to	describe	this	part	of	the	code	into
Jade:

<nav>

			

							Home

							About

							Contact

			

</nav>

In	Jade,	it	will	look	like	this:

nav

			ul

							li

											a(href="#")	Home

							li

											a(href="#")	About

							li

											a(href="#")	Contact

You	can	see	that	you	don't	need	to	think	about	the	standard	HTML	problem	"is	my	tag
closed?"	Indentations	are	keeping	track	of	the	opening	and	closing	of	tags.	Each	text	that	you
want	to	append	into	a	tag	appears	after	a	space	after	the	tag	description	(name	and	attributes).
Let's	take	a	look	at	this	part	of	the	code:

a(href="#")	Home

This	part	of	code	will	be	compiled	to:

Home

As	you	can	see,	in	Jade,	an	attribute	(href)	appeared	after	element	name	(a),	which	is
described	in	brackets.	Let's	take	the	next	part	of	the	HTML	code	that	we	will	translate	to	Jade:

<head>

				<meta	charset="utf-8">

				<title>Page	title</title>

				<link	rel="stylesheet"	href="css/main.css"	media="screen"	title="no	title"	

charset="utf-8">

</head>

This	part	of	the	code	will	be	repeating	on	all	pages	because	it	contains	the	head	tag	of	our
HTML.	In	Jade,	it	will	look	like	this:

head

			meta(charset="utf-8")

			title	Page	title

			link(rel="stylesheet",	href="css/main.css",	media="screen",	title="no	title",	

charset="utf-8")

Here	you	can	see	how	to	append	more	attributes	to	the	HTML	element.	In	the	link	element,
each	attribute	in	brackets	is	separated	with	commas.

The	next	part	of	the	code	is	related	to	the	DOM	elements	with	classes	and	IDs:

<main	id="main">

			<article	class="main--article">

							

											

											

							

							<h3>Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit</h3>

							<p>

											sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore

							</p>

							Read	more

			</article>

</main>

In	Jade,	the	code	looks	like	this:

main#main

			article.main--article

							a(href="#")

											img(src="img/error_log.png",	alt="Error	log")

											.comments

							h3	Lorem	ipsum	dolor	sit	amet

							p	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	

							a(href="#").readmore	Read	more

You	can	see	that	you	don't	need	to	describe	this	part:

<main	id="main">

This	is	written	as:

main(id="main")

There	is	a	short	form	in	Jade:

main#main

The	same	situation	with	classes:

<article	class="main--article">

You	can	use	a	short	form	too:

article.main--article

This	short	method	makes	Jade	easy	to	understand	because	it	is	based	on	selectors	used	in	CSS.

Mixins	in	Jade
Mixins	in	Jade	are	very	useful,	especially	when	you	have	some	repeatable	elements	on	the
web	page.	This	can	be,	for	example,	some	small	element	like	a	with	href:

mixin	link(href,	name)

			a(href=	href)=name

All	we	need	to	do	now	to	invoke	it	is	just	add	it	in	your	template:

+link("url",	"Your	link")

And	in	your	compiled	file,	you	will	see:

Your	link

Include	and	extend	functions	in	Jade
As	mentioned	before,	we	can	keep	parts	of	code	in	separate	files.	The	easiest	way	to	do	it	is
the	include	method.	Let's	imagine	that	we	have	defined	the	main	nav	in	the	file
navigation.jade	and	we	want	to	append	its	content	in	our	template.	The	code	is	as	follows:

File	name	is:	navigation.jade

nav

			ul

							li

											a(href="#")	Home

							li

											a(href="#")	About

							li

											a(href="#")	Contact

File	name	is:	template.jade

doctype	html

html

			head

							meta(charset="utf-8")

							title	Page	title

							link(rel="stylesheet",	href="css/main.css",	media="screen",	title="no	

title",	charset="utf-8")

			body

							include	_navigation.jade

When	you	compile	template.jade,	you	will	get:

<!DOCTYPE	html>

<html>

<head>

			<meta	charset="utf-8">

			<title>Page	title</title>

			<link	rel="stylesheet"	href="css/main.css"	media="screen"	title="no	title"	

charset="utf-8">

</head>

<body>

<nav>

			

							Home

							About

							Contact

			

</nav>

</body>

</html>

This	is	a	great	moment	to	use	a	master	layout	that	can	be	extended.	This	can	be	done	with	code
manipulation.	The	first	manipulation	has	to	be	made	in	the	master	template—define	a	block

that	will	be	swapped	in	our	HTML	file.	The	second	needs	to	be	done	in	the	file	that	will
represent	a	final	HTML	file—point	master	template	which	will	be	extended.	The	code	is	as
follows:

File	name	is:	master.jade

doctype	html

html

			head

							meta(charset="utf-8")

							title	Page	title

							link(rel="stylesheet",	href="css/main.css",	media="screen",	title="no	

title",	charset="utf-8")

			body

							include	_navigation.jade

							block	content

File	name	is:	index.jade

extends	master

block	content

			h1	Content

Compiled	document:

<!DOCTYPE	html>

<html>

<head>

			<meta	charset="utf-8">

			<title>Page	title</title>

			<link	rel="stylesheet"	href="css/main.css"	media="screen"	title="no	title"	

charset="utf-8">

</head>

<body>

<nav>

			

							Home

							About

							Contact

			

</nav>

<h1>Content</h1>

</body>

</html>

Jade	in	gulp.js
To	create	or	add	Jade	tasks	in	gulpfile.js,	you	need	to	install	a	specific	package	with	npm:
gulp-jade.	To	do	so,	use	the	following	command:

npm	install	--save	gulp-jade

Then	you	need	to	define	a	new	task	in	gulpfile.js	and	add	a	watcher	for	templates,	which
will	be	stored	in	the	src/jade	directory.	Here's	a	listing	of	the	extended	gulpfile.js	from	the
first	chapter	of	this	book:

var	gulp	=	require('gulp'),

			sass	=	require('gulp-sass'),

			jade	=	require('gulp-jade');

gulp.task('sass',	function	()	{

			return	gulp.src('src/css/main.sass')

							.pipe(sass().on('error',	sass.logError))

							.pipe(gulp.dest('dist/css/main.css'));

});

gulp.task('jade',	function()	{

			gulp.src('src/jade/*.jade')

							.pipe(jade())

							.pipe(gulp.dest('dist/'));

});

gulp.task('default',	function	()	{

			gulp.watch('src/sass/*.sass',	['sass']);

			gulp.watch('src/jade/*.jade',	['jade']);

});

How	will	it	behave?	Every	time	you	change	any	of	the	files	in	the	folder	src/jade,	compiled
files	will	land	in	the	dist	folder.	Of	course,	this	structure	can	be	changed	if	you	wish;	this	is
just	sample	of	usage.	Feel	free	to	change	it!

UnCSS
How	many	times	have	you	faced	a	situation	where	some	classes/selectors	are	not	used	in
HTML	but	are	described	in	CSS	code?	This	happens	every	time	your	project	is	changed	or
redesigned.	For	example,	your	task	is	to	remove	some	section	and	add	a	few	more	lines	in	the
HTML	code.	So	you	will	add	some	CSS	code	and	then	remove	some	of	it.	But	are	you	sure
that	the	CSS	code	doesn't	contain	unused	CSS	portions	of	code?	UnCSS	will	help	you	to	finish
this	task.	To	install	it,	you	need	to	execute	this	command:

npm	install	-g	uncss

Let's	take	a	look	at	the	flags	used	in	the	npm	command:

Flag Description

-g Global	installation

--save

Local	installation

These	packages	will	appear	in	package.json	in	the	section	dependencies.

These	packages	are	needed	to	run	your	app	in	production.

--save-dev

Local	installation

These	packages	will	appear	in	package.json	in	the	section	devDependencies.

These	packages	are	needed	for	development	and	testing	processes.

Integrating	UnCSS	in	Gulp
First,	we	need	to	install	gulp-uncss	through	npm:

npm	install	--save	gulp-uncss

Now,	we	need	to	add	new	tasks	in	gulpfile.js.	We	will	need	to	create	a	test	stage	in	our
project,	which	will	be	stored	in	the	test	directory.	You	need	these	new	tasks	to	make	a	process
based	on	uncss:

gulp.task('clean-css-test',	function	()	{

			return	gulp.src('test/css/main.css',	{read:	false})

							.pipe(rimraf({force:	true}));

});

gulp.task('jade-test',	function()	{

			return	gulp.src('src/jade/templates/*.jade')

							.pipe(jade())

							.on('error',	gutil.log)

							.pipe(gulp.dest('test/'));

});

gulp.task('sass-test',['clean-css-test'],	function	()	{

			return	gulp.src('src/sass/main.sass')

							.pipe(sass().on('error',	sass.logError))

							.pipe(gulp.dest('test/css/'));

});

gulp.task('uncss',['jade-test',	'sass-test'],	function	()	{

			return	gulp.src('test/css/main.css')

							.pipe(uncss({

											html:	['test/**/*.html']

							}))

							.pipe(gulp.dest('./test/uncss'));

});

To	run	the	uncss	task,	you	need	to	use	the	following	command:

gulp	uncss

This	command	will	perform	the	following	tasks:

Compile	Jade	files	to	the	test	folder
Remove	old	CSS	files	from	the	test	folder
Compile	SASS	files	to	the	test	folder
Run	the	uncss	task	and	save	the	document	with	only	the	used	part	of	CSS	in	the
test/uncss	folder

Now	we	need	to	test	it	live.	We	will	prepare	a	short	testing	environment.

Here's	the	structure	of	the	files:

├──	jade

│			├──	master_templates

│			│			└──	main.jade

│			├──	partials

│			│			├──	footer.jade

│			│			└──	navigation.jade

│			└──	templates

│							├──	about.jade

│							├──	contact.jade

│							└──	index.jade

└──	sass

				└──	main.sass

The	code	is	as	follows:

File	name	is:	main.jade

doctype	html

html

			head

							meta(charset="utf-8")

							title	Page	title

							link(rel="stylesheet",	href="css/main.css",	media="screen",	title="no	

title",	charset="utf-8")

			body

							include	../partials/navigation

							block	content

							include	../partials/footer

File	name	is:	navigation.jade

nav

			ul

							li

											a(href="#")	Home

							li

											a(href="#")	About

							li

											a(href="#")	Contact

File	name	is:	footer.jade

footer

			p	Copyright	fedojo.com

File	name	is:	index.jade

extends	../master_templates/main

block	content

			.main

							p	Test	of	INDEX	page

File	name	is:	about.jade

extends	../master_templates/main

block	content

			.main

							h1	Test	of	ABOUT	page

File	name	is:	contact.jade

extends	../master_templates/main

block	content

			.main

							h1	Test	of	CONTACT	page

File	name	is:	main.sass

body

background:	#fff

p

color:	#000

.header

background:	#000

color:	#fff

.footer

background:	#000

color:	#fff

header

background:	#000

color:	#fff

footer

background:	#000

color:	#fff

Now,	let's	check	whether	the	process	was	good	for	us.	This	is	the	file	compiled	from	SASS:

body	{

	background:	#fff;	

}

p	{

	color:	#000;	

}

.header	{

	background:	#000;

	color:	#fff;

	}

.footer	{

	background:	#000;

	color:	#fff;	

}

header	{

	background:	#000;

	color:	#fff;	

}

footer	{

	background:	#000;

	color:	#fff;	

}

This	file	is	checked	by	uncss,	which	looked	into	all	the	templates	(index.html,	about.html,
and	contact.html):

body	{

	background:	#fff;

}

p	{

	color:	#000;

}

footer	{

	background:	#000;

	color:	#fff;

}

Our	new	command	built	with	Gulp	removed	all	unnecessary	CSS	declarations.

Minifying	CSS
Minification	is	a	process	that	should	be	done	mainly	for	production	code.	It's	going	to	be	hard
to	work	on	minified	files	during	the	development	process,	so	we	need	to	minify	our	code	for
production	code	only.	It	is	possible	to	enable	minification	in	SASS	or	Compass	compilation
by	adding	a	proper	flag	(--compressed).	We	will	additionally	use	an	external	tool	for	this,	to
minify	the	code	after	the	uncss	process.	What	we	need	to	do	now	is	to	install	gulp-clean-css:

npm	install	--save	gulp-clean-css

Now,	minify	the	result	of	the	uncss	process.	We	will	create	a	prod	directory	in	which	we	will
store	our	final	version	of	the	project.	Now	let's	import	gulp-clean-css:

cleanCSS	=	require('gulp-clean-css')

Let's	create	the	sections	needed	in	gulpfile.js:

gulp.task('clean-css-production',	function	()	{

			return	gulp.src('prod/css/main.css',	{read:	false})

							.pipe(rimraf({force:	true}));

});

gulp.task('sass-production',['clean-css-production'],	function	()	{

			return	gulp.src('src/sass/main.sass')

							.pipe(sass().on('error',	sass.logError))

							.pipe(uncss({

											html:	['prod/**/*.html']

							}))

							.pipe(cleanCSS())

							.pipe(gulp.dest('prod/css/'));

});

gulp.task('jade-production',	function()	{

			return	gulp.src('src/jade/templates/*.jade')

							.pipe(jade())

							.pipe(gulp.dest('prod/'));

});

gulp.task('production',['jade-production',	'sass-production']);

Final	automatizer
Now	we	have	to	gather	all	our	previously	created	tasks	into	one	file.	The	core	of	the	gulp
project	is	two	files:	package.json,	which	gathers	all	project	dependencies,	and	gulpfile,	in
which	you	can	store	all	tasks.	Here	are	the	tasks:

File	name	is:	package.json

{

	"name":	"automatizer",

	"version":	"1.0.0",

	"description":	"CSS	automatizer",

	"main":	"gulpfile.js",

	"author":	"Piotr	Sikora",

	"license":	"ISC",

	"dependencies":	{

			"gulp":	"latest",

			"gulp-clean-css":	"latest",

			"gulp-jade":	"latest",

			"gulp-rimraf":	"latest",

			"gulp-sass":	"latest",

			"gulp-uncss":	"latest",

			"gulp-util":	"latest",

			"rimraf":	"latest"

	}

}

File	name	is:	gulpfile.json

var	gulp	=	require('gulp'),

			sass	=	require('gulp-sass'),

			jade	=	require('gulp-jade'),

			gutil	=	require('gulp-util'),

			uncss	=	require('gulp-uncss'),

			rimraf	=	require('gulp-rimraf'),

			cleanCSS	=	require('gulp-clean-css');

gulp.task('clean-css-dist',	function	()	{

			return	gulp.src('dist/css/main.css',	{read:	false})

							.pipe(rimraf({force:	true}));

});

gulp.task('clean-css-test',	function	()	{

			return	gulp.src('test/css/main.css',	{read:	false})

							.pipe(rimraf({force:	true}));

});

gulp.task('sass',['clean-css-dist'],	function	()	{

			return	gulp.src('src/sass/main.sass')

							.pipe(sass().on('error',	sass.logError))

							.pipe(gulp.dest('dist/css/'));

});

gulp.task('jade',	function()	{

			return	gulp.src('src/jade/templates/*.jade')

							.pipe(jade())

							.pipe(gulp.dest('dist/'));

});

gulp.task('jade-test',	function()	{

			return	gulp.src('src/jade/templates/*.jade')

							.pipe(jade())

							.on('error',	gutil.log)

							.pipe(gulp.dest('test/'));

});

gulp.task('sass-test',['clean-css-test'],	function	()	{

			return	gulp.src('src/sass/main.sass')

							.pipe(sass().on('error',	sass.logError))

							.pipe(gulp.dest('test/css/'));

});

gulp.task('uncss',['jade-test',	'sass-test'],	function	()	{

			return	gulp.src('test/css/main.css')

							.pipe(uncss({

											html:	['test/**/*.html']

							}))

							.pipe(gulp.dest('test/uncss'));

});

gulp.task('clean-css-production',	function	()	{

			return	gulp.src('prod/css/main.css',	{read:	false})

							.pipe(rimraf({force:	true}));

});

gulp.task('sass-production',['clean-css-production'],	function	()	{

			return	gulp.src('src/sass/main.sass')

							.pipe(sass().on('error',	sass.logError))

							.pipe(uncss({

											html:	['prod/**/*.html']

							}))

							.pipe(cleanCSS())

							.pipe(gulp.dest('prod/css/'));

});

gulp.task('jade-production',	function()	{

			return	gulp.src('src/jade/templates/*.jade')

							.pipe(jade())

							.pipe(gulp.dest('prod/'));

});

gulp.task('production',['jade-production',	'sass-production']);

gulp.task('default',	function	()	{

			gulp.watch('src/sass/*.sass',	['sass']);

			gulp.watch('src/jade/*.jade',	['jade']);

});

Summary
In	this	chapter,	we	discussed	the	basics	of	the	Jade	templating	system.	We	saw	how	to	append	it
to	the	frontend	developer's	workflow.	Based	on	the	templating	system,	you	can	now	include
UnCSS	to	your	process	and	remove	unnecessary	code	from	the	CSS	file.	Then	we	minified
the	final	result	and	created	a	production	code.

You	can	treat	this	automatizer	as	a	starter	for	your	projects	and	you	can	adjust	it	for	your
projects.	You	can	also	add	new	features	and	work	on	its	evolution.

Index
B

background	images
CSS	backgrounds	/	CSS	backgrounds

base64
about	/	Usage	of	base64
usage	/	Usage	of	base64

Block	Element	Modifier	(BEM)
about	/	Block	Element	Modifier	(BEM)
URL	/	Block	Element	Modifier	(BEM)
using,	in	sample	/	Using	BEM	in	our	sample
using,	in	SASS	/	Using	BEM	in	SASS
modifier,	using	/	How	to	use	modifier?

block	elements
about	/	Block	elements

box-shadow
adding	/	How	to	add	box-shadow

C
calc()	method

about	/	The	calc()	method
centering	elements

about	/	Centering	elements
inline	elements	/	Inline	elements	–	horizontal	centering
horizontal	centering	/	Inline	elements	–	horizontal	centering
block	elements	/	Block	elements	–	centering	in	both	axes
axes,	centering	/	Block	elements	–	centering	in	both	axes
transform,	using	/	Using	transform	in	centering

code	optimization
self-optimization	/	Self-optimization

compatibility
checking	/	Checking	compatibility

cross	browser	compatibility
modern	web	browsers	/	Cross	browser	compatibility	–	which	browsers	should	you
install?
Internet	Explorer	(IE)	/	Cross	browser	compatibility	–	which	browsers	should	you
install?
inspector,	using	/	How	to	use	inspector
key	shortcuts	/	Key	shortcuts

CSS
minifying	/	Minifying	CSS

CSS	backgrounds
about	/	CSS	backgrounds
repeating	/	Repeating	of	background
background	size	/	Background	size
background	position	/	Background	position
multiple	backgrounds	/	Multiple	backgrounds
sprites,	creating	/	How	to	create	and	use	sprites
sprites,	using	/	How	to	create	and	use	sprites
base64,	using	/	Usage	of	base64

CSS	code
assumptions	/	Good	assumptions	in	code

CSS	declarations
short	forms,	creating	/	Short	forms	of	useful	elements

CSS	elements	positioning
about	/	CSS	elements	positioning
position	static	/	Static,	relative,	absolute,	fixed	–	differences
position	relative	/	Static,	relative,	absolute,	fixed	–	differences
position	absolute	/	Static,	relative,	absolute,	fixed	–	differences
fixed	elements	/	Static,	relative,	absolute,	fixed	–	differences
list	of	article,	with	fixed	image	/	Lists	with	fixed	images	(on	the	right	or	left)	and

descriptions
CSS	methodologies

about	/	CSS	methodologies
SMACSS	/	SMACSS
OOCSS	/	OOCSS
Block	Element	Modifier	(BEM)	/	Block	Element	Modifier	(BEM)
selecting	/	Which	methodology	should	you	use?
custom	methodology,	creating	/	Maybe	your	own	methodology?

cufon	/	Additional	font	and	text	features

D
data	attribute

about	/	Data	attribute
issues	/	Issue	–	bold	on	hover	moves	the	navigation

display	types
about	/	Display	types
block	elements	/	Block	elements
inline	elements	/	Inline	elements
inline-block	display	/	Inline-block	display
using,	for	navigations	/	Where	can	you	use	other	types	of	elements	–	navigation
using,	for	problem	of	equal	boxes	/	Where	can	you	use	other	types	of	elements	–
problem	of	equal	boxes

drawing	primitives,	in	CSS
about	/	Drawing	primitives	with	CSS
rectangle/square,	drawing	/	How	to	draw	a	rectangle/square
circle,	drawing	/	How	to	draw	a	circle
ring,	drawing	/	How	to	draw	a	ring
triangle,	drawing	with	CSS	/	How	to	draw	a	triangle	with	CSS

E
@extend	/	Extending	classes	(@extend)
e-mail	template

inlining	/	Inlining	the	e-mail	template
e-mail	template	development

tips	/	Tips	for	e-mail	template	development
Emmet

about	/	Speeding	up	the	programming	process	with	snippets/Emmet
URL	/	Speeding	up	the	programming	process	with	snippets/Emmet

F
file	structure

about	/	File	structure
creating	/	File	structure

final	automatizer
about	/	Final	automatizer

flexbox
about	/	Flexbox
basics	/	Flexbox
initializing	/	Flexbox
usage	/	Flexbox
property	align-items	/	Flexbox	property	align-items
property	flex-wrap	/	Flexbox	property	flex-wrap
property	justify-content	/	Flexbox	property	justify-content
property	align-content	/	Flexbox	property	align-content
property	flex-direction	/	Flexbox	property	flex-direction
page	structure,	creating	/	Usage	of	flexbox	–	creating	page	structure
order	of	boxes,	changing	in	mobile/tablet	view	/	Usage	of	flexbox	–	change	order
of	boxes	in	mobile/tablet	view

floating	elements
about	/	Floating	elements
possibilities	/	Possibilities	of	floating	elements
issues	/	Most	known	floating	problems
clear	fix/class/mixin,	defining	/	Defining	clear	fix/class/mixins
example	/	Example	of	using	floating	elements

font	and	text	features
about	/	Additional	font	and	text	features
non-standard	fonts,	using	in	browser	/	Using	non-standard	fonts	in	browsers
CSS	animations,	using	/	Using	CSS	animations

framework
testing	/	Let's	test	and	use	our	framework
using	/	Let's	test	and	use	our	framework

G
Google	Fonts

reference	link	/	Using	non-standard	fonts	in	browsers
gradients,	CSS

about	/	Gradients	in	CSS
linear	gradient	/	Linear	gradients
mixins,	using	/	Using	gradient	mixins
radial	gradient	/	Radial	gradients

grids
about	/	Grids
standard	grids	16/12	/	Standard	grids	16/12

Gulp
about	/	Gulp

I
(@import	/	Importing	files	(@import)
@include	/	Simple	mixins	–	where	and	how	to	use	(@mixin,	@include)
IDE

selecting	/	Choosing	the	right	IDE
programming	process,	setting	up	with	snippets/Emmet	/	Speeding	up	the
programming	process	with	snippets/Emmet
keyboard	shortcuts	/	Keyboard	shortcuts

inline-block	display
about	/	Inline-block	display

inline	elements
about	/	Inline	elements

J
JADE

using,	as	templating	engine	/	Jade	as	your	templating	engine
installing	/	Installing	and	using	Jade
using	/	Installing	and	using	Jade
URL	/	Installing	and	using	Jade
basics	/	Basics	of	Jade
mixins	/	Mixins	in	Jade
include	method	/	Include	and	extend	functions	in	Jade
extend	method	/	Include	and	extend	functions	in	Jade
in	gulp.js	/	Jade	in	gulp.js

M
(@mixin	/	Simple	mixins	–	where	and	how	to	use	(@mixin,	@include)
mailer

testing	/	Testing	your	mailer
main	navigation,	usage	sample

about	/	Usage	sample	–	main	navigation
MeasureIT	plugin

about	/	MeasureIT	plugin
media	queries

about	/	Media	queries	–	where	can	you	use	it,	Media	queries
building	/	How	to	build	media	queries
working	/	How	media	queries	work?
for	specific	views/devices	/	Media	queries	for	specific	views/devices
selecting,	for	mobile	devices	/	How	to	choose	proper	media	queries	for	mobile
devices
template	/	Media	queries	template

minification
about	/	Minifying	CSS

mixins
animation	/	Other	mixins
gradients	/	Other	mixins,	Clearfix
clearfix	/	Other	mixins,	Clearfix

O
OOCSS	(Object	Oriented	CSS)

about	/	OOCSS
URL	/	OOCSS
principles	/	OOCSS
using,	in	sample	/	Using	OOCSS	in	our	sample

opacity
about	/	Dealing	with	opacity
dealing	with	/	Dealing	with	opacity
versus	rgba	/	Opacity	versus	RGBA	–	differences	and	where	can	we	use	them
fallback	for	old	IE	versions	/	Opacity	in	the	past	–	fallback	for	old	IE	versions

P
.parent	span

first-of-type	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-last-of-
type
last-of-type	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-last-of-
type

.parent	strong
nth-of-type(2)	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-last-of-
type
nth-last-of-type(2)	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-
last-of-type

Pixelfperfect	plugin
about	/	Pixelfperfect	plugin

Pixelperfect	layouts	tools
about	/	Pixelperfect	layouts	tools
Pixelfperfect	plugin	/	Pixelfperfect	plugin
MeasureIT	plugin	/	MeasureIT	plugin

preprocessors
about	/	Preprocessor	–	why	should	you	use	them?
advantages	/	Preprocessor	–	why	should	you	use	them?
elements,	nesting	/	Nesting	elements	in	preprocessors
CSS	code,	parametrizing	with	variables	/	Using	variables	to	parametrize	your	CSS
code
mixins,	using	/	Using	mixins	in	preprocessors
mathematical	operations	/	Mathematical	operations
logic	operations	/	Logic	operations	and	loops
loops	/	Logic	operations	and	loops
multiple	files,	joining	/	Joining	of	multiple	files
Less	/	Less	–	a	short	introduction
CSS,	with	Stylus	/	CSS	with	Stylus
SASS	/	SASS	–	the	most	mature	preprocessor
SASS	features	/	Short	comparison
Compass	usage	/	Short	comparison

project,	preparing
about	/	Preparing	your	project
files	structure	/	Files	structure
variables,	keeping	/	How	to	keep	variables	in	a	project
mixins,	keeping	/	How	and	where	to	keep	mixins	(local	and	global)
typography	styles,	keeping	in	seperate	file	/	Keep	typography	styles	in	a	separate
file
specific	elements,	viewing	/	Views	of	specific	elements

proper	selectors
creating	/	Creating	proper	selectors

IDs,	using	/	Using	IDs
classes,	using	/	Using	classes
grouping	/	Grouping	selectors
fundamental	knowledge	/	Interesting	selectors
adjacent	sibling	combinatory	+	/	Adjacent	sibling	combinatory	+
child	combinator	(>)	/	Child	combinator	">"
adjacent	sibling	combinatory	~	/	Adjacent	sibling	combinatory	~
element,	obtaining	by	attribute	/	Getting	elements	by	attributes
attribute	with	exact	value	[attribute=&&value&&]	/	Attributes	with	exact	value
[attribute="value"]
attribute	which	begins	with	[attribute^=&&value&&]	/	Attributes	which	begin	with
[attribute^="value"]
whitespace	separated	attribute	values	[attribute~=&&value&&]	/	Whitespace
separated	attribute	values	[attribute~="value"]
attribute	value	ends	with	[attribute$=&&value&&]	/	Attribute	values	ending	with
[attribute$="value"]
attribute	contains	string	[attribute*=&&value&&]	/	Attributes	containing	strings
[attribute*="value"]
!important,	using	in	CSS	/	Using	!important	in	CSS

properties,	CSS	animations
animation-name	/	Using	CSS	animations
animation-delay	/	Using	CSS	animations
animation-duration	/	Using	CSS	animations
animation-iteration-count	/	Using	CSS	animations
animation-fill-mode	/	Using	CSS	animations

pseudoclasses
about	/	Pseudoclasses
hover	state,	checking	/	How	can	we	check	:active,	:hover	state?
multilevel	menu	/	Usage	–	multilevel	menu
CSS	hover	rows	/	Usage	–	CSS	hover	rows
usage	/	Usage	of	pseudoclasses
pseudoelements,	using	/	How	to	use	:first-child,	:last-child,	:nth-child()
&first-child,	using	/	How	to	use	:first-child,	:last-child,	:nth-child()
&last-child,	using	/	How	to	use	:first-child,	:last-child,	:nth-child()
&nth-child(),	using	/	How	to	use	:first-child,	:last-child,	:nth-child()
table,	styling	/	Usage	–	styling	table
&nth-child	parameters,	exploring	/	Exploring	:nth-child	parameters
&nth-last-child,	using	/	How	to	use	:nth-last-child
&first-of-type,	using	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-
last-of-type
&last-of-type,	using	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-
last-of-type
&nth-last-of-type,	using	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and
:nth-last-of-type

&nth-of-type,	using	/	How	to	use	:first-of-type,	:last-of-type,	:nth-of-type,	and	:nth-
last-of-type
empty	elements,	with	&empty	pseudoclass	/	Empty	elements	with	the	:empty
pseudoclass

pseudoelements
about	/	Pseudoelements
using	/	Pseudoelements,	Where	can	we	use	:before	and	:after?
&after	/	What	is	:before	and	:after?
&before	/	What	is	:before	and	:after?
simple	text	manipulation	/	First	letter	and	first	line	–	simple	text	manipulation
selection	color,	changing	/	How	to	change	selection	color?	Usage	of	::selection
&selection	pseudo	element	/	How	to	change	selection	color?	Usage	of	::selection

Q
quality	assurance	(QA)	phase

about	/	Pixelperfect	layouts	tools

R
responsive	websites

foundation	/	The	foundation	of	responsive	websites
creating	/	The	foundation	of	responsive	websites
desktop	first	methodology	/	Desktop	first	methodology
mobile	first	methodology	/	Mobile	first	methodology
viewport,	adjusting	in	HTML	/	Adjusting	the	viewport	in	HTML
viewport,	selecting	/	Choosing	the	right	viewport
aforementioned	fold	methodology	/	Above	the	fold

retina
about	/	Retina	problems

retina	problems
about	/	Retina	problems

reusable	mixins
gathering	/	Gathering	other	reusable	mixins
primitives	/	Primitives

Ruby	on	Rails	(RoR)	projects	/	SASS	–	the	most	mature	preprocessor

S
SASS	foundation

about	/	SASS	foundation
variables,	using	/	Variables	–	where	and	how	to	use
simple	mixins	/	Simple	mixins	–	where	and	how	to	use	(@mixin,	@include)
classes,	extending	/	Extending	classes	(@extend)
files,	importing	/	Importing	files	(@import)
&,	using	/	Using	of
Compass	features	/	Compass	features

scalable	and	modular	code
building	/	Building	scalable	and	modular	code

Scalable	Inman	Flash	Replacement	(SIFR)	/	Additional	font	and	text	features
self-optimization,	code

about	/	Self-optimization
steps	/	A	few	steps	before	you	push	code	live
short	forms,	using	/	Using	short	forms
repetitions,	checking	/	Checking	repetitions

short	forms,	code	optimization
about	/	Using	short	forms
of	paddings/margins	/	Short	forms	of	paddings/margins
of	borders	/	Short	forms	of	borders
in	fonts	styling	/	Short	forms	in	fonts	styling
in	backgrounds	/	Short	forms	in	backgrounds

simple	automatization
about	/	Simple	automatization	(with	Gulp)

SMACSS
about	/	SMACSS
URL	/	SMACSS
rules	/	SMACSS
base	rules	/	Base	rules
layout	rules	/	Layout	rules
module	rules	/	Module	rules
state	rules	/	State	rules
theme	rules	/	Theme	rules
benefits	/	Summary	of	SMACSS

specific	devices,	targeting	through	media	queries
about	/	Targeting	specific	devices	through	media	queries
CSS	properties,	in	e-mail	templates	/	CSS	properties	in	e-mail	templates
responsive	e-mail	templates	/	Responsive	e-mail	templates

sprite
about	/	How	to	create	and	use	sprites
creating	/	How	to	create	and	use	sprites
using	/	How	to	create	and	use	sprites

standard	reusable	structures
about	/	Standard	reusable	structures
reusable	multilevel	menu	/	Reusable	multilevel	menus
reusable	buttons,	creating	/	How	to	create	reusable	buttons

stretch	/	Flexbox
styling	forms

most	known	issues	/	Forms	–	the	most	known	issues
most	known	restrictions	/	Forms	–	the	most	known	issues
superpowers,	enabling	/	Forms	–	enable	superpowers
input,	styling	/	How	to	style	simple	input
placeholders	/	Don't	forget	about	placeholders
complex	and	elastic	forms,	styling	/	Complex	form	based	on	input[type="text"]	and
labels
textarea,	styling	/	How	to	style	textarea
select	(drop	down),	styling	/	Styling	of	select	(drop	down)

supporting	forms	styling,	with	pseudoclasses
about	/	Supporting	forms	styling	with	pseudoclasses
validation,	with	&valid	and	&invalid	/	Validation	with	:valid	and	:invalid
input	statuses,	adding	/	Adding	input	statuses	:focus,	:checked,	:disabled
placeholder,	colorizing	/	Additional	aspect	–	colorize	the	placeholder

T
tables	structure

about	/	Back	to	tables
styles,	resetting	/	Resetting	styles

text-shadow
adding	/	How	to	add	text-shadow

tips,	for	e-mail	template	development	/	Tips	for	e-mail	template	development
traditional	box	model

about	/	Traditional	box	model
padding	/	Padding/margin/border/width/height
margin	/	Padding/margin/border/width/height
border	/	Padding/margin/border/width/height
width	/	Padding/margin/border/width/height
height	/	Padding/margin/border/width/height
problems,	omitting	with	/	Omitting	problems	with	the	traditional	box	model	(box-
sizing)

transform
about	/	More	about	transform
using	/	More	about	transform

Typekit
reference	link	/	Using	non-standard	fonts	in	browsers

U
UnCSS

about	/	UnCSS
integrating,	in	gulp	/	Integrating	UnCSS	in	Gulp

	Professional CSS3
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Foundations and Tools
	Choosing the right IDE
	Speeding up the programming process with snippets/Emmet
	Keyboard shortcuts
	Cross browser compatibility – which browsers should you install?
	How to use inspector
	Key shortcuts
	Preprocessor – why should you use them?
	Nesting elements in preprocessors
	Using variables to parametrize your CSS code
	Using mixins in preprocessors
	Mathematical operations
	Logic operations and loops
	Joining of multiple files
	Less – a short introduction
	CSS with Stylus
	SASS – the most mature preprocessor
	Short comparison
	SASS foundation
	Variables – where and how to use
	Simple mixins – where and how to use (@mixin, @include)
	Extending classes (@extend)
	Importing files (@import)
	Using of & in SASS
	Compass features
	Simple automatization (with Gulp)
	Pixelperfect layouts tools
	Pixelfperfect plugin
	MeasureIT plugin
	Checking compatibility
	Good assumptions in code
	Creating proper selectors
	Using IDs
	Using classes
	Grouping selectors
	Interesting selectors
	Adjacent sibling combinatory +
	Child combinator ">"
	Adjacent sibling combinatory ~
	Getting elements by attributes
	Attributes with exact value [attribute="value"]
	Attributes which begin with [attribute^="value"]
	Whitespace separated attribute values [attribute~="value"]
	Attribute values ending with [attribute$="value"]
	Attributes containing strings [attribute*="value"]
	Using !important in CSS
	Preparing your project
	Files structure
	How to keep variables in a project
	How and where to keep mixins (local and global)
	Keep typography styles in a separate file
	Views of specific elements
	Summary
	2. Mastering of Fundamentals
	Traditional box model
	Padding/margin/border/width/height
	Omitting problems with the traditional box model (box-sizing)
	Floating elements
	Possibilities of floating elements
	Most known floating problems
	Defining clear fix/class/mixins
	Example of using floating elements
	Display types
	Block elements
	Inline elements
	Inline-block display
	Where can you use other types of elements – navigation
	Where can you use other types of elements – problem of equal boxes
	CSS elements positioning
	Static, relative, absolute, fixed – differences
	Lists with fixed images (on the right or left) and descriptions
	Summary
	3. Mastering of Pseudoelements and Pseudoclasses
	Pseudoclasses
	How can we check :active, :hover state?
	Usage – multilevel menu
	Usage – CSS hover rows
	Usage of pseudoclasses
	How to use :first-child, :last-child, :nth-child()
	Usage – styling table
	Exploring :nth-child parameters
	How to use :nth-last-child
	How to use :first-of-type, :last-of-type, :nth-of-type, and :nth-last-of-type
	Empty elements with the :empty pseudoclass
	Supporting forms styling with pseudoclasses
	Validation with :valid and :invalid
	Adding input statuses :focus, :checked, :disabled
	Additional aspect – colorize the placeholder
	Drawing primitives with CSS
	How to draw a rectangle/square
	How to draw a circle
	How to draw a ring
	How to draw a triangle with CSS
	Pseudoelements
	What is :before and :after?
	Where can we use :before and :after?
	First letter and first line – simple text manipulation
	How to change selection color? Usage of ::selection
	Summary
	4. Responsive Websites – Prepare Your Code for Specific Devices
	The foundation of responsive websites
	Desktop first methodology
	Mobile first methodology
	Adjusting the viewport in HTML
	Choosing the right viewport
	Above the fold
	Media queries – where can you use it
	How to build media queries
	How media queries work?
	Media queries for specific views/devices
	How to choose proper media queries for mobile devices
	Usage sample – main navigation
	Summary
	5. Using Background Images in CSS
	CSS backgrounds
	Repeating of background
	Background size
	Background position
	Multiple backgrounds
	How to create and use sprites
	Usage of base64
	Retina problems
	Summary
	6. Styling Forms
	Forms – the most known issues
	Forms – enable superpowers
	How to style simple input
	Don't forget about placeholders
	Complex form based on input[type="text"] and labels
	How to style textarea
	Styling of select (drop down)
	Summary
	7. Resolving Classic Problems
	Centering elements
	Inline elements – horizontal centering
	Block elements – centering in both axes
	Using transform in centering
	Dealing with opacity
	Opacity versus RGBA – differences and where can we use them
	Opacity in the past – fallback for old IE versions
	Summary
	8. Usage of Flexbox Transform
	Flexbox
	Flexbox property align-items
	Flexbox property flex-wrap
	Flexbox property justify-content
	Flexbox property align-content
	Flexbox property flex-direction
	Usage of flexbox – creating page structure
	Usage of flexbox – change order of boxes in mobile/tablet view
	More about transform
	Summary
	9. Calc, Gradients, and Shadows
	The calc() method
	Gradients in CSS
	Linear gradients
	Using gradient mixins
	Radial gradients
	How to add box-shadow
	How to add text-shadow
	Additional font and text features
	Using non-standard fonts in browsers
	Using CSS animations
	Data attribute
	Issue – bold on hover moves the navigation
	Summary
	10. Don't Repeat Yourself – Let's Create a Simple CSS Framework
	File structure
	Short forms of useful elements
	Other mixins
	Clearfix
	Media queries
	Media queries template
	Grids
	Standard grids 16/12
	Standard reusable structures
	Reusable multilevel menus
	How to create reusable buttons
	Gathering other reusable mixins
	Primitives
	Let's test and use our framework
	Remember!
	Summary
	11. Mailers Fundamentals
	Testing your mailer
	Back to tables
	Resetting styles
	Targeting specific devices through media queries
	CSS properties in e-mail templates
	Responsive e-mail templates
	Inlining the e-mail template
	Tips for e-mail template development
	The e-mail template framework INK by ZURB
	Testing with Litmus
	Summary
	12. Scalability and Modularity
	Building scalable and modular code
	CSS methodologies
	SMACSS
	Base rules
	Layout rules
	Module rules
	State rules
	Theme rules
	Summary of SMACSS
	OOCSS
	Using OOCSS in our sample
	Summary of OOCSS
	Block Element Modifier (BEM)
	Using BEM in our sample
	Using BEM in SASS
	How to use modifier?
	Which methodology should you use?
	Maybe your own methodology?
	Summary
	13. Code Optimization
	Self-optimization
	A few steps before you push code live
	Using short forms
	Short forms of paddings/margins
	Short forms of borders
	Short forms in fonts styling
	Short forms in backgrounds
	Checking repetitions
	Summary
	14. Final Automatization and Processes Optimization
	Gulp
	Jade as your templating engine
	Installing and using Jade
	Basics of Jade
	Mixins in Jade
	Include and extend functions in Jade
	Jade in gulp.js
	UnCSS
	Integrating UnCSS in Gulp
	Minifying CSS
	Final automatizer
	Summary
	Index

