

Table	of	Contents
Cover

Title	Page

Introduction

How	this	Book	is	Unique

Target	Audience

Structure	and	Content

Reader	Value

Next	Steps

PART	I:	UNDERSTANDING	GIT	CONCEPTS

Chapter	1:	What	Is	Git?

History	of	Git

Industry-Standard	Tooling

The	Git	Ecosystem

Git's	Advantages	and	Challenges

Summary

Chapter	2:	Key	Concepts

Design	Concepts:	User-Facing

Design	Concepts:	Internal

Repository	Design	Considerations

Summary

Chapter	3:	The	Git	Promotion	Model

The	Levels	of	Git

Summary

Connected	Lab	1:	Installing	Git

Installing	Git	for	Windows

Steps

Installing	Git	on	Mac	OS	X

Installing	Git	on	Linux

PART	II:	USING	GIT

Chapter	4:	Configuration	and	Setup

Executing	Commands	in	Git

Configuring	Git

Initializing	a	Repository

kindle:embed:0001?mime=image/jpg

Advanced	Topics

Summary

Chapter	5:	Getting	Productive

Getting	Help

The	Multiple	Repositories	Model

Adding	Content	to	Track—Add

Finalizing	Changes—Commit

Putting	It	All	Together

Advanced	Topics

Summary

Connected	Lab	2:	Creating	and	Exploring	a	Git	Repository	and	Managing
Content

Prerequisites

Optional	Advanced	Deep-Dive	into	the	Repository	Structure

Steps

Chapter	6:	Tracking	Changes

Git	Status

Git	Diff

Summary

Connected	Lab	3:	Tracking	Content	through	the	File	Status	Life	Cycle

Prerequisites

Steps

Chapter	7:	Working	with	Changes	over	Time	and	Using	Tags

The	Log	Command

Git	Blame

Seeing	History	Visually

Tags

Undoing	Changes	in	History

Advanced	Topics

Summary

Connected	Lab	4:	Using	Git	History,	Aliases,	and	Tags

Prerequisites

Steps

Chapter	8:	Working	with	Local	Branches

What	Is	a	Branch?

Advanced	Topics

Summary

Connected	Lab	5:	Working	with	Branches

Prerequisites

Steps

Chapter	9:	Merging	Content

The	Basics	of	Merging

Dealing	with	Conflicts

Visual	Merging

Advanced	Topics

Summary

Connected	Lab	6:	Practicing	with	Merging

Prerequisites

Steps

Chapter	10:	Supporting	Files	in	Git

The	Git	Attributes	File

The	Git	Ignore	File

Summary

Chapter	11:	Doing	More	with	Git

Modifying	the	Layout	of	Files	and	Directories	in	Your	Local	Environment

Commands	for	Searching

Working	with	Patches	and	Archives	for	Changes

Commands	for	Cleaning	Up

Advanced	Topics

Summary

Connected	Lab	7:	Deleting,	Renaming,	and	Stashing

Prerequisites

Steps

Chapter	12:	Understanding	Remotes—Branches	and	Operations

Remotes

Summary

Connected	Lab	8:	Setting	Up	a	GitHub	Account	and	Cloning	a	Repository

Prerequisites

Steps

Chapter	13:	Understanding	Remotes—Workflows	for	Changes

The	Basic	Conflict	and	Merge	Resolution	Workflow	in	Git

Hosted	Repositories

Summary

Connected	Lab	9:	Using	the	Overall	Workflow	with	a	Remote	Repository

Prerequisites

Steps

Chapter	14:	Working	with	Trees	and	Modules	in	Git

Worktrees

Submodules

Subtrees

Summary

About	Connected	Labs	10–12

Connected	Lab	10:	Working	with	Worktrees

Prerequisites

Steps

Connected	Lab	11:	Working	with	Submodules

Prerequisites

Steps

Connected	Lab	12:	Working	with	Subtrees

Prerequisites

Steps

Chapter	15:	Extending	Git	Functionality	with	Git	Hooks

Installing	Hooks

Updating	Hooks

Common	Hook	Attributes

Hook	Descriptions

Other	Hooks

Hooks	Quick	Reference

Summary

End	User	License	Agreement

List	of	Illustrations
Chapter	1:	What	Is	Git?

Figure	1.1	Example	GitHub	page

Figure	1.2	GitLab	project	screen

Figure	1.3	Examples	of	GUIs	available	for	Git	(from	git-scm.org)

Figure	1.4	Example	Gerrit	screen

Chapter	2:	Key	Concepts

Figure	2.1	A	traditional	centralized	version	control	model

Figure	2.2	A	distributed	version	control	model

Figure	2.3	Disconnected	development

Figure	2.4	The	delta	storage	model

Figure	2.5	The	snapshot	storage	model

Figure	2.6	A	representation	of	Git's	packing	behavior	to	optimize	content	size

Chapter	3:	The	Git	Promotion	Model

Figure	3.1	A	simple	dev-test-prod	environment

Figure	3.2	The	levels	of	a	Git	system

Figure	3.3	The	local	versus	remote	environments

Figure	3.4	Git	in	one	picture

Chapter	4:	Configuration	and	Setup

Figure	4.1	Understanding	the	scopes	of	Git	configuration	files

Figure	4.2	Tree	listing	of	a	.git	directory	(local	repository)

Figure	4.3	Mapping	files	and	directories	to	Git	repositories

Chapter	5:	Getting	Productive

Figure	5.1	Abbreviated	version	of	help	invoked	with	the	-h	option

Figure	5.2	Git	browser-based	man	page

Figure	5.3	Working	with	multiple	repositories

Figure	5.4	Overlaying	configuration	files	on	your	model

Figure	5.5	Where	adding	and	staging	fit	in

Figure	5.6	An	edit	session	for	a	hunk

Figure	5.7	Where	commit	fits	in

Figure	5.8	The	basic	workflow	for	multiple	commits

Figure	5.9	Workflow	for	an	amended	commit

Figure	5.10	The	editor	session	for	a	commit	message	using	a	template	file	and
the	--verbose	--verbose	options

Chapter	6:	Tracking	Changes

Figure	6.1	Empty	local	environment	levels.

Figure	6.2	File	created	in	working	directory

Figure	6.3	Version	a	of	the	file	is	staged.

Figure	6.4	Update	made	to	working	directory	version

Figure	6.5	Version	b	staged

Figure	6.6	The	file	is	committed.

Figure	6.7	Starting	point	for	diffing—working	directory	clean

Figure	6.8	Workflow	of	git	diff	between	working	directory	and	Git	(checking	the
staging	area)

Figure	6.9	Workflow	of	git	diff	between	working	directory	and	Git	(checking	the
local	repository)

Figure	6.10	Local	version	updated	to	b

Figure	6.11	Diff	between	modified	local	version	and	Git

Figure	6.12	Diffing	further	up	the	chain

Figure	6.13	Diffing	from	the	working	directory	with	a	version	in	the	staging
area

Figure	6.14	Diffing	starting	at	the	staging	area

Figure	6.15	Diffing	directly	against	a	SHA1	(HEAD)

Figure	6.16	Vimdiff

Figure	6.17	WinMerge

Figure	6.18	Meld

Figure	6.19	KDiff3

Chapter	7:	Working	with	Changes	over	Time	and	Using	Tags

Figure	7.1	Using	the	gitk	tool	to	browse	local	history

Figure	7.2	Tagging	a	commit

Figure	7.3	Starting	repository	contents

Figure	7.4	Resetting	back	to	an	absolute	SHA1

Figure	7.5	Resetting	relative	to	a	tag

Figure	7.6	Resetting	for	revert

Figure	7.7	Local	environment	after	the	revert

Chapter	8:	Working	with	Local	Branches

Figure	8.1	Progression	of	chain	of	commits

Figure	8.2	Your	starting	chain	of	commits

Figure	8.3	After	the	creation	of	a	testing	branch

Figure	8.4	After	checking	out	the	testing	branch

Figure	8.5	The	current	branch	pointer	is	moved	to	indicate	that	the	newest
commit	is	the	latest	content	on	that	branch.

Figure	8.6	Local	repository—active	branch:	master

Figure	8.7	Git	checkout	master

Figure	8.8	Git	checkout	testing

Figure	8.9	Git	checkout	master	(again)

Figure	8.10	Local	repository	with	two	branches

Figure	8.11	After	deleting	the	testing	branch

Figure	8.12	The	master-as-production	model

Figure	8.13	The	master-to-release	model

Figure	8.14	The	master-as-integration	model

Figure	8.15	The	parallel	model

Figure	8.16	Repository	before	checkout	of	fc28c0d

Figure	8.17	Repository	after	checkout	of	fc28c0d

Figure	8.18	Repository	state	after	the	new	commit

Figure	8.19	Repository	after	you	switch	back	to	feature1

Figure	8.20	After	creating	a	new	branch	off	of	your	commit

Figure	8.21	After	a	checkout	of	experimental

Figure	8.22	The	two	paths	of	your	two	branches

Chapter	9:	Merging	Content

Figure	9.1	Setup	for	the	fast-forward	example

Figure	9.2	The	fast-forward	merge

Figure	9.3	Setup	for	the	three-way	merge	example—not	eligible	for	fast-forward

Figure	9.4	The	three	points	considered	for	the	three-way	merge

Figure	9.5	The	three-way	merge	process

Figure	9.6	The	new	merge	commit	after	the	three-way	merge

Figure	9.7	Setup	for	the	rebase	example

Figure	9.8	Identifying	a	common	ancestor

Figure	9.9	Computing	deltas	from	the	source	branch

Figure	9.10	Applying	deltas	on	the	destination	tip

Figure	9.11	Completed	rebase	of	a	feature	on	master

Figure	9.12	Setup	for	the	cherry-pick	example

Figure	9.13	End	result	of	the	cherry-pick

Figure	9.14	The	merge	process	in	the	local	environment

Figure	9.15	Master	branch	with	three	topic	branches

Figure	9.16	After	a	merge	of	the	three	topic	branches

Figure	9.17	The	earlier	cherry-pick	example

Figure	9.18	C5	cannot	be	cherry-picked	due	to	a	conflict.

Figure	9.19	The	choices	for	options	to	pick	one	version

Figure	9.20	Completed	cherry-pick	with	C5	from	feature

Figure	9.21	After	the	octopus	merge

Figure	9.22	Merging	with	vimdiff

Figure	9.23	Merging	with	WinMerge

Figure	9.24	Merging	with	Meld

Figure	9.25	Merging	with	KDiff3

Figure	9.26	Setup	for	an	advanced	rebase

Figure	9.27	Topic's	chain	of	commits

Figure	9.28	Computing	the	deltas	to	rebase

Figure	9.29	Applying	the	deltas	to	master

Figure	9.30	The	completed	rebase

Figure	9.31	Topic	merged	into	master

Figure	9.32	Beginning	state	of	your	branch

Figure	9.33	Temporary	file	created	for	scripting	the	rebase	actions

Figure	9.34	Edited	interactive	rebase	to-do	script

Figure	9.35	Screen	to	enter	commit	message	for	squashed	commits

Figure	9.36	Adding	a	new	commit	message	for	the	squashed	commits

Figure	9.37	Your	chains	of	commits	after	the	interactive	rebase	is	completed

Chapter	10:	Supporting	Files	in	Git

Figure	10.1	The	Git	model	with	smudge	and	clean	filters

Chapter	11:	Doing	More	with	Git

Figure	11.1	Local	environment	with	an	uncommitted	change

Figure	11.2	After	the	initial	stash

Figure	11.3	Another	change	in	your	local	environment	with	an	untracked	file

Figure	11.4	After	stashing,	including	the	untracked	file

Figure	11.5	Another	change	in	your	local	environment

Figure	11.6	The	third	element	on	the	queue

Figure	11.7	Queue	and	local	environment	after	an	apply	and	pop	from	the	stash

Figure	11.8	Changing	the	format	of	a	patch	received	in	e-mail

Figure	11.9	Starting	state	for	bisect

Figure	11.10	Checking	for	a	good	version

Figure	11.11	Initial	bisect	trial

Figure	11.12	Bisecting—the	next	steps

Figure	11.13	Narrowing	in	on	the	first	bad	commit

Figure	11.14	The	first	bad	commit	is	found

Figure	11.15	gitk	view	of	a	bisect

Chapter	12:	Understanding	Remotes—Branches	and	Operations

Figure	12.1	Arrangement	of	local	versus	remote	environments

Figure	12.2	Login	access	(top)	versus	SSH	access	(bottom)

Figure	12.3	Start	and	end	of	a	cloning	operation

Figure	12.4	A	way	to	think	about	cloning	multi-level	paths

Figure	12.5	Initial	changes	in	the	local	repository

Figure	12.6	After	a	push	to	the	remote	repository

Figure	12.7	Remote	tracking	branch	created	in	the	local	repository

Figure	12.8	After	a	commit	into	the	local	repository

Figure	12.9	Before	and	after	a	fetch	operation

Figure	12.10	The	local	repository	before	and	after	the	merge

Figure	12.11	Before	and	after	a	pull	operation

Chapter	13:	Understanding	Remotes—Workflows	for	Changes

Figure	13.1	File	granularity	corresponding	to	delta	changes

Figure	13.2	Commits	are	a	snapshot	of	files	and	directories.

Figure	13.3	Two	users	with	the	same	cloned	contents

Figure	13.4	User	1	successfully	pushes	their	changes.

Figure	13.5	User	2	attempts	to	push	their	changes	and	is	rejected.

Figure	13.6	User	2	pulls	the	latest	changes	to	merge	updates	locally.

Figure	13.7	Merged	content	is	pushed	back	into	the	remote.

Figure	13.8	Forking	a	repository

Figure	13.9	The	typical	Git	lifecycle	on	a	forked	repository

Figure	13.10	Sending	a	pull	request	to	the	owner

Figure	13.11	Repository	owner	pulls	changes.

Figure	13.12	A	workflow	model	for	making	and	incorporating	changes

Chapter	14:	Working	with	Trees	and	Modules	in	Git

Figure	14.1	Illustration	of	multiple	working	trees

Figure	14.2	Illustration	of	how	submodules	work

Figure	14.3	Illustration	of	a	subtree	layout

List	of	Tables
Chapter	3:	The	Git	Promotion	Model

Table	3.1	Core	Commands	for	Moving	Content	between	Levels	in	Git

Chapter	4:	Configuration	and	Setup

Table	4.1	Components	of	a	Git	Command	Line	Invocation

Table	4.2	Porcelain	Commands	in	Git

Table	4.3	Plumbing	Commands	in	Git

Chapter	6:	Tracking	Changes

Table	6.1	Git	Status	Codes	for	Short	Options

Chapter	10:	Supporting	Files	in	Git

Table	10.1	The	File	Scope	for	Git	Attributes

Table	10.2	Options	for	Specifying	Attributes

Table	10.3	Scopes	and	Precedence	for	Git	Ignore	Files

Chapter	12:	Understanding	Remotes—Branches	and	Operations

Table	12.1	Summarizing	the	Types	of	Branches	in	Git

Chapter	15:	Extending	Git	Functionality	with	Git	Hooks

Table	15.1	List	of	Git	Hooks	by	Operation

PROFESSIONAL
Git®
	

Brent	Laster

	

	

	

	

	

Introduction
Welcome.	If	your	job	or	interests	involve	designing,	creating,	or	testing	software,	or
managing	any	part	of	a	software	development	lifecycle,	chances	are	that	you’ve	heard
of	Git	and,	at	some	level,	have	tried	to	use	and	understand	it.	This	book	will	help	you
reach	that	goal.	To	put	it	simply,	Professional	Git	is	intended	to	help	you	understand
and	use	Git	to	get	your	job	done,	whether	that	job	is	a	personal	project	or	a
professional	requirement.	In	the	process,	it	will	also	make	Git	part	of	your
professional	comfort	zone.	Throughout	the	book,	I’ve	provided	the	background	and
concepts	that	you	need	to	know	(and	understand)	to	make	sense	of	Git,	while	you
learn	how	to	interact	with	it.

This	section	will	provide	you	with	a	quick	introduction	to	the	book.	It	will	explain	how
this	book	is	unique	from	other	books	about	Git,	the	intended	target	audience,	the
book’s	overall	structure	and	content,	and	some	of	the	value	it	offers	you.

I	encourage	you	to	take	a	few	minutes	and	read	through	this	section.	Then,	you	can
dive	into	the	material	at	your	own	pace,	and	build	your	skills	and	understanding	of	Git
through	the	text	and	the	included	hands-on	labs.	Or,	if	you’d	like	to	quickly	see
additional	information	about	the	range	of	content,	you	can	browse	the	table	of
contents.

Thanks	for	taking	a	look	at	Professional	Git.

HOW	THIS	BOOK	IS	UNIQUE
While	many	books	about	Git	are	already	on	the	market,	most	are	aimed	at	providing
the	technical	usage	of	the	application	as	their	major	and	singular	goal.	Professional
Git	will	provide	you	with	that,	but	it	will	also	provide	you	with	an	understanding	of	Git
in	terms	of	concepts	that	you	probably	already	know.	As	well,	most	books	do	not
provide	practical	ways	to	integrate	the	concepts	they	describe.	Learning	is	most
effective	when	you	have	actual	examples	to	work	through	so	you	can	internalize	the
concepts	and	gain	proficiency	at	your	pace.	Professional	Git	includes	Connected	Labs
that	you	can	work	through	to	absorb	what	you’ve	just	read.

I’ve	included	simple,	clear	illustrations	to	help	you	visualize	key	ideas	and	workflows.
I’ve	also	included	Advanced	Topics	sections	at	the	end	of	many	chapters.	These
sections	provide	additional	explanations	of	how	to	use	some	lesser-known	features	of
Git	as	well	as	how	to	go	beyond	the	standard	Git	features	to	gain	extra	value.

It	is	easy	to	experience	a	bad	transition	from	another	source	management	system	to
Git,	if	you	don’t	understand	Git.	To	be	most	effective,	you	need	to	comprehend	the	Git
model	and	workflow.	You	should	also	know	what	to	watch	out	for	as	you	make	the
transition	and	why	it’s	important	to	consider	not	only	the	commands	and	workflow,
but	also	the	structure	and	scope	of	its	underlying	repositories.	I	cover	all	of	this	in
Professional	Git.

TARGET	AUDIENCE
This	book	is	based	on	my	years	of	training	people	on	Git;	these	people	worked	at	all
levels	and	came	from	many	different	backgrounds—developers,	testers,	project
managers,	people	managers,	documentation	specialists,	and	so	on.	I	have	presented
the	basic	materials	outlined	in	this	book	through	many	workshops	at	industry
conferences	and	corporate	training	sessions.	I’ve	presented	them	at	locations	across
the	United	States,	as	well	as	internationally.	I’ve	been	successful	in	helping	people	to
walk	away	with	a	newfound	confidence	in	using	Git.

I	only	make	one	assumption	in	this	book:	that	you	have	experience	with	at	least	one
source	management	system.	It	doesn’t	matter	which	one:	CVS,	Subversion,	Mercury—
any	will	do.	I	just	assume	that	you	have	a	basic	awareness	of	what	a	source
management	system	does	as	well	as	fundamental	concepts	such	as	checking	in	and
checking	out	code	and	branching.	Beyond	that,	you	do	not	require	any	prior
knowledge	or	experience.	And	even	if	you	have	significant	experience	with	Git	or
another	system,	you’ll	find	something	of	benefit	here.	In	fact,	if	you’re	reading	this,
then	you	probably	fall	into	one	of	the	following	categories:

You	are	new	to	Git	and	know	that	you	need	to	learn	it.

You	have	used	Git	but	have	been	trying	to	use	it	the	same	way	you	used	your
previous	source	control	system.

You	have	used	Git	and	feel	that	you	know	“just	enough	to	be	dangerous.”

You	are	getting	by	with	Git,	but	really	want	to	understand	why	it	works	the	way	it
does	and	how	to	really	use	it	as	intended.

You	work	with,	or	manage,	people	who	either	use	Git	or	need	to	learn	it.	Given	that
association,	you	need	to	know	about	Git	and	to	understand	the	fundamental
concepts.

You’ve	heard	about	the	potential	benefits	of	Git,	and	so	you	are	curious	about	it
and	about	what	it	can	do	for	you	and	the	organization	you	work	with.

You	may	actually	see	yourself	in	more	than	one	of	these	categories.	However,	you
probably	just	want	to	be	able	to	get	your	job	done	(whether	that	job	is	a	personal	or
professional	goal).	This	book	was	built	on	that	premise.

Git	requires	a	mind	shift.	In	fact,	it	requires	a	series	of	mind	shifts.	However,	each
shift	is	easy	to	understand	once	you	can	relate	it	to	something	you	already	know.
Understanding	each	of	these	shifts	will,	in	turn,	allow	you	to	be	more	productive	and
to	harness	the	features	of	this	powerful	tool—and	that’s	what	this	book	is	about.

STRUCTURE	AND	CONTENT
This	book	is	organized	as	a	series	of	chapters	that	present	Git	from	the	ground	up,
teaching	you	what	you	need	to	know	and	build	on	to	become	proficient	before	adding
new	concepts.

In	the	first	three	chapters,	I	cover	the	foundational	concepts	of	Git:	how	it’s	different
from	other	systems,	the	ecosystem	that’s	been	built	around	it,	its	advantages	and
challenges,	and	the	model	that	allows	you	to	understand	its	workflow	and	manage
content	effectively	with	it.	This	section	will	provide	you	with	a	basic	understanding	of
the	ideas,	goals,	and	essential	terminology	of	Git.

In	the	remaining	chapters	of	the	book,	I	cover	the	usage	and	features	of	Git,	from
performing	basic	operations	to	create	repositories	and	commit	changes	into	them,	to
creating	branches,	doing	merges,	and	working	with	content	in	public	repositories.

Notice	that	I	don’t	have	you	using	Git	right	away.	(If	you	want	to	do	that,	feel	free	to
jump	ahead	to	Chapter	4,	which	quickly	enables	you	to	start	getting	hands-on	with
Git.)	However,	I	highly	recommend	reading	the	first	three	chapters.	If	you’re	new	to
Git	(or	it’s	been	a	while),	the	background	reading,	especially	in	Chapters	2	and	3,	will
provide	the	foundation	you	need	to	understand	the	remaining	chapters.	And	even	if
you’ve	used	Git	before,	reading	these	chapters	may	clear	up	questions	that	you’ve	had
about	Git,	give	you	a	better	mental	model	to	work	from,	and	form	a	basis	to
understand	some	of	the	more	advanced	concepts.

READER	VALUE
Throughout	the	book,	you’ll	find	examples	and	guidance	on	the	commands	and
workflows	you	need	to	be	productive	with	Git.	Each	chapter	includes	ways	to	relate
concepts	to	what	you	already	know	and	understand.	In	addition	to	the	text,	you’ll	find
many	illustrations	to	help	you	understand	concepts	visually.	As	I’ve	already
mentioned,	this	book	also	adds	a	feature	that	allows	you	to	get	hands-on	experience
with	Git,	via	Connected	Labs	interspersed	throughout	the	chapters.	These	labs	are
designed	to	reinforce	the	concepts	presented	in	the	text	of	the	preceding	chapter(s)
and	to	get	you	actively	involved	in	the	learning	process,	allowing	you	to	better	grasp
the	concepts.	To	get	the	most	out	of	the	book,	you	should	take	the	time	to	complete
each	lab—usually	only	a	few	minutes.	You’ll	find	that	these	simple	steps	will	greatly
increase	your	overall	understanding	and	confidence	when	using	Git.

As	well,	take	a	look	at	the	Advanced	Topics	sections,	located	at	the	end	of	some
chapters.	You’ll	likely	find	explanations	and	ideas	to	leverage	Git	functionality	in	ways
you	may	not	have	considered	before,	or	you	may	find	out	how	to	use	that	feature
you’ve	always	wondered	about.

For	the	later	labs,	custom	Git	repositories	with	example	content	are	provided	for	the
user	at	http://github.com/professional-git.	In	addition,	downloadable	copies	of	the
code	for	the	hooks	from	the	last	chapter	are	available	in
http://github.com/professional-git/hooks.	In	the	event	that	GitHub	is	not	available,
you	can	find	the	needed	files	at	www.wrox.com/go/professionalgit

http://github.com/professional-git
http://github.com/professional-git/hooks
http://www.wrox.com/go/professionalgit

NEXT	STEPS
If	this	sounds	like	the	book	for	you,	then	I	encourage	you	to	keep	reading	and	to	start
making	the	connections	and	mind	shifts	that	will	help	you	succeed	with	Git.	As	you
progress	through	the	book,	you’ll	find	many	ideas,	insights,	and	“a-ha”	moments	that
will	serve	you	well.	And	with	that	knowledge,	you’ll	soon	be	working	at	the	level	of
“Professional	Git.”

Part	I
Understanding	Git	Concepts

CHAPTER	1:	What	Is	Git?

CHAPTER	2:	Key	Concepts

CHAPTER	3:	The	Git	Promotion	Model

Chapter	1
What	Is	Git?

WHAT'S	IN	THIS	CHAPTER?

A	brief	introduction	to	Git	and	its	history

The	different	ways	to	find	and	access	Git

Types	of	applications	that	incorporate	Git

The	advantages	of	using	Git

The	challenges	of	using	Git

In	this	chapter,	you'll	be	introduced	to	Git	and	will	learn	about	it	from	a	product
perspective—what	it	is,	why	it's	used,	the	different	kinds	of	interfaces	you	can	use	with
it,	and	the	good	parts	and	challenging	parts	of	working	with	it.	This	will	provide	an
important	foundation	for	understanding	the	technical	details	that	follow	in	the
subsequent	chapters.

If	I	were	to	summarize	what	Git	is	in	one	paragraph,	it	would	go	something	like	this:

Git	is	a	popular	and	widely	used	source	management	system	that	greatly	simplifies
the	development	cycle.	It	enables	users	to	create,	use,	and	switch	between	branches
for	content	development	as	easily	as	people	create	and	switch	between	files	in	their
daily	workflow.	It	is	implemented	using	a	fast,	efficient	architecture	that	allows	for
ease	of	experimentation	and	refinement	of	local	changes	in	an	isolated	environment
before	sharing	them	with	others.	In	short,	it	allows	everyday	users	to	focus	on	getting
the	content	right	instead	of	worrying	about	source	management,	while	providing	more
advanced	users	with	the	ability	to	record,	edit,	and	share	changes	at	any	level	of	detail.

In	short,	Git	is	different—really.	When	you're	experienced	with	using	Git	and
understand	it,	this	will	make	you	feel	empowered	and	productive.	When	you're	new	to
Git,	and	trying	to	understand	it,	you	will	encounter	a	model	that	will	lead	you	to	think
differently	about	managing	content	in	source	control.

To	illustrate,	there's	an	old	saying	that	“when	all	you	have	is	a	hammer,	everything
looks	like	a	nail.”	When	all	you	have	is	a	traditional	centralized	source	management
system,	everything	looks	like	a	file-by-file	change	that	is	expensive	to	branch.

Not	so	with	Git.	Git	is	one	of	those	nice	tools	that	actually	allows	users	to	focus	on
developing	content	and	simplifying	workflows.	It's	not	just	another	tool	in	the
toolbox,	it	is	the	toolbox.	It	contains	all	of	the	tools	you	need	to	manage	tracking
anything	from	a	few	files	for	a	single	user	to	projects	spanning	hundreds	of	users	and
a	huge	scope,	such	as	the	Linux	kernel.	Today,	many	large	companies	use	Git.	It's	free,
it's	powerful,	it	scales,	and	its	model	works	when	used	as	designed.

Git	also	has	a	certain	“feel”	that's	appealing	to	many	people.	Git	is	structured	more
like	a	series	of	individual	utilities	that	you	can	run	against	your	content,	similar	to
how	users	work	with	operating	systems.	However,	it	doesn't	try	to	be	the	system;	it

gives	users	ultimate	control	over	their	content,	even	to	the	point	of	being	able	to
update	history	if	needed.	Git	manages	basic	units	that	equate	to	directory	structures
rather	than	individual	files,	so	content	that	extends	across	file	and	directory
boundaries	can	be	managed	together.	Git	simplifies	branching,	to	a	point	where
creating,	merging,	or	deleting	branches	becomes	nearly	as	quick	and	easy	as	creating,
merging,	or	deleting	files.	It	also	provides	a	local	environment	with	full	source
management	control	that	can	be	updated	independently	of	the	shared,	public
environment.

Given	that	it	is	different	from	other	source	code	management	(SCM)	systems,	it's
useful	to	understand	how	Git	originated.	The	following	section	includes	some	of	its
history.

HISTORY	OF	GIT
Git	has	its	roots	in	the	development	environment	for	the	Linux	kernel.	In	the	early
2000s,	the	team	working	on	the	kernel	began	using	a	proprietary	distributed	source
control	system	called	BitKeeper	(sometimes	abbreviated	as	BK).	The	team	was
initially	allowed	to	use	this	system	for	free.	Over	time,	differences	of	opinion
developed	around	the	use	of	BK	to	the	point	that	the	owner	of	that	system	revoked	the
free	use	of	the	product.	At	that	time	(in	2005),	Linus	Torvalds,	the	creator	of	Linux,
set	out	to	create	a	new	system	that	maintained	the	distributed	ideal,	but	also
incorporated	several	additional	concepts	he	had	been	working	with.	Perhaps	most
importantly,	he	wanted	it	to	provide	the	fast	performance	that	a	project	on	the	scope
of	the	Linux	kernel	would	need.	Thus	the	motivation	and	ideas	for	what	became	Git
came	into	being.

Development	began	in	early	April	of	2005,	and	an	initial	release	was	ready	by	July.
Originally,	there	was	an	idea	of	purposing	Git	as	a	toolkit	that	could	have	other
systems	implemented	on	top	of	it.	However,	over	time,	it	has	been	made	into	a	full-
fledged	SCM	in	its	own	right.

If	you're	wondering	about	the	name,	there	are	multiple	definitions	for	the	word	Git,
but	all	of	them	imply	a	negative	connotation	about	a	person.	Git	was	given	its	name	by
its	creator.	Linus	jokingly	stated	that	he	named	all	his	projects	after	himself.

For	those	interested	in	learning	more	about	this	phase	of	Git	development,	detailed
historical	information	is	available	on	the	Internet.

INDUSTRY-STANDARD	TOOLING
From	these	early	beginnings,	Git	has	grown	to	become	an	industry-standard	tool.	Of
course,	industry	standard	is	a	relative	term.	Nevertheless,	based	on	nearly	any
criteria,	Git	fits.	It	is	used	across	all	levels	of	industry.	Huge	projects,	such	as	the
Linux	kernel,	are	managed	in	it,	and	also	mandate	its	use	(see	the	following	list).	It	is
a	key	component	of	many	continuous	integration/continuous	delivery	pipelines.
Demand	for	knowledge	about	it	is	ever	increasing.	Commercial	and	open-source
projects	and	applications	recognize	that	if	they	require	source	management	services,
they	have	to	integrate	with	Git.	Projects	and	companies	using	Git	include

Google

Facebook

Microsoft

Twitter

LinkedIn

Netflix

O'Reilly

PostgreSQL

Android

Linux

Eclipse

As	with	any	sufficiently	successful	open-source	technology,	an	entire	ecosystem	has
sprung	up	around	Git.	This	point	is	worth	discussing	for	a	moment.	The	basic	tool	that
is	Git	has	given	rise	to	a	seemingly	endless	number	of	applications	to	further	help
users	who	want	to	work	with	it—most	named	with	some	wordplay	based	on	git.	If	you
start	discussing	Git	with	someone,	you	may	hear	such	names	as	GitHub,	Gitolite,	Easy
Git,	Git	Extensions,	EGit,	and	so	on.	To	the	uninitiated,	it	can	be	challenging	to
understand	how	each	one	of	these	names	relates	to	the	original	Git	tooling.	To	help
clarify	some	of	the	confusion,	I'll	give	you	an	overview	of	how	the	different	offerings
are	categorized.

THE	GIT	ECOSYSTEM
Broadly,	you	can	break	down	the	Git-based	offerings	into	a	few	categories:	core	Git,
Git-hosting	sites,	self-hosting	packages,	ease-of-use	packages,	plug-ins,	tools	that
incorporate	Git,	and	Git	libraries.

Core	Git
In	the	core	Git	category,	you	have	the	basic	Git	executables,	configuration	files,	and
repository	management	tooling	that	you	can	install	and	use	through	the	command
line	interface.	(These	can	be	installed	from	https://git-scm.com/downloads.)	In
addition	to	the	basic	pieces,	the	distributions	usually	include	some	supporting	tools
such	as	a	simple	GUI	(git	gui),	a	history	visualization	tool	(gitk),	and	in	some	cases,	an
alternate	interface	such	as	a	Bash	shell	that	runs	on	Windows.	The	distribution	for
Windows	is	now	called	Git	for	Windows.	Similarly	there	is	a	ported	version	of	Git	for
OS/X.	This	version	can	be	installed	directly	from	the	git-scm.com	site,	or	via	the
Homebrew	package	manager	or	built	via	the	MacPorts	application.

When	installing	on	Linux	systems,	the	recommended	method	is	to	use	the	preferred
package	manager	for	your	distribution.	Example	commands	are	shown	in	the
following	list.

Debian/Ubuntu

$	apt-get	install	git

Fedora	(up	to	21)

$	yum	install	git

Fedora	(22	and	beyond)

$	dnf	install	git

FreeBSD

$	cd/usr/ports/devel/git

$	make	install

Gentoo

$	emerge	--ask	--verbose	dev-vcs/git

OpenBSD

$	pkg_add	git

Solaris	11	Express

$	pkg	install	developer/versioning/git

Git-Hosting	Sites

https://git-scm.com/downloads

Git-hosting	sites	are	websites	that	provide	hosting	services	for	Git	repositories,	both
for	personal	and	shared	projects.	Customers	may	be	individuals,	open-source
collaborators,	or	businesses.	Many	open-source	projects	have	their	Git	repositories
hosted	on	these	sites.	In	addition	to	the	basic	hosting	services,	these	sites	offer	added
value	in	the	form	of	custom	browsing	features,	easy	web	interfaces	to	Git	commands,
integrated	bug	tracking,	and	the	ability	to	easily	set	up	and	share	access	among	teams
or	groups	of	individuals.

These	sites	typically	provide	a	workflow	intended	to	allow	users	to	contribute	back	to
projects	on	the	site.	At	a	high	level,	this	usually	involves	getting	a	copy	of	another
user's	repository,	making	changes	in	the	copy,	and	then	requesting	that	the	original
user	review	and	incorporate	the	changes;	this	is	sometimes	known	as	the	fork	and
pull	model.	(This	model	is	explained	in	more	detail	in	Chapter	13.)

For	hosting,	there	is	a	pricing	model	that	depends	on	the	level	of	access,	number	of
users,	number	of	repositories,	or	features	needed.	For	example,	if	a	repository	is
intended	to	be	public—with	open	access	to	anyone—it	may	be	hosted	for	free.	If	access
to	a	repository	needs	to	be	limited	or	it	needs	a	higher	level	of	service,	then	there	may
also	be	a	charge.	In	addition,	the	hosting	site	may	offer	services	such	as	consulting	or
training	to	generate	revenue.

Examples	of	these	types	of	sites	include	GitHub	and	Bitbucket.	Figure	1.1	shows	an
example	of	a	GitHub	repository	page.

Figure	1.1	Example	GitHub	page

Self-Hosting	Packages
Based	on	the	success	of	the	model	and	usage	of	the	hosting	sites,	several	packages
have	been	developed	to	provide	a	similar	functionality	and	experience	for	users	and
groups	without	having	to	rely	on	an	external	service.	For	some,	this	is	their	primary
target	market	(GitLab),	while	others	are	stand-alone	(also	known	as	on-premise)
versions	of	the	popular	web-hosting	sites	(such	as	GitHub	Enterprise).

These	packages	are	more	palatable	to	businesses	that	don't	want	to	host	their	code
externally	(on	someone	else's	servers),	but	still	want	the	collaborative	features	and
control	that	are	provided	with	the	model.	The	cost	structure	usually	depends	on
factors	relating	to	the	scale	of	use,	such	as	the	number	of	users	or	repositories.	Figure
1.2	shows	an	example	of	a	GitLab	project	screen.

Figure	1.2	GitLab	project	screen

Ease-of-Use	Packages
The	ease-of-use	category	encompasses	applications	that	sit	on	top	of	the	basic	Git
tooling	with	the	intention	of	simplifying	user	interaction	with	Git.	Typically,	this
means	they	provide	GUI	interfaces	for	working	with	repositories	and	may	support
GUI-based	conventions	such	as	drag-and-drop	to	move	content	between	levels.	In	the
same	way,	they	often	provide	graphical	tools	for	labor-intensive	operations	such	as
merging.

Examples	include	SourceTree,	SmartGit,	TortoiseGit,	and	Git	Extensions.	Typically,
these	packages	are	free	for	non-commercial	use.	You	can	see	a	more	comprehensive
list	at	https://git-scm.com/downloads/guis.

Figure	1.3	shows	some	examples	of	available	packages.

https://git-scm.com/downloads/guis

Figure	1.3	Examples	of	GUIs	available	for	Git	(from	git-scm.org)

CHOOSING	AN	INTERFACE

One	of	the	questions	that	frequently	comes	up	when	using	Git	is	which	stand-
alone	interface	is	best.	There	is	no	right	answer	here,	but	as	a	good	default,	the
command	line	provides	the	most	value	for	a	number	of	reasons.

Although	a	large	number	and	variety	of	GUIs	are	available	to	use	with	Git,	there	is
no	accepted	standard.	GUIs	come	and	go,	and	vary	highly	in	their	degree	of
functionality,	completeness,	and	utility.	The	command	line	is	consistent	and
universally	applicable.

Not	all	functionality	is	exposed	through	any	one	GUI	for	Git.	However,	all
functionality	available	to	users	is	exposed	through	the	command	line.	If	you	need
to	do	something	that	isn't	available	through	a	GUI,	you	can	always	drop	back	to
the	command	line	to	accomplish	it.	In	addition,	Git	includes	man	pages	for	all
command	line	usage,	so	help	is	readily	available	for	that	interface.

If	you	understand	the	command	line	operations	and	options,	it's	generally	easy	to
translate	and	map	them	to	the	corresponding	items	in	a	GUI.

Once	you	understand	the	basic	command	line	operation,	you'll	have	more	insight
into	what	you	want	and	need	to	do	with	a	GUI	interface.	You'll	also	be	in	a	better
position	to	choose	one	if	desired.

As	a	side	note,	one	of	the	main	advantages	of	having	a	graphical	interface	with	Git
is	having	a	graphical	merge	tool.	Git	also	allows	you	to	configure	using	a
thirdparty	tool	for	merges	from	the	command	line	interface.	We'll	explore
configuring	merge	tools	in	Chapter	9.

Plug-ins
Plug-ins	are	software	components	that	add	interfaces	for	working	with	Git	to	existing
applications.	Common	plug-ins	that	users	may	deal	with	are	those	for	popular	IDEs
such	as	Eclipse,	IntelliJ,	or	Visual	Studio,	or	those	that	integrate	with	workflow	tools
such	as	Jenkins	or	TeamCity.	It	is	now	becoming	more	common	for	applications	to
include	a	Git	plug-in	by	default,	or,	in	some	cases,	to	just	build	it	in	directly.

Tools	That	Incorporate	Git
Over	the	past	few	years,	tooling	has	emerged	that	directly	incorporates	and	uses	Git	as
part	of	its	model.	One	example	is	Gerrit,	a	tool	designed	primarily	to	do	code	reviews
on	changes	targeted	for	Git	remote	repositories.	At	its	core,	Gerrit	manages	Git
repositories	and	inserts	itself	into	the	Git	workflow.	It	wraps	Git	repositories	in	a
project	structure	with	access	controls,	a	code	review	workflow	and	tooling,	and	the
ability	to	configure	other	validations	and	checks	on	the	code.	Figure	1.4	shows	an
example	of	a	Gerrit	screen.

Figure	1.4	Example	Gerrit	screen

Git	Libraries
For	interfacing	with	some	programming	languages,	developers	have	implemented
libraries	that	wrap	those	languages	or	re-implement	the	Git	functionality.	One	of	the
best-known	examples	of	this	is	JGit.	JGit	is	a	Java	library	that	re-implements	Git	and
is	used	by	a	number	of	applications	such	as	Gerrit	(mentioned	in	the	previous
section).	These	implementations	make	interfacing	with	Git	programmatically	much
more	direct.	However,	there	is	sometimes	a	cost	in	terms	of	waiting,	when	new
features	or	bug	fixes	that	are	implemented	in	the	core	Git	tooling	have	to	be	re-
implemented	in	these	libraries.

GIT'S	ADVANTAGES	AND	CHALLENGES
Everyone	has	opinions,	and	anyone	who's	tried	Git	has	an	opinion	about	it.	These
usually	vary	from	believing	it's	the	greatest	thing	since	sliced	bread	to	wondering	how
they	could	ever	effectively	use	it.	In	this	section,	you'll	look	at	some	of	the	advantages
and	challenges	that	Git	offers	(in	no	particular	order).	Granted,	these	lists	are
subjective,	but	themes	in	each	area	seem	to	consistently	emerge.

The	Advantages
Git	is	popular	for	many	reasons.	There	are	some	things	it	just	does	better	(faster,
easier)	than	other	source	management	systems	and	some	things	that	it	takes	a	totally
different	approach	on.	Learning	about	and	leveraging	the	aspects	outlined	here	will
allow	you	to	get	the	most	out	of	this	tool.

Disconnected	Development
The	Git	model	provides	a	local	environment	where	you	can	work	with	a	local	copy	of	a
server-side	repository	(this	server-side	repository	is	known	as	the	remote	in	Git
terminology).	This	copy	resides	within	your	workspace.	When	you	are	satisfied	with
your	changes	in	this	local	repository,	you	then	sync	the	local	repository's	contents	up
with	the	remote	side.

All	of	the	source	management	commands	that	you	need	to	make	changes	can	be	run
in	this	local	environment.	There's	no	need	to	access	the	remote	repository	until	you're
ready	to	sync	content.	Because	of	this,	you	do	not	need	a	connection	to	the	remote
repository	to	conduct	source	management.	You	just	work	against	the	local	copy.

Because	you	can	perform	source	management	tasks	in	your	local	environment
without	needing	a	connection	to	the	remote-server	side,	you	can	work	disconnected
from	the	remote	and	even	disconnected	from	a	network.	This	is	what	disconnected
development	means.

One	important	factor	to	keep	in	mind	is	that	until	you	sync	up	with	the	remote,	all	of
your	changes	and	data	are	only	in	the	local	environment	on	your	system.	This	is
usually	the	local	disk	on	your	machine.

Fast	Performance
Git	stores	a	lot	of	information.	(I'll	describe	its	internal	storage	model	in	the	next
chapter.)	However,	it	is	efficient	both	in	the	way	it	stores	content	and	in	the	way	it
retrieves	it.	Internally,	Git	packs	together	similar	objects.	Externally,	it	uses	a	good
compression	model	to	send	significant	amounts	of	data	efficiently	through	a	network.
Of	course,	this	network	performance	may	be	mitigated	by	limiting	factors	such	as
network	latency,	but	as	a	general	rule,	wait	times	for	Git	operations	from	the	server
are	not	a	factor.

For	changes	in	the	local	environment,	Git	is	as	fast	as	its	commands	can	be	executed

on	your	disk.	Because	it	only	has	to	interact	with	a	local	repository	(in	most	cases	not
going	across	a	network	connection),	the	performance	is	equivalent	to	operating
system	commands.

Another	factor	that	aids	Git's	performance	is	that	it	is	designed	to	manage	multiple
smaller	repositories—rather	than	larger	aggregate	ones	that	may	be	present	in
traditional	source	control	systems.	For	example,	consider	how	you	might	store	the
source	code	for	a	large	Java	project.	In	a	traditional	source	control	management
(SCM)	system,	you	might	have	a	single	large	Java	repository	with	all	of	the	source
code	in	subdirectories	for	the	different	JARs.	However,	in	Git	you	would	typically	have
a	separate	repository	for	the	source	code	for	each	JAR.	This	granularity	contributes	to
the	smaller	amount	of	content	that	has	to	be	moved	around	in	Git,	and	thus	to	a	faster
operation.

Finally,	branching	is	extremely	fast	in	Git.	I'll	explain	why	in	Chapter	8,	but
essentially,	as	fast	as	you	can	create	a	file	on	your	OS,	you	can	create	a	branch	in	Git.
This	means	there	is	no	more	waiting	for	extended	periods	while	the	source
management	system	branches	your	content.	Deleting	branches	is	just	as	quick.
Merging	is	generally	quick	as	well,	assuming	there	are	no	conflicts.

Ease	of	Use
There's	a	paradigm	shift	that	is	required	when	learning	to	use	Git.	And	a	prerequisite
to	thinking	that	Git	is	easy	to	use	is	understanding	it.	However,	once	you	grasp	the
concepts	and	start	to	use	this	tool	regularly,	it	becomes	both	easy	to	use	and	powerful.
There	are	simple	default	forms	of	commands	and	options.	As	your	proficiency	grows,
there	are	extended	forms	that	can	allow	you	to	do	nearly	anything	you	need	to	do	with
your	content.	In	addition,	almost	everything	about	Git	settings	is	configurable	so	that
you	can	customize	your	working	environment.	(Git	configuration	is	discussed	in	detail
in	Chapter	4.)

The	primary	mistake	that	most	new	Git	users	make	is	trying	to	use	it	in	the	same	way
that	they've	always	used	their	traditional	source	management	system.	Usually	this
means	that	they	are	trying	to	map	commands	and	workflow	concepts	from	the
previous	system	to	Git's	commands.	However,	trying	to	adhere	too	strictly	to	this
approach	with	Git	will	actually	make	the	learning	curve	steeper.	A	better	approach	is
to	consider	what	sort	of	source	management	outcome	is	needed	(files	in	the
repository,	viewing	history,	and	so	on),	and	then	take	the	time	to	learn	how	that
workflow	is	done	with	Git.	(The	Connected	Labs	included	throughout	this	book	will
aid	this	process	significantly	by	providing	hands-on	experience	with	Git.)

SHA1s
The	strange-looking	name	SHA1	is	an	acronym	for	Secure	Hashing	Algorithm	1.	In
short,	it's	a	checksum.	(It	has	its	roots	in	the	MD5	implementation	if	you're	familiar
with	that.)	Git	computes	SHA1s	internally	as	keys	for	everything	it	stores	in	its
repositories.	This	means	that	every	change	in	Git	has	a	unique	identifier	and	that	it's

not	possible	to	change	content	that	Git	manages	without	Git	knowing	about	it—
because	the	checksum	would	change.	In	Git,	SHA1s	represent	a	direct	way	to	identify
and	specify	the	exact	change	that	you	want	to	work	with.

Ability	to	Rewrite	History
One	aspect	of	Git	that	is	different	from	most	other	source	management	systems	is	the
ability	to	rewrite	or	redo	previous	versions	of	content	stored	in	the	repository—that	is,
history.	Git	provides	functionality	that	allows	you	to	traverse	previous	versions,	edit
and	update	them,	and	place	the	updated	versions	back	in	the	same	sequence	of
changes	stored	in	the	repository.	This	is	a	powerful	feature	of	the	tool,	but	it	can	also
be	dangerous	(see	the	section,	“The	Challenges:	Ability	to	Rewrite	History,”	later	in
this	chapter).

When	content	that	you're	working	on	in	your	local	environment	hasn't	yet	been
synched	to	the	remote	side,	this	is	a	safe	operation.	And	when	you	need	it,	it	can	be
very	beneficial.	For	example,	consider	a	case	where	you	forget	to	include	a	file	with	a
change,	or	even	just	need	to	do	something	as	simple	as	modify	the	message	associated
with	the	change.	Git	provides	an	amend	option	that	allows	you	to	update	or	replace
the	last	change	made	in	the	local	repository.

Additional	functionality	makes	it	possible	to	take	selected	changes	from	one	branch
and	incorporate	them	directly	into	the	line	of	changes	in	another	branch.	Beyond	that
are	levels	of	functionality	for	doing	editing	throughout	the	history	of	one	or	more
branches.	An	example	case	would	be	removing	a	hard-coded	password	that	was
accidentally	introduced	into	the	history	months	ago	from	all	affected	versions.

Staging	Area
Git	includes	an	intermediate	level	between	the	directory	where	content	is	created	and
edited,	and	the	repository	where	content	is	committed.	New	users	typically	don't	see
this	extra	level	as	a	positive,	due	to	the	perceived	inconvenience	of	having	to	move
content	through	another	level.	However,	it	does	provide	a	separate	area	for	use	in
some	of	Git's	advanced	operations,	such	as	the	amend	option	discussed	previously.	It
also	simplifies	some	status	tracking.	I'll	cover	the	staging	area	in	detail	in	Chapter	3.

Strong	Support	for	Branching
Using	branches	is	a	core	concept	of	Git.	Earlier,	I	mentioned	the	speed	with	which
users	can	create,	delete,	and	manipulate	branches.	However,	beyond	that,	Git	provides
capabilities	for	changing	branch	points	and	reproducing	changes	from	one	branch
onto	another	branch—a	feature	referred	to	as	rebasing.	This	ease	in	working	with	and
manipulating	branches	forms	the	basis	for	a	development	model	with	Git.	In	this
model,	branches	are	managed	as	easily	as	files	are	in	some	other	systems.	Later	in	the
book,	I	devote	entire	chapters	to	branching	concepts.

One	Working	Area,	Many	Branches

It	is	rare	these	days	for	source	management	users	to	only	be	concerned	with	one
release	of	content.	Even	when	products	are	managed	via	a	continuous	delivery
process,	in	a	user's	local	environment,	there	are	typically	multiple	changes	underway,
for	new	features,	bug	fixes,	and	so	on.	Traditionally,	the	best	way	to	develop	these
multiple	changes	in	parallel	has	been	in	separate	workspaces,	and,	depending	on	the
scope	and	ease	of	use	of	the	source	management	application,	in	separate	branches.
With	legacy	SCM	systems,	maintaining	these	multiple	workspaces,	switching	contexts
between	them,	and	ensuring	they	are	up	to	date	with	the	correct	source	code	is	a
multi-step	process	that	requires	tracking	and	coordination	by	the	user.

In	Git,	this	is	a	single-step	process	managed	by	Git.	Git	allows	you	to	work	in	one
workspace	for	a	repository,	regardless	of	how	many	branches	you	may	have	or	need	to
use.	It	manages	updating	the	content	in	the	workspace	to	ensure	it	is	consistent	with
whichever	branch	is	active.	You	never	need	to	leave	that	workspace.	Also,	while
working	in	one	branch,	you	still	have	the	expected	access	to	view,	merge,	or	create
other	branches.

WORKING	IN	MULTIPLE	BRANCHES
SIMULTANEOUSLY	WITH	GIT

If	you	do	find	yourself	needing	to	work	in	multiple	branches	at	the	same	time,
recent	versions	of	Git	have	introduced	a	new	feature	to	support	this—worktrees
(otherwise	known	as	working	trees).	Worktrees	provide	a	way	to	have	and	use
multiple	working	directories	with	different	branches	(at	the	same	time)	all	tied
back	to	the	same	local	Git	repository.

We	discuss	worktrees	in	detail	in	Chapter	14.

The	Challenges
Now,	to	balance	out	the	picture,	let's	look	at	a	few	of	the	things	about	Git	that	can	be
challenging—especially	for	new	users.	I'll	have	more	to	say	about	this	topic,	including
what	to	watch	out	for,	and	strategies	for	effectively	dealing	with	these	challenges,
throughout	the	book.

Very	Different	Model	from	Some	Traditional	Systems
Going	from	a	more	traditional,	centralized	version	control	system	to	a	distributed
version	control	system	such	as	Git	requires	a	change	in	how	you	think	about	your
source	management	workflow.	Git	implements	a	local	environment	with	multiple
levels	in	addition	to	a	separate	remote	repository.	As	well,	it	operates	with	units	that
map	more	closely	to	directory	tree	structures	than	just	individual	files.	This	leads	to
considerations	when	creating	and	working	in	Git	repositories,	in	terms	of	size	and
scope,	that	you	don't	usually	worry	about	with	centralized	systems.

Different	Commands	for	Moving	Content
In	most	traditional	source	control	systems,	there	are	one	or	two	commands	for	getting
content	out	(checkout)	and	one	or	two	for	putting	content	in	(check-in,	commit),	with
options	for	modifying	their	behavior	to	work	in	different	ways	if	needed.

With	Git,	there	are	different	commands	for	moving	content	between	the	different
layers,	and	these	commands	must	be	used	in	a	particular	sequence.	This	isn't	really	an
issue	after	you've	been	working	with	Git	for	a	while,	and	actually	is	clearer	when
talking	about	the	workflow.	However,	it	can	be	a	little	confusing	to	new	users.

Staging	Area
As	previously	mentioned,	Git	includes	a	staging	level.	This	is	an	intermediate	area	that
new	code	has	to	travel	through	on	its	way	to	the	local	repository.	This	will	seem
cumbersome	at	first,	because	content	must	flow	through	it,	even	in	some	situations
where	it	doesn't	appear	to	add	value.	However,	once	you	are	comfortable	with	it,	it	will

allow	you	to	work	with	a	power	and	flexibility	that	you	haven't	experienced	previously.

Mind	Shift	and	Learning	Curve
All	of	the	things	I'm	talking	about	as	advantages	and	challenges	contribute	to	the
power	of	Git—as	well	as	the	learning	curve.	As	I	alluded	to	previously,	one	of	the
fundamental	mistakes	that	new	Git	users	make	is	trying	to	map	too	many	concepts
and	workflows	that	they've	used	in	the	past	with	other	systems,	too	closely	to	Git
concepts	and	workflows.	They	often	expect	a	one-to-one	fit,	just	with	different	names.
The	basic	principles	of	source	management	still	apply—tracking	changes,	putting	code
in,	getting	code	out,	and	so	on.	However,	Git	adds	layers	of	flexibility	and	power	on	top
of	those	principles,	at	the	cost	of	requiring	you	to	think	differently	about	the	units	and
stages	of	source	control.

This	requires	a	learning	curve	and	a	willingness	to	accept	some	features	and
requirements	as	useful,	even	if	they	don't	immediately	appear	so.	It's	one	of	those
situations	where	a	feature	won't	seem	beneficial	until	it	is.	As	you	continue	to	use	the
tool,	it's	a	pleasant	experience	when	you	encounter	those	situations	where	you	need	to
do	X,	you	wonder	if	Git	can	do	X,	and	you	discover	(in	most	cases)	it	can.	Of	course,
there's	also	a	learning	curve	with	figuring	out	the	exact	invocation,	and	implications,
of	doing	X.

Part	of	the	mind	shift	comes	early	on	in	thinking	about	what	should	be	in	your	Git
repositories	and	branches.	Just	converting	existing	repositories	one-to-one	from
another	source	management	system	is	seldom	the	best	approach.	This	is	due	to	the
way	that	Git	manages	scope	in	terms	of	changes	and	repositories.	I'll	discuss	more
about	this	as	you	learn	more	about	Git.

Finally,	it's	worth	pointing	out	that	Git	offers	a	built-in	way	to	learn	and	explore	the
tool	and	workflow	as	you're	going	through	this	mind	shift	and	learning	curve—the
local	environment.	I'll	talk	more	about	this	in	the	next	couple	of	chapters,	but	for	now,
know	that	you	have	the	ability	to	make	any	source	management	changes	(and
mistakes)	you	need	to	in	your	local	environment	before	you	ever	push	them	over	to
the	remote	environment,	where	others	can	see	or	access	them.

Limited	Support	for	Binary	Files
Most	source	management	systems	do	not	have	strong	support	for	binary	files,	and	Git
is	no	exception.	There	are	two	aspects	of	dealing	with	binary	files	that	are	challenging
here:	internal	format	and	size.

Because	of	the	internal	format	of	these	types	of	files	where	the	bits	rather	than	the
characters	are	what	is	important,	standard	source	management	operations	can	be
difficult	to	apply	or	may	not	make	sense	at	all.	An	example	of	the	former	would	be
diffing.	An	example	of	the	latter	would	be	managing	line	endings.	If	the	SCM	does	not
recognize	or	understand	that	a	particular	file	is	binary	and	tries	to	execute	these	types
of	operations	against	it,	the	results	can	be	confusing	and	problematic.

The	size	of	binary	files	can	routinely	be	much	larger	than	text	ones.	Very	large	binary
files	can	pose	a	challenge	for	a	system	like	Git	since	they	usually	cannot	be
compressed	very	much,	and	so	can	impose	more	time	and	space	to	manage,	leading	to
extended	operation	times	when	the	system	has	to	pass	around	these	files	such	as
when	copying	to	a	local	system.

Of	course,	larger	text	files	can	also	pose	size	challenges,	but	with	text	files,	the	ability
to	compute	differences	between	versions	and	more	compressibility	can	work	better
with	Git's	internal	strategies	for	efficiently	storing	and	serving	these	files.

Git	has	built-in	mechanisms	for	identifying	files	as	binary.	However,	it	is	also	possible
(and	a	best	practice)	to	use	one	of	its	supporting	files—the	Git	Attributes	file—to
explicitly	identify	which	types	of	files	are	binary.	Git	Attribute	files	are	covered	in
detail	in	Chapter	10.

The	challenges	with	large	binary	files	for	source	management	in	general	have	led	to
the	development	of	several	separate	applications	to	help.	Artifact	repositories,	such	as
Artifactory	and	Nexxus,	are	targeted	specifically	at	storing	and	managing	revisions	of
binary	files.	And	the	Git	community	itself	has	created	various	applications	targeted	at
helping	with	this.	Currently,	the	best-known	one	is	probably	Git	LFS	(Git	Large	File
Storage)—a	solution	from	the	Git	hosting	site,	GitHub.	This	application	stores	large
files	in	a	separate	repository	and	stores	text	pointers	in	the	traditional	Git	repository
to	those	large	files.

No	Version	Numbers
As	referenced	in	the	previous	section	on	SHA1s,	Git	creates	checksums	(SHA1s)	for
everything	that	it	stores.	From	one	perspective,	the	overall	SHA1	value	for	a	change
can	function	like	the	version	number	in	most	other	source	control	systems.	However,
unlike	traditional	version	or	revision	numbers,	these	are	not	short,	easily	remembered
identifiers.	SHA1s	are	actually	40-character	hexadecimal	strings.	So,	from	a	user
perspective,	SHA1s	are	not	as	convenient	to	remember,	find,	or	communicate	about.
Typing	one	also	requires	some	care.

Fortunately,	in	any	Git	instance,	you	only	need	to	use	enough	of	the	characters	from
any	SHA1	to	uniquely	identify	that	SHA1	from	any	other—usually	the	first	seven
characters.	You	can	also	use	other	references,	such	as	tags	or	branch	names,	to
indicate	revisions	where	appropriate.

Merging	Scope
While	talking	about	the	Git	model,	I	mentioned	that	Git	thinks	in	units	that	more
closely	map	directory	structures	than	individual	files.	This	difference	in	granularity
provides	advantages	in	managing	and	manipulating	changes	in	source	control.
However,	it	can	also	create	disadvantages	in	merge	situations	where	there	are
conflicts.	Simply	put,	any	two	changes	by	different	users	within	the	scope	of	a	commit
can	be	a	conflict,	even	if	they	are	in	entirely	different	files	or	directories.	As	a	result,
the	more	people	that	are	making	changes	within	the	scope	of	a	repository,	the	more

likely	they	are	to	encounter	merge	conflicts	when	trying	to	get	their	updates	in.	This	is
a	factor	to	consider	when	planning	how	to	structure	your	Git	repositories.

Ability	to	Rewrite	History
Git's	ability	to	rewrite	history	falls	into	both	categories.	On	the	challenging	side	of	the
scale	is	the	potential	impact	that	uncoordinated	use	can	have	on	other	users.	Suppose
that	multiple	users	have	obtained	content	from	a	remote	(shared)	Git	repository.	One
user	decides	to	perform	an	operation	that	changes	the	revision	history.	Changing	the
history	results	in	new	internal	checksums	(SHA1s)	for	changes	in	the	repository,
starting	at	whatever	points	the	revisions	were	made.	Once	the	updates	are	put	back	on
the	remote	side,	any	other	users	that	need	to	merge	in	updates	will	have	to	deal	not
only	with	the	newest	content,	but	also	with	the	changes	to	the	revisions	in	the	history
made	by	the	other	user.	At	best,	this	can	be	surprising.	At	worst,	it	can	be	very	time-
consuming	and	resource-intensive,	because	it	requires	them	to	incorporate	all	of	the
changes.

As	a	highly	recommended	guideline,	changes	that	alter	history	should	only	be	made	in
a	user's	local	environment	before	the	affected	revisions	are	pushed	across	to	the
remote	side.	If	there	is	a	critical	need	to	change	revisions	in	the	history	of	a	repository
after	it	has	been	made	available	on	the	remote	side,	then	there	is	a	recommended
approach:	other	users	should	be	informed	in	advance,	and	given	a	chance	to	get	their
changes	in	before	the	changes	to	the	history	are	made.	After	the	changes	are
completed,	they	can	get	a	fresh	copy	to	work	with	locally.	This	will	allow	them	to	avoid
potentially	difficult	merge	situations.

Timestamps
When	using	most	source	control	systems,	timestamps	that	reflect	when	changes	were
made	in	the	repositories	are	a	useful	and	static	property.	Given	any	point	in	time,	it	is
possible	to	pull	the	content	from	the	repository	as	it	was	at	that	point	and	always	get
the	same	set	of	content	on	subsequent	pulls.	Not	so	with	Git.	Due	to	the	way	that
remote	repositories	are	synched	from	local	repositories,	the	timestamp	that	shows	up
in	the	remote	repository	is	the	time	the	update	was	made	on	the	local	environment,
not	the	timestamp	of	when	things	were	synched	to	the	remote.

This	means	that	it's	possible	to	pull	content	from	the	remote	side	based	on	a
particular	timestamp	and	get	a	certain	set	of	content,	then	later	pull	it	again	based	on
the	same	timestamp,	and	get	a	different	set	of	content.	This	can	happen	if	one	or	more
changes	were	made	in	a	user's	local	environment,	prior	to	that	timestamp,	but	weren't
synched	to	the	remote	until	between	the	two	pulls.

In	this	case,	a	new	change	with	an	older	timestamp	would	suddenly	show	up	in	the
remote.	For	this	reason,	you	can't	rely	on	timestamps	for	some	of	the	cases	where
they	are	traditionally	employed	with	existing	source	control	systems.	I	will	discuss
what	the	alternative	is	for	Git	when	I	talk	more	about	the	remote	side	in	Chapter	12.

Access	and	Permissions
Out	of	the	box,	Git	does	not	provide	a	layer	to	set	up	users	or	to	grant	and	deny	access.
For	the	local	environment,	this	doesn't	matter	because	everything	is,	well,	local.	For
shared,	server-side	repositories,	there	are	a	few	options:

Using	operating	system	mechanisms	such	as	groups	and	umasks	that	limit	the	set
of	users	and	their	direct	repository	permissions

Limiting	access	via	client-server	protocols	(SSH,	HTTPS)

Adding	an	external	applications	layer	that	implements	a	more	fine-grained
permissions	model	and	interface

Note	that	these	are	not	mutually	exclusive.	In	a	corporate	environment	that	chooses
to	host	its	own	shared,	server-side	repositories,	for	example,	you	would	want	to	limit
who	could	directly	access	the	actual	repositories	on	disk	at	the	system	level,	have
authentication	for	users	who	need	to	put	content	into	them	from	their	local
environments,	and	potentially	have	a	permissions	layer	that	can	be	centrally	managed
or	managed	by	a	team	within	a	selected	scope.

SUMMARY
In	this	chapter,	I	introduced	Git,	discussed	where	it	came	from,	and	talked	about	some
of	the	advantages	and	disadvantages	that	users	should	be	aware	of	when	working	with
this	tool.	Along	the	way,	I	also	introduced	a	number	of	terms	and	concepts	that	are
part	of	Git.	In	subsequent	chapters,	I	will	be	expanding	on	and	explaining	what	each	of
these	terms	and	concepts	means,	along	with	teaching	you	how	to	use	them.

If	you're	coming	from	an	environment	where	you	used	a	traditional	centralized	source
control	system,	you'll	find	that	Git	is	significantly	different	and	has	a	learning	curve.
The	workflow	is	different	as	well.	Trying	to	map	commands,	structures,	and	workflows
from	your	previous	system	is	not	an	effective	strategy.	Rather,	you	should	take	the
time	to	read	through	the	following	chapters	and	examine	the	concepts	and	examples.
Equally	important	is	that	if	you	can	work	through	the	Connected	Labs,	they	will	go	a
long	way	toward	helping	you	internalize	the	concepts,	ensure	a	deeper	understanding
of	the	material,	and	help	you	be	ready	to	apply	Git	to	your	job	when	you	need	it.

In	Chapter	2,	you'll	look	at	some	of	the	primary	design	concepts	that	Git	uses
internally	and	that	are	helpful	for	users	to	understand	before	going	further	with	it.

Chapter	2
Key	Concepts

WHAT'S	IN	THIS	CHAPTER?

The	differences	between	a	centralized	and	distributed	source	management
system

The	differences	between	a	traditional	delta	model	for	tracking	source	code
changes	and	the	way	that	Git	tracks	changes

Why	Git	is	efficient

How	(and	why)	Git	repositories	should	be	organized

Things	to	keep	in	mind	when	migrating	repositories	to	Git

Dealing	with	large	files	in	Git

In	this	chapter,	I'll	explain	some	of	the	underlying	key	design	concepts	that	Git	uses.
Implementation	around	these	concepts	forms	the	basis	for	how	Git	works	and	how	to
use	it.	I'll	broadly	break	these	concepts	down	into	two	categories,	user-facing	and
internal,	and	show	how	they	differ	from	more	traditional	source	management
systems.	Lastly,	I'll	focus	on	some	important	considerations	for	creating	repositories
in	Git,	and	managing	special	content	such	as	binary	files.

DESIGN	CONCEPTS:	USER-FACING
Version	control	systems	(VCS)	such	as	Git	can	be	broadly	classified	as	either
centralized	or	distributed.	Git	is	an	example	of	a	distributed	version	control	system
(DVCS).	Other	systems	in	this	category	include	Mercurial	and	Bazaar.	Examples	of	a
centralized	version	control	system	(CVCS)	would	be	Concurrent	Versions	System
(CVS)	and	Subversion.

The	fundamental	differences	between	a	DVCS	and	a	CVCS	have	to	do	with	how	the
system	manages	repositories	and	the	workflow	that	the	user	employs	to	get	content
into	the	server-side	part	of	the	system.

Centralized	Model
Figure	2.1	illustrates	a	traditional	centralized	model.	In	this	model,	you	have	a	central
server	that	holds	all	of	the	repositories	with	all	of	the	history	and	all	versions	of
changes	that	have	been	put	into	the	system	over	time.	This	area	is	the	one	source	of
the	truth—the	container	of	all	the	repositories.

Figure	2.1	A	traditional	centralized	version	control	model

When	users	want	to	work	with	a	file	in	one	of	these	repositories,	they	connect	to	the
server	via	a	client,	and	retrieve	the	files	and	the	versions	they	want	to	work	with.	They
then	make	whatever	changes	they	need	to,	connect	to	the	server	again,	and	send	the
update	back	to	it.	There,	the	differences	from	the	previous	version	are	determined	and
stored	in	the	repository	as	updates.

In	this	type	of	model,	users	are	dependent	on	the	central	server.	If,	for	some	reason,
users	cannot	connect	to	the	server,	they	cannot	do	any	source	management
operations.

Distributed	Model
In	a	distributed	system,	the	model	is	somewhat	different.	There	is	still	a	server	that

holds	the	shared	repositories,	and	that	clients	interact	with.	However,	when	users
want	to	start	making	changes,	instead	of	getting	individual	files	or	directories	from	the
server,	they	get	a	copy	of	the	entire	repository.	The	copy	comes	from	the	server	side
and	has	all	content	(including	history)	up	to	the	point	in	time	when	the	copy	is
created.

In	Git	terminology,	the	server	side	is	called	the	remote	repository	(or	just	remote).
The	copy	operation	is	referred	to	as	a	clone.	You	can	call	the	area	on	your	local	system
with	the	cloned	repository	your	local	environment	because	it	consists	of	several	layers
(which	you'll	explore	in	the	next	chapter).	For	simplicity,	I'll	refer	to	the	remote
repository	as	just	the	remote	throughout	the	rest	of	this	discussion.	Figure	2.2
illustrates	this	model.

Figure	2.2	A	distributed	version	control	model

The	actual	cloned	(copied)	repository	within	the	local	environment	is	called	the	local
repository.	It	has	all	of	the	files,	histories,	and	other	data	that	were	in	the	remote.	A
change	that	is	made	into	the	local	repository	is	called	a	commit,	similar	in	concept	to	a
check-in	in	some	other	systems.

Once	users	have	cloned	from	a	remote,	they	can	do	all	of	their	source	management
operations	against	the	local	repository.	When	users	have	made	all	the	commits	they
want	in	the	local	repository,	they	then	push	their	changes	to	the	remote.

The	key	difference	here	is	that,	in	a	DVCS	such	as	Git,	users	are	performing	the	source
management	operations	against	a	local	copy	of	the	server-side	(remote)	repository
instead	of	making	them	against	the	actual	server-side	repository.	Until	users	need	to
push	the	changes	back	to	the	remote,	they	do	not	even	need	to	be	connected	to	it.	The
connection	between	the	local	and	the	remote	side	is	not	constant.	Rather,	it	is

activated	when	updates	need	to	be	synchronized	between	the	two	repositories.

Because	users	do	not	have	to	be	connected	to	the	remote	to	do	their	source
management	operations,	they	can	work	disconnected	from	the	remote.	As	noted	in
Chapter	1,	this	is	referred	to	as	being	able	to	do	disconnected	development.	Figure	2.3
shows	a	conceptual	model	of	this	approach.

Figure	2.3	Disconnected	development

In	Figure	2.3,	starting	on	the	left,	a	user	makes	a	change	to	a	file	in	the	local
repository	without	any	connection	to	the	remote.	Then	a	second	change	is	made	in	the
same	way.	Finally,	the	local	environment	is	synched	up	with	the	remote	side	so	that
both	areas	have	the	latest	content.

One	other	thing	to	note	is	that	a	remote	can	actually	be	any	Git	repository	that	is	set
up	to	function	that	way.	Most	commonly,	a	remote	is	a	Git	repository	hosted	on	a
server	and	running	as	a	daemon	process.	However,	there	are	various	protocols	for
communicating	between	Git	clients	and	servers,	even	a	simple	one	that	operates	via
shared	folders.	I'll	have	more	to	say	about	these	protocols	in	Chapter	12	where	I
discuss	remotes	in	more	detail.

DESIGN	CONCEPTS:	INTERNAL
Another	area	where	Git	differs	significantly	from	traditional	source	management
systems	is	in	the	way	it	represents	and	stores	changes	internally.

Delta	Storage
In	a	traditional	source	management	system,	content	is	managed	on	a	file-by-file	basis.
That	is,	each	file	is	managed	as	an	independent	entity	in	the	repository.	When	a	set	of
files	is	added	to	a	repository	for	the	first	time,	each	file	is	stored	as	a	separate	object	in
the	repository,	with	its	complete	contents.	The	next	time	any	changes	to	any	of	these
files	are	checked	in,	the	system	computes	the	differences	between	the	new	version
and	the	previous	version	for	each	file.	It	constructs	a	delta,	or	patch	set,	for	each	file
from	the	differences.	It	then	stores	that	delta	as	the	file's	next	revision.

This	model	is	called	delta	storage.	Figure	2.4	illustrates	this	process.

Figure	2.4	The	delta	storage	model

In	the	first	iteration,	files	A,	B,	and	C	are	checked	in.	Then,	changes	are	made	to	the
three	files	and	those	changes	are	checked	in.	When	that	occurs,	the	system	computes
the	deltas	between	the	current	and	previous	versions.	It	then	constructs	the	patch	set
that	will	allow	it	to	re-create	the	current	version	from	the	previous	version	(the	set	of
lines	added,	deleted,	changed,	and	so	on).	That	patch	set	is	stored	as	the	next	revision
in	the	sequence.	The	process	repeats	as	more	changes	are	made.	Each	delta	is
dependent	on	the	previous	one	in	order	to	construct	that	version	of	the	file.

In	order	to	get	the	most	current	version	of	a	file	from	the	system	when	the	client
requests	it,	the	system	starts	with	the	original	version	of	the	file	and	then	applies	each

delta	in	turn	to	arrive	at	the	desired	version.	As	the	files	continue	to	be	updated	over
time,	more	and	more	deltas	are	created.	In	turn,	more	deltas	must	be	applied	in
sequence	to	deliver	a	requested	version.	Eventually,	this	can	lead	to	performance
degradation,	among	other	issues.

Snapshot	Storage
Git	uses	a	different	storage	model,	called	snapshot	storage.	Whereas	in	the	delta
model,	revisions	are	tracked	on	a	file-by-file	basis,	Git	tracks	revisions	at	the	level	of	a
directory	tree.	You	can	think	of	each	revision	within	a	Git	repository	as	being	a	slice	of
a	directory	tree	structure	at	a	point	in	time—a	snapshot.	The	structure	that	Git	bases
this	on	is	the	directory	structure	in	your	workspace	(minus	any	files	or	directories	that
Git	is	told	to	ignore—more	about	that	later).

When	a	commit	is	made	into	a	Git	repository,	it	represents	a	snapshot	of	part	or	all	of
the	directory	tree	in	the	workspace,	at	that	point	in	time.	When	the	next	commit	is
made,	another	snapshot	is	taken	of	the	workspace,	and	so	on.	In	each	of	these
snapshots,	Git	is	capturing	the	contents	of	all	of	the	involved	files	and	directories	as
they	are	in	your	workspace	at	that	point	in	time.	It's	recording	the	full	content,	not
computing	deltas.	There	is	no	work	to	compute	differences	at	that	point.

The	snapshot	storage	model	is	shown	in	Figure	2.5.	In	this	model,	you	have	the	same
set	of	three	files,	A,	B,	and	C.	At	the	point	they	are	initially	put	into	the	repository,	a
snapshot	of	their	state	in	the	workspace	is	taken	and	that	snapshot	(with	each	of	the
file's	full	contents)	is	stored	in	Git	and	referenced	as	a	unit.

Figure	2.5	The	snapshot	storage	model

As	additional	changes	are	made	to	any	of	the	files	and	further	commits	are	done,	each
commit	is	built	as	a	snapshot	of	the	structure	as	it	is	at	that	point.	If	a	file	hasn't
changed	from	one	commit	to	the	next,	Git	is	smart	enough	not	to	store	a	new	version,
and	just	creates	a	link	to	the	previous	version.	Note	that	there	are	not	any	deltas	being
computed	at	this	point	and	you	are	managing	content	for	the	user	at	the	level	of	a
commit	rather	than	individual	files.

Later,	when	you	want	to	get	one	of	these	snapshots	back,	Git	can	just	hand	back	the
specific	set	of	content	associated	with	that	commit,	without	going	through	the
extensive	reconstruction	process	required	by	the	delta	model.

Git's	Storage	Requirements
One	of	the	questions	that	usually	comes	to	mind	right	away	when	people	are
introduced	to	the	snapshot	storage	concept	is,	“Doesn't	this	use	a	lot	of	disk	space?”
There	are	a	couple	of	points	related	to	that.	First,	as	I	just	noted,	Git	can	use	links	in
some	cases	to	reduce	duplicate	content.	Second,	Git	compresses	content	using	zlib
compression.	(Notice	the	smaller	compressed	size	of	the	blocks	representing	content
in	the	repository	in	Figure	2.5.)	Third,	periodically,	at	certain	trigger	points,	such	as
when	running	garbage	collection	functionality,	Git	looks	for	content	that	is	very
similar	between	revisions	and	packs	those	revisions	together	to	form	a	compressed
pack	file.	In	these	cases,	it	can	actually	create	an	associated	delta	of	sorts	that
represents	the	differences	between	very	similar	revisions.	The	delta	here	is	what	it
takes	to	get	back	to	previous	revisions.	Git	assumes	that	the	most	recent	revision	is
the	one	that	will	be	most	requested	and	thus	best	to	keep	as	a	full,	ready	revision.

So,	in	the	Git	model,	the	use	of	any	deltas	is	a	deliberate	optimization	for	storage
rather	than	the	default	versioning	mechanism.	Figure	2.6	illustrates	a	way	to	think
about	this	concept,	where	multiple	objects	have	been	packed	together	internally.	This
is	invisible	to	the	user.	From	a	user	perspective,	Git	still	manages	interactions	with
the	user	in	terms	of	individual	snapshots,	regardless	of	whether	or	not	content	ends
up	packed	in	the	repository.

Figure	2.6	A	representation	of	Git's	packing	behavior	to	optimize	content	size

All	of	these	approaches	help	to	reduce	the	space	a	Git	repository	requires.	In	fact,	if
you	were	to	compare	the	corresponding	disk	space	requirements	for	a	source	control
system	that	uses	the	delta	model	to	the	snapshot	model	that	Git	uses,	you	might	find
that	in	the	best	cases,	Git	actually	uses	less.

(You	may	be	wondering	how	a	model	like	this	handles	binary	files	since	those	don't
lend	themselves	to	a	delta	model.	I	cover	dealing	with	Git	and	binary	files	in	more
detail	later	in	this	chapter.)

A	final,	related	point	is	that	Git	is	designed	to	work	with	multiple,	smaller	repositories
rather	than	large,	monolithic	repositories,	a	characteristic	I'll	explore	in	more	detail	in
the	next	section.

So,	to	summarize,	there	are	two	differences	between	delta	and	snapshot	storage:

1.	 Delta	storage	manages	content	on	a	file-by-file	basis,	as	opposed	to	snapshot
storage	where	content	is	managed	at	a	directory	tree	level.

2.	 Delta	storage	manages	versions	over	time	by	figuring	out	the	differences	and
storing	that	information	from	revision	to	revision	(the	delta).	It	reconstructs	later
revisions	by	starting	with	the	base	version	and	applying	deltas	on	top	of	that.
Because	snapshot	storage	is	storing	a	capture	of	the	entire	tree,	it	does	not	usually
have	to	do	any	reconstruction,	or	only	a	very	small	amount	if	the	content	has	been
packed.

Git's	approaches	in	these	areas	create	a	very	powerful	model	to	build	on,	especially	as
they	pertain	to	branching.	However,	they	also	create	the	need	to	structure	repositories
appropriately	in	Git	for	the	best	usability	and	performance.	This	is	the	topic	of	the
next	section.

REPOSITORY	DESIGN	CONSIDERATIONS
When	beginning	to	work	with	Git,	whether	creating	repositories	for	new	content	or
migrating	existing	content	from	another	source	management	system,	it	is	important
to	consider	how	you	size	and	structure	your	repositories.	For	existing	content,	unless
your	code	is	already	broken	down	into	very	distinct,	separate	modules,	a	one-to-one
migration	is	unlikely	to	be	the	best	approach.	This	is	because	of	repository	scope.

Repository	Scope
A	key	point	to	keep	in	mind	when	beginning	to	work	with	Git	is	that	it	is	designed	to
be	used	as	a	set	of	many,	smaller	repositories.	How	small?	Well,	as	an	example,
consider	the	case	of	a	Java	project	managed	in	a	traditional,	centralized	source
management	system.	You	might	have	a	single	repository	for	a	Java	project	that's	made
up	of	ten	different	JARs,	with	all	of	the	source	code	for	all	of	the	JARs	stored	in
different	subdirectories	in	the	repository.	This	arrangement	typically	works	well	in	a
centralized	model	where	each	file	is	managed	separately.	In	the	working	model	for
that	system,	you	don't	typically	check	out	or	check	in	the	entire	repository	each	time.
You	can	manage	things	at	smaller	granularities,	such	as	only	checking	out	the
subdirectory	with	the	code	for	one	particular	JAR,	modifying	a	few	files,	and	then
checking	those	files	back	in.

In	the	Git	model,	a	more	common	scenario	would	be	to	have	a	separate	repository	for
the	code	associated	with	each	separate	JAR.	Why?	Recall	that	Git	manages	changes	as
commits	that	are	a	snapshot	of	the	larger	workspace—the	set	of	files	and	directories.
While	Git	is	efficient	in	how	it	stores	and	retrieves	data,	this	efficiency	is	still	relative
to	the	size	of	the	content.	If	the	content	is	inordinately	large,	you	may	find	yourself
waiting	longer	than	you'd	expect	for	operations	that	get	or	put	data	from	or	into	the
repository.

In	addition,	as	I	alluded	to	in	Chapter	1,	because	Git	manages	content	in	terms	of
snapshots,	any	changes	by	two	users	within	the	scope	of	the	same	snapshot,
regardless	of	whether	or	not	they	are	to	the	same	file,	have	potential	to	cause	a	merge
conflict,	depending	on	timing.

To	illustrate	this,	suppose	you	and	another	user	clone	the	same	repository	in	Git	down
to	your	local	systems,	and	the	repository	contains	directories	1	and	2.	The	other	user
makes	a	change	in	file	A	in	directory	1,	commits	it,	and	pushes	it	up	to	the	remote.
Then	you	make	a	change	in	file	B	in	directory	2,	and	commit	and	attempt	to	push	your
changes	back	to	the	remote.	Git	will	reject	your	changes	at	the	point	where	you	try	to
get	them	into	the	remote.	This	is	because	Git	considers	that	something	else	(anything
else)	has	changed	in	this	repository	since	you	originally	got	your	copy	of	the	code.
Even	though	you	didn't	touch	the	same	file	as	the	other	user,	you	have	a	merge
conflict	within	the	snapshot,	because	someone	else	made	a	change	before	you	could
get	yours	in.	This	is	one	of	the	key	frustrations	for	new	Git	users.	I'll	talk	more	about
this	in	Chapter	13,	including	how	to	resolve	the	merge	conflicts.	(Also,	see	the

following	Note.)

In	addition	to	repository	size,	there's	a	second	point	to	consider.	Ideally,	you	want	to
create	repositories	that	will	not	have	too	many	users	working	in	them	at	the	same
time,	and	making	(from	Git's	viewpoint)	conflicting	changes.	This	will	help	limit	the
number	of	rejected	pushes	and	the	amount	of	merging	work	that	has	to	be	done.

NOTE

To	be	fair,	resolving	these	kinds	of	conflicts	is	generally	an	easy	mechanical
process,	unless	both	users	have	changed	the	same	file	or	files.	However,	it	does
involve	additional	operations	and	inspection	by	the	last	user	who	is	trying	to	get
their	changes	in.	Depending	on	the	scope,	the	time	to	review	the	conflicts	can	be
non-trivial.

Having	smaller	repositories	with	only	a	few	users	making	changes	also	allows	for
closer	collaboration	and	coordination.	It	helps	to	keep	operations	in	Git	working
quickly	and	smoothly	when	Git	is	manipulating	content	at	the	scope	of	a	repository.
This	also	applies	to	development	environments,	such	as	Eclipse,	that	look	at	projects
as	equating	to	a	repository	when	interfacing	with	Git.

In	general,	you	can	think	of	one	repository	in	Git	as	equating	in	scope	to	one	module
of	your	project.	If	your	code	is	not	already	modularized,	it	can	sometimes	be	difficult
to	figure	out	what	should	constitute	a	module.	One	general	guideline	is	to	map	the
code	to	build	a	JAR,	DLL,	EXE,	or	other	single	component	to	a	repository.	Think	in
terms	of	what	code	you	would	use	to	build	a	single	deliverable	in	an	application	such
as	a	Gradle	or	Maven	project	or	a	developer	interface	such	as	Eclipse,	IntelliJ,	or
Visual	Studio.	Consider	code	that	is	owned	and	maintained	by	only	one	or	a	few
people	to	reduce	the	risk	of	merge	conflicts.	If	your	code	does	not	easily	map	out	this
way,	then	it's	worth	spending	some	time	up	front	to	figure	out	how	to	get	it	into	a
structure	that	is	more	modular.	You	can	then	base	your	Git	repositories	on	that
revised	structure.

When	considering	how	to	organize	code	in	Git	repositories,	it's	also	important	to
consider	whether	all	categories	of	content	related	to	a	module	are	appropriate	to
migrate	or	store	in	a	repository.	There	are	general	guidelines	(especially	around	very
large	files)	that	apply,	mostly	independent	of	the	source	management	application.	I'll
explore	those	guidelines	next.

File	Scope
When	dealing	with	very	large	files,	there	are	a	number	of	considerations	and
approaches	to	take	into	account.	An	arbitrary	definition	of	very	large	might	be	over
100	MB	for	text	files,	but	less	for	binary	files	for	reasons	I'll	talk	about	in	the	next	few
sections.	Nearly	all	of	these	considerations	apply	to	any	source	management	system,
not	just	Git.	I'll	now	discuss	some	points	you	should	consider.

Storage	Model
Source	management	systems	can't	create	deltas	between	versions	of	binary	files.	As	a
result,	they	end	up	storing	full	versions	for	each	change	to	a	binary	file.	This	is
necessary,	but	inefficient,	and	can	quickly	consume	significant	disk	space	if	the	files

are	large.	Even	in	a	system	such	as	Git	that	compresses	content,	most	binary	files	do
not	compress	well.	For	certain	types	of	smaller	binary	content,	such	as	icons	or	other
graphical	elements,	storing	those	files	in	the	system	usually	doesn't	present	a	problem
and	makes	sense.	For	larger	files,	some	pre-planning	of	alternative	approaches	to
managing	these	files	can	help	avoid	issues	in	the	repository.	One	common	alternative
approach	for	dealing	with	these	files	is	to	store	them	in	a	separate	repository.

Separate	Repositories
For	the	reasons	outlined	previously,	storing	very	large	files,	especially	binaries,	in	a
repository	such	as	Git	is	not	the	best	approach.	This	also	applies	to	generated	files.
Instead,	there	are	specially	designed	applications	for	working	with	these	types	of	files:
artifact	repositories.	Artifact	repositories	work	much	like	a	source	control	system,	but
are	designed	to	be	a	good	fit	for	managing	versions	of	files	that	don't	really	belong	or
fit	well	in	your	standard	source	repositories.	Builds	and	other	parts	of	a	pipeline	can
pull	source	code	from	the	source	management	system	and	resolve	needed	pre-built
binary	dependencies	from	artifact	repositories.	Some	of	the	more	popular	artifact
repositories	today	include	Artifactory	and	Nexus.

There	is	also	an	option	to	store	large	files	that	need	to	be	managed	in	source	control	in
a	second,	separate	Git	repository	designated	for	them.	This	approach	still	suffers	from
the	problems	discussed	in	the	“Storage	Model”	section.	However,	it	does	remove	the
impact	of	dealing	with	the	large	binaries	in	the	other	smaller	repositories.

Extensions	to	Git
Not	surprisingly,	a	set	of	applications	and	packages	has	been	created	around	trying	to
solve	the	limitations	of	Git	with	large	files.	Among	these	are	extensions	to	Git,	such	as
the	git-annex	and	Git	Large	File	Storage	(Git	LFS)	open-source	packages.	There	are
also	other	packages,	but	these	two	seem	the	most	likely	to	continue	to	receive	support
and	development.	This	is	primarily	due	to	their	incorporation	into	two	of	the	major
Git-hosting	applications:	git-annex	has	now	been	incorporated	into	GitLab	as	GitLab-
Annex,	and	Git	LFS	is	now	incorporated	into	GitHub	as	well	as	some	versions	of
Bitbucket—another	Git	repository	hosting	system.

In	these	implementations,	the	large	files	are	stored	in	a	separate	space,	but	referenced
by	pointers	inside	of	a	normal	Git	repository.	The	applications	vary	in	terms	of
characteristics	that	include	the	following:

Performance

Configurability	(Can	files	be	stored	on	user-configurable	locations?)

Ease	of	use	(registering	of	files	and	use	of	existing	commands	versus	new
commands)

Cost	for	long-term/large-scale	use

Learning	curve

All	of	these	characteristics	factor	into	the	transparency	and	usability	of	the	process,
but	some	setup	and	overhead	is	always	required.

Generated	Content
Files	generated	from	source	code	stored	in	your	source	control	system	should	not
actually	be	stored	in	the	source	management	system.	If	these	files	are	generated	from
sources	that	you	have	control	over,	then	the	file	can	always	be	reproduced	from	the
sources.

In	a	model	where	the	generated	files	are	stored	in	the	source	repository,	if	the	sources
change	frequently,	then	the	generated	content	must	also	be	updated	frequently	in	the
repository.	This	can	be	challenging	to	keep	in	sync	and	can	lead	to	the	problems
discussed	in	the	“Storage	Model”	section.

Generally,	the	reason	why	files	produced	from	existing	source	are	stored	in	the	source
management	system	boils	down	to	having	them	easily	accessible	or	using	the	source
management	system	as	a	transport	mechanism	between	processes.	However,	there	are
better	ways	to	manage	those	needs	such	as	using	an	artifact	repository	(described	in
the	“Separate	Repositories”	section)	that	is	designed	for	this	purpose.

MANAGING	BINARY	FILES	IN	GIT

While	I	am	talking	about	binary	files,	it's	worth	discussing	how	Git	identifies	and
manages	these	files.	Git	can	read	a	separate	configuration	file	called	a	Git
Attributes	file	(named	.gitattributes	on	disk)	to	determine	how	to	treat	certain	file
types.	In	this	file,	different	file	types	can	be	identified	as	binary.	For	such	types,
Git	understands	that	it	should	not	perform	some	of	the	operations	that	it	does
with	text	files,	such	as	diffing	and	modifying	line	endings.

I'll	talk	in	detail	about	the	Git	Attributes	file	in	Chapter	10.

Shared	Code
While	I'm	on	the	topic	of	easily	accessing	code	in	the	source	management	system,	at
times,	it	may	seem	that	you	need	to	share	code	from	one	repository	to	another.	Git
provides	a	way	to	do	this	through	a	construct	called	submodules.	A	submodule	is
essentially	a	static	reference	to	another	repository	that	resides	in	your	local
environment.	Git	understands	that	it	is	a	separately	managed	repository	even	though
it	is	in	your	tree	structure.

Submodules	can	be	useful	in	certain	cases,	such	as	when	an	organization	needs	to
share	source	for	development	dependencies	that	are	being	worked	on	by	one	group
with	other	groups.	However,	they	can	be	challenging	to	keep	in	sync	without	careful
attention	to	updates.	Managing	them	requires	a	different,	coordinated	set	of
operations.	And	it	can	be	easy	to	back-level	them	for	yourself	or	other	users.	For	these
reasons,	submodules	can	be	problematic	and	are	not	generally	recommended	for
beginning	Git	users.

Git	also	supports	another	construct	called	subtrees	that	provides	similar	benefits	to
submodules,	but	with	a	simpler	structure	and	a	simpler	set	of	operations	to	manage
them.	Both	submodules	and	subtrees	are	explored	in	detail	in	Chapter	14	and	the
reader	is	advised	to	read	that	before	attempting	to	use	either	of	these	constructs.

Another	alternative	approach	is	to	just	build	the	needed	artifacts	from	other
repositories	separately	and	specify	them	as	compile-time	or	run-time	dependencies	to
pull	them	in,	if	this	fits	with	how	your	project	is	organized.

SUMMARY
In	this	chapter,	you	learned	about	some	of	the	differences	between	Git's	overall	design
and	functioning,	and	that	of	more	traditional	centralized	source	management	systems.
I	covered	the	model	that	Git	uses	to	clone	a	repository	and	create	a	stand-alone	local
environment	in	which	to	do	source	management	operations	versus	the	typical	legacy
“always	do	the	operations	to	the	server”	model.	Along	these	lines,	I	talked	about	how
Git	is	structured	with	the	local	environment	and	the	remote	environment.	I	also
introduced	the	concept	of	disconnected	development,	which	is	one	of	the	appealing
aspects	of	using	Git.	All	of	this	allows	you	to	get	things	the	way	you	want	them	locally
before	you	share	them	back	with	others	in	a	public	repository.

I	also	shared	some	insights	on	how	Git	manages	things	internally.	You	learned	how
Git	sees	sets	of	files	involved	in	a	commit	as	a	unit	and	works	at	a	granularity	that	is
directory	tree–based,	not	file-based.	You	also	looked	at	how	it	stores	and	manages
commits	over	time.

Finally,	I	discussed	some	considerations	when	creating	or	migrating	to	Git
repositories,	defining	some	guidelines	for	repository	scope	and	file	scope,	especially
around	large	files	and	binaries.	Git	is	not	strong	in	managing	very	large	files,	but	there
are	good	alternatives.

In	the	next	chapter,	you'll	expand	your	understanding	of	the	local	environment	that
Git	provides	by	looking	at	the	Git	promotion	model,	as	well	as	looking	at	the	workflow
to	move	content	through	the	different	levels.

Chapter	3
The	Git	Promotion	Model

WHAT'S	IN	THIS	CHAPTER?

The	different	levels	of	Git

The	workflow	for	moving	content	between	the	levels	(the	Git	promotion
model)

Why	Git	has	the	staging	area	and	how	it	is	used

A	summary	of	the	commands	that	you	use	to	move	content	between	the	levels

Whenever	you	are	learning	a	new	system	or	process,	it's	convenient	to	think	about	it
in	terms	of	something	you	already	know	or	have	some	familiarity	with.	In	this
chapter,	you	will	take	a	tour	of	the	various	levels	that	make	up	a	Git	system.	You	will
also	relate	them	to	a	common	model	that	almost	everyone	who	works	in	an	IT-related
field	will	recognize.	This	model	also	provides	a	convenient	way	of	thinking	about	how
you	get	content	through	the	levels,	and	introduces	you	to	the	basic	Git	commands	for
a	workflow.

In	addition,	I'll	focus	in	on	one	level	that	is	not	typically	found	in	other	source
management	systems,	but	which	plays	a	key	role	when	interacting	with	Git	and	some
of	its	advanced	functionality.	Understanding	this	level	early	on	is	a	prerequisite	to
really	understanding	any	Git	workflow.

THE	LEVELS	OF	GIT
So	far,	I	have	introduced	Git	and	discussed	its	history,	good	points,	and	not-so-good
points.	I've	also	presented	some	concepts	to	help	you	understand	its	internal
functioning.	It's	now	time	to	look	at	the	different	levels	that	users	encounter	when
working	with	Git.	These	levels	represent	the	stages	that	content	moves	through,	as	it
makes	it	way	from	the	local	development	directory	to	the	server-side	(remote)
repository.	One	way	to	think	about	and	understand	these	levels	is	to	compare	them	to
another	well-known	model,	a	dev-test-prod	environment.

Dev-Test-Prod	and	Git
Figure	3.1	shows	a	simple	block	diagram	representing	a	dev-test-prod	environment.
Most	organizations	employ	some	version	of	this	model	in	their	software	development
and	release	processes.

Figure	3.1	A	simple	dev-test-prod	environment

You	can	think	of	this	environment	as	a	sort	of	promotion	model	where	content	moves
up	through	the	levels	as	it	matures.	Each	movement	can	be	initiated	by	someone	or
some	process	when	it	is	deemed	ready.	At	any	point,	different	levels	may	contain	the
same	or	different	versions	of	some	particular	piece	of	content,	depending	on	which
levels	it	has	been	promoted	to	and	whether	any	additional	changes	have	been	made	at
a	lower	level.

To	give	you	a	better	understanding	of	this	environment,	I'll	briefly	describe	the
purpose	of	each	of	the	levels	in	my	reference	model.

At	the	bottom,	you	start	with	a	Dev	area	(a	development	workspace)	where	content	is
created,	edited,	deleted,	and	so	on.	Some	other	names	that	might	be	used	for	this	level
include	sandbox,	playpen,	workspace,	and	working	directory.

When	the	code	is	deemed	adequate,	it	can	be	moved	to	the	Test	area	(the	testing

level).	Not	all	of	the	code	has	to	be	moved	to	Test	at	the	same	time.	This	is	an	area
where	different	pieces	can	be	brought	together	to	ensure	that	everything	is	ready	for
production.

Once	a	set	of	code	has	passed	the	testing	phase,	it	can	be	promoted	to	the	Prod	(or
production)	area;	this	is	where	it	is	considered	ready	and	officially	released.

Then,	for	my	purposes	here,	you	add	another	level,	Public,	which	represents	an	area
where	the	production	code	is	put,	to	be	shared	with	others.	An	example	might	be	a
website	where	content	is	deployed	so	that	others	can	see	it	and	access	it.

Given	this	reference	of	a	dev-test-prod(-public)	model,	let's	look	at	the	different	levels
that	Git	uses	as	an	analogy	to	this	model,	and	how	they	relate	to	each	other.	Figure	3.2
shows	a	similar	way	of	thinking	about	the	Git	levels.

Figure	3.2	The	levels	of	a	Git	system

Starting	at	the	bottom	is	the	working	directory	where	content	is	created,	edited,
deleted,	and	so	on.	Any	new	content	must	exist	here	before	it	can	be	put	into	(tracked
by)	Git.	This	serves	the	same	purpose	as	the	Dev	area	in	the	dev-test-prod-public
model.

Next	is	the	staging	area.	This	serves	as	a	holding	area	to	accumulate	and	stage	changes
from	the	working	directory	before	they	are	committed	into	the	next	level—the	local
repository.	You	can	think	of	this	process	as	being	similar	to	how	you	might	move
content	to	the	testing	stage	in	your	dev-test-prod-public	model.	It	is	a	place	to	build	up
a	set	of	content	to	then	promote.	I'll	go	into	more	detail	about	this	area	shortly.

After	the	staging	area	comes	the	local	repository.	This	is	the	actual	source	repository
where	content	that	Git	manages	is	stored.	Once	content	is	committed	to	the	local
repository,	it	becomes	a	version	in	the	repository	and	can	be	retrieved	later.

The	combination	of	the	working	directory,	staging	area,	and	local	repository	make	up
your	local	environment.	These	are	the	parts	of	the	Git	system	that	exist	on	your	local

machine—actually,	within	a	special	subdirectory	of	the	root	(top-level)	directory	of
your	working	directory.	This	local	environment	exists	for	users	to	create	and	update
content	and	get	it	in	the	form	they	want	before	making	it	available	or	visible	to	others,
in	the	remote	repository.

The	remote	repository	is	a	separate	Git	repository	intended	to	collect	and	host	content
pushed	to	it	from	one	or	more	local	repositories.	Like	the	Public	level	in	the	dev-test-
prod	model,	its	main	purpose	is	to	be	a	place	to	share	and	access	content	from
multiple	users.	There	are	various	forms	of	hosting	and	protocols	for	access	that	I'll
talk	more	about	in	Chapter	12.	I'll	refer	to	this	as	your	remote	environment.

Figure	3.3	adds	the	local	versus	remote	environments	encapsulation	to	the	model.
Let's	examine	each	of	these	areas	in	more	detail.

Figure	3.3	The	local	versus	remote	environments

The	Working	Directory
Any	directory	or	directory	tree	on	your	local	system	can	be	a	working	directory	for	a
Git	repository.	A	working	directory	can	have	any	number	of	subdirectories	that	form
an	overall	workspace.	(You	might	also	hear	this	referred	to	by	similar	names	such	as
“working	tree”	or	“worktree.”	In	a	tree	structure,	the	higher-level	directory	where	you
initiated	work	with	Git	becomes	the	top	level	or	root	of	your	workspace.	All
subdirectories	are	considered	part	of	the	working	directory's	scope,	unless	Git	is
specifically	told	to	ignore	them	via	a	.gitignore	file	(discussed	in	Chapter	10)	or	they
are	part	of	a	Git	submodule	(discussed	in	Chapter	14).

When	you	connect	Git	to	a	local	directory	tree,	by	default	Git	creates	a	repository
skeleton	in	a	special	subdirectory	at	the	top	level	of	the	tree.	That	repository	skeleton
is	the	local	repository.	The	physical	subdirectory	is	named	.git	by	default.	This	is	a

similar	convention	that	many	open	source	projects	use,	storing	metadata	in	a
directory	starting	with	a	period	(.)	followed	by	the	name	of	the	tool	or	application.
Thus,	your	repository	and	all	of	your	source	management	information	is	located
within	a	subdirectory	of	your	working	directory.

OVERRIDING	GIT'S	DEFAULT	LOCATIONS

In	the	section	above,	we	noted	that	“by	default”	Git	creates	the	repository
skeleton	under	a	subdirectory	named	.git	at	the	top	level	of	your	source	tree.

This	is	actually	configurable	through	an	option	that	we	pass	to	Git	(--git-dir)	when
running	it,	or	through	an	environment	variable	($GIT_DIR).	However,	unless
you	have	a	strong	reason	to	change	these,	you	are	better	off	just	leaving	these	as
the	locations	set	by	default.	Throughout	the	book,	we	will	just	refer	to	these
settings	as	being	“.git”	under	the	working	directory	for	simplicity.

As	I	discussed	in	Chapter	2,	it's	important	to	consider	how	much	content	you're	trying
to	manage	in	any	one	Git	repository,	and	thus	in	your	working	directory.	Your
repository	structure,	content,	and	scope	are	based	on	the	structure,	content,	and	scope
of	your	workspace,	and	so	similar	guidelines	apply.	When	developing	code,	a
workspace	should	most	likely	consist	of	the	structure	needed	to	create	a	single
deliverable—a	JAR	file	or	DLL,	and	so	on.	For	other	kinds	of	content,	consider	what
makes	sense	as	a	logical	unit	that	can	be	managed	separately	and	maintained	by	a
small	number	of	users	to	reduce	the	occurrence	of	merge	conflicts.

If	you	have	content	in	your	working	directory	that	should	not	be	tracked	or	managed
by	Git,	then	those	files	and	directories	should	be	listed	in	a	.gitignore	file	at	the	top
level	of	your	tree.	The	.gitignore	file	is	just	a	text	file	containing	a	list	of	files,
directories,	or	regular	expression	patterns.	Git	understands	that	if	this	file	exists,	then
Git	should	not	add	or	track	those	files	and	directories	listed	in	it.	Common	examples
of	types	of	files	to	have	Git	ignore	would	be	very	large	files	(especially	binary	files)
and	files	that	are	generated	from	content	already	being	tracked.	(Refer	to	Chapter	2
for	the	reasons	behind	this.)	The	.gitignore	file	is	discussed	in	detail	in	Chapter	10.

NOTE

Before	going	further,	it's	useful	to	clarify	some	Git	terminology.	People	frequently
talk	about	a	commit	in	Git.	In	Git,	a	commit	is	both	a	noun	and	a	verb,	an	entity
and	an	action.	Doing	a	commit	(committing)	means	moving	content	from	the
staging	area	to	the	local	repository.	A	commit	as	an	entity	means	a	set	of	content
managed	as	a	unit	by	Git.	Similarly,	the	term	stage	or	staging	refers	to	the	action
of	promoting	content	from	the	working	directory	to	the	staging	area.	I'll	clarify	all
of	this	in	the	next	chapter,	but	I'll	need	to	use	this	terminology	in	talking	about
the	remaining	levels.

The	Staging	Area
The	staging	area	is	one	of	the	concepts	in	Git	that	many	new	users	have	difficulty
understanding	and	appreciating.	At	first	glance,	it	may	seem	like	an	unnecessary
intermediate	level	that	gets	in	the	way	of	trying	to	promote	content	from	the	working
directory	to	the	local	repository.	In	fact,	it	plays	a	significant	role	in	several	parts	of
Git's	functionality.

What's	the	Point	of	the	Staging	Area?
As	its	name	implies,	the	staging	area	provides	a	place	to	stage	changes	before	they	are
committed	(promoted)	into	the	local	repository.	The	staging	area	can	hold	any	set	of
content	that	has	been	promoted	from	the	working	directory	and	is	a	candidate	for
going	into	the	local	repository—from	a	single	file	to	all	of	the	eligible	files.	The	staging
area	provides	a	place	to	collect	or	assemble	individual	changes	into	the	set	of	things
that	will	be	committed.	It	allows	finer-grained	control	over	the	set	of	things	that	make
up	a	change.	Now	let's	look	at	the	common	use	cases	for	it.

There	are	two	ways	of	viewing	the	utility	of	the	staging	area:	user-initiated	and	Git-
initiated.	Both	ways	offer	benefits	to	the	user;	the	difference	is	in	which	actions	or
processes	place	content	into	the	level.	You'll	first	look	at	the	use	cases	or	scenarios
that	originate	with	the	user	moving	content	into	the	staging	area.

The	Prepare	Scenario
The	first	use	case	for	the	staging	area	can	be	thought	of	as	the	Prepare	scenario.	In
this	scenario,	as	a	user	completes	changes	in	their	workspace,	they	move	files	that	are
ready	into	the	staging	area.	In	the	simplest	case,	this	is	a	single	promotion	of	all
eligible	content	(any	new	or	changed	files	that	Git	is	not	told	to	ignore).	However,	it
can	also	be	done	at	any	granularity	of	files	that	the	user	chooses,	meaning	the	user
could	even	choose	to	promote	each	of	the	files	one	at	a	time	into	the	staging	area	as
work	is	completed.

Think	of	it	like	this:	suppose	you	have	a	large	checklist	of	files	to	modify	in	order	to

create	a	feature	or	fix	a	bug.	As	you	complete	changes	on	a	subset	of	the	files,	you
want	to	go	ahead	and	promote	that	subset	to	ensure	the	changes	are	persisted,	outside
of	your	workspace,	on	your	way	to	building	up	the	full	set	for	the	change.	As	pieces	of
the	larger	change	are	done,	you	move	those	pieces	to	the	staging	area	and	check	them
off	your	list.

With	other	source	management	systems,	you	typically	only	have	the	workspace	and
the	repository.	And	putting	a	subset	that's	an	incomplete	change	into	a	repository	can
cause	confusion,	failed	builds,	and	so	on.	That's	because	in	those	systems,	committing
changes	means	they	go	directly	into	a	public/server-side	repository	where	they	are
immediately	visible	and	accessible	by	users	and	processes,	rather	than	going	into	a
local	area	first,	as	they	do	in	Git.	To	avoid	having	those	changes	go	directly	into	the
public	repository	in	other	source	management	systems,	you	might	resort	to	saving
those	changes	off	into	another	local	directory—or	just	leaving	everything	in	the
workspace	until	you	get	the	entire	set	of	changes	completed.

However,	a	more	useful	and	elegant	model	would	allow	you	to	stage	parts	of	changes
outside	of	your	workspace	until	you	have	a	complete	change	built	up	and	ready	to
commit	into	the	repository.	This	is	what	Git	allows	you	to	do.	Of	course,	there's	no
requirement	to	stage	the	change	as	separate	pieces.	You	can	promote	everything	as	a
unit	from	the	working	directory.	However,	as	you	become	more	familiar	with	Git,	and
start	to	work	with	larger	changes,	you'll	likely	find	more	value	in	being	able	to	break
them	up	in	this	way.	As	well,	Git	allows	for	some	interesting	advanced	functionality
such	as	staging	only	selected	changes	from	a	file.	You'll	explore	this	workflow	in	more
detail	in	Chapter	5.

The	Repair	Scenario
A	second	use	case	for	the	staging	area	can	be	referred	to	as	the	Repair	scenario.	In
actuality,	you	might	call	it	the	amend	scenario	as	it	relies	on	an	option	by	that	name
when	doing	a	commit.

As	I	noted	in	the	previous	chapter,	one	of	the	interesting	things	that	Git	allows	users
to	do	is	to	rewrite	history.	That	is,	they	can	modify	previous	commits	in	the
repository.	The	simplest	way	to	do	this	is	by	using	the	amend	option	when	doing	a
commit.	This	operation	allows	the	user	to	pull	back	the	last	commit	from	the
repository,	update	its	contents,	and	put	the	updated	commit	back	in	place	of	the
previous	one.	Effectively,	it	provides	a	do-over,	or	an	opportunity	to	repair	the	last
commit.

So	where	does	the	staging	area	come	in	for	this	mode?	When	the	previous	commit	is
amended,	it	is	amended	with	any	content	that	is	in	the	staging	area.	The	workflow	is
essentially	as	follows:

Make	any	updates	in	the	working	directory.

Put	the	updates	into	the	staging	area.

Run	the	commit	with	the	option	to	amend.

The	last	operation	will	cause	the	previous	commit	to	be	updated	with	whatever	is	in
the	staging	area	and	then	place	the	updated	commit	back	into	the	local	repository,
overwriting	the	previous	version.	(If	there	are	no	updated	contents	in	the	staging	area,
then	only	the	message	that	is	attached	to	the	commit	can	be	updated.)

This	is	a	powerful	feature	that	gives	users	a	lot	of	flexibility.	As	you	may	have
gathered,	one	of	Git's	aims	is	to	allow	users	to	easily	create	and	change	things	as	many
times	as	needed	in	their	local	environment	before	actually	updating	content	(on	the
remote	side)	that	others	will	see,	or	that	could	affect	production	processes.	You'll	work
through	an	example	of	using	the	amend	option	in	Chapter	5.

When	Is	the	Staging	Area	Used	by	Git?
In	addition	to	users	performing	actions	that	directly	cause	content	to	be	moved	into
the	staging	area,	Git	also	uses	the	staging	area	itself	on	certain	occasions,	notably	for
dealing	with	merge	conflicts.	This	case	most	closely	aligns	with	the	prepare	scenario	I
outlined	previously.

Merging	is	significant	enough	functionality	in	Git	that	it	gets	a	full	treatment	in
Chapter	9.	For	my	purposes	here,	I'll	describe	how	it	works	at	a	high	level	and
particularly	how	it	uses	the	staging	area.

When	you	merge	in	Git,	you	are	generally	merging	together	two	or	more	branches.	In
a	best-case	scenario	(not	too	uncommon),	the	merge	may	have	no	conflicts	and
everything	merges	cleanly.	In	that	case,	Git	both	completes	the	merge	locally	(in	your
working	directory),	and	promotes	the	merged	content	automatically	into	the	local
repository—and	you're	done.

However,	in	a	case	where	there	are	merge	conflicts	that	Git	cannot	automatically
resolve,	Git	puts	those	files	in	your	working	directory	for	you	to	fix,	and	stages	any
files	that	merged	cleanly.	What	it	is	doing	is	starting	to	create	a	set	of	merged	content
to	be	committed	once	everything	is	resolved.

From	here,	the	idea	is	that	the	user	goes	into	the	working	directory	and	edits	the	files
with	conflicts	in	order	to	fix	them.	Then	those	fixed	files	are	added	into	the	staging
area	with	the	ones	that	were	automatically	merged.	After	this,	the	staging	area	will
contain	the	full	set	of	resolved	files	and	a	single	commit	can	be	done	to	complete	the
merge.

There	is	another	side	benefit	of	this	arrangement.	After	the	merge	has	been
attempted,	if	there	are	conflicts,	the	merged	files	are	grouped	together	in	the	staging
area.	Separately,	the	files	with	merge	conflicts	are	grouped	together	in	the	working
directory.	This	offers	a	very	easy	way	to	see	which	files	fall	into	which	category,	and
thus	an	easy	way	for	the	user	to	understand	what	is	merged	and	what	needs	to	be
manually	resolved.

Can	I	Bypass	the	Staging	Area?
While	the	staging	area	is	very	useful	for	the	situations	outlined	previously,	outside	of

those	situations,	most	users	still	want	to	know	if	they	can	bypass	it	in	normal	use.	The
answer	is	…	usually.	Git	provides	a	shortcut	method	to	promote	files	to	the	staging
area	and	then	to	the	local	repository	with	one	operation.	The	caveat,	though,	is	that
this	only	works	for	files	that	Git	is	already	tracking,	meaning	that	the	first	time	a	file
is	added	to	Git,	it	has	to	go	through	the	staging	process.	Afterward,	for	normal	commit
operations,	you	can	use	the	shortcut	if	you	choose	to	simplify	updating	revisions.	The
shortcut	is	explained	in	Chapter	5.

MERGING	AND	THE	STAGING	AREA

One	other	area	where	the	staging	operation	is	required	is	when	you	need	to
complete	a	merge	operation	that	had	confl	icts.	As	discussed	in	the	previous
section,	Git	stages	files	that	merged	successfully.	In	order	to	complete	the	merge,
files	that	have	confl	icts	manually	resolved	must	be	staged.	This	creates	a
complete	set	of	content	to	be	committed	to	complete	the	merge	operation.

Other	Names	for	the	Staging	Area
One	other	note	about	the	staging	area	is	that	it	has	a	couple	of	other	names	in	Git.	It	is
sometimes	referred	to	by	the	terms	index	or	cache.	In	fact,	some	Git	commands	will
have	variations	of	index	or	cache	as	options	for	operations	that	work	on	content	in	the
staging	area.	For	purposes	of	what	you're	doing	in	this	book,	you	can	think	of	all	of
these	terms	as	meaning	the	same	thing.

The	Local	Repository
The	local	repository	is	the	final	piece	of	the	set	of	Git	levels	that	exist	on	a	user's	local
machine	(the	local	environment).	Once	content	has	been	created	or	updated	and	then
staged,	it	is	ready	to	be	committed	into	the	local	repository.	As	mentioned	earlier,	this
repository	is	physically	stored	inside	a	separate	(normally	hidden)	subdirectory
normally	within	the	root	of	the	working	directory.	It	is	created	in	one	of	two	ways:	via
a	clone	(copy)	of	a	repository	from	a	remote,	or	through	telling	Git	to	initialize	a	new
environment	locally.

The	nice	thing	about	the	local	repository	is	that	it	is	a	source	repository	exclusively	for
the	use	of	the	current	user.	Modifications	can	be	done	until	the	user	is	satisfied	with
the	content,	and	then	the	content	can	be	sent	to	the	remote	repository	where	it	is
available	to	others.	As	noted	before,	because	everything	is	local,	source	control
operations	can	be	done	to	the	local	repository	without	network	overhead,	and	even
when	the	machine	is	not	connected	to	a	network.

Of	course,	there	are	always	tradeoffs.	Having	everything	local	means	that	content	is
lost	if	the	working	directory	is	accidentally	wiped	out	and	content	has	not	been
synched	to	the	remote	repository.	It	also	implies	that	the	longer	the	time	between
when	content	is	synched	to	the	remote	repository,	the	higher	the	chance	of	merge
issues	if	others	are	continuing	to	update	that	particular	remote	repository.

The	Remote	Repository
The	remote	repository	is	the	level	of	Git	that	hosts	and	serves	up	content	for	wider
consumption.	It's	the	place	where	multiple	Git	users	sync	up	the	changes	from	their
respective	local	repositories.	It	corresponds	to	what	you	would	traditionally	think	of	as
the	server	in	other	source	management	systems.	I	will	go	into	more	detail	on	remote

repositories	in	later	chapters,	but	there	are	a	few	general	points	that	are	useful	to
understand	up	front	about	remote	repositories:

A	remote	repository	is	unique.	There	can	be	many	remote	repositories	for	many
different	projects	managed	with	Git,	but	Git	does	not	make	or	use	multiple	copies
of	the	remote	repository	on	the	server.

A	remote	repository	can	be	cloned	as	many	times	as	needed	to	separate	local
repositories.	Related	to	the	section	in	Chapter	2	where	I	discussed	the	differences
between	centralized	and	distributed	source	management	systems,	multiple
different	users	can	get	copies	of	the	remote	repository	as	their	own	local
repositories	to	work	with.	Then,	when	they	push	changes	from	their	local
repositories,	they	are	pushing	them	into	the	single	corresponding	remote
repository	that	the	local	repositories	were	copied	from.

A	remote	repository	does	not	make	user-facing	modifications	to	content,	such	as
resolving	conflicts	for	merging.	It	is	primarily	concerned	with	synching	changes	to
and	from	the	local	repositories	of	individual	users.	If	there	are	conflicts	that	need
resolution	at	the	time	content	is	pushed	over	to	the	remote,	that	content	has	to	be
pulled	back	to	the	local	environment,	resolved	there,	and	then	synched	up	to	the
remote.

REPOSITORY	BRANCHES

Before	I	leave	the	topic	of	repositories,	it's	worth	saying	a	quick	word	about
branches.	As	in	most	source	management	systems,	Git	supports	the	concept	of
branches	(which	I	explore	in	detail	in	later	chapters).	In	Git,	there	are	branches
that	exist	in	the	local	repository	(local	branches)	and	branches	that	exist	in	the
remote	repository	(remote	branches).	Synching	of	these	branches	occurs	during
some	of	the	commands	that	I	will	talk	about	for	working	with	remote
repositories.	At	any	point	in	time,	one	branch	is	active	in	the	local	environment,
meaning	that	the	files	in	the	working	directory	tracked	by	Git	came	from	that
local	branch.

The	Core	Git	Commands	for	Moving	Content
Now	that	you	understand	the	different	levels	in	the	Git	model,	it's	a	good	time	to
introduce	the	core	Git	commands	for	moving	content	between	them.	Some	of	these
commands	have	already	been	mentioned	in	context.	I'll	just	note	them	briefly	here	to
help	fill	out	an	overall	picture	of	the	system.	Chapter	5	will	explain	the	local	workflow
in	more	detail,	and	later	chapters	will	explain	the	workflow	when	working	with	the
remote	environment.	I'll	characterize	these	commands	by	which	levels	they	interact
with.

Working	Directory	to	Staging	Area
The	add	command	stages	content	from	the	working	directory	to	the	staging	area.
Contrary	to	what	the	name	implies,	you	always	use	the	add	command	to	stage
anything,	even	content	that	is	not	new	and	that	has	been	staged	before.

Staging	Area	to	Local	Repository
The	command	that	is	used	to	promote	things	from	the	staging	area	to	the	local
repository	is	the	commit	command.	Think	of	it	as	making	a	commitment	to	put	your
changes	into	the	official	source	management	repository.	This	is	most	similar	to	what
you	might	see	as	check-in	in	other	source	management	systems,	but	note	that	it	only
takes	content	from	the	staging	area.

Local	Repository	to	Remote	Repository
To	synchronize	changes	from	a	local	repository	to	the	corresponding	remote
repository,	the	command	is	push.	Unlike	commits	into	the	local	repository,	merge
conflicts	from	content	pushed	by	other	users	can	be	encountered	here.	Also,	being
able	to	push	to	a	particular	remote	repository	assumes	appropriate	access	and
permissions	via	whatever	protocol	and	permissions	checking	is	being	used.

Local	Repository	to	Working	Directory

The	checkout	command	is	used	to	retrieve	content	(as	flat	files)	from	the	local
repository	into	the	working	directory.	This	is	usually	done	by	supplying	a	branch	name
and	telling	Git	to	get	the	latest	copy	of	content	from	that	branch.	Checkout	also	tells
Git	to	switch	the	branch	that	you	are	currently	working	with.

Remote	Repository	to	Local	Environment
When	moving	content	from	the	remote	repository	to	the	local	environment,	there	are
several	ways	the	local	repository	and	the	working	directory	can	receive	content	from
the	remote	repository.

The	clone	command	is	used	to	create	a	new	local	environment	from	an	existing
remote	repository.	Essentially,	it	makes	a	local	copy	of	the	specified	remote	repository
onto	the	local	disk	and	checks	out	a	flat	copy	of	the	files	from	a	branch	(typically
master,	although	this	is	configurable)	into	the	working	directory.

The	fetch	command	is	used	to	update	the	local	repository	from	the	remote	repository.
More	specifically,	it	is	updating	reference	copies	of	the	remote	branches	(reference
branches)	that	are	maintained	in	the	local	repository.	This	allows	for	comparison
between	what	you	have	in	your	local	repository	and	what	the	remote	repository	had
the	last	time	you	connected	to	it.	A	merge	or	rebase	(merge	with	history)	can	then	be
done	to	update	local	branches	as	desired.

The	pull	command	does	a	fetch	followed	by	the	merge	or	rebase	(merge	with	history)
operation.	This	one	command	then	results	in	not	only	updating	the	reference
branches	in	the	local	repository	from	the	remote	side,	but	also	merging	that	content
into	the	local	branch	or	branches.	It	also	updates	any	of	the	corresponding	files	in	the
working	directory	if	the	current	branch	is	one	that	had	updates	merged	from	the
remote	side.

Table	3.1	summarizes	the	levels	and	commands.

Table	3.1	Core	Commands	for	Moving	Content	between	Levels	in	Git

From To Command Notes

Working
Directory

Staging	Area Add Stages	local	changes

Staging
Area

Local	Repository Commit Commits	only	content	in	staging
area

Local
Repository

Remote	Repository Push Syncs	content	at	time	of	push

Local
Repository

Working	Directory Checkout Switches	current	branch

Remote
Repository

Local	Environment Clone Creates	local	repository	and
working	directory

Remote
Repository

Local	Repository Fetch Updates	references	for	remote
branches

Remote
Repository

Local	Repository	and
Working	Directory

Pull Fetches	and	merges	to	local
branch	and	working	directory

Putting	this	table	into	a	visual	representation,	you	can	add	the	commands	to	the
previous	picture	of	the	Git	model.	This	provides	a	representation	of	Git	in	one	picture,
as	shown	in	Figure	3.4.

Figure	3.4	Git	in	one	picture

SUMMARY
In	this	chapter,	you	looked	at	the	Git	promotion	model,	a	way	of	thinking	about	the
different	levels	of	Git	and	how	content	is	moved	between	them.	These	levels	include
the	remote	repository,	the	local	repository,	the	staging	area,	and	the	working	directory.
The	last	three	levels	make	up	what	I	refer	to	as	your	local	environment,	where	you
develop	content	and	do	source	management	locally	before	making	it	more	widely
available	by	pushing	to	the	remote.

I	dove	in	to	explain	why	the	staging	area	exists,	and	some	of	the	different	uses	and
functionality	it	provides.	These	include	gathering	up	changes	for	a	commit	(prepare),
updating	the	last	commit	(repair),	and	providing	separation	between	files	that	merge
cleanly	and	files	that	don't	when	doing	a	merge.

I	concluded	by	giving	a	brief	summary	of	the	commands	that	you	use	with	Git	to	move
between	the	different	levels,	leading	to	a	single-picture	representation	of	the	Git
model.

In	the	next	chapter,	you'll	look	at	how	to	configure	Git's	various	options	and	settings
and	actually	start	using	Git	to	work	through	the	model.

About	Connected	Lab	1:	Installing	Git
Before	going	to	the	next	chapter	though,	this	is	a	good	point	to	work	through
Connected	Lab	1:	Installing	Git.	Having	an	installation	of	Git	will	be	a	prerequisite	for
the	rest	of	the	Connected	Labs	in	the	book.	I	highly	encourage	you	to	work	through
the	labs	if	you	are	not	familiar	with	the	topics.	This	will	provide	you	with	hands-on
experience	with	Git	and	help	to	internalize	the	concepts	we	discuss	in	the	text.	Enjoy!

Connected	Lab	1

Installing	Git
This	lab	will	guide	you	through	the	steps	for	installing	Git	on	your	system.	If	you
already	have	Git	installed,	you	can	skip	to	the	next	chapter.	Otherwise,	select	the
appropriate	section	for	your	operating	system,	and	follow	the	instructions.

Installing	Git	for	Windows
The	Git	for	Windows	package	installs	a	version	of	Git	that	also	includes	a	Bash	(Unix)
shell	that	runs	on	top	of	Windows	and	provides	a	Unix-style	interface	to	Git.	You	can
also	integrate	Git	with	the	Windows	Explorer	and	command	prompts.

The	following	instructions	provide	the	necessary	steps	for	installation,	as	well	as
additional	information	on	the	install	screens	you	will	encounter	during	the	process.

Steps
Each	of	the	following	numbered	steps	represents	a	new	screen	of	the	installation	tool.

1.	 In	your	browser,	go	to	http://git-scm.com/download/win.	The	download	starts
automatically.

2.	 After	the	download	completes,	double-click	the	executable	file	(or	select	the	“Run”
button	if	one	is	available)	to	start	the	install	(If	any	security	prompts	come	up,
answer	them	to	allow	the	install	to	run.)

3.	 Click	Next	after	viewing	the	license	agreement.

4.	 (Optional)	Deselect	any	integration	pieces	you	don't	want.	This	allows	you	to	set
up	integration	with	the	Windows	Explorer	and	file	associations	if	you	want.	Click
Next.

5.	 Select	how	you	want	to	use	Git.	This	screen	gives	you	several	options:

a.	Use	Git	from	Git	Bash	only:	This	refers	to	the	Unix	shell	that	comes	as	a
separate	program	with	Git	for	Windows.	If	you	are	comfortable	with	Unix,	or
you	aren't	and	don't	intend	to	run	many	operating	system	commands,	this	is
the	simplest	option.	The	shell	features	some	nice	color-coding	that	can	be
helpful	as	you're	learning	Git.	This	option	won't	allow	you	to	use	Git
integration	in	Windows	command	prompts.

b.	Use	Git	from	the	Windows	Command	Prompt:	The	main	purpose	of
this	option	is	to	allow	you	to	run	Git	commands	in	Windows	command
prompts.	It	also	includes	the	ability	to	use	Git	through	the	Git	Bash	shell.	It
does	not	try	to	provide	full	integration	with	some	of	the	Unix	applications	in
command	prompts	as	the	first	option	does.	This	is	a	good	default	because	it
provides	the	flexibility	to	use	Git	in	either	or	both	the	Bash	shell	and	Windows
command	prompts.

c.	Use	Git	and	optional	Unix	tools	from	the	Windows	Command
Prompt:	This	option	provides	some	additional	Unix-style	tools	for	you	to	use
from	command	prompts.	Keep	in	mind	that	these	tools	will	be	in	the	path	and
found	before	some	of	the	Windows	commands	of	the	same	name.	In	general,	if
you	want	to	use	Unix	commands	and	tools,	you're	better	off	doing	so	through
the	Bash	shell	interface.

6.	 If	you	have	access	to	Plink	(PuTTy	link)	on	your	system,	you	see	an	additional
screen	allowing	you	to	choose	which	SSH	executable	you	want	to	use	here.	Unless
you	have	a	specific	reason	to	do	otherwise,	choosing	the	Use	OpenSSH	option	is
fine.

7.	 Configure	the	line	ending	conversions.	This	refers	to	how	you	want	Git	to	handle
line	endings	in	files	when	getting	content	out	of	Git	or	putting	content	into	Git.	I
cover	this	setting	in	detail	in	Chapter	4.	You	can	jump	ahead	and	read	about	that
now	if	you	want,	but	briefly,	this	relates	to	how	you	plan	to	edit	files	you'll	be

http://git-scm.com/download/win

managing	with	Git.	You	can	find	more	details	on	the	different	options	in	the
following	paragraphs.

If	you	plan	to	use	Windows	editors,	then	the	first	setting—Checkout	Windows-
style,	commit	Unix-style—will	probably	work	best.	This	setting	means	that	when
you	get	text	content	out	of	Git,	Git	updates	the	line	endings	in	the	checked-out
files	to	be	carriage-return/line-feed	(CRLF).	This	is	the	line	ending	expected	by
Windows	editors.	When	you	check	in	(or	commit)	content	back	into	Git,	Git	strips
out	the	CRs	and	stores	(normalizes)	the	text/ASCII	files	with	line	endings	that	are
just	LF	(the	default	for	Unix).

On	the	other	hand,	if	you	plan	to	edit	with	Unix-based	editors	(vi	or	others)	or
work	primarily	through	the	Bash	shell,	then	the	Checkout	as-is,	commit	Unix-style
line	endings	setting	may	be	the	best	choice.	This	doesn't	make	any	changes	to	the
files	on	checkout,	but	normalizes	them	to	LFs	when	storing	them	in	Git.	So,
essentially,	they	will	always	have	LFs.	Because	LF-only	is	the	default	for	Unix
systems,	this	works	well	for	editing	in	that	environment.

The	last	choice—Checkout	as-is,	commit	as-is—can	be	problematic.	Basically,	this
tells	Git	not	to	make	any	changes	for	line	endings—just	to	leave	them	as	they	are.
This	means	that	you	can	end	up	with	a	mixture	of	line	endings	in	the	repository.
The	other	two	options	normalize	files	in	the	repositories	to	LFs.	If	a	file	is	edited	in
a	Windows	editor	and	then	stored	back	in	Git,	the	file	stored	in	the	Git	repository
will	contain	CRLFs.	However,	if	edits	are	done	in	Unix	editors,	the	files	will	have
just	LFs	stored	in	the	repository.	If	someone	then	gets	one	of	these	files	out	on	an
OS	that	is	different	from	the	OS	where	it	was	last	edited,	they	may	be	surprised	by
the	line	endings	being	in	the	style	of	the	other	OS.	This	can	be	especially
troublesome	for	teams	where	some	members	use	Unix	and	other	members	use
Windows.

You	can	change	this	setting	at	a	later	time	by	changing	the	configuration	value	for
core.autocrlf	that	is	mentioned	here.	(I	cover	this	in	more	detail	in	Chapter	4.)
However,	at	that	point,	there	may	already	be	files	stored	in	the	repository	with
undesired	line	endings.	There	are	ways	to	fix	these	files	that	are	beyond	the	scope
of	this	discussion.

For	most	of	the	work	you'll	do	in	the	Connected	Labs	for	this	book,	the	value	of
this	setting	won't	be	significant.	However,	the	best	practice	here	is	to	choose	one	of
the	first	two	settings	that	best	corresponds	to	the	OS	type	where	you	plan	to	run
your	editors.

8.	 	Configure	the	terminal	emulator	for	the	Bash	shell.	You	have	a	choice	of	which
terminal	program	you	want	to	use	for	the	Bash	shell.	Unless	you	have	a	specific
reason	to	choose	the	Windows	default	console	window	option,	choose	the	Use
MinTTY	option.	This	gives	you	a	better	user	interface	that	supports	functions	such
as	Copy	and	Paste	in	the	expected	way	(highlight	and	select)	rather	than	with	the
limited	functionality	of	the	console	window	option.

9.	 	Configure	extra	options.	The	Enable	file	system	caching	option	is	a	relatively	new
addition.	It	attempts	to	speed	up	file-related	operations	for	users	of	Git	on
Windows,	where	the	file	handling	is	not	optimized	in	the	same	way	as	it	is	for
Unix.	In	principle,	this	seems	like	a	good	option,	although	most	users	have	had
limited	experience	with	it.	Note	that	it	can	be	turned	off	later	by	changing	the
core.fscache	configuration	value.	This	is	one	option	you	should	probably	turn	on
until	any	issues	are	found	with	it.

The	Git	Credential	Manager	for	Windows	is	a	successor	to	a	previous	credential
management	application.	It	essentially	helps	with	managing	and	simplifying
different	types	of	access	for	Git	from	various	applications.	Its	use	is	generally
transparent	to	the	user.	You	can	read	more	about	this	application	in	the	README
file	for	the	project	on	the	GitHub	hosting	site	at
https://github.com/Microsoft/Git-Credential-Manager-for-

Windows/blob/master/README.md.

Unless	you	have	a	specific	reason	not	to	use	this	application,	just	leave	it	checked.

10.	 	Once	you've	completed	the	option	screens	in	these	steps,	click	the	Install	button.
Git	removes	any	old	installs	(if	they	exist)	and	updates	with	the	newest	version.
Afterward,	you	have	a	new	Git	category	in	your	available	programs	list	with	entries
to	start	the	Git	Bash	shell	(the	Unix	shell),	a	Git	CMD	window,	and	a	GIT	GUI
interface.

The	Git	CMD	window	is	like	a	Windows	command	prompt.	However,	you	can	start
up	a	Windows	command	prompt	and	also	have	access	to	Git	in	this	window.

11.	 	Open	the	Git	Bash	shell,	the	Git	CMD	window,	or	a	Windows	command	prompt,
and	type

$	git	--version

to	make	sure	you	have	Git	installed	and	are	running	at	the	expected	version.

https://github.com/Microsoft/Git-Credential-Manager-for-Windows/blob/master/README.md

USING	THE	GIT	BASH	SHELL

When	you	start	up	the	Git	Bash	shell,	it	generally	opens	up	to	a	directory	of	“/”
(forward	slash)	at	the	prompt.	This	root	directory	corresponds	to	the	directory	on
your	Windows	file	system	where	Git	is	installed.	By	default,	that	is	C:\Program
Files\Git.	It's	not	good	practice	to	store	repositories	under	Program	Files,	so	you
want	to	switch	to	a	different	directory	before	starting	to	work	with	Git.	In	the	Git
Bash	shell,	to	change	to	a	different	directory	on	your	C	drive,	you	use	a	command
like	this:

$	cd	/C/Users/<username>

This	corresponds	to	the	following	command	in	a	regular	Windows	command	line
interface:

cd	C:\Users\<username>

So,	in	the	Bash	shell,	the	syntax	for	navigating	around	is	to	represent	drive	letters
as	/<drive	letter>/	instead	/	d	of	<drive	letter>:	(note	the	slash	versus	colon)

and	then	use	forward	slashes	instead	of	backward	slashes	in	the	remaining	parts
of	the	path.

Note	that	“˜”	corresponds	to	c:\users\<username>	and,	as	previously	mentioned,
“/”	by	itself	corresponds	to	the	directory	where	Git	was	installed.

Installing	Git	on	Mac	OS	X
1.	 In	your	browser,	go	to	http://git-scm.com/download/mac.	The	download	starts
automatically.	If	not,	there	is	a	link	you	can	click	to	start	it.

2.	 Install	the	downloaded	file	via	the	DMG	and	PKG	files.

3.	 Open	up	a	terminal,	and	run	the	following	command	to	make	sure	Git	is	installed
and	running	at	the	expected	version:

$	git	--version

http://git-scm.com/download/mac

Installing	Git	on	Linux
1.	 In	your	browser,	go	to	http://git-scm.com/download/linux.

2.	 Follow	the	instructions	on	that	page	for	the	particular	flavor	of	Linux	you're	using.

3.	 Confirm	that	Git	is	installed	by	opening	up	a	terminal	session	and	running	the
following	command:

$	git	--version

http://git-scm.com/download/linux

Part	II
Using	Git

CHAPTER	4:	Configuration	and	Setup

CHAPTER	5:	Getting	Productive

CHAPTER	6:	Tracking	Changes

CHAPTER	7:	Working	with	Changes	over	Time	and	Using	Tags

CHAPTER	8:	Working	with	Local	Branches

CHAPTER	9:	Merging	Content

CHAPTER	10:	Supporting	Files	in	Git

CHAPTER	11:	Doing	More	with	Git

CHAPTER	12:	Understanding	Remotes—Branches	and	Operations

CHAPTER	13:	Understanding	Remotes—Workflows	for	Changes

CHAPTER	14:	Working	with	Trees	and	Modules	in	Git

CHAPTER	15:	Extending	Git	Functionality	with	Git	Hooks

Chapter	4
Configuration	and	Setup

WHAT'S	IN	THIS	CHAPTER?

Git	command	syntax	and	format

The	differences	between	porcelain	and	plumbing	commands

Working	with	auto-completion

Basic	configuration	of	Git	and	your	user	environment

Creating	a	new	repository

Dealing	with	line	endings	with	Git

The	contents	of	a	Git	repository

Creating	Git	aliases

When	starting	to	use	Git,	it's	important	to	configure	it	so	that	it	works	properly	in
your	particular	environment.	You'll	also	want	to	be	able	to	manage	your	content	and
your	interactions	with	Git	in	a	way	that	you	prefer.	In	this	chapter,	you	will	learn	how
to	configure	your	Git	environment,	and	explore	the	different	considerations	that	come
into	play.	You'll	look	at	some	of	the	key	required	items	such	as	line	endings,	as	well	as
some	of	the	more	significant	optional	settings.	You'll	also	learn	how	to	define	settings
within	the	different	scopes	that	Git	allows.

In	the	“Advanced	Topics”	section,	I'll	describe	how	the	init	command	works,	offer
more	detail	about	what's	actually	in	the	underlying	repository,	and	show	you	how	to
create	aliases	that	take	parameters	that	can	run	small	programs.

EXECUTING	COMMANDS	IN	GIT
As	I	previously	mentioned,	this	book	focuses	on	the	Git	command	line	to	provide	the
most	universally	applicable	way	to	use	the	tool.	The	general	form	of	commands	is	as
follows:

git	<git-options>		<command>		<command-options>		<operands>

Table	4.1	describes	the	different	parts	of	this	form.

Table	4.1	Components	of	a	Git	Command	Line	Invocation

Element Description EXAMPLE(S) Notes

git Command	to	run
Git

git

<git-
options>

Global	options	for
Git	itself.	These
options	may	also
specify	a	function	to
execute.

git	--work-
tree=<path>
git	--version

Some	of	these	options	may	be
intended	for	standalone	operation
(for	example,	--version),	while
others	modify	values	used	for
other	commands	(for	example,	--
work-tree).

<command> Git	command	to
execute

git	push

<command-
options>

Options	to	the
specified	command

git	commit	-m
“comment”

May	have	default	options	if	none
are	specified.	Options	may	also
have	values	that	can	be	selected	to
further	qualify	the	option.

<operands> Items	for	the
command	to
operate	on

git	add	*.c Particular	to	the	command	being
executed.	Examples	include	files
in	the	working	directory,	branches
or	SHA1s	in	a	repository,	or	a
particular	setting	or	value.

Operand	Types
As	referenced	in	Table	4.1,	Git	can	take	different	kinds	of	operands,	which	are
specifications	of	objects	to	operate	on.	The	two	most	common	operands	are	the	SHA1
value	of	a	commit	(or	a	named	branch	or	tag	that	refers	to	such	a	commit)	and	a	path
specification	to	a	file	or	directory	on	the	disk.	For	many	commands,	either	or	both	of
these	value	types	may	be	specified—or	neither.	When	neither	operand	is	specified,	the
command	will	operate	against	all	eligible	items	that	it	finds	in	the	scope	of	the
repository,	staging	area,	or	working	directory	tree.

NOTE

Throughout	this	book,	I	won't	usually	supply	optional	commits	or	path
specifications	to	Git's	commands	unless	they	are	required.	This	will	help	to
simplify	examples	and	allow	you	to	learn	about	the	commands	in	this	context.
However,	I	will	introduce	the	forms	of	the	commands	when	I	first	discuss	them
so	you'll	be	able	to	see	where	those	items	can	be	supplied.

The	primary	reason	to	specify	both	commit	references	and	paths	would	be	to	select
certain	paths	that	are	part	of,	or	in	the	scope	of,	the	snapshot	associated	with	the
commit.	Because	Git	operates	at	the	granularity	of	a	snapshot	(tree),	you	may	not
always	want	to	do	the	operation	against	all	items	in	the	snapshot.	However,	that's
what	would	happen	if	you	just	specified	the	commit	|	tag	|	branch.	To	indicate	that	the
operation	should	only	be	done	against	certain	files	or	paths	in	the	scope	of	the
snapshot,	you	need	to	add	specific	filenames	or	paths.

When	both	types	are	specified,	if	there	is	a	possibility	of	Git	not	being	able	to	tell	the
difference	between	a	commit	|	branch	|	tag	and	one	or	more	of	the	filenames	or	paths,
then	you	can	separate	the	two	types	using	the	special	separation	symbol	“--”.
Normally,	this	won't	be	needed	if	a	commit	is	expressed	as	a	SHA1	value,	but	it	may	be
needed	if	branch	or	tag	names	could	be	mistaken	as	names	for	files	or	paths.

As	an	example,	the	command	git	<command>	a1b2c3d4	file1.txt	might	be	clear
enough,	but	git	<command>	my-tag-name	--	my-file-name	could	be	ambiguous	enough
when	parsed	to	require	the	“--”	separator	symbol.

NOTE

As	referenced	in	Table	4.1,	Git	has	global	options—in	fact,	quite	a	few.	Beyond	the
obvious	ones,	such	as	--version	and	--help,	there	are	a	number	of	options
concerned	with	allowing	users	to	specify	different	paths	for	different	areas	of	Git,
as	well	as	a	few	miscellaneous	ones.	At	this	point,	I	won't	go	into	further	detail
about	these	options	because	many	of	them	wouldn't	make	sense	without
additional	context.	However,	where	I	identify	value	for	individual	options	in	the
context	of	later	chapters,	I'll	focus	in	on	selected	ones	then.

Porcelain	versus	Plumbing	Commands
In	this	section,	command	represents	any	of	the	commands	available	in	Git,	such	as
the	ones	I	talked	about	for	moving	content	between	the	levels	of	Git	in	Chapter	3	(add,
commit,	push,	and	so	on).	In	Git,	there	are	two	categories	for	the	types	of	commands:
porcelain	and	plumbing.	Those	names	may	sound	strange,	but	essentially,	the
porcelain	commands	are	intended	to	be	user-facing,	more	commonly	used,	and	more
convenient.	They	also	typically	provide	a	higher	level	of	functionality.	The	commands
that	I	previously	mentioned	in	conjunction	with	the	Git	promotion	model	are
examples	of	porcelain	commands.

The	plumbing	commands	function	at	a	lower	level	and	are	not	expected	to	be	used	by
the	average	user.	These	commands	are	typically	targeted	at	extracting	or	modifying
content	and	information	more	directly	from	the	repository.	An	example	would	be	the
git	cat-file	or	git	ls-files	commands	that	provide	a	way	to	look	at	the	contents	of
a	file	or	directory	within	the	repository	if	you	know	how	to	reference	those	elements.

Certain	functionality	in	Git	can	be	accomplished	using	either	porcelain	commands	or
plumbing	commands.	However,	it	would	usually	take	several	very	specific	plumbing
commands	to	accomplish	what	one	porcelain	command	can	do.	The	porcelain
commands	are	based	on	the	plumbing	commands.	They	aggregate	the	functionality	of
plumbing	commands	and	certain	options	and	sequences	in	order	to	make	things
simpler	for	the	typical	Git	user.

Table	4.2	shows	a	categorization	of	the	porcelain	(user-friendly)	commands	that	are
available	in	Git.

Table	4.2	Porcelain	Commands	in	Git

Command Purpose

add
bisect
branch
checkout
cherry
cherry-pick
clone
commit
config
diff
fetch
grep
help
log
merge
mv
pull
push
rebase
rerere
reset
revert
rm
show
status
submodule
subtree
tag
worktree

Add	file	contents	to	the	index.
Find	by	binary	search	the	change	that	introduced	a	bug.
List,	create,	or	delete	branches.
Switch	branches	or	restore	working	tree	files.
Find	commits	yet	to	be	applied	to	upstream	(branch	on	the	remote).
Apply	the	changes	introduced	by	some	existing	commits.
Clone	a	repository	into	a	new	directory.
Record	changes	to	the	repository.
Get	and	set	repository	or	global	options.
Show	changes	between	commits,	commits	and	working	tree,	and	so	on.
Download	objects	and	refs	from	another	repository.
Print	lines	matching	a	pattern.
Display	help	information.
Show	commit	logs.
Join	two	or	more	development	histories	together.
Move	or	rename	a	file,	directory,	or	symlink.
Fetch	from,	or	integrate	with,	another	repository	or	a	local	branch.
Update	remote	refs	along	with	associated	objects.
Forward-port	local	commits	to	the	updated	upstream	head.
Reuse	recorded	resolution	for	merged	conflicts.
Reset	current	HEAD	to	the	specified	state.
Revert	some	existing	commits.
Remove	files	from	the	working	tree	and	from	the	index.
Show	various	types	of	objects.
Show	the	working	tree	status.
Initialize,	update,	or	inspect	submodules.
Merge	subtrees	and	split	repositories	into	subtrees.
Create,	list,	delete,	or	verify	a	tagged	object.
Manage	multiple	working	trees.

Table	4.3	shows	the	same	categorization	for	the	plumbing	commands.	These
commands	have	names	that	indicate	an	action	and	an	object	to	operate	against	as
opposed	to	the	simpler	naming	of	the	porcelain	commands.

Table	4.3	Plumbing	Commands	in	Git

Command Purpose

cat-file
commit-tree
count-objects
diff-index
for-each-ref
hash-object
ls-files
merge-base
read-tree
rev-list
rev-parse
show-ref
symbolic-ref
update-index
update-ref
verify-pack
write-tree

Provide	content	or	type	and	size	information	for	repository	objects.
Create	a	new	commit	object.
Count	an	unpacked	number	of	objects	and	their	disk	consumption.
Compare	a	tree	to	the	working	tree	or	index.
Output	information	on	each	ref.
Compute	object	ID	and	optionally	create	a	blob	from	a	file.
Show	information	about	files	in	the	index	and	the	working	tree.
Find	as	good	common	ancestors	as	possible	for	a	merge.
Read	tree	information	into	the	index.
List	commit	objects	in	reverse	chronological	order.
Pick	out	and	massage	parameters.
List	references	in	a	local	repository.
Read,	modify,	and	delete	symbolic	refs.
Register	file	contents	in	the	working	tree	to	the	index.
Update	the	object	name	stored	in	a	ref	safely.
Validate	packed	Git	archive	files.
Create	a	tree	object	from	the	current	index.

The	descriptions	for	the	commands	in	these	tables	are	taken	directly	from	the	Git
help.	Some	of	the	terms	are	more	Git-specific	at	this	point.	However,	as	I	use
commands	through	the	remainder	of	this	book,	I'll	simplify	their	definitions	and	the
terminology	so	it	all	makes	sense.

The	point	of	this	section	is	that	unless	you	have	a	specific	need	to	deep-dive	into	the
repository,	you	can	simply	use	the	porcelain	commands	and	accomplish	what	you
need	to	in	Git.

Specifying	Arguments
Arguments	supplied	either	to	Git	or	to	Git	commands	can	be	abbreviated	as	a	single
letter	or	spelled	out	as	words.	One	important	note	here	is	that	if	the	argument	is
spelled	out,	you	must	precede	it	with	two	hyphens,	as	in	--global.	If	the	argument	is
abbreviated,	only	one	hyphen	is	required,	as	in	-a.	Abbreviated	arguments	may	be
passed	together,	as	in	-am	instead	of	-a	-m.	When	arguments	are	combined	in	this	way,
the	ordering	is	important.	If	the	first	argument	requires	a	value,	then	the	second
argument	may	be	taken	as	the	required	value	instead	of	an	additional	argument.

Auto-complete
When	you	start	typing	a	command	or	an	argument	to	a	command,	Git	has	a	helpful
auto-completion	feature	(if	enabled)	that	can	do	two	things:

Provide	valid	values	for	the	commands	or	arguments	that	could	complete	the	text
you're	typing—if	there	is	more	than	one	valid	option.

Automatically	complete	the	command	or	argument	that	you're	typing—if	there	is
only	one	valid	option.

Following	are	a	couple	of	examples.	The	first	one	is	for	a	command.	If	you	type	git	c
and	then	press	the	Tab	key,	nothing	happens	because	there's	more	than	one	command
that	starts	with	c.

If	you	press	the	Tab	key	a	second	time	(before	typing	anything	else	in	between),	Git
helpfully	displays	all	of	the	commands	that	start	with	c.	In	this	case,	it	also	scrolls	that
list	up	and	leaves	you	at	a	prompt	where	you	can	continue	typing	the	chosen
command.

$	git	c

checkout						citool								commit

cherry								clean									config

cherry-pick			clone

$	git	c

Here's	another	example,	where	you	narrow	the	available	commands	with	more	letters.

$	git	co	<TAB><TAB>

commit			config

$	git	c

If	you	type	enough	letters	to	uniquely	identify	only	one	possible	choice,	then	pressing
the	Tab	key	auto-completes	the	command	for	you	because	there's	only	one	option.	For
example,	git	con	<TAB>	yields	git	config.

This	also	works	for	arguments	to	commands.	Typing	git	config	--l	<TAB>	<TAB>
gives	the	suggestions:	--list	--local.	Typing	either	git	config	--l	or	git	config	--
li	<TAB>	yields	git	config	--list.

NOTE

When	attempting	to	use	auto-complete	for	an	option,	make	sure	that	you	have
started	the	option	with	the	double-hyphen	(--)	syntax	and	not	just	a	single
hyphen.

Enabling	Auto-complete	If	You	Don't	Have	It
As	noted	earlier,	auto-complete	is	already	enabled	in	Git	for	Windows	and	some	other
distributions.	For	other	versions	(Linux,	OS	X)	where	it	is	not	enabled,	you	can
download	scripts	that	implement	this	feature	for	different	shells	from
https://github.com/git/git/tree/master/contrib/completion.

Once	you	understand	tools	like	git	pull,	you	can	use	them	to	retrieve	these	scripts	via
Git.	Until	then,	or	as	an	alternate	approach,	a	simple	way	is	just	to	click	the	desired
script	and	then	find	the	button	labeled	Raw	on	that	page.	Click	that	button	to	go	to	a
web	page	with	just	the	contents	of	that	file.	Then,	you	can	download	that	script	to	your
local	system	(through	the	browser)	and	add	it	into	the	appropriate	init	file	in	your
home	directory	or	into	the	appropriate	directory	for	auto-completion	for	all	users	if
your	shell	supports	that.

Let's	work	through	a	quick	example	of	how	to	install	this	feature	for	a	bash
environment.

Here's	the	direct	link	for	the	raw	version:
https://raw.githubusercontent.com/git/git/master/contrib/completion/git-

completion.bash

After	getting	the	raw	version	of	the	file,	you	can	download	that	page	as	the	file	git-
completion.bash	to	your	local	system.	Once	the	script	is	downloaded,	you	add	a	line
like	the	following	into	your	.bashrc	file	(create	the	file	if	needed):

$	source	~/git-completion.bash

To	extend	this	functionality	for	all	users,	you'll	need	to	find	out	where	your	particular
OS	stores	and	expects	to	find	auto-completion	scripts	and	put	the	downloaded	file
there.	For	most	bash	systems,	there	is	a	/etc/bash_completion.d	directory	where
scripts	like	this	can	be	stored	to	be	loaded.	If	you're	not	sure	where	the	location	is,	try
searching	for	completion	on	your	file	system,	or	consult	Google.

Auto-completion	and	the	Windows	Command	Prompt
In	the	Windows	command	prompt,	auto-complete	functionality	is	not	built	in,	and	the
method	in	the	previous	section	doesn't	work	because	it	is	based	on	a	Linux	script.
However,	there	is	a	utility	called	clink	that	you	can	search	for,	download,	and	install
on	Windows	that	will	provide	command	auto-completion	for	Git	(as	well	as	other
functionality).	The	use	is	the	same—suggestions	or	completion	via	the	tab	key.

https://github.com/git/git/tree/master/contrib/completion
https://raw.githubusercontent.com/git/git/master/contrib/completion/git-completion.bash

Note,	however,	that	this	does	not	provide	suggestions	or	auto-completion	for
arguments	to	the	commands.

Now	that	you	understand	how	to	invoke	Git	commands	and	pass	arguments,	let's	see
how	you	can	use	this	feature	to	accomplish	one	of	the	most	basic	and	essential	parts
of	using	Git:	configuration.

CONFIGURING	GIT
To	set	configuration	values	in	Git,	you	use	the	config	command.	Here's	the	syntax:

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--null]	name	[value	

[value_regex]]

git	config	[<file-option>]	[type]	--add	name	value

git	config	[<file-option>]	[type]	--replace-all	name	value	[value_regex]

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--null]	--get	name	

[value_regex]

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--null]	--get-all	name	

[value_regex]

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--null]	[--name-only]	--

get-regexp	name_regex	[value_regex]

git	config	[<file-option>]	[type]	[-z|--null]	--get-urlmatch	name	URL

git	config	[<file-option>]	--unset	name	[value_regex]

git	config	[<file-option>]	--unset-all	name	[value_regex]

git	config	[<file-option>]	--rename-section	old_name	new_name

git	config	[<file-option>]	--remove-section	name

git	config	[<file-option>]	[--show-origin]	[-z|--null]	[--name-only]	-l	|	--

list

git	config	[<file-option>]	--get-color	name	[default]

git	config	[<file-option>]	--get-colorbool	name	[stdout-is-tty]

git	config	[<file-option>]	-e	|	--edit

Now	here's	an	example	of	the	most	common	syntax:

$	git	config	--global	user.name	"Joe	Gituser"

Let's	dissect	the	various	parts	of	this	command.	The	first	two	pieces	are	simply	issuing
the	config	command	from	git.	After	that	is	an	option,	global,	(preceded	by	two
hyphens	because	you	are	spelling	it	out).	I'll	be	talking	in	more	detail	about	this
option	shortly.	Next	comes	the	configuration	setting	that	you're	updating:	user.name.
Git	uses	a	“.”	notation	to	separate	out	the	two	pieces	of	a	configuration	setting—in	this
case,	user	and	name.	Think	of	this	as	setting	the	name	value	of	the	user	section	in	the
configuration.	And	finally,	you	have	the	actual	value	that	you're	setting	this
configuration	setting	to.	Notice	that	because	you	have	spaces	in	the	value,	you	need	to
enclose	the	entire	string	in	quotes.

Here's	another	example:

$	git	config	--global	user.email	Joe.Gituser@mailhost.com

One	additional	note:	Git	configuration	settings	are	stored	in	text	files.	It	is	possible	to
change	these	settings	by	editing	the	associated	text	files,	but	this	is	highly	discouraged
because	it's	easy	to	make	a	mistake	and	also	to	accidentally	modify	other	settings.

Telling	Git	Who	You	Are
Referring	to	the	two	earlier	examples,	one	of	the	first	things	that	you	need	to
configure	in	Git	is	who	you	are,	in	terms	of	the	username	and	e-mail	address.	Git
expects	you	to	set	these	two	values,	regardless	of	what	interface	or	version	of	Git	you

use.	This	is	because	Git	is	a	source	management	system.	Because	its	purpose	is	to
track	changes	by	users	over	time,	it	wants	to	know	who	is	making	those	changes	so
that	it	can	record	them.

If	you	don't	specify	these	values,	then	Git	will	interpolate	them	from	the	signed-on
userid	and	machine	name	(user@system).	Chances	are	this	is	not	what	you	want	to
have	the	system	ultimately	use.	If	you	forget	to	set	these	values	initially	on	a	new
system,	and	commits	are	recorded	with	the	interpolated	values,	there	is	a	way	to	go
back	and	correct	this	information,	using	the	commit	command	with	the	--amend	and	-
-reset-author	options.

The	values	can	be	set	via	the	same	commands	as	shown	in	the	previous	section:	git
config	--global	user.name	<name>	and	git	config	--global	user.email	<email
address>.

NOTE

The	e-mail	address	is	not	validated	when	you	set	it	in	Git.	In	fact,	you	can	enter
any	e-mail	address	and	Git	will	be	happy.	However,	there	is	some	advanced
functionality	in	Git	that	uses	this	e-mail	address.	That	functionality	allows	for
tasks	such	as	creating	and	sharing	patches	and	zipped	versions	of	changes.	For
that	functionality,	having	a	correct	e-mail	address	is	important.	Also,	there	are
other	tools,	such	as	Gerrit	(a	code-review	tool	built	on	top	of	Git),	that	heavily
utilize	the	e-mail	address	and	depend	on	it	being	correct.

Configuration	Scope
In	the	previous	examples,	I	used	the	--global	option	as	part	of	the	configuration	step.
The	global	option	is	a	way	of	telling	Git	how	broadly	this	configuration	setting	should
be	used—which	repositories	it	should	apply	to.

Recall	that	the	Git	model	is	designed	for	many,	smaller	repositories	instead	of	fewer,
monolithic	ones.	Because	users	may	normally	be	working	with	multiple	repositories,
it	would	be	inconvenient	and	subject	to	error	to	have	to	configure	the	same	settings	in
each	repository.	As	a	result,	Git	provides	options	to	simplify	choosing	the	scope	for
configuration	values.	There	are	three	levels	available	for	configuration:	system,	global,
and	local.

System
Configuration	at	the	system	level	means	that	a	configuration	value	applies	to	all
repositories	on	a	given	system	(machine)	unless	it's	overridden	at	a	lower	level.	These
settings	apply	regardless	of	the	particular	user.

To	ensure	that	a	configuration	value	applies	at	the	system	level,	you	specify	the	--
system	option	for	the	config	command,	as	in	git	config	--system	core.autocrlf	true.

These	settings	are	usually	stored	in	a	gitconfig	file	in	either	/usr/etc	or
/usr/local/etc.	On	a	Windows	system,	if	you're	using	Git	for	Windows,	the	system
file	is	in	C:\ProgramData\Git\config.	In	other	systems,	look	in	the	directory	where	Git
was	installed.

Global
Configuration	at	the	global	level	implies	that	a	configuration	value	applies	to	all	of	the
repositories	for	a	particular	user,	unless	overridden	at	the	local	level.	Unless	you	need
repository-specific	settings,	this	is	the	most	common	level	for	users	to	work	with
because	it	saves	the	effort	of	having	to	set	values	for	each	repository.	An	example	of
setting	values	at	the	global	level	would	be	the	configuration	I	did	earlier	for	user.name
and	user.email	where	the	--global	option	was	incorporated.	These	settings	are	stored
in	a	file	named	.gitconfig	in	each	user's	home	directory.

Local
Setting	a	configuration	value	at	the	local	level	means	that	the	setting	only	applies	in
the	context	of	that	one	repository.	This	can	be	useful	in	cases	where	you	need	to
specify	unique	settings	that	are	particular	to	one	repository.	It	can	also	be	useful	if
you	need	to	temporarily	override	a	higher-level	setting.

An	example	could	be	overriding	the	global	end	of	line	settings	because	content	in	a
repository	is	targeted	for	a	different	platform.	To	update	settings	at	this	level,	you	can
specify	the	--local	option	or	just	omit	any	of	the	local,	global,	or	system	options	for	the
configuration.

As	an	example	of	this	last	point,	the	following	two	commands	are	equivalent:	git
config	--local	core.autocrlf	true	and	git	config	core.autocrlf	true.

The	local	repository's	configuration	is	stored	within	the	local	Git	repository,	in
.git/config	(or	in	config	under	wherever	your	Git	directory	is	configured	to	be.)

These	scope	options	(--local,	--global,	and	--system)	can	be	applied	to	other	options
and	forms	of	the	git	config	command	to	indicate	the	scope	to	be	referenced	for	that
command.

Settings	Hierarchy
When	determining	what	configuration	setting	to	use,	Git	uses	a	particular	search
order	to	find	these	settings.	First,	it	looks	for	a	setting	in	the	local	repository
configuration,	then	in	the	global	configuration,	and	finally	in	the	system
configuration.	If	a	specific	value	is	found	in	that	search	order,	then	that	value	is	used.
Beyond	that,	the	union	of	all	of	the	levels	(unique	local	+	unique	global	+	unique
system)	forms	the	superset	of	configuration	values	used	when	working	with	a
repository.

Figure	4.1	summarizes	the	different	configuration	scopes	in	Git	and	how	to	work	with
them.

Figure	4.1	Understanding	the	scopes	of	Git	configuration	files

Seeing	Configuration	Values
To	see	what	value	a	particular	configuration	setting	has,	you	can	use	git	config
<setting>	as	in	git	config	user.name.

Git	then	prints	the	value	associated	with	that	setting.	Because	I	didn't	specify	one	of
the	scope	options	(--system,	--global,	--local),	Git	first	checks	to	see	if	there	is	a	local
setting,	and	if	so,	it	displays	that	value.	If	there	is	no	explicit	local	setting,	then	it	looks
for	a	global	setting,	and,	if	one	is	found,	displays	the	global	value.	If	there	is	no	global
setting	specified,	Git	looks	for	a	system	setting	and	displays	that	value.	This	is	an
example	of	the	search	order	that	I	outlined	earlier.

You	can	also	use	the	scope	options	to	specifically	direct	the	config	command	to	a
particular	level,	as	I	did	when	setting	configuration	values	earlier.

To	better	understand	how	this	works	at	a	practical	level,	consider	the	following
sequence:

$	git	config	--global	user.name	"Global	user"

$	git	config	user.name	

This	returns	the	value	Global	user	because	there	was	no	local	value	defined;	Git
looked	for	a	global	setting	and	found	this	one.

On	the	other	hand,	say	you	were	to	use	this	sequence:

$	git	config	user.name	"Local	user"

$	git	config	user.name	

This	returns	the	value	Local	User	because	the	local	option	was	implied	in	setting	the
value	and	thus	it	finds	a	local	value	defined.

Undoing	a	Configuration	Setting
Occasionally,	you	may	need	to	remove	a	user	setting	at	a	particular	level.	Git	provides
the	unset	option	for	this,	and	it's	pretty	straightforward:

$	git	config	--unset	<other	options>	<value	to	remove>

Other	options	here	would	generally	refer	to	one	of	the	scope	options.	Continuing	the
earlier	example,

$	git	config	--unset	--global	user.name

$	git	config	--global	user.name

In	this	case,	nothing	is	returned	because	I	just	removed	this	value.

Listing	Configuration	Settings
Another	option	related	to	viewing	configuration	values	is	--list.	Supplying	the	list
option	to	git	config	results	in	a	list	of	all	configuration	settings	being	dumped.	By
default,	this	list	includes	local,	global,	and	system	settings	without	qualification.	So,	if
you	have	both	a	local	and	global	value	for	the	same	setting,	you	will	see	both.

$	git	config	--list

…

user.name	=	global	user

…

user.name	=	local	user

If	the	settings	have	the	same	values,	this	can	be	confusing	(and	potentially
misleading)	if	you're	not	aware	of	the	reasons	behind	it.	To	work	around	seeing	these
multiple	values,	you	can	refine	the	list	by	specifying	one	of	the	scope	options.

$	git	config	--local	--list

…

user.name	=	local	user

NOTE

If	you	are	ever	unable	to	figure	out	where	a	particular	configuration	value	is	set,
you	can	use	the	--show-origin	option	with	the	configuration	setting	name	to
figure	it	out.	For	example,	if	you	run	the	command	git	config	user.name	"Joe
Gituser"	then	git	config	--show-origin	user.name	shows	this:	file:.git/config
Joe	Gituser.

This	option	can	also	be	combined	with	the	--list	option	to	get	a	complete	list	of
where	all	the	settings	are	stored.

One-Shot	Configuration
There	is	one	additional	way	to	set	a	configuration	value:	as	a	one-shot,	one-time
configuration	for	the	current	operation.	This	is	done	through	one	of	the	global	options
that	can	be	passed	to	Git	directly:	-c.

The	format	for	this	is	git	-c	<configuration	setting>=<value>	<rest	of	command
line>.

Notice	that	this	format	requires	the	“=”	sign	between	the	setting	and	the	value.	Using
this	option	effectively	creates	an	override	for	the	duration	of	the	current	operation.

Now	that	you	understand	how	configuration	settings	are	specified	and	managed	in
Git,	let's	look	at	configuration	for	some	of	the	most	common	settings	and	behaviors
that	users	deal	with.

NOTE

To	see	a	list	of	the	different	settings	and	values	that	can	be	configured,	see	the
man	page	for	git-config	under	the	“Variables”	section.

Default	Editor
The	default	editor	is	primarily	used	when	you	need	to	type	in	a	message	while	making
a	commit	into	the	repository.	If	you	don't	supply	the	message	in	the	command	line
when	you	do	the	commit,	Git	will	bring	up	the	default	editor	on	your	system	to	allow
you	to	type	one	in.

If	you	would	rather	use	a	different	editor,	you	can	use	the	following	config	command
to	specify	which	one	to	use:	git	config	--global	core.editor	<editor	name	or	path	+
name>	<optional	options	for	the	editor>.

The	--global	option	is	not	required,	but	most	users	want	to	use	the	same	editor	for	all
of	their	repositories.	Here	again,	you	can	break	down	core.editor	as	the	editor	value	in
the	core	section	of	the	configuration.

If	the	editor	is	already	in	the	path	that	Git	knows	about,	then	the	path	isn't	required.
Here	are	some	examples	of	configuring	editors:

$	git	config	core.editor	vim		(Linux)

$	git	config	--global	core.editor	"nano"		(OS	X)

c:\>	git	config	core.editor	"'C:\Program	Files\windows	

nt\accessories\wordpad.exe'"		(Windows)

$	git	config	--global	core.editor	"'C:/Program	Files

(x86)/Notepad++/notepad++.exe'	-multiInst	-noSession

-notabbar"		(Bash	shell	on	Git	for	Windows)

Note	the	different	uses	for	single	quotes	and	double	quotes	in	the	respective
examples.	Also,	in	the	last	example,	-multInst,	-noSession,	and	-notabbar	are	all
options	to	Notepad++	to	make	it	simpler	to	use.	(multInst	tells	Notepad++	to	allow
multiple	instances	to	run;	noSession	tells	it	not	to	remember	the	session	state—that
is,	not	to	load	the	last	file	you	were	working	on;	and	notabbar	just	avoids	displaying
the	tabbed	selection	bar	at	the	top.)

NOTE

If	you	are	working	on	Windows	and	want	to	set	up	the	default	editor
automatically,	you	can	use	a	utility	program	called	GitPad.	You	can	download	it
from	https://github.com/downloads/github/GitPad/Gitpad.zip.

Once	you	run	GitPad,	it	will	set	Git's	default	editor	to	whatever	application	is	set
to	open	files	of	type	txt	on	Windows.	By	default,	that	is	Notepad,	but	it	can	be
changed	on	Windows	(through	the	file	associations)	so	that	it	is	a	different
application.

End	of	Line	Settings
Now,	let's	look	at	one	of	the	key	settings	users	need	to	manage	with	Git:	handling	end
of	line	(EOL)	values.	Git	manages	the	two	types	of	line	endings:	carriage	returns/line
feeds	(CRLF)	for	Windows	and	line	feeds	(LF)	for	OS	X/Linux.

In	the	context	of	Git,	there	are	two	options	that	are	controlled	by	the	EOL	setting:

How	line	endings	are	stored	in	content	when	it	is	committed	into	the	repository

How	line	endings	are	updated	(or	not)	when	content	is	checked	out	of	the
repository	onto	a	local	disk

The	first	item	refers	to	whether	or	not	Git	normalizes	line	endings	in	the	repository.
Normalizing	refers	to	stripping	out	CRs	and	only	storing	files	with	LFs.

For	the	second	item,	when	content	is	checked	out	of	Git,	Git	can	update	line	endings
in	text	files.	This	option	allows	you	to	specify	whether	or	not	Git	updates	line	endings
in	files	after	checkout,	and,	if	it	does,	which	type	it	sets	them	to.

At	a	user	or	repository	level,	how	Git	handles	these	options	is	controlled	by	a
configuration	setting	named	core.autocrlf.	As	before,	the	“.”	is	a	separator,	and	you
can	think	of	the	first	part	as	the	section	of	the	configuration,	and	the	second	part	as
the	specific	value	being	set	in	that	section.	The	crlf	part	here	obviously	stands	for
carriage	return,	line-feed—meaning	the	common	EOL	sequence	for	files	on	a
Windows	environment.	The	auto	part	refers	to	automatically	inserting	CRLF
sequences	in	files	when	they	are	checked	out.

There	are	three	possible	values	for	the	core.autocrlf	setting:

core.autocrlf=true.	This	value	tells	Git	to	normalize	line	endings	to	just	LFs
when	storing	files	in	the	repository	and	to	automatically	insert	CRLFs	when	files
are	checked	out.	If	users	are	working	on	a	Windows	environment,	this	is	the
recommended	value.	It	allows	them	to	get	CRLFs	in	files	when	checked	out	from
Git,	but	doesn't	store	the	CRs	in	the	repository.

core.autocrlf=input.	This	value	tells	Git	to	normalize	line	endings	to	just	LFs

https://github.com/downloads/github/GitPad/Gitpad.zip

when	storing	files	in	the	repository	but	not	to	change	anything	when	files	are
checked	out.	If	users	are	working	in	a	Unix	environment,	this	is	the	recommended
value	because	Unix	expects	just	LFs.

core.autocrlf=false.	This	default	value	tells	Git	not	to	change	anything	when
files	are	being	checked	in	or	checked	out.	This	is	the	primary	value	for	the	setting
that	can	get	users	into	trouble.	Suppose	you	have	two	users	working	on	code	for
the	same	repository,	one	in	a	Windows	environment	and	one	in	a	Unix
environment.	If	both	users	have	specified	the	core.autocrlf=false	value	in	their
configurations,	then	when	they	commit	changes,	the	files	from	Windows	will	have
CRLFs	and	those	from	Unix	will	have	just	LFs.	If	the	respective	users	later	each
check	out	the	other's	files,	then	the	files	will	have	the	wrong	line	endings	for	their
system.	For	this	reason,	this	value	should	not	be	used	when	mixed	environments
are	being	used	in	a	project.

In	general,	it's	a	best	practice	to	set	the	core.autocrlf	setting	to	one	of	the	values	other
than	false,	depending	on	which	environment	you're	working	in.

It	should	also	be	noted	that	there	are	other	configuration	settings	that	can	contribute
to	how	line	endings	are	handled.	However,	these	settings	are	more	obscure	and
broader	in	terms	of	what	they	affect.	Also,	their	default	values	generally	work	well	for
what	most	users	need	to	do.

NOTE

You	cannot	guarantee	that	everyone	will	have	the	appropriate	core	.autocrlf	value
set.	However,	there	is	an	alternative	method	for	controlling	line	endings	in	a
repository:	the	.gitattributes	file.

I	will	discuss	this	file	in	more	detail	in	Chapter	10,	but	essentially,	this	is	a
metafile	that	tells	Git	how	to	handle	certain	operations	and	characteristics	based
on	the	file's	type.	One	of	these	characteristics	is	line	endings.

The	advantage	of	controlling	line	endings	in	a	.gitattributes	file	rather	than
relying	on	the	configuration	settings	is	that	the	file	can	be	checked	in	to	the
repository	along	with	the	files	it	handles.

Additionally,	this	file	can	also	be	used	to	tell	Git	which	file	types	are	binary.

Aliases
Configuration	in	Git	also	supports	the	concept	of	configuring	aliases	for	command
strings.	The	format	for	defining	an	alias	is	git	config	<scope	option>	alias.<name>
<command	string>.

In	this	context:

<scope	option>	can	be	one	of	--system,	--global,	or	--local.	(Or	it	can	be
omitted,	to	default	to	local.)

<name>	is	the	name	you	want	to	use	for	the	alias.	Once	set,	this	can	be	used	just
like	any	other	Git	command.

<command	string>	is	the	string	of	a	command	and	any	arguments	that	the	alias
will	substitute	for.

There	are	two	main	reasons	that	aliases	are	convenient	to	create	and	use:

To	save	typing	frequently	used	strings	of	commands	and	arguments

To	create	a	more	familiar	command	for	a	Git	command

As	an	example	of	the	first	case,	the	git	log	command	displays	history	in	Git	and	has
many	options.	Here's	an	example	log	command:

$	git	log	--pretty=format:"%h	%ad	|	%s%d	[%an]"	--graph	--date=short

Because	this	is	a	long	command	string,	it	can	be	difficult	to	type	each	time	you	want	to
use	it.	So,	you	can	create	an	alias	instead.

$	git	config	--global	alias.hist	git	log	--pretty=format:"%h	%ad	|	%s%d	[%an]"	-

-graph	--date=short

With	this	alias	in	place,	you	can	now	just	type	git	hist	instead	of	the	longer,

complicated	command.

As	an	example	of	the	second	use	case,	suppose	a	user	is	more	accustomed	to	typing
checkin	from	using	other	SCMs	instead	of	commit.	If	they	want,	they	can	create	an
alias	by	using	git	config	--global	alias.checkin	commit.

After	this,	the	user	can	type	git	checkin	instead	of	git	commit.	(Note	that,	while	this
sort	of	alias	can	be	created,	it	is	not	recommended	because	it	is	not	universal	and
obscures	Git's	native	commands.)

The	format	of	the	command	to	create	an	alias	is	consistent	with	the	other	config
syntax.	When	you	see	alias.<name>,	you	can	think	of	this	as	creating	a	value	in	the
alias	section	of	the	configuration	file.	The	alias	information	is	stored	in	the
configuration	file	for	the	specified	scope.

Windows	Filesystem	Cache
The	underlying	filesystem	layer	on	Windows	is	fundamentally	different	from	the
filesystem	layer	on	Linux.	Git's	filesystem	access	is	optimized	for	the	Linux
filesystem,	and	in	the	past,	some	operations	on	Git	for	Windows	were	noticeably
slower.	To	compensate,	Git	has	added	a	filesystem	cache	that	does	bulk	reads	of	file
system	data	and	stores	it	in	memory.	This	speeds	up	many	operations,	once	the	cache
is	initially	populated.	In	recent	versions	of	the	install	for	Git	for	Windows,	this	option
is	turned	on	by	default.	To	set	it	manually,	you	change	the	core.fscache	value	to	true
via	git	config	--global	core.fscache	true.

INITIALIZING	A	REPOSITORY
Now	that	you	understand	how	to	configure	the	Git	environment,	I'll	move	on	to
setting	up	a	local	environment.	Recall	that	a	local	environment	consists	of	the	three
levels	I	discussed	in	the	previous	chapter:	working	directory,	staging	area,	and	local
repository.

There	are	two	ways	to	get	a	local	environment	for	use	with	Git:

Creating	a	new	environment	from	a	set	of	existing	files	in	a	local	directory,	via	the
git	init	command

Seeding	a	local	environment	by	copying	an	existing	remote	repository,	via	the	git
clone	command

I'll	discuss	each	of	these	methods	in	turn.

Git	Init
The	git	init	command	is	used	for	creating	a	new,	empty	Git	repository	in	the	local
directory.	The	syntax	for	the	command	is	shown	below.

git	init	[-q	|	--quiet]	[--bare]	[--template=<template_directory>]

				[--separate-git-dir	<git	dir>]

				[--shared[=<permissions>]]	[directory]

When	this	command	is	run,	a	new	subdirectory	named	.git	is	created	in	the	directory
where	the	command	was	run,	and	populated	with	a	skeleton	repository.	(Like	many
open-source	applications,	Git	stores	metadata	in	a	subdirectory	named	for	the	tool	and
preceded	by	a	dot.)	This	local	environment	is	now	ready	for	tracking	and	storing	new
content.	Note	that	this	command	can	be	run	at	any	time	in	a	directory	that	does	not
already	have	a	Git	environment	associated	with	it	to	create	one,	no	matter	how	many
or	what	types	of	files	are	already	in	the	directory.

The	basic	syntax	for	invoking	init	is	git	init.	Before	running	git	init,	you	should	be	at
the	top	level	of	the	tree	you	want	to	put	under	Git	control.	You	also	want	to	make	sure
this	is	done	at	an	appropriate	level	of	granularity.	Recall	that	Git	is	intended	to	work
with	multiple,	smaller	repositories,	not	very	large	ones.	So,	running	git	init	at	your
home	directory	level,	for	example,	is	not	usually	a	good	idea	because	this	sets	Git	up
to	try	and	act	on	all	files	and	subdirectories	under	your	home	directory	for	future
operations—which	is	probably	beyond	the	scope	you	intended.

Git	Clone
Whereas	the	init	command	is	used	when	you	want	to	create	a	new,	empty	repository
and	begin	adding	content,	the	clone	command	is	used	to	populate	a	local	repository
from	an	existing	remote	repository.	The	syntax	for	the	command	is	shown	below.

git	clone	[--template=<template_directory>]

							[-l]	[-s]	[--no-hardlinks]	[-q]	[-n]	[--bare]	[--mirror]

							[-o	<name>]	[-b	<name>]	[-u	<upload-pack>]	[--reference	<repository>]

							[--dissociate]	[--separate-git-dir	<git	dir>]

							[--depth	<depth>]	[--[no-]single-branch]

							[--recursive	|	--recurse-submodules]	[--]	<repository>

							[<directory>]

To	use	the	clone	command,	you	specify	a	remote	repository	location	to	clone	from	and
Git	does	the	following:

Creates	a	local	directory	with	the	same	name	as	the	last	component	of	the	remote
repository's	path

Within	that	directory,	creates	a	.git	subdirectory	and	copies	the	appropriate	parts	of
the	remote	repository	down	to	that	.git	directory

Checks	out	the	most	recent	version	of	a	branch	(usually	the	default	master
branch)	into	the	local	directory.	This	checked-out	version	with	the	flat	files	is	what
the	user	usually	sees	and	works	with	immediately	after	the	clone.

The	basic	syntax	for	cloning	a	repository	is	git	clone	<url>	where	<url>	is	a	path	to	a
remote	repository.	Here's	an	example:

$	git	clone	ssh://admin@gitserver.domain.com:path-to-repo.git	

I	will	discuss	this	command	more	in	Chapter	12.

What's	in	the	Repository
Whether	the	local	environment	is	created	by	a	git	init	or	git	clone	command,	the
structure	within	the	.git	subdirectory	is	the	same.	Essentially,	a	Git	repository	is	a
content-addressable	data	store.	That	is,	you	put	something	into	the	repository,	Git
calculates	a	hash	value	(SHA1)	for	the	content,	and	you	can	then	use	that	value	later
to	get	something	out.	Figure	4.2	shows	an	outline	of	a	.git	repository	on	disk.

Figure	4.2	Tree	listing	of	a	.git	directory	(local	repository)

The	HEAD	file	keeps	track	of	which	branch	the	user	is	currently	working	with.	The
description	file	is	used	by	GitWeb,	a	browser	application	to	view	Git	repositories.	The
config	file	is	the	local	repository's	configuration	file.	The	object	and	pack	directories
are	the	areas	where	content	is	actually	stored.	You	can	find	more	information	about
the	files	and	content	stored	in	the	local	repository	in	the	optional	steps	of	Connected
Lab	2.

ADVANCED	TOPICS
In	this	section,	I'll	look	at	several	topics.	The	first	is	a	quick	note	about	how	the	init
command	works.	Second	is	a	further	explanation	about	what's	in	a	Git	repository.	The
third	is	how	Git	config	statements	map	to	the	text	of	the	configuration	files.	Finally,
I'll	look	at	a	way	to	create	even	more	useful	aliases	that	can	have	arguments	passed	to
them	and	do	multiple	steps.

While	this	information	is	not	necessary	for	using	Git,	sometimes	it's	helpful	to
understand	how	Git	works	behind	the	scenes.	The	first	two	sections	apply	this
approach	to	a	couple	of	areas.

Git	Init	Demystified
If	you're	wondering	how	git	init	gets	the	initial	content	for	the	skeleton	repository,
the	answer	is	that	there's	a	template	area	containing	the	repository	skeleton.	This	is
installed	when	you	install	Git.	If	you're	interested	in	looking	at	it,	you	can	search	for
git-core	on	your	filesystem	in	the	area	where	you	installed	Git.	On	Windows,	this	is
usually	in	a	location	such	as	C:\Program	Files\Git\mingw64\share\git-core\templates
(if	you	installed	the	Git	for	Windows	package).	On	a	Linux	system,	it	may	be	in	a
location	such	as	/usr/share/git-core/templates.

On	some	installations,	you	may	also	see	a	contrib	folder	in	the	same	area	with	items
such	as	hooks	that	users	have	contributed	over	time	that	are	now	included	as	optional
pieces	that	can	be	put	in	place	as	desired.	I'll	talk	more	about	setting	up	hooks	in
Chapter	15.

Running	Git	Init	Twice	on	the	Same	Repository
Running	init	twice	may	seem	counterintuitive,	but	there	are	actually	cases	where	it
provides	value.	The	good	news	is	that	it	does	not	delete	or	modify	any	content	that	you
have	added	or	committed	into	the	repository	or	your	local	configuration.	It	does
update	any	changes	to	the	subset	of	the	templated	files	discussed	previously.

So	what	would	be	a	use	case	to	deliberately	run	init	twice?	Suppose	you	have	multiple
Git	repositories	on	your	system	and	you	want	to	update	a	hook	in	all	of	them	to
provide	some	functionality,	such	as	sending	e-mails	after	a	commit.	You	could	update
the	hook	in	the	templates	area	discussed	earlier,	and	then	do	a	git	init	on	each	of	the
repositories	to	get	the	updated	hook	put	in	place	in	each	repository.

Looking	Further	into	a	Git	Repository
As	I've	previously	mentioned,	a	local	Git	repository	is	housed	in	the	.git	directory	of
the	working	directory.	It	is	essentially	a	content-addressable	database,	meaning	you
supply	a	value	(typically	a	SHA1)	and	you	get	content	back	out.

Figure	4.3	shows	the	relationship	and	transformation	of	content	from	the	working
directory	into	the	Git	repository.

Figure	4.3	Mapping	files	and	directories	to	Git	repositories

Starting	at	the	left	side	of	the	figure,	files	and	directories	first	exist	as	normal	OS
items	on	the	disk	in	the	working	directory.	Git	does	not	know	anything	about	them.	It
does	not	track	them	until	the	user	adds	them	to	the	staging	area.	Once	they	are
tracked	by	Git,	a	new	snapshot	is	created	with	metadata	in	the	form	of	a	commit
record.	Once	committed,	the	pieces	are	stored	in	their	respective	areas	in	the
underlying	repository.

As	shown	in	the	middle	section	of	the	figure,	the	pieces	that	Git	stores	are	defined	as
one	of	three	types:	blob,	tree,	or	commit.	Blobs	are	essentially	anonymous	containers
for	files—anonymous	in	the	sense	that	they	don't	contain	filenames.	Trees	can	be
thought	of	as	containers	for	directories	that	point	to	blobs	for	files	and	contain	the
filenames.	Commits	can	be	thought	of	as	the	header	records	with	meta-information
that	Git	uses	for	tracking.

Internally,	Git	computes	SHA1	checksums	for	each	of	these	pieces	and	stores	them
referenced	by	those	checksums.	The	checksums	can	be	seen	in	the	parts	of	the	middle
section	and	then	in	the	tree	view	of	the	actual	repository	directory	on	the	right	side	of
the	figure.

As	shown	in	that	view,	Git	stores	these	internal	objects	in	directories	that	start	with
the	first	two	characters	of	the	checksum.	The	filename	is	made	up	of	the	remaining
characters.	The	files	may	be	changed	over	time	when	certain	events	trigger	Git	to	do

further	compression	and	rearrange	content	to	efficiently	store	very	similar	versions.

The	only	checksum	those	commands	are	concerned	with	(and	the	only	one	you	need
to	be	concerned	with)	is	the	checksum	that	is	specifically	associated	with	the	commit
record,	not	the	ones	for	trees	or	blobs.

By	referencing	that	one	checksum	for	the	commit	record,	Git	pulls	in	the	underlying
tree	and	blob	content.

Once	you	actually	have	a	repository	with	content	stored	in	it,	you	can	change	into	the
repository	directories	to	see	the	stored	objects	or	use	this	shortcut	(on	Linux
systems):	find	.git/objects	-type	f.

From	there,	you	can	use	the	cat-file	plumbing	command	to	examine	objects.	As	an
example	git	cat-file	-p	<sha1	or	branch	name	or	reference>	tells	Git	to	figure	out
the	type	of	object	and	neatly	display	its	contents.	A	similar	command,	git	cat-file	-t
<sha1	or	branch	name	or	reference>	returns	the	type	of	an	object:	commit,	tree,	or
blob.

Connected	Lab	2	contains	several	optional	steps	that	you	can	work	through	to
understand	what's	happening	in	the	underlying	repository	during	an	init,	add,	and
commit	sequence.	It	also	further	explains	the	files	that	are	in	the	underlying
repository	tree	at	various	points.

Mapping	Config	Commands	to	Configuration	Files
In	this	chapter,	I	described	the	various	configuration	files	that	Git	uses,	as	well	as	how
to	set	values	via	the	git	config	command.	If	you	see	something	in	a	config	file	that	you
want	to	emulate	or	use,	it	can	be	helpful	to	understand	how	the	config	commands
map	to	the	file	structure.	This	section	will	explain	that.

Suppose	you	configure	a	two-part	value	such	as	user.name	in	your	local	configuration
with	a	command	like	git	conig	--local	user.name	"Git	User".

This	translates	into	setting	the	name	value	of	the	user	section,	written	into	the
.git/config	file	as	follows:

	[user]

									name	=	Git	User

If	you	need	to	configure	a	given	value	for	a	named	section,	you	can	use	a	three-part
value	such	as	the	following:

$	git	config	--local	remote.myremote.url	http://github.com/brentlaster/calc2

$	cat	.git/config

…

[remote	"myremote"]

													url	=	http://github.com/brentlaster/calc2

Anything	beyond	three	parts	is	still	treated	as	three	parts,	with	the	extra	pieces	at	the

front	just	made	part	of	the	named	section.

$	git	config	--local	remote.myremote.new.url	http://github.com/brentlaster/calc2

$	cat	.git/config

…

[remote	"myremote.new"]

															url	=	http://github.com/brentlaster/calc2

Note	that	the	git	config	operation	also	takes	a	--file	option	instead	of	--local,	--global,
or	--system.	This	allows	for	writing	configuration	options	to	a	file	in	a	different
location,	such	as	for	test	purposes.

$	git	config	--file	test.config	remote.myremote.test

								http://github.com/brentlaster/calc2git

	

$	cat	test.config

[remote	"myremote"]

																		test	=	http://github.com/brentlaster/calc2git

As	one	last	tip,	git	config	includes	a	--get-regexp	option	to	find	configuration	values
matching	a	specified	pattern.	I'll	use	this	option	in	the	next	section	so	you	can	see	how
it	works.

Creating	Parameterized	Aliases
Earlier	in	this	chapter,	I	showed	how	to	create	simple	aliases	for	specific	Git	command
lines,	such	as	git	config	alias.ci	commit.	It	is	certainly	userful	to	alias	fixed
command	strings,	but	only	to	the	extent	that	arguments	and	options	included	in	the
alias	never	change.

What	if	you	want	to	create	an	alias	that	takes	a	parameter	that	is	not	normally	part	of
a	command?	Or	that	may	change	over	time?	Or	that	may	perform	extra	steps	or
processing—especially	with	system	commands?

As	it	turns	out,	on	Linux	systems	you	can	do	this	with	Git	fairly	easily.	You	just	need
to	have	your	alias	string	take	this	form:

"!	f()	{	do	some	processing	};	f"

The	!	at	the	beginning	tells	Git	you	are	going	to	the	shell.	The	“f()	{};	f”	allows	you	to
define	a	function	as	part	of	the	alias	and	then	run	that	function	when	the	alias	is
invoked.

Values	that	you	pass	in	as	arguments	are	treated	as	positional	parameters	(for
example,	$1,	$2,	and	so	on).	When	including	these	parameters	in	the	alias	definition,	a
backslash	needs	to	precede	the	$,	as	in	“\$”.	This	is	to	ensure	the	parameter	is
included	as	part	of	the	definition	and	not	interpreted	when	you	are	defining	the	alias.

Let's	work	through	a	couple	of	examples.	First,	I'll	create	a	simple	alias	that	takes	an
argument	and	lists	out	any	matching	global	and	local	settings	prefixed	by	an

appropriate	header	for	each	section.	The	config	command	is	used	in	this	example.
What	I	am	doing	in	this	command	line	is	defining	a	local	alias	named	scopelist,	which
does	the	following:

1.	 Echoes	out	a	global	settings	header

2.	 Uses	git	config's	--get-regexp	option	with	a	global	qualifier	to	search	for	the	value
that	is	passed	in

3.	 Echoes	out	a	local	settings	header

4.	 Uses	git	config's	--get-regexp	option	with	a	local	qualifier	to	search	for	the	values
that	are	passed	in

Here's	the	command.	(Pay	attention	to	the	quotes,	semicolons,	double	hyphens,	and
backslashes.)

$	git	config	--local	alias.scopelist	"!	f()	{	echo	'global	settings';	git	config	

--global	--get-regexp	\$1;	echo	'local	settings';	git	config	--get-regexp	\$1;	

};	f"

Here	is	an	example	of	running	the	alias:

$	git	scopelist	name

global	settings

user.name	Git	User	(global)

local	settings

user.name	Git	User	(local)

The	following	example	will	show	you	a	simple	way	to	dump	out	the	contents	of	a
particular	scope	into	a	file.	This	illustrates	having	two	positional	parameters.	In	this
case,	the	alias	will	do	the	following:

1.	 Echo	out	a	header.

2.	 Issue	a	git	config	command	at	the	appropriate	scope.

3.	 Dump	the	values	from	step	2	into	a	separate	file.

Here's	the	command	to	define	this	alias.	(Again,	pay	attention	to	the	punctuation
characters	that	are	used.)

$	git	config	--local	alias.dumpvalues	"!	f()	{	echo	'copying	config'	\$1;	git	

config	--list	--\$1	>	\$2;	};	f"

Here	is	an	example	of	running	this	alias	and	looking	at	the	results:

									$	git	dumpvalues	global	global_values.out

									copying	config	global

	 	

									$	cat	global_values.out

									alias.hist=log	--pretty=format:"%h	%ad	|	%s%d	[%an]"	--

graph	--date=short

									push.default=simple

									core.autocrlf=false

									core.editor='C:/Program	Files

(x86)/Notepad++/notepad++.exe'	-multiInst	-noSession	-notabbar

									gitreview.remote=origin

									user.name=Git	User	(global)

									user.email=Git.User@domain.com

Obviously,	these	examples	don't	cover	all	the	possibilities	of	bad	or	missing	input.
However,	they'll	give	you	an	idea	of	how	to	use	this	functionality	if	you	ever	need	it.

SUMMARY
In	this	chapter,	I	discussed	the	form	and	structure	of	Git	commands	and	related	topics
such	as	auto-completion.	I	introduced	basic	configuration	for	Git	and	described	how
to	create	local	environments.	I	covered	the	different	scope	of	configuration	settings
you	can	use	and	how	to	specify	values	for	each	scope.	I	also	covered	how	to	create
aliases	to	simplify	interacting	with	Git.	I	then	described	the	two	different	ways	to
create	local	environments	with	Git—initializing	a	new	environment	from	existing	files
or	cloning	down	an	existing	repository.	Finally,	I	offered	a	brief	description	of	what's
inside	a	.git	repository.

In	the	section	on	advanced	topics,	you	took	a	closer	look	at	how	the	init	command
works,	the	contents	of	a	Git	repository,	and	how	to	look	at	individual	objects.	Then
you	learned	how	configuration	commands	map	to	the	actual	configuration	text	files.
Finally,	you	saw	how	to	create	advanced	aliases	that	can	run	operating	system
commands	and	allow	you	to	work	with	positional	parameters.

In	the	next	chapter,	you'll	start	putting	content	into	Git	and	go	over	the	commands	to
start	promoting	it	up	through	the	levels.

Chapter	5
Getting	Productive

WHAT’S	IN	THIS	CHAPTER?

Getting	and	working	with	help	in	Git

Understanding	the	multiple	repositories	model

Staging	files

Partial	and	interactive	staging

Committing	files	into	the	local	repository

Writing	good	commit	messages

Now	that	you	understand	the	Git	workflow,	how	to	create	a	repository,	and	how	to
configure	the	local	environment,	I’ll	show	you	how	to	use	Git	to	start	tracking	and
managing	content.	I’ll	also	further	explain	concepts	such	as	SHA1,	options	for	staging
files,	and	forming	good	commit	messages.	First,	though,	I’ll	discuss	something	that
both	new	and	experienced	users	need	to	know:	how	to	get	help.

Getting	Help
Git	includes	two	different	forms	of	help:	an	abbreviated	version	and	a	full	version.	The
abbreviated	version	is	a	short	list	of	options	with	brief	explanations	that	display	one
per	line	on	the	terminal	screen.	It	is	invoked	by	using	the	-h	option	after	the
command,	as	in	git	commit	-h.

This	is	useful	when	you	just	need	a	quick	reminder	of	what	options	are	available	or
how	to	specify	a	particular	option.	Figure	5.1	shows	an	example	of	abbreviated	on-
screen	help.

Figure	5.1	Abbreviated	version	of	help	invoked	with	the	-h	option

The	full	version	is	the	man	page	for	the	command,	which	opens	up	in	a	browser	on
some	systems.	It	is	invoked	by	using	one	of	two	forms:	either	adding	a	--help	after	a
command	or	using	the	help	command	itself	as	in	git	commit	--help	or	git	help
commit.

With	either	of	these	forms,	you	have	access	to	the	full	documentation	on	the
command	and	all	its	options,	with	explanations	and	some	examples,	via	the	man	page.

This	is	useful	when	you	need	to	understand	more	about	an	option	or	command.

The	format	for	the	help	command	is	as	follows:

git	help	[-a|--all]	[-g|--guide]

											[-i|--info|-m|--man|-w|--web]	[COMMAND|GUIDE]

The	guide	part	of	this	command	refers	to	some	brief	but	helpful	documentation	on
different	aspects	of	using	Git	that	you	can	select	through	help.

For	example,	here’s	a	command	to	display	a	built-in	guide	that	is	a	glossary:	git	help
glossary.

You	can	use	the	command	git	help	-g	to	get	a	list	of	all	available	built-in	guides.	(Be
aware	that	some	of	these	guides	might	be	out	of	date.)

The	remaining	options	have	to	do	with	whether	the	help	is	displayed	as	a	web	page,
man	page,	and	so	on.	You	can	specify	the	format	to	use	by	setting	the	help.format
setting—for	example	with	the	commands	git	config	--global	help.format	man	or	git
config	--global	help.format	web.

USING	WEB-BASED	HELP	ON	OS	X

If	you	are	trying	to	get	web-based	help	working	on	OS	X,	you	may	be	running	into
a	problem	where	the	help	files	are	always	presented	as	man	pages.	Setting	help
.format	to	web	on	OS	X	will	sometimes	return	the	following	error:

‘/usr/local/git/share/doc/git-doc’	:	Not	a	documentation	directory

To	fix	this,	go	to	/usr/local/git/share.	Create	a	doc	subdirectory	and	change	into
it.	Issue	the	following	clone	command	to	populate	the	area	with	the	necessary
files:
$	sudo	git	clone	git://git.kernel.org/pub/scm/git/git-htmldocs.git	git-doc

Then	set	the	help.format	value	to	web	and	try	again.

Figure	5.2	shows	part	of	a	web	man	page	for	one	Git	command.

Figure	5.2	Git	browser-based	man	page

Of	course,	you	can	always	Google	a	particular	command	or	option	to	find	out	more
about	it.

The	Multiple	Repositories	Model
In	Chapter	2,	you	explored	several	key	design	considerations	for	repositories,
including	repository	scope	and	file	scope.	The	factors	I	discussed	there	explained	why
Git	works	best	with	multiple,	smaller	repositories	rather	than	larger,	monolithic	ones.

With	this	model,	it	is	common	to	have	each	of	the	modules	of	your	project	housed	in	a
different	Git	repository.	As	a	result,	you	may	need	to	clone	several	different
repositories	to	get	everything	you	need	to	work	with	locally.	Each	repository	ends	up
in	a	separate	directory	tree	on	your	disk.

Likewise,	if	you’re	starting	a	new	project,	you	may	be	creating	new	modules	that	are
each	targeted	for	a	separate	Git	repository.	As	I	discussed	in	Chapter	4,	the	git	init
command	is	used	for	creating	new	repositories,	one	per	directory	tree.

Although	working	with	multiple	repositories	at	the	same	time	is	common	in	Git,	it	is	a
different	way	of	working	for	most	people.	Figure	5.3	shows	a	diagram	that	represents
these	kinds	of	scenarios.	Here,	some	repositories	are	newly	created	by	the	init
command,	and	some	are	cloned	down	from	existing	remote	repositories.	Notice	that
each	repository	is	housed	in	a	separate	working	directory	where	the	actual	repository
is	physically	stored	in	the	.git	subdirectory	tree	within	that	directory.

Figure	5.3	Working	with	multiple	repositories

In	Chapter	4,	I	also	talked	about	configuration	for	Git	and	the	different	levels:	system,
global,	and	local.	To	illustrate	how	that	would	work	in	a	multiple	repository	model,
you	could	group	these	directories	into	multiple	users	on	the	system	with
configuration	files	at	the	appropriate	levels.

Figure	5.4	shows	one	possible	organization.	Note	that	each	repository	has	its	own
local	configuration	as	represented	by	the	document	icons	in	each	directory.	Further,
each	user	has	their	own	global	configuration	(for	all	of	their	repositories)	as
represented	by	the	document	icons	in	the	user	sections.	Finally,	there	is	one	system
configuration	(for	all	users)	as	represented	by	the	document	icon	next	to	the	System
title.

Figure	5.4	Overlaying	configuration	files	on	your	model

Adding	Content	to	Track—Add
I’ve	already	talked	about	adding	content	to	Git	with	the	add	command.	The	dark	arrow
in	Figure	5.5	reminds	you	where	adding	and	staging	fits	within	the	overall	promotion
model	workflow.

Figure	5.5	Where	adding	and	staging	fit	in

It’s	worth	spending	a	moment	here	to	discuss	what	I	mean	by	three	related	terms:
tracking,	staging,	and	adding.

Tracking	refers	to	having	Git	control	and	monitor	a	file.	The	first	step	in	getting	Git	to
track	a	file	is	staging	it.	Here,	staging	means	that	you	tell	Git	to	take	the	latest	change
from	your	working	directory	and	put	it	in	the	staging	area.	You	do	this	using	the	Git
add	command.	This	is	why	I	sometimes	refer	to	staging	a	file	as	adding	a	file	and	vice
versa.

Another	important	point	is	that	whether	you	are	staging	a	completely	new	file	that	is
not	currently	tracked	by	Git,	or	staging	an	update	to	a	file	already	tracked	by	Git,	you
still	use	the	add	command.	Think	of	it	as	always	adding	content	into	Git.

Staging	Scope
As	I	discussed	in	Chapter	3,	one	of	the	purposes	of	the	staging	area	is	to	allow	you	to
build	up	a	complete	set	of	content	to	commit	as	a	unit	into	the	local	repository.	When
it	is	done	in	stages	like	this,	a	user	may	be	staging	only	a	subset	of	eligible	files	at	a
time—some	files	may	not	be	ready.	As	an	example,	I	could	do	git	add	file1	followed	by
git	add	file2	followed	by	git	add	file	*.

For	users	who	don’t	choose	to	use	the	staging	area	in	this	way,	it	is	more	common	to

just	stage	everything	that	is	eligible.	The	command	git	add	.	does	this	for	you.	(Note
that	“.”	is	a	required	part	of	the	command	here.).

You	can	also	supply	a	pattern	to	select	groups	of	files	from	the	directory	structure,	as
with	a	command	like	git	add	*.c	that	selects	only	files	with	a	“.c”	extension.

By	everything	that	is	eligible	above,	I	meant	all	files	that	are	new	or	updated	AND	not
ignored.	New	or	updated	is	self-explanatory.	Not	ignored	requires	further	explanation.

Ignoring	Files
Typically,	when	working	in	a	local	directory	tree	on	a	project,	there	is	some	subset	of
files	that	you	don’t	want	(or	need)	the	source	management	system	to	track.	Examples
include	those	files	I	talked	about	in	Chapter	2:	generated	output	files	that	should	be
re-created	from	the	source	each	time,	or	external	dependencies	that	are	stored	and
managed	in	another	system	(such	as	an	artifact	repository).

To	tell	Git	to	ignore	certain	files	(meaning	not	to	track	them),	you	just	need	to	list
them	in	a	Git	ignore	file.	This	is	a	text	file	named	.gitignore	that	is	placed	at	the	root
(top	level	directory)	of	the	local	environment.	If	this	file	exists	locally,	Git	will	read	it
and	ignore	files	and	directories	that	match	the	names	and	patterns	specified	within	it.

The	Git	ignore	file	is	covered	in	more	detail	in	Chapter	10.	While	not	strictly	required,
having	a	Git	ignore	file	is	considered	a	best	practice	for	any	project	managed	by	Git.

Partial	Staging
Before	you	begin,	this	section	outlines	functionality	that	can	be	useful	but	is	not
required	for	using	Git.	If	you	are	only	interested	in	basic	staging	of	files,	you	may	want
to	skip	over	this	topic	for	now.

On	the	opposite	end	of	the	spectrum	from	staging	all	eligible	files	or	sets	of	files,	Git
includes	an	option	that	allows	for	partial	staging.	This	means	choosing	to	take
selected	changes	from	a	file,	but	not	necessarily	all	of	them.	You	can	use	the	-p	option
to	do	this,	as	in	git	add	-p	<file	or	.	or	pattern>.

This	command	tells	Git	to	treat	the	changes	in	any	file	being	staged	as	one	or	more
separate	hunks.	Here,	a	hunk	is	a	change	to	a	set	of	lines	that	is	separated	from	other
hunks	by	a	set	of	unchanged	lines.	The	number	of	hunks	also	depends	somewhat	on
the	size	of	the	file.	For	small	files,	even	those	with	several	changes,	Git	may	present
the	entire	set	of	differences	as	a	single	hunk.

NOTE

If	you	try	to	do	a	partial	add	for	a	file	that	has	not	been	added	to	Git	previously,
Git	will	tell	you	there	are	no	changes.	You	need	to	add	a	copy	of	the	file	into	Git
first	in	the	standard	way	(not	as	a	patch)	so	that	there	is	a	base	there	to	patch
against.

Through	an	interface	that	Git	presents,	users	can	choose	which	hunks	they	want	to
have	staged	and	which	they	don’t,	as	well	as	other	functionality.	The	interface	will
show	the	first	hunk	of	the	file,	followed	by	a	prompt.	Here’s	a	simple	example	of
output	from	the	add	with	-p	option:

diff	--git	a/file	b/file

index	SHA1..SHA1	filemode

---	a/file

+++	b/file

@@	-1,7	+1,7	@@

line	1

line	2

line	3

-line4

+line	4

line	5

line	6

line	7

Stage	this	hunk	[y,n,q,a,d,/,s,e,?]?

What	do	you	need	to	know	from	this?	It	is	essentially	a	diff	between	the	version	in	Git
and	the	 version	in	the	working	directory.	These	are	represented	as	a	and	b	in	the
header.	The	line,	“@@	-1,7	+1,7	@@”,	describes	the	range	of	differences	for	the	two
files.	You	can	think	of	that	line	like	this:	Before	the	changes	in	this	hunk,	designated
by	the	“-”,	starting	at	line	1,	you	had	7	lines.	After	applying	the	changes	in	this	hunk,
designated	by	the	“+”,	there	should	be	7	lines.

In	the	actual	listing,	lines	that	are	added	show	up	with	a	“+”	in	front	of	them.	Lines
that	are	deleted	show	up	with	a	“-”	in	front	of	them.	In	this	particular	case,	I	modified
the	same	line,	but	here,	Git	shows	it	as	one	line	being	removed	in	the	original	version
and	another	line	being	added	in	the	new	version.	As	a	result,	the	before	and	after	line
counts	are	the	same.

Now	that	you	know	how	to	interpret	the	hunk,	you	can	decide	what	to	do	with	it.	If
you	select	?	(or	an	option	that	isn’t	supported),	Git	will	display	the	meaning	of	the
different	available	subcommands	as	follows:

y	-	stage	this	hunk

n	-	do	not	stage	this	hunk

q	-	quit;	do	not	stage	this	hunk	or	any	of	the	remaining	ones

a	-	stage	this	hunk	and	all	later	hunks	in	the	file

d	-	do	not	stage	this	hunk	or	any	of	the	later	hunks	in	the	file

g	-	select	a	hunk	to	go	to

/	-	search	for	a	hunk	matching	the	given	regex

j	-	leave	this	hunk	undecided,	see	next	undecided	hunk

J	-	leave	this	hunk	undecided,	see	next	hunk

k	-	leave	this	hunk	undecided,	see	previous	undecided	hunk

K	-	leave	this	hunk	undecided,	see	previous	hunk

s	-	split	the	current	hunk	into	smaller	hunks

e	-	manually	edit	the	current	hunk

?	-	print	help

Let’s	look	at	a	couple	of	the	most	useful	subcommands	here.	As	implied	by	the	help
text,	y	tells	Git	to	stage	this	hunk.	This	means	that	this	portion	of	the	file’s	changes
will	be	staged.	Likewise,	selecting	n	means	that	this	portion	of	the	file’s	changes	will
not	be	staged.	Essentially,	you	are	selecting	which	changes	you	want	to	take	from	the
file	or	files	in	your	working	directory	and	stage	for	a	future	commit	into	the
repository.

Most	of	the	other	subcommands	are	for	doing	bulk	operations	with	hunks	or
navigating	around	the	set	of	hunks.	If	you	select	g	and	have	multiple	hunks,	Git
presents	you	with	a	list	of	the	available	hunks	identified	by	number	and	allows	you	to
select	which	one	you	want	to	work	with	next.	If	you	type	a	“/”	and	specify	text	found
in	the	file,	Git	will	jump	you	to	the	hunk	with	that	text.

Two	other	subcommands	of	the	patch	staging	interface	are	s	for	split	and	e	for	edit.	I’ll
briefly	 discuss	the	use	of	each	one.

The	split	subcommand	tells	Git	to	split	the	file	into	smaller,	separate	hunks	during	an
add	operation	with	the	patch	option.	This	is	useful	if	you	have	a	fairly	small	file	and
Git	presents	it	initially	as	one	single	hunk.	Note	that	if	you	do	not	see	an	s	in	the
prompt	list,	this	means	that	Git	has	already	split	it	down	as	small	as	it	reasonably	can.
This	subcommand	can	be	useful	to	let	you	get	finer-grained	control	to	stage	or	not
stage	smaller	changes	instead	of	having	to	try	and	deal	with	one	big	change.

Editing	a	hunk	allows	you	to	modify	the	lines	within	it.	When	you	choose	this	option,
Git	brings	up	the	configured	editor	with	the	hunk	in	the	patch	format.	The	idea	is	to
make	your	edits,	save	the	file,	and	exit	the	editor.

Each	line	of	a	hunk	is	indented	one	space	in	the	editor.	The	first	column	is	used	as	a
way	to	specify	the	changes	to	make.	Based	on	the	existing	changes	between	the	two
versions	of	a	file,	lines	to	be	added	have	a	“+”	in	the	first	column	and	lines	to	be
deleted	have	a	“-”	in	the	first	column.	To	remove	one	of	these	lines,	the	built-in	help
suggests	deleting	the	line	if	it	has	a	“+”	or	changing	the	“-”	to	a	“	”	if	you	want	to
remove	a	line	starting	with	a	“-”.	Other	changes	can	be	made	in	the	patch,	but	they	will
increase	the	probability	of	the	problems	I’ll	talk	about	next.

Figure	5.6	shows	an	example	of	a	session	for	editing	a	hunk.

Figure	5.6	An	edit	session	for	a	hunk

The	Problems	with	Editing	Hunks
Editing	hunks	via	the	Git	command	line	is	not	recommended	for	beginners.	The
reason	for	this	is	that	you	are	essentially	editing	a	patch	to	be	applied	against	a	file.
However,	this	patch	is	based	on	a	starting	place	in	the	file	and	an	expected	number	of
lines	(that	is,	the	information	between	the	@@	signs	in	the	header).

It	is	very	easy	to	make	an	edit	that	will	cause	the	patch	to	not	align	with	the	starting
line	and	the	expected	number	of	lines.	When	that	happens,	the	patch	will	not	apply.
After	you	exit	the	editor,	you	will	see	a	message	that	says	something	like	this:	“Your
edited	hunk	does	not	apply.	Edit	again	(saying	“no”	discards!)	[y/n]?”.	This	message
may	also	be	accompanied	by	an	equally	dubious	one	such	as	this:	“fatal:	corrupt	patch
at	line	##”.

This	means	that	some	change	you	made	in	the	editor	caused	the	patch	(this	hunk)	to
not	be	able	to	merge	into	the	rest	of	the	file.	This	is	an	easy	state	to	get	into	and	a	hard
state	to	get	out	of,	especially	because	modifications	in	an	earlier	patch	can	affect	the
expected	starting	line	and	line	counts	for	later	patches.	To	make	this	all	work	from	the
command	line	in	all	but	the	simplest	cases	requires	some	calculations	on	where	a
particular	patch	should	start,	the	number	of	lines	affected,	and	so	on.

A	better	option	is	to	stage	those	hunks	that	are	ready,	and	not	stage	the	ones	that	need
further	edits.	You	then	edit	the	entire	file	in	an	editor,	make	the	edits	as	needed,	and
stage	those	updated	changes.	(If	needed	and	available,	the	split	subcommand	can
further	reduce	the	size	of	hunks	before	doing	this.)

NOTE

While	many	operations	in	the	Git	command	line	provide	increased	functionality
versus	doing	the	operation	in	a	GUI,	selectively	editing	and	staging	parts	of	a	file
can	be	simplified	using	a	GUI	interface.	In	this	kind	of	interface,	users	can	often
select	and	update	content	without	having	to	worry	about	the	line	numbers	and
relative	locations	typically	associated	with	patches.

Interactive	Staging	of	Commits
There	is	one	more	variant	of	the	staging	(add)	and	commit	functions	that	is	available
to	users:	interactive	staging.	This	option	presents	a	different	command	line	interface
that	lists	the	various	files	and	available	staging	functions	and	assigns	a	letter	or
number	to	each	one.	You	then	choose	content	and	perform	operations	by	entering	the
corresponding	letters	or	numbers	at	an	interactive	prompt.

To	invoke	this	function,	you	must	add	the	--interactive	option	at	the	time	you	execute
the	command.	Here	are	some	examples:

$	git	add	--interactive

$	git	add	--interactive	*.c

$	git	commit	-m	"update"	--interactive

$	git	commit	--interactive

$	git	commit	--interactive	-m	"my	change"	file1.java

In	short,	you	can	add	the	--interactive	option	on	any	add	or	commit	command	line	to
use	this	interface.

The	interface	actually	performs	the	same	function	whether	you	are	running	it	as	part
of	an	add	command	or	a	commit	command—it	allows	control	over	what	is	in	the
staging	area	using	a	more	concise	interface.

As	a	brief	example	of	how	the	interface	works,	consider	a	case	where	you	have	a	new
Git	repository	with	three	files	(file1.txt,	file2.txt,	and	file3.txt)	that	have	not	yet	been
added	to	Git.	In	this	state,	the	files	are	called	untracked	files	(more	on	that	in	the	next
chapter).

Now	if	you	run	the	add	command	with	the	interactive	option,	you	are	presented	with
the	interactive	listing	and	prompt.

$	git	add	--interactive

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

What	now>

Notice	that	the	prompt	is	asking	what	you	want	to	do	now.	You	indicate	which
operation	by	entering	either	the	number	or	the	first	letter	(highlighted)	of	the

command	from	the	listing.	In	this	case,	you’ll	add	(stage)	some	of	the	currently
untracked	files.	To	do	this,	you	start	the	operation	by	choosing	4	or	a.

What	now>	a

		1:	file1.txt

		2:	file2.txt

		3:	file3.txt

Add	untracked>>

You’re	presented	with	a	list	of	the	untracked	files	in	the	directory.	Each	file	has	been
assigned	a	number	by	which	you	can	refer	to	it.	In	this	case,	you’ll	add	(stage)	files	1
and	3.	You	could	do	this	via	two	separate	inputs,	or	via	a	comma-separated	list.	Here,
you’ll	use	the	latter	format.

Add	untracked>>	1,3

*	1:	file1.txt

		2:	file2.txt

*	3:	file3.txt

After	you	do	this,	Git	tells	you	that	you’ve	staged	the	two	files	by	putting	the	“*”	in
front	of	their	names.	Because	you’re	done	with	this	command,	you	can	just	press
Enter/Return	with	nothing	after	the	prompt	to	return	to	the	main	prompt.	Git	tells
you	that	two	paths	(files)	were	added.

Add	untracked>>

added	2	paths

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

What	now>

If	you	now	choose	the	status	command,	Git	displays	in	this	concise	format	what	you
have	in	the	staging	area	and	how	it	relates	to	what	you	have	in	your	working	directory.

What	now>	s

											staged					unstaged	path

		1:								+1/-0						nothing	file1.txt

		2:								+1/-0						nothing	file3.txt

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

Let’s	take	a	closer	look	at	how	to	read	this	status	for	the	first	file.

											staged					unstaged	path

		1:								+1/-0						nothing	file1.txt

The	number	in	front	(1)	is	just	an	identifier	that	you	can	use	to	reference	this	item	in
the	staging	area	if	you	update	it	further	using	this	interface.

The	numbers	under	staged	represent	the	number	of	lines	added	since	you	started

staging	this	file	and	the	number	deleted.	In	this	instance,	file1.txt	only	contained	one
line,	so	you	see	one	line	added	and	zero	lines	deleted.

Under	unstaged	you	see	nothing,	which,	of	course,	indicates	that	nothing	is	unstaged.
Think	of	this	as	what’s	different	between	the	staging	area	and	the	working	directory
or	what’s	new	in	the	working	directory	for	this	file.	Because	you	don’t	have	any
changes	in	the	file	in	the	working	directory	that	aren’t	staged,	the	version	in	the
working	directory	and	the	version	in	the	staging	area	are	the	same,	so	nothing	is
different.	If	there	were	differences,	they	would	be	in	the	same	+/-	format	as	used	for
the	staged	column.

Finally	you	have	the	path	name,	which,	in	this	case,	is	just	the	filename.

Now,	suppose	you	add	a	line	in	your	working	directory	to	file1.txt	so	that	it	has	two
lines	instead	of	one.	(This	would	be	done	outside	of	the	interactive	interface.)	If	you
want	to	see	what’s	different	between	the	version	you	have	staged	and	the	updated	one,
you	can	use	the	diff	command	here.

What	now>	d

											staged					unstaged	path

		1:								+1/-0								+1/-0	file1.txt

		2:								+1/-0						nothing	file3.txt

Review	diff>>	

You	get	a	summary	status.	Notice	that	the	unstaged	section	now	shows	+1/-0	because
the	staged	and	unstaged	versions	in	the	directory	are	different.	The	way	to	read	this	is
that	in	the	unstaged	version	of	the	file,	one	new	line	has	been	added	(which	I	did
previously)	and	no	lines	deleted.

Your	prompt	has	also	changed	to	be	relative	to	the	command	you	selected	and	to	allow
you	to	choose	which	file	you	want	to	diff	further	(if	you	do).	If	you	want	to	look	at	the
actual	diff	for	the	file	you	changed,	you	can	input	1	and	get	output	like	the	following:

Review	diff>>	1

diff	--git	a/file1.txt	b/file1.txt

new	file	mode	100644

index	0000000..257cc56

---	/dev/null

+++	b/file1.txt

@@	-0,0	+1	@@

+newline

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

What	now>	

This	is	the	same	type	of	patch	format	that	I	talked	about	earlier	in	the	section,	“Partial
Staging.”	Now,	to	get	your	updated	content	in	the	staging	area,	you	can	use	the	update
command.	The	workflow	will	be	as	it	was	for	the	other	commands.

1.	 You	will	get	the	same	kind	of	list	of	what	is	eligible	to	update.

2.	 You	can	then	select	the	number	that	corresponds	to	the	item	you	want	to	update
and	you’ll	get	the	“*”	marker	to	indicate	it	was	done.

3.	 You	can	then	just	press	Enter/Return	to	exit	the	update	mode.

The	sequence	looks	like	this:

What	now>	2

											staged					unstaged	path

		1:								+1/-0								+1/-0	file1.txt

Update>>	1

											staged					unstaged	path

*	1:								+1/-0								+1/-0	file1.txt

Update>>

updated	one	path

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

If	you	now	take	a	look	at	the	status	after	this	update,	you’ll	see	the	following:

What	now>	s

											staged					unstaged	path

		1:									+2/-0						nothing	file1.txt

		2:									+1/-0						nothing	file3.txt

Note	that	you	have	two	lines	added	for	the	file	since	you	started	staging	it.	Also,	you
are	back	to	nothing	unstaged	because	all	of	the	changes	made	in	the	working	directory
have	been	added	to	the	staging	area.

Lastly,	if	you	decide	you	want	to	unstage	a	set	of	changes,	you	can	use	the	revert
command	to	do	so.	The	sequence	is	the	same	as	for	the	others:	select	the	command,
select	the	file,	and	the	operation	is	executed.

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

What	now>	3

											staged					unstaged	path

		1:									+2/-0						nothing	file1.txt

		2:									+1/-0						nothing	file3.txt

Revert>>	1

											staged					unstaged	path

*	1:									+2/-0						nothing	file1.txt

		2:									+1/-0						nothing	file3.txt

Revert>>

rm	'file1.txt'

reverted	one	path

A	status	command	now	shows	only	the	one	file	remaining	in	the	staging	area.

***	Commands	***

		1:	status							2:	update							3:	revert							4:	add	untracked

		5:	patch								6:	diff									7:	quit									8:	help

What	now>	s

											staged					unstaged	path

		1:								+1/-0						nothing	file3.txt

For	the	remaining	commands,	patch	will	launch	a	similar	workflow	that	allows	for
partial	staging	(as	described	in	the	section,	“Partial	Staging”).	Also,	as	the	name
implies,	help	provides	a	quick	summary	of	what	the	main	commands	do.

Once	you	quit	the	interactive	staging	process,	Git	provides	a	brief	status	summary.

What	now>	q

Bye.

[master	6a43d7e]	update	file3.txt

	1	file	changed,	3	insertions(+)

	

SUMMARY	OF	THE	INTERACTIVE	STAGING
WORKFLOW

Start	the	interactive	option:	git	add	--interactive	(or	git	add	-i)

A	list	of	available	commands	appears,	along	with	unique	numbers	to	select	each
of	them.	You	can	also	use	the	first	letter	of	the	command	to	select	it.

A	what	now>	prompt	appears	for	input.	At	the	prompt,	enter	the	letter	or	number
corresponding	to	the	command	you	want	to	use.

The	files	that	you	can	choose	to	operate	on	appear	in	a	list,	with	a	number	to
identify	each	one.

The	prompt	changes	to	refl	ect	the	current	operation.

Select	the	files	you	want	to	work	with	by	entering	the	individual	numbers,	or	a
comma-separated	list	for	multiple	ones,	or	a	range	of	numbers	separated	by	a
hyphen.

The	operation	takes	place	on	those	files.

Repeat	for	any	other	files	to	which	you	want	to	apply	the	same	operation.

When	done	with	the	operation,	press	Enter/Return	(without	any	line	numbers)	at
the	operation	prompt	to	return	to	the	main	what	now>	prompt.

Bypassing	the	Staging	Area
In	Chapter	3,	I	discussed	the	various	uses	and	reasons	for	the	staging	area	as	a
separate	level	in	the	Git	promotion	model.	However,	if	you	don’t	need	to	have	your
changes	staged	as	a	separate	step	in	the	process,	there	is	a	shortcut	that	Git	provides—
although	it	is	qualified.

The	shortcut	is	to	use	the	-am	option	on	the	command	line	when	doing	a	commit,	as
in	git	commit	-am	“comment”.

I’ll	talk	more	about	the	commit	operation	shortly,	but	the	-am	option	effectively	tells
Git	to	stage	and	commit	the	updated	content	in	one	operation.	It’s	a	nice	convenience
when	you	don’t	need	to	hold	the	change	in	the	staging	area	for	any	reason.

COMBINING	OPTIONS	IN	GIT

I	mentioned	in	Chapter	4	that	options	can	be	supplied	to	Git	commands	either
spelled	out	completely	(and	preceded	by	two	dashes)	or	abbreviated	by	their	first
letter	(and	preceded	by	a	single	dash)—for	example,	--all	versul	s	-a.

The	abbreviated	form	of	options	can	be	combined	together	where	it	makes	sense.
As	I	mentioned,	you	can	use	-am	to	add	and	commit	new	versions	of	files.

Here,	-am	is	a	contraction	of	the	-a	and	-m	options:	-a	is	the	short	version	of	--all,
an	option	that	tells	Git	to	stage	all	eligible	changes	before	doing	the	commit,	and	-
m	(short	for	--message)	is	used	to	supply	the	message	or	comment	for	the
commit.

Combining	the	options	in	this	way	works	because	-a	does	not	take	an	argument,
while	-m	does.	As	a	result,	-a	is	interpreted	as	a	standalone	option.

Trying	to	combine	the	options	in	the	reverse	manner	(-ma)	does	not	work.	This	is
because	-m	expects	an	argument	(the	commit	message/comment).	Specifying	–
ma	causes	Git	to	interpret	the	a	part	as	the	expected	argument	to	-m	and	tells	Git
the	commit	message/comment	for	this	operation	is	a—not	what	you	intended.

So,	combining	abbreviated	options	works	in	Git	as	long	as	the	option	(or	options)
before	the	last	one	does	not	take	arguments.

The	one	caveat	with	the	-am	shortcut	is	that	it	will	not	work	for	new	content	or	files.
The	first	time	a	file	is	added	to	Git,	it	must	have	the	git	add	command	done	first.

Some	IDEs	will	also	provide	a	shortcut	for	doing	the	add	and	commit	for	files	in	their
projects—for	example,	being	able	to	drag	and	drop	content	to	add	and	commit	in	one
step.

Finalizing	Changes—Commit
After	content	is	staged,	the	next	step	is	the	commit	into	the	local	repository.	This	is
done	with	the	commit	command.	The	syntax	is	shown	below.

git	commit	[-a	|	--interactive	|	--patch]	[-s]	[-v]	[-u<mode>]	[--amend]

										[--dry-run]	[(-c	|	-C	|	--fixup	|	--squash)	<commit>]

										[-F	<file>	|	-m	<msg>]	[--reset-author]	[--allow-empty]

										[--allow-empty-message]	[--no-verify]	[-e]	[--author=<author>]

										[--date=<date>]	[--cleanup=<mode>]	[--[no-]status]

										[-i	|	-o]	[-S[<keyid>]]	[--]	[<file>…]

The	dark	arrow	in	Figure	5.7	reminds	you	where	you	are	in	the	overall	promotion
model.

Figure	5.7	Where	commit	fits	in

You	can	think	of	the	commit	action	here	as	committing	to	make	the	change
permanent.	Committing	always	operates	by	promoting	content	from	the	staging	area.
(Even	if	you	use	the	shortcut	noted	in	the	previous	section	on	the	commit	command,
you	are	not	bypassing	the	staging	area;	you’re	just	moving	content	from	the	working
directory	to	the	staging	area	and	then	committing	it	with	one	command.)

A	key	point	to	remember	is	that	a	commit	commits	changes	into	the	local	repository
only.	Nothing	gets	updated	or	changed	in	the	remote	repository.	As	I	noted	earlier,	and
as	indicated	in	the	promotion	model	figures,	there	are	entirely	separate	commands	for
synchronizing	content	with	the	remote	repository	(discussed	in	Chapter	13).	So,	none
of	the	changes	the	user	commits	will	show	up	in	the	remote	repository	until	those
other	commands	are	used	to	push	them	over.	They	are	two	different	and	distinct
environments.

Prerequisites
In	addition	to	having	content	in	the	staging	area,	it’s	best	to	have	the	username	and
user	e-mail	configured	as	discussed	in	Chapter	4.	As	a	reminder,	the	commands	to
configure	these	settings	on	the	command	line	are	git	config	--global	user.name
"Your	Name"	and	git	config	--global	user.email	<your	email	address>.

If	you	don’t	do	this,	then	Git	will	attempt	to	figure	out	who	you	are	based	on	the
logged-in	userid	and	the	system	name.	If	it	can’t,	you’ll	be	forced	to	set	these	values
then.	If	you	don’t	explicitly	set	them,	then	you	may	see	a	message	like	the	following
one	after	your	first	commit:

	[master	sha1]	comment

	Committer:	username	<username@hostname>

Your	name	and	email	address	were	configured	automatically	based

on	your	username	and	hostname.	Please	check	that	they	are	accurate.

You	can	suppress	this	message	by	setting	them	explicitly	with	the	commands	I
reminded	you	about	above.	After	doing	this,	you	may	fix	the	identity	used	for	this
commit	as	described	in	the	section	Resetting	the	Author	Information	later	in	this
chapter.

Commit	Scope
The	most	common	form	of	the	commit	command	is	git	commit	-m	"<commit	message>".

Here,	the	-m	is	the	abbreviated	form	of	the	--message	option.	Git	requires	a	message
(also	referred	to	as	a	comment)	when	doing	a	commit.	If	the	commit	message	has
spaces,	it	must	be	enclosed	in	quotes.

In	this	form,	without	any	specific	set	of	files	or	content	specified,	Git	takes	everything
in	the	staging	area	and	commits	it.	Most	of	the	time	this	is	what	you	want.	(Again,	the
general	idea	is	to	build	up	a	set	of	content	in	the	staging	area	that	should	be
committed	as	a	unit.)	However,	it	is	also	possible	to	commit	only	a	selected	set	of
content,	as	in	git	commit	-m	"<commit	message>"	file1.c	or	git	commit	-m	"<commit
message>"	*.c.

Putting	It	All	Together
Figure	5.8	provides	a	visual	way	to	think	about	the	add	and	commit	workflow.	This	is
not	exactly	how	things	happen	internally,	but	it	is	a	convenient	way	to	think	about	the
overall	process.

Figure	5.8	The	basic	workflow	for	multiple	commits

In	part	A,	you	start	out	with	your	local	stack:	local	repository,	staging	area,	and
working	directory.	The	working	directory	contains	three	files.

In	part	B,	you	specifically	stage	(add)	one	of	the	files,	moving	it	into	the	staging	area,

and	creating	a	snapshot.

In	part	C,	you	stage	the	remaining	files	by	using	the	git	add	command,	updating	your
snapshot.	Recall	that	this	form	of	the	command	(with	the	“.”)	means	to	traverse	the
directory	tree,	and	stage	all	of	the	files	that	are	new	or	changed	AND	not	ignored	(via
the	.gitignore	file).	In	this	case,	the	other	two	files	in	the	working	directory	match
these	criteria,	so	they	are	staged.

Next,	you	commit	the	set	of	files	in	the	staging	area	to	create	a	first	commit	in	the
local	repository.	This	is	illustrated	in	part	D.	Also	here,	the	second	file	is	modified
again	in	the	working	directory.

Now,	in	part	E,	you	stage	the	newly	modified	file,	creating	a	new	snapshot,	and	then
commit	it	in	part	F.	This	creates	a	second	commit.	Git	is	smart	enough	as	it	manages
storage	to	not	create	duplicate	copies	of	everything	from	the	first	commit,	but	instead
link	to	it.

Amending	Commits
One	of	the	advantages	and	challenges	I	noted	with	Git	in	Chapter	1	was	the	ability	to
rewrite	 history.	The	simplest	form	of	rewriting	history	in	Git	is	amending	the	last
commit.	This	means	you	are	updating	the	last	commit	with	content	from	the	staging
area,	rather	than	creating	a	new	commit	with	the	changes.

This	is	done	using	the	--amend	option	with	the	next	commit	command.	The	basic
syntax	looks	like	this:	git	commit	--amend	<arguments>.

Staging	the	Updated	Content	for	the	Amend
The	amend	option	tells	Git	to	update	the	last	commit	in	the	local	repository	with
whatever	content	is	currently	in	the	staging	area.	If	no	updated	content	is	in	the
staging	area,	then	only	the	commit	message	is	updated	(if	the	user	chooses	to	supply	a
new	one).

Figure	5.9	shows	an	example	of	this	workflow.

Figure	5.9	Workflow	for	an	amended	commit

In	part	A,	you	are	starting	at	the	point	where	you	have	one	commit	in	the	local
repository	and	a	change	(in	File	2)	in	the	working	directory.	In	part	B,	you	are	staging
this	change	with	the	git	add	command.	In	part	C,	you	commit	the	change,	but	pass	the
--amend	option.

Instead	of	creating	a	new	commit,	you	can	think	of	Git	pulling	back	the	last	commit
(part	D),	expanding	it,	overlaying	it	with	what’s	in	the	staging	area	(part	E),	and	then
updating	the	same	commit	back	in	the	repository	(part	F).

Skipping	the	Edit	of	the	Commit	Message
While	it	is	best	practice	to	update	the	commit	message	when	amending	content,	if

there	is	a	 reason	not	to	do	so,	you	can	use	the	--no-edit	option	on	the	amend,	as	in	git
commit	--amend	--no-edit.

Resetting	the	Author	Information
The	amend	option	can	also	come	in	handy	if	you	forget	to	initially	set	the	user.name
or	user.email	configuration	settings	(or	you	have	made	a	typo	in	one	of	them).	To
update	the	username	and	user	e-mail	captured	in	the	previous	commit,	you	reset	the
configuration	settings	to	the	desired	values.	You	then	add	the	--reset-author	option	to
the	commit	command.	After	you	run	this	command,	the	commit’s	information	should
show	the	updated	values.

$	git	commit	--amend	–reset-author

NOTE

It	is	not	recommended	to	amend	content	that	has	already	been	pushed	to	a
remote	repository	where	others	may	be	working	with	it.	Operations	that	rewrite
history,	such	as	amend,	should	ideally	only	be	done	in	your	local	environment
before	content	is	initially	pushed	to	the	remote	repository.	Otherwise,	other	users
may	have	accessed	the	copy	before	the	rewrite	and	then	can	run	into	problems
when	they	try	to	push	their	updates	and	discover	that	the	history	of	the	branch
has	been	changed	without	their	knowledge.

Results	of	a	Commit
Once	a	commit	is	executed,	Git	displays	information	like	this	on	the	command	line
interface:

$	git	commit	-m	"add	new	files"

[master	e3ff86b]	add	new	files

	2	files	changed,	2	insertions(+)

	create	mode	100644	file1.java

	create	mode	100644	file1.doc

I’ll	break	down	this	output	so	you	understand	what	Git	is	telling	you.

On	the	first	line,	master	refers	to	the	default	branch	in	Git.	Until	you	create	other
branches	and	switch	to	them,	you’ll	always	be	using	master	as	your	branch.

The	e3ff86b	is	the	first	seven	characters	of	the	SHA1	value	that	was	computed	for	the
overall	commit	object—the	snapshot	I’ve	referenced	in	previous	chapters.	This	section
is	immediately	followed	by	the	commit	message	associated	with	this	change.

The	next	line	gives	you	information	about	how	many	files	were	affected	by	this
commit,	and	how	many	changes	there	were	in	terms	of	insertions	and	deletions
versus	what	was	in	the	local	repository	before	this	commit.

Next,	you	have	a	list	of	the	files	that	were	involved	in	this	commit	along	with	mode
information.	The	create	text	here	is	an	indication	that	these	are	new	files.	The	100644
mode	indicates	a	standard	file	in	the	repository.	This	is	the	most	common	mode	you’ll
see,	but	other	types	exist	for	executable	files,	symbolic	links,	and	so	on.

GIT	MODE	INFORMATION

The	mode	information	used	in	Git	is	coded	as	follows:

4-bit	object	type	(Valid	values	in	binary	are	1000	[regular	file],	1010	[symbolic
link],	and	1110	[gitlink])

3-bit	unused

9-bit	Unix	permission	(Values	0755	and	0644	are	valid	for	regular	files.	Symbolic
links	and	gitlinks	have	value	0	here.)

This	translates	into	the	following:

040000:	Directory

100644:	Regular	non-executable	file

100755:	Regular	executable	file

120000:	Symbolic	link

160000:	Gitlink.	(A	gitlink	references	a	submodule	commit	in	another
repository.)	Some	of	these	modes	may	show	up	as	output	from	commands	such
as	commit.	Others	may	only	be	visible	when	using	plumbing	commands	such	as
cat-file	that	show	the	modes	of	items	in	the	underlying	repository.

Two	of	these	pieces	of	information	are	worth	discussing	in	more	detail:	the	SHA1	for
the	commit	and	the	commit	message.

Commit	SHA1s
I	discussed	what	a	SHA1	is	in	Chapter	4.	As	a	reminder,	SHA1	is	an	acronym	for	Secure
Hashing	Algorithm	1.	It	is	a	checksum	or	hash	that	Git	computes	for	every	object	it
stores	in	its	internal	 content	management	system.	It	is	also	the	key	that	Git	uses
internally	to	map	to	stored	content.

Whenever	a	commit	is	done	in	Git,	Git	computes	a	SHA1	for	each	piece	of	the
snapshot	that	it	stores	(each	file,	directory,	and	so	on).	However,	it	also	computes	a
SHA1	for	the	overall	commit.	That	commit	SHA1	is	the	one	that	users	see	and	work
with.	It	serves	as	a	handle	or	key	to	be	able	to	reference	that	particular	commit	in	the
system.	For	any	Git	command	that	needs	to	point	to	a	particular	commit,	it	does	that
with	the	SHA1	value	for	that	commit.

In	terms	of	use,	you	can	think	of	this	as	being	similar	to	a	version	or	revision	number
in	other	tracking	systems—a	system-generated	value	that	identifies	a	particular
version	of	a	change	stored	in	the	repository.

NOTE

While	the	SHA1	of	a	commit	can	serve	a	purpose	similar	to	a	revision	or	version
number	in	other	systems,	unlike	those	systems,	this	value	does	not	increase	by
some	set	amount	each	time.	Rather,	a	SHA1	in	Git	is	a	40-character	hexadecimal
string.	Fortunately,	you	don’t	have	to	remember	or	specify	all	40	characters—just
enough	to	uniquely	identify	any	commit	in	the	system.	For	most	systems,	this
turns	out	to	be	the	first	seven	characters	of	the	SHA1	string.	For	projects	with
significantly	more	commits,	more	characters	from	the	SHA1	may	be	needed	to
identify	a	particular	commit.	The	most	I	have	heard	of	users	having	to	specify	is
12	characters.	(This	was	for	the	Linux	OS	development	where	there	has	been	a
much	larger	number	of	commits	over	the	longer	period	of	time	that	Git	has	been
in	use	for	the	development	of	that	OS.)

Commit	Messages
When	you	commit	into	the	local	repository,	Git	requires	you	to	supply	a	commit
message.	If	you	are	working	on	the	command	line,	you	can	supply	one	via	the	-m	or	--
message	argument.	If	you	don’t	supply	a	commit	message,	Git	will	start	up	the	default
editor	for	your	particular	system	for	you	to	type	in	the	message.	Once	you	type	in	the
commit	message,	you	save	the	file	and	close	the	editor.	The	commit	operation	then
completes.

NOTE

See	the	“Default	Editor”	section	in	the	discussion	on	configuration	values	in
Chapter	4	for	information	on	how	to	configure	the	editor	for	commit	messages.

When	creating	a	commit	message,	it	is	important	that	it	is	meaningful—not	just	to	the
user	doing	the	commit,	but	also	to	others	who	may	be	looking	at	it	later.	In	general,	a
commit	message	should	do	the	following:

Explain	the	reason	for	the	change	at	a	high	level	(for	example,	refactoring
xyz	class,	adding	new	foo	api,	fixing	bug	1234,	and	so	on).	Users	can	use	Git	to	see
what	was	changed,	but	they	need	information	to	understand	why	it	was	changed.

Have	a	meaningful	first	line.	It	is	typical	in	many	Git	interfaces	to	display	only
the	first	lines	of	commit	messages	when	looking	at	changes	that	have	gone	into	the
repository.	For	this	reason,	the	first	line	should	provide	a	brief,	meaningful
summary.

Incorporate	a	tracking	ticket	identifier	in	the	first	line	if	issues	are	being
tracked	via	a	ticketing	system.	Doing	this	provides	another	reference	to	a	place	to
go	to	get	more	details	for	users	scanning	the	first	lines	of	commit	messages.

Follow	any	standards	or	guidelines	that	the	team	or	company	may	have	for
commit	messages.

Chris	Beams	(http://chris.beams.io/posts/git-commit/)	puts	it	this	way:

Separate	the	subject	from	the	body	with	a	blank	line.

Limit	the	subject	line	to	50	characters.

Capitalize	the	subject	line.

Do	not	end	the	subject	line	with	a	period.

Use	the	imperative	mood	in	the	subject	line	(for	example,	fix	bug	1234	rather	than
fixed	bug	1234).	This	matches	the	tense	used	in	automatic	commit	messages	that
Git	generates	itself	for	certain	operations.

Wrap	the	body	at	72	characters.

Use	the	body	to	explain	what	and	why	versus	how.

Like	well-formed	comments	in	code,	well-formed	commit	messages	can	help	to
ensure	that	you	and	others	will	find	it	easier	to	understand	and	maintain	your	changes
over	time.	In	fact,	some	in	the	Git	community	advocate	for	never	using	the	-m	option
on	a	commit.	The	idea	is	that	the	-m	option	only	suggests	a	short	message	format	with
less	information,	as	opposed	to	always	using	an	editor	to	enter	the	message	so	that
more	information	about	the	commit	(such	as	that	outlined	here)	can	be	included.

http://chris.beams.io/posts/git-commit/

Advanced	Topics
In	this	section,	you’ll	look	at	how	to	use	templates	for	commit	messages,	as	well	as
how	to	use	Git’s	Autocorrect	and	Auto	Execute	options.

One	way	to	help	standardize	commit	messages	and	ensure	good	form	is	by	using
commit	message	templates.	A	commit	message	template	is	simply	a	text	file	with	text
and	comments	that	suggest	the	type	and	form	of	content	to	include	in	the	commit
message.	Here’s	an	example:

$	cat	~/.gitmessage

Replace	this	line	with	a	one-line	meaningful	summary

Why	this	change	is	needed:

#	Explain	why	this	change	is	needed

What	this	change	accomplishes:

#	Explain	what	this	change	does:

#	This	is	our	company's	default	commit	message	template.

#	You	should	follow	the	following	guidelines:

#	Guideline	1

#	Guideline	2

#	Guideline	3

This	is	only	one	example,	and	obviously	more	could	be	done	to	make	it	more	self-
explanatory	(and	add	real	guidelines).	However,	this	should	spark	some	ideas.	Once
the	template	file	is	created,	it	can	be	saved	to	a	global	area	(under	the	user’s	home
directory	in	this	example)	or	even	to	a	more	publicly	accessible	location	for	use	among
multiple	users.

There	are	three	ways	for	a	user	to	tell	Git	to	include	a	commit	message	template	at	the
time	of	doing	a	commit:

1.	 Use	the	-t	(--template)	option	on	the	commit	command	itself.

$	git	commit	-t	<template	file	location>

2.	 Configure	the	default	location	of	the	template	file	globally.

$	git	config	--global	commit.template	<template	file>	location>

3.	 Use	a	special	hook	in	Git	that	will	run	at	commit	time.	(See	the	section	on	commit
hooks	in	Chapter	15.)

By	default,	information	in	the	commit	message	(including	from	the	template	file)	that
starts	with	a	“#”	character	is	considered	a	comment	and	is	stripped	out	of	the	commit
message	when	the	commit	is	actually	done	(as	are	leading	and	trailing	whitespace	and
any	extra	blank	lines).

Using	the	Verbose	Option
Git	commit	includes	a	--verbose	option.	This	option	is	designed	to	insert	diff
command	output	from	levels	in	the	local	environment	as	additional	information	for
the	user	while	the	commit	message	is	being	edited.	The	information	is	not	saved	as
part	of	the	final	commit	message;	it	is	only	inserted	for	the	user’s	benefit	while	the
commit	message	is	being	edited.

The	first	time	this	option	is	used	on	the	command	line,	it	results	in	the	diff	output
between	the	staging	area	and	the	local	repository	being	included.	If	the	option	is
specified	a	second	time	on	the	same	invocation,	then	the	diff	output	between	the
working	directory	and	staging	area	is	also	included.

The	Full	Commit	Message	Experience
Figure	5.10	shows	what	an	editor	session	for	the	commit	message	looks	like	if	you	use
the	commit	message	template	file	described	earlier	and	also	two	instances	of	the	--
verbose	option.	Note	the	parts	added	from	your	template	file,	added	from	Git,	and
introduced	because	of	the	--verbose	options.

Figure	5.10	The	editor	session	for	a	commit	message	using	a	template	file	and	the	--
verbose	--verbose	options

After	the	commit	is	done,	the	summary	line	appears	in	the	commit	output.	If	you	look
at	the	most	recent	commit	message	in	the	log,	you’ll	see	all	of	the	text	you	entered.
Note	that	the	content	added	by	Git	and	the	comment	lines	that	I	included	in	the
template	have	been	stripped	out.

$	git	commit	-t	~/.gitmessage	--verbose	--verbose

[master	bc1466b]	This	is	an	example	change	summary	line.

	1	file	changed,	1	insertion(+),	1	deletion(-)

$	git	log	-1

commit	bc1466b01125c99bb5e15f3c2242c90b923fde62

Author:	User	Name	<email	address>

Date:			Sun	Apr	10	20:51:26	2016	-0400

				This	is	an	example	change	summary	line.

				Why	this	change	is	needed:

				The	purpose	of	this	change	is	to	demo	the	commit	message	template	file.

				What	this	change	accomplishes:

				Updates	commit	message	template	file	with	example	text.

Autocorrect	and	Auto	Execute
From	time	to	time,	everyone	misspells	a	command.	Normally,	Git	just	stops	and	gives
you	its	best	guess	about	what	you	meant.	For	example,	notice	what	happens	when	you
leave	the	i	out	of	commit:

$	git	commt	file2.txt

git:	'commt'	is	not	a	git	command.	See	'git	--help'.

Did	you	mean	this?

								Commit

That's	helpful,	but	what	if	you	want	to	simply	trust	Git	and	have	it	execute	the
command	that	it	thinks	you	intended?	You	can	tell	it	to	do	this	by	changing	the
configuration	setting	help.autocorrect	to	a	desired	value.	The	value	you	set	actually
specifies	an	amount	of	time	that	Git	waits	before	proceeding	to	execute	its	best	guess
of	what	you	intended.	The	trick	here	is	that	whatever	value	you	provide	specifies	a
number	of	seconds	multiplied	by	0.1.	So,	a	value	of	50	means	that	Git	waits	5	seconds
to	give	the	user	a	chance	to	cancel	out	before	executing.

$	git	config	help.autocorrect	50

$	git	commt	file2.txt

WARNING:	You	called	a	Git	command	named	'commt',	which	does	not	exist.

Continuing	under	the	assumption	that	you	meant	'commit'

in	5.0	seconds	automatically…

Summary
In	this	chapter,	you	started	to	learn	what	you	need	to	get	productive	using	Git.	I
covered	getting	help	and	reinforced	the	multiple	repositories	model.	From	there,	I
dove	into	some	details	on	staging	changes,	and	described	some	items	related	to
commits,	including	SHA1s	and	commit	messages	so	you	could	tie	the	entire	workflow
together.

I	also	explained	how	to	amend	commits	and	how	to	use	some	advanced	techniques
such	as	commit	message	template	files	to	improve	commit	messages.

In	the	next	chapter,	you’ll	take	a	closer	look	at	tracking	changes	as	they	move	through
the	Git	 workflow—including	how	to	tell	what	content	is	at	each	level	and	how	to	see
differences	between	the	levels.	Prior	to	reading	Chapter	6,	I	recommend	that	you
complete	Connected	Lab	2.

About	Connected	Lab	2:	Creating	and	Exploring	a	Git	Repository	and
Managing	Content
Connected	Lab	2	is	your	next	step	to	reinforce	the	concepts	covered	here.	It	is
important	to	work	through	this	lab	to	get	the	hands-on	experience	you’ll	need	to
better	understand	the	key	concepts	that	will	help	you	through	the	rest	of	this	book.

The	lab	also	includes	a	set	of	optional	steps	that	provide	more	detail	about	the
repository	structure	and	how	it	evolves	as	content	is	managed	in	Git.	This	is	not
necessary	to	understand	Git,	but	it	can	help	you	better	understand	how	Git	works.

Connected	Lab	2

Creating	and	Exploring	a	Git	Repository	and	Managing
Content
In	this	lab,	you’ll	create	an	empty	Git	repository	on	your	local	disk,	and	stage	and
commit	content	into	it.	You’ll	also	explore	the	repository	on	disk	to	see	how	content	is
mapped	logically	into	the	physical	locations.

Prerequisites
To	complete	this	and	all	future	labs	in	this	book,	you	must	have	a	working	version	of
Git	installed	(2.0	or	higher).	If	you	don’t	have	a	working	version	of	Git	installed,	then
you	should	first	complete	Connected	Lab	1:	Installing	Git.

Optional	Advanced	Deep-Dive	into	the	Repository
Structure
This	lab	contains	several	optional	steps,	as	indicated	by	the	label	at	the	start	of	each
one.	These	steps	are	not	needed	for	you	to	understand	or	use	Git.	They	only	serve	to
explain	the	underlying	repository	structure	on	disk	and	how	it	is	managed	in	case	you
are	interested.	Feel	free	to	skip	these	steps	or	do	the	deep-dive,	as	you	see	fit.

Steps
1.	 On	your	local	disk,	create	a	new	directory	and	change	(cd)	into	it.	(This	will	be	the
directory	you	work	in	unless	otherwise	specified.)

2.	 Initialize	a	new	repository	by	running	the	following	command:

git	init

This	command	creates	a	new	git	repository	skeleton	in	a	subdirectory	named	.git
under	the	current	directory—as	indicated	by	the	output	message	from	the
command.	This	means	that	you’re	now	able	to	start	using	other	Git	commands	in
the	current	directory.

3.	 (Optional/Deep-Dive)	If	you’re	not	interested	in	understanding	the	layout	and
parts	of	the	underlying	Git	repository,	you	can	skip	to	step	4.	Understanding	these
components	isn’t	necessary	for	you	to	be	able	to	use	or	understand	Git.	However,	it
will	help	to	provide	a	more	complete	mapping	of	how	Git	is	managing	things.

Let’s	take	a	look	at	what’s	in	the	repository	that	was	just	created.	Open	up	a
file/directory	explorer	on	your	system	and	browse	into	the	.git	directory	under
your	current	directory.	(Or	you	can	use	command	line	commands	through	a
terminal	session.)

NOTE

If	you	are	on	Windows,	you	may	have	to	enable	showing	hidden	files	and
directories.	On	the	File	Explorer	menu	bar,	if	there	is	an	Organize	dropdown
menu,	select	it	and	then	choose	Folder	and	Search	Options.	Otherwise,	if	there
is	a	Tools	menu	item,	select	it	and	then	select	Folder	Options.	Next,	select	the
View	tab	and	find	the	menu	option	titled	Hidden	Files	and	Folders.	Under	that
option,	click	to	select	the	radio	button	for	Show	Hidden	Files,	Folders,	and
Drives.

You	should	see	a	set	of	files	and	directories	there.	I’ll	briefly	discuss	the	purpose	of
each	one.	Again,	this	is	just	for	your	information,	not	something	that	you	need	to
understand	or	use	Git.

config—This	is	the	local	configuration	file	where	configuration	settings
specific	to	this	repository	are	stored,	as	discussed	in	Chapter	4.	If	you	cat	the
file,	you	see	a	[core]	section	with	other	values	underneath.	This	file	is	in	the
INI	file	format.

description—This	file	is	intended	for	a	human-readable	description	of	this
repository.	It	is	primarily	used	for	web	browsers	or	some	hooks	(scripts	that
run	before	or	after	an	operation)	that	want	to	include	a	description	of	the
repository.	Also,	some	users	refer	to	this	as	the	name	associated	with	the
repository.

HEAD—HEAD	is	a	pointer,	or	in	this	case,	a	physical	file,	that	contains	a
reference	to	the	current	item	you’re	pointed	at	in	Git—usually	the	current
commit	on	the	current	branch.	Because	you	don’t	have	any	commits	yet,	this
file	simply	contains	a	reference	to	the	long	form	of	the	branch
—refs/heads/master—because	master	is	the	default	branch.	(Files	with	this
style	of	name	are	used	by	Gerrit	to	hold	references	to	items	such	as	SHA1
values,	branch	names,	and	so	on.	As	the	contents	of	the	repository	grow	over
time,	more	of	these	files	will	be	created	for	specific	types	of	references	as
needed.)	For	more	information	about	HEADs,	see	Chapter	6.

hooks—A	hook	is	a	script	that	is	run	before	or	after	an	operation	in	Git.	This
directory	contains	sample	code	for	hooks.	The	filenames	indicate	the	particular
hook	that	would	be	involved	if	implemented.	Implementation	involves	editing
the	sample	code	to	do	what	is	desired	and	putting	the	revised	code	as	a	file	in
this	directory	without	the	.sample	extension.	For	more	information	on	hooks,
see	Chapter	15.

info—This	directory	is	used	for	various	internal	purposes	such	as	storing
reference	information	for	some	services	that	require	a	simple	way	to	access
that.	From	a	user	perspective,	it	is	primarily	used	to	contain	a	file	named

exclude.	This	file	is	intended	to	be	another	way	to	tell	Git	to	ignore	certain	files
(not	track	them).	It’s	considered	another	way	because	the	primary	way	is	using
a	.gitignore	file	to	list	those	file	types.	The	.gitignore	file	exists	in	the	project
and	is	under	source	management	control.	This	is	so	that	other	users	of	the
project	can	access	it	as	well.

See	Chapter	10	for	more	details	on	the	.gitignore	file.	On	the	other
hand,	the	info/exclude	file	is	within	the	.git	subdirectory,	and	so	is	not
managed	as	part	of	the	project.	This	has	the	benefit	of	limiting	it	to	only	the
current	repository	on	this	system.	It	holds	exclusions	(things	to	ignore)	that
are	specific	to	this	instance	of	this	repository.

objects—As	the	name	implies,	this	is	the	directory	where	Git	stores	the
internal	objects	it	creates	with	the	contents	of	commits,	files,	directories,	and
so	on.

refs—This	directory	holds	the	master	set	of	references	for	anything	that	points
to	a	particular	SHA1	value,	such	as	a	branch,	tag,	and	so	on.

branches—If	this	folder	exists	in	your	.git	area,	it	can	be	ignored.	It	is	a
deprecated	way	to	store	some	url	information	for	commands	that	get	content
from	the	remote	repository.

When	you’re	done,	switch	back	to	your	console/terminal.	If	you’ve	changed	out	of
your	project	directory	in	your	terminal	session,	change	back	into	the	project
directory.

4.	 	Tell	Git	who	you	are	by	setting	your	basic	identification	configuration	settings
with	the	following	commands,	substituting	in	your	name	and	email	address	as	the
values	for	the	configuration.	(Note	the	double	dashes	preceding	global	as	you	are
spelling	out	the	option.	Also,	values	only	require	quotes	if	they	contain	a	space.)

$	git	config	--global	user.name	"First-name	Last-name"

$	git	config	--global	user.email	emailAddress@provider

5.	 	Now	let’s	create	some	content	to	put	through	the	Git	workflow.	For	the	purposes
of	these	initial	labs,	you	just	need	files	to	work	with;	you	don’t	really	care	what’s	in
them.	So,	you	can	cheat	and	just	echo	something	into	a	file	using	the	“>”	operator.
In	fact,	the	output	of	any	command	can	be	used	to	put	content	into	a	file	using	the
“>”	operator.	Of	course,	if	you	prefer,	you	can	create	files	using	your	favorite	editor
instead.

Create	two	files—their	contents	and	names	don’t	matter.

$	echo	content	>	file1.c

$	echo	content	>	file2.c

6.	 	Stage	the	files	with	the	add	command.	(If	you	prefer,	you	can	add	each	separate
file	explicitly	rather	than	using	the	“.”)

$	git	add	.

7.	 	(Optional/Deep-Dive)	If	you	want	to	see	how	the	add	command	changes
content	in	your	.git	repository,	switch	back	to	the	File	Explorer	or	terminal	and
change	into	the	.git	subdirectory.

First,	notice	the	presence	of	a	file	named	index.	In	terms	of	Git’s	terminology,	you
can	think	of	stage,	cache,	and	index	as	meaning	the	same	thing.	So,	this	file	is
basically	the	staging	area	with	metadata	that	includes	SHA1	values,	timestamps,
and	so	on.

Next,	look	into	the	objects	directory	again.	This	time,	you	see	a	new	two-character
directory	name.	This	is	actually	the	start	of	a	SHA1	value.	The	file	inside	this
directoryis	named	with	the	remainder	of	the	SHA1	value.

Change	back	to	your	project	directory	(the	directory	above	.git)	before	continuing.

8.	 	Commit	the	files	using	whatever	comment	you	want.

$	git	commit	-m	"comment	string"

9.	 	Notice	the	output	you	get.	There	is	the	branch	name—the	default	branch—master,
followed	by	an	indicator	that	this	is	the	first	(root)	commit	and	then	the	first	few
characters	of	the	SHA1	for	the	commit.	Take	note	of	this	value	if	you	do	the	next
step.

10.	 	(Optional/Deep-Dive)	In	the	File	Explorer	or	terminal,	change	into	the	.git
directory	again.	(Refresh	the	view	if	needed.)

Notice	the	COMMIT_EDITMSG	file.	This	file	contains	the	commit	message	from
the	last	commit.

Go	into	the	objects	directory.	Notice	that	you	now	have	multiple	subdirectories
there.	Each	of	these	subdirectories	starts	with	two	characters.	Find	the	one	that
starts	with	the	same	two	characters	as	the	checksum	from	the	commit	output	in
the	last	step.

Go	into	that	directory	and	note	that	the	object	within	has	a	name	consisting	of	the
rest	of	the	SHA1	value.	This	is	the	way	that	Git	stores	objects—with	the	first	two
characters	as	directory	names,	and	objects	within	named	with	the	rest	of	the	SHA1
value.

At	later	points	you	may	see	multiple	SHA1s	here	in	the	filesystem.	Git	stores
objects	for	files,	directories,	and	commits.	The	one	for	the	commit	is	the	only	one
you’re	really	interested	in	or	will	use.

Switch	back	to	your	terminal	(command	line)	session	and	change	back	to	your
project	directory	before	continuing.

11.	 	Edit	one	of	the	files.	(You	can	just	use	the	“>>”	to	append	something	to	the	file’s
content.)

$	echo	more	>>	file1.c

12.	 	Stage	and	commit	the	file	with	the	shortcut,	using	whatever	text	you	want	for	the
commit	message.

$	git	commit	–am	"comment	string"

Take	note	of	the	SHA1	returned	in	the	commit	message	if	you	want	to	do	the
following	optional	step.

13.	 	(Optional/Deep-Dive)	If	you’d	like	to	take	a	closer	look	at	how	Git	maps	SHA1
values	to	contents,	you	can	use	the	plumbing	command,	cat-file.	You	use	two
options	here:

-t	=	type—shows	the	type	of	the	object

-p	=	pretty—prints	information	about	the	object

Let’s	start	by	finding	the	type	of	the	SHA1	returned	in	the	commit	message	output
from	step	12.	(This	is	the	7	characters	after	“[master	”.)	Execute	the	following
command:

$	git	cat-file	-t	<sha1	value	from	the	commit	output>

You	get	a	message	back	that	simply	says	commit,	indicating	this	was	a	commit	type
of	object.

Now,	let’s	print	out	the	contents	of	that	object.	Run	the	command	again,	but	with	-
p	instead	of	-t.

$	git	cat-file	-p	<sha1	value	from	the	commit	output>

This	is	essentially	a	dump	of	the	content	of	the	commit.	Take	note	of	the	tree	line.

So,	you’ve	looked	into	the	commit	and	found	the	tree	object.	Now	note	the	first
seven	characters	of	the	SHA1	in	the	line	starting	with	tree.	Let’s	see	what’s	inside
the	tree.

$	git	cat-file	-p	<first	seven	characters	of	the	SHA1	from	the	"tree"	line>

Now,	if	you	added	two	files	as	suggested,	you	see	two	filenames	along	with	the
corresponding	SHA1	values	listed.	(The	numbers	on	the	front	are	filemodes—
discussed	in	Chapter	6.)

Take	a	look	at	what’s	in	one	of	these	files.	Pick	the	first	seven	characters	from	one
of	the	SHA1s.

$	git	cat-file	-p	<first	seven	characters	of	a	SHA1	corresponding	to	one	of	

the	files>

You	now	see	that	file’s	contents	displayed.

14.	 	(Optional/Deep-Dive)	The	text	mentions	that	Git	sometimes	further
compresses	files	to	be	more	efficient.	If	you	want	to	see	this	in	practice,	run	the
following	Git	garbage	collection	command:

$	git	gc

Now,	in	your	File	Explorer	or	terminal,	take	a	look	in	the	.git	subdirectory.	You	see
a	file	there	named	packed-refs.	Git	combined	branch	and	tag	refs	into	this	file	as
part	of	the	compression.	Now	look	at	the	objects	directory	under	.git.	Under	the
info	subdirectory,	you	see	a	packs	file.	This	is	just	a	text	file	pointing	to	a	packed
file	that	holds	compressed	repository	contents.

Now,	if	you	look	in	the	objects/pack	subdirectory,	you	can	see	the	packed	file
(.pack)	that	was	referenced	as	well	as	an	index	file	(.idx)	to	point	to	specific
contents.

Chapter	6
Tracking	Changes

WHAT'S	IN	THIS	CHAPTER?

Using	the	Git	Status	and	Diff	commands

Understanding	tracked	versus	untracked	files

The	meaning	of	HEAD	and	Cached

Tricks	and	tips	for	doing	different	kinds	of	diffs

In	the	last	chapter,	you	learned	how	to	get	your	content	into	Git	and	how	to	move	it
through	the	different	levels	(working	directory,	staging	area,	local	repository).	Because
you	can	have	different	versions	of	files	at	the	different	levels	in	Git,	you	need	a	way	to
keep	track	of	where	everything	is	and	how	the	versions	at	the	different	levels	may
differ	from	each	other.	In	short,	you	need	easy	ways	to	keep	track	of	all	of	your	work
that's	in	progress.	Git	has	two	commands	that	can	help	you	with	this:	status	and	diff.
Using	these	two	commands	allows	users	to	quickly	understand	the	state	of	their
changes	in	the	local	environment	and	to	ensure	that	the	correct	changes	are	tracked
and	stored	in	Git.

GIT	STATUS
As	the	name	implies,	the	git	status	command	provides	status	information	on	changes
in	the	local	environment	that	have	not	been	committed	yet.	Let's	start	with	a	quick
look	at	the	general	form	of	the	command.

git	status	[<options>…]	[--]	[<pathspec>…]

Like	other	commands,	this	command	can	take	path	specifications,	but	those	are	not
required.	The	“--”	is	a	separator	used	to	note	where	options	end	and	path
specifications	start.	It	sits	in	between	and	is	not	required	if	the	specifications	are
unambiguous	enough.

NOTE

For	most	of	the	examples,	I	will	not	include	a	commit,	or	path	names	and
specifications,	on	the	git	status	command,	but	they	can	be	added	if	needed.

For	files	that	are	in	the	working	directory	or	staging	area,	the	status	command
answers	three	questions:	whether	or	not	a	file	is	tracked,	what	is	in	the	staging	area,
and	whether	or	not	a	file	is	modified.

Is	the	File	Tracked	or	Untracked?	This	designation	refers	to	whether	or	not	Git
knows	about	the	file—that	is,	has	someone	previously	added	this	file	to	Git?	If	this	file
has	at	least	been	added	to	the	staging	area	at	some	point	(and	not	removed),	then	Git
knows	about	it,	and	is	managing	a	version	of	it,	so	it	is	tracked	by	Git.	Otherwise,	the
file	is	untracked—Git	doesn't	know	about	it	and	isn't	managing	any	versions	of	it.

An	example	of	an	untracked	file	would	be	a	new	file	that	hasn't	been	added	to	Git.
Files	in	the	.gitignore	file	do	not	count	as	untracked	because	they	are	ignored	by	Git.

Git	can	report	the	status	of	untracked	files	in	a	couple	of	different	ways,	depending	on
whether	or	not	something	is	staged.	This	brings	up	the	next	question.

What	Is	in	the	Staging	Area?	For	this	question,	you	are	interested	in	whether
there	is	anything	that	has	been	staged	(put	into	the	staging	area	via	git	add),	and	if	so,
which	versions	of	which	files.	For	these	criteria,	you'll	need	to	understand	some	of	the
more	specific	terminology	that	Git	uses	to	describe	the	status	of	files.	I'll	cover	that	in
the	example	workflow	shortly.

Is	a	Particular	File	Modified	or	Unmodified?	For	this	designation,	I	am	talking
about	whether	a	file	in	the	working	area	is	the	same	as,	or	different	from,	the	latest
version	in	Git.	Think	of	modified	here	as	simply	meaning	different.	If	it	is	the	same,
then	it	is	not	different,	or	un-modified.	If	it	is	different,	that	implies	that	the	version
in	the	working	directory	has	been	changed	(modified)	since	it	was	last	updated	in	Git.

Workflow	Example	with	Status
To	better	understand	file	status,	let's	look	at	an	example	of	staging	and	committing
multiple	versions	of	a	file	with	its	status	at	each	step.	Figure	6.1	shows	a	typical
example	of	the	local	Git	environment	with	the	working	directory,	staging	area,	and
local	repository	levels.

Figure	6.1	Empty	local	environment	levels.

Initially,	when	you	start	with	an	empty	directory	(for	example,	just	after	a	git	init
command),	issuing	a	git	status	command	will	provide	a	message	like	this:

$	git	status

On	branch	master

Initial	commit

nothing	to	commit	(create/copy	files	and	use	"git	add"	to	track)

This	is	telling	you	that	you	are	on	the	master	branch	(the	default	branch	in	Git)	and
there	are	no	changes	(files)	eligible	to	commit.	Let's	execute	a	few	further	steps	to
migrate	content	through	the	promotion	model.

Step	1:	You	create	a	file	in	the	working	directory	with	the	command	echo	new	>
file1.txt.	But	you	don't	stage	it	yet.	Your	local	environment	looks	like	Figure	6.2.	The
“(1)a”	notation	on	the	file	indicates	this	is	your	first	step	in	the	workflow	and	the	file
is	at	version	a.

Figure	6.2	File	created	in	working	directory

Let's	look	at	the	three	questions	to	determine	how	Git	sees	the	status:

1.	Is	Git	aware	of	the	file?	No,	you	haven't	done	anything	to	make	Git	aware	of
it.	(That	is,	you	haven't	done	a	git	add	command	to	tell	Git	about	the	file.)	Because
Git	doesn't	know	about	the	file	yet,	it	is	untracked.

2.	What's	in	the	staging	area?	Nothing	yet—you	haven't	done	a	git	add
command.

3.	What	is	the	relationship	of	the	version	in	the	working	directory	to	the
latest	version	in	Git?	Currently,	there	isn't	a	version	in	Git.	(The	only	version
exists	in	the	working	directory.)	So,	this	one	doesn't	really	apply.

Issuing	the	git	status	command,	you'll	see	something	like	this:

$	git	status

On	branch	master

Initial	commit

Untracked	files:

		(use	"git	add	<file>…"	to	include	in	what	will	be	committed)

					file1.txt

					

nothing	added	to	commit	but	untracked	files	present	(use	"git	add"	to	track)

Note	that	it	tells	you	there's	nothing	added	to	commit,	meaning	you	haven't	staged
anything	so	there's	nothing	to	commit	(promote)	to	the	local	repository	yet.	It	also
notes	the	new	untracked	file	that	Git	doesn't	know	about	yet.

Step	2:	If	you	now	stage	the	file	with	the	command	git	add,	your	local	environment
looks	like	Figure	6.3.

Figure	6.3	Version	a	of	the	file	is	staged.

Looking	at	the	three	questions:

1.	Is	Git	aware	of	the	file?	Yes,	because	you've	done	a	command	that	tells	Git
about	it—that	is,	the	git	add	command.	The	file	is	now	considered	tracked	by	Git.

2.	What's	in	the	staging	area?	Revision	a.	Notice	that	it	is	perfectly	valid	in	Git

to	have	the	same	revision	of	a	file	existing	in	multiple	levels.

3.	What	is	the	relationship	of	the	version	in	the	working	directory	to	the
latest	version	in	Git?	The	version	in	Git	(in	the	staging	area)	is	the	same	as	the
version	in	the	working	directory,	so	it	is	not	different	(not	modified).	Thus,	it	is
unmodified.

When	you	run	the	status	command	git	status,	Git	will	list	the	new	file	in	the	staging
area.

On	branch	master

Initial	commit

Changes	to	be	committed:

		(use	"git	rm	--cached	<file>…"	to	unstage)

		

								new	file:			file1.txt

Notice	the	terminology	here	of	Changes	to	be	committed.	Whenever	you	see	this
phrase,	Git	is	telling	you	about	things	in	the	staging	area.	You	can	read	the	to	be
committed	part	as	indicating	the	next	level	in	your	promotion	model.	There	are
changes	where	the	next	level	is	committing	into	the	local	repository.

Step	3:	An	update	is	made	to	the	version	of	the	file	in	the	working	directory	using	the
command	echo	update	≫	file1.txt.	The	result	is	shown	in	Figure	6.4.

Figure	6.4	Update	made	to	working	directory	version

Looking	at	the	questions:

1.	Is	Git	aware	of	the	file?	Yes,	nothing	has	changed	for	this	one.	You	added	it	in
Git	and	haven't	removed	it,	so	it	is	still	tracked.

2.	What's	in	the	staging	area?	Revision	a.	Nothing's	changed—no	additional
add	or	commit	commands	have	been	done.

3.	What	is	the	relationship	of	the	version	in	the	working	directory	to	the
latest	version	in	Git?	The	version	in	Git	(in	the	staging	area)	is	still	the	previous
version	(a).	The	version	in	the	working	directory	has	been	updated	to	a	new

version	(b).	Thus,	the	file	is	different,	so	it	is	modified.

The	output	from	running	git	status	now	looks	like	this:

On	branch	master

Initial	commit

Changes	to	be	committed:

		(use	"git	rm	--cached	<file>…"	to	unstage)

								new	file:			file1.txt

	

Changes	not	staged	for	commit:

		(use	"git	add	<file>…"	to	update	what	will	be	committed)

		(use	"git	checkout	--	<file>…"	to	discard	changes	in	working	directory)

								modified:			file1.txt

This	is	an	interesting	one	because	it	shows	the	filename	listed	twice.	This	can	be
confusing,	especially	if	you're	new	to	Git.	The	simple	explanation	here	is	that	you	have
two	different	versions	of	the	file	in	two	different	levels	of	Git.	Version	a	is	still	in	the
staging	area,	and	the	new	version	(b)	is	in	the	working	directory.	So,	Git	is	reporting
status	on	the	different	versions	in	the	two	levels.

Notice	Git's	terminology	here	for	the	two	versions.	The	one	in	the	staging	area	is	listed
as	Changes	to	be	committed.	Again,	you	can	think	of	this	as	indicating	the	next	level;
the	next	step	in	promoting	this	change	is	to	commit	it	into	the	local	repository.	The
version	in	the	working	directory	is	listed	as	Changes	not	staged	for	commit.	The	next
step	in	promoting	this	one	would	be	to	stage	it,	as	it	is	not	staged	yet.

Step	4:	Stage	the	new	version	from	the	working	directory	into	the	staging	area.	This	is
done	with	git	add.	The	results	are	shown	in	Figure	6.5.

Figure	6.5	Version	b	staged

1.	Is	Git	aware	of	the	file?	Yes,	nothing	has	changed	for	this	one.

2.	What's	in	the	staging	area?	Version	b.	Notice	that	version	b	overwrote
version	a	in	the	staging	area.	There	can	only	be	one	version	of	a	file	in	the	staging
area.

3.	What	is	the	relationship	of	the	version	in	the	working	directory	to	the
latest	version	in	Git?	The	version	in	Git	(in	the	staging	area)	is	b—the	same	as
the	version	in	the	working	directory.	So,	you're	back	to	a	status	of	unmodified	(not
different)	for	this	part.

After	running	git	status,	the	output	looks	the	same	as	for	Step	2.

On	branch	master

Initial	commit

Changes	to	be	committed:

		(use	"git	rm	--cached	<file>…"	to	unstage)

		

								new	file:			file1.txt

Step	5:	If	you	now	commit	the	file	with	git	commit	-m	"new	file",	you'll	see	the
output	that	I	described	in	my	discussion	on	commits	in	Chapter	5.

	[master	(root-commit)	8f8da3e]	new	file

	1	file	changed,	1	insertion(+)

	create	mode	100644	file1.txt

Your	local	environment	looks	like	Figure	6.6.

Figure	6.6	The	file	is	committed.

The	answers	to	the	questions	can	be	fairly	simple	at	this	point.

1.	Is	Git	aware	of	the	file?	Yes.

2.	What's	in	the	staging	area?	Nothing;	you've	committed	what	was	in	the
staging	area.

3.	What	is	the	relationship	of	the	version	in	the	working	directory	to	the
latest	version	in	Git?	The	version	in	Git	(in	the	local	repository	now)	is	b—the
same	as	the	version	in	the	working	directory.	So,	it's	unmodified.

Following	that	with	a	git	status	command,	Git	will	tell	you	that	there	is	nothing	to
commit,	working	directory	clean.	This	is	another	bit	of	terminology	that	Git	uses.	It

means	that	Git	has	the	latest	version	of	everything	in	its	local	repository	that's	eligible
to	be	committed	from	the	working	directory.	Basically,	the	local	repository	and
working	directory	are	in	sync.	There	are	no	new	changes	or	untracked	files	in	the
working	directory	that	are	eligible	to	update	in	Git.

Status	Command	Short	Form
Up	until	now,	you've	been	running	the	git	status	command	in	its	default	form.	This
form	displays	a	verbose	listing	of	status	information.	As	you	become	familiar	with
using	the	status	command,	you	may	want	to	see	more	concise	output.	For	this,	you
can	use	git	status	-s,	which	is	the	short	form	of	the	command.

The	-s	option	causes	Git	to	display	a	simpler	format:	one	line	of	status	per	file.	It
displays	a	one-	or	two-character	code	preceding	the	filename	to	indicate	the	status.	In
most	cases,	you	can	think	of	the	first	character	(from	left	to	right)	as	indicating	the
status	of	the	file	in	the	staging	area,	and	the	second	character	as	representing	the
status	of	the	file	in	the	working	directory	if	different.

Table	6.1	lists	the	common	status	values	for	commands	you	have	been	working	with
and	the	representative	codes.

Table	6.1	Git	Status	Codes	for	Short	Options

Status Column	1	Code Column	2	Code

Empty	working	directory blank blank

File	staged	and	unmodified A blank

File	staged	and	modified A M

Untracked	file ? ?

Key:	A	=	added,	M	=	modified,	?	=	untracked,	blank	=	unmodified

So,	if	you	map	the	short	status	to	the	different	steps	you	did	earlier,	it	would	look
something	like	this.	Starting	out	with	an	empty	working	directory	and	no	files	in	Git,
git	status	-s	would	not	have	anything	to	show.

To	mirror	what	you	did	before	,	you	can	create	a	file	using	the	command	echo	version1
>	file1.txt.	After	this,	git	status	-s	shows	the	untracked	file	with	the	output	"??
file1.txt".

In	step	2,	you	staged	the	file	via	git	add	file1.txt.	The	status	shows	the	file	as	added
(another	word	for	staged)	via	the	A	character	in	the	first	column.

$	git	status	-s

A		file1.txt

In	step	3,	you	updated	the	version	of	the	file	in	the	working	directory	(echo	version2	>
file1.txt).	Status	now	has	the	two	versions	to	report	on:	the	staged	version	(indicated
by	the	A)	and	the	modified	version	in	the	working	directory	(indicated	by	the	M).

$	git	status	-s

AM	file1.txt

Step	4	used	git	add	.	to	stage	the	updated	version	over	the	top	of	the	previously
staged	version.	So,	the	status	is	back	to	just	having	one	version	staged	(the	A),	and	the
version	in	the	working	directory	is	the	same	as	that	version	(indicated	by	the	blank
second	column).

$	git	status	-s

A		file1.txt

Finally,	step	5	brought	you	to	the	point	of	committing	the	file	(git	commit	-m	"first
file").	Because	Git	has	the	same	versions	of	everything	that	exists	in	the	working
directory—that	is,	Working	directory	clean—there	is	no	status	information	to	report
on	and	thus	no	output	from	the	short	form	of	the	command.

$	git	status	–s

NOTE

It's	worth	noting	here	that	there	are	a	number	of	additional	options	and	status
values	and	codes	that	the	status	command	can	use	and	return.	For	now,	I'm	just
covering	the	ones	that	pertain	to	the	commands	I'm	using	so	far.

Git	Diff
In	addition	to	git	status,	the	other	operation	that	allows	you	to	have	a	full	picture
across	your	local	environment	is	git	diff.	As	the	name	implies,	this	command	shows
differences	between	content	at	the	different	levels	in	your	local	environment.

Let's	first	look	at	the	general	forms	of	the	command:

git	diff	[options]	[<commit>]	[--]	[<path>…]

git	diff	[options]	--cached	[<commit>]	[--]	[<path>…]

git	diff	[options]	<commit>	<commit>	[--]	[<path>…]

git	diff	[options]	[--no-index]	[--]	<path>	<path>

You'll	learn	about	several	of	these	forms	as	you	go	along.	This	command	can	take
commits,	paths,	or	both	as	arguments.	If	a	commit	is	specified,	that	refers	to	an	entire
snapshot,	and	can	be	further	qualified	with	paths	to	particular	files	in	the	snapshot	if
needed.

NOTE

Note	that	for	most	of	the	examples,	I	will	not	include	a	commit	or	path	names	and
specifications	on	the	git	diff	command,	but	they	could	be	added	if	needed.

To	fully	understand	this	command,	you	first	need	to	understand	a	couple	of	symbolic
names	that	Git	uses.

Important	Symbolic	Names	in	Git
Git	uses	symbolic	names	to	refer	to	various	items	or	commits.	The	most	common	one
is	HEAD.	HEAD	generally	refers	to	the	latest	commit	on	the	current	branch,	and	if	you
think	of	it	that	way,	you'll	be	well	served.	It's	a	shortcut	for	the	most	current	thing	in
the	repository	in	the	branch	you're	working	in	now.

HEAD	is	actually	a	pointer	or	reference	to	a	SHA1—the	SHA1	for	the	latest	commit	on
the	current	branch.	HEAD	is	used	extensively	when	working	with	Git,	especially	as	a
point	to	reference	other	commits	from.

I	previously	discussed	the	staging	area.	Cache	and	index	are	two	other	terms	used	to
reference	this	area;	both	are	legacy	terms	in	Git,	and	have	now	been	replaced	by	the
staging	area	terminology.	So,	when	working	with	the	staging	area	and	supplying
options,	you	may	be	expected	to	supply	one	of	these	legacy	terms	as	the	option.	For	all
intents	and	purposes,	you	can	think	of	staging	area,	cache,	and	index	as	referring	to
the	same	level	in	Git.

How	to	Think	about	Git's	Approach	to	Diffing
From	time	to	time	in	this	book,	I	present	concepts	in	a	visual	way	to	explain	them,
even	though	that	may	not	be	exactly	how	things	work	internally.	One	way	to	think
about	how	Git	compares	things	when	performing	a	basic	diff	operation	is	by	thinking
about	going	up	the	promotion	model	to	find	content	to	diff	against.	Let's	walk	through
a	set	of	steps,	as	you	did	with	the	status	examples,	to	see	how	this	works.

In	Figure	6.7,	you	pick	up	where	you	left	off	in	the	status	example.	You	have	a	file	at
version	a	in	the	working	directory	that	has	been	staged	and	committed	so	that	you
also	have	revision	a	in	the	repository.	(Again,	letters	refer	to	versions	as	you	go
through	the	workflow.)

Figure	6.7	Starting	point	for	diffing—working	directory	clean

Step	1:	First,	let's	do	a	diff	between	the	working	directory	version	and	the	current
version	in	Git.	In	the	working	directory,	you	issue	a	git	diff	command.	As	a	convenient
representation,	you	can	think	of	the	command	as	starting	in	the	working	directory,
and	looking	up	to	the	next	level	(the	staging	area)	to	see	if	there	is	anything	to
compare	against	there	(Figure	6.8).	In	this	case	there	isn't,	so	it	continues	to	look	up
to	the	next	level,	and	finds	the	revision	in	the	local	repository	(Figure	6.9).	Comparing
the	version	in	the	working	directory	against	the	one	in	the	local	repository,	Git	finds
that	they	are	the	same.

Figure	6.8	Workflow	of	git	diff	between	working	directory	and	Git	(checking	the
staging	area)

Figure	6.9	Workflow	of	git	diff	between	working	directory	and	Git	(checking	the
local	repository)

Command-line	Git	is	less	than	user-friendly	in	its	output	when	the	two	things	it's
comparing	have	no	differences.	It	just	returns	nothing—no	output	messages.	So,	in
this	case,	the	output	from	running	git	diff	on	the	command	line	is	nothing—indicating
no	differences.

Suppose	you	now	update	the	local	file's	version	to	b	(Figure	6.10)	and	run	the	diff.
Afterward,	it	continues	to	search	up	the	chain	until	it	finds	the	one	in	the	local
repository	(Figure	6.12).

Figure	6.10	Local	version	updated	to	b

You	can	think	of	the	workflow	occurring	in	the	same	way	again:	Git	starts	at	the
working	directory,	searches	up	the	chain	for	a	version,	and	doesn't	find	one	in	the
staging	area	(Figure	6.11).

Figure	6.11	Diff	between	modified	local	version	and	Git

Figure	6.12	Diffing	further	up	the	chain

Just	as	before,	finding	nothing	in	the	staging	area,	you	can	think	of	Git	as	continuing
up	to	the	next	level,	where	it	finds	the	version	in	the	local	repository	to	diff	against.

This	time	they	are	different,	so	by	default,	git	diff	shows	the	differences	in	patch
format.	Patch	format	means	displaying	the	lines	that	are	different,	added,	or	deleted
between	the	two	versions.	The	output	from	the	diff	looks	like	the	following:

diff	--git	a/file1.txt	b/file1.txt

index	df7af2c..126b36c	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1,2	@@

	first	line

+second	line

Now,	I'll	go	ahead	and	stage	version	b	so	that	it	is	in	both	the	staging	area	and	the
working	directory.	Version	a	is	still	the	latest	in	the	local	repository.	This	is	where
things	get	interesting.

If	you	simply	do	your	normal	git	diff	command,	then	Git	starts	at	the	working
directory	and	searches	up	the	chain	to	find	the	version	in	the	staging	area	(Figure
6.13).

Those	two	versions	are	the	same,	so	a	git	diff	again	shows	no	output	(no	differences).

Starting	at	the	Staging	Area
The	other	option	you	may	want	to	use	when	you	have	content	in	the	staging	area	is	to
diff	the	staging	area	against	the	local	repository.	To	do	this,	you	add	either	the	--
cached	or	the	--staged	option	to	the	command.	(Recall	that	I	said	you	can	think	of	the
cache,	index,	and	staging	area	as	the	same	things	for	your	purposes.)

Adding	the	--cached	or	--staged	option	tells	Git	to	start	at	the	staging	area.	From	there,
going	up	the	promotion	levels,	it	compares	against	the	local	repository	version.	Figure
6.14	illustrates	this	concept.

Figure	6.13	Diffing	from	the	working	directory	with	a	version	in	the	staging	area

Figure	6.14	Diffing	starting	at	the	staging	area

From	the	command	line,	you	execute	git	diff	--staged.	The	output	looks	like	this:

diff	--git	a/file1.txt	b/file1.txt

index	df7af2c..126b36c	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1,2	@@

	version2

+second	line

Because	the	version	in	the	staging	area	is	different	from	the	version	in	the	local
repository	(a	is	different	from	b),	you	see	the	differences.

Diffing	against	a	Specific	Version	(SHA1)
One	of	the	other	useful	functions	of	the	diff	command	is	being	able	to	specify	a
revision	to	compare	against	on	the	diff	command.	The	syntax	is	git	diff	<identifier>.

Normally	the	identifier	will	be	a	SHA1	(because	each	commit	has	its	own	unique	SHA1
value)	or	a	reference	to	it.

So	how	might	this	be	useful?	Consider	a	case	where	you	might	want	to	diff	directly
against	the	version	in	the	local	repository,	bypassing	the	staging	area.	In	that	case,	you
want	to	diff	against	the	latest	revision	in	the	repository.	How	do	you	specify	that?
Recall	that	I	said	HEAD	is	a	pointer	or	reference	to	the	latest	commit	(SHA1)	on	the
current	branch.	So,	you	can	use	that	symbolic	name	in	your	command	here.	If	you	say
git	diff	HEAD	then	instead	of	going	up	to	the	staging	area	to	check	for	differences,	Git
will	bypass	the	staging	area	and	compare	the	working	directory	against	what's	pointed
to	by	HEAD.	This	would	look	just	like	Figure	6.15.

Figure	6.15	Diffing	directly	against	a	SHA1	(HEAD)

Again,	the	results	would	just	show	the	differences.

$	git	diff	HEAD

diff	--git	a/file1.txt	b/file1.txt

index	df7af2c..126b36c	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1,2	@@

	version2

+second	line

Diff	Names	Only
Like	the	status	command,	there	are	shorter	versions	of	the	diff	output.	If	you	only
want	to	see	the	names	of	the	files	that	are	different,	you	can	use	the	--name-only
option.	Running	git	diff	--name-only	produces	the	output	"file1.txt".

If	you	want	to	get	a	quick	summary	of	which	files	are	different	and	their	shorthand
status	information,	you	can	use	the	--name-status	option.	Running	git	diff	--name-
status	produces	the	output	"M	file1.txt"

Here	the	M	means	that	the	local	version	of	the	file	has	been	modified—just	as	with
the	shorthand	version	of	the	status	command	that	I	covered	earlier	in	the	chapter.

Word-diff
Another	option	that	may	be	useful	is	turning	on	differences	at	the	granularity	of
words.	You	can	do	this	with	the	command	git	diff	--word-diff.

This	will	tell	the	diff	to	show	differences	at	the	granularity	of	words	where	words	are
tokenized	by	whitespace.	Here's	an	example	of	output	from	the	command.

diff	--git	a/file1.txt	b/file1.txt

index	8e2235c..7823155	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

The	[-quick	brown-]{+hasty+}	fox	[-jumped-]{+leapt+}	over	the	[-lazy-]

{+peacefully	resting+}	brown	[-dog.-]{+canine.+}

The	items	in	“[-	-]”	indicate	things	that	were	removed	in	the	latest	version,	and	the
items	in	“{+	+}”	indicate	things	that	were	added.	Additional	options	are	available	for
changing	the	way	words	are	represented	and	tokenized	(parsed)	if	desired	or	needed.
See	the	help	for	git	diff	for	more	information	on	these	options.

Ignoring	Non-critical	Changes
Obviously,	the	definition	of	what	is	non-critical	or	critical	will	vary	from	user	to	user
and	case	to	case.	However,	there	is	a	set	of	common	areas	that	can	be	useful	to	ignore
when	doing	diffs.

Whitespace	Changes
Git	has	a	number	of	options	to	help	with	ignoring	whitespace	changes.	The	options	are
as	follows:

-w	|	--ignore-all-space.	This	tells	Git	to	ignore	all	whitespace	changes	when
comparing	lines.

--ignore-space-at-eol.	This	tells	Git	to	ignore	whitespace	changes	at	the	ends	of

lines.

--ignore-blank-lines.	This	tells	Git	to	ignore	changes	in	lines	that	are	all	blank.

-b	|	--ignore-space-change.	This	tells	Git	to	ignore	changes	at	the	ends	of	lines	and
treat	corresponding	areas	of	whitespace	changes	as	equivalent,	regardless	of	whether
they	have	the	same	amount	of	whitespace.

Let's	look	at	a	couple	of	examples.	You	first	create	a	file	using	a	simple	echo	command
to	dump	the	string	abcdef	into	a	file:	echo	"abcdef"	>	file1.txt.	Then	you	stage	it	to
get	it	under	Git's	control:	git	add	.

Next,	you	update	the	file	locally	to	have	some	whitespace	changes	(in	the	middle	and
at	the	end):	echo	"abc	def	"	>	file1.txt

A	regular	git	diff	shows	differences	as	follows:

diff	--git	a/file1.txt	b/file1.txt

index	0373d93..b6cdfe4	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

-abcdef

+abc	def

Adding	the	option	to	ignore	all	whitespace	changes	(git	diff	-w)	shows	no
differences	because	the	only	changes	to	the	content	were	the	addition	of	whitespace.

Telling	Git	to	ignore	only	the	whitespace	at	the	end	of	each	line	shows	the	diff	with
the	whitespace	changes	in	the	middle:	git	diff	--ignore-space-at-eol

diff	--git	a/file1.txt	b/file1.txt

index	0373d93..b6cdfe4	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

-abcdef

+abc	def

Next,	I	update	the	local	copy	of	the	file	in	the	working	directory	to	only	have
whitespace	changes	at	the	end	of	each	line:	echo	"abcdef	"	>	file1.txt.	If	I	diff	it
again	with	the	same	option	(git	diff	--ignore-space-at-eol),	it	shows	no	differences
—as	expected.

Now,	suppose	you	stage	the	current	change	and	then	update	the	file	locally	to	a	new
version	that	only	has	changes	in	the	amount	of	whitespace	between	the	two	versions.
This	can	be	done	with	a	git	add	.	followed	by	something	like	echo	"abc	def"	>
file1.txt.	Then,	a	git	diff	between	the	two	versions	shows	the	expected	differences.

diff	--git	a/file1.txt	b/file1.txt

index	d4bbed0..f9686f5	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

-abc		def

+abc	def

Adding	the	option	to	ignore	changes	in	whitespace	and	the	amount	of	whitespace	(git
diff	-b)	shows	no	difference,	also	as	expected.

DIFFERENCE	BETWEEN	-b	AND	-w

If	you're	wondering	what	the	difference	is	between	-b	and	-w	here,	it's	that	–b
expects	there	to	be	some	whitespace	change	at	the	corresponding	points	in	both
versions	of	the	file	or	files	being	diffed,	while	-w	doesn't	care	if	only	one	version
has	whitespace	changes.	For	example,	if	you	only	had	whitespace	changes	in	one
version	of	the	file	as	you	did	earlier,	the	-b	option	would	not	ignore	the
differences,	whereas	the	-w	option	would.

$	git	diff	-b

diff	--git	a/file1.txt	b/file1.txt

index	0373d93..d4bbed0	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

-abcdef

+abc	def

$	git	diff	-w

However,	if	you	had	whitespace	changes	in	both	versions	in	the	corresponding
areas,	the	diff	-b	would	ignore	the	changes	as	in	the	last	example	in	the	text.

Filemode	Changes
Another	area	where	Git	can	sometimes	identify	files	as	changed	that	you	may	want	to
ignore	is	the	executable	bit	of	the	filemode	(that	is,	chmod+x).	You	can	work	around
this	with	git	diff	by	setting	the	configuration	value	core.filemode	to	false.

$	git	config	--global	core.filemode	false

Or,	if	you	need	to	just	apply	this	command	once	for	a	diff,	you	can	use	the	one-shot
configuration	setting	I	talked	about	in	Chapter	4.

$	git	-c	core.filemode=false	git	diff

Diffing	Two	Commits
The	diff	command	can	also	be	used	to	diff	two	different	commits	in	the	local
repository.	The	commits	could	be	in	the	same	branch,	or,	as	you'll	see	later,	in
separate	branches.	The	output	you'll	see	depends	on	the	order	in	which	you	supply	the
SHA1	values	representing	the	commits.

Consider	the	following	example	where	you	make	three	sets	of	changes	for	two	files,
doing	a	commit	after	each	change.

1.	 First	commit

$	echo	"line	1"	>	file1.txt

$	echo	"first	line"	>	file2.txt

$	git	add	.

$	git	commit	-m	"change	1"

[master	(root-commit)	c25a62d]	change	1

	2	files	changed,	2	insertions(+)

	create	mode	100644	file1.txt

	create	mode	100644	file2.txt

2.	 Second	commit

$	echo	"line	2"	>>	file1.txt

$	echo	"second	line"	>>	file2.txt

$	git	commit	-am	"change	2"

[master	965b004]	change	2

	2	files	changed,	2	insertions(+)

3.	 Third	commit

$	echo	"line	3"	>>	file1.txt

$	echo	"third	line"	>>	file2.txt

$	git	commit	-am	"change	3"

[master	fc5c99f]	change	3

	2	files	changed,	2	insertions(+)

Noting	the	SHA1s	of	the	first	and	last	commits,	you	can	now	do	some	interesting
diffing.

$	git	diff	c25a62d	fc5c99f

diff	--git	a/file1.txt	b/file1.txt

index	89b24ec..a92d664	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1,3	@@

	line	1

+line	2

+line	3

diff	--git	a/file2.txt	b/file2.txt

index	08fe272..20aeba2	100644

---	a/file2.txt

+++	b/file2.txt

@@	-1	+1,3	@@

	first	line

+second	line

+third	line

Here	you	see	the	differences	for	the	two	files	between	the	first	and	last	commits.
Notice	the	lines	that	were	added	in	the	second	and	third	commits.

Switching	the	order	that	you	specify	the	commits	gives	the	opposite	representation:
showing	the	lines	that	would	be	deleted	to	go	from	the	most	recent	version	to	the	first
version.

$	git	diff	fc5c99f	c25a62d

diff	--git	a/file1.txt	b/file1.txt

index	a92d664..89b24ec	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1,3	+1	@@

	line	1

-line	2

-line	3

diff	--git	a/file2.txt	b/file2.txt

index	20aeba2..08fe272	100644

---	a/file2.txt

+++	b/file2.txt

@@	-1,3	+1	@@

	first	line

-second	line

-third	line

Note	that	you	could	also	filter	this	by	an	individual	file.

$	git	diff	fc5c99f	c25a62d	file2.txt

diff	--git	a/file2.txt	b/file2.txt

index	20aeba2..08fe272	100644

---	a/file2.txt

+++	b/file2.txt

@@	-1,3	+1	@@

	first	line

-second	line

-third	line

You	could	have	also	included	the	separator	“--”	between	the	second	SHA1	and	the
filename,	as	follows:

$	git	diff	c25a62d	fc5c99f	--	file2.txt

However,	that	is	not	necessary	in	this	case	because	the	form	of	the	filename	is
different	enough	from	a	SHA1	value	to	not	be	confused	for	a	revision.

ALTERNATE	FORMS	FOR	THE	COMMANDS

There	are	several	alternate	forms	for	these	commands	that	mean	the	same	thing
in	the	current	context.	Consider	the	following	command:

$	git	diff	c25a62d	fc5c99f

This	can	also	be	expressed	with	“..”	instead	of	the	space.

$	git	diff	c25a62d..fc5c99f

And,	because	the	second	commit	is	also	the	current	commit	on	the	current
branch,	you	could	use	HEAD	here	as	well.

$	git	diff	c25a62d	HEAD

Finally,	because	the	second	commit	is	the	most	recent	commit	on	the	master
branch,	you	could	use	master	here	instead.

$	git	diff	c25a62d	master

Visual	Diffing
As	you	have	seen,	the	default	presentation	for	the	diff	command	is	showing	the
changes	in	a	standard	patch	format.	While	you	are	focusing	primarily	on	the
command	line	usage,	there	are	times	when	a	visual	interface	adds	significant	value	or
convenience.	One	of	these	cases	is	diffing.

Git	includes	a	special	command	for	working	visually	with	differences:	difftool.	This
command	is	actually	an	extended	frontend	for	the	git	diff	command	and	it	can	accept
all	the	options	and	arguments	that	diff	can	accept.

To	invoke	the	diffing	tool,	you	run	the	command	git	difftool.

The	idea	is	that	you	have	one	or	more	diffing	tools	installed,	configured,	and	available
for	Git	to	use.	(More	about	how	that	works	in	a	moment.)	Then,	you	use	the	git
difftool	command	or	a	configuration	value	to	select	the	one	you	want	to	use.	The
difftool	command	then	starts	up	the	desired	tool	with	the	appropriate	arguments.

Figures	6.16	through	19	show	some	screenshots	of	several	commonly	used	visual
diffing	applications	(and	applications	that	Git	understands	out	of	the	box	if	they	are
installed	and	in	the	path).

Figure	6.16	Vimdiff

Figure	6.17	WinMerge

Figure	6.18	Meld

Figure	6.19	KDiff3

Selecting	a	Diffing	Tool
From	a	list	of	installed,	configured,	and	available	tools,	a	particular	tool	can	be
selected	in	several	different	ways.	However,	to	the	difftool	command,	you	always
specify	just	the	simple	name	of	the	tool	(for	example,	kdiff3,	vimdiff,	or	meld).

If	no	default	tool	has	been	specified,	then	Git	will	attempt	to	use	a	sensible	default
(usually	something	like	vimdiff	on	Linux	systems).	One	way	to	specify	a	default	is	to
configure	a	particular	tool	via	the	diff.tool	configuration	value,	as	follows:

$	git	config	--global	diff.tool	vimdiff

Once	this	setting	is	configured,	running	git	difftool	will	start	that	selected	tool:
vimdiff.

By	default,	Git	prompts	for	confirmation	to	run	the	difftool	for	each	file	to	be	diffed.
An	example	prompt	looks	like	“Viewing	(1/2):	‘file2.txt’	Launch	‘meld’	[Y/n]:	Y”.	This
prompt	can	be	suppressed	either	by	supplying	a	no-prompt	option	when	running
difftool,	as	in	git	difftool	--no-prompt	or	by	setting	the	configuration	value,
difftool.prompt,	to	false.

$	git	config	--global	difftool.prompt	false

Another	way	to	select	a	particular	tool	is	to	specify	the	name	of	the	desired	tool	via	the
-t	option	at	the	time	you	run	difftool,	as	in	git	difftool	-t	meld.

Making	Diff	Tools	Available	to	Git
Git	comes	preconfigured	to	be	able	to	work	with	a	number	of	different	tools	for
diffing.	To	see	a	list	of	these	tools,	you	can	run	the	command	git	difftool	--tool-
help.

Note	that	this	does	not	mean	that	all	of	these	tools	are	installed	(or	even	if	installed,
that	they	can	be	used—they	might	not	be	in	the	path).	What	this	means	is	that	Git
understands	how	to	use	these	tools	to	do	diffing	without	additional	configuration	if
the	tools	are	available	on	the	system.	The	tool-help	option	tells	you	which	tools	are

available	to	use	(under	may	be	set	to	the	following)	and	which	are	not	(under	The
following	tools	are	valid,	but	not	currently	available).

To	make	one	of	the	tools	available	that	is	marked	as	not	currently	available,	you	can
install	the	application	and	make	sure	it	is	in	the	path.	Once	this	is	done,	if	it	is	a	tool
that	Git	knows	about,	it	will	show	up	in	the	available	section.

If	a	tool	is	not	available	in	the	path,	then	you	can	set	a	configuration	value	named
difftool.<tool>.path	(where	<tool>	is	the	name	of	the	application)	to	specify	the
location	where	Git	can	find	it.

For	example,	Git	knows	how	to	work	with	an	application	named	Meld	for	diffing	when
it	can	find	it	on	the	system.	Suppose	you	install	the	Meld	application	on	Windows	in
c:\meld	(instead	of	the	default	Program	Files	location	that	would	be	in	the	path).	To
tell	Git	where	the	Meld	application	can	be	found,	you	would	set	the	path	value	for	it	as
follows:

(On	a	Windows	command	prompt)

$	git	config	--global	difftool.meld.path	c:\meld\Meld.exe

(On	a	Bash	shell)

$	git	config	--global	difftool.meld.path	/c/meld/Meld.exe

NOTE

The	configuration	of	the	difftool.<tool>.path	value	can	also	be	used	to	work
around	differences	(such	as	capitalization)	between	the	actual	application	name
and	what	Git	expects	out	of	the	box.

For	example,	Git	expects	Meld	to	be	meld	(lowercase).	If	Meld.exe	is	installed	in	a
place	where	Git	should	be	able	to	see	it,	it	may	still	not	be	able	to	due	to	the
difference	in	case.	When	you	configure	the	tool	name	in	difftool.meld.path,	Git
can	then	understand	how	to	find	the	Meld	tool.

There	is	also	a	way	to	add	an	application	that	Git	does	not	already	know	about.	To	do
this,	you	specify	a	custom	command	to	run	the	application	in	the	configuration	value
for	difftool.<tool>.cmd.	Here	again,	<tool>	is	the	name	of	the	application.	Git	passes
several	variables	to	use	with	the	command	string.	$LOCAL	is	set	to	the	name	of	the
temporary	file	containing	the	contents	of	the	diff	before,	and	$REMOTE	is	set	to	the
name	of	the	temporary	file	containing	the	contents	of	the	diff	afterwards.

Other	Diff	Tricks
In	addition	to	the	forms	of	the	git	diff	command	that	you	have	already	looked	at,	there
are	a	couple	of	others	that	might	be	useful.

Suppose	that	you	have	multiple	files	committed	into	your	local	repository	and	several
of	them	are	different.	A	standard	invocation	git	diff	may	show	the	following:

diff	--git	i/file2.txt	w/file2.txt

index	ef49dd8..4ea5e4d	100644

---	i/file2.txt

+++	w/file2.txt

@@	-1	+1	@@

-more

+update

diff	--git	i/file3.txt	w/file3.txt

index	ef49dd8..4ea5e4d	100644

---	i/file3.txt

+++	w/file3.txt

@@	-1	+1	@@

-more

+update

An	invocation	of	the	diff	command	with	the	two	files	(git	diff	file2.txt	file3.txt)
would	show	the	same	output,	assuming	that	file2.txt	and	file3.txt	are	the	only	ones
that	are	different.

Now	consider	the	case	where	you	pass	file1.txt	and	file2.txt	to	the	command:	file1.txt
is	not	different,	so	there	is	no	output	for	it.

$	git	diff	file1.txt	file2.txt

diff	--git	i/file2.txt	w/file2.txt

index	ef49dd8..4ea5e4d	100644

---	i/file2.txt

+++	w/file2.txt

@@	-1	+1	@@

-more

+update

Git	also	supports	specifying	a	qualified	version	of	the	file	to	compare	against.	This	is
similar	to	comparing	two	versions	in	Git.	For	example,	to	compare	the	version	of	a
specific	file	(say,	file2.txt)	in	the	HEAD	revision	(the	local	repository's	current
revision)	against	the	version	in	the	working	directory,	you	can	use	this	syntax:

$	git	diff	HEAD:file2.txt	file2.txt

diff	--git	o/file2.txt	w/file2.txt

index	ef49dd8..4ea5e4d	100644

---	o/file2.txt

+++	w/file2.txt

@@	-1	+1	@@

-more

+update

Note	the	HEAD:	qualifier	in	front	of	the	filename.	Also,	note	the	mnemonic	prefix
here	of	o	for	object,	because	you're	referring	to	a	specific	object	in	the	repository.

Even	more	interesting,	though,	is	that	you	can	use	this	same	form	to	compare	a
qualified	version	of	one	file	in	Git	against	a	completely	different	file	locally.	Here's	an
example:

$	git	diff	HEAD:file1.txt	file3.txt

diff	--git	o/file3.txt	w/file3.txt

index	13fd43b..4ea5e4d	100644

---	o/file3.txt

+++	w/file3.txt

@@	-1,3	+1	@@

-version2

-second	line

-more

+update

Notice	that	your	command	actually	invoked	the	diff	against	the	version	of	file1.txt
from	HEAD	and	a	completely	different	file	(file3.txt)	from	the	working	directory.	This
might	be	useful	in	certain	cases.

SUMMARY
In	this	chapter,	I	covered	how	to	use	two	Git	commands,	git	status	and	git	diff,	to	gain
a	complete	picture	of	the	different	content	at	different	levels	in	your	local	Git
environment.	The	staging	area	adds	an	extra	level	here	that	has	to	be	taken	into
account.	I	also	covered	the	terminology	and	checks	that	Git	uses	when	ascertaining
and	reporting	status.	I	then	introduced	a	couple	of	special	symbolic	names	or
references	that	Git	uses.	Putting	this	all	together	allows	you	to	gain	a	comprehensive
understanding	of	how	and	where	content	is	positioned	in	Git.

About	Connected	Lab	3:	Tracking	Content	through	the	File	Status
Life	Cycle
This	Connected	Lab	will	give	you	hands-on	practice	with	the	commands	you've
explored	in	this	chapter,	building	on	what	you've	already	learned.	You'll	get	a	chance
to	use	the	status	and	diff	commands	on	a	project	and	become	more	familiar	with	Git's
responses	and	behavior.	After	that,	in	Chapter	7,	you'll	move	on	to	working	with
changes	in	Git	over	time.

Connected	Lab	3

Tracking	Content	through	the	File	Status	Life	Cycle
In	this	lab,	you’ll	work	through	some	simple	examples	of	updating	files	in	a	local
environment	and	viewing	the	files’	status	and	differences	between	the	various	levels
along	the	way.

Prerequisites
This	lab	assumes	that	you	have	done	Connected	Lab	2:	Creating	and	Exploring	a	Git
Repository	and	Managing	Content.	You	should	start	out	in	the	same	directory	as	that
lab.

Steps
1.	 Starting	in	the	same	directory	as	you	used	for	Connected	Lab	2,	run	the	status
command	or	the	short	form	to	see	how	it	looks	when	you	have	no	changes	to	be
staged	or	committed.

$	git	status

$	git	status	–s

2.	 Create	a	new	file	and	view	the	status.

$	echo	content	>	file3.c

$	git	status

$	git	status	–s

Question:

Is	the	file	tracked	or	untracked?

Answer:

It’s	untracked—you	haven’t	added	the	initial	version	to	Git	yet.

3.	 Stage	the	file	and	check	its	status.

$	git	add	.			(or	git	add	file3.c)

$	git	status			(git	status	–s	if	you	want)

Questions:

a.	 Is	the	file	tracked	or	untracked?

b.	 What	does	Changes	to	be	committed	mean?

Answers:

a.	 The	file	is	now	tracked—you’ve	added	the	initial	version	to	Git.

b.	 Changes	to	be	committed	implies	that	files	exist	in	the	staging	area	and	the
next	step	for	them	is	to	be	committed	into	the	local	repository.

4.	 Edit	the	same	file	again	in	your	working	directory	and	check	the	status.

$	echo	change	>	file3.c

$	git	status

Questions:

a.	 Why	do	you	see	the	file	listed	twice?

b.	 Where	is	the	version	that’s	listed	as	Changes	to	be	committed	(in	the	working
directory,	staging	area,	or	local	repository)?

c.	 Where	is	the	version	that’s	listed	as	Changes	not	staged	for	commit	(in	the
working	directory,	staging	area,	or	local	repository)?

Answers:

a.	 You	see	the	file	listed	twice	because	there	is	one	version	of	the	same	file	in	the
working	directory	and	another	version	in	the	staging	area.

b.	 The	version	that’s	listed	as	Changes	to	be	committed	is	in	the	staging	area.	The
phrase	implies	that	this	version’s	next	step	or	next	level	for	promotion	is	to	the
local	repository	using	a	commit.

c.	 The	version	that’s	listed	as	Changes	not	staged	for	commit	is	in	the	working
directory.	The	phrase	implies	that	this	version’s	next	step	or	next	level	for
promotion	is	to	the	staging	area,	because	it’s	currently	not	staged.

5.	 Do	a	diff	between	the	version	in	the	working	directory	and	the	version	in	the
staging	area.

$	git	diff

6.	 Go	ahead	and	commit	and	do	another	status	check.

$	git	commit	–m	"comment"

$	git	status

Question:

Which	version	did	you	commit:	the	one	in	the	staging	area	or	the	one	in	the
working	directory?	(Hint:	Which	one	is	left	[shows	up	in	the	status]?	Note	the
Changes	not	staged	for	commit	part	of	the	status	message.)

Answer:

The	version	in	the	staging	area	was	the	one	committed.	The	content	goes
through	the	staging	area	and	then	into	the	local	repository.

7.	 Stage	the	modified	file	you	have	in	your	working	directory	and	do	a	status	check.

$	git	add	.$	git	status

8.	 Edit	the	file	in	the	working	directory	one	more	time	and	do	a	status	check.

$	echo	"change	2"	>	file3.c$	git	status

At	this	point,	you	have	a	version	of	the	same	file	in	the	local	repository	(the	one
you	committed	in	step	6),	a	version	in	the	staging	area	(the	one	you	staged	in	step
7),	and	a	version	in	the	working	directory	(step	8).

9.	 Diff	the	version	in	the	working	area	against	the	version	in	the	staging	area.

$	git	diff

10.	 Diff	the	version	in	the	staging	area	against	the	version	in	the	local	repository.

$git	diff	--staged	(or	git	diff	--cached)	(note	that	the	“--”	is	a	double	hyphen)

11.	 Diff	the	version	in	the	working	directory	against	the	version	in	the	local	repository

(the	one	you	committed	earlier).

$	git	diff	HEAD

12.	 Commit	using	the	shortcut.

$	git	commit	–am	"committing	another	change"

Question:

Which	version	was	committed	(the	one	in	the	working	directory	or	the	one	in
the	staging	area)?

Answer:

Because	you	used	the	-am	shortcut,	the	version	from	the	working	directory	was
staged	(over	the	previous	version	in	the	staging	area)	and	then	that	version	was
committed	into	the	local	repository.

13.	 Check	the	status	one	more	time.

$	git	status

Notice	the	output.	You’re	back	to	a	clean	working	directory—Git	has	the	latest
versions	of	everything	you’ve	updated.

Chapter	7
Working	with	Changes	over	Time	and	Using	Tags

WHAT'S	IN	THIS	CHAPTER?

Learning	about	the	Git	log	command

Filtering	log	output

Filtering	and	searching	history

Working	with	Git	Blame

Tagging	commits	in	Git

Doing	rollbacks	with	Git	Reset

Canceling	out	changes	with	Git	Revert

Working	with	signed	tags

Using	reflogs

In	this	chapter,	you'll	learn	about	Git's	history	functionality,	how	to	look	at	changes
over	time,	and	the	many	options	that	are	available	to	users	for	displaying	history
information	in	different	ways.	You'll	explore	Git	functionality	that	can	tell	you	who
changed	each	line	of	a	file	and	when.	Then	you'll	look	at	how	to	point	Git	back	to
previous	versions	with	the	Git	equivalent	of	a	rollback	and	how	to	cancel	out	changes.
You'll	also	learn	how	to	mark	points	in	history	with	Git's	tag	functionality.

In	the	Advanced	Topics	section,	you'll	learn	how	to	use	signed	tags	for	added	security,
and	the	Git	reflogs	functionality	to	track	how	references	change	over	time.

THE	LOG	COMMAND
The	key	function	of	any	source	management	system	is	tracking	changes	over	time,	as
well	as	being	able	to	easily	identify	and	retrieve	any	previous	changes.	In	Git,	you	do
this	with	the	log	command,	Git's	version	of	a	history	command.	The	syntax	is	as
follows:

git	log	[<options>]	[<revision	range>]	[[--]	<path>…]

This	is	a	deceptively	simple	format	description	for	an	operation	that	comes	with	an
extensive	set	of	options,	especially	for	putting	constraints	on	which	history	items	are
shown	and	how	they	are	presented.

With	no	options,	the	log	command	shows	the	SHA1	value,	the	associated	e-mail
address	of	the	committer,	the	commit	message,	and	any	associated	files	in	reverse
chronological	order	(meaning	newest	first).

$	git	log

commit	06efa5ecedc5db8b4834ffc0023facb70053d46e

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Sep	4	23:14:14	2012	-0400

				update	field	size

commit	7945579f2dcf8460dcde46c94a16e678c3113817

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Sep	4	23:13:01	2012	-0400

				update	title	and	button	text

Common	Display	and	Filtering	Options
While	there	are	a	large	number	of	options	that	can	be	applied	to	the	history	output,
there	are	some	that	are	more	frequently	used	in	day-to-day	interaction	with	Git.	We'll
cover	some	of	those	in	this	section.

-p.	This	option	stands	for	patch,	meaning	that	the	history	output	also	displays	the
differences,	or	patches,	between	each	change.	The	output	will	look	similar	to	the
diff	output	you	saw	in	Chapter	5	with	the	diff	command.

$	git	log	--patch

commit	06efa5ecedc5db8b4834ffc0023facb70053d46e

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Sep	4	23:14:14	2012	-0400

				update	field	size

diff	--git	a/calc.html	b/calc.html

index	18e5a4c..d3304b7	100644

---	a/calc.html

+++	b/calc.html

@@	-49,7	+49,7	@@	Enter	a	number	in	the	first	box	and	a	number	in	the	

second	box	and	select	the	an

	

	Change	the	operation	via	the	dropdown	selection	box	if	desired.

	<form	name="calc"	action="post">

-<input	type=text	name=val1	size=10>

+<input	type=text	name=val1	size=5>

	<select	name=operator>

	<option	value=plus>+

@@	-62,9	+62,9	@@	Change	the	operation	via	the	dropdown	selection	box	if	

desired.

	<option	value=avg>avg

	</select>

-#	(where	#	is	replaced	by	a	number):	This	option	means	“show	me	the	last
number	of	commits.”	For	example,	if	you	only	wanted	to	see	the	most	recent
commit,	you	would	run	the	command,	git	log	-1.

--stat:	This	option	shows	some	statistics	on	the	number	of	changes	(the	number
of	inserted	lines,	deleted	lines,	and	so	on).

--pretty:	This	option	allows	you	to	specify	format	strings.

--format:	This	option	allows	you	to	create	your	own	custom	output	format	to	see
the	different	pieces	of	log	output	in	nearly	any	format.	(More	on	this	in	the	section
“Log	Output	Format.”)

--oneline:	This	is	a	commonly	used	option	when	looking	at	history	output.	It	tells
Git	to	only	display	the	first	line	of	the	commit	message	for	each	commit	in	the
history.	A	best	practice	for	working	with	Git	is	to	form	good	commit	messages,
including	making	the	first	line	meaningful.	If	the	first	line	of	the	commit	message
is	meaningful	enough,	it	can	be	spotted	easily	among	a	larger	set	of	output.	(See
Chapter	5	for	more	information	on	commit	messages.)

--author:	Another	common	filter	is	by	author.	Notice	that	the	output	of	your	log
command	shows	a	separate	line	for	Author:	that	includes	the	username	and	the	e-
mail	address	associated	with	the	commit	(user.name	and	user.email	as	configured
by	git	config).	Anything	in	this	Author:	line	can	be	searched	for	using	this	option.
For	example,	if	your	name	was	SCM	User	and	your	e-mail	address	was
scmuser@domain.com,	then	you	could	find	commits	with	the	author	option
using	any	of	the	commands	below.

git	log	--author="SCM"

git	log	--author="User"

git	log	--author="domain.com"

--decorate:	One	other	option	that	can	be	useful	is	--decorate.	Whenever	you	see
an	option	for	decorate,	this	is	telling	Git	to	show	references	(names)	that	point	to
particular	SHA1	values	that	represent	particular	commits.	The	most	common
references	you'll	see	will	be	branch	or	tag	names.	So,	the	easiest	way	to	think	of
this	option	is	that	it's	telling	Git	to	show	any	branch	or	tag	names	associated	with
the	commit.	To	see	the	full	namespace	that	Git	uses	to	describe	the	reference,	add

the	full	option:	--decorate=full.

Time-Limiting	Options
Git	allows	for	a	number	of	time-based	relative	options	such	as	--since,	--until,	--after,
and	--before.	Two	example	forms	of	these	options	would	be	--since=2.weeks	and	--
before=3.19.2015.

Notice	that	in	these	options,	the	dot	(.)	is	used	as	a	separation	character	between
multiple	parts.	In	certain	cases,	more	freeform	text	is	also	allowed,	as	in	these
examples:	--since	“5	minutes	ago”	or	--until	“5	minutes	ago”.

These	options	can	also	be	combined	to	create	a	bounded	range:

git	log	--since	01.01.2015	--until	12.31.2015		or

git	log	--before	01.01.2016	--after	12.31.2014

History	by	Files	and	Paths
For	the	log	command,	you	can	provide	filenames	to	the	command	line	to	filter	the
result.	For	example:	git	log	build.gradle	will	show	only	the	log	entries	where	the
file	build.gradle	was	involved.

Adding	the	--name-only	option	to	the	log	command	will	show	the	list	of	files	changed
with	each	commit	along	with	the	change	information.	So,	using	the	--oneline	and	--
name-only	options	is	a	convenient	way	to	see	the	changes	followed	by	the	list	of	files,
as	in	the	following	example.

$	git	log	--oneline	--name-only

7ae0228	adding	some	initial	testing	examples

api/src/test/java/com/demo/pipeline/registry/V1_registryTest.java

build.gradle

4758f9e	fix	conflicts

f64bd2c	update	for	latest	changes	to	make	web	server	generic	and	compatible	with	

tomcat

api/build/reports/tests/js/report.js

api/src/main/java/com/demo/pipeline/registry/V1_registry.java

…

b2e575a	sql	to	recreate	db

agents.sql

c6b5cbd	update	for	db.properties

.gitignore

Adding	a	path	onto	the	command	(separated	from	the	rest	of	the	command	by	a
double	dash	[--])	allows	you	to	see	just	the	commits	that	involved	changes	on	that
path.

$	git	log	--name-only	--	web/src/main/webapp

commit	f64bd2ce520e9a3df4259152a139d259a763bc31

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Sun	Mar	6	10:21:28	2016	-0500

				update	for	latest	changes	to	make	web	server	generic	and	compatible	with	

tomcat

web/src/main/webapp/js/agents.js

web/src/main/webapp/js/delete.js

commit	be42303ffb9356b8e27804ce3762afdeea624c64

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Fri	Feb	12	15:02:15	2016	-0500

				initial	add	of	files	from	gradle	build

web/src/main/webapp/WEB-INF/web.xml

web/src/main/webapp/agents.css

web/src/main/webapp/agents.html

Log	Output	Format
So	what	do	you	actually	see	when	you	do	a	Git	log?	Git	shows	you	the	series	of
commits	that	have	occurred	in	(or	been	merged	into)	the	current	branch.	An	example
is	shown	here	using	the	--oneline	option	to	simplify	the	output.

$	git	log	--oneline

482365d	add	exp	function

d003b91	add	max	function

32d7b92	initial	version

Notice	that	in	the	first	column,	you	have	the	abbreviated	SHA1	value.	This	is	the	SHA1
value	associated	with	that	commit.	This	is	also	your	handle	to	that	commit	if	you	want
to	reference	that	commit	in	any	future	operation.	The	SHA1	in	this	case	can	be	used
like	a	version	or	revision	number	in	other	systems.	Finding	the	unique	SHA1
associated	with	a	particular	commit	is	a	starting	point	for	many	workflow	operations.

Git	also	provides	ways	to	create	a	custom	format	to	arrange	and	display	fields	in	a
particular	style	and	order.	Let's	look	at	a	more	complex	example:

$	git	log	--pretty=format:"%h	(%ad	%an)	%s	%d"	--graph	--date=short

This	will	produce	output	similar	to	the	following	example,	which	has	multiple
branches	that	have	been	created,	modified,	and	merged	back	in	to	master.	Although	I
haven't	discussed	branches	in	detail	yet,	you	can	get	an	idea	from	the	indentation	and
colored	lines	and	asterisks	of	the	relationship	between	the	branches.

The	--graph	option	is	basically	a	way	for	Git	to	show	the	relationships	between
branches	(where	new	branches	were	created	and	work	was	done	on	them,	where
branches	got	merged	back	in,	and	so	on)	by	using	indentation	and	ASCII	characters
such	as	the	slash	and	backslash.

*			65ad94b	(2016-05-22	Brent	Laster)	finalizing	merge	of	branch1		(HEAD	->	

master)

|\

|	*	9f2d6c0	(2016-05-22	Brent	Laster)	last	update	on	branch1		(branch1)

*	|			bc3be47	(2016-05-22	Brent	Laster)	Merge	branch	'branch2'	into	master

|\	\

|	*	|	28ac8bd	(2016-05-22	Brent	Laster)	last	change	on	branch2		(branch2)

|	*	|	ae90e52	(2016-05-22	Brent	Laster)	add	new	file	on	branch2

*	|	|	c9db77a	(2016-05-22	Brent	Laster)	update	on	branch1.5		(branch1.5)

|	|/

|/|

*	|	da8862c	(2016-05-22	Brent	Laster)	update	on	branch1

|/

*	3b35284	(2016-05-22	Brent	Laster)	update	2	on	master

In	this	example,	the	other	options	have	the	following	meanings:

--pretty	defines	the	output	format

%h	is	the	abbreviated	hash	of	the	commit

%ad	is	the	commit	date

%an	is	the	name	of	the	author

%s	is	the	commit	message

%d	specifies	to	show	commit	decorations	(for	example,	branch	identifiers	or	tags)

It	is	even	possible	to	get	the	displayed	columns	to	display	in	different	colors	if	you
want.	And,	as	the	text	implies,	--date=short	tells	Git	to	display	date	information	in	a
short	form.

As	you	can	see,	you	can	make	log	output	display	in	almost	any	format	you	want.	Using
options	such	as	--oneline	and	--pretty=format	makes	it	easy	to	create	output	that	is
more	easily	consumable	by	another	tool	or	process	that	needs	to	parse	and	read	the
Git	history	data.

If	you	often	need	to	specify	a	long	log	command,	trying	to	remember	it	all	and	retype
it	can	be	challenging.	Fortunately,	you	can	use	another	Git	feature	to	simplify	things:
aliases	(which	I	discussed	in	Chapter	4).	Suppose	you	want	to	regularly	run	the	git	log
command	shown	in	the	previous	example	because	the	output	format	is	in	a	form	you
like.	Instead	of	having	to	type	out	the	command	every	time,	you	can	create	an	alias	for
it.	To	do	this,	you	would	use	the	git	config	function.

$	git	config	--global	alias.hist	git	log	--pretty=format:"%h	(%ad	%an)	%s	%d"	

--graph	--date=short

By	doing	this,	you	have	defined	an	alias	named	hist	for	this	command	and	option
string.	From	here	on,	you	can	just	type	git	hist	and	you'll	get	the	same	output	as	if
you	were	typing	the	full	command	string.

Searching	History
Two	other	options	available	with	the	log	command	facilitate	searching	for	text	in	files.
These	are	often	referred	to	as	the	Git	pickaxe.

The	first	option,	-G,	takes	a	regular	expression	as	an	argument	and	searches	for
commits	that	added	or	removed	occurrences	of	this	text.

The	second	option,	-S,	takes	a	string	and	searches	for	commits	that	changed	the
number	of	occurrences	of	the	string.

There	are	two	differences	here:

-G	is	intended	to	take	a	regular	expression,	while	-S	normally	takes	a	string.	(You
can	tell	Git	to	interpret	the	string	for	-S	as	a	regular	expression	if	you	add	the	--
pickaxe-regex	option.)

-S	only	detects	situations	where	the	before	and	after	versions	of	a	file	have
different	counts	of	occurrences	of	the	string.	It	won't	flag	an	instance	where	a
string	was	moved	within	a	file,	because	that	doesn't	change	the	count	of
occurrences	of	the	string.

As	a	quick	example,	suppose	you	have	a	file	containing	four	lines	in	this	order:	line1,
line2,	line3,	line4.

Now	you	add	and	commit	that	version.	Next,	you	make	a	change	in	the	file	to	switch
the	order	of	two	lines	so	that	the	lines	look	like:	line1,	line4,	line3,	line2.

You	add	and	commit	that	version,	so	now,	your	history	has	two	versions:	the	first	one
with	the	lines	in	order	and	the	second	with	the	two	lines	swapped.

$	git	log

commit	05fd71c23163487e9fa7d2fbb1580ab8b068f593

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	May	24	14:38:12	2016	-0400

				reorder	lines

commit	a48586827b0737972b201bb0073f166f03c36bfe

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	May	24	14:37:00	2016	-0400

				add	file

If	you	now	run	the	log	-G	command	against	these	commits	searching	for	ones
containing	line2,	you'll	see	the	following	output:

$	git	log	-Gline2

commit	05fd71c23163487e9fa7d2fbb1580ab8b068f593

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	May	24	14:38:12	2016	-0400

				reorder	lines

commit	a48586827b0737972b201bb0073f166f03c36bfe

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	May	24	14:37:00	2016	-0400

				add	file

If	you	run	the	log	-S	command	against	these	commits	searching	for	ones	containing

line2,	you'll	just	see	the	following:

$	git	log	-Sline2

commit	a48586827b0737972b201bb0073f166f03c36bfe

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	May	24	14:37:00	2016	-0400

				add	file

The	reason	for	the	difference	is	that	the	-G	option	detects	the	reordered	lines	as
additions	or	removals,	while	the	-S	option	is	looking	for	a	change	in	the	number	of
occurrences.	For	the	first	revision,	that	is	the	first	time	those	lines	are	present,	so	-S
flags	it.	For	the	second	revision,	the	lines	have	only	been	swapped—there	is	still	the
same	number	of	occurrences	of	each	line	(1),	so	-S	doesn't	flag	that	one.

GIT	BLAME
So	far,	you've	learned	how	to	view	the	history	at	a	commit-by-commit	level.	For
individual	files,	you	can	go	a	step	further	and	see	the	revision	that	last	modified	each
line.	The	command	you	use	for	this	is	git	blame,	which	annotates	the	specified	lines
with	information	about	the	revision	that	changed	it.	The	format	is	shown	here.

git	blame	[-c]	[-b]	[-l]	[--root]	[-t]	[-f]	[-n]	[-s]	[-e]	[-p]	[-w]	[--

incremental]

											[-L	<range>]	[-S	<revs-file>]	[-M]	[-C]	[-C]	[-C]	[--since=<date>]

											[--progress]	[--abbrev=<n>]	[<rev>	|	--contents	<file>	|	--reverse	

<rev>]

											[--]	<file>

The	main	option	to	be	aware	of	here	is	-L	(lines).	This	option	allows	you	to	specify	a
range	of	lines	to	annotate	if	desired,	instead	of	the	entire	file.	It	can	take	a	start	and
stop	value	in	the	form	of	line	numbers,	a	relative	number	of	lines,	or	a	regular
expression.

Here	are	some	examples	from	a	Gradle-build	script.

git	blame	build.gradle

4a4fe0ec	(Diyuser											2016-02-14	22:39:36	-0500			1)

4a4fe0ec	(Diyuser											2016-02-14	22:39:36	-0500			2)

1e8173ea	(Brent	Laster						2016-02-20	10:08:25	-0500			3)

bfb9b8de	(Brent	Laster						2016-04-08	00:21:04	-0400			4)

bfb9b8de	(Brent	Laster						2016-04-08	00:21:04	-0400			5)	version	=	'1.0.0-

SNAPSHOT'

bfb9b8de	(Brent	Laster						2016-04-08	00:21:04	-0400			6)	group	=	

'com.demo.pipeline'

If	you	wanted	to	limit	this	to	the	lines	between	5	and	10	(inclusive),	you	could	use
either	git	blame	-L5,10	build.gradle	or	git	blame	-L5,+6	build.gradle.	Both	of
these	commands	would	return	the	following:

bfb9b8de	(Brent	Laster	2016-04-08	00:21:04	-0400		5)	version	=	'1.0.0-SNAPSHOT'

bfb9b8de	(Brent	Laster	2016-04-08	00:21:04	-0400		6)	group	=	

'com.demo.pipeline'

845bf97c	(Brent	Laster	2016-02-15	23:11:22	-0500		7)

4a4fe0ec	(Diyuser						2016-02-14	22:39:36	-0500		8)

4a4fe0ec	(Diyuser						2016-02-14	22:39:36	-0500		9)

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	10)

Notice	the	caret	(^)	sign	at	the	beginning	of	the	commit's	SHA1	on	the	last	line.	This
means	that	this	is	the	boundary	commit,	the	earliest	commit	in	the	range	of	commits
being	examined.	If	you	prefer,	you	can	pass	the	-b	option	to	show	a	blank	field	for
boundary	commits	instead.

You	can	also	use	regular	expressions	for	the	start	and	stop	of	the	line	ranges.	To	do
that,	you	specify	the	expression	inside	the	forward	slashes	(/	/).	For	example,	to	look
at	seven	lines	starting	after	the	occurrence	of	the	string	subprojects,	you	would	use
the	following:

	$	git	blame	-L"/subproject/",+7	build.gradle

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	11)	subprojects	{

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	12)				apply	plugin:	'java'

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	13)				apply	plugin:	

'eclipse-wtp'

1e8173ea	(Brent	Laster	2016-02-20	10:08:25	-0500	14)				apply	plugin:	'jacoco'

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	15)				version	=	'1.0.0-

SNAPSHOT'

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	16)				group	=	

'com.demo.pipeline'

^be42303	(Brent	Laster	2016-02-12	15:02:15	-0500	17)				

configurations.compile.transitive	=	true		//	Make	sure	transitive	project	

dependencies	are	resolved.

The	^	symbol	appears	on	all	lines	that	were	changed	before	the	first	commit	in	the
range—in	this	case	before	the	current	commit.

You	could	also	use	regular	expressions	to	see	the	blame	annotations	for	entire	blocks
by	passing	in	regular	expressions	that	signify	the	syntax	for	the	beginning	and	end.	An
example	of	doing	this	for	your	build	script	to	see	the	dependencies	closure	would	be	as
follows:

$	git	blame	-L"/dependencies	{/","/}/"	build.gradle

^be42303	(Brent	Laster						2016-02-12	15:02:15	-0500	53)							dependencies	{

^be42303	(Brent	Laster						2016-02-12	15:02:15	-0500	54)															

compile	'mysql:mysql-connector-java:5.1.38'

00000000	(Not	Committed	Yet	2016-05-21	10:21:19	-0400	55)							//						compile

'mysql:mysql-connector-java-bin:5.1.38'

^be42303	(Brent	Laster						2016-02-12	15:02:15	-0500	56)															

compile	"javax.ws.rs:jsr311-api:1.1.1"	

Notice	the	use	of	the	regular	expression	“/dependencies	{/”	as	the	starting	value	and
the	regular	expression	“/}/”	as	the	ending	value	to	bound	the	area	of	interest.

You	can	also	specify	a	range	of	revisions	to	limit	the	git	blame	output.	You	can	pass
these	revisions	to	the	command	without	needing	a	separate	option.	If	you	want	to	just
use	the	latest	revision	as	an	end	point	of	your	range,	you	can	use	the	double	dash	(--)
syntax	to	specify	that.

So,	if	you	were	to	use	the	git	log	command	to	see	the	list	of	revisions	for	a	file,	you
could	then	use	the	blame	command	and	pass	a	revision	to	see	who	has	made	changes
since	that	revision.

$	git	log	--oneline		build.gradle

7ae0228	adding	some	initial	testing	examples

f64bd2c	update	for	latest	changes	to	make	web	server	generic	and	compatible	with	

tomcat

be42303	initial	add	of	files	from	gradle	build

$	git	blame	f64bd2c	..	--	build.gradle

…

^f64bd2c	(Brent	Laster	2016-03-06	10:21:28	-0500		75)

^f64bd2c	(Brent	Laster	2016-03-06	10:21:28	-0500		76)	project(':dataaccess')	{

7ae02289	(Brent	Laster	2016-03-29	14:27:13	-0400		77)

…

7ae02289	(Brent	Laster	2016-03-29	14:27:13	-0400		84)			}

7ae02289	(Brent	Laster	2016-03-29	14:27:13	-0400		85)			task	testJar(type:	Jar)	

{

7ae02289	(Brent	Laster	2016-03-29	14:27:13	-0400		86)													classifier	

"test"

When	specifying	a	starting	revision,	if	a	change	was	made	earlier	than	that	revision,	it
will	still	show	up	in	the	output	as	blamed	on	that	starting	revision.	Because	this	is	like
a	boundary	revision	(at	the	bounds	of	what	you	specified),	you	can	hide	that	SHA1
with	the	-b	option	if	desired.	Another	way	to	see	only	what	has	been	changed	since	the
starting	revision	would	be	to	use	a	simple	grep	to	filter	out	the	boundary	revision.

	$	git	blame	f64bd2c..	--	build.gradle	|	grep	-v	"\^"

Another	useful	option	allows	you	to	specify	revisions	as	relative	time	ranges.	The
typical	syntax	is	<number	of	units>.<type	of	units>	as	in	5.days	or	2.weeks.	However,
you	can	also	supply	dates	in	the	form	yyyy-mm-dd.	To	specify	these	date-and-time
values,	you	can	use	the	same	time	options	as	on	the	log	command:	--since,	--before,	--
until,	and	--after.	Here	are	some	examples.

$	git	blame	--after=2016-03-28	build.gradle

$	git	blame	--since=2.weeks	build.gradle

$	git	blame	--before="8	weeks	ago"	build.gradle

The	date	specified	here	defines	a	boundary,	and	so	any	change	in	the	file	that
happened	before	that	date	gets	blamed	on	the	revision	closest	to	that	change.	This	can
make	parsing	the	output	challenging,	because	all	the	lines	from	before	that	timestamp
still	show.	To	work	around	this,	you	can	pipe	the	blame	output	through	the	grep
command	I	mentioned	previously.	Here's	an	example:

$	git	blame	--after=2016-03-28	build.gradle	|	grep	-v	"\^"

Finally,	there	is	a	--reverse	option	that	reverses	the	timeline	searching.	This	option
displays	the	last	commit	where	a	line	existed	before	it	was	deleted.	To	use	this,	you
pick	a	commit	where	you	know	the	line	existed	and	then	run	the	command	searching
in	reverse	from	that	commit	to	HEAD.

$	git	blame	--reverse	<SHA1	of	commit	in	past	where	you	know	line	existed>..HEAD	

--	<filename>

Git	blame	can	also	follow	changes	across	file	renames,	copies,	and	so	on.	For	more
information	on	that	functionality,	see	the	git	blame	documentation.

SEEING	HISTORY	VISUALLY
Most	instances	of	Git	come	packaged	with	a	utility	named	gitk.	It	is	invoked	by
running	gitk	in	a	terminal	session	and	allows	you	to	browse	the	history	of	your	local
repository	in	a	graphical	interface.	Note	that	this	is	looking	at	the	history	in	the	local
repository	and	not	in	the	remote	repository.	Figure	7.1	shows	what	the	gitk	interface
looks	like.

Figure	7.1	Using	the	gitk	tool	to	browse	local	history

In	the	top-left	pane	is	a	listing	of	changes	made	in	the	repository.	The	branching
structure	is	represented	in	a	graph	layout,	similar	to	how	the	--graph	option	formats
the	command	line	output.	In	the	top-right	pane	are	details	about	the	commits	on	the
left.	You	can	also	select	commits	and	see	more	details	about	them	in	the	lower	panes
of	the	interface.	For	example,	notice	the	SHA1	values	that	can	be	selected	to	look	at
parent	commits.

Near	the	center	of	the	interface	are	two	radio	buttons—Patch	and	Tree—that	specify
how	you	select	items	to	navigate	around	the	changes	displayed	in	gitk.	If	you	are	new
to	the	tool,	it	is	not	always	intuitive	to	navigate	around	the	history	via	the	Patch	mode.
Until	you	get	comfortable	with	this	mode,	you	should	select	the	radio	button	for	Tree.
This	will	display	a	directory	and	file	layout	similar	to	a	typical	explorer	interface	that
may	be	easier	to	navigate.

Tags
When	working	with	specific	commits	in	Git,	it	is	useful	to	have	a	symbolic	name	as	an
alias	for	the	commit's	SHA1.	In	Git,	as	in	most	source	management	systems,	you	do
this	with	tags.	A	tag	is	just	a	symbolic	name	you	attach	to	a	specific	commit.	For
example,	if	you	wanted	to	refer	to	a	commit	as	RelCandidate1,	you	could	use	the
following	command:	git	tag	RelCandidate1	<SHA1	value>.

Afterward,	that	tag	would	be	associated	with	that	commit	and	serve	as	a	persistent
alias	to	Git	to	reference	that	commit.	Figure	7.2	shows	an	example.

Figure	7.2	Tagging	a	commit

Notice	that	no	matter	how	many	more	commits	are	made,	the	tag	stays	with	this
commit.	An	important	point	here	is	that	you	are	tagging	snapshots	and	commits,	not
individual	files.

In	Git,	this	kind	of	tag	is	called	a	simple	tag.	Git	also	provides	a	second	kind	of	tag
known	as	an	annotated	tag.	An	annotated	tag	in	Git	also	includes	a	record	about	who
created	it,	when,	and	a	commit	message	to	describe	it.	In	short,	it	is	like	committing	a
change	to	the	repository.	To	create	this	kind	of	tag,	you	would	use	the	command	git
tag	-a	<rtag>	<SHA1	value>	-m	"message".

There	is	one	more	important	point	regarding	tags	in	Git.	As	I	mentioned,	you	are
tagging	snapshots,	not	individual	files.	This	means	that	if	you	apply	an	operation	to	a
tag,	that	operation	will	be	against	all	files	associated	with	that	tag,	just	as	it	would	be
for	any	SHA1.

So,	if	you	have	20	files	in	your	commit	snapshot,	and	you	label	that	commit	as	RC1,
then	this	command	git	log	RC1	will	list	the	history	for	all	20	files	that	are	part	of	the
snapshot.	If	you	only	want	to	see	the	history	for	one	file,	you	need	to	supply	that

filename	as	an	additional	qualifier	on	the	command,	as	in	git	log	RC1	<filename>.

Seeing	Tag	Details
If	you	want	to	see	the	list	of	tags	associated	with	a	repository,	you	can	just	run	the	tag
command	without	any	options.	The	command	would	be	git	tag.

If	you	just	want	to	see	details	for	a	tag,	you	can	use	the	show	command	and	pass	the
tag	name,	as	in	git	show	<tag>.

If	the	tag	is	a	simple	tag,	then	you	will	just	see	the	details	of	the	commit	record.	If	the
tag	is	an	annotated	tag,	then	you	will	see	the	metadata	associated	with	the	tag	as	well.

If	you	just	want	to	verify	the	SHA1	of	the	commit	associated	with	the	tag,	you	can	use
one	of	Git's	plumbing	commands,	rev-parse,	in	the	format	git	rev-parse	<tag>.	This
will	return	the	SHA1	value	that	is	tagged	with	that	name.

Modifying	Tags
Normally,	if	you	try	to	change	what	a	tag	points	to,	you	will	get	an	error	from	Git.
Suppose	that	you	have	an	existing	tag,	tag1,	that	you	have	attached	to	revision
5128459.	If	you	then	try	to	update	that	tag	to	point	to	another	revision,	you'll	see	this:

$	git	tag	tag1	4e430fe

fatal:	tag	'tag1'	already	exists

To	work	around	this,	you	need	to	supply	the	-f	option.

$	git	tag	-f	tag1	4e430fe

Updated	tag	'tag1'	(was	5128459)

To	delete	a	tag,	you	can	use	the	-d	option.

$	git	tag	-d	tag1

Deleted	tag	'tag1'	(was	4e430fe)

The	last	modification	that's	useful	to	know	how	to	do	is	renaming	a	tag.	For	this,	you
use	a	slight	trick.	First,	you	create	a	new	tag	that	points	to	the	old	tag;	then	you	delete
the	old	tag.

$	git	tag	oldtag	4e430fe

$	git	log	--oneline	--decorate	|	grep	4e430fe

4e430fe	(tag:	oldtag)	update	2	on	branch2

$	git	tag	newtag	oldtag

$	git	log	--oneline	--decorate	|	grep	4e430fe

4e430fe	(tag:	oldtag,	tag:	newtag)	update	2	on	branch2

$	git	tag	-d	oldtag

Deleted	tag	'oldtag'	(was	4e430fe)

$	git	log	--oneline	--decorate	|	grep	4e430fe

4e430fe	(tag:	newtag)	update	2	on	branch2

WARNING

When	modifying	a	tag,	if	content	with	that	tag	has	already	been	pushed	to	the
remote	repository,	then	there	are	additional	considerations.	In	particular,	unless
you	push	the	changes	over	to	the	remote	repository	explicitly,	they	won't	show	up
there.	I	cover	how	to	do	that	in	Chapters	12	and	13.

Additionally,	if	others	may	already	be	using	the	code	from	the	remote	repository
with	the	old	tag,	they	will	need	to	be	made	aware	of	any	changes	you	plan	to	do	in
a	coordinated	way	so	they	can	get	the	updated	tag.	In	general,	if	a	tag	already
exists	in	code	on	the	remote	side,	the	simplest	approach	is	just	to	add	a	new	tag
and	leave	the	old	one,	unless	there	is	a	specific	reason	you	need	to	have	the	old
one	removed.

Quick	Tagging	Example
Suppose	that	you	have	the	following	commit	history	in	your	local	repository:

$	git	log	--oneline

65ad94b	finalizing	merge	of	branch1

9f2d6c0	last	update	on	branch1

bc3be47	Merge	branch	'branch2'	into	master

28ac8bd	last	change	on	branch2

ae90e52	add	new	file	on	branch2

c9db77a	update	on	branch1.5

If	you	want	to	create	an	annotated	tag	against	ae90e52,	you	can	use	something	like
the	following:

$	git	tag	-a	annotatedTag1	ae90e52	-m	"Creating	an	annotated	tag"

If	you	then	do	a	log	command	and	add	the	--decorate	option,	you	can	see	the	tag	in	the
history.

$	git	log	--oneline	--decorate

65ad94b	(HEAD	->	master)	finalizing	merge	of	branch1

9f2d6c0	(branch1)	last	update	on	branch1

bc3be47	Merge	branch	'branch2'	into	master

28ac8bd	(branch2)	last	change	on	branch2

ae90e52	(tag:	annotatedTag1)	add	new	file	on	branch2

c9db77a	(branch1.5)	update	on	branch1.5

To	see	the	details	of	the	tag,	you	can	use	the	show	command.	(Note	that	this	will	also
show	the	thing	pointed	to	by	the	tag—the	commit—but	will	show	the	annotated	tag
information	first.)

$	git	show	annotatedTag1

tag	annotatedTag1

Tagger:	Brent	Laster	<bcl@nclasters.org>

Date:			Sun	May	22	21:22:54	2016	-0400

Creating	an	annotated	tag

commit	ae90e529cf198f5d53a2654f08d69f791f8b6d88

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Sun	May	22	10:35:59	2016	-0400

				add	new	file	on	branch2

				Change-Id:	I8614ae7233c934e03c652c85c21894146ef362b5

diff	--git	a/demo/file2.txt	b/demo/file2.txt

new	file	mode	100644

index	0000000..ef49dd8

---	/dev/null

+++	b/demo/file2.txt

@@	-0,0	+1	@@

+more

UNDOING	CHANGES	IN	HISTORY
At	some	point,	most	Git	users	will	want	a	way	to	undo	changes	and	get	back	to	a
previous	state	in	the	local	repository,	staging	area,	working	directory,	or	all	three.	Git
provides	two	ways	of	accomplishing	this	through	the	reset	and	revert	commands.	Both
commands	allow	you	to	get	to	the	desired	set	of	content,	but	they	take	different
approaches.	And	depending	on	which	one	you	use,	you	can	have	a	non-trivial	impact
on	other	users.

Reset—Rolling	Back	Changes
You	can	think	of	the	purpose	of	the	reset	command	as	performing	a	rollback	function,
undoing	a	set	of	changes,	and	getting	back	to	a	previous	state.	Effectively,	the	reset
command	moves	the	HEAD	of	your	local	repository	back	to	a	previous	commit,	and,
optionally,	updates	the	staging	area	and	working	directory	with	the	contents	of	that
previous	commit.

The	basic	form	of	the	reset	command	is	as	follows:

git	reset	[-q]	[<tree-ish>]	[--]	<paths>…

git	reset	(--patch	|	-p)	[<tree-ish>]	[--]	[<paths>…]

git	reset	[--soft	|	--mixed	[-N]	|	--hard	|	--merge	|	--keep]	[-q]	[<commit>]

NOTE

Occasionally,	you	will	see	the	terms	commit-ish	and	tree-ish	in	Git
documentation.	Though	odd	sounding,	the	names	are	fairly	self-explanatory:
something	like	a	commit,	and	something	like	a	tree.

To	be	more	specific,	the	ish	part	can	be	thought	of	as	implying	something	that	can
resolve	to	the	term	that	came	before	it.	So,	a	commit-ish	is	something	that	can
resolve	to	a	commit,	and	a	tree-ish	is	something	that	can	resolve	to	a	tree	in	Git's
datastore.	Internally,	Git	deals	with	multiple	kinds	of	objects	in	a	hierarchical
fashion.	There	are	four	main	ones:	annotated	tags	that	generally	point	to	a
commit;	commit	objects	that	point	to	the	root	of	a	structure;	tree	objects	that
represent	directories	in	the	structure	and	point	to	other	trees	or	blobs;	and	blobs
that	are	essentially	files.

Commands	that	take	commit-ish	objects	expect	something	that	either	is	a	commit
or	can	be	dereferenced	or	followed	to	get	to	a	commit.	An	example	of	the	latter
case	would	be	a	tag	that	can	be	dereferenced	to	a	commit.	Commands	that	take
tree-ish	objects	expect	something	that	either	is	a	tree	or	can	be	dereferenced	or
followed	to	get	to	a	tree.	And,	because	all	commits	ultimately	point	to	a	tree
object,	all	commit-ish	objects	are	tree-ish	by	definition.	However,	the	reverse	is
not	true:	not	all	tree-ish	objects	are	commit-ish.

In	most	cases,	you	can	just	think	of	the	<tree-ish>	and	<commit-ish>	items	here
as	placeholders	where	you	can	plug	in	a	value	that	equates	to	a	SHA1.

The	first	and	second	forms	of	the	command	populate	the	staging	area	with	the
specified	revision.	In	the	third	form,	the	options	represent	which	parts	of	the	local
environment	should	be	updated	to	match	the	contents	of	the	new	SHA1.	The	options
are	as	follows:

soft—only	update	the	HEAD	of	the	local	repository.

mixed—(default)	update	the	HEAD	of	the	local	repository	and	the	staging	area.

hard—update	the	HEAD	of	the	local	repository,	the	staging	area,	and	the	working
directory.

Usually,	to	roll	back	to	a	previous	commit,	you	need	to	first	find	the	SHA1	of	that
commit.	You	can	do	that	through	the	git	log	command.	Using	the	--oneline	option
provides	concise	output	that	you	can	choose	from.	Then,	to	point	back	to	that	commit,
you	can	use	"git	reset	<SHA1>"	where	<SHA1>	is	the	SHA1	value	for	the	commit	you
want	to	reset	to.

This	moves	the	HEAD	pointer	in	the	local	repository	to	point	back	to	the	commit
indicated	by	the	SHA1.	Because	no	option	was	specified,	and	mixed	is	the	default
option,	this	also	updates	the	staging	area	with	the	contents	of	the	commit	pointed	to

by	the	new	HEAD.

NOTE

When	you	specify	a	SHA1	value	for	the	reset,	you	can	use	either	an	absolute
SHA1,	as	I	have	been	discussing,	or	a	relative	SHA1.	Git	has	special	syntax	that
allows	users	to	specify	SHA1s	relative	to	another	SHA1.	The	simplest	example
would	be	specifying	something	like	1	before	the	current	or	back	1.	In	Git,	using
the	caret	(^)	symbol	after	a	reference	means	1	before.	For	example,	because
HEAD	is	the	current	commit	on	the	current	branch,	to	reset	back	to	1	before	the
current,	you	can	run	the	command	git	reset	HEAD^.

This	is	sometimes	called	the	caret	parent.	If	you	want	to	go	further	back	relative
to	the	current	commit,	you	can	use	more	carets	or	use	the	“˜#”	syntax.	To	get
back	to	3	before	the	current	commit,	and	only	update	the	local	repository,	you	can
use	either	git	reset	--soft	HEAD^^^	or	git	reset	--soft	HEAD˜3.

Completely	Resetting	the	Local	Environment
If	you	want	to	completely	reset	your	local	environment	back	to	the	most	current
commit	in	the	local	repository,	wiping	out	any	uncommitted	changes	you	had,	you	can
use	the	--hard	option	with	HEAD	as	in	git	reset	--hard	HEAD.

In	this	case,	HEAD	is	already	at	the	current	commit,	so	there's	no	change	there.	What
does	change	(because	you're	using	the	--hard	option)	is	that	Git	updates	the	staging
area	and	the	working	directory	with	the	contents	of	that	commit—overwriting
anything	in	those	areas	and	effectively	resetting	them	to	the	current	content	of	the
repository.	One	way	to	remember	this	is	that	if	you	hit	your	head	against	something
hard,	it	hurts.	So,	if	you	use	the	hard	option	and	then	realize	you	did	need	something
that	was	just	overwritten,	that's	likely	to	hurt.

One	note	here	for	clarity:	when	you	use	the	reset	command,	you	are	only	moving
pointers	(references)	in	the	repository	as	far	as	rolling	back—you	are	not	deleting	any
existing	commits.

Revert—Canceling	Out	Changes
While	reset	is	useful	for	rolling	back	to	a	certain	point,	it	can	also	be	problematic.	The
difficulty	occurs	if	a	reset	is	done	locally	on	content	that	has	previously	been	pushed
to	the	remote	repository.	If	you	are	changing	things	in	that	code	base	that	was	on	the
remote,	there	is	a	chance	that	you	will	impact	other	users	who	have	cloned	down	the
latest	changes	and	are	working	against	those	pushed	changes.

In	that	scenario,	if	a	reset	is	done	and	changes	are	made,	and	then	pushed	to	the
remote,	there	can	be	some	interesting	merge	challenges	when	the	next	person	goes	to
merge	in	their	content,	based	on	where	HEAD	used	to	point.

For	these	reasons,	it	is	recommended	to	not	use	reset	or	any	Git	operations	that

change	history	and	could	cause	difficult	merge	scenarios	on	code	that	has	been
pushed	to	a	remote	repository.

So	how	do	you	do	a	rollback	if	you	can't	use	reset	in	a	particular	situation	because	it's
too	problematic?	One	way	is	to	check	out	an	old	version	of	the	content	and	then	check
it	in	on	top	of	the	current	version.	However,	Git	provides	a	more	automated,	elegant
solution:	git	revert.

What	revert	does	is	try	to	cancel	out	the	effects	of	changes	made	in	commits	you	don't
want.	For	example,	suppose	you	recently	committed	a	change	that	added	two	lines	and
you	want	to	get	back	to	the	commit	before	that	one.	The	git	reset	HEAD^	command
moves	HEAD	back	in	the	repository	to	point	to	the	previous	commit.	As	noted,	this
can	open	up	the	possibility	of	some	merge	issues	if	the	code	has	been	previously
pushed	out	to	the	remote	repository	and	others	are	working	with	it.

You	can,	however,	use	git	revert.	In	this	case,	git	revert	HEAD^	examines	the	different
commits	and	creates	a	new	commit	to	cancel	out	the	changes—that	is,	it	creates	a	new
commit	that	deletes	those	two	lines.

The	difference	here	is	that	revert	is	adding	content	that	cancels	out	the	effects	of	the
change	as	opposed	to	pointing	back	to	the	old	content.	Adding	content	at	the	end	of
the	branch	does	not	cause	the	same	kind	of	merge	issues	you	might	encounter	from	a
reset.	Dealing	with	additional	changes	is	a	common	occurrence	when	working	with
remote	repositories.	Changing	history	or	rolling	back	to	previous	commits	on	the
remote	side	is	not.

NOTE

Revert	has	some	behavior	and	options	that	you	should	be	aware	of.

First,	when	you	issue	a	revert	command,	by	default,	it	opens	the	editor	to	allow
you	to	type	in	a	commit	message,	because	it	plans	to	do	a	commit	to	cancel	out
the	changes.	To	suppress	this,	you	can	use	the	--no-edit	option.	Do	not	use	the	-m
option.	The	-m	option	in	this	case	has	to	do	with	a	special	case	of	reverting	a
merge.

There	is	also	a	--no-commit	(-n)	option.	This	allows	you	to	revert	things,	but	only
in	the	working	directory	and	staging	area.	The	user	still	has	to	do	a	separate
commit	operation	to	make	the	change	in	the	local	repository.

Figures	7.3	-	7.7	show	examples	of	some	git	reset	and	revert	commands.	The	setup
here	in	Figure	7.3	is	that	you	have	your	local	environment	with	the	local	repository,
staging	area,	and	 working	 directory.	There	have	been	three	commits	of	content,	with
each	commit	changing	the	file	to	add	a	line.	HEAD	points	to	the	latest	commit,	which
is	also	tagged	as	current.

Figure	7.3	Starting	repository	contents

In	Figure	7.4,	you	are	doing	an	absolute	reset	to	an	exact	SHA1	that	is	two	commits
before	the	current	one.	You	are	also	using	the	hard	option,	which	updates	both	the
staging	area	and	the	working	directory	from	the	contents	of	the	new	HEAD.

Figure	7.4	Resetting	back	to	an	absolute	SHA1

In	Figure	7.5,	you	are	resetting	relative	to	the	tag	-1	before.	(Note	the	syntax	of	˜1
meaning	1	before.)	This	effectively	moves	HEAD	back	1	commit	and	updates	the
staging	area	with	the	contents	of	that	commit	because	mixed	is	the	default.

Figure	7.5	Resetting	relative	to	a	tag

Now,	in	Figure	7.6,	you	start	back	at	the	original	spot	and	then	issue	a	revert
command.

Figure	7.6	Resetting	for	revert

After	the	revert	in	Figure	7.7,	you	have	a	new	revision	added	that	effectively	cancels
out	the	effect	of	the	commit	you	want	to	ignore.

Figure	7.7	Local	environment	after	the	revert

ADVANCED	TOPICS
In	this	section,	you	look	at	adding	additional	security	to	tags	and	commits	by	signing.
You	also	look	at	another	kind	of	log,	called	a	reflog,	that	Git	uses	to	track	changes	to
references	over	time.

Signing	Commits	and	Tags
As	I	have	mentioned,	Git	creates	SHA1	values	for	everything	it	stores	internally.	Aside
from	serving	as	unique	identifiers	for	the	items	in	Git's	content-addressable	store,
these	SHA1	values	ensure	that	nothing	can	be	modified	without	Git	knowing	about	it.

This	represents	security	within	Git.	But	what	if	you	want	to	guarantee	that	commits
you	are	incorporating	from	someone	else	are	actually	from	them?	Or,	what	if	you
want	a	way	to	signify	that	something	coming	from	you	or	a	member	of	your	team	is
actually	from	you	or	them?	The	user.name	and	user.email	properties	can	be	set	to
anything	by	any	user	before	making	a	commit.	For	added	security,	users	can	sign
commits	or	tags	in	Git	using	the	GNU	Privacy	Guard,	better	known	by	its	acronym,
GPG.

GPG	can	be	downloaded	from	http://www.gnupg.org.	Once	you	download	GPG	and	set
it	up,	you	need	to	set	up	a	new	key—unless	you	already	have	a	key	installed.

To	see	what	keys	(if	any)	you	have	installed,	you	can	use	gpg	--list-keys.	You	see
something	like	the	following:

/Users/dev/.gnupg/pubring.gpg

pub			2048D/00D026C4	2010-08-19	[expires:	2018-08-19]

uid							[ultimate]	GPGTools	Team	<team@gpgtools.org>

uid							[ultimate]	GPGMail	Project	Team	(Official	OpenPGP	Key)	<gpgmail-

devel@lists.gpgmail.org>

uid							[ultimate]	GPGTools	Project	Team	(Official	OpenPGP	Key)	<gpgtools-

org@lists.gpgtools.org>

uid							[ultimate]	[jpeg	image	of	size	5871]

sub			2048g/DBCBE671	2010-08-19	[expires:	2018-08-19]

sub			4096R/0D9E43F5	2014-04-08	[expires:	2024-01-02]

pub			4096R/DBB83F35	2016-05-21	[expires:	2020-05-21]

If	you	need	to	create	a	new	key,	you	can	use	gpg	--gen-key.	This	will	prompt	you	for
several	settings.	For	most	of	the	prompts,	you	can	just	accept	the	suggested	default
values	(for	the	prompts	that	have	defaults).	GPG	asks	you	to	enter	your	name,	your	e-
mail,	and	a	comment,	and	then	to	verify	it.	You	are	then	asked	to	enter	and	verify	an
optional	passphrase.

After	completing	that	process,	you	have	a	key	that	looks	similar	to	the	previous
example,	something	like	this:

pub			2048R/B34AA7EA	2016-05-21

						Key	fingerprint	=	B8E5	4910	5D1D	7655	AA08		88B8	933B	9040	B34A	A7EA

http://www.gnupg.org

uid							[ultimate]	B.	C.	Laster	(demo	signing	key)	<bl2@nclasters.org>

sub			2048R/59ABEFED	2016-05-21

Now	you	can	tell	Git	that	you	want	to	use	that	key	to	sign	things.	You	do	this	by
setting	a	configuration	value,	user.signingkey,	to	the	value	after	the	slash	from	the
pub	section.	Afterward,	this	key	is	available	in	Git	to	sign	tags	and	commits.

$	git	config	--global	user.signingkey	B34AA7EA

Signing	Commits
Once	the	key	is	set	up,	signing	a	commit	just	requires	adding	the	-S	option	to	the
commit	command.	Here's	an	example:

$	git	commit	-S	-am	"update"

You	need	a	passphrase	to	unlock	the	secret	key	for

user:	"B.	C.	Laster	(demo	signing	key)	<bl2@nclasters.org>"

2048-bit	RSA	key,	ID	B34AA7EA,	created	2016-05-21

[foo	4173266]	update

	1	file	changed,	1	insertion(+)

Git	log	includes	options	to	see	which	commits	have	valid	signatures	and	to	see	the
actual	signatures.	Using	formatted	output,	you	can	add	the	G	option,	as	shown	here:

$	git	log	--pretty=format:"%G?	%h	%ad	|	%s%d"

G	4173266	Sat	May	21	07:20:19	2016	-0400	|	update	(HEAD	->	foo)

G	54c01fa	Sat	May	21	06:55:11	2016	-0400	|	signing	commit

N	4400ff6	Thu	Jan	28	21:57:30	2016	-0500	|	update	(master)

N	d8e53c4	Mon	Jan	25	23:17:07	2016	-0500	|	lower.c

From	this	example,	you	can	see	that	the	last	two	commits	are	signed	(by	the	presence
of	the	G).

To	see	more	details,	you	can	use	the	--show-signature	option.

$	git	log	--show-signature	-1

commit	41732668cd9d49166e007ce64fe4d862fa366f99

gpg:	Signature	made	Sat	May	21	07:22:01	2016	EDT	using	RSA	key	ID	B34AA7EA

gpg:	Good	signature	from	"B.	C.	Laster	(demo	signing	key)	<bl2@nclasters.org>"	

[ultimate]

Author:	local	user	<bl2@nclasters.org>

Date:			Sat	May	21	07:20:19	2016	-0400

				Update

Signing	Tags
Creating	a	signed	tag	is	similar	to	creating	an	annotated	tag,	except	that	the	-a	option
is	replaced	by	the	-s	option.

$	git	tag	-s	my_tag	-m	"creating	a	signed	tag"

You	need	a	passphrase	to	unlock	the	secret	key	for

user:	"B.	C.	Laster	(demo	signing	key)	<bl2@nclasters.org>"

2048-bit	RSA	key,	ID	B34AA7EA,	created	2016-05-21

Running	git	show	on	the	tag	also	now	shows	the	signature.

$	git	show	new_tag

tag	new_tag

Tagger:	local	user	<bl2@nclasters.org>

Date:			Sat	May	21	08:00:19	2016	-0400

adding	a	signed	tag

-----BEGIN	PGP	SIGNATURE-----

Comment:	GPGTools	-	https://gpgtools.org

iQEcBAABCgAGBQJXQE3aAAoJEJM7kECzSqfqtjcH/2PV+RIRQChJ7in5A0lvj4KB

X5+Onk3lKKZMT/1wGRo8bvsyafSKkxwlFYogLZun+fsf4dQgB8e6LTBLOVnegHB9

3SNHtLxJ/C+lnVLjZWQ1fuiW9iiWZOovSrwVRz4yM3yqKLVxgxhJE6ol72O1gjjT

AMQiBZccKABOqPZAnFwehMZ4Rv8pcnmIkZ6Ost3CV2Sp2wvNWks5VVBDzjpjU84G

VNpHnL+VEOtybe22P/QoYsndUu7HruPx5Q5bxPNcE7aAPTlka4bmkL2CgCCBHwnl

h0x9WzSzEFZuynQBO7iN6pdHh1bOlufK97gLgkib56JSnu1hv9NOH690b0Og0/Y=

=0bbD

-----END	PGP	SIGNATURE-----

Reflogs
I'll	briefly	touch	on	one	other	type	of	log	here:	reference	logs	(or	reflogs).	A	reference
in	Git	terminology	refers	to	a	name	that	you	use	to	refer	to	a	SHA1	value.	For	example,
the	default	branch	in	Git	is	master,	and,	at	any	point	when	using	Git,	master	refers	to
the	current	content	on	the	branch.	This	is	the	SHA1	of	the	most	recent	commit.	You
could	reference	that	commit	by	its	SHA1	value	or	by	referencing	master.

In	the	Git	repository	in	the	.git	directory,	references	are	stored	in	a	path	structure.	At
the	top	is	refs,	then	the	type,	and	then	the	name.	For	example,	the	current	SHA1	for
the	current	commit	in	the	master	branch	would	be	stored	in	.git/refs/heads/master.	If
you	are	on	the	master	branch,	then	this	should	match	up	with	the	SHA1	from	the
latest	change.

$	cat	.git/refs/heads/master

373f47835befd4bc24f5b0109eb96a305a15863e

$	git	log	-1

commit	373f47835befd4bc24f5b0109eb96a305a15863e

Author:	Brent	Laster	<bl2@nclasters.org>

Date:			Tue	Mar	29	20:39:20	2016	-0400

remove	extraneous	files

Now,	as	content	is	committed	into	the	repository,	new	SHA1s	become	the	most
current	and	the	SHA1	values	in	the	reference	files	change.	Other	things,	such	as
switching	branches,	can	cause	other	references	to	change,	such	as	HEAD,	which	tracks
the	current	branch.

While	there	is	only	one	current	value	for	any	of	these	references,	a	reflog	for	each
reference	records	the	values	as	they	change	over	time.	Being	able	to	see	how	these
values	change	provides	another	record	of	what	has	been	done	in	the	system.	Also,	as

https://gpgtools.org

you'll	see	in	Chapters	8	and	9,	the	reflogs	can	provide	useful	information	on	past
points	you	may	want	to	go	back	to	in	the	history	of	the	reference.	They	also	record	the
points	where	branches	are	changed.

The	git	reflog	command	has	several	different	options,	including	options	to	prune
entries	from	the	logs.	Those	options	are	not	typically	used	by	Git	users.	Instead,	the
most	common	way	to	use	them	is	with	the	default	option	to	show	the	log	entries.
Some	examples	follow:

$	git	reflog

150d863	HEAD@{0}:	commit:	saving	Docker	image	files

bfb9b8d	HEAD@{1}:	commit:	copies	of	latest	work

373f478	HEAD@{2}:	checkout:	moving	from	master	to	new2

…

845bf97	HEAD@{9}:	commit:	update	script

4a4fe0e	HEAD@{10}:	commit:	updated	to	publish	to	artifactory

b2e575a	HEAD@{11}:	clone:	from	http://github.com/brentlaster/roarv2

$	git	reflog	master

373f478	master@{0}:	pull	origin	new:	Fast-forward

1e8173e	master@{1}:	commit:	add	in	sample	tests	and	jacoco	configuration

…

4a4fe0e	master@{5}:	commit:	updated	to	publish	to	artifactory

b2e575a	master@{6}:	clone:	from	http://github.com/brentlaster/roarv2

$diyuser@diyvb:~/roarv2$	git	reflog	new2

150d863	new2@{0}:	commit:	saving	Docker	image	files

bfb9b8d	new2@{1}:	commit:	copies	of	latest	work

373f478	new2@{2}:	branch:	Created	from	HEAD

diyuser@diyvb:~/roarv2$	git	reflog	new

373f478	new@{0}:	pull	origin	new:new:	storing	head

You	can	then	use	these	relative	values	shown	in	the	reflog	as	points	to	reset	to	as	in:

$	git	reset	--hard	HEAD@{3}

http://github.com/brentlaster/roarv2
http://github.com/brentlaster/roarv2

SUMMARY
In	this	chapter,	you	learned	how	to	use	the	git	log	command	to	create	formatted
history	output.	You	were	introduced	to	the	gitk	tool,	which	allows	you	to	see	history
on	your	local	repository	in	a	graphical	presentation.

You	learned	about	the	tag	functionality	in	Git	that	allows	you	to	tag	revisions—both
simple	and	annotated.	You	also	learned	about	two	ways	to	effectively	roll	back
changes	in	Git—the	reset	command	and	the	revert	command—and	when	to	use	(or	not
use)	each	one.

In	the	Advanced	Topics	section,	you	learned	how	to	sign	commits	and	tags	for
additional	verification	and	security.	Finally,	you	looked	at	reflogs,	another	form	of	log
that	Git	keeps	as	references	change	over	time.

In	the	next	chapter,	I'll	introduce	branches	and	start	explaining	how	they	work	and	the
power	they	provide	you	in	Git.

About	Connected	Lab	4:	Using	Git	History,	Tags,	and	Aliases
To	better	understand	these	concepts,	you	can	do	the	Connected	Lab	following	this
chapter.	It	will	allow	you	to	practice	the	concepts	presented	here	as	you	work	with	the
log	command	and	create	aliases	and	tags.

Connected	Lab	4

Using	Git	History,	Aliases,	and	Tags
In	this	lab,	you'll	work	through	some	simple	examples	of	using	the	git	log	command	to
see	the	flexibility	it	offers,	and	also	create	an	alias	to	help	simplify	using	it.	You'll	also
look	at	how	to	tag	commits	to	have	another	way	to	reference	them.

Prerequisites
This	lab	assumes	that	you	have	done	Connected	Lab	3:	Tracking	Content	through	the
File	Status	Life	Cycle.	You	should	start	out	in	the	same	directory	as	that	lab.

Steps
1.	 Starting	in	the	same	directory	that	you	used	for	Connected	Lab	3,	begin	by	making
another	change	to	the	repository	to	make	the	history	more	interesting.	Add	a	line
to	the	first	file	you	committed	into	the	repository	and	then	stage	and	commit.	Note
that	you	can	use	the	following	shortcut:

$	echo	new	>>	file1.c

$	git	commit	-am	"add	a	line"

2.	 Look	at	the	history	you	have	so	far	in	your	small	repository.	To	do	this,	run	the	log
command.	(In	some	terminals,	your	history	may	be	longer	than	the	screen	and	so
you	will	need	to	press	a	key	to	continue.	If	you	are	paging	through	the	log	output
on	a	Unix	terminal	and	want	to	end	the	listing,	press	the	q	key.)

$	git	log

$	git	status	–s

3.	 Often	when	looking	at	Git	history	information,	users	only	want	to	see	the	first	line
of	each	entry,	the	subject	line.	This	is	why	it	is	important	to	make	that	first	line
meaningful	when	using	Git.	(Note	that	I	do	not	do	that	in	this	book.)

To	see	only	the	first	line	of	each	log	message,	you	can	use	the	--oneline	option.
Try	it	now.

$	git	log	--oneline

4.	 You	can	create	a	more	complex	version	of	the	log	command	that	includes	selected
pieces	of	history	information	formatted	in	a	specific	way.	(Refer	to	Chapter	7	or	the
log	command	help	page	to	clarify	what	each	part	of	this	command	is	doing.)	Be
careful	of	your	typing:	note	the	colon	after	format,	the	double	hyphens,	and	the
double	quotes.

$	git	log	--pretty=format:"%h	%ad	|	%s%d	[%an]"	--date=short

5.	 Because	this	is	a	lot	to	type,	you	can	create	an	alias	to	simplify	running	this
command.	You	do	this	by	configuring	the	alias	name	to	stand	for	the	command
and	its	options.	Type	the	following,	paying	attention	to	the	punctuation	(double
hyphens,	colon,	vertical	bars,	single	and	double	quotes,	and	so	on).

$	git	config	--global	alias.hist	'log	--pretty=format:"%h	%ad	|	%s%d	[%an]"		

--date=short'

6.	 Run	your	new	hist	alias.	You	will	see	the	same	output	as	the	original	log	command
from	step	4.	If	you	encounter	any	problems,	go	back	and	double-check	what	you
typed	in	step	5.

$	git	hist

7.	 You	can	also	use	the	log	command	(and	your	hist	alias)	on	individual	files.	Pick

one	of	your	files	and	run	the	hist	alias	against	it.

$	git	hist	<filename>		

8.	 You're	interested	in	seeing	the	differences	between	a	couple	of	the	revisions.
However,	there	are	no	version	numbers.	So	we'll	need	to	use	a	different	way	with
Git.	In	Git,	we	specify	revisions	using	the	SHA1	(hash)	values	(the	first	7	bytes	are
enough).	In	our	hist	output,	the	first	column	is	the	SHA1	value.

9.	 Run	the	git	hist	alias	again	and	find	the	SHA1	values	of	the	earliest	and	latest	lines
in	the	history.	(Yours	will,	of	course,	be	different	from	mine	in	the	following
example.)

							$	git	hist

		latest	->	1db49cf	2016-08-20	|	add	a	line	(HEAD	->	master)	[Brent	Laster]

												ece66a5	2016-08-20	|	committing	another	change	[Brent	Laster]

												8103190	2016-08-20	|	update	[Brent	Laster]

												581c751	2016-08-20	|	another	update	[Brent	Laster]

earliest	->	c6a82d2	2016-08-20	|	first	commit	[Brent	Laster]

10.	 You	can	use	these	SHA1	values	similarly	to	how	you	might	use	version	numbers	in
other	systems.	Take	a	look	at	the	history	between	your	earliest	and	latest	commits.
To	do	this,	you	run	the	hist	alias	and	specify	the	range	of	values	using	the	SHA1
values.	Execute	the	following	command,	substituting	the	appropriate	SHA1	values
from	the	history	in	your	repository.	(Use	the	format,	git	diff	<earliest	SHA1>..
<latest	SHA1>.)

$	git	hist	c6a82d2..1db49cf

11.	 You	see	a	similar	history	to	what	you	saw	previously.	One	thing	to	note	here	is	that
you	don't	see	the	original	(first)	commit.	This	is	because	when	specifying	ranges
using	the	“..”	syntax,	Git	defines	that	syntax	as	essentially	everything	after	the	first
revision.	(See	the	section	on	“Specifying	a	Range	of	Commits”	in	Chapter	9	for
more	information.)	Note	that	you	can	also	run	this	command	against	an	individual
file.	Try	the	following	command	with	your	SHA1	values	and	the	first	file	you	added
in	the	repository.	(Use	the	format,	git	hist	<earliest	SHA1>..<latest	SHA1>	<first
file>.)

$	git	diff	c6a82d2..1db49cf	file1.c

12.	 This	is	useful,	but	finding	and	typing	SHA1	values	each	time	for	operations	like
this	can	be	cumbersome.	Instead,	you	can	use	tags	to	point	to	commits,	and	then
use	those	tag	names	instead	of	the	SHA1	values	in	commands.	You'll	now	create
tags	for	the	earliest	and	latest	commits	in	your	repository,	using	the	tags	first	and
last,	respectively.	The	commands	are	as	follows	(using	the	format,	git	tag
<tagname>	<hash>):

$	git	tag	first	c6a82d2

$	git	tag	last	1db49cf

13.	 Now	that	you	have	the	tags,	you	can	use	them	anywhere	you	used	the	SHA1	values
before.	Try	out	the	hist	alias	with	the	tags.

$	git	hist	first..last

14.	 You	may	not	have	thought	about	it,	but	this	is	giving	you	the	history	for	all	of	the
files	in	the	repository.	This	is	because	a	tag	applies	to	an	entire	commit,	not	a
specific	file	in	the	commit.	To	see	this	more	clearly,	add	the	--name-only	option	to
the	command	and	run	it	again.

$	git	hist	first..last	--name-only

15.	 If	you	only	want	to	do	an	operation	using	a	tag	for	one	file,	you	can	simply	add	the
filename	onto	the	command,	as	in	the	following	example:

$	git	hist	first..last	--name-only	file1.c

Chapter	8
Working	with	Local	Branches

WHAT'S	IN	THIS	CHAPTER?

Understanding	branches

Implementing	branches	in	Git

Branching	operations

Branching	workflows	and	models

Performing	checkouts	on	non-branched	commits

Working	in	detached	HEAD	mode

Performing	checkouts	on	individual	files

In	this	chapter,	I	introduce	Git's	fast,	lightweight,	and	yet	very	powerful	branching
model.	I	clarify	the	different	kinds	of	pointers	and	symbolic	names	that	come	into
play,	show	what	happens	when	you	create,	modify,	and	change	branches,	and	explain
how	Git	allows	users	to	easily	work	with	multiple	branches.

Git	actually	manages	two	categories	of	branches:	remote	branches	(updated	in	the
remote	repository)	and	local	branches	(updated	in	the	local	repository).	For	the
purposes	of	this	chapter,	I'm	only	talking	about	local	branches,	and	I'll	just	use	the
term	branch.	I	discuss	remote	branches	in	Chapter	12.

WHAT	IS	A	BRANCH?
In	a	traditional	source	management	system,	there	are	multiple	ways	of	describing
what	a	branch	is.	From	a	usage	standpoint,	a	branch	is	usually	thought	of	as	a	line	of
development,	meaning	a	set	of	code	allocated	for	working	on	a	release	or	update	for	a
product.	From	an	implementation	standpoint,	it	is	usually	a	collection	of	specific
versions	of	a	group	of	files	that	are	labeled	and	accessed	with	a	common	identifier.

Example	from	Another	Source	Management	System
To	dive	into	this	idea	a	bit	more,	let's	look	at	an	example	from	the	CVS	world.	This	is
only	for	illustration	purposes;	you	don't	have	to	know	CVS.	In	CVS,	you	can	create	a
branch	with	a	command	like	the	following:

cvs	rtag	-a	-D	<date/time>	-r	DERIVED_FROM		-b	NEW_BRANCH	PATHS_TO_BRANCH

The	pieces	of	this	command	translate	in	the	following	ways:

cvs	rtag.	Create	a	tag	in	the	repository	for	all	of	the	indicated	content.	The	rtag
here	refers	to	a	repository	tag,	that	is,	a	branch	name.

-D	<date/time>.	Tag	these	files	based	on	a	specific	date	and	time.	You	want	to
associate	the	branch	with	versions	of	these	files	as	they	are	(and	were)	at	a	certain
point	in	time.

-r	DERIVED_FROM.	The	other	branch	you	are	using	as	the	parent	for	this
branch.

-b	NEW_BRANCH.	The	name	of	the	branch	to	create,	and	thus	the	name	of	the
repository	tag.

PATHS_TO_BRANCH.	The	set	of	files	and	directories	to	associate	with	the	new
branch.

So	what's	the	end	result	of	this	command?	A	user	can	now	reference	and	work	with
specific	versions	of	all	of	the	files	in	the	repository	paths	(independent	of	other
versions)	by	using	one	unique	identifier,	the	branch	name.

Continuing	the	CVS	example,	if	you	want	to	get	the	versions	of	all	of	the	files
associated	with	the	branch	name	down	to	your	working	area,	you	can	do	a	checkout
with	cvs	co	-r	BRANCH_NAME	PATHS.

What	you	end	up	with	in	your	working	area	is	a	set	of	specific	versions	of	files,	or
what	you	could	also	refer	to	as	a	…	snapshot.	That	term	should	sound	familiar.

The	Git	Model	of	Branches
So	how	does	this	all	relate	to	Git?	Well,	think	about	what	a	snapshot	is	in	Git.	Here
are	two	ways	you	might	describe	it:

A	line	of	development,	associated	with	a	specific	change.

A	collection	of	specific	versions	of	a	group	of	files	associated	with	a	specific
commit.

The	end	result	when	you	create	a	commit	is	that	you	have	a	handle	to	get	all	of	the
versions	of	the	files	in	the	repository	associated	with	that	commit—the	commit's	SHA1
value.	When	you	later	retrieve	that	snapshot,	what	you	end	up	with	is	a	versioned	set
of	files	in	your	working	area—the	version	identified	and	tied	to	that	SHA1	value.

By	now	you	may	be	thinking	that	a	snapshot	in	Git	sounds	suspiciously	like	a	branch,
and	you're	right.	In	fact,	every	snapshot	in	Git	has	the	potential	to	become	a	branch.
All	it	needs	is	an	identifier	that	has	the	branch	name	and	points	to	it.

This	means	that,	in	Git,	a	branch	can	be	created	by	simply	adding	a	lightweight,
movable	pointer	to	a	SHA1	value	for	a	particular	commit—simple!	Let's	look	at	how
this	is	modeled	in	the	system.

Take	a	look	at	Figure	8.1.	Each	snapshot	that	is	put	into	a	Git	repository	becomes	a
new	commit.	Each	commit	already	has	the	contents	of	a	potential	branch	within	it.

Figure	8.1	Progression	of	chain	of	commits

By	default,	Git	establishes	a	branch	named	master	for	commits.	This	is	implemented
by	having	a	pointer	named	master	that	points	to	the	current	commit.	As	new	commits
are	made,	the	master	pointer	advances	to	point	to	each	new	commit.	In	this	way,	when
master	is	referenced,	it	always	points	to	the	latest	commit	in	the	repository,	just	as	a
branch	in	a	traditional	system	will	contain	the	latest	checked-in	code.

Each	commit	also	has	a	pointer	back	to	the	commit	that	came	before	it.	This	builds	up
a	chain,	which	is	useful	in	situations	such	as	determining	the	correct	ancestors	or	the
basis	for	a	merge	(discussed	in	Chapter	9).

In	a	traditional	SCM	system,	each	file	that	is	part	of	a	branch	is	updated	with	a	branch
tag	or	identifier.	To	get	and	reference	the	collection	of	files	that	make	up	the	branch,
the	system	searches	and	collects	all	of	the	files	with	that	identifier.	In	Git,	the
collection	is	already	in	the	snapshot,	so	there's	no	tagging	and	branching	multiple	files
and	file	trees.	The	collection	of	content	is	already	directly	referenced	by	using	the
SHA1	value,	so	a	branch	name	can	point	to	that	SHA1	value	and	reference	the	same	set
of	content.

At	the	implementation	level,	creating	a	branch	in	Git	simply	involves	writing	a	41-
character	file	named	for	the	branch.	Within	the	file,	the	41	characters	are	the	SHA1
value	of	the	commit	that	the	branch	points	to	(40	characters	plus	a	newline).	Because
this	is	so	simple,	branches	in	Git	are	extremely	quick	and	easy	to	create	(and	delete).

NOTE

You	may	be	wondering	what	the	difference	is	between	a	tag	and	a	branch	in	Git.
Both	are	references	(pointers),	but	a	tag	is	attached	to	the	commit	it	was
originally	created	for,	while	a	branch	changes	which	commit	it	points	to	as
content	is	added	to	the	branch.	In	simplest	terms,	one	is	a	stationary	pointer
(tag),	while	the	other	is	a	movable	pointer	(branch)	to	commits.

Creating	a	Branch
The	command	to	create	a	branch	in	Git	is	git	branch.

git	branch	[--color[=<when>]	|	--no-color]	[-r	|	-a]

						[--list]	[-v	[--abbrev=<length>	|	--no-abbrev]]

						[--column[=<options>]	|	--no-column]

						[(--merged	|	--no-merged	|	--contains)	[<commit>]]	[--sort=<key>]

						[--points-at	<object>]	[<pattern>…]

git	branch	[--set-upstream	|	--track	|	--no-track]	[-l]	[-f]	<branchname>	

[<start-point>]

git	branch	(--set-upstream-to=<upstream>	|	-u	<upstream>)	[<branchname>]

git	branch	--unset-upstream	[<branchname>]

git	branch	(-m	|	-M)	[<oldbranch>]	<newbranch>

git	branch	(-d	|	-D)	[-r]	<branchname>…

git	branch	--edit-description	[<branchname>]

In	its	simplest	form,	git	branch	<branch	name>	tells	Git	to	create	a	branch	called
<branch	name>	starting	with	the	contents	of	the	current	branch.

Figures	8.2	through	8.5	show	what	happens	internally	in	Git	when	a	new	branch	is
created.	Starting	with	Figure	8.2,	you're	at	the	point	from	above	where	master	has	had
several	commits	made	to	it.

Figure	8.2	Your	starting	chain	of	commits

Figure	8.3	After	the	creation	of	a	testing	branch

Figure	8.4	After	checking	out	the	testing	branch

Figure	8.5	The	current	branch	pointer	is	moved	to	indicate	that	the	newest	commit
is	the	latest	content	on	that	branch.

In	this	figure,	you'll	notice	another	pointer	labeled	HEAD	pointing	at	master.	You	may
recall	the	term	HEAD	from	the	discussion	about	diffing	in	Chapter	6.	I	suggested

thinking	of	it	as	pointing	to	the	current	commit	on	the	current	branch.	In	fact,	HEAD's
primary	job	is	to	identify	what	is	most	current,	and,	in	particular,	which	branch	is
currently	active.	In	this	case,	because	HEAD	is	pointing	to	master,	this	means	that
master	is	your	current	(active)	branch.	Commands	that	you	issue	will	go	against
master	(unless	another	branch	is	specified).

Now,	you'll	create	a	new	branch	named	testing.	The	command	to	do	this	is	git	branch
testing.

When	you	issue	this	command,	the	following	events	happen:

A	new	pointer	named	testing	is	created	that	points	to	the	most	current	commit
(the	same	one	that	master	currently	points	to).	(Illustrated	in	figure	8.3.)

Within	Git,	a	new	reference	file	is	created	as	/refs/heads/testing	(in	the	.git
directory)	and	the	SHA1	value	of	the	current	commit	is	recorded	in	it.

Checking	Out	a	Branch
Once	a	branch	exists,	you	can	get	content	from	it	using	the	checkout	command.	The
checkout	command	has	the	following	syntax:

git	checkout	[-q]	[-f]	[-m]	[<branch>]

git	checkout	[-q]	[-f]	[-m]	--detach	[<branch<]

git	checkout	[-q]	[-f]	[-m]	[--detach]	<commit>

git	checkout	[-q]	[-f]	[-m]	[[-b|-B|--orphan]	<new_branch>]	[<start_point>]

git	checkout	[-f|--ours|--theirs|-m|--conflict=<style>]	[<tree-ish>]	[--]	

<paths>…

git	checkout	[-p|--patch]	[<tree-ish>]	[--]	[<paths>…]

So,	if	you	want	to	get	the	latest	version	from	testing,	you	can	use	this	checkout
command:	git	checkout	testing.

The	checkout	command	causes	Git	to	perform	two	actions:

1.	 Switch	the	active	branch	to	be	testing.

2.	 Check	out	the	content	(from	the	commit	currently	pointed	to	by	testing)	into	the
working	directory.

It's	worth	noting	here	that	when	Git	checks	out	content,	in	many	cases	it	will
overwrite	the	version	in	the	working	directory.	You	should	ensure	that	local	content	is
committed,	stashed	(discussed	in	Chapter	10),	or	otherwise	saved	before	doing	a
checkout	over	the	top	of	existing	content.

To	elaborate	more	on	the	first	action,	remember	that	Git	keeps	track	of	which	branch
is	the	active	one	by	using	the	special	pointer	HEAD.	At	the	time	a	checkout	is	done,	if
the	branch	being	checked	out	is	different	from	the	current	one,	Git	updates	HEAD	to
point	to	the	specified	branch.	Figure	8.4	illustrates	the	state	after	creating	and
checking	out	the	testing	branch.

Subsequent	commands	then	operate	by	default	on	the	new	active	branch	until	another

checkout	switches	branches	(by	updating	HEAD)	again.

NOTE

In	the	preceding	examples,	I	used	two	commands	to	create	and	then	switch	to
(check	out)	the	testing	branch.	The	two	commands	were

1.	 git	branch	testing

2.	 git	checkout	testing

Git	provides	a	shortcut	to	perform	these	two	operations	via	one	command:	the
checkout	command	with	the	-b	option.	So,	for	the	testing	case,	the	syntax	would
be	git	checkout	-b	testing.

At	any	point	when	using	Git,	there	is	always	an	active	branch.	By	default,	this	is
master	until	other	branches	are	created	and	switched	to	by	a	checkout.

Adding	Content	to	a	Branch
When	a	new	commit	is	made	into	the	local	repository,	it	becomes	the	next	link	in	the
chain	to	the	current	commit.	The	current	commit	here	is	the	commit	pointed	to	by	the
branch	reference	that	HEAD	points	to.	After	the	new	commit	is	added	to	the
repository,	the	pointer	for	that	branch	is	moved	to	the	new	commit.

In	other	words,	HEAD	points	to	the	current	branch,	and	the	current	branch	pointer	is
updated	to	point	to	the	new	commit.	This	has	the	net	effect	of	updating	the	branch	to
a	new	version	of	code.	Figure	8.5	illustrates	this	process.

As	subsequent	commits	are	made,	the	branch	pointer	for	the	same	branch	advances	to
the	latest	commit,	until	the	branch	is	changed.	Note	that	the	other	branch	pointer
(master)	does	not	advance,	because	that	branch	is	not	the	active	one	and	so	is	not
being	updated.

One	Working	Directory—Many	Branches
If	you	have	previously	worked	with	multiple	branches	in	a	source	management
system,	you	likely	had	multiple	working	areas—one	for	each	branch—to	avoid	mixing
versions	of	content.	It	was	up	to	you	to	manage	keeping	all	of	the	working	areas	up	to
date,	and	remembering	which	one	was	which.

Git	simplifies	this	process	by	doing	one	additional,	but	highly	useful,	step	when	you
switch	branches	with	checkout.	When	you	do	a	Git	checkout,	Git	updates	your	local
working	directory	with	the	checked	out	files	from	the	commit	the	branch	points	to.	If
you	then	switch	branches	again,	Git	will	update	your	working	directory	with	the
checked	out	versions	of	the	files	from	the	new	branch.

Put	another	way,	Git	ensures	that	the	content	in	your	working	directory	is	consistent
with	whatever	branch	you	switch	to.	This	is	one	of	the	key	mind	shifts	of	learning	and
using	Git:	you	only	have	and	need	one	working	directory	for	a	repository,	no	matter

how	many	branches	are	in	it.	This	takes	some	getting	used	to,	but	is	ultimately	a	very
useful	feature.	It	is	key	to	supporting	workflow	models	such	as	creating	content	in
separate	branches	and	merging	them	back	into	integration	or	production	branches.

NOTE

A	recent	addition	to	Git,	the	worktree	functionality,	allows	users	to	have	multiple
working	directories	associated	with	a	single	Git	repository.	This	provides	an
alternate	way	of	working	with	multiple	branches	–	separating	them	out	into
different	working	directories.	This	is	not	the	typical	way	of	using	Git,	but	can
provide	advantages	for	certain	use	cases.	Worktrees	are	discussed	in	detail	in
Chapter	14.

So,	when	you	check	out	and	switch	branches,	Git	causes	several	things	to	happen:

It	moves	the	HEAD	pointer	to	point	to	the	branch	you	are	switching	to.

It	updates	the	content	in	your	working	directory	to	the	latest	flat	files	from	the
branch	you	are	switching	to.

It	updates	the	indicators	that	tell	you	which	branch	is	the	active	one.

Let's	take	a	look	at	how	this	works	in	practice.	Figure	8.6	represents	two	parts	of	your
local	environment:	the	local	repository	and	the	working	directory.	(I've	omitted	the
staging	area	for	simplicity.)	In	the	local	repository,	you	are	at	the	same	place	that	you
left	off	after	creating	the	testing	branch	in	the	previous	section.	Note	that	HEAD
currently	points	to	master,	so	that	is	your	current	branch.

Figure	8.6	Local	repository—active	branch:	master

Now,	assume	you	issue	a	checkout	command.	Because	master	is	the	active	branch,	Git
checks	out	the	current	commit	pointed	to	by	master	and	updates	the	content	in	the
working	directory.	Figure	8.7	illustrates	this.

Figure	8.7	Git	checkout	master

Next,	you	decide	you	want	to	do	some	work	in	the	branch	named	testing.	To	switch	to
that	branch,	you	can	just	do	another	git	checkout.	Figure	8.8	illustrates	this.

Figure	8.8	Git	checkout	testing

Notice	what	happens	when	you	run	this	command.	The	HEAD	pointer	switches	to
point	to	the	branch	pointer	testing,	making	testing	the	active	branch.	Then	Git	checks
out	the	content	in	the	commit	pointed	to	by	the	testing	branch	into	the	working
directory—the	same	place	it	checked	out	the	master	branch	into	previously!

Git	took	care	of	updating	the	content	in	the	working	directory	to	be	from	the	branch
that	you	told	it	you	wanted	to	work	with—with	no	effort	on	your	part	other	than	to	run
the	checkout	command.

This	means	that	you	can	work	with	as	many	branches	as	you	want	in	the	same
repository	and	only	use	one	working	directory.	Git	ensures	the	content	in	the	working
directory	is	from	the	correct	branch.

Just	to	prove	the	point,	if	you	were	to	check	out	master	again,	you	would	see	Git
switch	back	to	master	and	update	the	working	directory	with	the	contents	of	the	latest
commit	associated	with	master.	Figure	8.9	illustrates	this	state	again.

Figure	8.9	Git	checkout	master	(again)

There	is	one	caveat	that	can	come	into	play	when	trying	to	check	out	(switch	to)
another	branch	in	Git.	If	you	have	work	in	progress	(tracked	files	with	uncommitted
changes)	in	your	working	directory,	you	have	to	move	these	files	out	of	the	way	before
Git	will	allow	the	switch.

Simply	put,	if	Git	detects	that	you	might	lose	work	by	overwriting	uncommitted
changes	with	content	from	the	other	branch,	it	will	refuse	to	do	the	checkout.	It	wants
the	working	directory	to	be	clean	in	the	sense	of	having	all	content	tracked	by	Git	up-
to-date	with	Git	(your	latest	versions	committed).	If	you	have	this	situation,	it	can	be
handled	in	one	of	three	ways:

Commit	any	uncommitted	changes;	or

Stash	any	uncommitted	changes	using	Git's	stash	command	(I	talk	about	how	this
works	in	Chapter	11);	or

Use	the	--force	option	to	go	ahead	and	do	the	switch,	overwriting	any	uncommitted
changes.

In	case	it's	not	obvious,	the	last	option	is	not	recommended	because	it	can	result	in
work	being	overwritten.

Getting	Information	about	Branches
I've	already	mentioned	that	Git	maintains	an	internal	pointer,	HEAD,	to	keep	track	of
which	branch	is	current	and	active.	But	how	do	I	as	a	user	know	which	branch	is
current?

If	you're	working	on	the	Git	command	line,	you	can	simply	run	the	command	git
branch.	In	this	simple	form,	the	command	lists	the	local	branches	and	places	an
asterisk	(*)	by	the	one	that	is	currently	active.

$	git	branch

		master

*	testing

In	many	terminal	sessions,	your	prompt	will	also	be	configured	to	show	the	branch,	as
in

mymachine	(master)	$

NOTE

If	you	don't	already	have	the	Git	branch	as	part	of	your	prompt	and	want	to	set	it,
you	can	do	this	yourself	via	some	configuration	in	one	of	the	dot	(.)	files	on	a
Unix	system.	Here's	an	example	of	code	to	do	this	in	a	.profile.

__git_prompt

{

				local	b="$(git	symbolic-ref	HEAD	2>/dev/null)";

				if	[-n	"$b"];	then

								printf	"	(%s)"	"${b##refs/heads/}";

				fi

}

For	bash,	you	need	to	enable	bash-completion	and	then	you	can	use	this
command	(as	an	example):

export	PS1='$(__git_ps1)	\w\$	'

Alternatively,	there	are	more	elaborate	scripts	on	websites	such	as	GitHub,	and
plenty	of	references	on	how	to	do	this	on	the	web.

Another	useful	option	for	quickly	viewing	information	about	your	branches	is	the	-v
or	--verbose	option.	This	option	provides	a	list	of	the	branches	and	a	quick	one-line
summary	for	each	of	the	last	commits	on	the	branch.

$	git	branch	-v

		master		05fd71c	reorder	lines

*	testing	8250f9b	update	for	testing

Finally,	when	you	have	a	lot	of	branches	and	need	to	locate	one	or	more	of	them
quickly,	there	is	the	--list	option.	This	option	lists	the	local	branches,	but	more
importantly,	it	can	take	a	pattern	as	an	option	and	filter	the	list	by	that	pattern.	Here
are	some	examples:

$	git	branch	--list

		master

*	testing

$	git	branch	--list	t*

*	testing

$	git	branch	--list	*ter

		master

Deleting	or	Renaming	a	Branch
The	branch	command	includes	options	to	allow	you	to	delete	or	rename	a	branch.
Because	they	are	similar	in	syntax	and	usage,	I'll	cover	them	both	here.

Deleting	a	Branch
To	delete	a	branch,	you	can	use	the	-d	option,	as	in	git	branch	-d	<branch	name>.	In
some	cases,	when	performing	a	delete,	you	might	see	a	warning	message	like	this
from	Git:

$	git	branch	-d	test

error:	The	branch	'test'	is	not	fully	merged.

If	you	are	sure	you	want	to	delete	it,	run	'git	branch	-D	test'.

In	this	case,	Git	is	telling	you	that	you	have	commits	on	the	branch	that	you	are	about
to	delete	that	may	not	be	reachable	through	any	other	branches	if	you	proceed.	In
effect,	you	would	lose	being	able	to	reference	them	from	a	branch.

For	example,	consider	the	branch	arrangement	from	the	checkout	example	earlier	(see
Figure	8.10).

Figure	8.10	Local	repository	with	two	branches

If	you	were	to	delete	the	testing	branch	at	this	point,	you	would	lose	that	pointer	to
commit	c1c8bd4	(see	Figure	8.11).

Figure	8.11	After	deleting	the	testing	branch

NOTE

In	reality,	it's	very	hard	to	actually	ever	lose	anything	in	Git.	Notice	that	even
though	you	got	rid	of	the	branch	pointer	as	a	way	to	access	the	commit	in	the
previous	example,	the	commit	is	still	there.

In	fact,	as	long	as	you	know	the	SHA1	value	of	the	commit,	you	can	still	connect
to	it,	via	something	like	a	tag,

$	git	tag	<tagname>	c1c8bd4

or	even	create	a	new	branch	based	on	it,

$	git	branch	<branchname>	c1c8bd4

At	some	point,	if	an	object	in	Git	is	truly	orphaned	and	doesn't	have	any
connections,	and	git	gc	(garbage	collection)	is	run,	then	objects	can	be	deleted.
However,	this	usually	requires	an	explicit	user-based	action	to	execute.

If	you	aren't	sure	of	which	commits	might	be	lost	if	you	continue,	you	can	use	a
variant	of	the	log	command	to	find	out.	Here	is	the	format:

$	git	log	delete_candidate_branch	^current_branch	--no-merges

The	caret	(^)	symbol	at	the	start	of	the	second	branch	argument	means	not.	So	the
way	to	read	this	command	is	Show	me	the	commits	that	are	in
delete_candidate_branch	and	are	NOT	in	current_branch.	The	--no-merges	option
tells	Git	not	to	include	commits	that	have	been	merged	in	already.

Translating	that	to	the	example,	you	would	run	the	command,

$	git	log	testing	^master	--no-merges

NOTE

You	may	be	thinking	that	you've	seen	the	caret	(^)	used	with	a	revision	before
and	it	meant	something	different.	You're	right.	In	Chapter	7,	I	talked	about	using
reset	and	revert	with	revisions	specified	as	HEAD^.

In	Git,	when	the	caret	sign	is	at	the	end	of	a	reference,	it	means	1	back	from,	so	in
this	case	it	would	be	1	back	from	HEAD.

When	the	caret	sign	is	at	the	front	of	a	reference,	it	means	not	-	as	in	not	in	this
chain.

After	doing	the	evaluation,	if	you	decide	you	want	to	proceed	with	the	deletion,	you
can	force	it	to	happen	in	one	of	two	ways:	git	branch	-d	-f	testing	or	git.

Here,	-f	is	short	for	--force	and,	as	the	name	implies,	it	overrides	the	warning	message
and	executes	the	operation.	-D	is	an	alias	for	-d	-f.

Renaming	a	Branch
To	rename	a	branch,	you	can	use	the	-m	option,	as	in	git	branch	-m	<current	name>
<new	name>.	Here,	again,	if	you	run	into	conflict	situations	(such	as	the	<new	name>
already	existing),	Git	stops	the	operation	and	warns	you.

$	git	branch	-m	test	testing

fatal:	A	branch	named	'testing'	already	exists.

If	you	are	sure	you	want	to	continue	and	execute	the	operation,	you	can	use	similar
options	as	you	have	for	deleting	a	branch:	git	branch	-m	-f	test	testing	or	git
branch	-M	test	testing.

Here,	-f	is	short	for	--force	and,	as	the	name	implies,	it	overrides	the	warning	message
and	executes	the	operation.	-M	is	an	alias	for	-m	-f.

Developing	with	Branches
In	this	section,	I'll	build	on	the	branching	fundamentals	and	extend	them	to	common
concepts	working	within	the	Git	model.	I'll	discuss	some	ideas	of	where	to	do
development,	as	well	as	models	for	integrating	work	back	into	a	production	area.

Using	Branches	for	Initial	Development
As	I	discussed	in	the	previous	sections,	Git	has	a	powerful	branching	model.	You've
seen	how	its	internal	implementation	makes	branches	very	easy	to	create	and	use.
This	is	in	stark	contrast	to	how	most	users	and	admins	think	about	branching	in
traditional	source	control	systems.	In	those	systems,	as	the	scope	of	the	repositories
grows,	so	does	the	apprehension	and	complexity	associated	with	branching—
particularly	when	dealing	with	merge	conflicts.	Because	of	these	concerns,	users	may

steer	away	from	branching,	even	when	it	would	be	beneficial.	They	may	also	abdicate
responsibility	and	oversight	for	branching	to	specialized	persons	or	support	groups.

The	Git	world	flips	this	model	on	its	head—emphasizing	the	use	of	branches	as	cheap
and	easy—with	operations	that	are	simple	for	any	user	to	perform.	The	workflow
when	using	Git	is	intended	to	be	branch-based.	In	this	model,	separate	branches	can
be	(and	are)	created	for	almost	any	development	activity,	whether	it's	trying	out
something	new,	creating	a	new	feature,	or	implementing	a	bug	fix.	Then,	when	the
work	in	the	individual	branch	is	ready,	it	is	merged	into	a	production	branch.	In	some
cases,	there	may	also	be	one	or	more	integration	branches	where	smaller	changes	are
merged	together	and	verified	before	they	are	merged	into	the	production	branch.	This
process	repeats	throughout	development	iterations.

I'll	now	talk	about	some	different	ways	to	use	branches,	which	are	also	called	branch
classifications.

A	REMINDER	ABOUT	REPOSITORY	SCOPE

A	quick	reminder	before	I	talk	more	about	the	branching	workflow	model	in	Git:
choosing	the	right	scope	for	a	repository	can	simplify	things	significantly.	I've
mentioned	these	considerations	in	earlier	chapters	but	they	are	worth	repeating
here.

Branching	is	a	quick	operation	because	it	is	just	creating	a	reference	to	a	commit
with	the	branch	name.	However,	checkout	performance	and	space	are	dependent
on	the	number	of	files	and	directories	in	the	repository.	In	most	cases,	overhead
will	never	be	noticed,	but	it	is	something	to	keep	in	mind	if	you	are	working	with
a	very	large	repository.

And	while	I'm	on	the	subject	of	large	repositories,	even	a	repository	that	has	a
small	number	of	files	and	directories	can	still	be	large	if	it	has	a	lot	of	large	files
stored	in	it—especially	large	binaries	that	are	hundreds	of	megabytes.	In	general,
Git	can	do	a	good	job	of	compressing	similar	content	in	the	repository,	or	packing.
However,	large	binaries	don't	fit	as	well	into	that	model.

You	can	tell	Git	that	a	file	is	binary	through	an	entry	in	the	Git	attributes	file
(discussed	in	Chapter	10)	or,	even	better,	you	can	store	and	track	your	large
binary	files	in	an	artifact	repository	such	as	Artifactory	so	they	are	not	part	of
your	Git	repository.

Aside	from	the	physical	makeup	of	your	repository,	another	important
consideration	is	the	amount	of	content	covered	by	the	files	in	the	repository.	The
broader	the	content,	the	more	likely	that	multiple	users	will	be	making	changes	in
the	repository,	and	so	merging	becomes	a	bottleneck	as	everyone	tries	to	keep	up
with	each	other's	changes.	Again,	think	of	the	scope	of	repositories	when	you	are
setting	them	up	or	migrating	from	another	system.

If	the	scope	resembles	the	scope	of	a	development	project	in	an	IDE	or	other
interface	(for	example,	a	jar	in	Java),	the	chances	of	being	impacted	by	others	and
having	to	do	merges	are	significantly	less	than	if	you	had	the	entire	product	in
one	repository.

Ways	to	Use	Branches	(Classifications)
As	you've	seen,	creating	branches	in	Git	is	quick	and	easy.	In	fact,	creating,	changing,
merging,	and	deleting	branches	in	Git	can	be	as	quick	as	working	with	files	in	some
other	systems.

Given	this	speed	and	ease	of	use,	it's	common	practice	when	working	with	Git	to
create	a	branch	to	work	on	anything	new	before	merging	it	into	the	main	production
area.	Along	these	lines,	you	can	broadly	classify	branches	based	on	their	intended	use.
I	cover	some	of	the	related	classifications	of	branches	in	the	following	sections.

Topic	Branches
When	you	are	working	on	something	in	Git	that	is	under	development	and	not	yet	in
production,	you	should	create	a	branch.	Then	you	can	switch	to	that	branch	and
develop,	test,	and	so	on	in	a	separate	area.	In	the	end,	you	may	decide	that	this	line	of
development	is	not	useful.	That's	fine;	you	can	delete	the	branch	if	you	end	up	not
using	it,	or	merge	it	back	in	when	appropriate	if	you	do	use	it.

Branches	created	for	short-term	development	efforts	are	frequently	referred	to	as
topic	branches,	the	idea	being	that	branching	in	Git	is	so	lightweight	you	can	create	a
branch	for	any	topic.	Ultimately,	though,	topic	branches	are	intended	to	be	short-lived,
as	they	are	for	initial	development	use	until	content	is	merged	into	a	production	or
integration	branch.

A	topic	branch	is	most	typically	used	by	one	user	on	a	local	system,	unless	there	is	a
need	to	collaborate	in	the	content	with	other	users.	Keeping	it	local	helps	reduce	the
amount	of	clutter	in	the	repository.	A	convention	that	is	sometimes	used	to	identify
one	of	these	branches	is	to	create	a	name	for	the	type	of	function	or	operation	being
explored	and	prefix	it	with	a	namespace	(similar	to	a	directory	path)	consisting	of	the
initials	of	the	user.	This	can	be	specified	easily	at	the	time	the	branch	is	created.
Here's	an	example	(assuming	initials	abc):	git	branch	abc/web_client_port.

One	other	point	about	these	kinds	of	branches:	because	they	are	generally
experimental	or	exploratory	in	nature,	they	are	usually	not	subject	to	the	same	kind	of
formal	processes	as	other	branches.	Policies	on	what	can	be	done	in	this	kind	of
branch	are	usually	more	relaxed.	For	example,	they	may	not	go	through	the
continuous	delivery	cycle	or	require	issue	tracking	or	approvals	for	pushing.	However,
best	practices	would	include	some	kind	of	quality	control	or	gates	before	a	topic
branch	was	merged	into	another,	more	formal	branch.

Feature	Branches
A	feature	branch	(as	the	name	implies)	is	intended	for	developing	a	feature	of	a
software	product	or	something	on	a	similar	scope—typically	larger	than	the	scope	of	a
topic	branch,	for	example.	This	may	include	work	by	several	developers	where	the
work	comes	together	on	the	remote	side	when	pushed.

A	feature	branch	is	still	a	temporary	branch	with	a	limited	lifetime.	However,	the
intention	from	the	beginning	is	that	this	will	be	merged	into	the	production	code
when	complete.	For	that	reason,	feature	branches	are	treated	more	formally,	with
more	oversight.	They	usually	participate	in	many	of	the	same	processes	as	production
branches,	such	as	utilizing	issue	tracking	and	control	for	approving	pushes.	There	is
also	a	review	when	a	feature	branch	is	ready	to	be	merged	into	a	higher-level	branch.

Integration	Branches
Another	category	of	branch	that	can	be	utilized	in	workflows	is	an	integration	branch.
An	integration	branch	may	be	a	formality	or	a	necessity,	depending	on	the	number	of

developers	involved,	the	number	of	features	being	worked	on,	and	the	complexity	of
the	overall	project.

As	the	name	implies,	integration	branches	serve	as	integration	points	between	feature
development	and	merges	into	the	production	or	release	branch.	They	are	a	place	to
integrate	work	together	and	make	sure	things	work	as	expected,	before	merging	the
larger	set	of	changes	into	the	branch	for	releasing	code.	Basically,	they	serve	as	a
buffer	to	help	prevent	destabilizing	the	code	targeted	for	production.

These	kinds	of	branches	mandate	a	higher	level	of	monitoring,	oversight,	testing,	and
so	on,	both	to	gate	what	is	being	merged	into	them	and	the	right	point	to	merge	them
into	a	target	release	branch.	If	this	is	done,	then	these	types	of	branches	can	be	an
important	mechanism	to	ensure	the	overall	quality	of	the	final	product.	If	this	is	not
done,	then	they	can	become	just	another	bottleneck	in	the	development	and	release
cycle.

If	the	project	is	small	enough	in	the	scope	of	changes,	the	targeted	release	and
production	branch	can	be	used	as	the	integration	branch	as	well—again	with	careful
oversight.	An	even	better	approach	is	to	utilize	a	tool	such	as	Gerrit	that	essentially
takes	the	place	of	an	integration	branch	by	providing	an	intermediate	holding	area	for
changes	targeted	for	the	remote	repository.	At	the	same	time,	it	provides	a	convenient
framework	for	doing	best	practices	such	as	code	reviews,	verification	builds,	and	so
on,	on	the	changes	before	they	are	merged	into	the	remote	repository.

In	any	of	the	branching	workflows	discussed	in	the	following	sections,	if	an
integration	branch	isn't	specifically	mentioned,	one	can	be	added	if	needed—or,	as	a
better	solution,	utilize	Gerrit	to	provide	additional	benefits.

Release	and	Production	Branches
As	the	name	implies,	release	and	production	branches	are	branches	with	the	final	code
to	build	the	products	that	will	go	to	customers.	The	main	point	about	these	branches
is	that	they	should	be	subject	to	the	strictest	oversight	with	respect	to	the	gates	for
code	being	merged	(or	directly	pushed)	into	them.	Also,	they	should	always	go
through	the	full	checks	for	testing,	quality	metrics,	and	so	on.

Using	Tags	in	Branches
Another	useful	construct	when	working	with	branches	is	to	identify	key	points	in	the
lifecycle	of	a	release	by	the	use	of	tags.	As	I	discussed	in	Chapter	7,	a	tag	is	simply	an
identifier	used	to	point	to	the	SHA1	value	of	a	commit.	And,	unlike	a	branch	identifier,
the	pointer	stays	with	the	tagged	commit.	The	SHA1	value	is	already	identifying	the
commit,	but	the	tag	is	(or	at	least	should	be)	much	more	user-friendly,	easier	to	locate
in	the	history,	and	easier	to	remember.

The	set	of	key	points	to	tag	is	generally	up	to	the	product	teams.	However,	some
suggestions	would	include	integration	points	when	features	are	merged	into	a	branch
—using	a	tag	that	incorporates	an	identifier	for	the	feature—and	points	when

particular	groups	believe	their	work	is	done,	such	as	development	complete.	For	added
security	and	verification,	a	signed	tag	can	be	used,	as	discussed	in	the	Advanced	Topics
section	of	Chapter	7.

The	prime	case	for	using	tags	in	branches	occurs	when	tagging	release	points	where
multiple	releases	are	done	from	the	same	branch,	one	after	the	other.	In	that	scenario,
tags	become	especially	important	at	identifying	the	branch	point	for	creating	separate
branches	if	updates	are	later	needed	to	a	previous	release.	This	is	one	of	the	workflows
I'll	discuss	in	the	next	section.

Branching	Workflows
Separate	from	the	use	of	branches	to	develop	features	or	work	on	topics,	there	are
multiple	strategies	for	managing	release	branches.	Each	of	these	approaches	has	its
advantages	and	disadvantages.	I	will	cover	these	briefly	as	there	are	many	more
references	available	on	the	web	that	discuss	these	strategies—although	different
names	may	be	used	for	the	models.	I	encourage	you	to	explore	more	sources	and	give
careful	consideration	to	which	strategy	may	work	best	in	a	given	situation	before
adopting	one.

NOTE

If	you	want	to	learn	more	about	commonly	used	branching	models	with	Git,	you
have	only	to	search	on	the	web.	In	particular,	search	for	git	flow.

Master-as-Production
In	the	master-as-production	model,	releases	are	targeted	to	be	from	one	designated
branch,	usually	master.	The	idea	is	that,	as	development	for	one	release	is	completed,
a	tag	is	created	to	mark	the	release	point.	Then,	work	continues	in	the	same	branch	for
the	next	release.	If	a	need	arises	to	update	a	previous	release,	a	branch	is	created
based	on	the	tag	that	was	created	to	mark	that	release.	Then,	the	updates	are
completed	and	released	out	of	that	second	branch	(the	one	created	from	the	tag).

This	model	can	work	well	when	development	only	needs	to	occur	for	one	release	at	a
time,	such	as	in	a	true	continuous	delivery	model.	It	has	the	advantage	of	limiting	the
number	of	release	branches	and	only	creating	other	release	branches	when	an	update
or	fix	to	a	previous	release	is	needed.	This	model	is	also	more	straightforward	for
users	and	processes,	because	they	don't	have	to	change	environments	or	context	from
one	release	to	the	next.	Another	significant	advantage	is	that	when	work	is	spread
across	multiple	Git	repositories,	the	repositories	will	all	have	a	master	branch	by
default,	and	so	initial	coordination	to	create	a	branch	across	all	the	repositories	isn't
required.

This	model	has	the	disadvantage	of	only	facilitating	working	on	one	release	at	a	time.
As	a	result,	it	requires	additional	setup	and	context	switching	when	you	need	to	make
an	update	to	a	previous	release	or	work	on	multiple	releases	at	once.	Creating
additional	branches	in	Git	is	simple,	but	if	handling	for	the	additional	branches	needs
to	be	set	up	through	the	build,	test,	and	deployment	pipeline,	that	can	have	a	non-
trivial	cost.	Some	of	the	cost	can	be	mitigated	by	configuring	the	pipeline	processes	to
be	able	to	handle	multiple	branches	from	the	beginning,	and	using	techniques	such	as
whitelists	or	blacklists	or	patterns	in	branch	names	to	automatically	handle	additional
branches	when	they	come	along.

Another	potential	disadvantage	can	arise	if	there	is	remaining	work	to	be	committed
after	development	is	done,	but	before	the	release	is	ready.	For	example,	translation	or
documentation	work	may	need	to	be	put	into	the	branch	after	development	is	done
but	before	they	start	on	the	next	release.	To	handle	this,	the	development	team	can
work	in	a	feature	branch	on	the	next	release	until	the	other	groups'	work	for	the
current	release	is	completed	in	master.	At	that	point,	the	feature	branch	can	be
merged	back	into	master.	Figure	8.12	illustrates	this	model.

Figure	8.12	The	master-as-production	model

Master-to-Release
In	the	master-to-release	model,	development	occurs	in	a	single	branch	(like	the
master-as-production	model)	until	late	in	the	cycle.	At	the	point	where	work	on	the
current	release	is	nearing	completion,	and	the	development	team	is	ready	to	begin
working	on	the	next	release,	a	new	branch	is	created	for	finishing	the	current	release.
Work	for	the	current	release	is	finished	in	the	new	branch	while	development	begins
on	the	next	release	in	the	original	branch.	Updates	to	existing	releases	can	be	made	in
the	branch	specific	to	that	release,	with	tags	used	to	separate	the	updates	from	the
original	release.

This	model	has	the	advantage	of	using	a	separate	branch	for	each	release,	which
allows	for	an	expected	place	to	handle	finishing	work	and	updates	for	each	release
without	impacting	work	on	the	next	release.	It	better	supports	concurrent
development	of	multiple	releases.	Assuming	the	branch	names	are	done	in	such	a	way
as	to	map	to	releases,	it	can	be	easier	to	identify	where	code	for	a	particular	release
exists,	as	opposed	to	tags	in	a	single	branch.	This	can	be	especially	true	if	developers
are	using	IDEs	that	understand	how	to	work	with	branches	implicitly	but	not	with
tags.

There	are	three	disadvantages	to	this	model.	One	is	that,	if	a	product	is	released
frequently,	the	number	of	branches	can	quickly	become	unwieldy.	While	there	is	little
overhead	to	Git,	interfaces	and	processes	that	need	to	be	aware	of	or	work	with	each

branch	can	get	confusing.	A	second	disadvantage	is	that	there	has	to	be	a	context
switch	at	the	late	branching	point	for	users	and	processes.	This	has	to	be	coordinated
to	make	sure	that	all	groups	and	processes	are	aware	and	don't	accidentally	continue
working	in	the	original	branch.	The	final	disadvantage	is	that	if	work	is	happening
across	multiple	Git	repositories,	they	all	need	to	have	the	new	branch	created	in	them
to	match	and	coordinate.

The	last	two	disadvantages	can	be	mitigated	by	appropriate	planning	and	coordination
in	advance	of	the	branching.	Additionally,	automating	the	process	to	create	the	branch
based	on	a	trigger	event	and	signal,	and	sending	automatic	notifications	when	that
happens,	can	provide	significant	benefits.	Figure	8.13	illustrates	this	model.

Figure	8.13	The	master-to-release	model

Master-as-Integration
A	variation	on	the	master-to-release	model	is	to	use	the	master	branch	as	an
integration	branch—merging	development	from	other	branches	into	it,	but	not
delivering	from	it.	A	separate	release	branch	is	used	for	releasing	the	code.

The	advantage	here	is	that	there	is	a	buffer	between	the	feature	branches	and	the
release	branch	where	integration	work	can	be	done.	This	avoids	destabilizing	the
release	branch	if	a	lot	of	changes,	or	changes	that	are	significant	in	scope,	need	to	be
regularly	merged	in.	Also,	if	master	is	used	by	convention	as	your	integration	branch,
then	you	already	have	the	integration	branch	existing	in	all	Git	repositories.

The	disadvantages	of	this	model	are	that	code	may	be	delayed	in	the	integration
branch	inordinately	long	if	other	work	it	uses	or	depends	on	is	broken,	or	if	there	is	a
lot	of	manual	review	that	has	to	happen.

The	separately	created	release	branch	can	be	seen	as	either	an	advantage	or	a
disadvantage	for	reasons	I	have	already	cited.	Setup	of	the	release	branch	can	be
handled	in	one	of	two	ways:

It	can	be	created	at	(or	near)	the	start	of	a	release	(early	branching)	and
periodically	have	the	integration	branch	merged	into	it	throughout	the
development	cycle.

It	can	be	created	near	the	end	of	the	release	(late	branching)	from	the	integration
branch,	primarily	for	tasks	related	to	finishing	the	release.

Another	advantage	is	that	there	is	a	named	branch	associated	with	each	release	and
the	integration	branch	(master)	doesn't	have	to	be	frozen;	integration	changes	for	the
next	release	can	continue	to	be	merged	into	it	while	the	secondary	branch	is	finalized
for	production.	At	that	point,	the	regular	merges	of	the	integration	branch	into	the
branch	for	the	pending	release	are	stopped.	If	a	critical	fix	is	needed	in	the	release
branch,	it	can	be	done	directly	in	that	branch.

For	teams	considering	using	an	integration	branch,	Gerrit	should	also	be	explored	as
an	alternative.	Figure	8.14	illustrates	this	model.

Figure	8.14	The	master-as-integration	model

It's	worth	noting	that	in	the	models	where	you	use	master	as	an	example,	that	could
be	any	designated	branch,	as	long	as	the	use	is	consistent	across	the	multiple	Git
repositories	if	a	product	consists	of	multiple	repositories.	Because	master	is	always
present	by	default	and	is	the	default	of	some	commands,	its	use	is	typically	more
convenient	than	other	branches	in	these	types	of	models.

Parallel
In	the	parallel	model,	a	separate	branch	is	created	for	each	release	when	work	on	that
release	is	begun.	Work	for	that	release	is	done	in	that	specific	branch	throughout	the
lifecycle	of	the	release.

This	model	has	the	advantage	of	providing	a	designated	and	separate	environment
from	the	start	for	each	release.	Thus,	work	on	multiple	releases	can	proceed	in	parallel
as	early	as	needed.	No	context	switching	is	required	once	environments	are	initially
set	up.

A	disadvantage	of	this	model	is	arguably	the	number	of	branches	created	over	the
course	of	a	product's	releases.	As	well,	setup	costs	(beyond	Git	branching)	multiplied
by	the	number	of	releases	may	become	prohibitive.	Figure	8.15	illustrates	this	model.

Figure	8.15	The	parallel	model

Conclusion

From	reading	this	chapter,	you	should	gather	that	there	are	many	factors	to	consider
before	implementing	a	branching	model.	In	particular,	depending	on	the	frequency	of
releases,	using	multiple	branches	may	or	may	not	be	an	issue.	As	noted,	normally	the
Git	overhead	is	not	a	significant	factor	(tags	and	branches	are	both	pointers).	It	is
usually	the	supporting	pieces	and	interfaces,	as	well	as	user	preferences,	that	dictate
which	model	will	work	best.

In	all	cases,	topic	and	feature	branches	are	useful	when	work	needs	to	be	done	outside
of	the	production	and	release	branch	and	then	merged	in	if	appropriate.

A	final	key	point	here	is	that	Git	makes	changing	models	fairly	easy,	given	how	simple
it	is	to	create	branches	from	existing	ones.	Another	key	factor	is	the	ease	of	merging
content	from	one	branch	to	another.	I'll	discuss	this	in	Chapter	9.

ADVANCED	TOPICS
In	this	section,	I'll	discuss	using	checkout	and	branch	with	SHA1s	that	aren't	already
associated	with	a	branch.	Related	to	that,	I'll	look	at	some	particularly	unnerving
terminology	that	Git	will	sometimes	throw	at	you.

Also,	I'll	discuss	what	it	means	to	depart	from	the	usual	model	of	working	with	an
entire	commit	and	to	check	out	individual	files,	and	what	the	implications	are	of	that
approach.

Checking	Out	Non-branch	Commits
As	I've	mentioned	previously,	branches	and	tags	in	Git	are	really	just	pointers	or
references	to	particular	SHA1	values	of	particular	commits.	Internally,	in	its	.git
structure,	Git	is	storing	the	SHA1	values	under	refs/heads/<name>	for	branches	and
under	refs/tags/<name>	for	tags.

Because	branch	and	tag	references	are	translated	to	the	SHA1	values,	this	supports	a
useful	feature	for	commands	that	accept	branch	and	tag	references	as	arguments.
These	commands	can	accept	any	SHA1	value	of	a	commit	stored	in	Git	as	an
argument,	whether	or	not	that	SHA1	value	is	mapped	to	a	branch	or	tag.

You've	already	seen	this	in	Chapter	7,	when	I	mentioned	being	able	to	pass	an
absolute	SHA1	value	to	the	reset	command.	Refer	back	to	Figure	7.4	for	the
illustration	of	this.

In	the	reset	case,	I	used	this	feature	as	a	kind	of	rollback,	moving	the	HEAD	pointer
back	to	a	previous	commit	and	optionally	updating	the	staging	area	and	working
directory.	At	that	point,	I	hadn't	covered	branches,	but	adding	branches	into	the
equation,	using	reset	to	move	the	HEAD	implies	that	the	pointer	for	the	current
branch	is	also	moved.	Running	a	log	on	master	before	and	after	the	command	shows
the	results	of	the	move.

Before	the	reset:

$	git	log	--oneline	master

d21be2c	third	change

43bd3ef	second	change

87ba8bc	first	change

$	git	reset	--hard	87ba8bc

After	the	reset:

$	git	log	--oneline	master

87ba8bc	first	change

NOTE

If	you	want	further	verification	that	the	branch	has	been	reset	when	you	reset
HEAD,	you	can	look	in	the	filesystem.	For	example,	to	see	what	master	points	to,
you	can	use	the	command:	cat	.git/refs/heads/master.

This	returns	the	SHA1	value	starting	with	the	result	of	the	reset:

87ba8bcff6be9cfea0e3dd0feb2407eebc2dc072

You	can	also	see	that	HEAD	points	to	master	(so	they	move	together	while	master
is	the	current	branch)	by	using	the	command	cat	.git/HEAD.	In	this	case	this	will
return	ref:	refs/heads/master.

Extending	this	to	checkout,	you	can	also	check	out	any	SHA1	value	associated	with	a
commit	in	the	repository.

Why	would	you	want	to	do	this?	Consider	a	case	where	you	need	to	go	back	and	get	a
previous	version	of	code	to	validate	functionality	of	something	that	is	currently
broken.	Or,	as	referenced	earlier	in	this	chapter,	you	might	need	to	go	back	and	start	a
new	branch	off	of	a	known	point	in	the	past,	before	other	changes	were	introduced.

Let's	look	at	an	example	of	the	mechanics	of	this	process.	Suppose	you	have	a
repository	with	a	branch	named	feature1	with	four	commits.

ca27770	fourth	change

31de2b4	third	change

fc28c0d	second	change

25c56c4	first	change

You	could	do	a	checkout	on	the	second	commit	using	the	command:	git	checkout
fc28c0d.	When	you	run	a	command	like	this	one,	Git	performs	the	command,	but
returns	a	rather	ominous-looking	message.

Note:	checking	out	'fc28c0d'.

You	are	in	'detached	HEAD'	state.	You	can	look	around,	make	experimental

changes	and	commit	them,	and	you	can	discard	any	commits	you	make	in	this

state	without	impacting	any	branches	by	performing	another	checkout.

If	you	want	to	create	a	new	branch	to	retain	commits	you	create,	you	may

do	so	(now	or	later)	by	using	-b	with	the	checkout	command	again.	Example:

		git	checkout	-b	<new-branch-name>

HEAD	is	now	at	fc28c0d…	second	change

I'll	discuss	the	implications	of	this	message	in	the	next	section.

Dealing	with	a	Detached	HEAD

Although	frightening	at	first,	this	message	is	actually	helpful	if	you	read	through	it.
Essentially,	Git	is	pointing	out	that	you	have	checked	out	a	committed	revision	that	is
not	the	most	current	one	on	the	branch.	HEAD	now	points	to	that	commit	instead	of
the	branch.	And	the	message	is	explaining	your	options.

Prior	to	your	checkout	command,	the	repository	looked	like	Figure	8.16.	(Note:	For
simplicity,	I	am	not	showing	the	master	branch	here.)

Figure	8.16	Repository	before	checkout	of	fc28c0d

After	the	checkout	of	the	second	commit,	the	repository	looks	like	Figure	8.17.	(Again,
master	is	omitted.)

Figure	8.17	Repository	after	checkout	of	fc28c0d

If	you	now	run	a	git	log	command,	it	defaults	to	HEAD	and	you	see	output	like	this:

machine	name>	((fc28c0d…))

$	git	log	--oneline

fc28c0d	second	change

25c56c4	first	change

Notice	that	first	line	before	the	log	command—your	system	name	and	prompt.	This
assumes	you	have	your	prompt	configured	(as	discussed	earlier)	to	show	the	current
branch—or	HEAD	in	this	case	because	you're	in	the	detached	HEAD	state.	And	if	you
do	a	log	of	(or	from)	feature1,	you	see	the	full	chain	of	commits	as	expected.

machine	name>	((fc28c0d…))

$	git	log	--oneline	feature1

ca27770	fourth	change

31de2b4	third	change

fc28c0d	second	change

25c56c4	first	change

As	the	message	indicated	when	you	checked	out	the	specific	commit,	you	can	do
essentially	anything	in	this	detached	state,	based	on	this	commit,	that	you	could
normally	do	on	a	branch.	Let's	assume	you	make	a	change	from	this	point	and	stage	it.
If	you	were	to	check	the	status	here,	Git	would	helpfully	remind	you	again	that	you're
in	the	detached	state.

$	git	status

HEAD	detached	at	fc28c0d

Changes	to	be	committed:

		(use	"git	reset	HEAD	<file>…"	to	unstage)

								modified:			<filename>

Now,	you	can	go	ahead	and	commit	the	change.	Note	the	output	message.

$	git	commit	-m	"update	based	on	second	change"

[detached	HEAD	2a93f89]	update	based	on	second	change

	1	file	changed,	1	insertion(+)

Your	repository	now	looks	like	Figure	8.18.

Figure	8.18	Repository	state	after	the	new	commit

Now,	running	a	log	command	that	defaults	to	HEAD	shows	the	path	from	HEAD	to
the	first	commit.

2a93f89	update	based	on	second	change

fc28c0d	second	change

25c56c4	first	change

And	the	log	for	feature1	still	shows	the	original	chain	that	it	points	to.

ca27770	fourth	change

31de2b4	third	change

fc28c0d	second	change

25c56c4	first	change

After	you're	done	working	off	of	this	commit,	you	can	switch	back	to	your	original
branch	using	the	checkout	command.	Notice	the	message	that	Git	returns	when	you

do	this.

$	git	checkout	feature1

Warning:	you	are	leaving	1	commit	behind,	not	connected	to

any	of	your	branches:

		2a93f89	update	based	on	second	change

If	you	want	to	keep	it	by	creating	a	new	branch,	this	may	be	a	good	time

to	do	so	with:

	git	branch	<new-branch-name>	2a93f89

Switched	to	branch	'feature1'

This	message	is	pretty	self-explanatory.	Your	repository	currently	looks	like	Figure
8.19.

Figure	8.19	Repository	after	you	switch	back	to	feature1

Git	is	telling	you	that	you	don't	have	any	references	that	refer	to	the	new	commit	you
made	while	in	detached	HEAD	mode.	You	haven't	lost	the	commit—it	is	still	there.
However,	in	order	to	access	it,	you	have	to	know	the	SHA1	value	associated	with	it,
rather	than	a	more	user-friendly	reference	such	as	a	branch.

In	case	you	want	to	continue	this	line	of	development	later,	let's	go	ahead	and	create	a
branch	off	of	that	commit.	This	form	of	the	branch	command	demonstrates	how	to
create	a	branch	off	of	a	commit	SHA1.	However,	you	could	also	use	any	other	branch
name	as	the	last	argument	to	create	a	new	branch	off	of	a	branch	that	is	not	the
current	one.	The	command	is	git	branch	experimental	2a93f89.	After	this	command,
your	repository	looks	like	Figure	8.20.

Figure	8.20	After	creating	a	new	branch	off	of	your	commit

You	can	now	run	any	of	your	usual	commands	on	the	new	experimental	branch,	such
as	log	and	checkout.

$	git	log	--oneline	experimental

2a93f89	update	based	on	second	change

fc28c0d	second	change

25c56c4	first	change

$	git	checkout	experimental

Switched	to	branch	'experimental'

After	a	checkout	to	make	experimental	the	current	branch,	the	repository	looks	like
Figure	8.21.	(And,	of	course,	your	working	directory	is	populated	with	the	contents	of
experimental.)

Figure	8.21	After	a	checkout	of	experimental

Figure	8.22	shows	the	two	paths	you	now	have	through	your	repository	for	the	two
branches.	These	are	the	series	of	commits	you	see	in	a	log	command	output	for	the

respective	branches.	(Master	is	also	there,	but	is	not	shown.)

Figure	8.22	The	two	paths	of	your	two	branches

Checking	Out	Individual	Files
Normally	with	Git,	you	are	working	at	the	scope	of	a	commit—a	snapshot	of	an	entire
tree.	But,	as	I	note	in	Chapter	5,	it	is	possible	to	use	many	operations	with	individual
files.	Checkout	is	no	exception.

There	are	two	basic	forms	of	the	checkout	command	that	you	will	probably	want	to
use	when	working	with	individual	files:	checking	out	the	latest	version	and	checking
out	a	version	from	a	specific	commit.

Both	of	these	forms	are	straightforward.	Checking	out	the	latest	version	is	just	a
matter	of	running	this	command:	git	checkout	<filename>.

Checking	out	a	version	from	a	specific	commit	just	requires	adding	the	reference
(branch,	tag,	and	so	on)	or	the	explicit	SHA1	value	of	the	commit	to	get	the	file	from.
The	command	would	be	of	this	form:	git	checkout	<reference	|	SHA1>	<filename>.

Note	that	you	can	also	pass	multiple	filenames	on	the	command	line	or	use	names
with	wildcards	to	check	out	multiple	files	at	once.

NOTE

Occasionally	you	might	try	to	check	out	a	file	and	get	an	error	message	like	this:

error:	pathspec	<filename>	did	not	match	any	file(s)	known	to	git.

This	usually	occurs	for	one	of	two	reasons:

1.	 The	filename	is	spelled	incorrectly	(typo).

2.	 The	filename	is	valid	but	does	not	exist	on	whatever	revision	you're	trying	to
check	it	out	from.	An	example	would	be	that	a	file	was	added	on	the	third
commit	to	a	branch,	but	you	are	trying	to	check	it	out	from	the	second
commit.	Or	you	are	trying	to	check	out	the	file	from	a	branch	where	it	does	not
exist	in	the	branch.

Validating	these	two	situations	will	usually	identify	the	cause	of	the	error.

Unlike	checking	out	an	entire	commit,	checking	out	individual	files	does	not	affect	the
current	branch.	You	just	end	up	with	a	different	version	of	the	particular	files	in	your
working	directory.	Be	aware,	though,	that	this	operation	overwrites	the	files	in	your
working	directory,	so	be	sure	to	commit	or	save	a	copy	if	you	haven't	already	done	that
and	want	to	preserve	that	version.

SUMMARY
In	this	chapter,	I	introduced	the	concepts	and	mechanics	of	working	with	branches	in
Git.	Branching	in	Git	is	very	quick	and	easy	and	is	one	of	the	key	features	that	attracts
users	to	Git.	Because	of	the	way	Git	stores	changes	internally,	a	branch	is	just	a	named
pointer	to	a	particular	SHA1	value	and	commit.	This	pointer	is	moved	as	content	is
added,	merged,	or	removed,	unlike	the	pointer	for	a	tag,	which	always	stays	with	the
commit	that	was	tagged.

Checking	out	a	branch	switches	to	that	branch	and	also	updates	content	in	the
working	area	to	be	consistent	with	the	branch.	This	allows	for	another	powerful
feature	of	Git:	being	able	to	work	in	one	working	area	per	repository,	regardless	of
how	many	branches	are	used.	Switching	branches	does	assume	that	there	are	no
uncommitted	changes	in	the	working	directory.

There	are	some	common	workflows	for	using	branches	with	Git.	Many	of	these
workflows	revolve	around	the	idea	of	only	using	one	branch	(usually	master)	and
doing	multiple	releases	out	of	that	branch,	tagging	release	points	in	between.

In	the	next	chapter,	I'll	talk	more	about	the	various	ways	that	Git	allows	you	to	merge
branches	together.

About	Connected	Lab	5:	Working	with	Branches
In	this	lab,	you'll	get	an	opportunity	to	set	up	a	branch	and	explore	how	the	checkout
command	allows	you	to	switch	between	branches	and	content	in	the	working
directory.

You'll	also	get	a	chance	to	play	with	the	graphical	interface	gitk	that	comes	with	most
versions	of	Git.

Connected	Lab	5

Working	with	Branches
In	this	lab,	you'll	start	working	with	branches	by	creating	a	new	branch	and	making
changes	on	it.

PREREQUISITES
This	lab	assumes	that	you	have	done	Connected	Lab	4:	Using	Git	History,	Aliases,	and
Tags.	You	should	start	out	in	the	same	directory	as	that	lab.

STEPS
1.	 Starting	in	the	same	directory	that	you	used	for	Connected	Lab	4,	use	the	git
branch	command	to	look	at	what	branches	you	currently	have.

$	git	branch

2.	 You	see	a	line	that	says	“*	master”.	This	indicates	that	there	is	currently	only	one
branch	in	your	repository:	master.	The	asterisk	(*)	next	to	it	indicates	that	it	is	the
current	branch	(the	one	you've	switched	to	and	are	currently	working	in).	If	your
terminal	prompt	is	configured	to	show	the	current	branch,	it	also	says	“master”.

3.	 Before	you	work	with	a	new	branch,	you	need	to	update	the	files	in	the	master
branch	to	indicate	that	these	are	the	versions	on	master	so	it	will	be	easier	to	see
which	version	you	have	later.	To	do	this,	you	can	use	a	similar	version	of	the	same
way	you	have	been	creating	and	updating	other	files.	Run	the	following	command
for	each	file.

$	echo	"master	version"	>>	filename

4.	 Stage	and	commit	the	updated	files.	Because	these	are	files	that	Git	already	knows
about,	you	can	use	the	following	shortcut	command:

$	git	commit	-am	"master	version"

5.	 When	you	work	with	branches,	it	can	be	helpful	to	see	a	visual	representation	of
what's	in	the	repository.	To	do	this,	you	can	use	the	gitk	tool	that	comes	with	Git.
Start	up	gitk	in	this	directory	and	have	it	run	in	the	background.

$	gitk	&

6.	 In	gitk,	create	a	new	view,	as	follows:

a.	 In	the	menu,	select	View,	and	then	select	New	View.	A	dialog	box	will	open.	In
the	dialog	box,	find	the	field	named	“View	Name”.	Type	in	a	new	name	for	this
view.

b.	 Check	the	“Remember	this	view”	check	box.

c.	 Check	the	four	check	boxes	under	the	“Branches	&	tags:”	field.	Click	OK.

d.	 If	needed,	switch	to	the	new	view	under	the	View	menu.

7.	 You	have	a	new	feature	to	work	on,	so	you	now	create	a	feature	branch	with	the
name	feature.	Switch	back	to	your	terminal,	and	in	the	directory,	run	the	following
command:

$	git	branch	feature

8.	 Notice	that	this	command	creates	the	branch,	but	does	not	switch	to	it.	You	can
now	check	what	branches	you	have	and	which	is	your	current	branch.

$	git	branch

9.	 You	can	now	see	your	new	branch	listed.	Change	into	the	feature	branch	to	do
some	work:

$	git	checkout	feature

10.	 To	verify	that	you're	on	the	feature	branch,	run	the	following	command,	and
observe	that	the	asterisk	(*)	is	next	to	that	branch:

$	git	branch

11.	 Switch	back	to	gitk,	and	refresh	the	screen,	or	reload,	to	see	what	the	window
showing	the	branches,	tags,	and	changes	looks	like	now.	You	should	see	your	new
branch	showing	up	there	now.

12.	 Back	in	the	terminal	session,	create	a	new	file	and	then	update	the	files	in	the
feature	branch	to	indicate	that	they	are	the	feature	branch	version.

$	echo	"new	file"	>	file4.c

$	echo	"feature	version"	>>	filename	(for	each	file)

13.	 When	you're	done,	stage	and	commit	your	changes.

$	git	add	.

$	git	commit	-m	"feature	version"

(Note:	If	you	just	use	git	commit	-am,	it	doesn't	pick	up	your	new	file.)

14.	 Refresh/reload	your	view	in	gitk	and	take	one	more	look	at	your	feature	branch.

15.	 In	your	terminal	session,	switch	back	to	the	master	branch.

$	git	checkout	master

16.	 Verify	that	you're	on	the	correct	branch.

$	git	branch

(Note:	The	branch	listing	should	have	an	asterisk	[*]	by	master.)

17.	 Look	at	the	contents	of	the	files	and	verify	that	they're	the	original	ones	from
master.

$	cat	filenames

18.	 Look	for	“master	version”	in	the	text.

19.	 Refresh/reload	gitk	and	note	any	changes	in	the	upper	left	window.

Chapter	9
Merging	Content

WHAT'S	IN	THIS	CHAPTER?

The	Git	merge	operations

Types	of	merges	that	Git	supports

Merge	strategies

Rebasing

Cherry-picking

Visual	merge	tools

Different	ways	to	show	conflicts

Advanced	rebasing

Interactive	rebasing

This	chapter	introduces	the	Git	model	of	merging	branches	as	well	as	the	merge	types
that	are	supported	in	Git.	I	also	discuss	the	Git	rebase	functionality—a	sort	of	merging
with	history—and	the	more	selective	operations	that	allow	you	to	merge	in	an
individual	commit.	Finishing	out	the	main	part	of	the	chapter,	I	discuss	how	Git	deals
with	conflicts	and	how	you	can	resolve	them.

In	the	Advanced	Topics	section,	I	discuss	some	advanced	rebase	functionalities,
including	interactive	rebasing	that	allows	for	updating	a	set	of	commits	already	in	the
repository.

THE	BASICS	OF	MERGING
As	you've	previously	seen,	Git	stores	changes	at	the	granularity	of	a	commit—a
snapshot	of	your	entire	working	directory	tree	at	a	point	in	time.	You've	also	learned
that	each	commit	has	the	potential	to	become	a	branch	and	that	a	branch	in	Git	is
really	just	a	named,	moving	pointer	that	points	to	a	commit,	which,	in	turn,	points	to
other	commits	in	the	chain.

Given	that	a	branch	points	to	a	commit	and	that	a	commit	is	the	granularity	that	you
associate	changes	with,	it	shouldn't	come	as	a	surprise	that	when	I	talk	about	merging
in	Git,	I'm	talking	about	merging	at	the	branch	or	commit	level.	Thus	the	command
for	merging	assumes	you	are	dealing	with	a	SHA1	value	or	a	name	that	references	a
SHA1	value	(branch	or	commit)	as	the	things	to	merge.

The	Merge	Command
The	syntax	for	doing	a	merge	is	as	follows:

git	merge	[-n]	[--stat]	[--no-commit]	[--squash]	[--[no-]edit]

										[-s	<strategy>]	[-X	<strategy-option>]	[-S[<keyid>]]

										[--[no-]rerere-autoupdate]	[-m	<msg>]	[<commit>…]

git	merge	<msg>	HEAD	<commit>…

git	merge	–abort

The	simplest	form	to	work	with	is	git	merge	<branch	name>.

In	this	form,	the	command	is	attempting	to	merge	<branch	name>	into	your	current
branch.	Other	forms	provide	more	flexibility,	including	merging	more	than	two	things.
However,	for	your	purposes,	this	simple	form	will	suffice	in	most	cases.

Merge	situations	typically	result	from	two	or	more	users,	or	lines	of	development,
trying	to	update	common	code.	Most	commonly,	in	a	local	environment,	a	user	is
trying	to	merge	a	branch	into	another	branch	in	their	local	repository.

Recall	that	I	said	that	the	workflow	in	Git	is	typically	branch-based,	with	Git
empowering	users	to	create	branches	for	practically	any	purpose,	from	creating	bugs
or	fixes	to	experimental	code.	As	I	discussed	in	Chapter	8,	at	some	point,	these
targeted,	individual	branches	may	be	deemed	good	enough	to	be	merged	into	an
integration	branch,	if	one	is	used.	Then	at	some	point,	after	further	testing	and
updates,	the	integration	branch	may	be	merged	into	a	production	branch.	And	so	the
cycle	continues.

Preparing	for	a	Merge
Git	is	not	able	to	deal	with	any	uncommitted	changes	when	starting	a	merge.	If	you
have	changes	in	the	working	directory	or	in	the	staging	area	that	have	not	been
committed,	and	you	try	to	do	a	merge,	Git	responds	with	a	message	like	this:

Updating	<commits>

error:	Your	local	changes	to	the	following	files	would	be	overwritten	by	merge:

							<file	names	with	uncommitted	changes<

Please,	commit	your	changes	or	stash	them	before	you	can	merge.

Aborting

The	stash	command	is	a	way	to	save	the	state	of	any	uncommitted	changes	from	your
working	directory	and	staging	area	in	a	stash	off	to	the	side.	The	stash	command	is
discussed	in	detail	in	Chapter	10.

The	idea	is	that	using	one	of	these	methods,	either	committing	the	changes	or	saving
them	off	in	a	stash,	you	end	up	with	a	clean	working	directory	and	staging	area—no
uncommitted	changes.	That	way,	if	the	merge	is	successful,	Git	can	update	the	local
repository	with	no	dirty	(modified	but	not	committed)	files	left	behind.

Types	of	Merges
Depending	on	the	options	specified,	Git	can	attempt	to	do	a	merge	in	one	of	several
ways.	I'll	discuss	some	details	about	these	different	types	of	merges	in	the	following
section.	I'll	also	use	some	illustrations	to	help	you	understand	what	happens	in	each
type.

Fast-Forward—an	Optimization
Fast-forward	is	the	default	merge	behavior	in	Git.	A	fast-forward	merge	can	happen	if
what	you're	trying	to	merge	in	already	contains	all	of	the	content	of	the	destination,
and	your	changes	are	just	additions	beyond	that.

Put	another	way,	there	have	not	been	any	other	changes	made	to	the	destination
branch	that	you	don't	have	in	the	source	branch;	however,	the	source	branch	has
newer	changes	to	be	appended.	This	implies	that	the	branch	you're	trying	to	merge
into	needs	to	be	a	direct	ancestor	of	the	branch	you're	merging	from.

In	this	case,	Git	can	do	an	optimization.	The	optimization	here	is	that	it	can	just	move
the	branch	pointer	of	the	destination	branch	to	the	latest	commit	you're	merging	in.	It
can,	in	effect,	fast-forward	the	pointer	instead	of	having	to	do	an	actual	merge.

Think	of	this	like	watching	a	recorded	show	on	your	DVR	or	listening	to	a	piece	of
music	on	a	player.	There	is	a	straight	stream	of	content,	and	if	you	fast-forward,	you're
just	advancing	the	pointer	to	a	new	part	of	the	same	stream	that	already	has	the	parts
you've	seen	or	listened	to.

Figures	9.1	and	9.2	illustrate	how	a	fast-forward	merge	works.	In	Figure	9.1,	I	start
with	a	sequence	of	commits	with	two	branch	points.	The	original	set	of	changes	that
includes	C1,	C2,	and	C3	was	committed	on	branch	master.	Then	branch	fix	was	created
and	C4	and	C5	were	committed	on	it.

Figure	9.1	Setup	for	the	fast-forward	example

Figure	9.2	The	fast-forward	merge

Taking	a	look	at	the	figure,	it's	easy	to	see	the	relationship	between	the	two	branches.
Fix	contains	all	of	the	commits	of	master	plus	the	two	additional	ones.

If	you	create	logs	of	the	contents	of	the	branches,	you	can	see	how	the	commits	map
to	them.	(For	clarity,	I've	used	the	names	in	the	figure	as	the	comments	for	the
commits.)

$	git	log	--oneline	fix				$	git	log	--oneline	master

cb323c7	C5																	31adc9b	C3

eb24943	C4																	336715c	C2

31adc9b	C3																	7058e67	C1

336715c	C2

7058e67	C1

Suppose	you	now	want	to	merge	fix	into	master.	In	the	simplest	form,	you	would	first
check	out	the	destination	branch,	master,	and	then	merge	in	fix.	The	commands	are
straightforward:	git	checkout	master	followed	by	git	merge	fix.

When	you	issue	these	two	commands,	Git	notices	that	branch	fix	already	has	all	the
commits	of	branch	master	in	its	chain.	This	means	that	no	actual	merging	is	required.
If	you	actually	performed	merge	actions,	you	would	still	end	up	with	the	contents	of
C5	after	the	merge.	So,	Git	recognizes	that	if	it	just	moves	the	pointer	for	master	to
the	same	commit	as	fix,	it	makes	master	include	C5	(and	C4).	As	a	result,	it	does	the
optimization	and	just	moves	(fast-forwards)	the	branch	pointer.	The	output	of
executing	these	commands	looks	like	this:

$	git	checkout	master

Switched	to	branch	'master'

$	git	merge	fix

Updating	31adc9b..cb323c7

Fast-forward

	file1.txt	|	2	+-

	1		file	changed,	1	insertion(+),	1	deletion(-)

Notice	the	reference	to	fast-forward	in	the	text.	Figure	9.2	shows	the	results.

After	the	merge	is	completed,	the	logs	for	both	branches	look	like	this:

cb323c7	C5

eb24943	C4

31adc9b	C3

336715c	C2

7058e67	C1

Three-Way	Merge
The	second	type	of	common	merge	that	users	encounter	in	Git	can	be	referred	to	as	a
three-way	merge.	In	this	scenario,	a	fast-forward	is	not	possible	because	both
branches	to	be	merged	have	updates	since	they	diverged	from	a	common	point.	Those
divergences	have	to	be	resolved	before	the	merge	can	be	completed.

Here,	Git	uses	more	of	a	traditional	merge	strategy.	Git	looks	at	three	pieces	of
information:	the	tip	(most	recent	commit)	of	the	source	branch,	the	tip	(most	recent
commit)	of	the	destination	branch,	and	the	common	ancestor	(last	commit	that	they
had	in	common).	From	these	three	commits,	Git	interpolates	how	to	do	a	merge	and
attempts	it.	If	successful,	Git	creates	a	new	commit—the	results	of	the	merge,	also
called	a	merge	commit.	Figures	9.3	to	9.6	illustrate	this	process.

Figure	9.3	Setup	for	the	three-way	merge	example—not	eligible	for	fast-forward

Figure	9.4	The	three	points	considered	for	the	three-way	merge

Figure	9.5	The	three-way	merge	process

Figure	9.6	The	new	merge	commit	after	the	three-way	merge

In	Figure	9.3,	you	start	with	a	sequence	of	commits	with	two	branch	points.	Commits
C1	and	C2	were	made	to	branch	master.	Then	branch	feature	was	created	and	C3	was
committed	on	it.	Commit	C4	was	made	on	branch	master	and	then	C5	was	made	back

on	branch	feature.

Git	evaluates	the	situation	and	determines	that	a	fast-forward	merge	is	not	possible,
because	both	branches	have	changes	since	the	common	ancestor.	Git	first	identifies
the	three	commits	that	it	will	use	in	the	merge:	the	ends	of	the	branches	and	the
common	ancestor.	These	three	points	are	highlighted	in	Figure	9.4.

Then	Git	tries	to	do	the	merge,	using	the	contents	of	these	three	commits	to	decide
how	to	process	differences	and	which	changes	should	or	should	not	be	carried
forward.	Figure	9.5	illustrates	this	process.

If	the	merge	is	successful,	you	end	up	with	a	new	merge	commit	(the	result	of	the
merge),	C6,	as	shown	in	Figure	9.6.	And,	because	you	were	merging	into	branch
master,	the	master	pointer	has	been	advanced	to	the	new	commit—effectively
updating	the	contents	of	branch	master	with	the	results	of	the	merge.

NOTE

Git	merge	defaults	to	trying	to	do	a	fast-forward	merge	first.	If	it	can't	do	that,	it
does	a	three-way	merge	and	creates	a	merge	commit.	However,	there	are	options
to	the	merge	command	that	allow	the	user	to	specify	a	particular	merge	behavior
with	respect	to	fast-forward	merges.

The	--ff	option	tells	Git	to	do	a	fast-forward	merge	if	possible.	This	is	the	default.

The	--no-ff	option	tells	Git	not	to	do	a	fast-forward	merge.	In	effect,	this	tells	Git
to	create	a	merge	commit	even	if	it	could	complete	the	operation	via	a	fast-
forward	merge.	One	reason	to	use	this	option	would	be	to	preserve	a	clearer
history	of	when	a	branch	was	merged	in	(as	evidenced	by	the	creation	of	the
merge	commit),	and	a	clearer	trail	of	the	history	of	the	branch.

The	--ff-only	option	tells	Git	to	only	do	the	merge	if	a	fast-forward	can	be	used.

Note	that	the	examples	I	have	presented	here	show	what	happens	in	the	local
repository.	The	merging	happens	in	the	working	directory,	and,	if	the	results	are
successful,	then	the	merge	will	be	committed	automatically.	If	you	prefer	instead	to
review	the	results	in	the	working	directory	and	commit	the	merged	content	yourself,
you	can	add	the	--no-commit	option	to	the	command.

As	another	refinement,	you	can	also	add	the	--edit	option	to	have	Git	stop	before	doing
an	automatic	commit	and	allow	you	to	add	more	details	to	the	auto-generated	merge
message.	This	fits	in	with	the	philosophy	I	discussed	in	the	earlier	chapters	of	having
meaningful	commit	messages	that	others	can	understand	easily.

Rebasing—Merging	with	History
Within	Git,	there	are	two	main	ways	to	incorporate	a	set	of	changes	between
branches:	merging	and	rebasing.	Although	the	endpoints	after	a	merge	or	rebase
should	be	effectively	the	same,	the	process	and	history	associated	with	the	two
operations	are	very	different.

As	I	previously	discussed,	in	a	three-way	merge	scenario,	Git	looks	at	the	current
endpoints	of	the	two	branches	and	their	last	common	ancestor.	From	those	three
commits,	it	attempts	to	construct	a	new	commit—a	merge	commit.

In	a	rebase	scenario,	Git	identifies	the	last	common	ancestor,	and,	for	each	change
beyond	that	ancestor	in	the	source	branch,	it	proceeds	as	follows:

It	computes	the	delta	of	that	change—what	changed	with	that	commit.

For	each	change,	it	attempts	to	replay	(apply)	that	delta	onto	the	branch	you're
merging	into.	Another	way	of	thinking	about	this	is	that	it	attempts	to	make	the
same	set	of	changes	on	top	of	the	latest	commit	in	the	destination	branch.

If	all	of	these	deltas	apply	cleanly	(without	conflicts),	then	the	end	result	is	that	the
unique	changes	from	the	one	branch	become	a	part	of	the	linear	history	of	(are
appended	to)	the	other	branch.

So	why	do	a	rebase?	The	endpoint	(last	merged	commit)	for	a	rebase	and	a	merge
should	be	effectively	the	same.	A	merge	process	is	happening	in	both	cases,	leading	to
an	endpoint	commit.	However,	in	a	rebase,	you	build	up	a	history.	Individual	merges
(applying	each	delta	in	turn)	are	done	along	the	way	to	create	a	linear	history	of
changes	from	one	branch	in	another	branch.	This,	in	turn,	makes	for	a	cleaner	and
more	detailed	merge	sequence.	It	includes	the	progression	of	changes	from	the	other
branch	that	led	to	the	new	endpoint.	This	is	as	opposed	to	just	the	modified	endpoint
itself,	which	is	what	you	get	with	a	three-way	merge.

WARNING

You	should	not	rebase	content	that	has	already	been	pushed	to	a	remote
repository!	The	reason	for	this	is	the	potential	impact	it	could	have	on	others
trying	to	merge	in	their	changes	on	the	remote	side	afterward.	Consider	the
following	scenario:

You	make	a	set	of	changes	locally	in	a	branch,	stage,	commit,	and	then	push
those	changes	out	to	the	remote	(server)	side	(remote	repository).

Another	team	member	pulls	down	these	changes	and	starts	making	other
changes	on	top	of	them.

You	then	use	the	rebase	command	and	rebase	this	branch	on	another	one—
significantly	adding	to	the	history	of	the	branch.

You	commit	and	push	your	branch	with	the	rebase	changes	up	to	the	remote.

The	other	team	member	finishes	their	changes,	commits	them,	and	tries	to
push	them.	They	then	encounter	significant	merge	conflicts	because	the
history	has	been	changed.

They	then	try	to	update	their	latest	content	to	incorporate	the	rebased	versions
and	the	changes	they	want	to	make.	However,	depending	on	how	much
content	was	rebased,	this	may	be	a	significant	change	and	disruption	for	them,
requiring	a	lot	of	time	to	resolve.

I	will	talk	more	about	this	kind	of	scenario	in	Chapter	13	when	I	discuss	remotes
and	remote	branches.

If	you	absolutely	must	do	a	rebase	(or	other	history-changing)	operation	on
something	that	has	already	been	pushed	to	the	remote	repository	and	used	by
others,	a	better	approach	is	as	follows:

Choose	a	future	point	in	time	to	make	the	change.

Communicate	to	anyone	else	using	that	repository	that	you	will	be	making	a
change	that	alters	history.

Communicate	to	them	that,	prior	to	that	point	in	time,	they	should	have	all
changes	committed	and	pushed	from	their	side.

Then	make	your	changes	at	the	appointed	time,	pushing	them	to	the	remote
repository	(as	I	will	discuss	in	Chapter	12).

Everyone	else	should	then	wipe	out	their	cloned	remote	and	clone	a	new	copy
with	the	updates.

The	syntax	for	a	rebase	is	as	follows:

							git	rebase	[-i	|	--interactive]	[options]	[--exec	<cmd>]	[--onto	

<newbase>]

															[<upstream>	[<branch>]]

							git	rebase	[-i	|	--interactive]	[options]	[--exec	<cmd>]	[--onto	

<newbase>]

															--root	[<branch>]

							git	rebase	--continue	|	--skip	|	--abort	|	--edit-todo

To	keep	it	simple,	you	can	think	of	it	in	this	default	form:	git	rebase	branch2
[branch1].

Here,	branch2	is	the	destination	branch,	and	branch1	(or	the	current	branch	if
branch1	is	not	supplied)	is	the	source	branch	for	the	updates	that	you	will	attempt	to
rebase	to	branch2.

You	may	find	it	useful	to	think	of	this	command	as	follows:	“Make	Git	append	to	the
end	of	branch2	the	series	of	deltas	from	branch1	since	it	diverged.”

Let's	look	at	an	example.	In	Figure	9.7,	you	have	two	branches	that	have	both	diverged
since	the	common	ancestor:	feature	and	master.

Figure	9.7	Setup	for	the	rebase	example

You've	seen	how	to	merge	the	tips	of	two	branches	like	this	earlier	in	this	chapter.
What	you	want	to	do	in	this	case	is	to	rebase	feature	onto	master	so	that	your	feature
branch	contains	the	newest	updates	from	master.	You	can	use	these	commands:	git
checkout	feature	followed	by	git	rebase	master.

Git	does	the	following:

Goes	to	the	common	ancestor	of	the	two	branches	(Figure	9.8)

Figure	9.8	Identifying	a	common	ancestor

Computes	the	diff	introduced	by	the	commit	of	each	change	past	the	common
ancestor	on	the	current	branch	(or	branch1	if	specified),	and	saves	the	diffs	to
temporary	files	(Figure	9.9)

Figure	9.9	Computing	deltas	from	the	source	branch

Attempts	to	apply	each	change	at	the	end	of	the	destination	branch	in	turn	(Figure
9.10)

Figure	9.10	Applying	deltas	on	the	destination	tip

If	all	of	the	rebasing	is	successful,	then	that	feature	will	now	have	the	latest	changes
from	master	incorporated	into	its	history	(Figure	9.11).

Figure	9.11	Completed	rebase	of	a	feature	on	master

This	will	also	be	visible	via	git	log	on	that	branch.

$	git	log	--oneline	feature

71be157	C5

63d5b68	C3

1c72fc5	C4

18be5e0	C2

d7e08ad	C1

The	C3	and	C5	in	the	log	correspond	to	the	C3´	and	C5´	in	Figure	9.11.	Notice	that	the
original	C3	and	C5	are	still	there,	although	no	branch	points	to	them	any	longer.	Over
time,	those	“orphaned”	commits	may	be	cleaned	up	by	a	garbage	collection	operation.

Cherry-Picking
Git	includes	one	other	type	of	primary	merging	operation:	cherry-pick.	The	idea	with
this	operation	is	to	be	able	to	selectively	choose	an	individual	or	group	of	commits
from	within	one	branch	and	apply	them	to	another	branch.	This	command	offers	more
fine-tuned	selection	than	a	general	merge	or	rebase.	Because	the	cherry-pick

operation	can	be	taken	from	any	commit,	it	also	requires	more	forethought	and
potentially	more	care	when	merging.

The	syntax	for	cherry-pick	is	as	follows:

							git	cherry-pick	[--edit]	[-n]	[-m	parent-number]	[-s]	[-x]	[--ff][-

S[<keyid>]]

<commit>…

							git	cherry-pick	--continue

							git	cherry-pick	--quit

							git	cherry-pick	--abort

Because	I	have	already	covered	merging	and	rebasing,	the	syntax	and	examples	should
look	familiar	at	this	point.	Figure	9.12	shows	a	setup	where	you	want	to	cherry-pick	C5
from	the	feature	branch	into	the	master	branch.

Figure	9.12	Setup	for	the	cherry-pick	example

Here	are	the	logs	for	master	and	feature	prior	to	the	cherry-pick:

$	git	log	--oneline	master						$	git	log	--oneline	feature

34142bf	C7																						818d819	C6

de6b1b2	C4																						d9e8b2c	C5

d3b906a	C2																						b942f21	C3

b4741c6	C1																						d3b906a	C2

																																b4741c6	C1

Note	that	I	have	focused	on	C5	because	that's	the	commit	you	want	to	cherry-pick.
Because	you	need	to	reference	that	specific	commit,	and	there	is	no	branch	or	tag
currently	pointing	to	it,	you	would	need	to	either	reference	it	relative	to	an	existing
branch	or	just	use	its	SHA1	value.	I'll	use	the	SHA1	value.

To	actually	do	the	cherry-pick	for	the	intended	revision,	you	enter	the	command,	git
cherry-pick	d9e8b2c.	The	output	shows	that	it	worked.

[master	9f308b6]	C5

	Date:	Tue	Jun	7	11:00:26	2016	-0400

	1	file	changed,	1	insertion(+),	1	deletion(-)

The	process	that	happens	is	similar	to	the	rebase	process	for	the	one	commit.	Figure
9.13	shows	the	end	result.	(This	assumes	no	merge	conflicts.)

Figure	9.13	End	result	of	the	cherry-pick

You	can	now	verify	that	C5	has	been	applied	to	the	master	branch	via	the	log	listings.
Note	that	C5	in	master	and	C5	in	feature	are	different	SHA1	values.

$	git	log	--oneline	master						$	git	log		--oneline	feature

9f308b6	C5																						818d819	C6

34142bf	C7																						d9e8b2c	C5

de6b1b2	C4																						b942f21	C3

d3b906a	C2																						d3b906a	C2

b4741c6	C1																						b4741c6	C1

As	this	example	illustrates,	while	I	have	been	using	branch	names	in	the	merge	and
rebase	commands,	it	is	also	valid	to	use	SHA1	values	from	other	commits.	The
workflow	and	internal	processing	are	the	same—you	are	just	pointing	these	operations
to	commits	that	aren't	pointed	to	by	a	branch.

Specifying	a	Range	of	Commits
Note	that	it	is	also	possible	to	specify	a	range	of	commits	for	a	cherry-pick	in	the	form
of	<starting	commit>..<ending	commit>.	So,	if	you	are	starting	before	you	cherry-
pick	C5,	and	instead	want	to	cherry-pick	the	range	of	C3..C5	from	feature	(two
commits,	C3	and	C5),	it	seems	reasonable	to	specify	the	two	SHA1	values	directly	as	in
this	command:	git	cherry-pick	-xtheirs	b942f21..d9e8b2c.	The	“-xtheirs”	option	here
specifies	a	resolution	strategy	to	solve	merge	issues.	It	is	discussed	in	more	detail	in
the	section	on	“Resolution	Options	and	Strategies”	later	in	this	chapter.	It	is	not
required	to	issue	the	cherry-pick	command.

Here's	the	output	you	get:

$	git	cherry-pick	-Xtheirs	b942f21..d9e8b2c

[master	45bb7e9]	C5

	Date:	Tue	Jun	7	11:00:26	2016	-0400

	1	file	changed,	1	insertion(+),	1	deletion(-)

It	only	mentions	C5,	not	C3	and	C5.	And	if	you	create	a	log,	you	only	see	C5	as	cherry-
picked.

$	git	log	--oneline

45bb7e9	C5

34142bf	C7

de6b1b2	C4

d3b906a	C2

b4741c6	C1

So,	what's	the	problem?	As	it	turns	out,	when	you	specify	a	range	with	cherry-pick,	the
range	is	interpreted	as	“everything	after	the	starting	value	and	up	to	and	including	the
ending	value.”	In	order	to	actually	include	the	starting	value,	you	have	to	tell	Git	to
use	the	commit	that's	one	before	that	one.	You	could	just	use	the	SHA1	value	for	C2	as
your	starting	commit,	but	to	avoid	having	to	look	up	another	SHA1	value	if	you	don't
know	it,	you	can	just	use	the	caret	symbol	(^).	I	previously	referred	to	this	as	the	caret
parent	because	adding	it	to	the	end	of	a	SHA1	value	(or	something	that	resolves	to	a
SHA1	value)	means	one	before	or	the	parent	of.

So,	let's	fix	the	command	to	include	C3.	First,	you	reset	back	one	step,	before	the	last
cherry-pick.	The	command	is	git	reset	--hard	HEAD^.

Now,	you	rerun	your	cherry-pick	command	with	the	desired	syntax.

$	git	cherry-pick	-Xtheirs	b942f21^..d9e8b2c

This	time,	the	output	looks	more	like	what	you	expected.

[master	11a6344]	C3

	Date:	Tue	Jun	7	10:59:52	2016	-0400

	1	file	changed,	1	insertion(+),	1	deletion(-)

[master	247b261]	C5

	Date:	Tue	Jun	7	11:00:26	2016	-0400

	1	file	changed,	1	insertion(+),	1	deletion(-)

And	if	you	look	at	a	log	of	master,	you	can	see	what	you	expected	there,	too.

$	git	log	--oneline

247b261	C5

11a6344	C3

34142bf	C7

de6b1b2	C4

d3b906a	C2

b4741c6	C1

Differences	between	Cherry-Pick	and	Rebase
By	this	point,	you	may	be	thinking	that	cherry-pick	and	rebase	seem	similar	in	their
approach.	And,	in	certain	cases,	where	you	are	dealing	with	commits	at	the	ends	of
branches,	the	changes	that	are	applied	could	end	up	being	the	same.

In	earlier	versions	of	Git,	it	could	be	said	that	cherry-picking	was	intended	more	for
working	with	individual	commits,	but	because	cherry-pick	has	been	enhanced	to

accept	ranges,	that	has	become	less	of	a	distinction.

One	key	difference,	though,	is	that	rebasing	changes	the	base	for	a	branch,	which
effectively	moves	a	portion	of	the	branch.	Cherry-picking	selects	pieces	from	a	branch,
updating	the	destination	branch	but	not	changing	or	moving	the	branch	the	commits
originated	from.

So,	in	general,	if	you	need	to	change	the	foundation	of	a	branch	or	update	a	branch	to
be	based	off	of	another	one,	you	can	use	rebase.	If	you	need	to	selectively	grab	specific
commits	from	another	branch	and	incorporate	them	into	your	current	branch,	you	can
use	cherry-pick.

NOTE

As	you	may	have	noticed	in	the	illustrations	for	the	operations,	the	original
commits	still	exist;	the	merge	and	rebase	and	cherry-picking	operations	do	not
move	or	change	the	original	commits.	They	use	these	commits	as	the	source	for
computing	the	differences	to	apply	to	the	destination.

This	emphasizes	something	I	noted	in	Chapter	1	on	the	advantages	of	Git:	Git
makes	it	very	hard	to	“lose”	anything.

Although	you	may	not	have	the	same	pointers	(such	as	a	branch	name)	to	the
original	chain	of	commits,	the	chain	will	still	exist	after	the	operation.	It	is	really
only	when	garbage	collection	(git	gc)	is	run	manually	(or	via	a	preset	policy)	that
commits	that	are	not	needed	anymore	are	removed.

Merge	Operations
Throughout	the	rest	of	this	chapter,	I	will	be	talking	about	operations	that	can	apply	to
regular	merging,	rebasing,	and	cherry-picking.	For	simplicity,	I	will	refer	to	these
operations	by	the	generic	name	merge	operations.	This	avoids	needing	to	specify
merging	and	rebasing	and	cherry-picking	each	time.

Undoing	Merge	Operations
At	some	point,	you	are	likely	to	complete	a	merge	operation	and	then	wish	you	hadn't.
Fortunately,	if	this	happens,	Git	makes	it	easy	to	undo	it	and	get	back	to	where	you
were	before	the	merge	operation.

There	are	a	couple	of	aspects	to	this	undo	operation.	The	first	one	is	that	for	merge
operations,	the	original	commits	that	a	branch	pointed	to	before	the	operation	are	still
there,	at	least	for	some	period	of	time.	Eventually,	Git's	garbage	collection	function
may	remove	them,	but	Git	tries	very	hard	not	to	let	you	lose	any	changes	that	have
been	made	in	the	repository.	(See	the	note	in	the	previous	section.)

These	commits	may	no	longer	have	a	branch	pointing	to	them,	but	they	can	still	be
referenced	by	their	SHA1	values	or	by	an	internal	Git	reference	that	previously
recorded	their	SHA1	value.

The	second	aspect	that	makes	an	undo	possible	is	the	reset	command	in	Git.	I	talked
about	this	command	in	Chapter	7	where	I	used	it	to	reset	a	local	environment	(local
repository,	staging	area,	and	working	directory)	back	in	sync	with	a	previous	commit.

Combining	these	two	aspects,	you	can	effectively	undo	a	merge	operation	by	resetting
your	local	environment	back	to	the	SHA1	value	of	the	commit	that	was	current	before
you	started	the	merge	operation.	The	command	to	do	so	would	look	something	like
this:

$	git	reset	--hard	<SHA1	value	that	was	current	before	the	merge	operation>

WARNING

Make	sure	that	you	are	in	the	branch	that	you	were	merging	into	or	the	desired
branch	before	running	the	reset.	If	you	have	multiple	branches	that	have	been
merged,	you	may	need	to	do	resets	in	multiple	branches	with	the	appropriate
SHA1	values	for	each	branch.

Finding	the	Right	SHA1	Value
The	trick	here,	of	course,	is	finding	the	right	SHA1	value	to	use	to	get	back	to	the	point
before	the	merge	operation.	Several	options	are	available.

ORIG_HEAD
I've	talked	before	about	the	special	pointer	HEAD	that	Git	maintains	to	point	to	the
current	branch	and	current	commit.	Git	stores	the	corresponding	reference	for
whatever	HEAD	points	to	as	data	in	the	file	.git/HEAD.	This	is	generally	a	reference	to
another	reference	for	the	branch,	such	as	refs/heads/master.	If	you	then	look	at
.git/refs/heads/master,	you	can	actually	get	the	designated	SHA1	value	for	the	commit
that	HEAD	(ultimately)	references.

When	a	merge	operation	happens	in	Git,	Git	also	saves	off	another	reference	named
ORIG_HEAD.	This	value	is	stored	in	.git/ORIG_HEAD.	It	contains	the	SHA1	value	of
the	commit	that	was	current	before	the	last	merge	operation.	And,	like	HEAD,	it	can
be	used	as	a	reference	to	Git	commands.	So,	if	you	haven't	done	any	other	merge
operations	since	the	merge	operation	that	you	want	to	undo,	you	can	reset	back	to
ORIG_HEAD.	Note	that	the	warning	I	mentioned	previously	applies	here	as	well:
make	sure	you're	in	the	intended	branch	that	you	want	to	reset	before	issuing	the
command.

Here's	an	example	of	using	the	ORIG_HEAD	reference.	Suppose	you	have	your	two
branches	from	the	earlier	fast-forward	merge	example:	fix	and	master.	Their	logs
show	the	current	set	of	commits	in	each	branch.

$	git	log	--oneline	fix				$	git	log	–oneline	master

cb323c7	C5																	31adc9b	C3

eb24943	C4																	336715c	C2

31adc9b	C3																	7058e67	C1

336715c	C2

7058e67	C1

Now	you	do	the	fast-forward	merge.

$	git	checkout	master

Switched	to	branch	'master'

$	git	merge	fix

Updating	31adc9b..cb323c7

Fast-forward

	file1.txt	|	2	+-

	1	file	changed,	1	insertion(+),	1	deletion(-)

Afterward,	you	can	see	the	merged	results	in	master.

$	git	log	--oneline	master

cb323c7	C5

eb24943	C4

31adc9b	C3

336715c	C2

7058e67	C1

Now,	let's	look	at	the	contents	of	HEAD	and	ORIG_HEAD.

$	cat	.git/HEAD

ref:	refs/heads/master

$	cat	.git/ORIG_HEAD

31adc9bd0113af5d48294878597f22e55d863fb0

Note	that	ORIG_HEAD	contains	the	SHA1	value	for	C3—which	was	the	original
HEAD	of	master	prior	to	the	merge	operation.	So,	to	get	back	to	the	previous	state,
you	can	use	the	reset	command	to	reset	back	to	that	point.

It	is	not	strictly	required,	but	you	will	also	use	a	different	option	to	reset	instead	of	--
hard.	That	option	is	--merge.	The	difference	between	--hard	and	--merge	is	that	--hard
discards	all	changes	in	the	working	directory,	while	--merge	does	not	discard	changes
that	haven't	been	staged.	So,	if	you	have	other	changes	you've	started	making	since	the
merge,	using	the	--merge	option	allows	you	to	keep	those	changes.	The	command	is
git	reset	--merge	ORIG_HEAD.

And,	if	you	look	at	the	log	after	this	reset,	you'll	see	that	master	is	back	to	where	it	was
before	the	merge.

31adc9b	C3

336715c	C2

7058e67	C1

Reflog
Reference	logs	(reflogs	for	short)	are	additional	logs	that	Git	maintains	for	a	reference
as	it	changes	over	time.	I've	talked	about	references	a	lot	throughout	this	chapter,	but
I	can	now	define	this	term	more	formally.	(Reflogs	are	also	covered	in	the	Advanced
Topics	section	of	Chapter	7.)

A	reference	in	Git	terminology	refers	to	a	name	that	you	use	to	refer	to	a	SHA1	value.
For	example,	the	default	branch	in	Git	is	master,	and,	at	any	point	when	using	Git,
master	refers	to	the	current	content	on	the	branch.	This	is	the	SHA1	value	of	the	most
recent	commit.	You	could	reference	that	commit	by	its	SHA1	value	or	by	referencing
master.

In	the	Git	repository	in	the	.git	directory,	references	are	stored	in	a	path	structure.	At

the	top	is	refs,	then	the	type,	and	then	the	name.	For	example,	the	current	SHA1	value
for	the	current	commit	in	the	master	branch	would	be	stored	in
.git/refs/heads/master.	If	you	are	on	the	master	branch,	then	this	should	match	up
with	the	SHA1	value	from	the	latest	change.

cat	.git/refs/heads/master

373f47835befd4bc24f5b0109eb96a305a15863e

$	git	log	-1

commit	373f47835befd4bc24f5b0109eb96a305a15863e

Author:	Brent	Laster	<bl2@nclasters.org>

Date:			Tue	Mar	29	20:39:20	2016	-0400

remove	extraneous	files

Now,	as	content	is	committed	into	the	repository,	new	SHA1	values	become	the	most
current	and	the	SHA1	values	in	the	reference	files	change.	Other	activities,	such	as
switching	branches,	can	cause	other	references	to	change,	such	as	HEAD,	which	tracks
the	current	branch.

While	there	is	only	one	current	value	for	any	of	these	references,	a	reflog	for	each
reference	records	the	values	as	they	change	over	time.	Being	able	to	see	how	these
values	change	provides	another	record	of	what	has	been	done	in	the	system.	The
reflogs	can	provide	useful	information	on	past	points	you	may	want	to	go	back	to	in
the	history	of	the	reference.	They	also	record	the	points	where	branches	are	changed—
and,	most	importantly	for	you	right	now,	the	points	where	merges	happened.

References	in	reflogs	are	indexed	by	how	many	steps	back	the	change	occurred.	The
most	recent	change	for	the	reference	would	be	at	HEAD@{0}.	The	change	before	that
would	be	at	HEAD@{1},	the	one	before	that	at	HEAD@{2},	and	so	on.

The	git	reflog	command	is	used	to	look	at	these	changes.	The	syntax	is
straightforward:	git	reflog	<subcommand>	<options>.

I	won't	dive	into	more	detail	on	this	command	right	now.	I	simply	want	to	use	it	to
show	the	changes	for	a	reference.

Going	back	to	the	fast-forward	example,	if	you	are	on	master	(because	that's	where
you	merged	into),	you	can	take	a	look	at	the	reflog	after	the	merge.

$	git	reflog

cb323c7	HEAD@{0}:	merge	fix:	Fast-forward

31adc9b	HEAD@{1}:	checkout:	moving	from	fix	to	master

cb323c7	HEAD@{2}:	commit:	C5

eb24943	HEAD@{3}:	commit:	C4

31adc9b	HEAD@{4}:	checkout:	moving	from	master	to	fix

31adc9b	HEAD@{5}:	commit:	C3

336715c	HEAD@{6}:	commit:	C2

7058e67	HEAD@{7}:	commit	(initial):	C1

Looking	at	this,	you	can	see	that	before	the	merge,	master	was	at	31adc9b	(which
corresponds	to	C3	in	the	earlier	log).	You	can	then	reset	to	that	SHA1	value	or	you	can
simply	use	the	reflog	reference.	The	example	command	here	would	be	git	reset	--
hard	HEAD@{1}.

Afterward,	master	returns	to	the	place	it	was	before	the	merge,	as	do	your	staging	area
and	working	directory.	Remember	that	the	relative	forms	of	reflog	and	reset	expect
you	to	be	on	the	branch	that	you	want	to	work	with.

Log
Another	simple	way	to	identify	the	commit	to	go	back	to	is,	of	course,	to	simply	look
in	the	git	log	output	for	the	destination	branch.	Once	the	correct	SHA1	value	is
identified,	the	git	reset	can	be	done	using	that	value.

The	trick	with	this	approach	is	that	the	user	has	to	be	able	to	figure	out	which	SHA1
value	was	current	before	the	merge.	If	the	changes	are	simple	and	recent	enough,	this
may	be	the	quickest	route.

Tag
The	tag	approach	requires	some	preparation	before	the	merge,	but	it	can	greatly
simplify	things	if	you	think	there's	a	chance	that	you	may	want	to	undo	the	merge
later.

The	idea	is	simply	to	tag	the	current	HEAD	before	doing	the	merge	with	a	suitable	tag.
It	can	be	as	simple	as	git	tag	before_merge.	Then,	if	you	change	your	mind	after	the
merge,	you	can	simply	run	this	command:	git	reset	--merge	before_merge.

DEALING	WITH	CONFLICTS
Up	until	now,	the	examples	in	this	chapter	were	based	on	the	assumption	that
everything	merged	cleanly	and	there	were	no	conflicts.	This	is	useful	for	learning
about	the	merge	operations,	but	not	very	realistic.	Conflicts	can	arise	when	doing	any
of	the	merge	operations,	and	it	is	important	to	understand	how	Git	handles	these
cases	and	the	workflow	you	can	use	to	resolve	them.

Merging	Is	a	State
One	of	the	first	things	to	understand	is	that	merge	operations	are	states	in	Git.	This
means	that	when	the	operations	are	started,	Git	enters	a	state	that	disallows	changing
contexts	until	the	operation	is	complete.	If	everything	automatically	merges	cleanly,
then	this	will	likely	occur	so	quickly	that	you	won't	notice	the	change	in	state.
However,	if	there	are	conflicts	that	require	user	intervention	to	solve	them,	you	won't
be	allowed	to	perform	operations	like	switch	branches	until	you	either	resolve	the
conflicts	(so	the	merge	operation	can	complete)	or	abort	the	operation.

If	your	terminal's	prompt	is	configured	to	show	Git	information,	you	see	this	state	in
the	prompt.	Where	it	normally	shows	what	branch	you're	working	on,	in	a	merge-style
operation,	it	changes	to	reflect	the	operation	in	progress.	For	example,	the	prompt	will
display	REBASING	or	MERGING	or	CHERRY-PICKING.	The	following	output	shows
an	example.

Developer@DESKTOP-80SLL4U	MINGW64	˜/cpick	(master)

$	git	cherry-pick	c7a2be5

error:	could	not	apply	c7a2be5…	C5

Developer@DESKTOP-80SLL4U	MINGW64	˜/cpick	(master|CHERRY-PICKING)

$	git	checkout	feature

file1.txt:	needs	merge

error:	you	need	to	resolve	your	current	index	first

Note	that	you	are	in	the	CHERRY-PICKING	state	until	you	resolve	the	merge	conflict
or	abort	the	operation.	You	are	also	not	allowed	to	switch	branches	because	you	have
an	unresolved	merge	in	the	current	branch.

Of	course,	in	the	best-case	scenario,	the	merge-style	operation	completes	successfully.
There	is	merged	content	in	the	working	directory	and	the	local	repository	is
automatically	updated.

During	a	merge,	Git	processes	all	of	the	files	that	it	can	cleanly	merge	and	resolve.	If	it
encounters	files	with	conflicts	that	it	cannot	resolve,	it	stops	(still	in	that	state),	and
waits	for	you	to	resolve	the	conflicts	and	stage	the	fixes.	Before	I	discuss	how	to
proceed,	let's	take	a	quick	look	at	how	Git	informs	you	that	there	are	conflicts	for	the
different	merge	operations.

Error	Messages	for	Conflicts

Because	the	different	merge	operations	have	different	behaviors,	there	are	different
error	messages	for	each	operation	when	conflicts	occur.	Depending	on	the	operation,
you	may	have	more	or	less	information	and	guidance	to	work	with.	I	include	some
examples	here	to	illustrate	the	different	forms.	(In	the	following	section,	I	will	discuss
how	to	resolve	these	conflicts	along	the	lines	of	what's	suggested	in	the	messages.)

For	the	actual	merge	command,	you	may	see	something	like	this:

$	git	merge	feature

Auto-merging	file1.txt

CONFLICT	(content):	Merge	conflict	in	file1.txt

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

For	a	rebase,	it's	a	bit	more	complicated:

$	git	rebase	master

First,	rewinding	head	to	replay	your	work	on	top	of	it…

Applying:	C3

Using	index	info	to	reconstruct	a	base	tree…

M							file1.txt

.git/rebase-apply/patch:8:	trailing	whitespace.

"C3"

warning:	1	line	adds	whitespace	errors.

Falling	back	to	patching	base	and	3-way	merge…

Auto-merging	file1.txt

CONFLICT	(content):	Merge	conflict	in	file1.txt

error:	Failed	to	merge	in	the	changes.

Patch	failed	at	0001	C3

The	copy	of	the	patch	that	failed	is	found	in:	.git/rebase-apply/patch

When	you	have	resolved	this	problem,	run	"git	rebase	--continue".

If	you	prefer	to	skip	this	patch,	run	"git	rebase	--skip"	instead.

To	check	out	the	original	branch	and	stop	rebasing,	run	"git	rebase	--abort".

If	you	scan	the	output	carefully,	you	can	find	the	same	conflict	message	as	you	saw	in
the	merge	case.	However,	notice	there	is	a	lot	of	additional	information,	and	you	have
options	such	as	--continue	and	--skip.

To	understand	this,	think	back	to	the	example	I	used	earlier	in	this	chapter	to	show
how	the	rebase	process	works.	Rebase	typically	involves	taking	the	deltas	of	multiple
commits	to	reproduce	a	history	of	multiple	changes	on	another	branch.	So,	because
there	are	usually	multiple	commits	involved,	each	one	is	a	separate	merge	operation,
done	in	a	sequence.

The	message	is	telling	you	that	it	tried	to	apply	the	delta	of	one	of	the	commits
involved	in	the	rebase	and	it	got	a	merge	conflict.	Now	it's	up	to	you	to	resolve	that
conflict	if	you	want,	and	then	tell	it	to	continue	(which	means	try	to	apply	the	delta	for
the	next	commit	from	the	history)	or	just	skip	this	one	and	let	it	continue.	Or,	you	can
abort	the	whole	rebase	operation	(which	I'll	talk	about	in	a	moment).

Notice	also	that	Git	tells	you	where	you	can	see	what	it	was	trying	to	do—in	the
rebase-apply/patch	file	in	the	.git	directory.	If	you	were	to	look	at	that	file,	you	would

probably	see	something	like	this:

$	cat	.git/rebase-apply/patch

diff	--git	a/file1.txt	b/file1.txt

index	

65f00c63fbf892d06956fcbe9b3a5895db7fecbf..96a36f68be95938938e2367347e9d68dd0ae4d67

	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1,2	+1	@@

-C1

-"C2"

+"C3"

For	a	cherry-pick	operation,	you	get	a	message	about	the	conflict	as	well,	though	in	yet
another	format.

$	git	cherry-pick	c7a2be5

error:	could	not	apply	c7a2be5…	C5

hint:	after	resolving	the	conflicts,	mark	the	corrected	paths

hint:	with	'git	add	<paths>'	or	'git	rm	<paths>'

hint:	and	commit	the	result	with	'git	commit'

Aborting	the	Operation
When	you	encounter	one	of	these	conflict	situations,	you	can	resolve	the	conflicts,
stage	and	commit	the	results,	and	finish	the	operation.	However,	you	also	have
another	choice.

If	you	decide,	for	whatever	reason,	that	it	is	not	worth	resolving	the	conflicts	and
completing	the	merge,	you	can	abort	the	merge-style	operation	to	get	out	of	that	state.
This	returns	your	local	environment	to	the	way	it	was	before	you	ran	the	merge-style
command.

To	abort	one	of	these	operations,	you	just	run	the	merge-style	command	with	the	--
abort	option	as	follows:

$	git	merge	--abort

$	git	rebase	–-abort

$	git	cherry-pick	–-abort

Dealing	with	Conflicts—the	Workflow
In	the	earlier	examples,	I	illustrated	the	changes	in	the	repository	when	merge
operations	were	done.	I	didn't	focus	on	the	working	directory	or	staging	area	as	part	of
the	process	because,	if	everything	merges	cleanly,	Git	just	takes	care	of	updating
everything	for	you	in	the	working	directory	and	local	repository.

However,	where	conflicts	occur,	the	working	directory,	staging	area,	and	local
repository	all	have	key	roles	to	play.	As	well,	the	user	must	interact	with	all	of	them	to
resolve	the	conflicts	and	complete	the	merge.

In	a	case	where	conflicts	occur,	Git	takes	the	following	actions:

If	any	files	merged	successfully,	Git	adds	them	to	the	staging	area	(stages	them).

For	the	files	that	have	conflicts,	Git	inserts	conflict	markers	in	the	files	and	leaves
the	versions	with	the	markers	in	the	working	directory.

Git	alerts	the	user	(refer	back	to	the	section	“Error	Messages	for	Conflicts”).

To	help	you	understand	the	point	of	this	workflow,	I	note	again	that	if	a	merge
operation	has	no	conflicts,	the	files	are	merged	in	the	working	directory	and	end	up	in
the	local	repository	with	no	user	intervention.	It's	as	if	Git	staged	and	committed	the
entire	set	of	merged	content	for	you.	However,	when	there	are	conflicts	that	Git	can't
resolve,	it	can't	do	that	entire	process.	So,	it	does	as	much	as	it	can.

For	the	files	that	merged	cleanly	or	didn't	need	to	merge,	Git	goes	ahead	and	stages
them.	This	involves	using	the	staging	area	as	the	Prepare	case	I	talked	about	in
Chapter	3.	Because	the	commit	you	are	trying	to	merge	is	treated	as	a	unit,	Git	wants
to	have	all	of	the	updated	files	staged	so	they	can	then	be	committed	as	a	unit	to
complete	the	merge.	Git	does	what	it	can	toward	this	goal	by	staging	the	files	that
don't	have	unresolved	conflicts.

For	files	that	have	conflicts	that	Git	can't	resolve,	it	puts	them	in	the	working	directory
with	the	merge	conflicts	marked.	If	you're	working	in	the	command	line,	the	conflicts
will	be	marked	with	≪	and	≫	lines.	(See	the	section	“Alternative	Style	for	Conflict
Markers,”	for	more	details.)

The	idea	is	that	the	user	will	resolve	all	the	remaining	conflicts	in	whatever	way	is
appropriate,	and	then	will	stage	all	of	those	files.	Those	files,	in	combination	with	the
files	that	Git	staged	previously,	comprise	a	complete	set	in	the	staging	area.

The	last	step	is	to	merge	that	complete	set	that	makes	up	the	commit	into	the	local
repository	and	thus	complete	the	merge.	You	end	up	with	the	complete	set	merged	in
the	working	directory	and	in	the	local	repository,	just	as	you	would	if	everything	had
merged	cleanly	in	the	first	place.

Once	the	merge	is	completed	by	resolving	the	conflicts,	staging	the	fixed	files,	and
doing	the	commit	of	the	full	set,	Git	is	happy	and	the	MERGING	state	is	ended.

Visualizing	the	Merging	Workflow	with	Conflicts
The	parts	of	Figure	9.14	illustrate	the	merge	process.	Here,	you	have	a	couple	of
branches	in	the	repository	that	you	want	to	merge	together—feature	into	master.	I'll
use	these	pictures	to	help	you	visualize	the	process.	(Note	that	I	will	not	show	all	of
the	detail	here—just	illustrations	for	how	to	think	about	merging.)

Figure	9.14	The	merge	process	in	the	local	environment

The	setup	in	Figure	9.14,	part	A,	is	that	all	three	files	have	been	changed	in	feature,
and	only	File	B	has	been	changed	in	master	(as	indicated	by	the	shading	patterns).
Master	is	your	current	branch	(as	suggested	by	the	*)	and	you	have	the	files	from
master	in	the	working	directory.

Now,	you	can	start	the	merge	operation.

$	git	checkout	master

$	git	merge	feature

Figure	9.14,	part	B,	represents	the	merge	process	in	the	repository.	As	Git	tries	to
merge	feature	into	master,	there	is	a	conflict	(as	suggested	by	the	X)	because	File	B
has	been	changed	in	both	branches.

In	cases	like	this,	Git	follows	the	process	I	discussed	earlier.	It	stages	the	files	that
merged	successfully	(puts	them	into	the	staging	area).	For	any	files	that	have
conflicts,	those	conflicts	are	marked	with	the	Git	conflict	markers	(≪≪≪	and	≫≫≫).
These	files	are	then	put	into	the	working	directory	so	the	conflicts	can	be	resolved	by
the	user.	This	state	is	illustrated	in	Figure	9.14,	part	C.

Now,	it	is	up	to	the	user	to	resolve	the	conflicts	that	Git	couldn't	merge,	and	complete
the	operation.	At	this	point,	if	you	are	using	a	terminal	configured	to	show	Git
information	in	the	prompt,	the	prompt	will	change	to	(MERGING…),	meaning	you	are
locked	into	that	state	until	you	resolve	the	operation	by	completing	the	merge	or

abandoning	it.

Which	Files?
The	central	idea	here	is	that	Git	wants	to	have	a	clean	set	of	content	(merged	files)	to
stage	and	then	commit	to	finalize	the	merge.	You	are	trying	to	assemble	a	full	set	of
content	from	the	snapshot	in	the	staging	area	to	commit	as	a	merge	result.

When	some	files	are	successfully	merged	and	others	have	conflicts,	the	immediate
question	becomes,	“Which	files	merged	cleanly	and	which	did	not?”	You	need	to	know
this	so	that	you	know	which	ones	to	fix.	An	easy	way	to	get	this	information	is	with
the	git	status	command.

In	the	current	example,	at	this	point,	you	have	two	files,	File	A	and	File	C,	that	merged
cleanly	and	so	were	staged.	File	B	was	modified	on	both	branches	(master	and
feature)	and	has	conflicts	that	have	to	be	resolved	manually.	If	you	execute	git	status
in	this	environment,	you	see	the	following	message:

On	branch	master

You	have	unmerged	paths.

		(fix	conflicts	and	run	"git	commit")

Changes	to	be	committed:

								modified:			File	A

								modified:			File	C

Unmerged	paths:

		(use	"git	add	<file>…"	to	mark	resolution)

								both	modified:			File	B

If	you	recall	the	information	on	git	status	from	Chapter	6,	this	message	should	look
familiar.	Let's	break	it	down.

Changes	to	be	committed:	This	implies	that	these	files	are	in	the	staging	area
because	the	next	destination	is	the	local	repository	where	they	are	to	be
committed.

Unmerged	paths:	This	refers	to	files	that	could	not	be	merged	for	some	reason
and	need	manual	intervention.

Both	modified:	This	refers	to	files	modified	on	both	branches.

The	status	information	from	Git	points	out	which	files	were	processed	cleanly	from
the	merge	and	which	ones	still	need	someone	to	look	at	them.	Using	this	information,
you	know	which	files	you	need	to	look	at.

Role	of	the	Staging	Area
The	files	that	merged	successfully	are	staged,	and	there	is	nothing	you	need	to	do	with
them.	You	might	be	tempted	to	try	and	commit	them.	However,	at	this	stage,	the

merge	is	not	finished,	and	because	it	is	still	in	progress,	Git	is	locked	in	the	merging
state.	So,	you	need	to	look	at	how	to	resolve	the	conflicts.

NOTE

Besides	the	conflict	markers	in	the	local	file,	there	are	other	ways	to	look	at	the
diffs	when	you	have	a	merge	conflict.	One	way	is	to	use	the	command	git	log	--
merge	-p	<path>.

When	you	use	this	command,	Git	shows	you	the	diffs	for	the	two	versions,	in
sequence,	against	the	common	ancestor.	For	example,	the	following	output	shows
the	differences	for	a	simple	file,	file1.txt,	with	the	original	version	with	contents
master,	that	has	been	updated	for	both	the	master	branch	and	a	feature	branch,
and	now	has	merge	conflicts.

$	git	log	--merge	–p	file1.txt

commit	75092c13bf8e99142a6c3b71079e2cf7a21bb62e

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Jun	7	23:06:22	2016	-0400

update	on	master

diff	--git	a/file1.txt	b/file1.txt

index	1f7391f..9e99285	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

-master

+update	on	master

commit	59f04da402d04dd7b42b96d7dab47a37596c81a4

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Jun	7	22:32:17	2016	-0400

from	feature

diff	--git	a/file1.txt	b/file1.txt

index	1f7391f..a7453f0	100644

---	a/file1.txt

+++	b/file1.txt

@@	-1	+1	@@

-master

+feature

You	can	also	use	the	git	show	command	to	see	the	different	versions.	If	you	pass
:#:filepath	as	the	arguments,	then	you	can	see	the	various	versions	involved	in
the	merge.	Using	1	for	the	#	in	the	expression	shows	the	common	ancestor;	using
2	for	the	#	shows	the	tip	of	the	current	branch;	and	using	3	for	the	#	shows	the
result	after	the	merge	was	attempted.

$	git	show	:1:file1.txt

master

$	git	show	:2:file1.txt

still	master

$	git	show	:3:file1.txt

feature

To	resolve	the	conflicts	and	finish	the	merge,	you	need	to	know	which	files	are	in
conflict.	The	git	status	command,	as	I	described	here,	is	the	easiest	way	to	get	such	a
list.	You	can	also	employ	git	diff	to	show	differences.

The	conflicts	can	then	be	resolved	through	editing	or	via	a	graphical	merge	tool
(discussed	in	the	section	“Visual	Merging”).	Alternatively,	the	merge	can	be	aborted
and	then	rerun	with	a	different	merge	strategy	that	may	further	resolve	some
conflicts.	(I	discuss	merge	strategies	in	more	detail	in	the	next	section.)

After	the	conflicts	have	been	resolved,	the	edited	files	in	the	working	directory	need	to
be	staged	into	the	staging	area.	This	is	so	that	you	will	have	a	complete	set	of	files
ready	to	be	committed.	Doing	this	is	simply	a	matter	of	running	the	command	git	add
[.	or	individual	files].

Completing	the	Merge	Operation
Prior	to	staging	the	updated	files	that	are	identified	as	conflicts,	Git	does	not	allow	you
to	just	do	a	commit	of	what	is	in	the	staging	area	to	finish	the	merge.	The	reason	again
is	that	Git	wants	a	full	set	of	merged	content	to	complete	the	operation.	Git	doesn't
want	partially	merged	branches	in	its	repositories.	(For	this	reason,	you	are	not
allowed	to	use	the	-am	shortcut	on	the	commit	command,	when	completing	merge,	to
bypass	the	staging	area.)

However,	once	you	have	the	full	set	of	files	in	the	staging	area	(those	that	originally
merged	cleanly	and	were	staged	by	the	merge	operation,	plus	the	ones	that	didn't
merge	cleanly	but	you	fixed	and	staged),	you	can	commit	the	entire	set	as	an	update.
An	example	would	be	git	commit	-m	“Finalize	merge”.

This	promotes	the	fully	merged	commit	into	the	local	repository.	At	that	point,	your
merge	is	complete	and	Git	takes	you	out	of	the	merging	state,	completing	the
workflow.	You	are	once	again	able	to	do	normal	operations.

Resolution	Options	and	Strategies
Git	supports	a	variety	of	merge	strategies	and	options	for	the	merge	operations.	These
tell	Git	how	to	attempt	to	merge	items	and	how	to	resolve	conflicts.	You	can	select	the
strategy	you	want	to	use	via	the	-s	option,	and	the	–X	option	allows	you	to	pass
arguments	to	the	chosen	strategy.	I	briefly	describe	the	different	strategies	in	the
following	sections.

Resolve	Strategy
The	resolve	strategy	is	a	limited	strategy	that	can	only	merge	two	things	(branches)
using	a	three-way	merge.	However,	being	simpler,	it	may	be	faster	in	some	cases.

Recursive	Strategy

Recursive	is	the	default	strategy	when	you're	merging	two	branches	together.	Here,
the	recursive	nature	comes	into	play	if	there	is	more	than	one	common	ancestor	for
the	two	branches.	In	that	case,	it	does	a	merge	of	the	common	ancestors	and	then	uses
that	merge	as	a	basis	for	the	three-way	merge.

The	recursive	strategy	takes	a	number	of	options.	These	are	passed	with	the	-X	option
to	any	of	the	merge	operations.	You'll	look	at	those	options	next.

Recursive	Strategy	Options
The	recursive	strategy	includes	a	number	of	useful	options.	I'll	note	a	few	of	the	most
useful	ones	here;	others	can	be	found	on	the	help	page	for	git	merge.	In	situations
where	you're	merging	two	things	together,	because	recursive	is	the	default	strategy,
you	can	just	pass	the	-X<option>	without	including	-s	to	specify	the	strategy.

Ours:	This	option	tells	Git	that	when	a	file	has	been	modified	on	both	branches,
resulting	in	a	conflict,	it	must	use	the	version	from	the	current	(destination)
branch	as	the	resolution.

Theirs:	This	option	tells	Git	that	when	a	file	has	been	modified	on	both	branches,
resulting	in	a	conflict,	it	must	use	the	version	from	the	source	branch	as	the
resolution.

Note	that	these	options	only	apply	in	the	case	of	conflicts.	If	a	file	has	been	changed
on	one	or	the	other	branch	so	that	there	is	no	conflict,	the	normal	merge	behavior
applies.

These	options	tell	Git	to	ignore	the	indicated	whitespace	changes.

ignore-space-change

ignore-all-space

ignore-space-at-eol

Recursive	Strategy	Example
Let's	look	at	a	quick	example	of	the	recursive	strategy.	I'll	use	some	captures	from	the
gitk	tool	to	illustrate	them.	Suppose	you	have	a	master	branch	and	three	other
branches	off	of	that	branch,	as	shown	in	Figure	9.15.

Figure	9.15	Master	branch	with	three	topic	branches

If	you	merge	in	the	topic	branches	one	at	a	time,	Git	attempts	to	first	do	a	fast-forward
merge.	If	it	can	do	a	fast-forward	merge,	it	does	(unless	you	supply	the	--no-ff	option).
If	it	can't	do	a	fast-forward	merge,	because	you	are	merging	two	branches	at	a	time,	it

defaults	to	the	recursive	strategy.

$	git	merge	topic1

Updating

0d89cc5..59d9e1a

Fast-forward

	topic1.txt	|	1	+

	1	file	changed,	1

insertion(+)

	create	mode	100644

topic1.txt

$	git	merge	topic2$	git	merge	topic3Merge	made	by	the	'recursive'	strategy.	

topic3.txt	|	1	+	1	file	changed,	1	insertion(+)	create	mode	100644	topic3.txt

Merge	made	by	the	'recursive'	strategy.

	topic2.txt	|	1	+

	1	file	changed,	1	insertion(+)

	create	mode	100644	topic2.txt

	

$	git	merge	topic3

Merge	made	by	the

'recursive'	strategy.

	topic3.txt	|	1	+

	1	file	changed,	1	insertion(+)

	create	mode	100644

topic3.txt

Afterward,	your	branch	arrangement	looks	like	Figure	9.16.	To	understand	the
arrangement,	look	at	it	from	bottom	to	top	and	right	to	left.	The	lines	to	the	right	of
the	dots	represent	where	you	started.	The	topic1	branch	was	fast-forwarded	into
master.	Then	the	topic2	branch	was	merged	in	using	the	recursive	strategy,	and
likewise	for	topic3	to	arrive	at	the	new	master	(at	the	top).

Figure	9.16	After	a	merge	of	the	three	topic	branches

Finally,	here's	an	example	of	how	the	recursive	strategy	options	can	be	useful.
Suppose	you	have	the	branch	setup	from	the	earlier	cherry-pick	example,	as	shown	in
Figure	9.17.

Figure	9.17	The	earlier	cherry-pick	example

You	attempt	to	cherry-pick	C5	(using	its	SHA1	value)	from	feature	onto	master,	but
this	time	you	encounter	a	conflict	because	C5	cannot	be	applied	cleanly	to	master
(some	common	element	in	it	has	been	changed	on	both	branches	since	the	common
ancestor	back	at	C2).

$	git	cherry-pick	d9e8b2c

error:	could	not	apply	d9e8b2c…	C5

hint:	after	resolving	the	conflicts,	mark	the	corrected	paths

hint:	with	'git	add	<paths>'	or	'git	rm	<paths>'

hint:	and	commit	the	result	with	'git	commit'

This	is	illustrated	in	Figure	9.18.	If	you	now	need	to	see	which	files	are	causing	the
conflicts,	you	can	use	the	git	status	command.	Here,	I	show	both	the	long	version	and
the	short	version.

Figure	9.18	C5	cannot	be	cherry-picked	due	to	a	conflict.

$	git	status

On	branch	master

You	are	currently	cherry-picking	commit	d9e8b2c.

		(fix	conflicts	and	run	"git	cherry-pick	--continue")

		(use	"git	cherry-pick	--abort"	to	cancel	the	cherry-pick	operation)

Unmerged	paths:

		(use	"git	add	<file>…"	to	mark	resolution)

								both	modified:			file1.txt

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

$	git	status	-sb

##	master

UU	file1.txt

You	are	now	in	the	cherry-picking	state	until	you	resolve	or	abort	the	operation.
Suppose	in	this	case	that	you	decide	you	just	want	the	version	of	C5	from	feature.	You
can	use	the	options	to	the	recursive	strategy	to	do	this.	However,	you	first	need	to
figure	out	whether	you	need	ours	or	theirs.	Recall	that	in	these	cases,	ours	refers	to
your	current	branch	(the	one	you	are	merging	into,	or	the	destination)	and	theirs
refers	to	the	source	branch	(the	one	you	are	merging	from).	Figure	9.19	highlights	the
choices	as	they	would	be	used	for	options	to	the	recursive	strategy.

Figure	9.19	The	choices	for	options	to	pick	one	version

So,	using	this	information,	you	can	abort	the	current	operation	and	rerun	your	cherry-
pick	with	the	additional	option	to	specify	the	version	you	want	(and	avoid	the
conflict).	The	command	would	be	git	cherry-pick	-Xtheirs	d9e8b2c.

And	the	output	shows	that	it	worked.

[master	9f308b6]	C5

	Date:	Tue	Jun	7	11:00:26	2016	-0400

	1	file	changed,	1	insertion(+),	1	deletion(-)

This	leaves	you	with	the	structure	shown	in	Figure	9.20.

Figure	9.20	Completed	cherry-pick	with	C5	from	feature

Octopus	Strategy
Presumably,	the	name	of	the	octopus	strategy	derives	from	the	idea	of	being	able	to
handle	a	large	number	of	branches	like	the	arms	of	an	octopus.	This	strategy	is	used
when	merging	in	more	than	one	branch	to	the	current	one.	It	is	the	default	strategy	in
that	case.

As	an	example	of	using	the	octopus	strategy,	you'll	look	at	the	same	arrangement	I
used	in	the	recursive	strategy	example.	Refer	back	to	figure	9.15	for	the	gitk
presentation	of	master	and	the	three	topic	branches.

You	can	actually	tell	Git	to	merge	in	all	three	branches	in	the	same	command.	When
you	do	this,	Git	uses	the	octopus	strategy	instead	of	the	recursive	one.	In	this
example,	you	specify	the	--no-ff	(no	fast	forward)	flag	to	make	the	end	result	clearer.
Git	still	suggests	that	it	is	doing	a	fast-forward	merge,	but	it	actually	doesn't	because
of	the	flag.

$	git	merge	--no-ff	topic1	topic2	topic3

Fast-forwarding	to:	topic1

Trying	simple	merge	with	topic2

Trying	simple	merge	with	topic3

Merge	made	by	the	'octopus'	strategy.

	topic1.txt	|	1	+

	topic2.txt	|	1	+

	topic3.txt	|	1	+

	3	files	changed,	3	insertions(+)

	create	mode	100644	topic1.txt

	create	mode	100644	topic2.txt

	create	mode	100644	topic3.txt

Notice	that	although	you	don't	supply	a	strategy,	Git	defaults	to	the	octopus	strategy
in	this	case.	After	this,	your	branch	layout	looks	like	Figure	9.21.	(Again,	read	the
changes	from	bottom	to	top	and	right	to	left.)

Figure	9.21	After	the	octopus	merge

Ours	Strategy
There	is	also	a	merge	strategy	named	ours.	It	is	not	particularly	useful,	but	I	mention
it	here	to	differentiate	it	from	the	option	of	the	same	name	for	the	recursive	strategy.

The	difference	here	between	the	ours	strategy	(-s	ours)	and	the	ours	option	to	the
recursive	strategy	(-X	ours)	is	this:	using	the	strategy	tells	Git	to	keep	everything	from
the	current	branch	and	not	to	overwrite	anything.	Using	the	option	tells	Git	to	just
keep	your	current	content	if	there's	a	conflict.	When	using	the	options	with	the
recursive	strategy	(-X),	it's	possible	to	still	get	content	from	the	other	branch	if	there's
no	conflict.	With	the	strategy	(-s),	nothing	gets	overwritten.

Strategies—Conclusion
Aside	from	manually	fixing	conflicts	yourself,	the	ours	and	theirs	options	will
probably	handle	most	cases	where	you	need	to	merge	two	branches	in	particular	ways.
For	merging	in	more	than	two	branches,	you	have	a	choice	of	doing	them	two	at	a
time	with	the	recursive	strategy	and	the	options	it	makes	available,	or	just	letting	the
octopus	strategy	do	what	it	can.

Note	that	there	are	additional	options	available	for	the	recursive	strategy	and	several
other	strategies	for	specialized	cases.	Details	on	those	strategies	can	be	found	on	the
git	merge	help	page	(git	merge	--help).	That	is	the	central	source	for	information
about	merging,	regardless	of	which	operation	you	are	doing.

VISUAL	MERGING
As	you	have	seen,	the	default	presentation	for	merge	conflicts	is	to	insert	a	series	of
“<”	and	“>”	signs	around	the	conflicts	indicating	which	branch	they	originated	in.	You
can	also	use	the	diff	command	to	show	the	conflicting	changes	in	a	standard	patch
format.	While	I	am	focusing	primarily	on	command	line	usage	throughout	this	book,
as	I	noted	in	the	section	on	diffing,	there	are	times	when	a	visual	interface	adds
significant	value	or	convenience.	Merging	is	another	one	of	these	cases.

Git	includes	a	special	command	for	working	visually	with	differences:	mergetool.	The
syntax	for	this	command	is	as	follows:

git	mergetool	[--tool=<tool>]	[-y	|	--[no-]prompt]	[<file>…]

You	would	normally	run	this	command	after	doing	a	git	merge	and	after	Git	has
identified	that	there	are	conflicts	that	need	to	be	resolved	manually.	If	you	run	this
command	and	supply	one	or	more	files	for	the	command	to	work	with,	Git	runs	the
tool	multiple	times	in	succession	to	handle	the	merging	for	each	file	you	specify.
(Note	that	if	you	specify	files	that	don't	need	a	merge,	they	are	skipped.)	Specifying	a
directory	limits	the	tool	to	all	files	with	unresolved	conflicts	in	that	path;	running	it
with	no	files	or	directories	addresses	all	files	with	unresolved	conflicts.

The	idea	is	that	you	have	one	or	more	visual	merging	applications	installed,
configured,	and	available	for	Git	to	use.	(More	about	how	that	works	in	a	moment.)
Then,	you	use	the	git	mergetool	command	line	or	a	configuration	value	to	select	the
one	you	want	to	use.	The	mergetool	command	then	starts	up	the	desired	tool	with	the
appropriate	arguments.

Figures	9.22	to	9.25	show	some	screenshots	of	several	commonly	used	visual	merging
applications	(and	applications	that	Git	understands	“out	of	the	box”	if	they	are
installed	and	in	the	path).	If	you	have	read	Chapter	6,	you	will	notice	that	you	can	use
the	same	tools	for	resolving	merge	conflicts	visually	that	you	use	to	see	differences
visually.

Figure	9.22	Merging	with	vimdiff

Figure	9.23	Merging	with	WinMerge

Figure	9.24	Merging	with	Meld

Figure	9.25	Merging	with	KDiff3

When	using	these	tools	to	resolve	merge	conflicts	as	opposed	to	just	viewing
differences,	there	are	typically	a	couple	of	differences	in	the	user	interface:

An	additional	window	may	be	present	for	showing	the	base	version	(the	version
that	was	current	prior	to	the	merge	operation)	as	well	as	the	two	versions	being
merged	together.

An	additional	window	may	be	present	for	showing	the	results	of	the	actions	taken
in	the	merge	tool—the	resolved	version	of	the	file.

Additional	menus	and	commands	are	available	to	assist	in	choosing	content	and
creating	the	resolved	version.

In	most	cases,	these	tools	include	clickable	or	draggable	highlights	to	move
selected	content	between	windows.	This	allows	you	to	use	a	mouse	or	similar
mechanism	to	easily	select	the	final	content	to	include	in	the	resolved	file.

Selecting	a	Merging	Tool
While	there	are	a	variety	of	merge	tools	to	choose	from,	you	will	probably	want	to	pick
one	as	a	default.	From	a	list	of	installed,	configured,	and	available	tools,	a	particular
tool	can	be	selected	in	several	different	ways.	For	the	mergetool	command,	you	can
use	the	default	or	specify	just	the	simple	name	of	the	tool	(such	as	kdiff3,	vimdiff,	or
meld).

If	no	default	tool	has	been	specified,	then	Git	attempts	to	use	a	sensible	default
(usually	something	like	vimdiff	on	Linux	systems).	One	way	to	configure	a	particular
tool	is	via	the	merge.tool	configuration	value:	git	config	--global	merge.tool	vimdiff.
Once	this	is	configured,	running	git	mergetool	starts	that	selected	tool—vimdiff.

By	default,	if	no	tool	is	specified	or	configured,	Git	prompts	for	confirmation	to	run
the	merge	tool	for	each	file	to	be	merged.

Merging:

helloWorkshop.java

Normal	merge	conflict	for	'helloWorkshop.java':

		{local}:	modified	file

		{remote}:	modified	file

Hit	return	to	start	merge	resolution	tool	(kdiff3):

You	can	suppress	this	prompt	by	supplying	a	no-prompt	option	when	running
mergetool,	as	in	git	mergetool	--no-prompt.

Another	way	to	select	a	particular	tool	is	to	specify	the	name	of	the	desired	tool	via	the
-t	option	when	you	run	mergetool,	as	in	git	mergetool	-t	meld.

Making	Merge	Tools	Available	to	Git
Git	comes	preconfigured	to	be	able	to	work	with	a	number	of	different	tools	for
merging.	To	see	a	list,	you	run	the	command	git	mergetool	--tool-help.

Note	that	this	does	not	mean	that	all	of	these	tools	are	installed	(or	even	if	installed,
that	they	can	be	used;	they	might	not	be	in	the	path).	What	this	does	mean	is	that	Git

understands	how	to	use	these	tools	to	do	merging	without	additional	configuration,	if
the	tool	is	available	on	the	system.	The	tool-help	option	tells	you	which	tools	are
available	to	use	(under	may	be	set	to	the	following)	and	which	are	not	(under	The
following	tools	are	valid,	but	not	currently	available).

To	make	one	of	the	tools	available	that	is	marked	as	not	currently	available,	you	can
install	the	application	and	make	sure	it	is	in	the	path.	Once	that's	done,	if	it	is	a	tool
that	Git	knows	about,	it	will	show	up	in	the	available	section.

If	a	tool	is	not	available	in	the	path,	then	you	can	set	a	configuration	value	named
mergetool.<tool>.path	(where	<tool>	is	the	name	of	the	application)	to	specify	the
location	where	Git	can	find	it.

For	example,	Git	knows	how	to	work	with	an	application	named	meld	for	merging
when	it	can	find	it	on	the	system.	Suppose	you	install	the	Meld	application	on
Windows	in	c:\meld	(instead	of	the	default	Program	Files	location	that	would	be	in
the	path).	To	tell	Git	where	the	Meld	application	is	found,	you	can	set	the	path	value
for	it	as	follows.

On	a	Windows	command	prompt:
$	git	config	--global	mergetool.meld.path	c:\meld\Meld.exe

On	a	Bash	shell:
$	git	config	--global	mergetool.meld.path	/c/meld/Meld.exe

NOTE

The	configuration	of	the	mergetool.<tool>.path	value	can	also	be	used	to	work
around	differences	(such	as	capitalization)	between	the	actual	application	name
and	what	Git	expects	out	of	the	box.

For	example,	Git	expects	Meld	to	be	meld	(lowercase).	If	Meld.exe	is	installed	in	a
place	where	Git	should	be	able	to	see	it,	Git	may	still	not	see	it	due	to	the
difference	in	case.	When	you	configure	the	tool	name	in	mergetool.meld.path,	Git
can	then	understand	how	to	find	the	meld	tool.

ADVANCED	TOPICS
In	this	section,	you'll	take	a	look	at	three	merge-related	items	that	you	may	find
useful.	You'll	first	look	at	an	alternate	way	to	display	conflict	information	that	adds	an
additional,	useful	piece	of	data.	Then	you'll	look	at	an	advanced	scenario	for	rebasing
that	allows	you	to	filter	what	you	rebase	based	on	intersections	with	another	branch.
Finally,	you'll	see	how	to	use	an	option	of	rebase	that	really	is	its	own	feature:
interactive	rebasing.	This	unique	functionality	allows	you	to	script	changes	to
commits	in	the	repository's	history.

Alternative	Style	for	Conflict	Markers
In	a	conflict	situation,	Git	marks	conflicts	in	files	with	strings	of	“<”	and	“>”	symbols.
A	string	of	“≪≪”	is	used	to	note	the	revision	in	the	current	branch,	and	a	string	of
“≫≫”	is	used	to	note	the	other	revision	from	the	branch	being	merged	in.
For	example,	suppose	you	have	a	file	with	a	quiz	problem	in	master.	You	stage	and
commit	that	file.	Then	you	create	a	branch	for	a	guess.	You	update	the	file	in	master
with	one	guess	and	commit	that	change.	You	switch	to	the	guess	branch	and	update
that	version	with	a	second	guess.	So,	now	your	original	version	has	been	modified	on
both	branches.	The	sequence	might	look	something	like	this:

$	echo	"c	=	a*2+(b-3)"	>	quiz.txt

$	git	add	.

$	git	commit	-m	"problem"

[master	(root-commit)	3288fb4]	problem

	1	file	changed,	1	insertion(+)

	create	mode	100644	quiz.txt

$	echo	"if	a	=	2	and	b	=	5	then	c	=	4"	>	quiz.txt

$	git	branch	guess

$	git	commit	-am	"answer	1"

[master	a7eee54]	answer	1

	1	file	changed,	1	insertion(+),	1	deletion(-)

$	git	checkout	guess

Switched	to	branch	'guess'

$	echo	"if	a	=	2	and	b	=	5	then	c	=	6"	>	quiz.txt

$	git	commit	-am	"answer	2"

[guess	ac1d0b9]	answer	2

	1	file	changed,	1	insertion(+),	1	deletion(-)

When	it	comes	time	to	pick	an	answer,	you	can	attempt	to	merge	guess	into	master.
As	you	would	expect,	because	both	branches	have	changed	the	same	line,	you	now
have	a	merge	conflict	that	has	to	be	resolved.

$	git	merge	guess

Auto-merging	quiz.txt

CONFLICT	(content):	Merge	conflict	in	quiz.txt

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

Taking	a	look	at	the	file	with	conflicts,	you	can	see	the	two	changes.

$	cat	quiz.txt

<<<<<<<	HEAD

if	a	=	2	and	b	=	5	then	c	=	4

=======

if	a	=	2	and	b	=	5	then	c	=	6

>>>>>>>	guess

This	is	useful,	but	one	piece	is	missing	here:	remembering	what	the	quiz	problem	was
in	the	original	version	of	the	file	(the	common	ancestor).	Without	that	information,	it
is	difficult	to	know	which	answer	is	right.

Luckily,	Git	provides	an	alternate	way	to	show	conflict	information,	one	that	includes
the	original	version	(common	ancestor)	of	the	changes.	You	can	enable	showing	the
additional	information	by	setting	the	Git	configuration	value	merge.conflictstyle	to
diff3.	The	full	command	is	git	config	--global	merge.conflictstyle	diff3.	You	can	set
that	value,	abort	the	merge,	and	then	rerun	the	merge	operation.

$	git	merge	--abort

$	git	merge	guess

Auto-merging	quiz.txt

CONFLICT	(content):	Merge	conflict	in	quiz.txt

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

Now,	if	you	look	at	the	file	with	conflicts,	you	see	something	different.

$	cat	quiz.txt

<<<<<<<	HEAD

if	a	=	2	and	b	=	5	then	c	=	4

|||||||	merged	common	ancestors

c	=	a*2+(b-3)

=======

if	a	=	2	and	b	=	5	then	c	=	6

>>>>>>>	guess

Notice	the	line	under	the	|||||||	merged	common	ancestors	line.	This	is	the	original
version.	The	diff3	style	shows	all	three	pieces:	the	common	ancestor	and	the	two
changed	revisions.	Now	you	can	determine	which	answer	is	right.

Advanced	Rebasing	Scenario
In	addition	to	the	basic	rebase	functionality	that	I	discussed	in	the	main	part	of	this
chapter,	there	is	more	advanced	functionality	that	can	be	used	with	rebasing.

The	first	form	is	a	variation	on	the	previous	rebasing	functionality	I	discussed.	The

difference	is	that	it	allows	filtering	what	is	rebased	against	another	branch.	This
allows	for	very	precise	slicing	and	dicing	of	branches	during	rebase	operations.

The	advanced	syntax	looks	like	this:

$	git	rebase	--onto	newbase	branch2	[branch1]

The	way	you	interpret	this	is	Rebase	branch1	off	of	newbase,	but	exclude	any	commits
that	branch1	and	branch2	have	in	common.	So,	only	rebase	the	part	of	branch1	that	is
beyond	branch2.

Let's	look	at	an	example.	In	Figure	9.26,	you	have	three	branches:	master,	feature,	and
topic.	Feature	is	branched	off	of	master	at	C2	and	topic	is	branched	off	of	feature	at
C4.

Figure	9.26	Setup	for	an	advanced	rebase

Now	suppose	you	want	to	merge	everything	that	is	in	topic,	but	not	in	feature,	onto
master.	As	highlighted	in	Figure	9.27,	topic's	chain	includes	C8,	C7,	C4,	C3,	C2,	and	C1.

Figure	9.27	Topic's	chain	of	commits

A	quick	Git	log	bears	this	out.	(Note	that	I	have	used	the	commit	names	in	the	figures
as	comments	here	to	make	this	clear.)

$	git	log	--oneline	topic

7550c8f	C8

b83a885	C7

54d5770	C4

6b77391	C3

27cd1a1	C2

ef77f69	C1

So,	if	you	issue	the	command	for	the	advanced	rebase	as	git	rebase	--onto	master
feature	topic,	then	this	tells	Git	to	rebase	the	parts	of	topic	that	are	not	shared	with
feature	onto	master.	Figure	9.28	illustrates	the	logic	in	determining	the	set	of
commits	to	rebase.	Everything	from	C4	back	to	C1	is	excluded	because	it	is	part	of
feature.	That	leaves	C7	and	C8.	So	Git	computes	the	deltas	(differences	as	indicated	by
the	yellow	triangles)	on	those	commits.

Figure	9.28	Computing	the	deltas	to	rebase

You	can	also	see	the	set	of	commits	that	are	in	topic	but	not	in	feature	by	using	one	of
the	advanced	forms	of	the	log	command.

$	git	log	--oneline	topic	^feature

7550c8f	C8

b83a885	C7

This	can	be	read	as	“show	me	everything	in	topic	that	is	not	in	feature.”	The	caret	(^)
on	the	front	of	feature	is	interpreted	as	not.

Now	let's	get	down	to	actually	running	the	rebase.	You	have	thought	ahead	and	know
that	you	want	the	commits	from	the	topic	branch	to	be	what	you	end	up	with	in	the
master	branch.	So,	to	avoid	merge	conflicts,	you	add	the	-X	theirs	option.	This	tells	Git
that,	in	the	event	of	a	merge	conflict,	it	must	use	the	version	from	the	branch	being
merged	from.

NOTE

As	I	discussed	earlier,	if	you	omitted	the	-X	theirs	option,	and	you	run	into	merge
conflicts,	Git	stops	on	the	first	conflict,	and	waits	for	you	to	resolve	it.	It	might
look	something	like	this:

$	git	rebase	--onto	master	feature	topic

First,	rewinding	head	to	replay	your	work	on	top	of	it…

Applying:	C7

Using	index	info	to	reconstruct	a	base	tree…

M							file1.txt

Falling	back	to	patching	base	and	3-way	merge…

Auto-merging	file1.txt

CONFLICT	(content):	Merge	conflict	in	file1.txt

error:	Failed	to	merge	in	the	changes.

Patch	failed	at	0001	C7

The	copy	of	the	patch	that	failed	is	found	in:	.git/rebase-apply/patch

When	you	have	resolved	this	problem,	run	"git	rebase	--continue".

If	you	prefer	to	skip	this	patch,	run	"git	rebase	--skip"	instead.

To	check	out	the	original	branch	and	stop	rebasing,	run	"git	rebase	--

abort".

At	this	point,	you	have	a	choice:

Resolve	this	conflict,	then	run	the	git	rebase	--continue	command	to	move	on
to	the	next	conflict	(assuming	a	next	one),

OR

Skip	this	patch	via	the	git	rebase	--skip	option,

OR

Abort	the	rebase	with	git	rebase	--abort	and	rerun	it	with	a	merge	strategy	that
tells	Git	how	to	decide	which	version	to	use	if	there's	a	conflict.

It's	also	worth	noting	here	that	if	the	merge	for	a	particular	commit	during	a
rebase	would	result	in	the	same	content	that	already	exists	in	the	target	branch,
then	the	commit	is	effectively	skipped.

The	command	to	do	this	is	git	rebase	-X	theirs	--onto	master	feature	topic.

Based	on	this	command,	Git	changes	to	the	master	branch	and	then	computes	the
deltas	for	the	commits	that	are	on	the	topic	branch	that	are	not	also	on	feature.	Figure
9.29	illustrates	this.	C4	marks	the	common	ancestor	between	feature	and	topic
(everything	before	and	including	C4	is	in	both	feature	and	topic).	So	Git	computes	the
deltas	from	that	point	for	C7	and	C8.

Figure	9.29	Applying	the	deltas	to	master

Once	the	deltas	are	computed,	as	in	any	rebase,	Git	attempts	to	replay	(apply)	those
differences	as	new	commits	at	the	end	of	the	target	branch	(in	this	case,	the	branch
specified	by	the	--onto	argument),	master.	Figure	9.29	illustrates	this	process.

If	the	deltas	apply	cleanly	(or	after	conflicts	have	been	resolved	if	you	didn't	specify
the	merge	strategy),	you	end	up	with	the	unique	parts	of	topic	now	rebased	on	master
(see	Figure	9.30).

Figure	9.30	The	completed	rebase

Looking	at	a	log	of	the	topic	branch,	you	can	see	that	it	now	includes	the	unique	pieces
of	the	original	topic	branch	plus	the	commits	of	the	master	branch.	And	we	can	also

see	that	master	has	not	been	changed;	it	still	points	back	to	C6.

$	git	log	--oneline	topic

91897da	C8																	$	git	log	--oneline	master

fd15463	C7																	f63b391	C6

f63b391	C6																	a55d7ef	C5

a55d7ef	C5																	27cd1a1	C2

27cd1a1	C2																	ef77f69	C1

ef77f69	C1

You	can	now	merge	topic	into	master	by	doing	a	simple	fast-forward	merge.

$	git	checkout	master

$	git	merge	topic

Updating	f63b391..91897da

Fast-forward

	file1.txt	|	2	+-

	1	file	changed,	1	insertion(+),	1	deletion(-)

$	git	log	--oneline	master

91897da	C8

fd15463	C7

f63b391	C6

a55d7ef	C5

27cd1a1	C2

ef77f69	C1

The	results	in	the	arrangement	are	shown	in	Figure	9.31.

Figure	9.31	Topic	merged	into	master

Interactive	Rebasing
One	more	form	of	rebasing	is	worth	discussing	here:	interactive	rebasing.	Interactive

rebasing	provides	a	powerful	way	to	modify	commits	that	you've	already	made	in	the
local	repository.

In	essence,	this	works	like	the	other	kinds	of	rebasing.	Changes	are	computed,	and	the
deltas	are	applied	to	a	particular	branchpoint,	one	at	a	time.	The	difference	is	that	in
other	rebasing	scenarios,	the	commits	being	rebased	are	already	in	their	final	form	for
computing	the	deltas	and	live	in	a	separate	branch	(the	one	being	rebased).

With	an	interactive	rebase,	you	are	generally	working	in	the	same	branch,	making
changes	to	some	end	portion	of	the	set	of	commits.	Also,	you	have	much	more
flexibility	in	how	you	can	modify	the	commits	before	Git	tries	to	apply	them,	rather
than	just	trying	to	rebase	the	deltas	from	their	existing	versions.

WARNING

Again,	the	idea	here	is	that	the	interactive	rebase	would	be	used	before	you
pushed	the	branch	targeted	for	the	rebase	over	to	the	remote	repository.	Or,	if	you
had	to	use	the	interactive	rebase	functionality	to	modify	something	that	was
already	in	the	remote	repository,	you	would	use	the	cautions	and	strategies	I've
talked	about	before	to	manage	that	kind	of	scenario.

The	idea	with	interactive	rebasing	is	that	you	are	telling	Git	what	to	do	(leave,
modify,	delete,	and	so	on)	with	each	commit	in	a	series	of	commits	that	exist	in
the	local	repository.	You	can	think	of	it	as	creating	a	script	or	batch	file	to	do
modifications	on	these	commits.

It	is	also	worth	noting	that	this	operation	will	change	SHA1	values	for	the	affected
commits.	Keep	in	mind	that	your	history	will	be	different	after	this,	even
presumably	for	commits	that	weren't	explicitly	changed	themselves.

Preparation
To	begin	with,	you	choose	a	starting	commit.	This	is	the	last	commit	before	the	series
that	you	want	to	change.	Git	gives	you	an	opportunity	to	change	all	commits	after	this
one.	As	I've	discussed	in	the	sections	on	reset	and	rebase,	you	can	get	the	SHA1	value
for	the	commit	you	want	from	sources	such	as	the	log	or	the	reflog.

Interactive	rebasing	is	done	via	a	file	you	modify	in	your	default	editor.	So	before	you
begin,	make	sure	that	you	have	your	default	editor	for	Git	configured	to	the
application	you	want	to	use.	Chapter	4	describes	how	to	do	this.

Workflow
To	begin	the	interactive	rebase	operation,	you	run	the	git	rebase	command	with	the	-i
option	and	the	starting	commit	(again,	the	commit	you	want	to	change	things	after).
The	command	will	look	like	this:	git	rebase	-i	<starting	commit>.

At	this	point,	Git	brings	up	an	editor	session	with	a	list	of	the	commits	that	ranges
from	one	after	the	starting	commit	to	the	tip	of	the	branch.	Along	with	these	commits,
there	will	be	a	place	to	 specify	an	action	to	be	done	to	each	commit.	You	then	modify
the	action	associated	with	each	commit—if	you	want	to	do	something	other	than	just
keep	the	commit	as-is.

Once	you	have	your	script	or	batch	file	set	up	to	modify	the	commits	the	way	you
want,	you	save	the	file	and	close	the	editor.	(Make	sure	to	close	the	editor,	not	just
save	the	file.)	Control	then	returns	to	Git,	which	starts	processing	the	sets	of	actions
against	the	commits	in	the	list.

If	any	of	the	actions	require	input	from	you	(such	as	rewording	a	commit	message	or
supplying	a	new	one),	Git	pauses	at	that	step,	and	brings	up	another	editor	session	for

the	user's	input.	Sometimes,	this	can	happen	so	quickly	that	it	appears	as	if	your
original	editor	session	is	still	open.	However,	if	you	look	at	the	contents	of	the	file	in
the	editor,	you	can	see	the	difference.

Once	you	supply	the	requested	input,	the	process	is	the	same:	save	the	file	and	close
the	editor	application.	Git	then	continues	on	with	processing	the	next	commit	in	the
sequence.

Git	may	also	pause	the	process	if	it	encounters	a	merge	conflict	from	any	of	the
actions	that	the	interactive	rebase	causes.	If	that	happens,	you	can	resolve	the
conflicts	in	any	of	the	ways	that	I've	described	in	this	chapter,	then	stage	the	results,
and	run	the	command	git	rebase	--continue	to	continue	the	operation.

Once	all	of	the	processing	is	done	for	the	series	of	commits,	the	operation	is	done.

Available	Actions
Git	provides	a	defined	set	of	actions	that	you	can	apply	to	each	commit	that	is	involved
in	the	interactive	rebase.	Like	options	to	Git	commands,	these	actions	can	be	specified
in	a	long	form	(spelled	out)	or	a	short	form	(abbreviated	by	first	letter).

The	available	list	of	actions	includes	the	following:

pick	(p)—Keep	this	commit	as	it	is.

reword	(r)—Keep	this	commit,	but	let	the	user	change	the	commit	message
associated	with	it.

edit	(e)—When	processing	this	commit,	stop	and	allow	for	whatever	changes	the
user	wants	to	make.	Changes	can	be	made	by	staging	them,	and	then	using	the	--
amend	functionality.

squash	(s)—Keep	the	content	of	this	commit,	but	meld	it	into	the	previous
commit.	When	processing	this	commit,	Git	stops	and	prompts,	via	an	editor
session,	for	a	new	commit	message,	because	multiple	commits	with	multiple
messages	are	now	being	combined	into	one.

fixup	(f)—Like	squash,	but	don't	stop	and	prompt	for	a	new	commit	message.

exec	(x)—Run	the	rest	of	the	line	as	a	command	in	the	shell.	This	action	does	not
take	a	commit	to	work	against.

drop	(d)—Remove	this	commit	from	the	sequence.	This	can	also	be	accomplished
by	just	deleting	the	line	with	the	commit	from	the	file.

Example
Let's	look	at	an	example	of	doing	an	interactive	rebase.	Assume	you	have	the	results	of
some	previous	work	with	a	branch	that	looks	like	Figure	9.32.

Figure	9.32	Beginning	state	of	your	branch

A	log	of	this	branch	would	look	something	like	this	(the	commit	names	are	again	used
as	comments):

$	git	log	--oneline

5b06b1f	C9

54d5770	C4

6b77391	C3

27cd1a1	C2

ef77f69	C1

You	have	decided	that	you	want	to	change	some	things	about	the	last	three	commits
on	this	branch:	C9,	C4,	and	C3.	The	easiest	way	to	do	that	is	with	an	interactive	rebase.
So,	because	you	always	pass	the	reference	to	the	commit	before	the	first	one	you	want
to	modify,	you	start	the	command	telling	Git	to	use	the	commit	three	before	the
current	HEAD.	(You	can	also	just	pass	in	the	SHA1	value	of	C2.)	In	this	form	the
command	would	look	like:	git	rebase	-i	HEAD˜3.

This	brings	up	a	temporary	file	in	your	default	editor	like	the	one	shown	in	Figure
9.33.

Figure	9.33	Temporary	file	created	for	scripting	the	rebase	actions

File	Format
Notice	a	couple	of	things	about	this	file.	First,	at	the	top,	you	have	a	set	of	lines	with
the	commits	after	the	one	you	specified	on	the	command	line.	Each	of	these	lines	has
the	form,

<action>	<SHA1	of	the	commit>	<commit	message	-	i.e.	comment>

For	each	of	these	lines	(commits),	you	can	modify	the	default	action	(pick)	to	tell	Git
you	want	to	do	something	else	with	this	commit.	The	action	is	the	only	thing	you
modify	in	these	existing	lines	unless	you	are	deleting	a	line	or	adding	a	separate	exec
action.

Underneath	the	list	of	commits	are	a	lot	of	comment	lines	(as	denoted	by	the	#	sign	in
the	first	column).	These	are	informational	lines.	This	is	Git's	way	of	trying	to	provide
embedded	help	in	the	temporary	files.	These	lines	will	not	show	up	in	the	commit
messages	or	further	processing.	They	are	just	information	for	the	user	and	have	no
bearing	on	the	actual	operation.

One	thing	you	may	notice	about	the	list	of	commits	is	the	order	they	are	in:	from	the
oldest	to	the	newest.	Around	the	middle	of	the	comments	section,	there	is	a	comment
that	says,	These	lines	can	be	re-ordered;	they	are	executed	from	top	to	bottom.

The	order	in	which	the	commits	are	listed	is	consistent	with	how	you	would	build	up	a
chain	in	Git,	adding	newer	content	each	time.	However,	it	is	possible	to	reorder	these
lines,	as	the	comment	says.	For	this	example,	I'll	just	leave	the	list	in	the	same	order.

Choosing	Actions
Now,	let's	tell	Git	what	you	actually	want	to	do	with	these	commits	as	you	rebase
them.	For	this	example,	you'll	do	a	variety	of	things.	First,	you'll	keep	the	oldest	one,
C3,	as	it	is,	so	you	just	pick	that	one.	Then,	you'll	delete	C4,	add	an	exec	step	to	print
out	a	message,	and	finally	squash	C9	into	C3.	(Note	that	you	always	need	to	have	an
older	commit	picked	if	you're	going	to	squash	a	newer	commit	in	the	sequence.)

Here,	I'm	using	the	x	(exec)	action	to	print	out	a	simple	message	for	illustration
purposes.	In	a	real-world	situation,	you	might	choose	to	do	something	more
substantial	with	an	exec,	such	as	some	kind	of	simple	testing	or	validation	by	running
a	script.

Figure	9.34	shows	your	completed	script.	Git	actually	stores	the	resulting	script
internally	as	a	rebase	TO-DO	file,	which	also	describes	it	fairly	well.

Figure	9.34	Edited	interactive	rebase	to-do	script

Running	the	Script
Once	you	have	your	edits	made	to	choose	the	actions	you	want	Git	to	take	during	the
rebase,	you	can	run	the	script	by	saving	it	and	then	closing	the	application.	(Note	that
the	application	needs	to	be	ended,	so	that	Git	will	resume	and	process	the	saved	to-do
list.)

Git	then	begins	executing	the	actions	from	top	to	bottom.	Your	first	action	told	Git
just	to	keep	C3,	so	there's	no	real	work	there.	Then,	you	told	Git	to	delete	C4,	shell	out
and	print	a	message,	and	squash	C9	into	C3.	As	part	of	the	rebase,	Git	attempts	to
apply	C9	onto	the	chain.	In	these	cases,	it's	possible	to	run	into	a	merge	conflict.
Here's	an	example:

Executing:	echo	"Working	on	squashing	C9	into	C3"

Working	on	squashing	C9	into	C3

error:	could	not	apply	5b06b1f…	C9

When	you	have	resolved	this	problem,	run	"git	rebase	--continue".

If	you	prefer	to	skip	this	patch,	run	"git	rebase	--skip"	instead.

To	check	out	the	original	branch	and	stop	rebasing,	run	"git	rebase	--abort".

Could	not	apply	5b06b1fa334784daa9e66ac431e9dc4891fc3c89…	C9

Your	prompt	at	this	point	shows	the	branch	(feature),	the	state	(REBASE-i),	and	the
step	you're	at	in	the	process	(4/4):

$	<prompt>	(feature|REBASE-i	4/4)

You	can	also	run	a	status	at	this	point	to	get	similar	information.

$	git	status

interactive	rebase	in	progress;	onto	27cd1a1

Last	commands	done	(4	commands	done):

			x	echo	"Working	on	squashing	C9	into	C3"

			squash	5b06b1f	C9

		(see	more	in	file	.git/rebase-merge/done)

No	commands	remaining.

You	are	currently	rebasing	branch	'feature'	on	'27cd1a1'.

		(fix	conflicts	and	then	run	"git	rebase	--continue")

		(use	"git	rebase	--skip"	to	skip	this	patch)

		(use	"git	rebase	--abort"	to	check	out	the	original	branch)

Unmerged	paths:

		(use	"git	reset	HEAD	<file>…"	to	unstage)

		(use	"git	add	<file>…"	to	mark	resolution)

								both	modified:			file1.txt

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

You	can	then	resolve	the	conflicts	as	you	would	for	any	other	case.	Once	that	is	done,
you	can	tell	Git	to	continue	the	rebase	using	git	rebase	--continue.

Now	that	you	have	resolved	the	conflict,	and	told	Git	to	continue,	the	processing	can
proceed.	Because	you	used	squash	instead	of	fixup	here,	Git	wants	you	to	tell	it	what
the	commit	message	should	be	for	the	squashed	commit.	Prior	to	starting	this
process,	you	had	two	separate	commits	with	two	separate	commit	messages.	So,	Git
opens	up	another	editor	session	so	that	you	can	tell	it	the	commit	message	to	use	for
the	squashed	commit	that	it's	creating	(Figure	9.35).

Figure	9.35	Screen	to	enter	commit	message	for	squashed	commits

Notice	a	few	things	about	the	temporary	file	that	Git	opened	up	here.	At	the	top,	Git
tells	you	what	the	previous	commit	messages	were	and	asks	you	what	the	new	commit
message	for	the	squashed	commit	should	be.	Below	that,	Git	tells	you	about	the
interactive	rebase	that's	in	progress,	how	many	commands	are	done,	and	how	many
commands	are	left	to	do	(none	in	this	case).

At	this	point,	you	can	enter	a	new	commit	message	for	the	squashed	commits,	as
shown	in	Figure	9.36.

Figure	9.36	Adding	a	new	commit	message	for	the	squashed	commits

You	can	then	save	the	file	with	the	new	commit	message,	exit	the	editor,	and	allow	Git
to	continue.	At	that	point,	Git	commits	the	squashed	commits	and	the	interactive
rebase	is	completed.

	[detached	HEAD	15e4034]	Combining	C3+C9	in	feature	branch

	Date:	Sun	Jun	5	12:19:48	2016	-0400

	1	file	changed,	1	insertion(+),	1	deletion(-)

Successfully	rebased	and	updated	refs/heads/feature.

If	you	look	at	a	log	of	where	the	branch	is	after	your	rebase,	you	can	see	the	new
chain.

$	git	log	--oneline	feature

88e6134	Combining	C3+C9	in	feature	branch	for	123456

27cd1a1	C2

ef77f69	C1

However,	notice	that	if	you	look	at	a	log	from	the	commit	that	feature	pointed	to
before	the	interactive	rebase,	your	chain	of	commits	is	still	there.

$	git	log	--oneline	5b06b1f

5b06b1f	C9

54d5770	C4

6b77391	C3

27cd1a1	C2

ef77f69	C1

Figure	9.37	shows	what	your	chains	of	commits	look	like	after	the	rebase	is	complete.
Note	that	there	is	now	only	one	updated	commit	off	of	C2	in	feature.	This	is	correct
because	you	deleted	C4	and	squashed	C9	and	C3	into	one.	The	branch	pointer	for

feature	has	been	moved	to	your	new	HEAD	after	the	interactive	rebase,	but	your	old
chain	is	still	in	Git	for	now.	This	is	what	allows	you	to	easily	undo	or	reset	back	to
what	you	had	before	the	rebase	by	simply	moving	the	branch	pointer.

Figure	9.37	Your	chains	of	commits	after	the	interactive	rebase	is	completed

Editing	Commits
Although	I	didn't	include	it	in	the	example,	one	of	the	most	powerful	actions	in	an
interactive	rebase	is	the	edit	action.	This	action	allows	you	to	go	back	and	update	any
commit	in	almost	any	way	you	want.	When	the	interactive	rebase	reaches	the	edit
action	and	stops,	the	idea	is	that	you	make	any	changes	you	want	locally	(editing	or
adding	files,	for	example),	and	then	stage	those	changes	into	the	staging	area.	You	can
then	use	the	commit	command	with	the	--amend	option	to	amend	that	commit	with
the	updates	from	the	staging	area.	Once	the	changes	are	committed,	you	can	tell	the
rebase	to	continue	in	the	usual	way	using	the	--continue	option.	When	stopped	for	an
edit	action,	the	status	command	shows	more	detail	and	suggestions,	as	shown	here.

$	git	status

interactive	rebase	in	progress;	onto	a55d7ef

Last	commands	done	(4	commands	done):

			x	echo	"editing	C4"

			e	44972d5	C4

		(see	more	in	file	.git/rebase-merge/done)

No	commands	remaining.

You	are	currently	editing	a	commit	while	rebasing	branch	'master'	on	'a55d7ef'.

		(use	"git	commit	--amend"	to	amend	the	current	commit)

		(use	"git	rebase	--continue"	once	you	are	satisfied	with	your	changes)

nothing	to	commit,	working	directory	clean

SUMMARY
In	this	chapter,	I	have	introduced	the	concepts	and	workflow	around	merging	in	Git.	I
discussed	the	types	of	merges	that	Git	may	do,	resolution	strategies	and	options,	and
how	to	deal	with	conflicts	and	complete	or	abort	merges.

I	also	introduced	the	Git	rebase	and	cherry-pick	functionality	to	incorporate	history
and	specific	commits	into	merges.	All	of	your	workflow	for	a	merge	can	also	apply	to	a
rebase,	and	most	of	it	applies	to	cherry-picks	as	well.

I	covered	the	workflow	used	and	expected	by	Git	to	resolve	a	merge	state	for	a	merge,
rebase,	or	cherry-pick.	I	also	talked	about	a	way	to	make	this	process	simpler	and
more	user-friendly	by	using	visual	merge	tools.	I	presented	a	brief	survey	of	some
visual	merge	tools	that	can	be	used	with	Git,	and	discussed	how	to	make	them	work
with	the	application.

In	the	Advanced	Topics	section,	I	looked	at	an	alternate	style	for	displaying	conflicts,
and	some	advanced	rebase	forms.	This	included	the	rebase	format	that	takes	three
branches,	and	allows	for	filtering	what's	rebased	against	another	branch	before
making	the	changes.	The	interactive	rebase	functionality	allows	for	creating	a	script	or
batch	file	to	modify	a	series	of	commits	already	made	to	the	repository.	The	rebasing
options	allow	for	changing	history	if	needed,	but	the	standard	warnings	and	cautions
against	changing	anything	already	pushed	to	the	remote	side	apply	here	as	well.

In	the	next	chapter,	you	will	look	at	two	supporting	files	that	Git	uses.	The	Git	Ignore
file	tells	Git	which	files	not	to	track.	And	the	Git	Attributes	file	tells	Git	how	to	process
files	of	specific	types.	Both	of	these	can	play	a	key	role	in	your	local	Git	environments
and	workflow.

About	Connected	Lab	6:	Practicing	with	Merging
Lab	6	takes	you	through	some	simple	practice	with	creating	merge	situations	and
resolving	them.	You	are	encouraged	to	work	through	the	lab's	steps	to	gain	a	deeper
and	hands-on	understanding	of	how	merges	are	handled	with	Git.

Connected	Lab	6

Practicing	with	Merging
In	this	lab,	you'll	work	through	some	simple	branch	merging.

PREREQUISITES
This	lab	assumes	that	you	have	done	Connected	Lab	5:	Working	with	Branches.	You
should	start	out	in	the	same	directory	as	that	lab.

STEPS
1.	 Starting	in	the	same	directory	that	you	used	for	Connected	Lab	5,	make	sure	you
don't	have	any	outstanding	or	modified	files	(nothing	to	commit).	You	can	do	this
by	running	the	status	command	and	verifying	that	it	reports	“working	directory
clean.”

$	git	status

2.	 If	not	already	on	the	master	branch,	switch	to	it	with	git	checkout	master.	Create	a
new	one-line	file.

$	echo	"Initial	content"	>	file5.c

3.	 Stage	and	commit	the	file	on	the	master	branch.

$	git	add	.

$	git	commit	-m	"adding	new	file	on	master"

4.	 Start	up	gitk	if	it's	not	already	running.

$	gitk	&

5.	 Create	a	new	branch,	but	don't	switch	to	it	yet.	(You	can	use	whatever	branch	name
you	want.)

$	git	branch	newbranch

6.	 Change	the	same	line	in	the	new	file	(still	on	the	master	branch).

$	echo	"Update	on	master"	>	file5.c

7.	 Stage	and	commit	that	change	(still	on	the	master	branch).

$	git	add	.

$	git	commit	-m	"update	on	master"

8.	 Switch	to	your	new	branch.

$	git	checkout	newbranch

9.	 On	the	new	branch,	make	a	change	to	the	same	line	of	the	same	file.

$	echo	"Update	on	newbranch"	>	file5.c

10.	 Stage	and	commit	the	file	with	the	change	on	the	new	branch.

$	git	commit	-am	"update	on	newbranch"

11.	 Switch	back	to	the	master	branch.

$	git	checkout	master

12.	 Merge	your	new	branch	back	into	the	master	branch.	(Git	attempts	to	merge	the

new	branch	into	the	master	branch.)	You	will	end	up	with	a	merge	conflict	after
this.

$	git	merge	newbranch

13.	 Check	the	status	of	your	files	in	Git.	Note	the	information	that	Git	provides	to	you
about	the	conflict.

$	git	status

14.	 Look	at	the	local	file	and	note	the	conflict	markers

$	cat	file5.c

15.	 Resolve	the	conflict	in	the	file	in	the	working	directory.	(For	simplicity,	you	can
just	write	over	it	to	simulate	that	the	conflict	has	been	resolved.)

$	echo	"merged	version"	>	file5.c

16.	 Stage	and	commit	the	fixed	file.	Note	that	this	has	to	be	done	as	two	separate	steps
since	this	was	the	resolution	to	a	merge	conflict.

$	git	add	.

$	git	commit	-m	"Fixed	conflicts"

17.	 Check	the	status	to	make	sure	the	merge	issue	is	resolved.

$	git	status

18.	 Refresh/reload	gitk	and	look	at	the	changes.

19.	 You're	done	with	your	new	branch,	so	delete	the	branch.

$	git	branch	-d	newbranch

20.	 Refresh/reload	gitk	and	look	at	the	window	showing	the	branches	to	see	how	the
Git	repository	looks	different.

Chapter	10
Supporting	Files	in	Git

WHAT'S	IN	THIS	CHAPTER?

Purpose	of	the	Git	attributes	file

Scope	and	use	cases	for	the	Git	attributes	file

Format	of	the	Git	attributes	file

Purpose	of	the	Git	ignore	file

Scope	and	use	cases	for	the	Git	ignore	file

Format	of	the	Git	ignore	file

In	this	chapter,	I	explore	two	types	of	supporting	files	that	allow	users	to	customize
how	Git	interacts	with	different	kinds	of	content.	The	Git	attributes	file	allows	you	to
define	settings	to	apply	to	certain	operations	for	particular	files	or	file	types.	The	Git
ignore	file	allows	you	to	tell	Git	which	files	it	should	ignore	and	not	try	to	manage.	I
cover	the	intent,	usage,	scope,	and	format	for	both	types	of	files.

Having	these	two	files	with	each	repository	is	a	best	practice	for	Git.	There	are	also
many	customized	versions	that	have	been	created	by	users	for	different	types	of	work.
For	example,	an	attributes	file	for	Java	development	could	include	specifications	on
line	endings	for	*.java	files.	The	corresponding	ignore	file	could	include	lines	to	tell
Git	not	to	track	or	manage	*.jar,	*.war,	and	other	files,	because	those	are	generated
files	in	the	java	workflow.

Over	the	years,	Git	users	doing	different	kinds	of	development	have	created	versions
of	these	files	that	have	worked	well	for	them.	In	the	spirit	of	open	source,	users
commonly	contribute	the	files	that	they	have	used	back	to	public	places	on	the
Internet.	One	popular	site	for	these	contributions	from	users	is	GitHub.	Normally,
GitHub	is	thought	of	as	a	place	to	host	Git	repositories.	However,	it	is	also	a	place	for
users	to	share	supporting	items	for	development.

You	can	find	some	sample	Git	attributes	files	for	different	languages	at
https://github.com/Danimoth/gitattributes	and	sample	Git	ignore	files	for	different
kinds	of	development	at	https://github.com/github/gitignore.

Now,	let's	dive	into	the	specifics	of	an	attributes	file.

https://github.com/Danimoth/gitattributes
https://github.com/github/gitignore

THE	GIT	ATTRIBUTES	FILE
One	thing	that	is	not	clear	with	Git	out	of	the	box	is	a	way	to	specify	how	to	handle
specific	file	types.	The	most	obvious	example	of	this	is	being	able	to	tell	Git	which	files
are	binary.	(Note	that	Git	has	an	algorithm	built-in	to	try	and	detect	if	a	file	is	binary,
but	it	cannot	be	claimed	to	be	100%	accurate.)

To	provide	this	kind	of	functionality,	Git	supports	specifying	options	about	how	to
treat	different	kinds	of	files	using	a	Git	attributes	file.	As	the	name	implies,	this	file
allows	users	to	specify	attributes	for	files	that	Git	manages.	These	attributes	serve	as
specifications	that	drive	or	modify	the	behavior	of	particular	Git	operations	when
those	operations	are	done	on	the	matching	files.	For	example,	if	a	file	or	file	type	is
noted	as	binary,	that	tells	Git	not	to	do	the	usual	diffing	and	EOL	processing	against	it.

What	Can	You	Do	with	This	File?
A	Git	attributes	file	can	be	used	for	a	number	of	purposes.	Here	are	a	few	of	the	main
applications:

Specifying	which	files	or	file	types	Git	should	treat	as	binary

Specifying	how	to	handle	line	endings	for	particular	files	or	file	types

Specifying	unique	filters	to	associate	with	files	or	file	types	to	perform	custom
operations

I'll	spend	some	time	talking	about	these	uses	in	the	following	pages.	First,	though,	it's
useful	to	understand	the	different	places	that	versions	of	this	file	can	exist—and	how
their	location	determines	which	files	get	which	attributes.

The	Scope	of	Git	Attributes
In	your	working	directory,	at	the	granularity	of	a	subdirectory,	you	can	create	a	Git
attributes	file.	These	files	are	named	.gitattributes.	Having	these	exist	in	the	working
directory	is	useful	because	this	file	can	be	committed	into	your	local	repository,	then
pushed	to	the	remote	repository,	and	reside	with	your	code.	So,	any	user	or	process
that	clones	this	repository	will	get	the	same	.gitattributes	file	telling	Git	how	to	handle
files	in	this	repository.

The	other	useful	part	about	having	a	Git	Attributes	file	in	your	working	directory	is
that,	for	things	like	line	endings,	the	Git	attributes	file	overrides	individual
configuration	values.	This	means	you	can	specify	how	to	handle	line	endings	in	the
Git	attributes	file,	regardless	of	how	a	user	may	have	their	configuration	values	set.
Because	the	Git	attributes	file	is	pulled	in	when	the	project	is	cloned,	the	project	will
always	use	the	settings	from	the	file.	Thus,	you	have	consistent	line-ending	behavior
across	all	users	of	the	repository.

TIP

Due	to	the	consistency	that	you	gain	from	using	a	Git	attributes	file,	this	is	a	best
practice	for	every	project	in	Git	that	is	intended	for	multiple	users.

Similar	to	how	you	have	local,	global,	and	system	configuration	scopes,	Git	attributes
files	can	also	have	different	scopes.	The	same	file	format	as	a	.gitattributes	file	can	be
put	in	the	.git	directory—in	.git/info/attributes	(where	attributes	is	a	filename,	not	a
directory).	This	will	have	higher	precedence	than	a	.gitattributes	file	in	the	working
directory.

Within	the	subdirectories	of	the	working	directory,	there	can	be	individual
.gitattributes	files	(one	per	directory).	When	it	comes	time	to	evaluate	them,	Git	will
use	the	attributes	in	the	.git/info/attributes	file	first	(if	present)	and	then	the
.gitattributes	file	it	finds	that's	closest	to	the	path	being	evaluated.

So,	suppose	I	have	a	structure	like	dir1/dir2/dir3	and	I	have	.gitattributes	files	in	all
three	subdirectories.	If	I	am	working	with	a	file	in	dir3,	Git	will	first	use	any	attribute
information	from	.git/info/attributes,	then	any	information	from	the	.gitattributes	file
in	dir3,	then	from	the	one	in	dir2,	and	finally	from	the	one	in	dir1.

Beyond	that,	you	can	have	a	global	Git	attributes	file.	This	one,	like	global
configuration	values,	applies	to	all	repositories	for	a	user.	The	location	of	this	file	can
be	set	explicitly	by	setting	the	core.attributesFile	configuration	value.	This	has	a
default	value	of	$XDG_CONFIG_HOME/git/attributes.	(It	is	rare	to	have	the
$XDG_CONFIG_HOME	reference	set.	See	the	note	in	this	chapter	on	“Git's	Fourth
Configuration	File.”)	If	the	$XDG_CONFIG_HOME	reference	is	not	set,	then	you	fall
back	to	the	more	common	$HOME/.config/git/attributes	file	(where	$HOME	is	the
user's	home	directory).

GIT'S	FOURTH	CONFIGURATION	FILE

Technically,	there	is	a	fourth	configuration	file	type	that	Git	supports.

If	you	look	at	the	man	page	for	git	config,	you'll	see	it	lists	another	possible
configuration	file	as	$XDG_CONFIG_HOME/git/config.	That	page	defines	it	as
follows:

“Second	user-specific	configuration	file.	If	$XDG_CONFIG_HOME	is	not	set	or
empty,	$HOME/.config/git/config	will	be	used.”

XDG	stands	for	X	Development	Group,	the	previous	name	of	FreeDesktop.org.
FreeDesktop.org	is	intended	for	code	and	discussion	of	software	projects	focused
on	interoperability	and	sharing	of	technology	for	X	Window	System	desktops
such	as	GNOME	and	KDE.

If	this	file	exists,	it	fits	in	between	the	system	configuration	file	and	the	global
configuration	file.	Using	this	location	allows	for	having	a	configuration	that
conforms	to	the	XDG	recommendations	on	systems	where	those
recommendations	are	used.

However,	unless	you	have	a	specific	need	for	this	file	on	a	particular	system,	it	is
safer	and	simpler	to	not	use	it.

That	just	leaves	the	system-level	Git	attributes	file—for	all	users	on	a	system.	Like
system	configuration	files,	this	file	resides	in	the	etc	area,	such	as	/etc/gitattributes.

Table	10.1	summarizes	the	scopes	for	Git	attributes	files,	starting	from	the	highest
priority	to	the	lowest.

Table	10.1	The	File	Scope	for	Git	Attributes

Scope Name	and	Location Stored
with
Project

Use/Notes

Internal .git/info/attributes No Overrides	all	others	but	not
stored	with	project	(user-
specific)

Local subdir/.gitattributes Yes
(committed)

Defines	attribute	handling	for
files	in	this	<subdir>	and	any
below	it	that	don't	have	their
own	.gitattributes.	This	file	is
committed	into	source	control
and	resides	with	the	project.	It
overrides	certain	configuration
values.

Global Usually
$HOME/.config/git/attributes
or	as	specified	by
core.attributesFile
configuration	value

No All	repositories	for	a	user

System etc/gitattributes No System	attributes	for	all
repositories	if	not	overridden
by	one	of	the	others

The	File	Format
The	file	format	for	a	Git	attributes	file	is	fairly	simple.	There	are	only	a	few	rules:

Lines	are	composed	of	filenames	or	patterns	followed	by	attribute	specifications.

Any	line	starting	with	a	#	character	is	a	comment.

Lines	that	specify	attribute	settings	have	a	format	of

<file	pattern	or	filename>	<attribute	and	setting>

Some	examples	of	a	file	pattern	or	filename	include	*.obj,	foo.txt,	and	a*.java.

On	each	line	of	a	Git	attributes	file,	attributes	can	be	defined	in	multiple	ways.	Table
10.2	summarizes	them.

Table	10.2	Options	for	Specifying	Attributes

Setting Format Example Meaning

Set Attribute	name
by	itself

*.obj
binary

Attribute	is	turned	on	(all	object	files	are
binary	in	the	example).

Unset Attribute	name
preceded	by
minus	sign

*.java	-
crlf

Attribute	is	turned	off	(no	java	files	should
have	CRLFs	in	the	example).

Configured
(set	to	a
value)

Attribute	name
=	value

eol	=	crlf Attribute	is	configured	with	a	specific	value
(set	line	endings	to	crlf	on	checkout	for
matching	files	in	the	example).

Unspecified Attribute	isn't
specified	for	any
paths

Behavior	falls	back	to	what	Git	would	do
without	the	attributes	file.

Here	are	a	couple	of	other	points	to	remember	about	the	file	format:

Later	lines	that	match	override	earlier	lines.

More	than	one	attribute	can	be	specified	(exist	on	the	same	line)	for	a	file	or	file
type.

Common	Use	Cases
In	this	section,	I'll	survey	some	common	use	cases	for	a	Git	attributes	file.	First,
though,	there	are	some	things	you	need	to	consider	when	creating	or	amending	one	of
these	files.

Putting	together	a	Git	attributes	file	is	a	combination	of	several	steps:

1.	 Deciding	on	the	scope:	Should	this	be	managed	with	the	repository	(reside	in	the
working	directory);	be	global	(reside	in	$HOME);	apply	to	the	working	directory,
but	not	be	managed	(reside	in	git/attributes);	or	reside	in	one	of	the
subdirectories?

2.	 Identifying	the	file	or	pattern	that	you	want	to	apply	an	attribute	to.

3.	 Choosing	the	appropriate	attribute.

4.	 Choosing	whether	the	attribute	should	be	set,	unset,	set	to	a	value	(string),	or
unspecified	to	accomplish	what	you	want.

5.	 If	the	attribute	is	set	to	a	custom	value	or	a	filter	is	specified,	defining	the	value	or
filter	for	Git—this	includes	creating	external	programs	if	needed	and	setting
configuration	values.

6.	 If	custom	supporting	pieces	are	needed	(as	in	step	5)	and	this	setup	is	intended	to
be	pushed	into	a	remote	repository	for	use	by	others,	ensuring	that	the	supporting
pieces	are	accessible	and	any	additional	needed	configuration	is	well	documented.

Now,	let's	look	at	a	couple	of	common	use	cases	and	useful	tricks	to	illustrate	what
you	can	do	with	the	file.	You	will	implement	these	use	cases	through	the	use	of
attributes.	Although	not	explicitly	stated	each	time,	the	idea	is	that	these	attributes
apply	to	the	file	or	patterns	on	the	corresponding	line	in	the	Git	attributes	file.

Use	Case	1:	Identifying	Files	as	Binary
This	one	is	fairly	simple.	To	tell	Git	that	a	file	is	binary,	simply	set	the	binary	attribute
in	the	Git	attributes	file.	For	example,	*.exe	binary	.	Binary	here	actually	corresponds
to	the	deprecated	settings	of	-crlf	and	-diff.	So,	if	you	think	about	the	dash	(-)	on	the
front	of	those	attributes	as	meaning	don't	do	it,	you	could	interpret	binary	as	don't	try
to	convert	or	fix	eol	issues	(-crlf)	and	don't	try	to	execute	or	print	a	diff	(-diff)	for
executable	files.

Use	Case	2:	Specifying	Handling	for	Line	Endings
In	this	case,	you	have	several	attributes	to	choose	from:

text—This	attribute	has	to	do	with	line	normalization	and	indicating	text	file	types.
Here	are	some	examples	of	how	it	can	be	specified,	along	with	their	meanings.

text	(setting	the	value)	tells	Git	to	normalize	line	endings	and	that	files	like	this
are	text	files.

-text	(unsetting	the	value)	tells	Git	not	to	attempt	to	normalize	line	endings.

text=auto	(set	to	value)	tells	Git	to	normalize	line	endings	if	it	thinks	the	file	is
text.	(To	determine	this,	Git	is	checking	for	a	NULL	value	in	a	significant	part
of	the	file.	If	the	NULL	value	is	found,	the	file	is	considered	to	be	binary.)

If	text	is	not	specified,	then	Git	falls	back	to	using	the	core.autocrlf	value	as
configured	by	the	user.

eol—This	attribute	tells	Git	which	style	of	line	normalization	to	apply.	Its	presence
tells	Git	that	this	is	a	text	file.

eol=crlf	(set	to	value)—llike	autocrlf=true,	this	value	tells	Git	to	normalize	files
(to	just	LF)	at	add	or	commit,	and	insert	CRLFs	on	checkout.

eol=lf	(set	to	value)—like	autocrlf=input,	this	value	tells	Git	to	normalize	files
(to	just	LF)	at	add	or	commit,	and	leave	as	LFs	on	checkout.

NOTE

If	you	enable	text=auto	to	normalize	to	LFs	in	an	existing	repository,	it	is	a	good
idea	to	verify	whether	any	files	in	that	repository	need	to	be	normalized	from
their	current	state	(for	example,	if	they	have	CRLF).	The	help	for	.gitattributes
has	a	sequence	of	commands	that	describe	how	to	do	this.

NOTE

As	long	as	I'm	on	the	subject	of	line	endings	and	potential	normalizing,	this	is	a
good	place	to	explain	another	configuration	value	that	has	to	do	with	line	endings:
core.safecrlf.

The	purpose	of	core.safecrlf	is	to	prevent,	or	alert	users	to,	irreversible	line-
ending	conversions	when	settings	are	used	that	enable	conversions	like
core.autocrlf.

To	understand	irreversible,	think	of	it	this	way,	as	paraphrased	from	the	Git	help
text:	When	you	commit	a	file	and	it	goes	through	line-ending	conversion,	if	you
then	check	it	out,	you	should	get	back	the	exact	same	file	you	had	before	you
committed	it.

If	the	core.autocrlf	setting	will	result	in	you	getting	back	a	different	file	right	after
you	check	it	in,	then	if	core.safecrlf	is	set	to	true,	Git	will	not	allow	the	change	and
will	report	a	fatal	error.	If	core.safecrlf	is	set	to	warn,	then	Git	will	just	issue	a
warning.

Realistically,	the	potential	irreversible	situation	should	only	arise	if	a	text	file	has
mixed	line	endings	(a	bad	thing)—because	Git	can't	reproduce	mixed	line	endings
—or	if	Git	has	incorrectly	detected	that	a	binary	file	is	text	(highly	unlikely)	and
tries	to	modify	characters	in	it	to	convert	line	endings.

Use	Case	3:	Creating	a	Custom	Filter
If	you	simply	define	the	attribute	as	filter=<name>,	Git	assumes	you	are	defining	a
custom	filter	called	<name>.	This	allows	you	to	have	two	filtering	actions,	known	as
smudge	and	clean.

Smudge	is	essentially	a	way	to	say,	“For	the	matching	items	in	the	Git	attributes	file,
run	a	set	of	code	(a	filter)	when	those	items	are	checked	out	of	Git.”	Clean	is	the	same,
but	it	runs	designated	code	when	the	matching	items	are	committed	back	into	Git.
Figure	10.1	shows	where	these	actions	fit	into	your	Git	model.

Figure	10.1	The	Git	model	with	smudge	and	clean	filters

Git	assumes	that	the	name	you	provide	to	the	filter	actually	refers	to	a	filter	driver.	A
filter	driver	is	a	program	or	set	of	commands	that	are	defined	to	execute	for	the
smudge	and	clean	operations	when	this	filter	is	run.	To	map	the	filter	names	to	the
actual	code	that	is	executed,	you	just	use	the	standard	git	config	operation.

Let's	take	a	look	at	a	simple	example	to	illustrate	how	all	of	this	works.	Suppose	you
have	a	couple	of	HTML	files	that	you	use	as	a	header	and	footer	across	multiple
divisions	in	your	company.	They	contain	a	placeholder	in	the	form	of	the	text	string
%div	to	indicate	where	the	proper	division	name	should	be	inserted.

You	want	to	use	the	smudge	and	clean	filters	to	automatically	replace	the	placeholder
with	your	division	name	(ABC)	when	you	check	the	file	out	of	Git,	and	make	sure	to
set	it	back	to	the	generic	version	if	you	make	any	other	changes	and	commit	those
changes.

The	following	listing	shows	my	two	source	files:

$	cat	div_test_header.html

<H1>Running	tests	for	division:%div</H1>

$	cat	div_test_footer.html

<H1>Division:%div	testing	summary</H1>

To	make	the	appropriate	transformations,	I'm	going	to	create	a	custom	filter	that	will
have	associated	clean	and	smudge	actions.	I'll	call	this	custom	filter
insertDivisionABC.

This	filter	will	simply	use	the	sed	command	to	substitute	ABC	for	%div,	or	vice-versa,
as	required.	To	define	this	filter	and	its	actions	for	Git,	you	can	use	the	config

command	as	follows:

$	git	config	filter.insertDivisionABC.smudge	"sed	's/%div/ABC/'"

$	git	config	filter.insertDivisionABC.clean	"sed	's/ision:ABC/ision:%div/'"

These	commands	say,	“When	you	check	out	these	files,	replace	the	occurrence	of	%div
with	ABC.	And,	if	you	commit	a	changed	version	of	this	file,	set	it	back	to	the	generic
form	(with	the	%div)	where	you	had	ABC.”	(I	include	a	part	of	division	here	in	the
replacement	string	just	to	be	more	precise.)

With	this	form	of	the	config	command,	the	parts	after	git	config	are	organized	as	[item
class,	item	name,	subitem,	subitem	value].	So,	if	you	were	to	look	at	the	actual	config
file	after	these	commands,	you	would	find	the	following	section:

$	cat	.git/config

							…

	[filter	"insertDivisionABC"]

								smudge	=	sed	's/%div/ABC/'

								clean	=	sed	's/ision:ABC/ision:%div/'

The	last	part	of	connecting	everything	together	is	to	create	a	(or	append	to	an	existing)
Git	attributes	file	with	a	line	that	tells	Git	to	run	your	filter	for	files	matching	the
desired	pattern.	The	simplest	kind	of	file	would	be	one	such	as	created	by	the
following	command:

$	echo	"div*.html	filter=insertDivisionABC"	>	.gitattributes

The	presence	of	a	.gitattributes	file	with	the	line	div*.html	filter=insertDivisionABC
tells	Git,	“For	files	matching	the	pattern,	run	the	specified	filter.”	This	then	points	to
the	commands	you	have	configured,	depending	on	whether	a	checkout	or	add	is	being
done.

After	a	checkout	with	the	attributes	file	and	the	filter	is	in	place,	your	local	file
contents	would	look	like	the	following	output:

$	cat	div_test_header.html

<H1>Running	tests	for	division:ABC</H1>

$	cat	div_test_footer.html

<H1>Division:ABC	testing	summary</H1>

Suppose	that	you	now	make	changes	to	the	local	files,	adding	the	text	full	in	one	and
all	in	the	other.	A	diff	will	take	into	account	the	filter	and	just	show	you	the
differences	without	the	substitution	being	applied.

$	git	diff

diff	--git	a/div_test_footer.html	b/div_test_footer.html

index	8a5bb93..60e32b7	100644

---	a/div_test_footer.html

+++	b/div_test_footer.html

@@	-1	+1	@@

-<H1>Division:%div	testing	summary</H1>

+<H1>Division:%div	full	testing	summary</H1>

diff	--git	a/div_test_header.html	b/div_test_header.html

index	124625e..fd1aeb6	100644

---	a/div_test_header.html

+++	b/div_test_header.html

@@	-1	+1	@@

-<H1>Running	tests	for	division:%div</H1>

+<H1>Running	all	tests	for	division:%div</H1>

If	you	now	add	the	files,	a	status	command	shows	them	as	staged	and	modified.

$	git	add	div*.html

$	git	status

On	branch	feature

Changes	to	be	committed:

		(use	"git	reset	HEAD	<file>…"	to	unstage)

								modified:			div_test_footer.html

								modified:			div_test_header.html

A	diff	command	shows	no	differences.	If	you	cat	the	local	versions	of	the	files,	they
still	show	the	substitution	from	the	smudge.

$	git	diff

$	cat	div_test_footer.html

<H1>Division:ABC	full	testing	summary</H1>

$	cat	div_test_header.html

<H1>Running	all	tests	for	division:ABC</H1>

You	know	that	the	clean	filter	should	have	removed	your	substitution,	but	the
question	is,	“How	do	you	verify	that?”	There	is	a	trick	you	can	use	with	the	show
command	to	see	the	version	in	the	staging	area—show	:0:<filename>.	Using	this
command,	you	can	verify	that	the	clean	filter	was	applied	when	the	files	were	staged.

$	git	show	:0:div_test_footer.html

<H1>Division:%div	full	testing	summary</H1>

$	git	show	:0:div_test_header.html

<H1>Running	all	tests	for	division:%div</H1>

Use	Case	4:	Tricking	Git	Merge	into	Ignoring	Files	or	Paths
For	this	use	case,	you	can	use	a	trick	to	tell	Git	not	to	merge	a	file	or	path	when	a
merge	operation	is	run	on	the	larger	set	of	files.	This	is	not	necessarily	a	common,
intended	use	case,	but	it	can	be	very	useful	and	illustrates	how	to	use	filters	on
attributes	to	accomplish	custom	tasks.

Another	type	of	attribute	available	in	the	Git	attributes	file	is	merge.	Normally,	the
merge	attribute,	if	specified,	is	resolved	to	text	or	binary.	However,	using	a	filter	in
another	way,	you	can	specify	a	program	or	command	to	run	when	the	merge	attribute

is	specified.	Normally,	handling	the	merge	filter	would	be	similar	to	defining	a	custom
mergetool	(see	Chapter	9)	that	expects	certain	arguments	and	performs	certain
behaviors.

For	your	purposes	here,	though,	you	just	need	to	specify	a	tool	or	command	that
returns	a	value	of	true.	This	is	because	Git	expects	any	kind	of	merge	filter	like	this	to
return	true	to	indicate	that	the	custom	merge	behavior	was	successful	and	you	are
done.	Another	characteristic	of	the	merge	filter	implementation	is	that	when	the
merge	has	been	completed,	the	result	is	stored	in	the	original	filename.	So,	if	you	just
return	true	here,	this	is	effectively	a	NO-OP	as	far	as	changing	the	file	is	concerned.
However,	Git	thinks	it	has	done	its	job	and	processed	this	file	as	part	of	the	merge.

To	set	this	functionality	up,	in	the	Git	attributes	file,	you	can	define	a	custom	filter	for
the	merge	attribute	to	use.	One	common	name	that	is	often	used	for	this	purpose	is
ours	to	correspond	with	the	merge	option	for	the	recursive	strategy	and	the	Ours
strategy.	For	your	purposes	here,	to	be	a	little	clearer,	you'll	use	the	name	unchanged.

Then,	to	make	this	all	work,	you	set	a	configuration	value	that	tells	Git	to	define	a
filter	driver	for	the	merge	attribute	value	of	unchanged.	This	filter	driver	just	has	to
return	true	(assuming	you	have	a	true	command	available	on	your	system).	The
command	to	configure	this	value	would	look	like	this:

$	git	config	[--global]	merge.unchanged.driver	true

Then,	in	your	Git	attributes	file,	you	can	just	specify	merge=unchanged	for	the	file	or
path.

$	cat	.gitattributes

filename.ext	merge=unchanged

When	Git	is	running	a	merge	that	includes	this	file	or	path,	it	assumes	from	the
attributes	file	that	it	should	run	the	filter	program	named	unchanged,	which	then	just
evaluates	to	true.	Git	is	done	at	that	point,	and	so	the	file	or	path	is	not	changed.

Note	that	this	trick	depends	on	a	particular	configuration	that	needs	to	be	shared	and
set	if	other	users	will	use	this	Git	attributes	file	in	this	way.

Other	Attributes
There	are	other	attributes	I	haven't	covered	that	are	available	to	use	in	a	Git	attributes
file.	Two	attributes	that	you	may	encounter	are	ident	and	diff:

ident—This	attribute	causes	a	substitution	to	occur	if	the	string	Id	is	found	in	a
file	on	checkout.	In	other	source	management	systems,	this	kind	of	substitution
results	in	items	like	userids,	dates,	and	so	on	being	substituted.	In	Git,	this	is	less
useful	because	the	string	is	just	expanded	to	include	the	SHA1	value	as	$Id:	<sha1
value>	$.	On	checkin,	the	substitution	is	reverted.

diff—This	attribute	describes	how	diffs	are	generated	for	the	matching	file	or	file
types.	In	short,	if	it	is	set	(diff),	the	diff	is	generated	as	text.	If	it	is	unset	(-diff),	it

is	treated	as	a	binary	file	when	a	diff	is	attempted.	If	it	is	unspecified,	then	the
default	diff	behavior	is	performed.	And	if	it	is	set	to	a	string,	that	string	is	treated
as	a	filter	driver	that	can	be	defined	to	do	whatever	operations	are	desired	when	a
diff	for	the	matching	files	or	file	type	is	invoked.

Example	File
Combining	all	of	these	attributes	into	an	example	Git	attributes	file	might	look	like
this:

$	cat	.gitattributes

#	Default	is	to	detect	text	files	and	perform	normalization	to	LF

*	text=auto

#	Treat	exe	files	as	binary

*.exe	binary

#	Don't	insert	CRLFs	in	our	sh	files

*.sh	-crlf

#	Set	eol	sequence	to	CRLF	for	*.txt	files

*.txt	eol=crlf

#	Don't	merge	our	home	page	file

index.html	merge=unchanged

#	Use	our	custom	smudge	and	clean	filters	for	these	files

div*.html	filter=insertDivisionABC

#	Update	text	files	in	the	misc	directory

misc/*.txt	filter=change_text

Note	that	you	have	the	text=auto	attribute	setting	for	everything	as	your	first	entry.
This	acts	as	a	sensible	default	for	normalizing	files	that	Git	detects	as	text.	This	setting
can	be	overwritten	for	specific	files	and	file	types	by	later	entries	in	the	file.

The	last	entry	here	is	one	I	didn't	use	in	the	text.	However,	it	illustrates	the	idea	that
subdirectory	paths	can	be	used	to	restrict	attributes.	In	this	case,	the	change_text
filter	will	be	applied	to	files	with	the	.txt	extension,	but	only	files	in	the	misc
subdirectory.	Files	with	the	same	extension	in	other	subdirectories	will	not	have	the
filter	applied.

Getting	Attribute	Information	for	Files
When	your	Git	attribute	files	start	to	become	large	or	complicated,	or	you	are	dealing
with	many	of	these	files,	you	may	want	to	have	a	way	to	quickly	summarize	which
attributes	are	being	applied	to	which	files	without	having	to	read	through	the	files.
Fortunately,	Git	provides	a	plumbing	command	designed	to	do	just	that:	check-attr.
(Recall	that	plumbing	commands	are	hyphenated,	action-object	names.)

The	format	for	the	check-attr	command	is	pretty	simple.	There	are	basically	two
forms.

git	check-attr	[-a	|	--all	|	attr…]	[--]	pathname…

git	check-attr	--stdin	[-z]	[-a	|	--all	|	attr…]

For	each	pathname,	the	command	displays	information	about	what	attributes	apply	to
it,	and	whether	they	are	set,	unset,	unspecified,	or	set	to	a	specific	value.	The
attributes	can	be	filtered	by	a	particular	attribute,	or	--all	to	see	all	of	them.	Some
simple	examples	from	your	custom	filter	setup	are	shown	here.

$	git	check-attr	filter	div*.html

div_test_footer.html:	filter:	insertDivisionABC

div_test_header.html:	filter:	insertDivisionABC

$	git	check-attr	div*.html	--all

div_test_footer.html:	filter:	insertDivisionABC

div_test_header.html:	filter:	insertDivisionABC

Now	you'll	look	at	the	other	main	support	file	that	Git	repositories	use,	Git	ignore.
This	file	tells	Git	what	not	to	track.

THE	GIT	IGNORE	FILE
In	addition	to	being	able	to	specify	particular	attributes	for	files	or	file	types,	Git	also
provides	a	way	to	ignore	particular	files	and	file	types.	Items	to	ignore	can	be	specified
in	a	text	file	called	a	Git	ignore	file.

Ignore	in	this	case	means	to	exclude	from	tracking	and	processing.	In	other	words,	Git
does	not	attempt	to	manage	or	change	the	indicated	files	or	directories.	They	are
automatically	ignored	if	they	exist	in	an	ignore	file.

The	Scope	of	Git	Ignore
At	the	directory	granularity,	you	can	create	a	Git	ignore	file	as	a	file	named	.gitignore
in	your	working	directory.	This	is	useful	because	this	file	can	be	committed	into	your
local	repository	and	then	pushed	to	the	remote	repository.	It	resides	in	your
repository,	with	your	code.	So,	any	user	or	process	that	clones	this	repository	will	get
the	.gitignore	file	that	tells	Git	what	to	ignore.

Similar	to	how	you	have	local,	global,	and	system	configuration	scopes,	Git	ignore	files
can	also	have	different	scopes.	The	same	file	format	can	be	stored	internally	in	the	.git
directory,	in	.git/info/exclude	(where	exclude	is	a	filename,	not	a	directory).	This	is
not	staged	and	committed	with	the	source	files	because	it	is	in	the	internal	repository,
so	it's	useful	for	personal	ignore	preferences	that	wouldn't	apply	to	other	users.	It	also
has	a	lower	precedence	than	a	.gitignore	file	in	the	working	directory.

Within	the	subdirectories	of	the	working	directory,	there	can	be	individual	.gitignore
files	(one	per	directory).	When	it	comes	time	to	evaluate	them,	Git	uses	the	Git	ignore
file	in	the	current	directory	first	and	then	the	Git	ignore	file	it	finds	that's	closest	to
the	path	being	evaluated.

So,	suppose	I	have	a	structure	like	dir1/dir2/dir3	and	I	have	.gitignore	files	in	all	three
subdirectories.	If	I	am	working	with	a	file	in	dir3,	Git	first	uses	any	ignore	information
from	there,	then	from	the	file	in	dir2,	and	finally	from	the	file	in	dir1.

Beyond	that,	you	can	have	the	internal	Git	ignore	file	in	.git/info/exclude,	and	also	a
global	Git	ignore	file.	That	one,	like	global	configuration	values,	applies	to	all
repositories	for	a	user.	The	location	of	this	file	can	be	set	explicitly	by	specifying	the
core.excludesFile	configuration	value.	This	has	a	default	value	of
$XDG_CONFIG_HOME/git/ignore.	(It	is	rare	to	have	the	$XDG_CONFIG_HOME
reference	set.	See	the	note	in	this	chapter	on	“Git's	Fourth	Configuration	File.”)	If	the
$XDG_CONFIG_HOME	reference	is	not	set,	then	you	fall	back	to
$HOME/.config/git/ignore.

Table	10.3	summarizes	the	scopes	for	Git	ignore	files,	starting	from	the	highest
priority	to	the	lowest.

Table	10.3	Scopes	and	Precedence	for	Git	Ignore	Files

Scope Name	and	Location Stored
with
Project

Use

Local subdir/.gitignore Yes
(committed)

Defines	ignore	values	for	files	in
this	subdirectory	and	any
subdirectories	below	it	that	don't
have	their	own	.gitignore	file.	This
file	resides	with	the	project.

Internal .git/info/exclude No For	settings	that	should	apply	to
the	repository,	but	not	be	stored
with	it	(that	is,	files	resulting	from
custom	workflow,
experimentation,	and	so	on)

Global Usually
$HOME/.config/git/ignore
or	as	specified	by
core.excludesFile
configuration	value

No Files	to	ignore	across	all
repositories	for	a	user	(for
example,	the	user's	text	editor's
backup	files,	which	might	be
consistent	across	all	repositories
for	one	user	but	different	for
another	user)

The	File	Format
The	file	format	for	a	Git	ignore	file	is	fairly	simple.	Here	are	the	basic	features:

Blank	lines	can	be	used	as	separators	for	readability.

Any	line	starting	with	a	#	character	is	a	comment.	(Add	a	backslash	in	front	of	the
#	if	there	is	a	filename	that	actually	starts	with	#.)

If	a	line	ends	with	a	forward	slash	(/),	Git	recognizes	that	forward	slash	as	a
directory.	It	matches	the	directory	path	and	all	things	under	the	directory,	but	not
any	files	or	links	with	the	same	name	as	the	directory.

Without	a	forward	slash	(/),	Git	tries	to	match	up	any	paths	and	patterns	specified
in	the	file	relative	to	the	repository	path.

Two	consecutive	asterisks	(**)	generally	mean	match	0	or	more	subdirectory
levels.	For	example,	b/**/e	matches	b/e,	b/c/e,	b/c/d/e,	and	so	on.

An	exclamation	point	(!)	at	the	start	of	the	line	tells	Git	to	negate	the	pattern.	Any
file	in	that	pattern	that	was	previously	excluded	(ignored)	becomes	included	again
—unless	a	parent	directory	has	been	excluded,	which	prevents	the	file's	re-
inclusion.

The	use	cases	for	this	last	kind	of	format	deserve	some	more	explanation.

Use	Cases	for	Pattern	Negation
At	first	glance,	the	idea	of	pattern	negation	might	seem	strange	in	a	Git	ignore	file.	If
you	are	going	to	include	the	file,	why	list	it	and	negate	it	instead	of	just	not	putting	it
in	the	ignore	file	in	the	first	place?

There	are	two	typical	uses	for	this	format.	One	is	to	override	a	more	general	exclusion
in	a	specific	path,	and	the	other	is	to	allow	targeted	inclusion	in	cases	where	you	want
to	exclude	most	other	items.

Overrides
Suppose	that	you	have	a	long	global	gitignore	file	that	includes	a	rule	to	ignore	backup
files	that	your	editor	produces.

$	git	config	--list	--global	|	grep	excludes

core.excludesfile=/Users/dev/.config/git/ignore

$	cat	/Users/dev/.config/git/ignore

#	Ignore	bak	files	no	matter	where	in	the	tree

*.bak

Now,	in	one	of	your	repositories,	you	decide	that	the	information	is	critical	and	it
would	be	useful	to	track	and	manage	the	backup	files	in	this	one	area.	Rather	than	re-
creating	a	local	copy	of	the	entire	global	Git	ignore	file,	you	can	just	create	the	internal
ignore	file	and	have	it	override	that	one	line.

$	cat	/Users/dev/myrepo/.git/info/exclude

#	Track	*.bak	files	for	this	repository

!*.bak

Excludes	versus	Exclude

Note	that	the	configuration	setting	for	the	global	ignore	file	is	core.excludesFile
(where	exclude	ends	with	an	s),	while	the	internal	ignore	file	is	.git/info/exclude
(without	an	s).

Now,	instances	of	the	backup	files	in	this	repository	are	tracked	on	your	system.	Note
that	since	neither	the	global	ignore	file	or	the	one	internal	to	the	repository	is
committed	into	Git,	this	will	not	affect	other	users	that	clone	the	repository.

Targeted	Inclusion
The	use	case	here	would	revolve	around	wanting	to	exclude	most	items	in	an	area,	but
include	a	small	set	of	targeted	items.	One	approach	is	to	try	and	list	everything	that
needs	to	be	ignored	down	to	a	low	level	of	detail,	leaving	only	the	small	subset	of
items	to	be	included	out	of	the	file.

However,	a	simpler	approach	is	to	list	the	higher-level	areas	in	the	ignore	file	and	then
create	a	negated	pattern	for	each	level	down	to	the	set	of	items	that	you	want
included.	Effectively,	you	are	cutting	a	hole	through	the	hierarchy	by	negating	the
explicit	subpaths	to	the	desired	set	of	items.	I	said	earlier	that	it's	not	possible	to
negate	a	file	if	the	directory	above	has	been	excluded.	This	trick	of	negating	the
directory	paths	along	the	way	allows	you	to	get	around	that	limitation.

As	an	example,	suppose	you	have	the	following	structure	in	your	local	Git	repository:

myrepo

│			.gitignore

│

└———subdir1

				│			filea.txt

				│			fileb.txt

				│

				└———subdir2

												file1.txt

												file2.txt

And	you	have	the	following	text	in	your	.gitignore	file:

$	cat	.gitignore

#	ignore	all	of	the	things	under	this	directory

subdir1/*

#	except	for	this	child	directory

!subdir1/subdir2

#	but	ignore	everything	under	it

subdir1/subdir2/*

#	except	for	this	file

!subdir1/subdir2/file1.txt

If	you	perform	an	add	operation,	because	you	have	created	a	path	for	the	one	file,

you'll	have	it	and	the	.gitignore	file	staged.	(The	.gitignore	file	will	be	staged	because
it's	in	the	current	directory.)

$	git	add

$	git	status

On	branch	master

Initial	commit

Changes	to	be	committed:

		(use	"git	rm	--cached	<file>…"	to	unstage)

								new	file:			.gitignore

								new	file:			subdir1/subdir2/file1.txt

Getting	Ignore	Information	for	Files
Like	the	check-attr	plumbing	command	to	get	attribute	information	for	paths,	Git	also
provides	a	plumbing	command	to	get	ignore	information	and	status	for	paths.	The
command	is	named	check-ignore.

The	format	for	the	check-ignore	command	is	pretty	simple;	there	are	basically	two
forms.

git	check-ignore	[options]	pathname

git	check-ignore	[options]	--stdin

For	each	pathname,	the	command	displays	information	about	whether	that	file
matches	a	specification	in	the	set	of	available	Git	ignore	files	that	affect	the	repository.
This	command	reports	back	on	matches	for	both	valid	ignore	rules	and	negated	ignore
rules	for	unstaged	files—printing	the	filename	if	there	is	a	match.

If	you	want	more	detailed	information,	you	can	add	the	--verbose	option.	This	creates
output	in	the	following	format:

<source>	<COLON>	<linenum>	<COLON>	<pattern>	<HT>	<pathname>

where	<source>	refers	to	the	location	of	the	Git	ignore	file	that	matched,	along	with
the	particular	line	number	as	noted	in	<linenum>	and	the	<pattern>	that	matched.
This	is	followed	by	the	pathname	that	was	provided	for	the	command	that	matched.

git	check-ignore	--verbose	*.bak

/Users/dev/.config/git/ignore:2:*.bak			*.bak

SUMMARY
In	this	chapter,	I've	covered	the	ideas,	scope,	format,	and	practical	uses	for	two
supporting	files	that	you	can	use	to	tell	Git	how	to	deal	with	specific	content.	These
files	can	exist	in	different	parts	of	a	Git	environment—primarily	stored	with	the	files
in	the	repository,	or	stored	internally	in	the	.git	repository	space.	Instances	of	these
two	supporting	files	that	are	stored	in	the	repository	are	part	of	the	set	of	files	that
everyone	gets	when	they	clone.	This	then	provides	a	consistent	specification
regardless	of	each	user's	environment	and	personal	configuration	because	they	will
get	it	automatically	as	part	of	the	clone.	Instances	of	these	two	supporting	files	stored
only	within	the	.git	directory	apply	only	to	the	current	user.

A	Git	attributes	file	allows	you	to	specify	different	attributes	that	dictate	how	certain
operations	behave	for	files	that	match	specified	patterns	or	names.	It	is	primarily	used
for	specifying	which	items	are	binary,	specifying	line	endings,	and	creating	custom
filters.	The	custom	filters	can	be	one	or	both	of	two	forms:	a	smudge	operation	is	a
filter	that	takes	place	when	a	file	is	checked	out	of	a	repository;	a	clean	operation	is	a
filter	that	takes	place	when	a	file	is	checked	in	to	Git.

A	Git	ignore	file	specifies	files	that	Git	should	not	track	or	manage.	Examples	might
include	generated	files	or	backup	files.	Ignore	files	that	are	stored	with	the	source	files
in	the	repository	provide	a	consistent	set	of	items	to	ignore	for	anyone	who	clones	the
repository.	An	exclude	pattern	can	be	negated	to	override	a	previous	ignore	or	filter	a
larger	set	to	include	a	more	precise	subset.

Example	attribute	and	ignore	files	for	many	different	types	of	development	have	been
created	and	contributed	back	to	public	sites	like	GitHub.	They	are	available	to
download	from	those	sites	and	use	as	starting	points.

In	the	next	chapter,	you'll	look	at	some	other	useful	commands	for	manipulating	files
in	Git	that	are	similar	to	operating	system	commands.	You'll	also	explore	some
advanced	commands	that	are	useful	for	performing	functions	like	finding	out	where	a
problem	was	first	introduced	and	teaching	Git	how	to	automatically	resolve	complex
merge	scenarios.

Chapter	11
Doing	More	with	Git

WHAT'S	IN	THIS	CHAPTER?

Stashing	work	in	progress

Learning	about	Git	commands	to	remove	and	rename	files

Searching	through	content	and	logs	in	Git

Creating	patches	and	external	archives	of	Git	content

Cleaning	up	working	directories	and	repositories

Adding	notes	to	commits	already	in	the	repository

Using	filter-branch	to	modify	repositories

Using	bisect	to	find	where	something	was	first	introduced

Using	rerere	to	remember	and	replay	resolutions	to	merge	conflicts

So	far,	most	of	this	book	has	centered	around	the	Git	workflow	and	the	more	common
source	management	operations	you	need	to	be	able	to	work	with	it.	In	this	chapter,	I
cover	some	less	common—but	nonetheless,	very	useful—commands	that	are	available
in	Git.	These	are	commands	that	you	may	not	use	very	often,	but	when	you	need	them
for	a	specific	purpose,	it's	good	to	understand	how	to	use	them.	I	begin	with	some
commands	for	working	with	file	and	directory	organization	in	your	local	environment.

MODIFYING	THE	LAYOUT	OF	FILES	AND	DIRECTORIES
IN	YOUR	LOCAL	ENVIRONMENT
When	working	with	your	OS,	there	are	basic	applications	and	commands	for	simple
workflows,	such	as	creating	and	locating	files,	seeing	what's	in	the	file	system,	and
switching	between	directories.	However,	there	are	also	supporting	commands	for
doing	things	like	copying,	renaming,	and	deleting	content.

Git	also	provides	these	commands	for	content	that	it	manages.	In	this	section,	you'll
look	at	some	of	these	layout	commands	in	Git,	with	a	focus	on	three	commands	in
particular:	stash,	mv,	and	rm.	These	commands	also	introduce	new	interaction	with
the	staging	area.	I	discuss	how	this	interaction	works	and	what	it	means	for	the	user.

stash
Imagine	you	are	a	developer	working	on	a	new	set	of	code	for	a	feature	or	bug	fix	in	a
very	specific	environment	that	you	have	set	up	just	for	this	purpose.	You	are	in	the
middle	of	making	changes	when	your	boss	tells	you	to	drop	everything	and	start
working	on	a	higher-priority	change	that	requires	the	same	environment.

To	manage	this	change	in	direction,	you	might	create	a	backup	directory	somewhere
and	copy	your	changes	that	are	in	progress	to	that	backup	area,	with	the	idea	of
retrieving	them	later.	You	could	then	set	your	environment	back	to	the	way	it	was
before	you	started	working	on	those	changes,	so	that	you	could	focus	on	the	new	task.

Chances	are,	you've	probably	encountered	some	variant	of	this	scenario	in	your
working	life,	even	if	you	aren't	a	developer.	When	working	in	a	Git	environment,	the
Git	stash	command	is	your	best	option	in	a	situation	like	this.	The	syntax	for	the	Git
stash	command	is	as	follows:

git	stash	list	[<options>]

git	stash	show	[<stash>]

git	stash	drop	[-q|--quiet]	[<stash>]

git	stash	(pop	|	apply)	[--index]	[-q|--quiet]	[<stash>]

git	stash	branch	<branchname>	[<stash>]

git	stash	[save	[-p|--patch]	[-k|--[no-]keep-index]	[-q|--quiet]

												[-u|--include-untracked]	[-a|--all]	[<message>]]

git	stash	clear

git	stash	create	[<message>]

git	stash	store	[-m|--message	<message>]	[-q|--quiet]	<commit>

Saving	Uncommitted	Changes
The	stash	command	saves	a	copy	of	your	uncommitted	changes	in	a	queue,	off	to	the
side	of	your	project.	By	uncommitted	changes,	I	mean	items	in	either	the	staging	area
or	the	working	directory	that	have	been	modified	but	not	committed	to	the	local
repository.	This	state	could	be	due	to	a	couple	of	reasons,	but	most	commonly	it
would	be	because	either

files	have	been	modified	since	the	last	commit;	or

the	last	commit	specified	a	subset	of	files	or	directories	to	commit	rather	than	all
eligible	ones.

In	either	case,	the	repository	does	not	have	the	current	version	of	those	remaining
files.	The	most	current	version	is	in	the	working	directory	or	staging	area.	As	such,
they	are	uncommitted.

Each	time	the	stash	command	is	invoked	and	there	is	uncommitted	content	(since	the
last	stash	command),	Git	creates	a	new	element	on	the	queue	to	save	that	content.
That	content	can	be	in	the	staging	area,	in	the	working	directory,	or	both.

What's	Left	in	Your	Local	Environment?
One	of	the	questions	that	comes	up	quickly	when	using	the	stash	command	is	what
state	the	local	environment	is	in	after	running	a	stash.	The	short	answer	is	that	it's	set
back	to	the	state	it	was	in	immediately	after	the	last	commit	(pointing	to	HEAD).	After
creating	the	stash	and	saving	the	uncommitted	content,	Git	is	basically	doing	a	git
reset	--hard	HEAD	operation.	However,	because	you	have	the	stash,	you	haven't	lost
your	uncommitted	changes.

Stashing	Changes
The	default	syntax	for	creating	a	stash	in	Git	is	git	stash	<options>.

Figures	11.1	and	11.2	show	a	visual	representation	of	doing	a	default	stash	(without
any	options).

In	Figure	11.1,	you	have	the	local	environment	model	that	I	am	using	throughout	the
book.	In	this	case,	the	asterisk	(*)	denotes	a	change	that	has	been	made	in	the	working
directory	and	staged	in	the	staging	area	since	the	last	time	you	did	a	commit.

Figure	11.1	Local	environment	with	an	uncommitted	change

Figure	11.2	After	the	initial	stash

Now,	you	run	your	stash	command:

$	git	stash

Figure	11.2	shows	what	happens	conceptually.	Git	creates	a	stash	of	the	staging	area
and	working	directory	with	the	uncommitted	change.	It	also	resets	the	local
environment	back	to	the	last	commit	(HEAD).

Now	you	have	your	in-progress	changes	stored	in	the	stash,	and	your	local
environment	is	clean	(in	sync	with	the	last	commit).	This	is	the	basic	operation.	Now,
let's	look	at	a	couple	of	options	for	stash	that	can	be	helpful.

Including	Untracked	Files
Recall	from	the	discussion	on	git	status	in	Chapter	6	that	when	talking	about	a	file's
relationship	with	Git,	you	can	broadly	say	it's	either	tracked	(added	to	Git	and	being
managed	by	it)	or	untracked	(not	yet	added	to	Git).

When	stashing	content	with	Git,	by	default,	it	ignores	untracked	files.	In	order	for	Git
to	stash	untracked	files,	it	is	necessary	to	include	the	-u	(--include-untracked)	option.
This	option	includes	untracked	files	from	the	working	directory	in	the	stash.

Building	on	the	current	example,	suppose	that	you've	made	another	set	of	changes
and	staged	them,	as	indicated	by	the	double	asterisks	(**)	in	Figure	11.3.	Along	with
that	change,	you	have	a	new	file	that	you've	created,	as	indicated	by	the	number	sign
(#).

Figure	11.3	Another	change	in	your	local	environment	with	an	untracked	file

If	you	want	to	stash	these	changes,	you	include	the	-u	option.

$	git	stash	-u

Figure	11.4	shows	what	things	look	like	after	this	command.	The	first	element	on	your
stash	queue	is	moved	to	stash@{1}.	The	stashed	changes	from	this	operation	are	also
added	to	the	queue	as	the	new	stash@{0}.	Again,	your	local	environment	is	reset	back
to	the	state	of	the	current	HEAD.

Figure	11.4	After	stashing,	including	the	untracked	file

Stashing	with	a	Description
Normally	when	Git	stashes	something,	it	has	a	generated	comment	associated	with
the	element,	of	the	following	form:

stash@{#}:	WIP	on	<branch>:	<SHA1	of	last	commit>	<last	commit	message>

Here,	WIP	stands	for	work	in	progress.

However,	if	you'd	like	to	have	a	more	meaningful	message	attached	to	the	element,

you	can	supply	it	when	you	do	the	stash.	This	functionality	can	be	used	to	capture
some	quick	context	for	future	reference	such	as	Changes	for	issue	#123456	or	Test	1
failed.	Note	that	this	is	intended	only	as	a	description—visible	when	listing	the
elements	of	a	queue—not	as	a	handle	or	identifier	that	can	be	used	to	select	or	retrieve
an	element.

Suppose	you	have	another	change	in	your	local	environment,	as	shown	in	Figure	11.5.

Figure	11.5	Another	change	in	your	local	environment

To	do	a	custom	comment,	you	also	need	to	specify	the	save	command	as	part	of	the
invocation	string.

$	git	stash	save	"changes	in	progress	for	issue	#12345"

After	this	command,	you	have	another	new	element	on	the	queue	and	your	local
environment	is	again	reset,	as	shown	in	Figure	11.6.

Figure	11.6	The	third	element	on	the	queue

Seeing	What's	in	the	Stash
Once	you	have	your	changes	stashed,	you	can	look	at	what	you	have	in	the	queue.	To

do	this,	you	use	the	list	option	of	the	stash	command.	So,	given	the	sequence	you	just
went	through,	if	you	run	the	following	command

$	git	stash	list

you	see	something	that	looks	like	this:

stash@{0}:	On	master:	changes	in	progress	for	issue	#12345

stash@{1}:	WIP	on	master:	1d9df4f	first	commit

stash@{2}:	WIP	on	master:	1d9df4f	first	commit

In	the	default	output,	I	have	the	name	of	the	stash	element	listed	(stash@{#}),
followed	by	information	about	the	branch	that	was	current	when	the	stash	was	made,
and	then	the	last	commit	that	the	stash	was	based	on.

This	information	is	useful	to	a	point,	but	what	if	you	want	to	see	more	detail	about	an
item	in	the	stash?	As	it	turns	out,	stash	supports	options	like	those	you	use	with	the
git	log	command.	Knowing	this,	you	have	different	ways	to	get	additional	information.
For	example,	you	can	start	by	using	the	--oneline	option,	as	in

$	git	stash	list	--oneline

which	shows	you	the	abbreviated	SHA1	values	for	each	stash	element.

8f2728f	refs/stash@{0}:	On	master:	changes	in	progress	for	issue	#12345

cc7b784	refs/stash@{1}:	WIP	on	master:	1d9df4f	first	commit

12cd281	refs/stash@{2}:	WIP	on	master:	1d9df4f	first	commit

From	there,	you	can	use	the	show	subcommand	and	pass	it	the	SHA1	value	to	see	a
quick	summary	of	the	changes	that	were	in	progress,	as	in

$	git	stash	show	cc7b784

	file1.c	|	1	+

	1	file	changed,	1	insertion(+)

For	even	more	information,	you	can	add	the	-p	(patch)	option	to	see	the	patch-style
differences	that	were	in	the	change:

$	git	stash	show	-p	cc7b784

diff	--git	a/file1.c	b/file1.c

index	f2e4113..a359806	100644

---	a/file1.c

+++	b/file1.c

@@	-1	+1,2	@@

	stuff

+new

You	now	know	how	to	stash	uncommitted	content	and	view	it	in	the	stash.	Next,	I
discuss	how	to	restore	the	content	from	the	stash	into	your	local	environment.

Restoring	Changes

When	getting	stored	changes	out	of	the	stash,	Git	attempts	to	reapply	the	stashed
changes	from	the	staging	area	back	into	your	local	environment's	staging	area	and	the
stashed	changes	from	your	working	directory	back	into	your	local	environment's
working	directory.	There	are	two	options	for	doing	this:	apply	and	pop.	These	options
can	be	used	on	any	branch,	not	just	the	branch	that	the	original	stash	was	performed
on.

The	Apply	Option
The	apply	option	attempts	to	put	your	changes	back	while	leaving	a	copy	of	the	items
as	an	element	still	in	the	queue.	Note	that	you	can	apply	from	any	element	at	any
position	in	the	queue	by	referencing	the	name	in	the	stash	(stash@{#}).	Unlike	a
more	formal	queue,	you	do	not	have	to	do	pull	elements	only	from	the	first	or	last
positions	in	the	queue.	An	example	usage	would	be

$	git	stash	apply	stash@{1}

If	the	command	is	successful,	your	staging	area	and	working	directory	are	updated
with	the	contents	of	the	element	from	the	stash	and	Git	runs	a	git	status	command	to
show	you	the	updated	status.	(Note	that	there	is	also	a	git	apply	command	that	is	used
to	apply	patches,	so	be	careful	not	to	confuse	these	two	commands.)

The	Pop	Option
The	pop	option	works	like	the	apply	option,	but	it	removes	the	element	from	the
queue	after	updating	your	environment.	Like	the	apply	option,	you	can	pop	an
element	from	any	position	in	the	queue.	An	example	would	be

$	git	stash	pop	stash@{2}

After	an	apply	and	pop	operation	in	my	example,	your	local	environment	and	queue
might	look	like	Figure	11.7.

Figure	11.7	Queue	and	local	environment	after	an	apply	and	pop	from	the	stash

Notice	that	on	the	queue,	because	you	did	the	pop	on	element	2,	you	are	now	down	to

two	elements	(0	and	1).	Also,	in	your	local	environment's	staging	area	and	working
directory,	you	have	the	combination	of	apply	and	pop.	In	this	situation,	you	didn't
have	any	merge	issues	or	conflicts,	but	that	isn't	always	the	case.	Let's	look	at	what
can	happen	when	you	do.

Merge	Considerations	When	Performing	a	Pop	or	Apply
When	you're	ready	to	bring	content	back	from	the	queue	into	your	local	environment,
chances	are	that	you	may	have	other	updates	in	your	local	environment	that	weren't
there	when	you	originally	performed	the	stash.	If	there	are	potential	merge	conflicts
between	what	you	are	trying	to	apply	or	pop	and	what's	currently	in	your	local
environment,	what	Git	does	depends	on	the	circumstances.

As	an	example,	if	you	still	have	untracked	files	in	your	working	directory	that	would
be	overwritten	by	an	apply	or	a	pop,	Git	warns	you	and	stops	trying	to	populate	from
the	queue,	as	shown	here:

$	git	stash	apply	stash@{1}

error:	The	following	untracked	working	tree	files	would	be	overwritten	by	

merge:

								file2.c

Please	move	or	remove	them	before	you	can	merge.

Aborting

Suppose	you	then	stage	file2.c	(making	it	tracked)	and	try	the	stash	again.	This	time
(assuming	there	are	no	other	untracked	files),	Git	tries	to	merge	the	stash	in.	In	this
case,	though,	if	file2.c	is	different,	you	can	get	merge	conflicts	that	you	have	to	resolve
manually.

$	git	add	file2.c

$	git	stash	apply	stash@{1}

Auto-merging	file2.c

CONFLICT	(add/add):	Merge	conflict	in	file2.c

Note	that	regardless	of	what	you	have	staged,	if	you	try	to	do	a	commit,	Git	does	not
allow	it	because	there	are	unmerged	files	locally.	The	solution	is	to	fix	the	merge
issues	first	and	then	stage	the	fixed	files.

Staging	Commands
In	previous	chapters,	you	got	used	to	the	idea	of	staging	new	content	or	updates	into
the	staging	area	before	committing	the	new	content	into	the	local	repository.	As	it
turns	out,	Git	employs	this	model	not	only	for	file	content,	but	also	for	operations	that
manipulate	the	layout	of	content	it	controls.

Examples	where	this	model	would	be	applied	are	the	commands	to	rename,	move,	or
delete	content.	For	each	of	these	commands,	when	you	execute	the	corresponding	Git
command,	two	things	happen:

1.	 The	change	in	name	or	structure	is	made	in	the	working	directory.

2.	 The	change	in	name	or	structure	is	staged	into	the	staging	area.

At	this	point,	if	you	do	a	git	status	command,	you	see	a	status	corresponding	to	the
operation	being	done	and	the	files	involved.

When	you	are	ready	to	have	the	change	applied	to	the	local	repository,	you	then	do	a
git	commit,	just	as	you	do	to	commit	content	changes.	You	can	think	of	this	as
committing	to	making	the	change	that's	staged	for	the	local	repository.	This	is	a
slightly	different	way	to	think	about	using	the	staging	area	and	committing
operational	changes.	However,	it	makes	sense	in	the	context	of	the	Git	model	if	you
think	about	it.

Take	a	look	at	the	following	sections	to	get	a	better	idea	of	how	this	model	works.

mv
The	next	command	to	consider	is	the	mv	command.	You	may	have	noticed	that	this
command	has	the	same	name	as	the	Linux	operating	system	command	mv.	It
essentially	does	the	same	thing:	it	allows	you	to	rename	a	file	or	move	it	to	a	different
location.	The	syntax	is	as	follows:

git	mv	<options>…	<args>…

Renaming	Content
In	its	simplest	form,	the	mv	command	is	just	doing	a	rename	of	a	file.	Git	does	not
track	metadata	about	renames,	but	instead	infers	this	metadata	via	the	stored	SHA1
values.	This	means	that	regardless	of	the	name	or	path	in	which	a	file	is	stored	in	a
structure,	it	has	the	same	internal	SHA1	value	inside	the	Git	repository.	If	the
destination	file	that	you	are	trying	to	use	as	the	new	name	exists,	Git	reports	this	back
as	an	error.	If	that	occurs	and	you	want	to	rename	the	file	anyway,	you	can	use	the	-f
option	to	force	the	rename.	The	syntax	is	as	follows:

$	git	mv	[old	filename]	[new	filename]

Suppose	you	issue	the	following	command	in	your	working	directory:

$	git	mv	file1	file2

If	you	now	look	in	that	directory,	you	see	file2	instead	of	file1	as	expected.	If	you	do	a
git	status	command,	you	see	the	staged	operation:

renamed:	file1	->	file2

The	change	has	been	made	in	the	working	directory	and	is	staged.	At	this	point,	no
changes	for	this	operation	have	been	made	in	the	local	repository.	To	complete	the
operation	and	have	the	change	take	effect	in	the	local	repository,	you	just	need	to	do	a
commit	operation:

$	git	commit	-m	"renaming	file1"

Now	your	file	has	been	renamed	at	all	of	the	local	levels.

Moving	Content
In	the	case	of	moving	a	file,	the	primary	difference	from	renaming	is	that	the	second
argument	to	the	mv	command	contains	a	directory.

$	git	mv	[old	filename]	[directory[new	filename]]

Moving	is	still	considered	a	rename	in	Git,	but	it	is	renaming	to	a	different	path	and
not	just	a	filename.	Again,	the	-f	option	is	available	to	force	the	rename	if	needed.	As
an	example	of	this	version	of	the	command,	suppose	you	have	a	subdirectory	subdir1
and	you	issue	the	following	command	in	your	working	directory:

$	git	mv	file2	subdir1/file3

If	you	now	look	in	subdir1,	you	see	file3	there,	as	expected.

If	you	do	a	git	status	command,	you	see	the	staged	operation,	ready	to	be	committed:

renamed:	file2	->	subdir1/file3

Once	again,	the	change	has	been	made	in	the	working	directory	and	is	staged.	At	this
point,	no	changes	for	this	operation	have	been	made	in	the	local	repository.	To
complete	the	operation	and	have	the	change	take	effect	in	the	local	repository,	you
just	need	to	do	a	commit	operation.

$	git	commit	-m	"moving	file2	to	subdir1"

rm
Like	the	mv	command,	the	rm	command	has	the	same	name	as	the	Unix	command.
Also	like	the	Unix	command,	the	purpose	of	the	rm	command	is	to	delete	(remove)
content,	from	Git.	The	syntax	for	the	rm	command	is	as	follows:

git	rm	[-f	|	--force]	[-n]	[-r]	[--cached]	[--ignore-unmatch]	[--quiet]	[--]	

<file>…		

The	rm	command	can	accept	either	filenames	or	directory	names	as	arguments.	If
directory	names	are	passed	or	a	pattern	is	used,	only	those	files	under	Git	control	are
affected.

This	command	also	operates	with	the	staging	and	commit	workflow	that	Git	uses.	Like
the	mv	command,	when	you	do	a	git	rm	command,	it	makes	the	change	locally	and
stages	it	in	the	staging	area.	An	example	status	at	this	point	would	look	like	this:

deleted:	filename

With	the	rm	command,	Git	checks	first	to	see	if	you	have	an	updated	version	of
content	in	the	working	directory.	If	you	do,	then	it	stops.	The	idea	here	is	that	you

have	local	changes	that	you	may	have	intended	to	put	into	Git.

If	you	want	to	override	Git	and	remove	the	content,	you	can	use	the	-f	option	to	force
the	removal.	If	you	have	a	staged	version	and	want	to	just	remove	it	from	the	staging
area,	you	can	use	the	--cached	option.	(Recall	from	my	discussion	on	git	diff	that	the
term	cache	is	another	[historical]	name	for	the	staging	area.)	Here	again,	you	would
do	a	git	commit	to	finalize	this	change	in	the	local	repository.

MIXING	OPERATIONS	AND	CONTENT	CHANGES

It	is	okay	to	have	a	mixture	of	updated	or	new	files	staged	as	well	as	operations
staged	at	the	same	time.	It	all	comes	down	to	staging	what	you	want	to	put	in	or
change	in	the	repository,	and	then	committing	to	it.

COMMANDS	FOR	SEARCHING
In	this	section,	I	cover	a	couple	of	ways	you	can	use	commands	in	Git	to	search	for
things.	The	first	way	is	to	use	a	specialized	command	that	bears	the	same	name	as	an
operating	system	command,	and	the	second	way	is	to	use	a	specialized	form	of	a
command	that	I've	already	covered.

grep
The	grep	command	in	Git	provides	a	convenient	(and	probably	familiar)	way	to	search
for	regular	expressions	in	your	local	environment.	The	syntax	for	git	grep	is	as
follows:

						git	grep	[-a	|	--text]	[-I]	[--textconv]	[-i	|	--ignore-case]	[-w	|	--

word-regexp]

											[-v	|	--invert-match]	[-h|-H]	[--full-name]

											[-E	|	--extended-regexp]	[-G	|	--basic-regexp]

											[-P	|	--perl-regexp]

											[-F	|	--fixed-strings]	[-n	|	--line-number]

											[-l	|	--files-with-matches]	[-L	|	--files-without-match]

											[(-O	|	--open-files-in-pager)	[<pager>]]

											[-z	|	--null]

											[-c	|	--count]	[--all-match]	[-q	|	--quiet]

											[--max-depth	<depth>]												[--color[=<when>]	|	--no-color]

											[--break]	[--heading]	[-p	|	--show-function]

											[-A	<post-context>]	[-B	<pre-context>]	[-C	<context>]

											[-W	|	--function-context]

											[--threads	<num>]

											[-f	<file>]	[-e]	<pattern>

											[--and|--or|--not|(|)|-e	<pattern>…]

											[[--[no-]exclude-standard]	[--cached	|	--no-index	|	--untracked]	|	

<tree>…]

											[--]	[<pathspec>…]

You	will	probably	recognize	some	of	these	options	as	looking	the	same	as	their
operating	system	grep	command	counterparts	(such	as	-v,	-E,	-F,	-c,	and	so	on).	In
fact,	much	of	the	functionality	of	this	grep	command	can	be	understood	by	using	it	the
same	way	as	the	operating	system	grep	command—with	an	indication	of	which	levels
in	the	local	environment	you	want	to	search.

By	default,	this	command	searches	for	the	requested	expressions	across	all	tracked
files	in	the	working	directory.	Here's	an	example:

$	git	grep	database	--	*.java

api/src/main/java/com/demo/pipeline/status/status.java:						@Path("/database")

dataaccess/src/main/java/com/demo/dao/MyDataSource.java:																			

logger.log(Level.SEVERE,	"Could	not	access	database	via	connect	string	

jdbc:mysql://"+strMySQLHost+":"+strMySQLPort+"/"+strMySQLDatabase,e);

These	options	simply	tells	the	command	to	search	for	all	instances	of	the	expression
(database)	in	files	with	the	.java	extension.	Notice	the	use	of	the	double	hyphen	(--)
separator	here.	As	with	other	Git	commands,	the	double	hyphen	separates	the

command	from	path-limiting	options.	The	part	before	the	double	hyphen	is	the	actual
command,	and	the	part	after	the	double	hyphen	is	the	selected	set	for	the	command	to
operate	against.

Git	provides	several	useful	options	to	provide	additional	information	for	the	grep
command.	One	is	the	-p	option,	which	tries	to	show	the	header	of	the	method	or
function	where	a	match	occurs.

$	git	grep	-p	database	--	*.java

api/src/main/java/com/demo/pipeline/status/V1_status.java=public	class	V1_status	

{

api/src/main/java/com/demo/pipeline/status/V1_status.java:						

@Path("/database")

dataaccess/src/main/java/com/demo/dao/MyDataSource.java=public	class	MyDataSource	

{

dataaccess/src/main/java/com/demo/dao/MyDataSource.java:																			

logger.log(Level.SEVERE,	"Could	not	access	database	via	connect	string	

jdbc:mysql://"+strMySQLHost+":"+strMySQLPort+"/"+strMySQLDatabase,e);

You	can	also	use	the	standard	git	config	command	to	configure	several	options	to	be
on	by	default	when	running	the	git	grep	command.	For	example,	to	see	line	numbers
when	running	the	command,	you	normally	need	to	pass	the	-n	option.	However,	if	you
want	this	to	always	be	the	default	option,	you	can	configure	the	git	config	setting	of
git.lineNumber	to	true.	So,	both	of	the	following	operations	would	result	in	the	output
including	line	numbers:

$	git	grep	-n	database	--	*.java

or

$	git	config	grep.lineNumber	true

$	git	grep	database	--	*.java

api/src/main/java/com/demo/pipeline/status/status.java:31:			@Path("/database")

dataaccess/src/main/java/com/demo/dao/MyDataSource.java:64:																

logger.log(Level.SEVERE,	"Could	not	access	database	via	connect	string	

jdbc:mysql://"+strMySQLHost+":"+strMySQLPort+"/"+strMySQLDatabase,e);

See	the	help	page	for	the	Git	grep	command	for	a	complete	list	of	settings	that	you	can
configure.

To	make	the	output	easier	to	read,	you	can	use	the	--break	option,	which	prints	a
separator	line	between	matches	from	different	files,	and	the	--heading	option,	which
prints	the	filename	as	a	header	above	the	matches	for	a	file	instead	of	on	each	line.
Incorporating	these	options	back	into	my	example	with	the	-p	(and	the	-n	configured
as	a	default),	you	get	the	following	output,	which	is	much	easier	to	digest:

$	git	grep	-p	--break	--heading	database	--	*.java

api/src/main/java/com/demo/pipeline/status/status.java

13=public	class	V1_status	{

31:					@Path("/database")

dataaccess/src/main/java/com/demo/dao/MyDataSource.java

18=public	class	MyDataSource	{

64:																logger.log(Level.SEVERE,	"Could	not	access	database	via	

connect	string	

jdbc:mysql://"+strMySQLHost+":"+strMySQLPort+"/"+strMySQLDatabase,e);

You	can	also	use	Boolean	operators	to	specify	how	to	grep	for	multiple	instances.	For
example,	to	require	that	two	expressions	are	found	in	the	same	line,	you	can	use	the	--
and	option.

$	git	grep	-e	'database'	--and	-e	'access'	--	*.java

dataaccess/src/main/java/com/demo/dao/MyDataSource.java:64:																

logger.log(Level.SEVERE,	"Could	not	access	database	via	connect	string	

jdbc:mysql://"+strMySQLHost+":"+strMySQLPort+"/"+strMySQLDatabase,e);

When	you	do	use	Boolean	operators,	you	need	to	meet	a	couple	of	requirements:

The	expressions	must	be	surrounded	with	quotes.

The	expressions	must	have	the	-e	option	in	front	of	them.

These	requirements	help	to	avoid	confusion	with	filenames	and	other	parts	of	the
command.

The	or	option	is	just	--or,	with	the	same	requirements	and	syntax	as	for	and.

$	git	grep	-e	'database'	--or	-e	'access'	--	*.java

api/src/main/java/com/demo/pipeline/status/status.java:31:			@Path("/database")

dataaccess/src/main/java/com/demo/dao/MyDataSource.java:64:																

logger.log(Level.SEVERE,	"Could	not	access	database	via	connect	string	

jdbc:mysql://"+strMySQLHost+":"+strMySQLPort+"/"+strMySQLDatabase,e);

Because	the	--or	option	is	the	default	Boolean	option,	the	following	command	returns
the	same	output	as	the	previous	one:

$	git	grep	-e	'database'	-e	'access'	--	*.java

So	far,	the	examples	you've	looked	at	have	scanned	the	working	directory.	The
advantages	that	the	git	grep	command	has	over	a	standard	utility	like	grep	are	that	it	is
(relatively)	faster,	and	that	it	allows	you	to	search	in	the	standard	levels	of	Git.	For
example,	you	can	tell	Git	to	grep	in	the	HEAD	revision	or	in	one	further	back.

$	git	grep	-e	'database'	HEAD		--	*.java

$	git	grep	-e	'database'	b2e575a		--	*.java

There	is	also	an	option	to	tell	Git	to	search	in	the	index	(staging	area),	--cached.	Here's
an	example:

$	git	add	config.txt

$	rm	config.txt

$	git	status	config.txt

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

Changes	to	be	committed:

		(use	"git	reset	HEAD	<file>…"	to	unstage)

								new	file:			config.txt

Changes	not	staged	for	commit:

		(use	"git	add/rm	<file>…"	to	update	what	will	be	committed)

		(use	"git	checkout	--	<file>…"	to	discard	changes	in	working	directory)

								deleted:				config.txt

$	git	grep	-e	'config'	--	'*.txt'

$	git	grep	-e	'config'	--cached	--	'*.txt'

config.txt:1:testing	config

As	suggested	in	the	usage	information	for	the	command,	grep	has	a	lot	of	other
options	and	ways	to	take	advantage	of	this	search	tool.	See	the	help	page	for	the	grep
command	for	more	details.

Git	Log	Searches
The	git	log	command	also	includes	some	very	useful	search	options.	When	using	this
facility	of	the	log	command,	you	are	primarily	searching	for	when	something	was
introduced	or	changed.

The	first	option	is	the	-S	option.	By	default,	this	option	takes	a	string	(not	a	regular
expression)	and	searches	the	commit	history	for	commits	that	add	or	delete	that
string.	(Another	way	to	think	of	this	is	that	it	searches	for	commits	that	change	the
number	of	occurrences	of	the	string.)

The	-S	option	is	often	referred	to	as	the	pickaxe	option.	There	are	various	reasons	why
it	has	this	name.	For	example,	you	can	think	of	it	as	a	pickaxe	that's	used	to	dig	into
things	as	you're	digging	into	the	history	for	a	Git	repository.	It	could	also	represent	the
shape	of	the	-S	option	specification,	which,	if	you	use	a	little	imagination,	looks
similar	to	a	pickaxe.

As	an	example	of	the	-S	or	pickaxe	option,	suppose	that	you	start	with	the	following
file:

$	cat	lines.txt

This	is	line	1.

This	is	line	2.

This	is	line	3.

In	this	line	you	should	have	line	4.

And	then	line	5.

You	then	make	a	series	of	changes.

$	git	log	--oneline

584832a	Editorial	comments

a39b87e	Change	wording	on	line	4.

f6d279d	Delete	line	5.

a0c6caa	Initial	commit	of	lines.txt

Finally,	you	arrive	at	the	following	version:

$	cat	lines.txt

This	is	line	1.

This	is	line	2.

This	is	line	3.

Line	4	should	be	on	this	line.

This	file	is	just	a	bunch	of	lines.

Do	not	add	any	more	lines.

If	you	now	use	the	pickaxe	option	to	look	for	the	string	line	5,	you	get	the	following
output:

f6d279d	Delete	line	5.

a0c6caa	Initial	commit	of	lines.txt

The	reason	for	this	is	that	commit	a0c6caa	introduced	line	5,	and	commit	f6d279d
removed	it.	The	other	commits	did	not	add	or	delete	that	string.

If	you	want	to	use	the	pickaxe	option	but	supply	a	regular	expression,	you	can	add	the
-pickaxe-regex	option.	As	the	name	suggests,	this	allows	you	to	pass	a	regular
expression	for	the	argument	to	the	pickaxe	(-S)	option.

$	git	log	--oneline	--pickaxe-regex	-S	"line	[1-3]"

a0c6caa	Initial	commit	of	lines.txt

In	this	case,	you	use	the	git	log	command	to	find	the	commits	that	added	or	deleted
occurrences	of	line	1,	line	2,	and	line	3.

A	similar	option	that	Git	provides	with	the	log	command	is	-G.	This	option	takes	a
regular	expression	and	searches	for	commits	that	have	added	or	removed	lines	in	their
patch	containing	the	search	text.

This	may	sound	just	like	the	definition	for	the	-S	-pickaxe-regex	option.	However,
consider	the	idea	that	the	patch	for	a	commit	can	change	the	text	surrounding	the
search	string	but	not	the	actual	search	string.	In	that	case,	the	number	of	occurrences
of	the	search	string	does	not	change.	Thus,	the	--pickaxe-regex	-S	option	does	not
detect	a	change	that	added	or	deleted	the	search	string	and	does	not	flag	it,	whereas
the	-G	option	does.

As	an	example,	let's	look	at	the	wording	change	I	made	for	line	4.

commit	a39b87e2112d48f561a9042f213865a76b6c27a8

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Jul	5	15:04:26	2016	-0400

				Change	wording	on	line	4.

diff	--git	a/lines.txt	b/lines.txt

index	ecba54a..1cd123c	100644

---	a/lines.txt

+++	b/lines.txt

@@	-1,4	+1,4	@@

	This	is	line	1.

	This	is	line	2.

	This	is	line	3.

-In	this	line	we	should	have	line	4.

+Line	4	should	be	on	this	line.

You	have	a	definite	change,	but	there	are	still	two	occurrences	of	“[Ll]ine	4”	in	the	file.
So,	if	you	use	the	pickaxe	regular	expression	option,	you	don't	see	this	commit.

$	git	log	--oneline	-S	"[Ll]ine	4"	--pickaxe-regex

a0c6caa	Initial	commit	of	lines.txt

However,	if	you	use	the	-G	option,	you	do.

$	git	log	--oneline	-G	"[Ll]ine	4"

a39b87e	Change	wording	on	line	4.

a0c6caa	Initial	commit	of	lines.txt

This	is	because	the	changes	in	the	line	do	not	change	the	number	of	occurrences	(add
to	or	delete	from)	of	the	search	string	in	that	line,	although	there	is	a	change	around
the	search	string.

Another	useful	option	here	is	the	one	for	tracing	the	changes	for	a	set	of	lines	or	a
function	within	a	file.	This	is	invoked	by	the	-L	option	and	has	two	different	forms:

-L	<start>,<end>:<file>
-L	:<funcname>:<file>

These	forms	are	pretty	self-explanatory.	The	first	form	takes	a	starting	and	ending	line
number	and	a	file	path.	If	you	take	an	example	from	the	file	you've	been	working	with
to	just	look	at	lines	4	and	5,	it	looks	like	this:

$	git	log	-L4,5:lines.txt

commit	584832a9379e6f67b188a04caf2ad16d89fbeb43

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Jul	5	15:10:44	2016	-0400

				Editorial	comments

diff	--git	a/lines.txt	b/lines.txt

---	a/lines.txt

+++	b/lines.txt

@@	-4,1	+4,2	@@

	Line	4	should	be	on	this	line.

+This	file	is	just	a	bunch	of	lines.

commit	a39b87e2112d48f561a9042f213865a76b6c27a8

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Tue	Jul	5	15:04:26	2016	-0400

				Change	wording	on	line	4.

diff	--git	a/lines.txt	b/lines.txt

---	a/lines.txt

+++	b/lines.txt

@@	-4,1	+4,1	@@

-In	this	line	we	should	have	line	4.

+Line	4	should	be	on	this	line.

WORKING	WITH	PATCHES	AND	ARCHIVES	FOR
CHANGES
On	many	open-source	projects	where	developers	may	be	geographically	scattered,
generating	patches	and	sharing	those	patches	via	mechanisms	such	as	e-mail	is	one
option	for	collaboration.	Individual	Git	users	are	less	likely	to	do	this	today,	but	it	is
still	good	to	know	how	to	leverage	this	functionality	in	case	you	need	to	create	a	patch
or	archive	to	share	with	someone	(such	as	a	co-worker	who	doesn't	have	Git).	This
section	covers	various	commands	related	to	generating	and	sharing	patches,	including
via	e-mail.

archive
The	git	archive	command	allows	you	to	create	an	external	packaged	version	of
commits	suitable	for	distribution	to	users	or	processes	that	may	not	have	Git.	The
syntax	is	as	follows:

							git	archive	[--format=<fmt>]	[--list]	[--prefix=<prefix>/]	[<extra>]

																									[-o	<file>	|	--output=<file>]	[--worktree-attributes]

																									[--remote=<repo>	[--exec=<git-upload-archive>]]	<tree-

ish>	[<path>…]

A	couple	of	simple	examples	here	should	give	you	a	general	idea	of	how	to	use	this
command.	For	example,	to	create	a	zip	file,	you	can	use	this	command:

$	git	archive	master	--format=zip	--output=../my_archive_as_of_date.zip

To	create	a	tarball,	you	can	use	a	command	like	this:

$	git	archive	master	--format=tar	--output=../my_archive_as_of_date.tar

This	command	creates	an	archive	of	the	latest	snapshot	from	master	as	a	compressed
file	of	the	given	format.	This	acts	like	an	export	command	in	many	other	source
management	applications,	creating	a	compressed	copy	of	the	flat	files	from	the
repository	for	the	given	branch	without	the	repository	metadata	(without	the	.git
directory).	This	archive	is	then	suitable	for	sharing	with	others,	even	those	who	don't
have	Git.

A	few	points	about	this	command:

Although	I	use	master	in	the	example,	you	can	use	any	branch,	HEAD,	tag,	or
revision.

In	this	case,	master	can	be	before	or	after	the	options.

You	can	also	specify	subdirectories	to	archive.

You	can	specify	the	desired	level	of	compression	by	supplying	a	numeric	option,	in
the	range	of	-0	to	-9,	where	-0	effectively	says	don't	compress	at	all	and	-9	is	the
highest	level	of	compression.

The	following	example	incorporates	some	of	these	points:

$	git	archive	--format=zip	mytag	subdir	-9	>	../myarchive.zip

In	this	example,	you	are	archiving	in	a	zip	format,	against	a	tag	that	you	have	put	on	a
repository,	using	only	the	subdir	subdirectory,	with	the	highest	compression	level,	and
redirecting	the	output	into	a	file	rather	than	using	the	--output	option.

bundle
Like	the	archive	command,	the	bundle	command	in	Git	can	be	used	to	create	a
separate	package	of	files	associated	with	the	repository.	The	primary	difference	here	is
twofold:

The	resulting	bundle	includes	the	underlying	repository	(the	.git	directory).

The	resulting	bundle	file	can	be	used	like	a	remote	repository.

The	primary	intention	for	the	bundle	command	is	to	allow	for	sharing	repositories	to
systems	where	a	direct	connection	(and	thus	connecting	via	the	standard	Git	protocols
[SSH,	HTTP,	and	so	on])	isn't	possible	or	practical.	Bundling	allows	you	to	store	the
repository	into	a	file	that	you	can	then	share	to	other	locations	in	any	of	the	typical
ways	(USB	drive,	e-mail,	and	so	on).

The	syntax	for	the	bundle	command	is	as	follows:

git	bundle	create	<file>	<git-rev-list-args>

git	bundle	verify	<file>

git	bundle	list-heads	<file>	[<refname>…]

git	bundle	unbundle	<file>	[<refname>…]

Note	that	this	is	another	Git	command	that	uses	subcommands.	Let's	take	a	quick
look	at	how	this	command	can	be	used.

Suppose	you	have	a	local	repository	in	directory	myrepo,	and	you	want	to	bundle	up
the	master	branch.	(See	the	“filter-branch”	section	for	information	about	git	rev-list
arguments.)	You	can	use	the	following	command:

$	git	bundle	create	../myrepo.bundle	master

Then,	you	can	transfer	the	bundle	file	to	another	system	and	clone	a	repository	from
it.

$	git	clone	-b	master	../myrepo.bundle	myrepo

NOTE

I	discuss	the	general	idea	of	cloning	in	Chapter	4.	As	a	reminder,	it	refers	to	the
idea	of	creating	a	local	repository	from	a	remote	repository	through	a	copy
process.	The	-b	master	option	here	refers	to	extracting	only	the	one	branch
because	that's	what	you	bundled.	I	discuss	cloning	in	detail	in	Chapter	12.

The	cloning	operation	here	creates	myrepo	as	your	local	repository	and	establishes	the
bundle	file	as	your	remote	repository,	just	as	if	you	had	cloned	from	a	remote
repository	on	a	server	somewhere.

There	is	a	command	you	can	use	to	look	at	which	remote	repository	is	associated	with
a	local	repository:	git	remote	-v.	If	you	change	into	the	myrepo	area	and	run	that
command,	you	see	that	the	bundle	file	is	being	used	as	your	remote	repository.

$	git	remote	-v

origin		C:/Users/bcl/bundle-demo/../myrepo.bundle	(fetch)

origin		C:/Users/bcl/bundle-demo/../myrepo.bundle	(push)

You	can	also	use	commands	similar	to	the	log	options	to	store	a	subset	of	commits	in
the	bundle.	For	example,	the	following	command	stores	the	last	five	commits:

$	git	bundle	create	../myrepo.bundle	-5	master

Or,	you	can	store	the	changes	from	the	last	five	days:

$	git	bundle	create	../myrepo.bundle	--since=5.days

As	another	example,	to	create	an	update	from	the	last	time	you	bundled,	you	can	use	a
range	starting	with	a	relative	commit	from	the	past	or	with	a	tag	that	you	applied	in
the	past	(perhaps	the	first	time	you	did	the	bundle):

$	git	bundle	create	../myrepo.bundle	master˜5..master

or

$	git	bundle	create	../myrepo.bundle	firstBundleTag..master

You	can	then	take	this	incremental	bundle	file	that	you	created	with	the	recent	range
of	commits	and	copy	it	to	the	same	location	where	you	put	the	original	bundle
(c:/users/bcl/bundle-demo/../myrepo.bundle).	After	that,	because	that	is	where	the
remote	reference	points,	you	can	use	the	bundle	like	an	updated	remote	repository.
This	means	that	you	use	commands	such	as	git	pull	(which	I	cover	in	more	detail	in
Chapter	12).

Sharing	Patches	through	E-mail
So	far	in	this	section,	I've	talked	about	packaging	up	files	and	repositories	to	share

with	others.	Since	its	early	days,	Git	has	provided	tight	integration	with	the	simpler
mailing	tools	and	formats	to	share	patches.	(Patches	here	refer	to	a	set	of	changes
extracted	from	a	Git	system	that	can	be	applied	to	another	Git	system	to	re-create	the
same	changes.)

Although	e-mail	isn't	commonly	used	anymore	to	distribute	patches,	it	can	still	have
value	in	sharing	patches	with	someone	who	doesn't	have	direct	access	to	a	repository.
Git	is	set	up	to	support	one	patch	per	e-mail,	and	it	sets	up	the	subject	line	in	the	form
[PATCH	#/total]	plus	the	first	line	of	the	commit	message.	The	[PATCH	#/total]
subject	line	provides	a	way	of	sequencing	the	patches	together	from	the	e-mails.

To	e-mail	a	patch,	you	need	to	first	create	a	patch	file.	The	Git	command	for	this	is
format-patch.	Its	syntax	is	shown	here:

										git	format-patch	[-k]	[(-o|--output-directory)	<dir>	|	--stdout]

																							[--no-thread	|	--thread[=<style>]]

																							[(--attach|--inline)[=<boundary>]	|	--no-attach]

																							[-s	|	--signoff]

																							[--signature=<signature>	|	--no-signature]

																							[--signature-file=<file>]

																							[-n	|	--numbered	|	-N	|	--no-numbered]

																							[--start-number	<n>]	[--numbered-files]

																							[--in-reply-to=Message-Id]	[--suffix=.<sfx>]

																							[--ignore-if-in-upstream]

																							[--subject-prefix=Subject-Prefix]	[(--reroll-count|-v)	

<n>]

																							[--to=<email>]	[--cc=<email>]

																							[--[no-]cover-letter]	[--quiet]	[--notes[=<ref>]]

																							[<common	diff	options>]

																							[<since>	|	<revision	range>]

Let's	look	at	an	example	of	how	to	use	this	functionality.	Suppose	you	have	the
following	history	in	your	Git	repository:

$	git	log	--oneline

ef15dca	Removing	test	subdir	on	master

f3b05f9	update	test	case

2f2ea1e	Add	in	testing	example	files

dadd160	initial	commit	of	simple	java	file

You	want	to	create	patch	files	to	share	for	the	last	three	commits.	You	use	the	-3
argument	to	tell	Git	to	create	the	patch	files	for	the	last	three	commits,	and	you	just
use	HEAD	as	your	starting	revision.

$	git	format-patch	-3	HEAD

0001-Add-in-testing-example-files.patch

0002-update-test-case.patch

0003-Removing-test-subdir-on-master.patch

The	names	that	are	the	output	of	the	command	list	the	patch	files	that	Git	created	for
each	of	the	respective	commits.

Before	I	discuss	e-mailing	these	patches,	let's	look	at	the	two	commands	that	you	can

use	to	re-create	the	changes	in	your	local	environment	using	the	patch.

apply
The	git	apply	command	allows	you	to	re-create	the	changes	specified	in	a	patch	file	to
the	working	directory	and,	optionally,	the	staging	area.	It	does	not	update	the	local
repository.	The	format	for	the	apply	command	is	as	follows:

					git	apply	[--stat]	[--numstat]	[--summary]	[--check]	[--index]	[--3way]

																[--apply]	[--no-add]	[--build-fake-ancestor=<file>]	[-R	|	--

reverse]

																[--allow-binary-replacement	|	--binary]	[--reject]	[-z]

																[-p<n>]	[-C<n>]	[--inaccurate-eof]	[--recount]	[--cached]

																[--ignore-space-change	|	--ignore-whitespace]

																[--whitespace=(nowarn|warn|fix|error|error-all)]

																[--exclude=<path>]	[--include=<path>]	[--directory=<root>]

																[--verbose]	[--unsafe-paths]	[<patch>…]

The	apply	command	is	pretty	straightforward.	You	use	the	following	form

$	git	apply	<name	of	file	in	patch	format>

to	make	the	changes	just	in	the	working	directory,	or

$	git	apply	--cached|--index	<name	of	file	in	patch	format>

to	make	the	changes	in	the	working	directory	and	in	the	staging	area	(meaning	to
stage	the	updates).	You	can	use	either	the	--cached	or	--index	option	for	this.

am
Here,	am	stands	for	apply	mailbox,	with	the	original	idea	being	to	apply	patches	that
were	in	the	legacy	mbox	format.	If	you	take	a	look	at	the	first	line	of	one	of	the	patch
files	created	via	format-patch,	you	see	that	Git	puts	a	dummy	line	in	the	file	to	make	it
look	like	the	expected	format.

$	cat	0001-Add-in-testing-example-files.patch

From	2f2ea1e30fe4630629477338a0ab8618569f0f5e	Mon	Sep	17	00:00:00	2001

So,	you	can	use	this	command	to	apply	the	patch	to	your	environment	without	having
to	read	from	an	actual	mail	source.	The	syntax	for	am	is	as	follows:

						git	am	[--signoff]	[--keep]	[--[no-]keep-cr]	[--[no-]utf8]

													[--[no-]3way]	[--interactive]	[--committer-date-is-author-date]

													[--ignore-date]	[--ignore-space-change	|	--ignore-whitespace]

													[--whitespace=<option>]	[-C<n>]	[-p<n>]	[--directory=<dir>]

													[--exclude=<path>]	[--include=<path>]	[--reject]	[-q	|	--quiet]

													[--[no-]scissors]	[-S[<keyid>]]	[--patch-format=<format>]

													[(<mbox>	|	<Maildir>)…]

						git	am	(--continue	|	--skip	|	--abort)

Notice	in	the	last	part	of	the	syntax	description	that,	like	rebase	or	merge,	am	is	a
command	that	puts	Git	into	a	state.	In	fact,	am	uses	similar	mechanisms	to	rebase

when	you	run	it.	If	the	am	operation	fails	to	complete,	you	need	to	correct	the	issues
and	use	the	--continue	option,	or	either	skip	that	part	(--skip)	or	use	--abort	to	stop
the	am	operation	and	get	out	of	the	state.	Using	the	basic	am	command	is	just	like
using	the	apply	command:

$	git	am	<name	of	file	in	patch	format>

The	key	difference	or	value	in	using	am	versus	apply	is	that,	assuming	the	patch
applies	cleanly,	am	commits	the	changes	to	the	local	repository.	The	apply	command
stops	at	the	working	directory	or	staging	area	(if	the	appropriate	option	is	applied).

So,	use	am	if	you	want	to	merge	patches	into	the	local	repository	and	apply	if	you	only
want	to	make	the	changes	in	the	working	directory	and,	optionally,	the	staging	area.

Mailing	Patch	Files

NOTE

In	this	section,	I	discuss	the	functionality	that	is	built	into	Git	for	e-mailing
patches	as	text	and	working	with	them	in	the	mbox	format.	If	you	are	not	using
the	mbox	format,	you	may	prefer	to	just	send	patch	files	as	attachments	to	avoid
having	to	save	the	text	as	a	file	and	risk	issues	with	formatting.

If	you	want	to	e-mail	patch	files,	you	can	use	the	git	send-email	command.	The	syntax
is	as	follows:

git	send-email	[options]	<file|directory|rev-list	options>…

git	send-email	--dump-aliases

The	send-email	command	actually	has	a	lot	of	options	to	specify	e-mail	configuration
values,	but	in	most	cases,	you	can	just	configure	a	couple	of	values.	The	values	you
need	to	configure	are	sendemail.from	and	sendemail.smtpserver.

$	git	config	--global	sendemail.from		<your	email	address>

$	git	config	--global	sendemail.smtpserver	<your	email	smtp	server>

Having	specified	these	values,	you	should	be	ready	to	send	the	patch	files.

$	git	send-email	--to	bcl@nclasters.org	*.patch

0001-Add-in-testing-example-files.patch

0001-Removing-test-subdir-on-master.patch

0002-update-test-case.patch

0003-Removing-test-subdir-on-master.patch

(mbox)	Adding	cc:	Brent	Laster	<bcl@nclasters.org>	from	line	'From:	Brent	Laster	

<bcl@nclasters.org>'

From:	bcl@nclasters.org

To:	bcl@nclasters.org

Subject:	[PATCH	1/3]	Add	in	testing	example	files

Date:	Thu,	30	Jun	2016	16:22:04	-0400

Message-Id:	<1467318127-10664-1-git-send-email-bcl@nclasters.org	>

X-Mailer:	git-send-email	2.8.1.windows.1

				The	Cc	list	above	has	been	expanded	by	additional

				addresses	found	in	the	patch	commit	message.	By	default

				send-email	prompts	before	sending	whenever	this	occurs.

				This	behavior	is	controlled	by	the	sendemail.confirm

				configuration	setting.

				For	additional	information,	run	'git	send-email	--help'.

				To	retain	the	current	behavior,	but	squelch	this	message,

				run	'git	config	--global	sendemail.confirm	auto'.

Send	this	email?	([y]es|[n]o|[q]uit|[a]ll):

NOTE

Notice	that	Git	prompts	you	to	confirm	that	you	want	to	send	the	e-mail.	Git	also
tells	you	that	it's	adding	(as	cc'd)	anyone	else	it	found	listed	in	the	history	for	the
patches.	This	is	normal,	but	if	you	don't	want	to	spam	others	that	Git	finds	in	the
patches,	you	can	suppress	the	cc	activity	with	--suppress-cc=<category>.	(See	the
help	page	for	the	send-email	command	for	more	information	on	these	categories.)
You	can	also	change	the	default	confirm	behavior.

Also,	if	Git	finds	an	e-mail	address	that	it	doesn't	recognize,	it	gives	you	the	option
to	edit	it,	drop	it,	or	quit	the	operation.

The	patch	files	arrive	in	the	mailbox	looking	something	like	this:

-----Original	Message-----

From:	bcl@nclasters.org	[mailto:bcl@nclasters.org]

Sent:	Thursday,	June	30,	2016	4:22	PM

To:	Brent	Laster	<bcl@nclasters.org>

Subject:	[PATCH	2/3]	update	test	case

From:	Brent	Laster	<bcl@nclasters.org>

	src/test/java/TestExample1.java	|	2	+-

	1	file	changed,	1	insertion(+),	1	deletion(-)

diff	--git	a/src/test/java/TestExample1.java	b/src/test/java/TestExample1.java	

index	2aa568e..bc84162	100644

---	a/src/test/java/TestExample1.java

+++	b/src/test/java/TestExample1.java

@@	-3,7	+3,7	@@

	import	org.junit.Assert;

	import	org.junit.Test;

-public	class	TestExample	{

+public	class	TestExample1	{

			@Test	public	void	example1()	{

--

2.8.1.windows.1

You	can	then	save	the	text	from	the	message	and	use	apply	or	am	to	incorporate	the
patches	into	your	Git	environment,	as	shown	in	the	previous	section.

NOTE

If	you	are	trying	to	save	the	text	from	the	e-mail	messages	as	a	patch	file,	be
aware	that	word-wrapping	(or	lack	thereof)	can	cause	your	saved	patch	file	not
to	apply.

In	the	examples	that	I	tried,	it	was	necessary	to	modify	the	text,	as	shown	in
Figure	11.8.	This	is	the	text	before	modification.

This	is	the	text	after	modification.

Figure	11.8	Changing	the	format	of	a	patch	received	in	e-mail

COMMANDS	FOR	CLEANING	UP
As	you	work	with	Git	over	time,	you	will	probably	build	up	some	unneeded	and
untracked	content	in	your	working	directory,	as	well	as	some	content	that	is	no	longer
used	or	referenced	in	your	local	repository.

While	there	is	no	specific	requirement	that	you	clean	up	these	areas,	Git	provides	two
commands	to	help	with	cleanup:	clean	for	the	working	directory	and	gc	(garbage
collection)	for	the	local	repository.

clean
You	can	use	the	git	clean	command	to	clean	up	untracked	files	from	your	working
directory.	The	syntax	for	this	command	is	as	follows:

git	clean	[-d]	[-f]	[-i]	[-n]	[-q]	[-e	<pattern>]	[-x	|	-X]	[--]	<path>…	

One	of	the	first	things	to	note	about	this	command	is	that	it	tries	very	hard	to	keep
you	from	accidentally	deleting	things	you	didn't	really	want	to	delete.	If	you	just	run
the	command	without	any	arguments,	you	see	the	following:

$	git	clean

fatal:	clean.requireForce	defaults	to	true	and	neither	-i,	-n,	nor	-f	given;	

refusing	to	clean

So,	Git	refuses	to	clean	the	working	directory	even	though	you	told	it	to	do	so.	Because
Git	considers	this	command	destructive	and	there	isn't	a	good	way	to	recover	from	it,
Git	requires	additional	options	or	configuration	that	indicate	you	really	want	to	do
this.	One	way	that	Git	controls	this	is	through	the	configuration	setting	for
clean.requireForce.	If	you	haven't	specifically	set	this	value	to	false,	then	it	defaults	to
true	and,	as	the	name	implies,	it	requires	the	force	option	for	the	clean	operation	to
proceed.

Suppose	you	have	a	couple	of	untracked	files	in	your	working	directory.	An	example	of
clean	with	the	force	option	to	remove	these	files	would	be	as	follows:

$	git	clean	-f

Removing	untracked1.txt

Removing	untracked2.txt

If	you	set	the	configuration	value	to	false,	you	are	telling	Git	not	to	require	the	force
option	for	the	command	to	proceed.	You	do	this	with	the	following	command:

$	git	config	--global	clean.requireForce	false

Now,	if	you	execute	a	similar	command,	you	do	not	need	the	-f	option.

$	git	clean

Removing	untracked1.txt

Removing	untracked2.txt

NOTE

In	general,	the	git	stash	command	(discussed	earlier	in	this	chapter)	is	considered
a	safer	command	to	use.	This	command	saves	the	state	of	any	work	since	the	last
commit	into	a	stash.	The	end	result	can	be	essentially	the	same,	but	the	stash
option	allows	you	to	easily	restore	items	if	needed,	as	opposed	to	the	clean
command,	which	automatically	deletes	them.

Notice	that	you	can	also	clean	a	particular	path	or	file,	as	follows:

$	git	clean	untracked1.txt

Removing	untracked1.txt

Now,	suppose	you	have	a	subdirectory	named	sub	that	contains	two	files—ignored1.txt
and	ignored2.txt—and	you	have	also	created	a	.gitignore	file	that	contains	sub	as	a
subdirectory	to	ignore.	The	help	page	for	the	clean	command	tells	you	that	the	-d
option	should	be	used	to	remove	untracked	subdirectories.	Let's	try	that	option:

$	git	clean	-d

$	git	clean	-d	sub

The	lack	of	output	in	both	cases	indicates	that	nothing	was	cleaned.	That	is	because
this	subdirectory	was	listed	as	something	for	Git	to	ignore	in	the	associated	.gitignore
file.

The	clean	command	provides	two	options	for	working	with	the	.gitignore	file:	-x	and	-
X.	Both	of	these	options	tell	clean	to	also	clean	the	items	in	the	.gitignore	file.	This	can
be	useful,	for	example,	to	clean	out	build	or	other	output.

The	difference	between	-x	and	-X	is	that	-x	allows	for	cleaning	out	everything,
including	what's	ignored,	and	-X	only	allows	for	cleaning	out	what's	ignored.	To
illustrate	this,	consider	running	these	commands	on	my	earlier	directory	example.
This	example	has	two	untracked	files	(untracked1.txt	and	untracked2.txt)	in	the	main
directory,	and	two	files	(ignored1.txt	and	ignored2.txt)	in	the	subdirectory	(sub).	The
following	output	shows	the	results	of	running	the	clean	command	with	the	two
different	options:

$	cat	.gitignore

sub

$	git	clean	-X	-d

Removing	sub/

$	git	clean	-x	-d

Removing	sub/

Removing	untracked1.txt

Removing	untracked2.txt

Notice	that	in	the	first	command	(with	-X),	only	the	contents	noted	in	the	.gitignore
file	are	cleaned.	In	the	second	command,	the	other	eligible	files	are	also	removed,	in
addition	to	the	content	indicated	by	the	.gitignore	file.	Without	the	-x	or	-X,	the
content	indicated	by	the	.gitignore	file	is	ignored.

The	clean	command	also	has	an	interactive	interface,	similar	to	the	interactive	add
and	commit	commands	I	discuss	in	Chapter	5.	To	get	into	that	mode,	you	can	add	the	-
i	(interactive)	option	when	you	invoke	the	clean	command.

$	git	clean	--interactive	-x	-d

Would	remove	the	following	items:

		sub/												untracked1.txt		untracked2.txt

***	Commands	***

				1:	clean																2:	filter	by	pattern				3:	select	by	numbers

				4:	ask	each													5:	quit																	6:	help

What	now>	

Very	briefly,	here's	what	each	of	the	first	four	options	does:

clean—executes	the	clean	command	to	do	the	actual	cleaning

filter	by	pattern—prompts	the	user	for	patterns	to	exclude	from	deletion

select	by	numbers—provides	a	list	of	the	items	to	be	deleted,	identified	by	unique
numbers,	and	allows	the	user	to	specify	items	by	entering	the	desired	number

ask	each—interactively	prompts	whether	to	delete	specific	items

Other	options	for	the	clean	command	include	-e	<pattern>	to	add	additional	patterns
to	exclude	from	deletion,	and	-n	for	a	dry	run	to	show	what	would	be	done	without
actually	making	changes.

gc
One	other	command	for	cleaning	up	Git	content	is	git	gc.	Here,	gc	stands	for	garbage
collection	and,	unlike	the	clean	command,	which	cleans	up	files	in	your	working
directory,	gc	cleans	up	internal	content	in	the	repository.	It	has	two	main	functions:

To	compress	revisions	of	files	to	save	space	and	increase	performance

To	remove	objects	that	are	no	longer	reachable	by	any	connection	in	Git

The	syntax	for	gc	is	as	follows:

git	gc	[--aggressive]	[--auto]	[--quiet]	[--prune=<date>	|	--no-prune]	[--

force]

I'll	briefly	cover	a	few	of	the	options	here:

--aggressive—tells	gc	to	do	a	more	thorough	job	of	cleaning	up	and	optimizing	the
repository.	This	option	usually	requires	significantly	longer	for	the	process	to	run.

--auto—checks	to	see	if	anything	needs	to	be	done,	in	terms	of	cleaning	up	the
repository.	If	nothing	is	to	be	done,	it	just	exits.	Some	Git	commands	may	run	this

option	automatically.

--quiet—executes	with	less	output.

--prune	|	--no-prune—specifies	whether	or	not	to	prune	loose	objects	in	the
repository	that	are	older	than	the	default	timeframe	of	two	weeks.

--force—starts	up	another	gc	operation,	even	if	one	is	already	running

For	the	best	disk	space	use	and	overall	performance,	you	should	run	git	gc	on	a	regular
basis.	Note	that,	as	I	have	mentioned,	Git	tries	very	hard	not	to	lose	any	commits	or
otherwise	clean	them	up.	So,	any	references	that	remain	to	an	object	through	indexes,
branches,	reflogs,	and	so	on,	will	keep	an	item	from	being	cleaned.	There	are	various
configuration	values	(listed	in	the	gc	help	page)	that	you	can	set	to	tell	Git	when
something	should	expire	or	be	redone.

notes
The	notes	command	can	be	very	useful,	but	it	doesn't	fit	into	any	of	the	other
groupings,	so	I	include	it	separately	here.

At	some	point	after	making	a	commit,	you	may	decide	that	there	are	additional
comments	or	other	non-code	information	that	you'd	like	to	add	with	the	commit.	If
this	is	the	most	recent	commit,	you	can	use	the	git	amend	functionality	and	update
the	commit	message.	Or,	if	this	is	later	in	the	cycle,	you	can	use	the	interactive	rebase
functionality	that	I	described	in	Chapter	9	and	use	the	reword	option.	Both	of	these
functionalities	have	the	downside	of	changing	the	SHA1	hash	of	the	commit.	For	a
recent	change	that	has	not	been	pushed	to	the	remote	repository,	that	may	be
acceptable.	However,	as	I've	consistently	warned	throughout	this	book,	changing	the
SHA1	values	of	something	that	is	already	pushed	to	the	remote	repository	where
others	may	be	consuming	it	is	problematic.	Also,	this	could	potentially	be	a	high	cost
for	just	updating	comments	or	messaging	around	the	change.

This	is	where	git	notes	comes	in.	The	notes	command	allows	you	to	add	notes	to
existing	commits	in	Git.	The	syntax	is	as	follows:

git	notes	[list	[<object>]]

git	notes	add	[-f]	[--allow-empty]	[-F	<file>	|	-m	<msg>	|	(-c	|	-C)	<object>]	

[<object>]

git	notes	copy	[-f]	(--stdin	|	<from-object>	<to-object>)

git	notes	append	[--allow-empty]	[-F	<file>	|	-m	<msg>	|	(-c	|	-C)	<object>]	

[<object>]

git	notes	edit	[--allow-empty]	[<object>]

git	notes	show	[<object>]

git	notes	merge	[-v	|	-q]	[-s	<strategy>]	<notes-ref>

git	notes	merge	--commit	[-v	|	-q]

git	notes	merge	--abort	[-v	|	-q]

git	notes	remove	[--ignore-missing]	[--stdin]	[<object>…]

git	notes	prune	[-n	|	-v]

git	notes	get-ref

Here's	a	quick	example.	Suppose	you	have	a	set	of	commits	in	your	repository	like	the

following:

$	git	log	--oneline

ef15dca	Removing	test	subdir	on	master

f3b05f9	update	test	case

2f2ea1e	Add	in	testing	example	files

dadd160	initial	commit	of	simple	java	file

You	can	add	a	note	to	any	of	the	existing	commits	by	passing	their	SHA1	value	as	the
reference	at	the	end.

$	git	notes	add	-m	"This	is	an	example	of	a	note"	2f2ea1e

Notice	that	you	can	pass	the	-m	option	to	provide	a	note,	just	as	you	can	use	that
option	to	pass	a	commit	message.	If	the	-m	option	isn't	passed,	Git	starts	up	the
default	editor,	as	it	does	if	no	-m	option	is	passed	to	a	commit.

If	you	want	to	look	at	a	specific	note,	you	can	use	the	show	subcommand.

$	git	notes	show	2f2ea1e

This	is	an	example	of	a	note

With	an	additional	option,	you	can	create	notes	in	a	custom	namespace.	For	example,
if	you	want	to	create	a	notes	namespace	for	reviews	of	previous	commits,	you	can
supply	that	namespace	to	the	--ref	option.

$	git	notes	--ref=review	add	-m	"Looks	ok	to	me"	f3b05f9

The	simplest	way	to	see	notes	is	to	use	git	log.	By	default,	this	command	shows	notes
in	the	default	namespace.	To	see	other	namespaces,	you	can	use	the	--show-notes=
<namespace>	or	--show-notes=*	option	to	see	all	of	them.

$	git	log	--show-notes=*

commit	80e224b24e834aaa8915e3113ec4fc635b060771

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Fri	Jul	1	13:01:58	2016	-0400

commit	ef15dca5c6577d077e38a05b80670024e1d92c0a

Author:	unknown	<bcl@nclasters.org>

Date:			Fri	Apr	24	12:32:50	2015	-0400

				Removing	test	subdir	on	master

commit	f3b05f9c807e197496ed5d7cd25bb6f3003e8d35

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Sat	Apr	11	19:56:39	2015	-0400

				update	test	case

Notes	(review):

				Looks	ok	to	me

commit	2f2ea1e30fe4630629477338a0ab8618569f0f5e

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Sat	Apr	11	17:34:57	2015	-0400

				Add	in	testing	example	files

Notes:

				This	is	an	example	of	a	note

commit	dadd160cf432df7a8db454bcc0eeb22988615ed9

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Sat	Jan	5	22:45:26	2013	-0500

				initial	commit	of	simple	java	file

ADVANCED	TOPICS
In	the	advanced	topics	for	this	chapter,	I	include	an	eclectic	mix	of	specialized	Git
commands.	These	are	not	commands	you	would	use	every	day	(or	even	every	month),
but	you	will	likely	need	each	of	them	at	some	point.	The	three	commands	I'll	cover	are
filter-branch,	bisect,	and	rerere.

filter-branch	is	for	splitting	or	tweaking	repositories	(sometimes	using	another
command,	rev-list).

bisect	is	for	quickly	finding	where	a	problem	or	change	was	introduced.

rerere	is	for	teaching	Git	how	to	automatically	resolve	custom	merge	situations
and	having	it	remember	and	execute	the	solution	if	the	situation	is	encountered
again.

filter-branch
In	most	cases	throughout	this	book,	you've	been	dealing	with	user-friendly	porcelain
commands	that	are	focused	on	typical	user	operations	rather	than	utility	commands.
However,	one	of	the	plumbing	commands	can	prove	very	useful	and	is	worth	covering
at	a	high	level	with	some	simple	examples:	filter-branch.

The	syntax	for	filter-branch	is	as	follows:

git	filter-branch	[--env-filter	<command>]	[--tree-filter	<command>]

							[--index-filter	<command>]	[--parent-filter	<command>]

							[--msg-filter	<command>]	[--commit-filter	<command>]

							[--tag-name-filter	<command>]	[--subdirectory-filter	<directory>]

							[--prune-empty]

							[--original	<namespace>]	[-d	<directory>]	[-f	|	--force]

							[--]	[<rev-list	options>…]

There	are	a	couple	of	things	worth	pointing	out	about	the	syntax.	First,	notice	that	a
number	of	different	types	of	filters	can	be	supplied	to	the	command.	You	can	think	of
these	filters	as	being	like	domains—that	is,	operating	against	messages,	commits,
subdirectories,	and	so	on.	In	some	cases,	this	is	the	area	the	command	works	against,
and	in	other	cases,	it's	the	area	the	command	uses	to	do	its	work.

Notice	that	most	of	these	filters	take	an	additional	<command>.	The	idea	here	is	that
filter-branch	is	traversing	the	commits	and	file	hierarchies	for	the	specified	domains
and	executing	the	specified	commands	against	those	objects	in	the	domains	as	it	goes.

The	exception	to	this	flow	for	a	filter	is	the	subdirectory	filter,	which	takes	a
subdirectory	as	an	argument	instead	of	a	command.	This	filter	is	used	primarily	to
split	subdirectories	out	into	separate	repositories.

rev-list
Notice	the	<rev-list	options>	in	the	last	line	on	the	command	line	in	the	previous
section.	Git	rev-list	is	another	plumbing	command.	Its	main	use	is	to	list	a	set	of

commits	bounded	by	some	range	or	criteria.	It's	pretty	straightforward	to	use,	so	I'll
just	share	the	syntax	here.	You	can	use	the	rev-list	help	page	to	find	out	more	details
on	specifying	ranges	if	you're	interested.

								git	rev-list	[--max-count=<number>]

																				[--skip=<number>]

																				[--max-age=<timestamp>]

																				.	.	.	(lots	of	other	omitted	options)

																				[--count]

																				[--use-bitmap-index]

																				<commit>…		[--	<paths>…

So	what	does	rev-list	have	to	do	with	filter-branch?	Rev-list	options	can	be	used	to
bound	the	set	of	things	for	filter-branch	to	operate	against.	In	most	cases,	if	you	need
to	supply	an	option	for	rev-list,	you	can	just	use	the	--all	option	to	indicate	all
commits.

Note,	however,	that	when	using	filter-branch,	you	have	to	use	the	revision	separator,
the	double	hyphen	(--),	before	options	intended	specifically	for	rev-list.	This	is	to
avoid	confusion	with	options	intended	specifically	for	filter-branch.

WARNING

The	standard	warning	about	changing	things	already	pushed	to	the	remote
repository	applies	here	as	well.	If	you	plan	to	modify	a	local	repository	using	this
command	that	will	be	pushed	back	to	an	existing	remote	repository,	make	sure	to
coordinate	with	anyone	else	who	may	already	be	using	a	pre-filter-branch	version
of	the	remote	repository.

Precautions
If	the	following	section	is	not	clear,	refer	to	Chapter	12,	where	I	discuss	remotes.

When	pushing	the	results	of	a	filter	branch	to	a	new	destination	remote	repository,
take	care	not	to	use	the	existing	remote	name	in	the	push	command	and	overwrite	the
old	repository	(unless	that's	your	intent).	Some	people	recommend	removing	the
reference	to	the	old	remote	to	avoid	accidentally	overwriting	things.	However,	if	you
do	that,	and	you	have	remote	tracking	branches	that	you	have	not	branched	locally
(that	is,	origin/foo	versus	foo),	you	will	lose	those	references	when	you	remove	the
remote	reference.	In	those	cases,	it's	a	good	idea	to	create	the	local	branch	first	via	git
branch	<foo>	before	removing	the	reference.

To	remove	the	reference,	assuming	you	have	a	remote	named	origin	that	can	be
disconnected,	you	can	use	the	command	-	git	remote	rm	origin.

Also,	if	you	have	other	changes	in	the	repository,	you	may	want	to	make	a	copy	of	the
repository	before	running	a	filter-branch.	I	talk	later	about	how	to	undo	a	filter
branch.

Examples
Let's	take	a	look	at	a	couple	of	examples	of	how	you	can	use	filter-branch.	Note	that
while	these	are	simple	examples,	it	is	possible	to	do	much	more	complicated	things
because	you	can	pass	any	executable	script,	program,	or	command	as	a	<command>
(for	the	filters	that	take	<command>	arguments).

Example	1:	Splitting	a	Subdirectory	Out	into	a	Separate	Repository
In	the	first	example,	you'll	use	the	subdirectory	filter.	This	filter	does	not	take	a
command	but	rather	a	subdirectory.	The	most	common	use	for	this	filter	is	to	split	out
an	entire	subdirectory	into	a	separate	repository.	For	that,	the	syntax	is
straightforward.

Suppose	you	have	created	or	cloned	a	structure	into	a	local	repository	that	looks	like
this:

$	ls

agents.sql											db.properties												sonar-project.properties

api/																	debug.save															tree.out

build.gradle									gradle.properties								util/

build.gradle.jetty			gradle.properties.admin		web/

build.gradle.tomcat		gradle.properties.safe

dataaccess/										settings.gradle

You	are	interested	in	splitting	the	web	subdirectory	tree	out	into	its	own	repository.
First,	you	note	what	the	structure	looks	like	under	web,	as	well	as	the	log,	for	a
reference	point.

$	ls	-la	web

total	36

drwxr-xr-x	1	bcl	1049089					0	Jun	16	14:25	./

drwxr-xr-x	1	bcl	1049089					0	Jun	16	18:21	../

-rw-r--r--	1	bcl	1049089	18905	Jun	16	14:25	.classpath

-rw-r--r--	1	bcl	1049089		1112	Jun	16	14:25	.project

drwxr-xr-x	1	bcl	1049089					0	Jun	16	14:25	.settings/

drwxr-xr-x	1	bcl	1049089					0	Jun	16	14:25	src/

$	git	log	--oneline

7ae0228	adding	some	initial	testing	examples

4758f9e	fix	conflicts

d8a1065	adding	updates

f64bd2c	update	for	latest	changes	to	make	web	server	generic	and	compatible	with	

tomcat

0c191a4	update	for	retrieving	artifact	from	artifactory

1e8173e	add	in	sample	tests	and	jacoco	configuration

c228ad7	Update	gradle	and	remove	tmp	files

82b07c9	Adding	sonar	properties	file

845bf97	update	script

4a4fe0e	updated	to	publish	to	artifactory

b2e575a	sql	to	recreate	db

c6b5cbd	update	for	db.properties

be42303	initial	add	of	files	from	gradle	build

$	git	log	--oneline	web

4758f9e	fix	conflicts

d8a1065	adding	updates

f64bd2c	update	for	latest	changes	to	make	web	server	generic	and	compatible	with	

tomcat

c228ad7	Update	gradle	and	remove	tmp	files

c6b5cbd	update	for	db.properties

be42303	initial	add	of	files	from	gradle	build

Now,	you	can	run	the	actual	filter-branch	command.

$	git	filter-branch	-f	--subdirectory-filter	web	--	--all

Rewrite	be42303ffb9356b8e27804ce3762afdeea624c64	(1/6)	(0	seconds	passed,	

remainRewrite	c6b5cbd8805bc7b1b411a89be66adccc037df553	(2/6)	(1	seconds	passed,	

remainRewrite	f64bd2ce520e9a3df4259152a139d259a763bc31	(2/6)	(1	seconds	passed,	

remainRewrite	d8a1065e9709d2c5ee20f62fd4e338fe35666c65	(2/6)	(1	seconds	passed,	

remainRewrite	c228ad75ef060707ef2905f8bd46012ed67e718b	(5/6)	(5	seconds	passed,	

remainRewrite	4758f9e7a9cbeb8dfea0a37a416b46d823ffa95a	(5/6)	(5	seconds	passed,	

remaining	1	predicted)

Ref	'refs/heads/master'	was	rewritten

Notice	the	messages	about	rewriting	SHA1	values.	This	is	Git	performing	the
operations	it	needs	to	in	the	SHA1s	in	the	repository	that	have	to	do	with	the
subdirectory	web.	At	the	end	is	the	message	that	refs/heads/master	was	rewritten.
This	is	what	you're	looking	for	to	indicate	something	was	done.	If	it	wasn't	rewritten,
that	would	mean	it	was	still	pointing	to	the	old	structure.	You	can	now	do	an	ls
command	and	a	git	log	command	to	see	what	the	repository	looks	like.

$	ls	-la

total	100

drwxr-xr-x	1	bcl	1049089					0	Jun	16	18:26	./

drwxr-xr-x	1	bcl	1049089					0	Jun	16	13:20	../

-rw-r--r--	1	bcl	1049089	18905	Jun	16	18:26	.classpath

drwxr-xr-x	1	bcl	1049089					0	Jun	16	18:26	.git/

-rw-r--r--	1	bcl	1049089		1112	Jun	16	18:26	.project

drwxr-xr-x	1	bcl	1049089					0	Jun	16	18:26	.settings/

drwxr-xr-x	1	bcl	1049089					0	Jun	16	18:26	src/

$	git	log	--oneline

88975c2	fix	conflicts

30bb02b	adding	updates

80233a6	update	for	latest	changes	to	make	web	server	generic	and	compatible	with	

tomcat

eea95f7	Update	gradle	and	remove	tmp	files

5172f34	update	for	db.properties

e5a264f	initial	add	of	files	from	gradle	build

Notice	that	your	repository	now	consists	of	only	the	web	pieces,	as	intended.

Undoing	a	filter-branch
While	the	current	HEAD	of	this	repository	now	only	points	to	the	web	subtree,	the
commits	that	make	up	the	remaining	structure	are	still	there—just	not	accessible	in
this	chain.	This	is	one	of	the	reasons	that	a	filter-branch	to	split	or	remove	content
doesn't	necessarily	make	the	repository	any	smaller.	(The	online	help	page	for	filter-
branch	discusses	the	remaining	steps	that	you	have	to	follow	to	actually	remove
content	and	shrink	the	repository.)

However,	this	is	good	news	for	you	because	it	means	that,	as	with	nearly	any	other
repository	modification,	you	can	undo	the	operation	by	just	using	a	reset	to	a	point
before	the	operation.	Git	does	keep	a	backup	of	the	previous	reference	pointed	to	by
HEAD	before	the	filter-branch.	Assuming	you	were	working	in	the	master	branch,	that
SHA1	value	can	be	found	in	the	following	path:

$	cat	.git/refs/original/refs/heads/master

7ae022891d25aa46b86cf8df3c66204f0272f447

So,	you	can	simply	run	the	command,	git	reset	--hard	7ae02289.	Or,	you	can	use	the
git	reflog	command	to	find	the	relative	reference	before	the	operation	and	then	run
the	command,	git	reset	--hard	HEAD@{<relative	offset>}.

Example	2:	Deleting	a	File	from	All	of	the	History
Suppose	that	you	realize	a	file	with	sensitive	data	was	committed	into	a	repository
weeks	or	months	ago.	A	git	rm	command	will	remove	the	current	instance	of	the	file,
but	the	previous	versions	will	still	be	in	the	repository.

To	remove	a	file	from	the	history,	you	can	use	either	the	tree-filter	or	the	index-filter
option.	Because	the	index-filter	option	can	use	the	index	instead	of	the	working	tree
(think	removing	in	the	staging	area	versus	checking	out	and	removing),	this	option
will	be	faster.	Like	most	other	filters,	the	index-filter	option	takes	a	command	as	an
argument	to	apply	when	it	encounters	an	instance	of	the	thing	you	are	trying	to	filter
out.	For	your	purposes,	you	can	use	the	git	rm	command	here	to	simplify	the	task.	You
add	the	--cached	option	because	you're	working	in	the	index.

There's	one	additional	problem	you	can	run	into,	though.	Stuck	within	the	help	page
for	filter-branch	is	this	line:	“If	any	evaluation	of	<command>	returns	a	non-zero	exit
status,	the	whole	operation	will	be	aborted.”	This	means	that	if	you	are	trying	to	apply
a	command	like	git	rm	to	a	commit	that	doesn't	have	it,	the	non-zero	status	for	that
commit	will	cause	the	operation	to	abort.	So,	to	ensure	that	doesn't	happen,	you	need
to	add	the	--ignore-unmatched	option	to	the	git	rm	command.	This	tells	the	command
to	exit	with	a	zero	return	code	even	if	none	of	the	files	match.	So,	your	command	to
remove	a	file	becomes

$	git	filter-branch	--index-filter	'git	rm	--cached	--ignore-unmatch	<relative	

path	to	file>'	<branch	name>

Suppose	you	had	a	branch	in	your	repository	where	a	file	with	a	temporary	password
named	tmp_pass.txt	had	inadvertently	been	introduced	to	the	repository	at	some
point	in	the	past.	This	was	done	on	a	branch	named	fix_secure	before	that	branch	was
merged	into	master.	This	is	discovered	late	in	the	cycle	and	you	need	to	remove	it
from	the	repository.

To	handle	this	situation,	you	need	to	run	a	similar	command	for	each	branch.

$	git	filter-branch	-f	--index-filter	'git	rm	--cached	--ignore-unmatch	

tmp_pass.txt'	fix_secure

Rewrite	50789669c4d4a4609ce06840f354eb6119884843	(1/6)	(0	seconds	passed,	

remainRewrite	298f4ac9c3a56b1e7e85a0af3fb9ba6738f4c4c2	(2/6)	(1	seconds	passed,	

remainRewrite	2c3a1194fb5fe190c1f81bb6e807e83be2732146	(2/6)	(1	seconds	passed,	

remainRewrite	a9528538a9dc6bc5f2955f0ed556fe2d7b0c8f79	(2/6)	(1	seconds	passed,	

remainRewrite	b8d05eea4509d98d39729c682a891da037c861ee	(5/6)	(4	seconds	passed,	

remaining	0	predicted)				rm	'tmp_pass.txt'

Rewrite	6ca7f0a69701bdb0412e5840676ad0b4c682eb85	(5/6)	(4	seconds	passed,	

remaining	0	predicted)

Ref	'refs/heads/fix_secure'	was	rewritten

In	this	second	command,	you	add	the	-f	parameter	for	filter-branch.	This	is	because
there	is	already	an	internal	backup	file	that	says	what	the	branch	pointed	to	before
you	ran	this	command.	Git	is	storing	that	backup	from	the	last	run.	Git	only	stores
one	backup	reference,	so	it	needs	to	be	told	that	it's	okay	to	overwrite	that	reference.

$	git	filter-branch	-f	--index-filter	'git	rm	--cached	--ignore-unmatch	

tmp_pass.txt'	HEAD

Rewrite	50789669c4d4a4609ce06840f354eb6119884843	(1/8)	(0	seconds	passed,	

remainRewrite	298f4ac9c3a56b1e7e85a0af3fb9ba6738f4c4c2	(2/8)	(1	seconds	passed,	

remainRewrite	2c3a1194fb5fe190c1f81bb6e807e83be2732146	(2/8)	(1	seconds	passed,	

remainRewrite	a9528538a9dc6bc5f2955f0ed556fe2d7b0c8f79	(2/8)	(1	seconds	passed,	

remainRewrite	b8d05eea4509d98d39729c682a891da037c861ee	(5/8)	(4	seconds	passed,	

remaining	2	predicted)				rm	'tmp_pass.txt'

Rewrite	295070e1e2e7748b4f1c753d6d16b3de4c25fc55	(5/8)	(4	seconds	passed,	

remaining	2	predicted)				rm	'tmp_pass.txt'

Rewrite	bbe20a408cc413a949e6eaef2d9631fd7c81b22b	(7/8)	(6	seconds	passed,	

remaining	0	predicted)				rm	'tmp_pass.txt'

Rewrite	e36eb926872bbf54d58d8ea0934f684771a30b3a	(7/8)	(6	seconds	passed,	

remaining	0	predicted)

Ref	'refs/heads/master'	was	rewritten

In	the	second	example,	you	can	use	HEAD	because	you	were	currently	on	master.

Let's	look	at	one	more	use	case.	Suppose	that	instead	of	just	being	in	the	current
directory,	the	tmp_pass.txt	file	was	recently	moved	into	a	temp	directory.	The
approach	is	similar	for	this	situation,	except	that,	on	each	branch	where	this	situation
exists,	you	need	to	change	the	path	to	be	the	directory	name	and	add	the	-r	option	to
the	command.

$	git	filter-branch	-f	--index-filter	'git	rm	-r	--cached	--ignore-unmatch	

temp'	fix_secure

Rewrite	50789669c4d4a4609ce06840f354eb6119884843	(1/6)	(0	seconds	passed,	

remainRewrite	298f4ac9c3a56b1e7e85a0af3fb9ba6738f4c4c2	(2/6)	(1	seconds	passed,	

remainRewrite	2c3a1194fb5fe190c1f81bb6e807e83be2732146	(2/6)	(1	seconds	passed,	

remainRewrite	a9528538a9dc6bc5f2955f0ed556fe2d7b0c8f79	(2/6)	(1	seconds	passed,	

remainRewrite	887f5b38c4aa7831feb7af1b5d122df686aa26f6	(5/6)	(4	seconds	passed,	

remainRewrite	a9b79bbf6951abcd89130ef578cbb6fc31c65cfd	(5/6)	(4	seconds	passed,	

remaining	0	predicted)				rm	'temp/tmp_pass.txt'

Ref	'refs/heads/fix_secure'	was	rewritten

NOTE

If	you	want	to	verify	whether	a	current	file	was	previously	renamed	or	moved
from	another	location,	you	can	use	the	--follow	option	for	git	log.	Here's	an
example	that	uses	this	option	to	show	the	history	information	for	a	file	in	its
current	location	and	with	its	previous	location	and	name:

$	git	log	--follow	--name-only	temp/tmp_pass.txt

commit	e36eb926872bbf54d58d8ea0934f684771a30b3a

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Fri	Jun	17	12:04:28	2016	-0400

				update

temp/tmp_pass.txt

commit	b8d05eea4509d98d39729c682a891da037c861ee

Author:	Brent	Laster	<bcl@nclasters.org>

Date:			Fri	Jun	17	11:54:12	2016	-0400

				needed	to	fix	another	place

tmp_pass.txt

Here	are	a	few	things	to	consider	when	removing	files:

The	filter-branch's	rm	command	needs	to	specify	the	file	or	directory	path	to	the
item	you	want	to	remove.	This	may	involve	multiple	paths	if	the	file	has	been
moved	or	renamed.

The	filter-branch	needs	to	be	run	against	each	branch	where	you	want	to	do	the
removal.

The	filter-branch	will	rewrite	affected	SHA1s,	so	the	SHA1	values	in	the	chain	will
be	different.

The	original	SHA1s	are	still	there	for	the	time	being,	so	you	can	reset	back	to	them
to	undo	the	filter-branch.

Because	the	original	SHA1s	are	still	there,	this	will	not	immediately	shrink	the	size
of	the	repository.	The	help	page	for	filter-branch	contains	more	information	about
what	has	to	be	done	to	shrink	the	repository.

Example	3:	Changing	the	E-mail	of	a	Set	of	Commits
The	last	example	shows	how	to	change	the	e-mail	for	a	set	of	commits.	This	example
illustrates	using	another	filter,	the	environment	filter,	as	well	as	only	operating
against	a	subset	of	commits	in	the	current	branch.

Suppose	that	you	want	to	change	the	last	three	commits	in	your	history	to	indicate

that	they	were	done	at	your	business	instead	of	on	your	personal	system.	Currently,
your	history	looks	like	this	(using	a	formatted	log	output	to	show	the	e-mail):

$	git	log	--pretty=format:"%h	%ae	|	%s	%d"

f713a23	bcl@nclasters.org	|	update		(HEAD	->	master,	

refs/original/refs/heads/master)

1d60e15	bcl@nclasters.org	|	prepare	for	release

11e90d5	bcl@nclasters.org	|	create	license	file

6aa64e2	bcl@nclasters.org	|	needed	to	fix	another	place

fe41715	bcl@nclasters.org	|	fix	for	secure

b7b59f2	bcl@nclasters.org	|	update	for	support	code

7e0e17f	bcl@nclasters.org	|	update	core

e1214d9	bcl@nclasters.org	|	add	initial	files

To	change	the	e-mail	portion	here,	you	can	use	the	environment	filter	for	filter-
branch.	Environment	variables	can	then	be	used	and	set	by	the	commands	that	you
pass	in.	This	updated	environment	is	then	used	in	the	course	of	redoing	the	chosen
commits.

In	this	case,	you	update	the	author	e-mail	by	setting	the	environment	variable
GIT_AUTHOR_EMAIL.	One	key	point	here	is	that	you	have	to	be	sure	to	export	the
new	value	after	you	modify	it	so	that	it	will	be	set	for	the	commit	operation	that	is
updating	things.	Your	command	looks	like	this	if	you	only	want	to	change	the	last
three	commits:

$	git	filter-branch	-f	--env-filter	'GIT_AUTHOR_EMAIL=bcl@mycompany.com;	export	

GIT_AUTHOR_EMAIL'	--	HEAD˜3..HEAD

Rewrite	11e90d549c65da2a2c60d790f87bd1ddc1831dfa	(1/3)	(0	seconds	passed,	

remaining	0	predicted)

Rewrite	1d60e1557b33ea181066df85f3f6b9e633d9e325	(2/3)	(1	seconds	passed,	

remaining	0	predicted)

Rewrite	f713a23ae271e9f261f4dc25ef15a00d95c9ee41	(2/3)	(1	seconds	passed,	

remaining	0	predicted)

Ref	'refs/heads/master'	was	rewritten

Notice	that	you	pass	the	-f	option	to	override	the	last	backup	again,	and	for	the	rev-list
range	option	you	are	passing	a	range	from	the	oldest	to	the	newest	for	what	you	want
to	change.	The	first	value	in	the	range	is	not	changed.	Read	this	as	“Everything	after
HEAD˜3	up	to	the	current	HEAD”,	which	would	translate	into	HEAD˜2,	HEAD˜1,	and
HEAD.

If	you	look	at	the	log	before	you	did	the	filter-branch,	you	can	see	that	the	SHA1
values	noted	as	Rewrite	are	the	most	recent	three	values	in	your	log.	And	if	you	look
at	the	log	after	the	filter-branch	(the	following	code),	you	can	see	that	the	most	recent
three	entries	in	your	log	have	different	SHA1	values	since	they	were	rewritten	(and
have	the	updated	e-mail),	while	the	remaining	entries	in	your	log	have	the	same	SHA1
values	as	before.

$	git	log	--pretty=format:"%h	%ae	|	%s	%d"																																																		

2b92751	bcl@mycompany.com	|	update		(HEAD	->	master)

bd56c6a	bcl@mycompany.com	|	prepare	for	release

bb0bbce	bcl@mycompany.com	|	create	license	file

6aa64e2	bcl@nclasters.org	|	needed	to	fix	another	place

fe41715	bcl@nclasters.org	|	fix	for	secure

b7b59f2	bcl@nclasters.org	|	update	for	support	code

7e0e17f	bcl@nclasters.org	|	update	core

e1214d9	bcl@nclasters.org	|	add	initial	files

bisect
Another	useful	tool	that	Git	provides	is	bisect.	The	bisect	command	provides	a
mechanism	for	quickly	locating	where	a	problem	or	change	was	introduced	in	a	range
of	commits.

The	bisect	command	effectively	implements	an	automated	binary	search	across
commits	in	Git.	Starting	from	an	initial	range	specified	between	a	known	bad	revision
and	a	known	good	revision,	Git	proceeds	to	keep	dividing	the	remaining	revisions
roughly	in	half	each	time	until	the	user	can	narrow	down	that	a	particular	revision
was	the	first	time	a	change	was	introduced.	Most	commonly,	this	is	used	for
debugging	a	problem—for	example,	when	a	bug	first	started	occurring—so	that
developers	can	hone	in	on	what	code	change	caused	the	issue.

The	bisect	command	is	a	git	command	that	is	really	an	application	in	itself.	It	takes	a
series	of	subcommands	as	arguments	to	initiate,	end,	and	manage	the	process.	The
syntax	looks	like	this:

git	bisect	start	[--term-{old,good}=<term>	--term-{new,bad}=<term>]

									[--no-checkout]	[<bad>	[<good>…]]	[--]	[<paths>…]

git	bisect	(bad|new)	[<rev>]

git	bisect	(good|old)	[<rev>…]

git	bisect	terms	[--term-good	|	--term-bad]

git	bisect	skip	[(<rev>|<range>)…]

git	bisect	reset	[<commit>]

git	bisect	visualize

git	bisect	replay	<logfile>

git	bisect	log

git	bisect	run	<cmd>…

git	bisect	help

I	won't	dive	into	all	of	these	subcommands,	but	I	will	touch	on	the	core	components
needed	to	use	the	command.

It's	also	useful	to	understand,	when	starting	out,	that	bisect	is	another	one	of	the	Git
state	commands,	meaning	that	once	you	start	this	command,	you	are	in	the	bisecting
state	in	Git	until	you	complete	the	workflow	or	end	it.	This	is	similar	to	other	state
commands	that	I	have	discussed,	such	as	merging,	rebasing,	and	cherry-picking.
Unlike	those	commands,	though,	bisect	does	not	have	an	--abort	subcommand.	To	end
a	bisect,	you	do	a	reset,	as	follows:

$	git	bisect	reset

or

$	git	bisect	reset	HEAD

There	are	two	ways	to	get	started	with	bisect.	One	way	is	to	start	with	a	current
revision	that	is	known	to	be	bad,	then	start	the	operation,	check	out	a	known	previous
good	revision	to	identify	the	starting	range,	and	go	from	there.	A	second	way	to	start
the	operation	is	to	pass	a	starting	and	ending	range	to	the	command	invocation,	such
as	this:

$	git	bisect	start	HEAD		HEAD˜10

Here,	HEAD	represents	a	known	bad	revision	and	HEAD˜10	represents	a	known	good
revision—ten	commits	before	current	HEAD.	This	establishes	your	starting	range	and
starts	the	operation	in	one	command.

Once	the	starting	range	is	specified,	the	bisect	good	or	bisect	bad	subcommand	is	used
to	indicate	the	state	of	the	currently	selected	commit	as	the	process	continues.	Git
relies	on	the	user	to	tell	it	whether	the	current	commit	it	selected	is	good	or	bad.
Armed	with	that	information,	Git	then	selects	a	commit	roughly	in	the	middle	of	the
remaining	range	of	candidates	and	makes	it	available	for	the	user	to	test	next.	This
process	continues	until	the	remaining	range	becomes	small	enough	that	Git	and	the
user	can	zero	in	on	the	first	commit	where	the	problem	occurred.

Let's	look	at	an	example.	Figure	11.9	shows	a	series	of	commits	in	the	local	repository
and	a	working	directory.	You	are	trying	to	figure	out	where	a	problem	was	introduced
in	the	code.	First,	you	check	out	the	current	version—version	10—and	try	it.	As
suggested	by	the	X	in	the	figure,	this	version	doesn't	work.

Figure	11.9	Starting	state	for	bisect

From	there,	you	can	begin	the	bisect	process	to	find	the	first	bad	revision.	You	can	do
that	the	simple	way	using

$	git	bisect	start

Then,	you	indicate	that	the	current	revision	is	bad:

$	git	bisect	bad

This	tells	Git	to	note	this	revision	as	bad,	as	indicated	by	the	X	next	to	the	block	in	the
repository.

Now,	you	need	to	identify	a	revision	that	is	working,	for	the	beginning	of	the	range.	To
do	this,	you	check	out	an	earlier	version.	You	can	supply	the	version	using	a	reference
relative	to	HEAD	or	an	explicit	SHA1	from	the	log.	You	use	the	relative	reference	here.

$	git	checkout	HEAD˜10

This	puts	version	1	in	the	working	directory,	so	now	you	can	try	that	code.	In	this	case,
version	1	works.

Figure	11.10	Checking	for	a	good	version

Because	that	version	works,	you	can	tell	the	bisect	command	that	the	revision	is	good.
This	causes	bisect	to	mark	that	revision	as	good	and	then	return	a	commit	roughly
halfway	in	between	the	good	and	bad	revisions	to	try	and	see	if	it	works.	In	this	case,
that's	version	5.	You	can	then	try	version	5	and	see	if	it	works.	It	does.

Figure	11.11	Initial	bisect	trial

You	can	then	mark	version	5	as	good.

$	git	bisect	good

Since	version	5	is	marked	as	good,	this	also	marks	all	the	versions	from	1	to	5	as	good.
This	means	that	the	first	bad	revision	must	be	in	between	version	5	and	version	10.
The	bisect	command	then	gives	back	version	7	and	the	process	continues.

Figure	11.12	Bisecting—the	next	steps

You	indicate	that	version	7	is	bad.

$	git	bisect	bad

Now,	you	know	that	versions	1	to	5	are	good	as	indicated	by	the	checkmarks.	You	also
know	that	versions	7	to	10	are	bad,	as	indicated	by	the	X's.	You	have	one	more	version
to	evaluate—version	6—to	determine	whether	the	first	bad	version	is	version	6	or
version	7.	Git	checks	out	the	remaining	version,	version	6.	You	try	it	to	detect	whether
it	is	bad.

Figure	11.13	Narrowing	in	on	the	first	bad	commit

From	this	examination	of	the	last	commit,	Git	can	now	determine	that	this	was	the
first	bad	commit,	and	it	tells	you	that.

Figure	11.14	The	first	bad	commit	is	found

You	have	additional	interfaces	to	see	the	steps	and	results	that	are	associated	with	this
bisect	operation.	Assuming	that	gitk	is	installed	and	accessible	to	your	path,	you	can
run	git	bisect	visualize	and	be	presented	with	a	view	of	the	bisect	operation	based	on
how	the	pointers	have	been	left	in	the	repository	(see	Figure	11.15).

Figure	11.15	gitk	view	of	a	bisect

You	can	also	generate	a	log	of	the	operations	by	using	git	bisect	log.

Finally,	there	are	times	when	you	may	want	to	leverage	automation	to	help	you	zero
in	on	the	first	bad	commit.	If	you	have	a	script	that	you	can	run	against	the	set	of
things	in	your	working	directory	to	indicate	success	or	failure,	you	can	use	that	script
to	automate	the	process.	The	caveat	is	that	the	script	must	return	0	for	a	good	revision
and	any	code	from	1	to	127	for	a	bad	revision,	except	for	125,	which	indicates	that	this
commit	cannot	be	tested.

To	invoke	this	kind	of	automated	script,	you	use	the	bisect	run	subcommand.	A	quick
example	should	help	to	illustrate	this.	Suppose	that	you	have	a	simple	script	that	does
a	test	by	adding	two	numbers	together.	However,	you	know	that	somewhere	in	the
various	revisions	of	this	script,	a	bug	was	introduced	that	resulted	in	it	subtracting	the
numbers	instead	of	adding	them.	By	feeding	the	script	to	bisect's	run	subcommand
with	arguments	that	should	result	in	a	0,	you	can	find	where	Git	first	observes	the
problem.	(If	the	calculations	are	correct,	Git	returns	a	0,	which	indicates	to	bisect	that
a	commit	is	okay.)	Note	that	this	is	not	necessarily	the	same	as	the	first	commit	where
the	problem	was	introduced,	but	when	you	have	a	large	set	of	commits	to	examine,
this	process	can	significantly	reduce	the	search	time.

The	bisect	command	also	has	several	other	subcommands	that	are	detailed	in	its	help
page,	including	ways	to	tell	it	to	skip	specific	commits,	and	more	variations	on	starting
ranges.

$	git	bisect	log

git	bisect	start

#	bad:	[ada1a94bfcbb6ba448ff38265517eb64bc55a93d]	Commit	of	version	12	of	

sum.sh

git	bisect	bad	ada1a94bfcbb6ba448ff38265517eb64bc55a93d

#	good:	[aea87ad663b225b8723e9db828883d0e102f3487]	Commit	of	version	1	of	

sum.sh

git	bisect	good	aea87ad663b225b8723e9db828883d0e102f3487

#	good:	[3332095f6afe1c1174bdf5e819333b6199bc3335]	Commit	of	version	6	of	

sum.sh

git	bisect	good	3332095f6afe1c1174bdf5e819333b6199bc3335

#	bad:	[0cd39f3c4927aa0316147548ab5480e76db361e1]	Commit	of	version	9	of	sum.sh

git	bisect	bad	0cd39f3c4927aa0316147548ab5480e76db361e1

#	bad:	[f03c43b40f7e6a367357dceb3e7b2577b8323894]	Commit	of	version	8	of	sum.sh

git	bisect	bad	f03c43b40f7e6a367357dceb3e7b2577b8323894

#	bad:	[9fa38a40e04f55a31cfcc618340b8b2d23645b46]	Commit	of	version	7	of	sum.sh

git	bisect	bad	9fa38a40e04f55a31cfcc618340b8b2d23645b46

#	first	bad	commit:	[9fa38a40e04f55a31cfcc618340b8b2d23645b46]	Commit	of	

version	7	of	sum.sh

$	git	bisect	run	./sum.sh	-2	2

running	./sum.sh	-2	2

Sum	program	-	version	2.06

-2	+	2	=	0

Bisecting:	2	revisions	left	to	test	after	this	(roughly	2	steps)

[078e5c123e86bfde3396eb1a8adc823eb940e6b3]	new	version	2.09

running	./sum.sh	-2	2

Sum	program	-	version	2.09

-2	+	2	=	-4

bisect	run	failed:

exit	code	252	from	'./sum.sh	-2	2'	is	<	0	or	>=	128

rerere
Although	its	name	may	look	like	a	typo,	rerere	is	an	actual	command	in	Git.	It	is	short
for	reuse	recorded	resolution.	There	are	different	schools	of	thought	on	how	to
actually	pronounce	it;	some	say	ree-ree-ree	and	others	rear-er	or	re-were.	My	personal
choice	is	re-3,	which	refers	to	re	being	repeated	three	times.

With	rerere,	when	you	first	encounter	a	conflict	from	one	of	the	merge-style
operations,	you	resolve	the	conflict	as	appropriate,	but	you	tell	Git	to	learn	and
remember	how	you	resolved	that	conflict.	Afterward,	if	the	same	conflict	occurs	again,
and	rerere	is	enabled,	Git	will	resolve	the	conflict	automatically	in	the	same	way	you
did.

In	order	to	use	this	functionality,	you	first	have	to	enable	it.	You	do	this	by	setting	a
special	configuration	value.

$	git	config	--global	rerere.enabled	1

This	command	is	a	little	different	from	the	other	Git	commands	that	you've	been
working	with.	The	rerere	functionality,	once	enabled,	runs	automatically.	However,
there	are	options	that	allow	you	to	modify	the	state	of	the	remembered	information
and	to	understand	what	rerere	knows.	The	syntax	is	as	follows:

git	rerere	[clear|forget	<pathspec>|diff|remaining|status|gc]

I'll	talk	about	some	of	these	options	as	I	go	along.

So,	what's	the	practical	application	of	the	rerere	command?	After	all,	if	you	resolve	a
conflict,	aren't	you	done?	Consider	that	you	have	a	topic	or	feature	branch	where	you
are	iterating	over	time,	but	as	you	make	progress,	you	want	to	merge	back	the	latest
changes	periodically	into	another	branch.	If	you	repeatedly	encounter	the	same	merge
conflicts	each	time	you	merge,	then	rerere	can	simplify	things	significantly.

In	a	related	manner,	if	you	have	a	long-lived	branch	that	you	are	working	with,	from
time	to	time,	you	may	want	to	merge	in	the	latest	changes	from	the	production	branch
with	rerere	enabled	and	then	reset	back	to	before	the	merge.	This	has	the	effect	of
teaching	Git	how	to	deal	with	any	conflicts	from	the	history	of	the	production	branch
when	it's	finally	time	to	fully	merge	the	long-lived	branch	into	the	production	one.
This	results	in	fewer	delays	and	less	complication	because	Git	will	have	learned
through	the	temporary	merges	how	to	resolve	conflicts	along	the	way.

Let's	look	at	an	example	from	a	demo	project	I	use	in	some	of	my	workshops.	This
project	is	called	greetings	and	consists	of	a	single	java	file	that	prints	out	some	text.	It
also	has	two	branches,	master	and	topic1,	with	the	file	changed	on	each	branch,	so	you
encounter	a	conflict	when	you	merge.

You've	enabled	rerere	using	the	previous	command.	Now	let's	try	to	merge	topic1	into
master.	(Your	current	branch	is	already	master.)

$	git	merge	topic1

Auto-merging	helloWorkshop.java

CONFLICT	(content):	Merge	conflict	in	helloWorkshop.java

Recorded	preimage	for	'helloWorkshop.java'

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

This	looks	similar	to	what	you've	seen	before	when	dealing	with	conflicts,	except	for
the	line	about	“Recorded	preimage	…”.	Because	you	have	rerere	enabled	and	there's	a
conflict,	Git	records	what	the	file	looks	like	before	you	resolve	the	conflict.

Let's	take	a	look	at	the	contents	of	the	file	with	the	conflicts,	as	marked	by	Git:

$	cat	helloWorkshop.java

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

<<<<<<<	HEAD

								System.out.println("Greetings	Workshop!");

=======

								System.out.println("Greetings	People!");

>>>>>>>	topic1

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

<<<<<<<	HEAD

								System.out.println("Maybe?");

=======

								System.out.println("Really?");

>>>>>>>	topic1

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

In	this	case,	it's	easy	to	see	which	file	is	involved.	However,	what	if	there	were
multiple	files	scattered	across	directories	with	conflicts?	The	rerere	command
includes	a	status	command,	similar	to	the	git	status	command,	to	tell	you	which	files
have	conflicts	that	rerere	will	monitor	and	record	the	resolution	for—just	the	one	file
in	this	instance.

$	git	rerere	status

helloWorkshop.java

And,	as	you	progress	through	resolving	differences,	you	can	use	the	diff	option	to
rerere	to	see	the	diffs	for	the	current	state	of	the	conflict	resolution.

$	git	rerere	diff

---	a/helloWorkshop.java

+++	b/helloWorkshop.java

@@	-2,21	+2,21	@@

	/*	9-12-12	*/

	class	helloWorkshop		{

					public	static	void	main(String[]	args)	{

-<<<<<<<

-								System.out.println("Greetings	People!");

-=======

+<<<<<<<	HEAD

									System.out.println("Greetings	Workshop!");

->>>>>>>

+=======

+								System.out.println("Greetings	People!");

+>>>>>>>	topic1

									System.out.println("This	is	an	example	file");

									System.out.println("for	use	in	workshop	exercises.");

									System.out.println("This	is	on	the	topic1	branch");

									System.out.println("This	file	is	written	in	Java.");

									System.out.println("Isn't	this	exciting?");

-<<<<<<<

+<<<<<<<	HEAD

									System.out.println("Maybe?");

-=======

+=======

									System.out.println("Really?");

->>>>>>>

+>>>>>>>	topic1

									System.out.println("Okay	then.");

									System.out.println("Goodbye	Workshop!");

					}

Let's	assume	that	you	resolve	the	conflicts	manually	this	first	time,	and	you	end	up
with	this	version:

$	cat	helloWorkshop.java

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

								System.out.println("Greetings	Workshop!");

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

								System.out.println("Really?");

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

Now	you	can	stage	and	commit	the	change.

$	git	add	.

$	git	commit	-m	"fixed"

Recorded	resolution	for	'helloWorkshop.java'.

[master	8d8bbcb]	fixed

Notice	the	additional	message	you	get	from	Git	during	the	commit	about	“Recorded
resolution…”.	Git	is	telling	you	that	because	the	rerere	function	is	enabled,	and	you
have	resolved	the	conflict	resolution	(as	indicated	by	the	commit),	it	has	recorded	how
the	file	was	changed	to	resolve	the	conflict.

NOTE

To	implement	the	rerere	functionality,	Git	creates	a	datastore	in	the	.git	directory
named	rr-cache.	(In	fact,	another	way	to	activate	the	rerere	functionality	instead
of	through	the	git	config	command	is	to	just	create	the	.git/rr-cache	area.)	In	this
area,	Git	stores	the	pre-image	and	post	image	of	each	file	rerere	knows	about,
organized	by	SHA1.	The	pre-image	is	the	copy	of	the	file	with	the	conflicts.	The
post	image	is	the	copy	of	the	file	after	the	conflicts	have	been	resolved.

The	following	commands	and	listings	show	examples	of	the	contents	and	layout
of	an	rr-cache:

$	ls	.git/rr-cache

e6b62c2cbff74f18e090ced201888bf2e8b44300/

$	ls	.git/rr-cache/e6b*

postimage		preimage

$	cat	.git/rr-cache/e6b*/preimage

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

<<<<<<<

								System.out.println("Greetings	People!");

=======

								System.out.println("Greetings	Workshop!");

>>>>>>>

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

<<<<<<<

								System.out.println("Maybe?");

=======

								System.out.println("Really?");

>>>>>>>

								System.out.println("Okay	then.");

																												System.out.println("Goodbye	Workshop!");

				}

}

$	cat	.git/rr-cache/e6b*/postimage

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

																									class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

								System.out.println("Greetings	People!");

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

								System.out.println("Really?");

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

As	an	example	of	what	rerere	can	do	for	you	after	it	has	recorded	a	resolution,	let's
reset	back	to	before	the	merge	and	do	it	again.	You'll	use	the	ORIG_HEAD	option	to
go	back,	as	discussed	in	the	main	part	of	this	chapter.

$	git	reset	--hard	ORIG_HEAD

HEAD	is	now	at	da7a1e2	update	for	master

Doing	the	merge	again,	you	get	the	following	output:

$	git	merge	topic1

Auto-merging	helloWorkshop.java

CONFLICT	(content):	Merge	conflict	in	helloWorkshop.java

Resolved	'helloWorkshop.java'	using	previous	resolution.

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

Notice	the	line,	“Resolved	…	using	previous	resolution.”	Because	rerere	is	enabled,	and
you	had	shown	it	before	how	to	resolve	this	particular	conflict,	Git	simply	resolves	it,
in	the	same	way	you	did	manually	before.	In	fact,	if	you	take	a	look	at	the	contents,
you	see	that	they	look	just	like	the	version	you	ended	up	with	after	the	earlier	manual
editing.

$	cat	helloWorkshop.java

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

								System.out.println("Greetings	Workshop!");

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

								System.out.println("Really?");

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

And,	if	you	check	the	status	and	diffs	that	rerere	is	tracking,	you	see	that	there	are	no
additional	conflicts	it	knows	about.

$	git	rerere	status

$	git	rerere	diff

You	may	be	wondering	why,	if	Git	was	able	to	resolve	the	conflict,	it	still	reported	that
the	automatic	merge	failed	and	that	you	need	to	fix	conflicts.	This	is	just	a	general
message	that	the	merge-style	operation	provides.	There	may	be	other	conflicts	that
rerere	hasn't	been	taught	how	to	resolve.	You	may	also	want	to	review	the	affected
files	and	make	other	changes.	Or,	you	may	not	want	the	automatic	resolution	for	a
particular	case	after	all.

In	the	case	of	automatic	resolution,	you	can	use	one	of	the	other	options	with	rerere
to	undo	the	automatic	resolving	functionality.	The	forget	option	with	a	path	tells	Git
to	forget	the	resolution	for	that	particular	file.

$	git	rerere	forget	helloWorkshop.java

The	forget	option	also	allows	you	a	kind	of	redo	if	the	recorded	resolution	isn't	what
you	wanted.	If	you	realize	that	a	resolution	you	did	was	incorrect	or	not	what	you
wanted,	you	can	follow	this	sequence:

1.	 Tell	Git	to	forget	the	resolution—git	rerere	forget	<file>

2.	 Create	the	conflict	version	again—git	checkout	--merge	<file>

3.	 Resolve	the	conflicts	as	desired	for	<file>

4.	 Run	rerere	again	to	record	the	new	resolution—git	rerere

NOTE

As	its	name	implies,	the	merge	option	on	checkout	tells	Git	to	attempt	a	merge
when	it	does	a	checkout.	This	is	primarily	intended	to	allow	for	switching
branches	when	you	are	doing	a	checkout	and	there	are	unmerged	changes	in	your
current	branch.	Normally,	Git	does	not	allow	this	and	you	must	get	to	a	clean
state	by	committing,	merging,	or	stashing	(discussed	in	Chapter	9)	those	changes.

However,	the	merge	option	also	has	a	useful	secondary	function:	reproducing	a
file	with	conflicts	marked	in	it	if	needed.	So,	if	you	have	resolved	conflicts	locally,
but	then	change	your	mind,	you	can	get	back	to	the	version	of	the	file	with
conflicts	by	doing	another	checkout	on	top	of	the	current	one	and	adding	the	--
merge	option.

A	related	checkout	option	is	--conflict.	This	option	is	like	the	merge	option	but
allows	you	to	specify	a	style.	A	style	in	this	case	defines	how	conflicts	are	marked
and	displayed.

The	two	options	are	--conflict=merge	(the	same	as	--merge)	and	--conflict=diff3
(which	shows	the	two	versions	and	the	common	ancestor	version,	if	different).

Let's	look	at	a	quick	example	using	the	file	you	previously	used	with	the	rerere
workflow,	helloWorkshop.java:

$	cat	helloWorkshop.java

/*	Hello	Workshop	Java	Program	*/

								/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

<<<<<<<	HEAD

								System.out.println("Greetings	Workshop!");

=======

								System.out.println("Greetings	People!");

>>>>>>>	topic1

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

<<<<<<<	HEAD

								System.out.println("Maybe?");

=======

								System.out.println("Really?");

>>>>>>>	topic1

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

If	you	now	do	the	checkout	again	with	the	--merge	option	or	the	--conflict=merge
option,	you	get	a	similar	representation:

$	git	checkout	--conflict=merge	helloWorkshop.java

$	cat	helloWorkshop.java

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

<<<<<<<	ours

								System.out.println("Greetings	Workshop!");

=======

								System.out.println("Greetings	People!");

>>>>>>>	theirs

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

<<<<<<<	ours

								System.out.println("Maybe?");

=======

								System.out.println("Really?");

>>>>>>>	theirs

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

Notice	that	the	different	branches	are	marked	with	theirs	and	ours,	which
correspond	to	the	merge	strategy	options	that	you	could	use	to	overwrite	from
one	branch	or	the	other.

A	git	checkout	with	the	--conflict=diff3	option	produces	a	similar	file	but	also
adds	in	the	base	version—the	version	before	changes	have	occurred	on	the	two
branches	(assuming	the	file	has	been	changed	on	both	branches).	Think	of	this	as
the	common	ancestor	I	talked	about	earlier	when	Git	does	a	three-way	merge—
thus	the	3	in	diff3.

$	git	checkout	--conflict=diff3	helloWorkshop.java

$	cat	helloWorkshop.java

/*	Hello	Workshop	Java	Program	*/

/*	9-12-12	*/

class	helloWorkshop		{

				public	static	void	main(String[]	args)	{

<<<<<<<	ours

								System.out.println("Greetings	Workshop!");

|||||||	base

								System.out.println("Hello	Workshop!");

=======

								System.out.println("Greetings	People!");

>>>>>>>	theirs

								System.out.println("This	is	an	example	file");

								System.out.println("for	use	in	workshop	exercises.");

								System.out.println("This	is	on	the	topic1	branch");

								System.out.println("This	file	is	written	in	Java.");

								System.out.println("Isn't	this	exciting?");

<<<<<<<	ours

								System.out.println("Maybe?");

|||||||	base

								System.out.println("No?");

=======

								System.out.println("Really?");

>>>>>>>	theirs

								System.out.println("Okay	then.");

								System.out.println("Goodbye	Workshop!");

				}

}

The	following	code	is	an	example	of	the	commands	that	are	involved	in	updating	a
resolution	that	you	previously	taught	rerere:

$	git	rerere	forget	helloWorkshop.java

$	git	checkout	--merge	helloWorkshop.java

<edit	and	resolve	conflicts	as	desired>

$	git	rerere	

With	these	commands,	you	told	Git	to	forget	the	previous	resolution,	re-created	the
file	with	conflicts,	resolved	things	the	way	you	wanted,	and	then	told	Git	to	record	the
new	resolution.

There	is	one	other	option	you	can	enable	for	rerere	that	is	a	useful	shortcut:
automatically	staging	files	that	rerere	was	able	to	resolve	successfully.	You	do	this	by
setting	another	configuration	value.

$	git	config	--global	rerere.autoupdate	true

If	you	go	back	and	redo	the	same	merge	later	such	that	the	rerere	command	can
automatically	resolve	the	conflicts,	you	will	see	something	like	this:

$	git	merge	topic1

Auto-merging	helloWorkshop.java

CONFLICT	(content):	Merge	conflict	in	helloWorkshop.java

Staged	'helloWorkshop.java'	using	previous	resolution.

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

Note	the	line	that	says	“Staged	‘helloWorkshop.java’	using	previous	resolution.”	This
means	that	because	Git	was	able	to	resolve	the	conflicts	with	rerere,	it	staged	the
resolved	file	for	you.	And,	in	fact,	if	you	check	the	normal	Git	status,	you	see	your
staged	file.

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

All	conflicts	fixed	but	you	are	still	merging.

Changes	to	be	committed:

								modified:			helloWorkshop.java

SUMMARY
In	this	chapter,	you	explored	a	set	of	less-common	but	useful	commands	for	working
with	content	in	Git.	I	spent	some	time	talking	about	the	git	stash	command,	which
allows	you	to	move	uncommitted	changes	from	the	working	tree	and	staging	area	into
an	element	in	a	separate	queue.	It	then	resets	your	local	environment	back	to	the	state
of	the	last	commit.	Then,	if	you	need	to	get	those	elements	back	out	of	the	queue,	you
can	apply	or	pop	them	back	into	your	local	environment.

You	also	learned	about	the	mv	and	rm	commands	for	renaming	and	deleting	content.
You	looked	at	how	these	commands	make	local	changes	in	the	working	directory,	and
stage	the	change.	As	with	file	or	other	content	updates,	you	have	to	commit	to	make
the	change	happen	in	the	repository.

You	looked	at	the	grep	command	in	Git	(which	is	much	like	the	OS	system	grep
command)	that	allows	you	to	search	through	content	for	strings	or	regular
expressions.	I	discussed	how	to	search	through	the	Git	history	log	and	how	to	use	the
-S	or	pickaxe	option	for	extended	searching.

I	covered	some	examples	of	using	commands	like	bundle	and	archive	to	create
external	packages	of	Git	content	to	share.	I	also	explained	how	to	share	patches
through	e-mail	directly	with	Git.

Finally,	in	the	main	part	of	the	chapter,	I	covered	the	notes	functionality	in	Git	that
allows	you	to	add	notes	to	commits	that	are	already	in	the	repository.

In	the	advanced	topics	section,	I	covered	three	more	complicated	commands	that
provide	a	lot	of	power	for	users.	The	filter-branch	command	allows	you	to	re-process
content	in	repositories	to	do	things	like	split	out	parts	of	repositories	into	their	own
separate	repositories,	or	change	attributes	associated	with	commits.

The	bisect	command	uses	a	form	of	binary	searching	across	commits	in	a	repository	to
help	users	narrow	in	on	where	a	particular	change	was	first	introduced.

The	rerere	command	allows	you	to	teach	Git	how	to	resolve	merge	situations	so	it	can
remember	the	resolution	if	you	encounter	the	same	situation	again,	and	automatically
resolve	it	for	you	in	the	way	you	want.

In	the	next	chapter,	I	cover	the	remote	side	of	the	Git	environment	and	talk	about
remote	repositories,	remote	branches,	and	interactions	with	them	to	complete	your
overall	Git	workflow.

About	Connected	Lab	7:	Deleting,	Renaming,	and	Stashing
This	lab	guides	you	through	some	simple	examples	of	using	several	of	the	basic
commands	covered	in	this	chapter.	After	each	of	the	change	steps,	you'll	look	at	the
status	of	the	files	in	your	working	directory	to	understand	what's	changed.	This	will
help	you	to	get	a	feel	for	these	kind	of	operations	as	part	of	an	overall	workflow	using
Git.

Connected	Lab	7

Deleting,	Renaming,	and	Stashing
In	this	lab,	you'll	work	through	some	examples	of	using	the	rm	and	mv	commands
and	stashing	uncommitted	changes.

PREREQUISITES
This	lab	assumes	that	you	have	done	Connected	Lab	6:	Practicing	with	Merging.	You
should	start	out	in	the	same	directory	as	that	lab.

STEPS
1.	 Starting	out	in	the	same	directory	as	Connected	Lab	6,	create	a	new	file,	stage	it,
and	commit	it.

$	echo	"another	one"	>	file6.c

$	git	add	.

$	git	commit	-m	"yet	another	lab	file"

2.	 You	now	decide	to	remove	the	file.	Use	the	rm	command	to	do	that.

$	git	rm	file6.c

3.	 Check	the	status	to	determine	whether	the	file	is	staged	for	removal.

$	git	status

4.	 Run	the	ls	command	to	find	out	whether	the	local	file	is	still	there.

$	ls

5.	 You	now	change	your	mind,	and	you	want	the	file	back.	Use	the	reset	command	to
do	that.

$	git	reset	--hard	HEAD

6.	 Check	the	status.

$	git	status

7.	 To	find	out	whether	the	file	is	back	locally,	run	the	ls	command.

$	ls

8.	 Delete	the	file	anyway.

$	git	rm	file6.c

9.	 Check	the	status;	the	file	should	be	staged	for	deletion.

$	git	status	-sb

10.	 You	commit	to	the	deletion	this	time.

$	git	commit	-m	"<comment>"

11.	 (Optional)	Check	the	status	and	run	the	ls	command	to	make	sure	the	file	is	really
gone.

$	git	status

$	ls

12.	 (Optional)	Take	a	look	at	the	changes	in	gitk.	(Start	it	using	the	command	“gitk	&”
if	you	don't	have	gitk	running,	or	press	F5	to	refresh	if	you	do	have	it	open.)

13.	 You	decide	to	make	a	couple	of	other	changes.	Start	by	creating	a	new	file.

$	echo	"one	more"	>	file7.c

14.	 Stage	the	file.

$	git	add	file7.c

15.	 Check	the	status.

$	git	status

16.	 You	need	to	quit	working	with	this	file	temporarily	and	fix	something	else.	To	do
this,	save	off	the	current	state	with	the	stash	command.

$	git	stash

17.	 Check	the	status	and	local	directory	for	the	new	file	you	were	working	with.

$	git	status

$	ls

18.	 Take	a	look	at	what's	in	the	stash.

$	git	stash	list

19.	 Make	a	change	to	an	existing	file,	and	then	stage	and	commit	it.

$	echo	update	>>	file5.c

$	git	commit	-am	"update	file"

20.	 You're	done	with	your	change,	so	restore	your	previous	state.

$	git	stash	pop

21.	 Check	the	status	and	the	local	directory	to	make	sure	everything	is	the	way	it	was.

$	git	status

$	ls

Chapter	12
Understanding	Remotes—Branches	and	Operations

WHAT'S	IN	THIS	CHAPTER?

Understanding	the	different	meanings	of	remote	in	Git

Using	networking	protocols	with	Git

Adding	and	managing	remote	references

Understanding	remote	tracking	branches

Learning	more	about	the	clone	command

Establishing	connections	between	local	and	remote	branches

Pushing,	fetching,	and	pulling	changes

Up	until	now,	the	examples	that	I've	looked	at,	and	the	majority	of	things	that	I've
talked	about,	have	involved	working	with	Git	in	the	local	environment.	I	previously
defined	the	local	environment	as	the	three	Git-related	areas	that	reside	on	your	local
system—the	working	directory,	the	staging	area,	and	the	local	repository—along	with
the	supporting	pieces,	such	as	configuration,	that	work	with	them.

It	is	a	departure	from	most	other	texts	on	Git	to	wait	this	long	before	diving	more
deeply	into	the	remote	side	of	Git	and	the	remote	repository.	However,	if	you	have
been	reading	this	book	in	the	order	it	was	written	to	learn	about	Git,	you	will	have
developed	a	firm	foundation	to	help	you	understand	the	interactions	with	the	remote
side.

By	now,	you	should	be	comfortable	with	how	Git	works	in	the	local	environment,	and
also	understand	how	it	manages	those	three	levels	that	make	up	the	local
environment.	And,	certainly,	you	should	be	well	acquainted	with	the	warnings	against
modifying	content	that	has	already	been	put	into	the	remote	environment	(the	remote
repository).

With	that	foundation,	let's	take	a	closer	look	at	what	I	mean	by	remotes.

REMOTES
Whenever	you	talk	about	remotes	in	Git,	this	word	can	have	several	meanings.	Most
commonly,	it	refers	to	a	remote	repository.	In	its	basic	form,	a	remote	repository	is
just	a	Git	repository	with	a	protocol	for	access	and	server-side	hooks.	As	I	discuss	in
Chapter	3,	you	can	think	of	the	remote	repository	as	the	public	or	server-side
repository.	In	most	other	source	management	systems,	this	would	be	the	only
repository	you	have.

NOTE

There	is	one	more	characteristic	of	remote	repositories:	they	are	bare.	Bare	in	this
context	means	that	they	do	not	have	a	checked-out	set	of	content	associated	with
them.	They	are	not	intended	to	have	branches	checked	out	from	them.	They	exist
for	the	purpose	of	tracking	and	synching	content	in	a	repository	only.

The	clone	command	in	Git	can	take	a	--bare	option	to	get	a	copy	of	the	repository
as	it	would	be	on	the	remote	side.	This	can	be	useful,	for	example,	to	create	a	copy
of	the	repository	that	is	suited	for	migrating	to	another	remote	location.

The	remote	repository	is	also	the	collection	point	for	code	from	multiple	users.	If	you
are	working	with	multiple	people,	each	working	in	their	own	local	environment,	they
may	all	be	pushing	code	to	share	with	others	to	a	common	remote	repository	(see
Figure	12.1).

Figure	12.1	Arrangement	of	local	versus	remote	environments

NOTE

Nothing	prevents	you	from	having	a	remote	repository	instantiated	on	your	local
system.	That	may	seem	confusing	at	first,	but	consider	that	you	could	similarly
have	a	private	CVS	or	subversion	server	running	on	your	local	system	to	commit
changes	to.	That	system	may	just	be	for	you	to	connect	to,	or	you	may	open	it	up
for	others.	In	this	case,	remote	is	usually	thought	of	as	the	shared,	public
repository	for	code,	regardless	of	where	it	is	actually	hosted.

Another	common	use	case	of	the	term	remote	in	Git	is	a	local	reference	to	a	remote
repository.	Remote	repositories	typically	have	Internet-accessible	addresses	composed
of	URLs	formatted	for	a	particular	network	protocol,	such	as	SSH,	HTTP,	or	HTTPS.	(I
discuss	these	protocols	in	more	detail	in	the	following	section.)	Those	addresses	can
be	long,	which	can	make	them	difficult	to	remember	as	well	as	difficult	to	type	in	with
commands	that	need	to	access	them.	So,	once	a	connection	has	been	established,	Git
allows	the	user	to	use	simple,	one-word	reference	names	to	point	to	the	URL.	The
default	reference	name	in	Git	is	origin.

As	an	example,	I	might	have	a	Git	repository	stored	on

https://corporateGitServer/BrentLaster/demoprojects/project1.git

That's	a	long	URL	to	remember	and	type,	and	so	it's	difficult	to	get	right	every	time	I
want	to	use	some	command	to	access	the	remote	at	that	location.	So,	when	I	clone	a
copy	of	the	project	down	to	my	local	machine	to	work	with,	Git	establishes	the	remote
reference	name	as	origin.	This	means	that	instead	of	having	to	type

$	git	push	https://corporateGitServer/BrentLaster/demoprojects/project1.git	…

I	can	simply	type

$	git	push	origin	…

These	remote	reference	names	are	one-way	references—names	that	point	to	a
location.	Removing	the	name	does	not	affect	the	remote	repository;	the	names	are
just	aliases	for	the	repositories.

Remote	Access	Protocols
I'll	now	take	a	moment	and	talk	about	the	various	networking	protocols	that	you	can
use	to	communicate	with	a	Git	remote.	There	are	four	available	protocols:	Local,	Git,
SSH,	and	HTTP.

Local
The	Local	protocol	is	essentially	just	filesystem	access	over	something	like	a	Network
File	System	(NFS)	mount	or	a	shared	drive.	It	can	be	convenient	to	share	content

between	multiple	users	using	an	easily	accessible	location.	However,	this	protocol	is
not	authenticated	or	protected	(other	than	as	defined	by	your	file	system	access).	So,
using	this	protocol	involves	the	same	risk	as	relying	on	any	open	access	in	a	shared
location.	Also,	it	is	only	convenient	as	long	as	you	are	able	to	connect	(and	stay
connected)	to	the	shared	resource.

An	example	of	cloning	down	something	using	the	Local	protocol	might	be

$	git	clone	/var/git/repos/myproj.git

There	is	no	special	setup	for	using	this	protocol,	other	than	providing	the	shared
access.

Git
Git	comes	with	a	special	daemon	program	that	you	can	use	to	provide	access	to	a
repository	over	a	dedicated	port	(9418).	This	is	the	fastest	protocol,	but	it	comes	with
some	big	drawbacks:	no	authentication	and	an	all-or-none	access	model	(if	anyone
can	access	it,	everyone	can	access	it).	Setting	up	access	through	the	port	can	also	be
difficult.

An	example	of	cloning	down	something	using	this	protocol	might	be

$	git	clone	git://repos/myproj.git

Setup	for	using	this	protocol	generally	involves	installing	a	daemon,	starting	it	up,	and
adding	a	special	marker	file	to	each	project	so	that	Git	knows	that	it's	okay	for	the
daemon	to	access	it.

To	understand	more	about	the	use	of	the	daemon	program,	see	the	help	page	for	git-
daemon.

$	git	daemon	--help

SSH
Secure	Shell	(SSH)	is	a	more	commonly	used	protocol.	It	is	also	one	that	most	users
and	network	administrators	are	familiar	with;	it	is	also	inexpensive	to	set	up	and	use.

If	you're	not	familiar	with	SSH,	it	operates	on	the	idea	of	authenticated	access	using
private	and	public	keys.	The	public	key	goes	on	the	resource	you	need	access	to	(the
Git	remote	in	this	case),	and	the	private	key	goes	into	a	special	˜/.ssh	subdirectory	on
your	local	machine.	As	long	as	the	private	key	on	the	user's	system	corresponds	to	a
public	key	on	the	desired	resource,	the	user	can	connect	and	transfer	information
without	having	to	log	in	each	time.	Authentication	is	handled	using	the	keys.

There	are	two	forms	of	paths	that	you	can	use	with	SSH:

$	git	clone	ssh://<username>@mygitserver.mycompany.com/myproject.git

or

$	git	clone	<username>@mygitserver.mycompany.com:myproject.git

Figure	12.2	illustrates	the	difference	between	the	traditional	login	methods	of	access
(top)	and	SSH	access	with	keys	(bottom).

Figure	12.2	Login	access	(top)	versus	SSH	access	(bottom)

HTTP
There	are	two	types	of	HTTP	access	that	you	can	use	with	Git:	dumb	HTTP	and	smart
HTTP.	The	dumb	HTTP	mode,	which	is	read-only,	is	simply	handled	and	served	like
any	other	items	under	an	HTTP	server.	To	set	it	up,	a	Git	repository	is	put	under	an
HTTP	document	root,	and	a	special	Git	hook	(post-update)	is	set	up.

The	smart	HTTP	mode	allows	for	read-and-write	access	using	authentication	or
anonymous	access.	It	is	more	similar	to	SSH	in	terms	of	operation	but	doesn't	require
the	keys;	instead,	it	can	use	standard	username	and	password	authentication.	A
common	URL	can	be	used	for	viewing,	cloning,	and	pushing	changes	(assuming	you
have	access).

Setup	of	the	smart	HTTP	mode	involves	setting	up	the	web	configuration	and
permissions,	in	addition	to	having	requests	handled	by	a	CGI	script	named	git-http-
backend,	which	is	included	with	Git.	Here	is	an	example	of	cloning	with	this	protocol:

$	git	clone	https://mycompany.com/repos/myproject.git

TIP

Git	provides	built-in	ways	to	help	with	credentials.	There	are	also	external
programs	to	help	with	them.

Credentials	refer	to	values	supplied	for	authenticating	access	to	a	resource.
Typically,	this	means	usernames	and	passwords.	Helping	with	these	values
usually	equates	to	remembering	or	storing	them	for	some	period	of	time	so	that
the	user	does	not	have	to	enter	them	(authenticate)	as	frequently.

The	built-in	mechanism	can	store	the	username	in	the	configuration	to	avoid
having	to	enter	it	frequently.	It	can	also	be	told	to	cache	values	for	some	period	of
time.

Your	Git	instance	may	already	have	credential	helpers	involved.	You	can	check	by
looking	for	credential-	in	the	output	of	the	extended	help	command.

$	git	help	-a	|	grep	"credential-"

If	you	have	credential	helpers	available,	you	can	find	out	more	about	them	by
using	the	specific	help	command.

$	git	help	credential-<name>

Then,	if	you	decide	to	use	this	helper	application,	you	can	set	the	configuration
value	credential.helper	to	specify	that	particular	application.

$	git	config	--global	credential.helper	<name>

As	I	have	noted,	external	credential	helper	programs	are	also	available.	Consult
their	specific	documentation	for	how	to	use	them.

Now	that	you	understand	the	basic	concepts	of	remotes,	you	can	look	at	the	git	remote
command.

The	Remote	Command
The	git	remote	command	allows	you	to	manage	your	connections	and	interactions
with	remote	repositories.	The	syntax	is	as	follows:

git	remote	[-v	|	--verbose]

git	remote	add	[-t	<branch>]	[-m	<master>]	[-f]	[--[no-]tags]	[--mirror=

<fetch|push>]	<name>	<url>

git	remote	rename	<old>	<new>

git	remote	remove	<name>

git	remote	set-head	<name>	(-a	|	--auto	|	-d	|	--delete	|	<branch>)

git	remote	set-branches	[--add]	<name>	<branch>…

git	remote	get-url	[--push]	[--all]	<name>

git	remote	set-url	[--push]	<name>	<newurl>	[<oldurl>]

git	remote	set-url	--add	[--push]	<name>	<newurl>

git	remote	set-url	--delete	[--push]	<name>	<url>

git	remote	[-v	|	--verbose]	show	[-n]	<name>…

git	remote	prune	[-n	|	--dry-run]	<name>…

git	remote	[-v	|	--verbose]	update	[-p	|	--prune]	[(<group>	|	<remote>)…]

As	you	can	see,	there	are	a	lot	of	options	here,	but	you	will	probably	only	use	a	few	of
them.	Many	of	these	options	relate	to	the	idea	of	a	remote	reference	that	I	talked
about	earlier	in	this	chapter;	this	is	a	short	name	that	refers	to	the	longer	protocol
string	(https://…,	git://…,	ssh://…)	that	is	the	actual	location	of	the	remote	repository.

Let's	look	at	a	couple	of	the	common	use	cases	for	the	git	remote	command.	As	I
mentioned,	when	you	clone	down	a	remote	repository,	Git	automatically	sets	up	a
remote	(reference)	named	origin	that	maps	to	whatever	location	you	cloned	from.	You
can	see	what	a	remote	maps	to	at	any	point	by	using	the	-v	or	--verbose	option	of	the
command.	Here	is	an	example:

$	git	clone	https://github.com/brentlaster/gradle-greetings

$	cd	gradle-greetings

$	git	remote	-v

origin		https://github.com/brentlaster/gradle-greetings	(fetch)

origin		https://github.com/brentlaster/gradle-greetings	(push)

Now,	for	any	of	the	commands	that	I	need	to	use	to	interact	with	the	remote
repository	at	http://github.com/brentlaster/gradle-greetings,	I	can	just	use	origin
instead	of	typing	out	that	longer	path.

I	can	also	add,	remove,	and	rename	remote	references.	Again,	these	are	just	references
or	aliases.	Modifying	these	references	does	not	affect	the	remote	repository.

git	remote	add	version2	https://github.com/brentlaster/gradle-greetings-sets

$	git	remote	-v

origin		https://github.com/brentlaster/gradle-greetings	(fetch)

origin		https://github.com/brentlaster/gradle-greetings	(push)

version2								https://github.com/brentlaster/gradle-greetings-sets	(fetch)

version2								https://github.com/brentlaster/gradle-greetings-sets	(push)

$	git	remote	rename	version2	origin2

$	git	remote	-v

origin		https://github.com/brentlaster/gradle-greetings	(fetch)

origin		https://github.com/brentlaster/gradle-greetings	(push)

origin2	https://github.com/brentlaster/gradle-greetings-sets	(fetch)

origin2	https://github.com/brentlaster/gradle-greetings-sets	(push)

$	git	remote	rm	origin2

$	git	remote	-v

origin		https://github.com/brentlaster/gradle-greetings	(fetch)

origin		https://github.com/brentlaster/gradle-greetings	(push)

http://github.com/brentlaster/gradle-greetings

NOTE

Based	on	that	last	example,	you	may	be	wondering	why	you	would	ever	have
multiple	remotes	associated	with	a	local	environment.	There	are	a	few	common
use	cases:

You	are	working	on	code	targeted	for	one	remote	repository,	but	you	want	to
be	able	to	merge	in	or	use	code	from	another	remote	repository.

You	are	working	on	making	an	updated	or	customized	version	of	an	existing
project	and	pushing	changes	out	to	your	updated	or	customized	remote.
However,	you	want	to	maintain	a	connection	to	the	existing	project	in	case
pieces	of	it	are	updated	that	you	may	want	or	need	to	incorporate	in	your
version.

You	are	working	on	very	similar	changes	suitable	for	multiple	remotes.

Notice	that	there	are	also	options	to	get	and	set	the	URL	associated	with	the	remote.
This	can	be	useful	if	you	cloned	with	one	protocol	but	want	to	use	a	different	one	now.

Now	that	you	understand	the	basic	idea	of	remotes,	let's	look	at	how	Git	interacts	with
them	and	how	you	keep	track	locally	of	where	things	are	on	the	remote	side.

How	Git	Interacts	with	the	Remote	Environment
Remote	repositories	in	Git	are	dumb.	This	doesn't	mean	they're	a	bad	idea,	but	rather
that	they	don't	have	to	do	a	lot	of	processing.	So,	you	could	say	that	the	model	around
them	is	smart.

Git	does	not	maintain	a	constant	connection	from	the	local	repository	to	the	remote
repository.	(If	it	did	and	it	required	this,	you	wouldn't	be	able	to	do	disconnected
development.)	Rather,	Git	checks	in	with	the	remote	repository	to	get	updated	status
information	and	contents.	This	checking	in	occurs	whenever	a	Git	command	that
requires	interaction	with	the	remote	repository	is	initiated	in	the	local	environment—
essentially,	when	doing	a	fetch,	pull,	or	push	operation.

For	the	necessary	duration	of	those	operations,	Git	in	the	local	environment
establishes	the	connection	to	the	remote	repository,	gathers	information	about	where
branches	of	interest	are	in	the	remote	repository,	and	updates	or	downloads	content
as	appropriate.

So,	Git	can	get	by	with	just	temporary	connections	to	the	remote	environment.	This	is
similar	to	how	most	traditional	source	management	systems	work.	A	connection	to
the	server	is	only	established	and	used	when	updating	content	between	the	server	and
the	local	working	area.

Remote	Tracking	Branches

Having	the	connection	between	the	local	environment	and	the	remote	environment	as
a	temporary	one,	only	activated	when	an	operation	demands,	is	a	useful	construct	for
keeping	things	simple.	It	also	enables	you	to	limit	overhead	and	bandwidth,	and
support	paradigms	like	disconnected	development.

However,	it	is	not	as	useful	if	you	are	working	in	your	local	environment	and	you	want
to	know	how	your	local	changes	compare	to	the	versions	of	changes	in	the	remote
repository	(status)	or	you	want	to	pull	content	from	the	remote	repository	but	not
merge	it	in	yet.	These	kinds	of	operations	require	some	persisted	knowledge	of	the
state	of	the	remote	repository	(between	operations	that	establish	physical	connections
to	the	remote	environment).

Git	persists	this	information	about	the	state	of	the	remote	repository	by	setting	up
remote	tracking	branches	in	the	local	repository.	Essentially,	the	local	repository
contains	state	information	about	the	remote	repository	based	on	the	last	time	you
talked	with	it	(connected	to	the	remote).

These	copies	of	the	remote	branches	exist	alongside	the	local	branches	in	the	local
repository.	As	such,	there	has	to	be	a	way	to	distinguish	the	two	branch	types	because
you	will	usually	have	local	branches	with	the	same	name	as	remote	branches.	For
example,	I	will	have	a	master	branch	on	the	remote	and	a	master	branch	in	the	local
repository.

To	help	distinguish	the	remote	tracking	branches	from	the	local	branches	in	the	local
repository,	remote	tracking	branches	have	a	namespace	associated	with	them—the
remote	reference	name,	such	as	origin,	origin2,	and	so	on.	For	example,	if	your	remote
reference	to	the	area	you	cloned	from	is	called	origin,	then	the	remote	tracking	branch
for	master	in	the	local	repository	will	be	named	origin/master	(or	more	accurately,
remotes/origin/master).	The	local	master	branch	will	just	be	master.	Table	12.1
summarizes	the	characteristics	of	the	various	branches.

Table	12.1	Summarizing	the	Types	of	Branches	in	Git

Category Where	It
Lives

Description How	It	Is
Updated

Reference

Local Local
repository

Private	branches
created	by	a	user	in
the	local
environment

By	commits,
merges,	rebases,
and	so	on,	in	the
local
environment

<branch	name>
Example:	master

Remote Remote
repository

Public	branches	that
track	updates	from
multiple	users

By	pushes	from
the	users'	local
environments

Usually	<branch
name>	on	<remote
reference>
Example:	master	on
origin

Remote
tracking

Local
repository

Private	branches	that
track	the	state	of	the
public	branch	on	the
remote—as	it	was	the
last	time	you
connected	to	the
remote

When	a	Git
operation
interacts	with
the	remote—
such	as	push,
pull,	fetch,	or
clone

<remote
reference>/<branch
name>	or
remotes/<remote
reference>/<branch
name>
Example:
origin/master	or
remotes/origin/master

Let's	see	how	this	all	fits	in	with	the	Git	model	by	looking	at	the	clone	command.

Git	Clone
As	I	discuss	in	the	early	chapters,	cloning	is	how	you	start	working	with	an	existing
Git	repository.	The	idea	is	that	you	get	a	copy	of	the	repository	from	the	server
(remote	side)	down	to	your	local	environment	(a	local	directory).

You	initiate	this	copy	with	the	git	clone	command.	The	syntax	is	as	follows:

git	clone	[--template=<template_directory>]

										[-l]	[-s]	[--no-hardlinks]	[-q]	[-n]	[--bare]	[--mirror]

										[-o	<name>]	[-b	<name>]	[-u	<upload-pack>]	[--reference	<repository>]

										[--dissociate]	[--separate-git-dir	<git	dir>]

										[--depth	<depth>]	[--[no-]single-branch]

										[--recursive	|	--recurse-submodules]	[--]	<repository>

										[<directory>]

An	example	clone	command	is

$	git	clone	ssh://git@gitserver:repository

or

$	git	clone	http://gitserver/repository

When	you	do	a	clone,	several	things	take	place,	including	the	following:

The	.git	repository	is	copied	from	the	server	(remote	side)	to	the	directory	locally.
This	instantiates	a	new	local	environment.

Git	creates	remote	tracking	branches	in	the	clone	that	correspond	to	all	of	the
branches	in	the	remote	repository.

For	the	currently	active	HEAD	in	the	remote,	Git	creates	a	corresponding	local
branch.

For	the	currently	active	HEAD,	Git	checks	out	a	copy	of	the	corresponding	local
branch.

Figure	12.3	illustrates	the	before	and	after	state	of	a	clone.

Figure	12.3	Start	and	end	of	a	cloning	operation

Notice	that	you	start	out	with	a	remote	repository	containing	a	few	commits	and	two
separate	branches:	master	and	testing.	From	your	point	of	view,	these	are	the	remote

branches.	When	you	do	the	clone,	you	get	a	copy	of	the	remote	repository	cloned	into
a	local	repository.	The	existing	branches	in	the	remote	each	get	their	own	remote
tracking	branches,	namespaced	with	the	name	of	the	remote—that	is,	origin/master
and	origin/testing.	For	the	active	HEAD,	a	local	branch,	master,	is	created	in	the	local
repository	and	the	contents	are	checked	out	into	the	working	directory.

Remember	that	creating	a	branch	is	just	creating	a	pointer	in	Git.	A	benefit	of	the
remote	tracking	branches	is	to	mark	where	the	branches	were	located	in	the	remote,
so	you	can	reference	where	they	are	pointing	locally	without	having	to	maintain	a
persistent	connection	to	the	remote.

NOTE

Because	I've	talked	about	what	the	clone	command	does,	I	should	also	mention
what	it	does	not	do,	or	rather	what	it	does	not	clone	down.	The	clone	command
does	not	clone	down	hooks	(the	programs	that	run	before	or	after	commands)
from	the	remote.	The	reason	for	this	is	that	hooks	on	the	remote	side	are	likely
not	suited	for	use	in	local	environments.	For	example,	a	remote-side	hook	may
have	access	to	mirror	content	to	web	servers	or	to	trigger	build	systems	that
would	not	be	suitable	for	a	hook	to	access	on	the	local	environment	side.

(Hooks	are	covered	in	more	detail	in	Chapter	15.)

You	can	easily	see	the	remote	tracking	branches	after	a	clone	by	using	the	-r	option	on
the	git	branch	command.

$	git	branch	-r

		origin/HEAD	->	origin/master

		origin/testing

		origin/master

Understanding	Clone	Paths
By	default,	a	clone	operation	creates	a	local	directory	with	the	name	of	the	repository.
If	there	is	a	multi-level	path,	only	the	last	part	of	the	path	is	the	actual	repository.	You
can	think	of	this	like	downloading	a	Zip	file.	The	path	in	front	of	the	Zip	file	is	just	the
path;	the	last	part	is	the	actual	Zip	filename.	And,	when	you	download	the	Zip	file,	it	is
expanded	into	whatever	structure	is	contained	in	the	file.	Likewise,	the	last	piece	of
the	repository	path	is	the	actual	repository,	and	it	is	expanded	into	the	.git	structure
and	a	checked-out	version	of	the	current	HEAD.	Figure	12.4	illustrates	this	idea.

Figure	12.4	A	way	to	think	about	cloning	multi-level	paths

In	most	cases,	repositories	avoid	the	issue	of	multiple	levels	in	paths	by	hyphenating
all	of	the	levels	together	as	one	name.	For	example,	top/mid/my.git	becomes	top-mid-
my.git,	and	the	directory	that	is	created	when	this	path	is	cloned	becomes	C:\top-mid-
my.

If	you	want	to	clone	to	a	different	destination	directory	(one	that's	different	from	the
name	of	the	repository),	you	can	simply	add	that	directory	as	the	last	argument	to	the
clone	command.

$	git	clone	git@myserver.com:top/mid/my.git	project1

In	this	case,	Git	creates	the	local	subdirectory	as	project1	and	then	clones	the
repository	into	that	subdirectory	instead	of	into	my.

Clone	Options
So	far,	I've	described	the	basic	operation	of	the	clone	command.	However,	there	are
some	other	useful	options	that	you	should	be	aware	of.

bare
The	--bare	option	tells	Git	to	create	a	bare	repository.	This	is	a	clone	of	the	repository
that	is	done	in	a	way	more	suitable	for	copying	or	migrating	to	another	remote
location.	This	option	has	the	following	characteristics:

Instead	of	creating	a	subdirectory	with	.git	under	it,	it	places	the	contents	that
would	normally	go	into	the	.git	directory	in	the	subdirectory	itself.	So,	you	end	up
with	repository.git	instead	of	repository/.git.

The	remote	branches	become	local	branches	in	the	cloned	repository	(no	remote
tracking	branches).

There	is	no	checkout	of	a	branch.

mirror
The	--mirror	option	also	tells	Git	to	create	a	bare	repository	and	implies	--bare.
However,	instead	of	just	copying	the	remote	branches	and	making	them	into	local
branches,	it	copies	all	references	in	the	repository,	including	things	like	notes	or
remote-tracking	branches	if	those	items	are	also	in	the	repository.	It's	really	a
complete	copy	of	a	repository,	just	done	in	a	Git	way.

The	mirror	option	also	sets	things	up	so	that	if	you	later	need	to	re-copy	the	repository
(thus	overwriting	it),	you	can	do	that	with	a	git	remote	update	command.

branch
The	--branch	(or	-b)	option	tells	Git	to	make	HEAD	in	the	cloned	repository	point	to
the	branch	specified	by	the	option	instead	of	master.	This	means	that	branch	will	also
be	the	one	that	is	checked	out.

single-branch
The	--single-branch	option	tells	Git	to	only	clone	down	one	branch	in	the	repository.
By	default,	this	is	whatever	HEAD	is	in	the	remote,	although	you	can	specify	another
branch	using	the	--branch	option.

depth
The	depth	option	creates	a	shallow	clone	where	the	history	is	truncated	to	the	number
of	commits	specified	as	an	argument	to	the	option.	So,	--depth=1	would	only	clone
down	the	latest	changes	(one	commit).

Now	that	you	can	clone	repositories	down	and	you	understand	the	basic	relationships
between	remote	and	local	branches,	let's	look	at	how	to	view	and	specify	those
relationships.

Viewing	Information	about	Remote	Branches
After	cloning	or	establishing	a	connection	to	a	remote	branch	and	synching	the
content,	there	are	several	different	ways	to	see	information	about	remote	branches.

First,	you	can	view	the	list	of	remote	branches	with	the	-r	option	to	git	branch.	The	-r
option	here	refers	to	remotes.	Here's	an	example	of	how	to	use	it:

$	git	branch	-r

		origin/HEAD	->	origin/master

		origin/master

		origin/test

		origin/test2

In	this	case,	you	have	three	branches	in	the	remote	branch	that	you	are	now	tracking
in	the	local	repository:	master,	test,	and	test2.	Notice	that	this	command	also	shows
you	where	HEAD	is	pointing.

If	you	want	to	see	the	local	branches	as	well	as	the	remote	ones,	you	can	use	the	-a
option	(all)	to	the	git	branch	command.

$	git	branch	-a

*	master

		remotes/origin/HEAD	->	origin/master

		remotes/origin/master

		remotes/origin/test

		remotes/origin/test2

Notice	that	this	list	now	includes	your	one	local	branch	(master)	along	with	the
remote	tracking	branches.

For	any	of	these	options,	you	can	add	the	-v	(verbose)	option	to	see	which	commit	is
current	on	the	branch—where	the	tip	of	the	branch	points	to.	This	example	shows	the
short	version	of	the	commit's	SHA1	and	the	commit	message	associated	with	that
commit:

git	branch	-av

*	master																539358f	update	file

		remotes/origin/HEAD			->	origin/master

		remotes/origin/master	539358f	update	file

		remotes/origin/test			8391dbd	update

		remotes/origin/test2		8391dbd	update

If	you	had	used	the	-rv	option	instead,	you	would	not	have	seen	the	first	line	with	the
local	master	branch.

There	is	one	more	variation	you	can	use	with	the	branch	command	to	find	out
additional	information:	the	-vv	flag.	(Note	that	this	is	two	v's	side	by	side,	not	one	w.)
The	two	v's	tell	Git	to	show	extra	information	that	is	very	useful—namely,	any
tracking	connections	between	local	branches	and	the	remote	tracking	(upstream)
branches.

$	git	branch	-vv

*	master	539358f	[origin/master]	update	file

This	example	is	telling	you	that	your	local	master	branch	is	set	up	to	track
origin/master.	You	could	also	use	an	-a	or	-r	option	with	the	-vv	option.	However,
because	those	options	would	only	add	the	same	remote	tracking	branch	list,	no
additional	information	would	be	output.

One	other	way	to	get	the	list	of	branches	indirectly	is	to	use	the	show	option	for	your
remote.

$	git	remote	show	origin

*	remote	origin

		Fetch	URL:	git@diyvb:repos/remote_demo

		Push		URL:	git@diyvb:repos/remote_demo

		HEAD	branch:	master

		Remote	branches:

				master					tracked

				test							tracked

				test2						tracked

		Local	branch	configured	for	'git	pull':

				master	merges	with	remote	master

		Local	ref	configured	for	'git	push':

				master	pushes	to	master	(up	to	date)

At	the	bottom	of	the	output,	you	can	see	that	the	local	branch	master	is	configured	to
work	with	the	remote	branch	master.

Finally,	if	you	take	a	look	at	the	local	config	file,	you	can	see	where	this	configuration
information	is	actually	stored.

							$	cat	.git/config

							[core]

													repositoryformatversion	=	0

													filemode	=	true

													bare	=	false

													logallrefupdates	=	true

							[remote	"origin"]

													url	=	git@diyvb:repos/remote_demo

													fetch	=	+refs/heads/*:refs/remotes/origin/*

							[branch	"master"]

													remote	=	origin

													merge	=	refs/heads/master

Note	the	last	section	about	branch	master	and	the	resemblance	to	the	data	from	the
git	remote	show	output.

Now	that	you	understand	how	to	view	the	upstream	and	tracking	branch	information,
let's	look	at	how	to	set	up	the	upstream	and	tracking	relationship	for	branches	that
don't	already	have	such	a	relationship.

Configuring	Upstream	Relationships	for	Branches
When	I	talk	about	upstream	in	Git	as	it	relates	to	branches,	I'm	referring	to	which
branch	in	the	remote	repository	should	correspond	to	a	given	branch	in	the	local
repository.	Basically,	if	you're	going	to	do	any	of	the	update	operations,	such	as	fetch,
pull,	or	push,	between	a	branch	in	the	local	repository	and	a	branch	in	the	remote
repository,	Git	needs	to	know	how	to	map	between	the	two	repositories.

As	I	discussed	earlier,	when	you	initially	clone	a	repository	down,	you	get	remote-
tracking	branches	that	correspond	to	the	remote	branches	in	the	remote	repository.
And,	unless	you	have	specifically	cloned	the	repository	as	a	bare	repository	(meaning
one	that	is	not	intended	for	local	use),	you	will	also	have	a	default	local	branch
available	for	you	to	use.	This	default	local	branch	(the	current	HEAD,	usually	master)
will	already	be	mapped	to	the	corresponding	remote	tracking	branch	(for	example,
master	is	connected	with	origin/master).	Thus,	origin/master	is	the	upstream	of
master.

Automatic	Mapping
For	other	remote	tracking	branches,	if	you	attempt	to	start	working	with	a	local
branch	with	the	same	name,	Git	may	establish	the	tracking	relationship	for	you—or	it
may	not.	If	you	do	the	traditional	git	branch	command	to	create	a	local	branch	with
the	same	name	as	one	of	the	remote	tracking	branches,	Git	happily	allows	you	to	do
that,	but	it	does	not	set	up	the	upstream	tracking	for	you.	If,	on	the	other	hand,	you
begin	by	using	a	git	checkout	command	to	start	working	with	a	local	branch	that	has
the	same	name	as	a	remote	tracking	branch,	Git	creates	the	local	branch	for	you	and
establishes	the	upstream	tracking	connection.	Take	a	look	at	the	following	example	to
see	how	this	works:

$	git	branch	-av

*	master																539358f	update	file

		remotes/origin/HEAD			->	origin/master

		remotes/origin/master	539358f	update	file

		remotes/origin/test			8391dbd	update

		remotes/origin/test2		8391dbd	update

$	git	branch	test

Notice	that,	at	the	start,	you	have	the	master,	test,	and	test2	remote-tracking	branches
that	were	pulled	into	your	clone	from	the	remote.	You	then	create	a	new	branch
named	test	using	the	branch	command.

$	git	branch	-vv

*	master	539358f	[origin/master]	update	file

		test			539358f	update	file

$	git	checkout	test

Switched	to	branch	'test'

Taking	a	look	at	the	branch	-vv	output,	you	see	that	while	master	is	set	up	to	track
origin/master,	test	is	not.

$	git	checkout	test2

Branch	test2	set	up	to	track	remote	branch	test2	from	origin.

Switched	to	a	new	branch	'test2'

$	git	branch	-vv

		master	539358f	[origin/master]	update	file

		test			539358f	update	file

*	test2		8391dbd	[origin/test2]	update

You	then	do	a	checkout	command	for	a	test2	branch.	This	time,	because	you	did	the
checkout	instead	of	the	branch	command,	and	because	there	is	a	remote-tracking
branch	with	the	corresponding	name,	Git	creates	the	new	local	branch	and	sets	up	the
upstream	tracking	for	you.	The	branch	-vv	option	confirms	this	for	you.

NOTE

You	can	configure	Git	so	that	it	defaults	to	setting	up	the	upstream	tracking	in
these	situations,	by	setting	the	configuration	value	for	branch.autoSetupMerge.
Setting	this	value	to	always	tells	these	commands	to	set	up	the	upstream	tracking
by	default.

Manual	Mapping
You	may	have	a	situation	where	you	create	a	local	branch	that	does	not	have
automatic	upstream	tracking	done	for	it.	In	this	case,	it	is	up	to	the	user	to	explicitly
set	up	the	upstream	tracking	using	one	of	the	following	methods.

Git	provides	a	way	to	specify	what	the	upstream	relationship	should	be	when	a	branch
is	created.	By	default,	if	you	choose	an	upstream	branch	as	the	starting	point
(meaning	you	supply	it	as	the	second	branch	in	the	following	format),	Git	sets	up	the
tracking.

$	git	branch	test	origin/test

Branch	test	set	up	to	track	remote	branch	test	from	origin.

The	same	result	occurs	if	you	explicitly	include	the	--track	option.

$	git	branch	--track	test	origin/test

Branch	test	set	up	to	track	remote	branch	test	from	origin.

$	git	branch	-vv	|	grep	test

		test			8391dbd	[origin/test]	update

In	the	previous	note,	I	mentioned	the	autoSetupMerge	configuration	value.	Having
this	value	set	implies	--track	by	default.	Similarly,	if	for	some	reason,	you	don't	want
to	have	the	upstream	tracking	set	up,	you	can	supply	the	--no-track	option.

$	git	branch	--no-track	test	origin/test

diyuser@diyvb:~/remote_demo4$	git	branch	-vv	|	grep	test

		test			8391dbd	update

Notice	the	absence	of	the	upstream	tracking	branch	information	in	the	branch
command	output.

There	is	also	an	option	named	--set-upstream,	which	is	the	same	as	--track	in	most
cases.	However,	this	option	is	deprecated	in	Git	and	will	be	unsupported	at	some
point,	so	it	is	best	not	to	use	it.	As	of	this	writing,	if	you	use	it,	it	will	still	work,	but
you	will	receive	a	message	that	it	is	being	deprecated.

$	git	branch	--set-upstream	test2	origin/test2

The	--set-upstream	flag	is	deprecated	and	will	be	removed.	Consider	using	--

track	or	--set-upstream-to

Branch	test2	set	up	to	track	remote	branch	test2	from	origin.	

The	other	available	option	is	the	newer	--set-upstream-to	option.	This	option	performs
a	similar	function	to	--track	and	--set-upstream	but	is	clearer.

$	git	branch	test

$	git	branch	-vv	|	grep	test

		test			539358f	update	file

$	git	branch	--set-upstream-to=origin/test	test

Branch	test	set	up	to	track	remote	branch	test	from	origin.

$	git	branch	-vv	|	grep	test

		test			539358f	[origin/test:	ahead	4,	behind	1]	update	file

Notice	that	when	using	the	--set-upstream-to	option,	you	set	it	to	the	desired	value
with	an	equals	sign	and	pass	the	local	branch	after	the	upstream	assignment.	This
option	can	be	abbreviated	as	-u.	Also	note	that	you	can	set	the	upstream-tracking
branch	to	any	of	the	branches,	not	just	the	one	that	corresponds	in	name.	In	the
following	example,	I	set	the	upstream	to	be	origin/test2	for	the	local	test	branch
(instead	of	origin/test).

$	git	branch	test

$	git	branch	-vv	|	grep	test

		test			539358f	update	file

$	git	branch	-u	origin/test2	test

Branch	test	set	up	to	track	remote	branch	test2	from	origin.

$	git	branch	-vv	|	grep	test

		test			539358f	[origin/test2:	ahead	4,	behind	1]	update	file

Next,	you'll	look	at	the	push	operation	and	see	how	the	interaction	between	the
different	types	of	branches	is	used	with	it.

Push
As	you	saw	in	my	earlier	promotion	model	for	Git,	you	can	use	the	push	command	to
update	the	remote	repository.	Basically,	you	can	think	of	it	as	trying	to	take	changes
you've	committed	into	your	local	repository	and	mirror	them	to	the	remote	repository.
As	part	of	the	same	operation,	push	takes	note	of	which	commits	the	corresponding
branches	in	the	remote	repository	point	to,	and	it	updates	the	remote	tracking
branches	in	the	local	repository	to	point	to	the	same	mirrored	versions	there.	The
syntax	for	the	push	command	is	as	follows:

git	push	[--all	|	--mirror	|	--tags]	[--follow-tags]	[--atomic]	[-n	|	--dry-											

run]	[--receive-pack=<git-receive-pack>]

									[--repo=<repository>]	[-f	|	--force]	[-d	|	--delete]	[--prune]	[-v	|	-

-verbose]

										[-u	|	--set-upstream]

										[--[no-]signed|--sign=(true|false|if-asked)]

										[--force-with-lease[=<refname>[:<expect>]]]

										[--no-verify]	[<repository>	[<refspec>…]]

Let's	look	at	an	example	of	what	a	push	operation	would	look	like	between	a	local
repository	and	a	remote	repository.	In	this	case,	you'll	mimic	the	idea	of	pushing	to	an
empty	remote	repository	from	an	existing	local	repository.

TIP

If	you	are	creating	a	new	project	or	you	want	to	share	an	existing	project	with
others,	you	may	want	to	create	a	new	remote	repository	from	your	existing	code
base	in	your	local	repository.	There	are	a	couple	of	ways	to	do	this,	depending	on
your	particular	circumstances.

A	prerequisite	here	is	that	you	must	have	permissions	where	you	want	to	create
the	remote	repository	from	your	local	one.	Once	you	have	permissions	in	place,
there	are	essentially	three	ways	you	can	create	a	remote	repository	directly	from
your	local	repository:

You	can	initialize	a	new	repository	here	with	the	git	init	command	and	push
your	local	repository	to	it.

You	can	create	a	bare	version	of	your	local	repository	and	copy	it	to	the	desired
location.

If	you	are	working	in	some	other	kind	of	interface	(such	as	a	hosting	service
like	GitHub),	they	will	have	their	own	way	for	users	to	create	a	new	repository
area.

Since	the	last	option	is	provider-specific,	we'll	look	at	the	first	two	options	here.

Approach	#1:	Using	git	init

1.	 In	the	remote	area	for	repositories,	make	a	directory	for	the	repository,	change
into	that	directory,	and	run	the	following	command:

	$	git	init	--bare	--shared<options>

The	--shared	option	isn't	required,	but	it	does	allow	you	to	configure
permissions	and	access	at	creation	time.	See	the	git	init	--help	page	for	an
explanation	of	--shared	and	its	possible	values.

2.	 Back	in	your	local	environment,	add	the	URL	(path)	for	the	new	remote	area
you	created	as	origin	(or	whatever	remote	reference	name	you'd	like)	to	your
repository.

$	git	remote	add	origin	http://mygitserver.com/myrepopath

3.	 Now	you	have	a	connection	to	an	empty	remote.	You	can	use	the	push
operation	to	push	your	content	over	to	the	remote	(which	I'll	talk	about
shortly)	using	commands	like	this:

$	git	push	origin	master

Approach	#2:	Copying	a	bare	repository

If	you	have	write	access	to	the	area	where	the	remote	repositories	are	hosted,	you
can	create	a	bare	repository	and	copy	it	there.	The	steps	are	pretty

straightforward.

1.	 Create	a	bare	repository	from	your	local	repository.	This	creates	a	copy	of	the
repository	that	is	suitable	for	hosting	as	a	remote	repository.

$	git	clone	--bare	myrepo	myrepo.git	

2.	 Copy	the	bare	version	of	the	repository	out	to	the	remote	repository	area.	In
this	example,	I	use	the	scp	command.

$	scp	-r	myrepo.git		user@server.com:/git/area/for/repos

3.	 Of	course,	with	either	of	these	methods,	you	will	need	to	update	any	other
permissions	or	access	protocols	to	ensure	that	the	appropriate	users	can	then
clone	the	new	repositories.

Figure	12.5	shows	a	local	repository	with	three	commits	that	have	been	made	into	it
and	an	empty	remote	repository.

Figure	12.5	Initial	changes	in	the	local	repository

If	you	now	do	a	push	operation,	Git	takes	your	local	changes	and	updates	the	remote
repository	with	them	(see	Figure	12.6).

Figure	12.6	After	a	push	to	the	remote	repository

Git	also	creates	a	branch	pointer	in	the	local	repository	to	indicate	where	the
corresponding	branch	in	the	remote	repository	is	pointing	(see	Figure	12.7).	This
creates	the	remote	tracking	branch	that	I	have	been	talking	about.	This	branch	has	the
namespace	of	the	remote	reference	(origin	by	default),	so	you	can	reference	it	as
origin/master.	You	can	now	reference	the	origin/master	branch	as	a	representation	of
the	master	branch	on	the	remote	without	being	connected	to	the	remote.

Figure	12.7	Remote	tracking	branch	created	in	the	local	repository

Seeing	Status:	Local	versus	Remote
Carrying	this	sequence	one	step	further,	suppose	you	now	make	a	commit	into	the

local	repository	that	is	not	(yet)	pushed	over	to	the	remote	repository,	as	shown	in
Figure	12.8.

Figure	12.8	After	a	commit	into	the	local	repository

The	interesting	thing	about	this	state	is	what	a	git	status	command	would	show.

$	git	status

On	branch	master

Your	branch	is	ahead	of	'origin/master'	by	1	commit.

		(use	"git	push"	to	publish	your	local	commits)

nothing	to	commit,	working	directory	clean

Notice	the	wording	here.	You	can	read	the	first	sentence	as:	“Compared	to	the	last
time	you	checked	in	with	the	remote,	your	local	branch	has	one	newer	commit	on	it.”
This	is	because	origin/master	(the	remote	tracking	branch)	represents	where	master
was	the	last	time	you	communicated	with	the	remote.	To	see	the	differences	another
way,	you	can	use	the	git	branch	-av	command.

$	git	branch	-av

*	master																		253231d	[ahead	1]	<commit	message>

		remotes/origin/master			bed5211	<previous	commit	message>

Notice	the	shorthand	notation	here,	[ahead	1],	which	means	the	same	thing	as
“master	is	ahead	of	origin/master	by	one	commit.”

You	can	try	one	other	variation	by	using	the	-vv	option.

$	git	branch	-vv

*	master			253231d	[origin/master:	ahead	1]	<commit	message>

Push	Formats
The	push	command	expects	a	repository	and	a	reference	to	push	to.	For	your	purposes

here,	the	repository	will	always	be	a	remote	reference	name	(such	as	origin)	and	the
reference	will	always	be	one	or	two	branch	names.	The	reason	I	say	one	or	two	is
because,	while	you	typically	only	specify	the	branch	you	are	pushing	to,	it	is	also
possible	to	specify	a	different	source	branch	to	push	from	(see	the	following
examples).

So,	in	most	cases,	you	would	use	this	form:

$	git	push	<remote	repository>	<remote	branch>

You	can,	however,	also	use	this	form	if	you	are	pushing	from	a	local	branch	that	is
named	differently	from	the	targeted	remote	branch:

$	git	push	<remote	repository>	<local	branch>:<remote	branch>

There	is	also	a	default	form	of	the	push	command,	which	is	just

$	git	push

In	the	default	form,	the	repository	defaults	to	origin.	However,	the	default	branch
behavior	is	configurable	and	requires	some	additional	explanation,	as	I	discuss	in	the
section,	“Understanding	the	Push	Default	Behavior.”

$	git	push	origin	:

In	this	form,	the	command	pushes	all	matching	branches.	For	a	description	of	what
matching	means	here,	see	the	section	“Understanding	the	Push	Default	Behavior.”

$	git	push	origin	HEAD

This	is	the	same	form	as	I	described	earlier,	but	it's	worth	mentioning	because	it
provides	a	convenient	way	to	just	tell	Git	to	push	the	current	branch	(in	this	case,
HEAD)	to	the	branch	of	the	same	name	on	the	remote.

Finally,	it's	worth	noting	that	you	can	push	multiple	branches	on	the	command	line	or
multiple	local:remote	pairs.

$	git	push	origin	branch1	branch2	branch3

$	git	push	origin	lbranch1:rbranch1	lbranch2:rbranch2	lbranch3:rbranch3

NOTE

If	you	create	a	new	local	branch	and	then	want	to	create	it	in	the	remote
(assuming	it	doesn't	already	exist),	the	process	is	just	to	push	it,	as	follows:

$	git	push	<remote>	<branchname>

The	formal	syntax	is

$	git	push	<remote>	<local	branchname>:<remote	branchname>

However,	Git	assumes	that	if	you	omit	<remote	branchname>,	it	should	just	be
the	same.

Understanding	the	Push	Default	Behavior
The	reason	you	have	different	options	for	the	push	command's	default	behavior	has	to
do	with	how	you	map	branches	from	the	local	repository	to	branches	in	the	remote
repository.	If	no	reference	(branch)	is	specified	directly	on	the	command	line,	is
already	configured,	or	is	implied	by	a	command	line	option,	Git	needs	to	know	what	to
do	in	terms	of	which	local	branch	to	push	to	which	remote	branch.

To	specify	your	choice	for	the	default	value,	you	configure	the	Git	configuration
setting	push.default.	The	possible	values	are	as	follows:

nothing—Don't	push	anything.

matching—Push	all	the	matching	branches.	Matching	here	means	that	the	names
match	between	a	local	branch	and	a	remote	branch.

upstream—Push	the	current	branch	to	the	one	defined	as	its	upstream	branch.
(This	was	formerly	known	as	tracking.)

current—Push	the	current	branch	to	the	branch	on	the	remote	side	with	the	same
name.

simple—Like	upstream,	but	don't	allow	the	push	if	the	upstream's	branch	name	is
different	from	the	local	branch's	name.	(This	is	the	default	value	as	of	Git	2.0.)

If	you're	only	concerned	with	pushing	to	a	single	branch	at	a	time,	or	if	you	want	more
control,	you	can	use	the	simple,	current,	and	upstream	modes.	If	you	want	to	push	all
corresponding	branches,	you	can	use	matching.

Upstream,	in	the	context	of	a	Git	remote	environment,	generally	refers	to	the	location
of	the	remote	repository,	but	it	has	a	lot	of	context	around	it	when	setting	up
branches.	I	try	to	clarify	that	context	in	the	earlier	section,	“Configuring	Upstream
Relationships	for	Branches.”

The	simple,	current,	and	upstream	modes	are	for	when	you	want	to	push	out	content
from	a	single	branch,	even	when	the	other	branches	are	not	yet	ready	to	be	pushed

out.

Push	Options
Push	has	many	options	that	you	can	use	to	customize	its	behavior.	I'll	cover	a	few	of
the	most	common	and	significant	ones	here,	but	you	can	find	more	information
online	on	the	push	help	page.

all
The	all	option	pushes	all	branches.	An	example	would	be:
$	git	push	--all

delete
The	delete	option	deletes	the	reference	on	the	remote	repository.	For	example,	the
following	command	deletes	a	remote	branch:

$	git	push	--delete	origin	testing

-	[deleted]									testing

You	can	also	use	the	colon	(:)	notation	to	tell	Git	to	delete	something.	For	example,
this	command	has	the	same	effect	as	the	previous	one.

$	git	push	origin	:testing

-	[deleted]									testing

The	delete	option	is	a	global	option	to	push	that	applies	to	all	references	specified	on
the	command	line.	The	colon	(:)	allows	for	specifying	particular	references	to	delete	if
there	is	a	list.

WARNING

The	colon	(:)	is	used	both	to	signify	a	branch	to	delete	and	to	separate	a	local
branch	from	the	remote	branch	in	a	push	context.	So,	you	should	be	careful	when
using	it	with	a	push	command.	For	example,	the	following	syntax	pushes	the
contents	of	the	testing	local	branch	to	the	testing2	remote	branch:

$	git	push	origin	testing:testing2

Counting	objects:	3,	done.

Writing	objects:	100%	(3/3),	249	bytes	|	0	bytes/s,	done.

Total	3	(delta	0),	reused	0	(delta	0)

To	C:/Program	Files/Git/force_repo.git

			35ab623..6b87658		testing	->	testing2

However,	if	you	accidentally	include	a	space,	the	command	does	something
completely	different.

$	git	push	origin	testing	:testing2

Counting	objects:	3,	done.

Writing	objects:	100%	(3/3),	242	bytes	|	0	bytes/s,	done.

Total	3	(delta	0),	reused	0	(delta	0)

To	C:/Program	Files/Git/force_repo.git

			35ab623..e42f850		testing	->	testing

	-	[deleted]									testing2

tags,	follow-tags
By	default,	push	does	not	push	tags	over	to	the	remote	side.	The	option	--tags	tells	Git
to	push	tags.	The	--follow-tags	option	is	more	refined	and	pushes	annotated	tags	that
are	reachable	in	the	current	commits	and	missing	in	the	remote.

force
Git	typically	refuses	to	accept	a	push	to	the	remote	unless	it	can	do	a	fast-forward
merge—meaning	the	changes	being	pushed	already	contain	the	latest	contents	of	the
remote	branch	and	no	one	else	has	made	intervening	changes.	Here's	an	example	of
what	Git	returns	in	this	case:

$	git	push

To	C:/Program	Files/Git/./calc2.git

	!	[rejected]								master	->	master	(fetch	first)

error:	failed	to	push	some	refs	to	'C:/Program	Files/Git/./calc2.git'

hint:	Updates	were	rejected	because	the	remote	contains	work	that	you	do

hint:	not	have	locally.	This	is	usually	caused	by	another	repository	pushing

hint:	to	the	same	ref.	You	may	want	to	first	integrate	the	remote	changes

hint:	(e.g.,	'git	pull	…')	before	pushing	again.

hint:	See	the	'Note	about	fast-forwards'	in	'git	push	--help'	for	details.

I	talk	more	about	the	best	way	to	handle	this	situation	in	Chapter	13.	However,	there
is	a	--force	option	(short	version	-f)	that	you	can	use	to	force	the	push	to	happen	in

these	cases.	This	can	be	dangerous,	though,	and	you	should	only	use	it	if	you	truly
understand	the	consequences.

WARNING

If	another	user	has	pushed	updated	content	and	you	force	your	changes	in
without	pulling	the	updates	first,	you	can	end	up	orphaning	their	changes.

From	that	user's	perspective,	after	their	push,	their	changes	are	at	the	head	of	the
branch.	When	you	force	your	changes	in,	your	changes	are	appended	at	the	point
the	branch	was	the	last	time	you	did	an	operation	on	the	remote	(where	your
remote	tracking	branch	points).	This	is	likely	the	same	place	their	changes	were
appended.

Once	your	changes	are	pushed,	they	become	the	new	head	and	the	other	user's
changes	are	effectively	orphaned	off	to	the	side.	Eventually,	their	changes	may	be
removed	completely	by	garbage	collection.

You	can	use	the	force	option	as	follows:

$	git	push	-f	origin	master

Counting	objects:	10,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(6/6),	done.

Writing	objects:	100%	(10/10),	856	bytes	|	0	bytes/s,	done.

Total	10	(delta	0),	reused	0	(delta	0)

To	C:/Program	Files/Git/./calc2.git

	+	0caf33c…7f3fb23	master	->	master	(forced	update)

Notice	the	“forced	update”	option	message	at	the	end.

Git	also	allows	you	to	use	a	plus	(+)	sign	in	front	of	the	branch	argument	to	force	an
update.

$	git	push	origin	+master

Counting	objects:	14,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(8/8),	done.

Writing	objects:	100%	(14/14),	1.14	KiB	|	0	bytes/s,	done.

Total	14	(delta	0),	reused	0	(delta	0)

To	C:/Program	Files/Git/./calc2.git

	+	7f3fb23…13f956a	master	->	master	(forced	update)

The	difference	in	using	the	--force	option	and	the	plus	sign	is	that	the	--force	option	is
a	global	option	to	push	and	so	applies	to	all	branches	being	pushed.	The	plus	sign	is
applied	on	a	branch-by-branch	basis	as	desired.

mirror
The	mirror	option	tells	Git	to	push	everything	(tags,	remotes,	heads,	and	so	on)	over.
You	typically	use	the	--mirror	option	if	you	need	to	migrate	or	move	an	entire
repository	somewhere.

set-upstream
For	every	branch	that	is	successfully	pushed	by	the	push	operation	or	that	is	up-to-
date,	the	set-upstream	option	adds	an	upstream	tracking	reference.	This	may	be
needed	on	initial	pushes	for	branches	that	do	not	already	have	an	upstream	tracking
reference.	By	setting	the	upstream	tracking	reference,	you	will	also	help	to	ensure	that
any	subsequent	operations	that	use	this	reference	(such	as	a	git	pull)	will	know	what
to	do.	The	short	version	of	this	option	is	-u.

tags
The	tags	option	tells	Git	to	push	over	all	of	the	tags	(all	of	the	items	under	ref/tags	in
the	.git	directory).	You	need	to	specify	this	option	to	ensure	tags	are	pushed	along	with
the	other	content.

Now,	let's	look	at	how	you	can	update	the	local	environment	with	changes	from	the
remote	repository	using	the	fetch	and	pull	commands.

Fetch
Once	a	repository	is	cloned,	the	connection	between	the	remote	branches	and	remote
tracking	branches	in	the	local	repository	is	established.	The	fetch	command	allows
you	to	get	the	latest	updates	to	the	remote	tracking	branches	(as	well	as	tags).	The
syntax	is	fairly	straightforward.

git	fetch	[<options>]	[<repository>	[<refspec>…]]

git	fetch	[<options>]	<group>

git	fetch	--multiple	[<options>]	[(<repository>	|	<group>)…]

git	fetch	--all	[<options>]

To	understand	the	basic	mechanics	of	a	fetch	operation,	take	a	look	at	Figure	12.9.
This	is	a	continuation	of	the	set	of	commits	you	were	using	in	the	push	discussion
(shown	in	Figures	12.5	to	12.8).

Figure	12.9	Before	and	after	a	fetch	operation

On	the	left	side	of	Figure	12.9	is	your	starting	point.	You've	pushed	the	most	recent
commit	you	made	locally	over	to	the	remote.	However,	someone	else	has	also	made	a
change	and	pushed	it	into	the	remote	repository.	Thus,	you	have	an	additional	commit
in	the	remote	repository	that	you	don't	have	in	your	local	repository.

If	you	were	to	do	a	git	status	command	at	this	point,	you	would	get	the	following
output:

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

nothing	to	commit,	working	directory	clean

This	may	seem	confusing	at	first	because	I	just	said	that	there	was	newer	content	in
the	remote	repository	that	you	don't	have	in	your	local	repository.	However,
remember	that	you're	using	the	remote	tracking	branch	(origin/master)	as	your
bookmark	of	where	the	corresponding	branch	on	the	remote	is.	And	the	remote
tracking	branch	is	only	updated	when	you	check	in	with	the	remote.	So,	based	on	the
last	time	you	checked	in	with	the	remote,	both	the	remote	master	branch	and	your
local	master	branch	were	pointing	at	the	same	commit.

Now,	if	you	look	at	the	right	side	of	Figure	12.9,	you	see	a	fetch	operation	being
performed.	The	fetch	operation	communicates	with	the	remote	repository	to	see	if
there	are	any	updates	there	that	it	needs	to	reflect	in	the	corresponding	remote
tracking	branch.	There	are:	there	is	a	new	commit	on	master	in	the	remote	repository,
as	I	previously	noted.	So,	Git	updates	the	repository	with	the	new	commit	and	(only)
moves	the	remote	tracking	branch	(origin/master)	to	point	to	the	new	commit.	Notice
that	your	local	branch,	master,	is	not	updated.	Fetch	only	updates	the	contents	of	the
repository	and	remote	tracking	branches.

After	the	fetch	operation,	if	you	check	the	status,	you	see	something	like	this:

$	git	status

On	branch	master

Your	branch	is	behind	'origin/master'	by	1	commit,	and	can	be	fast-forwarded.

		(use	"git	pull"	to	update	your	local	branch)

nothing	to	commit,	working	directory	clean

This	tells	you	that	your	current	branch	master	is	one	commit	behind	where	the
remote	tracking	branch	is.	(Another	way	to	say	this	is	that	the	remote	tracking	branch,
and	thus	the	remote,	has	one	newer	commit	that	your	local	branch	is	not	yet	aware
of.)	Notice	that	the	output	also	tells	you	that	your	local	branch	can	be	fast-forwarded.
I'll	discuss	what	that	means	shortly.

Fetch	Options
As	with	the	push	command,	there	are	a	few	options	you	should	know	about	for	the
fetch	command.

depth

The	depth	option	limits	fetching	to	the	number	of	commits	specified	as	an	argument
to	the	option.	For	example,	--depth=1	only	fetches	down	the	latest	changes	(latest
commit).

force
Like	push,	fetch	also	has	a	force	option.	If	you	attempt	to	fetch	from	a	branch	on	the
remote	repository	to	a	remote	tracking	branch	in	the	local	repository	and	Git	can't	do	a
fast-forward	merge,	then	it	refuses	to	do	the	update.	However,	you	can	use	the	--force
(-f)	option	to	force	Git	to	do	the	update.	Of	course,	you	should	only	do	this	if	you
understand	the	consequences	and	are	sure	you	want	to	do	it.

To	illustrate	this,	I'll	use	an	example	of	trying	to	fetch	updates	from	one	branch	into	a
completely	different	branch.	Attempting	this	when	Git	can't	do	a	fast-forward	merge
between	the	two	branches	results	in	an	error	message	like	the	following	one:

$	git	fetch	origin	master:ui

!	[rejected]								master					->	ui		(non-fast-forward)

You	can	use	the	-f	option	to	force	the	update	to	happen.

$	git	fetch	-f	origin	master:ui

+	fbcf72c…8a3f48b	master					->	ui		(forced	update)	

As	an	optional	method	of	forcing	the	update,	you	can	supply	a	plus	(+)	sign	in	front	of
the	branches.

$	git	fetch	origin	+master:ui

+	abaf124…8a3f48b	master					->	ui		(forced	update)

The	-f	(or	--force)	option	is	an	option	to	fetch,	and	it	applies	to	all	branches	passed	to
the	command.	You	can	use	the	plus	(+)	sign	to	specify	forcing	any	particular	branch	if
you	don't	want	to	do	all	of	them.

Synchronizing	Local	Branches	after	a	Fetch
Recall	that	in	an	earlier	example,	after	fetching	the	latest	updates,	the	status	said	that
your	local	branch	was	one	commit	behind	the	remote	tracking	branch	and	could	be
“fast-forwarded.”

This	means	that	a	fast-forward	merge	can	be	done	to	bring	the	local	branch	up-to-date
with	the	latest	changes	to	the	remote	tracking	branch	(and	thus	the	remote	branch).
The	left	side	of	Figure	12.10	shows	the	local	repository	after	the	fetch	but	before	the
merge.	Note	that	the	master	branch	is	one	commit	behind	the	remote	tracking	branch.

Figure	12.10	The	local	repository	before	and	after	the	merge

You	can	then	do	the	merge.

$	git	merge	origin/master

Updating	253231d..ecf2390

Fast-forward

	…

You	end	up	with	the	results	on	the	right	side	of	Figure	12.10.	Notice	that	the	master
branch	has	been	fast-forwarded	to	the	same	commit	as	the	remote-tracking	branch.
Also,	as	I	discuss	in	Chapter	9,	the	merge	occurs	in	the	working	directory	as	well	as
the	local	repository.	This	is	shown	in	Figure	12.10	by	the	change	in	contents	in	the
working	directory	before	and	after	the	merge.

This	is	how	you	synchronize	a	local	branch	after	a	fetch	updates.	After	the	merge,	your
local	repository,	local	branch,	and	files	in	the	working	directory	all	have	the	latest
updates	from	the	remote.

Pull
If	you	understand	fetch	and	merge,	then	you	understand	the	pull	command.	In	its
default	form,	the	git	pull	command	is	essentially	a	fetch	followed	by	a	merge.	Figure
12.11	represents	a	before-and-after	view	that	is	similar	to	the	other	commands.

Figure	12.11	Before	and	after	a	pull	operation

The	syntax	for	the	pull	command	is	also	fairly	straightforward:

git	pull	[options]	[<repository>	[<refspec>…]]

Let's	look	at	a	few	of	the	options	for	the	pull	command.

Pull	Options
Because	the	pull	command	is	basically	a	combination	of	a	fetch	and	merge,	pull	has	a
set	of	options	that	correspond	to	fetching	and	a	set	that	correspond	to	merging.	For
extended	information	about	merging	or	rebasing,	refer	to	Chapter	9.

Options	Related	to	Merging
Following	are	a	few	useful	options	related	to	merging	that	are	supported	by	the	pull
operation.

no-commit
The	no-commit	option	performs	the	merge	but	does	not	commit	the	results.	It
provides	an	opportunity	to	inspect	the	results	of	the	merge	before	committing.

no-edit
The	no-edit	option	tells	Git	not	to	invoke	the	editor	before	the	commit—just	to	accept

the	automatically	generated	message.

rebase
The	rebase	option	has	several	possible	settings.	The	main	idea	is	that	instead	of	just
doing	a	fetch	and	merge	for	the	pull	action,	Git	does	a	fetch	and	rebase.	Beyond	that,
you	can	use	other	settings:

=true—After	the	fetch,	this	setting	rebases	the	current	branch	on	top	of	the
upstream	branch.

=false—This	setting	merges	the	current	branch	into	the	upstream	branch.

=preserve—This	setting	rebases	with	the	rebase	operation's	--preserve-merges
option.	This	forces	Git	to	also	use	merge	commits	that	are	part	of	the	history	as
part	of	the	rebase.

=interactive—This	setting	starts	up	the	interactive	mode	of	rebase.

strategy
The	strategy	option	supplies	a	merge	strategy	to	use	(-s	for	short).	Note	that	this
option	can	be	supplied	more	than	once.	If	multiple	instances	are	supplied,	that
indicates	the	order	in	which	Git	should	try	to	use	each	strategy.

strategy-option
Specifying	this	option	to	pull	allows	you	to	supply	a	particular	option	to	the	chosen
merge	strategy	(-X	for	short).

Options	Related	to	Fetching
The	other	component	of	the	pull	operation	has	to	do	with	fetching.	Here	are	a	few
useful	options	related	to	that	aspect.

depth
Like	cloning,	the	depth	option	does	a	shallow	pull	where	the	history	is	truncated	to
the	number	of	commits	that	you	specify	as	an	argument	to	the	option.	For	example,	--
depth=1	only	pulls	down	the	latest	changes	(one	commit).

One	interesting	point	about	this	option	for	the	pull	command	is	that	it	can	lengthen	or
shorten	the	depth	that	was	previously	used.	For	example,	if	you	clone	down	a
repository	with	a	depth	of	1,	but	later	decide	you	want	a	depth	of	3,	you	can	use	the
pull	command	with	that	depth.

force
Like	push	and	fetch,	the	pull	command	also	has	a	force	option.	If	you	attempt	to	pull
from	a	branch	on	the	remote	repository	to	a	branch	in	the	local	repository	and	Git
can't	do	a	fast-forward	merge,	then	it	refuses	to	do	the	update.	However,	you	can	use

the	--force	(-f)	option	to	force	Git	to	do	the	update.	Of	course,	you	should	only	do	this
if	you	understand	the	consequences	and	are	sure	you	want	to	do	it.

To	illustrate	this,	I'll	again	use	an	example	of	trying	to	fetch	updates	from	one	branch
into	a	completely	different	branch.	Attempting	this	when	Git	can't	do	a	fast-forward
merge	between	the	two	branches	results	in	an	error	message	like	this:

$	git	pull	origin	features:docs

From	https://github.com/brentlaster/calc2

	!	[rejected]								features			->	docs		(non-fast-forward)

You	can	use	the	-f	option	to	force	the	update	to	happen.

$	git	pull	-f	origin	features:docs

From	https://github.com/brentlaster/calc2

	+	abaf124…b372aa6	features			->	docs		(forced	update)

As	an	optional	method	of	forcing	the	update,	you	can	supply	a	plus	(+)	sign	in	front	of
the	branches.

$	git	pull	origin	+features:docs

From	https://github.com/brentlaster/calc2

	+	abaf124…b372aa6	features			->	docs		(forced	update)

The	-f	(or	--force)	option	is	an	option	to	fetch,	and	it	applies	to	all	branches	that	are
passed	to	the	command.	You	can	use	the	plus	(+)	sign	to	specify	forcing	any	particular
branch	if	you	don't	want	to	do	all	of	them.

SUMMARY
In	this	chapter,	I	switched	to	the	other	side	of	the	Git	environment:	remotes.	I
clarified	what	the	term	remote	can	mean	in	Git—from	an	alias	for	the	longer	URL	path
to	the	remote	repository,	to	the	remote	repository	itself.

I	talked	about	the	various	networking	protocols	(SSH,	Git,	Local,	and	HTTP—both
smart	and	dumb)	that	you	can	use	with	Git	to	communicate	between	the	local	and
remote	sides.

I	described	in	more	detail	how	you	clone	down	a	copy	of	the	remote	repository	to
create	a	new	local	environment.	I	also	explored	some	of	the	options	that	are	available
to	limit	or	otherwise	modify	the	set	of	content	that	you	clone.

I	discussed	the	differences	between	remote	branches,	remote	tracking	branches,	and
local	branches,	and	I	described	how	these	branches	work	in	practice.	I	showed	you
how	to	get	a	list	of	these	branches	and	how	Git	tells	you	if	you	are	behind	or	ahead
locally,	compared	to	the	remote.

Finally,	I	discussed	the	main	operations	that	you	use	to	interact	with	the	remote	side:
push,	fetch,	and	pull.	I	explored	how	each	of	these	operations	affects	the	local
environment,	as	well	as	some	of	the	key	options	that	you	are	likely	to	use	with	each
one.

In	the	next	chapter,	I	continue	discussing	remotes	by	looking	at	the	typical	workflow
you	can	use	with	remotes,	and	exploring	an	alternative	workflow	that	is	popular	for
hosted	sites.

About	Connected	Lab	8:	Setting	Up	a	GitHub	Account	and	Cloning	a
Repository
This	lab	is	intended	to	give	you	some	practice	in	working	with	remotes.	To	do	this,
you'll	set	up	a	GitHub	repository	and	see	how	some	of	the	basic	concepts	such	as
forking,	cloning,	and	adding	remote	references	work	in	practice.

Connected	Lab	8

Setting	Up	a	GitHub	Account	and	Cloning	a	Repository
In	this	lab,	you'll	get	some	practice	with	remotes	by	setting	up	a	GitHub	account,
forking	a	repository,	and	cloning	it	down	to	y	our	system	to	work	with.

Prerequisites
This	lab	requires	that	you	have	Internet	access.

Steps
1.	 Go	to	https://github.com.

2.	 Fill	in	the	Pick	a	username,	Your	email	address,	and	Create	a	password	fields.

3.	 Click	the	Sign	up	for	GitHub	button.

4.	 Accept	the	defaults	on	the	next	screen	and	click	the	Continue	button.

5.	 (Optional)	Fill	out	the	Interests	sections	on	the	next	page	or	just	click	the	skip	this
step	link.

6.	 Follow	the	instructions	to	verify	your	email	address.	Then	click	the	Start	a	project
button.

7.	 Go	to	the	calc2	project	at	https://github.com/professional-git/calc2.

8.	 Click	the	Fork	button	(top-right	corner)	so	that	the	repository	is	forked	to	your
user	ID.	(Your	URL	changes	to	https://github.com/>github	userid</calc2.)

9.	 Open	up	a	terminal	session	(that	you	can	run	Git	in)	on	your	local	machine,	and
change	back	to	your	home	directory	(or	at	least	out	of	any	directories	that	have	Git
repositories	in	them).

$	cd	~

10.	 On	the	right	side	of	the	calc2	project	web	page,	click	the	Clone	or	download
button.	A	pop-up	window	appears,	populated	with	the	URL	path	you	can	use	to
clone	this	project	down	using	the	HTTPS	protocol.	To	the	right	of	that	URL,	click
the	clipboard	icon	to	copy	the	path	to	your	clipboard.	This	saves	you	from	having	to
construct	the	path	yourself.

11.	 Switch	back	to	your	terminal	session.	Clone	the	project	down	by	typing	git	clone
and	then	pasting	the	path	from	the	clipboard.	Press	Enter.

$	git	clone	https://github.com/<your	github	user	id>/calc2.git

You	see	some	messages	from	the	remote	side,	and	then	the	project	is	cloned	down
into	the	calc2	directory.

12.	 You	are	now	going	to	create	another	cloned	copy.	This	copy	will	emulate	another
person	working	in	the	same	repository	and	allow	you	to	see	what	happens	in	the
next	lab	when	someone	else	makes	a	change	to	the	same	code	base	that	you're
working	on.	When	you	already	have	a	copy	of	a	repository	on	your	disk,	you	can
create	another	copy	by	supplying	a	new	name	for	the	destination	directory	to	the
command.	You'll	use	calc_other	here.	From	the	same	directory	as	before,	run	the
second	clone	command.

$	git	clone	https://github.com/<your	github	user	id>/calc2.git	calc_other	

calc_other

https://github.com
https://github.com/professional-git/calc2

13.	 You	can	now	browse	around	the	calc2	and	calc_other	directories.	Each	directory
only	contains	one	file,	but	if	you	look	at	the	hidden	files,	you	can	see	the	.git
repository	that	was	cloned	down	from	the	remote.	You	can	also	run	commands	like
branch	to	see	the	set	of	branches	in	each	cloned	repository.	Try	the	following
commands	to	see	the	list	of	remote	branches	and	information	about	the	most
recent	set	of	changes	in	each	cloned	repository.	(Note	that	you	will	need	to	change
into	the	respective	directory	for	the	repository	first.)

$	git	branch	-r

$	git	branch	-av	

14.	 You	will	now	do	one	more	operation	for	both	repositories.	Assume	that	you	want
to	be	able	to	pull	in	any	updates	that	may	be	made	in	the	original	GitHub
repository	that	these	repositories	are	forked	from.	In	this	case,	you	need	to	add
another	remote	that	you	can	run	pull	or	fetch	operations	against	if	you	want	to.	In
each	of	the	directories	(calc2	and	calc_other),	run	the	following	commands,
changing	into	the	respective	directory	for	each	cloned	repository	first:

$	git	remote	add	upstream	https://github.com/professional-git/calc2.git

15.	 Run	the	remote	-v	operation	to	see	the	set	of	remotes	on	each	area.

$	git	remote	-v

Chapter	13
Understanding	Remotes—Workflows	for	Changes

WHAT’S	IN	THIS	CHAPTER?

Dealing	with	changes	from	multiple	users

Resolving	conflicts	after	updating	from	a	remote

Rebasing	versus	merging	after	a	pull

Using	the	fork-and-pull	model	for	collaboration	and	contribution

Stashing,	a	better	way	to	merge

Tying	all	the	workflow	pieces	together

So	far	in	this	book,	I’ve	focused	mostly	on	working	with	Git	as	an	individual	user	in	a
local	environment.	In	Chapter	12,	I	extended	this	discussion	to	interacting	with	the
remote	environment.	In	this	chapter,	I’ll	focus	on	working	with	other	users.

I’ll	first	explore	the	basic	conflict-merge	resolution	workflow	that	comes	into	play
when	someone	else	has	changed	code	you’ve	also	been	working	on.	I’ll	show	you	how
this	workflow	works	and	explain	why	the	process	happens	the	way	it	does.	Next,	I’ll
present	a	modified	workflow	that	is	widely	used	for	contributing	to	other	users’
projects.	Finally	I’ll	discuss	a	strategy	to	help	mitigate	surprises	when	you	pull
updates,	and	fit	that	strategy	into	a	larger	workflow	that	is	similar	to	what	you	might
use	with	some	other	source	control	systems.

NOTE

Workflows	is	a	term	that	is	often	overused	in	technical	documents.	With	Git,	I
previously	talked	about	adding	and	committing	content	in	the	local
environment.	The	workflows	that	I	discuss	in	this	chapter	extend	that	model
further—to	interactions	and	strategies	when	pushing	changes	to	the	remote
repository,	and	working	in	an	environment	where	others	are	also	pushing
changes	to	the	same	codebase.

Another	common	type	of	workflow	in	Git	has	to	do	with	branching	workflows,
or	more	precisely,	branching	strategies,	where	you	use	multiple	branches	to
manage	the	flow	of	changes	over	time.	I	discuss	those	ideas	in	Chapter	8.
However,	as	I	note	in	that	chapter,	you	can	find	more	information	and	strategy
suggestions	on	the	web.	In	particular,	you	can	search	for	git	flow	and	find	a
wealth	of	content	(and	opinions)	about	various	strategies.

One	other	source	of	information	related	to	branching	workflows	is	the	built-in
help	page	for	workflows	that	comes	with	Git.	This	information	is	subtitled	“An
overview	of	recommended	workflows	with	Git.”	This	is	not	a	command,	but	a
help	topic,	so	you	can	access	it	by	executing	the	command

$	git	workflows	--help

or

$	git	help	workflows

THE	BASIC	CONFLICT	AND	MERGE	RESOLUTION
WORKFLOW	IN	GIT
Your	interaction	with	other	users	in	Git	all	comes	together	when	you	start	interacting
with	remote	repositories.	Whether	pushing	or	pulling,	or	fetching	and	merging,
updating	content	to	and	from	the	remote	side	gives	you	your	first	indication	of
whether	there	are	conflicts	between	the	changes	you’ve	made	and	the	changes	others
have	made.

How	the	Remote	Side	Handles	Conflicts
Recall	that	I	said	in	Chapter	12	that	remotes	are	lazy.	Basically,	the	remote	side
expects	that	whatever	you	are	trying	to	push	from	the	local	side	already	includes	all	of
the	content	that	is	currently	in	the	destination	branches	in	the	remote	repository.	The
remote	side	is	expected	to	be	an	ancestor	of	what	you’re	trying	to	push;	you’re	just
adding	on	at	the	end.	This	is	so	that	Git	can	simply	do	a	fast-forward	merge,	which
means	that	no	actual	merging	has	to	occur	on	the	remote.

If	you	were	the	only	one	working	in	a	remote	repository,	this	usually	wouldn’t	present
a	problem.	However,	remote	repositories	are	primarily	meant	to	provide	a	place	for
multiple	users	to	push	their	changes	and	share	code.	So,	at	some	point,	you	will
probably	encounter	a	situation	where	Git	cannot	do	a	fast-forward	merge	to
incorporate	your	changes.	This	occurs	when	someone	else	has	pushed	updates	(into
the	remote)	that	you	haven’t	yet	pulled	and	merged	into	your	pending	changes.

Put	another	way,	someone	beat	you	to	the	punch,	getting	their	changes	in	on	top	of
the	same	code	base	that	you	were	working	on.	Because	updates	have	been	pushed	that
potentially	conflict	with	updates	that	you’re	trying	to	push,	the	remote	side	of	Git	just
flags	this	conflict	and	stops	the	operation,	rejecting	your	push.	It’s	then	up	to	you	to
sort	the	conflict	resolution	out	in	the	local	environment	and	try	again.

NOTE

You	will	be	rejected	by	Git	at	some	point.	In	this	case,	rejection	refers	to	the	way
Git	tells	you	it	can’t	do	a	fast-forward	of	your	changes	in	the	remote	repository.
The	typical	message	looks	something	like	this:

$	git	push

To	C:/Program	Files/Git/./calc2.git

	!	[rejected]								master	->	master	(fetch	first)

error:	failed	to	push	some	refs	to	'C:/Program	Files/Git/./calc2.git'

hint:	Updates	were	rejected	because	the	remote	contains	work	that	you	do

hint:	not	have	locally.	This	is	usually	caused	by	another	repository	pushing

hint:	to	the	same	ref.	You	may	want	to	first	integrate	the	remote	changes

hint:	(e.g.,	'git	pull	…')	before	pushing	again.

hint:	See	the	'Note	about	fast-forwards'	in	'git	push	--help'	for	details.

As	ominous	as	this	may	look,	it’s	not	that	bad,	and	in	most	cases	the	conflict	can
be	easily	resolved,	as	I	discuss	in	the	rest	of	this	chapter.

Conflict	Scope
If	you’ve	worked	with	any	other	source	management	systems,	you’re	probably	familiar
with	a	scenario	like	the	one	just	mentioned.	In	those	systems,	the	typical	granularity
is	a	file	and	the	system	records	the	delta	change	(Figure	13.1).	The	conflict	usually
occurs	when	you	make	a	change	to	a	file	that	someone	else	has	also	changed.	They
check	in	their	change	before	you	do.	Then,	when	you	check	in	your	change	to	the	same
file,	the	system	tells	you	there	is	a	merge	conflict.

Figure	13.1	File	granularity	corresponding	to	delta	changes

The	idea	in	Git	is	similar,	but	the	scope	is	wider.	Recall	that	Git	records	changes	as
commits	(or	snapshots)	of	entire	trees	with	files	and	directories.	As	a	result,	Git
operates	based	on	the	idea	of	commits	(snapshots)	versus	files	for	scope	of	change
(Figure	13.2).

Figure	13.2	Commits	are	a	snapshot	of	files	and	directories.

This	means	that	if	anything	(any	file)	has	been	changed	by	someone	else	within	the
scope	of	the	commit	(snapshot)	since	you	started	making	changes,	you	get	a	merge
conflict—that	is,	you	are	rejected—when	you	go	to	push	your	changes	over	to	the
remote	repository.

The	idea	you	have	to	get	used	to	is	that	you	can	get	a	merge	conflict	(inability	to	do	a
fast-forward)	even	if	both	you	and	the	other	user	have	changed	entirely	different	files,
even	in	different	directories.	To	illustrate	this,	consider	a	situation	with	two	users
working	in	Git.	To	start	with,	both	users	have	cloned	the	remote	repository	down	to
their	local	environment	(Figure	13.3).

Figure	13.3	Two	users	with	the	same	cloned	contents

Now,	let’s	suppose	that	User	1	modifies	files	A2	and	C2,	then	stages	and	commits
them.	User	1	then	pushes	those	changes	back	over	to	the	remote	repository.	Because
User	1	is	the	first	of	the	two	users	to	push	their	changes	in,	they	can	get	their	changes
in	without	any	merge	issues,	as	shown	in	Figure	13.4.

Figure	13.4	User	1	successfully	pushes	their	changes.

While	this	is	occurring,	User	2	is	working	on	modifications	to	the	same	commit	in
their	working	directory.	However,	they	are	only	modifying	file	B1—the	one	file	that
User	1	did	not	touch.	When	they	are	done,	they	commit	the	change	and	attempt	to
push	it	into	the	remote	repository.	At	this	point,	Git	rejects	the	push	(as	indicated	by
the	X	in	Figure	13.5).

Figure	13.5	User	2	attempts	to	push	their	changes	and	is	rejected.

When	trying	to	do	this	push	that	Git	can’t	fast-forward,	the	user	generally	sees	a
message	like	this:

$	git	push

To	C:/Program	Files/Git/./calc2.git

	!	[rejected]								master	->	master	(fetch	first)

error:	failed	to	push	some	refs	to	'C:/Program	Files/Git/./calc2.git'

hint:	Updates	were	rejected	because	the	remote	contains	work	that	you	do

hint:	not	have	locally.	This	is	usually	caused	by	another	repository	pushing

hint:	to	the	same	ref.	You	may	want	to	first	integrate	the	remote	changes

hint:	(e.g.,	'git	pull	…')	before	pushing	again.

hint:	See	the	'Note	about	fast-forwards'	in	'git	push	--help'	for	details.

Notice	that	even	though	User	2	has	changed	a	file	that	User	1	did	not	touch	(and	that
User	2	hasn’t	changed	any	of	the	same	files	that	User	1	did	touch),	Git	still	sees	this	as
a	merge	conflict.	Again,	this	is	because	multiple	users	changed	some	content	within
the	same	snapshot	(commit).

As	far	as	the	remote	side	is	now	concerned,	there	is	a	merge	conflict,	and	it’s	up	to	the
user	to	resolve	the	problem	in	a	local	environment	and	then	push	the	merged	content
again.	(The	presumption	is	then	that	the	merged	content	can	be	fast-forwarded.)

Resolving	the	Conflict
Here’s	an	example	of	what	that	resolution	process	could	look	like.	In	Figure	13.6,	User
2	has	changes	they	cannot	currently	push.	It	is	therefore	up	to	them	to	get	the	latest
changes	and	merge	them	locally	into	their	changes.	Getting	the	latest	updates	into	the
local	environment	can	be	done	with	a	fetch	into	the	repository	and	then	a	merge	of	the
remote-tracking	branch	into	the	current	branch.	It	can	also	be	done	with	a	pull
operation,	because	the	pull	operation	updates	the	local	repository	and	attempts	to
merge	in	the	changes	in	the	working	directory	as	well.

Figure	13.6	User	2	pulls	the	latest	changes	to	merge	updates	locally.

NOTE

It	is	also	possible	to	tell	Git	to	force	a	non-fast-forward	change.	You	can	do	this
with	the	--force	(-f)	option	to	the	push	command,	or	by	adding	a	plus	symbol	(+)
on	the	front	of	the	branch	being	pushed	to.	This	would	look	like	either

git	push	--force	origin	master	

or

git	push	origin	+master

This	approach	is	generally	not	recommended,	though,	and	can	cause	non-trivial
issues	with	wiping	out	other	changes	(see	the	“Push”	section	in	Chapter	12).	Note
that	to	even	allow	this,	the	Git	configuration	must	have	the	value
receive.denyNonFastForwards	set	to	false.	In	general,	you	want	this	value	set	to
true	to	prevent	non-fast-forward	pushes.

At	times,	you	may	want	to	set	this	value	to	false	so	that	you	are	able	to	force	a
non-fast-forward	push.	For	example,	the	state	of	the	branch	you	are	pushing	to
may	become	substantially	incorrect	and	so	you	may	just	want	to	force	an	update
to	correct	it	again.

For	simplicity,	I’ll	illustrate	resolving	this	conflict	in	Figure	13.6	with	User	2	doing	a
pull	operation.

Once	this	pull	is	complete,	the	local	merge	completes	without	any	problems	because
the	same	files	weren’t	changed.	However,	what	if	the	same	files	were	changed?	In	that
case,	more	manual	merging	would	probably	be	required.	There	are	two	basic	scenarios
here:	merging	after	a	basic	pull	operation	and	merging	after	a	pull	with	the	--rebase
option.	Let’s	take	a	look	at	how	each	of	these	merge	operations	might	be	used	in
practice.

Dealing	with	Merges	after	a	Pull
Suppose	you	have	two	users	making	changes	to	an	instruction	file	for	an	application.
One	user	is	working	on	chapter	1	and	the	other	is	working	on	chapter	2.	The	initial
version	of	the	file	that	was	pushed	looks	like	this:

$	cat	instructions.txt

User	Instructions

Both	users	have	cloned	the	repository	down	with	the	initial	version	of	the	file.	User	1
makes	two	changes,	stages	and	commits	them,	and	then	pushes	them.

$	echo	"Chapter	1"	>>	instructions.txt

$	git	commit	-am	"Add	chapter	1	heading"

[master	6d30ad0]	Add	chapter	1	heading

	1	file	changed,	1	insertion(+)

$	echo	"Welcome"	>>	instructions.txt

$	git	commit	-am	"Add	chapter	1	title"

[master	ae619aa]	Add	chapter	1	title

	1	file	changed,	1	insertion(+)

$	git	push

Counting	objects:	6,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(4/4),	done.

Writing	objects:	100%	(6/6),	546	bytes	|	0	bytes/s,	done.

Total	6	(delta	2),	reused	0	(delta	0)

To	C:/Program	Files/Git/./calc2.git

			b7f554d..ae619aa		master	->	master

The	log	now	looks	like	this:

$	git	log	--oneline

ae619aa	Add	chapter	1	title

6d30ad0	Add	chapter	1	heading

b7f554d	Add	initial	instructions	file

User	2	also	makes	two	changes,	then	stages	and	commits	them.

$	echo	"Chapter	2"	>>>	instructions.txt

$	git	commit	-am	"Add	chapter	2	heading"

[master	5446cab]	Add	chapter	2	heading

	1	file	changed,	1	insertion(+)

$	echo	"Next	steps"	>>	instructions.txt

$	git	commit	-am	"Add	chapter	2	title"

[master	c6495d9]	Add	chapter	2	title

	1	file	changed,	1	insertion(+)

User	2’s	log	now	looks	like	this:

$	git	log	--oneline

c6495d9	Add	chapter	2	title

5446cab	Add	chapter	2	heading

b7f554d	Add	initial	instructions	file

User	2	then	attempts	to	push	their	changes	over.

$	git	push

To	C:/Program	Files/Git/./calc2.git

	!	[rejected]								master	->	master	(fetch	first)

error:	failed	to	push	some	refs	to	'C:/Program	Files/Git/./calc2.git'

hint:	Updates	were	rejected	because	the	remote	contains	work	that	you	do

hint:	not	have	locally.	This	is	usually	caused	by	another	repository	pushing

hint:	to	the	same	ref.	You	may	want	to	first	integrate	the	remote	changes

hint:	(e.g.,	'git	pull	…')	before	pushing	again.

hint:	See	the	'Note	about	fast-forwards'	in	'git	push	--help'	for	details.

User	2	is	rejected	because	User	1	got	their	changes	in	first.	User	2	can	now	choose	to
use	the	default	git	pull	merge	behavior	or	the	git	pull	--rebase	option	to	do	a	rebase.
Let’s	see	what	each	operation	looks	like.	First,	I’ll	describe	the	default	merge	behavior
of	the	basic	pull	operation.

Pull	Alone
User	2	does	a	pull.

$	git	pull

remote:	Counting	objects:	6,	done.

remote:	Compressing	objects:	100%	(4/4),	done.

remote:	Total	6	(delta	2),	reused	0	(delta	0)

Unpacking	objects:	100%	(6/6),	done.

From	C:/Program	Files/Git/./calc2

			b7f554d..ae619aa		master					->	origin/master

Auto-merging	instructions.txt

CONFLICT	(content):	Merge	conflict	in	instructions.txt

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

As	expected,	there	is	a	merge	conflict.

$	cat	instructions.txt

User	Instructions

<<<<<<<	HEAD

Chapter	2

Next	steps

|||||||	merged	common	ancestors

=======

Chapter	1

Welcome

>>>>>>>>	ae619aa1f2e09c7b98fefdaabf392765c43df61f

User	2	fixes	the	merge,

$	cat	instructions.txt

User	Instructions

Chapter	1

Welcome

Chapter	2

Next	steps

then	stages	and	commits	it.

$	git	add	.

$	git	commit	-am	"Merged	chapter	2	content"

[master	934258f]	Added	chapter	2	content

After	the	commit,	the	log	looks	like	this:

$	git	log	--oneline

934258f	Merged	chapter	2	content

c6495d9	Add	chapter	2	title

5446cab	Add	chapter	2	heading

ae619aa	Add	chapter	1	title

6d30ad0	Add	chapter	1	heading

b7f554d	Add	initial	instructions	file

Notice	that	you	now	have	the	new	“merge	commit”	in	your	log.	Now	you’ll	see	how
this	process	differs	when	you	use	the	rebase	option.

Pull	with	the	Rebase	Option
Assume	you’ve	reset	back	to	the	point	where	User	2	has	attempted	to	push	and	has
received	the	rejection	message.	User	2’s	log	looks	like	this:

$	git	log	--oneline

c6495d9	Add	chapter	2	title

5446cab	Add	chapter	2	heading

b7f554d	Add	initial	instructions	file

User	2	now	does	the	pull	with	the	rebase	option.

$	git	pull	--rebase

From	C:/Program	Files/Git/./calc2

	+	934258f…ae619aa	master					->	origin/master		(forced	update)

First,	rewinding	head	to	replay	your	work	on	top	of	it…

Applying:	Add	chapter	2	heading

Using	index	info	to	reconstruct	a	base	tree…

M							instructions.txt

Falling	back	to	patching	base	and	3-way	merge…

Auto-merging	instructions.txt

CONFLICT	(content):	Merge	conflict	in	instructions.txt

error:	Failed	to	merge	in	the	changes.

Patch	failed	at	0001	Add	chapter	2	heading

The	copy	of	the	patch	that	failed	is	found	in:	.git/rebase-apply/patch

When	you	have	resolved	this	problem,	run	"git	rebase	--continue".

If	you	prefer	to	skip	this	patch,	run	"git	rebase	--skip"	instead.

To	check	out	the	original	branch	and	stop	rebasing,	run	"git	rebase	--abort".

Notice	that	you	see	the	familiar	rebase	messages	about	replaying	changes,	and	then
the	merge	conflict	as	Git	tries	to	do	the	first	step	of	the	rebase.	(Note	the	0001
reference	in	“Patch	failed	at	0001…”,	which	refers	to	the	first	commit	you’re	trying	to
apply.)

You	are	now	in	a	rebasing	state	until	you	complete	the	merges	needed	for	a	successful
rebase	or	abort.	Let’s	take	a	look	at	the	log	at	this	intermediate	point:

$	git	log	--oneline

ae619aa	Add	chapter	1	title

6d30ad0	Add	chapter	1	heading

b7f554d	Add	initial	instructions	file

From	the	log,	you	can	see	that	the	process	started	with	the	content	from	the	master

branch	and	was	at	the	step	of	trying	to	apply	the	first	new	commit	on	top	of	that
content.	Looking	at	the	file	with	conflicts,	you	can	see	the	details:

$	cat	instructions.txt

User	Instructions

<<<<<<<	ae619aa1f2e09c7b98fefdaabf392765c43df61f

Chapter	1

Welcome

|||||||	merged	common	ancestors

=======

Chapter	2

>>>>>>>	Add	chapter	2	heading

After	fixing	the	merge	conflict	for	this	first	change,	User	2	stages	it	and	then	tells	the
rebase	to	continue.

$	git	add	.

$	git	rebase	--continue

Applying:	Add	chapter	2	heading

Applying:	Add	chapter	2	title

Using	index	info	to	reconstruct	a	base	tree…

M							instructions.txt

Falling	back	to	patching	base	and	3-way	merge…

Auto-merging	instructions.txt

CONFLICT	(content):	Merge	conflict	in	instructions.txt

error:	Failed	to	merge	in	the	changes.

Patch	failed	at	0002	Add	chapter	2	title

The	copy	of	the	patch	that	failed	is	found	in:	.git/rebase-apply/patch

When	you	have	resolved	this	problem,	run	"git	rebase	--continue".

If	you	prefer	to	skip	this	patch,	run	"git	rebase	--skip"	instead.

To	check	out	the	original	branch	and	stop	rebasing,	run	"git	rebase	--abort".

You	have	a	merge	conflict	again,	but	notice	that	this	is	for	the	second	change	(0002)
by	User	2.	Again,	the	contents	of	the	file	with	the	conflicts	reflect	this	state:

$	cat	instructions.txt

User	Instructions

Chapter	1

Welcome

Chapter	2

<<<<<<<	5a81fc4b7a7d02947fb5de6c7af148fb921d484b

|||||||	merged	common	ancestors

=======

Next	steps

>>>>>>>	Add	chapter	2	title

User	2	now	fixes	this	conflict.

$	cat	instructions.txt

User	Instructions

Chapter	1

Welcome

Chapter	2

Next	steps

Still	in	the	rebasing	state,	User	2	stages	the	change	and	then	tells	the	rebase	to
continue.

$	git	add	.

$	git	rebase	--continue

Applying:	Add	chapter	2	title

After	the	rebase	is	complete,	the	log	shows	the	commits	in	the	order	you	expect.	Note
that	unlike	the	default	merge	outcome,	you	do	not	have	a	new,	separate	merge
commit	in	the	log.

$	git	log	--oneline

7effec1	Add	chapter	2	title

5a81fc4	Add	chapter	2	heading

ae619aa	Add	chapter	1	title

6d30ad0	Add	chapter	1	heading

b7f554d	Add	initial	instructions	file

So,	either	the	merge	or	rebase	option	of	the	pull	command	can	incorporate	other
people’s	changes.	The	merge	option	may	be	simpler	because	it	only	requires	one
merge	in	some	cases.	However,	it	also	introduces	a	merge	commit	into	the	history.
The	rebase	option	can	require	more	merging	and	care	to	resolve	conflicts,	but	it	also
gives	a	cleaner	history.

Pushing	Updated	Content
You	now	have	the	latest	changes	from	the	remote	repository	incorporated	into	your
changes	in	the	local	environment.	This	makes	the	content	in	the	remote	repository	an
ancestor	to	your	changes.	You	can	now	try	again	to	push	your	changes	back	to	the
remote	repository,	as	shown	in	Figure	13.7.

Figure	13.7	Merged	content	is	pushed	back	into	the	remote.

The	changes	are	merged	successfully.	This	represents	the	typical	model	of	working
with	Git	and	multiple	users.	If	you	try	to	push	content	and	are	rejected	because	of	a
non-fast-forward	situation,	you	should	pull	or	fetch	the	latest	code,	take	care	of	any
merge	conflicts	locally,	and	then	try	the	push	again.	Of	course,	if	someone	else	has
made	additional	changes	in	the	remote	repository	between	when	your	push	was
initially	rejected	and	when	you	try	again,	you	may	encounter	new	conflicts.

In	the	next	section,	I’ll	talk	about	an	approach	to	how	remote	repositories	are	handled
on	many	public	hosting	sites,	and	how	it	facilitates	contributing	to	other	projects.

HOSTED	REPOSITORIES
As	I	discuss	in	the	early	chapters	of	this	book,	there	are	multiple	public	websites	that
can	host	Git	repositories.	There	are	also	multiple	packages	that	allow	companies	and
groups	to	set	up	their	own	private,	internal	sites	to	host	Git	repositories.	The
repositories	on	these	sites	are	the	remote	repositories,	and	the	URL	of	the	hosting	site
becomes	the	main	part	of	the	URL	for	the	remote	repository	that’s	hosted	there.	You
establish	an	account	on	the	site,	set	up	any	necessary	credentials,	push	your
repository	over	to	the	site,	and	then	you	can	treat	it	just	like	any	other	remote	for
cloning,	fetching,	pulling,	and	so	on.

The	public	sites	usually	host	repositories	that	are	also	public	(viewable	and	clonable
by	anyone)	for	free.	If	you	want	to	limit	visibility	and	access	to	your	repository,	there
is	a	cost	associated	with	that.

On	top	of	the	basic	hosting,	these	sites	or	packages	layer	on	other	features.	Most	of
these	features	fall	into	two	categories:	support	for	working	with	your	content	and
support	for	collaborating	with	others.

Some	examples	from	the	first	category,	support	for	working	with	your	content,	may
include	the	following:

Guidance	for	structuring	your	repositories,	such	as	recommendations	for	adding
README	files

Simplified	interfaces	to	do	operations	with	your	repository,	such	as	creating
branches	or	showing	differences

Context-sensitive	viewers	to	browse	code,	and	even	simple	editors	to	let	you	create
supporting	content	for	your	repository

Ability	to	create	and	host	releases	of	deliverables	built	from	your	content

Examples	from	the	second	category,	support	for	collaborating	with	others,	can	include
the	following:

Ability	to	manage	group	access	by	creating	teams,	groups,	and	so	on

Advanced	collaboration	tools,	such	as	code-review	facilities

Ability	to	contribute	changes	to	others’	projects	in	a	controlled	manner	through
workflows	such	as	fork	and	pull

This	last	item	deserves	further	explanation	because	it	is	the	foundation	for	the	way
many	open-source	projects	are	now	managed.	I’ll	now	explore	this	model	in	more
detail.

Models	for	Collaboration	with	Git
Over	the	years,	several	models	have	been	developed	to	allow	multiple	people	to	work
on	the	same	project	and	code	base	in	a	Git	repository.	The	simplest	scenario	is	that

everyone	clones	from	the	same	remote	repository,	makes	their	changes,	and	pushes
them	back	to	the	same	repository.	This	can	work	well	for	a	small	number	of	users,	but
it	doesn’t	help	guarantee	the	readiness	or	the	quality	of	the	code	that	is	pushed.	It	also
promotes	a	whoever	gets	there	first	mentality	to	get	pushes	into	the	repository	ahead
of	others.	There	is	no	controlled	flow.

For	projects	with	a	few	developers,	this	can	be	manageable	but	also	inconvenient.	For
projects	with	a	large	number	of	developers,	such	a	free-for-all	can	quickly	become
unmanageable	and	result	in	more	time	spent	sorting	out	merge	issues	and	other
problems	than	actually	developing	content.	The	fork-and-pull	model	addresses	some
of	these	issues.

The	Fork-and-Pull	Model
In	the	fork-and-pull	model,	each	developer	or	contributor	has	their	own	space	where
their	remote	repositories	exist	independent	of	the	remote	repositories	of	other	users.
If	a	user	wants	to	just	update	their	own	projects,	they	can	work	with	their	remote
repositories	as	usual.

However,	if	a	user	wants	to	contribute	to	another	project	(as	is	the	case	with	most
open-source	projects),	then	they	utilize	a	different	workflow.	To	start	with,	the	user
who	wants	to	contribute	to	the	project	owned	by	another	user	forks	the	owner’s
remote	repository	on	the	site.	In	this	case,	fork	means	getting	a	copy	of	the	owner’s
repository	(as	it	is	at	that	point	in	time)	and	putting	it	in	the	contributor’s	own	space.
So,	the	contributor	ends	up	with	their	own	personal	copy	of	the	repository	to	use	for
developing	their	potential	contributions.	Figure	13.8	illustrates	this	process.

Figure	13.8	Forking	a	repository

They	can	then	use	the	standard	clone,	add,	commit,	push,	or	other	workflow	to	create
a	local	environment	and	make	changes	to	their	copy	of	the	owner’s	remote	repository.

Sound	familiar?	In	some	sense,	you	can	think	of	this	as	cloning	a	remote	repository
from	one	user	to	another.	The	result	is	that	the	contributor	can	then	develop	whatever
content	they	want	without	disturbing	or	interfering	with	the	owner’s	repository.	(For
ease	of	later	incorporation	and	changes,	it	is	a	good	idea	to	make	these	changes	on	a
topic	branch.)	Figure	13.9	illustrates	this	part	of	the	process.

Figure	13.9	The	typical	Git	lifecycle	on	a	forked	repository

So,	once	the	contributor	has	completed	their	development	and	made	the	changes	they
think	would	be	useful	to	the	owner’s	project,	how	do	they	incorporate	their	updates
into	the	owner’s	project?	This	is	where	the	controlled	process	comes	in.	When	the
contributor	is	ready,	they	can	send	a	request	to	the	owner	to	merge	their	change	in.
This	is	called	a	pull	request	and	can	be	as	simple	as	a	personal	e-mail	(although	some
sites	provide	an	interface	to	create	and	send	the	request	from	directly	within	the
browser,	as	shown	in	Figure	13.10.)

Figure	13.10	Sending	a	pull	request	to	the	owner

The	owner	can	then	review	the	candidate	change	from	the	contributor’s	repository	and
review	it	before	agreeing	to	incorporate	it.	They	can	communicate	with	the	contributor
to	ask	questions,	request	changes,	or	offer	feedback.	If	the	owner	decides	that	the
change	is	a	good	addition	to	the	overall	project,	and	is	of	the	quality	that	they	expect,
they	can	merge	the	change	from	the	contributor	into	the	primary	repository	for	the
project,	as	shown	in	Figure	13.11.	(Depending	on	the	site	or	package,	there	may	be
built-in	mechanisms	to	do	this	on	the	site,	or	it	may	be	necessary	to	clone,	merge,	and
push.)	However,	if	the	change	isn’t	appropriate	or	doesn’t	meet	their	standards,	the
owner	can	decline	it	or	request	changes	to	make	it	suitable	for	incorporation.

Figure	13.11	Repository	owner	pulls	changes.

The	fork	operation	to	create	a	copy	of	the	owner’s	remote	repository	in	the
contributor’s	space,	coupled	with	the	request	to	pull	the	change	and	incorporate	it,
give	the	fork-and-pull	model	its	name.	This	model	provides	the	project	owner	with	a
high	degree	of	oversight	(and	responsibility)	because	they	are	able	to	review	and
decide	whether	or	not	to	take	changes	from	others.	The	criteria	for	accepting	a	change
could	be	anything	from	a	visual	inspection	to	a	group	code	review	to	requiring	passage
of	a	set	of	automated	testing.	The	end	benefit	is	that	the	primary	project	repository
(that	of	the	owner)	does	not	have	any	changes	merged	into	it	except	those	that	the
owner	allows	and	that	pass	any	quality	gates	that	may	be	set	up	(such	as	having	unit
tests,	adhering	to	a	coding	style,	and	so	on).

In	some	cases,	applications	may	be	so	big	or	have	so	many	contributors	that	even	the
fork-and-pull	approach	becomes	difficult	to	manage.	In	that	scenario,	one	strategy	is
to	break	the	application	up	into	multiple	projects	(assuming	it	isn’t	already)	and
assign	different	owners	to	oversee	contributions	to	each	of	the	parts.	This	is	also
sometimes	done	in	a	hierarchical	fashion	where	owners	of	lower-level	components
oversee	updates	to	those	components	and	then	submit	pull	requests	to	owners	of
higher-level	sections	to	pull	their	collected	changes	in,	and	so	on.	This	is	similar	to
using	military	ranks	for	the	different	levels	of	owners—sergeants,	lieutenants,
generals,	and	so	on.	You	may	sometimes	see	these	terms	used	to	describe	the
hierarchy	of	owners	for	different	parts	of	large	projects.

Use	of	Multiple	Remotes

When	someone	is	working	on	a	contribution	for	another	project,	there	is	a	useful
strategy	that	can	help	them	keep	their	content	in	sync	with	the	primary	project,	and
guarantee	that	the	owner	of	the	project	will	be	more	likely	to	easily	merge	their
changes.	After	forking	the	owner’s	project	into	their	own	space	and	cloning	a	local
environment	from	it,	the	contributor	has	a	remote	reference	that	points	back	to	the
forked	repository.	However,	during	the	period	when	the	contributor	is	working	on
their	changes,	it’s	likely	that	other	changes	and	contributions	are	being	made	to	the
owner’s	primary	repository.	If	the	contributor	doesn’t	keep	up	with	those	changes	in
their	forked	repository,	they	can	end	up	with	a	very	different	code	base	(aside	from
their	changes)	and	significant	merge	issues	when	they	are	done.	This	can	delay	or
prohibit	their	changes	from	being	accepted.	Put	another	way,	the	copy	doesn’t	stay	in
sync	with	the	original	while	new	development	is	going	on.

To	avoid	this	problem,	a	simple	strategy	is	to	create	a	second	remote	reference	to	the
original	repository	(the	one	the	fork	was	created	from)	and	periodically	fetch	updates
from	there.	This	is	simple	to	do	with	the	git	remote	command,	which	I	discuss	in
Chapter	12.	To	use	an	illustration	based	on	a	GitHub	repository,	you	may	have	forked
a	repository	into	your	space	and	then	cloned	from	it.	As	a	result,	you	could	have	an
origin	like	this:

$	git	remote	-v

origin		https://github.com/contributor/project1	(fetch)

origin		https://github.com/contributor/project1	(push)

To	create	a	connection	to	the	owner’s	project,	you	could	create	another	remote
reference	like	this:

$	git	remote	add	primary	https://github.com/owner/project1.git

You	can	then	have	access	to	both	of	these	remotes:

$	git	remote	-v

origin		https://github.com/contributor/project1	(fetch)

origin		https://github.com/contributor/project1	(push)

primary	https://github.com/owner/project1	(fetch)

primary	https://github.com/owner/project1	(push)

The	benefit	of	having	this	additional	remote	is	that	now,	while	you	are	working	on
your	changes,	you	can	periodically	fetch	the	latest	changes	from	the	owner’s
repository.

$	git	fetch	primary	<branch>

You	can	then	use	the	git	merge	command	to	merge	those	latest	changes	in	with	your
current	work	at	your	discretion.	When	you	are	ready	to	submit	the	pull	request,	if
you’ve	been	diligent	about	fetching	and	merging	the	latest	updates	from	the	owner’s
repository,	the	owner	should	find	it	fairly	easy	to	merge	your	changes—perhaps	even
doing	a	fast-forward.	All	of	this	contributes	to	the	likelihood	that	your	change	will	be
incorporated	quickly	if	it	is	suitable.

Having	multiple	remotes	is	an	example	of	where	you	may	want	to	frequently	update
your	content	in	the	local	repository	and	the	working	directory,	so	that	you	can	keep	up
to	date	with	the	changes	being	made	in	the	remote	of	the	other	repository	while	you
are	working	on	your	own	changes.	That	way,	you	don’t	diverge	too	far	from	the
original	code	base	as	it	continues	to	be	updated.

If	the	updates	overlap	your	local	changes,	this	can	be	problematic.	You	need	to	have	a
way	to	manage	this	process;	I	offer	one	possible	strategy	in	the	next	section.

Managing	Local	Updates
In	Chapter	12,	I	describe	how	the	pull	command	fetches	updates	from	the	remote
repository	into	the	local	repository	and	then	attempts	a	merge.	If	the	merge	is
successful,	the	working	directory	is	updated	as	well	as	the	local	repository.	In	some
cases,	such	as	the	one	I	previously	described,	automatically	merging	updates	into	the
working	directory	may	not	always	be	what	you	want.

Suppose	that	you	are	implementing	a	new	feature	that	involves	changing	files	A,	B,
and	C.	You	haven’t	completed	your	changes	to	A,	B,	and	C	when	you	learn	that	a	key
security	fix	has	been	made	in	the	original	code	base	that	you	need	to	incorporate	in
short	order.	So,	you	do	a	pull	from	the	updated	code	base.	The	pull	brings	down	the
security	fix	and	merges	the	changed	files	into	the	contents	of	your	working	directory.
As	it	turns	out,	the	security	fix	also	involved	changes	to	files	A,	B,	and	C.	The	merge
changed	the	versions	of	A,	B,	and	C	that	you	were	working	on	in	a	way	that	breaks
your	new	feature	significantly.	You’re	now	faced	with	trying	to	untangle	what	the
automatic	merge	did	after	the	fact	to	get	back	to	a	working	state.

A	better	approach	is	to	have	control	over	the	merge	before	it	occurs.	Using	my
example,	that	approach	would	look	like	this:

1.	 Save	off	your	changes	that	are	in	progress	in	A,	B,	and	C	before	you	do	the	pull.
You	do	this	using	the	git	stash	command	that	I	cover	in	Chapter	11.	Now	you’ve
stashed	your	changes	that	are	in	progress,	effectively	resetting	your	working
directory	and	staging	area	back	to	the	way	they	were	at	the	last	commit.

2.	 Do	the	pull	operation	to	get	the	updates	with	the	security	fix	into	your	local
environment.

3.	 When	you	are	ready,	pop	or	apply	your	work	from	the	stash.	When	you	try	to	do
this	and	there	are	differences	between	the	stashed	contents	and	the	working
directory	contents,	Git	stops	and	informs	you	about	the	differences.

4.	 Make	the	necessary	changes	in	your	working	directory,	or	even	create	another
branch	to	do	the	changes	in.

So,	one	model	of	incorporating	updates	from	others	while	you	have	work	in	progress
is	to	stash	your	changes,	do	a	pull,	and	then	apply	or	pop	the	changes	from	the	stash.
At	that	point,	Git	lets	you	know	if	there	are	merge	conflicts,	and	you	can	resolve	them
manually	instead	of	trying	to	unravel	what	the	pull	may	have	changed	automatically.

Putting	It	All	Together
I’ve	now	covered	several	different	aspects	of	working	with	changes	and	remotes	for
updates	and	merge	situations.	Although	I’ve	presented	these	situations	in	the	context
of	working	with	multiple	users,	it	is	certainly	possible	to	have	similar	merge	or	update
situations	with	a	single	user	working	in	multiple	branches	and	pushing	one	set	of
changes	from	a	branch	to	the	remote	repository	before	another	set	of	changes.

Figure	13.12	ties	together	the	different	areas	I’ve	been	talking	about	into	a	single
representation	of	the	workflow	for	dealing	with	changes	and	remotes.	The	left	half	of
the	figure	focuses	on	updating	the	local	environment,	while	the	right	half	focuses	on
updating	the	remote	repository.	This	is	certainly	not	the	only	workflow	that	you	can
use,	but	it	will	give	you	an	idea	of	how	all	the	parts	I	have	talked	about	can	be	used
together.

Figure	13.12	A	workflow	model	for	making	and	incorporating	changes

Keep	in	mind	that,	although	I	don’t	show	it	in	the	figure,	you	might	have	multiple
remotes	that	you	choose	to	update	from,	and	your	initial	remote	for	cloning	might
have	been	forked	from	another	one	if	you	are	using	a	hosting	site	or	package	that
supports	that	functionality.

SUMMARY
In	this	chapter,	I’ve	explained	how	to	work	in	a	Git	environment	with	multiple	users.
The	key	is	to	understand	that	a	merge	conflict	in	Git	occurs	when	any	update	has	been
made	in	the	same	commit	that	you	are	trying	to	pull	or	push	since	you	last	retrieved	a
copy	from	the	remote	repository.	In	Git,	the	scope	of	change	is	at	the	commit
(snapshot)	level,	not	the	individual	file	level.

I	also	covered	a	common	model	used	by	many	hosting	sites	and	packages	to	allow
collaboration	and	contribution	back	to	projects:	the	fork-and-pull	model.	This	model
involves	copying	another	remote	repository	into	your	own	space	(forking),	developing
against	that	copy,	and	then	requesting	the	owner	of	the	remote	repository	that	you
forked	to	pull	in	your	changes	if	they	approve.	I	also	showed	that	a	useful	construct
for	keeping	up	with	changes	in	the	original	repository	is	to	create	a	secondary	remote
reference	and	fetch	changes	periodically	from	that	reference	into	your	forked
environment.

I	described	a	common	strategy	to	insulate	yourself	from	potentially	challenging
automatic	merge	situations	when	you	have	work	in	progress	and	need	to	pull	from	the
remote	repository.	You	can	use	the	Git	stash	functionality	to	save	your	uncommitted
changes,	do	a	clean	pull,	and	then	apply	or	pop	from	the	stash	to	better	control
merging	your	work	in	progress	back	into	the	latest	code	from	the	remote	side.

Finally,	I	presented	a	workflow	diagram	that	provides	one	example	of	tying	these	key
concepts	and	strategies	together	for	working	with	remotes	and	updates	from	other
users.

In	the	next	chapter,	I	explore	a	new	way	that	Git	allows	you	to	work	in	multiple
branches	concurrently.	I	also	look	at	constructs	that	Git	provides	to	allow	for	treating
multiple	repositories	and	projects	as	a	unit.

About	Connected	Lab	9:	Using	the	Overall	Workflow	with	a	Remote
Repository
In	lab	9,	you'll	get	to	see	what	it's	like	when	multiple	users	are	making	changes	to	the
same	repository.	This	is	simulated	through	working	with	multiple	local	clones	and
pushing	back	to	the	same	remote.

This	lab	also	provides	additional	experience	with	merging	and	rebasing	as	part	of	this
simulation.	This	lab	is	longer	than	most,	but	it	is	a	valuable	exercise	to	complete	as
you	will	encounter	situations	like	this	routinely	when	working	with	Git.

Connected	Lab	9

Using	the	Overall	Workflow	with	a	Remote	Repository
In	this	lab,	you’ll	simulate	working	in	an	environment	where	multiple	users	are
making	changes	to	a	remote	repository.	You’ll	see	how	to	deal	with	getting	rejected	by
Git,	and	also	get	some	practice	with	techniques	like	rebasing.

PREREQUISITES
This	lab	requires	that	you	have	Internet	access	and	have	completed	Connected	Lab	8:
Setting	up	a	GitHub	Account	and	Cloning	a	Repository.	You	will	be	working	from	the
same	directory	that	you	used	in	Connected	Lab	8.

STEPS
1.	 At	the	end	of	Connected	Lab	8,	you	cloned	a	repository	from	GitHub	into	two
different	directories	on	your	local	system:	calc2	and	calc_other.	You’ll	use	these
two	directories	to	simulate	two	users	working	against	the	same	remote	repository.
Change	into	the	calc_other	directory.

$	cd	calc_other

2.	 To	see	what	features	your	calculator	already	has,	open	up	the	calc.html	program	in
a	browser	and	take	a	look.	Note	that	you	have	access	to	the	basic	arithmetic
functions:	addition,	subtraction,	multiplication,	and	division.

3.	 You	want	to	incorporate	some	other	features	into	your	calculator	program	from
the	features	branch.	First,	you	need	to	set	up	a	local	features	branch,	so	create	a
local	branch	that	tracks	the	remote	features	branch.

$	git	branch	features	origin/features

4.	 Look	at	what	features	are	available	for	you	to	use.

$	git	log	--oneline	features

5.	 Now,	let’s	create	a	temporary	branch	to	use	as	we	work	on	incorporating	these
features.	Create	a	new	branch	cpick	and	switch	to	it	in	one	step	using	the	shortcut.
(cpick	here	represents	“cherry	pick”)

$	git	checkout	-b	cpick

6.	 You	want	to	pull	in	the	max,	exp,	and	min	functions	to	add	to	your	calculator.	Start
with	the	max	function.	First,	find	the	SHA1	value	of	the	max	function	from	the
history	listing	in	step	4	of	the	features	branch.

7.	 Issue	the	command	to	cherry-pick	that	commit’s	SHA1	value	(the	one	from	step	4)
onto	your	current	branch.

$	git	cherry-pick	d003b91

8.	 A	message	appears	that	the	function	is	being	added.	Assuming	there	are	no	errors,
run	a	log	of	your	current	branch.

$	git	log	cpick	--oneline

Notice	that	the	log	now	shows	the	max	function	has	been	incorporated	into	the
branch.

9.	 Open	up	calc.html	in	the	browser	(or	refresh	it	if	you	already	have	it	open)	to
verify	you	now	have	the	new	max	function	(and	no	other	new	functions).	To	verify
this,	click	the	drop-down	menu,	between	the	two	number	input	fields,	and	make
sure	that	max	shows	up	as	one	of	the	available	operations.

10.	 Now,	you	can	use	rebase	to	incorporate	the	exp	and	min	functions.	This	way,	you
will	have	the	functionality	incorporated,	as	well	as	the	history.From	the	log,	find
the	SHA1	value	for	the	exp	function.	Use	the	following	command	to	execute	the
desired	rebase:

$	git	rebase	3753e5a

11.	 Once	the	rebase	is	executed,	you	can	do	a	quick	log	of	your	current	branch	(cpick)
and	verify	that	the	history	records	now	show	up	there.	You	can	also	open	the
calc.html	program	in	a	browser	to	verify	that	the	functions	are	there.	(The	exp
function	will	be	represented	as	“**”.)

$	git	log	--oneline

$	<start|open>	calc.html

12.	 Now	that	you	have	your	code	as	desired	in	the	cpick	branch,	you’re	ready	to	merge
that	branch	back	into	the	master	branch.	Run	the	following	commands:

$	git	checkout	master

$	git	merge	cpick

13.	 Once	the	merge	is	complete,	push	the	changes	out	to	the	remote.

$	git	push

14.	 You	are	done	simulating	the	activity	of	user	one.	Now,	you	can	move	on	to	working
as	user	two	in	the	calc2	area.	Change	to	the	calc2	subdirectory.

$	cd	../calc2

15.	 User	two	wants	to	merge	the	ui	work	from	origin/ui	into	the	master	branch	to
promote	it.	For	convenience,	you	first	need	to	create	a	local	ui	branch	from	the
remote	branch.

$	git	branch	ui	origin/ui

16.	 Merge	the	ui	branch	into	master.	(If	you	are	not	still	on	master,	check	out	master
first.)

$	git	merge	ui

17.	 Assuming	the	merge	is	successful,	push	the	updates	out	to	the	remote.

$	git	push	origin	master

18.	 Your	push	is	rejected.	This	is	because	the	push	done	by	the	other	user	(as
simulated	when	you	were	working	in	calc_other)	changed	the	same	commit	and
was	pushed	before	you	pushed	your	updates.	Git	determines	that	it	can’t	do	a	fast-
forward	merge	and	so	rejects	the	push.

19.	 It	is	now	up	to	you	to	resolve	this	push	issue.	You	could	do	a	force	push	(with	the	-
f	option),	but	that	is	often	dangerous.	Instead,	try	the	suggestion	that	Git	offers

and	do	a	pull	to	see	if	it	can	merge	cleanly.

$	git	pull	origin	master

20.	 Notice	again	that	you	have	a	merge	conflict.	You	could	certainly	go	into	the	file	and
edit	it	to	resolve	the	various	merge	conflicts.	Or,	you	could	use	one	of	the	merge
strategies	to	force	choosing	one	version	or	the	other.	However,	in	this	case,	you
decide	to	incorporate	the	history	as	well.	That	points	you	toward	another	option:	a
rebase.	Before	you	can	try	that,	you	need	to	abort	this	merge.

$	git	merge	--abort

21.	 Now	you	can	get	the	updated	content	without	having	Git	try	to	merge	it	locally.
Recall	that	the	fetch	command	updates	the	remote	tracking	branches	but	not	the
local	branches.	So,	you	execute	a	fetch	command.

$	git	fetch

22.	 You	are	now	ready	to	try	the	rebase.	If	all	goes	well,	this	operation	will	rebase
locally	off	of	the	updated	content	from	the	master	in	the	remote	tracking	branches.
Run	the	following	command	(making	sure	you	are	in	the	master	branch	when	you
do	so):

$	git	rebase	origin/master

23.	 Once	again,	conflicts	arise.	Because	the	changes	are	different,	between	adding
functionality	and	changing	ui	features,	you	can	make	an	educated	guess	that	if	you
just	keep	the	current	changes	and	apply	the	other	changes	on	top	of	them,	you
won’t	run	into	critical	conflicts.	So,	you	can	tell	Git	to	keep	your	changes	if	there
are	perceived	conflicts.	The	easiest	way	to	do	that	is	to	add	the	-Xours	option.
Recall	that	this	option	passes	the	“keep	ours	if	there’s	a	conflict”	option	to	the
default	recursive	strategy.	Abort	the	current	rebase	operation,	and	run	the
command	again	with	the	extra	option.

$	git	rebase	--abort

$	git	rebase	-Xours	origin/master

24.	 This	time	it	works.	(If	it	didn’t	work,	you	could	have	aborted	the	rebase	again.)	Do
a	quick	git	log	to	see	if	the	commits	look	correct.

$	git	log	--oneline

25.	 Note	that	all	of	the	commits	that	you	would	expect	are	now	there.	Try	pushing
these	updates	over	to	the	remote	side	again.

$	git	push

26.	 This	time,	it	pushes	with	no	problems.

Chapter	14
Working	with	Trees	and	Modules	in	Git

WHAT’S	IN	THIS	CHAPTER?

Working	with	changes	in	multiple	branches	simultaneously	using	worktrees

Including	repositories	as	subprojects	with	submodules

Coordinating	changes	in	submodules	with	the	containing	project

Addressing	potential	problems	when	using	submodules

Incorporating	projects	as	subdirectories	with	subtrees

In	this	book,	you’ve	primarily	been	working	with	single	projects	managed	in	a	single
repository	where	you	worked	on	only	one	branch	at	a	time.	This	works	well	for	most
projects,	but	there	are	times	when	you	need	to	extend	this	model.	Two	such	examples
include	working	on	multiple	branches	concurrently	in	a	project,	and	including	other
repositories	as	subprojects	or	subdirectories.

WORKTREES
As	I	discuss	in	Chapter	8,	one	nice	feature	of	Git	is	that	you	can	use	the	same	working
directory	for	all	of	the	branches	you	need	to	work	with.	However,	as	it	turns	out,	this
can	also	be	a	liability.

In	the	past,	if	you	were	making	changes	in	one	branch	and	needed	to	switch	to	a	new
branch,	you	had	three	choices:	commit	your	changes	to	get	to	a	clean	working
directory,	stash	your	changes	that	were	in	progress,	or	create	a	separate	clone	of	the
repository	in	a	different	area	and	work	on	the	other	branch	there.

Starting	with	version	2.5,	Git	formally	introduced	a	more	workable	alternative:
worktrees	(working	trees).	The	idea	with	worktrees	is	that	you	can	have	multiple,
separate	working	directories,	all	connected	to	the	same	staging	area	and	local
repository.	The	traditional	working	directory	that	I’ve	been	using	throughout	this
book	is	called,	in	Git	terminology,	the	main	working	tree,	while	any	new	trees	you
create	with	this	command	are	called	linked	working	trees.

To	use	separate	working	trees,	Git	introduced	a	new	worktree	command.	The	syntax	is
shown	here:

git	worktree	add	[-f]	[--detach]	[-b	<new-branch>]	<path>	[<branch>]

git	worktree	list	[--porcelain]

git	worktree	prune	[-n]	[-v]	[--expire	<expire>]

Notice	that	the	worktree	command	has	three	subcommands:	add,	list,	and	prune.	Any
option	must	be	preceded	by	one	of	the	subcommands.	In	the	following	sections,	I’ll
briefly	cover	each	subcommand.

Adding	a	Worktree
The	first	worktree	subcommand	(add)	is	designed	to	add	a	new	worktree	for	working
with	a	particular	branch.	Its	simple	syntax,

$	git	worktree	add	<path>	[<branch>]

creates	a	new	working	directory	in	the	<path>	location	with	a	checked-out	copy	of
<branch>.	For	example,	if	you	have	a	project	that	has	a	docs	branch	and	you	want	to
work	with	that	branch	in	a	separate	directory	named	tmparea,	you	can	use	the
following	command:

$	git	worktree	add	../tmparea	docs

Preparing	../tmparea	(identifier	tmparea)

HEAD	is	now	at	a83878d	add	info	on	button

The	last	line	here	indicates	the	most	recent	commit	on	the	docs	branch.

If	you	now	switch	to	the	new	area,	you	see	by	the	prompt	that	you	have	a	checked-out
copy	of	the	docs	branch,	just	as	if	you	had	cloned	a	new	copy	of	the	repository	and

changed	to	the	branch.

$	cd	../tmparea

	~/tmparea	(docs)

What	if	you	want	to	work	on	yet	another	copy	of	the	docs	branch?	Attempting	to	add
another	area	with	the	docs	branch	results	in	an	error	message:

$	git	worktree	add	../tmparea2	docs

fatal:	'docs'	is	already	checked	out	at	'C:/Users/bcl/tmparea'

This	is	a	general	safeguard.	If	you	want	to	work	around	it,	you	can	add	the	--force
option,	as	shown	here:

$	git	worktree	add	--force	../tmparea2	docs

Preparing	../tmparea2	(identifier	tmparea2)

HEAD	is	now	at	a83878d	add	info	on	button

You	can	also	create	a	new	worktree	with	a	different	branch	name	based	on	an	existing
branch.	To	do	this,	you	pass	the	-b	or	-B	option	with	the	desired	new	branch	name.

$	git	worktree	add	-b	fixdocs	../tmparea3	docs

Preparing	../tmparea3	(identifier	tmparea3)

HEAD	is	now	at	a83878d	add	info	on	button

This	command	tells	Git	to	create	a	new	branch	named	fixdocs	off	of	the	existing	docs
branch	in	the	../tmparea3	subdirectory.

By	default,	the	worktree	command	doesn’t	let	you	create	a	new	branch	that	has	the
same	name	as	an	existing	branch.	The	-B	option	allows	you	to	force	having	a	new
branch	with	the	same	name	as	an	existing	branch.

$	git	worktree	add	-b	docs2	../tmparea4	docs

fatal:	A	branch	named	'docs2'	already	exists.

$	git	worktree	add	-B	docs2	../tmparea4	docs

Preparing	../tmparea4	(identifier	tmparea4)

HEAD	is	now	at	a83878d	add	info	on	button

What	happens	if	you	don’t	supply	a	branch	name	to	create?	The	worktree	command
creates	a	new	branch	with	the	same	name	as	the	target	area	and	based	on	whatever
branch	is	current	in	the	main	working	tree.

$	git	branch

		cpick

		docs

		docs2

		features2

		fixdocs

*	master

		tmpdocs

$	git	log	-1	--oneline

06efa5e	update	field	size

$	git	worktree	add	../tmparea5

Preparing	../tmparea5	(identifier	tmparea5)

HEAD	is	now	at	06efa5e	update	field	size

$	cd	../tmparea5

~/tmparea5	(tmparea5)

$	git	log	-1	--oneline

06efa5e	update	field	size

Finally,	if	you	want	to	work	in	a	detached	mode	(for	example,	to	later	create	your	own
branch	name	on	the	area),	you	can	use	the	--detach	option.

$	git	worktree	add	--detach	../tmparea6

Preparing	../tmparea6	(identifier	tmparea6)

HEAD	is	now	at	06efa5e	update	field	size

$	cd	../tmparea6

~/tmparea6	((06efa5e…))

$	git	status

Not	currently	on	any	branch.

nothing	to	commit,	working	directory	clean

NOTE

Git	stores	the	information	about	working	trees	in	the	Git	directory	area.
Assuming	the	Git	directory	maps	to	.git,	the	working	tree	information	is	stored	in
.git/worktrees/<name	of	worktree>.

Taking	a	closer	look	at	one	of	these	worktree	areas,	you	can	see	some	of	the
information	you	would	typically	expect	in	a	working	directory	area.

$	ls	.git/worktrees/tmparea

commondir		gitdir		HEAD		index		ORIG_HEAD

In	this	case,	gitdir	is	set	to	point	to	this	worktree’s	.git	directory,	and	commondir
is	set	to	point	back	to	the	main	worktree’s	area.

Figure	14.1	illustrates	a	working	tree	setup.

Figure	14.1	Illustration	of	multiple	working	trees

Listing	Out	the	Working	Trees
The	second	subcommand	for	worktree	is	list.	As	the	name	implies,	this	subcommand
allows	you	to	list	out	details	about	the	set	of	working	trees	that	are	currently	active	for

this	repository.

Using	the	list	subcommand	is	straightforward.

$	git	worktree	list

C:/Users/bcl/calc2					06efa5e	[master]

C:/Users/bcl/tmparea			a83878d	[docs]

C:/Users/bcl/tmparea2		a83878d	[docs]

C:/Users/bcl/tmparea3		a83878d	[fixdocs]

C:/Users/bcl/tmparea4		a83878d	[docs2]

C:/Users/bcl/tmparea5		06efa5e	[tmparea5]

C:/Users/bcl/tmparea6		06efa5e	(detached	HEAD)

There	is	only	one	option	for	list:	porcelain.	This	option	lists	the	worktree	information
in	a	more	verbose	format	that	may	be	easier	for	scripts	to	process	and	that	should	be
consistent	across	future	versions	of	Git.

$	git	worktree	list	--porcelain

worktree	C:/Users/bcl/calc2

HEAD	06efa5ecedc5db8b4834ffc0023facb70053d46e

branch	refs/heads/master

[other	branches…]

worktree	C:/Users/bcl/tmparea6

HEAD	06efa5ecedc5db8b4834ffc0023facb70053d46e

detached

Pruning	a	Worktree
Finally,	there	is	the	prune	subcommand.	As	its	name	implies,	the	prune	subcommand
removes	worktree	information.	However,	it	only	removes	the	information	from	the
Git	directory	(.git)	after	the	actual	worktree	subdirectory	has	been	manually	removed.
Here	is	an	example	from	the	main	worktree:

$	rm	-rf	../tmparea6

$	git	worktree	prune	

The	prune	subcommand	has	two	simple	options:

-n	(--dry-run)—This	option	tells	Git	to	not	execute,	but	to	just	explain	what	it
would	do.

$	rm	-rf	../tmparea4

$	git	worktree	prune	-n

Removing	worktrees/tmparea4:	gitdir	file	points	to	non-existent	location

-v	(--verbose)—This	option	tells	Git	to	be	more	verbose	in	explaining	what	it’s
doing.

$	git	worktree	prune	-v

Removing	worktrees/tmparea3:	gitdir	file	points	to	non-existent	location

Removing	worktrees/tmparea4:	gitdir	file	points	to	non-existent	location

Notice	that	in	the	verbose	operation,	I	also	pruned	tmparea4,	because	I	had	run	the
prune	subcommand	on	that	area	with	the	dry-run	option	without	actually	executing
the	prune	operation.

NOTE

If	you	create	a	working	tree	on	removable	media,	you	may	want	to	have	it	persist
even	when	the	media	is	not	mounted	and	a	prune	is	done.	To	do	this,	you	add	a
file	named	locked	in	the	directory	for	the	worktree	under
.git/worktrees/<worktree	name>.	For	example,	if	you	create	a	working	tree
named	brentsfix	on	your	removable	media,	then	to	have	this	tree	persist,	you	can
create	.git/worktrees/brentsfix/locked.	The	convention	is	for	the	text	of	the
locked	file	to	have	the	reason	the	area	needs	to	be	persisted	(in	plain	text)	inside
of	it.

SUBMODULES
Sometimes	you	may	need	to	include	a	separate	repository	along	with	your	current
repository.	The	most	common	use	case	for	this	would	be	to	include	the	Git	repository
for	one	or	more	dependencies	along	with	the	original	repository	for	a	project.	Git
offers	a	way	to	do	this	through	functionality	called	submodules.	This	means	that	you
have	a	subdirectory	off	of	your	original	repository	that	contains	a	clone	of	another	Git
repository.	Your	original	repository	stores	metadata	in	its	Git	directory	about	the
existence	of	the	subdirectory	and	repository	and	what	the	current	commit	is	in	the
clone.	Another	name	for	this	original	repository	is	the	superproject	as	used	in	the	Git
documentation.	I’ll	use	that	name	as	well.

You	can	treat	the	repository	in	the	subdirectory	(submodule)	independently	like	any
other	repository.	However,	if	you	update	something	in	a	submodule,	you	have	to
perform	extra	steps	to	update	which	commit	in	the	submodule	the	superproject	points
to.	Otherwise,	things	can	get	confusing	and	badly	out	of	sync.

Traditionally,	submodules	have	received	a	bad	reputation	because	of	their	limitations,
which	make	it	easier	to	get	into	difficult	states.	However,	they	do	have	some	valid
uses.	The	syntax	for	the	submodule	command	in	Git	is	as	follows:

git	submodule	[--quiet]	add	[-b	<branch>]	[-f|--force]	[--name	<name>]

														[--reference	<repository>]	[--depth	<depth>]	[--]	<repository>	

[<path>]

git	submodule	[--quiet]	status	[--cached]	[--recursive]	[--]	[<path>…]

git	submodule	[--quiet]	init	[--]	[<path>…]

git	submodule	[--quiet]	deinit	[-f|--force]	[--]	<path>…

git	submodule	[--quiet]	update	[--init]	[--remote]	[-N|--no-fetch]

														[-f|--force]	[--rebase|--merge]	[--reference	<repository>]

														[--depth	<depth>]	[--recursive]	[--]	[<path>…]

git	submodule	[--quiet]	summary	[--cached|--files]	[(-n|--summary-limit)	<n>]

														[commit]	[--]	[<path>…]

git	submodule	[--quiet]	foreach	[--recursive]	<command>

git	submodule	[--quiet]	sync	[--recursive]	[--]	[<path>…]

As	I	said	earlier,	submodules	allow	you	to	have	a	separate	repository	as	a	subdirectory
in	your	superproject.	Because	the	repository	is	separate,	it	still	maintains	its	own
history.	And	the	submodule	is	not	automatically	updated	by	default	when	the
superproject	is	updated	via	one	of	the	interactions	with	remotes	(which	I	discuss	in
Chapter	12).	You	can	do	more	direct	management	of	these	submodules	with	the
options	of	the	submodule	command.

To	track	the	submodule	information,	Git	creates	and	manages	a	.gitmodules	file	at	the
root	of	the	repository.	This	file	contains	entries	in	the	following	format:

[submodule	<name>]

							path	=	<relative	path>

							url	=	<url	for	cloning,	updating,	etc.>

It’s	worth	clarifying	here	that	submodules	are	not	the	same	as	remotes.	Remotes	are

server-side	or	public	copies	of	the	same	repository,	while	submodules	are	just	other
repositories	that	you	want	to	use	or	include	as	dependencies—but	as	different
repositories.	Figure	14.2	illustrates	a	submodule	arrangement.

Figure	14.2	Illustration	of	how	submodules	work

Understanding	How	Submodules	Work
To	understand	how	submodules	work,	you’ll	look	at	them	from	two	perspectives:

1.	 Creating	a	new	set—The	perspective	of	the	user	who	adds	submodules	to	a
superproject	and	pushes	the	set	to	a	remote.

2.	 Cloning	an	existing	set—The	perspective	of	a	user	who	clones	down	a	copy	of	the
superproject	with	the	submodules	from	the	remote.

To	associate	a	new	set	of	submodules	to	an	existing	project,	you	use	the	submodule
add	command.

Adding	a	Submodule
In	the	following	example,	two	submodules	are	added	to	an	existing	project

(repository).	This	project	will	be	the	superproject.	Assuming	you’ve	already	created
and	pushed	projects	named	mod1	and	mod2,	you	can	add	the	submodules	to	the
superproject	with	the	following	commands:

$	git	submodule	add		<url	to	mod1>mod1

$	git	submodule	add		<url	to	mod2>mod2

The	submodule	command’s	add	operation	does	several	things	as	indicated	by	the
following	steps.	The	output	after	each	step	shows	the	results.

1.	 Git	clones	down	the	repository	for	the	submodule	into	the	current	directory.

$	git	submodule	add	<remote	path	for	mod1>	mod1

Cloning	into	'mod1'…

done.

$	git	submodule	add	<remote	path	for	mod2>	mod2

Cloning	into	'mod2'…

done.

2.	 By	default,	Git	checks	out	the	master	branch.

$	cd	mod1

$	git	branch

*	master

$	cd	../mod2

$	git	branch

*	master

3.	 Git	adds	the	submodule’s	path	for	cloning	to	the	.gitmodules	file.

$	cat	.gitmodules

[submodule	"mod1"]

								path	=	mod1

								url	=	<remote	path	for	mod1>

[submodule	"mod2"]

								path	=	mod2

								url	=	<remote	path	for	mod2>

4.	 Git	adds	the	.gitmodules	file	to	the	index,	ready	to	be	committed.

5.	 Git	adds	the	current	commit	ID	of	the	submodule	to	the	index,	ready	to	be
committed.

$	git	status

On	branch	master

		…

								new	file:			.gitmodules

								new	file:			mod1

								new	file:			mod2

Once	the	submodules’	paths	are	recorded	in	the	.gitmodules	file,	they	are	linked	there
to	be	included	with	any	future	cloning	of	the	main	project.

To	finish	the	add	process	for	mod1	and	mod2,	you	just	need	to	complete	the	Git
workflow	by	committing	and	pushing	the	submodule-related	changes	that	the	add
command	has	staged	for	you.	You	do	this	from	the	superproject’s	directory.

$	git	commit	-m	"Add	submodules	mod1	and	mod2"

[master	2745a27]	Add	submodules	mod1	and	mod2

	3	files	changed,	8	insertions(+)

	create	mode	100644	.gitmodules

	create	mode	160000	mod1

	create	mode	160000	mod2

$	git	push

Counting	objects:	3,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(3/3),	done.

Writing	objects:	100%	(3/3),	400	bytes	|	0	bytes/s,	done.

Total	3	(delta	0),	reused	0	(delta	0)

To	C:/Users/bcl/submod/remote/main.git

			941450a..d116ad1		master	->	master

Here,	you	have	told	Git	to	associate	two	other	repositories	with	your	repository	as
connected.	Git	manages	this,	in	part,	by	creating	the	.gitmodules	file	to	map	which
subdirectories	the	submodule	content	should	go	into,	and	storing	information	for
each	module	that	contains	the	name	of	the	module	and	the	SHA1	value	of	the	current
commit	in	the	module.	This	information	is	then	pushed	to	the	remote	side	so	the
connection	information	is	stored	with	the	project	when	it	is	cloned	in	the	future.

So,	you’re	pushing	mapping	information	to	the	remote	repository	for	your
superproject	that	tells	it	how	to	find,	map,	and	populate	the	submodules	that	you	want
to	use.	However,	note	that	you	are	not	pushing	any	changes	to	the	repository	for	the
submodules	themselves.	I	will	talk	about	this	later	in	this	chapter.

At	this	point,	let’s	use	another	git	submodule	command	to	see	the	status	of	your
changes.

Determining	Submodule	Status
As	the	name	implies,	this	submodule	subcommand	is	used	to	see	the	status	of	the
various	submodules	associated	with	a	project.	In	particular,	this	command	shows	the
SHA1	value	for	the	(currently	checked-out)	commit	for	a	submodule,	with	the	path.
The	output	also	includes	a	simple	prefix	character,	defined	as:

“-“	if	the	submodule	is	not	initialized

“+”	if	the	submodule’s	current	version	that’s	checked	out	is	different	from	the
SHA1	in	the	containing	repository

“U”	if	there	are	merge	conflicts	in	the	submodule

If	you	look	at	the	current	status	of	the	submodules	you	just	added,	you	see	something
like	this:

$	git	submodule	status

	8add7dab652c856b65770bca867db2bbb39c0d00	mod1	(heads/master)

	7c2584f768973e61e8a725877dc317f7d2f74f37	mod2	(heads/master)

As	noted	earlier,	the	first	field	contains	the	SHA1	values	for	the	currently	checked-out
commits	in	each	of	the	submodules.	This	is	followed	by	the	local	name	you	assigned
to	the	submodule	when	you	added	it	to	your	project.	To	further	demonstrate	this
mapping,	you	can	go	into	the	submodule	area,	and	do	a	quick	log:

$	cd	mod1

$	git	log	--oneline

8add7da	Add	initial	content	for	module	mod1.

Note	that	the	SHA1	value	of	the	current	(only)	commit	there	matches	the	SHA1	value
shown	in	the	output	of	the	earlier	status	command.

NOTE

Internally,	Git	stores	module	information	for	submodules	in	a	directory	named
.git/modules.	Inside	this	area,	there	is	a	separate	subdirectory	for	each	of	the
modules	attached	to	this	project.	In	the	example	you’ve	been	working	with,	if	you
were	to	go	into	this	area,	you	would	see	something	like	this:

$	ls	.git/modules/*

.git/modules/mod1:

config							HEAD				index		logs/					packed-refs

description		hooks/		info/		objects/		refs/

.git/modules/mod2:

config							HEAD				index		logs/					packed-refs

description		hooks/		info/		objects/		refs/

Cloning	with	Submodules
Now,	let’s	switch	to	the	perspective	of	another	user	who	wants	to	clone	down	and
work	with	the	project	with	its	submodules.	First,	you	create	a	separate	area,	and	clone
your	project	with	the	submodules	into	it.

$	git	clone	<remote	path>/main.git

Cloning	into	'main'…

done.

$	cd	main

$	ls	-a

./		../		.git/		.gitmodules		file1.txt		mod1/		mod2/

So,	it	appears	you	cloned	down	the	superproject	and	the	submodules.	However,	take	a
look	at	what’s	in	the	submodule	directories:

$	ls	mod1

$	ls	mod2

Nothing	shows	up	there—why?	Let’s	use	the	submodule	status	command	to	see	what
the	status	is	of	the	submodules.

$	git	submodule	status

-8add7dab652c856b65770bca867db2bbb39c0d00	mod1

-7c2584f768973e61e8a725877dc317f7d2f74f37	mod2

Notice	the	dash	sign	(-)	in	the	first	column.	As	previously	mentioned	in	the	section	on
the	status	command,	the	dash	sign	means	the	submodules	have	not	been	initialized.

In	this	instance,	not	being	initialized	equates	to	your	superproject	not	knowing	about
the	modules.	The	directories	for	the	submodules	exist	but	haven’t	been	populated.
More	importantly,	information	about	the	submodule	locations	(from	the	.gitmodules

file)	hasn’t	been	put	into	the	superproject’s	config	file	yet.	This	is	what	the	submodule
init	command	will	do	for	you.

$	git	submodule	init

Submodule	'mod1'	(<remote	path>/mod1.git)	registered	for	path	'mod1'

Submodule	'mod2'	(<remote	path>/mod2.git)	registered	for	path	'mod2'

After	running	this	command,	you	have	the	remote	information	in	your	config	file	for
the	repository.

$	git	config	-l	|	grep	submodule

submodule.mod1.url=<remote	path>/mod1.git

submodule.mod2.url=<remote	path>/mod2.git

This	completes	the	init	step.	However,	if	you	look	into	the	repository	directories	after
this,	you’ll	notice	that	you	still	don’t	have	any	content.	As	it	turns	out,	pulling	down
the	submodules	for	an	existing	project	with	submodules	is	a	two-step	process.

The	init	subcommand	registered	the	submodules	in	the	superproject’s	configuration
so	it	can	reference	them	directly.	Now	you	run	the	update	subcommand	for
submodule	to	actually	clone	those	repositories	into	your	subdirectories	and	check	out
the	indicated	commits	for	the	containing	project.

$	git	submodule	update

Cloning	into	'mod1'…

done.

Submodule	path	'mod1':	checked	out	'8add7dab652c856b65770bca867db2bbb39c0d00'

Cloning	into	'mod2'…

done.

Submodule	path	'mod2':	checked	out	'7c2584f768973e61e8a725877dc317f7d2f74f37'

Why	a	two-step	process?	Having	the	init	and	update	sub	commands	separated
provides	an	opportunity	for	the	user	to	update	the	URL	(path)	in	the	.gitmodules	file	if
needed	before	cloning	the	submodule	(that	is,	before	the	update	command).	If	you
don’t	need	to	do	this,	though,	and	you	want	to	execute	both	operations	with	one
command,	there	is	a	shortcut,	as	shown	in	the	tip.

TIP

As	you	just	saw,	it	is	normally	a	two-step	operation	to	populate	your	submodules:
submodule	init	and	submodule	update.	However,	the	update	sub	command	has
an	--init	option.	You	can	use	it	as	a	shortcut	to	do	the	init	and	update
subcommands	with	one	call	after	the	clone	of	the	container	project.

$	git	submodule	update	--init

Even	more	helpful,	Git	provides	an	option	called	--recursive	that	you	can	add	to
your	clone	command.	Using	this	option	includes	the	functionality	of	the
submodule	update	--init,	simplifying	things	even	further.

$	git	clone	--recursive	<URL	of	container	project>

Cloning	into	'main'…

done.

Submodule	'mod1'	(<url	to	remote	mod1>/mod1.git)	registered	for	path	'mod1'

Submodule	'mod2'	((<url	to	remote	mod2>/mod2.git)	registered	for	path	'mod2'

Cloning	into	'mod1'…

done.

Submodule	path	'mod1':	checked	out	

'8add7dab652c856b65770bca867db2bbb39c0d00'

Cloning	into	'mod2'…

done.

Submodule	path	'mod2':	checked	out	

'7c2584f768973e61e8a725877dc317f7d2f74f37'

(Note	that	you	can	also	use	--recurse-submodules,	which	is	the	same	as	--
recursive.)

You	can	use	these	options	to	save	some	steps	whenever	you	need	to	clone	a
project	that	has	submodules.

A	key	point	to	emphasize	here	is	that	this	operation	cloned	the	repositories	for	the
submodules	and	checked	out	the	commits	that	were	current	when	the	submodules
were	added.

If	you	go	back	into	the	separate,	original	repositories	for	mod1	and	mod2,	and	do	a	log,
you	see	that	there	have	been	some	updates	since	you	added	these	repositories	as
submodules.

$	cd	<original	separate	mod1	path>/mod1;	git	log	--oneline

a76a3fd	update	info	file

8add7da	Add	initial	content	for	module	mod1.

$	cd	<original	separate	mod2	path>/mod2;	git	log	--oneline

cfa214d	update	2	to	info	file

7c2584f	update	of	info	file

07f58e0	Add	initial	content	for	module	mod2.

Now,	if	you	look	at	the	results	of	your	submodule	updates	in	the	recently	cloned
repository,	you	see	some	differences.

$	cd	mod1

mod1	((8add7da…))

$	git	log	--oneline

8add7da	Add	initial	content	for	module	mod1.

$	cd	../mod2

mod2	((7c2584f…))

$	git	log	--oneline

7c2584f	update	of	info	file

07f58e0	Add	initial	content	for	module	mod2.

Specifically,	notice	that	you	don’t	have	the	latest	commits,	just	the	commits	up	to	the
time	when	the	submodules	were	added	in	to	the	superproject	you	just	cloned.	This	is	a
unique	and	important	difference	when	working	with	submodules.	Projects	that
contain	submodules	retain	a	memory	of	the	commit	that	was	active	or	used	when	the
repository	was	added	to	the	project	as	a	submodule.

Also,	if	you	look	at	what	branch	is	active	on	the	submodules,	you	can	see	that	there
isn’t	an	active	branch.	The	checked-out	commit,	which	was	current	when	the
submodule	was	added,	is	the	currently	active	detached	HEAD.	This	is	not	as	bad	as	it
sounds.	It	simply	means	that	rather	than	pointing	to	a	specific	branch	reference,	Git	is
pointing	to	a	specific	revision.

$	cd	mod1;	git	branch

*	(HEAD	detached	at	8add7da)

		master

$	cd	../mod2;	git	branch

*	(HEAD	detached	at	7c2584f)

		master

Your	prompt	for	mod2	may	look	something	like	this:

	<local	path	to	mod>/mod2	((7c2584f…))

This	is	an	important	point	about	submodules:	they	are	tied	initially	to	the	same
commit	that	was	chosen	when	they	were	added	to	a	container	project.	However,	the
repository	for	each	of	the	submodules	is	still	a	separate	Git	repository	that	can	have
updates	beyond	when	it	was	added	as	a	submodule.

Because	you	know	that	updates	have	been	made	to	the	Git	projects	that	compose	the
submodules	you’re	using,	this	leads	to	the	question	of	how	you	update	your
submodules	to	get	the	latest	content.	And,	once	the	submodules	are	updated	to	a	new
commit,	you	have	the	added	question	of	how	you	update	your	container	project	to
ensure	it	records	which	commits	its	submodules	now	point	to.	There’s	also	the
question	of	how	you	can	easily	perform	these	kinds	of	operations	across	multiple

submodules	if	you	have	more	than	one.

Let’s	look	at	an	answer	to	that	last	question	first.

Processing	Multiple	Submodules
As	you’ve	already	seen,	working	with	submodules	is	non-trivial.	Furthermore,	the
level	of	complication	can	scale	up	when	you	are	trying	to	manage	multiple
submodules.	Luckily,	Git	includes	a	subcommand	called	foreach	as	part	of	the
submodule	command	that	simplifies	doing	the	same	operation	across	multiple
submodules.	The	syntax	for	using	this	command	is	pretty	straightforward.

git	submodule	[--quiet]	foreach	[--recursive]	<command>

In	this	case,	<command>	can	be	whatever	command	you	would	like	to	run	against	the
submodules,	and	it	can	be	followed	by	additional	arguments	or	options	that	are
specific	to	that	command.	Using	a	git	command	as	an	example,	you	could	use	this
functionality	to	see	the	logs	of	each	submodule.

$	git	submodule	foreach	git	log	--oneline

Entering	'mod1'

8add7da	Add	initial	content	for	module	mod1.

Entering	'mod2'

7c2584f	update	of	info	file

07f58e0	Add	initial	content	for	module	mod2.

If	you	add	the	--quiet	option,	then	the	lines	that	say	“Entering	‘<mod	name>’	are
omitted	from	the	output.	The	--recursive	option	is	only	needed	if	you	have	nested
submodules—that	is,	submodules	under	your	submodules.

Git	also	provides	several	variables	populated	with	information	that	you	can	use	when
constructing	commands.	Those	variables	are	as	follows:

$name—the	name	of	the	submodule

$path—the	path	of	the	submodule	relative	to	the	superproject

$sha1—the	current	SHA1	value	of	the	submodule	as	recorded	in	the	superproject

$toplevel—the	absolute	path	to	the	superproject

As	an	example	of	using	these	variables,	you	could	construct	a	simple	command	to
show	the	name	of	the	module	and	the	current	SHA1	value	that	the	superproject	knows
about.

$	git	submodule	--quiet	foreach	'echo	$path	$sha1'

mod1	8add7dab652c856b65770bca867db2bbb39c0d00

mod2	7c2584f768973e61e8a725877dc317f7d2f74f37

Now,	equipped	with	this	option	to	process	multiple	submodules,	let’s	return	to	how
you	can	handle	updates	with	submodules.

Updating	Submodules	from	Their	Remotes
If	the	remote	repository	that	a	submodule	is	based	on	has	been	updated,	there	are
multiple	approaches	you	can	take	to	updating	your	submodules.	(Note	that	I’m	talking
about	the	original	project	that	the	submodule	was	cloned	from,	not	the	superproject.
This	is	the	remote	that	shows	up	when	you	change	into	the	submodule’s	directory	and
run	git	remote	-v.)	The	approaches	you	can	take	are	as	follows:

You	can	switch	into	each	submodule,	check	out	a	branch	(if	needed),	and	do	a	pull
or	a	fetch	and	merge.

$	cd	mod1

$	git	checkout	<branch>

$	git	pull

Updating	8add7da..a76a3fd

Fast-forward

	mod1.info	|	1	+

	1	file	changed,	1	insertion(+)

You	can	use	the	recurse-submodules	option	of	git	pull	to	update	the	contents	of
the	submodules.	This	updates	the	default	remote	tracking	branch	in	the
submodule	(usually	origin/master).	Then,	you	can	go	into	each	submodule	and	do
a	merge	of	the	remote	tracking	branch	into	the	local	branch.	(Again,	this	assumes
that	you’ve	checked	out	a	branch.)

In	the	superproject,	start	by	running	the	pull	command	with	the	recurse-
submodules	option:

$	git	pull	--recurse-submodules

Fetching	submodule	mod1

From	<remote	path>/mod1

			8add7da..a76a3fd		master					->	origin/master

Fetching	submodule	mod2

From	<remote	path>/mod2

			7c2584f..cfa214d		master					->	origin/master

Already	up-to-date.

Then,	in	the	submodule,	execute	the	merge:

$	git	merge	origin/master

Updating	8add7da..d05eb00

Fast-forward

	mod1.info	|	2	++

	1	file	changed,	2	insertions(+)

You	can	use	the	update	subcommand	of	the	submodule	command	with	the	--
remote	option.	In	the	superproject,	run	the	following	command:

$	git	submodule	update	--remote

Submodule	path	'mod1':	checked	out	'a76a3fd2470d21dcdca8a9671f39be383aae1ea1'

Submodule	path	'mod2':	checked	out	

'cfa214db650ef5bcc7287323943d98b46d0a5354'

If	you	only	want	to	update	a	particular	submodule,	just	add	the	submodule	name
to	the	end	of	the	command.

$	git	submodule	update	--remote	mod1

You	can	iterate	over	each	submodule	using	the	foreach	subcommand	with
operations	to	update	the	submodule.	In	the	superproject,	run	the	following
command:

$	git	submodule	foreach	git	pull	origin	master

Entering	'mod1'

From	<remote	path>/mod1

	*	branch												master					->	FETCH_HEAD

Already	up-to-date.

Entering	'mod2'

From	<remote	path>/mod2

	*	branch												master					->	FETCH_HEAD

Updating	7c2584f..e9b2d79

Fast-forward

	mod2.info	|	2	++

	1	file	changed,	2	insertions(+)

NOTE

As	I	noted	earlier	in	this	chapter,	information	about	submodules	is	stored	in	the
.gitmodules	file	in	the	superproject.

$	cat	.gitmodules

[submodule	"mod1"]

								path	=	mod1

								url	=	<remote	path	for	mod1>

[submodule	"mod2"]

								path	=	mod2

								url	=	<remote	path	for	mod2>

The	default	branch	for	a	submodule	is	assumed	to	be	master.	If	you	need	to
change	that,	you	can	do	it	through	a	simple	git	config	command,	such	as	the
following:

$	git	config	-f	.gitmodules	submodule.mod2.branch	testbranch

Here,	the	-f	option	is	simply	pointing	to	a	different	file—the	.gitmodules	file—and
setting	the	value	for	the	key	triple	submodule->mod2->branch.	Afterward,	your
.gitmodules	file	looks	like	this:

$	cat	.gitmodules

[submodule	"mod1"]

								path	=	mod1

								url	=	C:/Users/bcl/submod/remote/mod1.git

[submodule	"mod2"]

								path	=	mod2

								url	=	C:/Users/bcl/submod/remote/mod2.git

								branch	=	testbranch

Viewing	Submodule	Differences
Once	you	have	updated	your	submodules	to	the	latest	pushed	content,	you	will	have
differences	between	what’s	in	your	submodules	and	what	your	superproject	has	been
referencing	for	the	submodules.	You	can	see	these	differences	easily	with	the
submodule	status	command.

$	git	submodule	status

+d05eb000ecb6cc1f00bc1b45d3e1cb6fb48e108d	mod1	(heads/master)

+e9b2d790cf97ee43dc745d9996e07426e5570242	mod2	(heads/master)

Recall	that	the	plus	sign	(+)	on	the	front	means	that	“the	submodule’s	current	version
that’s	checked	out	is	different	from	the	SHA1	value	in	the	containing	repository.”

You	can	also	see	this	kind	of	difference	by	diffing.

$	git	diff

diff	--git	a/mod1	b/mod1

index	8add7da..d05eb00	160000

---	a/mod1

+++	b/mod1

@@	-1	+1	@@

-Subproject	commit	8add7dab652c856b65770bca867db2bbb39c0d00

+Subproject	commit	d05eb000ecb6cc1f00bc1b45d3e1cb6fb48e108d

diff	--git	a/mod2	b/mod2

index	7c2584f..e9b2d79	160000

---	a/mod2

+++	b/mod2

@@	-1	+1	@@

-Subproject	commit	7c2584f768973e61e8a725877dc317f7d2f74f37

+Subproject	commit	e9b2d790cf97ee43dc745d9996e07426e5570242

There	is	a	submodule	option	that	you	can	add	to	the	diff	in	these	cases	to	make	the
output	look	more	legible.

$	git	diff	--submodule

Submodule	mod1	8add7da..d05eb00:

		>	third	update

		>	update	info	file

Submodule	mod2	7c2584f..e9b2d79:

		>	update	3	to	info	file

		>	update	2	to	info	file

Superproject	versus	Submodules
You’ve	now	updated	your	submodules	to	the	latest	content	from	their	respective
remote	repositories.	However,	you	haven’t	updated	the	original	references	(SHA1
values	of	the	submodules)	that	were	recorded	in	the	superproject	when	you	originally
added	the	submodules.	This	can	be	a	problem.

If	you	look	at	a	status	right	now	in	the	superproject,	you’ll	see	that	Git	knows	that
things	have	been	updated	in	the	submodules.

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

Changes	not	staged	for	commit:

		(use	"git	add	<file>…"	to	update	what	will	be	committed)

		(use	"git	checkout	--	<file>…"	to	discard	changes	in	working	directory)

								modified:			mod1	(new	commits)

								modified:			mod2	(new	commits)

Submodules	changed	but	not	updated:

*	mod1	8add7da…d05eb00	(2):

		>	third	update

		>	update	info	file

*	mod2	7c2584f…e9b2d79	(2):

		>	update	3	to	info	file

		>	update	2	to	info	file

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

Notice	that	in	this	case,	Git	treats	the	submodule	directories	like	changed	files.	Also,
on	the	last	line	of	output,	you	can	see	that	Git	expects	you	to	stage	and	commit	the
updates	to	the	submodule	information	if	you	want	it	to	point	to	new	SHA1	values
(new	commits)	for	the	submodules.

This	is	key	to	updating	information	for	submodules.	In	the	superproject,	you	have	to
stage	and	commit	the	information	that	Git	is	tracking	about	the	submodules.
Otherwise,	bad	things	can	happen	because	these	are	out	of	sync.

Let’s	look	at	an	example.	Because	you	haven’t	yet	committed	the	changes	relating	to
the	submodules	in	the	superproject,	the	superproject	still	thinks	the	submodules
should	be	pointing	to	their	old	locations.	Using	a	technique	with	foreach	that	you	saw
earlier,	you	can	easily	see	this,	as	shown	in	the	following	example.

$	git	submodule	foreach	'echo	$name	$sha1'

Entering	'mod1'

mod1	8add7dab652c856b65770bca867db2bbb39c0d00

Entering	'mod2'

mod2	7c2584f768973e61e8a725877dc317f7d2f74f37

If	you	go	into	your	submodules,	you	can	see	they’ve	been	updated	and	you	can	see
those	SHA1	 values	are	references	to	past	points	in	the	histories.

$	cd	mod1

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

nothing	to	commit,	working	directory	clean

$	git	log	--oneline

d05eb00	third	update

a76a3fd	update	info	file

8add7da	Add	initial	content	for	module	mod1.	

$	cd	..

$	cd	mod2

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

nothing	to	commit,	working	directory	clean

$	git	log	--oneline

e9b2d79	update	3	to	info	file

cfa214d	update	2	to	info	file

7c2584f	update	of	info	file	

07f58e0	Add	initial	content	for	module	mod2.

Given	that	the	superproject	has	old	references,	if	you	run	the	submodule	update
command	(without	the	--remote	option),	this	tells	Git	to	update	the	submodules	to
the	references	(SHA1	values)	that	are	current	in	the	superproject.	This	operation	is
commonly	used	when	trying	to	bring	submodules	up	to	date	with	a	superproject.

$	git	submodule	update

Submodule	path	'mod1':	checked	out	'8add7dab652c856b65770bca867db2bbb39c0d00'

Submodule	path	'mod2':	checked	out	'7c2584f768973e61e8a725877dc317f7d2f74f37'

After	this,	you	can	see	that	you	have	back-leveled	each	submodule!	This	is	probably
not	what	you	intended.

$	cd	mod1

$	git	status

HEAD	detached	at	8add7da

nothing	to	commit,	working	directory	clean

$	git	log	--oneline

8add7da	Add	initial	content	for	module	mod1.

$	cd	..

$	cd	mod2

$	git	status

HEAD	detached	at	7c2584f

nothing	to	commit,	working	directory	clean

$	git	log	--oneline

7c2584f	update	of	info	file

07f58e0	Add	initial	content	for	module	mod2.

The	Problem	with	Submodules
The	previous	example	illustrates	a	fundamental	issue	and	source	of	problems	with
using	submodules:	trying	to	keep	the	submodule	references	in	the	superproject	in
sync	with	the	submodules,	and	vice	versa.

Notice	that	if	you	now	do	a	submodule	status	check,	it	indicates	that	everything	is	in
sync	(no	plus	signs	(+)	on	the	front).	Everything	is,	but	you’ve	just	back-leveled	your
submodules.

$	git	submodule	status

	8add7dab652c856b65770bca867db2bbb39c0d00	mod1	(8add7da)

	7c2584f768973e61e8a725877dc317f7d2f74f37	mod2	(7c2584f)

As	another	example,	if	these	references	are	out	of	sync	and	that	inconsistency	is
pushed	to	the	remote	for	the	superproject,	then	other	users	who	pull	that	version	of
the	superproject	can	end	up	back-leveling	their	submodules,	even	if	they’ve	updated
their	superproject	before.

Updating	the	Submodule	References

So,	what	do	you	have	to	do	to	keep	the	submodule	references	in	sync	with	the
submodules?	Working	from	the	superproject,	let’s	go	back	to	where	you	have	the
latest	updates	in	the	submodules.

$	git	submodule	update	--remote

Submodule	path	'mod1':	checked	out	'd05eb000ecb6cc1f00bc1b45d3e1cb6fb48e108d'

Submodule	path	'mod2':	checked	out	'e9b2d790cf97ee43dc745d9996e07426e5570242'

The	submodule	status	tells	you	that	you	have	newer	content	checked	out	in	the
submodules	versus	the	references	the	superproject	knows	about—again.

$	git	submodule	status

+d05eb000ecb6cc1f00bc1b45d3e1cb6fb48e108d	mod1	(heads/master)

+e9b2d790cf97ee43dc745d9996e07426e5570242	mod2	(heads/master)

If	you	run	a	status	command	(the	short	version	this	time),	you	can	see	Git	telling	you
that	it	knows	the	two	submodules	have	been	modified	(just	like	a	changed	file).

$	git	status	-s

	M	mod1

	M	mod2

Now,	you	can	simply	do	an	add	and	a	commit	to	update	your	superproject	with	the
latest	references	for	the	submodules.

$	git	add	.

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

Changes	to	be	committed:

		(use	"git	reset	HEAD	<file>…"	to	unstage)

								modified:			mod1

								modified:			mod2

Submodule	changes	to	be	committed:

*	mod1	8add7da…d05eb00	(2):

		>	third	update

		>	update	info	file

*	mod2	7c2584f…e9b2d79	(2):

		>	update	3	to	info	file

		>	update	2	to	info	file

You	can	then	commit	the	updates	into	the	superproject’s	repository.

$	git	commit	-m	"update	submodules	to	latest	content"

[master	7e4e525]	update	submodules	to	latest	content

	2	files	changed,	2	insertions(+),	2	deletions(-)

Afterward,	the	submodule	status	shows	you	that	the	superproject	and	the	submodules
are	in	sync.

$	git	submodule	status

	d05eb000ecb6cc1f00bc1b45d3e1cb6fb48e108d	mod1	(heads/master)

	e9b2d790cf97ee43dc745d9996e07426e5570242	mod2	(heads/master)

And,	likewise,	if	you	run	the	update	command,	there	is	no	updating	for	Git	to	do.

$	git	submodule	update

Of	course,	the	final	step	is	to	push	the	changes	to	the	superproject	over	to	the	remote
side.	Otherwise,	other	users	will	not	get	those	changes	and	you	risk	back-leveling
again	the	next	time	a	pull	operation	is	done.

$	git	push

Counting	objects:	2,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(2/2),	done.

Writing	objects:	100%	(2/2),	338	bytes	|	0	bytes/s,	done.

Total	2	(delta	0),	reused	0	(delta	0)

To	<remote	path>/main.git

			2745a27..7e4e525		master	->	master

Updating	Submodules	When	the	Superproject	Is	Updated
What	if	you	are	using	submodules	and	someone	else	updates	the	superproject,
including	updated	submodule	content?	The	solution	is	fairly	simple	thanks	to	an
option	that	you	saw	earlier	for	pull:	recurse-submodules.	You	can	use	the	same
operation	again	to	get	the	updates	into	your	local	environment.

$	git	pull	--recurse-submodules

remote:	Counting	objects:	6,	done.

remote:	Compressing	objects:	100%	(6/6),	done.

remote:	Total	6	(delta	2),	reused	0	(delta	0)

Unpacking	objects:	100%	(6/6),	done.

From	C:/Users/bcl/submod/remote/main

			2745a27..5d1e722		master					->	origin/master

Fetching	submodule	mod1

From	C:/Users/bcl/submod/remote/mod1

			a76a3fd..7e72f3c		master					->	origin/master

Fetching	submodule	mod2

From	C:/Users/bcl/submod/remote/mod2

			cfa214d..e9b2d79		master					->	origin/master

Updating	2745a27..5d1e722

Fast-forward

	mod1	|	2	+-

	mod2	|	2	+-

	2	files	changed,	2	insertions(+),	2	deletions(-)

However,	this	operation	does	not	check	out	the	updated	references	in	your
submodules.	Your	submodules	are	still	registering	the	previous	commits	as	current.
You	can	see	this	when	you	run	the	status	and	log	commands	against	them.

$	git	submodule	status

+a76a3fd2470d21dcdca8a9671f39be383aae1ea1	mod1	(heads/master)

+cfa214db650ef5bcc7287323943d98b46d0a5354	mod2	(heads/master)

$	cd	mod1;	git	log	--oneline

a76a3fd	update	info	file

8add7da	Add	initial	content	for	module	mod1.

$	cd	../mod2;	git	log	--oneline

cfa214d	update	2	to	info	file

7c2584f	update	of	info	file

07f58e0	Add	initial	content	for	module	mod2.

To	get	the	latest	commits	registered	and	finish	the	update,	you	can	just	run	the
submodule	update	command	to	check	out	the	updated	references	from	the
submodules.

$	cd	..;	git	submodule	update

Submodule	path	'mod1':	checked	out	'7e72f3c96b19d7b6db38538e91d673e8249d418e'

Submodule	path	'mod2':	checked	out	'e9b2d790cf97ee43dc745d9996e07426e5570242'

Afterward,	your	status	and	logs	are	consistent	with	the	latest	updates.

$	git	submodule	status

	7e72f3c96b19d7b6db38538e91d673e8249d418e	mod1	(remotes/origin/HEAD)

	e9b2d790cf97ee43dc745d9996e07426e5570242	mod2	(remotes/origin/HEAD)

$	git	log	--oneline	mod1

5d1e722	update	5	to	mod1

482cf2f	added	new	change	in	mod1

7e4e525	update	submodules	to	latest	content

2745a27	Add	submodules	mod1	and	mod2

$	git	log	--oneline	mod2

7e4e525	update	submodules	to	latest	content

2745a27	Add	submodules	mod1	and	mod2

$	cd	mod1;	git	log	--oneline

7e72f3c	update	5

2d25d0a	another	update

d05eb00	third	update

a76a3fd	update	info	file

8add7da	Add	initial	content	for	module	mod1.

$	cd	../mod2;	git	log	--oneline

e9b2d79	update	3	to	info	file

cfa214d	update	2	to	info	file

7c2584f	update	of	info	file

07f58e0	Add	initial	content	for	module	mod2.

Of	course,	you	can	also	pull	(or	fetch	and	merge)	the	code	separately	in	each
submodule	and	the	superproject.

Pushing	Changes	from	Submodules
Just	as	with	any	other	aspect	of	using	submodules,	when	changes	that	are	to	be
pushed	are	made	in	the	submodules	themselves,	there	has	to	be	coordination	with	the

submodules	and	the	superproject.	When	changes	are	pushed	in	a	submodule,	the
references	in	the	superproject	also	need	to	be	pushed,	and	vice	versa.	Otherwise,	you
can	get	into	those	out-of-sync	states	again	where	your	superproject	thinks	your
current	commit	in	the	submodule	should	be	in	one	place	and	the	submodule	thinks	it
should	be	in	another.	And,	as	I	have	already	alluded	to,	if	this	out-of-sync	condition	is
pushed	into	the	remote,	when	other	users	clone	or	pull	the	superproject,	they	end	up
with	the	same	out-of-sync	condition	and	may	not	even	realize	it	at	first.	Or	worse,
their	local	Git	environment	may	be	back-leveled.

Luckily,	Git	includes	an	option	for	push	that	can	do	some	checking	to	enforce	that
everything	is	in	sync:	recurse-submodules.	The	recurse-submodules	option	takes	two
arguments,	check	and	on-demand,	that	can	be	useful	to	you	in	this	case.

The	check	argument	tells	the	push	command	to	verify	that,	in	each	submodule	where
code	has	been	committed,	the	commit	has	also	been	pushed	to	at	least	one	remote
associated	with	the	submodule.	If	not,	it	aborts	the	push	and	exits	with	a	non-zero
return	code.

Here’s	what	that	might	look	like.	Suppose	you	make	an	update	in	the	submodule
mod1	and	commit	it	(but	don’t	push	it):

$	cd	mod1

$	echo	"update	5"	>>	mod1.info

$	git	commit	-am	"update	5"

[master	7e72f3c]	update	5

	1	file	changed,	1	insertion(+)

Going	back	to	the	superproject,	you	see	the	expected	status	that	mod1	has	changed.

$	cd	..

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

Changes	not	staged	for	commit:

		(use	"git	add	<file>…"	to	update	what	will	be	committed)

		(use	"git	checkout	--	<file>…"	to	discard	changes	in	working	directory)

								modified:			mod1	(new	commits)

Submodules	changed	but	not	updated:

*	mod1	2d25d0a…7e72f3c	(1):

		>	update	5

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

You	can	now	commit	the	change	to	the	superproject’s	submodule	information.

$	git	commit	-am	"update	5	to	mod1"

[master	5d1e722]	update	5	to	mod1

	1	file	changed,	1	insertion(+),	1	deletion(-)

If	we	then	try	to	push	it	and	tell	Git	to	check	if	all	updates	in	the	submodules	have
been	pushed,	Git	catches	that	our	change	hasn’t	been	pushed	in	the	submodule	and
aborts	the	push.

$	git	push	--recurse-submodules=check

The	following	submodule	paths	contain	changes	that	can

not	be	found	on	any	remote:

		mod1

Please	try

								git	push	--recurse-submodules=on-demand

or	cd	to	the	path	and	use

								git	push

to	push	them	to	a	remote.

fatal:	Aborting.

fatal:	The	remote	end	hung	up	unexpectedly

The	on-demand	argument	tells	the	push	command	to	try	pushing	any	commits	that
need	to	be	pushed	for	the	submodules	at	that	point.	If	Git	isn’t	successful	in	pushing
something	in	a	submodule,	it	aborts	the	push	and	exits	with	a	non-zero	return	code.

Keeping	with	the	previous	example,	if	you	change	the	check	option	to	the	on-demand
option,	Git	tries	to	push	the	un-pushed	change	in	the	submodule	for	you	(which	it	can
do	in	this	case).

$	git	push	--recurse-submodules=on-demand

Pushing	submodule	'mod1'

Counting	objects:	3,	done.

Writing	objects:	100%	(3/3),	272	bytes	|	0	bytes/s,	done.

Total	3	(delta	0),	reused	0	(delta	0)

To	C:/Users/bcl/submod/remote/mod1.git

			2d25d0a..7e72f3c		master	->	master

Counting	objects:	2,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(2/2),	done.

Writing	objects:	100%	(2/2),	247	bytes	|	0	bytes/s,	done.

Total	2	(delta	1),	reused	0	(delta	0)

To	C:/Users/bcl/submod/remote/main.git

			482cf2f..5d1e722		master	->	master

Submodules	and	Merging
By	now,	you	should	understand	that	dealing	with	submodules	is	all	about	keeping	the
submodules	in	sync	with	the	submodule	reference	in	the	superproject.	You	also	need
to	keep	this	overall	model	in	mind	if	you	run	into	a	merge	conflict	when	updating
something	in	a	submodule.	In	that	case,	you	want	to	use	the	usual	processes	(as	I
discuss	in	Chapter	9)	to	resolve	the	merge	conflicts,	but	then	make	sure	to	update	the
submodule	reference	in	the	superproject	so	it	now	points	to	the	SHA1	value	of	the
commit	that	contains	the	fixed	merge.

Essentially,	you	can	map	out	the	process	of	dealing	with	a	merge	commit	in	a
submodule	as	follows:

1.	 Change	into	the	submodule	and	resolve	the	merge	in	the	most	appropriate	way.

2.	 Change	back	to	the	superproject.

3.	 Verify	that	the	expected	values	of	the	submodule	updates	match	the	superproject’s
references.

4.	 Stage	(add)	the	updated	submodule	reference.

5.	 Commit	to	finish	the	merge.

Unregistering	a	Submodule
Finally,	what	happens	if	you	want	to	unregister	a	submodule?	To	do	this,	you	can	use
the	deinit	subcommand	to	the	submodule	command.	When	you	use	deinit,	it	removes
the	reference	to	the	submodule	from	the	superproject	and	removes	the	working	tree
from	the	subdirectory.	If	the	working	tree	has	modifications,	you	need	to	use	the	--
force	option	to	force	the	accompanying	removal.

TIP

Here	is	a	summary	of	the	basic	rules	for	dealing	with	submodules	and
superprojects:

If	you	update	something	in	a	submodule,	follow	these	steps:

1.	 In	the	submodule	directory,	commit	and	push	it	out	to	the	submodule’s
remote.

2.	 Go	back	to	the	superproject.	The	superproject	should	show	that	that	particular
submodule	area	has	changed—almost	like	a	file	in	the	repository	with	the
submodule	name.

3.	 Stage	and	commit	that	changed	area	(submodule	name)	in	the	superproject	to
ensure	that	the	superproject	points	to	the	updated	commit	in	the	submodule.

4.	 Push	out	that	change	in	the	superproject	to	the	superproject’s	remote.	This
ensures	that	anyone	cloning	or	pulling	the	superproject	gets	a	version	that
points	to	the	latest	updates	in	the	submodules.

If	you	pull	an	update	of	the	superproject,	follow	these	steps:

1.	 Ensure	that	you	have	also	pulled	the	latest	versions	of	the	submodules	(using
the	recurse-submodules	option	or	foreach	subcommand,	or	by	pulling	each
area).

2.	 In	the	superproject,	run	the	submodule	update	to	check	out	the	commit	in	the
submodule	that	corresponds	to	the	submodule	references	in	the	superproject.

The	need	to	manually	update	submodules	and	superproject	references	to	submodules
to	always	keep	them	in	sync—and	avoid	back-leveling—presents	a	significant
challenge	when	using	submodules.	Another	kind	of	functionality	is	available	in	Git
that	provides	a	similar	working	model	without	the	worry	of	trying	to	keep	things
synchronized:	subtrees.	You’ll	look	at	subtrees	in	the	next	section.

SUBTREES
The	subtree	functionality	in	Git	provides	another	way	to	incorporate	subprojects	into
your	main	project.	In	this	case,	each	subproject	is	incorporated	into	a	subdirectory.

With	submodules,	you	maintained	links	from	the	superproject	to	the	submodules.
With	subtrees,	there	are	no	special	links	or	module	files	that	have	to	be	synchronized.
Instead,	the	projects	are	just	copied	into	subdirectories.	They	travel	with	the
superproject.

As	a	development	analogy,	using	a	submodule	is	like	linking	to	a	particular	version	of
a	library	that	your	project	is	dependent	on.	Using	a	subtree	is	like	taking	a	copy	of	that
library’s	source	code	and	adding	or	including	it	in	your	project’s	directory	tree.	The
advantage	here	is	that	users	do	not	have	to	worry	about	keeping	reference	information
like	gitmodules	files	in	sync.	The	disadvantage	is	that	you	have	additional	size	and
scope	tacked	on	to	your	superproject	and	you	are	no	longer	using	a	truly	separate
project—you’re	maintaining	a	private	copy.

The	syntax	of	the	subtree	command	looks	like	this:

							git	subtree	add			-P	<prefix>	<commit>

							git	subtree	add			-P	<prefix>	<repository>	<ref>

							git	subtree	pull		-P	<prefix>	<repository>	<ref>

							git	subtree	push		-P	<prefix>	<repository>	<ref>

							git	subtree	merge	-P	<prefix>	<commit>

							git	subtree	split	-P	<prefix>	[OPTIONS]	[<commit>]

Note	that	this	is	another	Git	command	that	has	multiple	subcommands.	Also	note
that	each	subcommand	takes	a	<prefix>	argument.	You	can	think	of	the	prefix
argument	as	specifying	the	name	or	path	of	the	relative	subdirectory	where	the	project
exists	as	a	subtree.

Figure	14.3	shows	a	way	to	think	about	the	subtree	setup.	Note,	however,	that	when
you	add	a	subproject,	you	are	typically	adding	a	particular	branch.

Figure	14.3	Illustration	of	a	subtree	layout

As	an	example	of	using	the	subtree	command,	let’s	look	at	how	to	add	a	project	as	a
subtree.

Adding	a	Project	as	a	Subtree
In	its	most	basic	form,	adding	a	subproject	as	a	subtree	simply	requires	specifying	a
prefix,	the	remote	path	to	the	repository,	and,	optionally,	a	branch.	Suppose	you	have
cloned	the	remote	project	myproj	down	from	a	remote	on	your	system.

$	git	clone	../remotes/myproj.git	myproject

Cloning	into	'myproject'…

done.

This	project	contains	three	files.

$	cd	myproject

$	ls

file1.txt		file2.txt		file3.txt

In	the	set	of	remotes	that	are	available	to	you,	you	also	have	a	project	named	subproj:

~/subtrees/remotes$	ls	-la	subproj.git

total	32

drwxr-xr-x		11	dev		staff			374B	Aug		2	20:58	./

drwxr-xr-x			4	dev		staff			136B	Aug		2	20:59	../

-rw-r--r--			1	dev		staff				23B	Aug		2	20:58	HEAD

drwxr-xr-x			2	dev		staff				68B	Aug		2	20:58	branches/

-rw-r--r--			1	dev		staff			164B	Aug		2	20:58	config

-rw-r--r--			1	dev		staff				73B	Aug		2	20:58	description

drwxr-xr-x		11	dev		staff			374B	Aug		2	20:58	hooks/

drwxr-xr-x			3	dev		staff			102B	Aug		2	20:58	info/

drwxr-xr-x			9	dev		staff			306B	Aug		2	20:58	objects/

-rw-r--r--			1	dev		staff				98B	Aug		2	20:58	packed-refs

drwxr-xr-x			4	dev		staff			136B	Aug		2	20:58	refs/

Now,	you	add	subproj	with	the	master	branch	as	a	subtree	to	myproject.

~/subtrees/local$	cd	myproject

~/subtrees/local/myproject$	git	subtree	add	--prefix	\

subproject	~/subtrees/remotes/subproj.git	master

git	fetch	/Users/dev/subtrees/remotes/subproj.git	master

warning:	no	common	commits

remote:	Counting	objects:	5,	done.

remote:	Compressing	objects:	100%	(3/3),	done.

remote:	Total	5	(delta	0),	reused	0	(delta	0)

Unpacking	objects:	100%	(5/5),	done.

From	/Users/dev/subtrees/remotes/subproj

	*	branch												master					->	FETCH_HEAD

Added	dir	'subproject'

If	you	look	at	the	directory	tree	now,	you	see	your	new	subdirectory	underneath	with
its	files.

~/subtrees/local/myproject$	ls

file1.txt			file2.txt			file3.txt			subproject/

~/subtrees/local/myproject$	ls	subproject

subfile1.txt		subfile2.txt

And,	if	you	look	at	the	log,	you	can	see	the	new	commit	where	this	project	was	added
as	a	subtree,	along	with	your	comprehensive	history.

~/subtrees/local/myproject$	git	log	--oneline

7d4f436	Add	'subproject/'	from	commit	

'906b5234f366bb2a419953a1edfb590aadc32263'

906b523	Add	subfile2

5f7a7db	Add	subfile1

fada8bb	Add	file3

ef21780	Add	file2

73e59ba	Add	file1

This	is	pretty	straightforward.	Let’s	take	a	look	at	another	option	that	you	can	use	with
the	add	subcommand.	First,	you	reset	back	to	the	place	where	you	only	have
myproject	without	any	subprojects.

$	git	reset	--hard	HEAD~1

HEAD	is	now	at	fada8bb	Add	file3

~/subtrees/local/myproject$	git	log	--oneline

fada8bb	Add	file3

ef21780	Add	file2

73e59ba	Add	file1

~/subtrees/local/myproject$	ls

file1.txt		file2.txt		file3.txt

Now	to	simplify	things,	we’ll	add	a	new	remote	reference	to	use	in	our	commands:

~/subtrees/local/myproject$	git	remote	add	sub_origin		

~/subtrees/remotes/subproj.git

When	you	add	a	subtree,	by	default,	all	of	the	project’s	history	is	also	added	in	the
subdirectory.	To	avoid	adding	all	of	the	history,	you	can	use	a	squash	option.	This
squash	option	is	similar	to	the	squash	option	you	used	in	the	interactive	rebasing
functionality	in	Chapter	9.	It	compresses	the	history	for	the	project	that	is	being	added
into	one	commit.

Now,	you	add	the	subproject	as	a	subtree	again,	this	time	using	the	squash	option	to
compress	the	history.

~/subtrees/local/myproject$	git	subtree	add	--prefix	subproject	--squash	\

	sub_origin	master

git	fetch	sub_origin	master

From	/Users/dev/subtrees/remotes/subproj

	*	branch												master					->	FETCH_HEAD

	*	[new	branch]						master					->	sub_origin/master

Added	dir	'subproject'

Looking	at	your	files,	you	have	the	same	structure	as	before.

~/subtrees/local/myproject$	ls

file1.txt			file2.txt			file3.txt			subproject/

However,	notice	that	your	history	here	has	a	record	now	that	indicates	the	squashed
history:

$	git	log	--oneline

6b109f0	Merge	commit	'f7c3147d6df0609745228cc5083bb6c7d0b07d1a'	as	'subproject'

f7c3147	Squashed	'subproject/'	content	from	commit	906b523

fada8bb	Add	file3

ef21780	Add	file2

73e59ba	Add	file1

~/subtrees/local/myproject$	git	log	-2

commit	6b109f0d5540642218d442297569b498f8e12396

Merge:	fada8bb	f7c3147

Author:	Brent	Laster	<bl2@nclasters.org>

Date:			Tue	Aug	2	21:15:06	2016	-0400

				Merge	commit	'f7c3147d6df0609745228cc5083bb6c7d0b07d1a'	as	'subproject'

commit	f7c3147d6df0609745228cc5083bb6c7d0b07d1a

Author:	Brent	Laster	<bl2@nclasters.org>

Date:			Tue	Aug	2	21:15:06	2016	-0400

				Squashed	'subproject/'	content	from	commit	906b523

				git-subtree-dir:	subproject

				git-subtree-split:	906b5234f366bb2a419953a1edfb590aadc32263

Updating	a	Subtree
If	you	later	need	to	pull	some	changes	into	your	subtree,	you	can	use	a	similar	version
of	the	subtree	command	with	pull.

$	git	subtree	pull	--prefix	subproject	sub_origin	master	--squash

This	pulls	down	the	latest	content	from	the	remote	into	the	subtree	areas	and
squashes	the	history	again.	You	can	omit	the	squash	option	to	avoid	compressing	the
history,	but	using	this	option	will	likely	simplify	things	by	not	including	all	of	the
history.

There	is	also	a	git	subtree	merge	command	that	you	can	use	to	merge	commits	up	to	a
desired	point	into	a	subproject	denoted	by	the	--prefix	argument.	The	git	subtree
merge	command	can	be	used	to	merge	local	changes	to	a	subproject,	while	git	subtree
pull	reaches	out	to	the	remote	to	get	changes.

NOTE

In	Git,	there	is	also	a	merge	strategy	named	subtree.	It’s	worth	pointing	out	here
that	the	git	subtree	command	(actually	a	script	that’s	been	incorporated	into	Git)
is	not	the	same	thing	as	the	subtree	merge	strategy.

Git	chooses	the	best	strategy	depending	on	the	situation	(refer	to	Chapter	9).	By
default,	it	uses	the	recursive	strategy	to	merge	two	branches,	the	octopus	strategy
to	merge	more	than	two	branches,	and	so	on.	The	subtree	merge	strategy	is
designed	to	be	used	when	two	trees	are	being	merged	and	one	is	a	subtree
(subdirectory)	of	the	other.	In	that	case,	the	subtree	merge	strategy	tries	to	shift
the	subtrees	to	be	at	the	same	level	in	order	to	merge	similar	structures.	For	more
information,	search	for	subtree	in	the	help	page	for	merge.

Using	the	Subtree	Split	Functionality
The	split	subcommand	for	git	subtree	can	be	used	to	extract	a	subproject’s	content
into	a	separate	branch.	It	extracts	the	content	and	history	related	to	<prefix>	and	puts
the	resulting	content	at	the	root	of	the	new	branch	instead	of	in	a	subdirectory.

Let’s	look	at	an	example.	Suppose	I	have	the	following	structure	in	my	superproject:

~/subtrees/local/myproject$ls

file1.txt			file2.txt			file3.txt			subproject/

Now	I	want	to	extract	out	the	content	and	history	related	to	my	subproject
subdirectory	in	my	subtree.	I	could	use	a	command	like	the	following:

~/subtrees/local/myproject$	git	subtree	split	--prefix=subproject	\

--branch=split_branch

Created	branch	'split_branch'

906b5234f366bb2a419953a1edfb590aadc32263

As	output,	Git	prints	out	the	SHA1	value	for	the	HEAD	of	the	newly	created	tree,	and
so	I	have	a	reference	to	work	with	for	that	HEAD	if	needed.	If	you	look	into	the	new
branch,	you	see	only	the	set	of	content	from	the	subproject	that	was	split	out	(as
opposed	to	content	from	the	superproject).

~/subtrees/local/myproject$	git	checkout	split_branch

Switched	to	branch	'split_branch'

~/subtrees/local/myproject$	ls

subfile1.txt		subfile2.txt

~/subtrees/local/myproject$	git	log	--oneline

906b523	Add	subfile2

5f7a7db	Add	subfile1

Creating	a	New	Project	from	the	Split	Content
Given	that	you	can	split	out	content	from	a	subtree,	it	follows	that	you	may	want	to

transfer	that	split	content	into	another	project.	As	it	turns	out,	this	is	very	simple	with
Git:	you	just	create	a	new,	empty	project	and	then	pull	the	branch	contents	over	into
it.

Here’s	an	example	based	on	my	previous	example.	First,	you	create	a	new	Git	project.

~/subtrees/local/myproject$	cd	~/

~$	mkdir	newproj

~$	cd	newproj

~/newproj$	git	init

Initialized	empty	Git	repository	in	/Users/dev/newproj/.git/

Then,	you	can	just	pull	the	contents	of	the	branch	that	you	pulled	out	into	this	new
repository.

~/newproj$	git	pull	~/subtrees/local/myproject	split_branch

remote:	Counting	objects:	5,	done.

remote:	Compressing	objects:	100%	(3/3),	done.

remote:	Total	5	(delta	0),	reused	0	(delta	0)

Unpacking	objects:	100%	(5/5),	done.

From	/Users/dev/subtrees/local/myproject

	*	branch												split_branch	->	FETCH_HEAD

You	can	see	that	you	have	the	same	content	in	your	new	project	that	matches	what
you	split	out	in	the	old	repository.

~/newproj$	ls

subfile1.txt		subfile2.txt

~/newproj$	git	log	--oneline

906b523	Add	subfile2

5f7a7db	Add	subfile1

Subtree	Push
The	subtree	command	also	supports	a	push	subcommand.	This	command	does	a	split
followed	by	an	attempt	to	push	the	split	content	over	to	the	remote.	To	illustrate,	the
following	command	splits	out	the	subproject	directory	and	then	pushes	it	to	the
sub_origin	remote	reference	and	into	a	new	branch	named	new	branch:

~/subtrees/local/myproject$	git	subtree	push	--prefix=subproject	sub_origin	

new_branch

git	push	using:		sub_origin	new_branch

Total	0	(delta	0),	reused	0	(delta	0)

To	/Users/dev/subtrees/remotes/subproj.git

	*	[new	branch]						906b5234f366bb2a419953a1edfb590aadc32263	->	new_branch

~/subtrees/local/myproject$

SUMMARY
In	this	chapter,	I’ve	covered	ways	to	work	with	multiple	instances	of	working	areas
and	repositories	in	your	local	environment.	I	also	covered	worktrees	that	allow	you	to
work	on	multiple	branches	at	the	same	time	in	different	areas—all	connected	back	to
one	local	repository.

I	discussed	what	submodules	are—a	type	of	linking	to	other	projects	from	your
original	project	(the	superproject).	I	explained	how	the	connection	works	and	why
submodule	use	is	problematic.	I	then	described	another	alternative	for	managing
subprojects	in	subdirectories:	subtrees.

Note	that	while	I	have	discussed	the	options	here	for	working	with	code	in	dependent
repositories,	a	better	approach	in	most	situations	would	be	to	consume	deliverables
built	by	these	other	repositories	as	artifacts	during	the	build	or	deployment	process.
You	should	limit	your	use	of	submodules	and	subtrees	to	when	there	are	true	source
dependencies	between	repositories	and	you	need	that	kind	of	close	source	connection.
Of	course,	too	many	of	these	kinds	of	dependencies	can	also	indicate	a	need	to
refactor	code	between	repositories.

In	the	last	chapter	of	this	book,	I’ll	look	at	how	to	extend	the	functionality	of	Git
through	its	built-in	mechanism	for	running	programs	before	or	after	Git	operations:
Git	hooks.

ABOUT	CONNECTED	LABS	10–12
There	are	three	labs	for	this	chapter	to	allow	for	focusing	on	each	of	the	main	topics:
one	for	worktrees,	one	for	submodules,	and	one	for	subtrees.	A	brief	description	of
each	lab	follows.

About	Connected	Lab	10:	Working	with	Worktrees
In	this	lab,	you’ll	see	how	to	work	with	the	worktrees	feature	of	Git.	You’ll	get	to
create	a	worktree	for	a	specific	branch,	see	how	to	use	it,	and	remove	it.

About	Connected	Lab	11:	Working	with	Submodules
This	lab	will	give	you	some	practice	with	submodules.	You’ll	see	how	to	add	a
repository	as	a	submodule,	make	changes	in	it,	and	ensure	that	the	containing	project
(the	superproject)	is	updated.

About	Connected	Lab	12:	Working	with	Subtrees
This	lab	demonstrates	some	of	the	basic	operations	in	Git	when	working	with
subtrees.	Like	the	submodule	lab,	you’ll	see	how	to	add	a	repository	as	a	subtree,	and
make	changes	in	it.

As	well	you’ll	get	a	chance	to	split	a	subtree	into	a	separate	branch	and	then	pull	that
content	into	a	separate	project.

Connected	Lab	10

Working	with	Worktrees
In	this	lab,	you’ll	get	some	experience	with	worktrees.	For	this	and	the	subsequent
labs,	I	have	split	the	calc2	repository	that	you	used	in	the	last	lab	into	three	separate
projects.

PREREQUISITES
This	lab	requires	that	you	have	Internet	access	and	have	completed	Connected	Lab	8:
Setting	up	a	GitHub	Account	and	Cloning	a	Repository.	You	will	be	working	in	a	new
directory.

STEPS
1.	 For	this	lab,	you	need	access	to	your	GitHub	account	that	you	set	up	in	Connected
Lab	8.	I	have	split	up	the	calc2	project	you	used	in	Connected	Lab	9	into	three
separate	projects:	super_calc,	a	version	of	the	calc2	project	with	only	the	master
and	feature	branches;	sub_ui,	a	separate	repository	consisting	of	only	the	content
of	the	ui	branch	split	out	from	the	calc2	project;	and	sub_docs,	a	separate
repository	consisting	of	only	the	content	of	the	docs	branch	split	out	from	the	calc2
project.	Log	in	to	your	GitHub	account	and	fork	the	three	projects	from	the
following	listed	locations.	(As	a	reminder,	the	fork	button	is	in	the	upper-right
corner	of	the	pages.)	This	will	prepare	your	area	on	GitHub	for	doing	this	lab,	as
well	as	Connected	Labs	11	and	12.

https://github.com/professional-git/super_calc.git
https://github.com/professional-git/sub_ui.git
https://github.com/professional-git/sub_docs.git

2.	 In	a	new	directory,	clone	down	the	super_calc	project	that	you	forked	in	step	1,
using	the	following	command:

$	git	clone	https://github.com/<your	github	userid>/super_calc.git

3.	 Now,	change	into	the	cloned	directory—super_calc.

$	cd	super_calc

4.	 In	this	case,	you	want	to	work	on	both	the	master	branch	and	the	features	branch
at	the	same	time.	You	can	work	on	the	master	branch	in	this	directory,	but	you
need	to	create	a	separate	working	tree	(worktree)	for	working	on	the	features
branch.	You	can	do	that	with	the	worktree	add	command,	passing	the	-b	to	create	a
new	local	branch	off	of	the	remote	tracking	branch.

$	git	worktree	add	-b	features	../super_calc_features	origin/features

5.	 Change	into	the	new	subdirectory	with	the	new	worktree.	Note	that	you	are	on	the
features	branch.	Edit	the	calc.html	file	and	update	the	line	in	the	file	surrounded
by	<title>	and	</title>.	The	process	is	described	below.

$	cd	../super_calc_features

Edit	calc.html	and	change

<title>Calc</title>

to

<title>	github_user_id's	Calc</title>	

substituting	in	your	GitHub	user	ID	for	“github_user_id”.

6.	 Save	your	changes	and	commit	them	back	into	the	repository.

https://github.com/professional-git/super_calc.git
https://github.com/professional-git/sub_ui.git
https://github.com/professional-git/sub_docs.git

$	git	commit	–am	"Updating	title"

7.	 Switch	over	to	your	original	worktree.

$	cd	../super_calc

8.	 Look	at	what	branches	you	have	there.

$	git	branch

9.	 Note	that	you	have	the	features	branch	you	created	for	the	other	worktree.	Do	a	log
on	that	branch;	you	can	see	your	new	commit	just	as	if	you	had	done	it	in	this
worktree.

$	git	log	--oneline	features

10.	 You	no	longer	need	your	separate	worktree.	However,	before	you	remove	it,	take	a
look	at	what	worktrees	are	currently	there.

$	git	worktree	list

11.	 You	can	now	remove	the	worktree.	First,	remove	the	actual	directory;	then	use	the
prune	option	to	get	rid	of	the	worktree	reference.

$	rm	–rf	../super_calc_features

$	git	worktree	prune

Connected	Lab	11

Working	with	Submodules
In	this	lab,	you’ll	get	some	experience	working	with	submodules.

PREREQUISITES
This	lab	requires	that	you	have	Internet	access	and	have	completed	at	least	the	first
two	steps	in	Connected	Lab	10,	where	you	forked	the	various	split	projects	of	the
original	calc2	project	into	your	area	in	GitHub	and	cloned	the	super_calc	project	down
to	your	local	system.

STEPS
1.	 Start	out	in	the	super_calc	directory	for	the	super_calc	repository	that	you	cloned
from	your	GitHub	fork	in	Connected	Lab	10.	You’re	going	to	add	another
repository	as	a	submodule	to	super_calc.

2.	 Add	the	sub_ui	repository	as	a	submodule	to	the	super_calc	project	by	running
this	command:

$	git	submodule	add	https://github.com/<your	github	userid>/sub_ui	sub_ui

3.	 This	adds	sub_ui	as	a	submodule	to	your	super_calc	repository.	In	the	process,	Git
clones	down	the	repository	into	the	subdirectory	and	also	creates	and	stages	a
.gitmodules	file	to	map	the	connection	with	the	super_calc	project.	Look	at	the
directory	listing	to	see	the	new	subdirectory.	Then	look	at	the	status	to	see	the
staged	.gitmodules	file.	Finally,	display	the	contents	of	the	.gitmodules	file	to	see
what’s	in	there.	Run	the	following	commands	from	the	super_calc	subdirectory:

$	ls

$	git	status

$	git	show	:.gitmodules

4.	 Now	you	need	to	commit	and	push	the	staged	submodule	mapping	and	data	to
your	local	and	remote	repositories.	Run	the	following	commands:

$	git	commit	-m	"Add	submodule	sub_ui"

$	git	push

5.	 Now	you	can	clone	a	new	copy	of	this	project	with	the	submodule.	Change	to	a
higher-level	directory	and	clone	a	copy	of	the	project	down	as	super_calc2.

$	cd	..

$	git	clone	https://github.com/<your	github	userid>/super_calc	super_calc2

6.	 Change	into	the	super_calc2	directory	and	look	at	what’s	in	the	sub_ui
subdirectory.	Run	the	submodule	status	command	to	see	what	the	status	of	the
submodule	is.

$	cd	super_calc2

$	ls	sub_ui

$	git	submodule	status

7.	 Notice	the	hyphen	(-)	in	front	of	the	SHA1	value.	This	indicates	that	the
submodule	has	not	been	initialized	yet	relative	to	the	super	project.	You	could	have
done	this	at	clone	time	using	the	--recursive	option.	However,	because	you	didn’t,
you	need	to	use	the	update	--init	subcommand	for	the	submodule	operation,	as
follows:

$	git	submodule	update	--init

8.	 Git	clones	the	sub_ui	code	into	the	submodule.	Look	at	the	sub_ui	subdirectory	to

see	the	contents,	and	then	run	the	submodule	status	command	again.

$	ls	sub_ui

$	git	submodule	status

This	time,	you	see	a	space	at	the	beginning	(instead	of	the	minus	sign)	to	indicate
the	submodule	has	been	initialized.

9.	 Now,	you	need	to	make	a	simple	update	to	the	code	in	the	submodule.	Change	into
the	sub_ui	subdirectory	(cd	sub_ui)	and	edit	the	calc.html	file	there	as	follows:
change	the	line

<title>Advanced	Calculator</title>

in	the	file	to

<title>	your_name_here	Advanced	Calculator</title>

substituting	your	actual	name	for	“your_name_here”.	Save	your	changes.

10.	 Commit	your	changes	into	the	submodule.

$	git	commit	-am	"Update	title"

11.	 Do	a	quick	log	command	and	note	the	SHA1	value	associated	with	the	commit	you
just	made.

$	git	log	--oneline

12.	 Change	back	to	the	super_calc2	project	(up	one	level)	and	run	a	submodule	status
command.

$	cd	..

$	git	submodule	status

13.	 Note	that	the	submodule	SHA1	reference	now	points	to	your	latest	commit	in	the
submodule,	but	there	is	a	plus	sign	(+)	at	the	front	of	the	reference.	This	indicates
that	there	are	changes	in	the	submodule	that	have	not	yet	been	committed	back
into	the	super	project.	Run	a	git	status	command	to	get	another	view	of	what’s
changed	for	the	super	project.

$	git	status

14.	 The	status	command	gives	you	much	more	information	about	what’s	changed.	It
tells	you	that	the	sub_ui	module	has	been	changed	and	is	not	updated	or	staged	for
commit.	To	complete	the	update,	you	need	to	stage	and	commit	the	sub_ui	data.
You	can	then	push	it	out	to	your	GitHub	remote	repository.	To	complete	the
process,	execute	the	commands	below.

$	git	commit	-am	"Update	for	submodule	sub_ui"

$	git	push

15.	 Now	that	you’ve	updated	the	submodule	and	the	supermodule,	everything	is	in
sync.	Run	a	git	status	and	a	git	submodule	status	command	to	verify	this.

$	git	status

$	git	submodule	status

Connected	Lab	12

Working	with	Subtrees
In	this	lab,	you’ll	get	some	experience	working	with	subtrees.

PREREQUISITES
This	lab	requires	that	you	have	Internet	access	and	have	completed	at	least	the	first
two	steps	in	Connected	Lab	10,	where	you	forked	the	various	split	projects	of	the
original	calc2	project	into	your	area	in	GitHub	and	cloned	the	super_calc	project	down
to	your	local	system.

STEPS
1.	 Start	out	in	the	super_calc	directory	for	the	super_calc	repository	that	you	cloned
from	your	GitHub	fork	in	Connected	Lab	10.	You’re	going	to	add	another
repository	as	a	subtree	to	super_calc.

2.	 To	add	the	repository,	use	the	following	command:

$	git	subtree	add	-P	sub_docs	--squash	https://github.com/<your	github	user	

id>/sub_docs	master

Even	though	you	don’t	have	much	history	in	this	repository,	you	used	the	--
squash	command	to	compress	it.	Note	that	the	-P	stands	for	prefix,	which	is	the
name	your	subdirectory	gets.

3.	 Look	at	the	directory	structure;	note	that	the	sub_docs	subdirectory	is	there	under
your	super_calc	project.	Also,	if	you	do	a	git	log,	you	can	see	where	the	subproject
was	added	and	the	history	squashed.

$	ls	sub_docs

$	git	log	--oneline

Note	that	there	is	only	one	set	of	history	here	because	there	is	only	one	project
effectively—even	though	we	have	added	a	repository	as	a	subproject.

4.	 Now,	you	will	see	how	to	update	a	subproject	that	is	included	as	a	subtree	when
the	remote	repository	is	updated.	First,	clone	the	sub_docs	project	down	into	a
different	area.

$	cd	..

$	git	clone	https://github.com/<your	github	user	id>/sub_docs	sub_docs_temp

5.	 Change	into	the	sub_docs_temp	project,	and	create	a	simple	file.	Then	stage	it,
commit	it,	and	push	it.

$	cd	sub_docs_temp

$	echo	"readme	content"	>	readme.txt

$	git	add	.

$	git	commit	-m	"Adding	readme	file"

$	git	push

6.	 Go	back	to	the	super_calc	project	where	you	have	sub_docs	as	a	subtree.

$	cd	../super_calc

7.	 To	simplify	future	updating	of	your	subproject,	add	a	remote	reference	for	the
subtree’s	remote	repository.

$	git	remote	add	sub_docs_remote	https://github.com/<your	github	user	

id>/sub_docs

8.	 You	want	to	update	your	subtree	project	from	the	remote.	To	do	this,	you	can	use

the	following	subtree	pull	command.	Note	that	it’s	similar	to	your	add	command,
but	with	a	few	differences:

You	used	the	long	version	of	the	prefix	option.

You	are	using	the	remote	reference	you	set	up	in	the	previous	step.

You	don’t	have	to	use	the	squash	option,	but	you	add	it	as	a	good	general
practice.

$	git	subtree	pull	--prefix	sub_docs	sub_docs_remote	master	--squash

Because	this	creates	a	merge	commit,	you	will	get	prompted	to	enter	a	commit
message	in	an	editor	session.	You	can	add	your	own	message	or	just	exit	the
editor.

9.	 After	the	command	from	step	8	completes,	you	can	see	the	new	README	file	that
you	created	in	your	subproject	sub_docs.	If	you	look	at	the	log,	you	can	also	see
another	record	for	the	squash	and	merge_commit	that	occurred.

$	ls	sub_docs

$	git	log	--oneline

10.	 Changes	you	make	locally	in	the	subproject	can	be	promoted	the	same	way	using
the	subtree	push	command.	Change	into	the	subproject,	make	a	simple	change	to
your	new	README	file,	and	then	stage	and	commit	it.

$	cd	sub_docs

$	echo	"update"	>>	readme.txt

$	git	commit	-am	"update	readme"

11.	 Change	back	to	the	directory	of	the	super_project.	Then	use	the	subtree	push
command	below	to	push	back	to	the	super	project’s	remote	repository.

$	cd	..

$	git	subtree	push	--prefix	sub_docs	sub_docs_remote	master

Note	the	similarity	between	the	form	of	the	subtree	push	command	and	the	other
subtree	commands	you’ve	used.

12.	 The	next	few	steps	show	you	how	to	take	a	subproject,	put	it	onto	a	different
branch,	and	then	bring	that	content	into	a	separate	repository.	First,	use	the
subtree	split	command	to	take	the	content	from	the	sub_docs	subproject	and	put	it
into	a	branch	named	docs_branch	in	the	super_calc	area.

$	git	subtree	split	--prefix=sub_docs	--branch=docs_branch

13.	 Look	at	the	history	for	the	new	docs_branch.	You	can	see	all	of	the	content	that
you	have	in	the	sub_docs	project.

$	git	log	--oneline	docs_branch

14.	 Create	a	new	project	into	which	you	can	transfer	the	docs_branch	content.

$	cd	..

$	mkdir	docs_proj

$	cd	docs_proj

$	git	init

15.	 Finally,	use	the	git	pull	command	in	a	slightly	different	context	to	pull	over	that
content	into	the	master	branch	of	your	new	project.

$	git	pull	../super_calc	docs_branch:master

16.	 Do	a	git	log	of	the	master	branch	in	the	new	project	to	see	the	copied	content.

$	git	log	--oneline	master

Chapter	15
Extending	Git	Functionality	with	Git	Hooks

WHAT’S	IN	THIS	CHAPTER?

Understanding	Git	hooks

Installing	hooks

Preparing	environments	for	hooks

Learning	details	for	each	Git	hook

Exploring	hooks	written	in	bash,	Groovy,	Ruby,	Perl,	and	Python

Now	that	I’ve	covered	the	overall	Git	workflow	and	functionality	in	detail,	let’s	look	at
one	way	you	can	extend	and	customize	how	Git	works:	hooks.	Hooks	are	scripts	or
programs	that	run	before	or	after	(and	in	some	cases	during)	a	subset	of	operations	in
Git.	There	are	hooks	for	local	operations,	such	as	commits	or	merges,	and	hooks	for
remote	operations,	such	as	when	changes	are	pushed	to	the	remote.

In	some	other	source	management	systems,	hooks	may	be	called	by	other	names,
such	as	triggers.	However,	the	concept	is	the	same—a	program	or	script	runs	when	a
certain	event	or	operation	happens.	Here	are	some	common	uses	for	hooks:

Sending	e-mail	or	other	notifications	when	a	change	is	pushed	to	a	repository

Validating	that	certain	conditions	have	been	met	before	a	commit

Appending	items	to	commit	messages

Checking	the	format	or	existence	of	certain	elements	in	a	commit	message

Updating	content	in	the	working	directory	after	an	operation

Enforcing	coding	standards

INSTALLING	HOOKS
By	default,	hooks	exist	in	the	hooks	directory	underneath	your	Git	directory.	Your	Git
directory	is	directly	under	your	working	directory	unless	you’ve	overridden	that
location	by	setting	a	different	value	in	the	$GIT_DIR	environment	variable,	or	by
passing	a	different	value	to	--git-dir	on	the	Git	command	line.	As	a	result,	the	default
setting	means	that	the	hooks	reside	in	.git/hooks.

As	of	Git	2.9,	you	can	set	a	different	relative	or	absolute	path	for	hooks	using	the
core.hooksPath	configuration	value.	This	allows	you	to	set	a	centralized	path	to	find
the	hooks	for	multiple	projects	or	even	multiple	users	if	everyone	has	access	to	the
path.	For	the	rest	of	this	chapter,	I	will	refer	to	the	hooks	directory	to	mean	wherever
you	have	set	your	hooks	to	be.

After	cloning	or	using	init	to	create	a	project,	if	you	look	in	the	.git/hooks	directory,
you	see	a	list	of	files	like	the	following:

myproject/.git/hooks$	ls

applypatch-msg.sample*					pre-push.sample*

commit-msg.sample*									pre-rebase.sample*

post-update.sample*								prepare-commit-msg.sample*

pre-applypatch.sample*					update.sample*

pre-commit.sample*

NOTE

It	is	important	to	note	that	hooks	are	not	cloned	from	a	remote	repository.	This	is
by	design	because	hooks	that	run	on	the	remote	(server)	side	may	not	be	suitable
for	local	use	or	may	require	special	permissions	that	are	not	allowed	on	the	user’s
system.	Also,	note	that	a	pull	or	fetch	does	not	update	the	hooks.

Notice	that	all	of	these	files	end	in	.sample.	The	part	of	the	filename	before	.sample	is
the	actual	hook	name	that	Git	expects.	The	.sample	extension	is	there	to	allow	the
files	to	exist	as	sample	hooks	without	actually	being	executed	as	hooks.	In	effect,	the
extension	disables	the	hook.	To	enable	any	of	these	hooks,	you	need	to	remove	the
.sample	extension.	For	example,	to	enable	the	commit-msg	hook	in	this	repository,
you	add	whatever	code	or	processing	you	want	to	use	to	the	commit-msg.sample	file
and	rename	it	as	simply	commit-msg.	When	Git	verifies	whether	the	commit-msg
hook	is	enabled,	it	finds	the	file	in	the	hooks	directory	with	the	expected	name	and
executes	the	file.	(Note	that	hook	files	also	need	to	be	executable,	so	it	may	be
necessary	to	change	the	permissions	for	the	file	if	it	is	not	already	executable.)

By	default,	the	initial	set	of	files	in	.git/hooks	comes	from	the	hooks	directory	of	the
template	area	where	Git	is	installed	(or	where	configuration	points	to	the	template).
Running	git	init	again	on	an	existing	directory	picks	up	new	content	from	the	template
area	but	doesn’t	overwrite	changed	content.	This	provides	another	option	for	creating
new	hooks	and	distributing	them	to	existing	repositories	by	re-running	the	init
command.	See	the	help	page	for	git	init	for	more	information	on	how	to	specify	the
location	of	the	template	area	to	populate	from.

UPDATING	HOOKS
Because	hooks	are	not	updated	as	part	of	a	clone,	pull,	or	fetch,	it	can	be	challenging
to	get	updated	hooks	into	all	repositories	that	need	them.	There	are	a	few	methods
that	you	can	use	to	do	this:

If	everyone	is	using	Git	2.9	or	later,	you	can	designate	a	commonly	readable	area
for	the	hooks	using	the	core.hooksPath	configuration	setting.

You	can	store	the	actual	hooks	scripts	as	part	of	the	project	and	then	copy	or
symlink	them	to	the	.git/hooks	directory.	You	can	also	create	a	script	file	and
include	it	in	the	project	to	automate	the	copying	or	symlinking	from	the	working
directory	to	the	hooks	directory	when	the	script	is	run.

In	a	similar	way,	you	can	include	a	script	with	each	project	to	copy	updated	hooks
from	a	common	area.

If	the	hook	is	a	new	file,	you	can	update	it	in	the	templates	area,	and	then	users
can	run	the	git	init	command	again	to	pick	up	the	new	file.

COMMON	HOOK	ATTRIBUTES
Next,	let’s	look	at	some	of	the	attributes	and	behaviors	that	are	shared	across	sets	of
hooks.

Hook	Domain
Hooks	can	be	targeted	for	execution	on	either	the	remote	repository	side	(remote
hooks)	or	the	local	repository	side	(local	hooks).	Local	hooks	are	designed	to	run
before	or	after	local	operations	such	as	commit,	checkout,	rebase,	and	so	on.	Remote
hooks	are	designed	to	run	before	or	after	operations	on	the	remote	side,	such	as	push.

Here	is	the	list	of	available	local	hooks:

applypatch-msg

pre-applypatch

post-applypatch

pre-commit

prepare-commit-msg

commit-msg

post-commit

pre-rebase

post-checkout

post-merge

pre-push

post-rewrite

push-to-checkout

Here	is	the	list	of	available	remote	hooks:

pre-receive

update

post-receive

post-update

pre-auto-gc

Return	Code	to	Control	Workflow
In	many	cases,	hooks	are	used	not	only	to	do	additional	processing,	but	also	to	serve
as	checks	on	whether	or	not	operations	should	continue.	In	these	cases,	the	hook

https://github.com/git/git/blob/master/templates/hooks--applypatch-msg.sample
https://github.com/git/git/blob/master/templates/hooks--pre-applypatch.sample
https://github.com/git/git/blob/master/templates/hooks--pre-commit.sample
https://github.com/git/git/blob/master/templates/hooks--prepare-commit-msg.sample

checks	some	value	or	condition	and	exits	with	a	return	code	to	indicate	whether	or	not
the	check	passed	or	failed.	A	return	code	of	zero	indicates	that	all	is	good	and	the
operation	should	continue.	A	non-zero	return	code	indicates	that	something	wasn’t
correct	or	that	a	check	failed,	and	tells	Git	to	abort	the	operation.	Different	non-zero
values	can	be	returned	to	indicate	specific	error	states.

Working	Directory	Access
One	of	the	important	considerations	when	a	hook	runs	is	what	directory	it	is	running
in.	Git	defaults	to	one	of	two	places	to	run	hooks,	depending	on	whether	the	hook	is
executing	in	a	bare	repository	or	a	non-bare	repository.

NOTE

As	a	reminder,	a	bare	repository	is	one	that	does	not	have	a	corresponding	staging
area	and	working	directory—it	does	not	have	a	checked-out	copy	of	a	branch.	Most
commonly,	you	see	it	as	a	remote	repository	or	a	repository	on	the	server	side,
where	a	checked-out	working	directory	is	not	needed	and	doesn’t	make	sense.

Bare	repositories	only	need	the	actual	repository	directory	(the	one	that
corresponds	to	.git	in	a	local	repository),	so	they	are	named	as	<name>.git,	the
directory	that	holds	the	actual	repository.

Non-bare	repositories	are	the	ones	you	are	used	to	working	with	locally,	where
you	have	a	checked-out	branch	in	a	working	directory	and	a	staging	area.	Those
repositories	are	named	with	a	directory	(for	the	checked-out	content)	and	then
have	the	.git	directory	(or	whatever	is	specified	by	the	GIT_DIR	setting	or	on	the
command	line	with	the	--git-dir	option)	as	a	subdirectory	with	the	actual
repository.

When	Git	runs	a	hook,	if	it	is	executing	in	a	non-bare	repository,	it	first	changes	to	the
root	directory	of	the	working	directory.	For	example,	if	the	local	environment	is	in
/usr/home/myrepo	and	an	operation	there	causes	a	hook	to	run	from
/usr/home/myrepo/.git/hooks,	then	Git	uses	/usr/home/myrepo	as	the	directory	to
run	the	hook	in.

If	the	hook	is	running	in	a	bare	repository,	then	Git	uses	the	directory	of	the	bare
repository.	For	example,	if	the	bare	repository	is	in	/usr/share/git/repos/myrepo.git
and	you	are	executing	a	hook	in	/usr/share/git/repos/myrepo.git/hooks,	then	Git	uses
/usr/share/git/repos/myrepo.git	as	the	 directory	to	run	the	hook	in.

Environment	Variables
Each	hook	has	access	to	some	environment	variables	that	are	set	through	Git.	Nearly
all	hooks	have	access	to	GIT_DIR.	For	the	reasons	outlined	in	the	previous	section,
this	variable	usually	has	a	value	of	“.git”	for	local	hooks	and	“.”	for	remote	hooks.

Hooks	that	work	with	the	am	or	commit	operations	have	values	set	for	the	date
(GIT_AUTHOR_DATE),	e-mail	(GIT_AUTHOR_EMAIL),	and	username
(GIT_AUTHOR_NAME),	as	set	in	the	Git	configuration.	Some	operations,	such	as
those	for	rebasing	or	merging,	also	have	a	GIT_REFLOG_ACTION	value
corresponding	to	the	operation	being	performed	and	whatever	is	written	in	the	reflog.

HOOK	DESCRIPTIONS
The	rest	of	this	chapter	includes	individual	descriptions	of	the	various	hooks.	The
descriptions	include	what	each	hook	does	and	what	it	is	used	for,	information	on
bypassing	(for	those	that	can	be	bypassed),	a	description	of	the	parameters	the	hook
gets,	and	whether	the	hook	can	abort	the	operation.

For	some	of	the	hooks,	I	include	example	code	that	implements	the	basic	hook
functionality.	These	examples	are	written	in	several	different	languages,	including
shell,	Ruby,	Groovy,	Python,	and	Perl,	so	you	have	a	simple	reference	for	each	of
them.	The	examples	are	contrived	and	not	meant	to	include	all	functionality	that	a
hook	can	provide	or	to	be	the	best	example	of	coding	hooks.	(These	examples	can	also
be	downloaded	from	http://github.com/professional-git/hooks.)

Applypatch-msg
In	Chapter	11,	I	talk	about	the	git	am	command.	The	am	command	is	designed	to	take
a	patch	in	an	e-mail	format	and	commit	it	into	the	local	repository.	The	applypatch-
msg	hook	is	intended	to	operate	on	the	proposed	commit	message	for	the	apply	part	of
the	am	operation.

Applypatch-msg	takes	a	single	parameter:	the	name	of	the	temporary	file	that	has	the
proposed	commit	message.	A	non-zero	exit	code	from	this	hook	aborts	the	apply	part
of	the	am	operation.	This	hook	can	be	used	to	verify	the	message	file	or	even	edit	it	in
place.

Pre-applypatch
Pre-applypatch	is	another	hook	that	works	with	the	git	am	command.	As	I	previously
mentioned,	the	am	command	takes	a	patch,	applies	it,	and	commits	the	changes.	The
pre-applypatch	hook	is	called	after	the	patch	is	applied,	but	before	any	changes	are
committed.	In	this	way,	it	allows	Git	to	verify	that	the	results	of	applying	the	patch	are
as	expected.	For	example,	this	could	mean	verifying	that	the	patch	did	no	harm,	by
doing	some	kind	of	testing	or	building.

This	hook	does	not	take	any	parameters.	If	the	hook	exits	with	a	non-zero	return	code,
then	the	updated	code	(code	with	the	patch	applied)	is	not	committed—at	least	not	as
part	of	the	am	operation.

Post-applypatch
Post-applypatch	is	the	last	of	the	hooks	intended	for	use	with	the	am	command.	This
hook	is	called	after	the	patch	is	applied	and	committed.	It	is	primarily	used	for
sending	notifications.	However,	it	can	also	be	used	for	launching	some	kind	of
processing	to	verify	that	what	was	committed	was	viable.	However,	it	would	probably
make	more	sense	to	do	that	kind	of	check	with	a	pre-apply	hook,	as	I	described	in	the
previous	section.

http://github.com/professional-git/hooks

The	post-applypatch	hook	does	not	take	any	parameters.	Because	it	is	run	after	the
apply	and	commit	are	completed,	it	cannot	influence	the	outcome	of	the	operation.

Pre-commit
As	its	name	implies,	the	pre-commit	hook	is	executed	before	a	commit.	In	fact,	it	is
executed	before	Git	even	asks	the	user	to	enter	a	commit	message	or	puts	together	a
commit	object.

Pre-commit	can	be	bypassed	with	the	--no-verify	option	to	git	commit.	It	takes	no
parameters.	A	non-zero	exit	code	from	this	hook	aborts	the	commit.

You	can	use	the	pre-commit	hook	to	verify	that	what’s	about	to	be	committed	meets
some	condition	or	criteria	and	is	okay	to	commit.	An	example	script	for	this	hook
(written	in	Python)	is	included	here.	In	this	case,	you	don’t	want	to	allow	any	files	to
be	committed	that	have	a	reference	to	a	company’s	internal-use-only	website
(IUO_WEBSITE	in	the	script).	The	script	gets	a	list	of	staged	files,	and	checks	their
contents	for	the	disallowed	string.	If	it	finds	the	string,	it	prints	an	error	message	and
exits	with	-1,	thus	failing	the	commit.

#!/usr/bin/env	python

#	Example	pre-commit	hook	written	in	python

#	(c)	2016	Brent	Laster

import	sys,	os,	subprocess

#	define	the	string	we	want	to	check	for

IUO_WEBSITE='http://internal.mycompany.com'

try:

													#	Get	the	status	from	Git	in	the	short	form

													#	Note:	Could	use	-s	instead	of	--porcelain

													#		but	porcelain	is	guaranteed	not	to	break

													#		backwards-compatibility	between	releases.

													status_output	=	subprocess.check_output(

																				["git","status","-uno","--porcelain"],

																				stderr=subprocess.STDOUT).decode("utf-8")

													#	create	a	list	of	status	lines

													status_list	=	status_output.splitlines()

													for	status_line	in	status_list:

																					#	if	the	status	line	starts	with	A,	then	it	is	in	the	

staging	area

																				if	status_line.startswith('A'):

																											status,	_,	status_file	=	status_line.partition("	")

																											staged_file	=	status_file.lstrip()

																											#	git	the	relative	path	from	Git	in	case	the	file

																											#		is	in	a	subdirectory	of	the	working	directory

																											rpath	=	subprocess.check_output(

																																	["git","rev-parse","--show-prefix"],

																																stderr=subprocess.STDOUT).decode("ISO-8859-1")

																											relative_path	=	rpath.rstrip()

																											#	construct	the	:<path>	syntax	needed	for	show

																											#		to	dump	the	contents	of	the	staged	version

																											staged_fullpath	=	":"	+	relative_path	+	staged_file

																											#	Use	the	git	show	:<path>	syntax	to	get	the	

contents

																											#		of	the	actual	staged	version

																											staged_content	=	subprocess.check_output(

																																	["git","show",staged_fullpath],

																																	stderr=subprocess.STDOUT).decode("ISO-8859-1")

																											#	if	we	find	the	forbidden	string,	then	abort	the	

commit

																											if	IUO_WEBSITE	in	staged_content:

																																	tpath	=	relative_path	+	staged_file

																																	print	("Error!",IUO_WEBSITE,"found	in	

file",tpath)

																																	print	("Commit	disallowed	due	to	error.")

																																	sys.exit(-1)

															sys.exit(0)

except	subprocess.CalledProcessError:

							print	("error!")

							sys.exit(-2)

Prepare-commit-msg
After	the	pre-commit	hook	checks	and	validates	the	content	to	be	committed,	the
prepare-commit-msg	hook	is	called.	Its	purpose	is	to	do	any	additional	editing	or
preparation	of	the	commit	message	before	it	is	brought	up	in	an	editor.	(Note,
however,	that	this	hook	is	also	called	if	you	pass	in	a	commit	message	with	the	-m
option.)

The	prepare-commit-msg	hook	takes	a	minimum	of	one	and	a	maximum	of	three
parameters,	defined	as	follows:

Parameter	1—The	name	of	the	file	that	contains	the	proposed	commit	message.

Parameter	2—The	type	of	operation	that	precipitates	the	message.	The	value	can	be
one	of	the	following:

message—If	you	passed	a	message	to	the	commit	using	the	-m	option	or	the	-F
option,	from	a	file

template—If	you	used	the	-t	option	or	the	commit.template	configuration	value
was	set

merge—If	the	commit	is	the	result	of	a	merge

squash—If	the	commit	is	the	result	of	a	squash

commit—If	this	is	just	a	regular	commit

Parameter	3—A	SHA1	value	if	you	used	the	--amend,	-c,	or	-C	option.	(-C	allows

you	to	reuse	a	commit	message	from	the	specified	SHA1	value;	-c	does	the	same,
but	also	invokes	the	editor.)

The	prepare-commit-msg	hook	is	not	suppressed	by	the	--no-verify	option.	If	this
hook	returns	a	non-zero	return	code,	then	the	commit	operation	aborts.

An	example	script	for	this	hook	(written	in	Groovy)	is	included	here.	In	this	example,
there	is	user-defined	text	that	must	be	included	in	every	commit	message.	The	user-
defined	text	is	defined	by	configuring	the	new	setting	user.msg	in	Git.	If	that
configuration	setting	is	not	found,	the	hook	exits	and	aborts	the	commit.	If	the
message	already	contains	the	text,	the	hook	simply	proceeds.	Otherwise,	if	we	are	in
the	master	branch,	or	a	branch	that	starts	with	“prod”	or	“ship”,	it	appends	the	text	to
the	commit	message.

#!/usr/bin/env	groovy

//	Example	prepare-commit-msg	hook	written	in	groovy

//	(c)	2016	Brent	Laster

import	static	java.lang.System.*

def	argc	=	this.args.size()

def	commitmsg_file_path,	commit_type,	commit_sha1

//	Get	explicit	commit	type	if	passed

commitmsg_file_path	=	this.args[0]

if	(argc	>	1)

							commit_type	=	this.args[1]

else

				commit_type	=	''

if	(argc	>	2)

				commit_sha1	=	this.args[2]

else

				commit_sha1	=	''

//	See	if	we	have	user-defined	message	set

def	iuo_msg	=	["git",	"config",	"user.msg"].execute()

iuo_msg.waitFor()

def	config_rc	=	iuo_msg.exitValue()

//	If	we	don’t	have	the	configuration	value	set,	then	abort

if	(config_rc!=0)

{

							println	"Configuration	setting	not	found	for	user.msg."

							println	"Aborting	commit!"

							exit	1

}

def	msg	=	iuo_msg.text

//	Read	in	an	existing	commit	message

def	File	commit_file	=	new	File(commitmsg_file_path)

//	If	the	commit	message	already	contains	the	value,	then	just	continue

if	(commit_file.text.find(msg))

{

println("Commit	message	already	contains	$msg	-	proceeding…")

exit	0

}

//	Determine	the	branch

def	output_branch	=	["git",	"symbolic-ref",	"--short",	"HEAD"].execute()

output_branch.waitFor()

def	current_branch	=	output_branch.text.trim()

//	If	it	matches	the	desired	branch	names,	then	append	the	custom	message

if		(current_branch.matches(/^master$|^(prod|ship).*$/))

{

							println	"Current	branch	$current_branch	is	a	production	branch."

							commit_file.append(msg)

}

exit	0

Commit-message
The	commit-msg	hook	is	called	after	the	user	enters	a	commit	message.	Its	main
purpose	is	to	validate	the	commit	message	that	the	user	has	entered.	For	example,	it
can	check	the	message	for	certain	required	information	or	to	make	sure	the	contents
fit	an	expected	corporate	format.	It	can	also	be	used	to	edit	the	commit	message	file	in
place—for	example,	to	append	unique	information	to	each	commit	message	before	the
commit	is	processed.	This	append	functionality	is	used	in	the	Gerrit	Code	Review	tool,
where	the	commit-msg	hook	plays	a	key	role	in	appending	a	unique	Change-Id	to	each
commit	message.	Note	that,	depending	on	need	and	timing,	the	functionality	I	discuss
in	the	“Prepare-commit-message”	section	can	also	apply	here,	after	the	message	is
entered.

This	hook	can	be	bypassed	with	the	--no-verify	option.	The	hook	takes	one	argument:
the	name	of	the	temporary	file	with	the	commit	message	in	it.	If	the	hook	returns	a
non-zero	return	code,	then	the	commit	operation	aborts.

The	example	that	I	include	for	the	commit-msg	hook	is	written	as	a	bash	shell	script.
This	hook	implements	several	checks	around	the	commit	message.	First,	it	checks	to
see	if	the	commit	message	is	a	certain	minimum	length.	If	the	message	is	too	short,
the	hook	aborts	the	commit.	Second,	it	checks	to	see	if	the	message	is	the	same	as	the
previous	commit.	If	it	is,	the	hook	also	aborts	the	commit.	Finally,	it	checks	to	see	if	a
user-defined	message	is	included	in	the	commit	message.	Like	the	prepare-commit-
msg	hook,	the	message	is	expected	to	be	defined	in	the	Git	configuration	value,
user.msg.

#!/usr/bin/env	bash

#	Example	commit-msg	hook	written	in	bash

#	(c)	2016	Brent	Laster

#	define	our	error	messages

error_msg1="Error:	Commit	message	is	too	small."

error_msg2="Error:	Commit	message	cannot	be	the	same	as	the	previous	commit	

message."

error_msg3="Error:	Expected	text	not	in	commit	message:"

abort_msg="Commit	will	not	be	allowed	due	to	error."

minimum_length=25

#	just	exit	if	we	don't	have	any	arguments

["$1"]	||	exit	1

#	read	the	contents	of	the	temp	commit	message	file	and	get	the	length	of	it

contents=$(<"$1")

size=${#contents}

#	if	the	message	is	too	short,	error	out

if	[$size	-le	$minimum_length];	then

							echo	"$error_msg1"	>&2

							echo	"$abort_msg"	>&2

							exit	1

fi

#	if	we	have	a	previous	revision,	make	sure	we're	not	using	the	same	message	as	

the	last	commit

if	git	rev-parse	--verify	HEAD	>/dev/null	2>&1

then

				previous_log_msg=$(git	show	-s	--format=%s)

							if	["$previous_log_msg"	==	"$contents"];	then

													echo	"$error_msg2"	>&2

													echo	"$abort_msg"	>&2

													exit	1

							fi

fi

#	if	our	branch	is	master	or	starts	with	"prod"	or	"ship"

#		check	to	make	sure	we	have	the	value	defined	in	user.msg	in	the	commit	

message

branch=$(git	symbolic-ref	--short	HEAD)

if	[[$branch	=~	^master$|^(prod|ship).*$]];	then

							iuo_msg=$(git	config	user.msg)

							if	!	grep	-iqE	"$iuo_msg"	"$1";	then

													echo	"$error_msg3"	"$iuo_msg"	>&2

													echo	"$abort_msg"	>&2

													exit	1

							fi

fi

#	Redirect	output	to	stderr.

exec	1>&2

exit	0

Post-commit
The	post-commit	hook	is	invoked	after	the	commit-msg	hook.	It	is	primarily	used	for
notification	services,	although	you	can	also	use	it	to	launch	a	post-commit	operation.
For	example,	it	could	launch	some	kind	of	continuous	integration	builds	or	testing	at

the	level	of	the	local	repository	to	ensure	the	code	is	good	before	you	push	it	over	to
the	remote	repository.

Post-commit	doesn’t	take	any	parameters.	Thus,	you	need	to	use	some	sort	of	git	call
in	the	hook	to	determine	the	latest	SHA1	value	to	work	against.	There	are	a	couple	of
calls	you	can	use	to	do	this,	such	as	git	log	-1	HEAD	or	git	rev-parse	HEAD.

The	post-commit	hook’s	exit	code	doesn’t	affect	the	operation	because	the	commit	has
already	been	done	at	this	point.	This	hook,	if	it	is	active,	can’t	be	bypassed	by	the	--no-
verify	option.

Note	that	a	corresponding	hook	is	available	on	the	remote	side:	post-receive.	This	is	a
better	choice	for	launching	continuous	integration	processes	or	testing	if	you	want	to
run	them	against	changes	committed	and	then	pushed	from	all	users.

The	following	example	is	written	in	perl.	It	verifies	whether	the	checkout	is	for	a
branch	that	starts	with	web.	If	so,	it	checks	out	a	copy	of	the	files	into	a	separate
directory.	The	user	is	expected	to	set	the	value	for	the	desired	directory	using	a	Git
configuration	setting,	hooks.webdir.

#!/usr/bin/env	perl

#	Example	post-commit	hook	written	in	perl

#	(c)	2016	Brent	Laster

use	strict;

use	warnings;

use	autodie;

use	File::Temp	qw(tempfile);

use	IPC::Cmd	qw(run);

#	if	we	are	doing	a	commit	from	a	branch	named	web*	then

#	point	git	to	the	website	worktree	and	do	a	checkout	-f	to	mirror	files	out

my	$web_dir	=	'git	config	hooks.webdir';

chomp($web_dir);

my	$new_head_ref	=	'git	rev-parse	--abbrev-ref	HEAD';

#	remove	since	git	index	doesn’t	exist	here

delete	$ENV{'GIT_INDEX_FILE'};

if	(defined($web_dir)	&&	($new_head_ref	=~	/^web.*$/))	{

	my	$results	=	'git	--work-tree="$web_dir"	--git-dir="$ENV{'GIT_DIR'}"	checkout	

-f';

}

Pre-rebase
As	its	name	implies,	the	pre-rebase	hook	is	called	prior	to	a	git	rebase	and	before	Git
actually	does	any	operations	related	to	the	rebasing.	As	such,	this	hook	provides	an
opportunity	to	validate	that	the	rebase	should	go	through,	issue	a	warning	message,
and	so	on.

The	sample	hook	that	comes	with	Git	for	pre-rebase	has	an	extensive	example	of	how
the	hook	can	be	used.	It	prevents	topic	branches	that	have	already	been	merged	from
being	rebased	(and	thus	merged	again).

The	pre-rebase	hook	has	one	or	two	parameters	passed	to	it.	Parameter	1	is	the
upstream	that	the	current	series	of	commits	came	from.	Parameter	2	is	the	branch
being	rebased	(or	it	can	be	empty	if	that	branch	is	the	current	branch).

Returning	a	non-zero	return	code	aborts	the	operation.

Post-checkout
The	post-checkout	hook	is	called	whenever	you	successfully	do	a	checkout	in	Git.	It	is
also	run	after	a	clone	unless	you	specify	the	--no-checkout	option.	An	example	of
using	this	hook	is	to	remove	automatically	created	files	that	you	don’t	need	or	want	in
the	working	directory,	such	as	removing	automatically	generated	backup	files	from	an
editor	session.

The	post-checkout	hook	gets	three	parameters.	Parameter	1	is	the	reference	of	the
previous	HEAD	(before	the	checkout).	Parameter	2	is	the	reference	of	the	current
HEAD	(after	the	checkout;	this	could	be	the	same).	Parameter	3	is	a	flag	to	indicate
whether	the	checkout	was	for	a	branch	or	a	file	(1=branch	and	0=file).

The	exit	code	for	this	hook	doesn’t	have	any	effect	on	the	checkout	because	that’s
already	been	completed.

The	following	example	script	for	post-checkout	is	written	mainly	as	a	one-line	perl
program	wrapped	in	a	shell	script.	In	this	example,	the	perl	code	gets	a	list	of	files,
appends	.bak	to	the	filenames,	and	deletes	those	backup	files	if	they	exist.

#!/bin/sh

#

#	Example	post-checkout	hook	written

#	Written	as	shell	executing	perl	one-liner

#	(c)	2016	Brent	Laster

#	Get	a	list	of	affected	files	and	for	each	one,	remove	a	backup	file	(.bak	

extension)	if	present

/usr/bin/perl	-le	'@files='git	ls-tree	--name-only	-r	'$2'';	chomp(@files);	

@candidates=map	{$_.".bak"}	@files;	unlink	@candidates'

Post-merge
The	post-merge	hook	is	invoked	after	a	successful	git	merge	or	git	pull.	You	can	use	it
to	apply	settings	or	data,	such	as	permissions,	after	a	merge	is	completed.	(You	can
use	a	pre-commit	hook	to	save	these	settings	or	data	before	the	merge.)	You	can	also
use	this	hook	to	launch	some	process	(test,	install,	and	so	on)	after	a	merge	if	a
particular	file	or	files	changed	as	a	result	of	the	merge—for	example,	to	make	sure
something	still	builds	or	passes	testing	after	being	updated	by	a	merge.

The	post-merge	hook	gets	one	parameter:	a	flag	indicating	whether	the	merge	was	a

squash	or	not.	Because	this	hook	is	invoked	after	a	merge	(and	only	after	a	successful
one),	it	cannot	abort	the	merge	or	change	its	outcome.

Pre-push
The	pre-push	hook	is	called	prior	to	a	push	to	a	remote.	You	can	use	it	to	prevent	a
push	from	happening.

Pre-push	takes	two	parameters:	the	name	of	the	destination	remote	(that	is,	origin),
and	the	location	of	the	destination	remote	(for	example,
http://gitsystem.site.com/myproject).	If	a	named	remote	is	not	used,	then	parameter
one	also	contains	the	location	of	the	destination	remote.

In	addition	to	the	two	parameters,	Git	feeds	this	hook	additional	information	about
what	is	targeted	for	pushing	through	the	hook’s	standard	input	(stdin).	Information
about	each	item	to	be	pushed	is	passed	on	a	separate	line,	and	formatted	as	follows:

<local	reference>	<local	sha1>	<remote	reference>	<remote	sha1>	LF

Each	of	the	SHA1	values	here	is	the	full	40-character	value.

As	an	example,	if	you	execute	the	command

$	git	push	origin	master:prod

the	hook	gets	an	input	line	similar	to	this	one:

refs/heads/master	A1B2C3<snip>FEDF	refs/heads/prod		C2EA3F<snip>DE45

(Here,	the	SHA1	values	do	not	show	a	full	40-character	string	for	brevity.	Instead,	I
use	the	<snip>	nomenclature	to	indicate	the	missing	characters.)

If	the	remote	reference	doesn’t	exist	yet,	the	remote	SHA1	value	is	all	zeros.

refs/heads/master	A1B2C3<snip>FEDF	refs/heads/prod	000000…0000

If	a	reference	is	intended	to	be	deleted,	the	local	reference	is	(delete)	and	the	local
SHA1	value	is	all	zeros.

(delete)	000000<snip>0000	refs/heads/prod	C2EA3F<snip>DE45

And	if	a	non-branch	reference	is	supplied	for	the	local	reference,	it	is	passed	as	given.

HEAD~		A1B2C3<snip>FEDF	refs/heads/prod	C2EA3F<snip>DE45		

This	provides	a	number	of	options	for	checking	what	is	happening	with	the	push.	If
the	pre-push	hook	returns	a	non-zero	value,	the	push	is	aborted.

Pre-receive
The	pre-receive	hook	is	invoked	on	the	remote	side	by	the	git	receive-pack	command.
As	you	can	probably	tell	by	the	name,	receive-pack	is	one	of	the	Git	plumbing

commands.	Users	don’t	normally	invoke	this	command	directly.	Rather,	it	is	invoked
through	a	higher-level	command	that	wraps	it:	git	push.

Actually,	git	push	invokes	another	plumbing	command—git	send-pack—which	then
invokes	receive-pack.	The	syntax	for	the	two	plumbing	commands	is	as	follows:

git-receive-pack	<directory>

git	send-pack	[--all]	[--dry-run]	[--force]	[--receive-pack=<git-receive-pack>]

													[--verbose]	[--thin]	[--atomic]

													[--[no-]signed|--sign=(true|false|if-asked)]

													[<host>:]<directory>	[<ref>…]

I	won’t	go	into	detail	about	these	plumbing	commands,	but	you	should	get	the	idea:
push	needs	to	send	data	to	the	remote,	and	the	remote	side	needs	to	receive	it.

The	pre-receive	hook	doesn’t	take	any	arguments.	However,	for	each	reference	that	is
intended	to	be	updated,	the	hook	gets	a	line	sent	to	it	on	stdin.	Each	line	is	of	the
form,

<old	value>	<new	value>	<reference	name>	LF

The	old	and	new	values	are	SHA1	values.	Remember,	you	are	updating	something	on
the	remote	side	(new	value)	from	something	on	the	local	side	(old	value)	using	the
push	command.

You	can	generally	think	of	this	as	one	line	per	branch	being	pushed	with	the	old	and
new	SHA1	values	for	each	branch	in	a	line.	A	value	of	all	zeros	for	one	of	the	SHA1
values	(old	or	new)	is	used	to	indicate	a	particular	situation.	If	<old	value>	is	equal	to
all	zeros,	that	indicates	a	reference	to	be	created.	If	<new	value>	is	equal	to	all	zeros,
that	indicates	a	reference	to	be	deleted.

The	pre-receive	hook	runs	once—just	before	references	actually	start	getting	updated
on	the	remote	repository.	If	the	hook	exits	with	a	non-zero	return	code,	none	of	the
references	are	updated.	Even	if	the	hook	returns	a	zero	return	code,	the	updates	of	the
references	can	still	be	denied	by	the	update	hook	(described	in	the	following	section).

The	hook	sends	stdout	and	stderr	back	to	send-pack	so	the	messages	can	be	displayed
to	the	user.

Update
The	update	hook	is	similar	to	the	pre-receive	hook.	It	is	invoked	in	a	similar	manner
through	the	receive-pack	operation	as	part	of	a	push.	(See	the	“Pre-receive”	section	for
more	information.)

The	difference	between	the	update	hook	and	the	pre-receive	hook	is	that	the	update
hook	is	invoked	once	for	each	reference	to	be	updated—as	opposed	to	once	for	the
push	operation,	which	is	the	case	with	the	pre-receive	hook.	As	a	result,	you	can	use
the	update	hook	to	allow	or	disallow	the	updating	of	each	reference	based	on	some
checking	or	criteria.

The	update	hook	takes	three	parameters:	the	name	of	the	reference	being	updated,	the
old	object’s	identifier	(SHA1),	and	the	new	object’s	identifier	(SHA1).

If	the	hook	returns	a	non-zero	return	code,	that	reference	will	not	be	updated.	Again,
because	this	hook	is	called	for	each	reference,	failing	one	reference	does	not	mean
that	all	of	them	will	be	updated.

Post-receive
The	post-receive	hook	is	similar	to	the	pre-receive	hook.	It	is	invoked	in	a	similar
manner	through	the	receive-pack	operation	as	part	of	a	push.	(See	the	“Pre-receive”
section	for	more	information.)	The	difference	is	that	post-receive	is	invoked	only	after
all	the	references	have	been	updated.	For	example,	you	can	use	it	to	send	notifications
after	the	updates	are	complete	or	to	do	additional	logging.

Post-receive	doesn’t	take	any	arguments.	However,	for	each	reference	that	is	intended
to	be	updated,	the	hook	gets	a	line	sent	to	it	on	stdin.	Each	line	is	of	the	form

<old	value>	<new	value>	<reference	name>	LF

You	can	generally	think	of	this	as	one	line	per	branch	being	pushed	with	the	old	and
new	SHA1	values	for	each	branch	in	a	line.	The	values	here	have	the	same	meaning	as
with	the	pre-receive	hook.

The	post-receive	hook	runs	once	after	all	the	references	have	been	updated.	It	has	no
effect	on	the	operation	or	updates	because	all	of	the	updates	have	already	been	done
at	that	point.	The	hook	sends	stdout	and	stderr	back	to	send-pack	so	that	the	messages
can	be	displayed	to	the	user.

The	following	example	script	is	written	in	Ruby.	If	there	is	a	configuration	value	set
(user.deploy-dir),	and	the	branch	that	was	updated	was	either	master	or	starts	with
prod	or	ship,	then	the	hook	attempts	to	do	a	deployment	(checkout	-f)	of	the	content
out	to	the	directory	specified	in	user.deploy-dir.

#!/usr/bin/env	ruby

#	Example	post-receive	hook	written	in	ruby

#	(c)	2016	Brent	Laster

puts	"Running	post-receive	hook…"

deployment_dir='git	config	user.deploy-dir'

#	rest	of	hook	presumes	deployment_dir	exists

#	if	the	configuration	value	isn't	set	for	Git,	don't	deploy

if	(deployment_dir	==	"")

							puts	"user.deploy_dir	value	not	configured"

							puts	"Will	not	deploy"

else

							#	multiple	lines	might	be	passed	in	-	one	for	each	branch	being	pushed

							STDIN.each	do	|input_line|

													(prev_rev,	new_rev,	refspec)	=	input_line.split

													refspec.gsub!('refs/heads/','')

													#	only	deploy	if	we're	on	master	or	branch	that	starts	with	prod	

or	ship

													if	refspec	=~	/^master|^(prod|ship).*$/

																				#	do	the	deploy

																				#	git-dir	is	already	set	for	the	hook

																				deployment_dir.chomp()

																				puts	"Deploying	to	#{deployment_dir}"

							result	=	'git	--work-tree=#{deployment_dir.chomp()}	checkout	-f	#

{refspec}'

																				puts	"#{result}"

													end

				end

end

exit

Post-update
The	post-update	hook	is	similar	to	the	post-receive	hook.	It	is	invoked	in	a	similar
manner	through	the	receive-pack	operation	as	part	of	a	push.	(See	the	“Pre-receive”
section	for	more	information.)

Post-update	takes	a	variable	number	of	parameters.	Each	parameter	is	the	name	of	a
reference	that	was	updated.

The	post-update	hook	knows	what	was	updated,	but	unlike	the	post-receive	hook,	it
doesn’t	know	the	old	and	new	values.	However,	you	can	use	it	for	something	like
updating	dumb	(HTTP)	servers	when	changes	are	made	(such	as	through	git	update-
server-info).	The	sample	hook	that	comes	with	Git	has	an	example	of	this.	The	hook
sends	stdout	and	stderr	back	to	send-pack	so	the	messages	can	be	displayed	to	the
user.

OTHER	HOOKS
Git	supports	a	few	other	hooks	that	are	only	useful	in	special	cases.	I	won’t	go	into
detail	about	these	hooks,	but	I	will	briefly	mention	them	for	completeness.	You	can
find	more	information	on	these	hooks	in	the	git	hooks	documentation	(git	hooks	--
help).

Push-to-checkout
In	Git,	it	is	possible	to	push	to	a	non-bare	repository.	A	non-bare	repository	is	one
that	has	a	working	directory	and	staging	area	and	a	checked-out	copy	of	a	branch.
Repositories	that	you	push	to	are	usually	bare.	They	don’t	have	a	working	directory	or
staging	area	because	they	aren’t	meant	to	have	content	checked	out	directly	from
them.

If	you	try	to	push	to	a	non-bare	repository,	as	opposed	to	the	usual	commit	operation,
the	working	directory	and	staging	area	attached	to	that	repository	won’t	reflect	the
current	status,	as	they	would	if	you	checked	things	out	from	a	local	repository.	So,
there	is	a	receive.denyCurrentBranch	setting	that	can	prevent	this.	The	push-to-
checkout	hook	can	override	that	setting.

The	push-to-checkout	hook	gets	one	parameter—the	commit	targeted	for	the	update—
and	can	return	a	non-zero	code	to	block	the	push.	Or,	it	can	sync	the	working	directory
and	the	staging	area	up	to	make	things	consistent	and	return	zero.

Pre-auto-gc
In	the	pre-auto-gc	hook,	gc	refers	to	garbage	collection—having	Git	clean	up	objects
that	aren’t	being	used	anymore	(don’t	have	any	connections)	in	the	repository.	The
auto	part	refers	to	an	option	that	can	be	passed	to	that	command	to	clean	up	if	there
are	too	many	loose	objects	over	a	configured	threshold.	As	a	result,	this	hook	runs
first	if	git	gc	--auto	is	run.	You	can	use	it	to	do	some	sort	of	notification	or	verification.

The	pre-auto-gc	hook	takes	no	parameters.	If	it	returns	a	non-zero	return	code,	the	gc
operation	aborts.

Post-rewrite
The	post-rewrite	hook,	if	enabled,	runs	after	either	of	two	commands	that	rewrite
history	(git	commit	--amend	or	git	rebase).	Currently,	its	only	parameter	is	the
command	that	called	it.	On	stdin,	it	receives	information	about	what	commits	were
rewritten	in	the	form

<old	sha1>	<new	sha1>	[<optional	extra	data>]

In	the	future,	additional	data	may	be	passed,	but	no	extra	data	is	currently	passed.

HOOKS	QUICK	REFERENCE
Table	15.1	summarizes	some	of	the	basic	information	about	the	hooks	that	are
available	in	Git.	The	first	column	contains	a	list	of	Git	operations	that	have	hooks
available	for	them.	(Note	that	some	of	these	operations	use	only	one	option.)	The
remaining	five	columns	identify	the	hooks	by	name	and	parameter	descriptions	for
the	operation,	in	the	order	of	execution.

Table	15.1	List	of	Git	Hooks	by	Operation

Git
Operation

Pre-operation
Hook	1

Pre-
operation
Hook	2

During-
Operation
Hook

Post-
Operation
Hook	1

Post-
Operation
Hook	2

am applypatch-msg
P1:	Name	of
temporary	file
with	proposed
commit
message

pre-
applypatch

post-
applypatch

commit pre-commit prepare-
commit-msg
P1:	Name	of
temporary	file
with	proposed
commit
message	P2:
Type	of
operation	P3:
SHA1	value
for	certain
operations

commit-msg
P1:	Name	of
temporary
file	with
proposed
commit
message

post-commit

rebase pre-rebase	P1:
Upstream	P2:
Branch	being
rebased	(if	not
the	same	as	P1)

checkout post-
checkout	P1:
Previous
HEAD
(before
checkout)	P2:
Current
HEAD	(after

checkout)	P3:
Checkout
type	flag:	1	=
branch,	2	=
file

merge,	pull post-merge
P1:	Flag	that
indicates
squash	or
merge

push pre-push	(local)
P1:	Remote
reference	name
P2:	Remote
URL	Extra:
STDIN	lines	of
the	form	<local
reference>
<local	sha1>
<remote
reference>
<remote	sha1>
LF

pre-receive
(remote)	No
parameters
Extra:	STDIN
lines	of	the
form	<old
value>	<new
value>
<reference
name>	LF

update
(remote)	P1:
Name	of
reference
being
updated	P2:
Old	SHA1
value	P3:
New	SHA1
value

post-receive
(remote)	No
parameters
Extra:	STDIN
lines	of	the
form	<old
value>	<new
value>
<reference
name>	LF

post-
update
(remote)
P*
(variable
number):
Name	of
references
being
updated

push	(to
non-bare
repository)

push-to-
checkout	P1:
Target
commit	for
updating

gc	--auto pre-auto-gc

rebase,
commit	--
amend

post-rewrite
P1:
Command
that	invoked
it.	Extra:
STDIN	lines
of	the	form
<old	sha1>
<new	sha1>
[<optional
extra	data>]

The	shading	of	the	background	for	each	cell	in	the	table	indicates	whether	or	not	the
hook	can	abort	the	operation.	The	key	is	as	follows:

Black	background—This	hook	can	abort	the	Git	operation	and	indicate	it	failed.

White	background—This	hook	does	not	affect	whether	the	operation	succeeds	or	fails.

Gray	background	—This	hook	can	abort	the	operation,	but	the	hook	itself	may	be
overridden.	(For	the	two	cases	here,	the	--no-verify	option	can	skip	running	the	hook.)
Also,	in	the	table,	the	P#	values	indicate	a	parameter	passed	to	the	hook.	The	value	of
#	indicates	the	order	it	is	passed	in	a	sequence.

SUMMARY
In	this	final	chapter	of	the	book,	you’ve	seen	how	to	extend	Git	functionality	through
the	various	hooks	that	it	provides.	Each	hook	is	a	point	where	you	can	cause	a	script
or	program	that	you	create	to	be	executed	before	or	after	(or	sometimes	during)
certain	events	related	to	a	Git	operation.

As	you	have	seen,	some	of	the	hooks	allow	the	user	to	abort	the	operation	by
returning	a	non-zero	return	code,	while	others	are	more	suited	for	simple
notifications.

Hooks	can	be	written	in	any	language	that	can	be	executed	on	the	system.	It	is
important	to	ensure	that	you	understand	the	conditions	under	which	the	hook	will	be
called,	the	arguments	that	it	will	be	passed,	and	any	environment	settings	that	it	needs
to	use.

Hooks	can	greatly	enhance	the	usefulness	users	get	out	of	Git	and	customize	it	to
meet	the	needs	of	teams	as	well	as	enforce	policies.	For	local	hooks,	however,	it’s
important	to	establish	a	consistent	way	to	ensure	that	all	users	have	the	same	set	of
hooks	in	place	on	all	repositories.

Professional	Git®

Published	by

John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256

www.wiley.com

Copyright	®	2017	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-119-28497-0

ISBN:	978-1-119-28498-7	(ebk)

ISBN:	978-1-119-28500-7	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections
107	or	108	of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or
authorization	through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood
Drive,	Danvers,	MA	01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be
addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)
748-6011,	fax	(201)	748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or
warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all
warranties,	including	without	limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be	created
or	extended	by	sales	or	promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for
every	situation.	This	work	is	sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,
accounting,	or	other	professional	services.	If	professional	assistance	is	required,	the	services	of	a	competent
professional	person	should	be	sought.	Neither	the	publisher	nor	the	author	shall	be	liable	for	damages	arising
herefrom.	The	fact	that	an	organization	or	Web	site	is	referred	to	in	this	work	as	a	citation	and/or	a	potential	source
of	further	information	does	not	mean	that	the	author	or	the	publisher	endorses	the	information	the	organization	or
Web	site	may	provide	or	recommendations	it	may	make.	Further,	readers	should	be	aware	that	Internet	Web	sites
listed	in	this	work	may	have	changed	or	disappeared	between	when	this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within
the	United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to
media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this	material	at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2016956722

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade	dress
are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and
other	countries,	and	may	not	be	used	without	written	permission.	Git	is	a	registered	trademark	of	Software	Freedom
Conservancy,	Inc.	All	other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.,	is	not
associated	with	any	product	or	vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To	my	soul	mate	and	wife,	Anne-Marie,
who	has	taught	me	what	it	means	to	have	your	dreams	come	true.
And	to	my	boys	Walker,	Chase,	and	Tanner,
who	inspire	me	every	day	to	do	the	best	I	can.

About	the	Author
BRENT	LASTER	is	a	senior	manager,	software	development,	in	the	Research	and
Development	Division	at	SAS	in	Cary,	North	Carolina.	He	manages	several	groups
involved	with	release	engineering	processes	and	internal	tooling.	He	also	serves	as	a
resource	for	the	use	of	open-source	technologies	and	conducts	internal	training
classes	in	technologies	such	as	Git,	Gerrit,	Gradle,	and	Jenkins,	both	in	the	U.S.	and
abroad.

In	addition	to	corporate	training,	Brent	creates	and	presents	workshops	for	a	wide
variety	of	technical	conferences.	He	has	presented	workshops	and	informational
sessions	on	open-source	technologies	(and	how	to	apply	them)	at	such	conferences	as
the	Rich	Web	Experience/Continuous	Delivery	Experience,	ÜberConf,	OSCON,	and
others.	He	is	also	a	contributor	to	publications	such	as	No	Fluff	Just	Stuff	magazine.
Brent	also	conducts	live	web	training	from	time	to	time.

Brent’s	passion	is	teaching,	and	he	does	so	in	a	way	that	makes	difficult	concepts
relatable	to	all.	He	has	been	involved	in	technical	training	for	over	25	years	and
continues	to	seek	out	ways	to	show	others	how	technology	can	be	used	to	simplify	and
automate	their	work.

You	can	learn	more	about	Brent	and	his	work	on	his	LinkedIn	page	at
http://linkedin.com/in/BrentLaster	or	on	Twitter	at	@BrentCLaster.

http://linkedin.com/in/BrentLaster
mailto:@BrentCLaster

About	the	Technical	Editor
CHAIM	KRAUSE	is	a	Simulation	Specialist	for	the	U.S.	Army	in	Leavenworth,
Kansas.	Although	he	holds	a	BA	in	Political	Science	from	the	University	of	Chicago,
Chaim	is	an	autodidact	when	it	comes	to	computers,	programming,	and	electronics.
He	wrote	his	first	computer	game	in	BASIC	on	a	TRS-80	Model	I	Level	I	and	stored
the	program	on	a	cassette	tape.	Amateur	radio	introduced	him	to	electronics,	while	the
Arduino	and	the	Raspberry	Pi	provided	a	medium	to	combine	computing,
programming,	and	electronics	into	one	hobby.

In	his	spare	time,	he	likes	to	play	PC	games	and	occasionally	develops	his	own.	He	has
recently	taken	up	the	sport	of	golf	to	spend	more	time	with	his	significant	other,
Ivana.

About	the	Technical	Proofreader
PHILIPPE	CHARRIÈRE	is	a	solution	engineer	for	GitHub.	He	is	also	a	speaker	at
many	technical	events	about	programming,	including	JDD	(Poland),	Devoxx	France,
SoftShake	(Geneva),	and	Voxxed	Days	Luxembourg.	He	started	programming	with	a
TI-99/4A	(Texas	Instruments)	a	long	time	ago.	In	his	spare	time,	he	develops	IOT
solutions.

Credits
PROJECT	EDITOR

Adaobi	Obi	Tulton

TECHNICAL	EDITOR

Chaim	Krause

TECHNICAL	PROOFREADER

Philippe	Charrière

PRODUCTION	EDITOR

Barath	Kumar	Rajasekaran

COPY	EDITOR

Marylouise	Wiack

MANAGER	OF	CONTENT	DEVELOPMENT	&	ASSEMBLY

Mary	Beth	Wakefield

PRODUCTION	MANAGER

Kathleen	Wisor

MARKETING	MANAGER

Carrie	Sherrill

PROFESSIONAL	TECHNOLOGY	&	STRATEGY	DIRECTOR

Barry	Pruett

BUSINESS	MANAGER

Amy	Knies

EXECUTIVE	EDITOR

Jim	Minatel

PROJECT	COORDINATOR,	COVER

Brent	Savage

PROOFREADER

Nancy	Bell

INDEXER

Johnna	VanHoose

COVER	DESIGNER

Wiley

COVER	IMAGE

Doug	Lemke/Shutterstock

Acknowledgments
Over	the	course	of	this	project,	I	have	been	amazed	to	discover	how	many	dedicated
people	it	takes	to	produce	a	book	of	this	sort.	The	team	at	John	Wiley	&	Sons	has	been
outstanding	and	deserves	more	thanks	than	I	can	offer	here.

First,	thanks	to	Jim	Minatel	for	taking	on	this	project	and	seeing	the	potential	for	a
new	book	on	Git.	I’ve	appreciated	his	vision	for	the	project	as	well	as	his	practical
guidance.	Thanks	also	to	Adaobi	Obi	Tulton,	an	amazing	project	editor	who	provided
excellent	direction	and	advice	while	juggling	what	seemed	to	be	a	million	details,	and
never	dropped	the	ball.	This	book	is	only	possible	because	of	her	dedicated
management	and	assistance.	Thanks	to	Marylouise	Wiack	the	copy	editor,	for	making
my	writing	readable	and	clear;	Barath	Kumar	Rajasekaran,	the	production	editor;	and
Nancy	Bell,	the	proofreader,	for	bringing	everything	together	to	create	a	final,	polished
product.

Sincere	thanks	to	Chaim	Krause,	the	technical	editor,	for	all	of	the	effort	and	time	he
put	in	to	making	sure	my	explanations,	examples,	and	labs	were	correct	and	made
sense.	I	appreciated	his	careful	attention	to	detail,	and	his	suggestions	based	on	his
own	experience	toward	making	this	book	even	more	useful	to	readers.	Thanks	also	to
Philippe	Charrière	for	volunteering	on	short	notice	to	be	a	second	technical	reviewer.
I’ve	appreciated	the	commitment,	comments,	and	suggestions	that	he	has	provided	as
an	experienced	professional.

Thanks	to	the	management	at	SAS	for	supporting	my	initiatives	to	create	and	present
corporate	training	courses	over	the	years	to	employees	across	the	company.	I
especially	thank	Glenn	Musial,	Cyndi	Schnupper,	and	Andy	Diggelmann	for	their
encouragement	and	positive	feedback;	Barbara	Miller	for	the	years	she	spent
managing	all	the	logistics	of	scheduling	and	preparing	materials	for	the	training
sessions	as	they	expanded	into	so	many	areas	and	internationally;	and	my	colleague,
Lee	Greene,	for	helping	to	teach	the	classes	and	review	the	materials.

On	the	conference	side,	a	big	thanks	to	Jay	Zimmerman,	the	founder	and	organizer	of
the	No	Fluff	Just	Stuff	conference	series,	for	giving	me	the	opportunity	to	speak	at
their	events	all	across	the	country.	It’s	great	to	be	able	to	participate	in	quality
technical	events	like	these,	which	provide	meaningful	information	and	training	for	all.

Thanks	also	to	everyone	who’s	attended	one	of	my	training	sessions	or	workshops	and
asked	a	question	or	provided	feedback.	This	input	can	be	invaluable	in	making	the
content	better	and	more	applicable.

An	obscure	thank	you	here	to	my	fourth-grade	assistant	teacher,	Ms.	King,	who	told
me	all	those	years	ago	that	I	should	be	a	writer.	I’m	not	sure	this	is	the	kind	of	book
she	or	I	had	in	mind,	but	I’m	counting	it.

Finally,	the	biggest	thanks	of	all	must	go	to	my	wife,	Anne-Marie,	and	to	my	children.
This	book	was	written	over	a	long	period	of	time,	mostly	nights	and	weekends,	which
took	time	away	from	them.	Nonetheless,	they	never	failed	in	their	words	of

encouragement.	Anne-Marie,	you	have	been	my	inspiration,	my	friend,	and	my
greatest	supporter	during	this	project,	even	though	I	know	how	foreign	much	of	it
seemed	to	you.	Thank	you	for	making	each	day	a	joy	and	our	life	together	amazing,
and	for	sharing	my	dreams	and,	most	of	all,	my	life.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Title Page
	Introduction
	How this Book is Unique
	Target Audience
	Structure and Content
	Reader Value
	Next Steps

	PART I: UNDERSTANDING GIT CONCEPTS
	Chapter 1: What Is Git?
	History of Git
	Industry-Standard Tooling
	The Git Ecosystem
	Git's Advantages and Challenges
	Summary

	Chapter 2: Key Concepts
	Design Concepts: User-Facing
	Design Concepts: Internal
	Repository Design Considerations
	Summary

	Chapter 3: The Git Promotion Model
	The Levels of Git
	Summary

	Connected Lab 1: Installing Git
	Installing Git for Windows
	Steps
	Installing Git on Mac OS X
	Installing Git on Linux

	PART II: USING GIT
	Chapter 4: Configuration and Setup
	Executing Commands in Git
	Configuring Git
	Initializing a Repository
	Advanced Topics
	Summary

	Chapter 5: Getting Productive
	Getting Help
	The Multiple Repositories Model
	Adding Content to Track—Add
	Finalizing Changes—Commit
	Putting It All Together
	Advanced Topics
	Summary

	Connected Lab 2: Creating and Exploring a Git Repository and Managing Content
	Prerequisites
	Optional Advanced Deep-Dive into the Repository Structure
	Steps

	Chapter 6: Tracking Changes
	Git Status
	Git Diff
	Summary

	Connected Lab 3: Tracking Content through the File Status Life Cycle
	Prerequisites
	Steps

	Chapter 7: Working with Changes over Time and Using Tags
	The Log Command
	Git Blame
	Seeing History Visually
	Tags
	Undoing Changes in History
	Advanced Topics
	Summary

	Connected Lab 4: Using Git History, Aliases, and Tags
	Prerequisites
	Steps

	Chapter 8: Working with Local Branches
	What Is a Branch?
	Advanced Topics
	Summary

	Connected Lab 5: Working with Branches
	Prerequisites
	Steps

	Chapter 9: Merging Content
	The Basics of Merging
	Dealing with Conflicts
	Visual Merging
	Advanced Topics
	Summary

	Connected Lab 6: Practicing with Merging
	Prerequisites
	Steps

	Chapter 10: Supporting Files in Git
	The Git Attributes File
	The Git Ignore File
	Summary

	Chapter 11: Doing More with Git
	Modifying the Layout of Files and Directories in Your Local Environment
	Commands for Searching
	Working with Patches and Archives for Changes
	Commands for Cleaning Up
	Advanced Topics
	Summary

	Connected Lab 7: Deleting, Renaming, and Stashing
	Prerequisites
	Steps

	Chapter 12: Understanding Remotes—Branches and Operations
	Remotes
	Summary

	Connected Lab 8: Setting Up a GitHub Account and Cloning a Repository
	Prerequisites
	Steps

	Chapter 13: Understanding Remotes—Workflows for Changes
	The Basic Conflict and Merge Resolution Workflow in Git
	Hosted Repositories
	Summary

	Connected Lab 9: Using the Overall Workflow with a Remote Repository
	Prerequisites
	Steps

	Chapter 14: Working with Trees and Modules in Git
	Worktrees
	Submodules
	Subtrees
	Summary
	About Connected Labs 10–12

	Connected Lab 10: Working with Worktrees
	Prerequisites
	Steps

	Connected Lab 11: Working with Submodules
	Prerequisites
	Steps

	Connected Lab 12: Working with Subtrees
	Prerequisites
	Steps

	Chapter 15: Extending Git Functionality with Git Hooks
	Installing Hooks
	Updating Hooks
	Common Hook Attributes
	Hook Descriptions
	Other Hooks
	Hooks Quick Reference
	Summary

	End User License Agreement

