
Ruby Recipes
A Problem-Solution Approach
—
Malay Mandal

www.allitebooks.com

http://www.allitebooks.org


Ruby Recipes
A Problem-Solution Approach

Malay Mandal

www.allitebooks.com

http://www.allitebooks.org


Ruby Recipes: A Problem-Solution Approach

Malay Mandal				  
New South Wales, Australia			 

ISBN-13 (pbk): 978-1-4842-2468-7		  ISBN-13 (electronic): 978-1-4842-2469-4
DOI 10.1007/978-1-4842-2469-4

Library of Congress Control Number: 2016960330

Copyright © 2016 by Malay Mandal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin Suresh John
Technical Reviewer: Unmesh Gundecha
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,  

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,  
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,  
Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC 
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). 
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional 
use. eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available 
to readers at www.apress.com. For detailed information about how to locate your book’s source code, 
go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the 
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org


Dedicated to my mother for all her support and concern.

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Author����������������������������������������������������������������������������� xxi

Acknowledgments������������������������������������������������������������������������� xxiii

Introduction�������������������������������������������������������������������������������������xxv

■■Chapter 1: A Taste of Ruby�������������������������������������������������������������� 1

■■Chapter 2: Working with Files and Strings������������������������������������ 13

■■Chapter 3: Language Elements������������������������������������������������������ 45

■■Chapter 4: Collections������������������������������������������������������������������� 75

■■Chapter 5: Blocks and Iterators��������������������������������������������������� 103

■■Chapter 6: Input-Output��������������������������������������������������������������� 119

■■Chapter 7: Regular Expressions�������������������������������������������������� 151

■■Chapter 8: Putting It into Action�������������������������������������������������� 189

■■Appendix A: Solutions to Exercises��������������������������������������������� 217

�Index����������������������������������������������������������������������������������������������� 223

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Author����������������������������������������������������������������������������� xxi

Acknowledgments������������������������������������������������������������������������� xxiii

Introduction�������������������������������������������������������������������������������������xxv

■■Chapter 1: A Taste of Ruby�������������������������������������������������������������� 1

�Small Task, Big Impact����������������������������������������������������������������������������� 1

�Development Environment Installation���������������������������������������������������� 2

�Windows�������������������������������������������������������������������������������������������������������������������� 2

�Mac���������������������������������������������������������������������������������������������������������������������������� 2

�1.1 The First Recipe: aka Hello World������������������������������������������������������� 3

�Problem��������������������������������������������������������������������������������������������������������������������� 4

�Solution��������������������������������������������������������������������������������������������������������������������� 4

�How It Works�������������������������������������������������������������������������������������������������������������� 4

�1.2 Does It Cost Anything to Say Hello?��������������������������������������������������� 5

�Problem��������������������������������������������������������������������������������������������������������������������� 5

�Solution��������������������������������������������������������������������������������������������������������������������� 5

�How It Works�������������������������������������������������������������������������������������������������������������� 6

�1.3 Sherlock Holmes and Learning���������������������������������������������������������� 6

�Problem��������������������������������������������������������������������������������������������������������������������� 7

�Solution��������������������������������������������������������������������������������������������������������������������� 7

�How It Works�������������������������������������������������������������������������������������������������������������� 7

www.allitebooks.com

http://www.allitebooks.org


viii

■ Contents

�1.4 1 2 3 4, 1 2 3 4����������������������������������������������������������������������������������� 8

�Problem��������������������������������������������������������������������������������������������������������������������� 8

�Solution��������������������������������������������������������������������������������������������������������������������� 8

�How It Works�������������������������������������������������������������������������������������������������������������� 9

�Interactive Ruby Shell���������������������������������������������������������������������������� 10

�Summary������������������������������������������������������������������������������������������������ 11

�Exercises������������������������������������������������������������������������������������������������ 11

�Exercise 1.1������������������������������������������������������������������������������������������������������������� 11

�Exercise 1.2������������������������������������������������������������������������������������������������������������� 12

�Exercise 1.3������������������������������������������������������������������������������������������������������������� 12

■■Chapter 2: Working with Files and Strings������������������������������������ 13

�Manipulating Strings������������������������������������������������������������������������������ 13

�length or size����������������������������������������������������������������������������������������������������������� 13

�empty?��������������������������������������������������������������������������������������������������������������������� 13

�strip������������������������������������������������������������������������������������������������������������������������� 14

�<<��������������������������������������������������������������������������������������������������������������������������� 14

�<=>������������������������������������������������������������������������������������������������������������������������� 14

�capitalize����������������������������������������������������������������������������������������������������������������� 14

�downcase and upcase��������������������������������������������������������������������������������������������� 14

�chars������������������������������������������������������������������������������������������������������������������������ 15

�index������������������������������������������������������������������������������������������������������������������������ 15

�insert����������������������������������������������������������������������������������������������������������������������� 15

�delete����������������������������������������������������������������������������������������������������������������������� 15

�include?������������������������������������������������������������������������������������������������������������������� 16

�slice������������������������������������������������������������������������������������������������������������������������� 16

�count������������������������������������������������������������������������������������������������������������������������ 16

�partition������������������������������������������������������������������������������������������������������������������� 16

�tr������������������������������������������������������������������������������������������������������������������������������ 16

�reverse��������������������������������������������������������������������������������������������������������������������� 17

www.allitebooks.com

http://www.allitebooks.org


ix

■ Contents

�sub (and gsub)��������������������������������������������������������������������������������������������������������� 17

�scan������������������������������������������������������������������������������������������������������������������������� 17

�split�������������������������������������������������������������������������������������������������������������������������� 18

�String Formatting����������������������������������������������������������������������������������� 19

�2.1 Accepting Input from the Console���������������������������������������������������� 19

�Problem������������������������������������������������������������������������������������������������������������������� 19

�Solution������������������������������������������������������������������������������������������������������������������� 19

�How It Works������������������������������������������������������������������������������������������������������������ 20

�2.2 Accepting Numbers as Input������������������������������������������������������������ 21

�Problem������������������������������������������������������������������������������������������������������������������� 21

�Solution������������������������������������������������������������������������������������������������������������������� 21

�How It Works������������������������������������������������������������������������������������������������������������ 21

�2.3 Handling the Newline����������������������������������������������������������������������� 22

�Problem������������������������������������������������������������������������������������������������������������������� 22

�Solution������������������������������������������������������������������������������������������������������������������� 22

�More on Getting Rid of the Newline������������������������������������������������������������������������� 23

�2.4 Formatting Strings��������������������������������������������������������������������������� 25

�Problem������������������������������������������������������������������������������������������������������������������� 25

�Solution������������������������������������������������������������������������������������������������������������������� 26

�How It Works������������������������������������������������������������������������������������������������������������ 26

�2.5 Processing Command-Line Arguments�������������������������������������������� 27

Problem������������������������������������������������������������������������������������������������������������������� 27

�Solution������������������������������������������������������������������������������������������������������������������� 27

�How It Works������������������������������������������������������������������������������������������������������������ 27

�2.6 Reading from a File�������������������������������������������������������������������������� 28

�Problem������������������������������������������������������������������������������������������������������������������� 28

�Solution������������������������������������������������������������������������������������������������������������������� 28

� How It Works����������������������������������������������������������������������������������������������������������� 29

www.allitebooks.com

http://www.allitebooks.org


x

■ Contents

�2.7 Writing to a File�������������������������������������������������������������������������������� 29

�Problem������������������������������������������������������������������������������������������������������������������� 29

�Solution������������������������������������������������������������������������������������������������������������������� 29

�How It Works������������������������������������������������������������������������������������������������������������ 30

�2.8 Getting Started with Exception Handling����������������������������������������� 30

�Problem������������������������������������������������������������������������������������������������������������������� 30

�Solution������������������������������������������������������������������������������������������������������������������� 31

�2.9 Importing Code��������������������������������������������������������������������������������� 32

�Problem������������������������������������������������������������������������������������������������������������������� 32

�Solution������������������������������������������������������������������������������������������������������������������� 33

�2.10 Creating and Deleting Directories�������������������������������������������������� 33

�Problem������������������������������������������������������������������������������������������������������������������� 33

�Solution������������������������������������������������������������������������������������������������������������������� 33

�How It Works������������������������������������������������������������������������������������������������������������ 34

�2.11 Creating a Whole Directory Path���������������������������������������������������� 34

�Problem������������������������������������������������������������������������������������������������������������������� 34

�Solution������������������������������������������������������������������������������������������������������������������� 34

�How It Works������������������������������������������������������������������������������������������������������������ 34

�2.12 Reading Multiple Lines from a File������������������������������������������������� 35

�Problem������������������������������������������������������������������������������������������������������������������� 35

�Solution������������������������������������������������������������������������������������������������������������������� 36

�How It Works������������������������������������������������������������������������������������������������������������ 36

�2.13 Reading a File in One Shot������������������������������������������������������������� 38

�Problem������������������������������������������������������������������������������������������������������������������� 38

�Solution������������������������������������������������������������������������������������������������������������������� 39

�How It Works������������������������������������������������������������������������������������������������������������ 39

www.allitebooks.com

http://www.allitebooks.org


xi

■ Contents

�2.14 Working with Strings���������������������������������������������������������������������� 39

�Problem������������������������������������������������������������������������������������������������������������������� 39

�Solution������������������������������������������������������������������������������������������������������������������� 39

�How It Works������������������������������������������������������������������������������������������������������������ 40

�2.15 Converting Numbers to a String����������������������������������������������������� 41

�Problem������������������������������������������������������������������������������������������������������������������� 41

�Solution������������������������������������������������������������������������������������������������������������������� 41

�2.16 Extracting Information from Strings����������������������������������������������� 42

�Problem������������������������������������������������������������������������������������������������������������������� 42

�Task: Change the Order of Names��������������������������������������������������������������������������� 42

�Solution������������������������������������������������������������������������������������������������������������������� 43

�How It Works������������������������������������������������������������������������������������������������������������ 43

�Task: Totaling the Shopping List������������������������������������������������������������������������������ 43

�Solution������������������������������������������������������������������������������������������������������������������� 43

�Exercises������������������������������������������������������������������������������������������������ 44

�Exercise 2.1������������������������������������������������������������������������������������������������������������� 44

�Exercise 2.2������������������������������������������������������������������������������������������������������������� 44

■■Chapter 3: Language Elements������������������������������������������������������ 45

�Commenting on Commenting����������������������������������������������������������������� 45

�Variables, Operators …�������������������������������������������������������������������������� 45

�Working with Numbers�������������������������������������������������������������������������������������������� 46

�Logical and Other Operators������������������������������������������������������������������������������������ 48

�Pattern Matching Operators������������������������������������������������������������������������������������ 52

�Using Ranges����������������������������������������������������������������������������������������������������������� 52

�Conditional Constructs/Control Flow������������������������������������������������������ 55

�if������������������������������������������������������������������������������������������������������������������������������ 55

�nil check������������������������������������������������������������������������������������������������������������������ 57

�unless���������������������������������������������������������������������������������������������������������������������� 58

www.allitebooks.com

http://www.allitebooks.org


xii

■ Contents

�Ternary operator������������������������������������������������������������������������������������������������������ 58

�case������������������������������������������������������������������������������������������������������������������������� 58

�while������������������������������������������������������������������������������������������������������������������������ 60

�break, redo, next������������������������������������������������������������������������������������������������������ 61

�until������������������������������������������������������������������������������������������������������������������������� 62

�for���������������������������������������������������������������������������������������������������������������������������� 63

�3.1 Handling Exceptions������������������������������������������������������������������������� 63

�Problem������������������������������������������������������������������������������������������������������������������� 63

�Solution������������������������������������������������������������������������������������������������������������������� 63

�3.2 Working with Predefined Variables and Constants��������������������������� 65

�Problem������������������������������������������������������������������������������������������������������������������� 65

�Solution������������������������������������������������������������������������������������������������������������������� 66

�Predefined Constants���������������������������������������������������������������������������������������������� 68

�3.3 Running OS Commands�������������������������������������������������������������������� 68

�Problem������������������������������������������������������������������������������������������������������������������� 68

�Solution������������������������������������������������������������������������������������������������������������������� 68

�3.4 Initializing and Finalizing Code��������������������������������������������������������� 68

�Problem������������������������������������������������������������������������������������������������������������������� 68

�Solution������������������������������������������������������������������������������������������������������������������� 69

�3.5 Defining Functions��������������������������������������������������������������������������� 69

�Problem������������������������������������������������������������������������������������������������������������������� 69

�Solution������������������������������������������������������������������������������������������������������������������� 69

�Exercises������������������������������������������������������������������������������������������������ 72

�Exercise 3.1������������������������������������������������������������������������������������������������������������� 72

�Exercise 3.2������������������������������������������������������������������������������������������������������������� 73

�Exercise 3.3������������������������������������������������������������������������������������������������������������� 73



xiii

■ Contents

■■Chapter 4: Collections������������������������������������������������������������������� 75

�4.1 Creating and Initializing Arrays�������������������������������������������������������� 76

�Problem������������������������������������������������������������������������������������������������������������������� 76

�Solution������������������������������������������������������������������������������������������������������������������� 76

�4.2 Accessing Array Elements���������������������������������������������������������������� 78

�Problem������������������������������������������������������������������������������������������������������������������� 78

�Solution������������������������������������������������������������������������������������������������������������������� 78

�4.3 Inserting an Element at a Certain Position��������������������������������������� 79

�Problem������������������������������������������������������������������������������������������������������������������� 79

�Solution������������������������������������������������������������������������������������������������������������������� 79

�4.4 Working with Multidimensional Arrays��������������������������������������������� 80

�Problem������������������������������������������������������������������������������������������������������������������� 80

�Solution������������������������������������������������������������������������������������������������������������������� 80

�4.5 Working with Arrays������������������������������������������������������������������������� 81

�Problem������������������������������������������������������������������������������������������������������������������� 81

�Solution������������������������������������������������������������������������������������������������������������������� 81

�4.6 Creating Hashes������������������������������������������������������������������������������� 88

�Problem������������������������������������������������������������������������������������������������������������������� 88

�Solution������������������������������������������������������������������������������������������������������������������� 88

�4.7 Adding New Elements to a Hash������������������������������������������������������ 89

�Problem������������������������������������������������������������������������������������������������������������������� 89

�Solution������������������������������������������������������������������������������������������������������������������� 89

�4.8 Working with Hashes������������������������������������������������������������������������ 90

�Problem������������������������������������������������������������������������������������������������������������������� 90

�Solution������������������������������������������������������������������������������������������������������������������� 91

�4.9 Creating a Collection of Unique Objects������������������������������������������� 94

�Problem������������������������������������������������������������������������������������������������������������������� 94

�Solution������������������������������������������������������������������������������������������������������������������� 94



xiv

■ Contents

�4.10 Inspecting a Set����������������������������������������������������������������������������� 95

�Problem������������������������������������������������������������������������������������������������������������������� 95

�Solution������������������������������������������������������������������������������������������������������������������� 95

�4.11 Working with Sets�������������������������������������������������������������������������� 96

�Problem������������������������������������������������������������������������������������������������������������������� 96

�Solution������������������������������������������������������������������������������������������������������������������� 96

�Exercises���������������������������������������������������������������������������������������������� 101

�Exercise 4.1����������������������������������������������������������������������������������������������������������� 101

�Exercise 4.2����������������������������������������������������������������������������������������������������������� 101

■■Chapter 5: Blocks and Iterators��������������������������������������������������� 103

�5.1 Associating Blocks with Functions������������������������������������������������� 104

�Problem����������������������������������������������������������������������������������������������������������������� 104

�Solution����������������������������������������������������������������������������������������������������������������� 104

�5.2 Adding Arguments to a Block��������������������������������������������������������� 106

�Problem����������������������������������������������������������������������������������������������������������������� 106

�Solution����������������������������������������������������������������������������������������������������������������� 106

�5.3 Initializing and Finalizing Code������������������������������������������������������� 108

�Problem����������������������������������������������������������������������������������������������������������������� 108

�Solution����������������������������������������������������������������������������������������������������������������� 108

�5.4 Iterating over Data�������������������������������������������������������������������������� 109

�Problem����������������������������������������������������������������������������������������������������������������� 109

�Solution����������������������������������������������������������������������������������������������������������������� 109

�Exercises���������������������������������������������������������������������������������������������� 117

�Exercise 5.1����������������������������������������������������������������������������������������������������������� 117

�Exercise 5.2����������������������������������������������������������������������������������������������������������� 118

�Exercise 5.3����������������������������������������������������������������������������������������������������������� 118



xv

■ Contents

■■Chapter 6: Input-Output��������������������������������������������������������������� 119

�6.1 Querying a CSV File������������������������������������������������������������������������ 119

�Problem����������������������������������������������������������������������������������������������������������������� 119

�Solution����������������������������������������������������������������������������������������������������������������� 120

�6.2 Sorting Text������������������������������������������������������������������������������������ 129

�Problem����������������������������������������������������������������������������������������������������������������� 129

�Solution����������������������������������������������������������������������������������������������������������������� 130

�How It Works���������������������������������������������������������������������������������������������������������� 131

�6.3 Checking User Input����������������������������������������������������������������������� 131

�Problem����������������������������������������������������������������������������������������������������������������� 131

�Solution����������������������������������������������������������������������������������������������������������������� 131

�6.4 Storing Data in a Structured Manner��������������������������������������������� 136

�Problem����������������������������������������������������������������������������������������������������������������� 136

�Solution����������������������������������������������������������������������������������������������������������������� 136

�6.5 Working with Directories���������������������������������������������������������������� 138

�Problem����������������������������������������������������������������������������������������������������������������� 138

�Solution����������������������������������������������������������������������������������������������������������������� 138

�6.6 Dividing Files into Subdirectories��������������������������������������������������� 144

�Problem����������������������������������������������������������������������������������������������������������������� 144

�Solution����������������������������������������������������������������������������������������������������������������� 144

�6.7 Adding Text to Files Using a Batch Operation��������������������������������� 146

�Problem����������������������������������������������������������������������������������������������������������������� 146

�Solution����������������������������������������������������������������������������������������������������������������� 146

■■Chapter 7: Regular Expressions�������������������������������������������������� 151

�7.1 Searching Within a File������������������������������������������������������������������� 151

�Problem����������������������������������������������������������������������������������������������������������������� 151

�Solution����������������������������������������������������������������������������������������������������������������� 153

�How It Works���������������������������������������������������������������������������������������������������������� 153



xvi

■ Contents

�7.2 Finding Only the Matched String���������������������������������������������������� 155

�Problem����������������������������������������������������������������������������������������������������������������� 155

�Solution����������������������������������������������������������������������������������������������������������������� 155

How It Works���������������������������������������������������������������������������������������������������������� 155

�7.3 Working with Character Classes���������������������������������������������������� 157

�Problem����������������������������������������������������������������������������������������������������������������� 157

�Solution����������������������������������������������������������������������������������������������������������������� 157

�How It Works���������������������������������������������������������������������������������������������������������� 157

�7.4 Finding Significant Positions in a String���������������������������������������� 164

�Problem����������������������������������������������������������������������������������������������������������������� 164

�Solution����������������������������������������������������������������������������������������������������������������� 164

�7.5 Using Non-Capturing Groups���������������������������������������������������������� 171

�Problem����������������������������������������������������������������������������������������������������������������� 171

�Solution����������������������������������������������������������������������������������������������������������������� 171

�7.6 Understanding the Regex Engine and Backtracking���������������������� 172

�Problem����������������������������������������������������������������������������������������������������������������� 172

�Solution����������������������������������������������������������������������������������������������������������������� 172

�Plane Forward Search������������������������������������������������������������������������������������������� 173

�Backtracking���������������������������������������������������������������������������������������������������������� 173

�More on Greedy (Meta-) Characters���������������������������������������������������������������������� 174

�7.7 Finding Repeated Patterns������������������������������������������������������������� 175

�Problem����������������������������������������������������������������������������������������������������������������� 175

�Solution����������������������������������������������������������������������������������������������������������������� 175

�How It Works���������������������������������������������������������������������������������������������������������� 176

�7.8 Finding a Match and Excluding Some of It in the Result���������������� 178

�Problem����������������������������������������������������������������������������������������������������������������� 178

�Solution����������������������������������������������������������������������������������������������������������������� 179



xvii

■ Contents

�7.9 Inserting Comments in a Regular Expression�������������������������������� 181

�Problem����������������������������������������������������������������������������������������������������������������� 181

�Solution����������������������������������������������������������������������������������������������������������������� 181

�7.10 Modifying Results������������������������������������������������������������������������� 182

�Problem����������������������������������������������������������������������������������������������������������������� 182

�Solution����������������������������������������������������������������������������������������������������������������� 182

�How It Works���������������������������������������������������������������������������������������������������������� 183

�7.11 Using Non-Backtracking Groups�������������������������������������������������� 184

�Problem����������������������������������������������������������������������������������������������������������������� 184

�Solution����������������������������������������������������������������������������������������������������������������� 184

�How It Works���������������������������������������������������������������������������������������������������������� 184

�7.12 Replacing Substrings Using Regular Expressions������������������������ 185

�Problem����������������������������������������������������������������������������������������������������������������� 185

�Solution����������������������������������������������������������������������������������������������������������������� 185

�7.13 Using the scan Function with Regular Expressions��������������������� 186

�Exercises���������������������������������������������������������������������������������������������� 187

�Exercise 7.1����������������������������������������������������������������������������������������������������������� 187

�Exercise 7.2����������������������������������������������������������������������������������������������������������� 188

■■Chapter 8: Putting It into Action�������������������������������������������������� 189

�8.1 Removing Block CommentedCode������������������������������������������������� 189

�Problem����������������������������������������������������������������������������������������������������������������� 189

�Solution����������������������������������������������������������������������������������������������������������������� 189

�8.2 Searching and Replacing in Text Files�������������������������������������������� 195

�Problem����������������������������������������������������������������������������������������������������������������� 195

�Solution����������������������������������������������������������������������������������������������������������������� 195

�8.3 Removing Duplicates from a Text File�������������������������������������������� 200

�Problem����������������������������������������������������������������������������������������������������������������� 200

�Solution����������������������������������������������������������������������������������������������������������������� 200



xviii

■ Contents

�8.4 Reading XML as Text���������������������������������������������������������������������� 211

�Problem����������������������������������������������������������������������������������������������������������������� 211

�Solution����������������������������������������������������������������������������������������������������������������� 211

�8.5 A Case for Hash Buckets���������������������������������������������������������������� 213

�Problem����������������������������������������������������������������������������������������������������������������� 213

�Solution����������������������������������������������������������������������������������������������������������������� 214

�How It Works���������������������������������������������������������������������������������������������������������� 215

■■Appendix A: Solutions to Exercises��������������������������������������������� 217

Solutions for Chapter 1������������������������������������������������������������������������ 217

(Solution) Excercise 1.1����������������������������������������������������������������������������������������� 217

(Solution) Excercise 1.2����������������������������������������������������������������������������������������� 217

(Solution) Excercise 1.3����������������������������������������������������������������������������������������� 217

Solutions for Chapter 2������������������������������������������������������������������������ 218

(Solution) Excercise 2.1����������������������������������������������������������������������������������������� 218

(Solution) Excercise 2.2����������������������������������������������������������������������������������������� 218

Solutions for Chapter 3������������������������������������������������������������������������ 218

(Solution) Excercise 3.1����������������������������������������������������������������������������������������� 218

(Solution) Excercise 3.2����������������������������������������������������������������������������������������� 219

(Solution) Excercise 3.3����������������������������������������������������������������������������������������� 219

Solutions for Chapter 4������������������������������������������������������������������������ 219

(Solution) Excercise 4.1����������������������������������������������������������������������������������������� 219

(Solution) Excercise 4.2����������������������������������������������������������������������������������������� 220

Solutions for Chapter 5������������������������������������������������������������������������ 221

(Solution) Excercise 5.1����������������������������������������������������������������������������������������� 221

(Solution) Excercise 5.2����������������������������������������������������������������������������������������� 221

(Solution) Excercise 5.3����������������������������������������������������������������������������������������� 221



xix

■ Contents

Solutions for Chapter 7������������������������������������������������������������������������ 222

(Solution) Excercise 7.1����������������������������������������������������������������������������������������� 222

(Solution) Excercise 7.2����������������������������������������������������������������������������������������� 222

Index����������������������������������������������������������������������������������������������� 223



xxi

About the Author

Malay Mandal is a postgraduate mechanical engineer by qualification, but built a career 
in software engineering instead. He has worked with software in a professional capacity 
for more than 22 years. In his spare time, he sometimes delves into diverse topics of 
software technologies. He has worked across multiple languages and technologies, 
including client-server, RDBMS, Java, and Scala. He has tried many different things over 
the years; developing Android apps, and authoring and publishing books are some of his 
more recent endeavors.
 



xxiii

Acknowledgments

Thanks to Jayati (my wife) for supplying all the cups of coffee. Sometimes I badly needed 
them.

Thanks to Suresh John Celestin (of Apress) for his support in this endeavor.
Thanks to the technical reviewers for their thoughtful suggestions.



xxv

Introduction

Target audience
if ((someone knows at least one computer language
and
wants to have a quick go at Ruby
or
wants to quickly get up and running with Ruby for some programming tasks, 
without learning all the language features
or
wants to pick up a computer language well enough (rather quickly) to develop 
programs to accomplish certain tasks,
or
is seeking a computer language where simple development is rather quick and 
lucid
))
he can make good use of the book

/* It is a reasonably quick (and possibly interesting) read and comes with a 
lot of ready code */

A Few Things About the Book
Ruby refers to the programming language (not a gemstone); that much you might have 
figured out already.

Quite often in life, we may need to learn something reasonably well, but do not need 
to master it. Consider my cooking for example.

I hope you would have guessed by now what kind of a cook I am. Although some 
people may consider it fortunate that quite often I am the sole consumer of my cooking.

Although the book name contains the word “Recipes,” rest assured, it has nothing to 
do with my cooking.

The teaching in this book revolves around demonstrable examples and case studies. 
It is supposed to have somewhat quick-and-easy solutions. (Although what is considered 
“quick” and what is considered “easy” is quite subjective).



xxvi

■ Introduction

And as far as quick and easy solutions go, it may get you on your feet (figuratively 
speaking) and help you get going, (rather steadily one may hope), in the journey of Ruby 
programming.

This is not a complete treatise on all the features of Ruby language, but it discusses 
enough (perhaps more than enough) to accomplish a lot of simple-to-intermediate-level 
tasks that a programmer or analyst (or even people in another profession) may have a 
need to accomplish, either occasionally or on a day-to-day basis.

The fact that it is not a complete treatise of the language has its obvious merits and 
demerits. One of the demerits being that it won’t make you an expert of the language. 
You will need further exploration if being an expert is your goal. The obvious merit is that 
you can finish it quickly and possibly without much rigorous mental effort. (And as a side 
effect, it is lesser in volume and thus costs less than what it otherwise would).

Instead of a “big bang” approach (of describing all the syntax first, and then starting 
the actual tasks), at least at the initial part of the book, elements have been introduced in 
short increments, usually accompanied by examples. In my experience, that often makes 
for interesting reading. Although that may mean that all related concepts are not strictly 
grouped together.

This book does not discuss Rails and it does not explore the object-oriented side 
of Ruby. In fact, it does not cover class definition in Ruby. But it does cover many of the 
language elements that cater to many day-to-day programming needs. In particular, it 
has good coverage of basic variables, operators, control flow, collections, and regular 
expressions.

This version is based upon Ruby 2.3.1, which is latest stable version as of today 
(today being October 3, 2016). However, since the bulk of the code uses rather simple 
features of the language, it is likely that it would run without any modification for many 
Ruby versions to come. If you are using it far into the future of this date, and you need to 
use a piece of code for your task, my advice is to try it as it is on your current version, prior 
to trying to upgrading the code (chances are that you won’t have to upgrade).

At times, it was a bit of hard work, but I also enjoyed writing it. I hope that reading 
the book is an enjoyable experience for you as well.

About the Format of the Book
At times, this book deviates from the usual format of Apress Recipe books. Instead of a 
Problem/Solution/How It Works kind of template, sometimes the discussion digresses, in 
some depth, to discuss a particular topic.

As I wrote the book, I sometimes let it develop (as it were) at its own pace and 
rhythm, and let certain things come out rather naturally. Not wanting to force-fit many 
parts of the book, I intended to conform to the template, after the fact. This was partly 
because it is not always easy to change the form of a creation after it has developed 
completely, and partly because I felt that in many cases, the actual flow of discussion, 
as it stood, would be more fit for ready absorption, rather than trying to force-fit it into a 
template.

In my view, this digression from formatting does not take away from the readability 
of the book. If anything, I believe it adds to it.

But I leave it up to you to see for yourself and come to your own conclusion.



xxvii

■ Introduction

Why Ruby?
The brief answer is “power and ease.”

A more detailed answer is that Ruby is a full-fledged programming language. That is 
where the “power” comes in.

It comes with language constructs, such as powerful control flow statements like for 
and while, collection structures like arrays and hashes, scoping of variables, and even 
some powerful functional programming features, such as lambda, which was introduced 
in Ruby long before it was introduced in Java. (Contrast that with a shell scripting 
environment, where your choices of constructs are far more limited).

Although what is easy and what is difficult is subjective, the easy part, in my view, is 
(at least) twofold.

First, it can run like an interpreted script (it can also be compiled but that is not the 
point here) without any compilation, like a series of statements. The beauty of that is a 
reduced boilerplate and a reduced run cycle (need not compile and then run). A Hello 
World program in Ruby can be written in one line (and without squeezing multiple 
statements to reduce line count). And that can be run with a single command (no 
separate compilation). Contrast that with a Java Hello World code, which would, at the 
minimum, require a class and a main method. And also requires compilation.

The other part of the ease is the somewhat English-like lucid syntax of the language. 
(As an aside, this was my initial point of attraction to the language). Consider the 
following statement:

print "a is negative" unless a >= 0

This is a valid statement in Ruby. In my long experience as a software engineer, I 
have not known many languages that are this English-like out of the box.

For an even more detailed answer, you should read the book and decide for yourself.

Conventions and Assumptions
The (command line) commands are usually shown, enclosed by single quotes (e.g., 'ruby 
-v') to distinguish the exact command from other part of the text. The actual command, 
however, is the inside of the quotes without the single quotes. The same applies to name 
of directories or files in many places. (e.g., a file mentioned as 'hello.rb' is a file named 
like that, without the enclosing single quotes).

Text output or data input, especially while being described within textual description 
(e.g., “prints 'Hello World' in the terminal”), may describe the piece of output within 
single quotes, where the single quotes are not part of the output, but a convenient means 
to separate the exact output text, from the surrounding descriptions.

Sometimes a part of terminal input and output is replicated in the book, for example:

=>ruby -v

ruby 2.3.1p112 (2016-04-26 revision 54768) [x86_64-darwin13]



xxviii

■ Introduction

Here, the initial ‘=>’ is the operating system prompt and not part of the actual 
command. (in your machine, the prompt may be set up differently, e.g., 'C:\test>').

Pieces of code are usually printed in a separate font and / or style.
Sometimes evaluation of an expression, or a String when printed and such like 

(evaluated values) are written after the expression following a '=>' sign. This is not part of 
the language but just shorthand used in the book for translates into, for example:

2 + 3 * 5 => 17

One or more lines of code (or input/output data) when given by itself (i.e., not 
inline within part of a textual description, may be separated by one blank line each at the 
beginning and end of the piece. Those blank lines are not part of the actual code or data.

Sometimes, when an output is mentioned, only the visible character part may be 
mentioned (and the trailing newline is omitted from the description, even though that 
may be part of the output).

Pieces of code and input and output data displayed in the book may be reformatted 
(for instance, to beautify for better printing/display). Trailing spaces, new lines, 
indentations and such, may be added or removed. But even in such cases, code should 
still be working code and data and format should be correct and meaningful for the 
context.

Quite often in the book, a colloquial style has been used, which might have 
expressions like “Let’s write,” or “Let’s do.” This is, as if the reader is with me, and we are 
going through the exercise together. That is usually not the case. This, however, is a style 
of writing, and probably adds to the ease of understanding and to the ease of explaining.

In any part, when the effect of a code run is described in a way like “it should 
produce” or “you will get,” it is assumed that compatible version of Ruby is properly set 
up and running on your PC, and there is no other issues—that is, the code is being run 
successfully (apart from the cases when the discussion specifies that it would result in an 
exception). If the installation or environment setup is incorrect, then that likely would not 
be the case.

http://file//Users/C:/test


1© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_1

CHAPTER 1

A Taste of Ruby

“To err is human, but to really foul things up you need a computer.”

—Paul R. Ehrlich

The hammer is still in fashion. Don’t get me wrong. I am not here to make a fashion 
statement (at least not in the conventional way). And I have not seen any fashion parade 
where any of the models were carrying a hammer.

We have made a lot of advancement in science and technology. The invention of the 
wheel was a fundamental one. There were steam engines, solar cells, televisions, machine 
guns, and now there are smartphones.

A hammer is a tool. It has been around far longer than the smartphone and it has 
contributed to human advancement by a far greater degree. And I would think, unless a 
suitable alternative is found, a world without hammers would be far less livable than a 
world without smartphones (Actually, it may be argued whether we would be better off in 
a world without smartphones).

So, as it happens, the hammer is still in fashion as a tool.
But why am I talking about hammers in a computer programming book?

�Small Task, Big Impact
As you might have guessed, it was more in a metaphorical sense that I started the 
discussion on hammers. It is a seemingly simple tool, but indispensable in many tasks.

In my 20 years (approximately) of professional software development experience, I 
often found it handy to write small scripts to parse text and/or perform other operations, 
such classifying files into different directories. In typical IT job ads, among the crowd of 
big-name software tools and languages, you do not usually find a mention of this particular 
skill. But in some cases it is useful and in other cases it is very useful. The hammer is a 

Electronic supplementary material  The online version of this chapter  
(doi:10.1007/978-1-4842-2469-4_1) contains supplementary material, which is available to 
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2469-4_1


Chapter 1 ■ A Taste of Ruby

2

simple but effective tool. Ruby, particularly Ruby scripting, can also be used very effectively 
to accomplish a lot of tasks (and is perhaps considered simple in some perspectives— 
especially based on the features that are used and the way that they are used).

�Development Environment Installation
In order to have a real taste of a language, you need to have an environment where you 
can play with it. The following sections are brief discussions on installation on the Mac 
and Windows.

If you are reading this book somewhat far into the future after it was published, you 
should start with a Google search on “Ruby installation” or “installing Ruby” to find the 
official Ruby installation page.

As of today, the installation page is at

https://www.ruby-lang.org/en/documentation/installation/

It has information sources and links to help with Ruby installation in various platforms.

�Windows
On the Ruby installation page mentioned earlier, there is a link for RubyInstaller, which takes 
you to the download page. Alternatively, you can go directly to http://rubyinstaller.org/
downloads/ and download the latest version. The current version is 2.3.1. 

The installer is really an .exe file; the installation instruction for RubyInstaller on the 
ruby-lang.org installation page of is rather short and sweet: Just download it, run it, and 
you are done!

The installation should be rather like usual Windows software installations. To check 
that it was properly installed and is available in the path, open a command prompt, and 
issue this command:

ruby -v

This should produce a meaningful message regarding the Ruby version (installed 
and available in path), and possibly a revision date, and the target architecture of the 
version. For example:

ruby 2.3.1p112 (2016-04-26 revision 54768) [x64-mingw32]

�Mac
On the Mac it is slightly trickier.

It is possible that your Mac already has Ruby installed. If you open a terminal and 
issue the ruby -v command, you may see something like this:

=>ruby -v
ruby 2.0.0p481 (2014-05-08 revision 45883) [universal.x86_64-darwin13]

https://www.ruby-lang.org/en/documentation/installation/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/


Chapter 1 ■ A Taste of Ruby

3

The code used in this book, although checked against version 2.3.1, will very likely run 
on a few older versions (although this is not guaranteed). So you may wish to proceed with 
the current version (if any) that you have installed (and try upgrading it later, if required).

If your version is older than your target working version, you can upgrade Ruby on 
your Mac. (The commands are given as follows, so you will not probably need to look it 
up on the web page, but in case you are interested: on recent Mac operating systems, a 
good way to upgrade or install Ruby is to follow https://gorails.com/setup/osx/ and 
choose the page for your Mac operating system version.

Although this page has instructions installing Rails, for the purpose of this book, you 
only need the first two steps:

	 1.	 Install Homebrew.

	 2.	 Install Ruby.

Make sure that you are connected to the Internet (and you need to have admin rights 
on your machine).

The following is the command for installing Homebrew, which helps install and 
compile software packages easily from the source:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

These are the commands for Ruby installation:

brew install rbenv ruby-build
rbenv install 2.3.1
rbenv global 2.3.1

Check your Ruby installation by running this:

=>ruby -v
ruby 2.3.1p112 (2016-04-26 revision 54768) [x86_64-darwin13]

Add the following line to your .profile or .bash_profile file:

echo 'if which rbenv > /dev/null; then eval "$(rbenv init -)"; fi' >> 
~/.bash_profile

This should load the correct Ruby version every time that you open a new terminal.
Close the terminal, open a new one, and check (with the ruby -v command) that the 

correct version is indeed available.

�1.1 The First Recipe: aka Hello World
By now, hopefully, your development environment is up and running, and the ruby 
command is available in the path. It’s time to have a first go at real Ruby programming. 
And as a (somewhat unofficial) tradition of programming language learning, let’s start 
with the Hello World program.

https://gorails.com/setup/osx/


Chapter 1 ■ A Taste of Ruby

4

In order to structure the exercises better, you can create a root directory for the 
book’s code, somewhere on your machine. Suppose the directory is named exer and it is 
created directly under your home directory (it could be elsewhere also).

Under the exer directory, a separate directory can be created for each chapter (such 
as chap01 for the first chapter, and so on). The coding for a chapter may be kept and run 
directly from the chapter directory (unless there is a specific need to separate code or 
data files, for one or more specific exercises, in which case the chapter directory may have 
subdirectories).

So for now, this is the suggested structure:

exer
                 /chap01
                /chap02

�Problem
You want to create code in Ruby that prints 'Hello World' (without the single quotes) to 
the terminal.

�Solution
Open a terminal/command prompt and go to this chapter’s directory. Create a file named 
hello.rb. Write a single line of code in the file, as follows.

puts "Hello World"

Save and close the file. In the command prompt, type the following command.

ruby hello.rb

Press Return. This should print 'Hello World' in the terminal/console.

�How It Works
If you are disappointed that this is too easy—don’t be! In fact, that is one of the main 
reasons why Ruby may considered a good tool to use. It’s too easy.

But easy as it may be, if this is your very first exposure to Ruby programming, you 
may wish to note a few things.

Running a program is done with the ruby command, with the program’s file name 
as the first argument. The program itself may take its own arguments, which follow the 
program’s file name. More on this later.

The program file extension is immaterial. By convention, the extension is .rb, but any 
extension is really OK. You can test this by copying the hello.rb file to another file named 
hello.txt. Issue the ruby hello.txt command—and the result should still be the same.

One way to print a string to the console is by using the puts function, followed by 
the string to be printed within in double quotes, as an argument. Notice that I wrote one 



Chapter 1 ■ A Taste of Ruby

5

way to. There are other ways to achieve same effect. For one, in this case, the double 
quotes could safely be replaced by single quotes, and it would still work (i.e., puts 'Hello 
World' instead of puts "Hello World").

Parentheses in a method call omitted. Note that for the function puts, the 
argument (the 'Hello World' string) is not enclosed in parentheses. Parentheses in 
the method argument are quite often (but not in all cases) optional (another goody of 
the Ruby language, you might say). It is a liberty that you cannot enjoy with many other 
programming languages. The fact that it is optional can be readily verified by actually 
putting the parentheses (i.e., puts("Hello World") instead of puts "Hello World") in 
the code, and trying to run it. It should work equally well.

■■ Note   If you use parentheses, make it a practice not to have many spaces between the 
function name and the opening parentheses. In some situations, such a space may cause 
syntax error.

No semicolon. The statement does not end in a semicolon. Again, this is optional in 
many cases, including where you have only one statement in a line.

�1.2 Does It Cost Anything to Say Hello?
It may not seem like much in retrospect, but assuming you started from scratch (to set up the 
environment, etc.), the first Hello said in this new language (assuming it is new for you) did 
come at a certain cost in terms of time and effort. (And that without considering the amount 
of energy your computer consumed in the process).

But from another perspective, consider how much time (although it is not the same 
for each individual) and effort it takes for a human baby to say “Hello” clearly for the first 
time in his native language.

In that sense, it can be considered a very quick first expression in a new language.
While we are at it, you may want to see some basic numeracy expressed in Ruby and 

pick up a few more points regarding the language.

�Problem
You want to add 2 and 2 together and print the result on a console.

�Solution
If your first instinct is to just add 2 and 2, and use puts to print it directly—that is, just a 
single line of code, like the following, you are spot on.

puts 2 + 2



Chapter 1 ■ A Taste of Ruby

6

It does the trick.

=>ruby sum.rb
4

�How It Works
As you might have noticed, puts can work with non-strings. (It actually implicitly converts 
non-string arguments to strings). In general, it is not the case that a function, which 
expects string arguments, works seamlessly with other type of arguments by converting 
the argument to a string. (In some computer languages, a similar function for printing 
output to console would fail if you provide a non-string argument.)

It is a no-brainer that multiplication of two integers can work very similarly.
The following prints a 6.

puts 2 * 3

The code that follows here, however, prints a 13.

puts 2 + 2 + 3 * 3

The expression '2 + 2 + 3 * 3', which results in '13' may give you some idea 
about the operator precedence in Ruby. It works predictably similar to many other 
programming languages in regards to numerical expression. But this chapter is more 
about providing you with a taste of Ruby, so a detailed discussion on operator precedence 
is rather out of place right now.

�1.3 Sherlock Holmes and Learning
You might have heard or read about Sherlock Holmes, the great detective. He was not a 
real character, but that’s beside the point. The story of Sherlock Holmes was so inspiring 
that (although the original publication of the last tale appeared in 1927) even in recent 
times, TV series have been made based on the theme.

Sherlock Holmes was a keen observer and a deductionist. He observed things in 
great detail; detail that might have eluded others in the same spot. But that is perhaps not 
the only point about his observation.

He would observe things that were pertinent to the case.
There is a great story, although I suspect it was not written by Sir Arthur Conan 

Doyle, the creator of the Sherlock Holmes character. I will retell the story in my own way.
One day Holmes and Watson went on a camping trip. They put up their tent in the 

early afternoon. They enjoyed some coffee, done a bit of fishing, and took a stroll. As the 
darkness fell, they sat around the camp fire with steins of beer in their hands. They talked 
about this and that, and as usual, got into a fierce argument every now and then. As night 
fell, they had an early dinner and went to sleep. In the wee hours of the night, Watson 
woke up, prodded by a nudge from Holmes. The conversation that took place between 
them went somewhat like this:

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ A Taste of Ruby

7

Holmes: “Watson, get up. Look into the sky and tell me what you see.”
Watson: “I see a clear blue sky and a lot of stars.”
Holmes: “And what does that tell you?”
Watson: “That the night sky is beautiful. So beautiful that it can inspire one to be 

a poet or an artist. That there are billions of starts in the universe and we are rather 
insignificant on the astronomical scale. I can also predict with a degree of certainty that 
tomorrow is going to be a fine day.”

Holmes: “Hmmm.”
Watson: “Anything I have missed in particular?”
Holmes: “Our tent has been stolen.”

The point I am trying to make is, Holmes not only observes, but observes particularly 
from the point of view that is important in the context. (In his case, the typical context was 
solving a crime). He observes contextually.

What relevance does that have to learning? More specifically, what is the relation of 
contextual observation to learning a programming language?

To answer that in a rather decorated fashion, let us consider the following problem.

�Problem
You want to assign a value to a variable in Ruby.

�Solution
Create file called vari.rb and add the following lines.

a = 1
b = 2.5
c = "three"
d = 4
e = a + d

Save and close the file, and try to run it. It does not give any error, because all of these 
are valid assignments in Ruby.

�How It Works
Now, get into Sherlock Holmes mode. What do you observe?

On the outset, those are three lines of code with some variable names on the left 
(equal signs) and some values on the right.

It is also perhaps a no-brainer that a is an integer (or a Fixnum in Ruby), b is a float, 
and c is a string.

What is really interesting, however, is that the variable type need not be declared in 
Ruby. It also cannot be declared; the only way is to make a type class, if you wish to make 
type declarations for variables (actually, objects in that case). This (non-declaration of 
variable types) is a core Ruby feature.



Chapter 1 ■ A Taste of Ruby

8

Not only that, if you add a sixth line (b = "Hello") to the vari.rb file, the entire code 
is as follows.

a = 1
b = 2.5
c = "three"
d = 4
e = a + d
b = "Hello"

If you then save and run it, it would still be OK. This means that in addition to the 
fact that types of variables are not declared, but the same variable may take up different 
types of values at different times in the course of the program. Ruby is a dynamically typed 
language.

Not being explicit with variable types and changing it dynamically within the 
program’s lifetime has its disadvantages (especially from a robustness point of view). 
But for small code (scripts are usually smaller than a full-fledged web application for 
instance), it may not be such a serious issue. And it saves some time (less typing) if you 
don’t have to declare the types.

�1.4 1 2 3 4, 1 2 3 4
How do you repeat things in a loop in Ruby?

There are several ways actually. Let’s start with a problem.

�Problem
You want to print 1 to 10 (on separate lines) in a loop.

�Solution
Create a fortest.rb file in the chap01 folder. Open and write the following three lines of 
code.

for i in 1..10
        puts i
end

Save and close the file. When you run it, it should produce the desired result.

=>ruby fortest.rb
1
2
3
4



Chapter 1 ■ A Taste of Ruby

9

5
6
7
8
9
10

�How It Works
If you know some other programming language, chances are that you may have come 
across code for a for loop, which is remarkably similar to the following.

for (int i = 1; i <= 10; i++)
        System.out.println("" + i);

If you have not come across such code in the past, consider it a piece of pseudo code 
for the benefit of our discussion. In the preceding (non-Ruby) code, apart from the lack of 
semicolons and such, which has already been discussed, note the following.

•	 Implicit type definition: The i variable did not require to be 
defined as an int (for Ruby this is actually Fixnum type not int).

•	 Implicit step size: An increment of i at each step, even when it is 
1, has to be explicit (e.g., i++), but not so in Ruby. (Although if the 
step was not one in this case, it would no longer be implicit, even 
in Ruby).

•	 The end keyword for the end of the block: The block of code ends in 
the end keyword.

Note that the program could have been written in a single line, like this:

for i in 1..10; puts i; end

(And this is not particular to Ruby. Many programming languages would allow 
putting multiple statements in one line, provided they are separated with the appropriate 
statement end markers. However, it is usually not a good programming practice to 
squeeze multiple statements on one line).

The earlier (multiline) form of for statement shows that not only for simple 
statements, but even for control structures such as for, a line break can act as a statement 
terminator/condition separator. The overall condition of the for was finished in the first 
line and the actual work in the loop started on the second line.

Note that although it is redundant, you can put semicolons at the end of 
statements—even when they occur by themselves in the line. (But why should you?)

Thus the following is valid code.

for i in 1..5;
        puts i;
        puts i * 2;
end;



Chapter 1 ■ A Taste of Ruby

10

Note that since a for loop signifies a code block, it is quite natural to use multiple 
statements within it, when required.

�Interactive Ruby Shell
Ruby comes with an interactive Ruby shell. The command, not surprisingly, is named 
irb.

If you type the command in your terminal/command prompt, and then press the 
Return key, the prompt will change.

=>irb
irb(main):001:0>

This is a shell that you can run Ruby code directly, line by line (or block by block), 
and it will evaluate on the fly. The following shows some interaction.

irb(main):001:0> a = 2 + 2
=> 4
irb(main):002:0> 2 + 2
=> 4
irb(main):003:0> b = 3
=> 3
irb(main):004:0> a + b
=> 7
irb(main):005:0> for i in 1..5
irb(main):006:1> puts i
irb(main):007:1> end
1
2
3
4
5
=> 1..5
irb(main):008:0>

Note that the for loop waited for the entire block to finish before executing. In cases 
where the line itself is a complete command, it evaluates immediately after the line.

■■ Note   Control+D lets you exit from the shell.

In this book, irb is used for quick demonstrations of certain features (hence, you will 
see more of it). It is a tool that is available at your disposal for quick verification or quick 
evaluation of certain things (e.g., for checking the validity of a statement syntax-wise).



Chapter 1 ■ A Taste of Ruby

11

You can also use it as a simple calculator.

=>irb
irb(main):001:0> 26 * 26
=> 676

�Summary
Assuming that you are new to it, you have had your first taste of the Ruby language; 
hopefully, you have liked it thus far.

Apart from a brief discussion on installation, this chapter discussed

•	 how to run a Ruby program file from console

•	 how to print strings and variable values to the console

•	 some simple operators

•	 variable declaration (or lack thereof) and assignments

•	 a looping mechanism

•	 the interactive Ruby shell

Here is a quick recapitulation of some commands and code.

ruby hello.rb
puts "Hello World"
puts 2 + 2
a = 1
b = 2.5
for i in 1..10
        puts i
end

What has been discussed so far should be good enough for you to write some simple 
programs. The following is a set of exercises. These are not essential for learning, but you 
may wish to try them nevertheless. The solutions are in the appendix.

�Exercises
�Exercise 1.1
Write a program to calculate the sum of the square of the first ten positive integers (1 to 10).



Chapter 1 ■ A Taste of Ruby

12

�Exercise 1.2
Write a program to calculate the factorial of 6 (for positive integers, the factorial of a 
number is the product of all numbers, starting from 1 and up to and including that 
number. For example, the factorial of 3 = 1 * 2 * 3 (= 6)).

�Exercise 1.3
Fibonacci numbers are defined as a series of integers, where any number, from the third 
number onward, is the sum of its immediate two predecessors. (Of course, the initial two 
numbers have to be given, which can be taken as 0 and 1 in our case). So the series should 
be 0,1,1,2,3,5,…. Write code to print the first ten Fibonacci numbers after the initial 0 and 
1 (the initial 0 and 1 need not be printed by this program).



13© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_2

CHAPTER 2

Working with Files and  
Strings

This chapter contains recipes for working with files and strings. I’ll start, however, with a 
section on the theory of manipulating strings. It is designed to make you aware of certain 
ways of manipulating strings (and to give you some useful tools).

�Manipulating Strings
The Ruby String class has plenty of methods. Following a somewhat “minimalist 
knowledge” approach (i.e., knowing only as much as is required), only some functions 
are discussed in this section. Note that the methods discussed here usually return a 
copy of the part of / modified version original string (as required) and do not modify the 
original string.

�length or size
The length method is used to get the size (in characters) of the string. (The same can be 
achieved by using the size function.)

"abcd".length => 4

�empty?
The empty? method returns true if the string is empty; otherwise, it is false.

irb(main):001:0> "hello".empty?
=> false
irb(main):002:0> "".empty?
=> true



Chapter 2 ■ Working with Files and Strings 

14

�strip
strip removes the leading and trailing whitespace (and trailing NUL) characters.

"    hello    " => "hello"

The functions lstrip or rstrip may be used for removing spaces only from left or 
right side.

�<<
<< is used for concatenation.

irb(main):007:0> a = "hello"
=> "hello"
irb(main):008:0> a << "world"
=> "helloworld"

�<=>
<=> compares two strings. It returns –1, 0, or 1 based on whether the first string is lesser 
than, equal to, or greater than the second.

irb(main):009:0> "hello" <=> "world"
=> -1
irb(main):011:0> 'ddd' <=> 'ccc'
=> 1

�capitalize
capitalize returns a copy with the first letter capitalized and the rest in lowercase. 
(There are quite a few functions in Ruby’s String class that deal with the cases of letters.)

"hello".capitalize => "Hello"
"Hello".capitalize => "Hello"
"HELLO".capitalize => "Hello"

�downcase and upcase
As the names suggest, downcase and upcase return strings with the case converted.

irb(main):003:0> "Hello".downcase
=> "hello"
irb(main):004:0> "Hello".upcase
=> "HELLO"



Chapter 2 ■ Working with Files and Strings 

15

�chars
chars returns an array corresponding to the characters in the string.

irb(main):001:0> "abracadabra".chars
=> ["a", "b", "r", "a", "c", "a", "d", "a", "b", "r", "a"]

�index
index is the index of the first occurrence of a character, substring, or pattern in a string. It 
returns nil if not found.

"Hello".index('e') => 1

index can also start from an offset position in order to look for the second index 
position (the third character) onward from a string and pass the index position (offset) as 
the second argument.

irb(main):001:0> "Hello".index('e',1)
=> 1
irb(main):002:0> "Hello".index('e',2)
=> nil

In the latter case, 'e' does not occur on or after the second index (character 3).

�insert
insert inserts one given string into another, prior to the given index position.

irb(main):006:0> "abraabra".insert(4,'cad')
=> "abracadabra"

�delete
delete returns a new string with characters deleted, as specified. It has a few different 
forms.

irb(main):007:0> "hello".delete "l"        #delete any 'l' from "hello"
=> "heo"
irb(main):008:0> "hello".delete "lo"       �#delete any 'l' or 'o'
=> "he"
irb(main):009:0> "hello".delete "aeiou", "^e"   �#delete any of 'a','e', 

'i','o','u' except 'e'
=> "hell"
irb(main):010:0> "hello".delete "ek-m"          �#delete any 'e' or any of 

'k' to 'm'
=> "ho"



Chapter 2 ■ Working with Files and Strings 

16

�include?
include? returns a Boolean that indicates whether the argument string is part of the first 
string.

irb(main):005:0> "Hello world".include?("world")
=> true

�slice
slice returns part of the string (somewhat like substring function) or returns nil. 
Note that this function has many forms, including one that returns int. Only one form is 
discussed in this section.

<String>.slice(start index,length), e.g.
"hello".slice(1,3) => "ell"

�count
count counts the given character(s). It has a few different forms.

irb(main):001:0> "hello".count('l') # how many 'l' in "hello"
=> 2
irb(main):002:0> "hello".count('lo') # how many 'l' or 'o' in "hello"
=> 3
irb(main):003:0> "hello".count('a-h') # how many characters within the range 
a to h
=> 2
irb(main):004:0> "hello".count('^a-h') # how many characters not within the 
range a to h
=> 3

�partition
partition partitions a string into array of strings based on (the first occurrence of) a 
given character or pattern.

irb(main):012:0> "hello".partition('l')
=> ["he", "l", "lo"]

�tr
tr transforms a string by replacing some characters with others, as specified. It has 
multiple forms.



Chapter 2 ■ Working with Files and Strings 

17

irb(main):015:0> "hello".tr('l','m')
=> "hemmo"
irb(main):016:0> "hello".tr('a-f','x')
=> "hxllo"

�reverse
reverse returns the reverse of the string.

irb(main):017:0> "hello".reverse
=> "olleh"

�sub (and gsub)
sub and gsub have more than one form. One form is discussed in this section; it 
substitutes specified parts of the string with a replacement. It works with patterns; 
however, patterns (which could be regular expressions) are discussed in detail later in the 
book. Here, only results with simple patterns are shown.

sub works for the first occurrence and gsub works for all occurrences in the string 
(gsub is a global substitution).

irb(main):007:0> "Hello".sub('H','W')
=> "Wello"
irb(main):008:0> "Hello".sub('l','x')
=> "Hexlo"
irb(main):009:0> "Hello".sub('ll','x')
=> "Hexo"
irb(main):010:0> "Hello".gsub('l','x')
=> "Hexxo"

�scan
scan has multiple forms. The general (non-block) form returns an array by dividing the 
string into tokens of the given pattern. It is best understood in the context of regular 
expressions (discussed in detail in Chapter 7). However, it is a very important string 
function and hence mentioned here.

Suppose the pattern /[a-z]+/ means one or more contiguous characters that are 
anything from a to z. Take a look at the following as an example.

irb(main):018:0> "hello world".scan(/[a-z]+/)
=> ["hello", "world"]

It scans in the string for any such pattern (contiguous a–z). Two such patterns are 
found, and hence the returned array has those two patterns.

http://dx.doi.org/10.1007/978-1-4842-2469-4_7


Chapter 2 ■ Working with Files and Strings 

18

Let’s look at another example. Suppose /…/ means that a pattern is signified by any 
three contiguous characters (exactly three). Then, take a look at the following example.

irb(main):020:0> "hello world".scan(/.../)
=> ["hel", "lo ", "wor"]

It finds only three such patterns because the remaining id is not three characters 
long.

�split
split is a very important function, especially while recognizing columns from an 
input data file. It splits a string, based on a given separator (or space, if no separator is 
specified). This is the general form:

str.split( pattern=$;, < limit > ) => array

A full discussion of the function is not warranted at this point. However, the pattern 
is optional and could be a regular expression. The limit is also optional (limits, in general, 
indicate the number of columns that are to be returned; the last column includes the rest 
of the string).

If limit is omitted, trailing empty fields are suppressed. If it is 1, the entire string is 
returned as the only element of the array. If it is negative, there is no limit to the number 
of fields returned; trailing null fields are not suppressed.

The pattern=$! syntax implies that the default value of the pattern is '$;' (which 
is a predefined variable and the value of that is 'nil' by default. And when occurs, the 
separator is taken as a single space). Predefined variables are discussed in Chapter 3.

Now it is time for some demonstrations.

irb(main):001:0> arr = "hello world".split
=> ["hello", "world"]
irb(main):002:0> arr = "hello world".split(' ')
=> ["hello", "world"]
irb(main):003:0> arr = "hello world".split('  ')
=> ["hello world"]

Note, that when two spaces have been given a split pattern, the resulting array has 
only one element (it could not split on the space in between, because that is a single 
space).

irb(main):004:0> arr = "hello world".split('ll')
=> ["he", "o world"]
irb(main):005:0> arr = "abc,def,ghi".split(',')
=> ["abc", "def", "ghi"]

http://dx.doi.org/10.1007/978-1-4842-2469-4_3


Chapter 2 ■ Working with Files and Strings 

19

Comma separation is especially useful for CSV file manipulation.

irb(main):006:0> arr = "John,Doe,101 Nowhere Street".split(',',2)
=> ["John", "Doe,101 Nowhere Street"]
irb(main):007:0> arr = "John,Doe,101 Nowhere Street   ".split(',',2)
=> ["John", "Doe,101 Nowhere Street   "]
irb(main):009:0> arr = "John,Doe,101 Nowhere Street   ".split(',')
=> ["John", "Doe", "101 Nowhere Street   "]

Note how specifying the limit restricts the return array to two elements; the last 
element has rest of the string.

�String Formatting
A string can be formatted in particular ways to print a number in some desired format. 
The following example briefly illustrates this.

puts "zero padding"
x = "%05d" % 123  # should be "00123"
puts x
puts "decimal formatting"
y = "%.2f" % 34.9 # should be "34.90"
puts y

�2.1 Accepting Input from the Console
�Problem
Take input from the console in Ruby.

�Solution
If writing to the console uses puts, it is a natural logical extrapolation that the gets 
function should be used to read from the console.

If you are going to use scripting for batch programming alone, you will possibly never 
need to read input interactively from console. However, this is a rather basic function 
of Ruby (and indeed of programming tasks in general) and worth discussing here. Note 
that this is not the only way you can take input from console, but perhaps this is the most 
generally programmatic way for Ruby to take input from a console.

Well, a demonstration is in order. Run the following piece of code. Write it in a file 
and give it a name, such as inp1.rb. Save it and then run it from the console.

x = gets
puts x



Chapter 2 ■ Working with Files and Strings 

20

You will find that the execution got stuck at a point (the beginning of the next line to 
the command) without coming back to the command prompt.

=>ruby inp1.rb

This is because it is waiting for user input from the console (call to gets).
Provide the number 3 as input and press the Return key. You should observe the 

following behavior.

=>ruby inp1.rb
3
3

�How It Works
It takes in the value in the x variable and prints it (the value of x) through the puts 
statement.

Try experimenting with a few other inputs (of different types) and see what happens. 
(Remember to press the Return key every time after you input).

 =>ruby inp1.rb
2.5
2.5
=>ruby inp1.rb
c
c
=>ruby inp1.rb
abc
abc

It seems to be handling different types very well on the outset. Note, however, that it 
is actually taking everything as a string. So the 3 that it printed was a String, not a Fixnum. 
But even that is not the full story.

Try the following code.

x = gets
puts x * 2

If you provide 3 as input, it does not produce 6; but you see something that might 
seem strange at first glance.

=>ruby inp2.rb
3
3
3



Chapter 2 ■ Working with Files and Strings 

21

The first 3 is the input given, of course. The other 3s are the output. The occurrence 
of the string has been multiplied (i.e., essentially two strings added side by side), but 
notice also that the interpreted value of x has a newline character in it.

�2.2 Accepting Numbers as Input
�Problem
Accept numbers as input from the console.

�Solution
Let’s untangle this part by part. First, how to take it as an integer (I would use “integer” 
instead of Fixnum in many places because somehow it seems more natural).

Let’s convert the input using the to_i function.
If you run the following code

x = gets.to_i
puts x * 2

and provide 3 as input, the result, I would think, is quite as per expectation.

=>ruby inpint.rb
3
6

�How It Works
The to_i function did its job of converting the input to an integer. (Notice the newline is 
also no longer an issue here.) It would not require a great stretch of imagination to guess 
that to_f is the corresponding function for converting to Float.

The following code

x = gets.to_f
puts x * 2

with 2.5 as input, should run as follows.

=>ruby inpflt.rb
2.5
5.0



Chapter 2 ■ Working with Files and Strings 

22

�2.3 Handling the Newline
�Problem
How should the newline be handled for string inputs? For example, how would you 
accept someone’s first name and last name (separately) from the console, in Ruby, and 
print the full name on a single line?

�Solution
As a first approximation, try the following code.

puts "First name :"
fname = gets
puts "Last name :"
lname = gets
puts fname + lname

Provided that “John” is the first name and “Doe” is the last name, it should go as 
follows.

=>ruby inpstr.rb
First name :
John
Second name :
Doe
John
Doe

This is not what was aimed for. The first name and the last name appear on different 
lines. There should be a way to remove the trailing newlines from the inputs.

The chomp function comes to the rescue. The code changed in the following manner.

puts "First name :"
fname = gets.chomp
puts "Last name :"
lname = gets.chomp
puts fname + lname

This overcomes the problem.

=>ruby inpstr2.rb
First name :
John
Last name :
Doe
JohnDoe



Chapter 2 ■ Working with Files and Strings 

23

The difference, eventually, lies in the chomp function, which trims the newline 
characters from the (end of the) line read.

Although the outcome is perhaps not ideal because the two parts of the name have 
no space between them, they do appear on the same line. One way to provide a space is 
to simply change the last line of the code to this:

puts fname + " " + lname

Note that the chomp function could have been used on the variables. Check the 
following code.

puts "First name :"
fname = gets
puts "Last name :"
lname = gets
puts fname.chomp + " " + lname.chomp

It should run as follows.

=>ruby inpstr3.rb
First name :
John
Last name :
Doe
John Doe

chomp is very useful for the line-by-line processing of an input data file.

�More on Getting Rid of the Newline
I guess that this serious enough to warrant a bit more demonstration.

Consider a programmer writing code in a language that requires each statement to 
end with a semicolon. He is doing this on a Friday evening with a bottle of beer on his 
desk. (His office environment is rather relaxed, especially on Friday afternoons. Besides, 
who would notice? His boss was also drinking.) He needed to finish the piece of code 
soon; otherwise, he would not have done it while having beer.

After a long while, he noticed that he forgot all the semicolons; although he is pretty 
sure (that’s what he is saying) that everything else is OK and that the code should be 
otherwise bug free. By this time he already had a good amount of beer in his system. He 
does not feel like editing the file just to put in so many semicolons at the end of each line, 
but he needs to compile the code.

Suppose he comes to you for a solution. Perhaps you could do something with a bit 
of Ruby scripting so that he can quickly compile and test the code, get it done and over 
with, and head to the nearest pub.



Chapter 2 ■ Working with Files and Strings 

24

For simplicities’ sake, suppose you decide to test his code (to transform it) using only 
the first four lines.

int x = 0
int y = 0
int r = 5
float areavar  = x * x + y * y – r * r

This story is fictitious, of course, but now let’s look at the actual programming 
exercise.

■■ Note   This particular scenario could very easily be done by a regex substitution through 
a good text editor; but as of now, we will focus on a Ruby solution.

As a first approximation, you may want to try the following code (assume the input 
file name is coord.txt).

infile = File.open('coord.txt','r')
outfile = File.open('modcoord.txt','w')
while (line = infile.gets)
        outfile.puts line + ';'
end
outfile.close
infile.close

You will almost be successful—but not quite. The output file has the following 
content.

int x = 0
;
int y = 0
;
int r = 5
;
float areavar  = x * x + y * y – r * r;

This is because, except for the last line, each line in the input file comes with a 
trailing newline character. When the line is read, the character, along with other parts of 
the line, are added to (assigned as part of) the line variable. When the output string is 
constructed, the newline part is still there, and hence, the line breaks as they appear.

Change the line containing puts as follows

outfile.puts line.chomp  + ';'



Chapter 2 ■ Working with Files and Strings 

25

and then run the program (after saving the file, of course). Now you are truly successful. 
This is the output:

int x = 0;
int y = 0;
int r = 5;
float areavar  = x * x + y * y – r * r;

Again, you can see that chomp is a very useful function in Ruby batch programming.
Note that it works equally well when there is a carriage return character along with 

the new line at the end, and it does not create trouble if there is no newline at the end.

irb(main):003:0> str1="abc\n"
=> "abc\n"
irb(main):004:0> str1.chomp
=> "abc"
irb(main):005:0> str2="abc\r\n"
=> "abc\r\n"
irb(main):006:0> str2.chomp
=> "abc"
irb(main):007:0> str3="abc"
=> "abc"
irb(main):008:0> str3.chomp
=> "abc"

Note that this function can also take an argument (record separator), although this 
form is highly unlikely to be used in practice.

irb(main):009:0> str="abcd"
=> "abcd"
irb(main):010:0> str.chomp("d")
=> "abc"

If nothing is given as an argument (such as in the case study for putting a semicolon 
at the end), it uses the default, which is a single set of carriage return characters (usually 
\r\n).

�2.4 Formatting Strings
�Problem
You need to have a string formatted the way that you want, with one or more variables 
replaced with their proper values.

This is especially useful for reporting purposes, but also has many other uses. Think of a 
use case where you have been given a letter format with a subject and text, but the addressee 
is given as a variable whose values may come from a list people. Essentially, it is the same 
letter to be sent to multiple people, but addressing each of them separately by name.



Chapter 2 ■ Working with Files and Strings 

26

Note that in this case (as indeed in many other cases), adding multiple strings with 
blanks [e.g., + "   " + ] is far from the ideal solution).

�Solution
Consider the following code.

name = "John"
puts "Hello #{name} how are you ?"

It should run as follows.

=>ruby formstr.rb
Hello John how are you ?

�How It Works
As you can see, the variable placeholder is defined by variable name encased in #{} 
within the string (i.e., using a #{<variable name>} construct within the string).

Note that in this case (i.e., for formatted string), the double quotes cannot be 
replaced by single quotes. In other words, the following code won’t work.

name = "John"
puts 'Hello #{name} how are you ?'

Here, the #{name} part is taken literally, and not as an interpreted value.

=>ruby formstr_bad.rb
Hello #{name} how are you ?

It is still a valid string, however, and hence no error is thrown.
Does this substitution also work for other basic types of variables, such as Float?
What prevents us from experimenting?
Write the following code in a file named formstr2.rb. Save the file and run the code.

company = "Rhombus Inc"
year = 2015
total = 1289965.45
puts "In year #{year} net sales of #{company} was #{total} dollars."

The result is not disappointing.

=>ruby formstr2.rb
In year 2015 net sales of Rhombus Inc was 1289965.45 dollars.

Evidently, it also works with integer and float values in the same fashion.

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Working with Files and Strings 

27

�2.5 Processing Command-Line Arguments
Problem
For any serious programming language, being able to accept a command-line argument 
is probably indispensable. In Java, for instance, the main method has an argument that 
is an array of strings. These arguments to the main method come from command-line 
arguments (if any).

�Solution
In a Ruby script, a command-line argument is available as a predefined constant (array) 
named ARGV (note that the name is case sensitive).

Run the following code the usual way.

name = ARGV[0]
puts "Hello #{name} how are you ?"

The result is not very impressive.

=>ruby argvtst.rb
Hello  how are you ?

Use a command-line argument, however, and the result is better.

=>ruby argvtst.rb John
Hello John how are you ?

�How It Works
Consider the following:

•	 It does not wait for the argument (as with C or Java, for instance).

•	 In Ruby, ARGV[0] denotes the first argument rather than the program 
name (unlike Java).

•	 For the Ruby script, it is already available in the context. Even 
though we did not have any explicitly defined main method with 
named parameter(s), predefined constants can be used this way.

•	 An array is a type of collection that you are most likely familiar 
with from another programming language. Clearly, in Ruby arrays 
are zero-based (the index starts with 0) and the elements are 
accessed as <Array-name>[<index_number>]. (e.g., ARGV[0]).



Chapter 2 ■ Working with Files and Strings 

28

In order to accept a second argument, you would use ARGV[1].
Try the following code. You shouldn’t be disappointed.

first_name = ARGV[0]
last_name = ARGV[1]
puts "Hello #{first_name} #{last_name} how are you ?"

It should run as follows.

=>ruby argvtst2.rb John Doe
Hello John Doe how are you ?

It is easy to extrapolate what you could do to work with three arguments.

�2.6 Reading from a File
�Problem
One of the very basic tasks that you may need to perform for a lot of scripting 
functionalities is reading data from a file. Quite often you need to read part of a file based 
on certain criteria—for example, a column containing pieces of data with particular 
values (e.g., a person’s address). So, you need to know some basic operations, such as 
opening a file in read mode.

�Solution
In the chapter code directory, create a file named input.txt with only one line of text 
that contains the word welcome.

In the same directory, you need a readfl.rb program file with the following content.

infile = File.open('input.txt','r')
myword = infile.gets
puts myword
infile.close

Run the code from the command prompt. It should look like this:

=>ruby readfl.rb
welcome



Chapter 2 ■ Working with Files and Strings 

29

� How It Works
A bit of explanation is in order.

The first line of code, infile = File.open('input.txt','r'), means this:

	 1.	 Open a file (from current directory) named input.txt.

	 2.	 In read mode.

	 3.	 And store the file handler in a variable named infile.

The infile file handler is needed for further operations on the file.
In order to read a line, the gets function is used; however, this time it is called on the 

(infile.gets) file handler, hence the instruction is to read the input from the file, which 
is then stored in the variable named myword.

The third line (puts myword) is for output of the value of myword. Note that it is 
not using the #{} construct, as it is not within a string any longer, being output by itself 
without any other string concatenated.

The fourth line simply closes the file (which was opened for reading) by calling the 
close function on the handler.

The second and third lines could have been combined in a single line, as follows.

puts infile.gets

The same effect would have been achieved. But for the purpose of better 
understanding and clarity, the first form is preferable. (Consider someone else trying to 
maintain your code).

Further down the road (figuratively speaking), there are recipes that focus on more 
interesting issues related to reading from a file.

�2.7 Writing to a File
�Problem
How do you write to a file in Ruby?

�Solution
Try the following code.

outfile = File.open('output.txt','w')
myword = 'welcome'
outfile.puts myword
outfile.close



Chapter 2 ■ Working with Files and Strings 

30

You should not be surprised if it works. The command prompt should reappear (after 
running the program) and you should find a file named output.txt created with two 
lines. The first line has the word welcome (following a newline character, which causes the 
second line).

�How It Works
For opening the file (the first line of code), the file name was given. The mode in this case 
is w (open for writing).

If you are to perform a write operation on a file, it cannot be opened in read mode. 
There are other modes possible, however (such as a for append mode, and r+ for “read 
and”—as in “read and write”). One of the valid modes can be chosen based on the use 
case. (However, at this point, let’s make do with the w mode).

The puts function has been called on the output file handler to output the value 
of the myword variable. This line (outfile.puts myword) does the writing. The last line 
closes the file.

If you run the code repeatedly, you will find that the file is getting overwritten  
(the modification timestamp should update).

But how does the program behave if you are trying to read an input file that is not 
present?

Rename the file input.txt to input1.txt and run the readfl.rb program written 
earlier. It comes back with an error.

=>ruby readfl.rb
readfl.rb:1:in `initialize': No such file or directory @ rb_sysopen -  
input.txt (Errno::ENOENT)
        from readfl.rb:1:in `open'
        from readfl.rb:1:in `<main>'

This doesn’t look very nice, does it?
The situation is understandable, as the file does not exist. In a situation like this, 

it may be more desirable (especially for the end user of the batch code, who may be a 
non-IT person or may not have a programming background) to trap the error and provide 
a more user-friendly message. (Remember, sometimes a set of error messages is more 
voluminous and it may be difficult even for the developer to quickly get to the real cause 
of the error). Recipe 2.8 deals with this.

�2.8 Getting Started with Exception Handling
�Problem
How do you provide a user-friendly user message when the file to be read is not present? 
(Note that exceptions refer to runtime issues, not syntax errors).



Chapter 2 ■ Working with Files and Strings 

31

�Solution
Try the following code.

begin
        infile = File.open('input.txt','r')
        myword = infile.gets
        puts myword
        infile.close
rescue
        puts "Could not find file input.txt"
end

It should look like this:

=>ruby tstexcp.rb
Could not find file input.txt

Although the file is not found, the message is much more user-friendly.

�Initial Execution Context
Prior to the previous code, all the programs (except for loop) contained a set of 
instructions (statements) one after another. There was no resemblance to an explicit 
block structure; however, the last program does resemble a block structure. Why is that? A 
bit of explanation about the initial context of a Ruby program will help.

If you are familiar with C and Java, you may know that the entry point for a stand-
alone application in those languages is usually the main function. However, a Ruby 
program seems to work right from the go. So where is the entry point?

The initial execution context for a usual Ruby program is an implicit object called 
main (not the method but an object). Here “object” has the same meaning as an instance 
of a class in object-oriented programming. It is an instance of the Object class (but 
this is not the right place to thoroughly discuss classes and objects in Ruby.) Any plain 
statement that you add to a Ruby script implicitly is added to this object. Not only that, it 
is added to an implicit block (with both begin and end implicit).

So when you write this:

puts "Hello"

In effect, it is this:

begin
puts "Hello"
end



Chapter 2 ■ Working with Files and Strings 

32

Execution starts from the first statement of this block.

■■ Tip   If it helps, you may think about a series of plain statements in a Ruby script (such 
as most of the code so far in this book) as statements written in the main method in a Java 
program. (Although in terms of pure technicality, this is not an exact analogy, but it may help 
with you initial understanding).

A little experiment may help you understand the initial execution context. Type the 
following code in a file named tstmain.rb.

puts1 "Hello"

Note that the wrong function name is intentional. Save and close the file and try 
to run it. It should throw a syntax error. (What is interesting is the content of the error 
message).

=>ruby tstmain.rb
tstmain.rb:1:in `<main>': undefined method `puts1' for main:Object 
(NoMethodError)
Did you mean?  puts
               putc

Note that in the error message, the puts1 method is being pointed to as part of the 
main:Object (an object named main of the Object type/class). That (the main object) is 
the initial execution context here.

The begin and end, however, had to be put explicitly in the code in discussion  
(for reading from a file with exception handling) in order to use the rescue construct.

The begin-rescue-end construct in Ruby works somewhat like the try-catch 
construct in Java (again, not an exact analogy). One block may have multiple rescues. 
One untagged rescue (just rescue) works like a catch-all type exception handler (like 
Exception in Java, as opposed to say FileNotFoundException). An error can be raised 
explicitly, but in this case, an explicit one was not needed. The file was designed not to be 
found (to get the error).

This is a rather brief discussion on exception handling. But for now, this is all you need 
(and perhaps more). This book, being what it is, does not make you an expert. But it also 
does not require you to spend as much time as you would if you were to become an expert.

�2.9 Importing Code
�Problem
Quite often, a software program is developed as a project involving multiple files. As a whole, 
the code may solve a single problem or (more commonly) address multiple aspects of the 
solution as a whole. For such programs, importing external classes, constants, and so forth, 
is often a necessity because (for instance) a function defined in a class (in another file) may 



Chapter 2 ■ Working with Files and Strings 

33

be needed to be called from the current program (program defined in the current file). But 
even otherwise, it may be necessary to include reference to external code, which is part of the 
standard language library (but not necessarily loaded by default) or while using a third-party 
library.

How do you include or import code written in another file in Ruby?

�Solution
Java does it through import. C has include, for instance. They are somewhat equivalent 
to require in Ruby.

■■ Note   require works at the file level; that is, when using require, you include the 
contents of a file, not a class or package. The content may very well be a class definition, 
but you are essentially including the content code, which happens to be defining a class.

Creating and deleting directories, for instance, requires the FileUtils module. But 
when the program specifies require 'fileutils', it is in fact including the contents of 
the fileutils.rb file, which should be available in the standard path for Ruby program 
loading (if the installation is correct) and happens to be defining the FileUtils module. 
This standard path is known as $LOAD_PATH (a predefined variable for Ruby programming 
environment).

A module in Ruby is a way of grouping methods, classes, and constants together. If you 
are familiar with Java, think of a package (although that is somewhat crude equivalence).

The require in a require statement is actually a call to a method named require. 
The require method is used to load another file and execute all of its statements. This 
serves to import all class and method definitions in the file.

�2.10 Creating and Deleting Directories
�Problem
Working with directories may be needed for many day-to-day tasks. For example, consider 
that you have been given a directory that includes a lot of files with different extensions. 
Some of them have sql extensions, which are code files; others have dat extensions, which 
are data files. You may want to separate those files, based on their extensions, into two 
different directories. Working with directories in such fashion is perhaps not done as often 
as reading from or writing to files, but it is still very useful knowledge.

�Solution
Run the following code.

require 'fileutils'
FileUtils.mkdir('credit')



Chapter 2 ■ Working with Files and Strings 

34

A directory named credit is created under the current directory (unless it exists 
already, of course).

Deleting isn't hugely different. Replacing the mkdir_p function with the rm_rf 
function should do the trick.

require 'fileutils'
FileUtils.rm_rf('credit')

■■ Note   There is no complaint with deleting if the directory does not exist. This is the 
same behavior when creating a directory. So if your program is working with the expectation 
that the directory should always exist prior to deletion, you may want to put checks in place 
to ensure that it is.

�How It Works
mkdir is a method defined in the FileUtils module (which can be accessed as 
FileUtils.mkdir). If you do not load the fileutils.rb file (i.e., if you omitted the 
require statement), FileUtils is unknown to the program—and running it would 
produce an error.

A module is a way of grouping together methods, classes, and constants. (Although 
that is not all a module is about). If you were to define some methods that are not 
instance-specific (like static methods), a module may be a good place to define them. 
In Java, in a similar situation, you might have used a package, but the analogy is rather 
remote.

�2.11 Creating a Whole Directory Path
�Problem
How do you create an entire directory path (e.g., a/b/c) in Ruby?

�Solution
A slightly different variation of file creation using the mkdir is mkdir_p function, which 
creates all directories in the path as required.

�How It Works
Try the following code to see the effect.

require 'fileutils'
FileUtils.mkdir_p('region/div/dept')



Chapter 2 ■ Working with Files and Strings 

35

Alternatively, for the same directory structure (i.e., multiple directories with the '/' 
separator), if you used mkdir instead of mkdir_p, things would not be so smooth. The 
following code produces an error.

require 'fileutils'
FileUtils.mkdir('region/div/dept')

For a better error message, for this case too, you can use rescue.

begin
        require 'fileutils'
        FileUtils.mkdir('region/div/dept')
rescue
        puts 'Wrong function used'
end

Although that does not solve the problem of functionality, it does present the case 
nicely.

=>ruby crpath1.rb
Wrong function used

�2.12 Reading Multiple Lines from a File
�Problem
What if you need to read multiple lines instead of one from an input line?

The following is the earlier program.

infile = File.open('input.txt','r')
myword = infile.gets
puts myword
infile.close

If you were to use it on a three-line input file, as follows, it would output the first line 
only.

welcome
to
Seattle

However, in a batch script, quite often you may need to scan through all the lines in 
an input file. In contrast, this program opens the file, reads only the first line, prints it out 
on the console, and closes the file.



Chapter 2 ■ Working with Files and Strings 

36

�Solution
Between opening and closing the files, the middle part (reading and printing out) needs 
to be done until the input file has exhausted all lines.

A while loop can be used to do the job nicely. Although this is not the only possible 
way, it can be considered a general enough approach.

infile = File.open('inplines.txt','r')
while (line = infile.gets)
        puts line
end
infile.close

■■ Note   Prior to running the code, create a multiline text file in the directory named 
inplines.txt.

The code should run as expected and print all three lines.

=>ruby readmulti.rb
welcome
to
Seattle

�How It Works
Ruby offers some control statements. (You would have already seen for). while is one 
such control statement. This is the normal construct of a while statement:

while (condition)
                statements
end

Here, the while (condition) line serves as the beginning of the block and the end 
marks the end of the block.

The condition is expected to evaluate to a Boolean (true or false). Hence, this code

a = 0
while (a < 5)
        a = a + 1
        puts a
end



Chapter 2 ■ Working with Files and Strings 

37

produces the following output (note that there would be a blank line after 5, as puts adds 
a new line at the end of the output string).

1
2
3
4
5

That was a bit of general discussion on while. Let’s come back to the code for 
reading lines from the file. Note that this is the while line:

while (line = infile.gets)

This means that the following condition is as follows.

line = infile.gets

But wasn’t it supposed to be a Boolean? Yet this is an assignment, isn’t it?
It is actually both an assignment and a Boolean. This is one of the peculiarities of 

Ruby, if you are coming from a Java background, for instance.
First, for any assignment in Ruby, after the right-hand side expression is evaluated, the 

value that is assigned to the variable is the value of the whole assignment (i.e., the assignment 
itself evaluated to that value).

■■ Note   The same applies to return values of function calls in Ruby. (i.e., the function 
itself evaluates to  
that value).

Hence, the value of the statement a = 2 + 3 + 5 is 10, which is the value posted to 
the a variable after the expression evaluation. So the a variable and the assignment as a 
whole both evaluate to 10 in this case.

Second, the gets function (used on the infile object) returns nil if it fails to read a 
line. nil in Ruby is equivalent to null (as in Java). And nil is treated as false in a Boolean 
context (for instance, if you assign nil to a condition that expects a Boolean, the nil will 
be taken as false).

Hence, when no more lines are found (all the lines have been read), infile.gets 
returns nil, which is the value of the assignment at that point, which in this case means 
false, and the while loop breaks free. So long as the lines are available (unless there are 
any other errors that prevent reading), they are assigned in turn to the line variable (for a 
proper line, the assignment would evaluate to true and the while will go on).

The line variable may be used inside the loop body for processing purposes. The 
choice of the name of the variable representing a line (line in this case) is arbitrary.



Chapter 2 ■ Working with Files and Strings 

38

This construct with while (line = infile.gets) is a convenient way to read an 
input file, line by line, and process the data therein.

Things can get slightly better (definitely from a typing point of view) with while. 
Remember the part about function arguments not requiring parentheses? This makes 
puts "Hello" and puts("Hello") equivalent. Hence, this statement

infile = File.open('inplines.txt','r')

can be replaced with the following one.

infile = File.open 'inplines.txt','r'

(Don't miss the gap between the end of open and the beginning of input.txt.)
Well, it happens with conditions too. Hence, you can safely omit the parentheses and 

write the while line (line containing while and condition) as follows.

while line = infile.gets

Our earlier code for a multiline read may boil down to this:

infile = File.open 'inplines.txt','r'
while line = infile.gets
        puts line
end
infile.close

It still works as usual. In fact, if you need only one statement inside the while (like 
here), you can make the entire while loop inline instead of the while block, and it still 
works.

puts line while line = infile.gets

The code is now three lines in total.

infile = File.open 'inplines.txt','r'
puts line while line = infile.gets
infile.close

�2.13 Reading a File in One Shot
�Problem
You need to read the whole file in one shot (i.e., in a single string).



Chapter 2 ■ Working with Files and Strings 

39

�Solution
Use the read function on the file as follows, for example.

text = File.read 'inplines.txt'
puts text

It should run as follows, printing all the lines (which are part of the text string 
variable in this program).

=>ruby fullfl.rb
welcome
to
Seattle

�How It Works
First, be aware that for a rather big file, this may not be a good idea. Reading the entire 
file directly into memory can stop a machine in its tracks if the file is too big. It should be 
done only when you know in advance how big the file is and you’ve got plenty of RAM.

Second, note that the code is not using any file handler (so the file need not be 
explicitly closed from the program).

Third, the newlines are part of the string. (This has to be catered for if you want to 
extract individual lines from the text string for processing).

One use case (but not the only one by any means), could be when you are looking for 
multiple occurrences of a particular word in a file, but the word may be split across lines 
(without a hyphen or space at the split point, just the newline).

�2.14 Working with Strings
�Problem
You want to work with strings in Ruby.

�Solution
If you know any other programming language, chances are that you already understand 
strings.

Strings in Ruby are a sequence of characters (or bytes) that are typically used to 
represent text. Strings are objects of the String class in Ruby.



Chapter 2 ■ Working with Files and Strings 

40

�How It Works
There are many ways to construct a string literal, all of which are not equally used  
(and hence, probably not worth thinking much about unless you want to learn the 
language comprehensively). In my opinion, the following are the more prominent ones.

•	 Encased in single quotes:

'This is a book'
'That isn\'t the case' => That isn't the case
'double quote " n' => double quote " n

■■ Note   In this form, you cannot use a variable substitution using #{expression}.

•	 Encased in double quotes:

"Hello World"
"isn't it"  => isn't it
"The value is #{2 +3}" => The value is 5

You would have already seen that the expression in #{expression} can be a variable 
(e.g., #{name}). However, this can even be one or more statements. The following code

puts "Check this out #{  
                j = 0
                for i in 1..5
                   j = j + i
                end
                j}"

translates as follows.

Check this out 15

Being a sequence of characters, certain characters in a string can be accessed using 
index (in this sense, it behaves like an array [a zero-based array]). Hence, the following 
code prints e (the second character) followed by a newline.

a = "Hello"
puts a[1]



Chapter 2 ■ Working with Files and Strings 

41

�Concatenation
You have already seen a string concatenation with the + operator.

'abc' + 'def' => "abcdef"

�Expression Evaluation
String expression evaluation can also be used to concatenate strings.

Note, you cannot straightaway add an integer to a string. "Hello" + 3 will result in 
an error (although this is permitted in Java).

irb(main):001:0> "Hello" + 3
TypeError: no implicit conversion of Fixnum into String
        from (irb):1:in `+'
        from (irb):1

This is the way forward:

irb(main):002:0> "Hello #{3}"
=> "Hello 3"

There are other ways of concatenating an integer or float to a string.

�2.15 Converting Numbers to a String
�Problem
How do you convert an integer or a float to a string, and vice versa?

�Solution
When called on a string, the to_i function makes it an integer (Fixnum). This is especially 
useful for reading from a console or an input file, (when the data is expected to be an 
integer). Note that it does not complain when the data is not integer. For a string (not a 
number), it simply returns 0. (So you need to be careful; otherwise, for the wrong data, 
it might silently produce result that may be far from what you expected, and not easy to 
recognize as wrong.)

irb(main):001:0> "12".to_i
=> 12
irb(main):002:0> "12.5".to_i
=> 12
irb(main):003:0> "abc".to_i
=> 0



Chapter 2 ■ Working with Files and Strings 

42

The to_f function is similar except, it converts to a float.

"12".to_f => 12.0
"12.5".to_f => 12.5
"abc".to_f => 0.0

The to_s function (although available on a string also) is more useful when called on 
other things, especially an integer (Fixnum) or a float (Float).

Notice that "Hello" + 3 causes an error, but the following works perfectly.

irb(main):006:0> "Hello " + 3.to_s
=> "Hello 3"

The to_i and to_f functions have been discussed already in the context of reading input 
from a console (see Recipe 2.1). Here they were presented briefly for the sake of putting 
them in one place.

�2.16 Extracting Information from Strings
�Problem
A string, such as a line from a file, may contain information, only part of which may be 
of interest in a certain context. For instance, a data file may contain the first name, last 
name, age, and telephone number of people (let’s say customers), one record per line. 
If you wish to know the name of the youngest person in the data available in the file, the 
name and age is important, but the telephone number has no relevance.

Thus, it is often useful to be able to extract information contained as part of a string, 
and then work on this information. How do you go about doing that?

This section describes a couple of tasks and demonstrates in context.

�Task: Change the Order of Names
A data file named nameaddr.csv consists of three columns: last name, first name, and first line 
of the address.

carver,anita,12 Ross St
dell,sarah,15 Jesse St
yehuda,perez,20 Margaret St
chinoy,ron,23 Madox Square



Chapter 2 ■ Working with Files and Strings 

43

The task is to print (modified) records in a file so that the resulting record only has 
the <first name> and the <last name> separated by a space and both capitalized. The 
following illustrates an example.

carver,anita,12 Ross St => Anita Carver

�Solution
The following code should do the trick.

infile = File.open('nameaddr.csv','r')
outfile = File.open('names.txt','w')
while (line = infile.gets)
        arr = line.chomp.split(',')
        outfile.puts arr[1].capitalize + " " + arr[0].capitalize
end
outfile.close
infile.close

�How It Works
This code uses the chomp, split, and capitalize functions, as well as concatenating 
using +.

�Task: Totaling the Shopping List
Given the following content in an input file (like the prices of items from shopping), 
write a program to calculate the total amount spent. It is a CSV file named shopping.
csv. The format is item_name, quantity (the number of units or another measure; for 
example, 1 implies 1 unit, or 1kg, or 1 liter, based on the unit specified), unit_price, and 
a description of unit, separated by a single space.

Banana,6,2.50 each
Eggplant,2,10.00 per kg
Milk,3,4.50 per litre
Cold drinks,6,8.25 per bottle

�Solution
Clearly, the result should be the sum of each of first set of numbers multiplied by each of 
second set of numbers. However, note that just separating by a comma won't give you the 
second set of numbers.



Chapter 2 ■ Working with Files and Strings 

44

The following code should work.

infile = File.open('shopping.csv','r')
sum = 0
while (line = infile.gets)
        arr = line.chomp.split(',')
        arr2 = arr[2].split(' ')
        sum = sum + arr[1].to_i * arr2[0].to_f
end
infile.close
puts sum

(If the result is not as expected, in the input file, check if the unit price and unit 
description have more than one space in between them in any line).

�Exercises
The solutions to these exercises are in the appendix.

�Exercise 2.1
Given a text file with multiple lines, write a program to print the line with the maximum 
number of characters and the number of characters that it has. Assume that the input file 
has a distinct maximum (i.e., only one line has the maximum number of characters).

�Exercise 2.2
A palindrome is a sentence (case and spaces ignored) reads exactly the same back to 
front. This is an example (a crude one): You are erauoy. This is a better example: A man, 
a plan, a canal—Panama. For now, however, use inputs that do not have punctuation 
marks.

Write a program to find out if a given string is a palindrome. (Read lines from a file 
and determine if each of them are a palindrome or not).



45© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_3

CHAPTER 3

Language Elements

This chapter takes a slightly different approach and discusses some elements of the 
language. This provides some foundation for you to work on later recipes. Perhaps 
comments are a good starting point.

�Commenting on Commenting
Ruby programs have two types of comments:

•	 A # and anything that follows until the end of the line (unless the # 
is used in a string and escaped appropriately) makes an in line or 
single line comment. For example,

print "abcd" #this is a comment

•	 A block comment may be written as shown in the following 
program between =begin and =end lines.

print "abcd"
=begin
everything between the line above
and the line below is a comment
=end

In this case, the equal signs (=) must be the first characters of the respective lines. No 
space is allowed after the equal signs.

�Variables, Operators …
Ruby has basic types, such as numbers and strings. It supports Boolean expressions. It 
also has ranges that may come handy. Let’s start with numbers.



Chapter 3 ■ Language Elements

46

�Working with Numbers
Ruby supports integer and floating-point numbers. Integers can be of any length  
(the limit is determined by the amount of free memory on your system). Integers within 
a certain range (say, between –2 to the power 30 and 2 to the power 30 – 1) are held 
internally in binary form and are objects of the Fixnum class. Larger integers are object of 
the Bignum class. The back-and-forth conversion is internally handled by Ruby.

A number with a decimal point and/or an exponent is turned into a Float object. 
The decimal point must be both preceded and followed by (one or more) digit(s) when you 
are supplying a float literal; otherwise, the decimal point will be misinterpreted because 
the dot (.) is a way to invoke a method on an object.

Table 3-1 provides some basic arithmetic operations available on all of those types of 
numbers (Fixnum, Bignum, and Float).

Note 5 / 2 in the table. Since both are integers, the result is an integer that leaves out 
the decimal. But when one of them is Float object, it is lifted to float.

The non-declaration of variables has already been discussed.
In general, the evaluation of an expression and assignment occurs similarly to many 

other languages. Operator precedence and the role of parentheses in basic arithmetic 
operation are similar too. 

(3 + 6) / (2 + 1) => 3
3 + 6 / 2 + 1 => 7

In Ruby, variables are objects of some class or the other. To see which class is a 
variable’s type, you can call the print method on it and print the result. 

This next code

a = 3
b = 2.5
print a.class
print b.class

Table 3-1.  Basic Arithmetic Operations

Operation Symbol Example

addition + 5 + 2 => 7
5 + 2.0 => 7.0

subtraction - 5 – 2 => 3

multiplication * 5 * 2 => 10

division / 5 / 2 => 2
5/2.0 => 2.5

modulo % 5 % 2 => 1

exponentiation ** 5 ** 2 => 25



Chapter 3 ■ Language Elements

47

runs as follows.

=>ruby chktyp.rb
FixnumFloat=>

Notice that the command prompt appears immediately and two outputs are printed 
on the same line. This is because the print function, unlike puts, does not add a newline 
character at the end of the string automatically; otherwise, they work in a similar fashion.

The fact that normal variables are objects of classes makes it possible to call methods 
on them using the dot notation (and sometimes without the dot notation). Because of 
this, the following code

a = 2
b = 2.
c = a + b
print c

ends in an error (in line 3).

test.rb:3:in `+': nil can't be coerced into Fixnum (TypeError)
        from test.rb:3:in `<main>'

■■ Note   Ruby interprets semicolons and newlines as end of statements, unless the line 
ends with an operator or a backslash.

The value of b ended in a dot (.). It has possibly been interpreted that somebody 
wanted to call a function on 2 and assign the result to b; however, the call did not happen. 
So b is a nil object in this case and hence the + operation fails.

Make sure to precede and follow a decimal point with at least one digit (on either 
side) when you supply a float literal.

A few other function calls on numbers are shown in Table 3-2.

Table 3-2.  Function Calls on Numbers

Function Description Example

abs Absolute value -3.abs => 3
3.abs => 3

div Division 10.div(2) => 5

zero? Is it zero (returns boolean value) 10.zero? => false

ceil Ceiling 2.6.ceil => 3

floor Floor 2.6.floor => 2

round Round to specified decimal 2.635.round(2) => 2.64



Chapter 3 ■ Language Elements

48

�Logical and Other Operators
It is not easy (if at all possible) to provide examples of operator usage without variables, 
and in order to exemplify variables in action, the same goes for the role of operators. I will 
discuss some more operators before going into other types of variables.

Arithmetic operators have already been discussed in some detail.
There are some comparison operators, such as those shown in Table 3-3.

In addition, === is used to test equality in a when clause of a case statement.

�Reference and Value Equality
•	 .eql? – Equality (True if the receiver and argument have the same 

type and equal value)

•	 .equal? – Equality (True if the receiver and argument have the 
same object id)

Thus, the following prints true for eql? and false for equal?.

a = "ed"
b = "ed"
puts a.eql?(b)
puts a.equal?(b)

�Checking If an Object Is nil
The nil? method can be used on any object.

irb(main):001:0> a = [1] # an array of 1 element
=> [1]
irb(main):002:0> a[1].nil? #a[1] refers to secondelement of the array, which 
does not exist

Table 3-3.  Comparison Operators

Operators Description Example

== Equal (check for equality) 3 == 3 => true
6 == 3 => false

!= Not equal (opposite of equality check) 3 != 3 => false

> Greater than 4 > 3 => true

< Less than 4 < 3 => false

>= Greater than or equal to 4 >= 3 => true
4 >= 4 => true

<= Less than or equal to 4 <= 3 => false
4 <= 5 => true



Chapter 3 ■ Language Elements

49

=> true
irb(main):003:0> a[0].nil?
=> false

�General Comparison Operator
<=> is the general comparison operator (returns –1, 0, or +1 based on whether its receiver 
is less than, equal to, or greater than its argument). It is very handy in sorting strings.

Here are some examples of comparison.

irb(main):001:0> 3.<=>5
=> -1
irb(main):002:0> 5.<=>3
=> 1
irb(main):003:0> "abc".<=>"def"
=> -1
irb(main):004:0> "abcd".<=>"abc"
=> 1
irb(main):005:0> "abc".<=>"abc"
=> 0

�Assignment Operators
There are assignment operators, such as the following:

= , += , -=, *=, /=, %=, **=

Amongst these, = is a pure assignment to a variable. For example, the following 
assigns 3 to the a variable.

a = 3

But for others (e.g., +=) it is a mix of an assignment and a binary operation, of which 
the left operand is the variable assigned (but the prior value of the variable). For example,

a += 3

is equivalent to

a = a + 3

The right-hand side a is the prior value of a (prior to the addition), which is added 
to 3 and assigned back to a again (effectively increasing the value of a by 3). Similarly, the 
following effectively multiplies the value in a by 3.

a *= 3 #equivalent to a = a * 3



Chapter 3 ■ Language Elements

50

�Mass Assignment
It is worth noting that you can assign values to multiple variables in one go. For instance, 
the following code assigns the value 1 to the variable a, the value 2 to b and so on.

a,b,c,d = 1,2,3,4

The types, as usual, need not be the same. The following is valid.

a,b,c = 1, 'hello', 2

When the count does not match, the extra values (if any) are ignored silently.

a,b,c = 1,2,3,4 #4 is ignored

And when the variable is extra, the variables toward the end, which do not have any 
corresponding value, are not assigned (the value is nil).

a,b,c,d = 1,2,3 #d will be nil

�Bitwise, Logical, and Ternary Operators
The following are bitwise operators:

•	 & (binary AND)

•	 | (binary OR)

•	 ^ (binary XOR)

•	 ~ (binary ones complement)

•	 << (binary left-shift)

•	 >> (binary right-shift)

They operate at the bit level. (There is no further use of them in this book, however, 
and they are rarely used in normal programming tasks).

The following are logical operators:

•	 and (logical and)

•	 or (logical or)

•	 not (logical not)

•	 && (logical and)

•	 || (logical or)

•	 ! (logical not)



Chapter 3 ■ Language Elements

51

Their usage is very reasonable, even from a normal logical argument point of view. 
For instance, something that is “red and sweet” means that it is both red and sweet  
(i.e., red is true for it and sweet or sweetness is true for it).

Similarly, the logical operator and (small case) binds two logical arguments, and 
returns true only if both arguments are true. Thus,

irb(main):010:0> (4 > 3) and (4 < 5)
=> true
irb(main):012:0> (4 > 3) and (3 > 5)
=> false

Logical or, on the other hand, is satisfied if at least one of the contributing logical 
arguments is true.

irb(main):013:0> (4 > 3) or (3 > 5)
=> true

The ternary operator (? :)of the form condition?expression1:expression 2 
(a space on either side of ? and : is optional) implies that if the condition evaluates to 
true, the value is expression 1; otherwise, the value is expression 2. It can be used very 
effectively in assignments. The following is an example.

irb(main):001:0> x = 3
=> 3
irb(main):002:0> y = (x > 0) ? "positive" : "non-positive"
=> "positive"
irb(main):003:0> puts y
positive
=> nil

�The Range Operators
The following are range operators (range is discussed later):

•	 ... – Creates a range with the specified start and end points 
included (e.g., 1..5 means create a range from 1 to 5)

•	 ... – Creates a range with the specified start point included,  
but the end point is excluded (e.g., 1…5 means create a range 
from 1 to 4)

�The dot (.) Operator
The dot (.) operator is one of the most widely used operators in Ruby. It is used to call the 
method of a module or a class, such as -3.abs.



Chapter 3 ■ Language Elements

52

�Some Other Operators
The defined? operator is a special operator that takes the form of a method call to 
determine whether the expression passed to it is defined. It returns a description string of 
the expression that is defined, but is nil otherwise. This (the defined? operator) can be 
used in many ways.

irb(main):008:0> a = 1
=> 1
irb(main):009:0> defined? a
=> "local-variable"
irb(main):010:0> defined? b
=> nil
irb(main):011:0> defined? 3
=> "expression"
...

The :: (colon) operator is used to access constants, instance methods, and class 
methods accessed outside of the class or module in which it is defined.

�Pattern Matching Operators
The pattern matching operators (especially =~) are very useful for text parsing. Both of 
these operators work with a string and a regular expression pattern.

•	 =~ has a match (the string contains at least one match for the 
regular expression). Returns the position (of the first match) if it 
does, otherwise returns nil.

•	 !~ has no match.

These operators are best described in the context of regular expressions, but here are 
some simple examples.

irb(main):015:0> "hello" =~ /el/
=> 1
irb(main):016:0> "hello" =~ /xx/
=> nil
irb(main):017:0> "hello" !~ /lo/
=> false

�Using Ranges
Ranges such as 0 to 9, 'a' to 'z', and so on, are supported in Ruby. A range is created with 
.. or ... operators. The ... operator excludes the specified end point; for example, 1..5 
indicates a range 1 to 5 and 1...5 indicates a range 1 to 4.



Chapter 3 ■ Language Elements

53

Internally, ranges are not represented as list, but as a Range object containing 
reference to two other objects. For instance, a range of 1..100 is held as a Range object 
containing reference to two Fixnum objects.

A range can be used in Ruby as intervals, sequences, or conditions.

�Interval
A range can be used for an interval test (whether a value falls within the interval or not) 
by using the case equality operator (===). It returns true or false based on whether the 
range falls within the interval.

The following code

print (1..9)===5

prints

true

and the following code

print (1...5)===5

prints

false

�Sequences
Ranges can be used as a sequence of values. And being objects, a range used as such is 
open to the that method calls on them.

a = 1..5
print a

prints

1..5

and so does

print 1..5

However, a range is very handy if you want to initialize an array.
This code

arr = (1..5).to_a
print arr



Chapter 3 ■ Language Elements

54

prints as follows.

[1, 2, 3, 4, 5]

This code

arr = ('a'..'e').to_a
print arr

prints as follows.

["a", "b", "c", "d", "e"]

And the following code

arr = ('car'..'cat').to_a
print arr

prints as follows.

["car", "cas", "cat"]

Ranges implement methods. Based on their suitability, many different functionalities 
can be achieved using those methods.

The following code illustrates some of them.

digits = 0..9
print digits.min
puts
print digits.max
puts
print digits.include?(5)
        It prints
0
9
true

�Conditions
Ranges can be used as conditional expressions in various control flow structures. The 
following code illustrates usage with a case statement.

marks = 65
remark = case marks
        when 0..49 then "below average"
        when 51..100 then "above average"



Chapter 3 ■ Language Elements

55

        else "average"
end
print remark

This is the output.

above average

�Conditional Constructs/Control Flow
Ruby has many control flow statements. Some of them have more than one form  
syntax-wise. Overall, when used properly, they can sometimes give rise to a rather 
English-language-like lucid reading of the code  
(to an extent).

�if
if is the general form.

if condition
    code
elsif condition
    code
else
    code
end

if, elsif, else, and end are keywords. The following code is an example.

a = 0;
if a == 0
        print "zero"
elsif a > 0
        print "positive"
else
        print "negative"
end

There may be zero, one, or more elsif keywords. With no elsif or else, (i.e., only 
the if) and there is a single statement in the code block, the if followed by the condition 
can come after the statement, in-line, and the end keyword is not needed. So, this

a = 1
print "positive" if a > 0



Chapter 3 ■ Language Elements

56

is equivalent to the following.

a = 1
if a > 0
print "positive"
end

If you want to put the statement (of the if body) after the condition and in the same 
line, use the then keyword (as shown in the following code).

a = 5
if a > 0 then print "positive" end

Multiple conditions can be combined logically to form a single condition (using and, 
&&, or, and so on).

For example, this

a = 5
if a > 0 and a < 10
        print "positive single digit"
end

prints this:

positive single digit

Keep in mind that nil is interpreted as false in a conditional context. (For a 
combined condition, the returned value may be nil or anything else, instead of true or 
false, and nil is interpreted as false).

The following code

b = "abc" =~ /c/
c = true
print b && c

prints as follows.

true

(In this case, both b and c are true) and the following code prints nothing.

b = "abc" =~ /d/
c = true
print b && c



Chapter 3 ■ Language Elements

57

But b && c returns nil. (It will be clearer in irb).

irb(main):066:0> b = "abc" =~ /d/
=> nil
irb(main):067:0> c = true
=> true
irb(main):068:0> print b && c
=> nil

�nil check
You can use .nil? to check whether an object is nil.

The following code illustrates this.

b = "abc" =~ /d/
c = true
d = b && c
print d.nil?

It prints as follows.

true

This may come handy in many situations (e.g., checking if something is null, etc.).
Coming back to nil and conditions, the following code

b = "abc" =~ /d/
c = "abc" =~ /c/
print "b true" if b
print "c true" if c

prints as follows.

c true

b is nil in the context of the condition, so it is treated as false.
Statements in Ruby return the last expression evaluated. So true && 5 returns 5. Not 

being nil, 5 is interpreted as true in a conditional context (the value is not converted to 
true but left as 5).

The following code illustrates this.

a = true
b = 5
puts a && b
print  "working" if a && b



Chapter 3 ■ Language Elements

58

And it prints as shown in the following.

5
working

�unless
Certain syntaxes in Ruby make it somewhat English-like. If you think about the if 
modifier, you may find the bias (if I can call it bias). “Do the cooking if not tired” is more 
natural (English-like) compared to “If not tired do the cooking end.”

unless in Ruby is in some way similar to if, but a counterpart (meaning “if not” 
in English). And this too may as well be another attempt (in case there was any such 
conscious drive to make it English-like) at making Ruby more like English.

An example is given in the following code.

a = -5
unless a >= 0
        print "negative"
else
        print "positive or zero"
end

Anything that you can accomplish with unless, you should also be able to do with if.

�Ternary operator
The ternary operator can act as a conditional (if-else) and is very handy in conditional 
assignment.

This is an example.

marks = 36
result = marks >= 40 ? 'pass' : 'fail'
print result
prints 'fail'

�case
Ruby supports case statements (which are somewhat like multiple if-elsif-else 
statements).

It comes in two forms, as shown next.

#Form 1
#plain case (more like if-elsif-else)
[variable = ] case



Chapter 3 ■ Language Elements

59

when bool_condition
        statements
when bool_condition
        statements
else # the else clause is optional
        statements
end

#Form 2
# Case on an expression:
[variable = ] case expression
when nil
        statements #execute if the expr was nil
when Type1 [ , Type2 ] # e.g., Symbol, String
        statements #execute if the expr
        #resulted in Type1 or Type2 etc.
when value1 [ , value2 ]
        statements #execute if the expr
        #equals value1 or value2 etc.
when /regexp1/ [ , /regexp2/ ]
statements #execute if the expr
        #matches regexp1 or regexp 2 etc.
when min1..max1 [ , min2..max2 ] #i.e., range(s)
        statements #execute if the expr is in the range
        #from min1 to max1 or min2 to max2 etc.
else
        statements
end

Note that in the first case, there is no expression after the keyword case.
The following shows one example of each of the forms.

#Form 1
a = 7
status = case
        when a % 6 != 0 then "not divisible by 6"
        when a % 3 != 0 then "not divisible by 3"
        when a % 2 != 0 then "not divisible by 2"
        else "odd"
end
print status

This prints the following.

not divisible by 6



Chapter 3 ■ Language Elements

60

And this code

#Form 2
a = 6
status = case a
        when 1..4,6...10 then "Not equal to 5"
        when 5 then "equal to 5"
        else "above 9"
end
print status

prints as follows.

Not equal to 5

Note that in either case, the condition (from the top) that has first been evaluated to 
be true has the corresponding statement executed. That is how a case statement works in 
Ruby.

It is not required if the statement is not on the same line as the condition.

a = 7
status = case
        when a > 6
                "more than 6"
        when a > 4
                "more than 4"
        else "less than 5"
end
print status

�while
Ruby provides looping mechanisms. One such construct is while. This was already 
discussed in the context of reading from a file (line by line). Such use of while (for reading 
and processing file data, line by line) is likely to be significant for batch processing. For 
the sake of completeness, while is of the following form.

while condition
        statements
end

This is an example.

a = 0
while a < 5
        a = a + 1
        print a
end



Chapter 3 ■ Language Elements

61

And it prints like this.

12345

�break, redo, next
As a looping construct, while can be used with break, redo, and next to conditionally 
alter the normal flow of the loop.

The break statement terminates the immediate enclosing loop. Control resumes at 
the next statement following the block. In nested loops, it only breaks out of one nesting 
of the loop—the one that is immediately enclosing it.

The next statement skips the current execution (from the point of its occurrence to 
the end of the loop), effectively starting the next iteration (if there is one possible).

The redo statement repeats the loop from the start without re-evaluating the looping 
condition or fetching the iterator (if that is the case), once again starting the operation for 
the current iteration in a way.

The following code illustrates the use of break.

a = 0
while a < 4
        a = a + 1
        break if a > 2
        puts a
end

It prints the following without the line containing the break.

1
2

It would have printed 3 and 4 also.

1
2
3
4

The following code illustrates the use of next.

a = 0
while a < 4
        a = a + 1
        next if a > 2
        puts a
end
print "after while"



Chapter 3 ■ Language Elements

62

It should print like this.

1
2
after while

The following code uses redo.

a = 0
while a < 4
        a = a + 1
        redo if a == 2
        puts a
end
print "after while"

It prints like this.

1
3
4
after while

Note that when a became 2, redo sent the control back to the beginning statement 
in the (a = a + 1) loop. The statement after redo (the puts) was not executed for that 
iteration.

�until
until has a similar relation to while as unless has to if. The body is executed until the 
condition becomes true.

The code shown here

a = 0
until a > 3
        a = a + 1
        puts a
end

prints as follows.

1
2
3
4

Again, you should be able to achieve anything with while that you can with until.



Chapter 3 ■ Language Elements

63

�for
The for loop has already been briefly discussed. The for loop in Ruby is not very 
dissimilar to that in Java or C. The only difference is that for does not create a new scope 
for local variables.

This is the usual form.

for <iterating variable> in <Range>
        <statements>
end

As already discussed, range can be inclusive and exclusive (for end point);  
hence, this

for a in 1...3
        puts a
end

prints as follows. It does not print 3 (the range in this case being exclusive.

1
2

And the code here

for b in 'w'..'z'
        print b
end

prints as follows.

wxyz

As you can also see, the range does not need to be numeric.

�3.1 Handling Exceptions
�Problem
You want to handle any exceptions that occur in your program.

�Solution
Use a combination of rescue and ensure. rescue wraps the code for handling errors. 
However, sometimes it may be necessary to run a piece of code in the end, no matter 
whether the execution of a block was normal or encountered an exception. (It somewhat 
corresponds to the finally block in Java.)



Chapter 3 ■ Language Elements

64

ensure comes in handy in such situations. It comes after rescue. The structure may 
look like the following code.

f = File.open("input.txt")
begin
    code for processing
rescue
    code for handling errors
ensure
    f.close unless f.nil?
end

An else construct can be used with this. The part of code for the else is executed 
only if no error has been encountered in the main part (i.e., it is an else to the rescue).

f = File.open("input.txt")
begin
    code for processing
rescue
    code for handling errors
ensure
    f.close unless f.nil?
end

To raise an exception, raise can be used (in one of three ways).

raise
raise "no file found"
raise ArgumentError, "Too big name", caller

The first form simply raises the current exception (or a RuntimeError if there is 
none). The second one creates a new RuntimeError, setting its message to the string 
that it specifies. The third form uses the first argument to create an exception, sets the 
message with the second argument, and sets the stack trace to the third argument.

�Single Line Rescue
rescue has a single line form, which may be handy for small pieces of code. It is really 
easy to demonstrate through an example.

Suppose you define an array of two elements and try to multiply the third element 
(which is non-existent for the array) by 2; it will come up with an error.

irb(main):001:0> a = [1,2]
=> [1, 2]
irb(main):002:0> a[2] * 2
NoMethodError: undefined method `*' for nil:NilClass
        from (irb):2



Chapter 3 ■ Language Elements

65

You can, however, wrap up the exception with a rescue, as follows.

irb(main):003:0> a[2] * 2 rescue 'No such element'
=> "No such element"
irb(main):004:0> a[1] * 2 rescue 'No such element'
=> 4

Note that for an existing element, it provides the proper result.

�catch and throw
catch and throw come in handy for arbitrarily jumping out of many levels of nesting and 
so on. catch defines a block with a label. The block executes normally until a throw is 
encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch 
block with a matching symbol. When it finds it, it unwinds the stack to that point and 
terminates the block. If throw is called with an optional second parameter, that value is 
returned as the value of the catch.

This is a simple example.

catch (:testit) do
        i = 0
        while i < 5
                i = i + 1
                j = 0
                while j < 5
                        j = j + 1
                        print i.to_s + "," + j.to_s + ": "
                        throw :testit if i * j > 5
                end
        end
end

It prints this.

1,1: 1,2: 1,3: 1,4: 1,5: 2,1: 2,2: 2,3:

You may wish to comment the line containing the throw statement to see what it prints.

�3.2 Working with Predefined Variables and 
Constants
�Problem
Ruby has a lot of predefined variables for various purposes. Some of them are quite useful 
for batch processing.



Chapter 3 ■ Language Elements

66

�Solution
Take $@ for instance, which holds an array of stack trace generated by the last exception.

The following code provides a small illustration.

begin
        raise
rescue
        print $@
end

It could run like this.

=>ruby test.rb
["test.rb:2:in `<main>'"]=>

The following (all read-only and local to the scope) are useful in pattern matching 
cases.

•	 $& – The matched string (after a successful pattern match).

•	 $` – The string preceding the pattern in a successful pattern 
match.

•	 $' – The string following the match in a successful pattern match.

•	 $1 to $9 – The contents of a successive group of matches in a 
successful pattern match.

•	 $~ - Local to the scope but not read-only; a Matchdata object that 
encapsulates the result of a successful pattern match.

The following piece of code illustrates the use of some of these variables.

"abracadabra".match(/rac/)
puts $&
puts $`
puts $'

It prints the following.

rac
ab
adabra

So it prints patterns in the string that matches /rac/ (which is the 'rac' part itself ), 
the pattern before 'rac' (which is 'ab'), and the pattern after 'rac'.

Some of the execution environment variables are as follows.

•	 $0 – The name of the top-level Ruby program being executed 
(typically, the name of the program file)



Chapter 3 ■ Language Elements

67

•	 $? – The exit status of the last child process terminated (read-only 
and local)

•	 $* – Command-line arguments (a synonym for ARGV)

Here are some of the input output variables.

•	 $_ – The last line read (scope local to the thread).

•	 $/ – The input record separator (newline by default). The gets 
function, for instance, uses this; setting it to nil results in reading 
an entire file, for example.

•	 $. – The number of the last line read from the current input file.

•	 $, – The output separator (string) to methods such as 
Kernel#print and Array#join.

•	 $; – The default separator used by String#split.

For a CSV (comma-separated) file, you normally need to specify ',' as the argument to 
the split (to get different columns). Take the following input (in a file named input.txt), 
for example.

Seattle,is,a,city
Washington,is,a,state
USA,is,a,country
        and the code
infile = File.open 'input.txt','r'
while line = infile.gets
        col = line.split(',')
        puts "#{col[0]} #{col[3]}"
end
infile.close

If you change the value of $; appropriately, then you won’t have to call split with 
that argument.

$; = ','
infile = File.open 'input.txt','r'
while line = infile.gets
        col = line.split
        puts "#{col[0]} #{col[3]}"
end
infile.close

And that prints the following.

Seattle city
Washington state
USA country

Although it is a simple use case, you may find more ingenious usage for the same.



Chapter 3 ■ Language Elements

68

�Predefined Constants
There are some predefined constants as well. One such is ARGV, which has already been 
discussed (in context of command-line arguments). Most of these are perhaps not as 
interesting or useful as the predefined variables, but include STDIN, STDOUT, STDERR, and 
RUBY_VERSION, and ENV.

You may want to go into irb, type ENV, and press the Return key. The output (which 
is the environment variables involved in your Ruby programming environment) may be 
interesting to watch.

�3.3 Running OS Commands
�Problem
In a batch execution, you want to run something as an OS command (command line), get 
the output, and process the same in your own way within the script.

�Solution
Running an OS command from Ruby is achieved by using back quote delimiters.

For instance, the following code

val = `ls *.txt`
print val

may come up with something like the following (Note: if you are using Windows, you have 
to use dir instead of ls, and the output may be different, especially in format.).

coord.txt
inplines.txt
input.txt
modcoord.txt
names.txt
outlines.txt
output.txt

You may parse this for your particular data of interest.
This feature can be used to great advantage in batch scripting.

�3.4 Initializing and Finalizing Code
�Problem
You need to do some initializing, (e.g., set the value of a default variable) that works for 
the entire program, not just a specific code block. The same is true for some finalizing 
activity.



Chapter 3 ■ Language Elements

69

�Solution
One way of accomplishing this is to use BEGIN and END blocks. They are used to set 
predefined variables for the length of the script, for instance. BEGIN blocks execute prior 
to the main script body and END blocks execute after the main script body.

BEGIN { puts "abc" }
for i in 1..5
        puts i
end
END { puts "def" }

The preceding code prints as follows.

abc
1
2
3
4
5
def

Note that the blocks can be multiline. Also note that there may be multiple BEGIN and 
END blocks in a program. BEGIN blocks execute in the order of occurrence and END blocks 
execute in reverse order. (More of this is covered in Recipe 5.3).

�3.5 Defining Functions
�Problem
How do you define your own functions in Ruby code?

�Solution
A simple function in Ruby (without parameters) can be defined as follows.

def <method_name>
        <code>
end

def and end are keywords, and <code> represents one or more statements. The function 
may be called simply with the function name (in the same code body). For example,

def say_hello
        print "hello world"
end
say_hello



Chapter 3 ■ Language Elements

70

when executed, should print the following.

hello world

The first three lines of code define a function named say_hello, and the fourth line 
of code calls the function. For calls outside the class, a dot operator is used. You have 
already seen a lot of examples of this type of call.

By convention, a function defined in a class is referred to as a method.
Note that if you put the function call ahead of the definition in the preceding code, 

that is,

say_hello
def say_hello
        print "hello world"
end

it will result in an error, as at the point of execution the definition is unknown.

NameError: undefined local variable or method `say_hello' for main:Object

�Functions with Arguments
Functions with arguments may be declared in various forms.

The following code illustrates a function with arguments and call to that.

def sum_of (a, b)
        c = a + b
end
d = sum_of 2,2
print d

It prints as follows.

4

�Function Arguments with Default Values
The following code illustrates a function definition with arguments having default values.

def sum_of (a = 2, b = 3)
        c = a + b
end
d = sum_of 1,1
print d
puts
e = sum_of
print e



Chapter 3 ■ Language Elements

71

It prints as follows.

2
5

�Functions with a Variable Number of Arguments
The following code illustrates function definition with variable number of arguments.

def count_of (*numbers)
        c = numbers.length
end
d = count_of 1,3,5
print "the count of arguments is " + d.to_s

And it prints as shown in the following.

the count of arguments is 3

�Return Value from Functions
A return statement, when specified, may return zero, one, or more expressions or values. 
Thus everything in the following is valid.

return
return 1
return 1,3,4
return 2 + 5

In the first, case nil is returned, and in the third case, an array is returned.

irb(main):023:0> def chk
irb(main):024:1> return 2,3,4
irb(main):025:1> end
=> :chk
irb(main):026:0> chk
=> [2, 3, 4]

Every method in Ruby returns a value by default (even when explicit return is not 
specified). If a return statement is not specified, the value returned is the value of the last 
statement.

Hence, the following function returns "xyz".

def seeit
  a = 0
  b = 1
  c = a + b



Chapter 3 ■ Language Elements

72

  "xy" + "z"
end
str = seeit
puts str

�Recurrence
It is possible to use function recurrence (calling a function from within itself) in Ruby. 
This has excellent usage in algorithmic programming. One very simple but classic 
example is finding the factorial of an integer.

def factorial(n)
  if n <= 1
        1
  else
     n * factorial(n-1)
  end
end
puts factorial(5)
puts factorial(0)
puts factorial(6)

Note, in the preceding code, the factorial function calls itself at one stage. Note also 
that the recurrence occurs only when the argument, n, is greater than 1. It is also common 
for a recurring function to have an exit path (otherwise, it will very likely lead to infinite 
recursion, or crash). This implies the boundary condition, when the recurrence should 
not be invoked and an alternate path is to be taken. (This usually is the point where the 
recurrence should end and produce an accumulated result of previous recurrences.)

Programmers with a terser taste in coding might accomplish such recursion in one 
line of code inside the function and using the ternary operator.

def facto(n)
   (n <= 1) ? 1 : n * facto(n-1)
end
puts facto(6)

�Exercises
Answers are in the appendix.

�Exercise 3.1
Remember that for Fibonacci numbers, a particular number is the sum of the last two 
numbers in the series. Thus, starting with 0 and 1 as the first two numbers, the series 
would look like this: 0,1,1,2,3,5,8, and so on. Suppose you define the first 0 as the zeroth 



Chapter 3 ■ Language Elements

73

Fibonacci number, the first 1 as the first Fibonacci number, and so on. Hence, in this 
series, the fourth Fibonacci number is 3, and the fifth is 5.

Write a program, which uses a recurring function to calculate the nth Fibonacci 
number (n being positive integer). Use this function to find the eighth Fibonacci number. 
Take zeroth and the first Fibonacci number as given.

■■ Tip   This recursive function has to take two arguments and it has two edge cases 
(when recurrence should not happen).

�Exercise 3.2
From the series of positive integers (starting with 1), find the first integer 
(programmatically) whose square exceeds 1,000.

�Exercise 3.3
Find the sum of all integers from 1 to 100 (excluding 100), which is either divisible by 3 or 
divisible by 5, but not by both.



75© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_4

CHAPTER 4

Collections

A collection in the context of a computer language, intuitively, has the same meaning as 
a collection is meant in general. For instance, we may say a collection of books (usually to 
denote a number of books owned by someone or some organization, and possibly kept 
in the same bookcase or the same room). So a collection is really a few things of the same 
type or a similar type of object (numbers, strings, or some other type of objects could also 
be basic types in some language) taken together. The really important thing to know is 
why they deserve special mention/special handling in a computer language or computer 
language learning context.

Before answering that question in my own way, here are a few points about 
collections (henceforth, a collection applies to the computer language context):

•	 A collection can be empty or have one or more elements in it.

•	 The collection is usually of a specific type, but may also be of 
objects that derive from the same type. Since many languages 
have a base type denoting any object, it is possible that a 
collection of that type (if allowed in the language) could hold 
objects of almost any type (because all of the types are derived 
from the base type). In a real-world analogy, a collection of tigers 
is more specific than a collection of animals, which includes 
many types of animals.

•	 As mentioned, a collection can be basic types (such as int in 
Java). Note that in Ruby, even basic types are actually objects.

•	 The way collections differ (and this is a very general way to look 
at it) is usually the way the elements are relatively organized 
within the collection. In a real-world analogy, you can throw 
some marbles in a bag, but in a study table, you may stack 
books, one on top of another. (They may be considered different 
arrangements, and hence, different types of collections).

Now, what is it about a collection that deserves special mention or special treatment? 
In a real-world analogy, why would something about a collection of books be a very 
different concern from the books themselves?



Chapter 4 ■ Collections

76

The answer lies in the relative arrangement (a.k.a. the organization of the collection). 
This also affects how you put it in a particular place (considering it is organized in a 
certain way) and how you retrieve a particular object from a collection.

In a good library, for instance, the books could be organized in such a way that 
searching for a certain title in a catalog or other reference points you to the exact location 
of the book (including the section, the rack, and so on). It can also tell you if the book has 
been borrowed and is not currently in library. This organization is unlikely to have any 
connection to the detailed content of a particular book; it usually only deals with the title, 
category, author, and such.

In a computing context, a collection is more about the relative arrangement and 
organization of objects, largely keeping in view the ease of storage, search, and retrieval of 
items in the collection, rather than being preoccupied with a particular item. It can also 
provide useful information about the collection (as a group), such as whether it is empty, 
how many objects it has, and so on.

An array (a type of collection), for instance, organizes its objects in a numeric index. 
It is like giving you a key to a locker within a series of lockers and with the number of 
the particular locker. So that when you have to open, for instance, locker number 5, you 
can go straight to the fifth locker and open it. What is kept in the locker is usually not the 
concern of the people who have rented you the locker. (Although, you may have to sign 
some declaration that you won’t be keeping explosives or hazardous material inside).

Ruby has a few types of collections, such as arrays, hashes, and sets. They are 
discussed in some detail in this chapter.

�4.1 Creating and Initializing Arrays
�Problem
How do you create an array in Ruby?

�Solution
In Ruby, arrays are sequentially an integer-indexed collection of objects. The starting 
index is 0 (like C or Java), however a negative index is considered from the end (in 
reverse), with –1 referring to the last element.

Arrays can hold strings, integers, hashes, and so on (including other arrays). Ruby 
arrays can grow automatically as needed.

There are many ways to create an array in Ruby. One option may be more suitable 
than the others, based on the situation. An array can be created using literals, which in 
this case is a list of 0 or more objects within square brackets, or by explicitly instantiating 
an Array object.

Many valid ways of creating/initializing an array, are shown next.

a1 = []  
puts a1.length



Chapter 4 ■ Collections

77

A new array, a1, is created. The length function, called on an array, indicates the 
number of elements that the array has at that point. In this case, the code would print 0, 
because it is an empty array.

For initializing the array with a number of elements, as it is created, you could use 
the following.

a1 = [1,2,5]
...
a2 = Array.new

This creates an empty array.

...
a3 = Array.new(20)
puts a3.length

An array of size 20 is created (the length is 20), with all elements initialized to nil.

...
a4 = Array.new(4,"a")

This creates an array of size 4 and initializes all elements to "a", as you can see.

irb(main):007:0> a4 = Array.new(4,"a")
=> ["a", "a", "a", "a"]
...
irb(main):001:0> a6 = Array.[](1,2,3,4,5)
=> [1, 2, 3, 4, 5]
...
irb(main):002:0> a7 = Array[1,2,3,4,5]
=> [1, 2, 3, 4, 5]
...
a8 = Array(0..9)

Now you can use a range to initialize an array.

irb(main):003:0> a8 = Array(0..9)
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
...

For a Ruby array it is legal to hold multiple types of objects at the same time. Thus, 
the following is perfectly legal in Ruby.

a1 = [1,"cat",2,"dog",3]

www.allitebooks.com

http://www.allitebooks.org


Chapter 4 ■ Collections

78

�4.2 Accessing Array Elements
�Problem
You want to access the elements in an array.

�Solution
Arrays are organized linearly with numeric indices. In Ruby (as in many other languages), 
the index of the first element is 0, the second element is 1, and so on.

The element at index j (which is actually j+1-th element) is accessed as <array-
name>[j]. That is, for the following array a1, the first element (whose value is 1) can be 
accessed as a1[0], the second element ("cat") can be accessed as a1[1], and so on.

a1 = [1,"cat",2,"dog",3]

irb(main):002:0> a1[0]
=> 1
irb(main):003:0> a1[1]
=> "cat"

Note that trying to access an index that is out of bounds for the array does not result 
in an error, but returns nil.

irb(main):004:0> a1[6]
=> nil
...

Unlike many other computer languages, Ruby allows negative array indices. They 
denote elements from the last position, backward; the last position index being –1.

Hence, in the preceding array, a1[-1] refers to 3 (the last element) and a1[-2] refers 
to "dog" (the last element).

a1 = [1,"cat",2,"dog",3]
puts "last element : " + a1[-1].to_s
puts "element before last : " + a1[-2].to_s

It prints like this:

last element : 3
element before last : dog

(Note that for puts, the non-string elements had to be converted with to_s).



Chapter 4 ■ Collections

79

It is possible to access part of the array in an array[start,length] style index range 
or an array[Range] style index range. Here is an example.

a1 = [1,"cat",2,"dog",3]
print a1[1,2]
puts
print a1[1..3]

This prints as follows.

["cat", 2]
["cat", 2, "dog"]

�4.3 Inserting an Element at a Certain Position
�Problem
You want to insert elements into an array at a certain position.

�Solution
It can be done by assigning the new value to the element, by referring the element with its 
index. It is possible to assign values to multiple elements at the same time (using the same 
principle of access, such as range and so forth, as already discussed).

The following code illustrates various assignments on array elements.

a1 = [1,"cat",2,"dog",3]
a1[5] = 'tiger'  # added at the end
# now array is [1, "cat", 2, "dog", 3, "tiger"]
print a1
puts
a1[3] = 'wolf'  #1 element gets replaced
# now array is [1, "cat", 2, "wolf", 3, "tiger"]
print a1
puts
a1[2,2] = [4,'bat'] # 2 elements gets replaced by 2 new ones
# now array is [1, "cat", 4, "bat", 3, "tiger"]
print a1
puts
a1[2,2] = 'possam' # 2 elements gets replaced by 1 new element, array 
shrinks
# now array is [1, "cat", "possam", 3, "tiger"]
print a1
puts



Chapter 4 ■ Collections

80

a1[2,1] = [5,'lynx'] # one element gets replaced by 2 , array grows
# now array is [1, "cat", 5, "lynx", 3, "tiger"]
print a1
puts
a1[-4..-3] = [2,'dog'] # replace using range
# now array is [1, "cat", 2, "dog", 3, "tiger"]
print a1
...

�4.4 Working with Multidimensional Arrays
�Problem
You want to work with data that requires a multidimensional array.

�Solution
Multidimensional arrays are somewhat counterintuitive in Ruby. They should simply 
be declared as an array of arrays (or an array of an array of arrays, and so on), and the 
dimensions are not consistent. (An array may have one element as single and another 
element as an array).

Here is an illustrative example.

a = [1,[2,3]]

As you can see, this is not something that you would expect in Java. But it is valid.

b = [[1,2,3],[4,5,6]]

This is more organized. Note that in this case, the way to access an element is very 
similar to many other languages.

b[1][0]  => 4

However weird it might seem, Ruby multidimensional arrays can be worked upon 
interestingly. The transpose and flatten functions are notable.

irb(main):005:0> a.flatten
=> [1, 2, 3]
irb(main):006:0> b.transpose
=> [[1, 4], [2, 5], [3, 6]]

Note that flatten has an in place version, flatten!, which changes the original 
array rather than returning a new modified copy. (In place operations are discussed in 
Recipe 4.5.)



Chapter 4 ■ Collections

81

�4.5 Working with Arrays
�Problem
You want to use the full set of array operations, such as getting information about an 
array, comparing arrays, and carrying out set operations.

�Solution
The Array class has plenty of methods (some inherited) to facilitate working with arrays.

You might already have seen the length function. A similar function is size, which 
returns the (current) size of the array.

The following prints a 5.

a = [2,3,5,4,1]
print a.size

�empty?
empty? checks whether an array is empty or otherwise.

irb(main):001:0> a = []
=> []
irb(main):002:0> b = [1,2]
=> [1, 2]
irb(main):003:0> a.empty?
=> true
irb(main):004:0> b.empty?
=> false

�fill
fill can fill an array partially or fully (based on how it is used). It has many forms. Some 
forms are shown in following example.

irb(main):001:0> a = Array.new(5)
=> [nil, nil, nil, nil, nil]
irb(main):002:0> a.fill('x')
=> ["x", "x", "x", "x", "x"]
irb(main):003:0> a.fill('y',2,2)
=> ["x", "x", "y", "y", "x"]
irb(main):004:0> a.fill('z',1..2)
=> ["x", "z", "z", "y", "x"]



Chapter 4 ■ Collections

82

�Add, Subtract, Compare, and Contrast
Linear (a.k.a. one-dimensional) arrays can be worked upon in Ruby with some functions, 
which may have a feel of arithmetic fluidity.

�+

The + concatenates two arrays.

irb(main):001:0> [1,2,3] + [4,5]
=> [1, 2, 3, 4, 5]

�concat

The concat function can also be used to similar effect as +.

�-

The - function

irb(main):002:0> [1,2,3,4,5] - [2,3]
=> [1, 4, 5]

The behavior of - is somewhat like a set operation. It doesn’t affect non-existing 
elements in the first array, and removes repeated elements when required.

irb(main):003:0> [1,2,2,4,5,5] - [2,3]
=> [1, 4, 5, 5]

�*

The * function has repetitive action.

irb(main):004:0> [3,4] * 3
=> [3, 4, 3, 4, 3, 4]

�<<

The << function appends an element or array at the end of the left array.

irb(main):006:0> [1,2] << 'a'
=> [1, 2, "a"]
irb(main):007:0> [2,3] << 'a' << 'b' << [4,5]
=> [2, 3, "a", "b", [4, 5]]



Chapter 4 ■ Collections

83

�==

The == function checks the equality of two arrays (alternatively, the eql? method can be 
used).

irb(main):008:0> [1,2] == [1, 2]
=> true
irb(main):009:0> [1,2] == [2,3]
=> false

�<=>

The <=> function is the comparison operator. Returns an integer (–1, 0, or 1 based on 
whether the first array is less than, equal to, or greater than the second array).

irb(main):010:0> ['a','a','b'] <=> ['a','b','c']
=> -1
irb(main):011:0> [4,5,6] <=> [2,3]
=> 1
irb(main):012:0> ['a','a','b'] <=> ['a','b']
=> -1

�Set Operations
An array, as a collection, is not a set in mathematical sense. In a more general sense (i.e., in 
the English-language term), it can be thought of as a set of things (of course, structured in a 
certain manner). From that point of view, you can think of a set operation between two arrays 
as a set operation between two sets of things.

At a conceptual level, set operations on arrays in general work on the set of elements 
of one array with those of another array. If there is a common element in both arrays, for 
instance (whether it occurs once, or multiple times, in either array), this is returned as 
part of the output of intersection operation of those two arrays. Some of these operations 
are described next.

�| (or union)

irb(main):013:0> ['a','a','b'] | ['b','c','c','d']
=> ["a", "b", "c", "d"]

Note that duplicate elements are eliminated.

�& (or intersection)

irb(main):014:0> ['a','a','b','b','c'] & ['b','c','c','d']
=> ["b", "c"]



Chapter 4 ■ Collections

84

�uniq

As a side note, you can use the union operation with an empty array to get an array with a 
unique set of elements.

irb(main):016:0> ['a','a','b','b','c'] | []
=> ["a", "b", "c"]

But a cleaner way to do that is using the uniq function.

irb(main):017:0> ['a','a','b','b','c'].uniq
=> ["a", "b", "c"]

�In Place Operations
This is a common feature of Ruby (not just restricted to arrays). A function that has a ! 
at the end usually denotes an in place operation (meaning it changes the original array, 
as opposed to returning a new modified copy, keeping the original intact). For instance, 
uniq has a variation, which is uniq!, and that works in place (i.e., on the original array).

irb(main):001:0> a = ['a','a','b','b','c']
=> ["a", "a", "b", "b", "c"]
irb(main):002:0> b = a.uniq
=> ["a", "b", "c"]
irb(main):003:0> print a
["a", "a", "b", "b", "c"]=> nil
irb(main):004:0> c = a.uniq!
=> ["a", "b", "c"]
irb(main):005:0> print a
["a", "b", "c"]=> nil

Note that similar to this, if a method name ends in ? (e.g., eql?), it usually checks the 
trueness of something and returns a Boolean value.

There are other utilities, notably sort and reverse, which also have in place 
versions.

�sort (and sort!)
sort and sort! are used to sort the elements of an array. It is very handy for a lot of 
scripting tasks.

irb(main):006:0> [1,3,4,2,6,3,9,5,4].sort
=> [1, 2, 3, 3, 4, 4, 5, 6, 9]

Note that sort has another form, which uses the block feature of Ruby (discussed in 
Recipe 5.4).



Chapter 4 ■ Collections

85

�reverse (and reverse!)
reverse! does the same thing but on the original array itself.

irb(main):007:0> [1, 2, 3, 3, 4, 4, 5, 6, 9].reverse
=> [9, 6, 5, 4, 4, 3, 3, 2, 1]

�Further Access and Manipulation
A few more useful functions of Array API are explained next.

�include?

As you can see, the include? method ends in a ?, which checks whether a certain 
element is contained in an array (and returns a boolean value). It is like the contains 
function in some languages.

irb(main):008:0> ['a','b','c'].include?('d')
=> false
irb(main):009:0> ['a','b','c'].include?('c')
=> true

�index

You can get the index of a particular element within an array, using the index method 
(given the element value). It is a somewhat counterintuitive approach to lookup an array, 
but it can be very useful sometimes.

irb(main):010:0> ['a','b','b','c','d'].index('c')
=> 3
irb(main):011:0> ['a','b','b','c','d'].index('b')
=> 1

Note that for repetitive elements, it returns the index of the first occurrence. It 
returns nil if the element does not exist in the array.

�rindex

rindex a function similar to index, but it returns the rightmost index (in a repetitive 
element) or nil if it does not exist.

irb(main):001:0> ['a','b','b','c','d'].rindex('b')
=> 2
irb(main):002:0> ['a','b','b','c','d'].rindex('e')
=> nil



Chapter 4 ■ Collections

86

�values_at

You can access the elements of an array using <array>[start-index,length] or 
<array>[range] construct. But both of these require that the elements be returned to 
a contiguous position. If you need to return an array (a subarray of the original) with 
multiple elements but not contiguous, you can use the values_at function.

irb(main):001:0> ['a','b','d','f','j','l','m'].values_at(0,2,5)
=> ["a", "d", "l"]

�fetch

fetch is for accessing an element of an array. However, it can be more useful than a 
normal access mechanism when the index may be out of bounds and that should not 
cause an exception in the flow of execution. It has a few forms (two of them are discussed 
here).

A fetch without argument returns the element at that index or results in an error for 
out-of-bound indexes.

irb(main):008:0> a1 = [1,"cat",2,"dog",3]
=> [1, "cat", 2, "dog", 3]
irb(main):009:0> a1.fetch(0)
=> 1
irb(main):010:0> a1.fetch(6)
IndexError: index 6 outside of array bounds: -5...5
        from (irb):10:in `fetch'
        from (irb):10

However, a fetch with an argument returns the argument as an alternate value in 
index out of bounds cases.

irb(main):011:0> a1.fetch(6,'Not found')
=> "Not found"

�insert

The insert function allows insertion at a certain index position (pushing later elements 
to higher index positions to create space). It is possible to insert multiple elements at 
once. It is also possible to use a negative index (–1 is the last item, –2 is the item before 
that, and so on).

irb(main):002:0> a = ['a','b','c','d']
=> ["a", "b", "c", "d"]
irb(main):003:0> a.insert(2,5)
=> ["a", "b", 5, "c", "d"]



Chapter 4 ■ Collections

87

irb(main):004:0> a.insert(-2,6)
=> ["a", "b", 5, "c", 6, "d"]
irb(main):005:0> a.insert(4, 'e','f')
=> ["a", "b", 5, "c", "e", "f", 6, "d"]

Note that it affects the original array.

�delete

delete deletes all occurrences of a specified item from the array. It returns nil if the item 
is not found.

irb(main):007:0> a = ['a','b','b','c','d']
=> ["a", "b", "b", "c", "d"]
irb(main):008:0> a.delete('b')
=> "b"
irb(main):009:0> print a
["a", "c", "d"]=> nil
irb(main):010:0> a.delete('z')
=> nil

In the return of the print a command in irb (shown earlier), note that first the value 
of the a array at that point is printed. Then, the return value (of print function) is printed 
after the =>. Since the print function returns nil (it prints to the console, but returns 
nil), that part turns up as => nil.

The delete function has another form that can return something other than nil and 
that uses the block feature.

irb(main):011:0> a.delete('z') { 'Value not in array' }
=> "Value not in array"

�delete_at

delete_at is used to delete elements at a particular index. For an out of range index, it 
returns nil.

irb(main):001:0> a = ['a','b','c','d','e']
=> ["a", "b", "c", "d", "e"]
irb(main):002:0> a.delete_at(2)
=> "c"
irb(main):003:0> print a
["a", "b", "d", "e"]=> nil



Chapter 4 ■ Collections

88

�join

join returns a string, which is made by joining all the elements (using a specific separator 
between elements, if one is given). The default separator is $, which is usually nil.

irb(main):005:0> ['n','o','t','e'].join
=> "note"
irb(main):006:0> ['abra','ca','dabra'].join('-')
=> "abra-ca-dabra"

�compact

compact removes nil elements from array and collapses it (if there was any nil element 
to begin with).

irb(main):007:0> ['a',nil,nil,'b',nil,'c'].compact
=> ["a", "b", "c"]

�clear

clear removes all elements from the array.

irb(main):008:0> a = ['x','y','z']
=> ["x", "y", "z"]
irb(main):009:0> a.clear
=> []

�4.6 Creating Hashes
�Problem
How is a hash created in Ruby?

�Solution
Hashes (also known as associative arrays or maps) are a collection of key-value pairs. The 
keys are not necessarily numeric or sequential; however, they should be unique across 
the hash. The values are retrieved through the corresponding keys.

A hash is structured/organized like this:

["cat" => "feline", "wolf" => "lupine", "bear" => "ursine"]

And instead of retrieving an element in this way, for example—'element at index 0', it 
is retrieved like this: 'element whose key is “wolf”'.

A key can be any Ruby object (even an array); however, a string key is quite common.



Chapter 4 ■ Collections

89

A hash can be created in many ways. The following are some examples.

h1 = Hash.new  

This creates an empty hash:

h2 = Hash['a' => 100, 'b' => 200]

This creates a hash and initializes it with two key-value pairs. At this point, if h2 is 
printed, it would look like this:

{"a"=>100, "b"=>200}

And the elements can be accessed as h['a'] or h['b'].

irb(main):003:0> h2['a']
=> 100
irb(main):004:0> h2['b']
=> 200

The following works.

h = Hash["a" => 100, "b" => 200]

And so does the following.

h = { "a" => 100, "b" => 200 }

A hash can be created with a default value (as shown in the following).

h = Hash.new ('unknown')

The significance of the default value is that, if it is accessed with a key, which is 
non-existent for the hash, then the default value will be returned. (For a hash, where no 
default value is available, it returns nil in such situations).

�4.7 Adding New Elements to a Hash
�Problem
How do you add new elements to an existing hash?

�Solution
After a new hash is created with a default value, let’s say as follows…

h = Hash.new('unknown')



Chapter 4 ■ Collections

90

The addition of new entries can be done by assigning a value to a new key position, 
as shown here.

h['AUS'] = 'Canberra'
h['UK'] = 'London'
h['JP'] = 'Tokyo'

At this point, the hash’s length or size is 3.

irb(main):005:0> h.length
=> 3
irb(main):006:0> h.size
=> 3

However, if a key, which is non-existent, is accessed, it returns the default value.

irb(main):007:0> h['USA']
=> "unknown"

The default values can be accessed by the default method at any point.

irb#1(main):017:0> h.default
=> "unknown"

And they are set with the default= method.

irb#1(main):018:0> h.default='ABCD'
=> "ABCD"
irb#1(main):019:0> h['x']
=> "ABCD"

But more importantly, the set of keys and the values of a hash can be accessed using 
the keys and values methods, respectively.

irb#1(main):014:0> h.keys
=> ["AUS", "UK", "JP"]
irb#1(main):015:0> h.values
=> ["Canberra", "London", "Tokyo"]

The set of keys for a hash in particular is important for iterating through its elements.

�4.8 Working with Hashes
�Problem
You want to use the full set of hash operations, such as getting information about a hash, 
inverting a hash, and accessing data in a hash.



Chapter 4 ■ Collections

91

�Solution
The Hash class in Ruby offers a rich set of functions. Some of these have already been 
discussed. In fact, the access operator [] (e.g., h['a']) and the assignment operator []= 
(e.g., h['a'] = 1) are themselves methods. More methods are discussed next.

�clear
clear clears a hash (removes all its elements). Note that it works in place (i.e., on the 
original hash object).

irb(main):001:0> h = { 1 => 'a', 2 => 'b' }
=> {1=>"a", 2=>"b"}
irb(main):002:0> h.clear
=> {}
irb(main):003:0> print h
{}=> nil

�empty?
empty? checks whether the hash is empty or not. It returns a Boolean.

irb(main):004:0> h.empty?
=> true

�has_key?
has_key? checks whether the given key exists in the hash. It returns a Boolean. The same 
function is called with other names, such as – key?, include?, member?.

irb(main):005:0> h = { 1 => 'a', 2 => 'b' }
=> {1=>"a", 2=>"b"}
irb(main):006:0> h.has_key?(1)
=> true
irb(main):007:0> h.has_key?(3)
=> false

This is a very useful function to work with a hash.

�has_value?
has_value? is the counterpart of the has_key? function for checking the existence of a 
given value in the hash. It also has a synonym: value?.



Chapter 4 ■ Collections

92

irb(main):008:0> h.has_value?('b')
=> true
irb(main):009:0> h.has_value?('c')
=> false

�key
key is used to get the key of a given value. It returns nil if the value is not present in the 
hash.

irb(main):001:0> { 1 => 'a', 2 => 'b' }.key('b')
=> 2
irb(main):002:0> { 1 => 'a', 2 => 'b' }.key('c')
=> nil

�fetch
A fetch has a similar connotation to the function with same name in array. It accesses an 
element of a hash. This can be more useful than a normal access mechanism when there is a 
possibility that the key, for which the element is being attempted to be retrieved, may not be 
present in the hash and that should not cause an exception.

A fetch without argument returns the element for that key or results in an error, if the 
key is not present. But a fetch with a second argument, returns the value specified in that 
argument when the key is not present.

irb(main):001:0> { 1 => 'a', 2 => 'b' }.fetch(2,'invalid key')
=> "b"
irb(main):002:0> { 1 => 'a', 2 => 'b' }.fetch(3,'invalid key')
=> "invalid key"

�values_at
Somewhat similar to its namesake in array, values_at can retrieve values for multiple 
keys in one shot.

irb(main):003:0> h = {1 => 'a',2 => 'b',3 => 'c',4 => 'd'}
=> {1=>"a", 2=>"b", 3=>"c", 4=>"d"}
irb(main):004:0> h.values_at(1,4)
=> ["a", "d"]
irb(main):005:0> h.values_at(2,5)
=> ["b", nil]

Note that it returns nil for non-existent keys. For a hash with a default value, it 
returns the default value in those places.



Chapter 4 ■ Collections

93

irb(main):006:0> h.default = 'x'
=> "x"
irb(main):007:0> h.values_at(2,5,8)
=> ["b", "x", "x"]

�delete
The delete function deletes the value in the given key and returns the value (or returns 
nil if a key is not present). This function has more than one form.

irb(main):008:0> {1 => 'a', 2 => 'b'}.delete(1)
=> "a"
irb(main):009:0> {1 => 'a', 2 => 'b'}.delete(3)
=> nil

�invert
invert returns a new hash, which is an inversion of the original hash (in the sense that 
the values of the original hash are made keys to this hash, and the corresponding keys of 
the original hash are made corresponding values). This can be very useful sometimes.

irb(main):010:0> {1 => 'a', 2 => 'b'}.invert
=> {"a"=>1, "b"=>2}

�to_a
to_a converts the hash into a two-dimensional array, where each internal array is a 
conversion of the key-value pairs of the hash.

irb(main):013:0> {1 => 'a', 2 => 'b'}.to_a
=> [[1, "a"], [2, "b"]]

�==
== compares two hashes for equality. It returns a Boolean.

irb(main):001:0> {1 => 'a', 2 => 'b'} == {1 => 'a', 3 => 'c'}
=> false
irb(main):002:0> {1 => 'a', 2 => 'b'} == {1 => 'a', 2 => 'b'}
=> true
irb(main):003:0> {1 => 'a', 2 => 'b'} == {2 => 'b', 1 => 'a'}
=> true



Chapter 4 ■ Collections

94

�merge (and merge!)
Called on one hash, with another hash object as argument, the merge function returns a 
new hash (merge! is the in place version) that merges the elements of the second hash to 
the first hash. Any common key gets the value of the second hash. (This function also has 
another form involving the block feature).

irb(main):007:0> h1 = {1 => 'a', 2 => 'b'}
=> {1=>"a", 2=>"b"}
irb(main):008:0> h2 = {1 => 'd', 3 => 'c'}
=> {1=>"d", 3=>"c"}
irb(main):009:0> h1.merge(h2)
=> {1=>"d", 2=>"b", 3=>"c"}

�4.9 Creating a Collection of Unique Objects
�Problem
You want to create a collection of unique objects.

�Solution
A set is a common type of collection. A Ruby set (which intuitively points to a collection of 
objects), follows a somewhat mathematical (set theory) convention:

•	 Each object in a set may occur only once.

•	 There is no specific ordering or indexing in a set.

Sets can be very useful for many algorithms, where something needs to be 
represented as a collection of unique objects.

In Ruby, in order to use a set, you need to include the corresponding module 
(actually require works at the file level, so it includes the set.rb file). The following code 
shows how to create a set and add elements to it, as well as initializing a set with multiple 
elements at creation.

#include the corresponding module
require 'set'
#create an empty set
s1 = Set.new
#add elements to the set
s1.add(1)
s1.add('a')
#create and initialise a set
s2 = Set.new [1,2,'c'] #use at least one space between new and [
s3 = [1,2,'d'].to_set



Chapter 4 ■ Collections

95

Note that a set can contain multiple types of elements. (Note also that for the second 
form—that is the definition for s2, there has to be at least one space between new and the 
opening square bracket; otherwise, it will result in an error).

Possibly the easiest way (in terms of typing), however, is to use the Set[] construct 
directly.

irb(main):004:0> require 'set'
=> true
irb(main):005:0> Set[1,2]
=> #<Set: {1, 2}>

Note that even in irb, you need to require it once for the session.
There is no question of retrieving an individual element of a set (unlike an array 

or a hash), because individual elements do not have an identity as such within the 
organization of the set. However, set operations (in a mathematical sense) can be 
performed on the set, with other sets, and there are ways to determine whether a 
particular elements exists in the set or not (without any such operation, defining a set 
would be meaningless anyway).

�4.10 Inspecting a Set
�Problem
You want to see what is in a set.

�Solution
A good way to inspect the current contents of a set is to use the p function, as shown next.

irb(main):001:0> require 'set'
=> true
irb(main):002:0> s = Set.new [1,2,'c']
=> #<Set: {1, 2, "c"}>
irb(main):003:0> p s
#<Set: {1, 2, "c"}>
=> #<Set: {1, 2, "c"}>
irb(main):004:0> print s
#<Set:0x007fd019976b20>=> nil

Note that p (a bit like print or puts but not quite), prints the value to be inspected 
rather than invoking to_s on the object (as puts or print does). Hence, if to_s is not 
defined/overridden in the class satisfactorily, then it may print the object-id, and so forth 
(see the output of print s in the preceding case).



Chapter 4 ■ Collections

96

�4.11 Working with Sets
�Problem
You want to use the full set of set operations, such as getting information about a hash, 
inverting a hash, and accessing data in a hash.

�Solution
The Set API provides a rich set of functions to manipulate a single set, perform set 
operations on two sets, and so on. Some of these functions are discussed next.

�Checking and Changing
Let’s start with the set [1,2].

irb(main):002:0> s = Set[1,2]
=> #<Set: {1, 2}>

�length (or size)

length or size provides the size of the set (in terms of the number of elements).

irb(main):003:0> s.length
=> 2
irb(main):004:0> s.size
=> 2

�empty?

empty? checks if the set is empty. It returns a Boolean.

irb(main):005:0> s.empty?
=> false

�include?

include? checks if the given item exists in the set. It returns a Boolean.

irb(main):006:0> s.include?(1)
=> true



Chapter 4 ■ Collections

97

�clear

clear removes all elements from the set.

irb(main):007:0> s.clear
=> #<Set: {}>

�<< (or add)

<< adds an element in the set.

irb(main):009:0> s << 'a'
=> #<Set: {"a"}>

�merge

merge can be used to add multiple elements at the same time.

irb(main):011:0> s.merge(['b','c','d','e','f'])
=> #<Set: {"a", "b", "c", "d", "e", "f"}>

�delete

delete is used to delete one item.

irb(main):013:0> s.delete('a')
=> #<Set: {"b", "c", "d", "e", "f"}>

Note that it returns the remaining set.

�subtract

subtract deletes multiple items at the same time.

irb(main):014:0> s.subtract(['c','d'])
=> #<Set: {"b", "e", "f"}>

Note that change is done to the original set (see the following).

irb(main):015:0> p s
#<Set: {"b", "e", "f"}>
=> #<Set: {"b", "e", "f"}>



Chapter 4 ■ Collections

98

Also note that for partial existence in the delete list (i.e., the argument to subtract 
contains some elements that do not exist in the first set), only the elements that exist in 
the original set will be deleted.

irb(main):016:0> s.subtract(['e','g'])
=> #<Set: {"b", "f"}>

�==

The == function checks the equality of two sets.

irb(main):018:0> s2 = Set[2,3]
=> #<Set: {2, 3}>
irb(main):019:0> s3 = Set[3,2]
=> #<Set: {3, 2}>
irb(main):020:0> s2 == s3
=> true

Note that the order of the elements does not matter.

�Set Operations
The Set API provides many functions.

�+ (or | or union)

The + or | functions return a set that is the union of two sets.

irb(main):022:0> s1 = Set[1,2,3,4]
=> #<Set: {1, 2, 3, 4}>
irb(main):023:0> s2 = Set[3,4,5,6]
=> #<Set: {3, 4, 5, 6}>
irb(main):024:0> s1 + s2
=> #<Set: {1, 2, 3, 4, 5, 6}>

�& (or intersection)

The & function returns the intersection of two sets.
(Assume the preceding two sets, s1 and s2, are in scope.)

irb(main):025:0> s1 & s2
=> #<Set: {3, 4}>



Chapter 4 ■ Collections

99

�intersect?

The intersect? function checks whether two sets intersect (i.e., if there is any common 
element at all). It returns a Boolean.

irb(main):026:0> s1.intersect?(s2)
=> true

�disjoint?

The disjoint? function checks whether two sets are disjoint. Two sets are disjoint if they 
have no elements in common. (It is essentially the exact opposite of intersect?).

irb(main):027:0> s1.disjoint?(s2)
=> false

�- (or difference)

The – function shows the differences between two sets. It returns a set contain any 
element that is in the first set but not in the second.

irb(main):028:0> s1 - s2
=> #<Set: {1, 2}>

�̂

The ^ provides a set that contains elements from both sets, but not the common elements.

irb(main):029:0> s1 ^ s2
=> #<Set: {5, 6, 1, 2}>

�Subset and superset

If s1 and s2 are sets that are defined as follows

irb(main):030:0> s1 = Set[1,2,3]
=> #<Set: {1, 2, 3}>
irb(main):031:0> s2 = Set[1,2]
=> #<Set: {1, 2}>

the verification of whether s1 is a superset of s2 is done by using the >= function.

irb(main):032:0> s1 >= s2
=> true



Chapter 4 ■ Collections

100

The same effect can be achieved with the superset? function.

irb(main):034:0> s1.superset?(s2)
=> true

Note that any set is a subset of itself, and hence s1 >= s1 is true.

irb(main):033:0> s1 >= s1
=> true

However, s1 is a proper superset of s1 in this case (a proper superset of a set 
should be a superset of the set, but should have at least one more element than the 
corresponding subset), but s1 cannot be a proper superset of itself. To check whether a 
set (s1) is a proper superset of another set (s2) is done with the > function, as shown next.

irb(main):035:0> s1 > s2
=> true
irb(main):036:0> s1 > s1
=> false

There is a corresponding proper_superset? function to check the same.
There are also corresponding functions—such as subset?, proper_subset?, <, and 

<= —that check the inverse relationship.

irb(main):038:0> s1 <= s1
=> true
irb(main):039:0> s2 <= s1
=> true
irb(main):040:0> s2.proper_subset?(s1)
=> true
irb(main):041:0> s2 < s1
=> true

�Flattening and Conversion
A set of sets can be flattened by using the flatten function. (The in place counterpart is 
flatten?).

irb(main):050:0> s = Set[Set[1,2], Set[3,4], Set[2,3], Set[4,5]]
=> #<Set: {#<Set: {1, 2}>, #<Set: {3, 4}>, #<Set: {2, 3}>, #<Set: {4, 5}>}>
irb(main):051:0> s.flatten!
=> #<Set: {1, 2, 3, 4, 5}>

A set can be converted to an array using the to_a function.

irb(main):055:0> Set['a','c','b','e','d'].to_a
=> ["a", "c", "b", "e", "d"]



Chapter 4 ■ Collections

101

Collections will be brought up again in context of iterators. But before beginning on 
blocks and iterators, you may wish to try some exercises.

�Exercises
The solutions are in the appendix.

�Exercise 4.1
Given an array of letters and a word as input, write a program to find out whether the 
word can be built from the letters contained in the array. Any letter can be used up to as 
many times as it occurs in the array (i.e., if the word needs three letter a’s, then the array 
should have at least three letter a’s).

Using the program (/) function, show that for the array 
['y','z','b','e','a','u','t'] and the word beauty returns true, but 
['r','o','u','g','h'] and tough returns false.

�Exercise 4.2
Suppose there are two text files that report train timing (in a 24-hour format). The first 
report provides arrival times to a station (on a particular day), and the second report 
provides departure times. The file contents are as follows.

arrtime.txt

43UP 8:35
54DN 10:32
32UP 11:52
10DN 13:56
45DN 14:20

deptime.txt

54DN 11:14
45DN 14:28
43UP 8:30
10DN 13:59
35UP 11:52

The data is space separated. The first column is the train number (train id) and the 
second column is the time. The data is not ordered by train id.

Note that the data may have an anomaly, such as the arrival may be later than the 
departure, and also one train id may be found in one file, but not another.

The exercise is to programmatically find the amount of time (in minutes) that each 
train stays in the station (when possible), and to flag the trains that have data anomalies.



103© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_5

CHAPTER 5

Blocks and Iterators

Intuitively, a block of code is a set of statements that are grouped together. For instance, 
statements within a function (function body) or the block of code to be executed inside 
the while loop. However, Ruby has a special block feature that (while still being a group of 
one or more statements usually enclosed in flower brackets) has very interesting usages. 
It is especially useful in the context of iterator methods for collections.

Perhaps it is best to explain by example to a Ruby newbie.
First of all, a block (and this refers to the block feature, not just any general block of 

code) can be any chunk of code bounded by do-end keyword pairs or { }. The following 
are both valid blocks.

do
        puts "Hello"
        puts "world"
end

and

{ puts 'hello world' }

And while they have a somewhat anonymous function feel about them, these code 
bodies, by themselves, will not run.

Try the following, however; it will work.

3.times do
         puts 'Hello'
end

And it prints this:

Hello
Hello
Hello

There is a convention (but not a syntactic rule) that do-end is preferred in multiline 
code over {}. (Note that henceforth in the book, the {} variation is usually used rather 
than the do-end variety).



Chapter 5 ■ Blocks and Iterators

104

What happened here?
The number 3 is a Fixnum object on which the times method has been called. The 

block (beginning with do and ending with end) has been passed as an argument to the 
times method. The code block argument has been executed that many times.

times here is an iterator method that takes a block as an argument and executes it 
repeatedly (the number of repetitions depends on the context).

�5.1 Associating Blocks with Functions
�Problem
Suppose you have a rather long function in which you are to repeatedly perform a set 
of actions on a variable (or variables) as it changes its state through the course of the 
function. Think of putting debug messages, which prints the variable name, its current 
value, and also some kind of marker that indicates the relative position of this message 
within the function. For example, printing messages like this:

X is now 3 before the iteration
X is now 5 inside the if statement

It would be nice if you could pass the value of x and the position marker string  
(e.g., “before the iteration” or “inside the if statement”) and that subfunction, called from 
the right places, prints those messages nicely for you.

Using a separate function for that purpose seems a bit heavy-handed. Besides, your 
project may have policies against creating debug functions for deliverable code. How do 
you create such a subfunction without seeming like creating a function?

■■ Note   This is just one of the scenarios. There may be other situations where such a 
subfunction (sort of) may be useful for a purpose very different from debugging.

�Solution
One very handy answer for such scenarios is associating the function with a block 
and calling the subfunction action (This is not the official term. I am using it here for 
illustrative purposes. The official term is block.) wherever required within the original 
function (even at multiple places), using the keyword yield.

Such a function can be defined as follows.

def check1
        puts "beginning"
        yield
        puts "end"
end



Chapter 5 ■ Blocks and Iterators

105

This yield signifies a call to a block (executing a code chunk of the block) that is 
associated with this function at that point in the function.

When you call the function, you have to pass the block in such a way that the 
beginning of the block (either the keyword do, or the {) should start on the same line as 
the function name (any extra arguments should come before the block).

So the following code is valid.

def check1
        puts "beginning"
        yield
        puts "end"
end
puts 'outside the function'
check1 do
   puts 'ok'
end

It produces the following.

outside the function
beginning
ok
end

The last part could have been written like this:

check1 {
   puts 'ok'
}

Or like this:

check1 do puts 'ok' end

Or like this:

check1 { puts 'ok' }

And it would still work well.
But the following won’t work.

check1
do
        puts 'ok'
end



Chapter 5 ■ Blocks and Iterators

106

Note that the function could have been defined with a signature involving a reference 
to a block, like this:

def check1(&block)

It should work in the same way as the original function when properly invoked.
This is because, even for the original function, the block was working as an implicit 

argument. A method doesn’t need to specify the block in its signature in order to 
receive a block parameter.

Note that if you wish to explicitly define the &block argument, it should come at the 
end (after other arguments, if any) in the signature.

The following is an example of a function that takes an argument and also uses a 
block.

def check2(name)
        puts "processing #{name}"
        yield
        puts "end"
end
puts 'outside the function'
check2 ('abcd') {
   puts "Hello"
}

When run, it should produce the following.

outside the function
processing abcd
Hello
end

In this sense, a block can be thought of as simply a chunk of code and yield allows 
you to inject that code at some place in a method.

�5.2 Adding Arguments to a Block
�Problem
You want to pass arguments to a block to make your code extra efficient.

�Solution
Blocks can have their own arguments. (It can be used very effectively to write small and 
succinct code, which nevertheless can accomplish a great deal). The following is an 
example.



Chapter 5 ■ Blocks and Iterators

107

def check3(id)
        puts "processing empid #{id}"
        yield 'Nadia'
        puts "end"
end
puts 'outside the function'
check3 (2) do |str|
   puts "Hello #{str}"
end

When run, it should produce the following.

outside the function
processing empid 2
Hello Nadia
end

Note that id is an argument to the function, but str is an argument to the block; the 
arguments are separate, and it is possible to have a block with argument and a function 
that does not take an explicit argument). I mention explicit argument because the block 
itself is an implicit argument to the function.

Note that the construct is { | arg1, arg2, ...| <code body of block> }.
do-end can be used in place of {}, and the block can span multiple lines.
An example of a multi-argument block is as follows.

def multipl
        yield 3,4
end
multipl { |a,b| puts a * b }

It should produce this:

12

The preceding code can be written slightly differently to use a return value.

def multipl
        value = yield 3,4
        puts "value is " + value.to_s
end
multipl { |a,b| a * b }

And it will produce this:

value is 12

This is a demonstration of how a block can return a value (the return value from the 
last statement executed), which may be used in the associated function.



Chapter 5 ■ Blocks and Iterators

108

�5.3 Initializing and Finalizing Code
�Problem
How do you initialize variables for the whole program or execute initializing/finalizing 
code in Ruby?

�Solution
You might have seen the use of these already in an earlier discussion (in context of 
language elements). But since this is related to a block feature, it is elaborated here in a 
little more detail.

Every Ruby source file can declare blocks of code to be run as the file is being loaded 
(the BEGIN blocks) and after the program has finished executing (the END blocks). They are 
in the following form.

BEGIN {  
  begin code
}

END {
  end code
}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in 
the order they are encountered. END blocks are executed in reverse order.

As an example, the following code

BEGIN { x = 'a' ; puts x }
BEGIN { y = 'b' ; puts y }
puts 'general code'
END { a = 'x'; puts a }
END { b = 'y'; puts b }

produces this:

a
b
general code
y
x

This was a demonstration of the order of execution. However, the real use case of 
such blocks are less dramatic (and possibly more useful).

Imagine that you are working with a lot of CSV files. Very likely, you will get down to 
splitting strings using a comma as the separator in a lot of places in your code. In such a 



Chapter 5 ■ Blocks and Iterators

109

case, it may save you much hassle (and typing) if you set a default separator for split in the 
BEGIN block for the entire code, as follows.

BEGIN { $; = ',' }

And then, use the split function on strings, without mentioning the separator 
explicitly.

line.split #instead of line.split(',')

�5.4 Iterating over Data
�Problem
You need to perform operations on each item in a collection (e.g., each item in an array 
needs to be multiplied by 2). This may be done by using a for loop and accepting each 
element of the array, one by one, doing the operation, and possibly putting the result back 
into the array again (or putting it in another array for the result—and this array needs to 
be created first). As far as coding goes, it would be easier if there was a simpler method 
or program construct where you just mention (a) which array to work on and (b) which 
operation to perform on the elements of the array.

There are other operations that require the collection in its entirety for the operation, 
but individual elements still participate; for example, sorting the elements of an array 
based on their values (where individual elements may need comparison with one 
another in some form). Again, a more traditional solution would require a bit of coding 
(and the associated debugging, as required). Since sorting is a fairly common operation, it 
would be nice if a construct existed whereby you specify the array and the operation  
(sort in this case) and things are done for you.

Ruby provides a lot of iterators that address this scenario perfectly.

�Solution
Iterators are essentially methods that execute a block of code multiple times. They 
are usually used with collections, to perform some function, taking each element of 
the collection as argument in turn.

Some iterators can also work with ranges. Ranges can be considered a sequence. 
For instance, the range 0..9 includes the numbers 0,1,2,3,4,5,6,7,8,9. An iterator can 
iterate through these numbers, in turn, and perform some action/check using each of 
them as an argument.

Some iterators are discussed next.

�each
Each is an iterator that works with a range, as well as collections like arrays, hashes, or 
sets. 'each' (like any other iterator) takes a block as a parameter. The block itself takes a 
parameter and performs the action specified in the code body of the block, following that 



Chapter 5 ■ Blocks and Iterators

110

parameter. The block parameter gets the value of each of the elements of the collection, 
in turn. (That is how iterators are designed: the block of the iterator gets passed the 
collection elements, in turn). In a range, instead of collection elements, it is the numbers 
(or other things, if it is a non-number range) in the sequence that gets passed in turn.

It’s time for an example.
The following code is supposed to take the numbers 1,2,3,4 and 5 in turn and print 

the square of each of the numbers (followed by a new line).

(1..5).each {|i| puts i * i}

And so it does.

1
4
9
16
25

It works very similarly for a set.

require 'set'
Set['a','b','c'].each{|x| puts x}

That produces this:

a
b
c

A set has a 'reverse_each' iterator that traverses elements in reverse occurrence 
order. This is an example of its usage:

Set[1,2].reverse_each{ |i| puts i * 2}

It should produce the following and also return the set.

4
2

For an array, however, it is a little trickier. It has the each iterator to traverse thorough 
the elements of the array.

[3,2,5].each {|i| puts i * 2}

And that produces the following.

6
4
10



Chapter 5 ■ Blocks and Iterators

111

But it also has a few other variations. One is 'each_index' (not applicable to sets or 
hashes), which is used to traverse through the indexes.

The following code

[3,2,5].each_index {|i| print i, ","}

produces this:

0,1,2,

(Note that here print is used with two arguments of different types.)
Another is 'reverse_each', which traverses the elements in the opposite order. 

Hence, the following

[3,2,5].reverse_each {|i| puts i * 2}

should produce this:

10
4
6

For a hash, it gets even better (in the sense that it has more variations of each). There 
is 'each', 'each_pair' (a synonym for 'each'), 'each_key', 'each_value', and 'reverse_
each'. Note the following run in irb (for the hash { 'a' => 100, 'b' => 200 }).

irb(main):001:0> h = { 'a' => 100, 'b' => 200 }
=> {"a"=>100, "b"=>200}
irb(main):002:0> h.each {|key, value| puts "key #{key} has value #{value}" }
key a has value 100
key b has value 200
=> {"a"=>100, "b"=>200}
irb(main):003:0> h.each_key {|key| puts key }
a
b
=> {"a"=>100, "b"=>200}
irb(main):004:0> h.each_value {|value| puts value }
100
200
=> {"a"=>100, "b"=>200}

'each' here takes two arguments, which gets the key and value for each hash pair. 
The name of the arguments does not matter. (You could use |k, v| for instances). The 
first argument gets the key and the second argument gets the value.

It is simpler for 'each_key' and 'each_value'. They work with only one argument.
'reverse_each' works in occurrence order.

{1 => 'a', 2=> 'b'}.reverse_each{|k,v| puts k * 2}



Chapter 5 ■ Blocks and Iterators

112

That produces the following.

4
2

�step
This is an iterator, which is particularly applicable to range, and not to collections.

As you have seen, each (for range) takes one item from the sequence in turn. For an 
integer sequence like 0..9, it would take, 0,1,2, and so on. However, there may be a case 
where we do not need each item, but alternate ones. Step can be useful in such situations.

The following code

(0..9).step(2){|i| puts "even number : #{i}"}

produces this:

even number : 0
even number : 2
even number : 4
even number : 6
even number : 8

Step could also be more than 2. Note that it can work with non-numeric ranges also.

('a'..'e').step(2){|i| puts "letter : #{i}"}

That should produce the following.

letter : a
letter : c
letter : e

�select and reject
These are also two well-known iterators. 'reject' is the exact opposite of 'select'. 
'select' returns a new collection (which may not be of the same type as the original 
one)—with elements or items—that satisfies the condition given in the block code. 
'reject' returns one—with elements or items—that does not satisfy the condition. 
Both have in place versions ('select!' and 'reject'), but the in place versions are not 
available for range.

It really is quiet intuitive, when you see them in action. In a range, it returns an array.
The following code

digits = 0..9
ret = digits.select {|i| i < 5 }
puts digits



Chapter 5 ■ Blocks and Iterators

113

runs as follows.

irb(main):001:0> digits = 0..9
=> 0..9
irb(main):002:0> ret = digits.select {|i| i < 5 }
=> [0, 1, 2, 3, 4]
irb(main):003:0> puts digits
0..9
=> nil

It has selected items that are less than 5, as expected. Note that the original range is 
intact.

'reject' in this case does just the opposite (i.e., rejects items that are less than 5).

irb(main):002:0> ret = digits.reject {|i| i < 5 }
=> [5, 6, 7, 8, 9]

�For Arrays

For an array (and set and hash), the in place versions are also available.
The following code run demonstrates the 'select' and 'select!' applied to an 

array.

irb(main):001:0> a = [1,2,3,4,5]
=> [1, 2, 3, 4, 5]
irb(main):002:0> b = a.select { |num|  num.even?  }
=> [2, 4]
irb(main):003:0> print a
[1, 2, 3, 4, 5]=> nil
irb(main):004:0> c = a.select! { |num|  num.odd?  }
=> [1, 3, 5]
irb(main):005:0> print a
[1, 3, 5]=> nil

Eventually, 'reject' has the opposite effect of 'select'.

irb(main):006:0> [1,2,3,4,5].reject { |i| i.even? }
=> [1, 3, 5]

�For Hashes

Note that here the block takes two arguments (although both are not always used).

irb(main):001:0> h = { 'a' => 100, 'b' => 200, 'c' => 300 }
=> {"a"=>100, "b"=>200, "c"=>300}
irb(main):002:0> h.select {|k,v| k > 'a'}
=> {"b"=>200, "c"=>300}



Chapter 5 ■ Blocks and Iterators

114

irb(main):003:0> h.select {|k,v| v < 200}
=> {"a"=>100}
irb(main):004:0> print h
{"a"=>100, "b"=>200, "c"=>300}=> nil
irb(main):005:0> h.select! {|k,v| k > 'a'}
=> {"b"=>200, "c"=>300}
irb(main):006:0> print h
{"b"=>200, "c"=>300}=> nil
irb(main):007:0> h.reject! {|k,v| v < 300}
=> {"c"=>300}
irb(main):008:0> print h
{"c"=>300}=> nil

�For Sets

Note that for sets, the non-in-place versions return an array, not a set.

iirb(main):001:0> require 'set'
=> true
irb(main):002:0> s1 = Set[1,2,3,4]
=> #<Set: {1, 2, 3, 4}>
irb(main):003:0> s2 = s1.select { |i| i.even? }
=> [2, 4]
irb(main):004:0> p s1
#<Set: {1, 2, 3, 4}>
=> #<Set: {1, 2, 3, 4}>
irb(main):005:0> s3 = s1.reject { |i| i.odd? }
=> [2, 4]
irb(main):006:0> s4 = s1.reject! { |i| i.even? }
=> #<Set: {1, 3}>
irb(main):007:0> p s1
#<Set: {1, 3}>
=> #<Set: {1, 3}>
irb(main):008:0> print s3
[2, 4]=> nil

�map or collect

'map' and 'collect' are also useful iterators. There are also in place ('map!' or 
'collect!') versions. The non-in-place versions return an array, even when applied to a 
hash or a set. The hash versions take two arguments. The in place version does not apply 
to a hash.

They apply a certain function (the code body) to each of the elements in turn and 
return an array, which is a collection of the results.



Chapter 5 ■ Blocks and Iterators

115

�For Arrays

irb(main):001:0> a = [3,4,5]
=> [3, 4, 5]
irb(main):002:0> a.map {|i| i + 2}
=> [5, 6, 7]
irb(main):003:0> a.collect {|i| i + 2}
=> [5, 6, 7]
irb(main):004:0> print a
[3, 4, 5]=> nil
irb(main):005:0> a.map! {|i| i + 2}
=> [5, 6, 7]
irb(main):006:0> print a
[5, 6, 7]=> nil

�For Sets

Note that the non-in-place version returns an array.

irb(main):001:0> require 'set'
=> true
irb(main):002:0> s1 = Set[1,2]
=> #<Set: {1, 2}>
irb(main):003:0> s2 = s1.map {|i| i * 2}
=> [2, 4]
irb(main):004:0> p s1
#<Set: {1, 2}>
=> #<Set: {1, 2}>
irb(main):005:0> s3 = s1.map! {|i| i * 2}
=> #<Set: {2, 4}>
irb(main):006:0> p s1
#<Set: {2, 4}>
=> #<Set: {2, 4}>

�For Hashes

It takes two arguments, as usual. (Note that it does not have an in place version).

irb(main):001:0> h = {'a' => 1, 'b' => 2}
=> {"a"=>1, "b"=>2}
irb(main):002:0> h.map {|k,v| v + 3}
=> [4, 5]
irb(main):003:0> h.collect {|k,v| v + 3}
=> [4, 5]
irb(main):004:0> print h
{"a"=>1, "b"=>2}=> nil



Chapter 5 ■ Blocks and Iterators

116

�delete_if and keep_if

These are also very useful. As the name suggests, delete_if deletes the elements that 
satisfy the condition in the given code block (keep_if keeps them). Both of them work in 
place (even though they don’t have an '!' at the end).

�For Arrays

irb(main):001:0> a = [3,4,5,8,9]
=> [3, 4, 5, 8, 9]
irb(main):002:0> a.keep_if {|i| i.even?}
=> [4, 8]
irb(main):003:0> print a
[4, 8]=> nil
irb(main):004:0> a.delete_if {|i| i.even?}
=> []
irb(main):005:0> print a
[]=> nil

�For Sets

irb(main):001:0> require 'set'
=> true
irb(main):002:0> s1 = Set[3,4,5,6,7]
=> #<Set: {3, 4, 5, 6, 7}>
irb(main):003:0> s2 = Set[3,4,5,6,7]
=> #<Set: {3, 4, 5, 6, 7}>
irb(main):004:0> s1.delete_if{|i| i.even?}
=> #<Set: {3, 5, 7}>
irb(main):005:0> s2.keep_if{|i| i.even?}
=> #<Set: {4, 6}>
irb(main):006:0> p s1
#<Set: {3, 5, 7}>
=> #<Set: {3, 5, 7}>
irb(main):007:0> p s2
#<Set: {4, 6}>
=> #<Set: {4, 6}>

�For Hashes

irb(main):001:0> h = { 'a' => 100, 'b' => 200, 'c' => 300 }
=> {"a"=>100, "b"=>200, "c"=>300}
irb(main):002:0> h.delete_if {|k, v| k > 'b' }
=> {"a"=>100, "b"=>200}
irb(main):003:0> h.keep_if {|k, v| v > 100 }



Chapter 5 ■ Blocks and Iterators

117

=> {"b"=>200}
irb(main):004:0> print h
{"b"=>200}=> nil

�sort

The sort function has an iterator form (i.e., using block). In the block, a sort order can 
be specified (which may be other than the default sort order). If no block is specified, the 
default sort order is followed.

irb(main):010:0> Set[4,3,5].sort {|a,b| b<=>a}
=> [5, 4, 3]
irb(main):011:0> { 1 => 'a', 3 => 'c', 2 => 'b'}.sort {|a,b| b<=>a}
=> [[3, "c"], [2, "b"], [1, "a"]]
irb(main):012:0> [2,6,4,5].sort {|a,b| b<=>a}
=> [6, 5, 4, 2]
irb(main):013:0> [2,6,4,5].sort
=> [2, 4, 5, 6]
irb(main):014:0> Set[4,3,5].sort
=> [3, 4, 5]
irb(main):015:0> { 1 => 'a', 3 => 'c', 2 => 'b'}.sort
=> [[1, "a"], [2, "b"], [3, "c"]]

Note that upon sort, set returns an array and hash returns an array of arrays (the 
inner arrays being key-value pairs).

This concludes our current discussion on blocks and iterators. Thus far, quite a 
few topics have been covered, which (collectively) can be used to tackle some serious 
programming tasks. You may wish to try your hand at the exercises offered next.

�Exercises
The solutions are in the appendix.

�Exercise 5.1
You are given a hash in which the key is a student’s name and the value is the student’s 
total marks in an exam. Suppose anyone receiving more than 599 (i.e., 600 or more) is 
placed in the first division. Write a program to print the name and the marks of each 
student, in a nicely formatted manner, and include ‘First Division’ in the result if he/she 
achieved first division.

e.g given {"Abani Sen" => 650, "Dora Pridle" => 573}



Chapter 5 ■ Blocks and Iterators

118

It should print something like this:

Abani Sen : Marks obtained 650 : First Division
Dora Pridle : Marks obtained 573

Use at least one iterator in the solution.

�Exercise 5.2
You are given the following hash.

h = {
        "Abani Sen" => 650,
        "Dora Pridle" => 573,
        "Sana Chowdhury" => 824,
        "Pritish Panda" => 732
        }

Print the name and marks, sorted by marks, with highest marks at the top.

�Exercise 5.3
For entry into engineering or medicine, when the score is calculated, some of the credit is 
taken from the marks in the exam discussed earlier. These are the rules:

•	 up to 500 marks: no credit toward entrance

•	 501 to 600: 10 credits

•	 601 to 700: 20 credits

•	 701 to 800: 40 credits

•	 801 onward: 70 credits

Write a program to determine and print the credits each of the students received 
(based on the hash in Exercise 5.2).



119© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_6

CHAPTER 6

Input-Output

A lot of the basics have been covered. This should be a good foundation for 
accomplishing a good variety of programming tasks. Some more bits and pieces will be 
covered as we go along, but it is good to get down to some tasks and case studies to see 
the language in action.

The first task discussed (based on a fictitious scenario) is about querying a CSV file, 
with personal data, for information of interest.

�6.1 Querying a CSV File
�Problem
Imagine a situation like this. Your company has an elaborate payroll and HR system. 
However, your department’s HR director keeps her own text file with a few details (such 
as names, birthdays, and so on). She keeps this for somewhat unofficial occasions, like 
buying a cake for someone's birthday in the department, which is not an enterprise-wide 
(but departmental and that too somewhat unofficial) event. Suppose it is a generally 
accepted practice in some other departments too. 

The department HR director comes to you, having heard that you are the somewhat 
recognized expert in manipulating text files (with Ruby scripting), and asks you for help.

The file in question has the following data.

Robin,Sen,20/11/1965,360 Karin Drive NSW 2322
Karina,Rhea,23/05/1982, 3/25 West Avenue NSW 2455
Marvin,Major,08/12/1967,210 Racheal Place Vic 3222
John,Doe,15/12/1968,210 Racheal Place Vic 3222
Roland,Boyd,19/02/1992,21 Palm Avenue TAS 5525

The birth dates are in dd/mm/yyyy format. The task she wants you to perform 
(actually a number of subtasks), consists of the following.

•	 Write a Ruby program to find out a person’s birthday, given the 
first name and the last name as arguments.

•	 Write a Ruby program to find the youngest person and the oldest 
person in the department (from the file, of course).



Chapter 6 ■ Input-Output

120

•	 Write a Ruby program to find out the names of all the people with 
birthdays in a given month (say, December). She is willing to 
pass the argument as a numeric value (such as 12 for December), 
rather than as a string, to make your task easier.

She also mentioned that she is not very good at running computer programs, and 
sometimes she forgets to provide the right arguments while running a program. She does 
not want to be surprised with a lengthy and/or unintelligible error message. (Those error 
messages are more for developers). The same is true for a name that she might have 
misspelled and for which the birthday is not found in the file.

You may argue that for such a small file, someone could just open and read it. 
But consider that the file could have been considerably bigger. (This is, after all, just a 
learning exercise. Real-life problems could indeed be larger in scale.) Besides, you may 
not want to argue with a nice person on such points. She may have come to you because 
she rather likes you. Also, it may be half a day’s worth of work for you and your manager 
knows about it, so no trouble that way.

�Solution
Let’s go into each subtask.

�Subtask 1: A Person’s Birthday
This (sub)task can be further broken down to do the following.

	 1.	 Get the arguments: first and last names.

	 2.	 Check the argument count. You could do other checks, such 
as whether it starts with a letter or not, but for now, let’s 
restrict the validation check to the number of arguments only.

	 3.	 Find and print out the person’s date of birth.

	 4.	 Display a nice message when the name is not found.

	 5.	 Print out a nice error message when the file is not found in the 
directory. (She might try to run it from another directory, for 
instance).

Sound good?
Command-line arguments and ARGV arrays were discussed in Recipe 2.5. They come 

in handy for argument getting and checking.

�Writing the Code

The following code works fine and part of it may be used for argument (getting and) 
checking.



Chapter 6 ■ Input-Output

121

if ARGV.length != 2
        puts "please provide first_name and last_name"
        exit
end
first_name = ARGV[0]
last_name = ARGV[1]
puts "Getting birthday for #{first_name} #{last_name}"

Note that the arguments to the program should be separated by a space not a 
comma. Note also the use of exit for exiting the program midway.

Run the program like this:

ruby getnames.rb John Doe

You get the following output.

Getting birthday for John Doe

Omit the last argument, however, and you get the following message.

Please provide first_name and last_name

Splitting a string based on a particular separator (e.g., ',') has been discussed. To 
get the date of birth, the third column is needed, while the first and second columns are 
given as arguments. To get the birthday (including file opening and some error checks), 
let’s first try a hard-coded name. The planned approach is to code it partly and then 
combine as required.

The following code does the job.

first_name = "John"
last_name = "Doe"

begin
        infile = File.open('hrfile.txt','r')
        found = false
        while line = infile.gets
                col = line.split(',')
                #if first and second columns match with the names
                if col[0] == first_name && col[1] == last_name
                        #print date of birth
                        �puts "Date of Birth for #{first_name} #{last_name} 

is #{col[2]}"
                        #mark as found and break
                        found = true
                        break
                end
        end



Chapter 6 ■ Input-Output

122

        #at this point found false means no line has matched the names
        if not found
                �puts "Sorry birthday for #{first_name} #{last_name} not 

found - check spelling"
        end

rescue
        puts "Could not find file hrfile.txt - check the directory."
ensure
        infile.close unless infile.nil?
end

Hard-coded first names and last names do not need arguments to run. This is a way 
of developing part of a program as full, runnable code, which can later be converted, 
without much ado, to a function. (This “fast tracks” things a bit so that attention can be 
focused on other parts of the task). It has a rescue portion, which prints a message if the 
input file is not found in the directory (although since this is a general rescue, any other 
error in its scope will also provide the same error message). The ensure part closes the 
file, unless the handler is nil.

Within the while loop, each line picked up is split based on a comma. The first and 
second columns are attempted for match with the given first_name and last_name, 
respectively. If a match is found (that means the person's record has been found), the 
third column (which is the date of birth) is printed, a boolean is marked true, and the 
while loop is exited with a break. There is no need to read another line if the match is 
already found.

On the other hand, if all the lines are exhausted and the match is still not found, then 
an error message is printed, indicating the same (with a slight hint that the spelling may 
be wrong).

�Testing

Objective of testing is used to check that a program is working per its intended purpose. 
In very general terms, the intended purpose of a program has two main categories.

•	 It should run successfully when all the settings and arguments are 
proper (valid case(s).)

•	 It should fail (with proper error messages, as desirable) when 
the conditions/arguments are not right (invalid cases(s)). In a 
good program, the result (output message, etc.) of an invalid case 
should be indicative of what has gone wrong. (The detail and 
accuracy of the message indicating the exact error depends on 
how far the development has gone in tracking the classes of errors 
accurately.)

In this case, the success objective is (given the file hrfile.txt exists in the same 
directory, with proper input data as shown earlier) that the program should run as it 



Chapter 6 ■ Input-Output

123

stands and give John Doe's birthday as '15/12/1968' (from the file). And it does not 
disappoint. It produces the following.

Date of Birth for John Doe is 15/12/1968

For error cases in our testing, one very important check makes sure that if the input 
data file is not present, then this is indicated.

The other check makes sure that if a name is not present in the file, a meaningful 
message should display to indicate that the name was not found.

For both of these (invalid) cases, the testing requires a bit of tweaking. In the absence 
of a file, rename the data file to something else (say, hrfile1.txt) and run the code. The 
output should be as follows.

Could not find file hrfile.txt - check the directory.

And for the second case, the code itself could be changed (but rename the data file 
back to its original name). Change the hard-coded first name to “Joe” from “John”. (You 
could say that technically the same is not code being tested if part of the code is changed, 
and I would agree. However, considering that we are not interested in the hard-coded 
names in the code, and that the rest of the processing is more important for the final 
deliverable, it is still a test worth considering).

With “Joe” as the first name, the code should produce the following.

Sorry birthday for Joe Doe not found - check spelling

It appears that the result is satisfactory.
Appropriately combining this code with the earlier getting and checking arguments 

(making small additions/deletions/modification as required in the process), the 
following code is reached.

if ARGV.length != 2
        puts "Please provide first_name and last_name"
        exit
end
first_name = ARGV[0]
last_name = ARGV[1]

begin
        infile = File.open('hrfile.txt','r')
        found = false
        while line = infile.gets
                col = line.split(',')
                #if first and second columns match with the names
                if col[0] == first_name && col[1] == last_name
                        #print date of birth
                        �puts "Date of Birth for #{first_name} #{last_name} 

is #{col[2]}"



Chapter 6 ■ Input-Output

124

                        #mark as found and break
                        found = true
                        break
                end
        end
        #at this point found false means no line has matched the names
        if not found
                �puts "Sorry birthday for #{first_name} #{last_name} not 

found - check spelling"
        end

rescue
        puts "Could not find file hrfile.txt - check the directory."
ensure
        infile.close unless infile.nil?
end

And, it works well.

�Subtask 2: ( The Names of  ) the Youngest and the Oldest 
Persons
This (sub)task does not require getting any argument to the program. It works on all the 
rows. This can be broken down to three parts.

	 1.	 Get the third column.

	 2.	 Change it into yyyymmdd format (this will make it easy to 
compare numerically).

	 3.	 Sort the yyyymmdd values to get the minimum and the 
maximum. Store the corresponding names.

Again, you can take a build by portions approach.
Getting the third column is simple. But for the later part of the code, it is better if we 

get the first name and last name along with that (because eventually we have to print the 
names of the youngest and the oldest persons, not their dates of birth).

With the rescue and ensure parts tagged on, the code looks like this:

begin
        infile = File.open('hrfile.txt','r')
        while line = infile.gets
                col = line.split(',')
                puts "#{col[0]} #{col[1]} #{col[2]}"
        end
rescue
        puts "Could not find file hrfile.txt - check the directory."
ensure
        infile.close unless infile.nil?
end



Chapter 6 ■ Input-Output

125

(This should require no explanation at this point). The output is as follows.

Robin Sen 20/11/1965
Karina Rhea 23/05/1982
Marvin Major 08/12/1967
John Doe 15/12/1968
Roland Boyd 19/02/1992

You somehow need to have the date format changed to yyyymmdd. For this purpose, 
again, you can resort to writing a small code with a hard-coded value.

The following code does not disappoint you.

orgdate = "20/11/1965"
dtpart = orgdate.split('/')
print "#{dtpart[2]}#{dtpart[1]}#{dtpart[0]}"

It prints the date converted in that format. It should output as follows (in this case 
without adding a newline at the end of output, as print is being used).

19651120

Finally, for the sorting (you actually need to do two types sorting: one for the 
minimum and one for the maximum), you use another piece of code, which works on a 
smaller data file (named input2.txt and having data as shown here).

Robin Sen 19651120
Karina Rhea 19820523
Marvin Major 19671208

The following code seems to work.

mindate = 30000000; maxdate = 1

infile = File.new('input2.txt','r')
while (line = infile.gets)
        col = line.chomp.split
        date = col[2].to_i
        if (mindate > date)
                mindate = date
                oldest = "#{col[0]} #{col[1]}"
        end
        if (maxdate < date)
                maxdate = date
                youngest = "#{col[0]} #{col[1]}"
        end
end
infile.close



Chapter 6 ■ Input-Output

126

puts "Youngest : #{youngest}"
puts "Oldest : #{oldest}"

When run, it should produce this:

Youngest : Karina Rhea
Oldest : Robin Sen

Note that mindate is set at a rather high value (higher than you should expect in the 
data set) and maxdate is set at a rather low value, to start with. This is to ensure that the 
very first comparison finds a new minimum value (or a new maximum value, as the case 
may be); otherwise, the algorithm may not work properly.

For any one comparison, if the date needs switching (a new candidate date is 
found), the designated (oldest or youngest) name is reassigned too (to the value from 
the corresponding row). After all the rows are processed, it is left with the names of the 
youngest and the oldest persons.

Since the whole solution is being built in a piecewise fashion, this part of the 
program uses an intermediate data format (in a limited quantity) to develop the 
processing logic.

Putting it all together (and doing some amendments), the final code, which reads 
from the actual data file, looks like this:

mindate = 30000000; maxdate = 1

begin
        #open input file
        infile = File.open('hrfile.txt','r')

        #read and process lines in a loop
        while line = infile.gets
                #split line for individual columns
                col = line.split(',')

                #split date for individual date parts
                dtpart = col[2].split('/')

                #reassemble date parts in yyyymmdd format for easy sorting
                date = "#{dtpart[2]}#{dtpart[1]}#{dtpart[0]}".to_i

                #check if it is a new minimum
                if (mindate > date)
                        mindate = date
                        oldest = "#{col[0]} #{col[1]}"
                end



Chapter 6 ■ Input-Output

127

                #check if it is a new maximum
                if (maxdate < date)
                        maxdate = date
                        youngest = "#{col[0]} #{col[1]}"
                end
        end
rescue
        puts "Could not find file input.txt - check the directory."
ensure
        infile.close unless infile.nil?
end

#print the result(s)
puts "Youngest : #{youngest}"
puts "Oldest : #{oldest}"

Note that this code may be further optimized, but it shows a generalist approach 
to solving a problem. For instance, the checks for maximum and minimum could have 
been done within an if-else structure, rather than using two if statements. (After all, the 
same date is unlikely to be both the maximum and the minimum.) As another example, 
the date formatting could have been handled using a proper API.

�Date Handling by API
Ruby has a Date class that has an elaborate API for parsing, formatting, and otherwise 
using dates. You need to require the file to use them.

Here is a small example to show the parsing and formatting of dates. Using these, you 
could process the date for this task.

The following code

require 'date'
dt = Date.parse('3/2/1965')
puts dt.strftime('%Y%m%d')

should produce this:

19650203

It is possible to provide the parse format explicitly, for example:

dt = Date.parse('03/02/1965','%d/%m/%Y')

Sometimes it may be necessary.



Chapter 6 ■ Input-Output

128

�Subtask 3: Persons with a Birthday in a Given Month
This one is quite simple. Broadly, the steps are as follows.

	 1.	 Check that the first argument (integer value) is between 1 and 
12 (both ends included).

	 2.	 Add 0 to the front if the integer is less than 10.

	 3.	 Compare it with the middle part (as split by '/') of the third 
column (as split by ','), and if a match is found, print the name.

(Note that this is also done without using the Date API).
The following is the code, detailed properly.

if ARGV.length < 1
        puts "Please provide the month [1 to 12]"
        exit
end

month1 = ARGV[0].to_i #Dec will become 0
if month1 < 1 or month1 > 12
        puts "Wrong format or month number : valid 1 to 12"
        exit
end

if month1 < 10
        month = "0" + month1.to_s
else
        month = month1.to_s
end

begin
        infile = File.open('hrfile.txt','r')

        found = false
        while line = infile.gets
                col = line.split(',')
                birthmonth = col[2].split('/')[1]
                if birthmonth.eql?(month)
                        puts "#{col[0]} #{col[1]}"
                        found = true
                end
        end
rescue
        puts "Could not find file hrfile.txt - check the directory."
ensure
        infile.close unless infile.nil?
end

puts "No record found for given month" if not found



Chapter 6 ■ Input-Output

129

The following are some of the main test cases for this:

•	 Provide no argument.

•	 Provide a string as an argument, such as Dec.

•	 Provide a valid two-digit month (such as 12) that should fetch 
record(s).

•	 Provide a valid single-digit month that should fetch a record.

•	 Provide a month number (such as 1) that should not fetch any 
record.

With no argument, this is the output:

Please provide the month [1 to 12]

With Dec as the argument, this is the output:

Wrong format or month number : valid 1 to 12

With 12 as the argument, this is the output:

Marvin Major
John Doe

With 5 as the argument, this is the output:

Karina Rhea

And with 1 as the argument (it does not have a corresponding record in the data file), 
this is the output:

No record found for given month

Note that if you provide more than one argument, the second argument onward is 
ignored. (No check is in place for argument count). Also, initially, the first argument is 
converted to int (actually Fixnum). This makes comparison easier.

Now you can confidently deliver the programs to the department HR director (if the 
situation was not fictitious, that is).

�6.2 Sorting Text
�Problem
The next task demonstrates taking user input (from a console) in a loop and processing 
the data once the end of the input is signaled. So you want to take names, one by one in a 
loop, from the command prompt, unless the user enters the string END. Then, sort those 
names in alphabetical order and print them out.



Chapter 6 ■ Input-Output

130

�Solution
The following code will work.

print "Name [enter END to end] : "

name_arr = []

while name = gets.chomp
  case name
  when "END"
    puts "No more input signalled by user"
    break # break from asking loop
  else # some name
        #append the name to the array
        name_arr << name
        #print the prompt again for further input
        print "Name [enter END to end] : "
  end
end

#sort the array and print the result
name_arr.sort.each {|name| puts name}

When run, this code should keep printing the prompt and wait for the user to input 
a name (one at a time). Once the input is END (all uppercase), it stops asking for input and 
provides the output (i.e., prints a sorted list of the names—one per line, as expected from 
puts function).

Here is an example.

=>ruby arngname1.rb
Name [enter END to end] : John
Name [enter END to end] : Jane
Name [enter END to end] : Dora
Name [enter END to end] : Tully
Name [enter END to end] : Peter
Name [enter END to end] : END
No more input signalled by user
Dora
Jane
John
Peter
Tully



Chapter 6 ■ Input-Output

131

�How It Works
The code has a lot of comments and it would be helpful to follow them. But as you can 
see, it is essentially using a while loop to get the names one by one, and using chomp 
to remove the newline characters following the names (because the user is supposed to 
press the Enter key every time after entering the name). It also has a conditional break in 
case END is entered instead of a name.

A print for prompt is required before the while in order to prompt for the first name, 
because the while condition has a gets call (where it would stop without giving any 
decent clue to the user that it is waiting for a name).

Once the names are all taken, the real work happens in one line of code (sorting and 
printing). This is where Ruby shines (over Java for instance) in this kind of quick scripting.

�6.3 Checking User Input
�Problem
Let’s continue with the problem from Recipe 6.2, except a name list should be sorted 
by last name. (Make sure that you read the previous recipe before continuing with this 
recipe.)

Since we are taking input from user, there may be a check for proper names (for 
now let’s define a proper name as any name that does not have a digit in it). Also, what 
if someone inadvertently enters the first name and then presses the Return key (without 
entering the last name)? We can check for that too (reject it, but show the proper message 
in the next prompt, so that the user notices).

How about enhancing the last solution with all of these checks? Note that different 
parts of the name should be separated in the input by one or more spaces. And the 
names should be printed with the last name first and then rest of the name (e.g., “John M 
McCain” => McCain John M).

�Solution
Before fully addressing the solution, I would like to present a bit of regex (or regular 
expressions). Although regular expressions are discussed in detail later in the book, for 
the current exercise a bit of discussion is necessary.

Note that a representation like /[0-9]/, when used as a pattern (to be matched or 
searched for), means any character (strictly speaking, any one character) that is between 
0 and 9. It can be searched in a string for a match (or otherwise) with the =~ operator 
(which you would have already seen).

For instance, this:

"ab11ed" =~ /[0-9]/

returns this:

2



Chapter 6 ■ Input-Output

132

It is the first index position of a digit (any digit, or any character between 0 and 9, 
both included) in the string. However, if the string does not have any digit, it returns 
nil, (which, as you might remember, is interpreted as 'false' in a logical context).

These kinds of expressions (e.g., [0-9]) are known as regular expressions (there are 
many forms possible). Encased between / and /, it forms a regex pattern (/ and / denote 
pattern boundaries in this case). Note that a pattern can be an exact string (like /ab/) also.

Equipped with that knowledge, let’s proceed to the solution. Since we already have 
some code in place from Recipe 6.2, it would be a good idea to solve the missing pieces 
first. We also already have the non-digit check in place.

In order to check that the name given has at least the first name and the last name, 
we can split it in one or more spaces (again a regular expression). The resulting array from 
split has at least size 2; something like this:

names = name.split(/\s+/)
names.size > 1

The first line of code splits a string (named name) based on the regular expression  
\s+ (\s indicates whitespace characters and the + indicates one or more of that). The 
result of the split goes into the names array. The next line checks whether the size of the 
array is greater than 1.

The next piece of the puzzle is to get the last name and the rest of the names.  
(Note that the name may or may not have a middle name, so the array size after the split 
will not always be 2).

We could find the array size and then access the last element of the array based on 
the size. The following is an example.

a = ['John','M','McCain']
i = a.size
lastName = a[i-1]

Note that there is a function named last in the Array API that gives the last element 
of an array.

irb(main):004:0> ['John','M','McCain'].last
=> "McCain"

But we need to do more than that. We need to rearrange the name (with last_name 
coming at the beginning). An approach for index lookup based on size (i.e. lastName = 
a[i-1]) is more suitable.

In terms of conceptual design, the solution has three main functional components.

•	 Reading and validating the name (and converting valid names to 
bring the last name first).

•	 Asking for names in a loop, until END, and building up the name 
array for sorting.

•	 Sorting and printing.



Chapter 6 ■ Input-Output

133

Note the following.

•	 The functional components do not necessarily represent the 
sequential part of the code. It represents breaking up overall 
processing into some main basic chunk of activities. Those 
activities or functionalities may be intertwined in the program 
and they may not necessarily come one after another. (For 
instance, validation should be called as part of a looping action, 
as each name needs to be validated).

•	 Note also that the first component (as stated earlier) could be 
broken down into subfunctions. For example, validating the name 
and transforming a valid name could be two separate functions. 
It could be a matter of design choice (and indeed another 
function may be written, which could be passed a valid name for 
transformation), but the transformation part is rather small, so in 
terms of design, I have put it in the same function as the validation.

Now let’s come back to solving individual functions (three of them), from our 
conceptual functional component model.

The third part (sorting and printing), in essence, is same as the last task. Hence, more 
or less the same code may be used.

For the second part, we now have three essential cases.

•	 END: To signal the end of looping

•	 A valid (and converted) name => add to the name_array

•	 An invalid name => ask again, and signal error to user through the 
same message

This means that our case statement has three cases now—one for each class 
of action in the while loop. It would be good if our validation function supports this 
classification (so that the case statement can work directly on the output of the function, 
and need not have anything to do with the raw name).

The following is the classification functionality to implement.

•	 Return END when that string is specified.

•	 Return a specific string that indicates that the name is invalid 
(and also indicates the type of error in the same output string—
meaning that we may have more than one specific error string)

•	 Return the converted name (last name first) for all other  
(i.e., valid) cases.

You can start implementing from the first functionality, which is this classification. 
The following code should work fine.

def validate(name)
        if name == "END"
                "END"
        elsif name =~ /[0-9]/
                "NOTVALID_NUMERIC"



Chapter 6 ■ Input-Output

134

        else
                names = name.split(/\s+/)
                sz = names.size
                if sz < 2
                        "NOTVALID_FIRSTNAMEONLY"
                else #return the name with last part first
                        last_name = names.delete_at(sz-1)
                        names.insert(0,last_name)
                        names.join(' ')
                end
        end
end

puts validate('John M McCain')
puts validate('END')
puts validate('FirstNameOnly')
puts validate('1abc 2def')
puts validate('123NumericAndFirstNameOnly')

When run, it should produce the following.

McCain John M
END
NOTVALID_FIRSTNAMEONLY
NOTVALID_NUMERIC
NOTVALID_NUMERIC

Note that the function first checks for digits and then the first name only. Hence, a 
case containing both issues is reported as a numeric case. (Note also that many of the 
code features used in the function were discussed prior to this solution).

Equipped with this function, the case part can be written without much trouble. The 
while loop (including the case statement) now becomes this:

while name = gets.chomp
  processed_name = validate(name)
  case processed_name
  when "END"
    puts "end of user input"
    break # break from asking loop
  when "NOTVALID_NUMERIC"
        print "Not a valid name (no digit allowed). Name [enter END to end] : "
  when "NOTVALID_FIRSTNAMEONLY"
        print "Please provide full name. Name [enter END to end] : "
  else # valid (and converted) name
        #append the name to the array
        name_arr << processed_name



Chapter 6 ■ Input-Output

135

        #print the prompt again for further input
        print "Name [enter END to end] : "
  end
end

Two different types of error messages have been provided, so there are two cases 
for that, but those two cases could be merged if you want to provide one general error 
message. Those two cases are functionally not very different.

This is the current solution.

<function definition goes here>

print "Name [enter END to end] : "
name_arr = []

<while loop goes here>

puts
puts "---------------------------"
puts "Sorted names (by last name)"
puts "---------------------------"
#sort the array and print the result
name_arr.sort.each {|name| puts name}

Run with the inputs demonstrated next.

Name [enter END to end] : 123
Not a valid name (no digit allowed). Name [enter END to end] : abcd
Please provide full name. Name [enter END to end] : Tori Dean
Name [enter END to end] : John M McCain
Name [enter END to end] : Daly Moore
Name [enter END to end] : Santu Bose
Name [enter END to end] : David Bower
Name [enter END to end] : END
end of user input

It produces the following.

---------------------------
Sorted names (by last name)
---------------------------
Bose Santu
Bower David
Dean Tori
McCain John M
Moore Daly

This satisfies our specification.



Chapter 6 ■ Input-Output

136

�6.4 Storing Data in a Structured Manner
�Problem
Sometimes we need to store data in a structured manner, access and change (or otherwise 
process) them as part of the structure, and provide the necessary output. It may be more 
convenient (or conceptually easier to reason about/or easier to maintain) data in a structured 
format that represents an entity in the business domain.

�Solution
In this situation, a struct can be very helpful. Struct is a class that makes it easy to 
organize and handle data.

Suppose we need to keep our customers’ names, addresses, and telephone numbers 
to do various processing. It would be nice if, for each customer, we could group this 
information together (with possibly a short name [actually a variable] that identifies each 
customer for later retrieval and/or processing of his/her information).

We can do this in the following ways:

Struct.new("Customer", :name, :addr, :tel)

or

Customer = Struct.new(:name, :addr, :tel)

Either way creates a structure named Customer, which has the structure described 
(i.e., three fields named name, addr, and tel—in that order).

And multiple customer data can be created using the structure, as follows.

john = Customer.new("John Connor", "123 Rachel Close", 3456)
jane = Customer.new("Jane Greystoke", "12 Jungle House", 4568)
turno = Customer.new("Sarah Turnbull", "50 Sunset Boulevard", 1254)

The variables (john, jane, etc.) can then be used to access particular data in those 
structures. Here is an example.

irb(main):005:0> john.name
=> "John Connor"
irb(main):006:0> jane.tel
=> 4568

It can even be changed by assigning a new value.

irb(main):007:0> jane.tel = 1111
=> 1111
irb(main):008:0> jane.tel
=> 1111



Chapter 6 ■ Input-Output

137

It is possible to define a structure with methods also. Check the following code.

Customer = Struct.new(:name, :addr, :tel) do
  def greeting
    puts "Hello #{name}!"
  end
end
john = Customer.new("John Connor", "123 Rachel Close", 3456)
john.greeting

It does the job nicely, and when run, it should produce this:

Hello John Connor!

There are multiple ways to access the fields in a struct. For instance, each of the 
following accesses the name john (and should return “John Connor”).

john['name']
john[:name]
john[0]

One way may be more desirable than others in some situations. It also may be a 
matter of style, but I would recommend to follow the john.name style, unless some other 
style is really required for the situation.

Note that it is also possible to very easily use a customer array, which may be iterated 
through for processing.

The following code

Customer = Struct.new(:name, :addr, :tel)

cust = []

cust[0] = Customer.new("John Connor", "123 Rachel Close", 3456)
cust[1] = Customer.new("Jane Greystoke", "12 Jungle House", 4568)
cust[2] = Customer.new("Sarah Turnbull", "50 Sunset Boulevard", 1254)

cust.each { |c| puts c.name }

should produce this:

John Connor
Jane Greystoke
Sarah Turnbull



Chapter 6 ■ Input-Output

138

It is also possible to iterate through each field of a single struct’s data. For example, in 
the preceding structure, if we define another customer like this:

joe = Customer.new("Joe Smith", "123 Maple St", 12345)

we can iterate through each field of this particular customer data, as follows.

joe.each_pair {|name, val| puts("#{name} => #{val}") }

It should produce the following.

name => Joe Smith
addr => 123 Maple St
tel => 12345

There are other methods in the Struct API for various functionalities. For instance, 
the == or eql? method checks the equality between two structures.

The following code

Customer = Struct.new(:name, :addr, :tel)
cust = []
cust[0] = Customer.new("John Connor", "123 Rachel Close", 3456)
joe = Customer.new("Joe Smith", "123 Maple St", 12345)
j2 = Customer.new("John Connor", "123 Rachel Close", 3456)
puts j2 == joe
puts j2 == cust[0]

should produce this:

false
true

This concludes our current discussion on structs.

�6.5 Working with Directories
�Problem
You want to work with directories in the file system.

�Solution
While dealing with tasks at the directory level of a file system, methods in the Dir class 
may come handy. Objects of this class are directory streams that represent directories in 
the file system (in a sense like directory handlers).



Chapter 6 ■ Input-Output

139

Using this API, you can create directories, change directories, list files in a directory, 
and so on without resorting to firing an OS-level command through the Ruby code. What 
is more, you can work further on the return values. Let’s take, for instance, when you list 
the files using the proper Dir method. Since you have a handle on the list of files, you can 
iterate through the list, and take some particular action on each file. It can usually work 
with both relative (from a current directory in execution context) and absolute paths.

■■ Note   The current directory in the execution context may not be the directory from 
which you fired the script. It is possible that you programmatically changed the directory to 
a new one (in which case the new directory becomes your current directory in the program 
execution context).

Some of these functions can work with blocks.

�mkdir
The mkdir function creates a directory.

Dir.mkdir('test1') => will create a directory 'test1' under the current 
working directory.
Dir.mkdir('test2',777) => will create directory 'test2' with '777' 
permission.

�rmdir
The rmdir function removes the named directory, if empty. It raises an error otherwise. It 
can work with a relative or an absolute path.

Dir.rmdir('/tmp/tst')   #absoulte path
Dir.rmdir('test2')      #relative path

�pwd
The pwd function returns the path to the current directory in the execution context. (It 
does not print it, it just returns. So you need to use puts or some such function, if you 
need it printed.)

irb(main):001:0> currDir = Dir.pwd
=> "/Users/Shared/chap02"
irb(main):002:0> puts currDir
/Users/Shared/chap02
=> nil



Chapter 6 ■ Input-Output

140

�chdir
The chdir function changes the directory programmatically. Once changed, the new 
directory becomes current in an execution context.

irb(main):001:0> Dir.chdir('test1')
=> 0
irb(main):002:0> puts Dir.pwd
/Users/Shared/chap06/test1
=> nil

chdir has a few forms. Without an argument, it changes to the HOME directory 
(the HOME variable should be set in the environment). Used with a block, it changes the 
directory to the named directory, executes the block, and upon exiting from the block, 
the original working directory (which was current prior to the chdir) is restored in the 
execution context. The return value of chdir in this case is the return value of the block. 
(This form should be used carefully in a multithreaded coding.)

The following code

puts Dir.pwd
Dir.chdir('test1') {
        puts Dir.pwd
        2 + 2
}
puts Dir.pwd

produces this:

/Users/Shared/chap06
/Users/Shared/chap06/test1
/Users/Shared/chap06

�home
Without an argument, the home function returns the home directory of the current user. 
With an argument, it returns the home directory of the named user.

Dir.home => Returns the home directory, of the current user.
Dir.home('root') => Returns roots home directory.

�exist?
For the given argument, the exist? function checks that it is the name of an existing 
directory . If it is not a directory or does not exist, either case returns false. (Path 
specification for relative from current or absolute applies. See the example below.)

Dir.exist?('test2') => checks if the directory 'test2' exists directly under 
the current directory.



Chapter 6 ■ Input-Output

141

�entries
The common form of the entries function takes one argument, which is the name of a 
directory whose entries are required. For a valid argument (directory exists), it returns an 
array containing the names of all files and directories in that directory. (A non-existing 
directory as an argument raises an error).

For the current directory, '.' may be passed (dot, surrounded by quotes) as the 
argument.

irb(main):003:0> Dir.entries('.')
=> [".", "..", "test1", "test2"]
irb(main):004:0> Dir.entries('test1')
=> [".", "..", "x.txt", "y.txt"]

�new
The new function returns a new directory object for the named directory. This can be 
used as a handle for further action. It can use the close function on this handle (directory 
stream) to close it after the job is done. (See the next function’s example.)

�each
The each function works on a directory stream with a block, where the name of each file/
directory from the entries of the directory stream (i.e., the name of files / directories in 
the directory, which is pointed to by this directory stream or handle) gets passed as an 
argument.

The following code illustrates the point.

dir = Dir.new('test1')
print dir.entries
puts
dir.each {|x| puts 'Got '+ x}
dir.close

It can produce something like this:

[".", "..", "test3", "x.txt", "y.txt"]
Got .
Got ..
Got test3
Got x.txt
Got y.txt

Note that the '.' and '..' are also included in the array.



Chapter 6 ■ Input-Output

142

�foreach
The foreach function has many forms, but only one is discussed here. It uses block and 
works similarly to each. However, instead of explicitly opening the directory stream with 
Dir.new, here the directory name is passed as an argument (hence, no explicit closing is 
required). In this sense, it is more convenient than each (less code).

In the test1 example, the following one liner

Dir.foreach('test1') {|x| puts "Name :  #{x}"}

produces this:

Name :  .
Name :  ..
Name :  test3
Name :  x.txt
Name :  y.txt

�glob
The glob function is, by far, the most useful function in the Dir class, so it is going to be 
discussed in detail. It essentially filters the files to be worked on (for filtered values, files 
and directories are the same in the sense that filtering is done on names, and hence, it 
picks up names or either files or directories in the context), rather than all the entries, and 
that is very useful sometimes. This is shown in the following examples, as well as in the 
context of at least one upcoming task.

It can take regular expressions, as patterns, for filtering. As a further goody, you don’t 
have to deal with the '.' and '..'. Some examples are given next.

Dir.glob('*') #returns all files in the current directory (but excludes '.' 
and '..')

irb(main):002:0> Dir.glob('*')
=> ["chdir.rb", "each.rb", "foreach.rb", "test1", "test2"]

It is possible to get a list of files with a particular extension (e.g., .rb).

Dir.glob('*.rb') #gets a list of file (and directory) names ending in .rb 
from the current directory.

irb(main):004:0> Dir.glob("*.rb")
=> ["chdir.rb", "each.rb", "foreach.rb"]

'**' works recursively. So finding any file with the .rb extension in any subdirectory 
under the current directory can be achieved using Dir.glob('**/*.rb'). Note that the 
default file separator may vary based on the operating system, so you can use File.join 
to build up the path, instead of a direct string.



Chapter 6 ■ Input-Output

143

irb(main):001:0> path = File.join('**','*.rb')
=> "**/*.rb"
irb(main):002:0> Dir.glob(path) #effectively Dir.glob("**/*.rb") in this case
=> ["chdir.rb", "each.rb", "foreach.rb", "test1/test3/z.rb", "test1/x.rb", 
"test1/y.rb"]

It is possible to restrict recursive search to any subdirectory with a particular name. 
For instance, we can get all the .rb files under any test3 directory anywhere (at any 
sublevel) under the current directory, as follows.

irb(main):003:0> Dir.glob('**/test3/*.rb')
=> ["test1/test3/z.rb"]

It is also possible to use an expression like '**/test1/**/*.rb', which indicates 
any .rb file at any sublevel of any directory named test1 (which itself could be at any 
sublevel under the current directory).

irb(main):004:0> Dir.glob('**/test1/**/*.rb')
=> ["test1/test3/z.rb", "test1/x.rb", "test1/y.rb"]

Eventually, there are other patterns possible (and a sensible combination of patterns 
would also work). Any files (or directories) that start with t would be as follows.

irb(main):005:0> Dir.glob('t*')
=> ["test1", "test2"]

And any file (or directory) that has each in it would be as follows.

irb(main):006:0> Dir.glob('*each*')
=> ["each.rb", "foreach.rb"]

It is possible to search among multiple extensions. The following code finds all files 
(or directories) in the current directory, which has either extension .rb or .txt.

irb(main):001:0> Dir.glob('*.{rb,txt}')
=> ["chdir.rb", "each.rb", "foreach.rb", "x.txt", "y.txt"]

This pattern used a regular expression (for pattern alteration) of the form {p, q}.
It is possible to find files (or directories) that have an extension whose first character 

is not r (anything but r). Here, a regular expression is used. (The regular expression [^r] 
means a single character that is anything but r).

irb(main):003:0> Dir.glob('*.[^r]*')
=> ["x.txt", "y.txt"]



Chapter 6 ■ Input-Output

144

Note that it will not pick up a file (name) that does not have a '.' in its name (thus all 
files without extensions will be excluded). This is because the overall pattern includes the 
'.' character, and hence, it looks for the dot in the name of the file (or directory).

�6.6 Dividing Files into Subdirectories
�Problem
This task is rather simple. There are some files in a directory. All of them have the .sql 
extension. But some are table creation scripts (these have a 'create table' string in the 
first line); others are procedure creation scripts (they have the 'create procedure' string 
in the first line). From the name or extension, it is not distinguishable whether a file has a 
table creation script or a procedure creation script inside it. Your task is to write a script to 
do the following.

	 1.	 Create two subdirectories (named tbl and proc) in the 
current directory.

	 2.	 Get the .sql files, one by one, and find out whether the first 
line matches table or procedure.

	 3.	 Move the file to the appropriate subfolder.

�Solution
To test the program, you need input data (files). Create four files named a.sql, b.sql, 
c.sql, and d.sql, respectively. In the first two files, put 'create table a' and 'create 
table b' in the first line (and some text in the second line). Here is an example.

create table a
    col  a1   null

For the last two files, use 'create procedure' in the first line. Here is an example.

create procedure c
    begin

If you think about the steps in the task, how to create a directory (the first part) has 
already been discussed (using the Dir API). How to move a file programmatically (the 
third part) has not been.

In the second part of the task, given the file name, you could open it, get the first line, 
and use the match operator to find out if it contains 'table' or 'procedure'. The Dir API 
can also be used to get only the .sql files in the directory.

To move a file, you can use the mv function of FileUtils. One example is given next. 
(Note that this is a rather crude example without any exception handling, but it shows the 
basic code.)



Chapter 6 ■ Input-Output

145

require 'fileutils'
FileUtils.mv('abc.txt','tbl')
#FileUtils.mv('abc.txt','tbl/abc.txt')

Provided that the abc.txt file exists in the current directory, the second line of the 
code will rename the file (unless a tbl directory exists under the current directory). 
The third line (when uncommented) will have a proper move effect (and not rename), 
provided that the files and directories exist as desired.

To get the names of all the .sql files in the current directory, you can use the 
following code.

arr = Dir.glob('*.sql')
print arr

It takes the file names in an array and prints the array.

["a.sql", "b.sql", "c.sql", "d.sql"]

And the array can be iterated over using block structure and the each method.
Putting it altogether, the code looks like this:

require 'fileutils'
Dir.mkdir('tbl')
Dir.mkdir('proc')

arr = Dir.glob('*.sql')
arr.each {|filename|
        infile = File.open(filename,'r')
        firstline = infile.gets #just need to read the first line
        infile.close
        FileUtils.mv(filename,'tbl') if firstline =~ /table/
        FileUtils.mv(filename,'proc') if firstline =~ /procedure/
}

■■ Note   Instead of Dir.mkdir('tbl'), FileUtils.mkdir('tbl') will also work.

This is somewhat crude but it works. Since we need only the first line, there is no 
need to use a while loop on the files. Also, it is very important that the opened file be 
closed prior to the move.

This was a simple use case. In reality, a file’s content may be more complicated 
(such as the table keyword appearing on the second line, or the word 'procedure' 
appears first in a table creation script file, within a commented part, not to mention case 
insensitive keywords). Also, no proper error handling has been added to this code. In a 
real-life task, unless you are running it yourself and you are able to monitor the run and 
the results, it is imperative that proper error handling be in place.



Chapter 6 ■ Input-Output

146

Repeated running of the code would create problem because the (sub) directories 
are already created. To avoid this, you could change the lines for directory creation as 
follows.

Dir.mkdir('tbl') unless File.directory?('tbl')
Dir.mkdir('proc') unless File.directory?('proc')

This means that the directory creation for each one would not be attempted if 
already present.

�6.7 Adding Text to Files Using a Batch Operation
�Problem
(The following is a fictitious situation. Any resemblance …) 

Dale is the team leader of Zoran’s team.
Dale stormed into the meeting room.
“Guys, we have a situation.”
The team members waited eagerly in anticipation.
“Our team has been chosen to be audited this year.”
This was not good news, thought Zoran.
“You know how fussy they are about coding standards. Do those Java files in our 

project have a header with the project name and the code owner’s name?” Dale asked.
Zoran didn’t like where this was going. He was the unofficial batch script expert on 

the team, and he was pretty sure nobody bothered to put those comments in place  
(he himself didn’t).

“Zoran?” Dale looked around to face Zoran as he spoke. “Write a script that can 
run from the project root directory, identify all the .java files, and add the header as a 
comment on the first line. Let me know when it is done.”

“Who should I put for the code owner’s name ?” Zoran asked.
“Use my name for now. My full name.” Dale replied.

�Solution
For this task, the first thing to do is to identify the (.java) file names in the project, using 
the full path from the root directory. I will show two ways of achieving it. The second one 
is really easy for the task, but the first approach may be useful (with some modifications 
as appropriate) in other situations (as a more general approach).

To test the code, create a set of directories (and subdirectories) under the current 
directory.

a
b/1

a and b are the immediate subdirectories. 1 is a subdirectory of b.



Chapter 6 ■ Input-Output

147

In a, create a file called abc.java. In 1, create another file named def.java. Each of 
the files should have two lines.

111
222

That is not Java code (far from it). But our aim is to test our script, and this should be 
fine for our purpose. Finally, these are the subfolders and files of concern (other than the 
Ruby script itself ):

a/abc.java
b/1/def.java

�Approach 1: Output From Command Execution
In Mac or Linux (tested on a Mac), the following command 

find . -name *.java -print

outputs as follows.

./a/abc.java

./b/1/def.java

You can get the return value of a command, as a single string, with the backquote 
construct.

val = `find . -name *.java -print`

The %x () construct also works in the same way. The following code

val = %x(find . -name *.java -print)
val.gsub!("\n",'')
puts val
arr = val.split("./")
print arr

prints as follows.

./a/abc.java./b/1/def.java
["", "a/abc.java", "b/1/def.java"]

The first line of the code gets the whole return in a string (val). The second line 
replaces all the newlines in the string, in place. (Make sure to use double quotes for \n, 
not single quotes).

The fourth line splits the string based on the ./.



Chapter 6 ■ Input-Output

148

Note that we still need to get rid of the first element of the array. Check the following 
code.

#get return value of command in a string
val = %x(find . -name *.java -print)

#replace all \n characters
val.gsub!("\n",'')

#split by ./ and take the second element onwards
#array of .java filenames with full path starting form current directory
arr = val.split("./")[1..-1]

print arr

This code populates the arr array the way that we need.

["a/abc.java", "b/1/def.java"]

This approach of running an OS-level command, getting the output, and processing 
may be useful elsewhere.

�Approach 2: Use Dir.glob
This one is really easy.

arr = Dir.glob('**/*.java')
print arr

It prints as follows.

["a/abc.java", "b/1/def.java"]

�Adding the Comments in Each File
Now that you know how to get the file names in an array, let’s use the second approach 
for that. Also suppose that the comment line to be added in each .java file (in the 
beginning) is as follows.

//Project : Silvasa ; code owner : Dale Nordstrom

Create a new file (tmp.txt) for writing. Write the comment line (appropriately 
escaping special characters, if necessary) and then write the whole of the designated file 
in that. Next, close the file, delete the original one, and rename the tmp.txt file as the 
original one.



Chapter 6 ■ Input-Output

149

The code looks like this.

require 'fileutils'

arr = Dir.glob('**/*.java')
arr.each {|filename|
        outfile = File.open('tmp.txt','w')
        outfile.puts "//Project : Silvasa ; code owner : Dale Nordstrom"
        infile = File.open(filename,'r')
        while line = infile.gets
                outfile.puts line
        end
        infile.close
        outfile.close
        FileUtils.mv('tmp.txt',filename)
}

This code works. A slightly shorter approach (which does not process the input files 
line by line) is illustrated in the following code, which works too.

require 'fileutils'

Dir.glob('**/*.java').each {|filename|
        outfile = File.open('tmp.txt','w')
        outfile.puts "//Project : Silvasa ; code owner : Dale Nordstrom"
        outfile.puts(File.read(filename))
        outfile.close
        FileUtils.mv('tmp.txt',filename)
}

Note that no protection is built in against multiple runs. Multiple runs in this case 
create one line of comment per run, which is not very desirable from an auditing point  
of view.



151© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_7

CHAPTER 7

Regular Expressions

A regular expression is a sequence of symbols and characters, expressing a string or a 
pattern, to be searched for within a longer piece of text.

■■ Note   Support and implementation of regular expressions may vary from language to 
language. In this chapter, it is discussed in the context of Ruby. However, some prominent 
regular expression tokens and constructs likely work in the same way in all languages that 
support regular expressions.

If you are unfamiliar with it, an example (or a few) might help understand the 
concept.

■■ Note   Regular expression is sometimes shortened to regex or regexp.

�7.1 Searching Within a File
�Problem
Suppose you have a data file with some names, such as

Albert Sodir
Rohan Garner
Rana Roy
Alan Donald
Bobby Rosales
Sunil Pande
Raja Sen
Alisha Fitzerald
Amir Hussain
Anand Patnaik



Chapter 7 ■ Regular Expressions

152

First name and last name are separated by a single space. If you want to find the 
names (first names) that start with the letter A, it would be easy.

The following program identifies and prints the names that start with an A.

infile = File.open 'names.txt','r'
while line = infile.gets
        if line[0] == 'A'
                puts line
        end
end
infile.close

The if part could have been written more succinctly without any loss of 
functionality.

puts line if line.start_with?('A')

start_with? is a String function that tests if the string starts with the given 
substring, and then returns a Boolean.

To find the names that start with either 'A' or 'B', you need a slight extension on the 
if condition (the earlier form of the if).

if line[0] == 'A' or line[0] == 'B'

You get the right result.

Albert Sodir
Alan Donald
Bobby Rosales
Alisha Fitzerald
Amir Hussain
Anand Patnaik

If someone were to ask you to work with 'C' also, the condition would extend 
further. At the point where it would become any character from 'A' to 'Z', you could 
have 26 such conditions joined with or, (or you could drop the if condition altogether, 
hoping that all names will start with a capital letter anyway, and it can only be any letter 
from A to Z).

If you were to have a set A to Y, you could just check a single condition under such 
circumstances: that the name does not start with Z.

if line[0] != 'Z'

If you were to exclude two characters (such as Y and Z), you would have to join the 
individual (not) conditions with and. Such is the nature of logical operations.

if line[0] != 'Y' and line[0] != 'Z'



Chapter 7 ■ Regular Expressions

153

Things get trickier if you want to find names that start with any letter from N to 
Z. And I have not put in the condition yet, which specifies that they could be either 
lowercase or uppercase.

In this case, you can do it with 13 individual equality comparisons, joined by 'or'. 
That would not be a pretty site, and probably not as much fun to type either (and that’s 
just for uppercase letters).

Is there any easier way to do this?

�Solution
You could use the following code.

infile = File.open 'names.txt','r'
while line = infile.gets
        puts line if line.match(/^[N-Z]/)
end
infile.close
which produces
Rohan Garner
Rana Roy
Sunil Pande
Raja Sen

line.match(/^[N-Z]/) substitutes 13 comparisons joined with or.

�How It Works
The part between / and / (which is ^[N-Z]) indicates a pattern (in this case, the pattern 
is expressed with a regular expression). In a sense, / and / can be thought of as defining 
pattern boundary.

LANGUAGE WITHIN LANGUAGE

Before the explanation of this particular expression, let’s get into a bit of terminology. 
A regular expression is usually used to search something (a pattern) within 
something (typically a string).

In our case, even though the whole file is searched, only one line at a time is picked 
up in the pattern search. So the source string is the current line (or a single line, if 
you would like to think about it that way).



Chapter 7 ■ Regular Expressions

154

But what is our pattern?

Patterns described as regular expressions have their own language of expression—
as if it is a language within language. Fortunately, most standard programming or 
scripting languages that support regular expressions follow uniform symbolism to 
express such expressions (i.e., to describe such patterns). So if you master one 
language, you should be able to utilize the knowledge more readily when it comes to 
implementing another language.

The expression ^[N-Z] in our pattern can be seen as having two parts. The first part 
(consisting of ^) is an anchor (or positional indicator) that represents where (in the source 
string) to look for the given pattern (anchor => “where to look for”). The second part 
(consisting of [N-Z]) indicates a range of possible characters applied to a single character 
(i.e., that single character could be one of any characters in the range of characters 
specified). This part specifies “what to look for.”

The particular anchor (^) means that at the beginning of the source string (or 
immediately after the beginning, if you prefer to think of it that way) and the particular 
N-Z range specifies any capital letter from N to Z (inclusive of both). The [] construct 
(which by itself means a single occurrence) specifies to look for a single character (in the 
source string).

If we were to build a translation table for the regular expression ^[N-Z] (as if we are 
translating the language of regular expression to English to understand what it is saying), 
it would look like Table 7-1.

You can easily extrapolate that an a-d range specifies any letter among a, b, c, or d 
(lowercase).

Putting it together, the regular expression ^[N-Z] means this: look for any single 
capital letter in the range N to Z (both inclusive) at the beginning of the source string.

A six-character regular expression means a lot in English. Imagine a politician who 
talks a lot. What would happen if he were compelled to talk in regular expressions. How 
much would he say in an hour? (If that happens, surf away from the news channels.)

Regular expression has many aspects, two of which you have been introduced to 
already (anchor and range). Note that ^ is not the only anchor; there are others.

Anchors and ranges are not the only facets of regular expressions, however. There is 
a lot more to it.

Table 7-1.  Regular Expressions Translated to English

Expression English Equivalent

[] Any single character

N-Z Which is anything in between (capital) N and (capital) Z (both 
inclusive)

^ And occurs at the beginning (of the source string)



Chapter 7 ■ Regular Expressions

155

�7.2 Finding Only the Matched String
�Problem
In our earlier code we were simply printing the entire line if it had a match.

puts line if line.match(/^[N-Z]/)

What if we were interested in getting only the part that matched (namely, the first 
character when it falls within the range N to Z), not the entire line?

�Solution
The following code works fine.

infile = File.open 'names.txt','r'
while line = infile.gets
        if matched = line.match(/(^[N-Z])/)
                retarr = matched.captures
                puts retarr[0]
        end
end
infile.close

It produces this:

R
R
S
R

These are the first letters from the names Rohan, Rana, Sunil, and Raja.

How It Works
Take a look at the following code.

if matched = line.match(/(^[N-Z])/)
        retarr = matched.captures
        puts retarr[0]
end

Note that the pattern itself has parentheses (^[N-Z]) is enclosed within a set of 
parentheses. This set of parentheses indicates a group boundary.

A group is defined as follows: A whole pattern may have one (or more) part(s) 
captured as a group (i.e., within parentheses) and optionally other parts, out of 



Chapter 7 ■ Regular Expressions

156

groups (i.e., we could have said something like /(^[N-Z])A/, which means one single 
letter between N and Z in the beginning, followed by A). A string that has 'RA' at the 
beginning will match that pattern; however, since the ^[N-Z] is in parentheses, which 
matches the 'R' part of 'RA', only the 'R' character (not 'A') will be captured as a 
group.

The function match returns a MatchData object, which contains matched data (or 
nil if no match is found). Don’t be concerned about the MatchData class for now.

If nil is returned (i.e., no match is found for a line), the condition of if evaluates to 
nil (or false), and the if block is skipped.

If it has a match, the matched part is caught in the matched object. The retarr array 
gets all the substrings from the source string, which is matched by the groups within the 
pattern (in this case, only one group and only one substring per matched line). The first 
element from the array—that is, the first substring—as captured upon group matching, 
(in this case the only sub-string per matched line)is printed to the console.

As an aside, the code could have been further simplified.

puts retarr[0]

could have been replaced with

puts retarr

Since the first element is the only element in the array, the output would be identical. 
However, retarr[0] possibly emphasizes the fact that captures returns an array of 
strings, not a single string.

Instead of taking the captured groups (in this case, group) in an array, it could have 
been printed directly. The following two lines could have been combined into one.

retarr = matched.captures
puts retarr[0]

As shown here.

 puts  matched.captures

If matched is evaluated before the if, and the if block becomes a single statement, 
the if and condition could come after the statement (and the end taken out). The 
program could then be written like this:

infile = File.open 'names.txt','r'
while line = infile.gets
        matched = line.match(/(^[N-Z])/)
        puts matched.captures if matched
end
infile.close

You may prefer this form over the other. It is a matter of personal choice.



Chapter 7 ■ Regular Expressions

157

�7.3 Working with Character Classes
�Problem
You have an input file (named desc.txt) containing the following two lines.

A Tale
of Two Cities

How do you get the characters (from each of those lines) that match either A, B, or C 
(each in uppercase)?

�Solution
Run the following code on the file.

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/([ABC])/)
        puts matched.captures
end
infile.close

It produces the following.

A
C

�How It Works
In the context of regular expressions, a character class is a set of characters enclosed 
within square brackets. It specifies the characters that will successfully match a single 
character from a given input string. A character class matches any one of a set of 
characters.

■■ Note   A single pattern (without any quantifier or other instruction to repeat the pattern 
search) always stops after the very first match (assuming that a match is found; otherwise, 
it will scan the whole source string and return nil where applicable).

Here [ABC] is a character class that specifies the following: match a character (the 
very first character of that kind; in the line, in this case) that is either A or B or C. (And 
note that regular expressions are very much case sensitive).

In the first line, the first such character is the very first character. It finds A and is 
done with the search.



Chapter 7 ■ Regular Expressions

158

In the second line, the very first letter is 'o' and it is not capitalized. The first capital 
letter is 'T', which does not qualify because it is not either A or B or C. The first letter that 
qualifies is the 'C' of Cities.

Let’s say that we were to make it anchored (i.e., we were to change the pattern as 
follows).

matched = line.match(/(^[ABC])/)

The addition of the ^ anchor prior to the character class means that the search is to 
be restricted to the first character only. Run the program (after saving the file, of course). 
You get an error like this:

abcmatch.rb:4:in `<main>': undefined method `captures' for nil:NilClass 
(NoMethodError)

This is because no match is found in the second line. (The first character is not A or 
B or C in the second line). Hence, it returns nil. Calling captures on a nil object causes 
the error.

To fix the error, you can add an if condition to the puts line (which makes the code 
call the captures method only when a proper match is found, but not on nil).

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(^[ABC])/)
        puts matched.captures if matched
end
infile.close

In this case, however, no output is printed for the second line of input.

A

�Negation
The previous example was a simple character class. But there are other types.

If you needed to specify, for instance, that the pattern would not be one of a few 
alternatives (not either A or B or C), you could use the [^ABC] pattern instead of [ABC]. 
The code line containing pattern would then be as follows.

matched = line.match(/([^ABC])/)

And upon execution, a space would be matched for the first line and the letter 'o' 
would be identified in the second line. The space is the first non-ABC (not A or B or C) 
character in the first line.

Note that the ^ symbol has a completely different meaning here (inside []). It does 
not represent an anchor but negation.



Chapter 7 ■ Regular Expressions

159

�Range
You have already encountered range. If you wish something to match any capital letter 
between N and Z (both inclusive), the pattern should be defined as [N-Z].

■■ Note   This covers range as applicable to regular expressions. It has nothing to do with 
the Range data type in Ruby. Remember “language within language.”

Suppose that for the desc.txt data file discussed earlier, you are to get any 
characters either from A to E or from R to Z. How do you do this? (For now, suspend the 
judgement as to why we should look for such a weird range of characters.)

Ranges can be concatenated. For instance, if you want a character class to match 
anything from A to E and then R to Z, you could write that as [A-ER-Z] (as simple as that).

Upon running on the input file, the following code

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/([A-ER-Z])/)
        puts matched.captures if matched
end
infile.close

produces this:

A
T

For the first line, the very first character was good enough ('A' is between A and E 
inclusive). In the second line, the first one that matched is 'T' of the word 'Two' (which is 
between R and Z inclusive).

For any capital or lowercase letter, the range should be defined as [A-Za-z] (or [a-zA-Z], 
which is equivalent).

You may try a range like [Z-A] to see what happens.

�Union
If you are to look for an union of two sets of characters (say, two ranges) you could nest 
the square brackets containing one set within another, like [A-Z[a-z]].

Note that if both are ranges, it is equivalent to contiguous ranges, as shown earlier. 
That is, [A-Z[a-z]] is equivalent to [A-Za-z]. There are other cases where they would be 
equivalent.



Chapter 7 ■ Regular Expressions

160

�Intersection
From the input file (desc.txt), how do you find any character that is the intersection of 
the set of letters A to V (set1) and T to Z (set 2)?

You could find out the intersecting set and use it as a range. But suppose you don’t 
want to think so much? You’d rather let the program do it.

The intersection of two sets of characters could be defined with the construct.

[<set1>&&[<set2>]]

This is an example.

[A-V&&[T-Z]]

The [A-V&&[T-Z]] pattern matches any single character, which is common to the 
range A–V and T–Z (which is T–V).

It’s no wonder that the following code identifies 'T' from both lines. (This is the only 
available capital letter in either line in the range T–V).

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/([A-V&&[T-Z]])/)
        puts matched.captures if matched
end
infile.close

�Intersection with Negation
It gets interesting when you mix intersection with negation. It could be helpful when you 
have a big range, but only a few characters are to be left out (all except).

Suppose that you wanted to extract all lowercase letters, except vowels, from the 
same input file. How do you do it?

The [a-z&&[^aeiou]] pattern works well.
The following code

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/([a-z&&[^aeiou]])/)
        puts matched.captures if matched
end
infile.close

produces 'l' and 'f', respectively, from the two lines. You may verify that those are the first 
(or only) lowercase consonants.

This would eventually work with two ranges, such as [A-V&&[^T-Z]].



Chapter 7 ■ Regular Expressions

161

An intersection with negation, where the inner set is a complete subset of the 
outer set, may be termed as subtraction. In our earlier example of matching lowercase 
constants, the pattern used was a subtraction pattern; however, the same cannot be said 
for [a-j&&[^aeiou]].

�Common Character Classes
Table 7-2 offers a quick reference for some common character classes.

�Predefined Character Classes
Table 7-3 provides a quick reference of some predefined character classes. They are 
shorthand for some commonly used regular expressions.

Table 7-3.  A Quick Reference of Some Predefined Character Classes

Construct Meaning

. Any character (but not usually the line terminator)

\d A digit [0-9]

\D A non-digit [^0-9]

\s A whitespace character: [ \t\n\x0B\f\r] (includes spaces, tabs, and 
newline, among other things).

\S A non-whitespace character

\w A word character [A-Za-z0-9_]

\W A non-word character

Table 7-2.  A Quick Reference for Some Common Character Classes

Construct Meaning

[ABC] A, B, or C (simple class)

[^ABC] Any character except A,B, or C (negation)

[A-Z] Any character from A to Z, both ends inclusive (range)

[A-Za-z] Any character from A to Z or any character from a to z (contiguous 
ranges)

[A-P[N-S]] Union of characters from A to P and N to S (union)

[A-Z&&[DEF]] Intersection of characters from A to Z (inclusive) and the 
characters D,E, and F; effectively only D, E, and F (intersection)

[A-Z&&[^D-F]] Any characters from A to Z (both ends inclusive) except any 
characters from D to F (inclusive of both ends) (subtraction)



Chapter 7 ■ Regular Expressions

162

The meaning of the words digits, non-digits (characters other than digits), and 
character (by negation, not a word character) should be pretty intuitive. Some words are 
less intuitive. Let’s start with . (dot).

�Any Single Character: dot

The . (dot) is a predefined character class. It represents a wildcard that matches any 
single character (except a line terminator, unless indicated by a modifier; discussed later 
in the book).

To see how it works, run the following code.

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(.)/)
        puts matched.captures
end
infile.close
Which will come up with
A
o

No wonder it identified the first characters from each line.
Note that for dot, you should not use the square braces. If you do, an error is 

encountered upon running the code.
Ranges (single or contiguous) should be enclosed within square braces.

�Whitespace and Non-Whitespace

To illustrate that \s matches a whitespace character (in this case the first space in each 
line), you may run the following code.

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(\s)/)
        puts "-" + matched.captures[0] + "-"
end
infile.close

This comes up with the following.

- -
- -

The '-' characters at either end make the space pronounced. The reason that 
matched.captures[0] has to be concatenated is because captures returns an array, 
which cannot be directly concatenated to strings. The first element (index 0) of that array, 



Chapter 7 ■ Regular Expressions

163

however, is a string, so that can be concatenated in the way shown. Try removing the [0] 
and the program will not run successfully.

In the first line of the input file, replace the first space with a tab and run the 
program.

A       Tale

The output is somewhat different (for obvious reason).

-       -
- -

Try putting a space (first) and then a tab between A and Tale. The output is the same 
as before. The space is picked up in this case.

Now restore the input file to its original condition and replace the \s in the code with 
\S (for non-whitespace characters). Upon running the code, the first letters are picked up 
on pattern match.

-A-
-o-

This won’t change if you use a number of contiguous spaces and tabs at the beginning 
of these input lines. It will still match the first non-whitespace character in each line.

�Special Characters
There are special characters that have significance in text parsing and processing. They 
start with a backslash. Notable among them are the following.

•	 \n – newline

•	 \r – carriage return

•	 \t - tab

•	 \b – backspace

•	 \f – form feed

•	 \a – bell\alert

You will likely deal most often with \t and \n, or \r\n taken together. In fact, for 
many line by line operations in text parsing, you will not need to bother with \n (or \r\n) 
because it is effectively the record separator. If, however, you bring a text file created in 
Windows to, say, Unix, you may have to get rid of the \r characters.

Some of these characters have interesting histories. Exploring a bit of that can help 
you understand why the record separator may be '\r\n' instead of just '\n'.

Back in the old days of ASR-33 teletypes or dot-matrix printers with traveling 
printheads, the CR (carriage return) literally returned the carriage to the left on a 
typewriter, and the NL(new line) advanced the paper. The machinery could overlap the 



Chapter 7 ■ Regular Expressions

164

operation if the CR came before an LF, so CR-LF, (i.e. \r\n) was the (de facto) newline. If 
the operation was supposed to print back to front, it took much longer.

Unix was the first system to adopt \n as the standard line separator. DOS/Windows 
did not adopt it. That is why, unto this day, Windows text files may use '\r\n' as the de 
facto newline.

�Escape Sequence
Let’s look at handling characters with special meaning to express their literal 
representation.

There are tokens that represent a lot of things, such as a dot (.) to represent a single 
character, or and ^ to represent the beginning of a string.

What if you wanted to look for those characters at their literal face value? For 
example, you want to find an actual dot (.).

The approach is to use an escape sequence, which is a backslash (\), to escape the 
meaning of the character (and use it at face value). Thus, if you want to look for a dot, you 
would use /\./.

The following code

print "matched" if "a.b".match(/\./)

prints this:

matched

The following code, however, does not.

print "matched" if "ab".match(/\./)

This is true for all such control characters (+ ? . * ^ $ ( ) [ ] { } | \), which includes backslash 
itself. In order to look for a single backslash, you need to use two in the pattern. (i.e., \\).

�7.4 Finding Significant Positions in a String
�Problem
How do you find the very last characters of each line? How do you find the boundaries of 
words in a string?

�Solution
You have seen the anchor for the beginning of the source string. You have also seen the . 
(dot) character class in action. What if you wanted to get the last character of each line? 
Anchors address issues of position in a string, with respect to some identifiable landmark 
(if I am allowed to use the word landmark in the context of a string), such as beginning 



Chapter 7 ■ Regular Expressions

165

of a source string, the end of a source string, word boundaries, and so forth. Think of 
anchoring of a ship, which is in some sense, tying it up at a certain location. Table 7-4 
offers useful anchors.

■■ Note   In Table 7-4, the string refers to a source string (referred to as a source string in 
this book).

�End of a Source String
You should use the . (dot), but you also need an anchor to indicate the end of the source 
string—and that is $ (the dollar sign).

Try the following program.

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(.$)/)
        puts matched.captures
end
infile.close

You won’t be disappointed. ('e' and 's' are identified as the last characters for those 
two lines). Note, however, that the dollar sign appears after the dot (not before, as with 
the case of the other anchor). This is important. Regexp tokens maintain their relative 
position (wherever applicable) in the search, as they appear in the pattern.

•	 ^. says to look for the single character just after the beginning.

•	 .$ says to look for the single character just before the end 
(newline is effectively the record separator, so it isn’t counted as 
part of the source string for this purpose).

That is how the first character and last character are specified in regexp.

Table 7-4.  Some Useful Anchors 

Expression/Indicator Meaning

^ Start of string or line

$ End of string or line

\A Start of string only

\Z End of string but for the final terminator, if any

\z End of string only

\B Non word boundary

\b Word boundary



Chapter 7 ■ Regular Expressions

166

�Word Boundary and Non-Word Boundary
In order to understand the concept of word boundary, here is a bit of an explanation.

A word boundary (\b) is a zero-width match that can match:

•	 Between a word character (\w) and a non-word character (\W) or

•	 Between a word character and the start or end of the string.

Note that, by definition, a word character (\w) is [A-Za-z0-9_] (in general).
Take the string “bread and jam”. The word boundary matches the (zero-width) places 

shown by the character '|'.

|bread|, |and| |jam|.

On the other hand, a non-word boundary character is anything (any character) 
except a word boundary (a negation of word boundaries).

It can match a zero-width place that is

•	 Between two word characters.

•	 Between two non-word characters.

•	 Between a non-word character and the start or end of the string.

•	 The empty string.

In the string “bread and jam”, it matches the places shown with | in the following 
(any place that is not a word boundary, so the negation of the places shown earlier):

b|r|e|a|d,| a|n|d j|a|m.|

Note that in this example (non-word boundaries), if the full stop was not there after 
the word jam, then the end of the string would be a word boundary instead of a non-word 
boundary.

Now, let’s look at some actual demonstration on our input file (consisting of).

A Tale
of Two Cities

Run the following code.

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(.\b)/)
        puts matched.captures
end
infile.close



Chapter 7 ■ Regular Expressions

167

It produces this:

A
f

'A' is the end of first word in the first line (the whole word consists of a single letter, 
and hence, that is also the last character). 'f' is the end of first word (in the second line), 
which is 'of'.

.\b says to get the single character just before the (applicable) word boundary; 
applicable, in this case, means the first such word boundary that has a character before 
it, not just the first word boundary, because it is looking for a pattern that is a character 
followed by a word boundary (so, the first occurrence of such a combination).

If you were to change the pattern to \b. (i.e., a character followed by a word 
boundary) 'o' would be picked up instead of the 'f' in the second input line.

The following code (for a character followed by a non-word boundary)

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(.\B)/)
        puts matched.captures
end
infile.close

produces this:

T
o

For the first line, the first non-word boundary, preceded by a character, is the zero-width 
place after T (of the word Tale). In fact, that is the first non-word boundary in that line.

�Start and End of a String
Let’s explore how \A and \Z behave at the start and end of source string.

Try the following code.

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(.\A)/)
        puts matched.captures if matched
end
infile.close

Nothing significant happens because we are looking for a pattern at the beginning of 
the source string with a character before that. By definition, there should be no character 
before the beginning of the string (because if there was, the beginning would not be the 
beginning).



Chapter 7 ■ Regular Expressions

168

Change the pattern to \A.

matched = line.match(/(\A.)/)

You will get the very first characters from each line.
For the end of string pattern, there is no point in looking for a character after that. So 

look for a character prior to that instead.

■■ Note   In the input file, there should be only two lines (not an empty third line). The 
second line should not be terminated with a new line in the input file at this point.

The following code

infile = File.open 'desc.txt','r'
while line = infile.gets
        matched = line.match(/(.\Z)/)
        puts matched.captures if matched
end
infile.close

comes up with this:

e
s

If there is a newline at the end of a line, \z possibly matches that and does not return 
anything. My recommendation is try using \Z or $ as the case may be, and avoid \z (as far 
as possible).

�Interaction of Subpatterns
Let’s look at how parts of a pattern work in combination to make up the whole pattern.

In order to get the first character, you can use the ^. pattern.
In order to get the first two characters, you should use the ^.. pattern.
To illustrate this, run the following code.

print "test string".match(/(^.)/).captures
puts
print "test string".match(/(^..)/).captures

It produces this:

["t"]
["te"]



Chapter 7 ■ Regular Expressions

169

Note that for this code, no input data file is needed. It runs on the string specified (in 
the code itself). A couple of print statements have been used. This does not add a newline 
by itself at the end (and it prints the output as an array where applicable).

The puts in the second line separates the output of the two print statements in two 
different lines (to add a newline).

The output illustrates my point. The first two characters have been identified.

■■ Note   Regarding the 'one way': there are other ways to achieve the same result using 
regexp.

It does not take much imagination to understand what is needed for the first three 
characters. However, if we wanted the first two characters after the 't' character, the 
following code will work.

print "test string".match(/t(..)/).captures

It produces the following output.

["es"]

Note that if you were to put the 't' within the group,

print "test string".match(/(t..)/).captures

you get the following instead.

["tes"]

But our goal is to get the characters following and excluding the applicable 't'. 
Hence, it should be outside the group, although it should be part of the search pattern.

The word applicable is significant here. Regular expression has its own language in 
a way. And you need to express your thoughts (about the pattern you are looking for) in 
that language. So it is important to understand what you are asking it to do (or rather to 
make sure that what you are asking it to do is indeed what you want done).

To illustrate it more clearly, if you think that /t(..)/describes a pattern that matches 
the first 't' that it gets, and then two characters after that, you are wrong. It matches the 
first occurrence of any such't' that has two characters following it.

This means that if the string has a 't' in it but no such 't' has (at least) two 
characters following it, the match will not be successful. For instance, the following code

print "tt".match(/(t..)/).captures

results in an error.

... undefined method `captures' for nil:NilClass ...



Chapter 7 ■ Regular Expressions

170

It is important to understand that multiple subpatterns within a regular 
expression are added up to make the pattern (that is, the thing being looked for) 
lengthier. When you are looking for just a 't' or just an 'e', it can just look for that. 
However, when you are asking to look for 't' followed by 'e', it has to look for 'te', and 
no matter how many separate t’s and e’s are in the source string, if no combination is 
found where an 'e' follows a 't', then your search is unsuccessful.

It is neither good nor bad. You just need to specify what you are looking for in the 
right manner.

�Looking for Multiple Groups
The captures function returns an array of a string that matched all the groups in the 
pattern (in that order). If only one group is specified and the match is successful, only that 
group is returned. In order to capture multiple groups, you can ask for multiple groups in 
the pattern.

The following code

print "iteration".match(/t(...)t(...)/).captures

prints this:

["era", "ion"]

The pattern can be translated as follows.

	 1.	 Find the first such 't' that has three characters following it.

	 2.	 Capture those three characters in the first group.

	 3.	 Find the next 't', which should be immediately following 
(immediately following the three characters that follow the 
first such t) and which itself should be followed by three 
characters (at least).

	 4.	 Capture those three characters (in the second group).

■■ Note   Characters do not include newline.

Here the pattern was chosen in such a manner that there was a second t following a 
first t, and three characters after that. If that t was not there, the match would fail. In order 
for this pattern to work, there has to be at least eight characters, the first and fifth of which 
should be 't'.

The last code was meant to show how multiple groups can be captured. It should 
be noted, however, that the groups presented within the pattern combine with other 
parts of the pattern (in the given order) to form a complete pattern, and unless the 
whole pattern is present, the match will fail.



Chapter 7 ■ Regular Expressions

171

�7.5 Using Non-Capturing Groups
�Problem
You may wish that a second group be part of the pattern (to indicate the alternatives) but 
not be captured. How can you do that?

What would happen if we used captures on ["white and black".match 
(/(wh(eat|ite))/)]? What’s the point in trying to guess, when it can easily be found out 
(by using captures and seeing what happens, for instance)?

The following code

print "white and black".match(/(wh(eat|ite))/).captures

prints this:

["white", "ite"]

It has captured two group matches. The second group is the one nested (i.e., 
(eat|ite), of which 'ite' is a match).

�Solution
This can be accomplished by making the group passive (or non-capturing). The way to do 
that is to put a '?:' at the beginning of the group.

The following code

print "white and black".match(/(wh(?:eat|ite))/).captures

prints this:

["white"]

This will work even when the groups are not nested. For example, the following

print "white,black, or yellowish".match(/(white)(.*)(yellow).*/).captures

prints this:

["white", ",black, or ", "yellow"]

Yet, the following code

print "white,black, or yellowish".match(/(white)(?:.*)(yellow).*/).captures

prints this:

["white", "yellow"]



Chapter 7 ■ Regular Expressions

172

�7.6 Understanding the Regex Engine and 
Backtracking
�Problem
Having some idea about how a regex engine works would help you understand the 
functioning of certain pattern constructs more clearly.

The phrase “regex engine” is in wide circulation. On the Internet, you can find 
plenty of pages refereeing to it. Getting familiar with the term is likely to help your further 
studies on the subject of regular expressions.

�Solution
What is a regular expression engine? I did not find a very clear definition on the Internet. I 
am providing an overview from my own understanding (which is by no means an official 
definition, but in this regard, understanding is far more important, in my view, than an 
official definition).

The engine in this sense refers to part of the Ruby language’s operating 
environment (which may consist of a compiler/interpreter and an execution 
platform). In this book, it is referred to as ROE (Ruby Operating Environment), 
which deals with interpreting regular expressions as they appear in a pattern (check 
validity), trying to find one or more match(es) as requested, and capturing the group. 
It may be helpful to think of this part of ROE as a separate executive performing due 
diligence on source strings and patterns, and handing out reports. (Although it really isn’t 
separate, this is a matter of convenience for discussion and understanding.)

And how does the engine work? There is more than one type of regular expression 
engine. However, because this is not a reference book, let’s not get into too much detail. 
Besides, for day-to-day use, you probably won’t need a very deep level of understanding 
the engine. So I will try to keep it simple and try to provide an overview based on my 
understanding.

The following are two basic rules that apply in general, for the engine:

•	 The first match wins

•	 Patterns are inherently greedy

The engine

	 1.	 Runs from left to right for both the source string and for the 
pattern to be matched

	 2.	 Tries to match the whole pattern at each possible position (as 
applicable) in the whole source string, before going to the next 
position.

If it finds a match, it stops without checking any further (unless otherwise specified 
in the pattern).



Chapter 7 ■ Regular Expressions

173

In context of 'position (as applicable)', note that it is contextual (as per the 
pattern expression). For instance, if the pattern specifies a beginning anchor (^), if 
the match is not found in the very first position, there is no point in going ahead.

The possible positions in the source strings (in general) are the zero-length 
positions prior to each character, including each space, and the position at the end. 
So, in a “Hello World” string, the positions (shown with '|' character) are |H|e|l|l|o| 
|W|o|r|l|d|.

�Plane Forward Search
This following explanation is based on a pattern that is a set of plane characters, but the 
principle applies to other patterns too (as applicable).

When the engine picks up the source string, on one hand (in a metaphorical 
sense), and the pattern, on the other, it starts with the first possible place (the zero-
length position before the first character) in the source string. It tries to match that with 
the first character of the pattern. If a match is found, it goes ahead one position in the 
source string and tries to match that with the second character of the pattern. If that 
succeeds, it goes ahead one position further in source string and tries with the third 
character in the pattern, and so on.

If at one stage a match fails, it abandons the basic starting position in the source 
string (in this case, the first position) and moves ahead to the next position in the source 
string and tries to match the whole pattern starting from there. (The “basic starting 
position” is not a commonly recognized term in this regard. I used it in this book for 
ease of description (and possible understanding.)

If it succeeds in matching the whole pattern in a position, it returns success  
(or whatever the equivalent, as per implementation) and stops.

An example of a search on the string “Raca the cat, jumped in the hat” for the pattern 
/cat/ will help.

The search starts at the position before R, and tries to first match 'R' with the very 
first character in the pattern (which is 'c'), and fails. It advances to the next position, 
which is after 'R' and before 'a'. In its journey, at one point it comes to before (the first) 'c' 
in the source string.

This time, it tries to match 'c' (of 'Raca') with 'c' (from the pattern) and finds a match. It 
advances position and tries to match 'a' with 'a' (from the pattern) and succeeds. However, 
the next match between a space (from the source string) and 't' (from the pattern) fails. It 
gives up the current basic starting position, which is the place before 'c' in the word 'Raca' 
and makes the position after the 'c' its basic starting position for the next search attempt.

This goes on until it comes to just before the 'c' of the word 'cat' in the source string 
(assuming that the computer does not crash). At this point, it matches 'c' with 'c', goes 
ahead and matches 'a' with 'a', still goes ahead and matches 't' with 't'. And it concludes 
its journey.

�Backtracking
Things may get more interesting when the pattern is more complex. Take the example of a 
pattern involving alternatives, such as /tra(in|ck)/ (which should match either 'train' or 
'track') on the string “The trap set for Coltrain in the track”.



Chapter 7 ■ Regular Expressions

174

At a point, when the engine has more than one option to find a suitable match for 
the next character (or subpattern, etc.), it remembers the other options that it can try. It 
also notes the position where the fork happened to get back and try the next alternative 
from that fork in the road, should the current alternative come to a dead end prior to 
completing a match. This is known as backtracking (coming back to the fork in the road 
and trying a previously untried alternative).

So, as it happens, the engine (or shall we say the car) sometimes runs in reverse 
(metaphorically speaking) as necessary.

Coming back to our example, although the search starts from the position prior to 
'T', the real position of interest (for the current explanation) is the position prior to the 
't' of 'trap'. The 't' the 'r' and the 'a', matches one by one from the pattern. Just before 
'p' the engine has two options. Let’s say it picks 'in' to try first and saves 'ck' for future 
search should 'in' fail. (This does not necessarily happen left to right, and follows a LIFO 
structure for getting the next alternative to try). Eventually 'p' does not match 'i' and the 
match fails. It backtracks to the position before 'p' and tries to match that with 'c' of 'ck'. 
Still fails. Now since it has no other untried alternative, it abandons the basic starting 
position (which is the position before the 't' of 'trap' in this case) and advances to the 
position after that 't' (i.e. before the 'r' of 'trap') and makes that it’s basic starting position 
for the next attempt.

When it comes to the position before the 't' of 'Coltrain', things get interesting again. 
The 'tra' part matches as usual, it notes the position (as a fork in the road [metaphorically 
speaking]), saves the other alternative (say, 'ck'), and tries to find a further match for the 
'in' part—character by character. And it finds a match. No need to backtrack any more. 
The pattern matches the 'train' part from the word 'Coltrain'.

�More on Greedy (Meta-) Characters
In a fairy tale world, where metacharacters such as '*' and '+' (of regular expressions) 
are characters (in the story), you would find that they are greedy with acquiring and do 
not give up easily. The only time they backtrack and give up is when they have to do so for 
the team (read the subsequent part of the current search advances), and even that is as 
little as they can give away before getting away with it.

Consider the following code.

print "tatta".match(/.*a/)

It prints this:

tatta

And the following code

print "tatta".match(/.*at/)

prints this:

tat



Chapter 7 ■ Regular Expressions

175

In the first case, the .* initially takes up the whole string. Since the engine needs to 
match the 'a' from the pattern (following .*), the engine backtracks by one character from 
what is already matched (which prior to the backtrack, was the entire source string), and 
from that position it tries to match next character in the source string (which is 'a') with 
the next character of the pattern which is 'a'. The match succeeds, and hence, the whole 
string matches the entire pattern.

In the second case, however, the matching for .* takes the entire string, and then 
backtracking one character and matching the next 'a' character also succeeds. But at 
this point, the 't' (of the pattern) cannot be matched. So it has to backtrack more. In 
the process of backtracking, it reaches the (zero-length) position, after the first 't' in the 
source string, and tries to match forward the next characters of the source string ('a') and 
that of the pattern ('a'), it succeeds. From that position, it tries to match forward the next 
characters from the source string, and the next character from the pattern, both of which 
are 't', and the match succeeds. Hence, the entire pattern matches with 'tat'.

I hope that this provides a somewhat workable overview of how the engine operates.

�7.7 Finding Repeated Patterns
�Problem
You want to match patterns such as 'ab0ab0ab' or 'cd1cd1cd' or 'ef1ef1ef' and so on, 
but not 'ab1cd1cd' or 'cd2ab2ef' and so on. How do you specify that?

�Solution
A backreference is a type of construct in regular expressions. It provides a convenient 
way to identify a repeated character or substring within the source string. As far as 
backreferences are concerned, the key word is repetition.

Suppose you are looking for a /(ab/cd/ef)/ pattern that will match either 'ab' or 
'cd' or 'ef'. However, you want to see whether the same pattern is repeating twice more 
after another character gap each time.

You can use (numbered) backreferences for the purpose.
The following code

print "matched" if "ab1ab2ab".match(/(ab|cd|ef).\1.\1/)

prints this:

matched

And the following code

print "matched" if "cd1cd2cd".match(/(ab|cd|ef).\1.\1/)

prints this:

matched



Chapter 7 ■ Regular Expressions

176

But the following code does not.

print "matched" if "ab1cd2cd".match(/(ab|cd|ef).\1.\1/)

�How It Works
In the last code, the initial pattern found is 'ab' (even though it was looking for either 
'ab' or 'cd' or 'ef'), and hence, the value of backreference \1 is set to 'ab' only. In the 
next case, after a gap of one character (signified by .), 'ab' does not occur, and hence, the 
entire pattern fails to match.

If you removed the last backreference and the preceding dot from the pattern (i.e., it 
was defined as /(ab|cd|ef).\1/), it would pass, however.

The following code

print "matched" if "ab1cd2cd".match(/(ab|cd|ef).\1/)

prints this:

matched

The match is not between 'ab' and 'cd' but between the last two 'cd'’s. This 
becomes apparent upon running the following code.

print "ab1cd2cd".match(/(ab|cd|ef).\1/)

That prints the following.

cd2cd

You can have multiple backreferences in a single pattern, referring to captured 
groups, specified in that order in the pattern. Hence, the following code

print "matched" if "ab1cd2ef3cdabef".match(/(ab).(cd).(ef).\2\1\3/)

prints this:

matched

The three groups captured (in that order) set the values 'ab' to \1, 'cd' to \2 and 
'ef' to \3, respectively. Hence, \2\1\3 translates to 'cdabef'. The rest should be easily 
understandable.

Any small deviation in this part of the string (assuming that you are not adding the 
same string elsewhere in the source string) interferes with the match.

Note that backreferences happens only with captured groups. If you were to make 
the second group non capturing; for example,

print "matched" if "ab1cd2ef3cdabef".match(/(ab).(?:cd).(ef).\2\1\3/)



Chapter 7 ■ Regular Expressions

177

An error will occur.

... invalid backref number/name: /(ab).(?:cd).(ef).\2\1\3/

This is because, the second group now being non-capturing. \2 actually gets 
the value captured from the third group, and \3 is meaningless (there are only two 
backreferences generated in this case).

An observation from this is that you cannot refer to an invalid backreference (one 
that is not generated from the pattern).

�Octal Codes and Backreferences
In this context, it is worth mentioning octal codes. In Ruby, an octal code is distinguished 
by a preceding backslash. Hence, the following code

print "\121"

prints this:

Q

The question is how the Ruby compiler/executor environment knows whether such 
a number is an octal code or a backreference.

The following rules apply.

•	 The expressions \1 through \9 are always interpreted as 
backreferences and not as octal codes.

•	 If the first digit of a multi-digit expression starts with 8 or 9, the 
expression is interpreted as a literal.

•	 Expressions from \10 onward (except the 8 and 9 beginning 
digits) are considered backreferences if there is a backreference 
corresponding to that number; otherwise, they are treated as octal 
codes.

So you cannot get away with an invalid backreference if it is between \1 and \9 
(both digits included).

As per the second point, the following code

print "\89"

prints this:

89



Chapter 7 ■ Regular Expressions

178

Named Backreferences
A named backreference is captured with the (?<name>pattern) construct and refereed 
with the \k<name> construct.

Suppose that you want to deal with two backreferences, and instead of referring to 
them as \1 and \2, you want to use names 'Hansel' and 'Gretel', respectively.

The following will work.

print "matched" if "cd1abcab3cd".match(/(?<Hansel>cd).(?<Gretel>ab). 
\k<Gretel>.\k<Hansel>/)

In the first group, the whole construct, which is of the form (?<name>pattern), is 
represented by name 'Hansel' and the 'cd' pattern. The matched substring is 'cd', 
which is assigned to the backreference named Hansel, and can later be invoked as  
\k<Hansel>.

The following is the equivalent of our earlier code (with numbered backreferences).

print "matched" if "cd1cd2cd".match(/(ab|cd|ef).\1.\1/)

It can be written in the named backreference parlance, as follows.

print "matched" if "cd1cd2cd".match(/(?<x>ab|cd|ef).\k<x>.\k<x>/)

The choice of the name 'x' is arbitrary here (the name 'y' could serve equally well, if 
it is used consistently).

�7.8 Finding a Match and Excluding Some of It in 
the Result
�Problem
If you wished to match qu you could use the pattern /qu/. So long as it is purely for 
determining whether there is a match, it can be done as follows.

print "matched" if "aqua".match(/qu/)

If you are to get the matched string in return, you could use this:

print "aqua".match(/qu/)

It prints the following.

qu

But what if you wanted to print a 'q' on match, only if it has a u following it, but you 
did not want to get the u along with the returned value?



Chapter 7 ■ Regular Expressions

179

�Solution
Things will get very tricky. If you just use the /q/ pattern, it will match even if there is no 
'u' following the 'q'. And if you use /qu/ as pattern, the return value will contain 'qu'.

Note that the non-capturing group will not help you here because you are interested 
in the whole pattern, not individual groups.

So the following code

print "aqua".match(/q(?:u)/).captures

prints the following empty array, because the only group within the pattern is a passive 
(non-capturing) group.

[]

And this code:

print "aqua".match(/q(?:u)/)

prints the following.

qu

This is because the code is about the whole pattern, not the groups within.
Hmmm. How do you avoid the u (following the 'q') from being returned, while still 

checking for it as part of the match ?
The following code succeeds.

print "aqua".match(/q(?=u)/)

It prints this:

q

And the construct that is used— (?=sub-pattern)— is a lookahead assertion.
I could not find a formal definition of assertions. In my own understanding, 

they can be expressed generally as the subpattern, presence, or absence of which 
(as specified), immediately ahead or behind another character or subpattern (as 
specified), causes the match to succeed, but which does not feature in the match 
returned. So it is essentially a subpattern that features in the search but does not 
feature in the returned value (along with some other characteristics).

Let’s focus on presence or absence and ahead or behind. If we combine these two 
sets of possibilities, we can come up with four types of assertions.

•	 Present and ahead—or a lookahead assertion (an example of 
which has already been discussed)

•	 Not present ahead—or a negative lookahead assertion



Chapter 7 ■ Regular Expressions

180

•	 Present and behind—or a lookbehind assertion

•	 Not present behind—or a negative lookbehind assertion

�Negative Lookahead Assertion
Negative lookahead assertion uses the (?!sub-pattern) construct and asks to look for a 
match if the subpattern specified in the assertion is not present (immediately) after 
the subpattern specified in the preceding parts in the pattern. For instance, /q(?!u)/ 
means match a q only if it is not followed immediately by a 'u'.

The following code fails to match.

print "aqua".match(/q(?!u)/)

And this code:

print "aqa".match(/q(?!u)/)

prints as follows.

q

�Lookbehind Assertion
You may have already guessed that lookbehind assertions talk about subpatterns, the 
presence or absence of which is considered preceding other subpatterns within the 
pattern. Lookbehind assertions ask to look for a match if the subpattern in the assertion 
occurs (immediately) preceding the other relevant subpatterns within the pattern.

The construct is (?<=sub-pattern) and in this case, it has to precede the other part 
in question. For instance, the /(?<=u)q/ pattern asks to match a q, which is immediately 
preceded by a 'u'.

The following code

print "auqa".match(/(?<=u)q/)

prints this:

q

Whereas the following code fails to match.

print "aqa".match(/(?<=u)q/)



Chapter 7 ■ Regular Expressions

181

�Negative Lookbehind Assertion
Negative lookbehind assertion asks to look for a match if the subpattern in the 
assertion does not occur (immediately) preceding the other relevant subpatterns 
within the pattern. The construct used is (?<!sub-pattern) and it precedes the other 
relevant subpattern.

The /(?!=u)q/ pattern looks for a q only if it is not (immediately) preceded by 'u'. 
Eventually, the following code fails to match.

print "auqa".match(/(?<!u)q/)

And this code:

print "aqa".match(/(?<!u)q/)

prints as follows.

q

�7.9 Inserting Comments in a Regular Expression
�Problem
How do you insert comments in a regular expression?

�Solution
Comments can be included in a Ruby regular expression. There is more than one way  
to do it.

A comment in a single line pattern uses the (?#comment) construct. For instance, the 
/te(?#this is a comment)/ pattern is effectively the same as /te/ as far as matching is 
concerned.

Eventually, the following code

print "test this".match(/te(?#st)/)

prints this:

te

Another way uses free-spacing mode. In this mode, a pattern is followed by an 'x' 
modifier and can be spread over multiple lines. The comment (at any line) starts at '#' 
and goes to the end of the line.



Chapter 7 ■ Regular Expressions

182

The following code

print "ababcabcd".match(/ab #the characters a and b
        c # followed by c
        a # and then another a/x)

is equivalent to the following, as far as match is concerned.

print "ababcabcd".match(/abca/)

It prints this:

abca

For a long and complicated pattern, this form of coding and commenting may 
greatly improve maintainability.

�7.10 Modifying Results
�Problem
You want your regular expression to work in a slightly different way from the default 
behavior. For example, if you are looking for an AB (both capital letters) pattern, you 
could use /AB/ for, and for lowercase you could use /ab/. Even for two letters, either case 
pattern requires four different combinations (/AB/,/ab/,/Ab/, /aB/). Is there a way 
that you could specify in the pattern that it should ignore case in the search? 

You also want to include newlines in the results.

�Solution
A modifier can be used in such instance. There are some modifiers available with regular 
expressions. They allow modifications for the representation or interpretation of the 
pattern. You were introduced to one modifier, which is the free-spacing modifier or the 
ignore whitespace modifier, which is represented by an x after the pattern (not included 
within the pattern).

There is an ignore-case modifier, represented by an 'I' after the pattern.
The following code

print "ababcabcd".match(/AB/i)

prints this:

ab

But the following code does not match anything (for understandable reasons).

print "ababcabcd".match(/AB/)



Chapter 7 ■ Regular Expressions

183

�How It Works
Ignoring case behavior can be used on a subpattern, in which case it can be specified with 
a construct such as /R(?i)uby/ or /R(?i:uby)/— both of which match the word Ruby 
with 'uby' in any case.

So the following code

print "ababcabcd".match(/a(?i)BC/)

and

print "ababcabcd".match(/a(?i:BC)/)

are equivalent. They both print the following.

abc

Although the second construct is more useful, if there are other subpatterns 
following the “ignore case” where case should not be ignored.

The following code

print "ababcabcD".match(/a(?i:bc)D/)

prints this:

abcD

But the following code does not return a match.

print "ababcabcd".match(/a(?i:bc)D/)

This may be desirable (because you may want to match only when the 'D' is in 
capital, not otherwise). If you use the first construct, however, you will find a match on 
the source string in both cases.

The multiline modifier (indicated by an 'm' after the pattern) in Ruby is not really 
a multiline modifier by general standards. This is equivalent to single-line or DOTALL 
mode in some other implementations (usually indicated by an s after the pattern in those 
implementations) and simply means dot (.) will match newlines also.

Hence, the following code fails to match.

print "ababcabcd\n".match(/cd./)

Whereas this code:

print "ababcabcd\n".match(/cd./m)

prints the following.

cd



Chapter 7 ■ Regular Expressions

184

It is recommended that modifiers, especially the m modifier (in Ruby), be avoided for 
performance reasons.

�7.11 Using Non-Backtracking Groups
�Problem
You want the engine to throw away all backtracking positions remembered by any tokens 
inside the group. This may be especially helpful where fast-fail is desired to avoid a lot of 
extra effort for an attempted match that won’t happen anyway.

�Solution
Atomic groups with a (?>sub-pattern) construct are non-backtracking groups.

�How It Works
To understand how it works, first consider the /a(bc|b)c/ pattern that will match either 
'abc' or 'abcc'.

Now, if you make the alternative group an atomic one, the pattern becomes 
/a(?>bc|b)c/ and it will not match 'abc' anymore. Why?

In the source string “abc” and this pattern, the 'a' is a match to 'a'. Subsequently, the 
match is found for the 'bc' portion of the alternative, with the 'bc' part of the string. When 
it tries to find a match for the last 'c' in the pattern, it has already exited the group within 
the pattern, and in doing so, this being an atomic group, has discarded all backtracking 
positions that were applicable within the group. (So at this point, alternative 'b' will not 
be attempted for a match from the second position—that context is gone.) Since before 
coming to the last 'c' in the pattern, the whole source string “abc” has been used to match 
the prior part of the pattern (prior to the last 'c'), nothing is left to be matched by 'c'. (And 
having come out of the non-backtracking group, no backtracking will happen to release 
another character in this case). Hence, the overall pattern match fails.

print "ababcabcd".match(/(a(?>bc|b)c)/)

fails to match this:

print "ababcabcd".match(/(a(bc|b)c)/)

And prints this:

abc

An atomic group fails fast. If one of the alternatives for such a group has matched a 
part of the source string (at which point it exits the group) and the subsequent subpattern 
(outside the group) does not match, it gives up without trying any other alternatives. In 
certain situations, this is very helpful with avoiding unnecessary work.



Chapter 7 ■ Regular Expressions

185

If you have a pattern such as /\b(armchair|armour|army)\b/ to be matched on a 
“armchairperson” source string, it obviously won't match because of the ending word 
boundary. However, this being a normal group, backtracking will happen once the 
last '\b' in the pattern fails to match the 'p' in the source string, as it tries to match the 
alternative 'armchair' with the source string. It will try the other options, but in vain.

If the group is made an atomic one /\b(?>armchair|armour|army)\b/ as soon as 
the 'armchair' part is matched, the group exits. It fails to match '\b' and gives up without 
backtracking. Some effort is saved. In case where a batch program has the potential for a 
lot of such savings, it could add up to significant performance boost.

Consider, however, the /\b(?>arm|armchair|armour)\b/ pattern on the source 
string “armchair”. In a normal group, it would match the alternative 'armchair'. However, 
the following code fails to match anything.

print "armchair".match(/\b(?>arm|armchair|armour)\b/)

This is not the desired behavior.
After matching the leftmost alternative, 'arm', with that part in the source string, the 

group exits (“without a trace” in a manner of speaking) and the subsequent '\b' fails to 
match. And there goes the entire match.

�7.12 Replacing Substrings Using Regular 
Expressions
�Problem
You need to replace part(s) of a string as you search for a particular pattern.

Take a look at the following string:
“All the land belongs to John Doe. All the horses belong to John Doe. And the 

farmhouse belongs to John Doe”
How would you replace “John Doe” with “me”?

�Solution
You could do it this way.

print "All the land belongs to John Doe. All the horses belong to John Doe. 
And the farmhouse belongs to John Doe".gsub(/John Doe/,'me')

The preceding code prints as follows.

All the land belongs to me. All the horses belong to me. And the farmhouse 
belongs to me

It uses the gsub function (for global substitution) with two parameters. The first one 
is a pattern. The second one indicates the substring that should be used to replace each of 
the matches.



Chapter 7 ■ Regular Expressions

186

If you used the sub function instead of gsub in the same fashion, only the first 
occurrence of 'John Doe' would be replaced.

You may try this on a file level. On an input file containing

All the land belongs to John Doe.
All the horses belong to John Doe.
And the farmhouse belongs to John Doe

this code

infile = File.open 'inp.txt','r'
outfile = File.open 'outfile.txt','w'
while line = infile.gets
        outfile.print line.gsub(/John Doe/,'me')
end
infile.close
outfile.close

would produce this

All the land belongs to me.
All the horses belong to me.
And the farmhouse belongs to me

in the output file.
It is possible to use gsub, along with block structure, to do further processing prior 

to replacement, after the pattern is found. (Note that the gsub function was introduced in 
Recipe 2.15 in the context of manipulating strings).

The following code finds each number group (separated by spaces in between), 
converts the group to an integer, and doubles them prior to replacing them with the result 
(of doubling).

print "12 10 16".gsub(/(\d+)/) { |m| m.to_i * 2 }

It prints as follows.

24 20 32

�7.13 Using the scan Function with Regular 
Expressions
The scan function was introduced in Recipe 2.15 the in context of manipulating strings. 
scan can also work with regular expressions.

You have already seen that the following code

print "this is the theatre".scan("th")



Chapter 7 ■ Regular Expressions

187

produces this:

["th", "th", "th"]

Try the following code.

str = "this is the theatre"
rslt = str.scan("th")
puts rslt.inspect

The result is the same. The inspect function offers an alternate means to inspect the 
result of the scan. (The function to_s also behaves the same way in the place of inspect 
here.)

Try a regular expression in place of a string for the scan (as shown next).

str = "this is the theatre"
rslt = str.scan(/t|h/)
puts rslt.inspect

The result is very different.

["t", "h", "t", "h", "t", "h", "t"]

Since match with regular expressions (unless otherwise specified) finds the first 
match, using scan with regular expressions may provide an easy way to find all the 
matches of the pattern in the source string.

�Exercises
The solutions are in the appendix.

�Exercise 7.1
Suppose you are interested in finding the names of people in sentences 
(programmatically). The idea is in a sentence (i.e., “Abani Sen mentioned that he will be 
absent on Thursday.”), a person’s name is identified as two consecutive words that start 
with a capitalized (the capital at the beginning but not elsewhere).

Write such a program (use one sentence at a time as input) and apply it to the 
preceding example sentence and to the sentence, "The US president, Barrack Obama, 
proposed the bill." From each sentence, take only the first name (if there is more than one).

■■ Hint U se groups.



Chapter 7 ■ Regular Expressions

188

�Exercise 7.2
An application tracking train timing prints into a log file. There are lines like this:

Train 45DN arrived at Strathfield station 13:04:22
Train 36UP departed from Redfern station 12:56:30

There are other lines in the log that are not of this format and not of interest to us.
The task is to find those lines and get the train number, station name, and arrival or 

departure time (the tokens).
Suppose the log file contains the following lines -

Train 36UP departed from Redfern station 12:56:30
received web request 12:57:20
response OK
Train 45DN arrived at Strathfield station 13:04:22
DB connection failure 13:11:32

Extract the relevant tokens and print the result

■■ Hint U se groups.



189© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4_8

CHAPTER 8

Putting It into Action

In this chapter, a few more tasks are discussed. Many (or perhaps all) of them involve 
regular expressions.

�8.1 Removing Block CommentedCode
�Problem
The first task is rather easy. Suppose you have a Java project with multiple files in multiple 
subfolders (packages). You developed it little by little, experimenting with this and that. 
In the process, you commented a lot of functions entirely. Sometimes you commented a 
large chunk of code within a function. You are done with your experimentation; however, 
there is too much commented code. Not that it would do anyone any harm beyond a bit 
of disk space, etc.), but you want the code to be neat. Why bother to keep 3,000 lines of 
code if you can get away with 1,000 lines?

There are some comments, however, that you want to keep. For now, consider that 
you want to remove only block comments (which start with /* and end with */ and may 
span multiple lines). You want to keep line style comments (which start with //) because 
they may contain important descriptions for the developer (or maintainer)—unless, of 
course, those line style comments appear within a block comment, in which case they 
should be removed anyway.

�Solution
For the purpose of coding and testing, just take two subdirectories at the same level  
(a and b) and have ab.java in a and def.java in b files. (Even if the files were in different 
subdirectory levels, the trick as to how to tackle them has already been covered).

a/abc.java
b/def.java



Chapter 8 ■ Putting It into Action

190

For testing purposes, you don’t need to write real Java code in those files. Put the 
following in the abc.java file.

//Project
import something.something;
/*  This is a comment  */
some more statements
/* This too
        is a commenting
spanning three lines */
good bye

Put the following in the def.java file.

//Project
Nothing to import
/*  This is a comment  */
few statements
and /* this too is */ a comment
/* This too
        is a commenting
        //having another comment trapped within
        */
        few more statements
        //Alternatively : instead of good bye you may say
see you

The art of comment removal can be perfected in one file first. Extending it to 
multiple files will not be difficult. For this purpose, def.java is the most suitable. So copy 
it in the current folder.

Reading the whole file at once makes the task easier. See the following code.

text = File.read('def.java')
text1 = text.gsub(/\/\*.*?\*\//m,'')
print text1

It prints like this:

//Project
Nothing to import

few statements
and  a comment

        few more statements
        //Alternatively : instead of good bye you may say
see you



Chapter 8 ■ Putting It into Action

191

It works almost correctly—almost because it leaves an empty line for two of the block 
comments in the input file (def.java).

The /\/\*.*?\*\// pattern generally means this: /*, any number of characters 
(without being greedy), and */. Since the file is read in one shot and the m modifier is used 
for the gsub (which causes the dot to match even newline characters), the multiline span 
is equivalent to a single line for the block comments.

The non-greedy specification is needed because otherwise it will start at the first /* 
and end at the last */ (the end of last block comment), taking everything in between. You 
may test that yourself by removing the ? from the pattern.

But this approach is not something that we should finally adopt. We should not go 
the full file read path. For large input files it is not a good idea.

If we go about doing our business line by line, a single pattern may not suffice. We 
can still apply the pattern without the m modifier in order to clear all the block comments 
that start and end on the same line. And then on the output of that we can try the trick for 
multiline pattern search/replacement.

The following code does the first part (except one thing) and writes the output in a 
file named tmp.txt.

infile = File.open 'def.java','r'
outfile = File.open 'tmp.txt','w'
while line = infile.gets
        line = line.gsub(/\/\*.*?\*\//,'')
        outfile.print line
end
infile.close
outfile.close

The part that it does not do is for the block comment that has a newline after it. It 
does not take care of the newline (so an empty line is in the output in place of the first 
block comment).

//Project
Nothing to import

few statements
and  a comment
/* This too
        is a commenting
        //having another comment trapped within
        */
        few more statements
        //Alternatively : instead of good bye you may say
see you

To take care of such empty line, we can look for a newline after the end of the block 
comment (*/)— either immediately after, or with any number of spaces and tabs in 
between. So our pattern should be /\/\*.*?\*\/[\s]*\n/. This, however, means that the 
second block comment (which has non-whitespace characters after it on the same line)  



Chapter 8 ■ Putting It into Action

192

will not be matched and replaced. To avoid this, we can apply both filters one after 
another. The following code does this and achieves the goal.

infile = File.open 'def.java','r'
outfile = File.open 'tmp.txt','w'
while line = infile.gets
        line = line.gsub( /\/\*.*?\*\/[\s]*\n/,'')
        line = line.gsub( /\/\*.*?\*\//,'')
        outfile.print line
end
infile.close
outfile.close

The tmp.txt output file, which should be our input file for the next stage of 
development, has the following text.

//Project
Nothing to import
few statements
and  a comment
/* This too
        is a commenting
        //having another comment trapped within
        */
        few more statements
        //Alternatively : instead of good bye you may say
see you

To tackle multiline comments (while reading line by line), we have to first look for 
the opening pattern (/*) and once we find it, mark a flag, and then look for the closing 
pattern.

The following code does the job.

infile = File.open 'tmp.txt','r'
while line = infile.gets
        if line.match(/\/\*/)
                commentline = true
        end
        print line if (not commentline)
        if commentline
                commentline = false if line.match(/\*\//)
        end
end
infile.close



Chapter 8 ■ Putting It into Action

193

This is the output:

//Project
Nothing to import
few statements
and  a comment
        few more statements
        //Alternatively : instead of good bye you may say
see you

So far, so good. But what if the multiline comment has some text before the comment 
(for the opening line) and after the comment (for the closing line)? That is, something like 
the following as the input file data.

abcd
123 /* open
        and
        close */ 456
efgh

The current code won’t work in this case. We need to print part of the opening and 
closing lines, not skip them wholly. The following code should work.

infile = File.open 'plinecmt.txt','r'
while line = infile.gets
        if line.match(/\/\*/)
                commentline = true
                print $`
        end
        print line if (not commentline)
        if commentline
                if line.match(/\*\//)
                        commentline = false
                        print $'
                end
        end
end
infile.close

Predefined $` and $' variables are used to get the part before and after the (last) 
match, as appropriate.

Putting it together, making it function-based, and making a small change to avoid a 
newline for the closing comment line, we have the following.

def remove_comment(javafilename)
        infile = File.open javafilename,'r'
        outfile = File.open 'tmp.txt','w'
        while line = infile.gets



Chapter 8 ■ Putting It into Action

194

                line = line.gsub( /\/\*.*?\*\/[\s]*\n/,'')
                line = line.gsub( /\/\*.*?\*\//,'')
                outfile.print line
        end
        infile.close
        outfile.close

        infile = File.open 'tmp.txt','r'
        outfile = File.open javafilename,'w'
        while line = infile.gets
                if line.match(/\/\*/)
                        commentline = true
                        outfile.print $`
                end
                outfile.print line if (not commentline)
                if commentline
                        if line.match(/\*\//)
                                commentline = false
                                endpart = $'
                                endpart.gsub!(/^[\s]*\n/,'')
                                outfile.print endpart
                        end
                end
        end
        infile.close
        outfile.close
end

remove_comment('def.java')

Notice this part.

                        if line.match(/\*\//)
                                commentline = false
                                endpart = $'
                                endpart.gsub!(/^[\s]*\n/,'')
                                outfile.print endpart
                        end

The end part is being stripped of whitespace and newline (at the end). This removes 
extra newlines in place of the block comment, should the end part (the part after the 
comment close marker until the end of the line) consists only of whitespaces and 
newlines.

The objective for making it function-oriented is to make it easier to be adopted for 
multiple files.



Chapter 8 ■ Putting It into Action

195

In the preceding code, replace the line containing the call to the function with the 
following code.

arr = Dir.glob('**/*.java')
arr.each {|filename|
        remove_comment(filename)
}

Save and close the file. Run the code. The comments are gone.

�8.2 Searching and Replacing in Text Files
�Problem
Suppose that a project has a lot of .sql files: some define tables and others define 
procedures. Each of these files may have code for single or multiple tables, or single or 
multiple procedures. All of them are in the same directory (we discussed how to tackle 
files from different directories in Recipe 6.6).

When all of those files run against a database in a batch for an existing procedure, 
the 'create procedure' statement fails, and that creates problem for the whole batch. 
(For now, do not bother with the database technology.) If, however, each of the creates 
were replaced with 'create and replace' appropriately, then the procedures already 
created will be skipped without throwing an error and the batch will continue smoothly.

The task is to replace 'create' with 'create or replace' as appropriate (before the 
word 'procedure').

�Solution
To start, we can work on one file that has one or more create procedure scripts. The file 
used as input (at least initially) has the following data.

--This is a create procedure script
--for a few procedures such as inserProc, deleteProc and modifyProc
/* All the procedures
        work on the tables t_abc and t_def
        and are created with
        create procedure statement */

        create procedure insertProc
                a  numeric,
                b  numeric out
begin
        some code
        some more code
end;
/



Chapter 8 ■ Putting It into Action

196

--create procedure delProc
CREATE    procedure deleteProc  -- procedure for deletion
                tbl  varchar2(20)
begin
        some code
        some more code
end;
/

create
        procedure modifyProc
                tbl  varchar2(20)
begin
        some code
        some more code
end;
/

create or replace procedure tranProc
                tbl  varchar2(20)
begin
        some code
        some more code
end;
/
--end of script

Consider that in that PL/SQL language, two consecutive dashes indicate a 
line comment and portions within /* and */ are block comments (including those 
delimiters). And as far as keywords are concerned, the language is not case sensitive.

If create is replaced with create or replace within a comment, it won’t be taken 
seriously. There are a few points that need to be considered for now, but we may build up 
as we go along.

•	 There may be more than one space between the word 'create' 
and the word 'procedure'.

•	 There may be newlines between them.

•	 Keywords are not case sensitive.

•	 Some create procedures may already have 'create or replace'. 
(The original developer may have been more thoughtful, for 
instance.)

The first point could be easily taken care of if we look for a pattern of one or more 
whitespace characters (which includes tabs) between 'create' and 'procedure'. Adding 
to that the case insensitivity with keywords, we can try a pattern (with the i modifier) like 
- /\bcreate[\s]+?procedure\b/i.



Chapter 8 ■ Putting It into Action

197

Note that this has been made non-greedy. The word boundaries are necessary 
because we do not want to pick up something like 'non-create procedures'. The words 
'create' and 'procedure' have to be whole.

Also it would not work across a newline. Why? Because we will be reading line by 
line (not the entire file in one shot).

Try the following code.

infile = File.open 'crprc.txt','r'
outfile = File.open 'out.txt','w'
while line = infile.gets
        line = line.gsub( /\bcreate[\s]+?procedure\b/i,'create or replace')
        outfile.print line
end
infile.close
outfile.close

You will find that it tackled a few cases but could not tackle a few others. It has 
replaced uppercase letters with lowercase letters (which we can live with, since that 
would not be an issue for running SQL scripts. However, it has not worked across 
multiple lines (when the word procedure is in another line). It worked within 
comments, but that is OK for our purpose.

As an aside, check the previous recipe in this chapter to see if you can implement a 
solution for this task, where changes are not made within comments.

Note that it did not adversely affect cases where create or replace was already there 
(because it was only looking for one or more whitespace characters in between, not other 
characters), which is good.

It’s time to tackle the multiline case. For this we use a smaller data file, input2.txt, 
which has the following data.

create procedure abc
begin
end

create  
   procedure def
 begin
 end

For this part, we first search for lines that has 'create' (followed optionally by any 
number of whitespace characters until the end of the line) but not 'procedure'. Once 
such a line is found, we can flag it, and check if the next line has the word procedure 
preceded by (optionally) zero or more whitespaces. If such is the case for the next line, 
then take the preceding part of first line (before 'create'), the succeeding part of 
second line (after 'procedure'), and join them with 'create or replace procedure' 
in between. If the second line, however, fails to match an eligible 'procedure', unset the 
flag (set on encountering the first line) and move on.



Chapter 8 ■ Putting It into Action

198

The preceding should take care of any multiline affairs. Then another pass can be 
made with the original code for 'create' and 'procedure' in the same line cases. But 
this part is already coded, so we can concentrate on the multiline part only for now.

The following code works well for the (multiline) purpose. This is with the 
assumption that the word procedure occurs in the next line furthest from the word 
create.

infile = File.open 'input2.txt','r'
outfile = File.open 'out.txt','w'
while line = infile.gets
        if line.match(/\bcreate[\s]*$/)
                createline = true
                prematch = $`
                line1 = line
                checklinenum = $. + 1
                next #don't do any more processing for this line
        end
        found = false
        if createline and checklinenum == $. #very next line
                createline = false # reset it anyway
                if line.match(/^[\s]*procedure\b/)
                        postmatch = $'
                        found = true;
                end
                #print for both the lines either way
                if not found
                        outfile.print line1
                        outfile.print line #second line
                else #found
                        �outfile.print "#{prematch}create or replace 

procedure#{postmatch}"
                end
                next
        end
        #it is not the createline or the nextline
        outfile.print line
end

infile.close
outfile.close

It produces an out.txt file with the following text.

create procedure abc
begin
end



Chapter 8 ■ Putting It into Action

199

create or replace procedure def
 begin
 end

The $. (a predefined variable that holds the line number of the last line read from 
the current input file) has been used to ensure that the very next line is dealt with when 
such is applicable.

Combining the bits, making small changes as necessary, making things function-
oriented, and also accounting for multiple .sql files, we have the following.

def replace_create(sqlfile)
        infile = File.open sqlfile,'r'
        outfile = File.open 'out.txt','w'
        while line = infile.gets
                if line.match(/\bcreate[\s]*$/)
                        createline = true
                        prematch = $`
                        line1 = line
                        checklinenum = $. + 1
                        next #don't do any more processing for this line
                end
                found = false
                if createline and checklinenum == $. #very next line
                        createline = false # reset it anyway
                        if line.match(/^[\s]*procedure\b/)
                                postmatch = $'
                                found = true;
                        end
                        #print for both the lines either way
                        if not found
                                outfile.print line1
                                outfile.print line #second line
                        else #found
                                �outfile.print "#{prematch}create or replace 

procedure#{postmatch}"
                        end
                        next
                end
                #it is not the createline or the nextline
                outfile.print line
        end

        infile.close
        outfile.close

        #second pass (not multiline case)
        infile = File.open 'out.txt','r'
        outfile = File.open sqlfile,'w'



Chapter 8 ■ Putting It into Action

200

        while line = infile.gets
                �line = line.gsub( /\bcreate[\s]+?procedure\b/i,'create or 

replace')
                outfile.print line
        end
        infile.close
        outfile.close
end

arr = Dir.glob('*.sql')
arr.each {|filename|
        replace_create(filename)
}

It should be working fine.

�8.3 Removing Duplicates from a Text File
�Problem
You have a new project. It deals with a lot of old SQL codes that do not have proper 
documentation. When you check the database, you see a lot of tables—some with names 
like inventory_bak or orders_1. You are pretty sure that a lot of these tables are not in 
use. You cannot find any ERD or a master table script.

One thing you know for sure is that you have a set of scripts (PL/SQL functions and 
procedures) that are in active use and that there is an exhaustive list of SQL codes (other 
than table or index creation, etc.). If only you could find out from these scripts which of 
the tables (a list of distinct table names) are actively in use. You feel that there are not too 
many. You could look at these tables to make a reasonably good ERD yourself (or possibly 
use a reverse-engineering tool).

For the sake of ease, you can easily concatenate all of the .sql files into one. You can 
work on a copy of this combined file. The main goal is to extract the (distinct) table list.

�Solution
In this language, the line comments start with two consecutive dashes (they need not 
be at the beginning of the line) and the block comments are enclosed within /* and */ 
(delimiters included).

Keywords are not case sensitive, but table names are not. Also, any table names that 
occur within comments are not of interest.

The search should focus on other points with respect to the language syntax. A query 
is usually of the following form.

select <column list>
from tbl_a, tbl_b,
        tbl c;



Chapter 8 ■ Putting It into Action

201

or

select <column list>
from tbl_a, tbl_b,
        tbl c
where some conditions;

For select statements, table names should be between the from keyword and either 
a semicolon (';') or the where keyword, separated by commas (when more than one), but 
not necessarily occurring on the same line. However, the name of a single table does not 
span multiple lines and only has letters (in either case) and an underscore.

The following is one form of an update statement.

update tbl_a set
<column value assignments>
from tbl_a, tbl_b
where some conditions;

The from part is optional, but if it exists, it is similar to that of the select statement.
For insert statements, the forms are as follows.

insert into tbl_a (column list) values (value list);

or

insert into tbl_a values (value list);

The keyword into is optional.
For delete statements, the forms are as follows.

delete from tbl_a;

or

delete from tbl_a
where some conditions;

In either case, the from keyword is optional.
For update and delete, the first table mentioned is a single one. insert always works 

on a single table.
There may be subqueries within the where clause, but that too has a form part. 

You never look at the where part for table names (but you do look at the form part, as 
well as insert, update, and delete statements, in the first table). However, the form 
part of subqueries is considered (in this case, the delimiter is either where or closing 
parenthesis).

For simplification, consider that this language has no table alias concept. Also 
consider that in the active code (any portion that is not commented), the use of the word 
from only happens in a from clause. (Of course, it has to be the whole word.)



Chapter 8 ■ Putting It into Action

202

Words may appear with one or more whitespace in between. A comma (',') in 
the scope may have zero or more whitespaces on either side. Whitespace includes 
newlines, but you may treat them separately. For the sake of simplification, consider 
that a comma appears in the same line after a table name (it may have one or more 
spaces or tabs, or both). And a semicolon and a closing parenthesis also appear 
similarly in the same line with the immediately preceding token or keyword. Also, two 
select, insert, delete, or update statements (or two of any combination of these 
keywords) do not occur on the same line in uncommented code.

�The Technical Problem Specification
We need to look for tokens (table names) and make a distinct list/set of them (and print 
that to a file). The tokens are themselves case sensitive but other keywords are not. 
Keeping in mind the possible whitespace separation part as applicable (as discussed 
earlier), they have to be searched within.

•	 insert or insert into and '(' or values – single occurrence

•	 update and set – single occurrence

•	 delete or delete from and semicolon(;) or where – single 
occurrence

•	 from and semicolon(;) or where or closing parenthesis – single 
occurrence or multiple occurrence separated by commas

�Step 1: Remove the Comments
The first step is to remove the comments and possibly create another file, which is the 
input for further processing. After all, we are only interested in the list of tables, not the 
final SQL file.

Removing block comments was discussed in an earlier task, so this step won’t be 
repeated here. For the sake of simplicity, in this step, you have a file that has all the block 
comments removed.

For removing the line comments (from the double dash (–-) until the end of the 
line), the following code is good enough.

infile = File.open 'inp1.sql','r'
outfile = File.open 'out.txt','w'
while line = infile.gets
        outfile.print line.sub(/\-\-.*$/,'').sub(/^$\n/,'')
end
infile.close
outfile.close

The first substitution function with the /\-\-.*$/ pattern is for removing the line 
comments .The second substitution, with the /^$\n/ pattern, should remove empty lines 
(except leaving one empty line at the end of the file in certain cases).



Chapter 8 ■ Putting It into Action

203

Not having any empty lines between active code parts can greatly help further 
searches.

Going forward, the output file of this code is the input for the next step, which is 
devoid of any comments and contains only active code.

�Step 2: Remove Optional Keywords
Optional keywords are from after delete and into after insert. If you come to think of it, 
accommodating them in a regular expressions isn’t straightforward. If we get rid of them 
at this stage, further steps will be smoother.

To develop this step, you can use the following in a file as simple input data.

delete FRom abc
another line
DELete def
delete  
  from ghi
 INSert   into abc1
insert def1
still another line
insert
 INTO ghi1

Take the case of delete and from (insert and into are similar except the words are 
different).

First, consider single-line case(s) and then take a case where the next line may have 
the optional keyword.

	 1.	 If delete is followed with one or more whitespaces and then the 
word from in the same line, we have a match. Keep in mind that 
they have to be complete words and case should be ignored. 
The /\bdelete\b[\s]+?\bfrom\b/i pattern should work.

	 2.	 If the preceding pattern does not match and the line still has 
the delete keyword, then it is possible that there is no word 
after delete in that line. Till the end of the line, after delete, it 
is whitespaces (or no character). In that case, if the first word 
in the next line is from, then we have a match. In the first line, 
the /\bdelete\b[\s]*$/i pattern should match. And the 
very next line (as there should be no empty line in the input 
file, except possibly in the end) should have the /^[\s]*\
bfrom\b[\s]*$/i pattern. In absence of which the match isn’t 
available on that occasion.

On this occasion, we can operate on a string by joining two lines (joining two lines 
in a normal SQL file should not result in a huge string) and treating them as a single line 
for pattern replacement. (Consider it another way of doing what has been done for the 
'create procedure' case, using $.).



Chapter 8 ■ Putting It into Action

204

The following code will work for a two-line (delete from) case, but it won’t work for 
single-line cases, which are simpler and can be augmented upon easily.

infile = File.open 'inp2.sql','r'
outfile = File.open 'out.txt','w'
while line = infile.gets
        if line.match(/\bdelete\b[\s]*$/i)
                firstlinefound = true
                joinedlines = line
                next #don't do any more processing for this line
        end
        if firstlinefound #for the very next line
                firstlinefound = false # reset it
                if line.match(/^[\s]*\bfrom\b/i)
                        #join this line to the last one
                        joinedlines = joinedlines + line
                        #treat the joined line as a regular line and replace
                        �joinedlines = joinedlines.sub(/\bdelete\b[\s]+?\

bfrom\b/i ,'delete')
                        outfile.print joinedlines
                        joinedlines = '' #reset joinedlines
                        next #no need to go further down for this line
                else #the overall match for delete from failed in this case
                        #print the last line here
                        �#the current line will get printed towards the end 

of while loop anyway
                        outfile.print joinedlines
                        joinedlines = '' #reset joinedlines
                end
        end
        outfile.print line
end

infile.close
outfile.close

After removing some comments and putting it in function form (in such a way that it 
can be used for the insert into case also), and augmenting it with single line cases, the 
code is as follows.

def remove_optional_multiline(infilename, outfilename, typ)
        if typ == 1 #delete from
                word1 = "delete"
                word2 = "from"
        else
                word1 = "insert"
                word2 = "into"
        end



Chapter 8 ■ Putting It into Action

205

        pat1 = %r{\b#{word1}\b[\s]*$}i
        pat2 = %r{^[\s]*\b#{word2}\b}i
        pat3 = %r{\b#{word1}\b[\s]+?\b#{word2}\b}i

        infile = File.open infilename,'r'
        outfile = File.open outfilename,'w'

        while line = infile.gets
                if line.match(pat1)
                        firstlinefound = true
                        joinedlines = line
                        next
                end
                if firstlinefound #for the very next line
                        firstlinefound = false # reset it
                        if line.match(pat2)
                                joinedlines = joinedlines + line
                                joinedlines = joinedlines.sub(pat3,word1)
                                outfile.print joinedlines
                                joinedlines = ''
                                next
                        �else #the overall match for delete from failed in 

this case
                                outfile.print joinedlines
                                joinedlines = ''
                        end
                end
                outfile.print line
        end

        infile.close
        outfile.close
end

def remove_optional_singleline(infilename, outfilename, typ)
        if typ == 1 #delete from
                word1 = "delete"
                word2 = "from"
        else
                word1 = "insert"
                word2 = "into"
        end

        pat = %r{\b#{word1}\b[\s]+?\b#{word2}\b}i

        infile = File.open infilename,'r'
        outfile = File.open outfilename,'w'



Chapter 8 ■ Putting It into Action

206

        while line = infile.gets
                line.sub!(pat,word1)
                outfile.print line
        end

        infile.close
        outfile.close
end

remove_optional_multiline('inp2.sql,'tmp1.txt',1)
remove_optional_multiline('tmp1.txt','tmp2.txt',2)
remove_optional_singleline('tmp2.txt','tmp1.txt',1)
remove_optional_singleline('tmp1.txt','out.txt',2)

File.delete('tmp1.txt')
File.delete('tmp2.txt')

Two functions have been defined for single-line and multiline cases; they are being 
called with different arguments. Note that the tmp1.txt and tmp2.txt files are used as 
intermediate files, which are deleted after the main processing is done.

Note the use of %r while creating the patterns. This is one example:

pat1 = %r{\b#{word1}\b[\s]*$}i

It is used later in the following line.

if line.match(pat1)

%r{} is equivalent to // for building patterns. But when using it with modifiers  
(in this case, I) together with variable substitution (in this case word1), this is much easier 
than the // construct. For the value of word1 as 'delete', the preceding is effectively  
/\bdelete\b[\s]*$/i.

Notice also the way two lines are joined for replacement when a successful multiline 
case is identified.

The output of this code should be the input for the next stage.

�Step 3: Collect Tokens
By this stage, the input file is already in good shape. There are no comments, no empty 
lines (except possibly at the end), and no optional keywords. At this step, the subtask is to 
collect the tokens (table names) that may occur.

•	 After the update keyword: single token

•	 After the insert keyword: single token

•	 After the delete keyword: single token



Chapter 8 ■ Putting It into Action

207

•	 Between the from keyword and the where keyword, or a 
semicolon or a closing parenthesis: single token or multiple 
tokens separated by commas

Of course, newline and other whitespace character separation applies.
Note that I did not mention looking between two keywords. For example, I did not 

specify to look between the update and set keywords. This is because we should be 
looking for complete words (keywords), and since there is no commented code, the word 
update can only occur at the beginning of an update statement and nowhere else. So if we 
just take the very next word, it should be the table name that we are looking for. We need 
not bother about the set keyword.

Let’s look at the first three cases. The update statement is the test case for development.
Take the following code.

def print_tblnm(infilename, outfilename, word)
        infile = File.open infilename,'r'
        outfile = File.open outfilename,'w'

        pat1 = %r{\b#{word}\b[\s]*$}i
        pat2 = %r{\b#{word}\b[\s]+?(\b[\w]+\b)}i

        firstlinefound = false
        while line = infile.gets
                if line.match(pat1) #two line case
                        firstlinefound = true
                        joinedlines = line
                        next
                end
                if firstlinefound #second line for two line case
                        firstlinefound = false
                        #take the first word
                        matched = line.match(/^[\s]*?(\b[\w]+\b)/)
                        tbl_name = matched.captures[0]
                        outfile.puts tbl_name
                        next
                end
                #at this point it is neither first line nor second line
                #for two line case, but may be a single line case
                if matched = line.match(pat2)
                        tbl_name = matched.captures[0]
                        outfile.puts tbl_name
                end

        end
        infile.close
        outfile.close
end

print_tblnm('upd.sql','output.txt','update')



Chapter 8 ■ Putting It into Action

208

The input file contains the following data.

update abc set
a line
update Def
        set a =
another line
updATE
        Efg  set b =
last line

The following output data is produced.

abc
Def
Efg

This is fine.
Now let’s look at the fourth case: between the from keyword and the where keyword, 

or a semicolon or a closing parenthesis, a single token or multiple tokens separated 
by commas, and assume that no two from keywords occur on the same line. Take the 
following data as input.

from abc where
from abc,def where
one line
FROM def  ,
        ghi, abc1 where abc1.a in (
        some select from
  abc2, abc3) data
        another line
from def1
        def2,
        def3 ;
from def2, ghi2;
last line

Use the following code.

def print_tblnm_from(infilename, outfilename)
        infile = File.open infilename,'r'
        outfile = File.open outfilename,'w'

        firstlinefound = false
        joinedlines = ''
        while line = infile.gets
                if line.match(/\bfrom\b/i)



Chapter 8 ■ Putting It into Action

209

                        �# serach if terminator is also in the same line 
after from

                        postmatch = $'
                        �if postmatch.match(/(;|\)|\bwhere\b)/i) #terminates 

in the same line
                                #print the tablename part
                                �matched = line.match(/\bfrom\b(.*)(;|\)|\

bwhere\b)/i)
                                outfile.puts matched.captures[0]
                        �else #multiline case - keep adding lines till 

terminator is found
                                joinedlines = line.chomp
                                firstlinefound = true
                                next
                        end
                end
                if firstlinefound #second line onwards for multiline case
                        joinedlines = joinedlines + line.chomp
                        �if line.match(/(;|\)|\bwhere\b)/i) #terminator line 

found
                                #do the extraction and reset
                                �matched = joinedlines.match(/\bfrom\b(.*)

(;|\)|\bwhere\b)/i)
                                outfile.puts matched.captures[0]
                                firstlinefound = false;
                                next
                        else
                                �next #line already added - look in the next 

line
                        end
                end
                #at this point it is not a line of interest

        end
        infile.close
        outfile.close
end

print_tblnm_from('from.txt','output.txt')

A somewhat crude table list is printed in the output file.

 abc
 abc,def
 def, ghi, abc1
  abc2, abc3
 def1 def2, def3
 def2, ghi2



Chapter 8 ■ Putting It into Action

210

Note that the preceding code keeps concatenating lines (for multiline cases) until 
the terminator is found (including the terminator line). And once the whole set (for that 
occasion of from keyword) is joined, the extraction is done.

�Step 4: Get Distinct Values
Finally, we come up with a file that has the table names but is not distinct. It is somewhat 
in the form of the following data.

Abc
AAbc
abc1
EFg
ghGhi
 abc
 abc, def
 def, ghi, abc1
  abc2, abc3
 def1 def2, def3
 def2, ghi2

The next subtask is to get a list of distinct table names from this data. This is rather 
easy compared to what has already been done. The following code works.

require 'set'

set = Set.new

infile = File.open 'mixed.txt','r'
while line = infile.gets
        line1 = line.gsub(',','')
        #print line
        line2 = line1.gsub(/[\s]+/,' ')
        arr = line2.split
        arr.each {|tblnm| set.add(tblnm)}
end
infile.close

outfile = File.open 'output.txt','w'
set.each {|tblnm| outfile.puts tblnm}
outfile.close

It produces this:

Abc
AAbc
abc1
EFg



Chapter 8 ■ Putting It into Action

211

ghGhi
abc
def
ghi
abc2
abc3
def1
def2
def3
ghi2

A set has been used here to get a distinct list of tables. Note the following lines.

require 'set'
set = Set.new
        arr.each {|tblnm| set.add(tblnm)}
set.each {|tblnm| outfile.puts tblnm}

All of the lines relate to set. The second line creates a new set. The third line’s code 
adds elements. The fourth line’s code is iteration over the elements.

You may try to properly combine all of these steps, with appropriate modifications, 
to get the desired list of tables.

�8.4 Reading XML as Text
�Problem
XML in Ruby can be parsed as XML. There are toolkits and APIs such as 'REXML' or 
'nokogiri' available for it. However this demonstration uses Ruby and regular expressions 
to parse and process XML data as if it were a text file.

In certain situations, it may be helpful to parse an XML file as a text file. One 
possible case may be when an element with a particular tag name is deep within the XML 
structure, occurring maybe only a few times in the entire XML file. Trying to get the value 
of the element (in each occurrence) through XML parsing and Xpath expressions could 
be quite time-consuming to code when compared to simple text filtering.

�Solution
The following is the XML data in a file named invoice.xml.

<?xml version="1.0"?>
<invoice>
        <purchase_date>14/10/2013</purchase_date>
        <customer>
                <id>1</id>
                <name>John Doe</name>
                <address>15 Downing Street, NSW 2130</address>
        </customer>



Chapter 8 ■ Putting It into Action

212

        <items>
                <item>
                        <name>trousers</name>
                        <qty>1</qty>
                        <price>20.00</price>
                </item>
                <item>
                        <name>shirt</name>
                        <qty>4</qty>
                        <price>15.00</price>
                </item>
                <item>
                        <name>socks</name>
                        <qty>2</qty>
                        <price>10.00</price>
                </item>
        </items>
</invoice>

The task is to find out—using a Ruby script—the total amount of the invoice.
The following code will work.

def getval(line,tag)
        pat = '<' + tag + '>(.*)<\/' + tag + '>'
        if matched = line.match(pat)
                return matched.captures[0]
        end
end

total = 0

infile = File.open('invoice.xml','r')
while (line = infile.gets)
        tag = 'qty'
        val = getval(line,tag)
        quantity = val.to_f unless val.nil?

        tag = 'price'
        val = getval(line,tag)
        if !val.nil?
                price = val.to_f
                total = total + quantity * price
        end
end
infile.close

print "Total : #{total}"



Chapter 8 ■ Putting It into Action

213

Note that the getval function returns the value of a tag (provided the whole tag 
is in a single line) or nil, given the line and the tag string as input. This is a very useful 
function for analyzing these kinds of XML files. For instance, if you wanted to find the 
price of an item (say, a shirt) you could have used the following code (again using the 
same function).

def getval(line,tag)
        pat = '<' + tag + '>(.*)<\/' + tag + '>'
        if matched = line.match(pat)
                return matched.captures[0]
        end
end

infile = File.open('invoice.xml','r')
while (line = infile.gets)
        tag = 'name'
        val = getval(line,tag)
        item_name = val unless val.nil?

        tag = 'price'
        val = getval(line,tag)
        if !val.nil? and item_name.eql?('shirt')
                price = val
                print "Price of a shirt is #{price}"
        end
end
infile.close

It works fine and prints as follows.

Price of a shirt is 15.00

Note that even if you change the name of the customer to shirt, the program still 
provides the correct price for a shirt. This is because it works on the item_name, which is 
the value of the last name element picked up at the time that it is looking for price— so 
the name of the customer is overridden by the time it reaches the first price tag.

�8.5 A Case for Hash Buckets
�Problem
You have been given a transaction file (named tran.txt) with the following content.

032349,game purchase,01/09/16,30.35,CR
045678,shopping,01/09/16,55.40,CR
045678,refund of ticket,03/09/16,60.50,DR
023541,restaurant bill,03/09/16,56.55,CR



Chapter 8 ■ Putting It into Action

214

032349,weekly salary,03/09/16,2349.80,DR
023541,movie ticket,04/09/16,45.00,CR
032349,cash deposit,05/09/16,200.00,DR
032349,laptop purchase,05/09/16,2549.50,CR
045678,withdrawal from ATM,05/09/16,250.00,CR
023541,sale of books,08/09/16,300.00,DR

It is a comma-separated file in which the columns are account number, description 
of transaction, date, amount, and DR or CR (denoting whether the transaction is debit or 
credit; debit is positive for the account, credit is negative).

There is no data anomaly (all rows are valid data). All the accounts have an initial 
balance of zero. The task is to write a program, which will process the transactions in the 
accounts and then come up with the (final) balances of the accounts.

�Solution
The following code will work.

Tran = Struct.new(:acctno, :amount)
tranarr = []
i = 0
infile = File.open 'tran.txt','r'
while (line = infile.gets)
        arr = line.chomp.split(',')
        acctno = arr[0]
        amount = arr[3].to_f
        if (arr[4] == "CR")
                amount *= -1
        end
        tranarr[i] = Tran.new(acctno,amount)
        i += 1
end
infile.close

h = Hash.new

tranarr.each { |tran|
        acct = tran.acctno
        amt = tran.amount
        firsttime = h[acct].nil?
        if firsttime
                h[acct] = amt
        else
                h[acct] = h[acct] + amt
        end
}



Chapter 8 ■ Putting It into Action

215

h.each { |k,v|
        fmtamt = "%.02f" % v.round(2)
        puts "balance of account #{k} is #{fmtamt}"
}

It generates the following output.

balance of account 032349 is -30.05
balance of account 045678 is -244.90
balance of account 023541 is 198.45

�How It Works
Note the following about this file.

•	 It uses struct, split, string formatting, and nil check of objects, 
among other things.

•	 It also uses iterator each.

•	 The struct is defined minimally, with only two fields that are really 
needed. Determining whether the amount is positive or negative 
is calculated prior to putting it in the struct.

•	 The hash is used as a holder of different accounts. When there is 
already a balance available for the account, it is updated with the 
current amount; otherwise, the amount is freshly put (as if it is the 
first entry in the account). Hash is ideal in such situations.

This solution concept can be generalized to address many tasks that require similar 
bucketing.



217© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4

APPENDIX A

Solutions to Exercises

Solutions for Chapter 1
(Solution) Excercise 1.1

sum = 0
for i in 1..10
        sum = sum + i * i
end
puts sum

(Solution) Excercise 1.2

sum = 1
for i in 1..6
        sum = sum * i
end
puts sum

(Solution) Excercise 1.3

a = 0
b = 1
for i in 1..10
        c = a + b
        puts c
        a = b
        b = c
end



APPENDIX A ■ Solutions to Exercises

218

Solutions for Chapter 2
(Solution) Excercise 2.1

infile = File.open('lnsize.txt','r')
max = -1
maxln = ''
while (line = infile.gets)
        size = line.chomp.size
        if max < size
                max = size
                maxln = line
        end
end
infile.close
puts maxln
puts max

(Solution) Excercise 2.2

infile = File.open('palin.txt','r')
while (line = infile.gets)
        x = line.chomp.downcase.gsub(' ','')
        y = x.reverse
        if (x == y)
               puts 'A palindrome : ' + line.chomp
        else
                puts 'Not a palindrome : ' + line.chomp
        end
end
infile.close

Solutions for Chapter 3
(Solution) Excercise 3.1

def fibo(n)
  if n == 0
        0
  elsif n == 1
    1
  else
    fibo(n-1) + fibo(n-2)
  end
end
puts fibo(8)



APPENDIX A ■ Solutions to Exercises

219

(Solution) Excercise 3.2

i = 1
i += 1 until i * i > 1000
puts i-1

(Solution) Excercise 3.3

sum = 0
for i in 1...100
  sum += i if ((i % 15) > 0) and ((i % 3) == 0 || (i % 5) == 0)
end
puts sum

Solutions for Chapter 4
(Solution) Excercise 4.1

def canformword(arr,word)
        arrword = word.chars
        arrleft = arr
        flag = true
        for i in 0...arrword.size
                ch = arrword[i]
                if !arrleft.include?(ch)
                       flag = false
                       break
                else
                       ind = arrleft.index(ch)
                       arrleft.delete_at(ind)
                end
        end
        if flag
                puts 'can form word'
        else
                puts 'can not form word'
        end
end

canformword(['y','z','b','e','a','u','t'], 'beauty')
canformword(['r','o','u','g','h'], 'tough')



APPENDIX A ■ Solutions to Exercises

220

(Solution) Excercise 4.2

def timeinmin(tm)
        a = tm.split(':')
        a[0].to_i * 60 + a[1].to_i
end

def gethashfromfile(filename)
        thefile = File.open(filename,'r')
        h = Hash.new
        while (line = thefile.gets)
                x = line.chomp.split(/\s+/)
                h[x[0]] = timeinmin(x[1])
        end
        thefile.close
        h
end

h1 = gethashfromfile('arrtime.txt')
h2 = gethashfromfile('deptime.txt')

k1 = h1.keys
k2 = h2.keys

kcommon = k1 & k2
knotinboth = (k1 - kcommon) | (k2 - kcommon)

arr = kcommon.to_a
for i in 0...arr.size
        stay = h2[arr[i]] - h1[arr[i]]
        if stay < 0
                puts arr[i] + ': data issue'
        else
                puts arr[i] + ': stay ' + stay.to_s + ' minutes'
        end
end

arr2 = knotinboth.to_a
for i in 0...arr2.size
        puts arr2[i] + ': data issue'
end



APPENDIX A ■ Solutions to Exercises

221

Solutions for Chapter 5
(Solution) Excercise 5.1

h = {
        "Abani Sen" => 650,
        "Dora Pridle" => 573,
        "Sana Chowdhury" => 824,
        "Pritish Panda" => 732
        }

h.each { |k, v|
    str = ''
        str = ' : First Division' if v > 599
        puts "#{k} : Marks obtained #{v}#{str}"
}

(Solution) Excercise 5.2

h = {
        "Abani Sen" => 650,
        "Dora Pridle" => 573,
        "Sana Chowdhury" => 824,
        "Pritish Panda" => 732
        }

arr = h.invert.sort{|a,b| b<=>a}

arr.each { |x|
        str = ''
        str = ' : First Division' if x[0] > 599
        puts "#{x[1]} : Marks obtained #{x[0]}#{str}"
}

(Solution) Excercise 5.3

h = {
        "Abani Sen" => 650,
        "Dora Pridle" => 573,
        "Sana Chowdhury" => 824,
        "Pritish Panda" => 732
        }



APPENDIX A ■ Solutions to Exercises

222

h.map {|k,v|
        case v
        when 0..500
                puts "#{k} : no credit"
        when 501..600
                puts "#{k} : credit : 10"
        when 601..700
                puts "#{k} : credit : 20"
        when 701..800
                puts "#{k} : credit : 40"
        else
                puts "#{k} : credit : 70"
        end
}

Solutions for Chapter 7
(Solution) Excercise 7.1

sen1 = "Abani Sen mentioned that he will be absent on Thursday."
sen2 = "The president of USA, Barrack Obama, proposed the bill."

def getname(sent)
        if matched = sent.match(/([A-Z]\w+)\s+([A-Z]\w+)/)
                a = matched.captures
                puts "name : #{a[0]} #{a[1]}"
        end
end

getname(sen1)
getname(sen2)

(Solution) Excercise 7.2

infile = File.open('train.log','r')
while (line1 = infile.gets)
        line = line1.chomp
        �if matched = line.match(/^Train (.*) (departed|arrived) (from|at) 

(.*) station (.*)$/)
                a = matched.captures
                �puts "train : #{a[0]} #{a[1]} station : #{a[3]} time : 

#{a[4]}"
        end
end
infile.close



223© Malay Mandal 2016 
M. Mandal, Ruby Recipes, DOI 10.1007/978-1-4842-2469-4

�       � A
Arrays, 83

access elements, 78
add function, 82
clear function, 88
compact method, 88
concat function, 82
creation, 76
delete_at function, 87
delete function, 87
empty? checks, 81
fetch method, 86
fill forms, 81
include? method, 85
index method, 85
insert function, 86
insert elements, 79
join method, 88
multidimensional array, 80
multiply function, 82
reverse (and reverse!), 85
rindex method, 85
sort (and sort!), 84
subract function, 82
union operation, 84
values_at method, 86

�       � B
Blocks, 103

add arguments, 106
BEGIN and END blocks, 108
with function, 104

�       � C, D, E
Chomp function, 22

�       � F, G
Files

command-line argument, 27
create and delete  

directories, 33
directory path, 34
exception handling, 30

begin-rescue-end, 32
initial execution context, 31
puts1 method, 32

import code, 33
read data, 28
read file in one shot, 38
read multiple lines, 35
and strings, 13
write data, 29

�       � H
Hashes

add elements, 89
clear function, 91
== comparsion function, 93
creation, 88
delete function, 93
empty? function, 91
fetch function, 92
has_key? function, 91
has_value? function, 91

Index



■ INDEX

224

invert function, 93
key function, 92
merge (and merge!) function, 94
to_a function, 93
values_at function, 92

�       � I, J, K
Input-Output, 119

check user input, 131
CSV file, query, 119

code implementation, 120
Date class, 127
testing, 122

directory, 138
chdir function, 140
each function, 141
entries function, 141
exist? function, 140
foreach function, 142
glob function, 142
home function, 140
mkdir function, 139
new function, 141
pwd function, 139
rmdir function, 139

divide files into  
subdirectories, 144

sort text, 129
store data in structured  

manner, 136
text to files, batch  

operation, 146
add comments, 148
command execution, 147
use DIR.GLOB, 148

Iterators, 109
delete if and keep if, 116

for arrays, 116
for hashes, 116
for sets, 116

map and collect, 114
for arrays, 115
for hashes, 115
for sets, 115

select and reject, 112
for arrays, 113
for hashes, 113
for sets, 114

sort function, 117
step iterator, 112

�       � L, M, N, O, P, Q
Language elements, 45

arithmetic operators, 48
assignment operators, 49
BEGIN and END blocks, 69
bitwise operators, 50
calls on numbers, 47
command prompt, 47
comments, 45
comparison operators, 48, 49
control flow statements, 55

break statement, 61
case statements, 58
if statements, 55
for loop statements, 63
next statement, 61
nil check, 57
redo statement, 61
ternary operator, 58
unless, 58
until statement, 62
while condition, 60

defined? operator, 52
dot (.) operator, 51
exception handling, 63

catch and throw, 65
single line rescue, 64

functions, 69
arguments, 70
def and end keywords, 69
default values, 70
Every method, 71
recurrence, 72
return statement, 71
variable number, 71

logical operators, 50
nil? method, 48
non declaration variables, 46
pattern matching operators, 52
predefined constants, 68
predefined variables, 65
range operators, 51
reference and value equality, 48
run OS command, 68
ternary operator, 51
using ranges, 52

Hashes (cont.)



■ INDEX

225

conditional expressions, 54
interval test, 53
sequence values, 53

variables, 46
works with numbers, 46

�       � R
Regular expression, 151

character class, 157, 161
escape sequence, 164
interscetion with  

negation, 160
negation, 158
predefined, 161
range, 159
special character, 163
union, 159

insert comments, 181
matched string, 155, 178

lookbehind assertions, 180
negative lookahead  

assertion, 180
negative lookbehind  

assertion, 181
modified results, 182
non-backtracking groups, 160
non-capturing groups, 171
remove block codes, 165
regex engine, 172

backtracking, 174
metacharacters, 174
plane characters, 173

repeated patterns
named backreference, 178
octal codes, 177
repetition, 175

replace strings, 185
scan function, 186
search, 151
strings, 164

anchors, 165
end of source string, 165
multiple groups, 170
non-word boundary, 167
subpattern interaction, 168
word boundary, 166

Ruby
cost, 5
Hello World program, 3
installation, 2

on Mac, 2
on windows, 2

repeat things, 8
Ruby shell command, 10
Sherlock Holmes mode, 6

�       � S
Set, 98

<< (/add) function, 97
clear function, 97
delete function, 97
-(/difference) function, 99
disjoint? function, 99
empty? function, 96
flatten function, 100
include? function, 96
inspection, 95
intersect? function, 99
length/size function, 96
merge function, 97
overview, 94
subset and superset function, 99
subtract function, 97

Strings
capitalize, 14
chars, 15
<=> comparsion, 14
<< concatenation, 14
convert numbers, 41
count, 16
delete, 15
downcase and upcase, 14
empty? method, 13
extract information, 42
formats, 19, 25

accept input from console, 19
accept numbers as input, 21
chomp function, 22
get rid of newline, 23
newline handling, 22

include?, 16
index, 15
insert, 15
length method, 13
partition, 16
reverse, 17
scan, 17
slice, 16
split, 18
strip, 14



■ INDEX

226

sub and gsub, 17
tr transforms, 16
working principles, 39

concatenation, 41
expression evaluation, 41

�       � T, U, V, W, X, Y, Z
Text files

hash buckets, 213
read XML, 211

remove duplicates, 200
block comments, 202
collect tokens, 206
distinct values, 210
optional keywords, 203

search and replace, 195

Strings (cont.)


	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: A Taste of Ruby
	 Small Task, Big Impact
	 Development Environment Installation
	 Windows
	 Mac

	 1.1 The First Recipe: aka Hello World
	 Problem
	 Solution
	 How It Works

	 1.2 Does It Cost Anything to Say Hello?
	 Problem
	 Solution
	 How It Works

	 1.3 Sherlock Holmes and Learning
	 Problem
	 Solution
	 How It Works

	 1.4 1 2 3 4, 1 2 3 4
	 Problem
	 Solution
	 How It Works

	 Interactive Ruby Shell
	 Summary
	 Exercises
	 Exercise 1.1
	 Exercise 1.2
	 Exercise 1.3


	Chapter 2: Working with Files and Strings
	 Manipulating Strings
	 length or size
	 empty?
	 strip
	Outline Placeholder
	Outline Placeholder
	 capitalize
	 downcase and upcase
	 chars
	 index
	 insert
	 delete
	 include?
	 slice
	 count
	 partition
	 tr
	 reverse
	 sub (and gsub)
	 scan
	 split

	 String Formatting
	 2.1 Accepting Input from the Console
	 Problem
	 Solution
	 How It Works

	 2.2 Accepting Numbers as Input
	 Problem
	 Solution
	 How It Works

	 2.3 Handling the Newline
	 Problem
	 Solution
	 More on Getting Rid of the Newline

	 2.4 Formatting Strings
	 Problem
	 Solution
	 How It Works

	 2.5 Processing Command-Line Arguments
	Problem
	 Solution
	 How It Works

	 2.6 Reading from a File
	 Problem
	 Solution
	 How It Works

	 2.7 Writing to a File
	 Problem
	 Solution
	 How It Works

	 2.8 Getting Started with Exception Handling
	 Problem
	 Solution
	 Initial Execution Context


	 2.9 Importing Code
	 Problem
	 Solution

	 2.10 Creating and Deleting Directories
	 Problem
	 Solution
	 How It Works

	 2.11 Creating a Whole Directory Path
	 Problem
	 Solution
	 How It Works

	 2.12 Reading Multiple Lines from a File
	 Problem
	 Solution
	 How It Works

	 2.13 Reading a File in One Shot
	 Problem
	 Solution
	 How It Works

	 2.14 Working with Strings
	 Problem
	 Solution
	 How It Works
	 Concatenation
	 Expression Evaluation


	 2.15 Converting Numbers to a String
	 Problem
	 Solution

	 2.16 Extracting Information from Strings
	 Problem
	 Task: Change the Order of Names
	 Solution
	 How It Works
	 Task: Totaling the Shopping List
	 Solution

	 Exercises
	 Exercise 2.1
	 Exercise 2.2


	Chapter 3: Language Elements
	 Commenting on Commenting
	 Variables, Operators …
	 Working with Numbers
	 Logical and Other Operators
	 Reference and Value Equality
	 Checking If an Object Is nil
	 General Comparison Operator
	 Assignment Operators
	 Mass Assignment
	 Bitwise, Logical, and Ternary Operators
	 The Range Operators
	 The dot (.) Operator
	 Some Other Operators

	 Pattern Matching Operators
	 Using Ranges
	 Interval
	 Sequences
	 Conditions


	 Conditional Constructs/Control Flow
	 if
	 nil check
	 unless
	 Ternary operator
	 case
	 while
	 break, redo, next
	 until
	 for

	 3.1 Handling Exceptions
	 Problem
	 Solution
	 Single Line Rescue
	 catch and throw


	 3.2 Working with Predefined Variables and Constants
	 Problem
	 Solution
	 Predefined Constants

	 3.3 Running OS Commands
	 Problem
	 Solution

	 3.4 Initializing and Finalizing Code
	 Problem
	 Solution

	 3.5 Defining Functions
	 Problem
	 Solution
	 Functions with Arguments
	 Function Arguments with Default Values
	 Functions with a Variable Number of Arguments
	 Return Value from Functions
	 Recurrence


	 Exercises
	 Exercise 3.1
	 Exercise 3.2
	 Exercise 3.3


	Chapter 4: Collections
	 4.1 Creating and Initializing Arrays
	 Problem
	 Solution

	 4.2 Accessing Array Elements
	 Problem
	 Solution

	 4.3 Inserting an Element at a Certain Position
	 Problem
	 Solution

	 4.4 Working with Multidimensional Arrays
	 Problem
	 Solution

	 4.5 Working with Arrays
	 Problem
	 Solution
	 empty?
	 fill
	 Add, Subtract, Compare, and Contrast
	Outline Placeholder
	 concat
	Outline Placeholder
	Outline Placeholder
	Outline Placeholder
	Outline Placeholder
	Outline Placeholder

	 Set Operations
	 | (or union)
	 & (or intersection)
	 uniq

	 In Place Operations
	 sort (and sort!)
	 reverse (and reverse!)
	 Further Access and Manipulation
	 include?
	 index
	 rindex
	 values_at
	 fetch
	 insert
	 delete
	 delete_at
	 join
	 compact
	 clear



	 4.6 Creating Hashes
	 Problem
	 Solution

	 4.7 Adding New Elements to a Hash
	 Problem
	 Solution

	 4.8 Working with Hashes
	 Problem
	 Solution
	 clear
	 empty?
	 has_key?
	 has_value?
	 key
	 fetch
	 values_at
	 delete
	 invert
	 to_a
	Outline Placeholder
	 merge (and merge!)


	 4.9 Creating a Collection of Unique Objects
	 Problem
	 Solution

	 4.10 Inspecting a Set
	 Problem
	 Solution

	 4.11 Working with Sets
	 Problem
	 Solution
	 Checking and Changing
	 length (or size)
	 empty?
	 include?
	 clear
	 << (or add)
	 merge
	 delete
	 subtract
	Outline Placeholder

	 Set Operations
	 + (or | or union)
	 & (or intersection)
	 intersect?
	 disjoint?
	 - (or difference)
	Outline Placeholder
	 Subset and superset

	 Flattening and Conversion


	 Exercises
	 Exercise 4.1
	 Exercise 4.2


	Chapter 5: Blocks and Iterators
	 5.1 Associating Blocks with Functions
	 Problem
	 Solution

	 5.2 Adding Arguments to a Block
	 Problem
	 Solution

	 5.3 Initializing and Finalizing Code
	 Problem
	 Solution

	 5.4 Iterating over Data
	 Problem
	 Solution
	 each
	 step
	 select and reject
	 For Arrays
	 For Hashes
	 For Sets

	 map or collect
	 For Arrays
	 For Sets
	 For Hashes

	 delete_if and keep_if
	 For Arrays
	 For Sets
	 For Hashes

	 sort


	 Exercises
	 Exercise 5.1
	 Exercise 5.2
	 Exercise 5.3


	Chapter 6: Input-Output
	 6.1 Querying a CSV File
	 Problem
	 Solution
	 Subtask 1: A Person’s Birthday
	 Writing the Code
	 Testing

	 Subtask 2: ( The Names of) the Youngest and the Oldest Persons
	 Date Handling by API
	 Subtask 3: Persons with a Birthday in a Given Month


	 6.2 Sorting Text
	 Problem
	 Solution
	 How It Works

	 6.3 Checking User Input
	 Problem
	 Solution

	 6.4 Storing Data in a Structured Manner
	 Problem
	 Solution

	 6.5 Working with Directories
	 Problem
	 Solution
	 mkdir
	 rmdir
	 pwd
	 chdir
	 home
	 exist?
	 entries
	 new
	 each
	 foreach
	 glob


	 6.6 Dividing Files into Subdirectories
	 Problem
	 Solution

	 6.7 Adding Text to Files Using a Batch Operation
	 Problem
	 Solution
	 Approach 1: Output From Command Execution
	 Approach 2: Use Dir.glob
	 Adding the Comments in Each File



	Chapter 7: Regular Expressions
	 7.1 Searching Within a File
	 Problem
	 Solution
	 How It Works

	 7.2 Finding Only the Matched String
	 Problem
	 Solution
	How It Works

	 7.3 Working with Character Classes
	 Problem
	 Solution
	 How It Works
	 Negation
	 Range
	 Union
	 Intersection
	 Intersection with Negation
	 Common Character Classes
	 Predefined Character Classes
	 Any Single Character: dot
	 Whitespace and Non-Whitespace

	 Special Characters
	 Escape Sequence


	 7.4 Finding Significant Positions in a String
	 Problem
	 Solution
	 End of a Source String
	 Word Boundary and Non-Word Boundary
	 Start and End of a String
	 Interaction of Subpatterns
	 Looking for Multiple Groups


	 7.5 Using Non-Capturing Groups
	 Problem
	 Solution

	 7.6 Understanding the Regex Engine and Backtracking
	 Problem
	 Solution
	 Plane Forward Search
	 Backtracking
	 More on Greedy (Meta-) Characters

	 7.7 Finding Repeated Patterns
	 Problem
	 Solution
	 How It Works
	 Octal Codes and Backreferences
	Named Backreferences


	 7.8 Finding a Match and Excluding Some of It in the Result
	 Problem
	 Solution
	 Negative Lookahead Assertion
	 Lookbehind Assertion
	 Negative Lookbehind Assertion


	 7.9 Inserting Comments in a Regular Expression
	 Problem
	 Solution

	 7.10 Modifying Results
	 Problem
	 Solution
	 How It Works

	 7.11 Using Non-Backtracking Groups
	 Problem
	 Solution
	 How It Works

	 7.12 Replacing Substrings Using Regular Expressions
	 Problem
	 Solution

	 7.13 Using the scan Function with Regular Expressions
	 Exercises
	 Exercise 7.1
	 Exercise 7.2


	Chapter 8: Putting It into Action
	 8.1 Removing Block CommentedCode
	 Problem
	 Solution

	 8.2 Searching and Replacing in Text Files
	 Problem
	 Solution

	 8.3 Removing Duplicates from a Text File
	 Problem
	 Solution
	 The Technical Problem Specification
	 Step 1: Remove the Comments
	 Step 2: Remove Optional Keywords
	 Step 3: Collect Tokens
	 Step 4: Get Distinct Values


	 8.4 Reading XML as Text
	 Problem
	 Solution

	 8.5 A Case for Hash Buckets
	 Problem
	 Solution
	 How It Works


	Appendix A: Solutions to Exercises
	Solutions for Chapter 1
	(Solution) Excercise 1.1
	(Solution) Excercise 1.2
	(Solution) Excercise 1.3

	Solutions for Chapter 2
	(Solution) Excercise 2.1
	(Solution) Excercise 2.2

	Solutions for Chapter 3
	(Solution) Excercise 3.1
	(Solution) Excercise 3.2
	(Solution) Excercise 3.3

	Solutions for Chapter 4
	(Solution) Excercise 4.1
	(Solution) Excercise 4.2

	Solutions for Chapter 5
	(Solution) Excercise 5.1
	(Solution) Excercise 5.2
	(Solution) Excercise 5.3

	Solutions for Chapter 7
	(Solution) Excercise 7.1
	(Solution) Excercise 7.2


	Index



