
Programming
Web Applications
with Node,
Express and Pug

—
Jörg Krause

www.allitebooks.com

http://www.allitebooks.org

Programming Web
Applications with Node,

Express and Pug

Jörg Krause

www.allitebooks.com

http://www.allitebooks.org

Programming Web Applications with Node, Express and Pug

Jörg Krause 				
Berlin, Germany					

ISBN-13 (pbk): 978-1-4842-2510-3		 ISBN-13 (electronic): 978-1-4842-2511-0
DOI 10.1007/978-1-4842-2511-0

Library of Congress Control Number: 2016961762

Copyright © 2017 by Jörg Krause

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Larissa Shmailo
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author�� xiii

Introduction��xv

Foreword��xvii

■■Chapter 1: Installation Problems�� 1

■■Chapter 2: The Components of an Application��� 9

■■Chapter 3: Introduction to Node��� 15

■■Chapter 4: The Most Important Node Modules��� 47

■■Chapter 5: Introduction to Express��� 71

■■Chapter 6: Introduction to Pug��� 81

■■Chapter 7: Language Components of Pug�� 89

■■Chapter 8: The Pug Command Line�� 115

Appendix�� 117

Index�� 195

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author�� xiii

Introduction��xv

Foreword��xvii

■■Chapter 1: Installation Problems�� 1

Node.Js��� 1

Problems with NPM��� 1

Proxy�� 1

SSL�� 2

Problems with Git�� 2

Proxy�� 4

Git protocols�� 5

Online installation�� 5

Preparation�� 5

Hard cases��� 5

Installing NpmBox�� 7

Installing Packages�� 7

■■Chapter 2: The Components of an Application��� 9

The Package Manager��� 9

Libraries and Frameworks�� 10

Basis Libraries of the Server��� 10

Client Page Libraries�� 10

Unit Tests��� 11

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Principles�� 11

Web Apps��� 11

Web sites��� 11

Stateless HTML�� 11

The User Experience�� 12

Summary��� 13

■■Chapter 3: Introduction to Node��� 15

Elementary in JavaScript�� 15

Installation and Configuration��� 16

Configuration in package.json��� 16

Initialize the Node Application��� 16

Approach under Linux�� 17

Start a Node Application�� 17

The first Application�� 19

Packages��� 20

Install Packages�� 20

Provide a Server Application��� 21

The simplest Server��� 22

A Server with Express��� 23

Handling Requests�� 23

Introduction to Routing�� 24

Architecture of the Application�� 27

Synchronous and Asynchronous Calls�� 30

Dynamic HTML��� 32

Sending HTML Files��� 33

Restriction of Verbs��� 34

Handling Form Data��� 35

Handling Querystring��� 39

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

The complete Application�� 40

The Application server.js�� 41

The Starting Script start.js��� 41

The Routing Functions router.js��� 43

The Business Logic handler.js��� 43

Template of the HTML Page home.html��� 45

Summary��� 46

■■Chapter 4: The Most Important Node Modules��� 47

Global Modules�� 47

Timer��� 47

Global Objects�� 48

HTTP and HTTPS�� 50

Basics�� 50

Fields��� 51

Methods��� 51

Classes�� 53

Class http.ClientRequest�� 57

HTTPS�� 62

Handling Files and Paths��� 64

Access to the File System��� 64

Functions for the File Access��� 66

Functions for handling Streams�� 69

■■Chapter 5: Introduction to Express��� 71

Installation��� 71

Application structure��� 72

The express generator��� 73

LESS or SASS�� 73

Routing in Node application�� 75

Routing in Express��� 75

The Express Router�� 75

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

An example application��� 75

Middleware – the mediator layer�� 76

Basic routes��� 76

The Router Middleware (router.use())�� 77

Structure Routes�� 78

Routes with Parameters (/hello/:id)��� 78

Router Middleware for Parameters (.param)��� 79

Several Routes (app.route())�� 80

■■Chapter 6: Introduction to Pug��� 81

Overview��� 81

Preparation�� 81

Application structure��� 83

Pug views�� 84

Handling Partial Views��� 85

Handling Layout Pages�� 85

npm start��� 86

■■Chapter 7: Language Components of Pug�� 89

Doctype��� 89

Short Spellings�� 89

Own Doctypes�� 90

Options�� 90

Attributes��� 91

Not coded Attribute�� 92

Logical Attributes��� 92

Style Attributes�� 93

& Attributes�� 93

Handling CSS Classes��� 94

The Class Attribute�� 94

The Class Literal�� 95

ID Literal�� 95

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Instructions��� 95

Definition by Cases (case)��� 96

Conditions (if)�� 97

Iterations��� 97

JavaScript Code�� 99

Unbuffered Codes�� 99

Buffered Codes�� 99

Buffered and not coded Codes�� 99

Unbuffered Codes�� 100

Buffered Code�� 100

Buffered and not coded Codes�� 101

Comments��� 101

Comment Blocks�� 102

Caused Comments��� 102

Inherit from Templates�� 102

Detail for inherting Templates��� 103

Prepend and append Content Blocks�� 105

Filter�� 105

Partial Pages��� 106

Merge Text��� 107

Combination of Filters and Partial Pages�� 108

Interpolations�� 108

Coded Character String Interpolation�� 109

Not Coded String Interpolation�� 109

Tag Interpolation�� 110

Mixins (Functions)��� 110

Mixin Blocks�� 111

Mixin Attributes��� 112

Further Arguments��� 112

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Handling Text��� 113

Connect Text�� 113

Inline in Tag��� 113

Block in Tag��� 113

Handling Tags�� 114

Extension of Blocks��� 114

Self-Closing Tags��� 114

■■Chapter 8: The Pug Command Line�� 115

Installing the Command Line��� 115

Use and Options�� 115

Sample Applications for the Command Line�� 116

Appendix�� 117

Configuration of the file package.json��� 117

Meaning of the Configuration Elements�� 117

description��� 118

The Default Values��� 125

Brief description�� 126

Reference Node.js Modules��� 126

HTTP�� 126

Global��� 130

Console�� 130

Timer��� 131

Module��� 132

Process�� 132

ChildProcess�� 135

Util��� 135

Events�� 136

Stream��� 137

File System�� 138

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Path��� 141

URL�� 142

Querystring�� 142

Assert�� 142

OS�� 143

Buffer��� 144

The API Reference for Express�� 145

Das Basic Objekt��� 145

The application�� 147

Request–The Request Object�� 164

Methods��� 168

Response–The Answer Object��� 170

The API of the Router��� 181

The Router in Detail��� 181

Methods��� 182

Further libraries��� 186

Namespace Based Routing�� 186

Resource-Based Routing��� 188

The Pug API��� 190

API Options�� 190

API Functions��� 191

Index�� 195

xiii

About the Author

Jörg Krause has been working with software and software technology
since the early 1980’s, beginning with a ZX 81 and taking his first steps as
a programmer in BASIC and assembly language. He studied Information
Technology at Humboldt University, Berlin but left early, in the 90’s, to
start his own company. He has worked with Internet Technology and
software development since the early days when CompuServe and
FidoNet dominated. He’s been with Microsoft technologies and software
since Windows 95.

In 1998, he worked on one of the first commercial e-commerce
solutions, and wrote his first book in Germany, E-Commerce and Online
Marketing, published by Carl Hanser Verlag, Munich. Due to its wide
success, he started working as a freelance consultant and author in order
to share his experience and knowledge with others. He has written several
books for Apress, Hanser, Addison Wesley and other major publishers
along with several self-published books—a total of over sixty titles. He also

publishes articles in magazines and speaks at major conferences in Germany. Currently, Jörg works as an
independent consultant, software developer, and author in Berlin, Germany.

In his occasional spare time, Jörg enjoys reading thrillers and science fiction novels, and going on a
round of golf.

xv

Introduction

Node.js is a programming environment based on JavaScript. It’s mainly used for web application
development, but not restricted to same. In conjunction with the Node Package Manager (npm), it provides
a powerful environment to create platform-independent applications.

This book shows the basic parts you need to create a web application. Apart from Node itself, this
includes the middleware framework Express and the template language Pug (formerly known as JADE).

The content presents Node in its elementary form, shows the programming of a simple web application,
and explains the major modules. In the same style, Express and Pug are explained. The client does not have
any particular role in this book. The pages served by the examples are plain HTML.

Foreword

Node.js is one of the most fascinating software environments of recent years. Today it’s in version v6.x, a
quite mature version. There are two lines: one with Long Term Support (LTS) currently in version 4.x, and
the one with the most recent features in version 6.x. The version 6.x has updates quite often, sometimes
weekly.

It’s necessary to have a well-known language to create web applications instead of inventing just
another language all the time. Think of the history of Perl, PHP, Java, Ruby, C in all it derivates, and many
more. The final answer might be JavaScript.

The foundation of JavaScript on the server is the V8 engine from Chrome browser that has been
extracted and made available as an executable. And it is available on all platforms, finally.

For developers with a strong background in traditional object-oriented languages such as C# or Java,
it might sound odd that JavaScript has such a tremendous impact and success. It’s a weird mixture of a very
simple language and a very rich and quickly expanding ecosystem.

This Book
All codes from the book are available on Github for easy testing and download.

The book is very focused on the first steps and easy examples. There is almost no advanced code and
the reference parts contain only those functions required to execute a web application. The purpose is to
have all this information handy in one place instead of flipping through hundreds of online sources.

The combination of Node, Express, and Pug is well-tested and the versions used here work together
smoothly. There s no support for other software modules and other version combinations.

Who Should Read This Book?
This book is aimed at beginners and web developers who are new to the web world. Node serves mainly
the back-end developer. Maybe you are also a web designer, who discovered Node as an excellent way to
upgrade your web pages with dynamic elements.

In any case, I tried not to ask any prerequisites or conditions of the reader. You do not need to be a
computer scientist, nor in perfect command of language. You don’t need to know rocket science. No matter
what context you have encountered on Jade, you will be able to read this text.

 What You Need  In order to understand all examples, you need a working environment for creating
web pages. That can be a Windows, a Linux, or even a Mac. It’s possible to use any text editor to get the stuff
running, but I recommend you use one with a little support while typing the stuff. Check editors such as Visual
Studio Code or Sublime Text.

xvii

■ Foreword

xviii

If you have accidentally found this text and cannot do anything with the term “Bootstrap,” read it
anyway. You will be learning one of the most modern techniques of web development, and the future
belongs to the circle of excellent developers who can be build good-looking and device-independent sites.

Examples
You can find the sample project to this book on Github:

•	 https://github.com/joergkrause/NodejsExpressPug-Book

As You Read This Text
I will not dictate how you should read this text. In the first draft of the structure, I have tried several variations
and found that there exists no ideal form. However, readers tend today to consume smaller chunks,
independent chapters, and focused content. This book addresses this trend by reducing content to small,
focused chunks, with no extraneous material.

Beginners should read the text as a narrative from the first to the last page. Those who are already
somewhat familiar can safely skip certain sections.

Conventions Used in the Book
The theme is not technically easy to master, because scripts are often too extensive and it would be nice if you
could support the best optical reading form. I have therefore included extra line breaks used to aid readability.

In general, each program code is set to a non-proportional font. In addition, scripts have line numbers:

1 function send(){
2 // do some stuff here
3 }

If you find you need to enter something in the prompt or in a dialog box, this part of the statement is
in bold:

$ bower install bootstrap

The first character is the prompt and is not entered. I use the Linux prompt and the bash shell in the
book. The commands will work, without any exception, unchanged even on Windows. The only difference
then is the command prompt C:> or something similar at the beginning of the line. Usually the instructions
are related to relative paths or no paths at all, so the actual prompt shouldn’t matter despite the fact that you
will be in your working folder.

Expressions and command lines are sometimes peppered with all types of characters, and in almost
all cases, it depends on each character. Often, I’ll discuss the use of certain characters in precisely such an
expression, then the “important” characters with line breaks alone, and also—in this case—line numbers.
Line numbers are used to reference the affected symbol in the text exactly (note the : character in line 2):

1 a.test {
2 :hover {
3 color: red
4 }
5 }

https://github.com/joergkrause/NodejsExpressPug-Book

■ Foreword

xix

The font is non-proportional, so that the characters are countable and opening and closing parentheses
are always among themselves.

Symbols
To facilitate the orientation in the search for a solution, there is a whole range of symbols that are used in
the text.

 Tip T his is a tip.

 Information T his is an information.

 Warning T his is a warning.

There are no questionnaires, exercises, or self-tests. It’s just a reference, an easy-to-read text to get you
on your way.

1© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_1

CHAPTER 1

Installation Problems

All instructions, which you find on the Internet about Node, NPM and other modules presuppose one thing:
transparent Internet access—which at first sight is worth hardly a mention. Indeed, it represents a problem
for many users. Not for the lack of Internet, but for the restrictions in enterprise networks.

Node.Js
Node itself stands as an installation package of choice and can also be installed without the Internet. Since
NPM is included, it works just fine online, too. All further components of the application, like Express and
Pug, can be installed with npm.

Problems with NPM
It’s possible that npm can’t access the Internet the way you expect it. This can be because of missing SSL
support or local proxy servers.

Proxy
You can instruct npm to use a proxy server:

1 npm config set proxy http://proxy.company.com:8080 -g
2 npm config set https-proxy http://proxy.company.com:8080 -g

The option -g stops the changes globally. Otherwise, it is only valid for the current project and it must
be located in the same folder, where a file called .npmrc exists. If this is missing, you’ll place it there, which is
perhaps senseless if you don’t plan on using further npm commands.

If a username and a password are necessary, it might looks as follows:

1 npm config set proxy http://domain%5Cuser:pass@host:port

Special characters must become URL encoded here:

•	 ” -> %22

•	 @ -> %40

•	 : -> %3A

•	 \ -> %5C

Chapter 1 ■ Installation Problems

2

SSL
Access to the Repository is standard. Go around this as follows:

1 npm config set strict-ssl false
2 npm config set registry "http://registry.npmjs.org/"

Perhaps this combination with the installation procedure can help:

1 npm --proxy http://<user>:<pwd>@<proxy>:<port>
2 --without-ssl
3 --insecure
4 -g install <paketname>

Problems with Git
Git is needed if you fetch packages via Bower or over direct connections from Github. There are two hurdles
in enterprise networks:

•	 A local Proxy is used.

•	 The protocol git:// is blocked. (That is a moniker for a special port.)

Many administrators are of the opinion that HTTP and port 80 are enough. However, we developers
want more. Thus, Git must be configured accordingly.

You receive the local Git installation under Linux as follows:

$ sudo apt-get install git

Under Windows you should use an installer, which can also bring along a Shell, which contains a part
of the not-local function. One does not have to switch a lot mentally, and can invariably use most Linux
commands this way.

Here you find the suitable package: https://git-scm.com/download/win Configure the options as
shown on the following screens:

https://git-scm.com/download/win

Chapter 1 ■ Installation Problems

3

Figure 1-1.  Installation options

Figure 1-2.  Starting options

Chapter 1 ■ Installation Problems

4

Leave all other options unchanged.
The installation for Windows comprehensively has no graphic surface. This must be procured

separately. In the long run, however, the command line is the better and faster way.

Proxy
In order to use a proxy, you enter the following command (in a line):

1 git config
2 --global
3 http.proxy
4 http://<proxyuser>:<proxypwd>@<proxy.server.com>:<port>

Replace the place holders with suitable values. <proxyuser> and <proxywd> are only necessary if the
Proxy requires an authentication. The other placeholders mark the proxy.

Figure 1-3.  Behavior of the line break characters

Chapter 1 ■ Installation Problems

5

Git protocols
With the following command (again in a line) you can switch to https:

1 git config
2 --global
3 url."https://<username>@".insteadOf git://

The placeholder <username> marks a private Repository in Git. The quotation marks protect the name
in the case of blanks:

You can omit the value for the glocal access completely and instead use Github:

1 git config
2 --global
3 url.https://github.com/.insteadOf git://

Online installation
Even if the information of a proxy is not sufficient, the online access remains. The classic way thereby exists
in downloading an installation package and the local installation. For Windows users, those are the MSI
packages; for Linux users, it’s usually DEB packages (Debian, Ubuntu, Mint, etc.) or RPM packages (Suse,
Fedora, RedHat, etc.).

However, NPM packages are not part of package collections, but instructions over source and
dependence. With the installation, the specified fragments from the Internet are downloaded.

Preparation
The dependence of an Internet connection can’t fundamentally be absolutely avoided. But it is sufficient to
have “other” machines with Internet access. They can use a detour. That can be done for individual packages
anyway, but many packages have dozens of hundreds of dependences, sometimes over several stages. Here
it is meaningful to have something automatic.

The solution is the package npmbox. It consists of two command line tools: npmbox for downloading
and packing, and npmunbox for unpacking. If you can receive brief access to the Internet on the search
machine, install npmbox there. It simplifies handling substantially. Even if that cannot be done, you find
more instructions for hard cases below.

First you install npmbox on the source machine with Internet access:

npm install npmbox -g

In order to check if it worked, you enter the following command:

npmbox --help

You receive a quick guide of a very simple tool.

Hard cases
So that you can access npmbox on the desired machine, you must package it yourself. That is a kind of
recursive approach—npmbox packs itself:

npmbox npmbox

Chapter 1 ■ Installation Problems

6

The result is a file with the file extension .npmbox.
Copy the file on the desired machine. The package is a so-called tarball. npm can directly go around

Tar und usually needs no other software. If you packed something before with npmbox, you need npmunbox
for unpacking.

Access to Tar
Tarball

Tar is an archives software. The name comes from “Tape of archives” (archiving on tape drive). In order
to store data on volumes, one combines many small files into a large file. Contrary to ZIP, TAR is a pure
combination method, which does thereby becomes a compressed file. The format receives the original meta
data of the files, such as rights and link information. You can find more on Wikipedia:

https://en.wikipedia.org/wiki/Tar_(computing)

On Linux, tar is a standard device which is always available.

tar -xvf yourfile.tar

On Windows, there are several options. To the standard environments, which are used in Node
installations, Git shall be included. Git is available at first as described, but also as MSI. The installer comes
with a rudimentary BASH Shell. This cannot do everything as under Linux, but it can use tar. Open Bash
Shell under Windows and then use the same command:

$tar -xvf yourfile.tar

Figure 1-4.  Bash with tar command on Windows

If that does not fit, well-known archive programs like 7-Zip are suitable too.

https://en.wikipedia.org/wiki/Tar_(computing) >> endobj 297 0 obj << /BBox [0 0 198 1] /Filter /FlateDecode /Length 10 /Resources << /XObject << >> >> /Subtype /Form /Type /XObject >> stream
H���0�����
endstream endobj 295 0 obj << /A 296 0 R /AP << /N 297 0 R >> /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /F 4 /H /N /Rect [36 492.623 234 482.642] /Subtype /Link /Type /Annot >> endobj 294 0 obj [295 0 R] endobj 298 0 obj << /Filter /FlateDecode /Length 2148 >> stream
x��X�n���
�H?��F��B��X,`�Nv���x��6�L��H�MX"�"��w$ߛ�Tw�&ʃ��#�쮮:U�T5��������ճ�M~X���m١������f�K|_�f�%�=d�-73m�i&� �c�j�X����i����������f��#6��Z�D��:%�a�⇳@�0ŏ�o��%�^�c���D�<��$����zB֭��ʉ���x��E21®��.�(�.��/�si�����o��+�e�?7�����������vv9��0�u<�|e���y��*R��L4�޳/�|sz�P�HB��)�����,���X��d������~����<a���Q|�s�

Chapter 1 ■ Installation Problems

7

Installing NpmBox
After the command is implemented, all files are in the folder .npmbox-cache.

  If you unpack several packages, all this will be copied into the same folder. That is because there can

be repetitions by dependence.

Now it’s npm’s turn (in a line):

1 npm install --global
2 --cache ./.npmbox-cache
3 --optional
4 --cache-min 999999
5 --fetch-retries 0
6 --fetch-retry-factor 0
7 --fetch-retry-mintimeout 1
8 --fetch-retry-maxtimeout 2
9 npmbox

  \ or /  Under Linux you always use the information of a path, like /. Under Windows, you use \.

However, if you use the Git Bash under windows, then \ also works. Under Windows 10, it works with cmd.exe
and /, but with some problems, like no longer having a functioning TAB key.

The last line contains the actual package. The option ‘–cache’ is there to determine that npm won’t
access the Repository, but the local folder. Often a short version is enough:

npm i -cache ./.npmbox-cache

Installing Packages
Now this pedantic npm command isn’t quite what developers want to type frequently. Therefore, npmunbox
exists. This is a future device for the command line, which simplifies the unpacking procedure.

npmunbox <packagename>

As package name <packagename> you use the name, which was also used during the package procedure.

  If there’s a problem, the npmbox version of the source machine most likely doesn’t match the one on

the desired machine. Check that carefully, before you go further.

Chapter 1 ■ Installation Problems

8

npmunbox has a few more options, since a part of the behavior of npm must be simulated here:

•	 -v, -verbose: Show npm expenditures (standard).

•	 -s, -silent: Additional expenditures are suppressed.

•	 -g, -global: Install packages globally (in the path, not in the protect folder).

•	 -C, -prefix: The switch ‘npm –prefix’ shows the standard listing.

•	 -S, -save: The switch ‘npm –save’ is stored in package.json in dependencies.

•	 -D, -save-dev: The switch ‘npm –save dev’ is stored in package.json in
devDependencies.

•	 -O, -save-optional: The switch ‘npm –save-optional’ is stored in package.json in
optionalDependencies.

•	 -E, -save-exact: The switch ‘npm –save exact’ leads to versions in the SemVer format
being placed with the exact number.

9© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_2

CHAPTER 2

The Components of an Application

MEAN stands for MongoDb, Express, AngularJS and Node. Node is the basis of the stack. Express supplies
a comfortable entrance to HTTP. AngularJS serves the client with the help of an MVC Pattern (Model View
Controller). MongoDB is a document-oriented NoSQL database, which can deal directly with JSON data.
Everything together illustrates a complete server and client page environment on the basis of JavaScript.
Certainly, there’s way more to it in practice:

•	 HTML as a basis for CSS, at best in a group with a preprocessor such as LESS and a
CSS Framework such as Bootstrap

•	 a design template as a basis for more complex controls (usually a Bootstrap theme)

•	 extension libraries for the server (via npm) and the client (via Bower)

The Package Manager
In the JavaScript world, several package managers have been developed. But why are such additional tools
needed at all? Wikipedia has the following answer for this:

A package management software makes the comfortable administration possible of
software, which is present in complex program form or on an operating system. In addition
installing, updating and deinstallation.

A package management always consists of a Repository and a client. In some cases the Repository is
only the source of the description, not contents. One uses in the JavaScript world:

•	 npm, that is, the Node package manager. It comes along automatically, if Node is
installed. All server page packages are called up and installed over Npm. Npm can
also supply further tools. Npm serves also to install the package manager for the
client packages, Bower:

•	 Bower administers client page Frameworks and libraries. Bower even administers
no data, but only descriptions. The packages are called up over Git from GitHub. As
such, it is guaranteed that the most current versions are there and the developers of
the libraries for the distribution on various Repositories don’t have to care about that
themselves.

Chapter 2 ■ The Components of an Application

10

  Windows Repositories for client libraries  Git brings along a simple GUI and command line tools.

Whoever works with Powershell should take a look at Chocolatey. This project brings the JavaScript world
together with the Windows world. Here you work with the original tools, since this is more transparent and
direct. Chocolatey simplifies some things, covered in addition to the connections, which is rather obstructive
when learning.

Libraries and Frameworks
Libraries offer a set of elementary functions. Jquery, for example, allows the manipulation of DOM elements.
However, Frameworks offer certain functions and a pattern for complete applications.

AngularJS realizes the client page MVC Pattern and places bidirectional data connection (apart from
many other functions). Surely there are intersections between both and the demarcation is often not so
clear, but it makes it more simple to meet a selection. Several (many) libraries often co-exist, while you
should choose only one Framework. While keeping a close watch, we should also see that web applications
are split—in client and server. Thus, it is necessary to find an amount of libraries and (!) a Framework for the
client and then again with the server.

Basis Libraries of the Server
In this book series a form of the MEAN stack is presented. MEAN stands for:

•	 MongoDB/MySQL

•	 Express

•	 AngularJS

•	 Node

That is striking, but only the half truth. The choice of the database is often not primary and most
components are often not sufficient in order to illustrate the entire Web stack. It should be considered for the
server, that:

•	 As server page, Routing Framework and Express middleware is used. It supplies the
Routing functions and is an efficient application framework.

•	 As Template library, Pug is used, which takes over the production of the HTML forms
instead of Razor, as far as this takes place on the server.

Client Page Libraries
Thus we can deliver web pages and make services available. The client support remains:

•	 AngularJS as the comprehensive framework for the structuring of the pages

•	 Bootstrap as design and style framework

•	 jQuery as implicitly library used by Bootstrap for the access to the Document Object
Model (DOM)

Chapter 2 ■ The Components of an Application

11

All of this would also be used in the ASP.NET world. Here .NET offers no direct entrance, because the
client can be served only over JavaScript.

Unit Tests
JavaScript as an underlying language is comparatively weak. Also, with the detour over TypeScript or the
new functions in ES 6, the depth and accuracy of the code monitoring of a compilor language are not on the
same level as with Java or C#. Therefore, a still greater importance is attached to unit tests:

Principles
The way Web applications are developed has changed a lot in the recent years. Dynamic elements in the
browser are normal and the running of complete applications in JavaScript is frequently used. The browser
becomes a kind of mini–operating system, which avails itself in the net of various data sources—the services
of our servers.

Web Apps
Applications are called Web Apps if they exist directly in the browser and communicate only with the server
in order to reload data dynamically. The server thereby first delivers the app and then supports it by services,
for example to the access of a database. The server places thereby a so called API (Application Programming
Interface) as available. Usually this is based on JSON.

Web sites
Most web sites are rather classically programmed. That means the detectability of contents through search
engines, extremely short load times, and simple structure. The server produces finished HTML and all
dynamic elements by manipulating the HTML with the help of small scripts. Forms are used for interaction
and the indicator functions by the server steered. Web sites are then supported by JavaScript so that they
appear interactive, which is necessary in order to appear modern and functional.

However, this approach is problematic for several reasons. They must hold two code environments
separately from each other: on the one hand for the browser, on the other hand for the server. Both worlds
are closely connected. Changes on one page can release errors on the other page. This entwinement is
critical and hardly permanently controllable.

Stateless HTML
If Web Apps are not an option (complex, slow, not a search engine suite) and also not web sites
(maintenance-unfriendly, faulted), then it is time to think about a new strategy. This is where Node comes
in, because the separation of the code environments is by far less drastic, if the same programming language
is used. Additionally, a certain programming style should be used. This is so-called stateless HTML.

Stateless HTML is a piece of HTML that is always identical to the condition of the web site and
independent. Whether the user is registered or not, whether it is morning or afternoon, it is all the same. No
matter which geographical place was used, the HTML of the page is always alike. Thus a significant part of
maintenance cost is lost. Parts of the page, which are dependent on the user or action, do not become part
of the HTML. They are procured like a Web App by services and provided dynamically. Thus, simple loading
from HTML pages is in Node, as in the examples shown.

Chapter 2 ■ The Components of an Application

12

Imagine a page with contents, which readers can discuss. The contents part is for all users directly.
Also, each search engine sees the same contents. This part is static and condition-independent. That does
not mean that the articles must lie statically on the hard disk. They can be assembled on the server from a
database. It is part of the panel and completely dynamic against it. Each user sees his own contributions
differently and has perhaps personalized the representations. This part is provided and delivered differently.

The approach does not only simplify programming. It also increases the performance clearly. The less
dynamic portion is easier to process on the server and on the client. A cache can be used comprehensively
and be further relieved from the server. Also, in the event of an error delivering of static pages, it is more
robust and more reliable. The omission of the dynamic functions is annoying, but the page remains
complete and searchable. However, an improvement of the user experience is crucial.

The User Experience
Modern Web applications are complex. There is a user login, account administration, carts, evaluation
systems, and much more. Each of these functions consists of HTML pages, which supply the primary
organization. Typical pages look as follows:

 1 <!DOCTYPE html>
 2 <html>
 3
 4 <head>
 5 <meta charset="utf-8">
 6 <title>File Manager</title>
 7 <link rel="stylesheet" href="style.css">
 8 <script defer src="app.js"></script>
 9 </head>
10
11 <body>
12 <nav>
13 Home
14 Files
15 Upload
16 <div class="account-menu">
17 <!-- Dynamic Part -->
18 </div>
19 </nav>
20
21 <section id="main">
22 <!-- This is where your content goes -->
23 <h1>Welcome to our File Manager</h1>
24 Manage your files online.
25 </section>
26
27 <footer>
28 Copyright © 2016
29 </footer>
30 </body>
31
32 </html>

Chapter 2 ■ The Components of an Application

13

This page loads extremely quickly and represents contents immediately. Then, the application script
app.js is loaded and settles some things dynamically:

•	 checks by means of Cookie and AJAX whether the user is registered

•	 loads the dynamic menu for the user

•	 configures static contents dynamically

The first two points are obvious. The latter is somewhat subtler. Naturally, nobody wants to provide the
same HTML again and again for many content pages. Here you could proceed differently. Use JavaScript
in order to call static contents up from the server. In addition, all links which load pages and use the same
layout are intercepted by JavaScript and the site, as it is loaded from the server. Contents are extracted,
namely the part which is located in the main section ‘<section id=”main”>’. This part is then exchanged.
The advantage consists of the fact that the static HTML is unchanged. It does not depend on a situation.
Thus, application at complexity is less. Nevertheless, the user has the soft load behavior of an AJAX-driven
application. If you still adapt the History in the browser of the page now, it is nearly perfect (with the API of
the browser).

Summary
With the organization and structuring of a Node application you must first know what you want to build—a
Web app or a web site.

With a Web app, you concentrate on Frameworks such as AngularJS. Node supplies the app as
collection from an HTML page and some to JavaScript files. A variety of support services makes it possible
for the app to communicate with the server.

With a web site, it is better to only use jQuery and to add somewhat smart JavaScript elements
dynamically. Node supplies static HTML pages and some support services.

15© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_3

CHAPTER 3

Introduction to Node

Node.js is an Open Source Platform which is used for the server page execution of JavaScript. The core of
Node.js forms the in C/C++ written and therefore fast JavaScript implementation V8, which compiles the
JavaScript code before the execution in native machine code.

Besides that, Node.js covers integrated modules, e.g., the HTTP module, in order to host a web server.
Further modules can be installed with the ‘every day used’ npm package manager.

The asynchronous architecture of JavaScript makes a parallel processing of, for example, Client
connections or database accesses.

With Node.js (short: Node), it’s possible to provide high-performance network and particularly
Web applications, which can communicate with the Web browser (with the assistance of a WebSocket
connection) even in real time. Since modern Web browsers—just like Node—use JavaScript, code can be
delivered to both sides and partly used together. However, it is important to note, that now you must only
know one programming language in order to provide the entire Web application.

Elementary in JavaScript
This text assumes that you can read JavaScript halfway fluently. Even if this is the case, it can be that some
examples are nevertheless more complex. Usually it is because of callback methods that the code appears
unclear.

Read the following example attentively:

1 function action(v) {
2 console.log(v);
3 }
4
5 function execute(value, callback) {
6 callback(value);
7 }
8
9 execute("Hallo Node", action);

Here, a function is agreed upon (line 1) which later (line 9) is used as a callback function of the actual
work function (line 5). Thus, functions can be agreed upon, basically implementing options. This is very
often used in Node, e.g., with evaluating a request, where the callback takes place, if the request was
received, and the method parameter reached via the request values.

Since JavaScript has in each case only one thread it is different than in other programming languages)
the use of asynchronous procedures is enormously important. Otherwise, a call could block all the following
calls. Asynchrony becomes controllable by the use of callback functions.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Introduction to Node

16

Installation and Configuration
This section shows the basic configuration and the structure of a first Node environment. That also includes
the use of the package manager.

Configuration in package.json
Every Node application contains a file with the name package.json. Thus, the project can be configured. The
file extensions that it concerns are an object in the JSON style. JSON stands for JavaScript Object Notation
and can be simply processed by JavaScript.

Here is an example of how such a file can look:

 1 {
 2 "name": "book-exampleproject",
 3 "version": "1.0.0",
 4 "description": "This is a project with book examples.",
 5 "main": "server.js",
 6 "repository": {
 7 "type": "git",
 8 "url": "https://github.com/joergisageek/nodejs-samples"
 9 },
10 "dependencies": {
11 "express": "latest",
12 "mongoose": "latest"
13 },
14 "author": "Joerg Krause",
15 "license": "MIT",
16 "homepage": "http://www.joergkrause.de"
17 }

Pay attention to subordinated objects, such as dependencies or repository. In each case, the name of the
features can be seen on the left; on the right, the data. These can also be objects. This goes on until scalar
types are used, like character strings or numbers.

Actually, not everything is needed here. The simplest file could also look as follows:

1 {
2 "name": "book-exampleproject",
3 "main": "server.js"
4 }

Thus the project has a name and it has a starting file—the re-entry point for the JavaScript interpreter.
With server.js the processing of the project begins.

Initialize the Node Application
The following section first shows how you make the structure of the application on the command line of a
Linux system. In the inspection examples, and for making the screen photos, Ubuntu was used. However, it
should require for every *nix-system a comparable operational sequence.

Subsequently, the most important steps for a Windows system and a Visual Studio 2015 are shown.

Chapter 3 ■ Introduction to Node

17

Approach under Linux
As already described, Node starts the application over the instructions in the file package.json. So that
nothing runs wrongly, there is an npm command that creates the file npm init. In order to start with a new
Node application, you need to proceed as follows:

	 1.	 Produce a folder: mkdir book-project.

	 2.	 Change into this folder: cd book-project.

	 3.	 Initialize the project: npm init.

You can leave the interactively queried parameters unchanged the first time. Designate only the starting
file in server.js. The Node application is now ready for launch—even if not much meaningful happens yet—and
can be started.

Start a Node Application
In principle, the start takes place via call of the executable file node (Linux) and/or node.exe (Windows). The
script runs and ends immediately again. The program is terminated. If it is to run permanently, this must be
programmed in server.js accordingly. If the script runs and you want to terminate it on the command line, use
the key combination ‘CTRL + C’. In practice, as already described, you’ll use npm for the start if you are using
Linux. Under Windows with Visual Studio F5, (Debug ➤ Start Debugging) is the simplest way to start locally.

Automatic Restart
When it comes to changes, these should be examined as simply as possible. Thus the program must be first
stopped and started again—what a annoying procedure! However, that can be automated, as changes at a
file are supervised.

The npm package nodemon supplies this function. Install this first globally:

npm install -g nodemon

Then, don’t start with ‘node’, but with ‘nodemon’:

nodemon server.js
node server.js

Alternatively, npm can be used in the current folder:

npm start

Since at this moment server.js does not exist, an error message will occur.

  ‘npm start’ versus ‘node server.js’  !> When a starting script is agreed upon in the file package.

json, then you can start it with npm start. If no starting script exists, then Node implements internally node
server.js. server.js is here the exemplarily used application script. The starting script is important (in order to
settle actions before the execution) as an example to translate LESS files in CSS or for transpiling TypeScript
into JavaScript. To that extent, you’re always on the safe side with npm start.

Chapter 3 ■ Introduction to Node

18

Approach under Windows
This section presupposes that you installed Visual Studio 2015. Most functions for Node and the accesses to
the Repositories are already finished and/or present.

 Path length T he functions with Visual Studio are very simple and comfortable. Above all, the Debugger

is a genuine assistance. Unfortunately, Windows still has a delimitation of the path length on 260 characters.
Many under Linux-provided packages use deep path structures. You should start with a master path like D:\
Apps or C:\Dev and in no case with the default path of Visual Studio, which is already about 100 characters.
Keep the project names as short as possible.

A new simple Node project is produced with the Blank Node.js Web Application.

Figure 3-1.  Node.js Project template

As already described, Node starts the application over the instructions in the file package.json. This file
is already present in the new project. As a starting file you should use server.js. The Node application is now
already ready to launch—even if not much happens yet—and can be started. As always, simply press F5.
Node starts in a console and the browsers open with the output “Hello World”. This output was produced by
the project template.

In the further process of the text, the procedure for Visual Studio is not shown each time, but uses the
command line version for Linux. The differences are small and in the following table summarized.

Chapter 3 ■ Introduction to Node

19

Figure 3-2.  npm packages with Visual Studio 2015

Table 3-1.  Differences Linux/Windows

Action Linux Windows+VS 2015

Start npm start F5

Install package npm install pkg Context menu in folder ‘npm’: Install new Package

The first Application
The first application should be particularly simple. The simplest version of the package.json file looks as
follows:

1 {
2 "name": "book-project",
3 "main": "server.js"
4 }

Chapter 3 ■ Introduction to Node

20

Since this configuration refers to server.js, this script will be provided next. So that you see the fact that it
functions, it should only produce expenditures by the means of ‘console.log’.

1 console.log('Our first node-Applikation');

Start the application as described before.

Packages
Packages extend the functionality of an application. But that’s because Node isn’t just there for Web
applications, but also operating system–independent programs and thus server page functions. Also, for a
simple project additional packages are needed. Node is very slim and modular. Since Node is has package
management npm connected, both programs are used for both use and administration.

Install Packages
In the configuration file package.json dependence of further packages is defined, besides to the application,
of course. You can enter the packages manually or leave this to the installation process.

Here is an example, in which the package “Express” with the version “4.8.6” is defined as an additional
dependence.

1 {
2 "name": "book-project",
3 "main": "server.js",
4 "dependencies": {
5 "express": "~4.8.6"
6 }
7 }

The version number was introduced with a tilde ‘~’. This procedure—the tilde is only one of many
possibilities—for its versions serves to strengthen its semantic information. Packages are developed very
fast, and with many dependencies it can be difficult to remain both current and operator-safe. The tilde
ensures the fact that the most current version in the subordinated cycle is used. The version of the third stage
may change, but the second one not. If a package with the version 4.8.7 or 4.8.9 appears, then this is used.
However, if 4.9.0 appears, then it is not used. The untested transferred to such a released would be too risky.

 Versions  Versions are indicated in four stages: major, minor, patch, build. The fourth example is

“Express,” a main version number which stands stable for a long time and only changes for specific reasons. 8
is the current development cycle. 6 is the patch level. Corrections and smaller adjustments will appear here. The
build number is often used only internally and is not distributed at package administrations.

A further method is the installation of packages over the command line—concretely the command
line tool (or Command Line Interface, cli)—npm. Usually this is faster and simpler. You must only decide
whether the package is made available only locally for only one application or globally for all future projects.

Chapter 3 ■ Introduction to Node

21

The command reads:

npm install <PaketName> --save

Follow the command in the folder of the application and use the option ‘–save’, then the entry in the
file package.json will appear automatically. The package (thus, the files of which it consists) is put down in a
folder with the name node_modules.

Now it can occur that you have packages in the file package.json, which are not currently installed.
The call of the Repository must still take place. In addition it is sufficient to call the folder, in which the file
package.json lies, and do the following:

npm install

Dependence on further packages dissolves the command itself.
If several pages are to be installed, then these can be indicated in a command (here: express, mongoose

and pass):

npm install express mongoose passport --save

The complete installation of an environment for developing in Node thus only needs a few commands:

	 1.	 npm init initializes a standard environment

	 2.	 package.json configures this environment

	 3.	 npm install loads the necessary packages

Provide a Server Application
Node is a server application. This must be started, so that requests are implemented to be worked on and
able to take actions. While with Node very much can be programmed—up to desktop applications—the
application of standards is a Web application. There is therefore a library, which takes over basic tasks of a
Web application Express. Most examples, which you find on platforms such as Stackoverflow1, use Express.

 More about Express E xpress itself has its own chapter. In the appendix you can find a command

overview in addition.

However, the first step in Node should take place without Express, in order to see the simplest example
possible. This introduction text emulates consciously some functions of Express, in order to make the totally
enclosed functionality understandable.

1http://www.stackoverflow.com

http://www.stackoverflow.com/
http://www.stackoverflow.com/

Chapter 3 ■ Introduction to Node

22

The simplest Server
Basis of the application are three files:

•	 package.json

•	 server.js

•	 index.html

package.json was already regarded—this configures the application. server.js is the active re-entry
point—there the script starts. index.html is a static HTML page, which is exemplarily delivered here.

File: package.json

1 {
2 "name": "http-server",
3 "main": "server.js"
4 }

File: index.html

 1 <!DOCTYPE html>
 2 <html lang="en">
 3 <head>
 4 <meta charset="UTF-8">
 5 <title>The first page</title>
 6 <style>
 7 body {
 8 text-align:center;
 9 background:#EFEFEF;
10 padding-top:50px;
11 }
12 </style>
13 </head>
14 <body>
15
16 <h1>Hello Node!</h1>
17
18 </body>
19 </html>

The file server.js supplies the active part:

File: server.js

1 var http = require('http');
2 var fs = require('fs');
3 var port = process.env.port || 1337;
4
5 http.createServer(function (req, res) {
6 console.log("Anforderung auf Port 1337")
7 res.writeHead(200, {
8 'Content-Type': 'text/html',
9 'Access-Control-Allow-Origin': '*'
10 });

Chapter 3 ■ Introduction to Node

23

11 var read = fs.createReadStream(__dirname + '/index.html');
12 read.pipe(res);
13 }).listen(port);

Here, the first two components from Node are used: “http” and “fs”. The module “http” serves to
program HTTP communication. With “fs” (File System), the access of a file system becomes possible.
Therefore, everything is present which needs this program. The file index.html can be read and sent.

Now start the project just as previously. If now, with the help of the browser, a call of the agreed-upon
address http://localhost:1337 takes place, the example page appears and on the console the output
“requirement on port 1337” appears.

 Port T he port was here completely arbitrarily specified. There is no deeper meaning behind 1337. Take

a free port more largely to 1000 for the first tests.

A Server with Express
Why Express has such outstanding importance is shown by the following example. It fulfills the same task
with the same example file:

server.js with Express 4

 1 var http = require('http');
 2 var express = require('express');
 3 var path = require('path');
 4
 5 var port = process.env.port || 1337;
 6 var app = express();
 7
 8 app.get('/', function (req, res) {
 9 res.sendFile(path.join(__dirname, '/index.html'));
10 });
11
12 app.listen(port);
13 console.log('Request with Express on Port 1337.');

For this to function, Express has to be installed first:

npm install express --save

The advantage here is the abstraction of the HTTP level. You do not have to argue about the intricacies
of protocols anymore. You do not have to worry about features of file access either.

Handling Requests
As the example with Express already showed, it mostly revolves around the processing of a specific URL and
the determination suitable for such an action. This can take place directly with Node. In the beginning, it is
meaningful to understand the mechanism behind it and to go on without complex modules.

http://localhost:1337/

Chapter 3 ■ Introduction to Node

24

Introduction to Routing
The process of passing on is generally called “Routing.” The URL is the “Route.” You will in practice always
define several of such routes and give those callbacks, which are named with the suitable URL by which
a request takes place. In addition, routes are connected with HTTP verbs, thus the commands possible in
HTTP such as GET or POST.

Node makes the function “url.parse” available, in order to determine the components of a URL. In
addition, one must certainly know these. The following illustration explains it:

Figure 3-3.  Components of a URL

In addition, the server is somewhat differently structured—indeed, as an independent module. You
should make that very early, because JavaScript applications become very unclear very fast. The module in
this example is called start.js:

Listing 3-1.  Simple Server start.js

 1 var http = require("http");
 2 var url = require("url");
 3
 4 function start() {
 5
 6 console.log("Starting.");
 7
 8 function onRequest(request, response) {
 9 var pathname = url.parse(request.url).pathname;
10 console.log("Request for path " + pathname + " received.");
11 response.writeHead(200, {
12 "Content-Type": "text/plain"
13 });
14 response.write("The first Server");
15 response.end();
16 }
17

Chapter 3 ■ Introduction to Node

25

18 var port = process.env.port || 1337;
19 http.createServer(onRequest).listen(port);
20 console.log("Has been started.");
21
22 }
23
24 exports.start = start;

Modules are made available over the global instruction “exports.” The internal and the external name
do not have to agree. However, it facilitates the maintenance to do this. The file server.js now looks as follows:

File: *server.js

1 var server = require('./start');
2
3 server.start();

Figure 3-4.  The Server recognizes the Paths

The application is now able to extract the path from the URL of the requesting Client. This is the starting
point of the Routing. Typical routes are then:

•	 /index

•	 /logon

•	 /logoff

•	 /show

•	 /show?fn=filename

Now, it is not particularly smart to pack the router logic into the server. Quickly, the logic becomes more
complex and then the code very difficult. You also get a better feeling for the way such a router works if you
separate the router function.

Create a new JavaScript file with the name router.js. This looks as follows:

File: router.js

1 function route(pathname) {
2 console.log("Route for path requested: " + pathname);
3 }
4 exports.route = route;

Chapter 3 ■ Introduction to Node

26

This script still contains no functionality. However, first the connection with the first script is to be
manufactured. The connection can be made directly or by draws to coupling. As a draft sample, Dependency
Injection is used. A procedure with which the caller dependence can be called is injected from the outside.

 Dependency Injection R ead more about coupled architectures in the article by Martin Fowler that can

be found here: http://martinfowler.com/articles/injection.html.

Now the new server function, the file server.js:

File: server.js

1 var server = require('./start');
2 var router = require('./router');
3
4 server.start(router);

The file start.js, which contains the application core, is still unchanged to a large extent. The new router
function is only called, however it still does nothing meaningful except the console output.

Listing 3-2.  start.js with Router

 1 var http = require("http");
 2 var url = require("url");
 3
 4 function start(router) {
 5
 6 console.log("Startet.");
 7
 8 function onRequest(request, response) {
 9 var pathname = url.parse(request.url).pathname;
10 router.route(pathname);
11 response.writeHead(200, {
12 "Content-Type": "text/plain"
13 });
14 response.write("The first Server");
15 response.end();
16 }
17
18 var port = process.env.port || 1337;
19 http.createServer(onRequest).listen(port);
20 console.log("Was started.");
21
22 }
23
24 exports.start = start;

The calls of “require” then look for a suitable module and/or for a file with the indicated name. The
exported names can then be called.

That access to “exports” in the previous script is based on a global module, which always makes
Node available.

http://martinfowler.com/articles/injection.html

Chapter 3 ■ Introduction to Node

27

The function onRequest is hidden in the starting function, so that it remains private. It is then handed
over as a callback function to the method “createServer”. If a request arrives, Node will call the method
onRequest, in order to begin processing.

Now the application can be started.

Architecture of the Application
Since now different actions for different routes are to be settled, the provided ones must be filled with the
necessary logic. As a simple example, the call of a list of files (route /show) and the possibility are suitable to
uploading files (route /upload). In addition, the first three methods are provided, which concern the execution:

•	 home: the homepage

•	 show: show the file list and download process of a file

•	 upload: upload a file

Also, this part is made available as separate module.

File: handlers.js

 1 function home() {
 2 console.log("Request 'home' called.");
 3 }
 4 function show() {
 5 console.log("Request 'show' called.");
 6 }
 7 function upload() {
 8 console.log("Request 'upload' called.");
 9 }
10 exports.home = home;
11 exports.show = show;
12 exports.upload = upload;

The router now gets access to these functions, in order to take action when the route is called. So that
the allocation is flexible, the routes are connected with processors over a JavaScript object.

File: server.js

 1 var server = require("./start");
 2 var router = require("./router");
 3 var requestHandlers = require("./handlers");
 4
 5 var handler = {};
 6 handler["/"] = requestHandlers.home;
 7 handler["/show"] = requestHandlers.show;
 8 handler["/upload"] = requestHandlers.upload;
 9
10 server.start(router.route, handler);

Now if the path is recognized (which originates from the list of the routes), the appropriate method is
called. Action and execution are separate. What develops here is by way a kind of middleware (called the
Framework), that is most frequently set under Node, but also Express Middleware. If the path /show is thus
recognized, the function show() in requestHandlers is called.

Chapter 3 ■ Introduction to Node

28

Now the actual functionality can be implemented. Node has some reloadable modules, which supply
the suitable functions

File: start.js

 1 var http = require("http");
 2 var url = require("url");
 3
 4 function start(route, handler) {
 5 function onRequest(request, response) {
 6 var pathname = url.parse(request.url).pathname;
 7 if (route(pathname, handler)) {
 8 response.writeHead(200, {
 9 "Content-Type": "text/plain"
10 });
11 response.write("Hello Router");
12 response.end();
13 } else {
14 response.writeHead(404, {
15 "Content-Type": "text/plain"
16 });
17 response.write("404 Not found");
18 response.end();
19 }
20 }
21 var port = process.env.port || 1337;
22 http.createServer(onRequest).listen(port);
23 console.log("Server started.");
24 }
25
26 exports.start = start;

In this script, depending on each call the path will either be handled by the router and then send the regular
answer with the HTTP status code 200 or it becomes—if the route was not recognized—the status code 404.

Now router.js extends. The call of the methods of the business logic now happens dynamically and it
already exists in elementary error handling.

File: router.js

 1 function route(pathname, handler) {
 2 console.log("Request for " + pathname);
 3 if (typeof handler[pathname] === 'function') {
 4 handler[pathname]();
 5 return true;
 6 } else {
 7 console.log("No Method found for " + pathname);
 8 return null;
 9 }
10 }
11 exports.route = route;

Here it will first be seen (line 3), whether a callback function for the appropriate path exists or not.
JavaScript returns “undefined” if this is not the case, so that if this is not the case the “else” branch is

Chapter 3 ■ Introduction to Node

29

implemented. If the function exists, it is called (line 4). The function can return something (which must still
be implemented) and this return value is handed over later to the server and then sent to the client. Here
only ‘true’ is returned, in order to show to the server that everything is correct.

Figure 3-5.  Reaction to different Routes

Now you must create the actual functions of the business logic. In addition this must return something,
because instead of the static text an output will take place in HTML to the browser.

The third version of the file start.js now shows how this works:

File: start.js

 1 var http = require("http");
 2 var url = require("url");
 3
 4 function start(route, handler) {
 5 function onRequest(request, response) {
 6 var pathname = url.parse(request.url).pathname;
 7 var content = route(pathname, handler);
 8 if (content) {
 9 response.writeHead(200, {
10 "Content-Type": "text/plain"
11 });
12 response.write(content);
13 response.end();
14 } else {
15 response.writeHead(404, {
16 "Content-Type": "text/plain"
17 });
18 response.write("404 Not found");
19 response.end();
20 }
21 }
22 var port = process.env.port || 1337;
23 http.createServer(onRequest).listen(port);
24 console.log("Server started.");
25 }
26
27 exports.start = start;

Chapter 3 ■ Introduction to Node

30

If the middleware functions now return HTML, Node will output this as soon as the suitable path is
called. The delivery takes place in line 10, the output at the client at line 12.

The router now gives the values of the called logic functions back (line 4):

Datei: File.js

 1 function route(pathname, handler) {
 2 console.log("Request for " + pathname);
 3 if (typeof handler[pathname] === 'function') {
 4 return handler[pathname]();
 5 } else {
 6 console.log("No Method found for " + pathname);
 7 return null;
 8 }
 9 }
10 exports.route = route;

The business logic in handler.js should return something now instead of the expenditures to the
browser invisible console:

File: handlers.js

 1 function home() {
 2 return "Request 'home' called.";
 3 }
 4 function show() {
 5 return "Request 'show' called.";
 6 }
 7 function upload() {
 8 return "Request 'upload' called.";
 9 }
10 exports.home = home;
11 exports.show = show;
12 exports.upload = upload;

So far, this functions and can be used. However, in the example we work with files. This can be
problematic if the operations last for a while. Node is like each JavaScript implementation is single-threaded;
thus, in each case only one request can be worked on. During high reading, this can lead to a bottleneck.
Requirements should therefore always be treated asynchronously. While the server on the hard disk looks
with the help of the operating system for files, Node can work on further requirements. Certainly, the file
function must return to it immediately and a further callback function is necessary.

Synchronous and Asynchronous Calls
One differentiates here between synchronous and asynchronous calls. Synchronous calls do not block Node.
Asynchronous, however, do. It is “best practice” in JavaScript to always program asynchronously.

The example uses file access functions, which Node makes available over the module “fs” (File System).
The functions are asynchronous according to standard and, only if necessary, also synchronously usable.

Chapter 3 ■ Introduction to Node

31

Excerpt of handlers.js (synchronously)

1 var fs = require('fs');
2
3 function home() {
4 return fs.readFileSync('views/home.html');
5 }

So that the programming won’t become excessively complex, it would be best to pass on the
requirements in asynchronously working logic. Thus response object is handed over and the call of “write”
and “end” now takes place over there.

File: start.js

 1 var http = require("http");
 2 var url = require("url");
 3
 4 function start(route, handler) {
 5 function onRequest(request, response) {
 6 var pathname = url.parse(request.url).pathname;
 7 var content = route(pathname, handler, response);
 8 if (!content) {
 9 response.writeHead(404, {
10 "Content-Type": "text/plain"
11 });
12 response.write("404 Not found");
13 response.end();
14 }
15 }
16 var port = process.env.port || 1337;
17 http.createServer(onRequest).listen(port);
18 console.log("Server started.");
19 }
20
21 exports.start = start;

The actual output was passed on to the logic (line 7). Only the case of an error is still treated here.
The logic begins with the abstraction over the router, which can be steered by the inversely connected

configuration from the outside. The return of the output takes place with the call of the function in line 4 of
the file router.js.

File: router.js

 1 function route(pathname, handler, response) {
 2 console.log("Request for " + pathname);
 3 if (typeof handler[pathname] === 'function') {
 4 return handler[pathname](response);
 5 } else {
 6 console.log("No Method found for " + pathname);
 7 return null;
 8 }
 9 }
10 exports.route = route;

Chapter 3 ■ Introduction to Node

32

In the file handlers.js, the call is now made asynchronously and the answer is provided via callback
function. The module “fs” (File System) is doing good work by sending these to the browser.

Cutout of handlers.js (asynchronously)

 1 var fs = require('fs');
 2
 3 function home(response) {
 4 fs.readFile('views/home.html', function (err, data) {
 5 response.writeHead(200, {
 6 "Content-Type": "text/html"
 7 });
 8 response.write(data);
 9 response.end();
10 });
11 return true;
12 }

Dynamic HTML
Without Template System, much HTML must be provided manually. Sometimes it is enough, but the
following example also shows why Template Engines such as Pug are so famous.

The following extension assumes a folder with the name files exists. The function shows of the business
logic is used in order to show all files in this folder.

Cutout of handlers.js (asynchronously)

 1 var fs = require('fs');
 2
 3 function show(response) {
 4 fs.readdir('files', function (err, list) {
 5 response.writeHead(200, { "Content-Type": "text/html" });
 6 var html = '<html><head></head>' +
 7 '<body><h1>File Manager</h1>';
 8 if (list.length) {
 9 html += "";
10 for (i = 0; i < list.length; i++) {
11 html += '<a href="/show?fn=' +
12 list[i] + '">' +
13 list[i] + '';
14 }
15 html += "";
16 } else {
17 html += '<h2>No files found</h2>';
18 }
19 html += '</body></html>';
20 response.write(html);
21 response.end();
22 });
23 return true;
24 }

Chapter 3 ■ Introduction to Node

33

Here the folder with ‘fs.readdir’ is read and a list of hyperlinks is created, one for each file. Now the files
must arrive in the folder.

Sending HTML Files
First change the HTML file which is to be sent to the browser, as shown subsequently.

File: views/home.html

 1 <html>
 2 <head>
 3 <meta http-equiv="Content-Type"
 4 content="text/html; charset=UTF-8" />
 5 </head>
 6 <body>
 7 <h1>File Manager</h1>
 8 Show all Files
 9
10 <form action="/upload" method="post">
11 <input type="file" />
12 <input type="submit" value="Upload file" />
13 </form>
14 </body>
15 </html>

Now the logic already is able to load an HTML page from the hard disk and send it to the browser. In
addition, it can show all files.

As coding (encoding), UTF-8 was selected here.

 UTF-8 N owadays, all browsers support UTF-8 and the coding of special characters and umlauts are

thereby absolutely possible. The “old” HTML entities such as & uum; for “ü” are obsolete. HTML 5 permits the
information to the coding in minutes over the head field Content-Type or in the HTML head on one of the
following Meta tags:

<meta charset="utf-8" /> <meta http-equiv="Content-Type" ‘ content=”text/html; charset=utf-8” />’

The information is to that extent somewhat irritating, since the character set (charset) is originally Unicode and
this character set is then coded by the means of UTF-8. As developer you must only know that you send HTML
pages as UTF-8 and then the suitable head field.

In the last example, the function upload is missing for the completion. Transferring files takes place
together with other form data with the help of HTTP verb POST. Sending settles the browser if a form is used.
The next step consists first of recognizing and limiting the verbs.

Chapter 3 ■ Introduction to Node

34

Restriction of Verbs
The already shown Code functions, however Node reacts to all HTTP verbs. That is critical in practice,
because unreasonable ways are opened into the application. The restriction thus consists of reacting only to
GET and/or POST.

POST is only needed, in order to transport data from the browser to the server. The server thus receives
all other requests only with GET.

File: handlers.js

 1 var fs = require('fs');
 2
 3 function home(request, response) {
 4 if (request.method !== 'GET') {
 5 response.writeHead("405");
 6 response.end();
 7 }
 8 fs.readFile('views/home.html', function (err, data) {
 9 response.writeHead(200, { "Content-Type": "text/html" });
10 response.write(data);
11 response.end();
12 });
13 return true;
14 }
15 function show(request, response) {
16 if (request.method !== 'GET') {
17 response.writeHead("405");
18 response.end();
19 }
20 fs.readdir('files', function (err, list) {
21 response.writeHead(200, { "Content-Type": "text/html" });
22 var html = '<html><head></head>' +
23 '<body><h1>File Manager</h1>';
24 if (list.length) {
25 html += "";
26 for (i = 0; i < list.length; i++) {
27 html += '' + list[i] \
28 +
29 '';
30 }
31 html += "";
32 } else {
33 html += '<h2>No files found</h2>';
34 }
35 html += '</body></html>';
36 response.write(html);
37 response.end();
38 });
39 return true;
40 }
41 function upload(request, response) {
42 if (request.method !== 'POST') {

Chapter 3 ■ Introduction to Node

35

43 response.writeHead("405");
44 response.end();
45 }
46 return true;
47 }
48 exports.home = home;
49 exports.show = show;
50 exports.upload = upload;

Since the requested verb stands in the requirement request, this parameter must also be handed over. In
the file start.js line 7 now looks as follows:

var content = route(pathname, handler, request, response);

In the file router.js this now looks as follows:

File: router.js

1 function route(pathname, handler, request, response) {
2 console.log("Anforderung für " + pathname);
3 if (typeof handler[pathname] === 'function') {
4 return handler[pathname](request, response);
5 } else {
6 console.log("No method found " + pathname);
7 return null;
8 }
9 }
10 exports.route = route;

Handling Form Data
On the lowest level, the form data are passed on as simple byte sequence. Since still no helpful libraries
are in use here, the processing must take place. It is up to the server to prepare the data. Before the method
upload is called, the data should already be present.

The “request” object makes some events available in order to be able to react to data. The delivery of
request already takes place in the preceding step, so that only few changes are necessary. The events “data”
are usable here, when the data arrives, and “end” if no more data is present.

1 request.addListener("data", function(chunk) {
2 // Daten empfangen
3 });
4 request.addListener("end", function() {
5 // Keine Daten mehr
6 });

The event “data” is called several times. You must collect the data and then completely hand it over to
the appropriate method. To handlers.js the parameter postData is introduced, so that—if available—the data
is to be handed over. Now only the file start.js must be extended, thus the data can be evaluated, and router.js
is used to pass on functions.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Introduction to Node

36

File: start.js

 1 var http = require("http");
 2 var url = require("url");
 3
 4 function start(route, handler) {
 5 function onRequest(request, response) {
 6 var pathname = url.parse(request.url).pathname;
 7 var content;
 8 var postData = '';
 9 request.setEncoding("utf8");
10 if (request.method === 'POST') {
11 request.addListener("data", function (chunk) {
12 postData += chunk;
13 });
14 request.addListener("end", function () {
15 content = route(handler, pathname,
16 request, response, postData);
17 });
18 } else {
19 content = route(handler, pathname, response);
20 }
21 var content = route(pathname, handler,
22 request, response);
23
24 if (!content) {
25 response.writeHead(404, {
26 "Content-Type": "text/plain"
27 });
28 response.write("404 Not found");
29 response.end();
30 }
31 }
32 var port = process.env.port || 1337;
33 http.createServer(onRequest).listen(port);
34 console.log("Server gestartet.");
35 }
36
37 exports.start = start;

In line 5 a variable is defined, which takes up the form data. Starting from line 12 the two event working
methods follow, in which the data is collected. If no more data follows, then the call of the router and thus
the call of the suitable method takes place in line 16. If no data is present (for example with GET), then the
router method is called directly.

File: router.js

 1 function route(pathname, handler,
 2 request, response, postData) {
 3 console.log("Request for " + pathname);
 4 if (typeof handler[pathname] === 'function') {
 5 return handler[pathname](request, response, postData);

Chapter 3 ■ Introduction to Node

37

 6 } else {
 7 console.log("No method found for " + pathname);
 8 return null;
 9 }
10 }
11 exports.route = route;

The value in postData is simply handed through. If it is “zero” or “undefined,” then this JavaScript is also
passed on. An error handling is not necessary here.

Processing Form Data
Form data is processed in HTTP in different ways. The simplest case is simple form fields. Then the data is
located in form of a chain of parts of keys in the requirement:

Name=Joerg+Krause&Age=52&Formula=a+%2B+b+%3D%3D+13%25%21

However, if files are uploaded, these are often binary and must be coded accordingly. The receiver must
now know how to provide the original binary format from the coded data. In addition, there is the MIME
standard (Multipurpose Internet Mail Extensions). Originally this was developed in order to embed pictures
in e-mails.

 POST and MIME A very comprehensive representation about POST can be found on Wikipedia 2.

Likewise, a lot of information is to be found about MIME3. The examples from this section originate from these
Wikipedia articles.

With Mime the coding of a file then looks as follows:

 1 MIME-Version: 1.0
 2 Content-Type: multipart/mixed; boundary=frontier
 3
 4 This is a message with multiple parts in MIME format.
 5 --frontier
 6 Content-Type: text/plain
 7
 8 This is the body of the message.
 9 --frontier
10 Content-Type: application/octet-stream
11 Content-Transfer-Encoding: base64
12
13 PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0\
14 aGUg
15 Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
16 --frontier--

2https://en.wikipedia.org/wiki/POST_(HTTP)
3https://en.wikipedia.org/wiki/MIME#Form-Data

https://en.wikipedia.org/wiki/POST_(HTTP)
https://en.wikipedia.org/wiki/MIME#Form-Data
https://en.wikipedia.org/wiki/POST_(HTTP)
https://en.wikipedia.org/wiki/MIME#Form-Data

Chapter 3 ■ Introduction to Node

38

Both representations suggest that the processing of form data is not trivial, particularly since the
examples show only a small part of the possibilities. It is at this time necessary to go back to further npm
library stuff. A good start is the library formidable.

Install formidable first. Make it optionally also available globally (Option ‘-g’), in order to use it in other
projects:

npm install formidable@latest --save -g

A file arriving via POST can be received thereby as follows:

 1 var formidable = require('formidable'),
 2 http = require('http'),
 3 util = require('util');
 4
 5 http.createServer(function(req, res) {
 6 if (req.url == '/upload' && req.method === 'POST') {
 7 // Parser
 8 var form = new formidable.IncomingForm();
 9
10 form.parse(req, function(err, fields, files) {
11 res.writeHead(200, {'content-type': 'text/plain'});
12 res.write('Dateien: ');
13 res.end(files.length);
14 });
15
16 return;
17 }
18
19 // Formular
20 res.writeHead(200, {'content-type': 'text/html'});
21 res.end(
22 '<form action="/upload" enctype="multipart/form-data" ' +
23 'method="post">'+
24 '<input type="text" name="title">
'+
25 '<input type="file" name="upload" multiple="multiple">'+
26 '
<input type="submit" value="Upload">'+
27 '</form>'
28);
29 }).listen(8080);

The organization of the form is important here. In line 19 is “enctype=multipart/form-data”. With this
attribute, coding is caused after MIME. Now another input element is needed that the file on the hard disk of
the user selects (line 21). The method “parse” will then examine the files and make them available (line 10).

 Documentation T he module formidable can be found on Github4.

4https://github.com/felixge/node-formidable

https://github.com/felixge/node-formidable
https://github.com/felixge/node-formidable

Chapter 3 ■ Introduction to Node

39

The processing method parse returns two objects, files and fields. In it, the files and other fields of the
form are to be found. The structure looks as follows:

 1 fields: { title: 'Hello World' }
 2
 3 files: {
 4 upload: {
 5 size: 1558,
 6 path: '/tmp/1c747974a27a6292743669e91f29350b',
 7 name: 'us-flag.png',
 8 type: 'image/png',
 9 lastModifiedDate: Tue, 21 Jun 2011 07:02:41 GMT,
10 _writeStream: [Object],
11 length: [Getter],
12 filename: [Getter],
13 mime: [Getter]
14 }
15 }
16 }

The information path is interesting. This is the temporary place where the files were, for a start, put
down. From there it can now—if all other basic conditions fit—be copied into the application folder.

Handling Querystring
The indicator method should serve to offer the files for downloading. In addition, a parameter is handed
over: the file name. The delivery of data into HTTP by the means of URL is made by the part after the
question mark, the Querystring. Also for the processing of the data there’s a specific module in Node:

var querystring = require("querystring")

A separate installation of the module is not necessary. Because of its outstanding importance, it is
always available. In the application, the links are then produced dynamically for the files and embedded
in the existing HTML. The file names hang as parameters on the links in the form of fn=filename. The
Querystring must be examined thus for the field fn.

The call of the data then looks as follows:

querystring.parse(request.url.querystring).fn

The result is the file name or “undefined,” if the parameter was not found. The finished show function
now looks as follows:

File: handlers.js

 1 var fs = require("fs");
 2
 3 function home(response, postData) {
 4 // Unchanged
 5 }

Chapter 3 ■ Introduction to Node

40

 6 function show(response, postData) {
 7 if (response.Method !== 'GET') {
 8 response.write("405 Method not allowed");
 9 }
10 console.log("Request 'show' called.");
11
12 response.write();
13 response.end();
14 }
15 function upload(response, postData) {
16 // unchanged
17 }
18 exports.home = home;
19 exports.show = show;
20 exports.upload = upload;

The Querystring is in request. This object is already passed on. However, it is meaningful to dissolve
the distinction between data from GET and from POST and work only with data. That can take place in the
previous layer outside of the logic, so that all methods of the business logic profit from it. The two verbs are
mutually exclusive; conflicts will therefore never occur. The server thereby supplies either the data over
“form.parse” or over “querystring.parse”. In both cases it concerns a JavaScript object.

The complete Application
With this code the application can be finished. The components are:

•	 an HTML page, which serves as home page and for the announcement of all files. On
this page is also the form for uploads

•	 the server, which receives requirements, prepares and hands them over to the router

•	 the router, which recognizes the paths:

–– /home back to the homepage

–– /show for downloading a file

–– /upload for uploading a file

•	 a small business logic, which processes and makes the data available

Practically each Web application is similarly developed, although much more complex. The primitive
internal structure of Node leads the direct access to enormous performance and is nearly boundless.
However, you are well advised as developer, with the bases of protocols and elementary techniques, to argue
with computer science (HTTP, MIME, coding with UTF-8, etc.).

Here the finished program, consisting of:

•	 server.js

•	 start.js

•	 router.js

•	 handler.js

•	 home.html

Chapter 3 ■ Introduction to Node

41

On the main system the folder files must still be configured, so that the process under which Node is
implemented can (and only there) have rights for writing, so that uploading the files functions.

The finished program still uses another Node library: mime. It serves the determination of the correct
content-type head fields when downloading the files. Install it as follows:

npm install mime --save

The Application server.js
The application starts in the file server.js. Here the other modules are merged. In relation to the previous
versions, the agreement of the routes is not only because of the names but also because of the suitable HTTP
verb bind. Thus the individual, repetitive inquiry of the method is no longer necessary.

File: server.js

 1 var server = require("./start");
 2 var router = require("./router");
 3 var requestHandlers = require("./handlers");
 4
 5 var handler = {};
 6 handler[["/", 'GET']] = requestHandlers.home;
 7 handler[["/show", 'GET']] = requestHandlers.show;
 8 handler[["/upload", 'POST']] = requestHandlers.upload;
 9
10 server.start(router.route, handler);

The Starting Script start.js
The function start itself is accordingly extended. On the one hand, the method of execution is shifted into
the new function execute, since it is needed several times. The business logic worries again about sending
the data. Only if this fails, the generic error 400 Bad Request is sent.

 Bad Request O ften one thinks too long and hard about which HTTP code is suitable for announcing

errors to the client. That is not worth the trouble. The user can begin in the long run with no message and see
meaning in it. It will always be discussed with a general error page. Concrete errors are rather dangerous,
because if rather than a regular user attacks the server, each error message referring to further attack potential
multiplies. The generic error 400 Bad Request does not state anything, except that the action failed.

In the script some modules are used. http, url and querystring are internally available in Node.
formidable has been additionally installed via npm. In the method onRequest, the path for Routing is
determined and the Querystring is extracted (line 16). At POST, the evaluating of the form data takes place.

 POST and Querystring T heoretically, a POST requirement can also have data in the Querystring. Such

mixtures may not be a good idea, but the general inquiry of Querystring data is correct.

Chapter 3 ■ Introduction to Node

42

From the data the data object will be created, so that form data, Querystring data, and uploaded files
can be handed over to the business logic.

File: start.js

 1 var http = require("http");
 2 var url = require("url");
 3 var formidable = require("formidable");
 4 var querystring = require("querystring");
 5
 6 function start(route, handler) {
 7
 8 function execute(pathname, handler, request, response, data) {
 9 var content = route(pathname, handler,
10 request, response, data);
11 if (!content) {
12 response.writeHead(400, {
13 "Content-Type": "text/plain"
14 });
15 response.write("400 Bad request");
16 response.end();
17 }
18 }
19
20 function onRequest(request, response) {
21 var pathname = url.parse(request.url).pathname;
22 var query = url.parse(request.url).query;
23 if (request.method === 'POST') {
24 var form = new formidable.IncomingForm();
25 form.parse(request, function (err, fields, files) {
26 if (err) {
27 console.error(err.message);
28 return;
29 }
30 var data = { fields: fields, files: files };
31 execute(pathname, handler, request, response, data);
32 });
33 }
34 if (request.method === 'GET') {
35 var data = {
36 fields: querystring.parse(query)
37 };
38 execute(pathname, handler, request, response, data);
39 }
40 }
41 var port = process.env.port || 1337;
42 http.createServer(onRequest).listen(port);
43 console.log("Server gestartet.");
44 }
45
46 exports.start = start;

Nothing changed on the server itself . This part corresponds to the previous examples.

Chapter 3 ■ Introduction to Node

43

The Routing Functions router.js
The router is unchanged to a large extent. The only adjustment concerns the use of the path and HTTP verb
with the choice of the required method in case of any array: “[pathname, method]”. Only the answer response
is handed over, because the implementing methods should send their data themselves, and the determined
data of the requirement. So the requirement does not have to be passed on any longer.

File: router.js

 1 function route(pathname, handler, request, response, data) {
 2 console.log("Request for " + pathname);
 3 var method = request.method;
 4 if (typeof handler[[pathname, method]] === 'function') {
 5 return handler[[pathname, method]](response, data);
 6 } else {
 7 console.log("No action found for " + pathname +
 8 " and method " + method);
 9 return null;
10 }
11 }
12 exports.route = route;

The Business Logic handler.js
The business logic covers the three methods, which “do something”:

•	 home: call of the home page with the form for uploading

•	 show: display of all uploaded files or downloading of a file

•	 upload: uploading a file and transferring it to show

File: handler.js (home)

 1 var fs = require('fs');
 2 var path = require('path');
 3 var mime = require('mime');
 4
 5 function home(response, data) {
 6 fs.readFile('views/home.html', function (err, data) {
 7 response.writeHead(200, { "Content-Type": "text/html" });
 8 response.write(data);
 9 response.end();
10 });
11 return true;
12 }

Here the HTML file is asynchronously read and then supplied to the client.
There are two actions in show. First, the parameter 'fn' is checked. If there is a filename within, the file

will be read synchronously and delivered for download. If there is no such parameter, an HTML page will
be created dynamically, that shows all files in the folder as hyperlinks. The download will be controlled by
special header fields that you can create using response.setHeader.

Chapter 3 ■ Introduction to Node

44

Now sending the files uses response.end. That’s a conjunction of write and end. The setting ‘binary’ is
mandatory, otherwise Node would try to treat the content as plain text and encode the content as UTF-8.
That would destroy any binary content, such as images.

Datei: handler.js (show)

 1 function show(response, data) {
 2 // Herunterladen
 3 if (data.fields && data.fields['fn']) {
 4 var name = data.fields['fn'];
 5 var file = path.join(__dirname, '/files', name);
 6 var mimeType = mime.lookup(file);
 7 response.setHeader('Content-disposition',
 8 'attachment; filename=' + name);
 9 response.setHeader('Content-type', mimeType);
10 var filedata = fs.readFileSync(file, 'binary');
11 response.end(filedata, 'binary');
12 return true;
13 }
14 // Show all
15 fs.readdir('files', function (err, list) {
16 response.writeHead(200, { "Content-Type": "text/html" });
17 var html = '<html><head></head>' +
18 '<body><h1>File Manager</h1>';
19 if (list.length) {
20 html += "";
21 for (i = 0; i < list.length; i++) {
22 html += '' +
23 list[i] + '';
24 }
25 html += "";
26 } else {
27 html += '<h2>No files found</h2>';
28 }
29 html += '</body></html>';
30 response.write(html);
31 response.end();
32 });
33 return true;
34 }

The third part is the function for uploading. Even that is based on parameters, particularly the field “fn”
from the HTML form. The copy function is using copyFile, which uses Streams and is particularly efficient.
The function is programmed asynchronously and informs the callers about the callback function callback,
if the action is final. The function upload continues to lead to the summary page show, so that the user can
inform himself about the success of the action.

File: handler.js (upload)

 1 function upload(response, data) {
 2 // Upload
 3 var temp = data.files['fn'].path;

Chapter 3 ■ Introduction to Node

45

 4 var name = data.files['fn'].name;
 5 copyFile(temp, path.join('./files', name), function (err) {
 6 if (err) {
 7 console.log(err);
 8 return false;
 9 } else {
10 // Dateiliste anzeigen
11 return show(response, data);
12 }
13 });
14 return true;
15 }
16
17 function copyFile(source, target, callback) {
18 var rd = fs.createReadStream(source);
19 rd.on('error', function (err) { callback(err); });
20 var wr = fs.createWriteStream(target);
21 wr.on('error', function (err) { callback(err); });
22 wr.on('finish', function () { callback(); });
23 rd.pipe(wr);
24 }
25
26 exports.home = home;
27 exports.show = show;
28 exports.upload = upload;

The data in “data.files[fn]” offers far more than only name and path. So information can be made here
about the type of file, the file size and the date.

 Server versus Client Upload T he version presented here uses so-called server uploading. The client

may send everything. The server stores the data in a temporary listing and then makes it available. The server
script then decides what happens with the data. That has the disadvantage that the user possibly transfers
large or inadmissible files, he experiences a long waiting time, and then gets an error message. Client page
upload functions can be programmed in JavaScript in the browser and then transfer only if it is meaningful and
promising. This is not dealt with here.

Template of the HTML Page home.html
As the latter, the form page shall be presented again. This serves to branch out to the page with the list of the
files and it contains the form for uploading.

File: home.html

 1 <html>
 2 <head>
 3 <meta http-equiv="Content-Type"
 4 content="text/html; charset=UTF-8" />
 5 </head>

Chapter 3 ■ Introduction to Node

46

 6 <body>
 7 <h1>Dateimanager</h1>
 8 Zeige alle Dateien
 9 <hr />
10 <form action="/upload" method="post"
11 enctype="multipart/form-data">
12 <input type="file" name="fn" />
13 <input type="submit" value="Upload file" />
14 </form>
15 </body>
16 </html>

Pay attention to the names of the input element “file” name=“fn”.
This name must agree with the value used in the code “fn”. Important is also the following attribute:

enctype="multipart/form-data"

This permits the coding of the files for the transmission with HTTP. If you would like to process only
form data, but no files, then you omit the attribute.

Summary
This chapter showed a first, compact introduction to Node. As far as possible, no additional libraries were
inserted such as Express or Template Engines such as Pug. Refer to the further chapters to read more about
Express and Pug and how they simplify your life as a developer. Since Node is quite simple, some actions,
which are due to protocol HTTP, had to be programmed. But there are naturally many finished solutions.
The next chapter will concentrate on overviews, documentation and the most important modules of Node
which will be presented, with which first applications can be developed.

47© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_4

CHAPTER 4

The Most Important Node Modules

This chapter shows the most important modules, with which elementary tasks in a Web application can be
settled. Thereby it concerns the actual Node library.

Global Modules
Gobal modules are always present and do not have to be agreed upon.

Timer
Interval timers abstract to a large extent the possibilities offered according to standard by JavaScript.
Absolutely use the Node variant, in order to get no problems later with other parallel running modules.

setTimeout
This instruction agrees upon the call of the callback function after a certain period in milliseconds.
Optionally, arguments can be indicated. The function gives an object of the type “timeoutObject”, which can
be used with “clearTimeout()”.

Syntax: setTimeout(callback, delay[, arg][, ...])

 Real Time  Node is not real time–capable and does not guarantee that the call of time-controlled

callback function takes place accurately at the agreed-upon function.

clearTimeout
This function prevents the call.

Syntax: clearTimeout(timeoutObject)

Chapter 4 ■ The Most Important Node Modules

48

setInterval
This function also corresponds to the internal JavaScript function; however, it runs under the control of
Node. The callback function is called repetitive at expiration of the interval. The function gives an object of
the type intervalObject, which can be used with clearInterval().

Syntax: setInterval(callback, delay[, arg][, ...])

clearInterval
This function stops the repetitive call.

Syntax: clearInterval(intervalObject)

unref
This method is offered by the objects timeoutObject and intervalObject. If a Node application ends,
and interval timers are still in action, the execution is continued nevertheless, until the last interval timer
ran off. With unref, it can be shown that the completion of the application stops and does not continue to
implement the remaining interval timers. The repeated call of unref on the same object does not have an
effect.

The functions shift the interval timer into the major loop of the application. Too many such interval
timers can affect the achievement of the major loop. They should unref from there consciously and only if
absolutely necessary.

ref
Before with unref into the major loop transferred interval timer can go back to its regular condition with this
function. The repeated call does not have an effect.

setImmediate / clearImmediate
The method setImmediate is a more highly priotizied interval timer, which releases after I/O events and
is called before setTimeout and setInterval. This interval timer gives an object immediateObject back,
which can be used with clearImmediate(). Several callback functions are placed in a queue and processed
in order, as they were defined. The execution of the queue takes place once per run of the major loop of the
application. A new placed object is thus then implemented only if the major loop goes through next time.

Syntax: setImmediate(callback[, arg][, ...])

clearImmediate stops the execution of the timer indicated by immediateObject.

Syntax: clearImmediate(immediateObject)

Global Objects
Global objects are active in all modules. They do not have to be agreed upon separately.

Chapter 4 ■ The Most Important Node Modules

49

global
This is the global name area. A variable in JavaScript is global in the global name area, even if it was defined
with var. In Node this is not the case—the global name area is always the current module. Only by explicit
access to global does a global name area become possible.

process
The process object shows information about the process.

console
With this object you have access to the console.

Buffer
The buffer obect contains the handling of buffered data.

require
This function requests a module. This function is not really global, but in each module it is automatically
agreed upon locally, so that it is always available like a global function.

The method require.resolve uses the search mechanism for modules, but doesn’t load the module
in case of success, but instead returns the path under which it was found. Modules can be locally or globally
installed, so that the discovery page quite varies. With require.cache, modules within the object are cached
if they return the features. If the module is removed from the cache by deletion of the key, the next call of
‘require’ will load the module again.

__filename
This is the file name of the up-to-date implemented code file. The name contains the dissolved, absolute
path. This does not have to be the same path that the command line tool used. If the call takes place in a
module, the module is the implemented code file and the path points to the module.

If, for example, the file example.js is implemented in the path /User/joerg/Apps, the following call /User/
joerg/Apps/example.js returns:

console.log(__filename);

__filename is globally usable, however, in each module in which it is locally defined.

__dirname
This is the listing in which the up-to-date implemented file is. If, for example, the file example.js is
implemented in the path /User/joerg/Apps*, the following call /User/joerg/Apps returns:

console.log(__dirname);

__dirname is globally usable; however, in each module it is locally defined.

Chapter 4 ■ The Most Important Node Modules

50

module
This is a reference to the current module. The feature module.exports is used to make the functions
exported by the module available. They are made available by the call of require().

module is globally usable; however, in each module it is locally defined.

exports
This is an alias for module.exports and shortens only the writing effort.

exports is globally usable; however, it is locally defined in each module.

HTTP and HTTPS
With the HTTP and HTTPS modules, almost all HTTP and HTTPS modules are supported. Communication
on this level is very elementary. Frameworks such as Express abstract this and rely on http. Nevertheless, it
can be meaningful for many cases to implement protocol actions directly.

Node can deal with Streams—thus there is a sequential river of bytes. This is way more effective than
holding the entire data for one procedure in only one memory (buffering). The http module worries about
processing data with Streams and faciliates programming substantially.

Basics
HTTP consists of a command line and head fields, which describe the instruction more clearly. In Node, the
head fields are made available as JSON. An appropriate object would thus look as follows:

1 {
2 'content-length': '123',
3 'content-type': 'text/plain',
4 'connection': 'keep-alive',
5 'host': 'mysite.com',
6 'accept': '*/*'
7 }

The keys are always converted according to the specification in small letters. The values are never
changed. That is already the whole interface of Node. Generally, Node is very simple with this module.
Neither the head fields nor contents of a message are examined, evaluated, or treated internally.

Head fields, which have several values use “,” (comma) for the separation of the values. The only
exceptions are the head fields for Cookies, which an array accepts. If fields permit only one value, Node
controls this and throws an exception.

Arriving or sent head fields are made available as a rough object. This is an array with sequential pairs
of keys and values that looks as follows:

1 ['Content-Length', '123456',
2 'content-type', 'text/plain',
3 'CONNECTION', 'keep-alive',
4 'Host', 'mysite.com',
5 'accept', '*/*']

Transformation and control actions take place thereafter so that the head files actually made available
or sent can deviate from it.

Chapter 4 ■ The Most Important Node Modules

51

Fields
The section describes fields, which make values available and which refer to the internal configuration.

http.METHODS returns in the form of arrays a list with HTTP verbs, which are supported. http.STATUS_codes
is an array with the status codes, which know HTTP and the assigned summary. For 404 this is defined
exemplarily as follows:

http.STATUS_CODES[404] === 'Not Found'

Methods
The methods make the appropriate actions possible regarding the protocol processing “http.createServer”
a new instance of the HTTP server returns. Thus HTTP requests can be received and processed. The syntax
looks as follows:

http.createServer([requestListener])

The callback function requestListener is a method, which gets the received data.
With http.request(option[,callback]), Node sends a request to another server. Node is thus, in this

case, the client. Node uses several connections, if this is possible. However, the method treats this internally,
so that you must give no consideration with programming to it. The following syntax is used:

http.request(options [, callback])

The options can be JSON or a character string. If it is a character string, url.parse() will automatically
be used, in order to parse the character string. The callback method supplies an object with the answer
(response).

The options have the following meaning:

•	 host: the domain name or the IP address, where the request is sent. Without
information, this is called “localhost.”

•	 hostname: If url.parse() is used, you should use hostname instead of host.

•	 port: the port for the request. Standard is the port 80.

•	 localAddress: If you have several network cards, you can hereby instruct which local
address (network card with the appropriate connection) is to be used by Node.

•	 socketPath: Under Unix, this refers to Unix domain Sockets.

•	 These are terminals for interprocess communication. You can use this on a local
system or host:port syntax.

•	 method: The verb (HTTP method) is in capital letters. Default value is here: GET.

•	 path: the path to resources for the requirement. The default value is ‘/’. The path
should contain the Querystring, if this is to be used, e.g., /index.html?=12. Illegal
indications lead to an exception.

•	 headers: a JSON object with the information of the header fields

•	 auth: the kind of authentication. It produces the header field.

•	 Authorization.

Chapter 4 ■ The Most Important Node Modules

52

•	 agent: the behavior of the Clients steers. If the information takes place, the head field
Connection: keep-alive is produced. Possible values for this parameter are:

–– undefined (default): Global information for the mentioned combination is host and port.

–– object of the type agent: explicit information of all values

–– No connecting pool is formed. Each request ends with Connection: close.

•	 keepAlive: The connection is kept open in a connecting pool, so that other
connecting desires can access at a later time. The standard is false.

•	 keepAliveMsecs: If keepAlive is used, hereby the time can be indicated in
milliseconds, to which a TCP package is sent as a sign of life. The default value is
1000.

The method gives an instant to the class http.ClientRequest back. This is a writable stream. For the
request, if data is needed (for example because during a POST requirement a form is sent), then these data
will be written in the stream.

 1 var postData = querystring.stringify({
 2 'msg' : 'Hello World!'
 3 });
 4
 5 var options = {
 6 hostname: 'www.google.com',
 7 port: 80,
 8 path: '/upload',
 9 method: 'POST',
10 headers: {
11 'Content-Type': 'application/x-www-form-urlencoded',
12 'Content-Length': postData.length
13 }
14 };
15
16 var req = http.request(options, function(res) {
17 console.log('STATUS: ' + res.statusCode);
18 console.log('HEADERS: ' + JSON.stringify(res.headers));
19 res.setEncoding('utf8');
20 res.on('data', function (chunk) {
21 console.log('BODY: ' + chunk);
22 });
23 });
24
25 req.on('error', function(e) {
26 console.log('problem with request: ' + e.message);
27 });
28
29 req.write(postData);
30 req.end();

The actual writing takes place with req.write(postData). The use of req.end() is necessary here
because the stream is otherwise closed. After terminating, no further data can be written. The requirement
object req knows an even error, to which you can react in order to intercept errors. Errors can occur if one of
the procedures fails with sending (dissolution of DNS, TCP error, error when parsing the head fields, etc.).

Chapter 4 ■ The Most Important Node Modules

53

If the head filed Connection: keep-alive is manually inserted, Node recognizes this and keeps the
connection open until the next request is sent.

If the head field Content-length is sent, then the use of computer field is switched off. Computer field is
block-by-block sending of data. The information takes place via the head field Transfer- Encoding: chunked.

If an Except head field is used, then the head fields are sent immediately. After Expect: 100-continue,
you should listen immediately to the appropriate event (with timeout). RFC2616 section 8.2.3 gives more
information in addition.

If the head field Authorization is indicated, the data produced by the option auth is overwritten.
With http.get a shortened variant of the method request stands ready, the one request initiated by

means of GET. Since no data is sent with GET, req.end() produces it automatically:

http.get(options[, callback])

An example shows how it goes:

1 http.get("http://www.google.com/index.html", function(res) {
2 console.log("Got response: " + res.statusCode);
3 }).on('error', function(e) {
4 console.log("Got error: " + e.message);
5 });

Classes
Some classes supply further functionality.

http.Server
The HTTP server offers an environment which reacts to actions of protocols by means of events.
The events are:

•	 request: function (request, response) { }

Each arriving request releases this event. If the connection remains open (Keep
Alive), then it can be that several events per request are released. The parameter
request of the type http.IncomingMessage and response is “http.ServerResponse”.

•	 connection: function (socket) { }

Releases, if the TCP stream object was opened. The parameter socket is of the
type net.Socket.

•	 close: function () { }

Releases, if the connection was closed.

•	 checkContinue: function (request, response) { }

This event reacts to Expect: 100-continue. If that is not treated, the server reacts
automatically with 100 Continue. If a treatment takes place, then it must be
reacted with response.writeContinue(), if data is to be sent. Otherwise,
communication with 400 Bad Request or a comparable error will happen. If this
event is produced and treated, request won’t be released.

Chapter 4 ■ The Most Important Node Modules

54

•	 connect: function (request, socket, head) { }

Releases, if the client is connected by means of HTTP CONNECT. The parameter
request is http.IncomingMessage. The parameter socket is of the type
net.Socket. head against it is an instance of buffer.

•	 upgrade: function (request, socket, head) { }

With opened connection, this event is released if a client wants to upgrade
the connection. The parameter request is of the type http.IncomingMessage.
The parameter socket is of the type “net.Socket”. head, however, is an instance
of buffer. An upgrade is in principle a protocol change, e.g., from HTTP 1.1.
to HTTP 2.0. to WebSockets, to IRC, etc. In practice, this is relevant only for
WebSockets. In addition, look at the following information: Draft1.

•	 clientError: function (exception, socket) { }

If the client supplies an eror, this event will be treated.

The parameter socket is of the type net.Socket.

The events are reached by means of the method on:

1 var http = require("http");
2 var server = http.createServer();
3
4 server.on("request", function (req, res) {
5 res.end("this is the response");
6 });
7
8 server.listen(3000);

Methods for http.Server
The object server itself, the createServer, has some methods, which are likewise interesting.

With server.list, the server begins at the indicated port and the appropriate address—thus the
Socket—to listen. If the host name is not indicated, all IP addresses on the machine are launched (only IPv4).
The following variants exist:

server.listen(port[, hostname][, backlog][, callback]) server.listen(path[, callback])
server.listen(handle[, callback])

 O n an Unix system, a Unix Socket in the form of a file names can be used instead of the host name.

Alternatively, the Socket path can be used. The other configuration parameters are then non-existing. On
Windows, this is not supported:

1http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17

http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17

Chapter 4 ■ The Most Important Node Modules

55

The parameter backlog is the length of the buffer queue for arriving connections. If a connecting desire
arrives and the procedure is still in processing, then Node takes up this request to this queue.

The default value is 511 (!sic). Values to 1,000 are meaningful. Long waiting times in Clients suggest that
a connection is to be expected, while Node is also hardly able to process these.

If handle is used, then this is an object that describes the “server” or a “Socket.”
The function is asynchronous and works with the callback method callback.
With server.close, the server stops accepting desired connections:

server.close([callback])

Since connections are not available, a value can be set with “server.setTimeout”, which determines how
long the waiting time will take:

server.setTimeout(msecs, callback)

The value is indicated in milliseconds. The default value amounts to two minutes. “server.timeout”
shows the set value.

With server.maxHeadersCount, the number of head fields is limited. According to standard this is 1,000;
with 0 the value is unlimited.

The class http.ServerResponse
An instance of this class is provided internally. This is the type, which is handed over by the parameter
response in the callback function of the event “request.” This is the answer object. It implements a writable
stream. This works with events.

close: function () { }

shows that the connection was closed before end was able to send the data.
finish: function () { }

is released if the transmission of the answer is settled. For Node, this is the
moment of the delivery to the operating system. It is not clear that the data leaves
the compuer or that the client received it.

On an instance of this class, various operations are possible. response.writeContinue sends an
HTTP/1.1. 100 Continue to the client to request that the data can be sent. With reponse.writeHead, Node
sends the head (Status code plus head fields) to the client. The status code is the three-figure HTTP code, for
example, 200 or 404. The head fields can be indicated accordingly. The following syntax is applicable:

response.writeHead(statusCode[, statusMessage][, headers])
1 var body = 'hello world';
2 response.writeHead(200, {
3 'Content-Length': body.length,
4 'Content-Type': 'text/plain' }
5);

This method may be called only once and must happen before response.end().
Alternatively you can work with response.write() and response.end(). If response.write() is used

and the answer hasn’t been terminated yet, Node computes the head fields accumulated with the call of
writeHead.

Chapter 4 ■ The Most Important Node Modules

56

 Content Length T he length head field contains the size in bytes. If the text is coded in UTF-8 or another

procedure, that is not the number of indications. Use Buffer.byteLength() in order to determine the correct
value. Node does not check whether the information fits in Content-Length.

With response.setTimeout the timeout value is set in milliseconds:

response.setTimeout(msecs, callback)

The callback function callback is called if the time runs out. If no information takes place upon
completion, the appropriate objects for Socket, Server, Response, etc., are cleared up. However, if a callback
function is present, then you must settle this in the function.

With response.statusCode, you specify which status code is used. This is not necessary if you work
with writeHead.

response.statusCode = 404;

The feature contains the actual value after sending the answer.
Specify which status code is used with the response.statusMessage feature. This is not necessary if you

work with writeHead. The information is only meaningful if you want to send something else as the standard
text:

response.statusMessage = 'Not found';

The feature contains the actual value after sending the answer. response.setHeader produces a head
field or replaces it, if it is already present in the list of head fields which can be sent. If several head fields are
to be produced, you can use an array. The following syntax is valid:

response.setHeader(name, value)

1 response.setHeader("Content-Type", "text/html");
2 response.setHeader("Set-Cookie", ["type=ninja", "language=javascript\
3 "]);

Everyone can determine with response.headersSent, whether the head fields were already sent or not.
response.sendDate is a boolean feature that shows if the head field Date shall be produced. If this head

field was already manually entered, the manual entry is not overwritten.

  In HTTP ist das Kopffeld Date ein Pflichtfeld. Sie sollten dies nur zu Testzwecken unterdrücken.

response.getHeader is a cunning head field, as long as it wasn’t sent yet. After sending, no access is
possible anymore. The name considers upper and lower case—all head field names are written in lower case
internally. The syntax of this method is as follows:

response.getHeader(name)

1 var contentType = response.getHeader('content-type');

Chapter 4 ■ The Most Important Node Modules

57

response.removeHeader removes a head field, as long as it was not sent yet:

1 response.removeHeader("Content-Encoding");

The method response.write writes a quantity of data. That leads to the fact that implicitly specified
head fields are sent, because these will transfer before the data. If response.writeHead() was used before,
the head fields defined there are used.

response.write(chunk[, encoding][, callback])

The method can be called several times, in order to transmit data block-by-block (chunks). The
parameter chunk can be a character string or byte stream. If the data is a character string, the parameter
determines encoding, and then how these are converted in bytes. The default value is “utf-8”. The callback
method callback is called, if the data was sent.

 T he method serves for sending data on the lowest level. No processing of contents in any form takes

place here.

The method returns true if the data was handed over to the internal buffer, false is returned if the data
remained in the memory. “drain” is produced, if the buffer is empty again.

With response.addTrailers(headers), head fields are attached to the end of the message. That can be
done only with data, which is supplied to the computer field.

1 response.writeHead(200, { 'Content-Type': 'text/plain',
2 'Trailer': 'Content-MD5' });
3 response.write(fileData);
4 response.addTrailers({
5 'Content-MD5': "7895bf4b8828b55ceaf47747b4bca667"
6 });
7 response.end();

With “response.end” it is communicated that the transmission is terminated. This method must always
be called.

response.end([data][, encoding][, callback])

If data is indicated internally, response.write(data, encoding) is called. The callback function is
called if all data was sent.

Class http.ClientRequest
An instance of this class is provided through http.request(). This is the requirement object. The head
fields are thereafter still alterable with the methods setHeader(name, value), getHeader(name), and
removeHeader(name). Node is in this case the client, which sends requests to another server.

In order to get the answer of the produced and sent request, you hand an event treatment function
over for the event response. The event returns an instance of the class IncomingMessage. If the answer
should contain data, it can be accessed with the event data. Alternatively you can listen to it with the event
readable and then read it actively with the event response.read().

Chapter 4 ■ The Most Important Node Modules

58

  Node does not check whether the information in Content-Length is correct and fits with the content.

Do not rely on this value!

 1 var http = require('http');
 2 var net = require('net');
 3 var url = require('url');
 4
 5 // Create proxy for tunnel
 6 var proxy = http.createServer(function (req, res) {
 7 res.writeHead(200, {'Content-Type': 'text/plain'});
 8 res.end('okay');
 9 });
10 proxy.on('connect', function(req, cltSocket, head) {
11 // Connect previous server
12 var srvUrl = url.parse('http://' + req.url);
13 �var srvSocket = net.connect(srvUrl.port, srvUrl.hostname, 14

function() {
15 cltSocket.write('HTTP/1.1 200 Connection Established\r\n' +
16 'Proxy-agent: Node-Proxy\r\n' +
17 '\r\n');
18 srvSocket.write(head);
19 srvSocket.pipe(cltSocket);
20 cltSocket.pipe(srvSocket);
21 }); // End function
22 });
23
24 // Proxy runs now
25 proxy.listen(1337, '127.0.0.1', function() {
26
27 // Anforderung erstellen
28 var options = {
29 port: 1337,
30 hostname: '127.0.0.1',
31 method: 'CONNECT',
32 path: 'www.google.com:80'
33 };
34
35 var req = http.request(options);
36 req.end();
37
38 req.on('connect', function(res, socket, head) {
39 console.log('got connected!');
40
41 // Anforderung über Tunnel
42 socket.write('GET / HTTP/1.1\r\n' +
43 'Host: www.google.com:80\r\n' +
44 'Connection: close\r\n' +
45 '\r\n');

Chapter 4 ■ The Most Important Node Modules

59

46 socket.on('data', function(chunk) {
47 console.log(chunk.toString());
48 });
49 socket.on('end', function() {
50 proxy.close();
51 });
52 });
53 });

A further event must be treated if necessary: upgrade. The callback function has the following signature:

function (response, socket, head)

An upgrade is necessary if the client liked to change the protocol, for example, from HTTP 1.1 to HTTP
2.0 or to WebSockets.

 1 var http = require('http');
 2
 3 // Create an HTTP server
 4 var srv = http.createServer(function (req, res) {
 5 res.writeHead(200, {'Content-Type': 'text/plain'});
 6 res.end('okay');
 7 });
 8 srv.on('upgrade', function(req, socket, head) {
 9 socket.write('HTTP/1.1 101 Web Socket Protocol Handshake\r\n' +
10 'Upgrade: WebSocket\r\n' +
11 'Connection: Upgrade\r\n' +
12 '\r\n');
13
14 socket.pipe(socket); // Echo zurück
15 });
16
17 // now that server is running
18 srv.listen(1337, '127.0.0.1', function() {
19
20 // make a request
21 var options = {
22 port: 1337,
23 hostname: '127.0.0.1',
24 headers: {
25 'Connection': 'Upgrade',
26 'Upgrade': 'websocket'
27 }
28 };
29
30 var req = http.request(options);
31 req.end();
32
33 req.on('upgrade', function(res, socket, upgradeHead) {
34 console.log('got upgraded!');

Chapter 4 ■ The Most Important Node Modules

60

35 socket.end();
36 process.exit(0);
37 });
38 });

The event continue arises if the server sends a 100 Continue, which usually is a reaction to the request
Expect: 100-continue. This is the request for the client that the data of the message may be sent.

With request.flushHeaders(), a method is available which sends the head fields actively. Normally,
Node buffers head fields and sends these not immediately if they are defined. Buffering serves the
optimization, so that all head fields fit ideally into a TCP package. With flush() and flushHeaders(), the
optimization mechanism is ignored.

The actual writing of the data is done by request.write(chunk[, encoding][, callback]) with
block-by-block (chunk) sending of the data. The head field [‘Transfer-Encoding’, ‘chunked’] should be used in
order to show the receiving station that the blocks are used for this to work.

The argument chunk can be a buffer or a character string. The callback function is called if the data was
sent.

With request.end([data][, encoding][, callback]), the requirement is terminated. If parts of the
data were not sent yet, “flush” is forced. If blocks were used, now the final sequence “0\r\n\r\n” is sent.

With data the result is identical to the call of request.write(data, encoding), followed by
request.end(callback). The callback function is called if the data was sent.

With request.abort(), the requirement can be canceled. With request.setTimeout(timeout[,
callback]), the timeout value is specified.

http.IncomingMessage
An arriving message of the type IncomingMessage is produced by http.Server or http.ClientRequest. The
object is handed over as the first argument request and/or response of the event. The object implements a
readable stream, and some further methods and features, as well.

With the event close, it is shown that the connection was closed. This event can occur only once.
The feature message.httpVersion shows which HTTP version was used. That is, either “1.1” or “1.0”,

etc. To get access to the version details, response.httpVersionMajor and response.httpVersionMinor can
be of help.

The head fields can be selected over message.headers. Head fields are always internally marked with
small letters. The output means console.log(request.headers); and produces the following JSON object:

1 {
2 'user-agent': 'curl/7.22.0',
3 host: '127.0.0.1:8000',
4 accept: '*/*'
5 }

If you want to read the head fields directly, without the treatment of Node, message.rawHeaders
would be the right choice. It is interesting here that this is no listing with pairs of keys, but an array with
alternatively head fields and their values.

 1 [
 2 'user-agent',
 3 'this is invalid because there can be only one',
 4 'User-Agent',
 5 'curl/7.22.0',
 6 'Host',

Chapter 4 ■ The Most Important Node Modules

61

 7 '127.0.0.1:8000',
 8 'ACCEPT',
 9 '*/*'
10]

In the end event (and only there) the message.trailers and message.rawTrailers can be queried
in blocks (chunks) and transferred. By means of Trailer, block-by-block the messages will correctly be put
together.

A temporal delimitation of the processing of the message can be achieved with
message.setTimeout(msecs, callback). The information of the time effected is in milliseconds, after the
expiration callback is called.

The used HTTP verb can be inferred from the feature message.method. In message.url, the URL stands
for the requirement. These features function only if the object comes from http.Server. The following
requirements should serve as examples:

1 GET /status?name=ryan HTTP/1.1\r\n
2 Accept: text/plain\r\n
3 \r\n

In request.url stands then: “/status?name=ryan” For processing, the URL serves parse:

1 var url = require('url');
2 console.log(url.parse('/status?name=ryan'));

The following output is produced:

1 {
2 href: '/status?name=ryan',
3 search: '?name=ryan',
4 query: 'name=ryan',
5 pathname: '/status'
6 }

The processing of Querystring can take place in a further step:

1 var url = require('url');
2 console.log(url.parse('/status?name=ryan', true));

The following output is produced:

1 {
2 href: '/status?name=ryan',
3 search: '?name=ryan',
4 query: { name: 'ryan' },
5 pathname: '/status'
6 }

The status code, which is used during the answer of the messages, stands in message.statusCode. The
suitable text for that can be found in message.statusMessage. The code is three-figure HTTP code, e.g., 404.
This value is only reachable if the object comes from http.ClientRequest.

By means of message.socket access to net.Socket objects exists, which is assigned to the used connection.

Chapter 4 ■ The Most Important Node Modules

62

HTTPS
HTTPS is HTTP, which continues on TLS (Transport Layer Security). The actual TLS version corresponds to
the earlier standard SSL 3.0. TSL is the successor of SSL.

If HTTPS is used, then you can determine the authentication data of the clients with:
request.connection.verifyPeer() and request.connection.getPeerCertificate().

The server is provided as follows with HTTP:

https.createServer(options[, requestListener])

 1 // Abruf: https://localhost:8000/
 2 var https = require('https');
 3 var fs = require('fs');
 4
 5 var options = {
 6 key: fs.readFileSync('test/fixtures/keys/agent2-key.pem'),
 7 cert: fs.readFileSync('test/fixtures/keys/agent2-cert.pem')
 8 };
 9
10 https.createServer(options, function (req, res) {
11 res.writeHead(200);
12 res.end("hello world\n");
13 }).listen(8000);
14 Or
15
16 var https = require('https');
17 var fs = require('fs');
18
19 var options = {
20 pfx: fs.readFileSync('server.pfx')
21 };
22
23 https.createServer(options, function (req, res) {
24 res.writeHead(200);
25 res.end("hello world\n");
26 }).listen(8000);

The used methods and features resemble to a large extent those of the module http:

 1 var https = require('https');
 2
 3 var options = {
 4 hostname: 'encrypted.google.com',
 5 port: 443,
 6 path: '/',
 7 method: 'GET'
 8 };
 9
10 var req = https.request(options, function(res) {
11 console.log("statusCode: ", res.statusCode);

Chapter 4 ■ The Most Important Node Modules

63

12 console.log("headers: ", res.headers);
13
14 res.on('data', function(d) {
15 process.stdout.write(d);
16 });
17 });
18 req.end();
19
20 req.on('error', function(e) {
21 console.error(e);
22 });

The argument options has further options, unlike “HTTP”:

•	 pfx: certificates, private keys and information of the certificate authority (CA). The
default value is “null”.

•	 key: the private key. The default value is “null”.

•	 passphrase: the pass phrase for the private key. The default value is “null”.

•	 cert: public x509 certificate. The default value is “null”.

•	 ca: an array of certificate authority, which are inquired, in order to dissolve the host

•	 ciphers: a character string which merges or excludes the used ciphers. See
OpenSSL2 to take a look at how this is designed.

•	 rejectUnauthorized: If true, the certificate will be checked about its certificate
authority. An error even arises if the examination fails. The default value is true. You
should switch this off in test environments if necessary. This examination takes place
on the level of the connection establishment, before the HTTP request was sent.

•	 secureProtocol: the method, for example TLSv1. Available methods stand in
“SSL_METHODS”.

 1 var options = {
 2 hostname: 'encrypted.google.com',
 3 port: 443,
 4 path: '/',
 5 method: 'GET',
 6 key: fs.readFileSync('test/fixtures/keys/agent2-key.pem'),
 7 cert: fs.readFileSync('test/fixtures/keys/agent2-cert.pem')
 8 };
 9 options.agent = new https.Agent(options);
10
11 var req = https.request(options, function(res) {
12 ...
13 }

2http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

Chapter 4 ■ The Most Important Node Modules

64

You can also this without an “agent” object.

 1 var options = {
 2 hostname: 'encrypted.google.com',
 3 port: 443,
 4 path: '/',
 5 method: 'GET',
 6 key: fs.readFileSync('test/fixtures/keys/agent2-key.pem'),
 7 cert: fs.readFileSync('test/fixtures/keys/agent2-cert.pem'),
 8 agent: false
 9 };
10
11 var req = https.request(options, function(res) {
12 ...
13 }

Handling Files and Paths
Node can access files directly over the appropriate modules and all typical operations on these files as well
as on paths and folders.

Access to the File System
The file system access under Node is made available by the module fs. All calls can take place both
synchronously and asynchronously. While for client page scripts (in principle only asynchronous) one of the
calls is meaningful, this can be regarded on the server somewhat differently. Since the result of an action is
possibly sending JSON or HTML, one usually waits anyway, until the result is present. Asynchronous calls
do not have an advantage. However, if your environment is strongly burdening and scripts have noticeable
running times, then Node will only always work on a request and then all synchronous actions for these will
occur. All other requests wait. Now, if a script waits substantially for a file operation for this part, then the
process is altogether slowed down.

 Synchronously or Asynchronously  You rarely do something wrong with asynchronous calls, even if no

noticeable effect arises. Program always asynchronously, unless there are good reasons to do it differently and
you know the results that will happen from it.

Asynchronous calls always use a callback function as last argument. The callback functions have
different signatures. However, it is common that the first argument of the callback function is an exception
object (exception), which shows errors. In case of success, this object is undefined or “null,” so that a simple
test with if(!exception) can start.

Synchronous calls always produce an immediate exception. If an error arises, use try/catch for treating
the error conditions.

Chapter 4 ■ The Most Important Node Modules

65

Here is a first example of the asynchronous use:

1 var fs = require('fs');
2
3 fs.unlink('/tmp/hello', function (err) {
4 if (err) throw err;
5 console.log('successfully deleted /tmp/hello');
6 });

Here, the same example of the synchronous use (consider the suffix Sync in line 3):

1 var fs = require('fs');
2
3 fs.unlinkSync('/tmp/hello');
4 console.log('successfully deleted /tmp/hello');

Asynchronous calls don’t return in deterministic time. If you start several calls, the sequence is not
guaranteed with the return. The following example is therefore error-prone:

1 fs.rename('/tmp/hello', '/tmp/world', function (err) {
2 if (err) throw err;
3 console.log('renamed complete');
4 });
5 fs.stat('/tmp/world', function (err, stats) {
6 if (err) throw err;
7 console.log('stats: ' + JSON.stringify(stats));
8 });

Here it can happen that the call of fs.stat in line 5 is successful, before the renaming in line one with
“fs.rename” has been finished. Therefore, you should concatenate several asynchronous calls that connect
with each other:

1 fs.rename('/tmp/hello', '/tmp/world', function (err) {
2 if (err) throw err;
3 fs.stat('/tmp/world', function (err, stats) {
4 if (err) throw err;
5 console.log('stats: ' + JSON.stringify(stats));
6 });
7 });

You can work with absolute or relative paths. If you work with relative paths, it should be clear that the
origin of the current listing is the process in which the script is implemented. This can be determined with
process.cwd(). Usually this is Node core.

Sometimes it can occur that you start the action, but don’t need the result. Then you can omit the
callback function. But if an error occurs now, the entrance to the exception object will be missing. In order to

Chapter 4 ■ The Most Important Node Modules

66

arrive nevertheless at this error message, you use the environment variable NODE_DEBUG. The following script
shows how this takes place:

File: script.js

1 function bad() {
2 require('fs').readFile('/');
3 }
4 bad();

Use the script as follows:

1 $ env NODE_DEBUG=fs node script.js

The following output occurs:

 1 fs.js:66
 2 throw err;
 3 ^
 4 Error: EISDIR, read
 5 at rethrow (fs.js:61:21)
 6 at maybeCallback (fs.js:79:42)
 7 at Object.fs.readFile (fs.js:153:18)
 8 at bad (/path/to/script.js:2:17)
 9 at Object.<anonymous> (/path/to/script.js:5:1)
10 <etc.>

This certainly only succeeds if the path cannot really be read. In the example, the root “/” is accessed.

Functions for the File Access
This section shows the most important file access functions. Here, only the asynchronous methods are
shown. Most methods also exist synchronously. They then have the suffix “Sync” in the name (“rename”
versus “renameSync”). With the synchronous methods, the callback function is void.

fs.rename(oldPath, newPath, callback) renames a file. With fs.ftruncate(fd, len, callback),
you empty a file. Either a file description object or a path for the file is used for this.

The function group fs.fchown(fd, uid, gid, callback) and fs.lchown(path, uid, gid, callback)
sets the owner of a file. Either a file description object is used or the path for the file. The group fs.fchown(fd,
mode, callback), fs.chown(path, mode, callback) sets rights to a file. Either a file description object is used or
the path for the file.

 T hese functions are applicable only on Unix systems.

  On Windows you now use the function icals if the setting of rights is necessary, which you can access

in the Windows command line, e.g., as follows: icacls onlyread.txt /inheritance:r/grant %username%:r

With fs.fstat(fd, callback), fs.stat(path, callback), or fs.lstat(path, callback), you
determine information about a file. The callback function has two arguments: err and stats. stats is of the
type fs.Stats. Istat processes the link if it’s a symbolic link, not the goal of the link.

Chapter 4 ■ The Most Important Node Modules

67

With fs.realpath(path[, cache], callback), you determine the genuine path of a file.

1 var cache = {'/etc':'/private/etc'};
2 fs.realpath('/etc/passwd', cache, function (err, resolvedPath) {
3 if (err) throw err;
4 console.log(resolvedPath);
5 });

The method fs.unlink(path, callback) deletes a file. With fs.rmdir(path, callback), a folder is
removed. The callback function does not have additional arguments.

With fs.mkdir(path[,mode],callback), a folder is produced. That access to the folder is specified with
0777 (all to have all rights).

fs.readdir(path, callback) serves to read a folder and place all files in there as an array. The special
folders “.” and “..” are not taken up.

The method fs.close(fd, callback) closes an opened file. The callback function does not have
additional arguments. fs.open(path, flags[,mode], callback) opens a file for access. The argument
flags has the following meaning:

•	 “r”: open for reading. An exception releases if the file cannot be opened.

•	 “r+”: open for reading and writing. An exception releases if the file cannot be opened
or described.

•	 “rs”: opens for synchronous access and by avoidance local caches. This can be
meaningful with external storage systems; however, it affects the performance
negatively.

•	 “rs+”: opens for synchronous writable access and by avoidance local Caches. This
can be meaningful with external storage systems; however, it affects the peformance
negatively.

•	 “w”: opens for writing and if the file does not exist, it is produced. If it exists, it is
emptied.

•	 “wx”: opens for writing and, if the file exists, an exception is produced

•	 “w+” opens for reading and writing. If the file does not exist, it is produced. If it exists,
it is emptied.

•	 “wx+” opens for reading and writing. If the file exists, an exception is produced.

•	 “a”: opens for writing and, if the file exists, new data is attached

•	 “ax”: opens for writing and, if the file exists, an exception is released

•	 “a+”: opens for reading and writing and, if the file exists, new data is attached

•	 “ax+”: opens for reading and writing and, if the file exists, an exception is released

mode sets the right of access, if the file is produced. The default value is 0666, writing and reading.
The timestamp of a file can be changed with fs.utimes(path, atime, mtime, callback) and/or with

fs.futimes(fd, atime, mtime, callback).
The writing of data happens with fs.write(fd, buffer, offset, length[,position], callback).

buffer delivers bites, position the position yet to be.
written is offset, the position in the buffer. The callback function indicates the written bytes, once the

number and the buffer. Alternatively fs.write(fd, data[, position[, encoding]], callback) is used.

Chapter 4 ■ The Most Important Node Modules

68

Reading from data takes place with a description object fd by the means of fs.read(fd, buffer,
offset, length, position, callback):

•	 buffer is the buffer, where the data is written.

•	 offset is the starting point of the buffer.

•	 length is the amount of the readable bytes.

•	 position is the position in the file.

The callback function indicates the number of really read bytes and the buffer.
Directly works with a file with fs.readFile(filename[,options], callback).

1 fs.readFile('/etc/passwd', function (err, data) {
2 if (err) throw err;
3 console.log(data);
4 });

The writing to a file takes place with fs.writeFile(filename, data[,options],callback).

1 fs.writeFile('message.txt', 'Hello Node', function (err) {
2 if (err) throw err;
3 console.log('It\'s saved!');
4 });

With fs.appendFile(filename, data[,options],callback) it will be attached directly to existing files.

1 fs.appendFile('message.txt', 'data to append',
2 function (err) {
3 if (err) throw err;
4 console.log('The "data to append" was appended to file!');
5 });

The method fs.watch(filename[,options][,listener] serves to supervise a file during the process
of renaming. The method returns an instance of the type fs.FSWatcher.

 Platform Dependence T his method is not available on all platforms. It uses operating system functions,

which differ slightly:

•	 Linux uses inotify.

•	 BSD uses kqueue.

•	 OS X uses kqueue for files and FSEvents for folders.

•	 Windows uses ReadDirectoryChangesW (Win32 API).

Chapter 4 ■ The Most Important Node Modules

69

1 fs.watch('somedir', function (event, filename) {
2 console.log('event is: ' + event);
3 if (filename) {
4 console.log('filename provided: ' + filename);
5 } else {
6 console.log('filename not provided');
7 }
8 });

There is a method fs.exists(path, callback), which tests if the file exists. However, the use of this is
not recommended.

 Caution with Test Functions  Node is a multi-user environment. If a process deletes files and another

tests them, then the processes can overlap in such a way that the deletion takes place immediately after the
test with “exists” starts. Then the process of the code suggests that the file is present, which is not the case.
This is not controllable and leads to so-called “race conditions”—[Race Conditions] (https://de.wikipedia.
org/wiki/Race_Condition). It is better if you directly access the file and treat errors with “try/catch” blocks.

With fs.access(path[, mode], callback), you test the rights of access for the current user. The return
contains values from a list of constants:

•	 fs.F_OK: The file is visibile. It says nothing about the rights.

•	 fs.R_OK: readable

•	 fs.W_OK: writable

•	 fs.X_OK: executable

1 fs.access('/etc/passwd', fs.R_OK | fs.W_OK, function(err) {
2 util.debug(err ? 'no access!' : 'can read/write');
3 });

Functions for handling Streams
Streams process data byte by byte, which usually is more efficient.

 Streams S treams are a paradigm in programming. They make data available as sequence during one

period. More to the theory can be found on Wikipedia.3

3https://en.wikipedia.org/wiki/Stream_(computing)

https://de.wikipedia.org/wiki/Race_Condition
https://de.wikipedia.org/wiki/Race_Condition

Chapter 4 ■ The Most Important Node Modules

70

The call fs.createReadStream(path[, options]) returns a ReadStream object. The argument options
has these default values:

1 {
2 flags: 'r',
3 encoding: null,
4 fd: null,
5 mode: 0666,
6 autoClose: true
7 }

1 fs.createReadStream('sample.txt', {start: 90, end: 99});

With fs.createWriteStream(path[,options]), a stream to write is provided. The object is of the type
WriteStream.

1 {
2 flags: 'w',
3 encoding: null,
4 fd: null,
5 mode: 0666
6 }

71© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_5

CHAPTER 5

Introduction to Express

Express is the middleware component of a Node application. Thus, the switching layer between the client
and the back end is meant with its persistence functions. The core task is the routing.

Installation
A condition for Express is a functioning Node environment. If this is available, you can create your first
application. The operational sequence shown here makes Express available; however, you must provide the
actual infrastructure manually. In the section ** application structure **, you find information about how the
express generator can be used in order to simplify this.

First, a folder for the application is created:

1 mkdir SimpleApp
2 cd SimpleApp

With “nmp init”, you then produce a package.json file. Thus, the application and its dependence are
described.

1 npm init

The information for the description file is queried in the dialogue. In most cases it is to be transferred to
order the standards. Thus, simply press ENTER several times, except for the option “entry point.” Here you
enter the following:

1 entry point: app.js

This determines that the starting file, thus the beginning of the application, is app.js. You can naturally
select each name.

Now Express is being installed and received in the list of dependence (option “–save”). If necessary,
add the option -g to make Express globally available. That is meaningful, if you plan on developing further
proects with Node.

1 $ npm install express --save

Chapter 5 ■ Introduction to Express

72

Application structure
Express supplies a finished application structure. With the installation, not only is the Express module
available, but also the finished folder structure can be provided with only one instruction.

However, you do not have to use this. It is quite possible to provide an application very easily by only
constructing one file.

With the installation in the previous section, it was said during the initialization that the starting file is
named app.js. However, this could now look as follows:

 1 var express = require('express');
 2 var app = express();
 3
 4 app.get('/', function (req, res) {
 5 res.send('Hallo Express!');
 6 });
 7
 8 var server = app.listen(3000, function () {
 9 var host = server.address().address;
10 var port = server.address().port;
11
12 console.log('I listen on http://%s:%s', host, port);
13 });

Here Express is first merged and provides with the constructor call an application App. Then a route
is specified, the master route “/”. All other calls lead to an HTTP error 404 (not found). Then the terminal is
determined, here the port 3000 on the local system (line 8). Now if an HTTP request arrives, the function of
the suitable route is implemented. In the example the text “hello express!” is spent afterwards. HTML does
not return this script. Everything must be settled separately. However, it already concerns a correct HTML
communication.

Figure 5-1.  Interactive installation (Ubuntu)

Chapter 5 ■ Introduction to Express

73

The express generator
For producing an application, the express generator can be used. This is available as a further NPM package.

1 $ npm install express-generator -g

In addition, the generator has some options, but also produces a meaningful environment without
further details.

The standard Template engine is Jade.
The CSS Precompiler can be one of the following (name and, in parentheses, the one which can be used

as option):

•	 LESS (less)

•	 Stylus (stylus)

•	 Compass (compass)

•	 SASS (sass)

Without information, simple CSS is expected.

LESS or SASS
In this work, LESS (http://lesscss.org) is used. That is, in principle irrelevant. If you already have
a favorite, use that one. If both are new, then you might become somewhat happier with LESS at the
beginning, since it is simpler and more common (more sources for learning and less expenditure). However,
most professionals use SASS instead (http://sass-lang.com).

The generator also produces the master directory of the application, so that you should begin in the
superordinate listing:

1 express PortalApp
2 cd PortalApp
3 npm install

With this instruction sequence, an application with the name *PortalApp is provided in the folder
PortalApp. Now the application is started in the Debug mode:

set DEBUG=PortalApp & npm start

Table 5-1.  Options of the express generators

Option Meaning

–version Version

–pug Pug Engine support

-e, –ejs EJS-Engine (see www.embeddedjs.com)

-hbs Handlebars Engine

-H, –hogan Hogan Engine (www.hogan.js)

-c, –css [CS] CSS Precompiler

-f, –force Force files in nonempty folders

http://lesscss.org/
http://sass-lang.com/
http://www.embeddedjs.com
http://www.hogan.js/

Chapter 5 ■ Introduction to Express

74

The standard address is http://localhost:3000. The web server is based on Node and further settings
at the operating system are not necessary. You must neither have ISS nor Apache nor any other server
available for this. It just functions.

 Windows U nder Windows Sockets for HTTP, communication from the Kernel driver http.sys are made

available. Node registers the Port 3000 there. That succeeds only if the port is free. Thus it can happen that
Node collides with a likewise installed and active IIS or Apache web server.

 Only for the start  It is smart to begin with the structure produced by the generator and start with

further modifications at a later time if the need for it is there.

The following structure develops according to standard:

Figure 5-2.  Structure, which the generator puts on

http://localhost:3000/

Chapter 5 ■ Introduction to Express

75

Routing in Node application
The Routing manufactures a connection between a URL and an implementing instance (method or
module). Every time an application delivers more than one site, routing comes into play. That also applies
to Single Page Applications (SPA). Because with the conditions of today’s browsers you are well advised if
everything is pressed into only one site. The rough raster of the application is waved better in several server
page modules, which can be implemented well for their part in each case as SPA.

This has a completely different meaning if no SPA is provided. Then it’s practically about steering
the distribution of each single page. Apart from the sites themselves, the routing then also deals with the
parameters, which are provided as part of the URL and which must be supplied with implementing methods.

Routing in Express
If more sites of an application are added, more routes are needed. In addition, serves the express router. This
will be more comprehensively treated later on. However, routes do not only deliver finished sites. If a part
of the application in the Single Page Style (SPA) is developed, use Express in order to provide the routes for
their client page programmed calls. For example, this can take place with AngularJS. Express then illustrates
a RESTful back end for AngularJS.

 RESTful  With RESTful, a complete interface based on REST is used. Thus all typical procedures become

regarding resources—reading, changing, producing and deleting—and completed over the suitable HTTP
instructions.

Only the combination of server page technology and client page elements constitutes a modern
Web application.

The Express Router
The Express Router is a pure routing module without many extras.

There is no explicit support of Views or pre-defined settings. However, there are rudimentary APIs like
use(), get(), param() and route(). There are different possibilities of using the router. The use of get() is
thereby only one variant. The following example application uses these and some other techniques. At the
end of the text you’ll find a complete description of the entire API.

 API AP I stands for Application Programming Interface and designates a clearly defined interface, over

which applications can access functions of a library or a framework.

An example application
The example application has some techniques, which can be used meaningfully in practice:

•	 simple routes, e.g., to the homepage

•	 sectional routes, e.g., for the Admin range

Chapter 5 ■ Introduction to Express

76

•	 use of the middleware for the logging

•	 use of parameters

•	 use of the middleware for the validation of parameters

•	 implementation of a registration function with distinction of GET and POST

•	 validation of a parameter for a certain route

Now, the term middleware has already been used several times. But why is it called that and where is
the connection with Express?

Middleware – the mediator layer
The name middleware is splendidly selected. The functions placed here are implemented after the arrival
of the request by the client and before the forwarding of an answer. Thus, they have relevant influence on
the processing of the request. An application is the logging of requests. These take place in the middleware,
without consideration for the function of the other components. They are transparent and in the
background.

 Middleware  Middleware (service layer or intermediate’s application) designates application-neutral

programs, which mediate between applications in order to hide the complexity of these applications and their
infrastructure in computer science. One can view middleware as a kind distribution platform. A middleware supports
communication between processes. In Express, the middleware is the meditator between request and answer.

Basic routes
The route to the home page was already defined. These, like all other routes, are defined in the file app.js.
This file is in the best place in the project, as long as the number of routes is visible. Since with a Single Page
Application (SPA) only the rough raster of the routes is used on the sever, this is correct. AngularJS then deals
with the routes on the client site and regulates the inquiry-specific partial sighting by means of parameters.

Defined routes react to specific paths and HTTP verbs such as GET, POST, PUT/PATCH or DELETE. This
functions—with or without RESTful actions—as long as only one handful of routes is needed.

Now it can occur that nevertheless more complex routes become necessary. Complex web sites have
not only a range, but also back-end functions, administration ranges, import and export, reporting, and
much more. Each range can have innumerable routes.

 Simplification of the examples T he following examples only send simple data back instead of

complete Views, in order to arrange the code more readably. Replace the returns through appropriate View calls
in practice. The starting point is the function express.Router().

The function express.Router() is a kind of mini-application. You thereby produce an instance of the
router and define for this instance some routes.

Chapter 5 ■ Introduction to Express

77

Listing 5-1.  app.js

 1 // Die Applikationsinstanz wird gebildet
 2 var express = require('express');
 3 var app = express();
 4
 5 // Eine neue Instanz des Routers wird erstellt
 6 var adminRouter = express.Router();
 7
 8 // The Admin-Site (http://localhost:3000/admin)
 9 adminRouter.get('/', function(req, res) {
10 res.send('Homepage of admin area!');
11 });
12
13 // The User-Site (http://localhost:3000/admin/users)
14 adminRouter.get('/users', function(req, res) {
15 res.send('show all users!');
16 });
17
18 // The article-Seite (http://localhost:3000/admin/article)
19 adminRouter.get('/article', function(req, res) {
20 res.send('Show all articles!');
21 });
22
23 // Assign routes to application
24 app.use('/admin', adminRouter);
25
26 // Der Server
27 var server = app.listen(3000, function() {
28 console.log('Server started');
29 });

The routes are basically provided in an isolated manner and then assigned as a group of the application.
Thereby, the paths are added.

The master path is determined by the method “use.” The instruction could also look as follows:

app.use('/app', router)

Such mini-applications can be assigned several times and thus can win you some clarity over things.
Logically separate ranges, as for example Views and REST API, can be kept apart now and can cleanly be
separated in the source code.

The Router Middleware (router.use())
The middleware generally intervenes before the actual processing.

This is meaningful for a set of tasks:

•	 authentication

•	 authorization

•	 logging

•	 cache

Chapter 5 ■ Introduction to Express

78

 Infrastructure use! A bove all, tasks like the authentication should never take place in the password,

but take off from the infrastructure.

The definition of the functions takes place in the same order in which it is supposed to be used later
on. The facility takes place after the production of the application before assigning the routes. The following
example shows how all requests on the console are spent.

1 // Funktion, die auf jede Anfrage reagiert
2 adminRouter.use(function(req, res, next) {
3 // Konsolenausgabe
4 console.log(req.method, req.url);
5 // Weiter mit der regulären Verarbeitung
6 next();
7 });

The call of the method next() is crucial. Therewith, Express is being told that the method was
processed and the regular processing can continue. adminRouter.use() defines the middleware function.
Actual functionality is to be separately implemented and thus pure JavaScript.

The sequence of the registration of the functions also determines the order of the processing. After the
route there is no place for the middleware functions, because the processing of the request ends there with
the sending of the data.

Structure Routes
So far it was already shown how routes can be assigned in sections.

The approach is similar with most projects. The home page with its most important link is a range, the
administration another. An API—RESTful or not—should always be led separately. Thus, you have enough
clearance in order not to lose the overwie with extensions.

The definition of the ranges then looks like this:

1 app.use('/', basicRoutes);
2 app.use('/admin', adminRoutes);
3 app.use('/api', apiRoutes);

Routes with Parameters (/hello/:id)
The call of a site alone is usually not sufficient. If data from databases is called up, parameters must be
transferred. The structure of the URL is almost arbitrary. However, they must consider the borders of HTTP.
A URL is limited on 2000 indications. In addition, a complex URL makes you want to play with it, as it’s
clearly visible and easy to manipulate. The more complex the URL, the more highly is the expenditure for the
validation of the parameters.

If you call data up from databases, it offers to limit the primary key for all calls. That leads the data in
the business logic to it (from connected tables or documents); thus, they’ll possibly be loaded again. In
delivering such requests, databases are very good and the simplification with the organization of the server
code is nearly never more valuable. Always call their primary parameter id.

Chapter 5 ■ Introduction to Express

79

In the description of the route, parameters are introduced with a colon:

1 adminRouter.get('/users/:id', function(req, res) {
2 res.send('Benutzer-ID: ' + req.params.id + '!');
3 });

The router recognizes this and transfers the values into an object with the name params, which is part
of the requirement object req.

There, the parameters are available as features. The URL for this example looks as follows:

http://localhost:3000/admin/users/123

The path section admin was defined in the router. The specific path specifies user and 123 to the feature
id to hand over. The colon serves the recognition and is not part of the path.

Because of the high susceptibility for manupulations, parameters must always be validated. Here again
the middleware layer comes into play. It makes a method called param() available, to which the parameters
are handed over before they are supplied to the processing.

Router Middleware for Parameters (.param)
Parameters must always be validated by high susceptibility for manipulations. Here again the middleware
layer comes into play. It makes a method called param(), to which the parameters are handed over, before
they are supplied to the processing.

The following example shows how the parameter id is checked:

Listing 5-2.  param_sample.js

 1 adminRouter.param('id', function(req, res, next, name) {
 2 console.log('Validierung für ID ' + id);
 3 var id = Number(req.params.id);
 4 if (!id){
 5 // Fehlerbehandlung
 6 } else {
 7 // Ablage des geprüften Wertes
 8 req.id = id;
 9 // Weiter mit Verarbeitung
10 next();
11 }
12 });
13
14 adminRouter.get('/users/:id', function(req, res) {
15 res.send('ID: ' + req.id + '!');
16 });

A valid URL is here:

http://localhost:3000/admin/users/123

How the error handling looks here depends on the setting of tasks. A web site for (human) users
requires reliably different reactions than a RESTful API, which must possibly react to technical errors.

http://localhost:3000/admin/users/123
http://localhost:3000/admin/users/123

Chapter 5 ■ Introduction to Express

80

Several Routes (app.route())
The function app.route() is a direct call of the router and corresponds to the call express.Router().
However, the function has in addition the possibility to create more routes in one step and to provide several
actions over only one route. The latter avoids that with hundreds of actions. Likewise, many routes must be
provided.

In the following example, a /login route is defined. To these react two methods: once the Verb GET is
evaluated, once POST.

Listing 5-3.  login_sample.js

1 app.route('/login')
2 .get(function(req, res) {
3 res.send('Das Anmeldeformular.');
4 })
5 .post(function(req, res) {
6 console.log('Anmelden');
7 res.send('Anmeldung verarbeitet!');
8 });

app is in this example the central application object and the definition usually takes place in the
app.js file.

The approach is typical for all kinds of forms. If the page in the browser with http://localhost:3000/
login is called, the browser produces a GET request. The user sees the form and fills it out. It sends it then
with the transmission button (submit). The browser now provides a POST request and adds the form data.

 Where is the HTML?  In the example, the necessary HTML is not shown in order to keep the listing

small. Simply write the standard form with HTML. There are no features for the processing with express.

One may now speak of the actions of a route. In the last example there were two actions. A RESTful API
could react to further Verbs with the same route.

http://localhost:3000/login
http://localhost:3000/login

81© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_6

CHAPTER 6

Introduction to Pug

Pug is a template engine for Express, the middleware and routing solution for Node.js. It is the standard for
Express. If you argue intensively with Node.js and Express, no way leads past Pug.

Overview
Pug uses a simplified representation of the HTML site by simple text instructions. These correspond in a
practical way to the names of the HTML tags. Since HTML develops a hierarchy and Pug knows no closing
tag, the tree structure must develop differently. In addition, Pug uses identations in the text editor. 2 blanks
show that the following element is a child element.

 Editor configuration  For Pug to function, you must adjust the text editor to an indentation by the TAB

key by 2 indentations.

Preparation
Pug presupposes that you work with node.js and use the middleware Express. The simplest way to a
functioning environment goes over gradual processing of the components of a node.js installation. This was
described already in the previous chapters. If the environment consists of Node and Express, the occupation
with Pug has nothing more in its way.

Chapter 6 ■ Introduction to Pug

82

Place a file with a name similar to index.js in the newly created listing application. It has the
following contents:

1 var express = require('express');
2 var app = express();
3
4 app.get('/', function (req, res) {
5 res.send('Hello Express!');
6 });
7
8 var server = app.listen(3000, function () {});

Now start the Node server:

1 npm start

Figure 6-1.  Description of the application

Figure 6-2.  Start the application

Now enter the following URL in the development system of your browser: *http://localhost:3000*.
You should then see the “Hello Express!” output.

http://localhost:3000/

Chapter 6 ■ Introduction to Pug

83

Application structure
Express offers a number of exciting functions. However, here I want to only deal with Pug and therefore the
manual producing and use of a view is simpler.

The simplest use of Pug consists of two components. On the one hand the first View, index.pug:

File: index.pug

1 doctype html
2 html(lang='en')
3 head
4 title= title
5 body!= body
6 h1= title

On the other hand the “Hello Express” example is changed in such a way that now instead of the static
text, the View is used (and text reads “Hello Pug”):

File: index.js

 1 var express = require('express');
 2 var app = express();
 3 app.set('view engine', 'pug');
 4
 5 app.get('/', function (req, res) {
 6 res.render('index', {
 7 title: 'Hello Pug!'
 8 });
 9 });
10
11 var server = app.listen(3000, function () {});

On the other hand Pug is agreed as standard, by which no file extensions must be indicated and the
suitable module is first loaded.

Figure 6-3.  Output of the page

Chapter 6 ■ Introduction to Pug

84

This happens through:

app.set('view engine', 'pug');

Then instead of res_send, the function res_render is used. The first parameter is the name of the View,
which can be indicated without a path (according to standard, it will be searched in view files) and without
file extension (according to standard now, pug is used). The second parameter is an object that the local
variable intends for the View. Each characteristic of the object is made available as the local variable. In the
example, that is the value of title.

Pug views
Instead of HTML, you now write the viewable sites in pug. Again, the just-used example:

File: index.pug

1 doctype html
2 html(lang='en')
3 head
4 title= title
5 body!= body
6 h1= title

On each line of the View, an HTML tag has to be there first. Instead of spelling in XML form
(‘<title></title>’), Pug takes place as simplfied representation here.

title= title

The left part is the HTML element. An equal sign follows, which determines the coding and thus the
treatment of HTML-specific entities such as “<” or “>”. Then JavaScript follows. Since a local variable with
the name title was agreed upon, this expression is written down here. Similarly, it functions with h1, which
stands underneath the body element. Handling body aims at the fact that Views (layout or master sites) is
usually assigned to the variable body (right in the expression) on content sites. Since HTML is supposed to
be taken over directly by one site, the operator != will be used but not coded.

Figure 6-4.  Output of the view

Chapter 6 ■ Introduction to Pug

85

Handling Partial Views
Partial Views permit a structuring of Views. One Pug View looks, for example, as follows:

File: index.pug

1 doctype html
2 html(lang='en')
3 head
4 title= title
5 body!= body
6 include navigation
7 h1= title

With the instruction include a further View is merged, navigation.pug. Note that this is indicated
without quotation marks and clips.

Now this navigation is provided in a further file: views/navigation.pug:

File: navigation.pug

1 div#navigation
2 a(href='/') home

Figure 6-5.  Output of script

Handling Layout Pages
A layout page is a master whose contents are determined by contents pages. That corresponds to the layout
page in ASP.NET MVC or the master page in ASP.NET.

As example, a layout page can look as follows:

File: index.pug

1 doctype html
2 html(lang='en')
3 head
4 title= title
5 body!= body
6 block content
7 include navigation

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Introduction to Pug

86

This hardly differs from the previous example. Only the “h1” element in the end is missing.

file: content.pug

1 extends index
2
3 block content
4 h1= title
5 a(href='http://www.joergkrause.de/') Jörg <Is A Geek> Krause

It refers to the layout page. Now the starting script is adapted, because Pug renders the contents site
first, which calls the layout site for its part.

file: index.js

 1 var express = require('express');
 2 var app = express();
 3 app.set('view engine', 'pug');
 4
 5 app.get('/', function (req, res) {
 6 res.render('content', {
 7 title: 'Hallo Pug!'
 8 });
 9 });
10
11 var server = app.listen(3000, function () {});

Keep the “res.render” function in mind, which now calls content instead of index (line 5).
Now the node server can be started (in the folder where the file package.json stands):

npm start
As long as the standard port was not assigned somewhere else, the browser shows the rendered HTML site now:

http://127.0.0.1:3000/

The entry point is the call of res.render with the argument of the contents site, content.pug. Then the
engine provides for the shop of the layout site and the processing. Thus, the entire procedure takes place on
the server:

http://127.0.0.1:3000/

Chapter 6 ■ Introduction to Pug

87

Figure 6-6.  Output with layout site

It is noticeable that the navigation disappeared. That is the normal behavior. Because now contents of
the body element were actually supplied by a contents page and therefore the static contents are overwritten.
Certainly there are some options here to change this behavior. This is described exactly in the language
reference.

89© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_7

CHAPTER 7

Language Components of Pug

In the following, you find a systematic language overview. The entrance to the available online information
can be found on [Github] (https://github.com/Pugjs/Pug).

Doctype
The typical HTML 5 Doctype is written as follows:

1 doctype html

The produced HTML then looks as follows:

1 <!DOCTYPE html>

Short Spellings
Because of the frequent use of Doctypes there are a few short spellings.

1 doctype html

The produced HTML then looks as follows:

1 <!DOCTYPE html>
1 doctype xml

The produced HTML then looks as follows:

1 <?xml version="1.0" encoding="utf-8" ?>

1 doctype transitional

The produced HTML then looks as follows:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http\
2 ://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

1 doctype strict

https://github.com/Pugjs/Pug

Chapter 7 ■ Language Components of Pug

90

The produced HTML then looks as follows:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www\
2 .w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

1 doctype frameset

The produced HTML then looks as follows:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://w\
2 ww.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

1 doctype 1.1

The produced HTML then looks as follows:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org\
2 /TR/xhtml11/DTD/xhtml11.dtd">

1 doctype basic

The produced HTML then looks as follows:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" "http://www.\
2 w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

1 doctype mobile

The produced HTML then looks as follows:

1 <!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN" "http:\
2 //www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

Own Doctypes
If deviating Doctypes are necessary, the following syntax can be used:

1 doctype html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"

The following HTML is provided by it:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN">

Options
The Doctypes are not only a source of information for the browser. You should absolutely take the Pug
version, because these also affect the HTML generator, for example, on handling closing tags.

Chapter 7 ■ Language Components of Pug

91

Here is the direct call of the Renderers with the Doctype “XHTML”:

1 var pug = require('pug');
2
3 // Translate
4 var fn = pug.compile('img(src="foo.png")',
5 { doctype: 'xml' });
6
7 // Rendering
8 var html = fn({});

The following HTML is provided by it:

1

But if HTML is produced, the tag won’t be closed:

1 // Compilation
2 var fn = pug.compile('img(src="foo.png")',
3 { doctype: 'html' });
4
5 // Rendering
6 var html = fn({});

The following HTML is provided by it:

1

Attributes
Attributes look as in HTML; however, the arguments are JavaScript, so that you can simply work
dynamically here.

 Server Side JavaScript N ote that JavaScript is implemented in arguments on the server and is

sending static HTML from the view of the client.

1 a(href='google.com') Google
2 a(class='button', href='google.com') Google

Translated, this looks as follows:

1 GoogleG\
2 oogle

Chapter 7 ■ Language Components of Pug

92

All usual JavaScript expressions function without problems. They are separated with “-”, so that Pug
won’t interpret them as HTML:

1 - var authenticated = true
2 body(class=authenticated ? 'auth' : 'anon')

Translated, this looks as follows:

1 <body class="auth"></body>

Several attributes can be divided for the improvement of readableness on several lines:

1 input(
2 type='checkbox'
3 name='agreement'
4 checked
5)

Translated to HTML this looks as follows:

1 <input type="checkbox" name="agreement" checked="checked"/>

Not coded Attribute
According to standard all attributes are coded, i.e., special characters are replaced by appropriate entities
(“<” with & gt; and “>” with & it; etc.). With the assignment characters “=” and “!=”, the behavior can be steered:

1 div(escaped="<code>")
2 div(unescaped!="<code>")

In HTML this looks as follows:

1 <div escaped="<code>"></div>
2 <div unescaped="<code>"></div>

 Caution!  It is dangerous with user inputs, which are passed on to sightings in order to turn the coding

off. Users can otherwise transfer active code to the server:

Logical Attributes
Logical (boolean) attributes are represented in Pug as functions, which can process arguments. For its part,
they can either be true or false. If no argument is indicated, the standard is true.

1 input(type='checkbox', checked)
2 input(type='checkbox', checked=true)
3 input(type='checkbox', checked=false)
4 input(type='checkbox', checked=true.toString())

Chapter 7 ■ Language Components of Pug

93

Translated this looks as follows:

1 <input type="checkbox" checked="checked"/>
2 <input type="checkbox" checked="checked"/>
3 <input type="checkbox"/>
4 <input type="checkbox" checked="true"/>

If the Doctype of the document is HTML, the shortened attributes are used, as they understand
all browsers:

1 doctype html
2 input(type='checkbox', checked)
3 input(type='checkbox', checked=true)
4 input(type='checkbox', checked=false)
5 input(type='checkbox', checked=true && 'checked')

Translated this looks as follows:

1 <!DOCTYPE html>
2 <input type="checkbox" checked>
3 <input type="checkbox" checked>
4 <input type="checkbox">
5 <input type="checkbox" checked="checked">

Style Attributes
The style attribute is somewhat more complex, because the parameters represent a style object. Contrary to
the pure HTML version, which can be read only as character string. Pug is here indeed a JSON object.

1 a(style={color: 'red', background: 'green'})

In HTML this looks as follows:

1

 JSON  JSON stands for JavaScript Object Notation. This concerns a compact data format for humans

and machine of simply readable text form for the purpose of data exchange between applications. Each valid
JSON document should be valid JavaScript. One works on the server and on the client with JavaScript. It acts
with JSON basically around the natural format for the data transfer and object definition.

& Attributes
This special form, known as “and attributes,” is used in order to divide an object into attributes:

1 div#foo(data-bar="foo")&attributes({'data-foo': 'bar'})

Chapter 7 ■ Language Components of Pug

94

In HTML this turns into:

1 <div id="foo" data-bar="foo" data-foo="bar"></div>

It must not be object literal. A variable which supplies an object itself is likewise suitable.

1 - var attributes = {'data-foo': 'bar'};
2 div#foo(data-bar="foo")&attributes(attributes)

Here, the same HTML starts to develop:

1 <div id="foo" data-bar="foo" data-foo="bar"></div>

 T his function does not code HTML. If the data is from a user input, an explicit investigation on

embedded codes is necessary. In addition, compare the handling with a mixin, which always takes over coding.

Handling CSS Classes
CSS classes are described by attributes or literals.

The Class Attribute
The class attribute can be used like every other attribute with a character string. Now it occurs frequently
that several class names are set. But arrays are also permitted:

1 - var classes = ['btn', 'btn-default']
2 a(class=classes)
3 a.bing(class=classes class=['bing'])

As shown in line 3, the attribute can be repeated. Pug then combines the entries. Subsequently, it
becomes the following in HTML:

1
2

If class names are set over conditions, usually a separate logic must be created. In Pug, Object Mapping
is suitable for this:

1 - var curUrl = '/about'
2 a(class={active: curUrl === '/'} href='/') Home
3 a(class={active: curUrl === '/about'} href='/about') Über uns

This looks as follows in HTML:

1 Home
2 Über uns

Chapter 7 ■ Language Components of Pug

95

The Class Literal
The direct use of the literal one from CSSs is still simpler:

1 a.button

This looks as follows in HTML:

1

A feature with the literal ones is the “<div>” tag. This is the standard, if no element is indicated:

1 .content

In HTML it turns into the following:

1 <div class="content"></div>

ID Literal
IDs use the #idname syntax:

1 a#main-link

This looks as follows in HTML:

1

Since the “div” element is used very frequently, you can omit it:

1 #content

In HTML it turns into the following:

1 <div id="content"></div>

Instructions
Instructions bring interactive sections into the template. They resemble the possibilities of JavaScript,
however before the script level is processed. HTML can be embedded directly.

Chapter 7 ■ Language Components of Pug

96

Definition by Cases (case)
case is an instruction for process and corresponds to the switch in JavaScript. The case branches in
JavaScript are written as when in Pug:

1 - var friends = 10
2 case friends
3 when 0
4 p You have no friends
5 when 1
6 p You have one friend
7 default
8 p You have #{friends} friends

In HTML it turns into the following:

1 <p>You have 10 friends</p>

Forwarding to the next Case
Just like in JavaScript, the instruction for the next branch falls through if no instruction follows:

1 - var friends = 0
2 case friends
3 when 0
4 when 1
5 p Almost no friends
6 default
7 p You have #{friends} friends

In HTML it turns into the following:

1 <p>Almost no friends</p>

Extension of Blocks
Instead of the spelling of several lines, short texts can be placed on the same line and are then limited
on this line:

1 - var friends = 1
2 case friends
3 when 0: p You have no friends
4 when 1: p You have one friend
5 default: p You have #{friends} friends

The HTML then looks as follows:

1 <p>You have one friend</p>

Chapter 7 ■ Language Components of Pug

97

Conditions (if)
Conditions are an elementary component in Pug. In relation to JavaScript, the spelling is slightly simplified—
so you can omit the clips around the condition.

 1 - var user = { description: 'Example Text' }
 2 - var authorised = false
 3 #user
 4 if user.description
 5 h2 Description
 6 p.description= user.description
 7 else if authorised
 8 h2 Description
 9 p.description.
10 User has no description,
11 add one...
12 else
13 h1 Description
14 p.description User has no description

The input data then determines which HTML will develop:

1 <div id="user">
2 <h2>Description</h2>
3 <p class="description">Example Text</p>
4 </div>

The keyword unless remains for negated conditions:

1 unless user.isAnonymous
2 p You are logged on as #{user.name}

This is perfectly identical to the following expression:

1 if !user.isAnonymous
2 p You are logged on as #{user.name}

Iterations
With each and while, two possibilities are available to form loops.

each
The use of each is, to a large extent, intuitive:

1 ul
2 each val in [1, 2, 3, 4, 5]
3 li= val

Chapter 7 ■ Language Components of Pug

98

The HTML is formed on basis of the array on the server:

1
2 1
3 2
4 3
5 4
6 5
7

With two parameters, access to the index and the running value exists:

1 ul
2 each val, index in ['zero', 'one', 'two']
3 li= index + ': ' + val

The HTML shows that the index is based on zero:

1
2 0: zero
3 1: one
4 2: two
5

If Hashes (object maps) are used, then index and value can be determined even more exactly:

1 ul
2 each val, index in {1:'one',2:'two',3:'three'}
3 li= index + ': ' + val

The HTML shows that the index of the source object is certain:

1
2 1: one
3 2: two
4 3: three
5

Instead of the direct information, each JavaScript expression can be naturally used, which produces or
contains a suitable structure:

1 - var values = [];
2 ul
3 each val in values.length ? values : ['No Values']
4 li= val

Since the array in the example is empty, the following HTML is produced:

1
2 No Values
3

Chapter 7 ■ Language Components of Pug

99

 Pseudonym T he keyword “for” can be used as alias for “each.”

while
A loop with while has a termination condition. The loop keeps going, as long as the expression shows true.

1 - var n = 0
2 ul
3 while n < 4
4 li= n++

The dynamically produced HTML now looks as follows:

1
2 0
3 1
4 2
5 3
6

JavaScript Code
With Pug, JavaScript fragments can be written directly into the page.

These parts are then implemented on the server page. Thereby, there are three kinds of code:

Unbuffered Codes
The results when processing are written immediately into the output.

Buffered Codes
The results when processing are written first into a buffer and at the end sent completely to the instruction.

Buffered and not coded Codes
The results when processing are first written into a buffer and sent in the end completely to the instruction.
No encoding of the output takes place.

Chapter 7 ■ Language Components of Pug

100

Unbuffered Codes
Unbuffered and also not coded looks as follows:

1 - for (var x = 0; x < 3; x++)
2 li item

Caution! A s in the preceding examples, you should keep caution during the conversion of user inputs, in

order to prevent that such construct code is transferred. The transferred JavaScript code would be implemented
in the server page.

In the HTML the following develops from the last example:

1 item
2 item
3 item

This also functions with blocks (the “-” indication is alone and set off while the following text is
compressed):

1 -
2 list = ["Uno", "Dos", "Tres",
3 "Cuatro", "Cinco", "Seis"]
4 each item in list
5 li= item

Also, this loop generates pure HTML:

1 Uno
2 Dos
3 Tres
4 Cuatro
5 Cinco
6 Seis

Buffered Code
The buffered part starts indications with a “=” and spends the result of calculation in JavaScript. Here is the
coded variant. (You consider the indentation on line 2.):

1 p
2 = 'This Code is <coded>!'

In HTML, you see how the special characters were converted:

1 <p>Dieser Code ist <kodiert>!</p>

Chapter 7 ■ Language Components of Pug

101

JavaScript expressions can also begin here:

1 p= 'This cvode is' + ' <coded>!'

The same result happens as in the previous example:

1 <p>This Code is <coded>!</p>

Buffered and not coded Codes
The encoding starts again with the “!=” operator. Note that this is not safe regarding data from user inputs.

1 p
2 != 'This code is not coded!'

The following HTML is provided by it:

1 <p>This code is not coded!
2 </p>

Also in this use JavaScript expressions can be used:

1 p!= 'This code is' + ' not coded!'

The following HTML is provided by it:

1 <p>This code is not coded!</p>

Comments
Comments are written just as in JavaScript and then converted into HTML comments, thus not removed
completely:

1 // Some HTML:
2 p foo
3 p bar

The following HTML is provided by it:

1 <!-- Some HTML: -->
2 <p>foo</p>
3 <p>bar</p>

If somebody puts a line behind the comment symbol, the comment is removed and is not repeated in
the HTML:

1 //- That's not public
2 p foo
3 p bar

Chapter 7 ■ Language Components of Pug

102

The following HTML is provided by it:

1 <p>foo</p>
2 <p>bar</p>

Comment Blocks
If a comment shall extend over several lines, then the comment symbol is placed alone on a line:

1 body
2 //
3 As many text
4 as you like

The following HTML is provided by it:

1 <body>
2 <!--
3 As many text
4 as you like
5 -->
6 </body>

Caused Comments
Internet Explorer can use sections conditionally, in order to write downwardly compatible HTML code.
However, Pug has no special syntax. But since every not far recognized text is invariably spent, lines that
begin with “<” indications will be transported directly into the HTML.

1 <!--[if IE 8]>
2 <html lang="en" class="lt-ie9">
3 <![endif]-->
4 <!--[if gt IE 8]><!-->
5 <html lang="en">
6 <!--<![endif]-->

Inherit from Templates
For inheriting templates the keyword “extends” is used. Thus, ranges of the layout page can be overwritten
purposefully. First the layout page:

File: layout.pug

1 doctype html
2 html
3 head
4 block title
5 title Default title
6 body
7 block content

Chapter 7 ■ Language Components of Pug

103

The actual page uses (inherits) this layout page. The range “block” (and therin the range “title”) is
overwritten. The information is voluntary and, if they are missing, contents of the layout page would be shown.

File: index.pug

1 extends layout
2
3 block title
4 title My Articles
5
6 block content
7 h1 Here is some content

The final HTML now looks as follows:

1 <!doctype html>
2 <html>
3 <head>
4 <title>My Articles</title>
5 </head>
6 <body>
7 <h1>Here is some content</h1>
8 </body>
9 </html>

Figure 7-1.  Output of the Master Page

 More Complex Layouts T he inheritance of the layout page can go over several stages, i.e., in a layout

page a further can be called. Thus more complex interlocked layouts can be sketched.

Detail for inherting Templates
The simple inheriting of templates can be extended if you specify “block” ranges, which can be overwritten
purposefully. A “block” is thereby pug code, which can be replaced. The procedure is recursive.

If the placeholder is equipped with contents, this functions as standard. Regard the following layout page:

File: layout.pug

 1 html
 2 head
 3 title My Site - #{title}
 4 block scripts

Chapter 7 ■ Language Components of Pug

104

 5 script(src='/jquery.js')
 6 body
 7 block content
 8 block foot
 9 #footer
10 p Content of Footer

This is now used by means of extends. The page index.pug in the following example overwrites thereby
the blocks scripts and content. However, the block foot remains unchanged and is taken over by the layout page.

File: index.pug

 1 extends layout
 2
 3 block scripts
 4 script(src='scripts/jquery.js')
 5 script(src='scripts/data.js')
 6
 7 block content
 8 h1= title
 9 each pet in pets
10 include pet

In a block further blocks can be defined, which are again overwritten with further derivatives of
interlocked layout pages. The further layout page sub-layout.pug is defined as follows:

File: sub-layout.pug

1 extends layout
2
3 block content
4 .sidebar
5 block sidebar
6 p nothing
7 .primary
8 block primary
9 p nothing

The page page-b.pug now uses this derived layout page:

File: page-b.pug

1 extends sub-layout
2
3 block content
4 .sidebar
5 block sidebar
6 p nothing
7 .primary
8 block primary
9 p nothing

The blocks sidebar and primary are overwritten here.

Chapter 7 ■ Language Components of Pug

105

Prepend and append Content Blocks
Apart from blank, replacing contents can also be placed in front (prepend) or supplement (append). With the
definition, nothing changes at first:

1 html
2 head
3 block head
4 script(src='/vendor/jquery.js')
5 script(src='/vendor/bootstrap.js')
6 body
7 block content

Further scripts can now be supplemented as follows:

1 extends layout
2
3 block append head
4 script(src='/scripts/data.js')

The keyword “block” is optional with the use of “prepend” and “append”:

1 extends layout
2
3 append head
4 script(src='/scripts/data.js')

 File Extension  In this example the file extension .pug was omitted.This is optional, if the standard .pug

is used.

Filter
Filters serve to use another language within the source text. Typical examples are Markdown and
CoffeeScript.

1 :markdown
2 # Markdown
3
4 I often like including markdown documents.
5
6 script
7 :coffee-script
8 console.log 'This is coffee script'

Chapter 7 ■ Language Components of Pug

106

The language block is properly introduced and accordingly interpreted with the “:” indication. The
preceding example in HTML looks as follows:

1 <h1>Markdown</h1>
2 <p>I often like including markdown documents.</p>
3 <script>console.log('This is coffee script')</script>

 Time of Action F ilters are implemented by the translation of the page. Within the filter, therefore, no

dynamic expressions can stand. The execution for it is very fast.

Partial Pages
Complex pages can be divided—into partial pages, to be exact. Intergration takes place with the keyword
includes and the information of the file name, if necessary, with the relative path.

File: index.pug

1 doctype html
2 html
3 include ./parts/head.pug
4 body
5 h1 My Site
6 p Welcome to my super lame site.
7 include ./includes/foot.pug

File: parts/head.pug

1 head
2 title Meine Seite
3 script(src='/javascripts/jquery.js')
4 script(src='/javascripts/app.js')

File: parts/foot.pug

1 #footer
2 p Copyright (c) foobar

From this the following HTML develops:

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <title>My Site</title>
 5 <script src='/javascripts/jquery.js'></script>
 6 <script src='/javascripts/app.js'></script>
 7 </head>

Chapter 7 ■ Language Components of Pug

107

 8 <body>
 9 <h1>My Site</h1>
10 <p>Welcome to my super site.</p>
11 <div id="footer">
12 <p>Copyright (c) JoergIsGeek</p>
13 </div>
14 </body>
15 </html>

Merge Text
Partial pages do not only have to be Pug. Simple text can also be used. Pug recognizes this automatically.

index.pug

 1 doctype html
 2 html
 3 head
 4 style
 5 include style.css
 6 body
 7 h1 My Site
 8 p Welcome to my super site.
 9 script
10 include script.js

style.css

1 /* style.css */
2 h1 { color: red; }

script.js

1 // script.js
2 console.log('You are awesome');

From this the following HTML develops:

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <style>
 5 /* style.css */
 6 h1 { color: red; }
 7 </style>
 8 </head>
 9 <body>
10 <h1>My Site</h1>
11 <p>Welcome to my super site.</p>

Chapter 7 ■ Language Components of Pug

108

12 <script>
13 // script.js
14 console.log('You are awesome');
15 </script>
16 </body>
17 </html>

Combination of Filters and Partial Pages
With the combination of filters and partial pages, other pages are merged which contain contents in other
languages.

File: index.pug

1 doctype html
2 html
3 head
4 title An Article
5 body
6 include:markdown article.md

The enclosed page is here interpreted as Markdown:

File: article.md

1 # Heading in Markdown
2
3 This article has been created in Markdown

From this the following HTML develops:

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <title>An Article</title>
 5 </head>
 6 <body>
 7 <h1>Heading in Markdown</h1>
 8 <p>This article has been created in Markdown.</p>
 9 </body>
10 </html>

The combination with Markdown is especially interesting, because already existing contents can be
invariably taken over.

Interpolations
Interpolations replace variables in character sequences. Nearly every programming language probably
knows comparable techniques. Pug knows the following operators:

•	 coded character string interpolation

•	 not coded string interpolation

•	 Tag Interpolation

Chapter 7 ■ Language Components of Pug

109

Coded Character String Interpolation
In the following template some variables are defined and then used in expressions, without accessing
JavaScript syntax again:

1 - var title = "Introduction to Node.js";
2 - var author = "Joerg";
3 - var version = "4.1";
4
5 h1= title
6 p Collected by #{author}
7 p #{version}

The following HTML shows the result of the interpolation:

1 <h1>Introduction to Node.js</h1>
2 <p>Collected by Joerg</p>
3 <p>For Version: 4.1!</p>

The code between “#{” and “}” is evaluated, coded and sent as buffered result to the output. The
expression can be again JavaScript, so that even more complex expressions can develop.

1 - var msg = "really cool";
2 p Dies ist #{msg.toUpperCase()}

In this case, rather cool HTML develops from it:

1 <p>This is REALLY COOL</p>

Not Coded String Interpolation
If security is not necessary or desired in HTML, the not coded variant would work again:

1 - var riskyQuote = "Node requires pug.";
2 .quote
3 p Joerg: !{riskyQuote}

The HTML is invariably spent:

1 <div class="quote">
2 <p>Joerg: Node requires pug.</p>
3 </div>

Chapter 7 ■ Language Components of Pug

110

Tag Interpolation
Interpolations can also directly be used as tags. For this “#[]” is used.

1 p.
2 If you get the sources on #[a(target="_blank", href="https://githu\
3 b.com/pugjs/pug/blob/master/docs/views/reference/interpolation.pug")\
4 GitHub],
5 you'll see, at how many places we use Interpolation.

From this quite compact HTML develops:

1 <p>If you get the sources on <a target="_blank" href="https://githu\
2 b.com/pugjs/pug/blob/master/docs/views/reference/interpolation.pug">\
3 GitHub,
4 you'll see, at how many places we use Interpolation.
5 </p>

The Renderer uses its buffer internally for the tray and for passing on, so that this is better than directly
merging HTML.

Mixins (Functions)
Mixins produce re-usable blocks made out of Pug code. Thus, endless repetitions of the same HTML
components can be avoided. Particularly in connection with Bootstrap, more complex constructs can be
prepared and start at any time.

A Mixin (read: Function) is defined as follows:

1 mixin list
2 ul
3 li foo
4 li bar
5 li baz

The use is based on a special operator:

1 +list
2 +list

The use is introduced with the “+” indication. In the HTML, nothing more about it can be found:

 1
 2 foo
 3 bar
 4 baz
 5
 6
 7 foo
 8 bar
 9 baz
10

Chapter 7 ■ Language Components of Pug

111

Mixins are JavaScript functions and can be provided with parameters:

1 mixin pet(name)
2 li.pet= name
3 ul
4 +pet('Cat')
5 +pet('Dog')
6 +pet('Bird')

The following HTML develops from it:

1
2 <li class="pet">Cat
3 <li class="pet">Dog
4 <li class="pet">Bird
5

Mixin Blocks
Mixin can take up a block with a Pug code and thereby win more dynamics:

 1 mixin article(title)
 2 .article
 3 .article-wrapper
 4 h1= title
 5 if block
 6 block
 7 else
 8 p No Content
 9
10 +article('Hello pug')
11
12 +article('Hello pug')
13 p This is an
14 p article about Node.js

The following HTML develops from it:

 1 <div class="article">
 2 <div class="article-wrapper">
 3 <h1>Hello pug</h1>
 4 <p>No content</p>
 5 </div>
 6 </div>
 7 <div class="article">
 8 <div class="article-wrapper">
 9 <h1>Hello pug</h1>
10 <p>This is an</p>
11 <p>article about Node.js</p>
12 </div>
13 </div>

Chapter 7 ■ Language Components of Pug

112

Mixin Attributes
Similar to JavaScript functions, Mixins parameters can take up objects over an implicit “attribute”:

1 mixin link(href, name)
2 //- attributes == {class: "btn"}
3 a(class!=attributes.class, href=href)= name
4
5 +link('/foo', 'foo')(class="btn")

The following HTML develops from it:

1 foo

 T he values are coded automatically. If that is not desired, “!=” shall be used. A combination with the

“&attributes” is just as possible.

1 mixin link(href, name)
2 a(href=href)&attributes(attributes)= name
3
4 +link('/foo', 'foo')(class="btn")

The following HTML develops from it:

1 foo

Further Arguments
If the number of arguments is only partly variable, a definition of the kind “the whole rest” can be
constructed:

1 mixin list(id, ...items)
2 ul(id=id)
3 each item in items
4 li= item
5
6 +list('my-list', 1, 2, 3, 4)

The following HTML develops from it:

1 <ul id="my-list">
2 1
3 2
4 3
5 4
6

Chapter 7 ■ Language Components of Pug

113

Handling Text
Simple text is not interpreted and is not invariably spent, even if it contains control characters.

Connect Text
The “|” operator (“pipe”) continues preceding lines simply with text.

1 | Simple text can contain html
2 p
3 | But it must be alone on the line

The text arrives invariably in the HTML page:

1 Simple text can contain html
2 <p>But it must be alone on the line</p>

Inline in Tag
Tags in Tags are at the agenda in HTML. Because in nearly each block element are various inline elements
to find (in <div>). Text after an element is invariably taken over and can contain HTML. That is often
simpler to define than the complete hierarchy:

1 p Simple text can contain HTML

The HTML arrives invariably in the page:

1 <p>Simple text can contain HTML </p>

Block in Tag
Often large blocks with text are needed. Scripts or longer style definitions are good examples of it. Here
interactivity is required rarely. In order to introduce such a block, the element instruction point becomes a “.”
placed behind itself:

1 script.
2 if (usingpug)
3 console.log('you are awesome')
4 else
5 console.log('use pug')

The contents arrive invariably in the page:

1 <script>
2 if (usingpug)
3 console.log('you are awesome')
4 else
5 console.log('use pug')
6 </script>

Chapter 7 ■ Language Components of Pug

114

Handling Tags
Tags are only described by their name, without the Markup clips.

The hierarchy is specified by the indentation (two blanks).

1 ul
2 li Item A
3 li Item B
4 li Item C

From this example valid HTML develops:

1
2 Item A
3 Item B
4 Item C
5

If the Doctype requires this, self-closing elements will be produced automatically. For the element
“img”, this looks as follows:

1 img

Here valid HTML develops with a closing tag:

1

Extension of Blocks
Interlocked blocks can be defined in a line, as long as no contents follow. This takes place via “:” operator.
This takes place with frequent typical combinations, for example with hyperlinks:

1 a: img

From this example valid HTML develops as follows:

1 <a>

Self-Closing Tags
Some tags, such as img, meta, and link never contain contents.

They are therefore self-closing, except with the XML Doctype. If this is to be shown independently of the
Doctype, this can take place with concluding “/” indications.

1 meta/
2 link(rel='stylesheet')/

From this example the following HTML develops:

1 <meta/>
2 <link rel="stylesheet"/>

115© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0_8

CHAPTER 8

The Pug Command Line

The command line can use auxiliary functions directly, for example translating sites into static HTML at first.

Installing the Command Line
The installation takes place via npm (-g stands for global).

1 $ npm install pug -g

 CLI  Command line tools are often called “CLI”: Command Line Interface.

Use and Options
The use of the command line looks as follows:

1 $ pug [options] [dir|file ...]

Table 8-1.  Options of Pug-CLI

Options

-h, --help help for usage

-V, --version version of the library

-O, --obj <path|str> JavaScript options or JSON file with a suitable object inside

-o, --out <dir> edition listing for the HTML

-p, --path <path> file path for dissolving ‘ includes ‘

-P, --pretty HTML edition is arranged readable

-c, --client translation functions for the client page runtime.js

(continued)

Chapter 8 ■ The Pug Command Line

116

Sample Applications for the Command Line
Translate templates locally as follows:

1 $ pug templates

To produce two HTML files, “foo.html” and “bar.html”, thew following command will work:

1 $ pug {foo,bar}.pug

Pug results can be shown via “stdio”:

1 $ pug <my.pug> my.html

A bypass to Pug takes place via the pipe symbol:

1 $ echo "h1 pug!" | pug

Render the listings “foo” and “bar” after /tmp:

1 $ pug foo bar --out /tmp

Options

-n, --name <str> the name of the translated template (requires – client)

-D, --no-debug translate without debuggers (smaller functions)

-w, --watch supervises files on changes and renders again

-E, --extension <ext> indicates the file extension for the edition

--name-after-file name of the template after the last segment of the file path during (requires
– client, overwritten by –name)

--doctype <str> determines the doctype on the command line (meaningful, if the template)

Table 8-1.  (continued)

117© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0

Appendix

Configuration of the file package.json
This section summarizes all features for the configuration of the file package.json.

Meaning of the Configuration Elements
The features can have various effects. It is recommended to argue with some of it at the beginning precisely.
The configuration of the package, thus the execution of npm config, influences the available features.

Some features are only relevant if the application is to be published as a new package on NPM. This
does not apply in most cases. You can then ignore the appropriate options.

Name
Name and version are the most important fields. The name is required. From names and version, a clear
ID of the package is created. It is assumed that your application becomes again installable as package. That
is practical and meaningful, but not necessarily needed. For the name, there are some rules due to the
coupling to the package manager:

•	 The name may have a maximum of 214 characters.

•	 The name should not start with a dot or underline.

•	 Capital letters are not allowed.

•	 The name is used both on the command line and as part of a URL, thus the name
choice must correspond to the conditions predominating in these envrionments.

In addition, you should absolutely avoid collisions with existing packages. Name components like
“node” or “js” are not a good idea. That this is about JavaScript “js” should be clear.

version
If packages are published, the version is enormously important. Each package will develop further and then
a distinction must be met. The package node-semver must be able to process the version number. (We’ll
come back to this later on.)

﻿■ Appendix

118

description
The field description is helpful to indicate a meaningful description.

keywords
Keywords serve to find packages in the Repository. If you do not publish your package, you can omit the field.

homepage
If a homepage exists, indicate the URL here. Do not confuse this feature with “URL”.

bugs
Here an URL is entered to a Bugtracking Application. This is an object with two further features.

1 {
2 url" : "https://github.com/joergisageek/nodejs-samples",
3 "email" : "bugs@joergkrause.de"
4 }

license
For published packages. you have the option here of indicating the license. You find practical proposals
under the following URL:

•	 http://opensource.org/licenses

The current usual information corresponds to SPDX expressions, for example:

{ "license": "(MIT OR Apache-2.0)" }

If the package will not be published no matter what, set the feature private to true.
However, if you publish it, then you call the author (in each case only one) and employee (an array of

people).

files
This is an array of files, which are part of the package. You can indicate a folder here, the contents of which
are then completely loaded. However, there are further rules which can exclude elements from the folder.
For example, it is possible to indicate a file as the name .npmignore (in the root of the project), in which files
are listed, which will not become part of this package.

main
This is the module ID, which serves as entry point in this application. If the package is used as part of
another application, the developer of this application can request the use as follows:

require('Modul-ID')

http://opensource.org/licenses

﻿■ Appendix

119

In this instance, the script is called which was indicated in main. Normally, only the exports object should
be here, thus the publicly available elements. The information of a script is relative to the master folder.

bin
Here executable files are indicated, which are made available in the path (‘PATH’) of the operating system.
With bin, a list of commands is agreed upon, which have executable instructions assigned. npm will now
create a link on prefix/bin with global commands. With local instructions the path becomes
./node_modules/.bin/. An example looks as follows:

1 {
2 "bin" : {
3 "myapp" : "./cli.js"
4 }
5 }

The script cli.js is executed via the command /usr/local/bin/myapp.

 Linux and Windows  This functions in the form shown not only for Unix operating systems. For

Windows, npm creates a Wrapper on the command line cmd, over which Node is called. In addition, the script
with the line #!/usr/bin/envnode must be introduced. Windows ignores this, but the Wrapper reacts to it.

directories
With this feature, the structure of the package can be defined. Most values are more or less freely usable; it
concerns more meta data.

•	 lib: The mass of the components of a library.

•	 Bin: Elements in this folder are treated as child elements of the bin path,
if there is nothing.

•	 man: The list of the instructions (man pages).

•	 Doc: Documentations in Markdown.

•	 example: Examples.

repository
The place where the code lies. This is important for other developers who participate in the development.

1 "repository" : {
2 "type" : "git",
3 "url" : "https://github.com/npm/npm.git"
4 }
5

﻿■ Appendix

120

6 "repository" : {
7 "type" : "svn",
8 "url" : "https://v8.googlecode.com/svn/trunk/"
9 }

The URL should be public for everything/everyone involved. The Repository may, however, be written
in a protected way. Version control systems should be able to process the indicated URL directly. Remember
not to refer to a HTML page here. This information is for a machine, not for humans.

Some important public Repositories have short forms:

•	 “repository”: “npm/npm”

•	 “repository”: “gist:11081aaa281”

•	 “repository”: “bitbucket:example/repo”

•	 “repository”: “gitlab:another/repo”

scripts
Each package has a certain lifetime with different phases. This feature specifies which scripts are to be
processed with which phases. Phases are, for example, “start” or “test”:

 1 {
 2 "name": "death-clock",
 3 "version": "1.0.0",
 4 "scripts": {
 5 "start": "node server.js",
 6 "test": "mocha --reporter spec test"
 7 },
 8 "devDependencies": {
 9 "mocha": "^1.17.1"
10 }
11 }

config
The configuration object illustrates user specific settings. The information covers standard settings.

1 {
2 "name" : "mein-paket",
3 "config" : {
4 "port" : "8080"
5 }
6 }

The user of the package can provide this at the installation with changes of these settings. In the
package itself, the configuration object is globally available. Changes take place with npm:

npm config set mein-paket:port 8001

﻿■ Appendix

121

dependencies
Dependence is defined by means of names and version numbers. Packages can exist locally or load from Git.

 Developer Packages P ackages, which specifically support the development process, should not be

indicated here. This concerns, for example, Transpiler or test environments. For these the parameter
“devDependencies” is responsible.

For the version number, there is a special semantic:

•	 version: The version must be accurately exact.

•	 >version: Version must be larger than the information.

•	 >=version: Version must be larger or equal to the information.

•	 <version: Version must be smaller than the information.

•	 <=version: : Version must be smaller or equal to the information.

•	 ∼version: Main and underversion must fit.

•	 ˆversion: : Version must be compatible.

•	 * or "": Every version.

•	 version1 - version2: Corresponds >=version1 <=version2.

•	 area1 || ares2 Either area1 or area2/

•	 Url or Pfad

All the following are valid references:

1 { "dependencies" :
2 { "foo" : "1.0.0 - 2.9999.9999"
3 , "bar" : ">=1.0.2 <2.1.2"
4 , "baz" : ">1.0.2 <=2.3.4"
5 , "boo" : "2.0.1"
6 , "qux" : "<1.0.0 || >=2.3.1 <2.4.5 || >=2.5.2 <3.0.0"
7 , "asd" : "http://asdf.com/asdf.tar.gz"
8 , "til" : "~1.2"
9 , "elf" : "~1.2.3"
10 , "two" : "2.x"
11 , "thr" : "3.3.x"
12 , "lat" : "latest"
13 , "dyl" : "file:../dyl"
14 }
15 }

﻿■ Appendix

122

If an URL is indicated, a compressed package (Tarball) can hide itself behind it. If this is the case,
the package will be loaded and installed locally to the application without a second thought. As source, a
Repository of a Git server, in particular Github, works, too. URLs which refer to Git can have the following
formats:

1 git://github.com/user/project.git#commit-ish
2 git+ssh://user@hostname:project.git#commit-ish
3 git+ssh://user@hostname/project.git#commit-ish
4 git+http://user@hostname/project/blah.git#commit-ish
5 git+https://user@hostname/project/blah.git#commit-ish

The information for the placeholder commit-ish can be the tag (brand), SHA fingerprint (Hash) or the
name of a branch. If nothing is indicated, the value is master.

If the format “user/project” is used, automatic access to Github takes place.

1 {
2 "name": "foo",
3 "version": "0.0.0",
4 "dependencies": {
5 "express": "visionmedia/express",
6 "mocha": "visionmedia/mocha#4727d357ea"
7 }
8 }

Local paths are addressed by the Moniker “file”. If npm install –save is used, the data local to the
project will be stored:

1 ../foo/bar
2 ~/foo/bar
3 ./foo/bar
4 /foo/bar

If you use npm, then the paths are always normalized as soon as you’re entering something into the file
package.json and indicating relatively:

1 {
2 "name": "baz",
3 "dependencies": {
4 "bar": "file:../foo/bar"
5 }
6 }

The information of local paths can be meaningful for developments, if the access is also supposed to be
possible offline. However, if packages are published later, you should absolutely avoid local paths.

﻿■ Appendix

123

devDependencies
With this information all dependence will be defined, which is needed for the development period.
Otherwise you behave as described in “dependencies”.

1 { "name": "coffee-project",
2 "description": "Ein Projekt, dass Coffee-Script benutzt",
3 "version": "1.2.3",
4 "devDependencies": {
5 "coffee-script": "~1.6.3"
6 },
7 "scripts": {
8 "prepublish": "coffee -o lib/ -c src/book.coffee"
9 },
10 "main": "lib/server.js"
11 }

Here the Transpiler “Coffeescript” is used. When publishing, the Transpiler will be used, to translate the
CoffeeScript files into JavaScript, and then deliver the finished files.

peerDependencies
In some cases, compatibility with a tool or library is guaranteed without this tool or library being used. Thus
it is shown that a use can be possible.

1 {
2 "name": "book-sample",
3 "version": "1.3.5",
4 "peerDependencies": {
5 "book-node": "2.x"
6 }
7 }

This information shows that the package “book-sample” is compatible with the version 2.x of the
package “book-node”. The command npm install book-sample will dissolve the following dependence, if a
version 2.3.0 from “book-node” exists:

1 ├── book-sample@1.3.5
2 └── book-node@2.3.0

The use of this setting serves the configuration of Plugins. Here the Plugin depends on its “host”,
however, it does not need this explicitly in order to be installed.

bundledDependencies
Dependence in this section is distributed if you publish a part of the package along with it.

﻿■ Appendix

124

optionalDependencies
Optional dependence is dissolved and treated like regular if the packages are found. However, if npm cannot
dissolve a name, an error is normally produced. With optional dependence npm will simply continue if the
dissolution fails.

The program itself must naturally react to missing packages, otherwise errors will occur during run
time. This can look as follows:`

 1 try {
 2 var foo = require('foo')
 3 var fooVersion = require('foo/package.json').version
 4 } catch (er) {
 5 foo = null
 6 }
 7 if (checkVersion(fooVersion)) {
 8 foo = null
 9 }
10
11 // In the program:
12
13 if (foo) {
14 foo.doFooThings()
15 }

Here the instruction “require” failed because an optional package was not loaded. The private
method ‘checkVersion’ is used in order to examine the package if it was not loaded for the correct version.
Functionality supplied by a package is called only if the package was loaded and the correct version is present.

engines
With this information a certain version of Node itself is determined:

1 {
2 "engines" : {
3 "node" : ">=0.10.3 <0.12"
4 }
5 }

 D on’t confuse the information with the term “Engine”, which is also used for a Webframework such

as “Express”.

Aside from Node, the version of npm can also be determined:

1 {
2 "engines" : {
3 "npm" : "~1.0.20"
4 }
5 }

﻿■ Appendix

125

os
Some functions of Node can be dependent on the operating system. They can therefore determine on which
operating system the package can be used:

"os" : ["darwin", "linux"]

It is often simpler to exclude a not-supported operating system and thus permit all different :

"os" : ["!win32"]

In Node itself this serves the call of “process.platform”, which helps to determine the operating system.

cpu
With this information the processor architecture is determined.

"cpu" : ["x64", "ia32"]

Also, here individual architectures can be excluded:

"cpu" : ["!arm", "!mips"]

Node supplies the actual value at the run time of ‘process.arch’.

preferGlobal
If the package is a tool, a command line, or global script, then this is useful to show the information. It is
possible to install the package locally nevertheless; however, you’ll then see a warning. The value is boolean
(“true” or “false”).

private
Private packages, which are not intended to be published, are marked as private. The value is boolean
(true or false). This prevents inadvertent publishing to a Repository.

publishConfig
The accommodated values here are used at the time of publication. That concerns all features, especially
features such as tag and registry. Thus it can be prevented that a package gets the value latest
automatically, although it concerns the path of an earlier version.

The Default Values
npm uses some default values, if the appropriate information is missing.

"scripts": {"start": "node server.js"}

﻿■ Appendix

126

If the file server.js exists, it is assumed that it is the starting file.

"scripts":{"preinstall": "node-gyp rebuild"}

If a file with the name binding.gyp exists, ‘node-gyp’ will be used.

 Gyp  ‘node-gyp’ is a command line tool, which translates native extensions for Node. It serves to make

native packages available platform-independently. The tool worries about the features of different platforms. In
addition, see:

https://github.com/nodejs/node-gyp.

"contributors": [...]

If a file AUTHORS exists, each line is used as an entry in the array. The format of each line is thereby
Name '<email>' (url). Lines with a “#” or blank at the beginning are ignored.

Brief description
Reference Node.js Modules
The brief description summarizes all integrated Node functions clearly.

HTTP

var http = require('http');

The simplest Web server at a glance:

1 http.createServer(function (request, response) {
2 response.writeHead(200, {'Content-Type': 'text/plain'});
3 response.end('Hello World\n');
4 }).listen(8124);
5
6 console.log('Server running at http://127.0.0.1:8124/');

http.STATUS_CODES;

All status codes and a short description in addition.

http.request(options, [callback]);

Function for sending requirements.

http.get(options, [callback]);

A complete “GET” requirement including the “end” call

https://github.com/nodejs/node-gyp

﻿■ Appendix

127

Server
server = http.createServer([requestListener]);

Provides a new Web server object. The callback function requestListener receives
the request.

server.listen(port, [hostname], [backlog], [callback]);

Start of the receiving of messages with Host and Port.

server.listen(path, [callback]);

Start of the receiving of messages with UNIX Socket and path.

server.listen(handle, [callback]);

Start of the receiving of messages with Handle (server or Socket).

server.close([callback]);

Terminates the receiving of messages.

server.setTimeout(msecs, callback);

The maximum time which is waited for a connection.

server.maxHeadersCount;

The maximum number of head fields, which are accepted. 1000 are the standard,
0 stand for unlimited.

server.timeout;

The maximum time which is waited for a connection. Setting takes place with
“setTimeout”.

server.on('request', function (request, response) { });

Event which fires with each requirement (request).

server.on('connection', function (socket) { });

Event fire, if new TCP Stream was provided.

server.on('close', function () { });

Event fires if the connection was closed.

server.on('checkContinue', function (request, response) { });

Event fires if Expect: 100-continue was recognized.

server.on('connect', function (request, socket, head) { });

Event which fires with each connecting attempt (HTTP-CONNECT).

server.on('upgrade', function (request, socket, head) { });

Event which fires with every Upgrade, from HTTP 1.1 to 2.0 or WebSockets.

server.on('clientError', function (exception, socket) { });

Event which fires with each error condition of the client.

﻿■ Appendix

128

Request
request.write(chunk, [encoding]);

Sends a part data.

request.end([data], [encoding]);

Terminates sending the data; data not yet sent is now transferred.

request.abort();

A requirement cancels.

request.setTimeout(timeout, [callback]);

Sets the time delimitation for the underlying Socket sets.

request.setNoDelay([noDelay]);

Turns the Nagle algorithm off. This serves with TCP for buffering data before
sending.

request.setSocketKeepAlive([enable], [initialDelay]);

Keeps the connection open.

request.on('response', function(response) { });

Event fires if an answer was received.

request.on('socket', function(socket) { });

Event fires if a Socket was assigned.

request.on('connect', function(response, socket, head) { });

Event fires if a server answers a request with CONNECT. If this is not treated, the
connection is closed again.

request.on('upgrade', function(response, socket, head) { });

Event fires if the server answers an upgrade request.

request.on('continue', function() { });

Event fires, if the server sends 100 Continue (usually as reaction to a Expect:
100-continue request).

Response
response.write(chunk, [encoding]);

Sends a part of the answer. Head fields are sent before, if this did not take place
with ‘writeHead’ before it.

response.writeContinue();

Sends HTTP/1.1 100 Continue.

response.writeHead(statusCode, [reasonPhrase], [headers]);

Sends the head fields.

﻿■ Appendix

129

response.setTimeout(msecs, callback);

Specify the maximum of exceeding time.

response.setHeader(name, value);

Provides a head field. An already available one with the same name will be
replaced. If several identical head fields are needed, an array can be used.

response.getHeader(name);

Determines a head field, which was made available but not sent yet.

response.removeHeader(name);

Removes a head field, which was made available, however, not sent yet.

response.addTrailers(headers);

Inserts the HTTP Trailing head field.

response.end([data], [encoding]);

Signalizes that all head fields and data were sent. Must be used.

response.statusCode;

Status code, which is sent if the head fields are implicitly sent.

With explicit sending with ‘writeHead’, the code is used by this method.

response.headersSent;

Shows “true”, if the head fields were sent.

response.sendDate;

If “true”, the date head field Date will be automatically produced.

response.on('close', function () { });

Event fires if the connection before the use of “end” is closed.

response.on('finish', function() { });

Event fires if the answer was sent.

Message
message.httpVersion;

The version of protocol HTTP.

message.headers;

An object with head fields.

message.trailers;

Trailer after “end” (when sending in blocks).

message.method;

The method (or verb), thus GET, POST, etc.

﻿■ Appendix

130

message.url;

The URL.

message.statusCode;

The status code (100, 200, 404 etc.)

message.socket;

The underlying Socket object.

message.setTimeout(msecs, callback);

Determines the time limit of the connection.

Global
__filename;

Name of the implemented file as absolute path.

__dirname;

Name of the current folder.

module;

Reference to the current module. module.exports makes the data available,
which can be requested with require.

exports;

An abbreviation for module.exports.

process;

The process under which the current script is implemented.

Buffer;

The class with which handling binary data takes place.

Console
console.log([data], [...]);

Output on standard output with radical change.

console.info([data], [...]);

Output on standard output with radical change.

console.error([data], [...]);

Output on error output with radical change.

console.warn([data], [...]);

Output on error output with radical change.

﻿■ Appendix

131

console.dir(obj);

Uses util.inspect for a formatted output of objects.

console.time(label);

Starts time measurement.

console.timeEnd(label);

Terminates time measurement.

console.trace(label);

Shows the Stacktrace.

console.assert(expression, [message]);

Tests an expression and gives the AssertionError, if the expression is ‘false’.

Timer
setTimeout(callback, delay, [arg], [...]);

Delays the unique execution of a callback function.

clearTimeout(t);

Stops the execution.

setInterval(callback, delay, [arg], [...]);

Delays the repeated execution of a callback function.

clearInterval(t);

Stops the execution of the intervals.

setImmediate(callback, [arg], [...]);

A more highly prioritized callback function.

clearImmediate(immediateObject);

Stops the execution.

unref();

Interval timer, which is implemented only for as long as Node runs.

ref();

Interval times, which is only as long implemented as Node is open.

﻿■ Appendix

132

Module
Modules can be floated from a file:

1 var module = require('./module.js');

You load a module as follows if require was requested in this module:1
 module.require('./another_module.js');

module.id;

The ID of the module; normally this is the file name.

module.filename;

The file name of the module.

module.loaded;

Condition of the loading procedure; becomes true if the module is completely
loaded.

module.parent;

The module that the current module requested.

module.children;

The modules which were requested.

One direct way public interfaces can be made available:

1 exports.area = function (r) {
2 return 3.14 * r * r;
3 };

However, if a constructor or a complex object with several features is to be exported, use the
following syntax:

1 module.exports = function(width) {
2 return {
3 area: function() {
4 return width * width;
5 }
6 };
7 }

Process
process.on('exit', function(code) {});

Event fires if a process ends.

process.on('uncaughtException', function(err) {});

Event fires if an exception did not become finished (imprisoned).

﻿■ Appendix

133

process.stdout;

A writable stream to the standard output.

process.stderr;

A writable stream to the error output.

process.stdin;

A readable stream to the standard input.

process.argv;

The arguments of the command line.

process.env;

The user environment of the console.

process.execPath;

Path of the executable file of the process.

process.execArgv;

Node-specified command line options.

process.arch;

The processor architecture (‘arm’, ‘ia32’ or ‘x64’).

process.config;

An JSON object which contains the options, with which Node was compiled.

process.pid;

PID of the processor.

process.platform;

The platform, e.g. ‘darwin’, ‘freebsd’, ‘linux’, ‘sunos’ or ‘win32’.

process.title;

Name of the process with expenditures, writable.

process.version;

Output of NODE_VERSION.

process.versions;

Versions of Node and dependent modules.

process.abort();

Terminates Node and produces a Dump.

process.chdir(dir);

Changes the work listing for Node.

﻿■ Appendix

134

process.cwd();

Changes the work listing for the process.

process.exit([code]);

Terminates the process.

process.getgid();

Reads the ID of the process group.

process.setgid(id);

Writes the ID of the process group.

process.getuid();

Reads the ID of the identity, under which the process runs.

process.setuid(id);

Writes the ID of the identity, under which the process runs.

process.getgroups();

Reads the group IDs of the process group.

process.setgroups(grps);

Writes the group IDs of the process group.

process.initgroups(user, extra_grp);

Reads and initializes the access list for groups.

process.kill(pid, [signal]);

Sends “kill” to the process.

process.memoryUsage();

Determines an object, which describes the condition of the memory.

process.nextTick(callback);

Call of the callback function callback with the next spleen of the event loop.

process.umask([mask]);

Writes or reads the rights of the process.

process.uptime();

The amount of time Node has been running.

process.hrtime();

A highly soluble array “[seconds, nanoseconds]” of material time.

﻿■ Appendix

135

ChildProcess
ChildProcess;

Class for the treatment of subprocesses.

child.stdin;

A writable stream to the standard input.

child.stdout;

A readable stream to the standard output.

child.stderr;

A readable stream to the error output.

child.pid;

PID of the process.

child.connected;

Is “true” if the under process can receive messages.

child.kill([signal]);

Terminates the process.

child.send(message, [sendHandle]);

Sends a message.

child.disconnect();

Terminates the connection of the subprocess.

child_process.spawn(command, [args], [options]);

Starts a new process with arguments.

child_process.exec(command, [options], callback);

Starts a new process in a command line (Shell).

child_process.execFile(file, [args], [options], [callback]);

Starts a new process by the call of an executable file in a command line (Shell).

child_process.fork(modulePath, [args], [options]);

Like “spawn”, but with a communication channel.

Util
util.format(format, [...]);

Formatted output, like printf (%s, %d, %j).

util.debug(string);

Synchronous output to the error output with buffer.

﻿■ Appendix

136

util.error([...]);

Synchronous output to the error output without buffers.

util.puts([...]);

Synchronous output to the standard output with a line break after each
argument.

util.print([...]);

Synchronous output to the standard output without line break after each
argument.

util.log(string);

Output with timestamp to the standard output.

util.inspect(object, [opts]);

Character string representation of objects. opts can contain “showHidden”,
“depth”, “colors” and “customInspect”.

util.isArray(object);

It checks if an object is an array.

util.isRegExp(object);

It checks if an object is a regular expression (in object form, ‘RegExp’).

util.isDate(object);

It checks if an object is date (in object form, ‘Date’).

util.isError(object);

It checks if an object is an error object (‘Error’).

util.inherits(constructor, superConstructor);

Inherits prototypical methods from a constructor to another.

Events
emitter.addListener(event, listener);

Adds an event and the suitable event working methods.

emitter.on(event, listener);

Adds an event and the suitable event working method. Short form for
comfortable use.

emitter.once(event, listener);

Adds an event and the suitable event working method. The method is only
called once.

emitter.removeListener(event, listener);

Removes the event working method from an event.

﻿■ Appendix

137

emitter.removeAllListeners([event]);

Removes all event working methods from an event.

emitter.setMaxListeners(n);

Specifies the maximum number of event working methods. According to
standard, a warning is produced at 10.

emitter.listeners(event);

Returns all event working methods as array.

emitter.emit(event, [arg1], [arg2], [...]);

Implements all event working methods with the arguments.

EventEmitter.listenerCount(emitter, event);

Determines the number of event working methods.

Stream
Streams can be writable or readable or both. That depends on where they come from. “readable” stands in
the following for readable ones, “writable”, however, for writable ones.

readable.on('readable', function() {});

Fires the event if the data is readable.

readable.on('data', function(chunk) {});

If data arrives block-by-block, this event fires if a data block arrives.

readable.on('end', function() {});

If data arrives block-by-block, this event fires if no more data is present.

readable.on('close', function() {});

Fires the event, if the connection was closed.

readable.on('error', function() {});

Fires the event if an error arose.

readable.read([size]);

Reads a number of bytes.

readable.setEncoding(encoding);

Sets the coding if a character string is used.

readable.resume();

Continues the sending of events.

readable.pause();

Stops the sending of events.

readable.pipe(destination, [options]);

Reads all data and writes them to the goal.

﻿■ Appendix

138

readable.unpipe([destination]);

Terminates the connection between source and a goal, which was developed by
the means of “pipe”.

readable.unshift(chunk);

Returns data which is not needed, but was already read by the optimizations.

writable.write(chunk, [encoding], [callback]);

Writes a data block in the stream and calls the callback function, as soon as this is
terminated.

writer.once('drain', write);

An event that uniquely fires if data was written and stream is ready to assume
more data.

writable.end([chunk], [encoding], [callback]);

It shows that the letter is terminated.

writer.on('finish', function() {});

An event fires if after the end of the transmission, all data is handed over to the
operating system with “end”.

writer.on('pipe', function(src) {});

An event fires if on a readable stream, a further writable data sink was added.

writer.on('unpipe', function(src) {});

An event that fires if a writable data sink was removed on a readable stream.

writer.on('error', function(src) {});

An event that fires if an error arose.

File System
In many methods, there is a synchronous (Sync) and asynchronous (without marking) version.
Asynchronous ones return data over the callback function; synchronous return a value. With asynchronous
functioning errors are returned as exception object as the first argument of the callback function; with
synchronous functioning the exceptions are released. Variants with the argument fd use a file description
(file descriptor) instead of the file name.

•	 fs.rename(oldPath, newPath, callback);

•	 fs.renameSync(oldPath, newPath);

Designates a file.

•	 fs.ftruncate(fd, len, callback);

•	 fs.ftruncateSync(fd, len);

•	 fs.truncate(path, len, callback);

•	 fs.truncateSync(path, len);

﻿■ Appendix

139

Cuts a file off at the position.

•	 fs.chown(path, uid, gid, callback);

•	 fs.chownSync(path, uid, gid);

•	 fs.fchown(fd, uid, gid, callback);

•	 fs.fchownSync(fd, uid, gid);

•	 fs.lchown(path, uid, gid, callback);

•	 fs.lchownSync(path, uid, gid);

Changes the owner of a file.

•	 fs.chmod(path, mode, callback);

•	 fs.chmodSync(path, mode);

•	 fs.fchmod(fd, mode, callback);

•	 fs.fchmodSync(fd, mode);

•	 fs.lchmod(path, mode, callback);

•	 fs.lchmodSync(path, mode);

Changes the access rights to a file.

•	 fs.stat(path, callback);

•	 fs.statSync(path);

•	 fs.lstat(path, callback);

•	 fs.lstatSync(path);

•	 fs.fstat(fd, callback);

•	 fs.fstatSync(fd);

Returns rights to a file. That prefix ‘l’ shows that symbolic links are accessed.

•	 fs.link(srcpath, dstpath, callback);

•	 fs.linkSync(srcpath, dstpath);

•	 fs.symlinkSync(srcpath, dstpath, [type]);

Creates a link (hard link) and/or symbolic link (soft link).

•	 fs.readlink(path, callback);

•	 fs.readlinkSync(path);

Reads a link (not the file behind it).

•	 fs.unlink(path, callback);

•	 fs.unlinkSync(path);

﻿■ Appendix

140

Delets a link and/or a file, if the paths points directly to a file.

•	 fs.realpath(path, [cache], callback);

•	 fs.realpathSync(path, [cache]);

Determines the complete, absolute path.

•	 fs.rmdir(path, callback);

•	 fs.rmdirSync(path);

Removes a folder.

•	 fs.mkdir(path, [mode], callback);

•	 fs.mkdirSync(path, [mode]);

Provides a folder. The standard mode is 0777 (all rights).

•	 fs.readdir(path, callback);

•	 fs.readdirSync(path);

Reads the contents of a folder and returns the file list.

•	 fs.close(fd, callback);

•	 fs.closeSync(fd);

Closes a file.

•	 fs.open(path, flags, [mode], callback);

•	 fs.openSync(path, flags, [mode]);

Opens a file for reading and writing operations.

•	 fs.utimes(path, atime, mtime, callback);

•	 fs.utimesSync(path, atime, mtime);

•	 fs.futimes(fd, atime, mtime, callback);

•	 fs.futimesSync(fd, atime, mtime);

Changes the file date.

•	 fs.fsync(fd, callback);

•	 fs.fsyncSync(fd);

Synchronizes the condition of the file with the data storage unit.

•	 fs.write(fd, buffer, offset, length, position, callback);

•	 fs.writeSync(fd, buffer, offset, length, position);

•	 fs.writeFile(filename, data, [options], callback);

•	 fs.writeFileSync(filename, data, [options]);

﻿■ Appendix

141

Writes data into a file.

•	 fs.read(fd, buffer, offset, length, position, callback);

•	 fs.readSync(fd, buffer, offset, length, position);

•	 fs.readFile(filename, [options], callback);

•	 fs.readFileSync(filename, [options]);

Reads from a file byte by byte into a buffer. If a coding like ‘utf8’ is configured in the settings, the data
will be read as character string.

•	 fs.appendFile(filename, data, [options], callback);

•	 fs.appendFileSync(filename, data, [options]);

Hangs data at the end of an existing file.

•	 fs.watch(filename, [options], [listener]);

Supervises changes on a file and releases the callback function listener when something is changed.

•	 fs.exists(path, callback);

•	 fs.existsSync(path);

It checks if a file exists.
The stat function returns a Stats object, which has the following methods:

•	 stats.isFile()

•	 stats.isDirectory()

•	 stats.isBlockDevice()

•	 stats.isCharacterDevice()

•	 stats.isSymbolicLink()

•	 stats.isFIFO()

•	 stats.isSocket()

fs.createReadStream(path, [options]);

Produces an object of the type ‘ReadStream’.

fs.createWriteStream(path, [options]);

Produces an object of the type ‘WriteStream’.

Path
path.normalize(p);

Normalizes a path with consideration from ‘..’ and ‘.’.

path.join([path1], [path2], [...]);

Connects parts to a valid path.

path.resolve([from ...], to);

Dissolution to an absolute path.

﻿■ Appendix

142

path.relative(from, to);

Dissolution of a relative path.

path.dirname(p);

Name of the folder.

path.basename(p, [ext]);

Last part of a path.

path.extname(p);

The file extension.

path.sep;

The platform-specific separator for files, ‘\’ or ‘/’.

path.delimiter;

The platform-specific separator for paths, ‘;’ or ‘:’.

URL
url.parse(url, [parseQuerystring], [slashesDenoteHost]);

Transfers a URL as character string into an object.

url.format(urlObj);

Transfers an object in a URL.

url.resolve(from, to);

Simulate the URL production as the Anchor Tag in HTML would do.

Querystring
querystring.stringify(obj, [sep], [eq]);

Provides a Querystring from an object.

querystring.parse(str, [sep], [eq], [options]);

Provides an object from a Querystring.

Assert
assert.fail(actual, expected, message, operator);

Throws an exception.

assert(value, message);
assert.ok(value, [message]);

Tests, if a value is true.

﻿■ Appendix

143

assert.equal(actual, expected, [message]);

Tests values on equality. Objects become only flat – on the first level – compared.

assert.notEqual(actual, expected, [message]);

Tests values on inequality. Objects become only flat – on the first level – compared.

assert.deepEqual(actual, expected, [message]);

Tests values on equality. Objects become deep – on all levels – compared.

assert.notDeepEqual(actual, expected, [message]);

Tests values on inequality. Objects become deep – on all levels – compared.

assert.strictEqual(actual, expected, [message]);

Tests values on equality with ‘===’ - the operator.

assert.notStrictEqual(actual, expected, [message]);

Tests values on inequality with ‘!==’ - operator.

assert.throws(block, [error], [message]);

Expects that the code block throws an exception.

assert.doesNotThrow(block, [message]);

Expects that the code block throws no exception.

assert.ifError(value);

Checks if the value is “false”.

OS
os.tmpdir();

Standard listing for temporary files.

os.endianness();

Type of CPU; “LE” or “BE” – low endian or big endian.

os.hostname();

The name of the host.

os.type();

The name of the operating system.

os.platform();

The name of the platform.

os.arch();

Architecture of the CPU (x86, x64, ARM, etc.).

﻿■ Appendix

144

os.release();

Version of the operating system.

os.uptime();

Amount of time the system has been running for.

os.loadavg();

Middle load times.

s.totalmem();

Memory

os.freemem();

Free memory

os.cpus();

Array of objects, whereby each entry stands for a CPU/ a core.

os.networkInterfaces();

List of network interfaces.

os.EOL;

Line end character for this operating system.

Buffer
new Buffer(size);

Provides a new buffer with the indicated size.

new Buffer(array);

Provides a new buffer with the indicated size of the array.

new Buffer(str, [encoding]);

Provides a new buffer for character strings with the indicated coding.

Buffer.isEncoding(encoding);

Checks if the coding (‘utf8’, etc.) is valid.

Buffer.isBuffer(obj);

Tests, if an object is a “buffer”.

Buffer.concat(list, [totalLength]);

Joins Buffer.

Buffer.byteLength(string, [encoding]);

Length of a character string in bytes (depends on the coding).

﻿■ Appendix

145

buf.write(string, [offset], [length], [encoding]);

Writes indication into a buffer.

buf.toString([encoding], [start], [end]);

Converts buffer data in indications. Standard for the coding is ‘utf8’, for start it is 0.

buf.toJSON();

JSON representtion of the buffer contents.

buf.copy(targetBuffer, [targetStart], [sourceStart], [sourceEnd]);

Copied between buffers.

buf.slice([start], [end]);

Returns parts of a buffer.

buf.fill(value, [offset], [end]);

Fills a buffer with firm values.

buf[index];

The element at the index.

buf.length;

Size of the buffer; contents do not have to use everything in the buffer.

buffer.INSPECT_MAX_BYTES;

Maximum number of bytes, which return “buffer.inspect”.

The API Reference for Express
The following reference explains systematically the functions of the Express module. It corresponds to
a large extent to the original documentation, supplemental around further examples and background
information.

Das Basic Objekt
The call express() produces an Express application. This is the module function, which was exported by the
Express module.

1 var express = require('express');
2 var app = express();

The object Express has further methods.

﻿■ Appendix

146

Static Method of the Basic Object
The following syntax has this method:

express.static(root, [options])

This is a middleware function. It is the only one which you don’t have to provide by yourself. This
method defines master paths to folders in which static files are located. This concerns CSS, JavaScript or
image files. This way you avoid building routes for such elements.

“root” points to the folder, whose contents are made available. The behavior can be affected by means
of options:

Table A-1.  Options of the Function Static

Property Description Type St

dotfiles Files, which begin with a dot. Permits values: “allow”, “deny”,
“ignore”

String “ignore”

etag Produce “etag” Boolean True

extensions Fallback for file extensions Boolean False

index Index file for listing of the index or false for switching the list off Mixed “ignore”

lastModified Puts on the header “Last-Modified” The file date of the operating
system

Boolean True

maxAge Sets “max-age” of the header “Cache-Control” in milliseconds or
a Character sequence of the kind “0ms”

Number 0

redirect Bypass to the master path “/” if the path index is Boolean True

setHeaders Function for setting the HTTP headers with sending the file Function

The following examples show, how “static” can be used. Here CSS files are expected in the folder /public:

1 // GET /style.css etc
2 app.use(express.static(__dirname + '/public'));

Here the path static is connected in order to load files from the internal folder public:

1 // GET /static/style.css etc.
2 app.use('/static', express.static(__dirname + '/public'));

By calling the protocol object directly after the agreement of the static route, the logging for static files is
switched off:

1 app.use(express.static(__dirname + '/public'));
2 app.use(logger());

﻿■ Appendix

147

If you distribute the static files on several folders, the call of “use” takes place several times. The
sequence determines the search strategy:

1 app.use(express.static(__dirname + '/public'));
2 app.use(express.static(__dirname + '/files'));
3 app.use(express.static(__dirname + '/uploads'));

 __dirname N ode makes a global variable with the name dirname available. This always points to the

path in which the currently implemented JavaScript file is. Thus, the local connection is made. ‘/’, which is often
comparably used, that shows the path in which Node is implemented. That can, but does not have to, be
identical. Always use dirname for references within the application structure.

The application
Providing the application takes place on highest level. The production of an object usually has the name App.

Listing A-1.  apphelloworld_sample.js

1 var express = require('express');
2 var app = express();
3
4 app.get('/', function(req, res){
5 res.send('hello world');
6 });
7
8 app.listen(3000);

The “app” object has methods for the following tasks:

•	 Routing

•	 Configuration of the Middleware

•	 Rendering of Views

•	 Registration of certain View Engines (e.g., Jade)

The “app” object also has features for configuration.

The Features of the Application Object
•	 app.locals

“app.locals” defines local variables specifically for the application and is permanently available. Examples:

•	 app.locals.title: Could be the title of the application.

•	 app.locals.email: Could be the E-Mail of the administrator.

﻿■ Appendix

148

The access to those variables can take place from all sides. The data is JavaScript objects, so that here
maximum flexibility is present.

1 app.locals.title = 'My App';
2 app.locals.strftime = require('strftime');
3 app.locals.email = 'me@myapp.com';

•	 app.mountpath

The feature app.mountpath determines the sample of the path where a subordinated application is.
Thus the routing of subordinated application parts is steered.

Listing A-2.  mountpath_sample.js

 1 var express = require('express');
 2
 3 var app = express(); // Main app
 4 var admin = express(); // Sub app
 5
 6 admin.get('/', function (req, res) {
 7 console.log(admin.mountpath); // Ausgabe des Stammpfades
 8 res.send('Admin Homepage');
 9 })
10
11 // Determine the root path of the sub app
12 app.use('/admin', admin);

The use of the method app.use provides for the link of application and router. Within the application
you access these paths in order to dissolve, for example, relative references. That is comparable with the
feature baseUrl of the requirement object '\'req.

If the subapplication should react to several paths (by path samples), app.mountpath will return a list
with these paths (in form of a JavaScript array).

Listing A-3.  mountpath2_sample.js

 1 var admin = express();
 2
 3 admin.get('/', function (req, res) {
 4 console.log(admin.mountpath); // ['/adm*n', '/manager']
 5 res.send('Admin Homepage');
 6 })
 7
 8 var secret = express();
 9 secret.get('/', function (req, res) {
10 console.log(secret.mountpath); // /secr*t
11 res.send('Admin Secret');
12 });
13
14 // Load the router 'secret' mit dem Pfad '/secre*'
15 // for the sub application admin
16 admin.use('/secre*', secret);
17

﻿■ Appendix

149

18 // Load the router 'admin' mit den Pfaden '/adm*' und '/manager'
19 // for the main application
20 app.use(['/adm*', '/manager'], admin);

In principle, regular expressions are processed if complex routes are defined. In JavaScript you write
these in the literal spelling:

/\/adm(.*)/

The slash must be thereby masked ‘\/’. If you indicate routes in character strings, some special
characters are intercepted and converted into suitable regular expressions. The following special characters
are permitted:

•	 *: Zero or as many as desired indications

•	 • +: One or as many as desired indications

•	 ?: One or zero indications

•	 (): Group on which ‘*’, ‘+’ or ‘?’ can be used

With character strings the indications ‘.’ (dot) and ‘-‘ (minus) don’t have a special meaning, but become
part of the path.

 1 // The fixed path /abcd
 2 app.get('/abcd', function(req, res) {
 3 res.send('abcd');
 4 });
 5
 6 // The path /acd or /abcd
 7 app.get('/ab?cd', function(req, res) {
 8 res.send('ab?cd');
 9 });
10
11 // The path /abbcd
12 // ('b' kann wiederholt werden)
13 app.get('/ab+cd', function(req, res) {
14 res.send('ab+cd');
15 });
16
17 // The path /abxyzcd
18 // (everything between 'b' and 'c' is allowed)
19 app.get('/ab*cd', function(req, res) {
20 res.send('ab*cd');
21 });
22
23 // The path /abe or /abcde matches
24 // ('cd' ist optional)
25 app.get('/ab(cd)?e', function(req, res) {
26 res.send('ab(cd)?e');
27 });

﻿■ Appendix

150

 Consider the Sequence P ay attention that weak routes will be defined last along with placeholders.

Otherwise, all of these requests will intercept and concrete routes are never reached.

Combinations with parameters are interesting. Here in the path an intuitively usable range “of to”
(e.g. /route/12-23) is defined:

1 app.get('/route/:from-:to', function(req, res) {
2 res.send(req.params.from + ' to ' + req.params.to);
3 });

Likewise, a parameter can easily be made optional (line 1):

1 app.get('/feed/:format?', function(req, res) {
2 if (req.params.format) {
3 res.send('format: ' + req.params.format);
4 }
5 else {
6 res.send('default format');
7 }
8 });

The question mark makes the entire parameter optional. The inquiry in the code reacts to it (the value is
undefined and this is in JavaScript false).

Regular expressions can certainly do more. The following route reacts to pineapple, redapple, redaple,
aaple but not to apple and apples:

1 app.get(/.+app?le$/, function(req, res) {
2 res.send('/.+ap?le$/');
3 });

 Regular Expressions in Routes I f you don’t have a good reason to use regular expressions, then you

should stay with the character string spelling. Simpler routes are in the long term better controllable and often
sufficient—parameters are responsible for the dynamics. However, if you should ever use regular expressions,
then you absolutely need to use the literal spelling ‘//’.

Events
In Express, you can dynamically react to some procedures, which take place during the initialization. Thus
program sections can be separated like the main and subapplications already mentioned, but more simply.

•	 app.on('mount', callback(parent))

This event arises, if a subapplication is bound to a main application. The superordinate application is
then handed over as parameter.

﻿■ Appendix

151

Listing A-4.  on_sample.js

 1 var admin = express();
 2
 3 admin.on('mount', function (parent) {
 4 console.log('Admin mounted');
 5 console.log(parent); // parent app
 6 });
 7
 8 admin.get('/', function (req, res) {
 9 res.send('Admin Homepage');
10 });
11
12 // This call invokes an event
13 app.use('/admin', admin);

Methods of Application Level
Some further methods make fundamental functions available.

•	 app.all

This method receives a request and reacts to all HTTP verbs. The use of global methods relieves
substantially the structure of flexible interfaces and avoids uselessly complex routes. Combine this method
with a universal path sample as ‘*’, in order to implement general tasks on all requests. It is important to
understand which regular inquiring (instead of the use of the middleware) can work as intermediary. The
request does not have to end compellingly with a result; it can also be passed on.

1 app.all('*', requireAuthentication, loadUser);

The parameters requiredAuthentication and loadUser will be executed one after another. The same call
could be written like this:

1 app.all('*', requireAuthentication)
2 app.all('*', loadUser);

Figure A-1.  Several Callback Handler

﻿■ Appendix

152

The difference is only stylistic. If you write the callback methods directly in the parameter, the second
variant is clearer:

1 app.all('*', function(req, res) {
2 // Execute action
3 });

Likewise, more complex samples of paths can be provided in order to permit certain only global
structures for the URL. If all paths start with /api, the following definition is suitable:

1 app.all('/api/*', requireAuthentication);

•	 app.delete

This method reacts to the HTTP Verb DELETE. It is used for the deletion of resources. It occurs usually
only in connection with JavaScript Clients, which can send DELETE. Browsers alone cannot do this.

 More Methods  You can use several methods for the same route. These are always successively

implemented. Comparable methods of the middleware behave similarly, however, ignore the further
processing steps.

1 app.delete('/', function (req, res) {
2 res.send('DELETE request to homepage');
3 });

•	 app.disable(name)

This method sets a feature of the central options to false. The call app.set('foo',false) leads to the
same result.

1 app.disable('trust proxy');
2 app.get('trust proxy');

After this call the value shows false

•	 app.disabled(name)

This method checks whether an option was deactivated or not.

1 app.enable('trust proxy');
2 app.disabled('trust proxy');

Since first an activation took place, the second call shows true.

•	 app.enable(name)

This method sets a feature of the central options to true. app.set('foo', true)
leads to the same result.

1 app.enable('trust proxy');
2 app.get('trust proxy');

﻿■ Appendix

153

Since first an activation took place, the second call shows true.

•	 app.enabled(name)

This method checks whether an option was activated.

1 app.enable('trust proxy');
2 app.enabled('trust proxy');

Since first the activation took place, the second call shows true

•	 app.engine(ext, callback)

This method registers a View Engine. This is responsible for translating the special format from Views
into valid HTML. Express finds the suitable engine according to standard automatically on the basis and
the file extension of the View file. The name of the View file is for example index.pug implicitly that the Jade
engine is used. The result is cached, so that the determination procedure won’t be disturbed.

An explicit definition looks as follows:

1 app.engine('pug', require('pug').__express);

The call of the registration method does not always have to be “ – express”0. The call could also look as
follows:

1 app.engine('html', require('ejs').renderFile);

The module “EJS” offers a method renderFile for processing the View. However, the call is only
necessary, because in this example the file extension html is used and not the standard ejs for the EJS engine.

Some Engines do not adhere to the call conventions. But there is the library consolidate.js, which can
perform a translation from the Express-typical calls to the respective engine:

1 var engines = require('consolidate');
2 app.engine('haml', engines.haml);
3 app.engine('html', engines.hogan);

 What Engine? D ue to simplicity and widespread use in this series of texts, the Pug engine will always

be used as standard. 

•	 app.get(name)

This form of the call returns an attitude.

1 app.get('title');
2
3 app.set('title', 'Mein StartUp');
4 app.get('title');

Here undefined (line 1) was produced, because title was not set yet. After the assignment with set
(line 2), then the text “My StartUp” is shown (line 3).

﻿■ Appendix

154

 Caution with Get D o not confuse this syntax with the use of “get” as action. 

•	 app.get

This method reacts to requests with the HTTP Verb GET. If such a request is received over the indicated
route, the callback method is successively implemented.

 More Methods  You can use several methods for the same route. These are always successively

implemented. Comparable methods of the middleware behave similarly, however they can ignore the further
processing steps.

1 app.get('/', function (req, res) {
2 res.send('GET-Anfrage empfangen');
3 });

•	 app.listen

This method binds a port and then begins to listen. The call is an abbreviation for the Node method
“listen()” and corresponds there “http.Server.listen()”.

1 var express = require('express');
2 var app = express();
3 app.listen(3000);

The application which is provided by Express is a function in its core, which is handed over to Node.
Node regards these as callback methods and calls it with arriving requests. Thus the data from Node arrives
to Express. Since it concerns only a callback method, the application object can be used several times. In the
following example, the connection takes place twice, once for HTTP and once for HTTPS:

Listing A-5.  listen_sample.js

1 var express = require('express');
2 var https = require('https');
3 var http = require('http');
4 var app = express();
5
6 http.createServer(app).listen(80);
7 https.createServer(app).listen(443);

The following variant defines the server implicitly over “this”:

1 app.listen = function() {
2 var server = http.createServer(this);
3 return server.listen.apply(server, arguments);
4 };

Further variants are to be found in the documentation of Node.js or in Jörgs small Web band to Node.

﻿■ Appendix

155

More Methods
As shown in the preceding examples already, Express reacts to HTTP verbs by a suitable method. In
principle, all theoretically conceivable HTTP verbs are available as method. While in HTTP the verbs are
always located in capital letters, these always are small letters in JavaScript methods. The HTTP verb HEAD
is thus processed by the method app.head().

Express knows the following methods:

•	 checkout: For WebDAV for closing resources

•	 Connect: Structure of the connection

•	 copy: For WebDAV for duplicating resources

•	 delete: Deletes a resource on the server

•	 get: Regular requirement of resources without payload in the request

•	 head: Like get, however the client expects only headers back

•	 lock: For WebDAV for blocking resources

•	 merge: For REST for connecting data

•	 mkactivity: For WebDAV for the creation of an activity

•	 mkcol: For WebDAV for producing a collection

•	 move: For WebDAV for shifting resources

•	 m-search: Search for Resources

•	 notify: Notification

•	 options: To determine options and requirements of the server

•	 patch: Change a part of resources

•	 post: Regular requirement of resources with payload in the request. Produces a new
Data record with REST (insert)

•	 propfind: For WebDAV for determining resources

•	 proppatch: For WebDAV for looking and changing of a resource

•	 purge: Final removing of resources

•	 put: Only for REST; contains a payload and changes resources (update)

•	 report: Report on the structure of resources

•	 search: For WebDAV for looking for resources

•	 subscribe: For WebDAV for connecting with resources

•	 trace: Loop back on the server for pursuing processing

•	 unlock: For WebDAV for releasing blocked resources

•	 unsubscribe: For WebDAV for waiving the connection with resources

﻿■ Appendix

156

Names which do not show a valid spelling in JavaScript can be reached by means of the clip spelling:

1 app['m-search']('/', function

 About the Sense or Nonsense of Many Verbs  There is some criticism about the complexity and

variety of the verbs, particularly, some by special extensions such as WebDAV or CalDAV that were added. There
are quite complex applications, which are only based on GET and POST. In addition, the implementation is
somewhat complex because each of the verbs can return many different status codes and become
communication partial comprehensive XML structures, as expected. Do like the K.I.S.S. concept says and
implement only verbs which are really needed. You should use these only standard-conformal.

Meaningful verbs for browsers are:

•	 GET: Get data from the server

•	 POST: Send data to the server

Meaningful verbs for REST are:

•	 GET: Read resources

•	 POST: Produce resources

•	 PUT: Change resources

•	 PATCH: Change parts of resources

•	 DELETE: Delete resources

Each method processes several callback methods, which are indicated as individual parameters. These
methods process three parameters:

•	 req: The Request (request)

•	 res: The Answer (response)

•	 next: A method which is called to continue processing.

The names of the parameters are arbitrary; however, the shown names worked because of catchyness
and their shortness.

1 app.all('/secret', function (req, res, next) {
2 console.log('Called secret function ...')
3 next(); // Let's go on...
4 });

1 app.post('/', function (req, res) {
2 res.send('POST Request');
3 });

﻿■ Appendix

157

1 app.put('/', function (req, res) {
2 res.send('PUT Request');
3 });

•	 app.param

This method adds to determined parameters, which are part of a route. Callback functions in addition
process these methods as four parameters:

•	 req: The Request (request)

•	 res: The Answer(response)

•	 next: A method which is called to continue processing

•	 param: The parameter value

If now a route with the name :user is located inside a parameter, the callback method would react to it,
before the actual action of the route is implemented.

 1 app.param('user', function(req, res, next, id) {
 2
 3 // Fiktives "User"-Objekt
 4 User.find(id, function(err, user) {
 5 if (err) {
 6 next(err);
 7 } else if (user) {
 8 req.user = user;
 9 next();
10 } else {
11 next(new Error('failed to load user'));
12 }
13 });
14 });

The treatment of the parameter is local for the router, where they were defined. The parameters are not
left over, connected application parts. The callback method is called only once within a requirement answer
cycle, even if the parameter is used by several routes.

 1 app.param('id', function (req, res, next, id) {
 2 console.log('Called once');
 3 next();
 4 })
 5
 6 app.get('/user/:id', function (req, res, next) {
 7 console.log('Will be reached');
 8 next();
 9 });
10
11 app.get('/user/:id', function (req, res) {
12 console.log('And this, too');
13 res.end();
14 });

﻿■ Appendix

158

The last part terminates the request eventually.

•	 app.render

This method serves the rendering of a View. The name of the View can be indicated without file
extension. The parameter local is optional and is used in order to hand over the View local varable.

That finished, the rendered HTML is sent over the callback function.
There is a local variable with the name “cache”, which ensures that the View becomes buffered. At the

draft this time is false; at the production time, it is true. Set the value in order to reach another behavior at
the draft time.

1 app.render('email', function(err, html) {
2 // ...
3 });

A View with the name email.jade is loaded (if Pug is used).
Then this is rendered. In the callback function “html” contains the rendered View as character string.

This can be handed over to the server, so that it continues to deliver it to the client.
The call of res.render() in the actions of the router is internally calling app.render().
Local variables for the View can be handed over via the object:

1 app.render('email', { name: 'Joerg' }, function(err, html){
2 // ...
3 });

•	 app.route(path)

With this method, the individual route object is returned. With this HTTP, verbs can be treated—with or
without middleware. By the use of objects you can avoid typing errors in character strings.

Listing A-6.  route_sample.js

 1 var app = express();
 2
 3 app.route('/events')
 4 .all(function(req, res, next) {
 5 // All Methods
 6 })
 7 .get(function(req, res, next) {
 8 // nur GET
 9 res.json(...);
10 })
11 .post(function(req, res, next) {
12 // nur POST
13 });

•	 app.set(name, value)

This method sets features for the application.

1 app.set('title', 'My StartUp');
2 app.get('title');

﻿■ Appendix

159

The following table describes the available features.

Table A-2.  Features

Features Typ Description Default

case sensitive routing Boolean Capitalization in routes false

env String Environment mode, NODE_ENV or
“development”

process.env.NODE_ENV

etag Varied ETag Header

jsonp callback String JSONP callback name ?callback=

json replacer String JSON replacer callback null

json spaces Number Indention in JSON none

query parser String “simple” or “extended” “simple” = Node; “extend

strict routing Boolean Striktes Routing false

subdomain offset Number Points in Subdomain path 2

trust proxy Varied See below false

views String Array Folder with Views

view cache Boolean Compiler Cache true in the production

view engine String Engine for Views

x-powered-by Boolean “X-Powered-By: Express” true

With the routes the upper and lower cases are not differentiated. However, if the value case sensitive
routing is true, “/Foo” and “/foo” won’t be the same anymore. With strict routing the concluding,
theoretically ineffective, Slash won’t be ignored, if the value stands on true; “/foo” and “/foo/” are then not
the same.

trust proxy is, according to standard, switched off. If it were activated, Express tries to determine the
IP address of the clients by the proxy. The feature req.ips contains thereafter an array with IP addresses
by which the client is connected. The package, as this implementation puts it, is called proxy_addr. Further
information is to be found in the documentation of this package:

The options for trust proxy settings are the following:

•	 Boolean: With true, the IP address of the client is “X-Forwarded-*” as the part on
the furthest left of the headers. With “false”, the client is assumed to be directly
connected with the internet and the IP address comes out of “eq.connection.
remoteAddress”. This is the standard attitude.

•	 IP address: An IP address, a subnet or an array from IP addresses and subnets
which is trusted. Some are already preconfigured:

–– loopback – 127.0.0.1/8, ::1/128

–– linklocal – 169.254.0.0/16, fe80::/10

–– uniquelocal – 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, fc00::/7

﻿■ Appendix

160

Set the IP address as follows:

1 // Simple subnet
2 app.set('trust proxy', 'loopback')
3 // subnet and address
4 app.set('trust proxy', 'loopback, 8.8.8.8')
5 // multiple subnets
6 app.set('trust proxy', 'loopback, linklocal, uniquelocal')
7 // multiple subnets as array
8 app.set('trust proxy', ['loopback', 'linklocal', 'uniquelocal'])

If indicated, the addresses and subnets become excluded by the address evaluation and the not-trusted
address, which is closest to the server seized as the IP address of the client.

•	 Number: Trust the ninth Hop from the Proxy to the Client.

•	 Function: An own implementation by means of a callback function.

1 app.set('trust proxy', function (ip) {
2 if (ip === '127.0.0.1' || ip === '123.123.123.123') return true;\
3 // trusted IPs
4 else return false;
5 })

The options for etag settings are just as various:

•	 Boolean: true permits a weak ETag. This is the standard. false turns the ETag
completely off.

•	 String: If the value strong was used, then this turns on a strong ETag. Weak, however,
produces a weak ETag.

•	 Function: An own implementation by means of a callback function.

 ETag  The ETag (entity tag) is a header field introduced to HTTP 1.1. It serves the avoidance of redundant

data transfer for the regulation resources requested by changes at and mainly for the caching; this is how it is
used.

1 app.set('etag', function (body, encoding) {
2 return generateHash(body, encoding); // consider the function is d\
3 efined
4 })

•	 app.use

With this method, middleware functions are added to a route. If the path is not indicated, the root ‘/’ is
used. Routes are search samples, which also fulfill partial conditions. The path app.use('/app',...) will
also react to /apple, /apple/images, /apple/images/news, etc.

﻿■ Appendix

161

Use the feature req.originalUrl in order to receive the complete path:

1 app.use('/admin', function(req, res, next) {
2 // GET 'http://www.example.com/admin/new'
3 console.log(req.originalUrl); // '/admin/new'
4 console.log(req.baseUrl); // '/admin'
5 console.log(req.path); // '/new'
6 next();
7 });

If the middleware function is bound, it will always be called, if a valid route is requested, independently
on the further processing. If you bind the root, the function is called practically with each requirement. Pay
attention to performance-critical actions, because in such a central place a small programming error can
have significant effects.

1 app.use(function (req, res, next) {
2 console.log('Time: %d', Date.now());
3 next();
4 });

Middleware functions are sequentially implemented. The sequence of the definition determines the
order of the execution. If the call next() is missing, then the execution stops here:

1 app.use(function(req, res, next) {
2 res.send('Hello World');
3 });
4 // Diese Aktion wird niemals erreicht
5 app.get('/', function (req, res) {
6 res.send('Welcome');
7 })

The path can be a character string, a path sample (see below), a regular expression, or a combination of
them. Simple paths are indicated directly:

1 app.use('/abcd', function (req, res, next) {
2 next();
3 });

•	 Path sample

Path samples use placeholders:

1 app.use('/abc?d', function (req, res, next) {
2 next();
3 });

The question mark makes an indication optional. Suitable paths would be /abcxd or /abcd.
The plus sign stands for yes or several occurrences (/abcd, /abbcd, /abbbbbcd):

1 app.use('/ab+cd', function (req, res, next) {
2 next();
3 });

﻿■ Appendix

162

The asterisk stands for no or several occurrences of arbitrary indications (/abcd, /abxcd, /abFOOcd, /
abbArcd etc.):

1 app.use('/ab*cd', function (req, res, next) {
2 next();
3 });

Blocks can be made optional by grouping (/ad and /abcd):

1 app.use('/a(bc)?d', function (req, res, next) {
2 next();
3 });

•	 Regular Expressions

The following path reacts to /abc and /xyz:

1 app.use(/\/abc|\/xyz/, function (req, res, next) {
2 next();
3 });

In addition, several arrays can be used. Consider that chracter strings and literal ones for regular
expressions can be mixed here (even if this is no such a good idea):

1 app.use(['/abcd', '/xyza', /\/lmn|\/pqr/],
2 function (req, res, next) {
3 next();
4 });

•	 The Callback Function

By the information of one or more callback functions the access to the requirement and the object is
possible, in which the answer is designed.

1 app.use(function (req, res, next) {
2 next();
3 });

The router itself is also a middleware function and uses the same signature:

1 var router = express.Router();
2 router.get('/', function (req, res, next) {
3 next();
4 })
5 app.use(router);

The application itself can also be used:

1 var subApp = express();
2 subApp.get('/', function (req, res, next) {
3 next();
4 })
5 app.use(subApp);

﻿■ Appendix

163

Further Callback Functions
The same path can serve several middleware functions.

 1 var r1 = express.Router();
 2 r1.get('/', function (req, res, next) {
 3 next();
 4 })
 5
 6 var r2 = express.Router();
 7 r2.get('/', function (req, res, next) {
 8 next();
 9 })
10
11 app.use(r1, r2);

Alternatively, objects can be indicated as arrays and this way be grouped logically. Here the master path
must be indicated as:

 1 var r1 = express.Router();
 2 r1.get('/', function (req, res, next) {
 3 next();
 4 })
 5
 6 var r2 = express.Router();
 7 r2.get('/', function (req, res, next) {
 8 next();
 9 })
10
11 app.use('/', [r1, r2]);

Combinations
You can combine all described parameters.

 1 function mw1(req, res, next) { next(); }
 2 function mw2(req, res, next) { next(); }
 3
 4 var r1 = express.Router();
 5 r1.get('/', function (req, res, next) { next(); });
 6
 7 var r2 = express.Router();
 8 r2.get('/', function (req, res, next) { next(); });
 9
10 var subApp = express();
11 subApp.get('/', function (req, res, next) { next(); });
12
13 app.use(mw1, [mw2, r1, r2], subApp);

﻿■ Appendix

164

Request–The Request Object
In many preceding examples, the parameter “req” was made available by Express. It concerns a Request
object. You can access all components of the requirement, their parameter, the QueryString, etc.

1 app.get('/user/:id', function(req, res){
2 res.send('user ' + req.params.id);
3 });

  The name “req” is used in all examples because it is short and catchy. You do not have to use these

names; it is only a parameter of a regular JavaScript function.

The Features
•	 req.app

This is the instance of the application
Define as example the following in the file index.js:

1 app.get("/viewdirectory", require("./mymiddleware.js"))

In another file mymiddleware.js will then access the application object, even though app isn’t
available anymore:

1 module.exports = function (req, res) {
2 res.send("The views directory is " + req.app.get("views"));
3 });

Here a middleware function is exported. It then receives the same parameters as the regular functions
of the router.

•	 req.baseUrl

This feature shows the basic path of the router instance:

1 var greet = express.Router();
2
3 greet.get('/jp', function (req, res) {
4 console.log(req.baseUrl); // /greet
5 res.send('Konichiwa!');
6 });
7
8 app.use('/greet', greet); // Load router for '/greet'

If path samples or regular expressions are used for the definition of the paths, this feature returns the
final, complete path, no sample.

1 app.use(['/gre+t', '/hel{2}o'], greet);
2 console.log(req.baseUrl); // => /greet.

﻿■ Appendix

165

The code in line 1 defines the routes for /gre+t and /hel{2}o.

•	 req.body

Contains key pair values of the data of the body range. This is according to standard “undefined and
fulfilled by middleware functions. How this looks is shown in the following example:

 1 var app = require('express')();
 2 var bodyParser = require('body-parser');
 3 var multer = require('multer');
 4
 5 // for parsing application/json
 6 app.use(bodyParser.json());
 7 // for parsing application/x-www-form-urlencoded
 8 app.use(bodyParser.urlencoded({ extended: true }));
 9
10 app.use(multer()); // for parsing multipart/form-data
11
12 app.post('/', function (req, res) {
13 console.log(req.body);
14 res.json(req.body);
15 });

•	 req.cookies

If cookies are processed, this feature contains an object of the cookies contained in the request.
Standard is an empty ‘{}’ object.

1 // Cookie: name=tj
2 req.cookies.name // => "tj"

The module cookie-parser supplies functionality.

•	 req.fresh

A boolean value shows that the request is “fresh” (up-to-date, intact). The opposite of it is “req.stale”.
The condition is that the head field cache-control has no “no-cache” directive and any of the following
conditions entered:

•	 The head field if-modified-since is present and last-modified is the same or as earlier

•	 The head fielld if-none-match is *.

•	 The head field if-none-match contains no ETag.

•	 req.hostname

Contains the host name, as it is located in the head field Host of the request.

1 // Host: "example.com:3000"
2 req.hostname

•	 req.ip

﻿■ Appendix

166

The IP address, to which the request was sent. The value can differ from the server, if Proxies are used.

1 req.ip // => "127.0.0.1"

•	 req.ips

Contains the addresses of head field X-Forwarded-For as array or an empty array, if the field is not used.

•	 req.originalUrl

Contains the original URL. You can overwrite “reg-url” internally, in order to steer the routing
dynamically. In such cases the previous value remains nevertheless in “req.originalUrl”.

1 // GET /search?q=something
2 req.originalUrl
3 // => "/search?q=something"

•	 req.params

An object with the parameters of the route. If the route is /article/:id, for example, then the value for :id
will be found in the feature “req.params.id”. Without parameters an empty object can be found ‘{}’.

1 // GET /article/2605
2 req.params.id // => 2605

If in the definition of the route regular expressions are used, the recognized groups (capture groups) are
returned as array of the object: “req.params[n]”. n is thereby the number of the group. This is also valid for
placeholders in routes, such as /file/*:

1 // GET /file/javascripts/jquery.js
2 req.params[0]
3 // => "javascripts/jquery.js"

•	 req.path

Contains the path information of the URL, that is, the part after the host and before
the QueryString.

1 // example.com/users?sort=desc
2 req.path
3 // => "/users"

•	 req.protocol

The protocol (or pattern), thus “http” or “https”.

1 req.protocol // => "http"

•	 req.query

﻿■ Appendix

167

An object with the QueryString parameters. If these are missing, an empty object ‘{}’
is returned.

 1 // GET /search?q=joerg+krause
 2 req.query.q
 3 // Ergibt => "joerg krause"
 4
 5 // GET /shoes?order=desc&shoe[color]=blue
 6 req.query.order
 7 // Ergibt => "desc"
 8
 9 req.query.shoe.color
10 // Ergibt => "blue"

•	 req.route

Contains the current, suitable route as character string.

1 app.get('/user/:id?', function userIdHandler(req, res) {
2 console.log(req.route);
3 res.send('GET');
4 })

The output of the information as JSON object now looks as follows:

 1 { path: '/user/:id?',
 2 stack:
 3 [{ handle: [Function: userIdHandler],
 4 name: 'userIdHandler',
 5 params: undefined,
 6 path: undefined,
 7 keys: [],
 8 regexp: /^\/?$/i,
 9 method: 'get' }],
10 methods: { get: true }
11 }

•	 req.secure

A boolean value, which shows that it concerns a coded connection (TLS, represented as “https”).
The following inquiry is equivalent:

"https" == req.protocol;

•	 req.signedCookies

If cookies are processed, this feature contains signed cookies. This is only an announcement for the
developer that this cookie serves a special purpose. They are neither coded nor hidden. The signature is
private and prevented from access with an attack on the cookie object.

1 // Cookie: user=joerg.IT7AWaXDfAKIRfH26dQzKJx05sKzzSoPq64
2 req.signedCookies.user
3 // Ergibt => "joerg"

﻿■ Appendix

168

•	 req.stale

The request is not valid any longer. The feature returns “true” or “false”.

•	 req.subdomains

The array of the subdomain in the request.

1 // Host: "joerg.admin.texxtoor.com"
2 req.subdomains
3 // => ["admin", "joerg"]

•	 req.xhr

A boolean value shows that the field X-Requested-With is used and contains the value
"XMLHttpRequest”. Thus, AJAX calls are recognized. The field is used among other things by the client
library jQuery. The feature returns “true” or “false”.

Methods
•	 req.accepts(types)

This method checks whether the requested content types are accepted or not. The requirement takes
place with the head field accept. The return value should be 406 “Not Acceptable”, if content types are not
accepted.

The values are MIME types, as for example ‘application/json’, or also extensions such as ‘json’. Several
values can be separated by comma.

 1 // Accept: text/html
 2 req.accepts('html');
 3 // => "html"
 4
 5 // Accept: text/*, application/json
 6 req.accepts('html');
 7 // => "html"
 8 req.accepts('text/html');
 9 // => "text/html"
10 req.accepts(['json', 'text']);
11 // => "json"
12 req.accepts('application/json');
13 // => "application/json"
14
15 // Accept: text/*, application/json
16 req.accepts('image/png');
17 req.accepts('png');
18 // => undefined
19
20 // Accept: text/*;q=.5, application/json
21 req.accepts(['html', 'json']);
22 // => "json"

•	 req.acceptsCharsets

﻿■ Appendix

169

Evaluates the field “Accept-Charset”. If nothing is recognized, “false” is produced. Syntax:

req.acceptsCharsets(charset [, ...])

•	 req.acceptsEncodings

Evaluates the field “Accept-Encoding”. If nothing is recognized, “false” is produced. Syntax:

req.acceptsEncodings(encoding [, ...])

•	 req.acceptsLanguages

Evaluates the field “Accept-Language”. If nothing is recognized, “false” is produced. Syntax:

req.acceptsLanguages(lang [, ...])

•	 req.get(field)

Evaluates the indicated field. Upper and lower cases are not considered. The terms Referer and Referrer
are exchangeable.

  Referrer with two ‘r’ is the correct name. The fact that Referer is also possible is justified because an

early version of the standardization document (RFC 2068) contained a write error and so the standard raised the
wrong spelling.

1 req.get('Content-Type');
2 // => "text/plain"
3
4 req.get('content-type');
5 // => "text/plain"
6
7 req.get('Something');
8 // => undefined
9 Aliased as req.header(field).

•	 req.is(type)

Returns true, if the field “Content-Type” corresponds to the parameter value.
If “Content-Type: text/html; charset=utf-8” was received, true arises:

1 req.is('html');
2 req.is('text/html');
3 req.is('text/*');

If “Content-Type: application/json” was received, true arises:

1 req.is('json');
2 req.is('application/json');
3 req.is('application/*');

﻿■ Appendix

170

The same request turned out to be “false” for this call:

1 req.is('html');

Response–The Answer Object
The response is arranged in the object ‘res’. This is used to send data to the client.

 The name res  The designation of the object is arbitrary; however, in the original documentation and in

this book this name is used throughout.

1 app.get('/user/:id', function(req, res){

2 res.send('user ' + req.params.id);

3 });

The same inquiry could look as follows:

1 app.get('/user/:id', function(request, response){
2 response.send('user ' + request.params.id);
3 });

Features
•	 res.app

This feature supplies a reference to the instance of the application.
This reference is identical to the same feature as in the Request object.

•	 res.headersSent

A boolean value, which shows that the head fields were actually sent. After this point of time no further
head fields can be produced and sent.

1 app.get('/', function (req, res) {
2 console.log(res.headersSent); // false
3 res.send('OK');
4 console.log(res.headersSent); // true
5 })

•	 res.locals

Local variables, which are only available for the current requirement/inquiry cycle. Thus, data can be
transported into a View. This differs from “app.locals” only to the extent that in “app.locals”, existing variables
in all requests are available.

﻿■ Appendix

171

This feature is useful in order to pass information on from the requirement to the View.

1 app.use(function(req, res, next){
2 res.locals.user = req.user;
3 res.locals.authenticated = ! req.user.anonymous;
4 next();
5 });

Methods
•	 res.append

Adds a value to a head field. If the field does not exist yet, then it is now produced. The values can be
character sequences or arrays. Syntax:

res.append(field [, value])

 I f “res.set()” is used after “res.append()”, then the former value is put back.

1 res.append('Link', ['<http://localhost/>', '<http://localhost:3000/>\
2 ']);
3 res.append('Set-Cookie', 'foo=bar; Path=/; HttpOnly');
4 res.append('Warning', '199 Miscellaneous warning');

•	 res.attachment

If the field “Content-Disposition” sets to the value “attachment”. If the file name is indicated, then also the
part “filename=parameter” is set. This serves to animate the browser to offer data for downloading. Syntax:

res.attachment([filename])

1 res.attachment();
2 // Content-Disposition: attachment
3
4 res.attachment('path/to/logo.png');
5 // Content-Disposition: attachment; filename="logo.png"
6 // Content-Type: image/png

•	 res.cookie

Sets the name of a cookie. The value can be a character sequence or an object. If it is an object, this is
converted in JSON. Syntax:

res.cookie(name, value [, options])

﻿■ Appendix

172

The options are described below:

Cookies are packets, which are sent as head fields. The function “res.cookie()” produces such a head
field with the indicated options. If an option is not indicated, then the in RFC 6265 indicated a default value
is used.

1 res.cookie('name', 'joerg', {
2 domain: '.texxtoor.com',
3 path: '/admin', secure: true
4 });
5 res.cookie('remember', '1', {
6 expires: new Date(Date.now() + 60000),
7 httpOnly: true
8 });

The option maxAge uses one time interval for the expiration date relatively for the time of delivering.
The following example will produce the same cookie as the last example:

1 res.cookie('rememberme', '1', { maxAge: 60000, httpOnly: true })

If JSON objects are handed over to the cookie function, then these are parsed and placed as serialized
JSON in the cookie.

1 res.cookie('cart', { items: [1,2,3] });
2 res.cookie('cart', { items: [1,2,3] }, { maxAge: 900000 });

The function also supports signed cookies. The function produces a secret Hash automatically for
the signature.

1 res.cookie('name', 'tobi', { signed: true });

Over “req.signedCookie”, the cookie is then accessed later on. The middleware checks the signature and
recognizes manipulations on the cookie.

Table A-3.  Cookie Options

Property Type Description

domain String Domain name for the cookie. The domain name of the app is standard.

expires Date Expiration date of the cookies in GMT. If here nothing is indicated, 0 is.

httpOnly Boolean Marks a cookie, so that it is read only on the server.

maxAge String An option, in order to set the expiration date relative to the current time.

path String Path of the cookies; the standard is “/”.

secure Boolean It specifies that the cookie is only supplied over HTTPS.

signed Boolean It specifies that the cookie must always be signed.

﻿■ Appendix

173

The following method deletes a cookie by indicating the name:

1 res.clearCookie(name [, options])

1 res.cookie('name', 'joerg', { path: '/admin' });
2 res.clearCookie('name', { path: '/admin' });

•	 res.download

This method offers a file for downloading. This takes place via producing a suitable head field Content-
Disposition. If the file name is indicated, the value is supplemented over filename=filename. The path
parameter refers to the source of the file. The callback function fn serves to show success or failure of the
procedure; it is called at the end of the transmission and contains HTTP status codes. Internally.
res.sendFile() is used for the transmission of the file. Syntax:

res.download(path [, filename] [, fn])

 1 res.download('/report-2605.pdf');
 2
 3 res.download('/report-2605.pdf', 'report.pdf');
 4
 5 res.download('/report-2605.pdf', 'report.pdf',
 6 function(err){
 7 if (err) {
 8 // Fehler
 9 } else {
10 // Erfolg
11 }
12 });

With the treatment of errors (line 6), it is to be noted that an output of error message possibly fails the
user, since other head fields were already dispatched. Check with res.headersSent if the sending of data is
still possible.

•	 res.end

This method terminates the answer procedure. The call is useful for the Node core, especially
response.end() of the object http.ServerResponse. Syntax:

res.end([data] [, encoding])

This is meaningful, if a request is to be terminated immediately without data.

1 res.end();
2 res.status(404).end();

•	 res.format

﻿■ Appendix

174

This method tries to read the head field “Accept” and then decide, how a response should be
formatted. In addition req.accepts() is called. If the head field does not exist, the first callback function is
used. If there is no editing, the 406 “Not Acceptable” is produced. If a standard callback function is available,
this is used. Syntax:

res.format(object)

If a callback function is used, the head field Content-Type will be produced along with the response.
This behavior can be changed by using res.set() or res.type().

The following example produces the JSON serialization {message: hello}, if the Accept head field
contains the MIME type “application/json” or “*/json”. Otherwise only the text “hello” will be output.
However, if HTML is requested explicitly(MIME type is ‘text/html’), <p>hello</p> is produced.

 1 res.format({
 2 'text/plain': function(){
 3 res.send('hallo');
 4 },
 5
 6 'text/html': function(){
 7 res.send('<p>hallo</p>');
 8 },
 9
10 'application/json': function(){
11 res.send({ message: 'hallo' });
12 },
13
14 'default': function() {
15 // log the request and respond with 406
16 res.status(406).send('Not Acceptable');
17 }
18 });

As an alternative to the character string representation of the MIME types, mapping can be used in
different methods, which is somewhat less complex and error-prone:

 1 res.format({
 2 text: function(){
 3 res.send('hallo');
 4 },
 5
 6 html: function(){
 7 res.send('<p>hallo</p>');
 8 },
 9
10 json: function(){
11 res.send({ message: 'hallo' });
12 }
13 });

•	 res.get

﻿■ Appendix

175

This method returns a certain head field, designated by the parameter field. Syntax:
res.get(field)

1 res.get('Content-Type');
2 // Resolves to "text/plain"

•	 res.json

This method sends a JSON response. Each data type can be used, not only JavaScript objects, but also
“zero” or “undefined”. Syntax:

res.json([body])

1 res.json(null)
2 res.json({ user: 'joerg' })
3 res.status(500).json({ error: 'message' })

•	 res.jsonp

This is a JSON response with JSONP support. This corresponds to the preceding method, however with
acceptance of JSONP. Syntax:

res.jsonp([body])

 JSONP  JSONP (JSON with Padding) makes the transmission of JSON data possible over domain

borders. Usually Ajax data inquiries are at servers over the XMLHttpRequest object of the browser. A security
concept, the Same-Origin-Policy prevents that parts of a webpage are loaded by different servers. This prevents
stranger scripts or CSS from being transferred. However, if a server environment scales, then pictures or scripts
are possibly consciously loaded from another server. Such inquiries are permissible, if JSONP is used. The
inquiry is packed in a <script> tag, which is exceptional by definition from Same-Origin-Policy.

1 res.jsonp(null)
2 // => null
3
4 res.jsonp({ user: 'joerg' })
5 // => { "user": "joerg" }
6
7 res.status(500).jsonp({ error: 'message' })
8 // => { "error": "message" }

The JSONP callback function is a simple JavaScript callback function according to standard. However,
this can be modified.

1 // ?callback=foo
2 res.jsonp({ user: 'joerg' })
3 // ergibt foo({ "user": "joerg" })
4
5 app.set('jsonp callback name', 'cb');

﻿■ Appendix

176

6
7 // ?cb=foo
8 res.status(500).jsonp({ error: 'message' })
9 // ergibt foo({ "error": "message" })

In the client code, the exemplary method “foo” should be found; with it other domain-loaded data can
be processed.

•	 res.links

This method connects the parameter presented hyperlinks and produces the head field Link. Syntax:

res.links(links)

 The Link Head Field  Link is used in order to communicate the client further files or resources, e.g. a

RSS feed, a Fav icon, copyright licenses, etc. This head field is equivalent to <link/> in HTML.

1 res.links({
2 next: 'http://api.example.com/users?page=2',
3 last: 'http://api.example.com/users?page=5'
4 });

This shows in the HTTP:

1 Link: <http://api.example.com/users?page=2>; rel="next",
2 <http://api.example.com/users?page=5>; rel="last"

•	 res.location

This method produces the Location head field. Syntax:

res.location(path)

 Location  Location is often used in order to pass Clients on (with a 3xx Code).

1 res.location('/foo/bar');
2 res.location('foo/bar');
3 res.location('http://example.com');
4 res.location('../login');
5 res.location('back');

The information of the path corresponds to those with redirect. See in addition the following method.

•	 res.redirect

﻿■ Appendix

177

This method also produces a Location head field. It does not take place an examination or a contral,
whether the value is meaningful or executable. The only exception is the value “back”. Syntax:

res.redirect([status,] path)

The browser is responsible in some instances to arrange the final path of the actual page and the
relevant entries, in order to bypass and execute it. Rerouting is initiated by the status code 302. Other codes
are possible, but would then have to be named explicitly. A complete instruction for bypass consists thus of
the request for bypass 302 and then instruction for the bypass Location.

1 res.redirect('/foo/bar');
2 res.redirect('http://example.com');
3 res.redirect(301, 'http://example.com');
4 res.redirect('../login');

Paths relative to others are also possible:

1 res.redirect('..');

The special value “back” uses the requirement head field Referrer for bypass on the preceding page. If
this head field is not found, ‘/’ will be used on the master path.

1 res.redirect('back');

•	 res.render

This method renders (provides) a View and sends the finished HTML to the client. Syntax:

res.render(view [, locals] [, callback])

The optional parameters have the following meaning:

•	 locals: An object, over which local variables can be handed over at Views. A
callback function, over which the access to error information or the rendered View as
character string exists. Sending the rendered data does not take place automatically.
In the event of an error, next() is called internally, in order to guarantee the further
processing.

Without callback function, the rendered View is sent directly to the client.

res.render('index');

With callback function, the rendered View is returned and must be sent with send.

1 res.render('index', function(err, html) {
2 res.send(html);
3 });

﻿■ Appendix

178

Local variables are expected as objects:

1 res.render('user', { name: 'Tobi' }, function(err, html) {
2 // ...
3 });

•	 res.send

This method sends an HTTP answer. Syntax:

res.send([body])

This method expects either a buffer, a character string, a JavaScript object or an array:

1 res.send(new Buffer('whoop'));
2 res.send({ message: 'json' });
3 res.send('<p>Etwas HTML</p>');
4 res.status(404).send('Not found!');
5 res.status(500).send({ error: 'Error while executing' });

If neither of the answer is determined and the suitable head field Content-Length is produced. In
addition, cache information is updated and administered. If the parameter is recognized as buffer object
buffers, the value “application/octet-stream” will be produced as MIME type in the head field Content-Type.
This automatically can be skipped as follows:

1 res.set('Content-Type', 'text/html');
2 res.send(new Buffer('<p>Etwas HTML</p>'));

With HTML, the head field Content-Type is set to “text/html”:

1 res.send('<p>some html</p>');

An array or an object is interpreted as JSON:

1 res.send({ user: 'joerg' });
2 res.send([1,2,3]);

•	 res.sendFile

This functions sends a file, which was loaded by the indicated path. Based on the file extension the head
field Content-Type is set. Note that this does not lead necessarily to downloading the file, but the answer on
its way as regular response to the browser. Syntax:

res.sendFile(path [, options] [, fn])

﻿■ Appendix

179

The options are described in the following.

Table A-4.  Options of the function sendFile

Property Description

maxAge Sets the feature “max-age” of the head field cache control in ms or as character

root The master directory for relative file names

lastModified Sets the head field “Last-Modified” to the date of the last change of the file, as the

headers Further HTTP head fields

dotfiles Options for files, which start with a dot: “allow”, “deny”, “ignore”. The value ‘ign

The method uses a callback function which is called if the transfer took place. If an error arose, this
must be treated explicitly. This takes place either via direct providing and sending of the response or via
explicit terminating of the procedure or via passing on to the next route.

 1 app.get('/file/:name', function (req, res, next) {
 2
 3 var options = {
 4 root: __dirname + '/public/',
 5 dotfiles: 'deny',
 6 headers: {
 7 'x-timestamp': Date.now(),
 8 'x-sent': true
 9 }
10 };
11
12 var fileName = req.params.name;
13 res.sendFile(fileName, options, function (err) {
14 If (err) {
15 console.log(err);
16 res.status(err.status).end();
17 }
18 else {
19 console.log('Sent:', fileName);
20 }
21 });
22
23 })

res.sendFile makes different exact reactions possible:

 1 app.get('/user/:uid/photos/:file', function(req, res){
 2 var uid = req.params.uid
 3 , file = req.params.file;
 4
 5 req.user.mayViewFilesFrom(uid, function(yes){
 6 if (yes) {
 7 res.sendFile('/uploads/' + uid + '/' + file);
 8 } else {

﻿■ Appendix

180

 9 res.status(403).send('Sorry! you cant see that.');
10 }
11 });
12 });

•	 res.sendStatus

Sets the status code of the HTTP answer to the appropriate value. The suitable character sequence is
thereby automatically produced. Syntax:

res.sendStatus(statusCode)

1 res.sendStatus(200);
2 // äquivalent zu res.status(200).send('OK')
3 res.sendStatus(403);
4 // äquivalent zu res.status(403).send('Forbidden')
5 res.sendStatus(404);
6 // äquivalent zu res.status(404).send('Not Found')
7 res.sendStatus(500);
8 // äquivalent zu res.status(500).send('Internal Server Error')

If a code is produced, which does not admit according to HTTP specification, it is sent nevertheless and
the character sequence representation of the code is used:

1 res.sendStatus(2000); // equivalent to res.status(2000).send('2000')

•	 res.set

If a head field in the response relies on a certain value. This method can also deal with an object, in
order to produce several head fields in one call. Syntax:

res.set(field [, value])

1 res.set('Content-Type', 'text/plain');
2
3 res.set({
4 'Content-Type': 'text/plain',
5 'Content-Length': '123',
6 'ETag': '12345'
7 })

For this there is an alians with the name “res.header(field [, value])”.

•	 res.status

Sets the status code of the HTTP response to the appropriate value.
The suitable character sequence is not thereby produced. Syntax:

res.status(code)

1 res.status(403).end();
2 res.status(400).send('Bad Request');
3 res.status(404).sendFile('/absolute/path/to/404.png');

•	 res.type

﻿■ Appendix

181

Sets the head field Content-Type to a MIME type. Internally, “mime.lookup()” is used, in order to
determine the value. The information of a short spelling is sufficient. If the value contains the slash “/”, the
value is invariably taken over. Syntax:

res.type(type)

1 res.type('.html'); // => 'text/html'
2 res.type('html'); // => 'text/html'
3 res.type('json'); // => 'application/json'
4 res.type('application/json'); // => 'application/json'
5 res.type('png'); // => image/png:

•	 res.vary

Adds the ‘Vary’ head field to a value, if not there yet. Syntax:

res.vary(field)

1 res.vary('User-Agent').render('docs');

The API of the Router
This section shows the specific API of the router.

The Router in Detail
A router object is an insulating instance of middleware and routes. It is an application which implements
processing functions on the request, recognizes routes, passes on and provides answers. An Express
application always has an inserted router:

The router (the part of the application, which processes routes) is a piece of middleware and can be
used as app.use() argument. On the highest level, the function Router() in fact serves to produce a new
router object.

Produce a new Router
A new router is produced as follows:

1 var options = {};
2 var router = express.Router(options);

﻿■ Appendix

182

The delivery of the options itself is optional. The following features are available:

The router permits access to the request like every other middleware component, so that processing
can be accomplished promptly with suitable setting of tasks. Those also affect the evaluation of the HTTP
verbs (GET, POST, PUT etc.):

1 router.use(function(req, res, next) {
2 // Logik des Routers ohne Route
3 next();
4 });
5
6 router.get('/events', function(req, res, next) {
7 // Logik des Routers mit Route '/events'
8 });

It is meaningful to use a router for the master URL (root) and to divide the application into a number of
smaller miniapplications. In the following example, only the routes with the path “/calender/*” are sent to
the router with the name calRouter.

1 app.use('/calendar', calRouter);

Methods
In the following the methods of the router object are described more directly.

•	 router.all

This method functions like all response methods, only that instead of a certain HTTP verb it will react to
all verbs. Thus, very simply, a kind of general logic can be developed, which accepts and processes universal
requests. General tasks are:

•	 Authentication

•	 Authorization

•	 Caching

•	 Logging

•	 Meeting Processing

Table A-5.  Options of the Router

Property Description

caseSensitive Consider upper and lower case, i.e. /Foo and /foo are not the same.

mergeParams Keeps “req.params” values of the superordinate router. If parameter names overlap,
then the name of the parameter of the ch Standard is “false”.

strict Turns on strict Routing. Standard is “false”. If this is activated, /foo and /foo/ won’t be
the same anymore.

﻿■ Appendix

183

Note that for this in more extensive applications, also middleware functions can be used. In each case
the processing can be continued with next(), so that the action does not have to produce necessarily an
output. The following example releases two actions:

1 router.all('*', requireAuthentication, loadUser);

Alternatively, the agreement can also take place successively:

1 router.all('*', requireAuthentication)
2 router.all('*', loadUser);

The next example limits the universal access to paths, which begin with api:

1 router.all('/api/*', requireAuthentication);

Further Methods
The methods router.METHOD() react in each way to a concrete HTTP verb. The name for the placeholder
METHOD is the lower case written version of the verb. GET is thus processed with “get”, POST with “post”, etc.

Again the path can be limited (first argument) and many callback functions can be indicated.

1 router.get('/', function(req, res){
2 res.send('hello world');
3 });

In order to implement requests of the kind “GET /commits/71dbb9c” just like “GET /
commits/71dbb9c..4c084f9”, the following regular expression is suitable as path:

1 router.get(/^\/commits\/(\w+)(?:\.\.(\w+))?$/,
2 function(req, res){
3 var from = req.params[0];
4 var to = req.params[1] || 'HEAD';
5 res.send('commit range ' + from + '..' + to);
6 });

•	 router.param

With this method, parameters can be checked. The name of the parameter and a callback function are
indicated. The function requires four arguments: Request, Response, Next, and the value of the parameter.

The following example shows the access to the parameter user. Its value is handed over into id.

 1 router.param('user', function(req, res, next, id) {
 2
 3 // User ist ein Pseudoobjekt, dass passende Daten enthält
 4 User.find(id, function(err, user) {
 5 if (err) {
 6 next(err);
 7 } else if (user) {
 8 req.user = user;
 9 next();

﻿■ Appendix

184

10 } else {
11 next(new Error('Nicht gefunden'));
12 }
13 });
14 });

The callback function is local to the router, for which it was defined. Callback functions are not passed
on in attached apps or routing (Sub apps, Sub router). In addition, they are called only once within a cycle,
even if the route fits several times.

 1 router.param('id', function (req, res, next, id) {
 2 console.log('Nur ein Aufruf, auch wenn /:id folgt');
 3 next();
 4 })
 5
 6 router.get('/user/:id', function (req, res, next) {
 7 console.log('Erste Route');
 8 next();
 9 });
10
11 router.get('/user/:id', function (req, res) {
12 console.log('Zweite Route');
13 res.end();
14 });

•	 router.route(path)

This method returns an instance of a route. This can be used in order to implement for certain HTTP
verbs additional middleware actions. This can be reached also by renewed information of the route;
however, you must then also write the route several times and thus may experience possibilities of error as a
result of typing errors.

 1 var router = express.Router();
 2
 3 router.param('user_id', function(req, res, next, id) {
 4 // Muster, hier folgt ein Datenbankaufruf o.ä.
 5 req.user = {
 6 id: id,
 7 name: 'TJ'
 8 };
 9 next();
10 });
11
12 router.route('/users/:user_id')
13 .all(function(req, res, next) {
14 // Alle Verben
15 next();
16 })
17 .get(function(req, res, next) {
18 res.json(req.user);
19 })
20 .put(function(req, res, next) {

﻿■ Appendix

185

21 // Beispiel
22 req.user.name = req.params.name;
23 // Speichern folgt hier (nicht gezeigt)
24 res.json(req.user);
25 })
26 .post(function(req, res, next) {
27 next(new Error('nicht implementiert'));
28 })
29 .delete(function(req, res, next) {
30 next(new Error('nicht implementiert'));
31 });

The path /users:user_id of the route is here used several times for different HTTP verbs.

•	 router.use

This method agrees upon a middleware function. Optionally a path can be indicated. Without
information on the path the master path “/” is used. That is comparable with app.use(); the use is identical.

 1 var express = require('express');
 2 var app = express();
 3 var router = express.Router();
 4
 5 // Einfacher Logger: Alle Anfragen gehen zuerst durch diese Methode
 6 router.use(function(req, res, next) {
 7 console.log('%s %s %s', req.method, req.url, req.path);
 8 next();
 9 });
10
11 // Nur für Pfade, die mit /bar beginnen
12 router.use('/bar', function(req, res, next) {
13 // ... Middleware-Funktion vor der Verarbeitung
14 next();
15 });
16
17 // Wird immer aufgerufen
18 router.use(function(req, res, next) {
19 res.send('Hello World');
20 });
21
22 app.use('/foo', router);
23
24 app.listen(3000);

The actual path is not of importance and not visible for the middleware function. The idea behind it
essentially is that functions can be implemented independently of the path.

The execution of the functions is determined by the order of the definition. A function is implemented
sequentially.

1 var logger = require('morgan');
2
3 router.use(logger());

﻿■ Appendix

186

4 router.use(express.static(__dirname + '/public'));
5 router.use(function(req, res){
6 res.send('Hello');
7 });

Consider the following if you want to prevent the logging for static files. But further steps of the
middleware for those files shall still be implemented. In addition, you shift the definition for static files
(“express.static”) simply before the agreement of the middleware function:

1 router.use(express.static(__dirname + '/public'));
2 router.use(logger());
3 router.use(function(req, res){
4 res.send('Hello');
5 });

Likewise, it can be determined by the order in which folders the search will start first. In the following
example the folder public is scanned first. If the router finds something, the request is worked on. If the
router does not find anything, it searches in the next folder. Also, here the sequence in the script file is
determining.

1 app.use(express.static(__dirname + '/public'));
2 app.use(express.static(__dirname + '/files'));
3 app.use(express.static(__dirname + '/uploads'));

The method router.use() supports in addition the designated parameter (name: etc.), so that
following steps can access this data.

Further libraries
With some further libraries the functionality of the Express router can be extended in a smart way.

•	 Namespace Based Routing

•	 Resource Based Routing

Namespace Based Routing
In order to understand the sense of Namespaces, first a typical example of a set of routes is to be demonstrated:

1 app.get('/articles/', function(req, res) { ... });
2 app.get('/articles/new', function(req, res) { ... });
3 app.get('/articles/edit/:id', function(req, res) { ... });
4 app.get('/articles/delete/:id', function(req, res) { ... });
5 app.get('/articles/2013', function(req, res) { ... });
6 app.get('/articles/2013/jan/', function(req, res) { ... });
7 app.get('/articles/2013/jan/nodejs', function(req, res) { ... });

With increasing number of routes and in each case, the belonging path elements, it becomes clear that
the expenditure is immense. However, above all it is remarkable that many path components are identical.
Parts of the paths are repeated endlessly, as in the example the name articles.

﻿■ Appendix

187

Now it would be smart to define a good basis path to the list that not only lists the relative components,
but in addition, serves name spaces. Thus, only a simplification or a shortening of the spelling concerns the
routes. Less writing, of course, also means less errors.

Express has an included function for this, however a plug-in is available which does it way better. You
can install it via the Node package manager npm as follows:

$ npm install express-namespace

Now the file app.js must be adapted, so that the routes can use the Namespace:

Listing A-7.  app.js

 1 var http = require('http');
 2 var express = require('express');
 3
 4 // express-namespace muss geladen werden, bevor die App instanziiert\
 5 wird
 6 var namespace = require('express-namespace');
 7 var app = express();
 8
 9 app.use(app.router);
10
11 // Definition of Namespace
12 app.namespace('/articles', function() {
13
14 app.get('/', function(req, res) {
15 res.send('index of articles');
16 });
17
18 app.post('/new', function(req, res) {
19 res.send('new article');
20 });
21
22 app.put('/edit/:id', function(req, res) {
23 res.send('edit article ' + req.params.id);
24 });
25
26 app.delete('/delete/:id', function(req, res) {
27 res.send('delete article ' + req.params.id);
28 });
29
30 app.get('/2013', function(req, res) {
31 res.send('articles from 2013');
32 });
33
34 // Nested Namespace
35 app.namespace('/2013/jan', function() {
36
37 app.get('/', function(req, res) {
38 res.send('articles from jan 2013');
39 });
40

﻿■ Appendix

188

41 app.get('/nodejs', function(req, res) {
42 res.send('articles about Node from jan 2013');
43 });
44 });
45
46 });
47
48 http.createServer(app).listen(3000, function() {
49 console.log('App started');
50 });

After the loading of the application the following routes are available:

•	 http://localhost:3000/articles/

•	 http://localhost:3000/articles/edit/4

•	 http://localhost:3000/articles/delete/4

•	 http://localhost:3000/articles/2013

•	 http://localhost:3000/articles/2013/jan

•	 http://localhost:3000/articles/2013/jan/nodejs

Name spaces support–like all routes–both placeholders in character strings and regular expressions in
the literal spelling

Resource-Based Routing
There is a further approach for the Routing, which works more object-oriented. The idea is based on the
consideration to get objects ready which contain the actions. The routes lead to these actions.

They provide thus more paths, but define objects. These objects are regarded as sources.
It is smart to provide these objects as models of the domain. By domain here is referred to the technical

domain–thus, its purpose to the user. Resources are in this sense things such as users, pictures, articles,
books, or also forum contributions. Usually it acts in the illustration of the data source. With resource-based
routing HTTPs verbs with path samples are combined.

The following table shows which verbs are suitable for which actions.

Table A-6.  Resource Based Routing

HTTP Verb Path Module Methods Description

GET /users index List users

GET /users/new new Form for the creation of a new users

POST /users create Process form data

GET /users/:id show Show users with the ID :id

GET /users/:id/edit edit Show process form for users:id

PUT /users/:id update Process the changes on the user

DELETE /users/:id destroy Delete the user with the ID :id

http://localhost:3000/articles/
http://localhost:3000/articles/edit/4
http://localhost:3000/articles/delete/4
http://localhost:3000/articles/2013
http://localhost:3000/articles/2013/jan
http://localhost:3000/articles/2013/jan/nodejs

﻿■ Appendix

189

This implicit link between verbs and routes and the actions is not standard in the Express environment. The
plug-in express-resource is necessary. Install this with the help of the Node package manager npm as follows:

$ npm install express-resource

Now a module is provided which can treat the routes. If you follow the user example, the
accommodation in a file is suitable for users.js (for the sake of the order, the name is not relevant). The
implementation then looks as follows:

 1 exports.index = function(req, res) {
 2 res.send('index of users');
 3 };
 4
 5 exports.new = function(req, res) {
 6 res.send('form for new user');
 7 };
 8
 9 exports.create = function(req, res) {
10 res.send('handle form for new user');
11 };
12
13 exports.show = function(req, res) {
14 res.send('show user ' + req.params.user);
15 };
16
17 exports.edit = function(req, res) {
18 res.send('form to edit user ' + req.params.user);
19 };
20
21 exports.update = function(req, res) {
22 res.send('handle form to edit user ' + req.params.user);
23 };
24
25 exports.destroy = function(req, res) {
26 res.send('delete user ' + req.params.user);
27 };

In the well known app.js the use of the module will have to be agreed upon:

 1 var http = require('http');
 2 var express = require('express');
 3 // express-resource must be loaded before the app-instance
 4 var resource = require('express-resource');
 5
 6 var app = express();
 7
 8 app.use(app.router);
 9
10 // Laden der Aktions-Datei
11 app.resource('users', require('./users.js'));
12

﻿■ Appendix

190

13 http.createServer(app).listen(3000, function() {
14 console.log('App gestartet');
15 });

After the start the actions are available under the following routes

•	 http://localhost:3000/users

•	 http://localhost:3000/users/new

•	 http://localhost:3000/users/5

•	 http://localhost:3000/users/5/edit

In order to use the POST, PUT or DELETE action, you either use a tool like Fiddler or Curl, with which
requests can be assembled manually. Or you program the equal suitable inquiries in the browser by means
of AJAX libraries, like jflery or AngularJS.

In relation to the previously shown version, you save explicit indicating of the routes and thus some
time at work and sources of errors.

The Pug API
Pug is a package that contains a function as Programming Interface (API) apart from processing templates.
This API subsequently will be briefly described.

API Options
Each method of the API accepts options, which are handed over as JSON structure:

 1 {
 2 filename: string,
 3 doctype: string,
 4 pretty: boolean | string,
 5 self: boolean,
 6 debug: boolean,
 7 compileDebug: boolean,
 8 cache: boolean,
 9 compiler: class,
10 parser: class,
11 globals: Array.<string>
12 }

The individual parameters have the following meaning:

•	 filename

The file name; is shown for example in exceptions

•	 doctype

The Doctype, if this will not be indicated as part of a template

•	 pretty

http://localhost:3000/users
http://localhost:3000/users/new
http://localhost:3000/users/5
http://localhost:3000/users/5/edit

﻿■ Appendix

191

Shows whether blanks are to be added to the spent HTML or not, in order to produce
readable code. If a character string is indicated, this is the value, which is used for
engaging, e.g. ‘\t’. self "self” name area for local variable (according to standard false).

•	 debug

Log expenditures after “stdout”

•	 compileDebug

The source code is transferred into the rendered output cache Functions are called.
The key is the file name of the template.

•	 compiler

An alternative compiler can be indicated.

•	 parser

An alternative Parser can be indicated.

•	 globals

Global variables, which are announced in all templates

API Functions
In all functions the parameter “options” is the option object described before. Not all options are
meaningful in all cases. pug.compile(source, options) — this function translates Pug code, so that this can
be implemented several times with different values. A function returns, which can be implemented. The
instruction on line 2 provides the function, on line 3 this is then implemented.

1 var pug = require('pug');
2 var fn = pug.compile('p pug is cool!', options);
3 var html = fn(locals);

This script produces the following output:

<p>pug is cool!</p>

pug.compileFile(path, options)
This function translates Pug code from a file, so that this can be implemented several times with different
values. A function returns, which can be implemented. “sourcepath” is the path to the Pug file. The
instruction on line 2 provides the function, on line 3 this is then implemented.

1 var pug = require('pug');
2 var fn = pug.compileFile('views/index.pug', options);
3 var html = fn(locals);

This script produces the following output: If the file is index.pug, the text “p pug is cool!” contains:

<p>pug ist cool!</p>

﻿■ Appendix

192

pug.compileClient(source, options)
Here a JavaScript function will be implemented and rendered, then later the client page can be provided and
the HTML produced.

1 var pug = require('pug');
2
3 // Create Function
4 var fn = pug.compileClient('p pug is cool!', options);
5
6 // Render Function
7 var html = fn(locals);

The return is then pure JavaScript:

1 function template(locals) {
2 return "<p>pug is cool!</p>";
3 }

pug.compileClientWithDependenciesTracked(source, options)
This method corresponds to the preceding method compileClient, however it produces an object, which
has the following structure:

1 {
2 'body': 'function (locals) {...}',
3 'dependencies': ['filename.pug']
4 }

Thus, changes at source files can be supervised. Otherwise the simple variant is to be preferred.

pug.compileFileClient(path, options)
Here a JavaScript function will be implemented and rendered, then later the client page can be provided and
the HTML produced.

The source must be present as file. The option object has a further parameter name. This determines the
name of the function, which is produced and can be called by the client. Here an example with the source
file pugFile.pug:

1 h1 This is a template
2 h2 By #{author}

This is now translated dynamically (line 4):

1 var fs = require('fs');
2 var pug = require('pug');
3
4 var jsOut = pug.compileFileClient('/views/pugFile.pug',
5 {
6 name: "templateFunction"
7 });

﻿■ Appendix

193

 fs  The example uses the standard module “fs” from the node.js distribution. You’ll find more information

in the chapters about Node.js.

Imagine you want all of your templates in one file and to translate these, while subsequently giving
them to the client. Then the output of the last example jsOut can be stored as follows:

1 fs.writeFileSync("templates.js", jsOut);

The file templates.js, which develops from it contains the function defined below as templateFunction:

 1 function templateFunction(locals) {
 2 var buf = [];
 3 var pug_mixins = {};
 4 var pug_interp;
 5
 6 var locals_for_with = (locals || {});
 7
 8 (function (author) {
 9 buf.push("<h1>This is a template </h1><h2>From "
10 + (pug.escape((pug_interp = author) == null ? '' : pug_inte\
11 rp))
12 + "</h2>");
13 }.call(this, "author" in locals_for_with ?
14 locals_for_with.author : typeof author !== "undefined" ?
15 author : undefined)
16);
17
18 return buf.join("");
19 }

For this to function, the runtime environment of Pug must be available. It is available under the name
runtime.js. In the HTML of the clients, this then looks as follows:

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <script src="/runtime.js"></script>
 5 <script src="/templates.js"></script>
 6 </head>
 7
 8 <body>
 9 <h1>This is a template</h1>
10
11 <script type="text/javascript">
12 var html = window.templateFunction({author: "Joerg"});
13 var div = document.createElement("div");
14 div.innerHTML = html;
15 document.body.appendChild(div);
16 </script>
17 </body>
18 </html>

﻿■ Appendix

194

pug.render(source, options)
This function renders directly in HTML:

1 var pug = require('pug');
2 var html = pug.render('p Pug ist cool!', options);

Now the HTML looks like this:

<p>Pug ist cool!</p>

pug.renderFile(filename, options)
This function renders directly in HTML, too. It uses a file as input:

1 var pug = require('pug');
2 var html = pug.renderFile('views/file.pug', options);

195

�       � A
apphelloworld_sample.js, 147
app.js, 187, 189
Application Programming Interface (API), 11, 75
app.mountpath, 148
app.route(), 80
Assert, 142–143
& Attributes, 93

�       � B
Boolean value, 167, 170
buf.copy, 145
Buffer.byteLength, 144
Buffered and not coded Codes, 99–101
Buffer.isBuffer, 144
buf.fill, 145
buf.slice, 145
Bugtracking Application, 118
bundledDependencies, 123

�       � C
Cache-control, 165
callback function, 134, 177, 184
Callback Handler, 151
callback methods, 15, 51, 55, 57, 152, 154, 156–157
case sensitive routing, 159
cd PortalApp, 73
ChildProcess, 135
Class Attribute, 94
clearInterval(t), 131
clearTimeout(t), 131
Coded character string interpolation, 109
Conditions (if), 97
configuration object, 120
Connect Text, 113
consolidate.js, 153
Content-Disposition, 173
content.pug, 86
Content-Type, 174, 178

Cookie Options, 172
cookie-parser, 165
cpu, 125
CSS classes, 94
CSS Precompiler, 73

�       � D
Doctype, 89–91
doctype basic, 90
doctype mobile, 90

�       � E
EJS engine, 153
email.jade, 158
ETag (entity tag), 160
Express

application structure, 72
example application, 75
installation, 71
LESS/SASS, 73
router, 75
routes, parameters, 78
routing manufactures, 75

express generators, 73
express PortalApp, 73
express.Router(), 75, 76

�       � F
Filters and Partial Pages, 105–106, 108
File system, 138–141
function sendFile, 179
Function Static, 146

�       � G
Git

behavior, line break characters, 4
enterprise networks, 2

Index

© Jörg Krause 2017
J. Krause, Programming Web Applications with Node, Express and Pug, DOI 10.1007/978-1-4842-2511-0

■ INDEX

196

HTTP and port 2, 80
installation options, 3
protocols, 5
proxy, 4
starting options, 3

Github, 122
Global modules

clearInterval, 48
clearTimeout, 47
__dirname, 49
exports, 50
__filename, 49
objects

buffer, 49
console, 49
global name area, 49
process, 49

ref, 48
requests, 49
setImmediate/clearImmediate, 48
setInterval, 48
setTimeout, 47
timers, 47
unref, 48

�       � H
Handling Tags, 114
Handling Text, 113
HTTP and HTTPS modules, 126

classes, 53
class http.ServerResponse, 55–57
command line and

head fields, 50
communication, 50
description, fields, 51
errors, 52
events, 53–54
frameworks, 50
head fields, 50, 53
http.ClientRequest, 57, 59–60
http.IncomingMessage, 60–61
interface, 50
JSON, 50
methods, 51–55
options, 51–52

http.IncomingMessage, 60–61
HTTPS

agent, 64
authentication data of the clients, 62
methods and features, 62
options, 63–64
server, 62
TLS, 62

�       � I
ID Literal, 95
if-none-match, 165
inheriting templates, 102–103
Installation problems

Git (see Git)
NPM

proxy server, 1
SSL, 2

Online (see Online installation)
Interpolations, 108–110
Iterations, 97–98

�       � J, K
JavaScript fragments, 99–101
JSONP, 175

�       � L
Language Components, Pug

attributes, 91, 93
Caused Comments, 102
Class Attribute, 94
Class Literal, 95
Comment Blocks, 102
Comments, 101–102
Doctype, 89–91
each, 97–98
extension of blocks, 96
filters, 105
HTML generator, 90
ID Literal, 95
inheriting templates, 102–105
JavaScript, 96
logical attributes, 92–93
Merge Text, 107–108
not coded attributes, 92
partial pages, 106–108
Prepend and append Content Blocks, 105
scripts and content, 104
short spellings, 89–90
Style Attributes, 93
Use and Options, 115–116
while, 99

layout.pug, 103
Libraries and frameworks

AngularJS, 10
Client Page, 10–11
Server, 10

Link Head Field, 176
listen(), 154
listen_sample.js, 154
Local variables, 170
Logical Attributes, 92–93

Git (cont.)

■ INDEX

197

�       � M
Master Page, 103
master path, 77
Merge Text, 107–108
message.httpVersion, 129
middleware, 76
Middleware function, 146, 161, 163, 185
Mixin Attributes, 112
Mixin Blocks, 111
Mixins, 110–112
module.children, 132
module.parent, 132
mountpath2_sample.js, 148–149
mymiddleware.js, 164

�       � N
Namespace Based Routing, 186–188
Node.js/Node

application
automatic restart, 17
differences Linux/Windows, 19
Linux, 17
npm packages with Visual Studio 2015, 19
Project template, 18
Server (see Server application)
Start, 17
Web, 21
Windows, 18

architecture of application
handlers.js, 27, 30
logic functions back, 30
reaction, different Routes, 29
reloadable modules, 28
router.js, 28
server.js, 27
show(), 27
start.js, 28
uploading files, 27

callback functions, 15
callback methods, 15
complete application

components, 40
handler.js, 43, 44
home.html, 45
programs, 41
router.js, 43
server.js, 41
Starting Script start.js, 41–42
upload function, 44
Web application, 40

configuration in package.json, 16
function, 15
integrated modules, 15
packages, 20–21

routing, 24
synchronous (see Synchronous and

asynchronous calls:)
Node modules

access, File System, 64–66
file access functions, 66–69
global (see Gobal modules)
handling Streams, 69–70
HTTP andHTTPS (see HTTP and HTTPS

modules)
Not coded Attribute, 92
Not Coded String Interpolation, 109
NPM, 1–2, 73
npmignore, 118

�       � O
Online installation

access, 5
downloading, 5
MSI packages, 5
npmbox, 6–7
NPM packages, 5, 7–8
preparation, 5
RPM packages, 5
Tar access, 6

optionalDependencies, 124
OS, 143–144

�       � P, Q
package.json, 16

Application
level, 151

assert, 142
bundledDependencies, 123
console, 130
devDependencies, 123
directories, 119
events, 136, 150
features, 117
file System, 138
global, 130
homepage, 118
keywords, 118
license, 118
location, 176
modules, 132
name and version, 117
optionalDependencies, 124
peerDependencies, 123
querystring, 142
Request object, 164
response, 128
streams, 137
URL, 142

■ INDEX

198

package.json file., 71
Package manager

Bower, 9
Git, 9
JavaScript, 9
Npm, 9
repository, 9
Wikipedia, 9

page-b.pug, 104
param(), 79
Partial Pages, 106
path.normalize, 141
path.resolve, 141
path.sep, 142
peerDependencies, 123
preferGlobal, 125
Prepend and append Content Blocks, 105
Private packages, 125
Process, 132–134proxy_addr, 159
publishConfig, 125–126
Pug

components, 83
HTML tags, 81
layout pag, 85
Partial Views, 85
preparation, 81
views, 84

Pug API, 190–194
Pug Command Line, 115
pug.compileClient, 192
pug.compileFileClient, 192–193
pug.renderFile, 194

�       � R
req.protocol, 166
req.query, 166
Rerouting, 177
res.attachment, 171
Resource Based Routing, 188
Response, 128–129
res.render, 86
REST, 156
Router Middleware, 77–79
router object, 181–182
router.param, 183
router.use(), 186
route_sample.js, 158
Routing

application, 25
components of URL, 24
exports, 26
onRequest method, 27

recognization, paths, 25
router function, 25
server.js, 25
start.js, 24
start.js with routers, 26

�       � S
Self-Closing Tags, 114
Server application

index.html, 23
package.json, 22
server.js, 22, 23
standards, 21

Single page application (SPA), 75–76
Single Page Style (SPA), 75
Stateless HTML, 11
Structure Routes, 78
Style Attributes, 93
Synchronous and asynchronous calls

Cutout of handlers.js, 32
Excerpt of handlers.js, 31
file access functions, 30
handlers.js, 32
handling form data, 35–36
HTML

Cutout of handlers.js, 32
JADE, 32
sending files, 33

processing form data, 37–39
querystring, 39
response object, 31
restriction of verbs, 34–35
router.js, 31
start.js, 31

�       � T
Tag Interpolation, 110
trust proxy, 159

�       � U
Unbuffered codes, 99–100
Unit tests, 11
User experience, web applications, 12–13
Util, 135–136

�       � V, W, X, Y, Z
Web Apps, 11
WebDAV, 155
Web sites, 11

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Foreword
	Chapter 1: Installation Problems
	Node.Js
	Problems with NPM
	Proxy
	SSL

	Problems with Git
	Proxy
	Git protocols

	Online installation
	Preparation
	Hard cases
	Access to Tar

	Installing NpmBox
	Installing Packages

	Chapter 2: The Components of an Application
	The Package Manager
	Libraries and Frameworks
	Basis Libraries of the Server
	Client Page Libraries
	Unit Tests

	Principles
	Web Apps
	Web sites
	Stateless HTML
	The User Experience

	Summary

	Chapter 3: Introduction to Node
	Elementary in JavaScript
	Installation and Configuration
	Configuration in package.json

	Initialize the Node Application
	Approach under Linux
	Start a Node Application
	Automatic Restart
	Approach under Windows

	The first Application
	Packages
	Install Packages

	Provide a Server Application
	The simplest Server
	A Server with Express

	Handling Requests
	Introduction to Routing
	Architecture of the Application

	Synchronous and Asynchronous Calls
	Dynamic HTML
	Sending HTML Files
	Restriction of Verbs
	Handling Form Data
	Processing Form Data

	Handling Querystring

	The complete Application
	The Application server.js
	The Starting Script start.js
	The Routing Functions router.js
	The Business Logic handler.js
	Template of the HTML Page home.html

	Summary

	Chapter 4: The Most Important Node Modules
	Global Modules
	Timer
	setTimeout
	clearTimeout
	setInterval
	clearInterval
	unref
	ref
	setImmediate / clearImmediate

	Global Objects
	global
	process
	console
	Buffer
	require
	__filename
	__dirname
	module
	exports

	HTTP and HTTPS
	Basics
	Fields
	Methods
	Classes
	http.Server
	Methods for http.Server
	The class http.ServerResponse

	Class http.ClientRequest
	http.IncomingMessage

	HTTPS

	Handling Files and Paths
	Access to the File System
	Functions for the File Access
	Functions for handling Streams

	Chapter 5: Introduction to Express
	Installation
	Application structure
	The express generator
	LESS or SASS

	Routing in Node application
	Routing in Express
	 RESTful
	The Express Router

	An example application
	Middleware – the mediator layer
	Basic routes
	The Router Middleware (router.use())
	Structure Routes
	Routes with Parameters (/hello/:id)
	Router Middleware for Parameters (.param)
	Several Routes (app.route())

	Chapter 6: Introduction to Pug
	Overview
	Preparation

	Application structure
	Pug views
	Handling Partial Views
	Handling Layout Pages
	npm start

	Chapter 7: Language Components of Pug
	Doctype
	Short Spellings
	Own Doctypes
	Options

	Attributes
	Not coded Attribute
	Logical Attributes
	Style Attributes
	& Attributes

	Handling CSS Classes
	The Class Attribute

	The Class Literal
	ID Literal
	Instructions
	Definition by Cases (case)
	Forwarding to the next Case
	Extension of Blocks

	Conditions (if)
	Iterations
	each
	while

	JavaScript Code
	Unbuffered Codes
	Buffered Codes
	Buffered and not coded Codes
	Unbuffered Codes
	Buffered Code
	Buffered and not coded Codes

	Comments
	Comment Blocks
	Caused Comments

	Inherit from Templates
	Detail for inherting Templates
	Prepend and append Content Blocks

	Filter
	Partial Pages
	Merge Text
	Combination of Filters and Partial Pages

	Interpolations
	Coded Character String Interpolation
	Not Coded String Interpolation
	Tag Interpolation

	Mixins (Functions)
	Mixin Blocks
	Mixin Attributes
	Further Arguments

	Handling Text
	Connect Text
	Inline in Tag
	Block in Tag
	Handling Tags
	Extension of Blocks
	Self-Closing Tags

	Chapter 8: The Pug Command Line
	Installing the Command Line
	Use and Options
	Sample Applications for the Command Line

	Appendix
	Configuration of the file package.json
	Meaning of the Configuration Elements
	Name
	version

	description
	keywords
	homepage
	bugs
	license
	files
	main
	bin
	directories
	repository
	scripts
	config
	dependencies
	devDependencies
	peerDependencies
	bundledDependencies
	optionalDependencies
	engines
	os
	cpu
	preferGlobal
	private
	publishConfig

	The Default Values

	Brief description
	Reference Node.js Modules
	HTTP
	Server
	Request
	Response
	Message

	Global
	Console
	Timer
	Module
	Process
	ChildProcess
	Util
	Events
	Stream
	File System
	Path
	URL
	Querystring
	Assert
	OS
	Buffer

	The API Reference for Express
	Das Basic Objekt
	Static Method of the Basic Object

	The application
	The Features of the Application Object
	Events
	Methods of Application Level
	More Methods
	Further Callback Functions
	Combinations

	Request–The Request Object
	The Features

	Methods
	Response–The Answer Object
	Features
	Methods

	The API of the Router
	The Router in Detail
	Produce a new Router

	Methods
	Further Methods

	Further libraries
	Namespace Based Routing
	Resource-Based Routing

	The Pug API
	API Options
	API Functions
	pug.compileFile(path, options)
	pug.compileClient(source, options)
	pug.compileClientWithDependenciesTracked(source, options)
	pug.compileFileClient(path, options)
	pug.render(source, options)
	pug.renderFile(filename, options)

	Index

