
www.allitebooks.com

http://www.allitebooks.org

Swift 2 By Example

Create robust and extensible iOS apps using
the advanced features of Swift 2

Giordano Scalzo

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Swift 2 By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1080316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-292-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Giordano Scalzo

Reviewer
Hugo Solis

Commissioning Editor
Veena Pagare

Acquisition Editor
Reshma Raman

Content Development Editor
Divij Kotian

Technical Editor
Vishal Mewada

Copy Editor
Stuti Srivastava

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Giordano Scalzo is a developer with 20 years of programming experience, since
the days of the ZXSpectrum.

He has worked in C++, Java, .Net, Ruby, Python, and in so many other programming
languages he has forgotten the names.

After years of backend development, over the past 5 years Giordano has developed
extensively for iOS, releasing more than 20 apps—apps that he wrote for clients,
enterprise applications, or on his own.

Currently, he is a contractor in London, where—through his company, Effective
Code Ltd, http://effectivecode.co.uk—he delivers code for iOS, aiming at
quality and reliability.

In his spare time, when he is not crafting retro game clones for iOS, he writes his
thoughts at http://giordanoscalzo.com.

I'd like to thank my better half, Valentina, who lovingly supports
me in everything I do: without you, none of this would have
been possible.
Thanks to my bright future, Mattia and Luca, for giving me lots of
smiles and hugs when I needed them.
Finally, my gratitude goes to my Mum and Dad, who gave my
curiosity the right push, along with the support to follow my
passions, which began the day they bought me a ZXSpectrum.

www.allitebooks.com

http://effectivecode.co.uk
http://giordanoscalzo.com
http://www.allitebooks.org

About the Reviewer

Hugo Solis is an assistant professor in the Physics department at the University of
Costa Rica. His current research interests are computational cosmology, complexity
and the influence of hydrogen on material properties. He has wide experience with
languages including C/C++ and Python for scientific programming and visualization.
He is a member of the Free Software Foundation, and he has contributed code to some
free software projects. He has also been a technical reviewer for Mastering Object-
oriented Python, Learning Object-oriented Programming, and Kivy: Interactive Applications
in Python and is the author of Kivy Cookbook, Packt Publishing. Currently, he is in charge
of the Institute of Food Technologists, a Costa Rican scientific nonprofit organization
for the multidisciplinary practice of Physics (http://iftucr.org).

I'd like to thank Katty Sanchez, my beloved mother, for her support
and cutting-edge thoughts.

www.allitebooks.com

http://iftucr.org
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Welcome to the World of Swift 1

The first look at Swift 2
Let's go to the playground 2
The building blocks – variables and constants 5
Collecting variables in containers 8
Controlling the flow 10
Transforming the values using functions 14
Structs – custom compound types 16
Classes – common behavior objects 20
Loose coupling with protocols 22
Composing objects using protocol extensions 22
Checking the existence of an optional value 24
Enumerations on steroids 25
Extended pattern matching 27
Catching errors 29
Swift functional programming patterns 33

Summary 37
Chapter 2: Building a Guess the Number App 39

The app is… 39
Building a skeleton app 41
Adding the graphics components 43
Connecting the dots 47
Adding the code 52

Summary 56

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: A Memory Game in Swift 59
The app is… 59
Building the skeleton of the app 60
The menu screen 61

Implementing the basic menu screen 61
Creating a nice menu screen 64

The game screen 66
The structure 66
Adding a collection view 68
Sizing the components 70

Connecting the dataSource and the delegate 71
Implementing a deck of cards 73

What we are expecting 73
The card entity 74
Crafting the deck 75
Shuffling the deck 76
Finishing the deck 77
Put the cards on the table 78
Adding the assets 78
The CardCell structure 79
Handling touches 81

Finishing the game 82
Implementing the game logic 82
We got a pair 84
We made the wrong move 85
Et voilà! The game is completed 86

Summary 86
Chapter 4: A TodoList App in Swift 87

The app is… 87
Building a skeleton app 90

Implementing an empty app 90
Adding third-party libraries with CocoaPods 98
Implementing the Todos view controller 99

Building the Todos screen 103
Adding entities 103
Implementing datastore 104
Connecting datastore and View Controller 105
Configuring tableView 106
Finishing touches 108
Swipe that cell! 109

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Adding a Todo task 112
The add a Todo view 113
The add a Todo View Controller 120
Finishing TodoDatastore 127
List View Controller 128
Where do we go from here? 131

Summary 132
Chapter 5: A Pretty Weather App 133

The app is… 133
Building the skeleton 135

Creating the project 136
Adding assets 137

Implementing the UI 140
The UI in blocks 140

Completing the UI 145
Implementing CurrentWeatherView 145
Building WeatherHourlyForecastView 148
Seeing the next day's forecast in WeatherDaysForecastView 152

Blurring the background 156
Downloading the background image 159

Searching in Flickr 159
Geolocalising the app 162

Using Core Location 162
Retrieving the actual forecast 165

Getting the forecast from OpenWeatherMap 165
Rendering CurrentWeatherView 168
Rendering WeatherHourlyForecastView 171
Rendering WeatherDaysForecastView 172

Connecting to the server 173
Where do we go from here? 178
Summary 179

Chapter 6: Flappy Swift 181
The app is… 181
Building the skeleton of the app 182

Creating the project 182
Implementing the menu 184

A stage for a bird 189
SpriteKit in a nutshell 189
Explaining the code 190

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Simulating a three-dimensional world using parallax 191
How to implement scrolling 193

A flying bird 196
Adding the Bird node 196
Making the bird flap 199

Pipes! 201
Implementing the pipes node 201

Making the components interact 206
Setting up the collision-detection engine 206

Completing the game 212
Colliding with pipes 212
Adding the score 213
Adding a restart pop-up 214

Summary 216
Chapter 7: Polishing Flappy Swift 217

Adding juiciness 217
Let there be sounds! 217
Playing the soundtrack 219
Shaking the screen! 221

Integrating with Game Center 223
What Game Center provides 223
Setting up Game Center 223
Creating an app record on iTunes Connect 224
Enabling Game Center 226
Creating fake user accounts to test Game Center 229
Authenticating a player 230

Summary 236
Chapter 8: Cube Runner 237

The app is… 237
Introduction to SceneKit 238

What is SceneKit? 238
Building an empty scene 239
Adding a green torus 241
Let there be light! 242
Let's make it move! 242

Implementing Cube Runner 243
The game skeleton 243
Implementing the menu 245

Flying in a 3D world 249
Setting up a scene 249

Table of Contents

[v]

Adding a fighter 252
Texturing the world 254
Make it move 256
Adding cubes 257
Adding more obstacles 263

Adding a few touches 264
The score 264
Let's add music 266

Summary 268
Chapter 9: Completing Cube Runner 269

Creating a real game 269
Detecting collisions 269
Game over! 272
Adding the juice 275
Game Center 279

Summary 282
Chapter 10: ASAP – an E-commerce App in Swift 283

The app is… 283
The first requirement: login and registration 284
The second requirement: the products grid 285
The third requirement: the open cart 286

The skeleton app and register screen 286
The skeleton app 286

The ASAP e-commerce store 298
The e-commerce product list 299
The product cell 303
Parsing and storing products 307

The ASAP cart 311
Adding a product to the cart 312
Removing items from cart and checkout 316

Summary 325
Chapter 11: ASAPServer, a Server in Swift 327

The interface of the ASAP Server 327
One skeleton server for two OSes 328

An OS X skeleton server 328
Preparing the OS X environment 328
The HelloWorld skeleton server 329
Preparing the Linux environment 332

The ASAPServer 335
The Products 335

Table of Contents

[vi]

The cart 336
The order 337

Connecting the ASAP app 338
The products 338
The Cart 340
The order 343

Summary 344
Index 345

[vii]

Preface
The introduction of Swift during WWDC 2014 surprised the whole community
of iOS developers, who were waiting to be introduced to the new API from iOS 8,
not to be transformed into beginners.

Besides the surprise, most of them understood that this would have been a great
opportunity to create a new world of libraries, patterns, best practices, and so on.
On the other hand, communities of programmers in different languages, who were
intimidated by the rough first impact of Objective-C, started to be attracted by Swift,
which—with its friendly syntax—was less intimidating.

After a year, Swift 2.0 has proven to be a huge improvement over the first version,
enriched by a lot of new features and strengthened by its use in thousands of new
apps. It is finally ready for production!

In WWDC 2015, Apple made another surprising announcement: Swift will be open
source and there will be versions for different operating systems, beginning with
Linux and Windows. This opens up a whole new scenario, where it will be possible
to implement both client and the server apps with the same language.

This book will introduce you the world of app development using the new features
in Swift 2, and it will show you how to build Linux apps in Swift in order to create
server counterparts of your mobile apps.

Through simple step-by-step chapters, the book will teach you how to build both
utility and game apps; while building them, you'll learn the basics of Swift and iOS.

Preface

[viii]

What this book covers
Chapter 1, Welcome to the World of Swift, introduces the Swift syntax and the most
important features provided by the language.

Chapter 2, Building a Guess the Number App, introduces Xcode, its project file, and
the different editors required to build an app; a simple game app will be created
to demonstrate these.

Chapter 3, A Memory Game in Swift, shows the creation of a complete game app,
with images and animations, without using any Game framework but with only
the fundamental iOS libraries.

Chapter 4, A TodoList App in Swift, teaches you how to create a real-world utility app,
handling the library dependencies with Cocoapods.

Chapter 5, A Pretty Weather App, shows you how to create a nice looking app that
retrieves data from third-party servers.

Chapter 6, Flappy Swift, covers SpriteKit, the 2D iOS game engine.

Chapter 7, Polishing Flappy Swift, completes the game, adding Game Center support
and various entertaining touches.

Chapter 8, Cube Runner, covers SceneKit and 3D programming, implementing a
3D endless runner with a space theme.

Chapter 9, Completing Cube Runner, finalizes the game and adds Game Center support.

Chapter 10, ASAP – an E-commerce App in Swift, implements an ecommerce app that
uses local storage to store the products.

Chapter 11, ASAPServer, a Server in Swift, is a follow-up to the previous chapter,
where we'll implement a backend server for Linux to handle the requests of the
ASAP e-commerce app.

What you need for this book
In order to get the most out of this book, there are a few essentials you will need:

• A Mac computer running OS X 10.11.2 or higher
• A basic knowledge of programming

Preface

[ix]

• Xcode 7.2 or higher
• An iPhone 5s or higher (an app uses CoreMotion that doesn't work in

the simulator)

Who this book is for
This book is ideal for those who want to learn how to develop apps in Swift, starting
the right way. Whether you are an expert Objective-C programmer or are new to this
platform, you'll quickly grasp the code for real-world apps and discover how to use
Swift effectively. Prior experience in the development of Apple devices would be
helpful, but it is not mandatory.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

let mainWindow = UIWindow(frame: UIScreen.mainScreen().bounds)
mainWindow.backgroundColor = UIColor.whiteColor()
mainWindow.rootViewController = navigatorViewController
mainWindow.makeKeyAndVisible()
window = mainWindow
return true

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

let mainWindow = UIWindow(frame: UIScreen.mainScreen().bounds)
mainWindow.backgroundColor = UIColor.whiteColor()
mainWindow.rootViewController = navigatorViewController
mainWindow.makeKeyAndVisible()
window = mainWindow
return true

Preface

[x]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/Swift2byExample_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/sites/default/files/downloads/Swift2byExample_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Swift2byExample_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Welcome to the
World of Swift

Swift is a language so new that even the most expert programmers have barely a
year and few months of experience in it. However, it borrows most of its features
from several other programming languages, such as Ruby, Python, Scala, Rust,
Groovy, and even JavaScript and Haskell. So, anyone who approaches Swift
will already feel at home, recognizing the patterns and features of their favorite
programming languages.

Moreover, unlike Objective-C, whose learning curve is really steep for beginners,
Swift is really friendly for newcomers, who can write code once they learn the
basics of the language.

Nevertheless, mastering Swift when using its more advanced features, such as
effectively integrating patterns of functional programming with object-oriented
concepts, takes time and the best practices still need to be discovered.

Also, Swift's language is just one part of the story. In fact, a programming language
without a precise goal is pretty useless. Swift is not a general-purpose language,
but a language with a specific goal of building apps for iOS and OS X using the
Cocoa framework.

It's in this framework that the complexity resides; Cocoa is a very big framework,
with thousands of APIs and different patterns and best practices. It has changed
significantly over the course of its several releases, for example, moving from
the delegate pattern to the use of blocks to make components interact with
loose coupling.

Welcome to the World of Swift

[2]

More than knowing the language, the real challenge is in knowing the framework.
I want to stress that the aim of this chapter is just to help you get the first grasp of
what Swift's constructs look like, and not to be exhaustive, so expect to find a certain
degree of simplification. Also, be aware that a deeper knowledge of the language can
be achieved with books that specialize only in Swift learning, whereas the goal of
this book is to teach you how to build apps using Swift.

The first look at Swift
The most obvious way to describe Swift is to compare it with Objective-C, which
was the reference programming language for building Cocoa apps. Objective-C is an
object-oriented programming language with similarities to dynamic languages, such
as Ruby or Python. It is built on top of C, to which Apple has added features to make
it modern, such as blocks, properties, and an Automatic Reference Counter (ARC)
to manage the memory.

Swift is an object-oriented programming language with some functional
programming characteristics. It aims to flatten the learning curve for the beginner,
and to also provide more advanced features for the expert, adding more checks at
runtime that could help make apps safer.

Objective-C is a loosely static-typed language; every variable must have a type, but
it's possible to define a variable using the id type, reaching a sort of dynamic typing,
where the type is evaluated at runtime. Thanks to its powerful runtime environment,
it's possible to change the structure of a class; for example, adding a method or variable
at runtime. This makes Objective-C a really flexible language, but it is also difficult to
manage and prone to creating subtle bugs that are difficult to catch at runtime.

Swift is a strong static-typed language. This means that the type of a variable must be
set and is evaluated at compile time. It also lacks any kind of metaprogramming at
runtime, but this sternness, added to the functional patterns it supports, should help
programmers eliminate an entire class of bugs, allowing apps to be more robust in a
faster way.

However, the best way to learn a language is to play with it, and Xcode 7 has
brought forth a really nice way to do it.

Let's go to the playground
Usually, the only way to experiment and learn a language until Xcode 5 was by
creating a new app and writing code inside any method of that app. Then, you
would compile and run it, reading the log or stopping using the debugger.

Chapter 1

[3]

Xcode introduced the concept of a playground, which isn't an app or a program to
be built, but a source file that is constantly compiled and evaluated every time it
changes.

Xcode 7 can be downloaded for free from the Mac App Store at http://www.apple.
com/osx/apps/app-store/. Once it is installed, go to File | New | Playground,
as shown in the following screenshot:

Without changing anything, you have created your first Swift program! The
following screenshot shows our first program:

The playground is split into two windows: to the left is our code, and to the right is
the evaluation of the code on the left-hand side.

If we change the string from "Hello, playground" to "Hello, world", as you can see
in the following screenshot, the code is compiled and run without the need to select
anything from the menu. This is because the compilation is triggered by the
saving operation:

http://www.apple.com/osx/apps/app-store/
http://www.apple.com/osx/apps/app-store/

Welcome to the World of Swift

[4]

If we make an error, for example, by removing the closing quote from the string,
the left part presents a red dot. This dot shows the error type when we click on it.
Notice that the right part still presents the result of the previous run. This screenshot
displays how the playground shows an error:

With the print() function, it is possible to print messages on a debug console,
which can be opened by clicking on the triangle on the bottom left, as shown in the
following screenshot:

Chapter 1

[5]

The console is basically another view just below the playground view, as you can see
in this screenshot:

There is much more to learn about playground, but even with this much knowledge,
we can dive into Swift without further ado.

The building blocks – variables and constants
As already said, Swift is a strongly typed language, which means that every variable
must be declared with the type it holds:

let name: String = "Paul"
let age: Int = 27

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Welcome to the World of Swift

[6]

Using the let keyword, we define a constant variable that cannot change its value
and, as in math, the constant becomes the identity of the value itself. The following
screenshot shows what the console looks like when we try to change the constant
after we have defined it:

To define a variable, we can use the var keyword:

var name: String = "Paul"
var age: Int = 27
name = "John"
age = 29

Chapter 1

[7]

We can change the value of a variable, paying attention to set a new value of the
same kind. Otherwise, an error will be raised, as shown in this screenshot:

Speaking of type declaration, Swift is smarter than just requiring the type of
a variable. If the value of the variable is set during its declaration, Swift can
understand the type without the need for an explicit type. This feature is called type
inference, and it allows us to create more concise code. For example, we can write
code like the following:

let bassPlayer = "Paul"
let bassPlayerAge = 27
let guitarPlayer = "John"
let guitarPlayerAge = 29

Obviously, the type is mandatory if a variable is declared without being initialized:

var bassPlayer: String
var bassPlayerAge: Int
var guitarPlayer: String
var guitarPlayerAge: Int

Because it's really difficult to track all the changes made to a mutable variable, it is
good practice to use constants as much as we can and use variables only to contain
the status in a small and well-defined scope in which it's easy to understand whether
the code is correct or not.

Welcome to the World of Swift

[8]

Collecting variables in containers
A variable is the minimum information that we can handle, but, sometimes, it is
useful to group variables together. Swift provides three types of containers for this
purpose: tuple, array, and dictionary.

A tuple is a limited set of heterogeneous values, like this, for example:

let bassPlayer = (name: "Paul", surname: "McCartney", age: 27)

In the declaration of a tuple, each piece of information is separated by a comma (,),
each variable is a name-value pair separated by a colon (:), and all the elements are
surrounded by a pair of parentheses.

To access the elements of a tuple, it is possible to use a dot notation, specifying the
name of a variable:

bassPlayer.name // Paul
bassPlayer.surname // McCartney
bassPlayer.age // 27

A tuple can also be defined as an unnamed collection, that is, without specifying the
names of the elements:

let bassPlayer = ("Paul", "McCartney", 27)

In this case, to access the elements, we must use their positions inside the tuple:

bassPlayer.0 // Paul
bassPlayer.1 // McCartney
bassPlayer.2 // 27

It is also possible to unwrap the values of a tuple and use them in simple external
values, assigning each value inside the tuple to specific variables:

let bassPlayer = ("Paul", "McCartney", 27)
let (name, surname, age) = bassPlayer
print(name)
print(surname)
print(age)

An array is an unnamed list of homogeneous values:

var band = ["Paul", "John"]

Chapter 1

[9]

An array has a number of elements. These elements can be asked for using the
count property:

band.count // 2

Each element can be accessed using square brackets ([]) around the index of the value:

band[0] // Paul
band[1] // John

Just as in a tuple, the first index starts from 0.

Unlike Objective-C, where containers have mutable and immutable implementation,
in Swift, it depends on the way in which the variable is declared with let or
with var.

If an array is mutable, we can change the value at a particular index, but we can also
add elements using the append method:

band.append("George")
band.append("Ringo")

Moreover, using the sum operator (+), it is possible to create a new array that
contains all the elements of the two previous arrays:

let theBeatles = band + ["George", "Ringo"]

The third container Swift provides is a dictionary, which is a sort of named-index
array. Its syntax is similar to that of a tuple using a name-value list separated by
commas and surrounded by square brackets:

var band = ["bass": "Paul", "guitar": "John"]

Each value can be reached using the key inside the square brackets:

band["bass"] // Optional("Paul")
band["guitar"] // Optional("John")

The value retrieved is not exactly the same value we inserted during the
initialization, but it is wrapped by an optional value, which means that the result
can be either a real value or nil. For example, if we use a key that is not present, the
value returned is nil:

band["keyboard"] // nil

Welcome to the World of Swift

[10]

We'll see optional values later in this chapter. For the moment, it's enough to know
that to extract the value from an optional, we must use the exclamation mark (!).
Pay attention: you must do this only if you are sure that a value is inside an optional
value. Otherwise, a runtime error will occur, as shown in this screenshot:

Controlling the flow
The most basic construct used to control the flow is the conditional check, which
executes a piece of code if the condition provided is true:

var name = "Jim"
if name == "Paul" {
 print("Let's play the bass")
} else if name == "John" {
 print("Let's play the guitar")
} else if name == "George" {
 print("Let's play the sitar")
} else if name == "Ringo" {
 print("Let's play the drums")
} else {
 print("What do you want to play?")
}

The parentheses around the condition are optional but the curly braces are required,
even in the case of a single statement.

The switch block in Swift is more powerful than in other languages. It is a nicer way
of writing a chain of if statements:

var name = "Jim"
switch name {
case "Paul":

Chapter 1

[11]

 print("Let's play the bass")
case "John":
 print("Let's play the guitar")
case "George":
 print("Let's play the sitar")
case "Ringo":
 print("Let's play the drums")
default:
 print("What do you want to play?")
}

Whereas other languages' switch constructs handle-only integers, in Swift, we can
have different types of conditional variables.

The list of possible values must be exhaustive, and, in this case, a default case must
be provided.

A case block is executed until the entered variable's value matches the case. Swift is
smart enough to break a case block on completion, so you don't have to explicitly
break out of the switch at the end of a case's code.

If you want the same behavior of case in Objective-C, which means continuing
if there is no break command before the next case statement, you must add the
fallthrough keyword, as shown here:

www.allitebooks.com

http://www.allitebooks.org

Welcome to the World of Swift

[12]

As said earlier, switches are more than this, but we'll see better when we implement
the apps.

Swift 2 brought another keyword to manage the flow: guard.

A guard keyword is a sort of check that ensures that a certain condition is met,
otherwise the function exits.

For example:

 guard let data = db.getData() where data.count > 0 else {
 return
}
print("Data read from DB [\(data)")

As you can see, the role of the guard is to allow the flow only if the condition is valid;
to note that the variable scoping works differently than the usual: the data variable
is valid even after guard, and you can consider the variable created before the guard
in the same scope as the guard itself.

Until now, we have created only linear code without jumping around or going
back. It's now time to introduce the loop constructs provided by Swift. A loop is a
statement that allows a block of code to be executed repeatedly, controlled by an
exit condition.

The most basic kind is the while loop, where the loop is executed if a condition is
true, as depicted in this screenshot:

Chapter 1

[13]

To illustrate the while loop, we introduce the string format, which is a handy way
to insert a part of code to evaluate inside a string using a backslash (\) followed
by parenthesis (()). The contained element is evaluated and the result replaces the
expression. In other programming languages, this is called interpolation.

Another kind of loop is fast enumeration, which permits to iterate through an array
without using an index, but by accessing the values straightaway, as shown in the
following screenshot:

If we want to fast-enumerate through an array, and have also provided the index
of the item, we can use the enumerate function. The following screenshot shows the
use of enumerate function, which basically returns an array of tuples containing the
index and the value:

Welcome to the World of Swift

[14]

Transforming the values using functions
Swift is a multi-paradigm language that mixes object-oriented programming with
functional patterns.

The former organizes the code around objects, which are constructs with variables
and functions in imperative way. This means telling the software how to execute the
instructions one after the other. The latter defines the structures and elements of code
as an evaluation of functions in a declarative way, which means defining what the
elements are instead of how the elements behave.

These two paradigms apparently opposite give more flexibility to the developer,
who can leverage one or the other depending on the context.

In Swift, functions are first-class citizens, which means that they can be assigned
to variables, or they can be passed as either parameters or return values of other
functions.

A function in Swift is a named block of instructions that can be initialized, executed,
passed as a parameter, or returned as a return value.

A function is declared using the func keyword and by enclosing the code to be
executed around curly braces ({}):

func greet() {
 print("Hello, world!")
}
greet() // Hello, world!

In Swift, a function can be declared in an anonymous way; in this case, it is called
a closure:

let greet = {
 print("Hello, world!")
}
greet() // Hello, world!

A function can have a parameter, which is defined inside parentheses:

func greet(name: String) {
 print("Hello, \(name)!")
}
greet("Jim") // Hello, Jim!

When a function is defined as a closure, the parameters are inside the open curly
brace and the in keyword separates them from the block of instructions:

Chapter 1

[15]

let greet = { (name: String) in
 print("Hello, \(name)!")
}
greet("Jim") // Hello, Jim!

A function can return a value, which is defined using the arrow (->) in the
declaration:

func greet(name: String) -> String {
 return "Hello, \(name)!"
}
print(greet("Jim")) // Hello, Jim!

In a consistent manner, the closure defines the return value after the parameters:

let greet = { (name: String) -> String in
 return "Hello, \(name)!"
}
print(greet("Jim")) // Hello, Jim!

A function can have more than one parameter:

func greet(name: String, greeting: String) -> String {
 return "\(greeting), \(name)!"
}
print(greet("Jim", greeting: "Hi")) // Hi, Jim!

As we can see from this example, the parameters during the call are passed in a
positional way: for the first, the label is omitted, but for the other, it is mandatory:

func greeting(firstname: String, surname: String) -> String {
 return "My name is \(surname), \(firstname) \(surname)"
}

greeting("James", surname:"Bond") //My name is Bond, James Bond

In this case, duplicating the name of the parameter in the declaration of the function
and labels during calls becomes mandatory:

func greeting(firstname firstname: String, surname: String) -> String
{
 return "My name is \(surname), \(firstname) \(surname)"
}

greeting(surname: "Bond", firstname: "James") //My name is James, Bond
James

Welcome to the World of Swift

[16]

Structs – custom compound types
Earlier in this chapter, we saw how to group variables using tuples; starting from
this concept, Swift offers a way to create complex custom types through structs.

A struct is a container of different elements with the possibility to add functions to
manipulate them.

Starting from the example we used for the tuple, we can define a struct in this way:

struct Player{
 let name: String
 let surname: String
 let age: Int
 let instrument: String
}

let bassPlayer = Player(name: "Paul", surname: "McCartney",age:
27, instrument: "bass")
let guitarPlayer = Player(name: "John", surname: "Lennon", age:
29, instrument: "guitar")

We can access the elements of a struct using the dot notation that we used for the
named tuple:

guitarPlayer.name // John
guitarPlayer.instrument // guitar

This form doesn't seem much different from a tuple, but the structs are more
powerful than this.

For example, we can add a function inside the struct:

struct Player{
 let name: String
 let surname: String
 let age: Int
 let instrument: String
 func fullname() -> String{
 return "\(name) \(surname)"
 }
}
bassPlayer.fullname() // Paul McCartney

One of the basic principles of functional programming is to have functions that
deal only with immutable elements: they receive immutable objects and return
immutable objects.

Chapter 1

[17]

In this way, the mutable state is not shared in different places of the program, adding
complexity to the code because a variable can be mutated in different places.

The struct construct was created with this principle in mind: to enforce
immutability. When a struct variable is assigned to another variable, it is
assigned by copy. This means that a new struct is created with the same values
as the previous struct. The same happens when a struct is passed as a function
argument. The nature of the struct is also known as the Value Type.

On the contrary, classes (which we'll see in the next section) are passed by reference.
This means that only the address of the object is copied and the variable points to the
same object.

As just mentioned, although it is better to have immutable structs, it's possible to
define variables inside a struct, making it possible to change their values:

struct Player{
 var name: String
 var surname: String
 var age: Int
 var instrument: String
 func fullname() -> String{
 return "\(name) \(surname)"
 }
}

var guitarPlayer = Player(name: "John", surname: "Lennon",
 age: 29,
 instrument: "guitar")
guitarPlayer.fullname() // John Lennon
guitarPlayer.name = "Joe"
guitarPlayer.surname = "Satriani"
guitarPlayer.fullname() // Joe Satriani

As already said, a struct is a container of elements; these elements are called
properties. Other related properties can be created starting from already defined
properties.

A struct in Swift offers the mechanism of computed properties to create related
properties. These are basically functions disguised as properties:

struct Player{
 var name: String
 var surname: String
 var age: Int
 var instrument: String

Welcome to the World of Swift

[18]

 var fullname: String {
 return "\(name) \(surname)"
 }
}

var guitarPlayer = Player(name: "John", surname: "Lennon",
 age: 29,
 instrument: "guitar")

print(guitarPlayer.fullname) //John Lennon

Note that from a caller point of view, a computed property is indistinguishable from
a defined property, so it's also possible to define a way to change it:

import Foundation

struct Player{
 var name: String
 var surname: String
 var age: Int
 var instrument: String
 var fullname: String {
 get { return "\(name) \(surname)" }
 set(newFullname) {
 let names = newFullname.componentsSeparatedByString(" ")
 name = names[0]
 surname = names[1]
 }
 }
}
var guitarPlayer = Player(name: "John", surname: "Lennon",
 age: 29,
 instrument: "guitar")

guitarPlayer.fullname = "Joe Satriani"
print(guitarPlayer.name) //Joe
print(guitarPlayer.surname) //Satriani

There are a few things to talk about in this snippet.

First of all, we needed to use import Foundation to use the
componentsSeparatedByString method, which creates an array of elements,
splitting the string using the parameter string as a separator.

Chapter 1

[19]

Inside the definition of the computed property, we defined two functions: a getter
(get), which is the same code that we used in the previous example, and a setter
(set), which accepts a string as a parameter. In the function body, split the parameter
in tokens, separated by an empty space, and assign the first value to name and the
second to surname.

As already mentioned, a struct is a value type in Swift, such as an integer, a string,
an array, and so on. This means that an instance of a struct is copied when assigned
to a new variable or passed as a parameter:

struct Player{
 var name: String
 var surname: String
 var age: Int
 var instrument: String
}

var originalPlayer = Player(name: "John", surname: "Lennon",
 age: 29,
 instrument: "guitar")

var newPlayer = originalPlayer
newPlayer.name = "Joe"
newPlayer.surname = "Satriani"

originalPlayer.surname // Lennon
newPlayer.surname // Satriani

A struct is also copied when it is passed a parameter in a function:

var originalPlayer = Player(name: "John", surname: "Lennon",
 age: 29,
 instrument: "guitar")

func transformPlayer(var player: Player) -> Player {
 player.name = "Joe"
 player.surname = "Satriani"
 return player
}

var newPlayer = transformPlayer(originalPlayer)

originalPlayer.surname // Lennon
newPlayer.surname // Satriani

This knowledge of structs is enough to start using them efficiently.

Welcome to the World of Swift

[20]

Classes – common behavior objects
If you already know another object-oriented programming language, you might be
wondering whether there are classes in Swift, and, if so, why we haven't introduced
them earlier.

Of course there are! In the end, the main purpose of Swift is to create iOS or OS X
apps using Cocoa, which is an object-oriented framework.

Nevertheless, with Swift being a multi-paradigm programming language, classes are
no longer the central concepts around which everything is built, as in object-oriented
languages. However, they are a way to encapsulate the business logic.

Let's explore classes by altering the previous example to use classes instead of
structs:

class Player{
 var name: String
 var surname: String
 var age: Int
 var instrument: String
 init(name: String, surname: String, age: Int, instrument: String){
 self.name = name
 self.surname = surname
 self.age = age
 self.instrument = instrument
 }
}

var originalPlayer = Player(name: "John", surname: "Lennon", age:
29, instrument: "guitar")

Basically, instead of the struct keyword, we used class, and we also needed to
provide an initializer with all the parameters to initialize the instance (a constructor
is a method called when the object is instantiated and initialized).

At first sight, it seems that class and struct are the same construct, but, in reality,
the difference is substantial and relative to the nature of the two constructs.

The main difference is that an instance of a class is copied by reference. This means
that the object isn't copied, but the reference of the object is copied, so when we
change the new object, we are changing the original object as well.

Let's convert the example of the structs using a class:

var originalPlayer = Player(name: "John", surname: "Lennon", age:
29, instrument: "guitar")

Chapter 1

[21]

func transformPlayer(var player: Player) -> Player {
 player.name = "Joe"
 player.surname = "Satriani"
 return player
}

var newPlayer = transformPlayer(originalPlayer)

originalPlayer.surname // Satriani
newPlayer.surname // Satriani

We can see in the log of the playground that the function changed originalPlayer
as well.

The other main difference is that a class supports inheritance. This means that we
can create a specialized version of a class, which is still of the same category as the
original class but has more characteristics:

class Guitarist: Player{
 var guitarBrand: String
 init(name: String, surname: String, age: Int, guitarBrand: String)
{
 self.guitarBrand = guitarBrand
 super.init(name: name, surname: name, age: age,
instrument: "guitar")
 }
}

var alienGuitarist = Guitarist(name: "Joe", surname: "Satriani",
age: 31, guitarBrand: "guitar")

So, a guitarist is basically a player with a guitar.

Note that in the constructor, we need to initialize all the variables of our level (in
our case, just one), and then call the parent initializer using the super keyword to
continue the chain of initialization.

To help understand when to use a struct or a class, it is often stated to favor
the use of structs over classes. When an object represents something concrete
(for example, a view or a button), we must use a class. When we need to represent
properties or values that don't exist as concrete real things, such as Coordinates
or Rect, we must use structs.

Welcome to the World of Swift

[22]

Loose coupling with protocols
A good way to tame the complexity of code is to separate what an object does from
how it does it.

This is accomplished by defining the interface of an object, namely the properties
and the methods of a class or a struct.

If the class or struct adheres to a protocol, it must implement all the methods
defined in the protocol:

protocol Playable {
 func play()
}

class Player: Playable{

 //...

 func play() {
 // use instrument to play
 }
}

This allows us to call the defined methods without knowing the actual value of an
instance:

func concert(band: [Playable]){
 for player in band {
 player.play()
 }
}

The concept of protocols is widely used in Cocoa for loose coupling and permitting
an object to interact without knowing which kind of implementation it has.

Composing objects using protocol extensions
In Swift 1.x, protocols just defined the interface that must be implemented, but
from Swift 2.0, protocols can also have code than can be used in the implemented
class or struct.

Let's see a simple example, implementing three different instrument players
as a protocol:

protocol Guitarist {}

Chapter 1

[23]

extension Guitarist {
 func playGuitar() {
 print("I'm playing a guitar")
 }
}

protocol BassPlayer {}
extension BassPlayer {
 func playBass() {
 print("I'm playing a bass guitar")
 }
}

protocol KeyboardPlayer {}
extension KeyboardPlayer {
 func playKeyboard() {
 print("I'm playing a keyboard")
 }
}

Given these, we can create a class that conforms to all of them:

class MultiInstrumentalist: Guitarist, BassPlayer, KeyboardPlayer{}

Finally, let's instantiate an object and call the play function:

let trent = MultiInstrumentalist()
trent.playBass() // I'm playing a bass guitar
trent.playGuitar() // I'm playing a guitar
trent.playKeyboard() // I'm playing a keyboard

As you can see, although the class doesn't have any defined functions, it exposes the
functions implemented in the protocols.

What if we redefine one of the protocol functions inside the implemented class? As
you can imagine, the class functions take the precedence:

class MultiInstrumentalist: Guitarist, BassPlayer, KeyboardPlayer{
 func playGuitar() {
 print("I'm playing an amazing guitar")
 }
}

let trent = MultiInstrumentalist()
trent.playBass() // I'm playing a bass guitar
trent.playGuitar() // I'm playing an amazing guitar
trent.playKeyboard() // I'm playing a keyboard

Welcome to the World of Swift

[24]

Probably this is one of the most important new features in Swift 2.0, which allows
you to compound complex behavior without creating unnecessary complex object
hierarchy.

The protocol extensions were introduced during the WWDC 2015 in
a presentation called Protocol Oriented Programming in Swift. I strongly
recommend you to watch it at https://developer.apple.com/
videos/play/wwdc2015-408/.

Checking the existence of an optional value
We have already seen optional values when we discussed the dictionary.

The introduction of optional values is a radical, phenomenal change from
Objective-C, where it is allowed to call a method on a nil object without crashing
the app and the method call is silently discarded.

It might be handy in several occasions, but it can often create really subtle,
difficult-to-track, bugs. For example, if some objects of the UI are not connected
to the controller and we try to change their values, we send messages to nil and
nothing happens, leaving us without a clue as to what happened.

On the other hand, when we try to insert a nil object into a collection such as array
or dictionary, the app crashes at runtime.

Swift forces the developer to think of the nature of an element, whether it's always
present or whether it could be nil.

An optional is declared using a question mark (?), and to make the code compile, the
developer must check whether an optional value is nil before using it.

Also, an optional integer or optional string is not an ordinary integer or string; it's an
integer or string wrapped in a container. To extract and evaluate the value inside the
container, we must use the exclamation mark (!):

var optionalInt: Int?

if optionalInt != nil {
 let realInt = optionalInt!
 print("The value is [\(realInt)]")
} else {
 print("The value is nil!")
}

https://developer.apple.com/videos/play/wwdc2015-408/
https://developer.apple.com/videos/play/wwdc2015-408/

Chapter 1

[25]

This pattern is so common that Swift allows us to create the unwrapped variable
during the nil check:

var optionalInt: Int? = 3

if let realInt = optionalInt {
 print("The value is [\(realInt)]")
} else {
 print("The value is nil!")
}

As a good rule, it's recommended to use an optional as little as you can in your code,
and to always check whether a variable is nil before using it.

Exploiting the fact that in Swift it is possible to define a non-optional variable from
an option variable, with Swift 2.0 and the guard keyword, this is a very common
patter to unwrap the optional:

var usefulValue: Int?
//….
guard let usefulValue = usefulValue else {
return
}
// Code that uses usefulValue

In this way the code is readable and safe.

Enumerations on steroids
Enumerations are common constructs in several programming languages, but in
Swift they are really powerful.

They are used when we have a limited and well-defined set of possible values, for
example, the code responses for HTTP or the suits of a card game.

While you can have only numeric-based enumerations in Objective-C, in Swift,
enumerations can also be implemented with string:

enum Instrument: String {
 case Guitar = "guitar"
 case Bass = "bass"
 case Drums = "drums"
 case Sitar = "sitar"
 case Keyboard = "keyboard"
}

Welcome to the World of Swift

[26]

Using this enumeration, we can define a variable:

let instrument = Instrument.Drums

In this case, the constant infers the type from the initialization, but it is also possible
to declare the type and use an abbreviated version of the value:

let instrument: Instrument = .Drums

Because the constant is an instrument, the compiler is expecting a value of the
enumeration to assign to it, and it becomes superfluous when declaring the kind of
enumerations on the right side.

We have already seen the switch construct, and it's really useful with enumeration,
and in such a case, a statement contains a value of the enumeration:

let instrument: Instrument = .Drums

switch instrument {
case .Guitar:
 print("Let's play guitar")
case .Bass:
 print("Let's play bass")
case .Drums:
 print("Let's play drums")
case .Sitar:
 print("Let's play sitar")
case .Keyboard:
 print("Let's play keyboard")
}
// Let's play drums

As previously mentioned, the cases of a switch must be exhaustive and all possible
values must have a case; this enforces Swift to eliminate, as much as it can, the
chances of introducing bugs because of distraction or superficiality. For every case,
as in optional values, the developer is forced to pay attention and make a decision,
which can be wrong, of course, but at least it's not because he forgets to test a
condition.

A really advanced feature of enumerations in Swift is the possibility to associate
values with members. For example, we can add the number of strings for Guitar
and the brand for Keyboard:

let keithEmersonInstrument: Instrument = .Keyboard("Hammond")
let steveVaiInstrument: Instrument = .Guitar(7)
let instrument = steveVaiInstrument

Chapter 1

[27]

switch instrument {
case .Guitar(let numStrings):
 print("Let's play a \(numStrings) strings guitar")
case .Bass:
 print("Let's play bass")
case .Drums:
 print("Let's play drums")
case .Sitar:
 print("Let's play sitar")
case .Keyboard(let brand):
 print("Let's play a \(brand) keyboard")
}

// Let's play 7 strings guitar

Here, you can see that to extract the value from members, we need to use the binding
inside the case.

Enumerations are more powerful than what we have seen in this section, but this is
enough to understand their power, which, when linked with the features of switch
statements, make them one of the most important additions to Swift.

Extended pattern matching
As seen in the previous paragraph, the switch statement is really useful to decide
the logic given an input.

For example, a check can be added to a case statement having defined an enum with
associated values:

enum Instrument{
 case Guitar(numStrings: Int)
 case Keyboard(brand: String)
}

let instrument = Instrument.Guitar(numStrings: 7)

We can extract the logic using these statements:

switch instrument {
case .Guitar(numStrings: let numStrings)
 where numStrings == 7:
 print("Let's play 'For the Love of God'")
case .Guitar(numStrings: let numStrings)
 where numStrings == 12:

Welcome to the World of Swift

[28]

 print("Let's play 'Stairway to Heaven'")
case .Keyboard(brand: let brand)
 where brand == "Hammond":
 print("Let's play 'Tarkus'")
case .Keyboard(brand: let brand)
 where brand == "Korg":
 print("Let's play 'The Show Must Go On'")
default:
 print("Sorry, I can't suggest any song")
}

Sometimes the logic resides in the composition of the input; for example, if we have
two instruments and we want the first one to decide the kind of the songs, we can
exploit the switch with a tuple to decide it:

let firstInstrument = Instrument.Keyboard(brand: "Hammond")
let secondInstrument = Instrument.Guitar(numStrings: 7)

switch (firstInstrument, secondInstrument) {
case (.Guitar, _):
 print("Let's play a guitar song")
case (.Keyboard, _):
 print("Let's play a keyboard song")
}

Because we don't care of the second instrument, which can be the same as the first,
we use the wildcard character (_) that matches any value.

The final example I want to show is using the switch for a type casting pattern.

To define any possible type, class, struct, protocol, and so on, Swift provides the
keyword Any.

import UIKit

var anUnknownObjct: Any?

anUnknownObjct = "Hello, World"

switch anUnknownObjct {
case nil:
 print("I cannot handle nil element")
case is UIView:
 print("I cannot handle graphic element")
case let value as String:
 print(value)

Chapter 1

[29]

case let value as Int:
 print("The successor is \(value + 1)")
default:
 print("Unmatched object \(anUnknownObjct)")
}

Because we are not really interested in the value of the variable when the variable is
a UIView, we just check is it is a UIView, whereas for the String and Int, we want to
use that value so that we can bind it to a constant using let. If nothing matches, we
just log the value.

Catching errors
To build the safest code possible, we must handle and manage errors in the most
robust way possible.

Usually, each language has a particular way to handle the error, and Swift, as a
successor of Objective-C, supports, and enhances, the Objective-C ways.

Historically, Objective-C did not have exception handling, which was added later
through a class, NSException, and the MACROs NS_DURING, NS_HANDLER, and
NS_ENDHANDLER.

This was the way to use them:

NS_DURING
{
 [obj riskyOperation];
 [safeObj safeOperation];
}
NS_HANDLER
 NSLog("Severe error happened!");
NS_ENDHANDLER

The code around the NS_DURING and NS_HANDLER ensures that if a exception is raised
in the riskyOperation method, the execution is interrupted and the control is
passed to the code inside NS_HANDLER and NS_ENDHANDLER.

This construct was very limited, for example it is impossible to define different
exceptions to describe different error scenarios.

In OS X 10.3, native exception handling was added, basically importing the C++
mechanism.

It was then possible to write code like this:

Welcome to the World of Swift

[30]

@try {
 [obj riskyOperation];
 [safeObj safeOperation];
}
@catch (BadError *exception) {
 // Handle the exception…
}
@catch (TerribleError *exception) {
 // Handle the exception…
}
@catch (AwfulError *exception) {
 // Handle the exception…
}
@finally {
 // Clean up…
}

The pattern is similar to the implementation in other languages, like Java; the code
in the @try block is guarded against any possible exception and if an exception is
raised, the block related to that type of exception is executed.

The @finally block is executed regardless if an exception is raised or not.

Despite the fact that the implementation was seamlessly integrated with the rest of
SDK, the Objective-C developers rarely used the exceptions as an error mechanism,
and Apple itself suggested to use exceptions only for non recoverable errors.

The usual way to handle errors in Objective-C and Swift 1.x is through the use of a
NSError variable passed as a parameter:

NSError *error;
BOOL success = [db saveData:data error:&error];
if (!success) {
 NSLog("Unexpected error [%@]", error);
} else {
 NSLog("Success");
}

This code is translated literally in Swift 1.x:

Var error: NSError?
let success = db.saveData(data, error:&error)
if!success {
 print("Unexpected error [\(error)]")
} else {
 print("Success")
}

Chapter 1

[31]

Although the previous code is still valid in Swift 2.0, one of the biggest
improvements in the new version of the language is the introduction of the exception
handling mechanism.

The previous code could be rewritten as:

do {
try db.saveData(data)
}
catch ErrorType {
print("Unexpected error happened")
}

Although the syntax is similar to Objective-C, the exceptions in Swift are more
lightweight: for example the stack is not unwind like in Objctive-C, which can lead
to a memory leak, but it just exists from the scope.

Also, in Objective-C, all the exceptions are resolved at runtime, leading to some
performance issues, but in Swift, part of those, mainly when there are concatenations
of functions that can throw exceptions, can be optimized at compile time.

The exceptions must be defined as an enum implementing ErrorType.

Let's see a simple example where we implement a class, called Vault, and where
we encrypt a string passing a password; the Vault uses exceptions to notify an
invaded password.

First of all, it defines the possible exceptions:

enum VaultError: ErrorType {
 case Empty
 case Short
 case Invalid(String)
 case AlreadyEncrypted
}

These cases describe the scenario when a password is either too short, empty, or
invalid, and also the case when we try to encrypt an already encrypted Vault class.

Then, we implement a simple Vault class:

class Vault {
 private let unencryptedData: String
 private var encryptedData: String?
 init(data: String){
 unencryptedData = data
 }

www.allitebooks.com

http://www.allitebooks.org

Welcome to the World of Swift

[32]

 func encryptWithPassword(password: String) throws {
 guard password.characters.count > 0 else {
 throw VaultError.Empty
 }
 guard password.characters.count >= 5 else {
 throw VaultError.Short
 }

 guard isValid(password) else {
 throw VaultError.Invalid("The password must contains
numbers and letters, lowercase and uppercase.")
 }

 guard encryptedData == nil else {
 throw VaultError.AlreadyEncrypted
 }

 encryptedData = encryptData(unencryptedData,
 password: password)
 }
}

As you can see, the signature of encryptWithPassword() is decorated with the
throws instruction so that the compile knows that the function can throw exceptions
and force the use of the keyword try; a big difference with the Objective-C
exceptions is that in Swift 2.0, the developer is forced to handle the exceptions, even
with an empty implementation, but at least the compiler gives you an option to try
to manage a possible error.

Going back to our example:

let dataToEncrypt = "Some super important stuff!"
let password = "23Hello_42"

let vault = Vault(data: dataToEncrypt)

do {
 try vault.encryptWithPassword(password)
}
catch VaultError.Empty {
 print("You should provide a password")
}
catch VaultError.Short {
 print("The password should be at least 5 characters")

Chapter 1

[33]

}
catch VaultError.Invalid(let message) {
 print(message)
}
catch VaultError.AlreadyEncrypted {
 print("It's not possible to encrypt twice")
}

As you can see, all the case must be handled.

Sometime we are really sure that a function doesn't throw an exception and we
have already checked the validity of the password before passing it to the Vault;
for example, in this case we can use try!, whose behavior is similar to an implicitly
unwrapped optional value with the risk of a crash if the function raises an exception:

try! vault.encryptWithPassword(password)

What if we need to clean up resources regardless if the encryption succeeds? Swift
2.0 implemented, and improved, the @finally{} pattern, calling it defer:

let vault = Vault(data: dataToEncrypt)
defer {
 vault.destroy()
}

Besides the fact that the defer block should be the last block of the exception
handling, another interesting characteristic is that it is possible to define multiple
defers for the same scope and Swift will call all of them in the same order it found
was declared in the scope.

Swift functional programming patterns
One of the more exciting peculiarities of Swift is the introduction of functional
programming patterns in the language.

As already mentioned, we can define functional programming as a paradigm where
the focus, instead of steps of instructions to be executed, is on declaring the program
as an evaluation of pure functions avoiding mutable state.

Although Swift cannot be considered a functional language, http://robnapier.net/
swift-is-not-functional, it allows you to mix imperative and Object-Oriented
Programming (OOP) concepts with functional patterns.

http://robnapier.net/swift-is-not-functional
http://robnapier.net/swift-is-not-functional

Welcome to the World of Swift

[34]

One important concept to include in Swift is that its functions are High Order
Functions that means that they can accept functions as parameters and that can
return functions as a return value.

Let's show the subject with an example.

Having defined two functions:

import Foundation

func square(value: Int) -> Int {
 return value * value
}

func cube(value: Int) -> Int {
 return value * value * value
}

Let's define a function that randomly returns one of those:

func randFunc() -> (Int) -> Int {
 if Int(arc4random_uniform(UInt32(100))) > 50 {
 return square
 } else {
 return cube
 }
}

Then, define a function that accepts another function as a parameter:

func average(v1: Int, v2: Int, f: (Int)->Int) -> Int {
 return (f(v1) + f(v2))/2
}

Finally, we can use them like this:

average(3, v2: 5, f: randFunc()) // 17 or 76

The collection category in Swift implements some High Order Functions that can be
used to concatenate transformation.

Let's see the first one: map().

This function is used when we want to transform an array of A elements to an array
of B elements using a function that transforms A to B.

Giving, for example, an array of double, we want to map it to an array of string,
prepending it the dollar symbol:

Chapter 1

[35]

let notes = [5, 10, 20, 50, 20, 10]
notes.map { note in
 return "$\(note)"
}
// ["$5", "$10", "$20", "$50", "$20", "$10"]

Because the transform function is really simple, we can use the succinct form
allowed by Swift, removing the input variable declaration and using the positional
value ($) as the first parameter, $0 the third, and so on) and suppressing the return.

let notes = [5, 10, 20, 50, 20, 10]
notes.map { "$\($0)" }
// ["$5", "$10", "$20", "$50", "$20", "$10"]

The result is the same as the more conventional fast enumeration:

let notes = [5, 10, 20, 50, 20, 10]
var dollars = [String]()
for note in notes {
 dollars.append("$\(note)")
}
// ["$5", "$10", "$20", "$50", "$20", "$10"]

This way, though, avoids the creation of a temporary mutable structure and can be
used to concatenate transformation. Moreover, the emphasis is on what to do instead
of how to do it.

Another important function is the filter() function, which iterates on the array
and checks if every element satisfies a closure passed as a parameter. Let's imagine
wanting to filter out all the notes greater or equal to 50:

let notes = [5, 10, 20, 50, 20, 10]
notes.filter { note in
 return note < 50
}
// [5, 10, 20, 20, 10]

Again, we can use the succinct form:

let notes = [5, 10, 20, 50, 20, 10]
notes.filter { $0 < 50 }
// [5, 10, 20, 20, 10]

The third important High Order Function is reduce(), which accumulates the values
in a variable, applying the passed closure to each element.

Welcome to the World of Swift

[36]

Let's assume we want to sum the notes:

let notes = [5, 10, 20, 50, 20, 10]
notes.reduce(0) { accumulator, element in
 return accumulator + element
}
// 115

We pass the first value and a function to apply to each value.

The closure can also be written like this:

let notes = [5, 10, 20, 50, 20, 10]
notes.reduce(0) { $0 + $1}
// 115

Because the operator + is a function that accepts two Int as parameters and returns
the sum, the reduce() function can be even reduced like:

let notes = [5, 10, 20, 50, 20, 10]
notes.reduce(0, combine: +)
// 115

The power of these functions lies in the fact that we can concatenate them, and to sum
the notes less than 50 we can write:

let notes = [5, 10, 20, 50, 20, 10]
notes.filter { $0 < 50 }.reduce(0, combine: +)
// 65

Swift 2.0 brought an alternative to fast enumeration to iterate on elements: forEach().

The syntax is similar to map(), but the difference is that forEach() doesn't return
any values but operates on the element.

For example, to print the dollar value of each note, we could write:

let notes = [5, 10, 20, 50, 20, 10]
notes.forEach { note in
 print("$\(note)")
}
// $5
// $10
// $20
// $50
// $20
// $10

Chapter 1

[37]

Finally, the last High Order Function I want to present is the flatMap(), which
flattens every contained element in the array:

let notes = [[5, 10, 20], [50, 20, 10]]
notes.flatMap { $0 }
// [5, 10, 20, 50, 20, 10]

Another valuable use of the flatMap() is to filter out the nil values:

func filterGreaterThan50(value: Int?) -> Int? {
 guard let value = value else {
 return nil
 }
 if value < 50 {
 return value
 }
 return nil
}
let notes: [Int?] = [5, nil, 10, 20, nil, 50, 20, 10]
let a = notes
 .map{filterGreaterThan50($0)}
 .flatMap { $0 }
// [5, 10, 20, 20, 10]

Summary
This was a really dense chapter because we squeezed in content that usually needs
at least a book to explain properly in only tens of pages.

We took a quick look at Swift and its capabilities, starting from the definitions of
variables and constants and then how to define the control flow. After that, we moved
on to structs and classes, seeing how they are similar in some ways but profoundly
different as philosophies. Finally, we explored the new features of Swift 2.0, how to
create simple objects for complex problems, and how to exploit functional patterns to
build more readable programs.

Of course, simply after reading this chapter, nobody can be considered an expert in
Swift. However, the information here is enough to let you understand all of the code
we'll be using in the upcoming chapters to build several kinds of apps.

In the next chapter, we'll continue to explore Swift and iOS, and, finally, we'll
implement a simple iOS app to start to understand how the environment works.

[39]

Building a Guess
the Number App

As mentioned in the previous chapter, learning a language is just half of the
difficulty in building an app; the other half is the framework. This means that
learning a language is not enough. In this chapter, we'll implement a simple Guess
the Number app, just to become familiar with Xcode and part of the Cocoa Touch
framework.

The app is…
Our first complete Swift program is a Guess the Number app, a classic educational
game for children where the player must guess a number generated randomly.

For each guess, the game tells the player whether the guess is greater or lower than
the generated number (also called the secret number).

It is worth to remember that the goal here is not to build an App Store ready app
with a perfect software architecture, but to show how to use Xcode to build apps for
the iOS platform, so forgive me if the code is not exactly Clean Code, and if the game
is trivial.

Before diving into the code, we must define the interface of the app and the expected
workflow.

Building a Guess the Number App

[40]

This game presents only one screen, which is shown in the following screenshot:

At the top of the screen, a label reports the name of the app, Guess a Number.

In the next row, another static label with the word, between, connects the title with
a dynamic label that reports the current range. The text inside the label must change
every time a new number is inserted. A text field at the center of the screen is where
the player will insert their guess.

A big button, with OK written on it, is the command that confirms that the player
has inserted the chosen number.

The last two labels give feedback to the player:

• Your last guess was too low is displayed if the number inserted is lower than
the secret number

• Your last guess was too high is displayed if it's greater than the secret number

The last label reports the current number of guesses. The workflow is straightforward:

1. The app selects a random number.
2. The player inserts their guess.
3. If the number is equal to the secret number, a popup tells the player that they

have won, and shows them the number of guesses.

Chapter 2

[41]

4. If the number is lower than the secret number but greater than the lower
bound, it becomes the new lower bound. Otherwise, it is silently discarded.

5. If the number is greater and lower than the upper bound, it becomes the new
upper bound. Otherwise, it's, again, silently discarded.

Building a skeleton app
Let's start building the app.

There are two different ways to create a new project in Xcode: using a wizard or
selecting a new project from the menu.

When Xcode starts, it presents a wizard showing the recently used projects and a
shortcut to create a new project, as shown in the following screenshot:

If you have already Xcode open, you can select a new project by going to File | New
| Project…, as shown in this screenshot:

Building a Guess the Number App

[42]

Either way you choose, Xcode will ask for the type of app to be created. Since our
app is going to be really simple, let's choose the Single View Application:

Before starting to write code, we need to complete the configuration by adding
the Organization Identifier, using the reverse domain name notation like co.uk.
effectivecode, and Product Name. Together, they produce a Bundle Identifier,
which is the unique identifier of the app.

Pay attention to the selected language, which must obviously be Swift. Following is
the screenshot that shows you how to fill in the form:

Once done with this data, we are ready to run the app by going to Product | Run,
as shown in this screenshot:

After the simulator finishes loading the app, we can see our magnificent creation, a
shiny, brilliant white page!

Chapter 2

[43]

We can stop the app by going to Product | Stop, as shown in the following screenshot:

Given that a white page is not what we want, let's fix that writing code and
adding content.

Adding the graphics components
When we are developing an iOS app, it is good practice to implement the app
outside-in, starting from the graphics.

By taking a look at the files generated by the Xcode template, we can identify the two
files that we'll use to implement Guess the Number app:

• Main.storyboard: This contains the graphics components
• ViewController.swift: This handles all of the logic of the app

Here is a screenshot that presents the structure of the files in an Xcode project:

Building a Guess the Number App

[44]

Let's start by selecting the storyboard file to add the labels.

The first thing we notice is that the canvas is not the same size or ratio as an iPhone
and an iPad. To handle different sizes and different devices, Apple (since iOS 5) have
added a constraints system, called Auto Layout, as a system to connect the graphics
components in relative way, regardless of the actual size of the running device.

As Auto Layout is beyond the scope of this chapter, we'll implement the created app
only for iPhone 6.

After deciding our target device, we need to resize the canvas as per the real size of
the device. From the tree structure at the right, we select View Controller, as shown
here:

After having done that, we move to the right-hand side, where there are the
properties of the View Controller. There, we select the tab containing Simulated
Metrics, in which we can insert the requested size. The following screenshot will
help you locate the correct tab:

Chapter 2

[45]

Selecting the iPhone 4.7-inch size, we selected the appropriate size for iPhone 6
and 6S; after implementing the app, you could run it in different simulators to
understand what this means.

Now the size is the expected size, we can proceed to add labels, text fields, and the
buttons from the list in the bottom-right corner of the screen.

To add a component, we must choose it from the list of components. Then, we drag it
onto the screen, where we can place it at the expected coordinates.

This screenshot shows the list of UI components, called Object library:

As it is usually difficult to find, it's worth mentioning that we select the circle icon
with a square inside to select the Object library.

When you add the text field, pay attention to selecting Number Pad as the value for
Keyboard Type, as illustrated in the following screenshot:

Building a Guess the Number App

[46]

As mentioned, to add a component to the storyboard, it must be selected from the
object library and with the left button of the mouse clicked and dragged onto the
View Controller:

When the components are in the storyboard, you'll notice that moving the blue lines
appear to help you to align them to the already set components:

After selecting values for all the components, the app should appear as shown in the
mockup we had drawn earlier, which this screenshot can confirm:

Chapter 2

[47]

Connecting the dots
If we run the app, the screen is the same as the one in the storyboard, but if we try to
insert a number into the text field and then press the button, nothing happens.

This is because the storyboard is still detached from the View Controller, which
handles all of the logic.

To connect the labels to the View Controller, we need to create instances of a label
prepended with the @IBOutlet keyword. Using this signature, Interface Builder, the
graphic editor inside Xcode can recognize the instances available for connection to
the components:

class ViewController: UIViewController {
 @IBOutlet weak var rangeLbl: UILabel!
 @IBOutlet weak var numberTxtField: UITextField!
 @IBOutlet weak var messageLbl: UILabel!
 @IBOutlet weak var numGuessesLbl: UILabel!

 @IBAction func onOkPressed(sender: AnyObject) {
 }
}

Building a Guess the Number App

[48]

We have also added a method with the @IBAction prefix, which will be called when
the button is pressed.

Now, let's move on to Interface Builder to connect the labels and outlets.

First of all, we need to select View Controller from the tree of components, as shown
in this screenshot:

Chapter 2

[49]

In the tabs to the right, select the outlet views, the last one with an arrow as a
symbol. The following screenshot will help you find the correct symbol:

Building a Guess the Number App

[50]

This shows all the possible outlets to which a component can be connected.

Upon moving the cursor onto the circle beside the rangeLbl label, we see that it
changes to a cross. Now, we must click-and-drag a line to the label in the storyboard,
as shown in this screenshot:

After doing the same for all the labels, the following screenshot shows the final
configurations for the outlets:

Chapter 2

[51]

For the action of the button, the process is similar: select the circle close to the
onOkPressed action, and drag a line to the OK button, as shown in this screenshot:

When the button is released, a popup appears with the list of possible events to
connect the action to.

In our case, we connect the action to the Touch Up Inside event, which is triggered
when we release the button without moving from its area. The following screenshot
presents the list of the events raised by the UIButton component:

Now, suppose we added a log command like this one:

@IBAction func onOkPressed(sender: AnyObject) {
 print(numberTxtField.text)
}

Building a Guess the Number App

[52]

Then, we can see the value of the text field we insert printed on the debug console.

Now that all the components are connected to their respective outlets, we can add
the simple code required to create the app.

Adding the code
First of all, we need to add a few instance variables to handle the state:

private var lowerBound = 0
private var upperBound = 100
private var numGuesses = 0
private var secretNumber = 0

Just for the sake of clarity, and the separation of responsibilities, we create two
extensions to the View Controller. An extension in Swift is similar to a category in
Objective-C, a distinct data structure that adds a method to the class it extends.

Because we don't need the source of the class that the extension extends, we can use
this mechanism to add features to third-party classes, or even to CocoaTouch classes.

Given this original purpose, extensions can also be used to organize the code inside a
source file. This could seem a bit unorthodox, but if it doesn't hurt and is useful, why
not use it?

The first extension contains the logic of the game:

private extension ViewController{
 enum Comparison{
 case Smaller
 case Greater
 case Equals
 }

 func selectedNumber(number: Int){
 }

 func compareNumber(number: Int, otherNumber: Int) -> Comparison {
 }
}

The private keyword is added to the extension, making the methods
inside private. This means that other classes that hold a reference to
an instance of View Controller can't call these private methods.

Chapter 2

[53]

Also, this piece of code shows that it is possible to create enumerations inside a
private extension.

The second extension is for rendering all the labels:

private extension ViewController{
 func extractSecretNumber() {
 }

 func renderRange() {
 }

 func renderNumGuesses() {
 }
 func resetData() {
 }
 func resetMsg() {
 }
 func reset(){
 resetData()
 renderRange()
 renderNumGuesses()
 extractSecretNumber()
 resetMsg()
 }
}

Let's start from the beginning, which is the viewDidLoad method in the case of the
View Controller:

override func viewDidLoad() {
 super.viewDidLoad()
 numberTxtField.becomeFirstResponder()
 reset()
}

When the becomeFirstResponder method is called, the component called is
numberTxtField, in our case it gets the focus, and the keyboard appears.

After that, reset() is called:

func reset(){
 resetData()
 renderRange()
 renderNumGuesses()
 extractSecretNumber()

Building a Guess the Number App

[54]

 resetMsg()
}

This basically calls the reset method of each component:

func resetData() {
 lowerBound = 0
 upperBound = 100
 numGuesses = 0
}

func resetMsg() {
 messageLbl.text = ""
}

Then, the method is called and is used to render the two dynamic labels:

func renderRange() {
 rangeLbl.text = "\(lowerBound) and \(upperBound)"
}

func renderNumGuesses() {
 numGuessesLbl.text = "Number of Guesses: \(numGuesses)"
}

It also extracts the secret number using the arc4random_uniform function, and
performs some typecast magic to align to the expected numeric type:

func extractSecretNumber() {
 let diff = upperBound - lowerBound
 let randomNumber = Int(arc4random_uniform(UInt32(diff)))
 secretNumber = randomNumber + Int(lowerBound)
}

Now, all the action is in the onOkPressed action (pun intended):

@IBAction func onOkPressed(sender: AnyObject) {
 guard let number = Int(numberTxtField.text!) else {
 let alert = UIAlertController(title: nil, message: "Enter a
number", preferredStyle: UIAlertControllerStyle.Alert)
 alert.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default, handler: nil))
 self.presentViewController(alert, animated: true, completion:
nil)
 return
 }
 selectedNumber(number)
}

Chapter 2

[55]

Here, we retrieve the inserted number. Then, if it is valid (that is, it's not empty, not
a word, and so on), we call the selectedNumber method. Otherwise, we present a
popup asking for a number. This code uses the Swift 2.0 keyword guard that permits
to create a really clear code flow; in this way, if the number is not a valid one, we
return from the function and we don't need to check in the selectecNumber()
function if the parameter is valid or not.

The text property of a UITextField is an optional, but because we are
certain that is present, we can safely unwrap it.

Also, the handy Int(String) constructor converts a string in a number only if the
strings is a valid number.

All the juice is in selectedNumber, where there is a switch case:

func selectedNumber(number: Int){
 switch compareNumber(number, otherNumber: secretNumber){
//....

The compareNumber basically transforms a compare check into an enumeration:

func compareNumber(number: Int, otherNumber: Int) -> Comparison{
 if number < otherNumber {
 return .Smaller
 } else if number > otherNumber {
 return .Greater
 }

 return .Equals
}

Back to the switch statement of selectedNumber, it first checks whether the number
inserted is the same as the secret number:

case .Equals:
 let alert = UIAlertController(title: nil, message: "You won in
\(numGuesses) guesses!", preferredStyle:
UIAlertControllerStyle.Alert)
 alert.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default,
 handler: { cmd in
 self.reset()
 self.numberTxtField.text = ""}))
 self.presentViewController(alert,
 animated: true, completion: nil)

Building a Guess the Number App

[56]

If this is the case, a popup with the number of guesses is presented, and when it is
dismissed, all of the data is cleaned and the game starts again.

If the number is smaller, we calculate the lower bound again, and then we render the
feedback labels:

 case .Smaller:
 lowerBound = max(lowerBound, number)
 messageLbl.text = "Your last guess was too low"
 numberTxtField.text = ""
 numGuesses++
 renderRange()
 renderNumGuesses()

If the number is greater, the code is similar, but instead of the lower bound, we
calculate the upper bound:

 case .Greater:
 upperBound = min(upperBound, number)
 messageLbl.text = "Your last guess was too high"
 numberTxtField.text = ""
 numGuesses++
 renderRange()
 renderNumGuesses()
}

Et voilà! With this simple code, we have implemented our app.

You can download the code of the app from https://github.com/
gscalzo/Swift2ByExample/tree/1_GuessTheNumber.

Summary
This chapter showed us, by exploiting the power of Xcode and Swift, we can create
fully working app.

Depending on your level of iOS knowledge, you could have found this app either too
hard or to simple to understand; for the former, don't loose your enthusiasm, read
the code again, and try to execute the app adding few strategically placed print()
instructions in the code to see the content of the various variables; for the latter's,
I hope you have found at least some tricks you can start to use right now.

https://github.com/gscalzo/Swift2ByExample/tree/1_GuessTheNumber
https://github.com/gscalzo/Swift2ByExample/tree/1_GuessTheNumber

Chapter 2

[57]

Of course, simply after reading this chapter, nobody can be considered an expert in
Swift and Xcode. However, the information here is enough to let you understand all
of the code we'll be using in the upcoming chapters to build several kinds of other
interesting apps.

In the next chapter, we'll continue to explore Swift and iOS by implementing another
game, a memory game that will let us make use of the power of structs. You will
also learn about some new things in UIKit.

[59]

A Memory Game in Swift
After learning the fundamental parts of the language and getting a basic introduction
to creating a simple app with Xcode, it's now time to build something more complex,
but still using the basics from the previous chapter. This chapter aims to show you
how to structure an app, creating clean and simple code, and how to make it appealing
to the user with nice colors and smooth animations.

Compared to the previous chapter, this chapter is more advanced because I think
the best way to learn new concepts is to see them in a real, working app. One of
the many ways to show content in an iOS app is using the UICollectionView
class, which is a component that lays the subcomponents as a flow of cell. A good
introduction to UICollectionView can be found at http://nshipster.com/
uicollectionview/.

The app is…
The app we are going to implement is a UIKit implementation of a memory game:
a solitaire version. A memory game, also known as concentration, is a card game
where the player must match all the cards, which start reversed, turning up two of
them in each turn. If the cards match, they are removed from the table. Otherwise,
they are turned down again and the score increases. The goal is to clear the table
with the lowest score possible.

In our implementation, we are going to use only standard UIKit components and
look at another way of creating the interface in Xcode. We'll create all of our UI
directly in the code without using Interface Builder.

Let's start prototyping the screens. Despite this being an educational app, we want
it to be a pretty and fun app, so we need at least one option to decide the difficulty,
selecting the quantity of cards laid on the table.

http://nshipster.com/uicollectionview/
http://nshipster.com/uicollectionview/

A Memory Game in Swift

[60]

The following are the screens we'll implement for the app; the first is to select the
difficulty—basically, selecting the number of the cards in the deck:

Building the skeleton of the app
As we have already seen in the previous chapter, we can create our app by going to
File | New | Project..., and then selecting Single View Application from the list
of templates.

To simplify the handling of different resolutions, our memory game is in the
landscape mode only, so when the creation of the template has been completed,
uncheck Portrait as the allowed Device Orientation, as shown in the following
screenshot:

Chapter 3

[61]

The menu screen
Let's start implementing the first view, in which we can select the level of the game.

Implementing the basic menu screen
As we have planned to implement all of the UI in the code itself, we won't bother to
touch the storyboard. We will proceed to open the View Controller class in order
to implement the menu screen.

From the mockup, we can observe that there are three difficulty levels, each
represented by a horizontally centered and vertically equidistant button.

First of all, we will define an enumeration to describe the difficulty.

Then, we implement the setup for the layout:

enum Difficulty {
 case Easy, Medium, Hard
}

This enum must be defined outside the class so that it will be accessible by all classes.

Just for the sake of readability, we group the methods required in order to implement
a feature in a separated extension, leaving only the public functions and the variable
definition in the main class. Although extensions were born for a different goal,
which is to extend classes we don't have the source for, I've found that grouping
together methods in an extension helps describe the goals of those methods. Matt
Thompson, the creator of AFNetworking, the most used network library for iOS, used
this approach in Alamofire at https://github.com/Alamofire/Alamofire:

class ViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 setup()
 }
}

private extension ViewController {
 func setup() {
 view.backgroundColor = .whiteColor()

 buildButtonWithCenter(CGPoint(x: view.center.x,
y: view.center.y/2.0), title: "EASY", color:.greenColor(),
 action: "onEasyTapped:")

https://github.com/Alamofire/Alamofire

A Memory Game in Swift

[62]

 buildButtonWithCenter(CGPoint(x: view.center.x, y:
view.center.y), title: "MEDIUM", color:.yellowColor(),
 action: "onMediumTapped:")
 buildButtonWithCenter(CGPoint(x: view.center.x, y:
view.center.y*3.0/2.0), title: "HARD", color:.redColor(),
 action: "onHardTapped:")
 }

 func buildButtonWithCenter(center: CGPoint,
 title: String, color: UIColor, action: Selector) {
 //
 }
}

Again, we are not yet relying on Auto Layout to establish relations between the
components, so we pass the coordinates of each button to the initializer method.
In the same method, we also pass the text to be presented as a caption and the
background color.

You may also notice that Swift 2.0 can understand the scope of a class function given
the type of the receiver: if a variable is UIColor, it isn't necessary anymore to add the
class name before the function, like this:

let myColor: UIColor = UIColor.greenColor()

In Swift 2.0, you can just write it in this way:

let myColor: UIColor = .greenColor()

This will apply for the parameters of a function as well, making the code really clean.

The last parameter, called action, contains the name of the method inside View
Controller that the button must call when pressed. The following implementation of
buildButtonCenter() shows you how to create a button programmatically:

func buildButtonWithCenter(center: CGPoint, title: String, color:
UIColor, action: Selector) {
 let button = UIButton()
 button.setTitle(title, forState: .Normal)
 button.setTitleColor(.blackColor(), forState: .Normal)

 button.frame = CGRect(origin: CGPoint(x: 0, y: 0), size:
CGSize(width: 200, height: 50))
 button.center = center
 button.backgroundColor = color

Chapter 3

[63]

 button.addTarget(self, action: action, forControlEvents:
UIControlEvents.TouchUpInside)
 view.addSubview(button)
}

The last statement before adding the button to the view is the way to connect a
callback to an event, the programmatic equivalent of creating a line connecting an
event of the button to @IBAction using Interface Builder. This is a technique we saw
in the previous chapter.

Because all the actions are logically tied together, we create another extension to
group them:

extension ViewController {
 func onEasyTapped(sender: UIButton) {
 newGameDifficulty(.Easy)
 }

 func onMediumTapped(sender: UIButton) {
 newGameDifficulty(.Medium)
 }

 func onHardTapped(sender: UIButton) {
 newGameDifficulty(.Hard)
 }

 func newGameDifficulty(difficulty: Difficulty) {
 switch difficulty {
 case .Easy:
 print("Easy")
 case .Medium:
 print("Medium")
 case .Hard:
 print("Hard")
 }
 }
}

It is worth mentioning that this extension is not private, although it contains
functions that are used only internally; the reason here is because these are functions
called by the buttons when they are tapped, basically called by the Cocoa Runtime,
which can access the functions only if they are internal or public.

A Memory Game in Swift

[64]

Now, if we run the app by going to Product | Run, we can see that we have almost
implemented the screen in the mockup, as you can see in the following screenshot:

Also, by tapping the buttons, we can verify that the button calls the correct function.
We must see the correct message in the console when we press a button.

Although the screen is how we expected to implement it, it isn't very appealing, so
before proceeding to implement the game in View Controller, we customize the
color palette to make the UI prettier.

Creating a nice menu screen
Because the flat design has become very fashionable lately, let's go to http://
flatuicolors.com in order to choose a few colors to decorate our components.

After choosing the colors, we extend the UIColor class:

extension UIColor {
 class func greenSea() -> UIColor {
 return .colorComponents((22, 160, 133))
 }
 class func emerald() -> UIColor {
 return .colorComponents((46, 204, 113))
 }
 class func sunflower() -> UIColor {
 return .colorComponents((241, 196, 15))
 }
 class func alizarin() -> UIColor {
 return .colorComponents((231, 76, 60))
 }
}

private extension UIColor {

http://flatuicolors.com
http://flatuicolors.com

Chapter 3

[65]

 class func colorComponents(components: (CGFloat, CGFloat,
CGFloat)) -> UIColor {
 return UIColor(red: components.0/255, green:
components.1/255, blue: components.2/255, alpha: 1)
 }
}

With this extended palette, we can change the setup of View Controller:

func setup() {
 view.backgroundColor =.greenSea()

 buildButtonWithCenter(CGPoint(x: view.center.x, y:
view.center.y/2.0), title: "EASY", color: .emerald(), action:
"onEasyTapped:")
 buildButtonWithCenter(CGPoint(x: view.center.x, y:
view.center.y), title: "MEDIUM", color:.sunflower(), action:
"onMediumTapped:")
 buildButtonWithCenter(CGPoint(x: view.center.x, y:
view.center.y*3.0/2.0), title: "HARD", color:.alizarin(), action:
"onHardTapped:")
}

Inside the builder, let's change the title color to white:

func buildButtonWithCenter(center: CGPoint, title: String, color:
UIColor, action: Selector) {
 //
 button.setTitleColor(.whiteColor(), forState: .Normal)
 //
}

The result, as shown in the following screenshot, is definitely prettier, reminding us
of a real card table:

A Memory Game in Swift

[66]

Now we can implement a proper newGameDifficulty() function for which we
already wrote the empty implementation in the extension grouping the button
callbacks:

func newGameDifficulty(difficulty: Difficulty) {
 let gameViewController = MemoryViewController(difficulty:
difficulty)
 presentViewController(gameViewController, animated: true,
completion: nil)
}

The function introduces a new View Controller, MemoryViewController, which will
contain all the logic. Just to create the app build, let's make it empty.

You can find the code at https://github.com/gscalzo/
Swift2ByExample/tree/2_Memory_1_menu.

The game screen
Before implementing the game, let's proceed to build the layout of the cards on
the table.

The structure
Now let's implement a new class called MemoryViewController, which extends
the UIVewController class. This will be used to manage the actual view where
the Memory Game will be played. The first thing we do is add the class life cycle
functions:

class MemoryViewController: UIViewController {
 private let difficulty: Difficulty

 init(difficulty: Difficulty) {
 self.difficulty = difficulty
 super.init(nibName: nil, bundle: nil)
 }

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }

 deinit{

https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_1_menu
https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_1_menu

Chapter 3

[67]

 print("deinit")
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 setup()
 }
}
// MARK: Setup
private extension MemoryViewController {
 func setup() {
 view.backgroundColor = .greenSea()
 }
}

Besides the initializer that accepts the chosen difficulty, although it's not used, we
need to add the required initializer with NSCoder. Moreover, you should note that
we need to call the parent initializer with nibName and the bundle, used when
UIViewController is built from an XIB file. If we call a plain super.init()
function, we will receive a runtime error because the empty one is a convenience
initializer, an initializer that calls a required initializer in the same class that, in our
case, is not implemented.

Although not mandatory, we have implemented the deinitializer as well, inserting
just a debug log statement to verify that the class is correctly removed from the
memory when dismissed. Thus, a retain cycle is avoided.

Finally, we come to this comment:

// MARK: Setup

This is a special comment that tells Xcode to present the sentence in the structure of a
class in order to facilitate navigation to a different part of the class.

The last element of the status bar of the code editor of Xcode must be selected.

A Memory Game in Swift

[68]

After this, a menu with all the functions appears, with a bold entry where we put the
//MARK: comment.

Adding a collection view
Let's move on to implementing the layout of the card. We'll use UICollectionView
to lay the cards on the table. UICollectionView is a view that arranges the
contained cells to follow a layout we set during the setup. In this case, we set a flow
layout in which each card follows the previous one, and it creates a new row when
the right border is reached.

We set the properties for the view and a model to fulfill the collection view:

private var collectionView: UICollectionView!
private var deck: Array<Int>!

Next, we write the function calls to set up everything in viewDidLoad so that the
functions are called when the view is loaded:

override func viewDidLoad() {
 super.viewDidLoad()
 setup()
}

The setup() function basically creates and configures CollectionView:

// MARK: Setup
private extension MemoryViewController {
 func setup() {
 view.backgroundColor = .greenSea()

 let space: CGFloat = 5

Chapter 3

[69]

 let (covWidth, covHeight) =
collectionViewSizeDifficulty(difficulty, space: space)
 let layout = layoutCardSize(cardSizeDifficulty(difficulty,
space: space), space: space)

 collectionView = UICollectionView(frame: CGRect(x: 0, y:
0, width: covWidth, height: covHeight),
 collectionViewLayout: layout)
 collectionView.center = view.center
 collectionView.dataSource = self
 collectionView.delegate = self
 collectionView.scrollEnabled = false
 collectionView.registerClass(UICollectionViewCell.self,
forCellWithReuseIdentifier: "cardCell")
 collectionView.backgroundColor = .clearColor()

 self.view.addSubview(collectionView)
 }

After setting the color of the collectionview, we define a constant, space, to set the
space between every two cards.

Next, we calculate the size of the collectionview given the difficulty, and hence,
the number of rows and columns; then, the layout. Finally, we put everything
together to build the collectionview:

 func collectionViewSizeDifficulty(difficulty: Difficulty,
space: CGFloat) -> (CGFloat, CGFloat) {
 let (columns, rows) = sizeDifficulty(difficulty)
 let (cardWidth, cardHeight) = cardSizeDifficulty(difficulty,
space: space)

 let covWidth = columns*(cardWidth + 2*space)
 let covHeight = rows*(cardHeight + space)
 return (covWidth, covHeight)
 }

The cardSizeDifficulty() function calculates the size of the collection view by
multiplying the size of each card by the number of rows or columns:

 func cardSizeDifficulty(difficulty: Difficulty, space: CGFloat) ->
(CGFloat, CGFloat) {
 let ratio: CGFloat = 1.452

 let (_, rows) = sizeDifficulty(difficulty)
 let cardHeight: CGFloat = view.frame.height/rows - 2*space

A Memory Game in Swift

[70]

 let cardWidth: CGFloat = cardHeight/ratio
 return (cardWidth, cardHeight)
 }

The sizeDifficulty()function will be introduced later; just to make it buildable,
let's implement it with only one hardcoded value:

 func sizeDifficulty(difficulty: Difficulty) -> (CGFloat,
CGFloat) {
 return (4,3)
 }

Because the column value returned by the sizeDifficulty()function is not used
anywhere, we can safely associate it with the wildcard keyword _.

Sizing the components
As mentioned at the start of this chapter, we are not using Auto Layout, but we need
to handle the issue of different screen sizes somehow. Hence, using basic math, we
adapt the size of each card to the available size on the screen:

 func layoutCardSize(cardSize: (cardWidth: CGFloat, cardHeight:
CGFloat), space: CGFloat) -> UICollectionViewLayout {
 let layout: UICollectionViewFlowLayout =
UICollectionViewFlowLayout()
 layout.sectionInset = UIEdgeInsets(top: space, left:
space, bottom: space, right: space)
 layout.itemSize = CGSize(width: cardSize.cardWidth,
height: cardSize.cardHeight)
 layout.minimumLineSpacing = space
 return layout
 }

As mentioned earlier, the UICollectionView class shows a series of cells
in its content view, but the way in which the cells are presented—as a grid
or a vertical pile—the space between them is defined by an instance of
UICollectionViewFlowLayout.

Finally, we set up the layout, defining the size of each cell and how they are
separated and laid out.

We have seen that there is a connection between the difficulty setting and the size of
the grid of the cards, and this relation is implemented simply using switch statements:

// MARK: Difficulty
private extension MemoryViewController {

Chapter 3

[71]

 func sizeDifficulty(difficulty: Difficulty) -> (CGFloat, CGFloat)
{
 switch difficulty {
 case .Easy:
 return (4,3)
 case .Medium:
 return (6,4)
 case .Hard:
 return (8,4)
 }
 }

 func numCardsNeededDifficulty(difficulty: Difficulty) -> Int {
 let (columns, rows) = sizeDifficulty(difficulty)
 return Int(columns * rows)
 }
}

Connecting the dataSource and the
delegate
You have probably noticed that when we created collectionview, we set View
Controller itself as dataSource and delegate:

collectionView.dataSource = self
collectionView.delegate = self

A common pattern found in Cocoa in many components is the delegate pattern,
where part of the behavior is delegated to another object, and that object must
implement a particular protocol.

In the case of UICollectionView, and likewise for UITableView, we have to
delegate one of the class references to provide the content for the view, dataSource,
and the other to react to events from the view itself. In this way, the presentation
level is completely decoupled from the data and the business logic, which reside in
two specialized objects.

So, we need to implement the required methods of the protocols:

// MARK: UICollectionViewDataSource
extension MemoryViewController: UICollectionViewDataSource {
 func collectionView(collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {

A Memory Game in Swift

[72]

 return deck.count
 }

 func collectionView(collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {
 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("cardCell",
forIndexPath: indexPath)

 cell.backgroundColor = .sunflower()
 return cell
 }
}

As you can see, in the method called for the cell at a certain position, we are calling
a method to reuse a cell instead of creating a new one. This is a nifty feature of
UICollectionView that saves all the cells in a cache and can reuse those outside
the visible view. This not only saves a lot of memory, but it is also really efficient
because creating new cells during scrolling could be CPU consumption and affect
performance.

Because we want to see just the flow of the card, we use the default empty cell as
the view cell, changing the color of the background:

// MARK: UICollectionViewDelegate
extension MemoryViewController: UICollectionViewDelegate {
 func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {
 }
}

For the delegate, we simply prepare ourselves to handle a touch on the card.
Because we don't need a real deck of cards, an array of integers is enough as a model:

override func viewDidLoad() {
 super.viewDidLoad()
 setup()
 start()
}

private func start() {
 deck = Array<Int>(count: numCardsNeededDifficulty(difficulty),
repeatedValue: 1)
 collectionView.reloadData()
}

Chapter 3

[73]

Now, upon running the app and choosing a level, we will have all our empty cards
laid out like this:

Using a different simulator and the iPhone 5 or 4S, we can see that our table adapts
its size smoothly.

The code for the app implemented so far can be downloaded from
https://github.com/gscalzo/Swift2ByExample/tree/2_
Memory_2_Cards_Layout.

Implementing a deck of cards
So far, we have implemented a pretty generic app that lays out views inside a bigger
view. Let's proceed to implement the foundation of the game: a deck of cards.

What we are expecting
Before implementing the classes for a deck of cards, we must define the behavior we
are expecting, whereby we implement the calls in MemoryViewController, assuming
that the Deck object already exists. First of all, we change the type in the definition of
the property:

private var deck: Deck!

Then, we change the implementation of the start() function:

private func start() {
 deck = createDeck(numCardsNeededDifficulty(difficulty))
 collectionView.reloadData()
}

https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_2_Cards_Layout
https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_2_Cards_Layout

A Memory Game in Swift

[74]

private func createDeck(numCards: Int) -> Deck {
 let fullDeck = Deck.full().shuffled()
 let halfDeck = fullDeck.deckOfNumberOfCards(numCards/2)
 return (halfDeck + halfDeck).shuffled()
}

We are saying that we want a deck to be able to return a shuffled version of itself
and which can return a deck of a selected numbers of its cards. Also, it can be created
using the plus operator (+) to join two decks. This is a lot of information, but it
should help you learn a lot regarding structs.

The card entity
There hasn't been anything regarding the entities inside Deck so far, but we can
assume that it is a Card struct and that it uses plain enumerations. A Suit and Rank
parameter define a card, so we can write this code in a new file called Deck.swift:

enum Suit: CustomStringConvertible {
 case Spades, Hearts, Diamonds, Clubs
 var description: String {
 switch self {
 case .Spades:
 return "spades"
 case .Hearts:
 return "hearts"
 case .Diamonds:
 return "diamonds"
 case .Clubs:
 return "clubs"
 }
 }
}

enum Rank: Int, CustomStringConvertible {
 case Ace = 1
 case Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten
 case Jack, Queen, King
 var description: String {
 switch self {
 case .Ace:
 return "ace"
 case .Jack:
 return "jack"
 case .Queen:

Chapter 3

[75]

 return "queen"
 case .King:
 return "king"
 default:
 return String(self.rawValue)
 }
 }
}

Note that we have used an integer as a type in Rank but not in Suit. That's because
we want the possibility of creating a Rank from an integer, its raw value, but not for
Suit. This will soon become clearer.

We have implemented the CustomStringConvertible protocol, called Printable in
Swift 1.x, in order to be able to print the enumeration. The Card parameter is nothing
more than a pair of Rank and Suit cases:

struct Card: CustomStringConvertible, Equatable {
 private let rank: Rank
 private let suit: Suit

 var description: String {
 return "\(rank.description)_of_\(suit.description)"
 }
}
func ==(card1: Card, card2: Card) -> Bool {
 return card1.rank == card2.rank && card1.suit == card2.suit
}

Also, for Card, we have implemented the CustomStringConvertible protocol,
basically joining the description of its Rank and Suit cases. We have also
implemented the Equatable protocol to be able to check whether two cards are of
the same value.

Crafting the deck
Now we can implement the constructor of a full deck, iterating through all the values
of the Rank and Suit enumerations:

struct Deck {
 private var cards = [Card]()
 static func full() -> Deck {
 var deck = Deck()
 for i in Rank.Ace.rawValue...Rank.King.rawValue {

A Memory Game in Swift

[76]

 for suit in [Suit.Spades, .Hearts,.Clubs,
.Diamonds] {
 let card = Card(rank: Rank(rawValue: i)!, suit:
suit)
 deck.cards.append(card)
 }
 }
 return deck
 }
}

Shuffling the deck
The next function we will implement is shuffled():

// Fisher-Yates (fast and uniform) shuffle
func shuffled() -> Deck {
 var list = cards
 for i in 0..<(list.count - 1) {
 let j = Int(arc4random_uniform(UInt32(list.count - i)))
+ i
 if i!= j {
 swap(&list[i], &list[j])
 }
 }
 return Deck(cards: list)
}

The usual way to shuffle a deck of cards in a computer program is to use the Fisher-
Yates algorithm. Starting from the first card, we iterate until the very end, each
time swapping the current card with a random card in the set with an index higher
than the current one. A complete explanation of this can be found on Wikipedia at
http://en.wikipedia.org/wiki/Fisher–Yates_shuffle.

If you look carefully at the swap() function, you will see an ampersand (&) symbol
before the parameters. This means that the parameters are input and that they can
be changed inside functions. We can consider input parameters as shared variables
between the caller and the called.

Also, the swap() function needs two different variables to swap; it isn't possible to
swap a variable with itself, so before swapping, we check whether the indices are
different.

http://en.wikipedia.org/wiki/Fisher-Yates_shuffle

Chapter 3

[77]

Finishing the deck
We are almost done with the expected behavior of Deck; we just need to add the
creation of a subset of Deck:

func deckOfNumberOfCards(num: Int) -> Deck {
 return Deck(cards: Array(cards[0..<num]))
}

Note that using the notation for the [..<] range, the upper bound is not included in
the range, whereas using [..], the upper bound is included. We can create this by
exploiting the splicing feature of the Swift Array. Using this trick, we create the sum
operator:

func +(deck1: Deck, deck2: Deck) -> Deck {
 return Deck(cards: deck1.cards + deck2.cards)
}

Note that this function must be defined outside the Deck struct.

The last function left is the count property, which we implement using a computed
property:

var count: Int {
 get {
 return cards.count
 }
}

Before moving on to implementing the remainder of the game, we want to check
whether everything works fine, so we add a log after creating Deck, like this:

init(difficulty: Difficulty) {
 self.difficulty = difficulty
 self.deck = Deck()
 super.init(nibName: nil, bundle: nil)
 self.deck = createDeck(numCardsNeededDifficulty(difficulty))
 for i in 0..<deck.count {
 print("The card at index [\(i)] is
[\(deck[i].description)]")
 }
}

Unfortunately, the compiler complains that it doesn't know how to retrieve the
element at a specified index.

A Memory Game in Swift

[78]

For the purpose of mimicking the accessor of an array, Swift provides a special
computed property to add to the definition of our struct subscript. Implementing
the subscript just involves forwarding the request to private property cards:

subscript(index: Int) -> Card {
 get {
 return cards[index]
 }
}

Now the app gets compiled. If we run it, we get a console output like this:

The card at index [0] is [8_of_clubs]

The card at index [1] is [ace_of_spades]

The card at index [2] is [ace_of_clubs]

The card at index [3] is [ace_of_hearts]

The card at index [4] is [9_of_hearts]

The card at index [5] is [ace_of_hearts]

The card at index [6] is [queen_of_clubs]

The card at index [7] is [ace_of_clubs]

The card at index [8] is [ace_of_spades]

The card at index [9] is [queen_of_clubs]

The card at index [10] is [9_of_hearts]

The card at index [11] is [8_of_clubs]

The source code for this block can be downloaded from https://
github.com/gscalzo/Swift2ByExample/tree/2_Memory_3_
Cards_Foundation.

Put the cards on the table
Finally, let's add the card images and implement the entire game.

Adding the assets
Now that everything works, let's create a nice UI again.

First of all, let's import all the assets in the project. There are plenty of free card assets
on the Internet, but if you are lazy, I've prepared a complete deck of images ready for
this game for you, and you can download it from https://github.com/gscalzo/
Swift2ByExample/raw/2_Memory_4_Complete/Memory/Assets/CardImages.zip.

https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_3_Cards_Foundation
https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_3_Cards_Foundation
https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_3_Cards_Foundation
https://github.com/gscalzo/Swift2ByExample/raw/2_Memory_4_Complete/Memory/Assets/CardImages.zip
https://github.com/gscalzo/Swift2ByExample/raw/2_Memory_4_Complete/Memory/Assets/CardImages.zip

Chapter 3

[79]

The archive contains an image for the back of the cards and another image for
the front. To include them in the app, select the image assets file from the project
structure view, as shown in this screenshot:

After selecting the catalog, the images can be dragged into Xcode, as shown in the
following screenshot:

In this operation, you must pay attention and ensure that you move all the images
from 1x to 2x as shown in this screenshot. Otherwise, when you run the app, you will
see them pixelate.

The CardCell structure
Let's go ahead and implement our CardCell structure. Again, we pretend that we
already have the class, so we register that class during the setup of Collection View:

func setup() {
 //
 collectionView.registerClass(CardCell.self,
 forCellWithReuseIdentifier: "cardCell")
 //
}

A Memory Game in Swift

[80]

Then, we implement the rendering of the class when the data source protocol asks
for a cell given an index:

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {
 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("cardCell",
forIndexPath: indexPath) as! CardCell
 let card = deck[indexPath.row]
 cell.renderCardName(card.description, backImageName: "back")
 return cell
}

We are trying to push as much presentation code as we can into the new class in order
to decouple the responsibilities of Cell and controller, which hold the model.

So, let's implement a new class called CardCell, which inherits from
UICollectionViewCell, so don't forget to select that class in the Xcode wizard.

CardCell contains only UIImageView to present the card images and two properties
to hold the names of the front and back images:

class CardCell: UICollectionViewCell {
 private let frontImageView: UIImageView!
 private var cardImageName: String!
 private var backImageName: String!

 override init(frame: CGRect) {
 frontImageView = UIImageView(frame: CGRect(
 origin: CGPointZero,
 size: frame.size))
 super.init(frame: frame)
 contentView.addSubview(frontImageView)
 contentView.backgroundColor = UIColor.clearColor()
 }

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }

 func renderCardName(cardImageName: String, backImageName:
String){
 self.cardImageName = cardImageName
 self.backImageName = backImageName

Chapter 3

[81]

 frontImageView.image = UIImage(named: self.backImageName)
 }
}

If you run the app now, you should see some nice cards face down.

Handling touches
Now, let's get the cards face up!

This code is part of the UICollectionViewDelegate protocol, so it must be
implemented inside the MemoryViewController class:

func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {
 let cell = collectionView.cellForItemAtIndexPath(indexPath)
 as! CardCell
 cell.upturn()
}

This code is pretty clear, and now we only need to implement the upturn() function
inside CardCell:

func upturn() {
 UIView.transitionWithView(contentView, duration: 1, options:
.TransitionFlipFromRight, animations: {
 self.frontImageView.image =UIImage(named:
self.cardImageName)
 },
 completion: nil)
}

By leveraging a handy function inside the UIView class, we have created a nice
transition from the back image to the front image, simulating the flip of a card.

To complete the functions required to manage the card from a visual point of view,
we implement the downturn() function in a similar way:

func downturn() {
 UIView.transitionWithView(contentView, duration: 1, options:
.TransitionFlipFromLeft,
 animations: { self.frontImageView.image = UIImage(named:
self.backImageName)
 },completion: nil)
}

www.allitebooks.com

http://www.allitebooks.org

A Memory Game in Swift

[82]

To test all the functions, we turn down the card for 2 seconds after we have turned it
up. To run a delayed function, we use the dispatch_after function, but to remove
the boilerplate call, we wrap it in a smaller common function, added as an extension
of UIViewController:

extension UIViewController {
 func execAfter(delay: Double, block: () -> Void) {
 dispatch_after(
 dispatch_time(
 DISPATCH_TIME_NOW,
 Int64(delay * Double(NSEC_PER_SEC))
),
 dispatch_get_main_queue(), block)
 }
}

So, after having the card turned up, we turn it down using this newly implemented
function:

func collectionView(collectionView: UICollectionView,
 didSelectItemAtIndexPath indexPath: NSIndexPath) {
 //...
 cell.upturn()
 execAfter(2) {
 cell.downturn()
 }
}

By running the app, we now see the cards turning up and down with a smooth and
nice animation.

Finishing the game
In this section, we will finally be able to play the game.

Implementing the game logic
After having all the required functions in place, it's now a straightforward task to
complete the game. First of all, we add the instance variables to hold the number of
the pairs already created, the current score, and the list of selected cards turned up:

private var selectedIndexes = Array<NSIndexPath>()
private var numberOfPairs = 0
private var score = 0

Chapter 3

[83]

Then, we apply the logic when a card is selected:

func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {
 if selectedIndexes.count == 2 || selectedIndexes
.contains(indexPath) {
 return
 }
 selectedIndexes.append(indexPath)

 let cell =
collectionView.cellForItemAtIndexPath(indexPath)
 as! CardCell
 cell.upturn()

 if selectedIndexes.count < 2 {
 return
 }

 let card1 = deck[selectedIndexes[0].row]
 let card2 = deck[selectedIndexes[1].row]

 if card1 == card2 {
 numberOfPairs++
 checkIfFinished()
 removeCards()
 } else {
 score++
 turnCardsFaceDown()
 }
}

We first check whether we have touched an already turned-up card or whether we
have two cards turned up. If not, we save the index. Then, we check whether we
have flipped the first card, and if not, we proceed to check the values of the cards.

The pattern of checking a condition and leaving the current function if the condition
is true is called Guard. It helps make the code more readable by avoiding the use of
the else clause and the nesting of curly braces.

A Memory Game in Swift

[84]

We got a pair
As shown in the previous part of the source, we implement the missing actions in a
private extension:

// MARK: Actions
private extension MemoryViewController {
 func checkIfFinished(){
 }
 func removeCards(){
 }
 func turnCardsFaceDown(){
 }
}

The first one checks whether we have completed all the pairs, and if so, it presents
a popup with the score and returns to the main menu:

func checkIfFinished(){
 if numberOfPairs == deck.count/2 {
 showFinalPopUp()
 }
}
func showFinalPopUp() {
 let alert = UIAlertController(title: "Great!", message: "You
won with score: \(score)!", preferredStyle:
UIAlertControllerStyle.Alert)
 alert.addAction(UIAlertAction(title: "Ok", style: .Default,
handler: { action in self.dismissViewControllerAnimated(true,
completion: nil)}))

 self.presentViewController(alert, animated: true, completion:
nil)
}

Note that in iOS 8, UIAlertController is slightly different from that in the previous
version. In our case, a simple dialog box with an OK button is enough.

If the cards are equal, we need to remove them:

func removeCards(){
 execAfter(1.0) {
 self.removeCardsAtPlaces(self.selectedIndexes)
 self.selectedIndexes = []
 }
}

Chapter 3

[85]

func removeCardsAtPlaces(places: Array<NSIndexPath>){
 for index in selectedIndexes {
 let cardCell =
collectionView.cellForItemAtIndexPath(index)
 as! CardCell
 cardCell.remove()
 }
}

The remove() function in CardCell is similar to turnUp() and turnDown(), but
instead of making a transition, it just performs an animation before hiding the cell:

func remove() {
 UIView.animateWithDuration(1,
 animations: {
 self.alpha = 0
 },
 completion: { completed in
 self.hidden = true
 })
}

We made the wrong move
Finally, if the cards are different, we need to turn them down:

func turnCardsFaceDown(){
 execAfter(2.0) {
 self.downturnCardsAtPlaces(self.selectedIndexes)
 self.selectedIndexes = []
 }
}

func downturnCardsAtPlaces(places: Array<NSIndexPath>){
 for index in selectedIndexes {
 let cardCell =
collectionView.cellForItemAtIndexPath(index)
 as! CardCell
 cardCell.downturn()
 }
}

A Memory Game in Swift

[86]

Et voilà! The game is completed
As you can see in the following screenshot, the game presents a smooth animation
and nice images:

The complete source can be downloaded from https://github.com/
gscalzo/Swift2ByExample/tree/2_Memory_4_Complete.

Summary
In this chapter, we implemented our first complete app, beginning with using
basic components and then moving on to using more advanced techniques to
create a smooth animation without relying on game frameworks such as Cocos2d
or SpriteKit.

We saw when, and how, to use structs in an effective way and how to split
responsibilities among different classes. Moreover, we experimented and saw
how to separate different parts of the same class using extensions and how to
design an interface of a class or struct, pretending we have already implemented it.

You learned a few things about puzzle games, and now it's time to move on to
something different but more similar to a normal app; we'll have a chance to work
on a TodoList app.

https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_4_Complete
https://github.com/gscalzo/Swift2ByExample/tree/2_Memory_4_Complete

[87]

A TodoList App in Swift
After playing in the first two chapters, it's now time to move on to something
different: exploring how to implement a utility app and solving the most common
problems you face during the development of an iOS app.

This will be a really dense chapter because we'll cover several problems, such as
Auto Layout, interactions between View Controllers, using third-party libraries
without getting mad, configuring the project, and handling library dependencies.

The app is…
The most common, and perhaps the simplest, way to learn how to develop an iOS
app is by starting with a to-do list, where the user can add tasks, show them, and
change their status.

You need to be aware that a generic utility app for iOS must handle the following:

• Getting data from the user
• Presenting data obtained from the user
• Manipulating data
• Somehow saving data
• Synchronizing data with a server

A TodoList App in Swift

[88]

Our TodoList app has all of these features except the last one, and it can be considered
the prototype of all utility apps. Let's define the specifications of our app. The first,
and the most useful, screen must present the list of Todos, as shown in the following
screenshot:

Each one in the list of Todos has a description, due date, and category (Family,
Personal, Work, and so on), which can be used to filter and catalog tasks. A checkbox
indicates whether the corresponding task is done or still open.

The user can perform three different actions: edit, delete, or set a particular Todo
task as done. The action buttons are normally hidden, but the user can see them by
sliding the Todo cell either to the right or to the left.

Chapter 4

[89]

A single button in the top-right corner allows the creation of a new Todo task. When
this button is pressed, a new view slides in from the right, with a back button in the
top-left corner that allows you to go back to the main view. This is a common UI
pattern, which is used when screens are related in a sort of master-detail relationship.

The following screenshot shows the screen where the user can create a Todo task:

The user can add a description using Text Field. They can define the containing list
and the due date by selecting their buttons. However, both the fields have default
values: Personal for the former, and the date of the next day for Due Date.

When the Due Date button is selected, the keyboard slides down, and a time picker
allows the user to select the due date. When the List button is selected, a new controller
appears. When the user is satisfied with the content, they can click on the checkmark
button to save the Todo task and to go back to the main controller.

A TodoList App in Swift

[90]

As we saw in the previous screenshot, the user can edit the Todo task. This operation
is similar to the creation of the Todo task, so it makes sense to use the same screen.
In it, instead of getting the default values, all the fields will be prepopulated with the
values of the Todo task to be edited.

As mentioned earlier, by pressing the List button, the screen changes to a new
one, allowing us to select a list or create a new list, as shown in this screenshot:

Building a skeleton app
Let's start implementing the base structure on top of which we'll implement the
entire app.

Implementing an empty app
Let's start creating a new app called Todolist using the Single View Application
template in Xcode. The app will be in portrait mode only, so you must uncheck
Landscape from the allowed device orientations:

Chapter 4

[91]

Although Apple has improved Interface Builder in Xcode 7, most developers still
favor writing the layout in code instead of using Interface Builder. The common
reasons are that with Interface Builder, it is more difficult to create reusable views,
which makes working in a team difficult because of merging of the storyboard files;
in general, it is more difficult to debug a complex layout.

However, Apple strongly encourages that you use Interface Builder to build User
Interface and we will use it to build our first complex app. To show the difference,
the app in the next chapter will be built using Auto Layout by code, helped by a
third-party library called Cartography.

To manage a table view, iOS provides a class called UITableViewController.

First of all, we create a subclass of UITableViewController, calling it
TodoTableViewController.

To do this, select a new CocoaTouch class:

Then, select the correct subclass for TodoTableViewController:

A TodoList App in Swift

[92]

If you look at the generated code now, you can see some already implemented
functions and several other commented out functions if you want to have a
template to add complex behavior to your Table View.

Now we'll move on to the storyboard to create the interface.

From the components palette, select TableViewController and drag it onto the
storyboard, as shown in the following screenshot:

The component presents Table View with a prototype for each cell that can be
customized in Interface Builder.

Chapter 4

[93]

Now, we must associate the generic UITableViewController class with the subclass
we created, as shown in the following screenshot:

Selecting the last tab with the arrow, we can see that Interface Builder has
automatically connected the Table View with the parts of our class, notably setting
it as dataSource, the providers of the data Todos in our case, and delegate what will
receive the selecting event.

If we run the app now, we should see an empty view.

This is because the app presents View Controller set as Initial View Controller,
which is still the original empty app.

A TodoList App in Swift

[94]

So, we must set TableView as Initial View Controller.

Now it's time to customize the cells. Let's select the cell prototype in the tree hierarchy:

For the sake of simplicity, we'll use one of the predefined cell types provided by iOS,
but obviously, we can create custom ones as well.

An important parameter to set is Cell Identifier. To save on memory and improve
the performance, the table view doesn't recreate a new cell for every new content
to show, but it reuses an already created cell that is outside the viewport. Table
View can have different kinds of presented cells; each type must be identified using
a parameter called Cell Identifier. Make sure to put the same value in Interface
Builder and the code in order to reuse the cell:

Chapter 4

[95]

Finally, let's add the code to present some data in Table View:

import UIKit

@objc(TodoTableViewController)
class TodoTableViewController: UITableViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 // MARK: - Table view data source

 override func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
 return 10
 }
 override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell =
tableView.dequeueReusableCellWithIdentifier("TodoCell",
forIndexPath: indexPath)

 cell.textLabel?.text = "Todo number \(indexPath.row)"

 return cell
 }
}

Note the first instruction, @objc(TodoTableViewController), that exposes the class
to the Objective-C runtime; otherwise, the app cannot bind the storyboard to the class.

A TodoList App in Swift

[96]

Running the app, we can finally view Table View:

You've probably noticed that the app is missing a navigation bar; to add this, we
must embed View Controller into UINavigationController.

UINavigationController is the base class for one of the most widely used types
of navigation in iOS, where each new view is pushed on top of the current view,
appearing from the right. When the new screen is dismissed, which is popped from
the stack of views, it disappears by sliding to the right.

To embed it, select View Controller in the storyboard, and then from the menu,
navigate to Editor | Embed In | Navigation Controller:

Chapter 4

[97]

Now, Storyboard presents two connected screens:

A TodoList App in Swift

[98]

If you run the app now, Table View appears with a navigation bar. Before moving
on, we add assets to the app.

Assets can be downloaded from https://github.com/
gscalzo/Swift2ByExample/raw/3_Todolist_1_
Skeleton/TodoList/Assets/Images.zip.

Adding third-party libraries with CocoaPods
Before starting to implement the app, I want to introduce the secret weapon of
productive iOS developers, CocoaPods.

CocoaPods (http://cocoapods.org) is the dependency manager for Cocoa projects
that allows you to add a thousand libraries to your project by adding just one line
of code to a configuration file. To add CocoaPods using Ruby, which is installed by
default, you can type the following command in a terminal:

sudo gem install cocoapods

Then, we need to create Podfile, where we will add the required libraries. Consider
this command:

pod init

It creates an empty Podfile file which is preconfigured to match our targets. We can
now add the libraries to Podfile:

use_frameworks!
target 'TodoList' do
 pod 'LatoFont', :git => "https://github.com/gscalzo/LatoFont.git"
 pod 'MGSwipeTableCell', '~> 1.5.1'
end

You will notice that you can select either the version of the library or the GitHub
path. This is really convenient when you need to modify a library to match your
needs but you can't wait for the maintainer to merge the pull request and publish
the new version. Now, run the install command:

pod install

The libraries are downloaded and added as frameworks to your project without the
need to touch any of the project settings. Neat, isn't it?

https://github.com/gscalzo/Swift2ByExample/raw/3_Todolist_1_Skeleton/TodoList/Assets/Images.zip
https://github.com/gscalzo/Swift2ByExample/raw/3_Todolist_1_Skeleton/TodoList/Assets/Images.zip
https://github.com/gscalzo/Swift2ByExample/raw/3_Todolist_1_Skeleton/TodoList/Assets/Images.zip
http://cocoapods.org

Chapter 4

[99]

Pay attention to this: sometimes, Xcode doesn't like the fact that an
external app changes a project while it is open in Xcode. So, before
running the pod, you must close Xcode.

As the pod command says at the end of the installation, we should now use
TodoList.xcworkspace instead of TodoList.xcodeproj.

By opening the workspace, we can see that we now have a Pods project, with all
the libraries as subdirectories, as shown in the following screenshot:

It is worth noting that pods are added as subprojects for this app, and if you need the
same pods in a different app, you need to write or copy the Podfile in the folder of
the other app and run pod install there.

Performing configuration via files is really handy, and if you need to remove a pod
from your project, just delete the entry in Podfile and run pod install again.

Implementing the Todos view controller
We want to separate different responsibilities into different classes, so we are
going to implement two classes: TodosViewController to handle the UI and the
commands received from the user, and TodosDatastore to handle the creation
and changes in the entities.

These classes manipulate two entities: Todo and List. As already experimented,
we implement these classes in a top-down fashion, starting from View Controller,
which basically presents just a button and a table view.

A TodoList App in Swift

[100]

Let's add the button in the navigation bar using the storyboard. Select Bar Button
Item, as shown in the following screenshot:

Drag barbuttonitem to the left of Navigation Bar.

Chapter 4

[101]

Now, select the button to configure it, setting the tint color and the image of
the cross:

Let's add the title to View Controller in viewDidLoad:

 override func viewDidLoad() {
 super.viewDidLoad()

 title = "Todos"
 }

Just to make the cell prettier, we'll use the open source font Lato (https://www.
google.com/fonts/specimen/Lato), which we added using CocoaPods.

Select the two labels inside the cell:

https://www.google.com/fonts/specimen/Lato
https://www.google.com/fonts/specimen/Lato

A TodoList App in Swift

[102]

Then, change the font of Title:

Finally, change the Font of Subtitle:

When you run the app, it looks really nice, as shown in this screenshot:

Chapter 4

[103]

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/3_Todolist_1_Skeleton.

Building the Todos screen
Let's move on to populating the View Controller we just created with the
proper entities.

Adding entities
The first thing we need to do is create entities, which is really straightforward.
Basically, we just need to map the requested fields in struct:

import Foundation

struct Todo: Equatable {
 let description: String
 let list: List
 let dueDate: NSDate
 let done: Bool
 let doneDate: NSDate?
}

func ==(todo1: Todo, todo2: Todo) -> Bool {
 return todo1.description == todo2.description
 && todo1.dueDate == todo2.dueDate
}

struct List {
 let description: String
}

Foundation is the core module in Swift, and it contains fundamental objects, for
example, NSDate, which is required to implement every kind of app.

https://github.com/gscalzo/Swift2ByExample/tree/3_Todolist_1_Skeleton
https://github.com/gscalzo/Swift2ByExample/tree/3_Todolist_1_Skeleton

A TodoList App in Swift

[104]

Implementing datastore
Next, we create datastore to handle all the operations of entities.

For now, we only return two lists of entities:

import Foundation

class TodosDatastore {
 private var savedLists = [List]()
 private var savedTodos = [Todo]()

 init(){
 savedLists = [
 List(description: "Personal"),
 List(description: "Work"),
 List(description: "Family")
]
 savedTodos = [
 Todo(description: "Remember the Milk",
 list: List(description: "Family") ,
 dueDate: NSDate(),
 done: false,
 doneDate: nil),
 Todo(description: "Buy Spider Man Comics",
 list: List(description: "Personal") ,
 dueDate: NSDate(),
 done: true,
 doneDate: NSDate()
),
 Todo(description: "Release build",
 list: List(description: "Work") ,
 dueDate: NSDate(),
 done: false,
 doneDate: nil)
]
 }

 func todos() -> [Todo] {
 return savedTodos
 }

 func lists() -> [List] {
 return savedLists
 }
}

Chapter 4

[105]

Connecting datastore and View Controller
Then, we need to inject this datastore repository into TodoTableViewController.

To do that, we create a couple of properties and we implement a configure()
function that accepts datastore as a parameter:

private var todosDatastore: TodosDatastore?
private var todos: [Todo]?

// MARK: - ViewController View Life Cycle

override func viewDidLoad() {
 super.viewDidLoad()

 title = "Todos"
}

required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
}

// MARK: - Configure

func configure(todosDatastore: TodosDatastore) {
 self.todosDatastore = todosDatastore
}

Up until now, App presents view controller because it is defined as initial View
Controller in the storyboard; this works perfectly if View Controller doesn't need any
parameters from the caller because now, we need to inject the datastore repository
we need to find a way to intercept TodoTableViewController before it appears.

To do this, we add a fetch in AppDelegate:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject:
AnyObject]?) -> Bool {
 if let navigationController = window?.rootViewController
 as? UINavigationController,
 todoTableViewController = navigationController.
viewControllers.first
 as? TodoTableViewController
 {
 todoTableViewController.configure(TodosDatastore())
 }
 return true
}

A TodoList App in Swift

[106]

This code could look a bit cumbersome, but in reality, it is just retrieving the
expected view controller from the hierarchy of the screen.

The Todo tasks must be sorted by the date crescent, so we add a function to
refresh the order of the Todo tasks:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 refresh()
}

// MARK: - Internal Functions
private func refresh() {
 if let todosDatastore = todosDatastore {
 todos = todosDatastore.todos().sort{
 $0.dueDate.compare($1.dueDate) ==
NSComparisonResult.OrderedAscending
 }
 tableView.reloadData()
 }
}

A closure may omit the names of its parameters. In this case, its parameters are
implicitly named, starting with $, followed by their position, such as: $0, $1,
and so on.

Actually, we could have implemented the sort inside datastore, but the sorting is
presentation logic, hence it is a View Controller responsibility.

Configuring tableView
Primarily, we must replace the hardcoded value with the number of rows in the table
we added, implementing the skeleton with the number of elements in the sorted
Todos array:

override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return todos?.count ?? 0
}

Chapter 4

[107]

Because the array is optional, we must assure that it is not nil and then get the count
like this:

if let todos = todos {
 return todos.count
} else {
 return 0
}

Because this check is really common, Swift supports the null coalescing ? operator
that implements the three preceding lines in one line.

Then, we change dataSource:

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 let cell =
tableView.dequeueReusableCellWithIdentifier("TodoCell",
forIndexPath: indexPath)

 if let todo = todos?[indexPath.row] {
 renderCell(cell, todo: todo)
 }

 return cell
}

Basically, we retrieve the correct todo task and we render it into a cell:

private func renderCell(cell:UITableViewCell, todo: Todo){
 let dateFormatter:NSDateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "HH:mm dd-MM-YY"
 let dueDate = dateFormatter.stringFromDate(todo.dueDate)
 cell.detailTextLabel?.text = "\(dueDate) | \(todo.list.
description)"
 cell.textLabel?.text = todo.description

 cell.accessoryType = todo.done ? .Checkmark : .None
}

A TodoList App in Swift

[108]

Finishing touches
If we run the app, we can see that the Todos are correctly rendered, but the rows are
too short and the checkmark is blue, while everything else is black.

Let's go to the storyboard to fix these things.

1. First, select Table View:

2. In the metrics tab, let's increase the height of the cell:

3. To change the checkmark, select the cell and then change the tint color from
blue to black:

4. Now, if we run the app, we can see how gorgeous it is, as shown in the
following screenshot:

Chapter 4

[109]

Swipe that cell!
The last thing missing in this screen is swappable cells.

Guess what? We are going to solve this problem using a pod, MGSwipeTableCell.

Note that CocoaPods makes integrating Objective-C and Swift libraries really
straightforward. It basically creates frameworks, and the client app can simply
import them without worrying about which language was used to create them.

The MGSwipeTableCell (https://github.com/MortimerGoro/MGSwipeTableCell)
pod is a really powerful and flexible add-on for UITableViewCell.

First of all, we must change the type of cell in the storyboard.

In TodoTableViewController, we import MGSwipeTableCell:

import UIKit
import MGSwipeTableCell

@objc(TodoTableViewController)
class TodoTableViewController: UITableViewController {

https://github.com/MortimerGoro/MGSwipeTableCell

A TodoList App in Swift

[110]

Given that we changed the type of the cell, we must cast the type in the datastore
function implementation:

 let cell = tableView.dequeueReusableCellWithIdentifier("TodoCell",
forIndexPath: indexPath) as! MGSwipeTableCell

 if let todo = todos?[indexPath.row] {
 renderCell(cell, todo: todo)
 setupButtonsForCell(cell, todo: todo)
 }

Also, we call a function to set up the buttons:

 private func setupButtonsForCell(cell: MGSwipeTableCell, todo:
Todo){
 cell.rightButtons = [
 MGSwipeButton(title: "Edit",
 backgroundColor: UIColor.blueColor(),
 padding: 30) {
 [weak self] sender in
 self?.editButtonPressed(todo)
 return true
 },
 MGSwipeButton(title: "Delete",
 backgroundColor: UIColor.redColor(),
 padding: 30) {
 [weak self] sender in
 self?.deleteButtonPressed(todo)
 return true
 }
]

 cell.rightExpansion.buttonIndex = 0
 cell.leftButtons = [
 MGSwipeButton(title: "Done",
 backgroundColor: UIColor.greenColor(),
 padding: 30) {
 [weak self] sender in
 self?.doneButtonPressed(todo)
 return true
 }]
 cell.leftExpansion.buttonIndex = 0
 }

Chapter 4

[111]

One of the problems that can appear while using blocks in ARC is the creation of a
strong retain cycle. If we remove [weak self] from the implementation of the code
blocks, this is what will happen:

• The cell will own the button
• The button will own the block
• The block will own the cell

This means that none of these objects will be removed from the memory when the
cell is released by all of its clients.

Using [weak self], the cell is just assigned to the block instead of being passed
with a strong reference (thus incrementing the reference counter for the cell), without
incrementing the reference counter. In this way, the cycle is not completed.

As the weak reference creates an optional variable, to use self, we must use the
question mark, which doesn't call the method if the variable is nil.

Then, we implement the three skeleton callbacks bounded to the three buttons:

// MARK: Actions
extension TodoTableViewController {
 func addTodoButtonPressed(sender: UIButton!){
 print("addTodoButtonPressed")
 }

 func editButtonPressed(todo: Todo){
 print("editButtonPressed")
 }

 func deleteButtonPressed(todo: Todo){
 todosDatastore?.deleteTodo(todo)
 refresh()
 }

 func doneButtonPressed(todo: Todo){
 todosDatastore?.doneTodo(todo)
 refresh()
 }
}

A TodoList App in Swift

[112]

Finally, we create the empty methods inside datastore:

// MARK: Actions
extension TodosDatastore {
 func addTodo(todo: Todo) {
 print("addTodo")
 }
 func deleteTodo(todo: Todo?) {
 print("deleteTodo")
 }
 func doneTodo(todo: Todo) {
 print("doneTodo")
 }
}

By running the app, we can see that we have implemented all of the requested
features for the first screen:

You can find the the code that implements the app is
now up to date at https://github.com/gscalzo/
Swift2ByExample/tree/3_Todolist_2_TodoScreen.

Adding a Todo task
So far, the app works very well, presenting all the Todo tasks, but we need to allow
the user to create their own Todo task.

https://github.com/gscalzo/Swift2ByExample/tree/3_Todolist_2_TodoScreen
https://github.com/gscalzo/Swift2ByExample/tree/3_Todolist_2_TodoScreen

Chapter 4

[113]

The add a Todo view
As the specifications require that a Todo task is editable, it makes sense to use the
same View Controller either to create a new Todo task, or to edit an already existing
Todo task.

To implement the desired layout, we are going to use a TableViewController class
again using static cells so that we can configure and lay it out directly in Interface
Builder.

Add another TableViewController class close to TodoTableViewController,
and after selecting the Table View inside, set the content as Static Cells instead
of Dynamic Cells.

Then, select the first and only section, that is, Table View Section.

Now set the number of Rows to 5.

Before implementing the cells, select Table View and set the height of each cell to 50.

A TodoList App in Swift

[114]

The first row must contain the description of Todo, so we use UITextField to
handle this.

Select the UITextField component and drag it onto the Content View of the first cell.

Now you may surely notice that the field is neither centered nor filling the parent;
it's time to add constraints.

To do that, while selecting Text Field, select the penultimate button in bottom-left
corner, the square between two pipes; it will permit us to add constraints based on
the relation with the parent container.

A pop-up will appear, and after deselecting the Constrain to Margin checkbox,
add the value indicated in the following screenshot:

After that, press the Add 4 Constrains button. The screen now will present
some warnings.

Chapter 4

[115]

This is because the actual layout is different than the one that will be presented at
runtime. To remove them, select the yellow arrow in the controller tree view:

Then, select the yellow triangle:

Finally, fix the misplacement, updating the frames:

Now, configure the look of Text Field, setting the placeholder text, removing the text
and the border, and setting the correct font:

A TodoList App in Swift

[116]

The next cell will contain a label for a list, and we'll follow the same path: add Label,
add constraints, and customize the appearance:

The third cell is the Due Date label, which is exactly the same as the previous label. The
fourth is still a label, but it's a bit more interesting. First, set the height of the cell to 120:

To add a label, we follow the previous steps, but instead of plain text, we are
going to add a checkmark using a special character; from the edit menu, select
Emoji & Symbols:

Chapter 4

[117]

Then, look for the checkmark symbol:

Then, copy the character information and copy it as the text of the label, changing the
size of the font to 160:

The last cell will contain a date picker, which is a big component, so we set the height
of the cell to 300. Don't forget to set the constraints to fill the cell after dragging it into
Content View. Now, it's time to create the segues to the present View Controller.

A TodoList App in Swift

[118]

A segue is a sort of link between View Controllers that have an identifier and
that I use to move from one controller to another. Select the yellow icon in
TodoTableViewController:

Then, from the outlet, drag from the bullet of Manual Segue to the new View
Controller twice:

You should see two lines connecting the View Controllers.

Chapter 4

[119]

Select each of them to give them an identifier; one must be addTodo, and the other
must be Edit Todo.

To test the connection, we add an action trigger with the Add button:

@IBAction func addTodoButtonPressed(sender: AnyObject){
 print("addTodoButtonPressed")
 performSegueWithIdentifier("addTodo", sender: self)
}

Connect the Bar button to this action:

A TodoList App in Swift

[120]

Running the app, we can see that the screen is exactly how we expected it to be:

The add a Todo View Controller
After finishing view, let's create another TableViewController to manage that
view; it will be called EditTodoTableViewController:

import UIKit

class EditTodoTableViewController: UITableViewController {
 @IBOutlet var descriptionTextField: UITextField!
 @IBOutlet var listLabel: UILabel!
 @IBOutlet var dueDateLabel: UILabel!
 @IBOutlet var dueDatePicker: UIDatePicker!

 var todoToEdit: Todo?
 var todosDatastore: TodosDatastore?

Chapter 4

[121]

 private var list: List?
 private var dueDate: NSDate?
}

We defined IBOutlets to connect the components, the eventual todo to edit, the
datastore repository to update the data and finally, the list and the due date of Todo.

After setting the class as Custom Class for view controller, we must connect the
outlets in Interface Builder, as shown in the following two screenshots:

A TodoList App in Swift

[122]

After connecting all the outlets, this is how the view controller should appear:

In viewDidLoad(), we add the calls to initialization functions:

 override func viewDidLoad() {
 super.viewDidLoad()

 setup()
 refresh()
 descriptionTextField.becomeFirstResponder()
 }

The setup function sets the original dueDate function and the description of the todo
to edit if it exists; otherwise, ask the defaults values to the store:

private extension EditTodoTableViewController {
 func setup(){

Chapter 4

[123]

 if let todo = todoToEdit {
 descriptionTextField.text = todo.description
 list = todo.list
 dueDate = todo.dueDate
 } else if let todosDatastore = todosDatastore{
 list = todosDatastore.defaultList()
 dueDate = todosDatastore.defaultDueDate()
 }
 datePickerSetup()
 }

 func datePickerSetup() {
 dueDatePicker.datePickerMode = .DateAndTime
 dueDatePicker.minimumDate = NSDate()
 dueDatePicker.date = dueDate!
 dueDatePicker.addTarget(self, action: "dueDateChanged:",
 forControlEvents: .ValueChanged)
 }
}

When the optional Todo contains an actual value, the fields from that value are
extracted to initialize the fields. Otherwise, the default values are provided.

As you can see, the default values aren't set directly in the View Controller code.
Instead, View Controller asks for the default values of lists and dueDate from the
datastore, giving it the responsibility of handling them.

This distinction, which can seem confusing, is really important. The default values
are from the domain of the data and not from the domain of the presentation, and
the proper place is in datastore.

Let's implement them in TodosDatastore:

// MARK: Defaults
extension TodosDatastore {
 func defaultList() -> List {
 return List(description: "Personal")
 }

 func defaultDueDate() -> NSDate {
 let now = NSDate()
 let secondsInADay = NSTimeInterval(24 * 60 * 60)
 return now.dateByAddingTimeInterval(secondsInADay)
 }
}

A TodoList App in Swift

[124]

Because the default list is always present, we change the lists() function accordingly:

func lists() -> [List] {
 return [defaultList()] + savedLists
}

The callback connected to the picker just grabs the date and sets it in the
dueDate property:

@objc func dueDateChanged(sender: UIButton!) {
 dueDate = dueDatePicker.date
 refresh()
}

As usual, because the callback must be visible for the Objective-C runtime, the @objc
keyword must be present:

func refresh(){
 listLabel.text = "List: \(list!.description)"
 let dateFormatter:NSDateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "HH:mm dd-MM-YY"
 if let dueDate = dueDate {
 let formattedDueDate =
dateFormatter.stringFromDate(dueDate)
 dueDateLabel.text = "Due date: \(formattedDueDate)"
 }
}

The refresh() function updates the view based on the value of the properties.

Finally, we add two functions to be called when the Done button and the Due Date
row are selected:

func doneSelected() {
 if let descriptionText = descriptionTextField.text,
 list = list,
 dueDate = dueDate
 where !descriptionText.isEmpty {
 let newTodo = Todo(description: descriptionText,
 list: list,
 dueDate: dueDate,
 done: false,
 doneDate: nil)
 todosDatastore?.addTodo(newTodo)
 todosDatastore?.deleteTodo(todoToEdit)

Chapter 4

[125]

 navigationController!.popViewControllerAnimated(true)
 }
 }

 func showAddList() {
 performSegueWithIdentifier("addList", sender: self)
 }

The former creates a new Todo based on the inserted properties, and the latter goes
to a new View Controller to insert and select a new List.

To select the table rows, we implement tableViewDelegate using a custom enum to
define the sections:

enum EditTableViewRow : Int {
 case Description
 case List
 case DueDate
 case Done
 case DatePicker
}

In this way, we can access the different parts of Table View without relying on
magic numbers in our code:

// MARK: UITableViewDelegate
extension EditTodoViewController {
 override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {
 switch EditTableViewRow(rawValue: indexPath.row)! {
 case .List:
 showAddList()
 case .DueDate:
 descriptionTextField.resignFirstResponder()
 case .Done:
 doneSelected()
 default:
 break
 }
 }
}

If you run the app now, it will crash because the dueDate property is nil and is
unwrapped in order to set it to date picker.

A TodoList App in Swift

[126]

This happens because we need to complete the code in order to move it from
TodoTableViewController to EditTodoTableViewController.

Let's go back to the former and add a new property for the eventually selected Todo:

private var selectedTodo: Todo?

This value will be set when we want to edit Todo:

func editButtonPressed(todo: Todo){
 selectedTodo = todo
 performSegueWithIdentifier("editTodo", sender: self)
}

Finally, we add the configuration code in the prepareForSegue()function; this is a
function called by View Controller just before presenting a new View Controller,
and it is the place where the configuration code usually is put for the View
Controller destination:

// MARK: Segue
extension TodoTableViewController {
 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {
 guard let identifier = segue.identifier,
 destinationViewController = segue.destinationViewController
as? EditTodoTableViewController
 else {
 return
 }

 destinationViewController.todosDatastore = todosDatastore
 destinationViewController.todoToEdit = selectedTodo

 switch identifier {
 case "addTodo":
 destinationViewController.title = "New Todo"
 case "editTodo":
 destinationViewController.title = "Edit Todo"
 default:
 break
 }
 }
}

As you can see, the only difference based on the segue identifier is the title.

Chapter 4

[127]

Finishing TodoDatastore
Before implementing the last TableViewController for this app, let's implement all
the missing functions of datastore.

Let's begin with the actions:

// MARK: Actions
extension TodosDatastore {
 func addTodo(todo: Todo) {
 savedTodos = savedTodos + [todo]
 }
 func deleteTodo(todo: Todo?) {
 if let todo = todo {
 savedTodos = savedTodos.filter({$0 != todo})
 }
 }

 func doneTodo(todo: Todo) {
 deleteTodo(todo)
 let doneTodo = Todo(description: todo.description,
 list: todo.list,
 dueDate: todo.dueDate,
 done: true,
 doneDate: NSDate())
 addTodo(doneTodo)
 }

 func addListDescription(description: String) {
 if !description.isEmpty {
 savedLists = savedLists + [List(description: description)]
 }
 }
}

Note that in order to update Todo, because all Todos are an immutable struct,
we delete the previous one, and then we add a copy of it with the Boolean set to
true and with doneDate set to now.

The last thing we do is we delete the hardcoded values for Todos and the lists we
added in the initializer:

 init(){
}

A TodoList App in Swift

[128]

List View Controller
This List View Controller will permit us to add and select a List for the current Todo.

Let's add a TableViewController, and a ListTableViewController class with the
plus button in the top-right corner, as shown in the following screenshot:

The identifier of the segue is addList. Set the height of the cell to 50 and the font for
the Basic UITableViewCell class to Lato Light size 18.

As mentioned already, the name of the controller is ListTableViewController,
and along with the usual TodoDatastore class, it expects a property with a block
to be called when a list is selected:

import UIKit

class ListTableViewController: UITableViewController {
 var onListSelected: ((list: List) -> Void)?
 var todosDatastore: TodosDatastore?

Chapter 4

[129]

 override func viewDidLoad() {
 super.viewDidLoad()
 title = "Lists"
 }

TableViewDataSource basically renders the saved List:

// MARK: - Table view data source
override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return todosDatastore?.lists().count ?? 0
}

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 if let list = todosDatastore?.lists()[indexPath.row] {
 cell.textLabel?.text = list.description
 }
 cell.selectionStyle = .None
 return cell
}

The Table View delegate calls the closure mentioned earlier, when a row is selected:

// MARK: - Table view delegate
override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {
 let list = todosDatastore?.lists()[indexPath.row]
 if let list = list, onListSelected = onListSelected {
 onListSelected(list: list)
 }
 navigationController?.popViewControllerAnimated(true)
}

Finally, an action is implemented in order to permit the creation of a new list:

// MARK: Actions
extension ListTableViewController {
 @IBAction func addListButtonTapped(sender: AnyObject) {
 let alert = UIAlertController(title: "Enter list name",
 message: "To create a new list, please enter the
name of the list",
 preferredStyle: .Alert)

A TodoList App in Swift

[130]

 let okAction = UIAlertAction(title: "OK",
 style: .Default) { (action: UIAlertAction!) -> Void in
 let textField = alert.textFields?.first
 self.addList(textField?.text ?? "")
 }
 let cancelAction = UIAlertAction(title: "Cancel",
 style: .Default, handler: nil)
 alert.addAction(okAction)
 alert.addAction(cancelAction)
 alert.addTextFieldWithConfigurationHandler(nil)
 presentViewController(alert,
 animated: true,
 completion: nil)
 }

 func addList(description: NSString) {
 todosDatastore?.addListDescription(description as String)
 tableView.reloadData()
 }
}

With the new UIAlertController class introduced in iOS 8, it is just a matter of
defining two UIAlertAction components, where the Cancel button has an empty
handler because it must only dismiss the alert view, and a textfield class without
any handler because the inserted value has already been retrieved by the handler of
the OK button.

This function must be connected as an action to the button in the top-right corner:

The very last thing we do is set datastore and the closure to View Controller.

Because we already implemented performSegue() in
EditTodoTableViewController, we just need to add the prepareForSegue() block:

// MARK: Segue
extension EditTodoTableViewController {

Chapter 4

[131]

 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {
 guard let identifier = segue.identifier,
 destinationViewController = segue.
destinationViewController as? ListTableViewController
 else {
 return
 }
 if identifier == "addList" {
 destinationViewController.title = "Lists"
 destinationViewController.todosDatastore = todosDatastore
 destinationViewController.onListSelected = { list in
 self.list = list
 self.refresh()
 }
 }
 }
}

With this, we finish our Todo app. As you may have experienced that the simplest
app too needs a lot of work in order to make it flexible and ready to be extended;
however, to keep the architecture clean and the responsibilities split in well-defined
components pay in the long term, we need to add or modify features.

Where do we go from here?
The app looks nice, but there is a lot to improve, starting with the persistence layer.

There are several ways to save data in an iOS app. None of them are straightforward,
so they are beyond the scope of this book. Yet, you can find two different ways to
make the data persist in the master branch (one method uses a file to persist the data
and the other uses CoreData, a library to manage data in a database).

You can find the complete source code of the app at
https://github.com/gscalzo/Swift2ByExample/
tree/3_Todolist_3_Complete.

Another cool thing to implement is adding local notifications when the Todo task
reaches the due date. Adding is also a quick way to increase the due date; you can
add 10 minutes, 1 hour, or 1 day.

https://github.com/gscalzo/Swift2ByExample/tree/3_Todolist_3_Complete
https://github.com/gscalzo/Swift2ByExample/tree/3_Todolist_3_Complete

A TodoList App in Swift

[132]

Summary
You must have thought that developing with Swift makes creating an app
straightforward, right? Unfortunately, it does not. This long chapter showed
that most of the coding is devoted to configuring components of the SDK and
creating connections between the classes of our app instead of using cool
functional programming tricks.

However, in this chapter, we covered most of the aspects that an iOS developer
must know, starting with CocoaPods to laying out the components of the views
and differentiating responsibilities between the different layers of an app.

Another important skill you need to learn is how to connect to a server in order to
retrieve data, a server that could be either under our control, or a third-party server,
such as a service.

In the next chapter, you'll learn how to exploit external servers to add content to an
app and how to retrieve and send JSON data. We'll pack this technique to create a
pretty weather app.

[133]

A Pretty Weather App
In the previous chapter, when we developed the TodoList app, we mentioned that a
connection with a remote server was the tool that was missing from the common iOS
developer tool set we were covering.

In this chapter, we are going to fill this gap, showing you how to retrieve data from
two different remote services.

We'll also implement an app that solves a real problem using most of the techniques
that we have already seen in the previous chapter.

The app is…
One of the key facts of the mobile revolution is that we always have a computer
that constantly uses GPS in our pocket, to which we can ask anything regarding
everything around us.

As we can see by searching the App Store, forecasting weather is a common problem
that apps try to solve, often using stunning designs but sometimes using a basic
design with a lot a features. This confuses the user.

A Pretty Weather App

[134]

If we look carefully at the nicest, and most famous, weather apps, we realize that the
structures are really similar, and this is the kind of app we want to build.

Although a few apps allow you to check the weather of several cities at a time, for
simplicity, we'll implement an app that shows only the weather of your current city.

That said, the aim of the app is:

• To show the current weather for the current location
• To show the forecast for the upcoming hours and days

To make the app more appealing, we'll add a nice photo of the current city as the
background. The following screenshot shows the wireframe of the first page:

Basically, the information required for this view includes the temperature (current,
maximum, and minimum) and a description of the current weather.

When we slide the scroll view up, the forecasts appear. At the top, in a horizontal
scroll view, there is an hourly forecast for the current day. Next, it shows a list of the
forecast for the days in the following week, showing the temperature and weather
icons, as shown next:

Chapter 5

[135]

Because the scroll view is transparent, in order to increase the contrast with the
underlying image, we will add a blur effect to the image itself.

Building the skeleton
Having defined the requirements, let's start implementing them, splitting the
implementation into auto-conclusive phases.

In the previous chapter, we implemented the app using Interface Builder to create
the UI, but we mentioned that it is definitely possible to do that entirely by code.

Although Apple provides two ways to do this, either via NSLayoutConstraintss or
Visual Format Language, both are really verbose and error-prone; hence, we'll use a
nice Cartography library, which permits us to set up constraints in a declarative way
without using any hardcoded strings.

A description of Cartography can be found here: https://github.
com/robb/Cartography.

https://github.com/robb/Cartography
https://github.com/robb/Cartography

A Pretty Weather App

[136]

Creating the project
In the same way we did for the previous apps, we create an empty Single View
app, from which we remove the reference to the main storyboard and the View
Controller template.

Just for the sake of a quick test, we create PrettyWeatherViewController, showing
a red background:

class PrettyWeatherViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 view.backgroundColor = UIColor.redColor()
 }
}

Also, we add the creation of View Controller in AppDelegate:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject:
AnyObject]?) -> Bool {
 let viewController = PrettyWeatherViewController()

 let mainWindow = UIWindow(frame: UIScreen.mainScreen().bounds)
 mainWindow.backgroundColor = UIColor.whiteColor()
 mainWindow.rootViewController = viewController
 mainWindow.makeKeyAndVisible()
 window = mainWindow

 return true
}

A newly generated app runs the first view controller set in Main.storyboard;
because we want to set up the layout without using storyboards, we override this
behavior, setting the first view controller to be displayed manually in AppDelegate.

If we run the app, a red background is the only thing we see. Now let's install
CocoaPods, creating Podfile with these pods:

use_frameworks!
inhibit_all_warnings!

target 'PrettyWeatherApp' do
 pod 'Cartography', :git => "https://github.com/robb/Cartography.
git", :tag => '0.6.0'
 pod 'Alamofire', '~> 2.0'
 pod 'SwiftyJSON', '~> 2.3.0'

Chapter 5

[137]

 pod 'WeatherIconsKit', :git => 'git@github.com:gscalzo/
WeatherIconsKit.git'
 pod 'FlickrKit', '~> 1.0.5'
 pod 'FXBlurView', '~> 1.6.4'
 pod 'LatoFont', :git => "https://github.com/gscalzo/LatoFont.git"
end

After running the pod installation, we have all the required libraries.

We recommend that you install all the libraries at the beginning instead of when
each of them is introduced in the app; I think that this approach will reduce the
time jumping from the code to Podfile.

Let me just briefly summarize the libraries:

• Cartography is a pod to simplify Auto Layout by code
• Alamofire will help us to make network requests
• SwiftyJSON is a helper for the serialization and deserialization of JSON values
• WeatherIconsKit is a collection of weather images of the weather
• FlickrKit is the Flickr SDK API, which will help us get images from Flickr
• FXBlurView is a blurring image view
• LatoFont is a nice custom font we already used in the previous chapter

Adding assets
Before moving onto implement the scaffold of the UI, we add the icon and the
default background image that is presented while we are downloading the one
relative to the current location.

The assets can be downloaded from https://github.com/
gscalzo/Swift2ByExample/raw/4_PrettyWeather_1_
Skeleton/PrettyWeatherApp/assets/assets.zip.

Insert the icon and the default image into Asset Catalogue, and then move on to
implementing PrettyWeatherViewController:

import UIKit
import Cartography

class PrettyWeatherViewController: UIViewController {

https://github.com/gscalzo/Swift2ByExample/raw/4_PrettyWeather_1_Skeleton/PrettyWeatherApp/assets/assets.zip
https://github.com/gscalzo/Swift2ByExample/raw/4_PrettyWeather_1_Skeleton/PrettyWeatherApp/assets/assets.zip
https://github.com/gscalzo/Swift2ByExample/raw/4_PrettyWeather_1_Skeleton/PrettyWeatherApp/assets/assets.zip

A Pretty Weather App

[138]

 private let backgroundView = UIImageView()

 override func viewDidLoad() {
 super.viewDidLoad()
 setup()
 layoutView()
 style()
 render(UIImage(named: "DefaultImage"))
 }
}

The top part of the controller just builds all the structure components when
View Controller has loaded:

// MARK: Setup
private extension PrettyWeatherViewController{
 func setup(){
 backgroundView.contentMode = .ScaleAspectFill
 backgroundView.clipsToBounds = true
 view.addSubview(backgroundView)
 }
}

The only graphic component of View Controller is the background image view,
which is configured to contain the image to fulfill it completely:

// MARK: Layout
extension PrettyWeatherViewController{
 func layoutView() {
 layout(backgroundView) { view in
 view.top == view.superview!.top
 view.bottom == view.superview!.bottom
 view.left == view.superview!.left
 view.right == view.superview!.right
 }
 }
}

As the background, the image view must occupy the entire screen. For the time
being, the render just puts the image inside the image view:

// MARK: Render
private extension PrettyWeatherViewController{
 func render(image: UIImage?){
 if let image = image {

Chapter 5

[139]

 backgroundView.image = image
 }
 }
}

Finally, an empty style function is added for uniformity with our structure:

// MARK: Style
private extension PrettyWeatherViewController{
 func style(){
 }
}

Now, on running the app, the interface is what we expected, as shown in the
following screenshot:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/4_PrettyWeather_1_
Skeleton.

https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_1_Skeleton
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_1_Skeleton
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_1_Skeleton

A Pretty Weather App

[140]

Implementing the UI
A UI that is as complicated as the one required can be really difficult to implement if
we don't take the correct precautions.

A good way to minimize the complexity is to split the problem into more
manageable sub-problems, so we'll define three sub-views: CurrentWeatherView,
HourlyForecastView, and DailyForecastView. We'll implement them as separate
entities. The following screenshot shows the view's structure:

The UI in blocks
As we just said, we implement the UI by creating three custom views, whose size
and position we are temporarily hardcoding.

Chapter 5

[141]

Let's start with CurrentWeatherView, adding it to PrettyWeatherViewController:

 private let scrollView = UIScrollView()
private let currentWeatherView = CurrentWeatherView(frame:
CGRectZero)

As the height of the three elements is more than the height of the view, we create a
scroll view to contain them:

func setup(){
 //...
 scrollView.showsVerticalScrollIndicator = false
 scrollView.addSubview(currentWeatherView)
 view.addSubview(scrollView)
}

The setup() function just adds the components to the views hierarchy:

func layoutView() {
 //...
 constrain(backgroundView) {
 $0.edges == $0.superview!.edges
 }

 constrain(scrollView) {
 $0.edges == $0.superview!.edges
 }

 constrain(currentWeatherView) {
 $0.width == $0.superview!.width
 $0.centerX == $0.superview!.centerX
 }

The layout basically centers subview in the scroll view; to do this, we use this useful
construct of Cartography that permits you to bind the edges of a view to those of
another view.

Let's move on to Custom View:

class CurrentWeatherView: UIView {
 static var HEIGHT: CGFloat { get { return 160 } }
 private var didSetupConstraints = false
 override init(frame: CGRect) {
 super.init(frame: frame)
 setup()
 style()
 }

A Pretty Weather App

[142]

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }

 override func updateConstraints() {
 if didSetupConstraints {
 super.updateConstraints()
 return
 }
 layoutView()
 super.updateConstraints()
 didSetupConstraints = true
 }
}

Here, the only difference from the usual structure is that layoutView() is
not called during the initialization but in the overridden method, which is
updateConstraints(). This method is called by the framework when all
other constraints are set and the view needs to be laid out. If you try to move
the layoutView() call into the init method, you will see that the constraints
will conflict.

Also, because updateConstraints() can be called more than once, we need to
ensure that the constraints are not added multiple times:

// MARK: Setup
private extension CurrentWeatherView{
 func setup(){
 }
}

// MARK: Layout
private extension CurrentWeatherView{
 func layoutView(){
 constrain(self) {
 $0.height == CurrentWeatherView.HEIGHT
 }
 }
}

// MARK: Style
private extension CurrentWeatherView{
 func style(){

Chapter 5

[143]

 backgroundColor = UIColor.redColor()
 }
}

The setup() function is just an empty method; layoutView() defines the height,
and style() paints the view red. If you run the app now, you will see a red
rectangle at the top of the view. However, we want the view at the bottom. Also,
the scroll view is not scrollable.

Before fixing this issue, here's a quick note on how scrollView works: the
frame of scrollView is the frame of the viewport that makes the content visible.
Inside scrollView, there is another view that contains the actual sub views.
If contentView is smaller than scrollView, it is not scrollable.

So, if we want to change the position of currentWeatherView, we need to lay it
out inside Content View. To do this, we add the following code to layoutView()
in PrettyWeatherViewController:

let currentWeatherInsect: CGFloat = view.frame.height -
CurrentWeatherView.HEIGHT - PrettyWeatherViewController.INSET

constrain(currentWeatherView) {
$0.top == $0.superview!.top + currentWeatherInsect
}

As you can see, we have defined a new constant, other than the height of
CurrentWeatherView:

class PrettyWeatherViewController: UIViewController {
 static var INSET: CGFloat { get { return 20 } }

When we run the app now, we can see that the view is in the correct position.

Implementing the two missing views is straightforward. First of all, we add the
instances:

private let hourlyForecastView = WeatherHourlyForecastView(frame:
CGRectZero)
private let daysForecastView = WeatherDaysForecastView(frame:
CGRectZero)

Then, we add the views to scrollView:

scrollView.addSubview(hourlyForecastView)
scrollView.addSubview(daysForecastView)

A Pretty Weather App

[144]

Finally, we lay them out:

constrain(hourlyForecastView, currentWeatherView) {
 $0.top == $1.bottom + PrettyWeatherViewController.INSET
 $0.width == $0.superview!.width
 $0.centerX == $0.superview!.centerX
}

constrain(daysForecastView, hourlyForecastView) {
 $0.top == $1.bottom
 $0.width == $1.width
 $0.bottom == $0.superview!.bottom -
PrettyWeatherViewController.INSET
 $0.centerX == $0.superview!.centerX
}

The three views are stacked on top of each other. The only thing to note is that the
bottom of daysForecastView is connected to the bottom of scrollView; as a result,
it enlarges Content View and makes the view scrollable.

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/4_PrettyWeather_2_
UIInBlocks.

https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_2_UIInBlocks
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_2_UIInBlocks
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_2_UIInBlocks

Chapter 5

[145]

Completing the UI
Although the views are in the correct place, we need to implement all the components.

Implementing CurrentWeatherView
First of all, we need to import the fonts' frameworks:

import LatoFont
import WeatherIconsKit

Former Airlines is the font we've already used in the TodoList app; the latter is similar
to Awesome Kit, and it contains a series of icons related to the weather:

private let cityLbl = UILabel()
private let maxTempLbl = UILabel()
private let minTempLbl = UILabel()
private let iconLbl = UILabel()
private let weatherLbl = UILabel()
private let currentTempLbl = UILabel()

We simply add all the labels and lay them out:

func layoutView(){
 constrain(self) {
 $0.height == CurrentWeatherView.HEIGHT
 }
 constrain(iconLbl) {
 $0.top == $0.superview!.top
 $0.left == $0.superview!.left + 20
 $0.width == 30
 $0.width == $0.height
 }
 constrain(weatherLbl, iconLbl) {
 $0.top == $1.top
 $0.left == $1.right + 10
 $0.height == $1.height
 $0.width == 200
 }

 constrain(currentTempLbl, iconLbl) {
 $0.top == $1.bottom
 $0.left == $1.left
 }

A Pretty Weather App

[146]

 constrain(currentTempLbl, minTempLbl) {
 $0.bottom == $1.top
 $0.left == $1.left
 }

 constrain(minTempLbl) {
 $0.bottom == $0.superview!.bottom
 $0.height == 30
 }

 constrain(maxTempLbl, minTempLbl) {
 $0.top == $1.top
 $0.height == $1.height
 $0.left == $1.right + 10
 }
 constrain(cityLbl) {
 $0.bottom == $0.superview!.bottom
 $0.right == $0.superview!.right - 10
 $0.height == 30
 $0.width == 200
 }
}

As usual, the layout part is the longest and is full of boilerplate code:

func style(){
 iconLbl.textColor = UIColor.whiteColor()
 weatherLbl.font = UIFont.latoLightFontOfSize(20)
 weatherLbl.textColor = UIColor.whiteColor()

 currentTempLbl.font = UIFont.latoLightFontOfSize(96)
 currentTempLbl.textColor = UIColor.whiteColor()

 maxTempLbl.font = UIFont.latoLightFontOfSize(18)
 maxTempLbl.textColor = UIColor.whiteColor()

 minTempLbl.font = UIFont.latoLightFontOfSize(18)
 minTempLbl.textColor = UIColor.whiteColor()

 cityLbl.font = UIFont.latoLightFontOfSize(18)
 cityLbl.textColor = UIColor.whiteColor()
 cityLbl.textAlignment = .Right
}

Chapter 5

[147]

In the style() function, we set the correct font and color, and finally we set a
render() function with dummy values:

// MARK: Render
extension CurrentWeatherView{
 func render(){
 iconLbl.attributedText = WIKFontIcon.
wiDaySunnyIconWithSize(20).attributedString()
 weatherLbl.text = "Sunny"

 minTempLbl.text = "4°"
 maxTempLbl.text = "10°"
 currentTempLbl.text = "6°"

 cityLbl.text = "London"
 }
}

Don't forget to call the render in PrettyWeatherViewController:

// MARK: Render
private extension PrettyWeatherViewController{
 func renderSubviews() {
 currentWeatherView.render()
 }
}

When we run the app, we can see that the view is shown in the correct place with
the correct info and style. However, because of the color, the label is not contrasting
enough with the background, and it's difficult to read the data.

To solve this problem, we add a semitransparent view between the background and
scrollView, with a dark gradient that fades to completely transparent at the top.

To do this, we create an instance of UIView:

private let gradientView = UIView()

Next, we add it to the view in setup():

view.addSubview(gradientView)

Then, we set the constraints:

constrain(gradientView) {
 $0.edges == $0.superview!.edges
}

A Pretty Weather App

[148]

In the style function, we set gradient:

func style(){
 gradientView.backgroundColor = UIColor(white: 0, alpha: 0.7)
 let gradientLayer = CAGradientLayer()
 gradientLayer.frame = gradientView.bounds

 let blackColor = UIColor(white: 0, alpha: 0.0)
 let clearColor = UIColor(white: 0, alpha: 1.0)

 gradientLayer.colors = [blackColor.CGColor, clearColor.CGColor]

 gradientLayer.startPoint = CGPointMake(1.0, 0.5)
 gradientLayer.endPoint = CGPointMake(1.0, 1.0)
 gradientView.layer.mask = gradientLayer
}

If we run the app now, we can see that the data is more readable.

Building WeatherHourlyForecastView
This WeatherHourlyForecastView view is a horizontal scrollView object that
contains seven cells:

class WeatherHourlyForecastView: UIView {
 private var didSetupConstraints = false
 private let scrollView = UIScrollView()
 private var forecastCells = Array<WeatherHourForecastView>()

 override init(frame: CGRect) {
 super.init(frame: frame)
 setup()
 style()
 }

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
 override func updateConstraints() {
 if didSetupConstraints {
 super.updateConstraints()
 return
 }
 layoutView()
 super.updateConstraints()

Chapter 5

[149]

 didSetupConstraints = true
 }
}

The public part doesn't present anything new:

// MARK: Setup
private extension WeatherHourlyForecastView{
 func setup(){
 (0..<7).forEach { _ in
 let cell = WeatherHourForecastView(frame: CGRectZero)
 forecastCells.append(cell)
 scrollView.addSubview(cell)
 }
 scrollView.showsHorizontalScrollIndicator = false
 addSubview(scrollView)
 }
}

The setup() function creates the cells and adds them to scrollView; we also use the
forEach()internal iterator instead of using an external fast enumeration construct;
technically, this doesn't change anything, but it is more functional.

We are saving the cells in an array in order to reference them later. I could have used
subviews of scrollView instead of using another variable, but I don't like to mix
presentation with business logic. It hides the intentions of the programmer:

func layoutView(){
 constrain(self) {
 $0.height == 100
 }
 constrain(scrollView) {
 $0.edges == $0.superview!.edges
 }

 constrain(forecastCells.first!) {
 $0.left == $0.superview!.left
 }
 constrain(forecastCells.last!) {
 $0.right == $0.superview!.right
 }

 for idx in 0..<(forecastCells.count - 1) {
 let cell = forecastCells[idx]
 let nextCell = forecastCells[idx + 1]
 constrain(cell, nextCell) {

A Pretty Weather App

[150]

 $0.right == $1.left + 5
 }
 }
 forecastCells.forEach { cell in
 constrain(cell) {
 $0.width == $0.height
 $0.height == $0.superview!.height
 $0.top == $0.superview!.top
 }
 }
}

The layout() function stacks the cells horizontally:

// MARK: Render
extension WeatherHourlyForecastView{
 func render(){
 forecastCells.forEach {
 $0.render()
 }
 }
}

The render() function just calls the render of the cells. Before implementing the cell,
we must not forget to remove the color set for the background:

func style(){
}

Then, add the render calls to PrettyWeatherViewController:

func renderSubviews() {
 currentWeatherView.render()
 hourlyForecastView.render()
}

Let's move on to WeatherHourForecastView:

import Cartography
import WeatherIconsKit

class WeatherHourForecastView: UIView {
 private var didSetupConstraints = false
 private let iconLabel = UILabel()
 private let hourLabel = UILabel()
 private let tempsLabel = UILabel()

Chapter 5

[151]

 override init(frame: CGRect) {
 super.init(frame: frame)
 setup()
 style()
 }

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
 override func updateConstraints() {
 if didSetupConstraints {
 super.updateConstraints()
 return
 }
 layoutView()
 super.updateConstraints()
 didSetupConstraints = true
 }
}

We create three labels:

// MARK: Setup
private extension WeatherHourForecastView{
 func setup(){
 addSubview(iconLabel)
 addSubview(hourLabel)
 addSubview(tempsLabel)
 }
}

// MARK: Layout
private extension WeatherHourForecastView{
 func layoutView() {
 constrain(iconLabel) {
 $0.center == $0.superview!.center
 $0.height == 50
 }
 constrain(hourLabel) {
 $0.centerX == $0.superview!.centerX
 $0.top == $0.superview!.top
 }
 constrain(tempsLabel) {
 $0.centerX == $0.superview!.centerX
 $0.bottom == $0.superview!.bottom

A Pretty Weather App

[152]

 }
 }
}

After adding the three labels to the view, we set them like this: one at the top,
the second in the center, and the last at the bottom:

// MARK: Style
private extension WeatherHourForecastView{
 func style(){
 iconLabel.textColor = UIColor.whiteColor()
 hourLabel.font = UIFont.latoFontOfSize(20)
 hourLabel.textColor = UIColor.whiteColor()
 tempsLabel.font = UIFont.latoFontOfSize(20)
 tempsLabel.textColor = UIColor.whiteColor()
 }
}

// MARK: Render
extension WeatherHourForecastView{
 func render(){
 var dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "HH:mm"
 hourLabel.text = dateFormatter.stringFromDate(NSDate())
 iconLabel.attributedText = WIKFontIcon.
wiDaySunnyIconWithSize(30).attributedString()

 tempsLabel.text = "5° 8°"
 }
}

When run it at this stage, the app starts to look gorgeous!

Seeing the next day's forecast in
WeatherDaysForecastView
The WeatherDaysForecastView view is pretty similar to
WeatherHourForecastView; the only difference is that the cells are stacked
vertically, not horizontally:

private var forecastCells = Array<WeatherDayForecastView>()

Chapter 5

[153]

Again, we add an array to the cells:

func setup(){
 (0..<7).forEach { _ in
 let cell = WeatherDayForecastView(frame: CGRectZero)
 forecastCells.append(cell)
 addSubview(cell)
 }
}

We created the setup() function and added it to the WeatherDaysForecastView
and the internal array:

// MARK: Layout
private extension WeatherDaysForecastView{
 func layoutView(){
 constrain(forecastCells.first!) {
 $0.top == $0.superview!.top
 }

 for idx in 0..<(forecastCells.count - 1) {
 let cell = forecastCells[idx]
 let nextCell = forecastCells[idx+1]
 constrain(cell, nextCell) {
 $0.bottom == $1.top
 }
 }

 forecastCells.forEach { cell in
 constrain(cell) {
 $0.left == $0.superview!.left
 $0.right == $0.superview!.right
 }
 }

 constrain(forecastCells.last!) {
 $0.bottom == $0.superview!.bottom
 }
 }
}

A Pretty Weather App

[154]

We lay them out, paying attention to disabling the translation from autoresizingMask
to Auto Layout constraints for the view itself. Cartography disables it, but in this case
we set constraints only on subviews, leaving the view without explicit constraints at
this level:

// MARK: Render
extension WeatherDaysForecastView{
 func render(){
 forecastCells.forEach {
 view.render()
 }
 }
}

Again, the render only forwards functions. We remove the set of the background
color:

// MARK: Style
private extension WeatherDaysForecastView{
 func style(){
 }
}

We add the render method to PrettyWeatherViewController:

func renderSubviews() {
 currentWeatherView.render()
 hourlyForecastView.render()
 daysForecastView.render()
}

The WeatherDayForecast class is similar to WeatherHourForecastView:

import Foundation
import Cartography
import WeatherIconsKit

class WeatherDayForecastView: UIView {
 private var didSetupConstraints = false
 private let iconLabel = UILabel()
 private let dayLabel = UILabel()
 private let tempsLabel = UILabel()

 override init(frame: CGRect) {
 super.init(frame: frame)
 setup()

Chapter 5

[155]

 style()
 }

 required init(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
 override func updateConstraints() {
 if didSetupConstraints {
 super.updateConstraints()
 return
 }
 layoutView()
 super.updateConstraints()
 didSetupConstraints = true
 }
}

We add the labels:

// MARK: Setup
private extension WeatherDayForecastView{
 func setup(){
 addSubview(dayLabel)
 addSubview(iconLabel)
 addSubview(tempsLabel)
 }
}

// MARK: Layout
private extension WeatherDayForecastView{
 func layoutView() {
 constrain(self) {
 $0.height == 50
 }

 constrain(iconLabel) {
 $0.centerY == $0.superview!.centerY
 $0.left == $0.superview!.left + 20
 $0.width == $0.height
 $0.height == 50
 }

 constrain(dayLabel, iconLabel) {
 $0.centerY == $0.superview!.centerY
 $0.left == $1.right + 20

A Pretty Weather App

[156]

 }

 constrain(tempsLabel) {
 $0.centerY == $0.superview!.centerY
 $0.right == $0.superview!.right - 20
 }
 }
}

As usual, the layout part is long but straightforward:

// MARK: Style
private extension WeatherDayForecastView{
 func style(){
 iconLabel.textColor = UIColor.whiteColor()
 dayLabel.font = UIFont.latoFontOfSize(20)
 dayLabel.textColor = UIColor.whiteColor()
 tempsLabel.font = UIFont.latoFontOfSize(20)
 tempsLabel.textColor = UIColor.whiteColor()
 }
}

// MARK: Render
extension WeatherDayForecastView{
 func render(){
 var dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "EEEE"
 dayLabel.text = dateFormatter.stringFromDate(NSDate())
 iconLabel.attributedText = WIKFontIcon.
wiDaySunnyIconWithSize(30).attributedString()

 tempsLabel.text = "7° 11°"
 }
}

Now, run the app; it is really gorgeous! The only thing missing from a UI point of
view is blurring the background when scrollView reaches the bottom.

Blurring the background
The first naïve idea would be to change the level of blurriness depending on the
position of scrollView, but this will be really inefficient because the blur operation
is CPU-intensive, and it won't be smooth on older devices.

Chapter 5

[157]

So, the idea is to trick the user. Instead of blurring the image at every change of
position of scrollView, we blur the image, only before setting it to UIImageView.
Then, we set the alpha channel to 0 (which means transparent). Next, we change
the alpha depending on the position, reaching opaque when the scrollView offset
reaches half.

First of all, we need to import the framework to blur the image:

import FXBlurView

Then, we need to create the overlay view and set it as subview:

private let overlayView = UIImageView()
//...
func setup(){
 //...
 overlayView.contentMode = .ScaleAspectFill
 overlayView.clipsToBounds = true
 view.addSubview(overlayView)
 //...
 scrollView.delegate = self
 view.addSubview(scrollView)
}
func layoutView() {
 //...
 constrain(overlayView) {
 $0.edges == $0.superview!.edges
 }

Next, in the render() function, we set the blurred image:

func render(image: UIImage?){
 guard let image = image else {return}
 backgroundView.image = image
 overlayView.image = image.blurredImageWithRadius(10, iterations:
20, tintColor: UIColor.clearColor())
 overlayView.alpha = 0
}

Note that we set the image as transparent.

I believe you've noticed that we set View Controller as a delegate of scrollView.
This allows us to detect the change in position during scrolling:

// MARK: UIScrollViewDelegate
extension PrettyWeatherViewController: UIScrollViewDelegate{

A Pretty Weather App

[158]

 func scrollViewDidScroll(scrollView: UIScrollView) {
 let offset = scrollView.contentOffset.y
 let treshold: CGFloat = CGFloat(view.frame.height)/2
 overlayView.alpha = min (1.0, offset/treshold)

 }
}

As you can see, the code is straightforward; we set the alpha channel to be
proportional to the position. Now, by running the app, we can see how good it looks.

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/4_PrettyWeather_3_UI.

https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_3_UI
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_3_UI

Chapter 5

[159]

Downloading the background image
Before moving on to downloading the actual forecast, we'll introduce the topic of
networking downloading a geo-localized background image.

Searching in Flickr
To get an image, we'll use the API of Flickr, a famous image-hosting website,
using a convenient Pod. First of all, we override the viewWillAppear function
in PrettyWeatherApp so that a new image will be downloaded every time View
Controller appears:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 let lat:Double = 48.8567
 let lon:Double = 2.3508

 FlickrDatastore().retrieveImageAtLat(lat, lon: lon){ image in
 self.render(image)
 }
}

To implement the searching feature, we set a dummy value using the coordinates of
Paris. Then, we create a new file named FlickrDatastore:

import FlickrKit

class FlickrDatastore {
 private let OBJECTIVE_FLICKR_API_KEY = "CREATE_API_KEY"
 private let OBJECTIVE_FLICKR_API_SHARED_SECRET = "CREATE_SHARED_
SECRET"
 private let GROUP_ID = "1463451@N25"

 func retrieveImageAtLat(lat: Double, lon: Double, closure: (image:
UIImage?) -> Void){
 }

 private func extractImageFk(fk: FlickrKit, response: AnyObject?,
 error: NSError?, closure: (image: UIImage?) -> Void) {
 }
}

A Pretty Weather App

[160]

To use the Flickr API, you need to request an API key and a secret key. These can be
requested for free after logging in.

The API key can be requested at https://www.flickr.com/
services/apps/create/.

To get images that are suitable for our app, we select pictures from a group where
users upload images related to the weather:

func retrieveImageAtLat(lat: Double, lon: Double, closure: (image:
UIImage?) -> Void){
 let fk = FlickrKit.sharedFlickrKit()
 fk.initializeWithAPIKey(OBJECTIVE_FLICKR_API_KEY, sharedSecret:
OBJECTIVE_FLICKR_API_SHARED_SECRET)

 fk.call("flickr.photos.search", args: ["group_id": GROUP_ID,
"lat": "\(lat)", "lon": "\(lon)", "radius": "10"],
maxCacheAge: FKDUMaxAgeOneHour) { (response, error) -> Void in
 self.extractImageFk(fk, response: response, error: error,
closure: closure)
 }
}

As you can see, using FlickrKit is really straightforward. However, the result
is a JSON string, and parsing a JSON string in Swift is not as simple as it is in
Objective-C.

The reasons for this lie in the heterogeneity of the result. This means that JSON can
contain different types, whereas Swift pushes for the homogeneity of containers and
the intrinsic optionality of the dictionary as a container, which means that we need
to check the existence of every value we get from a dictionary.

The implementation of extractImage() will explain the problem better:

private func extractImageFk(fk: FlickrKit, response: AnyObject?,
 error: NSError?, closure: (image: UIImage?) -> Void) {
 if let response = response as? [String:AnyObject]{
 if let photos = response["photos"] as? [String:AnyObject]{
 if let listOfPhotos: AnyObject = photos["photo"] {
 if listOfPhotos.count > 0 {
 let randomIndex = Int(arc4random_uniform(
 UInt32(listOfPhotos.count)))
 let photo = listOfPhotos[randomIndex] as!
 [String:AnyObject]

https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/

Chapter 5

[161]

 let url = fk.photoURLForSize(
 FKPhotoSizeMedium640, fromPhotoDictionary:
 photo)
 let image = UIImage(data: NSData(
 contentsOfURL: url)!)
 dispatch_async(dispatch_get_main_queue()){
 closure(image: image!)
 }
 }
 }
 }
 } else {
 println(error)
 println(response)
 }
}

The format of the JSON returned is as follows:

{photos: {
 page: 1,
 pages: 3,
 perpage: 250,
 photo: [
 {
 farm = 8,
 id = 16172607518,
 ...
 },
 {
 farm = 2,
 id = 16132447518,
 ...
 },
 ...
]
 }
}

We need the array of a photo. This can be reached by accessing two nested
dictionaries, and because every access to a value using a key is optional, we need to
verify that the values are not nil when creating this unpleasant cascade effect.

When we get the array, we extract a random element and download the image.

A Pretty Weather App

[162]

Because the response from the server runs in a background thread, it is safe to
download the image synchronously without fear of freezing the UI.

As you can imagine, the nested conditions lead to poor readability of the code, but
after Swift 1.2, released in Xcode 6.3, Apple made optional unwrapping it with more
power. This allows you to unwrap more optional values in the same condition, and
you can also add logical conditions to the if block using the where keyword.

Hence, the previous code can be written in more concise way, like this:

if let response = response as? [String:AnyObject],
 photos = response["photos"] as? [String:AnyObject],
 listOfPhotos: AnyObject = photos["photo"]
 where listOfPhotos.count > 0 {

} else {
 println(error)
 println(response)
}

By running the app, we get random images of Paris.

This code can be found at https://github.com/gscalzo/
Swift2ByExample/tree/4_PrettyWeather_4_DownloadImage.

Geolocalising the app
As a test, we have used dummy coordinates, but we have a powerful GPS on board,
and it's time to use it.

Using Core Location
To use the Core Location framework service, we need to instruct iOS that our app is
using it.

To do this, we must add the NSLocationAlwaysUsageDescription key with a
string; for example, this application requires location services to get the weather of
your current location in Info.plist.

Then, we add a new property to PrettyWeatherViewController:

private var locationDatastore: LocationDatastore?

https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_4_DownloadImage
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_4_DownloadImage

Chapter 5

[163]

Next, we change the viewWillAppear function:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 locationDatastore = LocationDatastore() { [weak self] location
in
 FlickrDatastore().retrieveImageAtLat(location.lat, lon:
location.lon){ image in
 self?.render(image)
 }
 }
}

Our simple wrapper around LocationManager basically calls the provided closure
when the location changes. The implementation is straightforward:

import CoreLocation

struct Location {
 let lat: Double
 let lon: Double
}

class LocationDatastore: NSObject, CLLocationManagerDelegate {
 private let locationManager = CLLocationManager()

 typealias LocationClosure = (Location) -> Void
 private let onLocationFound: LocationClosure

 init(closure: LocationClosure){
 onLocationFound = closure
 super.init()
 locationManager.delegate = self
 locationManager.requestAlwaysAuthorization()
 startUpdating()
 }

 private func startUpdating() {
 locationManager.startUpdatingLocation()
 }

 private func stopUpdating() {
 locationManager.stopUpdatingLocation()
 }

A Pretty Weather App

[164]

 func locationManager(manager: CLLocationManager!, didFailWithError
error: NSError!) {
 locationManager.stopUpdatingLocation()
 NSLog("Error: \(error)")
 dispatch_async(dispatch_get_main_queue()){
 self.onLocationFound(Location(lat: 37.3175, lon:
122.0419))
 }
 }

 func locationManager(manager: CLLocationManager!,
didUpdateLocations locations: [AnyObject]) {
 var locationArray = locations as NSArray
 var locationObj = locationArray.lastObject as! CLLocation
 var coord = locationObj.coordinate

 dispatch_async(dispatch_get_main_queue()){
 self.onLocationFound(Location(lat: coord.latitude, lon:
coord.longitude))
 }

 stopUpdating()
 }

 func locationManager(manager: CLLocationManager!,
 didChangeAuthorizationStatus status: CLAuthorizationStatus) {
 switch status {
 case .Restricted:
 NSLog("Denied access: Restricted Access to location")
 case .Denied:
 NSLog("Denied access: User denied access to location")
 case .NotDetermined:
 NSLog("Denied access: Status not determined")
 default:
 NSLog("Allowed to location Access")
 startUpdating()
 }
 }
}

If you run the app now, a pop-up asking for permission to use the location services
appears, as shown in the following screenshot. If you deny the permission, in order
to simplify the error handling, hardcoded coordinates are passed.

Chapter 5

[165]

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/4_PrettyWeather_5_
GeoLocalisation.

Retrieving the actual forecast
We have almost completed the app, but it is still missing the most important part:
the weather forecast.

Getting the forecast from OpenWeatherMap
There are plenty of services that provide forecasts for free or for a small amount
of money.

For our app, we'll use http://openweathermap.org, whose API is free for a small
number of calls.

https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_5_GeoLocalisation
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_5_GeoLocalisation
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_5_GeoLocalisation
http://openweathermap.org

A Pretty Weather App

[166]

First of all, we create the WeatherCondition struct to handle the forecast:

import Foundation
struct WeatherCondition {
 let cityName: String?
 let weather: String
 let icon: IconType?
 let time: NSDate
 let tempKelvin: Double
 let maxTempKelvin: Double
 let minTempKelvin: Double

 var tempFahrenheit: Double {
 get {
 return tempCelsius * 9.0/5.0 + 32.0
 }
 }

 var maxTempFahrenheit: Double {
 get {
 return maxTempCelsius * 9.0/5.0 + 32.0
 }
 }
 var minTempFahrenheit: Double {
 get {
 return minTempCelsius * 9.0/5.0 + 32.0
 }
 }

 var tempCelsius: Double {
 get {
 return tempKelvin - 273.15
 }
 }
 var maxTempCelsius: Double {
 get {
 return maxTempKelvin - 273.15
 }
 }
 var minTempCelsius: Double {
 get {
 return minTempKelvin - 273.15
 }
 }
}

Chapter 5

[167]

Because the service returns the temperature in Kelvin, we provide the computed
properties to get the temperature in either degrees Celsius or degrees Fahrenheit.

The IconType enumeration is just an enumeration of the possible icons returned
from the server:

enum IconType: String {
 case i01d = "01d"
 case i01n = "01n"
 case i02d = "02d"
 case i02n = "02n"
 case i03d = "03d"
 case i03n = "03n"
 case i04d = "04d"
 case i04n = "04n"
 case i09d = "09d"
 case i09n = "09n"
 case i10d = "10d"
 case i10n = "10n"
 case i11d = "11d"
 case i11n = "11n"
 case i13d = "13d"
 case i13n = "13n"
 case i50d = "50d"
 case i50n = "50n"
}

The code for the forecast can be found at
http://openweathermap.org/weather-conditions.

Then, we change the viewWillAppear function in PrettyWeatherViewController
again. We do this to raise three calls to get the current weather and forecast:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 locationDatastore = LocationDatastore() { [weak self] location
in
 FlickrDatastore().retrieveImageAtLat(location.lat, lon:
location.lon){ image in
 self?.render(image)
 return
 }
 let weatherDatastore = WeatherDatastore()

http://openweathermap.org/weather-conditions

A Pretty Weather App

[168]

 weatherDatastore.retrieveCurrentWeatherAtLat(location.lat,
lon: location.lon) {
 currentWeatherConditions in
 self?.renderCurrent(currentWeatherConditions)
 return
 }
 weatherDatastore.retrieveHourlyForecastAtLat(location.lat,
lon: location.lon) {
 hourlyWeatherConditions in
 self?.renderHourly(hourlyWeatherConditions)
 return
 }
 weatherDatastore.retrieveDailyForecastAtLat(location.lat,
lon: location.lon, dayCnt: 7) {
 hourlyWeatherConditions in
 self?.renderDaily(hourlyWeatherConditions)
 return
 }
 }
}

The renders are just functions used to forward the requests to subviews:

func renderCurrent(currentWeatherConditions: WeatherCondition){
 currentWeatherView.render(currentWeatherConditions)
}

func renderHourly(weatherConditions: Array<WeatherCondition>){
 hourlyForecastView.render(weatherConditions)
}

func renderDaily(weatherConditions: Array<WeatherCondition>){
 daysForecastView.render(weatherConditions)
}

Don't forget to remove the renderSubviews() function.

Rendering CurrentWeatherView
After removing the dummy render() function, we add this function:

func render(weatherCondition: WeatherCondition){
 iconLbl.attributedText = iconStringFromIcon(weatherCondition.
icon!, 20)
 weatherLbl.text = weatherCondition.weather

Chapter 5

[169]

 var usesMetric = false
 if let localeSystem =
NSLocale.currentLocale().objectForKey(NSLocaleUsesMetricSystem) as?
Bool {
 usesMetric = localeSystem
 }

 if usesMetric {
 minTempLbl.text =
"\(weatherCondition.minTempCelsius.roundToInt())°"
 maxTempLbl.text =
"\(weatherCondition.maxTempCelsius.roundToInt())°"
 currentTempLbl.text =
"\(weatherCondition.tempCelsius.roundToInt())°"
 } else {
 minTempLbl.text =
"\(weatherCondition.minTempFahrenheit.roundToInt())°"
 maxTempLbl.text =
"\(weatherCondition.maxTempFahrenheit.roundToInt())°"
 currentTempLbl.text =
"\(weatherCondition.tempFahrenheit.roundToInt())°"
 }

 cityLbl.text = weatherCondition.cityName ?? ""
}

Because we want to represent the temperature as an integer and not as a double, we
have created a convenience category for double:

extension Double {
 func roundToInt() -> Int{
 return Int(round(self))
 }
}

Also, we have added a function to convert IconType into an icon in
WeatherIconsKit:

import WeatherIconsKit

func iconStringFromIcon(icon: IconType, size: CGFloat) ->
NSAttributedString {
 switch icon {
 case .i01d:
 return WIKFontIcon.wiDaySunnyIconWithSize(size).
attributedString()
 case .i01n:

A Pretty Weather App

[170]

 return WIKFontIcon.wiNightClearIconWithSize(size).
attributedString()
 case .i02d:
 return WIKFontIcon.wiDayCloudyIconWithSize(size).
attributedString()
 case .i02n:
 return WIKFontIcon.wiNightCloudyIconWithSize(size).
attributedString()
 case .i03d:
 return WIKFontIcon.wiDayCloudyIconWithSize(size).
attributedString()
 case .i03n:
 return WIKFontIcon.wiNightCloudyIconWithSize(size).
attributedString()
 case .i04d:
 return WIKFontIcon.wiCloudyIconWithSize(size).
attributedString()
 case .i04n:
 return WIKFontIcon.wiCloudyIconWithSize(size).
attributedString()
 case .i09d:
 return WIKFontIcon.wiDayShowersIconWithSize(size).
attributedString()
 case .i09n:
 return WIKFontIcon.wiNightShowersIconWithSize(size).
attributedString()
 case .i10d:
 return WIKFontIcon.wiDayRainIconWithSize(size).
attributedString()
 case .i10n:
 return WIKFontIcon.wiNightRainIconWithSize(size).
attributedString()
 case .i11d:
 return WIKFontIcon.wiDayThunderstormIconWithSize(size).
attributedString()
 case .i11n:
 return WIKFontIcon.wiNightThunderstormIconWithSize(size).
attributedString()
 case .i13d:
 return WIKFontIcon.wiSnowIconWithSize(size).attributedString()
 case .i13n:
 return WIKFontIcon.wiSnowIconWithSize(size).attributedString()
 case .i50d:
 return WIKFontIcon.wiFogIconWithSize(size).attributedString()
 case .i50n:
 return WIKFontIcon.wiFogIconWithSize(size).attributedString()
 }
}

Chapter 5

[171]

The code is verbose, but it is actually straightforward—just a way to the map icon to
the attributedString that describe the image.

Rendering WeatherHourlyForecastView
The render function just iterates through all the subviews and calls the render()
function:

// MARK: Render
func render(weatherConditions: Array<WeatherCondition>){
 zip(forecastCells, weatherConditions).forEach {
 $0.render($1)
 }
}

The zip() function is a function brought in from Haskell that merges two arrays
in a single array containing tuples of each element for every row of the arrays;
the following example will explain this better:

The arrays are as follows:

let a = [1,2,3,4]
let b = ["a","b","c","d"]

The function is as follows:

zip(a, b)

The previous function returns the following result:

[(1,"a"),(2,"b"),(3,"c"),(4,"d")]

To continue adding our code to the render, in WeatherHourForecastView, we use
the same approach that we used for the current weather:

// MARK: Render
extension WeatherHourForecastView{
 func render(weatherCondition: WeatherCondition){
 var dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "HH:mm"
 hourLabel.text = dateFormatter.
stringFromDate(weatherCondition.time)
 iconLabel.attributedText = iconStringFromIcon(weatherConditi
on.icon!, 30)

 var usesMetric = false

A Pretty Weather App

[172]

 if let localeSystem = NSLocale.currentLocale().objectForKey(NS
LocaleUsesMetricSystem) as? Bool {
 usesMetric = localeSystem
 }

 if usesMetric {
 tempsLabel.text = "\(weatherCondition.minTempCelsius.
roundToInt())° \(weatherCondition.maxTempCelsius.roundToInt())°"
 } else {
 tempsLabel.text = "\(weatherCondition.minTempFahrenheit.
roundToInt())° \(weatherCondition.maxTempFahrenheit.roundToInt())°"
 }
 }
}

Again, there's nothing particularly complicated, and it permits us to see the data in
the cells.

Rendering WeatherDaysForecastView
Even in this case, the flow is exactly the same. First, we iterate to forward the call to
subviews:

extension WeatherDaysForecastView{
 func render(weatherConditions: Array<WeatherCondition>){
 zip(forecastCells, weatherConditions).forEach {
 $0.render($1)
 }
 }
}

Then, in WeatherDayForecast, we render the weather condition:

// MARK: Render
extension WeatherDayForecastView{
 func render(weatherCondition: WeatherCondition){
 var dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "EEEE"
 dayLabel.text = dateFormatter.stringFromDate(weatherCondition.
time)
 iconLabel.attributedText = iconStringFromIcon(weatherConditi
on.icon!, 30)

 var usesMetric = false
 if let localeSystem = NSLocale.currentLocale().objectForKey(NS
LocaleUsesMetricSystem) as? Bool {

Chapter 5

[173]

 usesMetric = localeSystem
 }

 if usesMetric {
 tempsLabel.text = "\(weatherCondition.minTempCelsius.
roundToInt())° \(weatherCondition.maxTempCelsius.roundToInt())°"
 } else {
 tempsLabel.text = "\(weatherCondition.minTempFahrenheit.
roundToInt())° \(weatherCondition.maxTempFahrenheit.
roundToInt())°"
 }
 }
}

Connecting to the server
Finally, we are ready to get the forecast data, and for that, we'll use a nice service
called OpenWeatherMap, http://openweathermap.org, which offers a free tier
as well.

To get access to the free tier, first of all we need to register to the site and then create
a new API key, which will be passed as a parameter in every call to the server.

With this information, let's implement WeatherDatastore.

This class uses Alamofire, the Swift equivalent of AFNetworking, the most used
third-party library to help handle network communications in iOS. It also uses
SwiftyJson, which eliminates the problem of nested checks for optional values
during the decoding of JSON (short for JavaScript Object Notation, a lightweight
data interchange format) data:

import Foundation
import CoreLocation
import Alamofire
import SwiftyJSON

class WeatherDatastore {
 let APIKey = "CREATE_API_KEY"

 func retrieveCurrentWeatherAtLat(lat: CLLocationDegrees, lon:
CLLocationDegrees,
 block: (weatherCondition: WeatherCondition) -> Void) {
 }
 func retrieveDailyForecastAtLat(lat: Double,
 lon: Double,

http://openweathermap.org

A Pretty Weather App

[174]

 dayCnt: Int,
 block: (weatherConditions: Array<WeatherCondition>) -> Void) {
}

The first method asks for the current weather and parses the JSON response to
convert it to our struct:

func retrieveCurrentWeatherAtLat(lat: CLLocationDegrees, lon:
CLLocationDegrees,
 block: (weatherCondition: WeatherCondition) -> Void) {
 let url = "http://api.openweathermap.org/data/2.5/weather
?APPID=\(APIKey)"
 let params = ["lat":lat, "lon":lon]

 Alamofire.request(.GET, url, parameters: params)
 .responseJSON { request, response, result in
 switch result {
 case .Success(let json):
 let json = JSON(json)
 block(weatherCondition:
self.createWeatherConditionFronJson(json))
 case .Failure(_, let error):
 print("Error: \(error)")
 }
 }
}

The createWeatherConditionFromJson() function is responsible for the conversion:

private extension WeatherDatastore {
 func createWeatherConditionFronJson(json: JSON) ->
WeatherCondition{
 let name = json["name"].string
 let weather = json["weather"][0]["main"].stringValue
 let icon = json["weather"][0]["icon"].stringValue
 let dt = json["dt"].doubleValue
 let time = NSDate(timeIntervalSince1970: dt)
 let tempKelvin = json["main"]["temp"].doubleValue
 let maxTempKelvin = json["main"]["temp_max"].doubleValue
 let minTempKelvin = json["main"]["temp_min"].doubleValue

 return WeatherCondition(
 cityName: name,
 weather: weather,
 icon: IconType(rawValue: icon),
 time: time,

Chapter 5

[175]

 tempKelvin: tempKelvin,
 maxTempKelvin: maxTempKelvin,
 minTempKelvin: minTempKelvin)
 }
}

Here, as we can see, SwiftyJson permits us to write denser code because the
SwiftJson dictionary handles the optional result in a clever way using internal
optional chaining; the expression returns nil if any of its components returns nil.

The retrieveHourlyForecast() function is basically the same as the current
weather; the only difference is that it returns an array of WeatherCondition:

func retrieveHourlyForecastAtLat(lat: CLLocationDegrees,
 lon: CLLocationDegrees,
 block: (weatherConditions: Array<WeatherCondition>) -> Void) {
 let url =
"http://api.openweathermap.org/data/2.5/forecast?APPID=\(APIKey)"
 let params = ["lat":lat, "lon":lon]
 Alamofire.request(.GET, url, parameters: params)
 .responseJSON { request, response, result in
 switch result {
 case .Success(let json):
 let json = JSON(json)
 let list: Array<JSON> =
 json["list"].arrayValue

 let weatherConditions: Array
 <WeatherCondition> = list.map() {
 return
self.createWeatherConditionFronJson($0)
 }
 block(weatherConditions: weatherConditions)
 case .Failure(_, let error):
 print("Error: \(error)")
 }
 }
}

Finally, the retrieveDailyForecast() function returns an array for the forecast
of the upcoming days. Note that OpenWeatherMap returns an array of days that
contains the actual day as well; so, we need to get rid of the first element:

func retrieveDailyForecastAtLat(lat: Double,
 lon: Double,
 dayCnt: Int,

A Pretty Weather App

[176]

 block: (weatherConditions: Array<WeatherCondition>) -> Void) {
 let url = "http://api.openweathermap.org/data/2.5/
forecast/daily?APPID=\(APIKey)"
 let params = ["lat":lat, "lon":lon,
"cnt":Double(dayCnt+1)]
 Alamofire.request(.GET, url, parameters: params)
 .responseJSON { request, response, result in
 switch result {
 case .Success(let json):
 let json = JSON(json)
 let list: Array<JSON> =
json["list"].arrayValue
 let weatherConditions: Array<WeatherCondition>
= list.map(){
 return self.createDayForecastFronJson($0)
 }
 let count = weatherConditions.count
 let daysWithoutToday =
Array(weatherConditions[1..<count])
 block(weatherConditions: daysWithoutToday)
 case .Failure(_, let error):
 print("Error: \(error)")
 }
 }
}

Unfortunately, the format of the response is a little different from the responses to
the former requests; hence, we need to build a new conversion function:

 func createDayForecastFronJson(json: JSON) -> WeatherCondition{
 let name = ""
 let weather = json["weather"][0]["main"].stringValue
 let icon = json["weather"][0]["icon"].stringValue
 let dt = json["dt"].doubleValue
 let time = NSDate(timeIntervalSince1970: dt)
 let tempKelvin = json["temp"]["day"].doubleValue
 let maxTempKelvin = json["temp"]["max"].doubleValue

Chapter 5

[177]

 let minTempKelvin = json["temp"]["min"].doubleValue

 return WeatherCondition(
 cityName: name,
 weather: weather,
 icon: IconType(rawValue: icon),
 time: time,
 tempKelvin: tempKelvin,
 maxTempKelvin: maxTempKelvin,
 minTempKelvin: minTempKelvin)
 }

The last thing missing is the configuration of the App Transport Security (ATS);
to enhance the security, since iOS 9, the default transport protocol has been HTTPS
unless exceptions are set in Info.plist, as you can find out by looking at the logs:

2015-09-30 23:46:23.280 PrettyWeatherApp[8879:12527303] Allowed to
location Access

2015-09-30 23:46:23.438 PrettyWeatherApp[8879:12527722] App Transport
Security has blocked a cleartext HTTP (http://) resource load since it
is insecure. Temporary exceptions can be configured via your app's Info.
plist file.

Error: Error Domain=NSURLErrorDomain Code=-1022 "The resource could not
be loaded because the App Transport Security policy requires the use of a
secure connection

Because the free tier of openweathermap.org is only HTTP, we must add the
following keys to Info.plist:

A Pretty Weather App

[178]

And, with this, our pretty weather app is done! The following screenshot shows how
the app will look:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/4_PrettyWeather_6_
Complete.

Where do we go from here?
Although our app is almost complete, the possibilities for its expansion are endless.

Starting from this source, you can do the following:

• Make it more robust in handling error situations. Currently, if anything
goes wrong, nothing happens on the user's side because the app just logs
the error. A good strategy would be to present a warning somewhere and
provide a chance to the user to retry the operation.

https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_6_Complete
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_6_Complete
https://github.com/gscalzo/Swift2ByExample/tree/4_PrettyWeather_6_Complete

Chapter 5

[179]

• The app works well if the user allows the use of GPS, but it will stop working
if the user denies it. How about adding a functionality to view the weather
for more cities than one, swiping horizontally to view a new city?

• In the app, the background is chosen using only coordinates, but because the
images in that group are tagged with the weather, it would be nice to show
an image that matches the weather and, maybe, with the correct time of the
day or night.

• A straightforward but really useful feature would be to add the pull-to-
refresh functionality to request the weather again.

• We presented a minimal amount of data. OpenWeatherMap offers more
data, and it can be presented in a nice way:

To verify that the separation layers are solid, it would be interesting to add the
chance to use a different weather provider (that is, Weather Underground or
http://forecast.io/), and to ensure that we don't need to change anything
outside the data store.

Summary
This was a long chapter, again—full of information and first-hand experience.

We consolidated our architecture of classes and the way in which we build the UI.
You have finally learned how to connect to a server and how the option cascade
chain can be solved.

After having implemented two utility apps, in the next couple of chapters we are
going to implement a game again. It is one of the most iconic games in recent years,
Flappy Bird.

http://forecast.io/

[181]

Flappy Swift
After having explored how to build normal apps with the previous two apps,
let's go back to games.

These apps will use two useful frameworks that iOS provides for casual game
developers: SKSprite and SKScene. The former is a handy and powerful 2D game
framework that provides a physics engine based on Box2D (http://box2d.org/).
The latter allows indie game developers to implement three-dimensional games.

Let's start using the first framework by implementing a nice clone of Flappy Bird.

The app is…
Only someone who has been living under a rock for the past 2 years could have not
heard of Flappy Bird, but to ensure that everybody understands the game, let's go
through a brief introduction.

Flappy Bird is a simple but addictive game where the player controls a bird that
must fly between a series of pipes. Gravity pulls the bird down but, by touching
the screen, the player can make the bird flap and move toward the sky, driving
the bird through a gap in a couple of pipes. The goal is to pass through as many
pipes as possible.

http://box2d.org/

Flappy Swift

[182]

Our implementation will be a high-fidelity tribute to the original game, with
the same simplicity and difficulty level. The app will consist of only two screens:
a clean menu screen and the game itself, as shown in the following screenshot:

Building the skeleton of the app
Let's start by implementing the skeleton of our game using the SpriteKit
game template.

Creating the project
To implement a SpriteKit game, Xcode provides a convenient template, which
prepares a project with all the useful settings:

1. Go to New | Project and select the Game template, as shown in the
following screenshot. Click Next:

Chapter 6

[183]

2. In the following screen, after filling in all the fields, pay attention and select
SpriteKit under Game Technology, like this:

Flappy Swift

[184]

3. After running the app and touching the screen, you will be delighted by the
cute, rotating airplanes.

Implementing the menu
First of all, let's add CocoaPods, which is a dependency manager for Objective-C
projects; write the following code in Podfile:

use_frameworks!
inhibit_all_warnings!

target 'FlappySwift' do
 pod 'Cartography', :git =>
"https://github.com/robb/Cartography.git", :tag => '0.6.0'
 pod 'HTPressableButton', '~> 1.3.2'
end

Then, install CocoaPods by running the pod install command. As usual, we are
going to implement the UI without using Interface Builder and Storyboards. Go to
App Delegate and add these lines to create the main view controller:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {
 let viewController = MenuViewController()

Chapter 6

[185]

 let mainWindow = UIWindow(frame: UIScreen.mainScreen().bounds)
 mainWindow.backgroundColor = UIColor.whiteColor()
 mainWindow.rootViewController = viewController
 mainWindow.makeKeyAndVisible()
 window = mainWindow

 return true
}

MenuViewController, as the name suggests, implements a nice menu to choose
between the game and the Game Center, which we'll see in the next chapter:

import UIKit
import HTPressableButton
import Cartography

class MenuViewController: UIViewController {
 private let playButton = HTPressableButton(frame: CGRectMake(0, 0,
260, 50), buttonStyle: .Rect)
 private let gameCenterButton = HTPressableButton(frame:
CGRectMake(0, 0, 260, 50), buttonStyle: .Rect)

 override func viewDidLoad() {
 super.viewDidLoad()
 setup()
 layoutView()
 style()
 render()
 }
}

As you can see, we are using the usual structure. Just for the sake of making the UI
pretty, we are using HTPressableButtons instead of the default buttons.

Despite the fact that we are using Auto Layout, the implementation of this custom
button requires that we instantiate it by passing a frame to it:

// MARK: Setup
private extension MenuViewController{
 func setup(){
 playButton.addTarget(self, action: "onPlayPressed:",
forControlEvents: .TouchUpInside)
 view.addSubview(playButton)
 gameCenterButton.addTarget(self, action:
"onGameCenterPressed:", forControlEvents: .TouchUpInside)

Flappy Swift

[186]

 view.addSubview(gameCenterButton)
 }

 @objc func onPlayPressed(sender: UIButton) {
 let vc = GameViewController()
 vc.modalTransitionStyle = .CrossDissolve
 presentViewController(vc, animated: true, completion: nil)
 }

 @objc func onGameCenterPressed(sender: UIButton) {
 print("onGameCenterPressed")
 }
}

The only thing to note is that, because we are setting the function to be called when
the button is pressed using the addTarget() function, we must prefix the designed
methods using @objc. Otherwise, it will be impossible for the Objective-C runtime
to find the correct method when the button is pressed. This is because they are
implemented in a private extension; of course, you can set the extension as internal
or public and you won't need to prepend @objc to the functions:

// MARK: Layout
extension MenuViewController{
 func layoutView() {
 constrain(playButton) { view in
 view.bottom == view.superview!.centerY - 60
 view.centerX == view.superview!.centerX
 view.height == 80
 view.width == view.superview!.width - 40
 }
 constrain (gameCenterButton) { view in
 view.bottom == view.superview!.centerY + 60
 view.centerX == view.superview!.centerX
 view.height == 80
 view.width == view.superview!.width - 40
 }
 }
}

The layout functions simply put the two buttons in the correct places on the screen:

// MARK: Style
private extension MenuViewController{
 func style(){
 playButton.buttonColor = UIColor.ht_grapeFruitColor()

Chapter 6

[187]

 playButton.shadowColor = UIColor.ht_grapeFruitDarkColor()
 gameCenterButton.buttonColor = UIColor.ht_aquaColor()
 gameCenterButton.shadowColor = UIColor.ht_aquaDarkColor()
 }
}

// MARK: Render
private extension MenuViewController{
 func render(){
 playButton.setTitle("Play", forState: .Normal)
 gameCenterButton.setTitle("Game Center", forState: .Normal)
 }
}

Finally, we set the colors and text for the titles of the buttons. The following
screenshot shows the complete menu:

You will notice, when you click on Play button, the app crashes. This is because
the template is using the view defined in the storyboard, and we are directly using
the controllers.

Flappy Swift

[188]

Let's change the code in GameViewController:

class GameViewController: UIViewController {
 private let skView = SKView()

 override func viewDidLoad() {
 super.viewDidLoad()
 skView.frame = view.bounds
 view.addSubview(skView)
 if let scene = GameScene.unarchiveFromFile("GameScene") as?
GameScene {
 scene.size = skView.frame.size
 skView.showsFPS = true
 skView.showsNodeCount = true
 skView.ignoresSiblingOrder = true
 scene.scaleMode = .AspectFill
 skView.presentScene(scene)
 }
 }
}

We are basically creating SKView programmatically and setting its size just as we did
for the main view's size.

To read the scene from a file, we added a class convenience method to SKNode:

extension SKNode {
 class func unarchiveFromFile(file : NSString) -> SKNode? {
 if let path = NSBundle.mainBundle().pathForResource(file as
String, ofType: "sks") {
 let sceneData = try! NSData(contentsOfFile: path, options:
.DataReadingMappedIfSafe)
 let archiver = NSKeyedUnarchiver(forReadingWithData:
sceneData)

 archiver.setClass(self.classForKeyedUnarchiver(),
forClassName: "SKScene")
 let scene = archiver.decodeObjectForKey(NSKeyedArchiveRoot
ObjectKey) as! GameScene
 archiver.finishDecoding()
 return scene
 } else {
 return nil
 }
 }
}

Chapter 6

[189]

Note that NSData throws an error during init but, because we are expecting the file
to be in the right place, we can skip the check using the try block.

We can run the app now in order to check whether everything is working fine.

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_1_Menu.

A stage for a bird
Let's kick-start the game by implementing the background, which is not as
straightforward as it might sound.

SpriteKit in a nutshell
SpriteKit is a powerful but easy-to-use game framework introduced in iOS 7.

Basically, it provides the infrastructure to move images onto the screen and interact
with them.

It also provides a physics engine (based on Box2D), a particles engine, and basic
sound playback support, making it particularly suitable for casual games.

The content of the game is drawn inside SKView, which is a particular kind of
UIView, so it can be placed inside a normal hierarchy of UIViews.

The content of the game is organized into scenes, represented by subclasses of
SKScene. Different parts of the game, such as the menu, levels, and so on, must be
implemented in different SKScene classes. You can consider an SK in SpriteKit as
an equivalent of UIViewController.

Inside SKScene, the elements of the game are grouped in the SKNode's tree, which
tells SKScene how to render the components.

SKNode can be either a drawable node, such as SKSpriteNode or SKShapeNode,
or it can be something to be applied to the subtree of its descendants, such as
SKEffectNode or SKCropNode.

SKScene is SKNode itself.

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_1_Menu
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_1_Menu

Flappy Swift

[190]

Nodes are animated using SKAction.

SKAction is a change that must be applied to a node, such as a move to a particular
position, a change of scaling, or a change in the way the node appears. Actions can
be grouped together so they run in parallel or wait for the end of a previous action.

Finally, we can define physics-based relations between objects, defining the mass,
gravity, and how the nodes interact with each other.

That said, the best way to understand and learn SpriteKit is by starting to play with
it. So, without further ado, let's move on to the implementation of our tiny game.
In this way, you'll get a complete understanding of the most important features
of SpriteKit.

Explaining the code
In the previous section, we implemented the menu view, leaving the code in a state
similar to what was created by the template. With a basic knowledge of SpriteKit,
you can now start understanding the code:

class GameViewController: UIViewController {
 private let skView = SKView()

 override func viewDidLoad() {
 super.viewDidLoad()
 skView.frame = view.bounds
 view.addSubview(skView)
 if let scene = GameScene.unarchiveFromFile("GameScene") as?
GameScene {
 scene.size = skView.frame.size
 skView.showsFPS = true
 skView.showsNodeCount = true
 skView.ignoresSiblingOrder = true
 scene.scaleMode = .AspectFill
 skView.presentScene(scene)
 }
 }
}

This is UIViewController, which starts the game; it creates SKView to present the
complete screen. Then, it instantiates the scene from GameScene.sks, which can be
considered the equivalent of a storyboard. Next, it enables some debug information
before presenting the scene.

Now it's clear that we must implement the game inside the GameScene class.

Chapter 6

[191]

Simulating a three-dimensional world
using parallax
To simulate depth in the in-game world, we are going to use the technique of
parallax scrolling, a really popular method wherein distant images on the game
screen move more slowly than close ones.

In our case, we have three different levels, and we'll use three different speeds.
The following screenshot shows the use of parallax scrolling:

Before implementing the scrolling background, we must import the images into our
project, remembering to set each image as 2x in the assets.

You can find the code for this version at https://github.
com/gscalzo/Swift2ByExample/raw/5_FlappySwift_2_
ParallaxLevels/FlappySwift/assets/assets.zip.

https://github.com/gscalzo/Swift2ByExample/raw/5_FlappySwift_2_ParallaxLevels/FlappySwift/assets/assets.zip
https://github.com/gscalzo/Swift2ByExample/raw/5_FlappySwift_2_ParallaxLevels/FlappySwift/assets/assets.zip
https://github.com/gscalzo/Swift2ByExample/raw/5_FlappySwift_2_ParallaxLevels/FlappySwift/assets/assets.zip

Flappy Swift

[192]

The GameScene class basically sets up the background levels:

import SpriteKit

class GameScene: SKScene {
 private var screenNode: SKSpriteNode!
 private var actors: [Startable]!

 override func didMoveToView(view: SKView) {
 screenNode = SKSpriteNode(color: UIColor.clearColor(), size:
self.size)
 screenNode.anchorPoint = CGPoint(x: 0, y: 0)
 addChild(screenNode)
 let sky = Background(textureNamed: "sky", duration:60.0).
addTo(screenNode, zPosition: 0)
 let city = Background(textureNamed: "city", duration:20.0).
addTo(screenNode, zPosition: 1)
 let ground = Background(textureNamed: "ground", duration:5.0).
addTo(screenNode, zPosition: 2)
 actors = [sky, city, ground]

 for actor in actors {
 actor.start()
 }
 }
}

The only implemented function is didMoveToView(), which can be considered the
equivalent of viewDidAppear for UIVIewController.

We define an array of Startable objects, where Startable is a protocol for creating
the life cycle of the scene, uniform scene:

import SpriteKit

protocol Startable {
 func start()
 func stop()
}

This will give us an easy and handy way to stop the game later, when we either
reach the final goal or our character dies. The Background class holds the behavior
for a scrollable level:

import SpriteKit

class Background {

Chapter 6

[193]

 private let parallaxNode: ParallaxNode
 private let duration: Double

 init(textureNamed textureName: String, duration: Double) {
 parallaxNode = ParallaxNode(textureNamed: textureName)
 self.duration = duration
 }

 func addTo(parentNode: SKSpriteNode, zPosition: CGFloat) -> Self {
 parallaxNode.addTo(parentNode, zPosition: zPosition)
 return self
 }
}

As you can see, the class saves the requested duration of a cycle, and then it forwards
the calls to a class called ParallaxNode. The addTo() function connects the node to
the parent, the scene itself, passing zPosition as well. It defines the order in which
each node will be rendered on top of the parent node: the larger the node, the sooner
it gets rendered; this is useful to cut down on the rendering. If a node is covered by
another node with higher zPosition, the covered part is not rendered:

// Startable
extension Background : Startable {
 func start() {
 parallaxNode.start(duration: duration)
 }

 func stop() {
 parallaxNode.stop()
 }
}

The Startable protocol is implemented by forwarding the methods to
ParallaxNode.

How to implement scrolling
The idea of implementing scrolling is really straightforward: we implement a node
where we put two copies of the same image in a tiled format. We then place the node
such that we have the left half fully visible. Then, we move the entire node to the left
until we fully present the left node. Finally, we reset the position to the original one
and restart the cycle.

Flappy Swift

[194]

The following figure explains this algorithm:

The code for this is as follows:

import SpriteKit

class ParallaxNode {
 private let node: SKSpriteNode!

 init(textureNamed: String) {
 let leftHalf = createHalfNodeTexture(textureNamed, offsetX: 0)
 let rightHalf = createHalfNodeTexture(textureNamed, offsetX:
leftHalf.size.width)

 let size = CGSize(width: leftHalf.size.width + rightHalf.size.
width,
 height: leftHalf.size.height)

 node = SKSpriteNode(color: UIColor.clearColor(), size: size)
 node.anchorPoint = CGPointZero
 node.position = CGPointZero
 node.addChild(leftHalf)
 node.addChild(rightHalf)
 }

 func zPosition(zPosition: CGFloat) -> ParallaxNode {
 node.zPosition = zPosition
 return self
 }

Chapter 6

[195]

 func addTo(parentNode: SKSpriteNode, zPosition: CGFloat) ->
ParallaxNode {
 parentNode.addChild(node)
 node.zPosition = zPosition
 return self
 }
}

The init() method simply creates the two halves, puts them side by side, and sets
the position of the node:

// Mark: Private
private func createHalfNodeTexture(textureNamed: String, offsetX:
CGFloat) -> SKSpriteNode {
 let node = SKSpriteNode(imageNamed: textureNamed, normalMapped:
true)
 node.anchorPoint = CGPointZero
 node.position = CGPoint(x: offsetX, y: 0)
 return node
}

The half node is just a node with the correct offset for the x coordinate:

// Mark: Startable
extension ParallaxNode {
 func start(duration duration: NSTimeInterval) {
 node.runAction(SKAction.repeatActionForever(SKAction.sequence(
 [
 SKAction.moveToX(-node.size.width/2.0, duration:
duration),
 SKAction.moveToX(0, duration: 0)
]
)))
 }

 func stop() {
 node.removeAllActions()
 }
}

Finally, the Startable protocol is implemented using two actions in a sequence.
First, we move half the size—which means an image width—to the left, and then
we move the node to the original position to start the cycle again.

Flappy Swift

[196]

This is what the final result looks like:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_2_
ParallaxLevels.

A flying bird
Now, it's time to implement our hero.

Adding the Bird node
First of all, we must add a new character to the GameScene class:

class GameScene: SKScene {
 private var bird: Bird!
 //...
 override func didMoveToView(view: SKView) {
 //...

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_2_ParallaxLevels
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_2_ParallaxLevels
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_2_ParallaxLevels

Chapter 6

[197]

 bird = Bird(textureNames: ["bird1.png", "bird2.png"]).
addTo(screenNode)
 bird.position = CGPointMake(30.0, 400.0)

 actors = [sky, city, ground, bird]
 //...
 }
}

We can see that this new class behaves like the other, which we have already
implemented:

import SpriteKit

class Bird : Startable {
 private var node: SKSpriteNode!
 private let textureNames: [String]

 var position : CGPoint {
 set { node.position = newValue }
 get { return node.position }
 }

 init(textureNames: [String]) {
 self.textureNames = textureNames
 node = createNode()
 }

 func addTo(scene: SKSpriteNode) -> Bird{
 scene.addChild(node)
 return self
 }
}

In the public part, we build the node and add it to the parent. Note that the
position property is implemented as a computed property, which forwards
set and get to SKNode:

// Creators
private extension Bird {
 func createNode() -> SKSpriteNode {
 let birdNode = SKSpriteNode(imageNamed: textureNames.first!)
 birdNode.zPosition = 2.0
 return birdNode
 }
}

Flappy Swift

[198]

The node is built using the first frame of the passed textures. Also, zposition is set
to be on top of all the background images:

// Startable
extension Bird : Startable {
 func start() {
 animate()
 }

 func stop() {
 node.physicsBody!.dynamic = false
 node.removeAllActions()
 }
}
// Private
extension Bird {
 private func animate(){
 let animationFrames = textureNames.map { texName in
 SKTexture(imageNamed: texName)
 }

 node.runAction(
 SKAction.repeatActionForever(
 SKAction.animateWithTextures(animationFrames,
timePerFrame: 0.5)
))
 }
}

The start() function animates the bird by alternating between the provided textures.
The stop() function stops the animation and the physics engine. You'll understand
better what this means in the next section:

// Actions
extension Bird {
 func update() {
 switch node.physicsBody!.velocity.dy {
 case let dy where dy > 30.0:
 node.zRotation = (3.14/6.0)
 case let dy where dy < -100.0:
 node.zRotation = -1*(3.14/4.0)
 default:
 node.zRotation = 0.0
 }
 }
}

Chapter 6

[199]

Finally, the update method changes the rotation as per the vertical speed. Because
the framework calls the update method of the current scene for every frame refresh,
we need to forward it to the bird:

class GameScene: SKScene {
//...
 override func update(currentTime: CFTimeInterval) {
 bird.update()
 }
//..
}

If we run the app now, we will see a cute bird flying, but it is stuck in the middle of
the screen!

Making the bird flap
To implement the flight of the bird, we'll leverage the physics engine provided by
SpriteKit. To use a physics engine, we must define a gravity force and then define
the mass for each element we want to animate by following the laws of physics.
This might sound complex, but in reality it's relatively straightforward.

First of all, we must define the gravity in the scene:

class GameScene: SKScene {
 override func didMoveToView(view: SKView) {
 physicsWorld.gravity = CGVector(dx: 0, dy: -3)
 //..
 }
}

Next, we add touch handling:

class GameScene: SKScene {
//...
 override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {
 bird.flap()
 }
}

This is a low-level touching interception, and the proper Apple way is to
use a gesture recognizer: a gesture recognizer is a component that can be
attached to UIView and that recognizes a particular touch action, (a single
tap, or a slide, for example), and then calls an appropriate function when
the gesture happens. In this way, we can define the different code to be
executed for different gestures.

Flappy Swift

[200]

Then, we add a physics body to the bird:

private extension Bird {
 func createNode() -> SKSpriteNode {
 let birdNode = SKSpriteNode(imageNamed: textureNames.first!)
 birdNode.zPosition = 2.0
 birdNode.physicsBody = SKPhysicsBody.rectSize(birdNode.size) {
$0.dynamic = true
 }
 return birdNode
 }
}

The usual way to set up SKPhysicsBody is to create a body first and then mutate
it by changing the values of its properties. As we prefer immutability, we extend
SKPhysicsBody to handle the builder pattern, and this allows us to build and set
SKPhysics in only one place and return an immutable object:

extension SKPhysicsBody {
 typealias BodyBuilderClosure = (SKPhysicsBody) -> ()

 class func rectSize(size: CGSize,
 builderClosure: BodyBuilderClosure) -> SKPhysicsBody {
 let body = SKPhysicsBody(rectangleOfSize: size)
 builderClosure(body)
 return body
 }
}

To simulate a flap, we apply an impulse to the bird in the opposite direction to gravity:

// Actions
extension Bird {
 func flap() {
 node.physicsBody!.velocity = CGVector(dx: 0, dy: 0)
 node.physicsBody!.applyImpulse(CGVector(dx: 0, dy: 8))
 }
 //...
}

Chapter 6

[201]

By running the app now, we can make our bird fly:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_3_Bird.

Pipes!
Now the bird is flapping but there are no enemies, so the game is pretty boring.
It's time to add some obstacles: pipes!

Implementing the pipes node
To implement the pipes as they were in the original game, we need two classes:
PipesNode, which contains the top and bottom pipes, and Pipes, which creates
and handles PipesNode.

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_3_Bird
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_3_Bird

Flappy Swift

[202]

Let's begin with Pipes and add it as an actor to GameScene:

//...
let pipes = Pipes(topPipeTexture: "topPipe.png", bottomPipeTexture:
"bottomPipe").addTo(screenNode)

actors = [sky, city, ground, bird, pipes]
//...

The Pipes class holds the texture name, and it is added to the node tree:

import SpriteKit

class Pipes {
 private class var createActionKey : String { get {return
"createActionKey"} }
 private var parentNode: SKSpriteNode!
 private let topPipeTexture: String
 private let bottomPipeTexture: String

 init(topPipeTexture: String, bottomPipeTexture: String) {
 self.topPipeTexture = topPipeTexture
 self.bottomPipeTexture = bottomPipeTexture
 }

 func addTo(parentNode: SKSpriteNode) -> Pipes {
 self.parentNode = parentNode
 return self
 }
}

You can see here that the Pipes public interface is similar to that of the other nodes
we have implemented so far:

//MARK: Startable
extension Pipes : Startable {
 func start() {
 let createAction = SKAction.repeatActionForever(
 SKAction.sequence(
 [
 SKAction.runBlock {
 self.createNewPipesNode()
 },
 SKAction.waitForDuration(3)
]
))

Chapter 6

[203]

 parentNode.runAction(createAction, withKey: Pipes.
createActionKey)
 }

 func stop() {
 parentNode.removeActionForKey(Pipes.createActionKey)

 let pipeNodes = parentNode.children.filter {
 $0.name == PipesNode.kind
 }
 for pipe in pipeNodes {
 pipe.removeAllActions()
 }
 }
}

The start function basically creates a new PipesNode objects after every 3 seconds,
and the stop function removes the current action and the actions of the working
PipesNode objects

//MARK: Private
private extension Pipes {
 func createNewPipesNode() {
 PipesNode(topPipeTexture: topPipeTexture, bottomPipeTexture:bo
ttomPipeTexture, centerY: centerPipes()).addTo(parentNode).start()
 }

 func centerPipes() -> CGFloat {
 return parentNode.size.height/2 - 100 + 20 *
CGFloat(arc4random_uniform(10))
 }
}

The createNewPipesNode() function creates a new Pipes pair. Add it to parentNode
and start it. To create a pair of differently placed pipes every time, we use a function
that calculates a random place for the center:

import SpriteKit

class PipesNode{
 class var kind : String { get {return "PIPES"} }
 private let gapSize: CGFloat = 50

 private let pipesNode: SKNode
 private let finalOffset: CGFloat!

Flappy Swift

[204]

 private let startingOffset: CGFloat!

 init(topPipeTexture: String, bottomPipeTexture: String, centerY:
CGFloat){
 pipesNode = SKNode()
 pipesNode.name = PipesNode.kind

 let pipeTop = createPipe(imageNamed: topPipeTexture)
 let pipeTopPosition = CGPoint(x: 0, y: centerY + pipeTop.size.
height/2 + gapSize)
 pipeTop.position = pipeTopPosition
 pipesNode.addChild(pipeTop)

 let pipeBottom = createPipe(imageNamed: bottomPipeTexture)
 let pipeBottomPosition = CGPoint(x: 0, y: centerY -
pipeBottom.size.height/2 - gapSize)
 pipeBottom.position = pipeBottomPosition
 pipesNode.addChild(pipeBottom)

 finalOffset = -pipeBottom.size.width
 startingOffset = -finalOffset
 }

PipesNode is a node on top of which we place the two pipes' sprites. Note that, in the
constructor, we also calculate the starting and ending points of the pipes:

 func addTo(parentNode: SKSpriteNode) -> PipesNode {
 let pipePosition = CGPoint(x: parentNode.size.width +
startingOffset, y: 0)
 pipesNode.position = pipePosition
 pipesNode.zPosition = 4

 parentNode.addChild(pipesNode)
 return self
 }

 func start() {
 pipesNode.runAction(SKAction.sequence(
 [
 SKAction.moveToX(finalOffset, duration: 6.0),
 SKAction.removeFromParent()
]
))
 }

Chapter 6

[205]

These values are used in the addTo() function in order to set the starting point and
in the start() function, where the first action commands the node to move toward
the left, outside the screen, before removing the node from the parent:

// Creators
func createPipe(#imageNamed: String) -> SKSpriteNode {
 let pipeNode = SKSpriteNode(imageNamed: imageNamed)
 return pipeNode
}

With the implementation of this constructor function, we are ready to run the app
and see how it looks.

And it looks really pretty! But the pipes are in front of the ground, not behind it as
expected. This issue can be solved easily by changing the zPosition of the ground,
making it greater than that of the pipes.

Let's change the value of zPosition when instantiating the ground to be bigger than
one of the pipes:

 let ground = Background(textureNamed: "ground", duration:5.0).
addTo(screenNode, zPosition: 5)

Run the app now; everything works as expected, as shown in this screenshot:

Flappy Swift

[206]

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_4_Pipes.

Making the components interact
Although the app is colorful and seeing the bird fly is fun, we need to create a
real-world scene, where collision with an obstacle typically brings you to a halt.

Setting up the collision-detection engine
The SpriteKit physics engine provides us with a really simple mechanism to detect
collisions between objects. Basically, we need to set a bitmask for each component
and then a collision-detection delegate. Let start defining the bitmask; for it, we
define an enumeration in GameScene:

enum BodyType : UInt32 {
 case bird = 0b0001
 case ground = 0b0010
 case pipe = 0b0100
 case gap = 0b1000
}

Pay attention to two things. First, we must define the bitmask as a power of 2 so that
we can detect what touches what using a bitwise or operation. Second, we've added
a gap identifier, a component we haven't defined yet.

A gap is the hole between two pipes, and we need to detect the moment when the bird
passes through this hole in order to increase the score.

Let's start setting up the pipes:

private func createPipe(imageNamed imageNamed: String) -> SKSpriteNode
{
 let pipeNode = SKSpriteNode(imageNamed: imageNamed)
 let size = CGSize(width: pipeNode.size.width, height: pipeNode.
size.height)
 pipeNode.physicsBody = SKPhysicsBody.rectSize(size) {
 body in
 body.dynamic = false
 body.affectedByGravity = false
 body.categoryBitMask = BodyType.pipe.rawValue
 body.collisionBitMask = BodyType.pipe.rawValue

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_4_Pipes
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_4_Pipes

Chapter 6

[207]

 }

 return pipeNode
}

Basically, we have defined the physics for the pipes. Also, we took advantage of
being here already in order to add the gap component:

 private func createGap(size size: CGSize) -> SKSpriteNode {
 let gapNode = SKSpriteNode(color: UIColor.clearColor(),
 size: size)
 gapNode.zPosition = 6
 gapNode.physicsBody = SKPhysicsBody.rectSize(size) {
 body in
 body.dynamic = false
 body.affectedByGravity = false
 body.categoryBitMask = BodyType.gap.rawValue
 body.collisionBitMask = BodyType.gap.rawValue
 }
 return gapNode
}

The definition is pretty similar to that of the Pipes class:

 init(topPipeTexture: String, bottomPipeTexture: String, centerY:
CGFloat){
//...
 pipesNode.addChild(pipeBottom)

 let gapNode = createGap(size: CGSize(
 width: pipeBottom.size.width,
 height: gapSize*2))
 gapNode.position = CGPoint(x: 0, y: centerY)
 pipesNode.addChild(gapNode)
 //...
}

The gap node is simply set as a node and put in the node tree. Let's move on to the
bird now:

// Creators
private extension Bird {
 func createNode() -> SKSpriteNode {
 let birdNode = SKSpriteNode(imageNamed: textureNames.first!)
 birdNode.zPosition = 2.0

Flappy Swift

[208]

 birdNode.physicsBody = SKPhysicsBody.rectSize(birdNode.size.
scale(0.8)){
 body in
 body.dynamic = true
 body.categoryBitMask = BodyType.bird.rawValue
 body.collisionBitMask = BodyType.bird.rawValue
 body.contactTestBitMask = BodyType.ground.rawValue |
 BodyType.pipe.rawValue |
 BodyType.gap.rawValue
 }

 return birdNode
 }
}

We are concentrating the detection logic inside the bird class, saying that the bird
touches the ground, the pipe, or the gap.

We are reducing the actual size of the related body of the bird. This is
because the bird's frames have a transparent border in order to contain
the wing animation, and using the entire frame would have made the
detection area larger than required.

Pay attention to this code; scale() is an extension we add to CGSize:

// CGSize Private
extension CGSize {
 func scale(factor: CGFloat) -> CGSize {
 return CGSize(width: self.width * factor, height: self.height
* factor)
 }
}

We set the delegate in GameScene:

 override func didMoveToView(view: SKView) {
 physicsWorld.contactDelegate = self
 //...
 }

After setting it, we implement the protocol:

// Contacts
extension GameScene: SKPhysicsContactDelegate {
 func didBeginContact(contact: SKPhysicsContact) {

Chapter 6

[209]

 let contactMask = contact.bodyA.categoryBitMask | contact.
bodyB.categoryBitMask

 switch (contactMask) {
 case BodyType.pipe.rawValue | BodyType.bird.rawValue:
 println("Contact with a pipe")
 case BodyType.ground.rawValue | BodyType.bird.rawValue:
 println("Contact with ground")
 for actor in actors {
 actor.stop()
 }
 default:
 return
 }

 }

 func didEndContact(contact: SKPhysicsContact) {
 let contactMask = contact.bodyA.categoryBitMask | contact.
bodyB.categoryBitMask

 switch (contactMask) {
 case BodyType.gap.rawValue | BodyType.bird.rawValue:
 println("Contact with gap")
 default:
 return
 }
 }
}

From the code, you can see that using the bitmask helps us know which two objects
are colliding without requiring knowledge of which object is in bodyA and which is
in bodyB.

By running the app now, you can see that everything works fine when the bird
collides with either the pipes or the gap, but nothing happens in the case of the
ground. This is because the ground is currently SKSpriteNode, and it has nothing
associated with it.

Flappy Swift

[210]

Let's solve this issue by adding a function to GameScene. This function creates a body
for the ground:

 override func didMoveToView(view: SKView) {
 //...
 ground.zPosition(5)
 screenNode.addChild(bodyTextureName("ground"))
 //...
}

The function to create the body is really straightforward:

private extension GameScene{
 func bodyTextureName(textureName: String) -> SKNode{
 let image = UIImage(named: textureName)
 let width = image!.size.width
 let height = image!.size.height
 let groundBody = SKNode()
 groundBody.position = CGPoint(x: width/2, y: height/2)

 groundBody.physicsBody = SKPhysicsBody.rectSize(CGSize(width:
width, height: height)){ body in
 body.dynamic = false
 body.affectedByGravity = false
 body.categoryBitMask = BodyType.ground.rawValue
 body.collisionBitMask = BodyType.ground.rawValue
 }

 return groundBody
 }
}

Before trying the app, we set up the debug settings to show the shape of every
physics body in the game:

class GameViewController: UIViewController {
override func viewDidLoad() {
 //...
 if let scene = GameScene.unarchiveFromFile("GameScene") as?
GameScene {
 //...
 skView.showsPhysics = true
 //...
 }
 }
}

Chapter 6

[211]

By running the app now, we can see from the log that we are interacting with all the
required components, as shown in the following screenshot:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_5_
Collisions.

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_5_Collisions
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_5_Collisions
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_5_Collisions

Flappy Swift

[212]

Completing the game
Almost everything is done now, and in this final section, we are going to add the
correct interaction between all the elements of the game.

Colliding with pipes
When the bird touches a pipe, we need to push it down so that it touches the ground
and dies:

extension GameScene: SKPhysicsContactDelegate {
 func didBeginContact(contact: SKPhysicsContact!) {
 //...
 case BodyType.pipe.rawValue | BodyType.bird.rawValue:
 println("Contact with a pipe")
 bird.pushDown()
 //...
}

To push it, we can use the same technique that we used for the flapping—applying
an impulse:

 func pushDown() {
 dying = true
 node.physicsBody!.applyImpulse(CGVector(dx: 0, dy: -10))
 }

Although the impulse has been applied correctly, you might notice that you can
continue flapping after touching a pipe, and sometimes the bird starts flying again.

To solve this issue, we add a status variable to the bird. This variable indicates
whether the bird is dying or is alive:

class Bird : Startable {
 //...
private var dying = false
 //...
}
extension Bird {
 func flap() {
 if !dying {
 node.physicsBody!.velocity = CGVector(dx: 0, dy: 0)
 node.physicsBody!.applyImpulse(CGVector(dx: 0, dy: 6))
 }
 }
 //...
}

Now the bird has no way to save itself after hitting a pipe!

Chapter 6

[213]

Adding the score
The last feature that is missing is the score.

First of all, we implement a Score class. It holds the current score and the label used
to present it:

import SpriteKit

class Score {
 private let score = SKLabelNode(text: "0")
 var currentScore = 0

func addTo(parentNode: SKSpriteNode) -> Score {
 score.fontName = "MarkerFelt-Wide"
 score.fontSize = 30
 score.position = CGPoint(x: parentNode.size.width/2, y:
parentNode.size.height - 40)
 parentNode.addChild(score)
 return self
 }

 func increase() {
 currentScore += 1
 score.text = "\(currentScore)"
 }
}

Then, we need to add it to the main screen:

class GameScene: SKScene {
 //...
 private var score = Score()

 override func didMoveToView(view: SKView) {
 //...
 score.addTo(screenNode)
 //...
 }
}

Flappy Swift

[214]

Next, we increase the score after the bird leaves a gap:

 func didEndContact(contact: SKPhysicsContact!) {
 //...
 switch (contactMask) {
 case BodyType.gap.rawValue | BodyType.bird.rawValue:
 println("Contact with gap")
 score.increase()
 //...
 }
 }

Then, we can play and see our score increase.

Adding a restart pop-up
You must surely noticed that, after the bird dies, the only way to play again is by
restarting the app. Pretty annoying, isn't it?

Let's add a pop-up to present the final score and allow the player to play again.
To get a nicer alert view, we use the SIAlertView pod by adding the pod
SIAlertView', '~> 1.3' line to our Podfile.

Then we add a handler to manage the end of the game:

 case BodyType.ground.rawValue | BodyType.bird.rawValue:
 println("Contact with ground")
 for actor in actors {
 actor.stop()
 }
 askToPlayAgain()

The askToPlayAgain() function basically builds the pop-up:

// Private
private extension GameScene {
 func askToPlayAgain() {
 let alertView = SIAlertView(title: "Ouch!!", andMessage:
"Congratulations! Your score is \(score.currentScore). Play again?")

 alertView.addButtonWithTitle("OK", type: .Default) { _ in
self.onPlayAgainPressed() }
 alertView.addButtonWithTitle("Cancel", type: .Default) { _ in
self.onCancelPressed() }
 alertView.show()
 }
}

Chapter 6

[215]

Don't forget to import the correct framework and add two public properties to hold
the callbacks associated with the two buttons:

import SpriteKit
import SIAlertView
class GameScene: SKScene {
//...
var onPlayAgainPressed:(()->Void)!
var onCancelPressed:(()->Void)!

Next, we need to refactor the GameViewController class to extract the creation of the
scene in an independent function to permit calling inside the callback:

class GameViewController: UIViewController {
 private let skView = SKView()

 override func viewDidLoad() {
 super.viewDidLoad()
 skView.frame = view.bounds
 view.addSubview(skView)

 createTheScene()
 }

 private func createTheScene() {
 do {
 let scene = try GameScene.unarchiveFromFile("GameScene")
 if let scene = scene as? GameScene {
 scene.size = skView.frame.size
 skView.showsFPS = true
 skView.showsNodeCount = true
 skView.ignoresSiblingOrder = true
 scene.scaleMode = .AspectFill

 scene.onPlayAgainPressed = {[weak self] in
 self?.createTheScene()
 }

 scene.onCancelPressed = {[weak self] in
 self?.dismissViewControllerAnimated(true,
completion: nil)
 }
 skView.presentScene(scene)
 }
 }catch (let error) {
 fatalError("Error \(error) while unarchiving 'GameScene'")
 }
 }
}

Flappy Swift

[216]

Finally, the game has all the required features, and they make it fun.

You can find the code for this version at https://github.com/
gscalzo/FlappySwift/tree/full_plain_game.

Summary
In this chapter, we shifted gears and introduced a new framework. You learned about
the most common and useful features when it comes to building a video game.

You also learned how to implement scrolling using different speeds to simulate depth.
Then, we added a character, animated it, and made it move.

Finally, we introduced a physics engine. It is useful for many purposes, including
collision detection. Although the game is functionally complete, in the next chapter
we'll continue to polish it by adding music, video, sound effects, and a connection to
the Game Center.

https://github.com/gscalzo/FlappySwift/tree/full_plain_game
https://github.com/gscalzo/FlappySwift/tree/full_plain_game

[217]

Polishing Flappy Swift
We ended the previous chapter with a complete clone of Flappy Bird.

Although the game is fun and you can play exactly as you do in the original, you
might have noticed that the game is lacking something that makes professional
games more interesting to play.

The goal of this chapter is to fill this lacuna by adding some juiciness and integrating
the game with the Game Center to create a leaderboard and increase the engagement
of your players.

Adding juiciness
Juiciness in a game or an app can be defined as all the effects such as sounds,
zooming, or shaking elements. Although they are not indispensable to the game,
they make the experience of gaming more pleasant.

Let there be sounds!
The first thing we add is sound effects in order to give feedback to the user when
something, either good or bad, happens in the game. For example, we could notify
that the bird is flapping, or has hit the pipes, using a sound.

Basically, there are two ways for an indie game developer, which means a developer
without any video game publisher's financial support, to add sounds to the game:
creating them or searching for them from sound collections, such as https://www.
freesound.org or http://www.freesfx.co.uk.

Because the aim of this book is to teach you how to create apps using Swift, we'll use
some resources found in a free collection.

https://www.freesound.org
https://www.freesound.org
http://www.freesfx.co.uk

Polishing Flappy Swift

[218]

In the master branch, you can find .zip files with all the required sounds.

You can find the sounds at https://github.com/gscalzo/
Swift2ByExample/raw/5_FlappySwift_7_Juicy/
FlappySwift/assets/sounds.zip.

Let's start adding sound files to the project by creating a new sounds folder in it,
like this:

SpriteKit provides us with a convenient action to play a sound, and we don't have to
worry about the format of the sound.

However, you must pay attention to the fact that uncompressed files, such as .wav,
can have a large size, and the resulting app can become larger than expected. So, I
advise that you always convert sound files into .mp3 files.

That said, let's add the sound of flapping to be played when the player touches the
screen. Add this code to the GameScene file:

override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {
 runAction(SKAction.playSoundFileNamed("flap.wav",
waitForCompletion: false))
 bird.flap()
}

By starting the app now, we can hear a sound effect when the bird flaps its wings.

As you can imagine, adding a bump sound when the bird hits a pipe or the ground is
just a matter of writing a similar function call in the correct place:

func didBeginContact(contact: SKPhysicsContact!) {
 //...
 switch (contactMask) {
 case BodyType.pipe.rawValue | BodyType.bird.rawValue:
 println("Contact with a pipe")
 runAction(SKAction.playSoundFileNamed("punch.wav",
waitForCompletion: false))
 bird.pushDown()

https://github.com/gscalzo/Swift2ByExample/raw/5_FlappySwift_7_Juicy/FlappySwift/assets/sounds.zip
https://github.com/gscalzo/Swift2ByExample/raw/5_FlappySwift_7_Juicy/FlappySwift/assets/sounds.zip
https://github.com/gscalzo/Swift2ByExample/raw/5_FlappySwift_7_Juicy/FlappySwift/assets/sounds.zip

Chapter 7

[219]

 case BodyType.ground.rawValue | BodyType.bird.rawValue:
 println("Contact with ground")
 runAction(SKAction.playSoundFileNamed("punch.wav",
waitForCompletion: false))
 for actor in actors {
 actor.stop()
 }
 //...
 }

Finally, we add a cheerful sound when the player gets a point:

func didEndContact(contact: SKPhysicsContact!) {
 //...
 switch (contactMask) {
 case BodyType.gap.rawValue | BodyType.bird.rawValue:
 println("Contact with gap")
 runAction(SKAction.playSoundFileNamed("yeah.mp3",
waitForCompletion: false))
 score.increase()
 //...
 }

When you play the app, you will notice that it's already very pleasant to play.

Playing the soundtrack
Kevin MacLeod's site, http://incompetech.com, is a virtually infinite source
of amazing free video game and movie soundtracks. Here, you can find tons of
amazing .mp3 files under the Creative Commons Attribution License. We are going
to use one of Kevin's files, Pamgaea, which can be found at http://incompetech.
com/wordpress/2013/09/pamgaea/.

Although we can use the SpriteKit action to play the soundtrack, it is better to use
AVFoundation. This can give us more flexibility in playing a long sound file.

Let's start implementing a proper class, which is MusicPlayer, to handle the player:

import Foundation
import AVFoundation

enum MusicPlayerError: ErrorType {
 case ResourceNotFound
}

http://incompetech.com
http://incompetech.com/wordpress/2013/09/pamgaea/
http://incompetech.com/wordpress/2013/09/pamgaea/

Polishing Flappy Swift

[220]

class MusicPlayer {
 private var player: AVAudioPlayer? = nil

 init(filename: String, type: String) throws {
 if let resource =
 NSBundle.mainBundle().pathForResource(filename, ofType:
 type) {
 let url = NSURL(fileURLWithPath: resource)
 player = try AVAudioPlayer(contentsOfURL: url)
 player?.numberOfLoops = -1
 player?.prepareToPlay()
 } else {
 throw MusicPlayerError.ResourceNotFound
 }
 }
}

This class basically wraps AVPlayer to configure it to play infinite loops (this is the
meaning of the player?.numberOfLoops = -1 statement). It also preloads part of
the song in its internal cache before it receives the play() call.

Because the AVAudioPlayer function throws an error if the URL doesn't contain
a valid file, we throw that error again; also, we declare a custom error to handle
when the resource is not found.

The only two functions we need are play() and stop(), which are basically
forwards to the actual AVPlayer function:

class MusicPlayer {
 //...
 func play() {
 player?.play()
 }
 func stop() {
 player?.stop()
 }
}

We want to start playing when the app starts, so we add the player to the
MenuViewController class:

class MenuViewController: UIViewController {
 //...
 private var player: MusicPlayer?

 override func viewDidLoad() {

Chapter 7

[221]

 super.viewDidLoad()
 do {
 player = try MusicPlayer(filename: "Pamgaea", type:
 "mp3")
 player!.play()
 } catch {
 print("Error playing soundtrack")
 }
 //...
 }
}

Start the app. A funny tune will follow, playing during the gameplay.

Shaking the screen!
If you have ever played the original game, you might remember that the screen
shook whenever the bird hit the ground. Although an action to make a node shake
doesn't exist, we can add a new action, which is basically a sequence of moving
around the center:

import SpriteKit

extension SKAction {
 // Thanks to Benzi: http://stackoverflow.com/a/24769521/288379
 class func shake(duration:CGFloat, amplitudeX:Int = 3,
amplitudeY:Int = 3) -> SKAction {
 let numberOfShakes = duration / 0.015 / 2.0
 var actionsArray:[SKAction] = []
 for _ in 1 Int(numberOfShakes) {
 let dx =
 CGFloat(arc4random_uniform(UInt32(amplitudeX))) -
 CGFloat(amplitudeX / 2)
 let dy =
 CGFloat(arc4random_uniform(UInt32(amplitudeY))) -
 CGFloat(amplitudeY / 2)
 let forward = SKAction.moveByX(dx, y:dy, duration: 0.015)
 let reverse = forward.reversedAction()
 actionsArray.append(forward)
 actionsArray.append(reverse)
 }
 return SKAction.sequence(actionsArray)
 }
}

Polishing Flappy Swift

[222]

In this code, we create a number of shake actions, each of them with a random
amplitude; each action is added to the collection of the actions, with the opposite
of the same shake as well, so that the screen is in the original position and is ready
for the next shake.

We use this action when the bird hits the ground. It is applied to the screen node:

extension GameScene: SKPhysicsContactDelegate {
 func didBeginContact(contact: SKPhysicsContact!) {
 //...
 case BodyType.ground.rawValue | BodyType.bird.rawValue:
 //...
 let shakeAction = SKAction.shake(0.1, amplitudeX: 20,
 amplitudeY: 20)
 screenNode.runAction(shakeAction)
 self.askToPlayAgain()
 //...
}

By playing the app, you will notice that the screen shakes, but the effect is reduced
by the appearance of the popup asking for a restart. The fastest way to fix this issue
is to add a small delay before the popup appears.

Because the function for the executing of a delayed block could be handy for other
apps, we wrap the actual Grand Central Dispatch (GCD) function in a function:

import Foundation
func execAfter(delay:Double, closure:()->()) {
 dispatch_after(
 dispatch_time(
 DISPATCH_TIME_NOW,
 Int64(delay * Double(NSEC_PER_SEC))
),
 dispatch_get_main_queue(), closure)
}

So, we can delay the popup in this way:

let shakeAction = SKAction.shake(0.1, amplitudeX: 20,
 amplitudeY: 20)
screenNode.runAction(shakeAction)
execAfter(1) {
 self.askToPlayAgain()
}

Chapter 7

[223]

The app is now complete from the features point of view, and we can move on to
adding Game Center support.

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_7_Juicy.

Integrating with Game Center
Game Center can be defined as a social gaming network that offers multiplayer
features. It was made available in iOS 4.1, and it has been updated with new
gaming options ever since.

What Game Center provides
The features provided by Game Center are as follows:

• Leaderboards: This is a shared database containing the scores of the players
of the game. It allows them to add their personal results and compare them
with the scores of other players.

• Achievements: These are the goals defined inside the game that cause
players to maintain interest in the game. Some examples of achievements
can be Destroyed 50 Enemies, Run during the Night, and so on.

• Multiplayer: This feature allows the developer to implement a networked
game where players can compete with each other, either in real time or in a
turn-based manner.

Incorporating Game Center in an app is a two-step project. First of all, we need to
set up the app in iTunes Connect, enabling Game Center support and setting up the
leaderboards. Then, we need to add the code to send the score to Game Center.

Setting up Game Center
We'll use Xcode to automate the tasks to be done in order to set up Game Center:

1. The first thing we need to do is to add Apple ID to Xcode. Go to Xcode Menu
| Preferences and select the Accounts icon, as shown in this screenshot:

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_7_Juicy
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_7_Juicy

Polishing Flappy Swift

[224]

2. Then, we add Apple ID, as shown in the following screenshot:

3. Now, in Project Navigator, select the project and the correct name of the
Team, which should be the name of the developer, like this:

4. Finally, click on Capabilities at the top of the window and turn the switch
ON for Game Center, as shown in this screenshot:

Before implementing the code, we need to set up the app on iTunes Connect.

Creating an app record on iTunes Connect
Creating a record on iTunes Connect is not mandatory for integration with Game
Center, but it is required in order to create any leaderboard. If you feel comfortable
with this process, you can skip this section and go to the next section:

Chapter 7

[225]

1. First of all, log in to iTunes Connect (http://itunesconnect.apple.com)
using your credentials. Then, add a new app by selecting the following icon:

2. By pressing the + sign at the top, we can add the app, as shown in
this screenshot:

3. To complete the creation of the app, we fill in all of the required data, as
shown in the following screenshot:

As you can see, the app ID we created in Xcode is presented in the Bundle
ID drop-down window so that we can add it as Bundle ID.

http://itunesconnect.apple.com

Polishing Flappy Swift

[226]

4. Here is a screenshot that shows the expected properties of the Flappy
Swift app:

Enabling Game Center
We have already enabled Game Center for the app in Xcode. We need to do this for
the app in iTunes Connect.

To do this, we must select Game Center from the menu of the app, as shown in the
preceding screenshot.

Because we don't have a suite of games to share leaderboards. Follow these steps to
enable Game Center in your app:

1. Click on the Enable for Single Game button, as shown in the
following screenshot:

Chapter 7

[227]

2. The following screenshot shows the enabled Game Center dashboard in
our app:

Polishing Flappy Swift

[228]

3. As you can see, we have the ability to add, change, and configure several
leaderboards and achievements, but for the sake of simplicity, we will create
only one leaderboard. We do this by clicking on the Add Leaderboard button
and filling in the form, as shown in this screenshot:

Finally, we have set up the leaderboard for our game.

Chapter 7

[229]

Creating fake user accounts to test
Game Center
Although not mandatory, it is definitely a good practice to have fake test accounts for
use during the development of a game that supports Game Center. Otherwise, you
might risk having a not-yet-published app featured in Game Center. The following
are the steps to create a fake user account to test your game:

1. To create new users, go back to the home page of iTunes Connect and then
select the Users and Roles icon, which looks like this:

2. Then, select Sandbox Testers, as shown in the following screenshot:

Polishing Flappy Swift

[230]

3. Finally, create a Tester by filling in the form, like this:

Pay attention; the e-mail must be real and it will be used as a login to test the Game
Center feature in the app.

Although this process could seem awkward and long, after you learn to do it for
an app, you'll notice that it will be always the same for all other apps you'll create
supporting Game Center.

We are finally ready to add the code to enable the sharing of the code on Game Center.

Authenticating a player
The first thing that we must handle with the integration of Game Center is to
authenticate the player. Once the player is connected to Game Center, then all
the features implemented in the app are available for them; otherwise, they are
simply not available.

Chapter 7

[231]

Apple recommends that you implement the authentication in AppDelegate, but we
prefer to implement it as the first action in the MenuViewController class. To do
this, we create a GameCenter wrapper class and use it in the viewDidLoad() function
of MenuViewController:

class MenuViewController: UIViewController {
 //...
 private let gameCenter = GameCenter()
 override func viewDidLoad() {
 super.viewDidLoad()
 gameCenter.authenticateLocalPlayer()
 //...

Let's start implementing the GameCenter class:

import GameKit
import SIAlertView

class GameCenter: NSObject {
 private var gameCenterEnabled = false
 private var leaderboardIdentifier = ""

 func authenticateLocalPlayer() {
 let localPlayer = GKLocalPlayer.localPlayer()
 localPlayer.authenticateHandler = { (viewController,
 error) in
 if let vc = viewController {
 let topViewController =
 UIApplication.sharedApplication().delegate!
 .window!!.rootViewController
 topViewController?.presentViewController(vc,
 animated: true, completion: nil)
 } else if localPlayer.authenticated {
 self.gameCenterEnabled = true
 localPlayer.
loadDefaultLeaderboardIdentifierWithCompletionHandler({
(leaderboardIdentifier, error) -> Void in
 self.leaderboardIdentifier =
 leaderboardIdentifier!
 })
 }
 }
 }

Polishing Flappy Swift

[232]

This class has two properties: a Boolean indicating whether Game Center is enabled
or not and the identifier for the leaderboard. Although we have set the name of the
leaderboard and it is a constant, it's safer to retrieve it from the server in order to
give us the flexibility to change it after the app has been published.

The code is really straightforward because it relies on the API of Game Center.
Everything is handled by the authenticateHandler() closure, which is called
by passing two optional values: UIViewController and an error.

The former is the login view controller that we must present when the user is not
logged in. To find the topmost view controller, we ask the root view controller of the
main window. If the user is connected, we retrieve the identifier of the leaderboard.

When the app is run, either the login screen or a banner with the name of the
logged-in player should be presented, like this:

Chapter 7

[233]

The rest of the class is just a function meant to report the scores, which basically
transforms the score into an integer for the proper class:

class GameCenter: NSObject {
 //...
 func reportScore(score: Int){
 if !gameCenterEnabled {
 return
 }
 let gkScore = GKScore(leaderboardIdentifier:
leaderboardIdentifier)
 gkScore.value = Int64(score)
GKScore.reportScores([gkScore], withCompletionHandler: nil)
 }
}

The last of the required functions is a way of presenting the leaderboard:

class GameCenter: NSObject {
 //...
func showLeaderboard() {
 if !gameCenterEnabled {
 let alertView = SIAlertView(title: "Game Center
Unavailable", andMessage: "Player is not signed in")

 alertView.addButtonWithTitle("OK", type: .Default)
 { _ in}
 alertView.show()
 return
 }
 let gcViewController = GKGameCenterViewController()

 gcViewController.gameCenterDelegate = self
 gcViewController.viewState = .Leaderboards
 gcViewController.leaderboardIdentifier =
 leaderboardIdentifier

 let topViewController = UIApplication.sharedApplication().
delegate!.window!!.rootViewController
 topViewController?.presentViewController(gcViewController,
animated: true, completion: nil)
 }
}

Polishing Flappy Swift

[234]

The GKGameCenterControllerDelegate protocol implementation simply dismisses
the leaderboard view controller:

extension GameCenter: GKGameCenterControllerDelegate {
 func gameCenterViewControllerDidFinish(gameCenterViewController:
GKGameCenterViewController){
 gameCenterViewController.dismissViewControllerAnimated(true,
completion: nil)
 }
}

After implementing these functions, we need to add them to the
MenuViewController class:

 @objc func onPlayPressed(sender: UIButton) {
 let vc = GameViewController()
 vc.gameCenter = gameCenter
 //...
 }

 @objc func onGameCenterPressed(sender: UIButton) {
 gameCenter.showLeaderboard()
 }

GameViewController forwards the class to GameScene:

class GameViewController: UIViewController {
 var gameCenter: GameCenter?
 //...
private func createTheScene() {
 if let scene = GameScene.unarchiveFromFile("GameScene") as?
GameScene {
 scene.gameCenter = gameCenter

In the GameScene class, we report the score when the bird hits the ground:

class GameScene: SKScene {
 var gameCenter: GameCenter?
 //...
}
extension GameScene: SKPhysicsContactDelegate {
 func didBeginContact(contact: SKPhysicsContact!) {
 //...
 case BodyType.ground.rawValue | BodyType.bird.rawValue:
 //...
gameCenter?.reportScore(score.currentScore)

Chapter 7

[235]

With this code in place, after pressing the proper button, we can finally see the
leaderboard, as shown in this screenshot:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/5_FlappySwift_8_
GameCenter.

https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_8_GameCenter
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_8_GameCenter
https://github.com/gscalzo/Swift2ByExample/tree/5_FlappySwift_8_GameCenter

Polishing Flappy Swift

[236]

Summary
This chapter was a bit different from the others because for the first time,
we probably spent more time configuring iTunes Connect than performing
actual coding. However, this is a necessary step in order to include Game
Center support, so it's worth gaining solid knowledge of how to do it.

With this chapter done by adding juiciness and Game Center support Flappy
Swift is ready to be published. So, it's time to move on to the next chapter,
where we'll explore the other game development frameworks brought in by
iOS 8 by implementing a clone of an endless three-dimensional runner game
called Cube Runner.

[237]

Cube Runner
In the last two chapters, we saw how easy it is to implement a 2D game using SpriteKit.

Most of you probably think that implementing a 3D game is something that only
professional game developers can do because it requires a knowledge of 3D graphics,
math, rendering, lights, and so on, as well as external tools such as Unity.

This may have been true until Apple released SceneKit, a really simple 3D rendering
framework created mainly for hobbyists and casual game developers. First introduced
in OS X Mountain Lion, it became even more powerful in 2014 with the addition of
particle effects, physics simulations, and multipass rendering. It was added to iOS
8, allowing the community of iOS developers to implement 3D applications using a
model similar to Sprite Kit and UIKit in general.

In this chapter, after a brief introduction to SceneKit using Playground, we'll
implement an iOS clone of a fun Flash game.

The app is…
The world of Flash games is a never-ending source of inspiration; however, because
Flash is not available in iOS, the most entertaining Flash games must be remade in a
native way.

Cube Runner is a rare case in which simplicity and fun come together to create a
really addictive game. Implemented in 2006 by Max Abernethy, it is a predecessor
of the infinite runner game where the player, who is driving a triangular spaceship,
must survive in an alien landscape by avoiding cubes he encounters during the run.

Cube Runner

[238]

The view is from a cam following the hero, and as he turns the jet, the tridimensional
world changes accordingly, as shown in the following screenshot:

As is usual in endless runner games, the score increments in a time-based fashion;
the longer the player survives, the bigger the score.

Introduction to SceneKit
Before diving into the development of the game, let's introduce SceneKit briefly.

What is SceneKit?
SceneKit is a rendering engine that's based on a hierarchy of nodes, a similar way to
SpriteKit. The most important kinds of nodes are lights, the camera, geometry objects,
boxes, spheres, and so on. Actually, all of these are attributes of a node, but for the sake
of simplicity in the way we look at them, let's consider these as different entities.

To these nodes, we can apply several actions, such as moving, rotating, and so on.
We can also add a physical body to a node and put it into a physical world, which
is again really similar to SpriteKit.

Chapter 8

[239]

Building an empty scene
To get our feet wet, we'll use the playground again as we did in the Chapter 1,
Welcome to the World of Swift.

Let's start by creating a new iOS playground called SceneKitPlayground, and import
the frameworks needed to perform our experiment:

import UIKit
import SceneKit
import XCPlayground

The latter is the framework that allows us to display the scene on the Playground
console, so don't forget to open the console by going to View | Assistant Editor |
Show Assistant Editor.

We start by creating SCNView, which is UIView that displays the SceneKit scene.
Then, we add the scene, which is the stage where everything happens, and finally,
we show the view in the console:

var sceneView = SCNView(frame:
 CGRect(x: 0, y: 0,
 width: 400, height: 400))
var scene = SCNScene()
sceneView.scene = scene
XCPlaygroundPage.currentPage.liveView = sceneView

This is what the playground presents:

Cube Runner

[240]

To enable rendering, we need to open the console. Go to View | Assistant Editor |
Show Assistant Editor, as shown in this screenshot:

Now, let's start adding the nodes to the scene, starting with the camera:

var cameraNode = SCNNode()
cameraNode.camera = SCNCamera()
cameraNode.position = SCNVector3(x: 0, y: 0, z: 4)
scene.rootNode.addChildNode(cameraNode)

As mentioned earlier, the camera is an attribute of a node that can be positioned
and rotated in the space of the scene. As you can see, SCNScene has a predefined
rootNode to which we add children to create the object hierarchy.

Let's utilize this snippet of code to introduce the coordinate system of SceneKit,
as follows:

Chapter 8

[241]

As you can see, the x and y axes are placed on the plane in front of the user, with
the y axis being positive from the bottom to the top, which is the opposite of UIKit.
The z axis runs from the user to the screen, with positive values toward the user.
The camera aims at –z. It's really important to be clear in your mind how these axes
are orientated. Otherwise, it may become really difficult to place objects in the scene
and debug them if the scene is not rendered as expected.

Adding a green torus
Now, let's add an object to the scene:

var torus = SCNTorus(ringRadius: 1, pipeRadius: 0.35)
var torusNode = SCNNode(geometry: torus)
torusNode.position = SCNVector3(x: 0.0, y: 0.0, z: 0.0)
scene.rootNode.addChildNode(torusNode)

Despite us having added a camera and an object, nothing is shown in the scene.

This is because we haven't defined the material of the object yet. By material, we
mean a collection of attributes associated with a surface that define its appearance
when rendered. Using the material's properties, we can define it as opaque or
transparent, how much light it can reflect or diffuse, and so on.

Let's define the torus as a green object that reflects white light:

torus.firstMaterial?.diffuse.contents = UIColor.greenColor()
torus.firstMaterial?.specular.contents = UIColor.whiteColor()

Finally, a torus is rendered onto the scene.

However, it's not really appealing. Because of the position of the camera, what we
are seeing is basically the side of the torus. Also, instead of looking like it's 3D, it
appears really flat, like this:

Let's solve the first issue by rotating the torus by π/4 around the x axis:

torusNode.rotation = SCNVector4(x: 1.0, y: 0.0, z: 0.0, w: Float(M_
PI/4.0))

Cube Runner

[242]

To rotate a node, we first need to define the vector around which the node will rotate
and then the angle of the rotation. Now, the torus is nicely visible, as shown here:

Let there be light!
The flatness is because the scene is lacking light, so let's add light:

var light = SCNLight()
light.type = SCNLightTypeSpot
var lightNode = SCNNode()
lightNode.light = light
lightNode.position = SCNVector3(x: 0, y: 0, z: 6)
scene.rootNode.addChildNode(lightNode)

After running the code, the torus will look like the following:

Now the torus definitely looks better.

Let's make it move!
As mentioned earlier, we can apply actions to nodes in the same way as we do in
SpriteKit; for example, we can forever move the light to the left and right:

let moveAction = SCNAction.sequence([
 SCNAction.moveByX(-2, y: 0, z: 0, duration: 1),
 SCNAction.moveByX(2, y: 0, z: 0, duration: 1),

Chapter 8

[243]

 SCNAction.moveByX(2, y: 0, z: 0, duration: 1),
 SCNAction.moveByX(-2, y: 0, z: 0, duration: 1)
])
lightNode.runAction(SCNAction.repeatActionForever(moveAction))

We can also make the torus rotate:

let rotateAction = SCNAction.rotateByAngle(CGFloat(M_PI),
 aroundAxis: SCNVector3(x: 1.0, y: 0.0, z: 0.0),
 duration: 4.0)

torusNode.runAction(SCNAction.repeatActionForever(rotateAction))

It's amazing what we can build with just a few lines of code in such an interactive way:

In this brief introduction, we have just scratched the surface of what we can do with
SceneKit. Nevertheless, we have introduced its key concepts, which will help us
implement our game without any problems.

Implementing Cube Runner
After experimenting a bit with SceneKit, let's start implementing our game.

The game skeleton
As usual, let's start by selecting the correct Xcode project template—the Game
template in this case, which looks like this:

Cube Runner

[244]

In the next screen, we add the requested data and select SceneKit as the technology,
as shown here:

After selecting only Portrait as the Device Orientation, as shown in the following
screenshot, we can run the example project:

The demo app shows a gorgeous rotating 3D airplane, thus showing us what we can
achieve using this framework. Here is a screenshot of the plane:

Chapter 8

[245]

Implementing the menu
As the first task in building the app, we prepare Podfile, which contains a few pods
that we'll use to build the Menu view:

inhibit_all_warnings!
use_frameworks!

target 'CubeRunner' do
 pod 'Cartography', :git => "https://github.com/robb/Cartography.
git", :tag => '0.6.0'
 pod 'HTPressableButton', '~> 1.3.2'
 pod 'BitwiseFont', '~> 0.1.0'
end

The first is the usual Auto Layout helper library, the second is for the buttons of the
menu, and the latter is the custom font that reminds us of the font used in old arcade
video games.

Cube Runner

[246]

After running the usual pod install command, we are ready to implement the
MenuViewController class.

The code of this class is basically the same as we used from the previous game,
so it shouldn't need any further explanation. First, we need to add the builder to
AppDelegate:

 func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {
 let viewController = MenuViewController()
 let mainWindow = UIWindow(frame: UIScreen.mainScreen().bounds)
 mainWindow.backgroundColor = UIColor.whiteColor()
 mainWindow.rootViewController = viewController
 mainWindow.makeKeyAndVisible()
 window = mainWindow
 return true
 }

Then, we implement the view controller, which presents us with the menu from
which we can select game sections, and a label with the name of the game using
a cool font:

import UIKit
import HTPressableButton
import Cartography
import BitwiseFont

class MenuViewController: UIViewController {
 private let playButton = HTPressableButton(frame: CGRectMake(0, 0,
260, 50), buttonStyle: .Rect)
 private let gameCenterButton = HTPressableButton(frame:
CGRectMake(0, 0, 260, 50), buttonStyle: .Rect)
 private let titleLbl = UILabel()

 override func viewDidLoad() {
 super.viewDidLoad()
 setup()
 layoutView()
 style()
 render()
 }
}

Chapter 8

[247]

The setup prepares the components and transitions for other view controllers:

// MARK: Setup
private extension MenuViewController{
 func setup(){
 playButton.addTarget(self, action: "onPlayPressed:",
forControlEvents: .TouchUpInside)
 view.addSubview(playButton)
 gameCenterButton.addTarget(self, action:
"onGameCenterPressed:", forControlEvents: .TouchUpInside)
 view.addSubview(gameCenterButton)
 view.addSubview(titleLbl)
 }

 @objc func onPlayPressed(sender: UIButton) {
 let vc = GameViewController()
 vc.modalTransitionStyle = .CrossDissolve
 presentViewController(vc, animated: true, completion: nil)
 }

 @objc func onGameCenterPressed(sender: UIButton) {
 print("onGameCenterPressed")
 }
}

The components are centered horizontally and placed on the screen to fill it in a
uniform way:

// MARK: Layout
extension MenuViewController{
 func layoutView() {
 constrain(titleLbl) { view in
 view.top == view.superview!.top + 60
 view.centerX == view.superview!.centerX
 }
 constrain (playButton) { view in
 view.bottom == view.superview!.centerY - 60
 view.centerX == view.superview!.centerX
 view.height == 80
 view.width == view.superview!.width - 40
 }
 constrain (gameCenterButton) { view in
 view.bottom == view.superview!.centerY + 60
 view.centerX == view.superview!.centerX

Cube Runner

[248]

 view.height == 80
 view.width == view.superview!.width - 40
 }
 }
}

The style() function uses the flat UI colors that HTPressableButtons brought
with it:

// MARK: Style
private extension MenuViewController{
 func style(){
 playButton.buttonColor = UIColor.ht_grapeFruitColor()
 playButton.shadowColor = UIColor.ht_grapeFruitDarkColor()
 playButton.titleLabel?.font = UIFont.bitwiseFontOfSize(30)
 gameCenterButton.buttonColor = UIColor.ht_aquaColor()
 gameCenterButton.shadowColor = UIColor.ht_aquaDarkColor()
 gameCenterButton.titleLabel?.font = UIFont.
bitwiseFontOfSize(30)
 titleLbl.textColor = UIColor.ht_midnightBlueColor()
 titleLbl.font = UIFont.bitwiseFontOfSize(50)
 }
}

Finally, the render inserts text as the caption of the components:

// MARK: Render
private extension MenuViewController{
 func render(){
 playButton.setTitle("Play", forState: .Normal)
 gameCenterButton.setTitle("Game Center", forState: .Normal)
 titleLbl.text = "Cube Runner"
 }
}

Chapter 8

[249]

Run the app. The menu has a fancy retro taste, as shown in this screenshot:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/6_CubeRunner_1_Menu.

Flying in a 3D world
Let's now build a scene where we can fly by skipping colorful cubes.

Setting up a scene
By running the app built so far, you might have noticed that, when you select the
Play button, the app crashes. This is because GameViewController expects to be
set up by the Storyboard where the view is actually SCNView; because the view is
a plain UIView, it crashes.

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_1_Menu
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_1_Menu

Cube Runner

[250]

To fix this issue, we need to build a slim GameViewController from scratch:

import UIKit
import QuartzCore
import SceneKit

class GameViewController: UIViewController {
 private let scnView = SCNView()
 private var scene: SCNScene!

 override func viewDidLoad() {
 super.viewDidLoad()
 scnView.frame = view.bounds
 view.addSubview(scnView)

 createContents()
 }
 override func prefersStatusBarHidden() -> Bool {
 return true
 }
}

The createContents() function creates all the elements of the game, and it'll be
handy to have it as a separate function when we need to implement the restart feature:

// MARK: content builder
private extension GameViewController {
 func createContents() {
 scene = SCNScene()
 scnView.showsStatistics = true
 scnView.scene = scene
 }
}

Now the game no longer crashes, but the game controller presents a plain white view.

The first node we create is the camera node. We need it to observe the scene. Because
we'll need to apply an action to the camera, let's save it as an instance variable:

class GameViewController: UIViewController {
 //...
 private var cameraNode: SCNNode!
 //...

Chapter 8

[251]

Then, in createContents(), we create and add it to the scene:

 func createContents() {
 //...
 cameraNode = createCamera()
 scene.rootNode.addChildNode(cameraNode)
 scnView.scene = scene
 }

The function that creates the node is really straightforward. It just enters the
expected position and the correct rotation pointing it to the center:

 func createCamera() -> SCNNode{
 let cameraNode = SCNNode()
 cameraNode.camera = SCNCamera()
 cameraNode.position = SCNVector3Make(0, 7, 20)
 cameraNode.rotation = SCNVector4Make(1, 0, 0, -atan2f(7,
20.0))
 return cameraNode
 }

The code presented in createCamera() is basic trigonometry. The only unusual
notation is the one for the rotation, where we first define the axis around which
we want to rotate the object, X in this case. Then, we define the angle of rotation;
a tan2(y, x) is the angle in radians between the positive x axis of a plane and
the point given by the (x, y) coordinates on it. The value of this angle is positive
for counterclockwise angles (the upper-half plane — that is, y > 0), and negative
for clockwise angles (the lower-half plane — that is, y < 0).

If you recall the diagram of the coordinates you saw earlier, it should not be difficult
to imagine where the camera is, but the following diagram should also help you
visualize it:

Cube Runner

[252]

Adding a fighter
A powerful feature of SceneKit is that it can import a 3D scene model exported to
COLLADA (https://www.khronos.org/collada/), which is a royalty-free XML
format for interchange of 3D models.

This means that a graphic artist can create a scene using their usual tools, such as
Maya or Blender. Then, a developer imports the file into the iOS app without any
need for further processing phases.

Moreover, this format enables the use of models that can be bought or downloaded
for free from a marketplace, such as http://www.turbosquid.com. Indeed, from
this marketplace, we'll use a royalty-free jet fighter model that fits the mood of our
game perfectly.

Looking at the project window, we notice that there is a folder called art.scnassets,
where we must put the 3D assets. This folder is mapped to the filesystem of the project.
This means that there is a directory with the same name in the filesystem of the project;
by adding a file to that directory, the file is automatically added to the project:

Let's download the model and add it to the project.

The model can be downloaded from https://github.com/gscalzo/
Swift2ByExample/blob/6_CubeRunner_2_PlainScene/
CubeRunner/assets/model/eurofighter.dae.zip.

By selecting jetfighter, as shown in the following screenshot, we can see what
constitutes the scene:

https://www.khronos.org/collada/
http://www.turbosquid.com
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_2_PlainScene/CubeRunner/assets/model/eurofighter.dae.zip
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_2_PlainScene/CubeRunner/assets/model/eurofighter.dae.zip
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_2_PlainScene/CubeRunner/assets/model/eurofighter.dae.zip

Chapter 8

[253]

The scene components are different types of lights, a camera, and the jet fighter.

We can play with each of them, changing position, materials, and so on. The result
will be rendered in the right-hand panel of the screen, like this:

Now that we have added the model of the scene to the project, let's add it to the game.

First of all, instead of creating an empty SCNScene, we need to load the scene from
the model:

 func createContents() {
 scene = SCNScene(named: "art.scnassets/eurofighter.dae")
 scnView.showsStatistics = true
 //...

Then, we search for the jetfighter object, change its size to fit into our scene,
and place it between the camera and the center:

 let jetfighterNode = createJetfighter()
 scnView.scene = scene
 }

 func createJetfighter() -> SCNNode{
 let jetfighterNode = scene!.rootNode.
childNodeWithName("jetfighter", recursively: true)!

 jetfighterNode.scale = SCNVector3(x: 0.03, y: 0.03, z: 0.03)
 jetfighterNode.position = SCNVector3(x: 0, y: 1.0, z: 13)
 jetfighterNode.rotation = SCNVector4(x: 0, y: 1, z: 0, w:
Float(M_PI))
 return jetfighterNode
 }

Cube Runner

[254]

Note that we must search for the node within the whole tree; this means we must
use recursively equal to true. Otherwise, the node will be searched for only in the
immediate children of the node.

We also need to rotate it to make it point in the same direction as the camera; to do
this, we must rotate the jet fighter by 180 degrees about the y axis.

Upon running the app, we can finally see something like this:

Texturing the world
A texture is an image that can be added to the surface of a 3D model, making it more
realistic. We have already used a texture to add a skin to the jet fighter.

Now, we'll add textures to the sky and floor.

The images for this purpose can be downloaded from
https://github.com/gscalzo/Swift2ByExample/
blob/6_CubeRunner_2_PlainScene/CubeRunner/
assets/images/images.zip.

Add the icon and two images, ensuring you to set them as 2x in their respective panels.

First of all, we set the sky as the texture for the background of the scene:

 func createContents() {
 scene = SCNScene(named: "art.scnassets/eurofighter.dae")
 scene.background.contents = UIImage(named: "sky")
 scnView.showsStatistics = true
 //...

https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_2_PlainScene/CubeRunner/assets/images/images.zip
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_2_PlainScene/CubeRunner/assets/images/images.zip
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_2_PlainScene/CubeRunner/assets/images/images.zip

Chapter 8

[255]

Then, we add a special node, SCNFloor. It acts as the base of the scene:

 func createContents() {
 //...
 let jetfighterNode = createJetfighter()
 scene.rootNode.addChildNode(createFloor())
 //...

The createFloor() function basically creates a floor and applies a texture on top
of it:

 func createFloor() -> SCNNode {
 let floor = SCNFloor()
 floor.firstMaterial!.diffuse.contents = UIImage(named: "moon")
 floor.firstMaterial!.diffuse.contentsTransform =
SCNMatrix4MakeScale(2, 2, 1)
 floor.reflectivity = 0
 return SCNNode(geometry: floor)
 }

To apply the texture in the correct place and with the correct scale, we move it using
a transformation of its coordinates:

floor.firstMaterial!.diffuse.contentsTransform.

Now the app has started looking like a real game:

Cube Runner

[256]

Make it move
As we saw in the introduction, applying actions to nodes is really straightforward.
So, making the jet fighter fly on the moon is just a matter of adding an action to
make the camera, and the fighter itself, move toward the horizon:

func createContents() {
 //...
 let moveForwardAction = SCNAction.repeatActionForever(
 SCNAction.moveByX(0, y: 0, z: -100, duration: 7))
 cameraNode.runAction(moveForwardAction)
 jetfighterNode.runAction(moveForwardAction)
 //...
 scnView.scene = scene

Obviously, the speed can be tweaked and also selected, depending on the level
of difficulty.

To pilot the jet, we'll use a motion detector so that the plane responds to the rotation
of the iPhone by the player. The first thing we need to do is to import CoreMotion:

import SceneKit
import CoreMotion

We need to save the motionManager variable that we'll create in a property:

class GameViewController: UIViewController {
 //...
 private var motionManager : CMMotionManager?

In createContents(), we create the coreManager object, and set the closure that
will be called at every change in position of the iPhone:

 func createContents() {
 //...
 motionManager = CMMotionManager()
 motionManager?.deviceMotionUpdateInterval = 1.0 / 60.0
 motionManager?.
 startDeviceMotionUpdatesUsingReferenceFrame(
 CMAttitudeReferenceFrame.XArbitraryZVertical,
 toQueue: NSOperationQueue.mainQueue(),
 withHandler: { (motion: CMDeviceMotion?, error:
 NSError?) -> Void in
guard let motion = motion else {return}
 let roll = CGFloat(motion.attitude.roll)

Chapter 8

[257]

 let rotateCamera =
 SCNAction.rotateByAngle(roll/20.0,
 aroundAxis: SCNVector3(x: 0, y: 0, z: 1),
 duration: 0.1)
 self.cameraNode.runAction(rotateCamera)

 let rotateJetfighter =
 SCNAction.rotateByAngle(roll/10.0,
 aroundAxis: SCNVector3(x: 0, y: 0, z: 1),
 duration: 0.1)
 jetfighterNode.runAction(rotateJetfighter)

 let actionMove =
 SCNAction.moveByX(roll, y: 0, z: 0, duration: 0.1)
 self.cameraNode.runAction(actionMove)
 jetfighterNode.runAction(actionMove)
 })
 //...

We are getting the value of a roll, which is the rotation around the vertical axis
of the physical iPhone when it is in portrait mode. We use the retrieved value to
move and rotate the camera and jet fighter accordingly.

Because we want to add more visual feedback to the game, we must have the jet
rotating more than the camera, so we need to create two different actions for the
rotation. One of them will have a greater angle of rotation than the other.

All of these values are calculated using trial and error and by running the app to
take a look at how they change the animation. You can change these values to
experiment and better understand how these things work.

You can find the code for this version at https://github.
com/gscalzo/Swift2ByExample/tree/6_CubeRunner_2_
PlainScene.

Adding cubes
In the original game, sections of random cubes are interleaved with sections of an
elaborated path.

For simplicity, our version will present a smooth, curved path that repeats itself in a
section of 200 steps.

To create the path, we need to calculate a cubic spline, which is a curve that connects
several points smoothly.

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_2_PlainScene
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_2_PlainScene
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_2_PlainScene

Cube Runner

[258]

To do this, we'll use the SwiftCubicSpline pod, which creates a curve like this one:

Because it's a pod, it is straightforward to use; just add this to the Podfile:

pod 'SwiftCubicSpline', '~> 0.1.0'

After running the pod install command, we are ready to use the cubic spline
interpolation to create a path. Let's import the framework and create a constant spline:

import SwiftCubicSpline
class GameViewController: UIViewController {
 //...
 private let spline = CubicSpline(points: [
 CGPoint(x: 0.0, y: 0.5),
 CGPoint(x: 0.1, y: 0.5),
 CGPoint(x: 0.2, y: 0.8),
 CGPoint(x: 0.4, y: 0.2),
 CGPoint(x: 0.6, y: 0.6),

Chapter 8

[259]

 CGPoint(x: 0.8, y: 0.4),
 CGPoint(x: 0.9, y: 0.5),
 CGPoint(x: 1.0, y: 0.5)
])
 //...

In createContents(), after creating motionManager object, we call the function to
create the first section of the lane:

func createContents() {
//...
motionManager?.startDeviceMotionUpdatesUsingReferenceFrame(
 //...
 })
 buildTheLane()
 //...

This function just iterates for each step of the section and calls another function to
create the actual piece of the lane:

 func buildTheLane() {
 for var zPos = 0; zPos < 200; zPos += 3 {
 let z = cameraNode.position.z - Float(zPos)
 buildCubesAtPosition(z)
 }
 }

The buildCubesAtPosition() function is a little more complicated:

 func buildCubesAtPosition(zPos: Float){
 let laneWidth: CGFloat = 40

 let zPosInSection = zPos%200
 let normalizedZ = CGFloat(fabs(zPosInSection/200))
 let normalizedX = Float((spline.interpolate(normalizedZ) -
0.5)*laneWidth)

 let cubeAtLeft = cube()
 cubeAtLeft.position = SCNVector3(x: normalizedX - 6, y: 1.0,
z: zPos)
 scene.rootNode.addChildNode(cubeAtLeft)
 let cubeAtRight = cube()
 cubeAtRight.position = SCNVector3(x: normalizedX + 6, y: 1.0,
z: zPos)
 scene.rootNode.addChildNode(cubeAtRight)
 }

Cube Runner

[260]

First, we get the position inside the current section. Then, because the spline is in the
0 to 1 range, we normalize the position to be in the same range.

Given the normalized value, which means between 0 and 1, we calculate the x
position in the spline and denormalize it again, which means adding a value to the
center of the lane, to create a position that is within the coordinates of the screen.

The position we just calculated is central with respect to the screen, but we need two
values for each of the cubes that creates the lane. Given the width of the lane of 12
steps, we set the cubes at each side:

 func cube(size: CGFloat = 2.0) -> SCNNode {
 let cube = SCNBox(width: size, height: size, length: size,
chamferRadius: 0)
 let cubeNode = SCNNode(geometry: cube)

 cube.firstMaterial!.diffuse.contents = {
 switch arc4random_uniform(4) {
 case 0:
 return UIColor.ht_belizeHoleColor()
 case 1:
 return UIColor.ht_wisteriaColor()
 case 2:
 return UIColor.ht_midnightBlueColor()
 default:
 return UIColor.ht_pomegranateColor()
 }
 }()

 return cubeNode
 }

The cube() function uses a primitive function of SceneKit to create a cube and set a
random color for its face. Notice how we created an anonymous function and then
called it in place in order to wrap the logic of selecting a random color.

Chapter 8

[261]

The game is now pretty cool:

However, we have just created the first section; we need to create an infinite lane.
To do this, we set a timer that creates a piece of lane every 1/5th of a second.

As we might need to invalidate the timer, we create a property for it:

class GameViewController: UIViewController {
 //...
 private var laneTimer: NSTimer!

Then, we set up the timer in the createContents() function:

 func createContents() {
//...
buildTheLane()
 laneTimer = NSTimer.scheduledTimerWithTimeInterval(0.2,
target: self,
 selector: "laneTimerFired", userInfo: nil, repeats: true)

Cube Runner

[262]

Since the section is 200 steps long, we need to build a piece of lane that's 200 steps in
front of the camera in the callback that's called when the timer fires:

 @objc func laneTimerFired(){
 buildCubesAtPosition(cameraNode.position.z-200)
 }

If you run the app now, you will find that the lane is endless, and it allows the player
to race for a longer run.

However, there's still a small glitch that detracts from our game's credibility: we can
see the cubes of the lane being built, popping up on the horizon. To fix this issue, we
use a nice feature of SceneKit: long-distance fog. In our case, it will be black in order
to simulate the night:

 func createContents() {
//...
laneTimer = NSTimer.scheduledTimerWithTimeInterval(0.2, target: self,
 selector: "laneTimerFired", userInfo: nil, repeats: true)
 scene!.fogStartDistance = 30
 scene!.fogEndDistance = 90
 scene!.fogColor = UIColor.blackColor()

By running the app now, we can see a nice night-like effect on the horizon, which
seems as if the cubes appear from the darker side of the moon, like this:

Chapter 8

[263]

Adding more obstacles
Although we haven't completed the game yet notably, collision detection is missing,
we can already see that the game is too easy to play. One way to increase the difficulty
of the path is to add a few cubes inside the path:

 func buildCubesAtPosition(zPos: Float){
 //...
 if arc4random_uniform(5) < 1 {
 let centralCube = cube(size: 1.0)
 scene.rootNode.addChildNode(centralCube)
 let xOffset = arc4random_uniform(10)
 centralCube.position = SCNVector3(x: normalizedX +
Float(xOffset) - 5.0, y: 1.0, z: zPos)
 }
 }

This code is added to the function that is responsible for building the lane when a
certain z position is given. Using arc4random_uniform(5), there is a one out of five
probability of placing a small cube in every piece of the lane. In this way, the game
can never be exactly the same as it was earlier.

The position of the cube inside the lane is random, as well. Although collision
detection is still missing, the game is already fun to play:

Cube Runner

[264]

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/6_CubeRunner_3_Cubes.

Now that the way to add obstacles has been implemented, a good challenge for you
would be to add more and different obstacles, for example, spheres of different radii
or adding collected objects that would add points to the score. The sky is the limit.

Adding a few touches
Although a few things are still missing, either some parts of them are straightforward
or we already implemented them in the previous chapters when we were building
Flappy Swift.

The score
The score falls under the straightforward category, and it is worth implement it right
now so that we can finish adding all the visual elements to the screen.

The goal of the game is for the player to keep going as long as they can without
colliding with a cube. So, to implement the score, we just need to schedule a timer
that fires every second, increasing the score. First of all, we need to add elements
as properties:

class GameViewController: UIViewController {
 //...
 private var laneTimer: NSTimer!
 private let scoreLbl = UILabel()
 private var scoreTimer: NSTimer!
 private var score = 0

Then, we set up the score, calling setupScore() in createContents():

 func createContents() {
//...
 scene!.fogColor = UIColor.blackColor()
 setupScore()
 //...
 }

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_3_Cubes
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_3_Cubes

Chapter 8

[265]

The setupScore() function adds the label to the view hierarchy and sets the
correct style:

 func setupScore(){
 scnView.addSubview(scoreLbl)
 scoreLbl.frame.origin.x = 0
 scoreLbl.frame.origin.y = 0
 scoreLbl.frame.size.height = 50
 scoreLbl.frame.size.width = 200
 scoreLbl.font = UIFont.bitwiseFontOfSize(30)
 scoreLbl.textColor = UIColor.whiteColor()
 score = 0
 scoreLbl.text = "\(score)"
 scoreTimer = NSTimer.scheduledTimerWithTimeInterval(1, target:
self, selector: "scoreTimerFired", userInfo: nil, repeats: true)
 }

Finally, the closure bound to scoreTimer increases the score and sets the value in
the label:

 @objc func scoreTimerFired(){
 score++
 scoreLbl.text = "\(score)"
 }

The game now presents a fancy score in the top-left corner, with a juicy retro font:

Cube Runner

[266]

Let's add music
We've already implemented music and we can reuse the MusicPlayer class we
created for Flappy Swift:

import Foundation
import AVFoundation

enum MusicPlayerError: ErrorType {
 case ResourceNotFound
}

class MusicPlayer {
 private var player: AVAudioPlayer? = nil

 init(filename: String, type: String) throws {
 if let resource = NSBundle.mainBundle().
pathForResource(filename, ofType: type) {
 let url = NSURL(fileURLWithPath: resource)
 player = try AVAudioPlayer(contentsOfURL: url)
 player?.numberOfLoops = -1
 player?.prepareToPlay()
 } else {
 throw MusicPlayerError.ResourceNotFound
 }
 }

 func play() {
 player?.play()
 }
 func stop() {
 player?.stop()
 }
}

For the soundtrack, we again rely on Kevin MacLeod and his website at
http://incompetech.com. We use a calm space song called Space 1990-B.

The soundtrack file can be downloaded from https://github.
com/gscalzo/Swift2ByExample/blob/6_CubeRunner_3_
Cubes/CubeRunner/assets/music/Space%201990-B.mp3.

http://incompetech.com
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_3_Cubes/CubeRunner/assets/music/Space%201990-B.mp3
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_3_Cubes/CubeRunner/assets/music/Space%201990-B.mp3
https://github.com/gscalzo/Swift2ByExample/blob/6_CubeRunner_3_Cubes/CubeRunner/assets/music/Space%201990-B.mp3

Chapter 8

[267]

Let's add the musicPlayer class as a property:

class GameViewController: UIViewController {
 //...
 private var musicPlayer: MusicPlayer?
 //...

As usual, the player is instantiated during the loading of the view:

 //...
 override func viewDidLoad() {
 super.viewDidLoad()
 do {
 musicPlayer = try MusicPlayer(filename: "Space 1990-B",
type: "mp3")
 musicPlayer!.play()
 } catch {
 print("Error playing soundtrack")
 }
 //...
}

Then, implement viewWillAppear() and viewDidDisappear() to start and stop the
music respectively:

 override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 musicPlayer?.play()
 }
 override func viewDidDisappear(animated: Bool) {
 super.viewDidDisappear(animated)
 musicPlayer?.stop()
 }

That's it! As already mentioned, although it's unfinished, the game still looks
complete and fun.

You can find the code for this version at https://github.
com/gscalzo/Swift2ByExample/tree/6_CubeRunner_4_
MusicScore.

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_4_MusicScore
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_4_MusicScore
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_4_MusicScore

Cube Runner

[268]

Summary
The aim of this chapter was to introduce SceneKit, demystifying the idea that 3D
game development is something that only professional game developers can do. We
showed you how Playground can help you learn about a new library, for example,
SceneKit. This allows you to build and modify nodes when they are shown in the
Playground console.

Then, we began implementing a complete 3D game. Although it is not complete yet,
we have almost created a prototype—a game that, in real life, can be played and also
shared with other players in order to gather feedback and steer its development in
the correct direction.

In the following chapter, we'll carry on with the development of this game by adding
missing features, notably one feature that could make the game look gorgeous, that
is, explosions!

[269]

Completing Cube Runner
In the previous chapter, we implemented most of the features of Cube Runner.
In this chapter, we will finish implementing the game.

The most notable feature that is missing is collision detection, so we'll start with that
in this chapter. As we have already said, when we built Flappy Swift, Game Center
support made the game more interesting; thus, we'll add that to Cube Runner as well.

Let's get started with all of this, and much more, in this chapter.

Creating a real game
The first thing we must implement to make this a real game is collision detection.
Then, we'll add an end to the game; otherwise, it will be really boring. Finally, a few
extra touches will make the game more appealing.

Detecting collisions
Collision detection in SceneKit is implemented as it is in SpriteKit. For every node
that can collide, we must create a physics body and attach it to the node, setting a
unique identifier for that body. Finally, a contact delegate will receive a call when
a collision is detected.

First of all, we define an enumeration to list all the possible types of bodies, of which
there are only two in our case:

enum BodyType : Int {
 case jetfighter = 1
 case cube = 2
}

Completing Cube Runner

[270]

In createJetfighter(), we create a parallelepiped to act as a physics body
for the jet fighter because employing the actual model we used for rendering is
a waste of calculation resources. For the purpose of detecting a collision, a rough
shape is enough:

func createJetfighter() -> SCNNode{
 //...
 let jetfighterBodyNode = SCNNode(geometry:
 SCNBox(width: 0.3, height: 0.2, length: 1, chamferRadius: 0))
 jetfighterNode.physicsBody = SCNPhysicsBody(type: .Kinematic,
 shape:
 SCNPhysicsShape(node: jetfighterBodyNode, options: nil))
 jetfighterNode.physicsBody!.categoryBitMask =
 BodyType.jetfighter.rawValue
 jetfighterNode.physicsBody!.contactTestBitMask =
 BodyType.cube.rawValue

 return jetfighterNode
}

The size of the box was calculated, making the box visible and trying different values
until it doesn't have the same size as the jet.

We create the aforementioned parallelepiped, which is of the jetfighter type, as by
the category bitmask, and it collides with a cube, as by the contact bitmask.

We can do something similar for cubes:

func cube(size: CGFloat = 2.0) -> SCNNode {
 //...
 let cubeNode = SCNNode(geometry: cube)
 cubeNode.physicsBody = SCNPhysicsBody(type: .Static, shape:
 SCNPhysicsShape(node: cubeNode, options: nil))
 cubeNode.physicsBody!.categoryBitMask = BodyType.cube.rawValue
 cubeNode.physicsBody!.contactTestBitMask =
 BodyType.jetfighter.rawValue
 //...
}

Although the code is the same, the category and contact bitmasks are the other way
round. Finally, we must assign the GameViewController class as contactDelegate:

func createContents() {
 scene = SCNScene(named: "art.scnassets/eurofighter.dae")
 scene.physicsWorld.contactDelegate = self
 //...

Chapter 9

[271]

Obviously, we must implement that protocol. The way we do this is similar to the
method we used for Flappy Swift:

extension GameViewController: SCNPhysicsContactDelegate{
 func physicsWorld(world: SCNPhysicsWorld,
 didBeginContact contact: SCNPhysicsContact){
 let contactMask = contact.nodeA.physicsBody!.
categoryBitMask | contact.nodeB.physicsBody!.categoryBitMask
 switch (contactMask) {
 case BodyType.jetfighter.rawValue |
 BodyType.cube.rawValue:
 println("Contact!")
 default:
 return
 }

 }
}

Run the app to verify that everything works as expected, as shown here:

Completing Cube Runner

[272]

You can view the code of this version here: https://github.com/
gscalzo/Swift2ByExample/tree/6_CubeRunner_5_Collisions.

Game over!
When the jet fighter touches a cube, we must do a few things to stop everything
from moving; these include invalidating the timers, removing all node disabling
CoreMotion manager, and so on.

This means that all of these objects must be accessible through the delegate method.
To do this, we will put jetfighterNode as an instance variable, but to reduce
the quantity of the code, we must change this. We create a property to hold the
function that will be called in the delegate method. This function wraps the value
of jetfighterNode so that we don't need to transform it into an instance variable.

First of all, we define the property:

class GameViewController: UIViewController {
 //...
 private var gameOver: () -> Void = {}

The function will be a function without any arguments and return values. Then, in
createContents(), we assign the function's body:

func createContents() {
 //...
 setupScore()
 gameOver = { [unowned self] in
 self.laneTimer.invalidate()
 self.scoreTimer.invalidate()
 self.scene.physicsWorld.contactDelegate = nil
 self.cameraNode.removeAllActions()
 jetfighterNode.removeAllActions()
 self.motionManager?.stopDeviceMotionUpdates()
 }

As you can see, the body of the function is nothing more than the statements meant
to stop everything.

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_5_Collisions
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_5_Collisions

Chapter 9

[273]

Finally, we call the function after the contact delegate:

func physicsWorld(world: SCNPhysicsWorld,
 didBeginContact contact: SCNPhysicsContact){
 //..
 case BodyType.jetfighter.rawValue |
 BodyType.cube.rawValue:
 println("Contact!")
 gameOver()

By running the app, we see that the game stops when the jet fighter touches a cube—
precisely what we were expecting. However, the only way to play again is by killing
and restarting the app, which is not exactly convenient.

We need to implement a better way of restarting the game. To do that, we'll use the
SIAlertView pod to ask the player whether they want to play again or whether they
want to go back to the Menu view.

Of course, using a pod for Alert Box could be viewed as over-engineering, on the
grounds that the iOS has great native alert boxes. However, SIAlertView is really
good looking and its style suits the game; again, a good exercise for you could be
replacing the SIAlertView pod with the native one.

First, we update the Podfile by adding this pod:

pod 'SIAlertView', '~> 1.3'

After installing the pods with pod install, we import the framework:

//...
import SwiftCubicSpline
import SIAlertView

We can now create a function to present the alert dialog:

func askToPlayAgain(#onPlayAgainPressed: () -> Void,
 onCancelPressed: () -> Void) {
 let alertView = SIAlertView(title: "Ouch!!", andMessage:
"Congratulations! Your score is \(score). Play again?")

 alertView.addButtonWithTitle("OK", type: .Default) { _ in
onPlayAgainPressed() }
 alertView.addButtonWithTitle("Cancel", type: .Default) { _ in
onCancelPressed() }
 alertView.show()
}

Completing Cube Runner

[274]

As you can see, depending on which button is pressed one of the functions passed as
parameters is called. The functions are defined in the gameOver() function:

gameOver = { [unowned self] in
 //...
 self.motionManager?.stopDeviceMotionUpdates()
 self.askToPlayAgain(onPlayAgainPressed: {
 self.createContents()
 return
 },
 onCancelPressed: {
 self.dismissViewControllerAnimated(true, completion: nil)
 return
 })
}

The first function calls the createContents() function to restart the game, and now
it is clear that grouping together the creation statements in a new function.

The second function dismisses the view controller to go back to the
MenuViewController class. If we run the app now, it seems as if everything
works as expected, but the pop-up is slightly delayed.

By putting a breakpoint in the body of the gameOver() function and running the
debugger, we notice that the function is not called in the main thread but in the
rendering thread rather than in the main thread, as shown in this screenshot:

The problem is that every change to the UI must be done in the main thread;
otherwise, unexpected things—even crashes—can happen. What a rookie mistake!

This issue is easy to fix; create an execInMainThread convenience function to run a
closure in the main thread:

func execInMainThread(closure:()->()) {
 dispatch_async(dispatch_get_main_queue(),closure)
}

Chapter 9

[275]

In the gameOver() function, we wrap the call to SIAlertView using the previous
function:

gameOver = { [unowned self] in
 //...
 self.motionManager?.stopDeviceMotionUpdates()
 execInMainThread(){
 self.askToPlayAgain(onPlayAgainPressed: {
 self.createContents()
 },
 onCancelPressed: {
 self.dismissViewControllerAnimated(true, completion:
 nil)
 })
 }
}

Finally, everything works as expected.

Adding the juice
As mentioned in the previous chapters, adding a few touches can make a game much
more appealing.

Because the game is controlled using the motion of an iPhone, it is always in the
hands of the player, so it will be nice to receive tactile feedback when the jet fighter
crashes into a cube.

This can be easily implemented using vibrations, which can be triggered
programmatically using an AudioToolbox service. Let's import the framework:

//...
import SIAlertView
import AudioToolbox.AudioServices

Then, add a function call to gameOver():

gameOver = { [unowned self] in
 //...
 self.motionManager?.stopDeviceMotionUpdates()
 AudioServicesPlayAlertSound
 (SystemSoundID(kSystemSoundID_Vibrate))

Completing Cube Runner

[276]

A nice feature provided by SceneKit is a particle engine, which allows us to use
a large number of small sprites to simulate certain fuzzy phenomena, such as fire,
smoke, explosions, and so on.

First of all, let's add the FireParticles.scnp particle file and the spark.png sprite
image to the project. To create or change the particle file, the particle console in
Xcode is everything you need.

You can find the resources at https://github.com/gscalzo/
Swift2ByExample/tree/6_CubeRunner_6_PlayableGame/
CubeRunner/assets/explosion.

Upon selecting the particle file and opening it with Xcode, you will notice that you
can tweak its value, and Xcode presents the result in a nice console view, like this:

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_PlayableGame/CubeRunner/assets/explosion
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_PlayableGame/CubeRunner/assets/explosion
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_PlayableGame/CubeRunner/assets/explosion

Chapter 9

[277]

The idea is to make both the jet fighter and the cube explode when the former hits
the latter. Let's create a function to add a particle system to a node:

func explodeNode(node: SCNNode){
 let fire = SCNParticleSystem(named: "FireParticles",
 inDirectory: nil)
 fire.emitterShape = node.geometry
 node.addParticleSystem(fire)
}

As you can see, adding a particle system is really straightforward. However, we need
to change the gameOver() signature to pass the two nodes:

class GameViewController: UIViewController {
 //...
 private var gameOver: (SCNNode, SCNNode) -> Void = {_,_ in}

Then, we change the body of gameOver():

gameOver = { [unowned self] nodeA, nodeB in
 //...
 self.cameraNode.removeAllActions()
 jetfighterNode.removeAllActions()
 self.explodeNode(nodeA)
 self.explodeNode(nodeB)
 //...
}

Finally, we change the call of the gameOver() function:

func physicsWorld(world: SCNPhysicsWorld,
didBeginContact contact: SCNPhysicsContact){
 //..
 case BodyType.jetfighter.rawValue |
 BodyType.cube.rawValue:
 gameOver(contact.nodeA, contact.nodeB)

To give the player a chance to see the jet fighter and the cube burning before being
covered by the pop-up, we delay the appearance of the pop-up. From previous apps,
we copy execAfter():

func execAfter(delay:Double, closure:()->()) {
 dispatch_after(
 dispatch_time(
 DISPATCH_TIME_NOW,
 Int64(delay * Double(NSEC_PER_SEC))),
 dispatch_get_main_queue(), closure)
}

Completing Cube Runner

[278]

Then, we replace the execInMainThreat() call in gameOver() to execAfter()
using 1 second as the delay:

gameOver = { [unowned self] nodeA, nodeB in
 self.laneTimer.invalidate()
 //...
 AudioServicesPlayAlertSound(
 SystemSoundID(kSystemSoundID_Vibrate))
 execAfter(1){
 self.askToPlayAgain(onPlayAgainPressed: {

Nice, isn't it?

You can find the code for this version at https://github.
com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_
PlayableGame.

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_PlayableGame
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_PlayableGame
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_6_PlayableGame

Chapter 9

[279]

Game Center
The last thing that is missing is integration with Game Center. We'll use the code
we wrote for Flappy Swift for this purpose.

You might remember that there is a tedious series of operations to be done on
the Apple backend servers. To avoid wasting pages by duplicating information,
the procedure described in Chapter 6, Flappy Swift, can be referred to.

After setting up the leaderboard and the test user, we can copy the GameCenter
class we created for Flappy Swift:

import GameKit
import SIAlertView

class GameCenter: NSObject {
 private var gameCenterEnabled = false
 private var leaderboardIdentifier = ""

 func authenticateLocalPlayer() {
 let localPlayer = GKLocalPlayer.localPlayer()
 localPlayer.authenticateHandler = { (viewController, error) in
 if let vc = viewController {
 let topViewController = UIApplication.
sharedApplication().delegate!.window!!.rootViewController
 topViewController?.presentViewController(vc, animated:
true, completion: nil)
 } else if localPlayer.authenticated {
 self.gameCenterEnabled = true
 localPlayer.
loadDefaultLeaderboardIdentifierWithCompletionHandler({
(leaderboardIdentifier, error) -> Void in
 self.leaderboardIdentifier =
leaderboardIdentifier!
 })
 }
 }
 }

 func reportScore(score: Int){
 if !gameCenterEnabled {
 return
 }

Completing Cube Runner

[280]

 let gkScore = GKScore(leaderboardIdentifier:
leaderboardIdentifier)
 gkScore.value = Int64(score)

 GKScore.reportScores([gkScore], withCompletionHandler: nil)
 }

 func showLeaderboard() {
 if !gameCenterEnabled {
 let alertView = SIAlertView(title: "Game Center
Unavailable", andMessage: "Player is not signed in")

 alertView.addButtonWithTitle("OK", type: .Default)
 { _ in}
 alertView.show()
 return
 }

 let gcViewController = GKGameCenterViewController()

 gcViewController.gameCenterDelegate = self
 gcViewController.viewState = .Leaderboards
 gcViewController.leaderboardIdentifier = leaderboardIdentifier

 let topViewController = UIApplication.sharedApplication().
delegate!.window!!.rootViewController
 topViewController?.presentViewController(gcViewController,
animated: true, completion: nil)
 }
}

extension GameCenter: GKGameCenterControllerDelegate {
 func gameCenterViewControllerDidFinish(gameCenterViewController:
GKGameCenterViewController){
 gameCenterViewController.dismissViewControllerAnimated(true,
completion: nil)
 }
}

Chapter 9

[281]

Just a reminder of what this class is for: GameCenter is a wrapper class around the
Game Center functionalities. It provides three features:

• Authentication: Through the authenticateLocalPlayer() function,
the class permits automatic logon or shows a form with a username and
a password

• Reporting score: The reportScore() function wraps the call to the Game
Center server to send the current score

• Showing the leaderboard: The showLeaderboard() function opens a new
view with the leaderboard or fails with an alert dialog if the player is not
logged in

Once again, we set up the GameCenter class in the MenuViewController class:

class MenuViewController: UIViewController {
 //...
 private let gameCenter = GameCenter()
 override func viewDidLoad() {
 super.viewDidLoad()
 gameCenter.authenticateLocalPlayer()
 //...

Then, we call showLeaderboard() in the callback of the Game Center button:

 @objc func onGameCenterPressed(sender: UIButton) {
 println("onGameCenterPressed")
 gameCenter.showLeaderboard()
 }

Finally, we need to pass the instance of GameCenter to the GameViewController class:

 @objc func onPlayPressed(sender: UIButton) {
 let vc = GameViewController()
 vc.gameCenter = gameCenter
 //...
 }

In this class, we add a property to hold the instance of the GameCenter class:

class GameViewController: UIViewController {
 //...
 private var gameOver: (SCNNode, SCNNode) -> Void = {_,_ in}
 var gameCenter: GameCenter?

Completing Cube Runner

[282]

The score, which is in the body of gameOver(), is sent to the server when the
game ends:

gameOver = { [unowned self] nodeA, nodeB in
 //...
 self.motionManager?.stopDeviceMotionUpdates()
 if let gameCenter = self.gameCenter{
 gameCenter.reportScore(self.score)
 }
 //...

Finally, we have completed the game and are ready to challenge our friends to see
who can make the longest run between the cubes.

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/6_CubeRunner_7_GameCenter.

Summary
This chapter was shorter than most of the other chapters in this book. Nevertheless,
we finished building the Cube Runner game by adding a proper game-over features,
explosions, and a vibration in the case of a crash with a cube. We set up Game Center
to collect the scores.

Although the game is pretty entertaining, there's always room for improvement; for
example, different lanes could easily be added, or you could use different building
functions for every section. You might even want to change the texture and shape of
the cube to create planets. A bullet shooting from the jet could be added to wipe out
small cubes inside the lanes.

However, adding these enhancements could be challenging. Nevertheless, by now
you must have a good amount of knowledge of Swift and its frameworks well
enough to start developing iOS apps in Swift on your own.

https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_7_GameCenter
https://github.com/gscalzo/Swift2ByExample/tree/6_CubeRunner_7_GameCenter

[283]

ASAP – an E-commerce
App in Swift

In this book, I've presented different kinds of apps such as utilities, games, and so on,
trying to showcase how to program real applications for iOS.

However, I admit that almost 80 percent of the apps are basically applications that
receive JSON data from a server, present them in a tabular or grid, get events from
a user, and send back JSON to the server. If you learn how to build a skeleton of an
app of this kind, in a flexible and modular way, you will be ready to be a professional
iOS developer.

In the two final chapters of this book, we'll implement an app of this kind, and
thanks to the fact that Swift is now open source, we'll implement a server that
we'll feed this app into as well.

The app is…
Mobile e-commerce is a sector that's greatly expanding, and you will want to become
the new Amazon of shoes and clothing delivery. By doing this, you will be ready to
start a new company called ASAP.

In this frenzied age, we know that a customer doesn't have time to spend in several
different screens, so our app aims to simplify things by having only three screens:
a login and registration, which will appear only the first time, a grid to show the
products, and a table to present the cart that's ready for checkout.

ASAP – an E-commerce App in Swift

[284]

The first requirement: login and registration
Other e-commerce apps probably need a lot of data from their customers, such
as their e-mail ID, address, phone number, and so on, but in ASAP, we strive
for simplicity and an e-mail address is more than enough.

Therefore, the first screen should only present a text field with a Sign Up button,
which is enabled only when a valid e-mail ID is inserted into the text field:

Also, because registration is needed only when we run the app for the first time,
this screen must be presented only if the customer hasn't logged into the app.

Chapter 10

[285]

The second requirement: the products grid
This is the most important screen of the app where all the products are presented.

The view is a simple two-column grid, where each cell shows an image,
a description, name, and the price of the product:

When the user taps on a cell, a specific product is added to the cart and a badge
number is added along with a button and cart in the top-right corner of the screen.

If you tap on the same cell again, the product is removed from the cart and the
badge decreases.

The cart button drives the app to the open cart.

ASAP – an E-commerce App in Swift

[286]

The third requirement: the open cart
This screen allows the customer to see the content of the cart and buy the products.

The title of the screen shows the number of products.

When you slide a cell to the left, a Delete button appears, and if it's tapped, the
product is removed from the cart. Therefore, the total amount and the grid status
must change also accordingly.

The skeleton app and register screen
Let's start the implementation of the app and let's begin with the Register screen.

The skeleton app
As usual, we create a new Single View application app, called ASAP, which, for the
sake of simplicity, will be a portrait-only app:

1. Let's create a Register group where we'll add a RegisterViewController
class and a Storyboard called Register.storyboard.

Chapter 10

[287]

2. Add a UIViewController class to the scene, and define it as the
RegisterViewController class:

3. To keep the instantiation simple, set it as the initial View Controller in the
Storyboard:

4. Moving to the class, we define a factory method to instantiate
RegisterViewController:
import UIKit

class RegisterViewController: UIViewController {

 static func instantiate() -> RegisterViewController {
 return UIStoryboard(name: "Register",
 bundle: nil).instantiateInitialViewController()
 as! RegisterViewController
 }
}

This is a convenient way to set all the required information in order to create View
Controller in the controller itself.

In Appdelegate, we instantiate the View Controller and set it as
rootViewController:

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
 var window: UIWindow?

ASAP – an E-commerce App in Swift

[288]

 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject: AnyObject]?) -> Bool {
 self.window = UIWindow(frame:
 UIScreen.mainScreen().bounds)

 let initialViewController: UIViewController =
 RegisterViewController.instantiate()

 self.window?.rootViewController = initialViewController
 self.window?.makeKeyAndVisible()

 return true
 }
}

Before moving on, let's add Podfile with some required libraries:

use_frameworks!
inhibit_all_warnings!

target 'ASAP' do
 pod 'SwiftyJSON', '~> 2.3.0'
 pod 'SDWebImage', '~> 3.7.3'
 pod 'FontAwesomeKit', :git =>
 'https://github.com/gscalzo/FontAwesomeKit'
 pod 'BBBadgeBarButtonItem', '~> 1.2'
 pod 'LatoFont', :git =>
 "https://github.com/gscalzo/LatoFont.git"
end

After using the pod install command, we'll add components to the Storyboard.

We'll use a really useful feature that Apple has added to iOS 9 called UIStackView.

UIStackView is a container of views, which can be stacked horizontally or vertically,
defining their distribution, proportions, spacing and so on, without the need to add
Auto Layout constraints to define how to position those views in the parent view.

Since UIStackView is lighter than the constraints, the performance is better; also, it's
simpler to define the layout.

Chapter 10

[289]

So, we add three components, a label, text field, and a button, as shown in the
following screenshot:

Then, we select all the components:

After this, we click on the first new button in the Storyboard action bar:

This creates UIStackView with the following selected components:

It's clear that we need to set the missing constraints in order to make it pretty.

Let's begin defining the properties of Stack View.

ASAP – an E-commerce App in Swift

[290]

Basically, we just set the spacing between the views, and we set the distribution as
Fill Equally, which means that all the components will be of the same height:

Then, we set the size of the button:

The text field must as the same size as the container so that we can set the leading
and trailing:

Chapter 10

[291]

Finally, we set Stack View to be centered horizontally and at one quarter from the
top of the screen:

We customize the appearance a bit, making sure that the text field has a border and
is without rounded corners, and then we set the e-mail Keyboard Type:

ASAP – an E-commerce App in Swift

[292]

The previous screenshot presents the value to be changed in order to create a form
similar to what is shown in this screenshot:

Let's now create outlets to connect the components:

import UIKit
import LatoFont

class RegisterViewController: UIViewController {
 @IBOutlet var okButton: UIButton! {
 didSet {
 okButton.enabled = false
 okButton.titleLabel?.font = UIFont.latoFontOfSize(18)
 }
 }

 @IBOutlet var emailTextField: UITextField! {
 didSet {
 emailTextField.becomeFirstResponder()
 emailTextField.font = UIFont.latoFontOfSize(18)
 }
 }
 }

We use this nice pattern to set the properties of the outlets once they are set. In this
way, the customization code is similar to the actual component.

Let's add the actions for the text field changes and button tap:

 @IBAction func emailTextFieldChanged(sender: UITextField) {
 guard let text = sender.text else {
 return
 }
 okButton.enabled = text.isValidEmail()
 }

Chapter 10

[293]

 @IBAction func signinTapped(sender: UIButton) {
 guard let text = emailTextField.text else {
 return
 }

 }

Don't forget to connect them in the Storyboard, as shown in the following
screenshots:

As you can see, we enable the OK button only if the text inside the text field is a
valid e-mail address.

ASAP – an E-commerce App in Swift

[294]

If you try implementing this code, you'll find that it is not a valid function of a string,
so we need to create an extension:

extension String {
 func isValidEmail() -> Bool {
 let emailRegEx = "^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@
 [a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\\.
 [a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$"

 let emailTest = NSPredicate(format:"SELF MATCHES %@",
 emailRegEx)
 return emailTest.evaluateWithObject(self)
 }
}

Now, we'll create a store to save the e-mail that's been inserted.

Although the correct destination should be the keychain, for simplicity's sake,
we save the information in NSUserDefaults:

import Foundation

typealias Email = String

class UserStore {
 private struct Constants {
 static let emailKey = "emailKey"
 }

 func setUserEmail(email: Email) {
 NSUserDefaults.standardUserDefaults().setObject(email,
 forKey: Constants.emailKey)
 }

 func userEmail() -> Email? {
 return NSUserDefaults
 .standardUserDefaults()
 .objectForKey(Constants.emailKey) as? Email
 }

 func isUserSignedIn() -> Bool {
 return userEmail() != nil
 }
}

Chapter 10

[295]

This store will be unique; hence, we create its instance in AppDelegate so that it can
be easily accessed anywhere:

class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?
 class func appdelegate() -> AppDelegate {
 return UIApplication.sharedApplication().delegate as!
 AppDelegate
 }

 var userStore = UserStore()

Now, in the action method of the OK button, we save the e-mail address:

 @IBAction func signinTapped(sender: UIButton) {
 guard let text = emailTextField.text else {
 return
 }

 AppDelegate.appdelegate().userStore.setUserEmail(text)

 performSegueWithIdentifier("ShowEcommerceScene", sender:
 self)
 }

As you can see, after saving the e-mail, we'll go to another view controller that
has not been built yet. Let's implement the EcommerceView controller as usual by
creating an Ecommerce group containing a EcommerceViewController class and
Ecommerce.storyboard:

ASAP – an E-commerce App in Swift

[296]

To move from one Storyboard to another, we use a nice feature by Xcode 7: the
Storyboard reference. In the previous versions of Xcode, all the view controllers
that are connected together using segues were in the same Storyboard, making
a mess of the entire thing and really difficult to handle when working in a team.
Using a Storyboard reference is now possible because it splits the view controllers
into different Storyboards by preserving the possibility of connecting them using
segues through the Storyboard references.

It's a kind of label that refers to a view controller in another storyboard:

Next, we'll create a segue from the view controller to this reference, setting the
identifier as ShowEcommerceScene:

The last feature that's missing is to go straight to the e-commerce screen if the user is
already logged in when we launch the app.

For this, we can use UserStore in AppDelegate to check the user state and decide
where to go on the first screen:

 func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {
 self.window = UIWindow(frame: UIScreen.mainScreen().bounds)

 UINavigationBar.appearance().titleTextAttributes =
[NSFontAttributeName : UIFont.latoBoldFontOfSize(18)]

Chapter 10

[297]

 let initialViewController: UIViewController

 if !AppDelegate.appdelegate().userStore.isUserSignedIn() {
 initialViewController = RegisterViewController.
instantiate()
 } else {
 initialViewController = EcommerceViewController.
instantiate()
 }

To do this, we must define the instantiate() function in the controller:

class EcommerceViewController: UIViewController {

 static func instantiate() -> UIViewController {
 return UIStoryboard(name: "Ecommerce", bundle: nil).
instantiateInitialViewController()!
 }
}

Remember that to clean the saved e-mail, the quickest way is to reset the simulator:

ASAP – an E-commerce App in Swift

[298]

This is what the app will then look like:

Now, we've completed our work on the first screen, and we are ready to implement
the making of the actual e-commerce store.

You can find this code at https://github.com/gscalzo/
Swift2ByExample/tree/7_ASAP_1_Register.

The ASAP e-commerce store
In this section, we'll implement the product, wrapping the connection with the
server with a protocol so that we can implement the app using a fake local storage
for this information.

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_1_Register
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_1_Register

Chapter 10

[299]

The e-commerce product list
The list of the products stating the requirements for the app is simple: a grid with
two columns is required, which we can implement using UICollectionView.

First of all, let's change the controller in the Storyboard from a simple
UIViewController to UICollectionviewController, embed it into
UINavigationController, add a UICollectionViewCell prototype,
and change the parent class accordingly in the Swift file.

Although we are going to set up the collection using a custom flow, we'll set the size
of the cell to be a little bigger in order to help us lay out the components:

import UIKit

class EcommerceViewController: UICollectionViewController {

 static func instantiate() -> UIViewController {
 return UIStoryboard(name: "Ecommerce", bundle: nil).
instantiateInitialViewController()!
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 title = "ASAP"
 }
}

ASAP – an E-commerce App in Swift

[300]

Next, we'll create an empty ProductCollectionViewCell, which also contains the
product components:

import UIKit

class ProductCollectionViewCell: UICollectionViewCell {
}

Set this class as the custom class for Cell, and add the Cell identifier to enable the
usage of the cells again.

While we are changing the Storyboard, let's set the background of CollectionView
to white.

Let's now write some code to create fake cells in the controller and verify whether
everything has been connected correctly:

extension EcommerceViewController {
 override func collectionView(collectionView:
 UICollectionView, numberOfItemsInSection section: Int) ->
 Int {
 return 40
 }

 override func collectionView(collectionView:
 UICollectionView, cellForItemAtIndexPath indexPath:
 NSIndexPath) -> UICollectionViewCell {
 let cell = collectionView.
 dequeueReusableCellWithReuseIdentifier("Cell",
 forIndexPath: indexPath) as! ProductCollectionViewCell

 switch arc4random_uniform(4) {
 case 0:
 cell.backgroundColor = UIColor.redColor()
 case 1:
 cell.backgroundColor = UIColor.greenColor()
 case 2:
 cell.backgroundColor = UIColor.blueColor()
 default:
 cell.backgroundColor = UIColor.orangeColor()
 }

 return cell
 }
}

Chapter 10

[301]

When we run the app, we'll see the cells but they aren't perfectly laid out:

The problem here is that we haven't set a two-column layout yet.

Let's write the code for this two-column layout:

import UIKit

class TwoColumnFlowLayout: UICollectionViewFlowLayout {
 private struct Constants {
 static let NumberColumns = CGFloat(2.0)
 static let InteritemSpacing = CGFloat(1.0)
 }

 override func prepareLayout() {
 super.prepareLayout()

ASAP – an E-commerce App in Swift

[302]

 configureItemSpacing()
 configureItemSize()
 }
}

private extension TwoColumnFlowLayout {
 func configureItemSpacing() {
 minimumInteritemSpacing = Constants.InteritemSpacing
 minimumLineSpacing = Constants.InteritemSpacing
 }

 func configureItemSize() {
 let itemSide = (collectionViewContentSize()
 .width / Constants.NumberColumns) -
 (Constants.InteritemSpacing * 0.5)
 itemSize = CGSizeMake(itemSide, itemSide)
 }
}

In the Storyboard, we'll set the two-column layout as the flow layout; finally,
CollectionView looks the way it's supposed to:

Chapter 10

[303]

The product cell
The implementation of the product cell is just a way to encapsulate the components
in stackviews, add the correct spacing, and present them in an appropriate way.

Recalling the requirement, we can implement the cell using this layout:

The model label and price label are contained in a horizontal Stack View, which is
vertically stacked with the image and description.

The first Stack View has Top Alignment with Equal Spacing Distribution:

We also set a height of 21 to the Model label to define the height of Stack View
as well.

Then we add the image, which has an aspect ratio constraint of 1:1, and the
Description Label, with a height constraint that's equal to 21. We embed them
in a Vertical Stack View with Center Alignment and Fill Distribution.

To define the width of the first Stack View, we add two constraints, leading and
trailing, with a two point distance from the parent.

ASAP – an E-commerce App in Swift

[304]

Finally, we set the space of the external Stack View with regard to its parent, setting
it to two points everywhere, except at the top, where we set it to five.

To conclude, this is the cell:

The following is the components' tree where we'll take a look at the constraints:

Chapter 10

[305]

Although using Interface Builder is the method that's been indicated by Apple, as
you can see, explaining it isn't the easiest thing to do. So, if you have any doubts or
the code you've implemented doesn't work as expected, I suggest that you take a
look at a project that's already been made on GitHub.

Now that we have the layout in place, let's add the outlets:

class ProductCollectionViewCell: UICollectionViewCell {
 @IBOutlet var nameLabel: UILabel! {
 didSet {
 nameLabel.font = UIFont.latoFontOfSize(18)
 }
 }
 @IBOutlet var imageView: UIImageView!
 @IBOutlet var descriptionLabel: UILabel! {
 didSet {
 descriptionLabel.font = UIFont.latoFontOfSize(18)
 }
 }
 @IBOutlet var priceLabel: UILabel! {
 didSet {
 priceLabel.font = UIFont.latoBoldFontOfSize(18)
 }
 }
}

Don't forget to connect the outlets in Interface Builder!

Now, verify whether everything works; let's add a configuration in the view controller:

 override func collectionView(collectionView:
 UICollectionView, cellForItemAtIndexPath indexPath:
 NSIndexPath) -> UICollectionViewCell {
 let cell = collectionView.
 dequeueReusableCellWithReuseIdentifier("Cell",
 forIndexPath: indexPath) as! ProductCollectionViewCell

 cell.modelLabel.text = "Ex Model"
 cell.descriptionLabel.text = "Ex Description"
 cell.imageView.sd_setImageWithURL(NSURL(string:
 "http://lorempixel.com/400/400/food/")!)
 cell.priceLabel.text = "$123"

 cell.backgroundColor = UIColor.clearColor()

 return cell
 }

ASAP – an E-commerce App in Swift

[306]

An important thing to remember when handling the image in the table view or
CollectionViews is to not synchronously download images, otherwise scrolling
will be affected at the time of downloading images; instead, download the images in
an asynchronous way, either implementing the code using NSURLSession or using a
library, such as SDWebImage, as we are currently doing.

Ensure that you don't forget to import the framework:

import SDWebImage

Because the image has been downloaded from a non-secure host, we need to allow
it in plist:

Here is the app with the implemented cells:

Chapter 10

[307]

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_2_ProductList.

Parsing and storing products
It's now time to add realistic products to our app.

Since this is the first local implementation and we aim to download products for
a server, we'll wrap all the supposed calls to a server in a protocol, which will
be implemented with the help of a local storage in this chapter and a server in the
next one.

Let's start implementing the Product entity:

import Foundation

struct Product {
 let id: String
 let name: String
 let price: Double
 let description: String
 let imageURL: NSURL
}

Now, define a protocol to retrieve raw products in the form of a single JSON string
from the storage, and let's call it ProductGateway:

protocol ProductGateway {
 func getProducts(completion: (String) -> Void)
}

This is the seam that can be used to change the implementation, and thus the kind of
storage, without affecting the code using it.

As done earlier for the User class, we define a store object to hold the Product
entities, and, in this case, call the gateway and translate functions from JSON
to Product entities:

import Foundation
import SwiftyJSON

class ProductStore {
 private struct ProductKeys {
 static let products = "products"

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_2_ProductList
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_2_ProductList

ASAP – an E-commerce App in Swift

[308]

 static let ID = "id"
 static let name = "name"
 static let price = "price"
 static let description = "description"
 static let imageURL = "imageURL"
 }

 private let gateway: ProductGateway

 init(gateway: ProductGateway) {
 self.gateway = gateway
 }

 func retrieve(completion: ([Product] -> Void)) {

 gateway.getProducts() { productsJSON in
 if let dataFromString = productsJSON.
 dataUsingEncoding(NSUTF8StringEncoding,
 allowLossyConversion: false) {
 let json = JSON(data: dataFromString)

 let productsJSON = json[ProductKeys.products]

 let products = productsJSON.map {
 (index, product) in
 Product(
 id: product[ProductKeys.ID].stringValue,
 name: product[ProductKeys.name].
 stringValue,
 price: product[ProductKeys.price].
 doubleValue,
 description: product
 [ProductKeys.description].stringValue,
 imageURL: NSURL(string: product
 [ProductKeys.imageURL].stringValue)!
)
 }
 completion(products)
 }
 }
 }
}

Since parsing JSON is not too convenient in Swift, we exploit again in the
SwiftyJSON library.

Chapter 10

[309]

We now add the store into CollectionViewController:

class EcommerceViewController: UICollectionViewController {
 let productStore = ProductStore(gateway: LocalProductGateway())
 private var products: [Product] = []

As you can see, we inject a particular implementation of the gateway during the
creation of the store. LocalProductGateway isn't implemented yet but it will be
soon enough.

We also add a Product array, which is the model of CollectionView.

We then call a method to get the products in viewDidLoad:

 override func viewDidLoad() {
 super.viewDidLoad()
 title = "ASAP"

 productStore.retrieve { [weak self] products in
 self?.products = products
 self?.collectionView?.reloadData()
 }
 }

If you remember, we faked the CollectionViewDatasource methods to create cells,
but we now have the model and can implement the actual cells:

extension EcommerceViewController {
 override func collectionView(collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return products.count
 }

 override func collectionView(collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath) ->
 UICollectionViewCell {
 let cell = collectionView.
 dequeueReusableCellWithReuseIdentifier("Cell",
 forIndexPath: indexPath) as! ProductCollectionViewCell

 let product = products[indexPath.row]
 cell.nameLabel.text = product.name
 cell.descriptionLabel.text = product.description
 cell.imageView.sd_setImageWithURL(product.imageURL)
 cell.priceLabel.text = "$\(product.price)"

ASAP – an E-commerce App in Swift

[310]

 cell.backgroundColor = UIColor.clearColor()

 return cell
 }
}

The code does nothing more than bind the product entity fields with the appropriate
components in Cell.

The last missing class is LocalProductGateway, which simply reads a string from
a file:

import Foundation

class LocalProductGateway: ProductGateway {
 func getProducts(completion: (String) -> Void) {

 let path = NSBundle.mainBundle().pathForResource
 ("products", ofType: "json")

 do {
 completion(try String(contentsOfFile: path!,
 encoding: NSUTF8StringEncoding))
 } catch {
 completion("[:]")
 }
 }
}

The products.json example file contains example products that can be used to
simulate the server.

The example file can be downloaded from https://raw.
githubusercontent.com/gscalzo/Swift2ByExample/7_
ASAP_3_Products/ASAP/ASAP/products.json.

One last note: when you check open source or tutorial code, you'll notice that
authors uses the same technique, but call the protocol using the Protocol suffix,
or ProductGatewayProtocol in our case, and call the concrete class without the
ProductGateway or ProtocolGatewayConcrete suffix, personally, I don't like this
style because it leaks technical details (the client doesn't need to know that they're
using a protocol instead of a class, for example), so I prefer calling the protocol in the
most generic way and calling the class in a specific way to implement that protocol,
for example, LocalProductGateway or ServerProductGateway.

https://raw.githubusercontent.com/gscalzo/Swift2ByExample/7_ASAP_3_Products/ASAP/ASAP/products.json
https://raw.githubusercontent.com/gscalzo/Swift2ByExample/7_ASAP_3_Products/ASAP/ASAP/products.json
https://raw.githubusercontent.com/gscalzo/Swift2ByExample/7_ASAP_3_Products/ASAP/ASAP/products.json

Chapter 10

[311]

That said, our app correctly shows the products now:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_3_Products.

The ASAP cart
An e-commerce app is not complete as it only shows the products without giving the
possibility of buying them.

In this section, we'll implement the cart using the same technique presented in the
previous section to wrap the call to a server.

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_3_Products
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_3_Products

ASAP – an E-commerce App in Swift

[312]

Adding a product to the cart
Let's start by defining what a cart should do, as follows:

• Adding a product
• Removing a product
• Buying the cart

Given these commands, we define the gateway in this way:

import Foundation

protocol CartGateway {
 func addProductID(productID: String)
 func removeProductID(productID: String)
 func buy()
}

The local implementation is basically an empty implementation of the protocol:

class LocalCartGateway: CartGateway {
 func addProductID(productID: String){
 }

 func removeProductID(productID: String){
 }

 func buy() {
 }
}

The CartStore class is nothing more than a wrapper around a dictionary that sends
the command to the gateway:

class CartStore {
 private var products = [String:Product]()
 private let gateway: CartGateway

 init(gateway: CartGateway) {
 self.gateway = gateway
 }

 func containsProductID(productID: String) -> Bool {
 return products[productID] != nil
 }

Chapter 10

[313]

 func addProduct(product: Product) {
 products[product.id] = product
 gateway.addProductID(product.id)
 }

 func removeProduct(product: Product) {
 products.removeValueForKey(product.id)
 gateway.removeProductID(product.id)
 }

 func buy() {
 products = [:]
 gateway.buy()
 }

 func count() -> Int {
 return products.count
 }
}

The cart must be instantiated as a property in the EcommerceViewController class:

class EcommerceViewController: UICollectionViewController {
 let productStore = ProductStore(gateway: LocalProductGateway())
 private var products: [Product] = []
 let cartStore = CartStore(gateway: LocalCartGateway())

The product cell's background must change its background color depending on the
state of the product and if it is in the cart or not:

 override func collectionView(collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath) ->
 UICollectionViewCell {
 let cell = collectionView.
 dequeueReusableCellWithReuseIdentifier("Cell",
 forIndexPath: indexPath) as! ProductCollectionViewCell
 //...
 if cartStore.containsProductID(product.id) {
 cell.backgroundColor = UIColor.lightGrayColor()
 } else {
 cell.backgroundColor = UIColor.clearColor()
 }

 return cell
 }

ASAP – an E-commerce App in Swift

[314]

Finally, we add or remove the product by tapping on a product's cell:

 override func collectionView(collectionView:
 UICollectionView, didSelectItemAtIndexPath indexPath:
 NSIndexPath) {
 let product = products[indexPath.row]

 if cartStore.containsProductID(product.id) {
 cartStore.removeProduct(product)
 } else {
 cartStore.addProduct(product)
 }
 collectionView.reloadData()
 }

To show the customer the number of the products inside the cart, we use a badge in
the navigation bar, which will eventually show us the open cart.

To implement the button, we use a pod called BBBadgeBarButtonItem and
FontAwesomeKit to use the cart icon:

import BBBadgeBarButtonItem
import FontAwesomeKit

The code basically creates a button in the navigation bar and through a convenience
function, it changes the number inside the badges:

extension EcommerceViewController {
 func setupCart() {
 let button = UIButton(type: .Custom)
 let icon = FAKFontAwesome.shoppingCartIconWithSize(20)
 button.setAttributedTitle(icon.attributedString(),
 forState: .Normal)
 button.addTarget(self, action: "cartButtonTapped:",
 forControlEvents: .TouchUpInside)
 button.frame = CGRect(x: 0, y: 0, width: 44, height: 44)

 let cartBarButton = BBBadgeBarButtonItem
 (customUIButton: button)
 cartBarButton.badgeOriginX = 0
 cartBarButton.badgeOriginY = 0
 navigationItem.rightBarButtonItem = cartBarButton
 }

 func cartButtonTapped(sender: UIButton) {
 print("showCheckoutScene()")
 }

 func refreshCartCount() {

Chapter 10

[315]

 guard let cartBarButton = navigationItem.
 rightBarButtonItem as? BBBadgeBarButtonItem else {
 return
 }

 cartBarButton.badgeValue = "\(cartStore.count())"
 }
}

The setup method is called in viewDidLoad:

 override func viewDidLoad() {
 super.viewDidLoad()
 title = "ASAP"
 setupCart()

Every time a product is added or removed from the cart, the refresh count must
be called:

 override func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {
//...
 refreshCartCount()
 collectionView.reloadData()
 }

If you run the app, you'll notice that it works smoothly:

ASAP – an E-commerce App in Swift

[316]

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_4_AddToCart.

Removing items from cart and checkout
To take a look at the details of the cart, we implement a new view controller that
contains the products in the cart; let's call it CheckoutViewController:

In the Storyboard, don't forget to set CheckoutViewController as the custom class
and the initial view controller.

We can now add the usual factory function to the class:

class CheckoutViewController: UIViewController {
 var cartStore: CartStore!

 static func instantiate() -> UIViewController {
 return UIStoryboard(name: "Checkout",
 bundle: nil).instantiateInitialViewController()!
 }
}

We will also add a CartStore property, which will be used to present the products.

To connect EcommerceViewController instead of using a plain segue, we use a trick
that's been made possible by the protocol extension introduced by Swift 2.

Let's define an extension to UIViewController that adds a performing segue
using enum:

import Foundation
import UIKit

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_4_AddToCart
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_4_AddToCart

Chapter 10

[317]

protocol SegueHandlerType {
 typealias SegueIdentifier: RawRepresentable
}

extension SegueHandlerType where Self: UIViewController,
SegueIdentifier.RawValue == String {

 func performSegueWithIdentifier(segueIdentifier:
 SegueIdentifier, sender: AnyObject?){
 performSegueWithIdentifier(segueIdentifier.rawValue,
 sender: sender)
 }

 func segueIdentifierForSegue(segue: UIStoryboardSegue) ->
 SegueIdentifier {
 guard let identifier = segue.identifier,
 segueIdentifier = SegueIdentifier
 (rawValue: identifier)
 else {fatalError("Invalid segue identifier
 \(segue.identifier)")}
 return segueIdentifier
 }
}

In the e-commerce Storyboard, we add a segue from the view controller to the newly
created Storyboard using ShowCheckoutScene as the identifier:

Then, in EcommerceViewController, we add an extension to handle the segue:

extension EcommerceViewController: SegueHandlerType {
 enum SegueIdentifier: String {
 case ShowCheckoutScene = "ShowCheckoutScene"
 }

 func showCheckoutScene() {
 performSegueWithIdentifier(.ShowCheckoutScene,
 sender: self)

ASAP – an E-commerce App in Swift

[318]

 }
}

extension EcommerceViewController {
 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {

 switch segueIdentifierForSegue(segue) {
 case .ShowCheckoutScene:
 guard let checkoutViewController = segue.
 destinationViewController as? CheckoutViewController
 else {
 return
 }
 checkoutViewController.cartStore = cartStore
 }
 }
}

Although this looks like a lot of code for a small value, this pattern will be really
useful when several segues start from the view controller. This is because the
compiler can check whether everything is correct, which cannot be possible using
strings as identifiers.

Finally, implement the Bar button action:

 func cartButtonTapped(sender: UIButton) {
 showCheckoutScene()
 }

Let's move to Checkout Storyboard to lay out the components.

To do this, what we need is a button at the bottom and a table view to show the cart.

As you can imagine, we use a vertical Stack View where the height of the label is
equal to 60; we add the leading and training constraints of the label to be equal to
the container, the Table View width to be equal to the label, and the borders of
UIStackView to be equal to those of the parent:

Chapter 10

[319]

Since we already have CartStore in the view controller, let's lay out Table View
Cells to present the contained products.

Let's add a UITableViewCell prototype, setting it as the Basic type and Cell as
the identifier:

Next, select the Table View component, and set Row Height as 80.

ASAP – an E-commerce App in Swift

[320]

Finally, set View Controller as the datasource whose function in the code will be
as follows:

extension CheckoutViewController: UITableViewDataSource {
 func tableView(tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return cartStore.count()
 }

 func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier
 ("Cell", forIndexPath: indexPath)
 let product = cartStore.allProducts()[indexPath.row]
 cell.selectionStyle = .None
 cell.textLabel?.font = UIFont.latoLightFontOfSize(15)
 cell.textLabel?.text = product.name
 cell.imageView?.sd_setImageWithURL(product.imageURL)

 return cell
 }
}

If you run the app after selecting a few products and going to the checkout, you'll see
that the products are there, but there are a couple of problems: first, there is a gap on
above the table, and second, empty rows are rendered:

Chapter 10

[321]

To solve the first issue, select View Controller and uncheck Extend Edges Under
Top Bars:

To solve the second issue, we need to set Table View as Outlet in
CheckoutViewController and write the following code:

class CheckoutViewController: UIViewController {
 var cartStore: CartStore!

 @IBOutlet var tableView: UITableView!{
 didSet {
 tableView.separatorInset = UIEdgeInsetsZero
 }
 }

Let's also set the button as Outlet, so that we can set the font as well:

 @IBOutlet var buyButton: UIButton! {
 didSet {
 buyButton.titleLabel?.font = UIFont.latoFontOfSize(24)
 }
 }

As per our requirement, the total amount is the title of View Controller.

ASAP – an E-commerce App in Swift

[322]

Now, we'll add the function in CartStore in order to know the functional power
of Swift:

class CartStore {
 var total: Double {
 get {
 return products.values.reduce(0) { partial, product in
 return partial + product.price
 }
 }
 }

Instead of a temporary variable as an accumulator, we use the reduce() function of
a list, which iterates it and accumulates the result of the block; the accumulator will
then be passed as a parameter in the next call.

In View Controller, we write a refreshTotal() function, which sets the total of the
articles as the title:

private extension CheckoutViewController {
 func refreshTotal(){
 title = "Total: $\(cartStore.total)"
 }
}

This function is called in viewDidLoad():

 override func viewDidLoad() {
 super.viewDidLoad()

 refreshTotal()
 }

One of the reasons to have the Open Cart view is the possibility of changing the
products that are contained; in our simplified version, we want to allow the user
to delete a product, and we want to use the slide-to-left gesture.

For the TodoList app, we used an external library because we wanted only the
slide-to-left gesture (this library adds a slide-to-right gesture as well); we can use
editActions of TableViewDelegate also:

extension CheckoutViewController: UITableViewDelegate {
 func tableView(tableView: UITableView,
 editActionsForRowAtIndexPath indexPath:
 NSIndexPath) -> [UITableViewRowAction]? {
 let delete = UITableViewRowAction(style: .Default,
 title: "delete") {

Chapter 10

[323]

 [weak self] action, index in
 guard let product = self?.cartStore.
 allProducts()[index.row] else {
 return
 }
 self?.cartStore?.removeProduct(product)
 self?.refreshTotal()
 tableView.reloadData()
 }
 return [delete]
 }
}

This call basically creates an action that, when triggered, will remove the product
and refresh the total.

We also need to set View Controller as UITableViewDelegate in Table View.

Because we change the store, we need to refresh the product collection in
EcommerceViewController:

 override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 refreshCartCount()
 collectionView?.reloadData()
 }

The last missing feature is the buy action, which just calls the store and presents an
informative popup:

 @IBAction func buyTapped() {
 cartStore.buy()

 let alert = UIAlertController(title: "Done",
 message: "Thank you for buying at ASAP!", preferredStyle:
 UIAlertControllerStyle.Alert)
 alert.addAction(UIAlertAction(title: "OK", style:
 UIAlertActionStyle.Default, handler: { _ in
 self.navigationController?.
 popToRootViewControllerAnimated(false)
 }))

 presentViewController(alert, animated: true,
 completion: nil)
 }

This code completes the app with the help of a local storage.

ASAP – an E-commerce App in Swift

[324]

The following screenshot shows the Storyboards used in the app:

As you can see, using Storyboard references for the Storyboard is really clean, and
it is really easy to see how the view controllers are connected together.

Chapter 10

[325]

Et voilà, the ASAP app is now complete!

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_5_Checkout.

Summary
Another long chapter I know, but full of information on implementing the skeleton
of a real client server app: given these patterns, adding more functionalities, it is just
a matter of adding new View Controllers, new stores, and new gateways, without
the need to bloat the existing View Controllers.

In the next chapter we'll see how to use Swift to implement a Linux Server to give a
real backend to ASAP.

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_5_Checkout
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_5_Checkout

[327]

ASAPServer, a Server in Swift
During the 2015 WWDC keynote, exactly one year after Swift was announced, Apple
made another astonishing announcement: Swift will be open source!

Apple will release a first Linux version, which is completely decoupled from the
Cocoa Foundation, and move the development and evolution of the language to the
hands of the community.

As mentioned, the first Linux release will be done by Apple, but in the future, we
can see Swift running everywhere: Windows, Android, and so on—everywhere the
community of developers wants to create a version.

In early December 2015, Apple finally kept its promise and released the source of
Swift on GitHub: https://github.com/apple/swift.

Apple also released a long-awaited packed manager, a sort of official CocoaPods,
called Swift Packet Manage, which will help release modular software without
using Xcode.

The Linux version is still in its infancy and is not ready for production; nonetheless,
it's good enough to start experimenting with it preparing for Swift 3.0, which should
be the first production-ready release for the server.

The interface of the ASAP Server
In the previous chapter, we implemented the app using a local storage, and now we
want to implement a server in Swift to handle the products and the cart.

The actions that we want to handle are as follows:

• Getting the list of the products
• Adding a product to the cart

https://github.com/apple/swift

ASAPServer, a Server in Swift

[328]

• Removing a product from the cart
• Creating and ordering from the cart

Using the REST architectural paradigm, we design our server to handle the
following actions:

• HTTP GET of the /products URL, which returns the JSON of the product
in the exact format we used in the previous chapter

• HTTP POST of the /customer/<useremail>/cart/<productID> URL,
which creates a new relationship between the cart of the user and the product

• HTTP DELETE of the /customer/<useremail>/cart/<productID> URL,
which removes the relationship between the cart of the user and the product

• HTTP POST of the /customer/<useremail>/orders URL, which creates
a new order based on the customer's cart and resets the cart itself

One skeleton server for two OSes
Before implementing the server, we need to prepare a build environment for both OS
X and Linux; also, let's prepare a HelloWorld server, which handles a GET and POST
request in a predefined URL.

An OS X skeleton server
The Swift open source version for OS X can be downloaded from https://swift.
org/download/#latest-development-snapshots; however, because a new version
is released every week, it could be too complicated to be aligned with the version.

Preparing the OS X environment
Fortunately, taking inspiration from projects in different languages, such as PyEnv
for Python, Kyle Fuller released a useful version manager for Swift called Swift
Version Manager, which can install and manage different versions of Swift on the
same machine, optionally tying a particular version of the language for each project.

The GitHub page of the project, https://github.com/kylef/swiftenv, shows
different ways to install it, although I suggest that you do it via Homebrew using
this command:

$ brew install kylef/formulae/swiftenv

https://swift.org/download/#latest-development-snapshots
https://swift.org/download/#latest-development-snapshots
https://github.com/kylef/swiftenv

Chapter 11

[329]

If you don't have Homebrew installed (and you should), you can install it using
the instruction on the brew home page http://brew.sh, which is basically just
this command:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

The first thing to do is install the Swift version we'll use in our server:

$ swiftenv install swift-2.2-SNAPSHOT-2016-01-06-a

This command downloads the version of Swift referenced as a parameter—swift-
2.2-SNAPSHOT-2016-01-06-a in this case, a version ready to be linked to a project
or to be made global.

After this, we create a folder for our ASAPServer project, where we set the Swift
version using this command:

$ swiftenv local swift-2.2-SNAPSHOT-2016-01-06-a

Running the swiftenv local command, we should verify that the version is exactly
what we need.

The HelloWorld skeleton server
Now we are ready to implement our ASAP server.

The first thing we do is prepare makefile to help us save a few keystrokes during
the compilation and run of the server:

build:

 swift build

run: build

 .build/debug/ASAP

If you are not familiar with the makefile syntax, this file basically defines two
commands, run and build, which can be called using the make run or make build
command.

Moreover, the run command depends on the build command, so before running
the server, the compiler builds the app if required.

As mentioned earlier, Swift comes with a Swift Package Manager, which needs
the list of the external sub packages to build the app.

http://brew.sh

ASAPServer, a Server in Swift

[330]

For our implementation, we are going to use a Sinatra-like server application written
by Shun Takebayashi called Swiftra, and for the JSON handling, we will use a
package part of the Zewo suite called JSON.

Let's add the two packages in the Package.swift file:

import PackageDescription

let package = Package(
 name: "ASAP",
 dependencies: [
 .Package(url: "https://github.com/zewo/JSON.git",
 Version(0, 1, 0)),
 .Package(url: "https://github.com/gscalzo/swiftra.git",
 Version(0, 0, 8))
]
)

The format is auto explicative; there are just two things to note: the first is that every
package has a version that is the tag of the version we want to use, and the second is
that the project has a name, ASAP in our case: a name that must be the same as the
name of the directory under Sources, where we place the sources of our code.

Now let's create a Sources directory and then create a directory called ASAP, under
which we place a main.swift file.

If you are familiar with Sinatra, you may notice that the format of swiftra is
pretty similar:

import swiftra
import JSON
import Foundation

#if os(Linux)
 import Glibc
#endif

get("/hello/:name/:surname") { req in
 let response = "Hello \(req.parameters["name"])
 \(req.parameters["surname"])"
 print(response)
 return response
}

Chapter 11

[331]

post("/hello/:name/:surname") { req in
 guard let name = req.parameters["name"],
 let surname = req.parameters["surname"] else {
 return Response(.BadRequest)
 }

 let responseJSON: JSON = [
 "greeting": "Hello",
 "name": .StringValue(name),
 "surname": .StringValue(surname),
]
 print("Created object: \(responseJSON.debugDescription)")
 return responseJSON.description
}

print("Starting...")
serve(8888)

After the requiring import files, we define two handlers: one for GET and the other
for POST requests.

The parts of the URL preceded by a semicolon are the parameters that will be
extracted by swiftra and put in a dictionary in the Request object, where they are
accessible to be handled.

If we run the commands as shown in the following screenshot using make run in
a terminal window, firstly, the packages are downloaded, then, the sources are
compiled, and then the server is run.

Open a new terminal that we can connect to the server using curl commands:

ASAPServer, a Server in Swift

[332]

And this is the output in the terminal window where the server runs:

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_6_ServerSkeleton.

Preparing the Linux environment
The best way to verify that our code works in Linux would be to have a Linux
machine; however, we can reach the same goal in a more convenient way using
a Linux virtual machine running in our OS X environment.

We'll use VirtualBox as a virtualization system and Vagrant as the command-line
interface for VirtualBox.

To install them, we can either go to their websites to download the packages or use
Homebrew, like we did for SwiftEnv.

Firstly, we need to install cask, which is an extension of Homebrew:

$ brew install cask

Cask adds commands and packages to Homebrew, which permits us to install
third-party binary programs.

Let's start with VirtualBox:

$ brew cask install virtualbox

Then, install Vagrant:

$ brew cask install vagrant

Now, we can define the configuration for Vagrant, which permits us to create
preconfigured Linux images.

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_6_ServerSkeleton
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_6_ServerSkeleton

Chapter 11

[333]

Let's create a directory and put the following Vagrant files inside it:

Vagrant.configure(2) do |config|

 config.vm.box = "https://cloud-images.ubuntu.com/vagrant/trusty/
current/trusty-server-cloudimg-amd64-vagrant-disk1.box"

 config.vm.network "forwarded_port", guest: 8888, host: 8888

 config.vm.provision "shell", inline: <<-SHELL

 export SWIFT_VERSION=2.2-SNAPSHOT-2016-01-06-a

 export SWIFT_PLATFORM=ubuntu14.04

 sudo apt-get --assume-yes install clang

 sudo apt-get install -y build-essential wget clang libedit-dev
python2.7 python2.7-dev libicu52 rsync libxml2 git

 curl -O https://swift.org/builds/ubuntu1404/swift-${SWIFT_VERSION}/
swift-${SWIFT_VERSION}-${SWIFT_PLATFORM}.tar.gz

 tar zxf swift-${SWIFT_VERSION}-${SWIFT_PLATFORM}.tar.gz

 sudo chown -R vagrant swift-${SWIFT_VERSION}-${SWIFT_PLATFORM}

 echo "export PATH=/home/vagrant/swift-${SWIFT_VERSION}-${SWIFT_
PLATFORM}/usr/bin:\"${PATH}\"" >> .profile

 echo "Swift has successfully installed on Linux"

 SHELL

end

This basically creates an Ubuntu image starting from a premade one and adds the
required dependencies and the Swift binary on top.

Pay attention: if you want an updated version of the Swift binary, you need to
change the SWIFT_VERSION variable; also, ensure that the version is the same as
the one you installed in OS X, otherwise incompatibility issues can appear.

The last thing to note is the instruction:

config.vm.network "forwarded_port", guest: 8888, host: 8888

ASAPServer, a Server in Swift

[334]

This command bridges the internal 8888 port to the external interface so that external
apps can reach a server listening on this port.

Again, if you want to change the port of the server, don't forget to change this
configuration.

You can find the Vagrant file at https://github.com/gscalzo/
Swift2ByExample/blob/7_ASAP_7_LinuxSkeleton/
LinuxSwiftVM/Vagrantfile.

Now, take a look at this command:

vagrant up

With the preceding command, Vagrant creates the image and runs it as a daemon.

To log in to the Linux box, you must run the vagrant ssh command, and you are in.

Inside the terminal, we can copy or clone from the GitHub repository along with
the code we just wrote and verify that connecting from another terminal in OS X
with curl, the Linux server responds correctly.

If you are not familiar with the commands to clone a remote GitHub repository,
the following commands should help you:

git clone https://github.com/gscalzo/Swift2ByExample.git

git fetch --all

git checkout 7_ASAP_6_ServerSkeleton

If you try to run the OS X server while Linux virtual machine is running, you'll notice
that the HelloWorld server dies immediately; this is because the port is occupied
by the Vagrant virtual machine. To free it, you need to suspend the virtual machine
with this command:

$ vagrant suspend

To run it again, execute this command:

$ vagrant up

$ vagrant ssh

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_7_LinuxSkeleton.

https://github.com/gscalzo/Swift2ByExample/blob/7_ASAP_7_LinuxSkeleton/LinuxSwiftVM/Vagrantfile
https://github.com/gscalzo/Swift2ByExample/blob/7_ASAP_7_LinuxSkeleton/LinuxSwiftVM/Vagrantfile
https://github.com/gscalzo/Swift2ByExample/blob/7_ASAP_7_LinuxSkeleton/LinuxSwiftVM/Vagrantfile
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_7_LinuxSkeleton
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_7_LinuxSkeleton

Chapter 11

[335]

The ASAPServer
With the entire environment set, we can finally implement the ASAP Server.

The Products
In a real server, the products are probably saved in a database, but in our simple
implementation, we will save the products in a file—the same file we used in
the app.

So, let's start the implementation by saving the products.json file at the same level
of makefile.

A DBRepository class will abstract the connection with the storage, making it easy
to switch to a database, as we did in the app:

import Foundation

let dbRepository = DBRepository()

class DBRepository {
 func allProducts() -> String {
 print("Get /products")

 do {
 let productsAsNSString = try NSString(contentsOfFile:
"products.json",
 encoding: NSUTF8StringEncoding)
#if os(Linux)
 return productsAsNSString.bridge()
#else
 return productsAsNSString as String
#endif
 }
 catch {
 print("Error")
 }
 return "{ products: [] }"
 }
}

The only thing to note is that in Swift for Linux, at the time of writing this, the bridge
between NSString and String is not automatic, so it must be made explicit by calling
the bridge() function.

ASAPServer, a Server in Swift

[336]

The main file is as simple as defining a call to the repository allProducts() function:

import swiftra
import JSON
import Foundation

#if os(Linux)
 import Glibc
#endif

get("/products") { req in
 return dbRepository.allProducts()
}

print("Starting...")
serve(8888)

The cart
The two functions to manipulate the cart are just two stubs in the repository:

class DBRepository {
 func allProducts() -> String {
 //...
 }

 func addToCartUser(userEmail: String, productID: String) {
 // add to cart of the user
 print("Add product \(productID) to cart of user \(userEmail)")
 }

 func removeFromCartUser(userEmail: String, productID: String) {
 // remove from cart of the user
 print("Remove product \(productID) to cart of user \
(userEmail)")
 }
}

In the main function, we need to extract the parameters from the request and then
call the repository functions.

Chapter 11

[337]

To avoid a typo in the name of the parameters, we use the usual pattern to create
them as static constants in a struct:

struct ParamKeys {
 static let ProductID = "productID"
 static let UserEmail = "useremail"
}

In the routers, we set a guard statement to ensure that the parameters are valid:

post("/customer/:useremail/cart/:productID") { req in
 guard let userEmail = req.parameters[ParamKeys.UserEmail],
 let productID = req.parameters[ParamKeys.ProductID] else {
 return Response(.BadRequest)
 }
 dbRepository.addToCartUser(userEmail, productID: productID)
 return "OK"
}

delete("/customer/:useremail/cart/:productID") { req in
 guard let userEmail = req.parameters[ParamKeys.UserEmail],
 let productID = req.parameters[ParamKeys.ProductID] else {
 return Response(.BadRequest)
 }
 dbRepository.removeFromCartUser(userEmail, productID:
 productID)
 return "OK"
}

Note that if there is any error in the parameters, a Bad Request response is sent
to the client.

The order
Finally, note that createOrder is a stub as well:

class DBRepository {
 func orderCreatedFromCartUser(userEmail: String) -> String {
 // create a new order from the cart
 print("Create order from cart of user \(userEmail)")
 let orderID = "1"
 return orderID
 }
}

ASAPServer, a Server in Swift

[338]

In a real implementation, orderID would be generated as primaryKey in the storage,
but to show the decoupling between the API and the storage, a static hardcoded
value is enough.

The main implementation notes more than a call to the repository:

post("/customer/:useremail/orders") { req in
 guard let userEmail = req.parameters[ParamKeys.UserEmail] else {
 return Response(.BadRequest)
 }
 return dbRepository.orderCreatedFromCartUser(userEmail)
}

The server can be tested using the curl command:

curl http://localhost:8888/products

curl -X POST http://localhost:8888/customer/james.bond@mi6.org/cart/123

curl -X DELETE http://localhost:8888/customer/james.bond@mi6.org /
cart/123

curl -X POST http://localhost:8888/customer/james.bond@mi6.org /orders

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_8_ASAPServer.

Connecting the ASAP app
After implementing the ASAP server, let's add the capability of communicating with
a server to our ASAP app.

The products
The first gateway to implement is the one that handles the product, implementing
the ProductGateway protocol:

import Foundation

class ServerProductGateway: ProductGateway {
 func getProducts(completion: (String) -> Void) {

 let session = NSURLSession.sharedSession()

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_8_ASAPServer
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_8_ASAPServer

Chapter 11

[339]

 let task = session.dataTaskWithURL
 (EndPoint.Products.url()) {
 (data, response, error) -> Void in

 if error != nil {
 print(error!.localizedDescription)
 return
 }

 guard let data = data,
 let products = NSString(data: data,
 encoding: NSUTF8StringEncoding) as? String else {
 return
 }

 dispatch_async(dispatch_get_main_queue()) {
 completion(products)
 }
 }

 task.resume()
 }
}

To communicate with the server, we use NSURLSession, which is a powerful native
way to make an HTTP request.

Note that the call is made in a thread that can be potentially different from the main
thread; therefore, we need to call the completion() block in the main thread.

Also, you should notice that the URL is from an enum: this is a powerful way to build
URLs in a static way, which is a pattern that was presented the first time in Chris
Eidhof's blog post, http://chris.eidhof.nl/posts/typesafe-url-routes-in-
swift.html, and implemented in the Moya library by Ash Furrow.

Basically, each URL is a case of an enum, and url() functions compose the actual
NSURL from the baseURL and the parameters of the enum:

import Foundation

struct BaseURL {
 private static var baseURL: NSURL {
 return NSURL(string: "http://localhost:8888")!
 }
 static func appending(component: String) -> NSURL {

http://chris.eidhof.nl/posts/typesafe-url-routes-in-swift.html
http://chris.eidhof.nl/posts/typesafe-url-routes-in-swift.html

ASAPServer, a Server in Swift

[340]

 return baseURL.URLByAppendingPathComponent(component)
 }
}

enum EndPoint {
 case Products

 func url() -> NSURL {
 switch self {
 case .Products:
 return BaseURL.appending("/products")
 }
 }
}

Although everything discussed till now might look overengineered for only one
URL, it will become convenient when will add the others URLs.

Finally, we change the object to inject into the store in EcommerceViewController:

class EcommerceViewController: UICollectionViewController {
 let productStore = ProductStore(gateway: ServerProductGateway())

Running the app now will connect to the server instead of reading the products from
the file.

The Cart
ServerGateway has a similar implementation, where we refactored the
NSURLSession call to a common function with the HTTP method as a parameter:

import Foundation

class ServerCartGateway: CartGateway {
 private let userEmail: String?

 init(userEmail: String?) {
 self.userEmail = userEmail
 }

 func addProductID(productID: String){
 guard let userEmail = userEmail else {
 return
 }

Chapter 11

[341]

 requestMethod("POST", URL: EndPoint.Cart
 (userEmail: userEmail,
 productID: productID).url())
 }

 func removeProductID(productID: String){
 guard let userEmail = userEmail else {
 return
 }

 requestMethod("DELETE", URL: EndPoint.Cart
 (userEmail: userEmail,
 productID: productID).url())
 }

 func buy() {
 }

 private func requestMethod(method: String, URL: NSURL){
 let session = NSURLSession.sharedSession()

 let request = NSMutableURLRequest(URL:URL)
 request.HTTPMethod = method

 let task = session.dataTaskWithRequest(request) {
 (data, response, error) -> Void in

 if error != nil {
 print(error!.localizedDescription)
 return
 }

 }

 task.resume()
 }
}

Also, we need to add a new entry to the EndPoint enum:

enum EndPoint {
 case Products
 case Cart(userEmail: String, productID: String)

ASAPServer, a Server in Swift

[342]

 func url() -> NSURL {
 switch self {
 case .Products:
 return BaseURL.appending("/products")
 case .Cart(userEmail: let userEmail,
 productID: let productID):
 return BaseURL.appending
 ("/customer/\(userEmail)/cart/\(productID)")
 }
 }
}

Again, we change the injection in EcommerceViewController:

class EcommerceViewController: UICollectionViewController {
let productStore = ProductStore(gateway: ServerProductGateway())
let cartStore = CartStore(gateway:
 ServerCartGateway(userEmail:
 AppDelegate.appdelegate().userStore.userEmail()))

Running the app, we can see that it calls the server.

Chapter 11

[343]

The order
The last command is order creation, which is just a new function in CartGateway:

 func buy() {
 guard let userEmail = userEmail else {
 return
 }

 requestMethod("POST", URL: EndPoint.Orders
 (userEmail: userEmail).url())
}

A new endpoint is required:

enum EndPoint {
 case Products
 case Cart(userEmail: String, productID: String)
 case Orders(userEmail: String)

 func url() -> NSURL {
 switch self {
 case .Products:
 return BaseURL.appending("/products")
 case .Cart(userEmail: let userEmail,
 productID: let productID):
 return BaseURL.appending
 ("/customer/\(userEmail)/cart/\(productID)")
 case .Orders(userEmail: let userEmail):
 return BaseURL.appending
 ("/customer/\(userEmail)/orders")
 }
 }
}

With this, we conclude the building of our client-server e-commerce app.

You can find the code for this version at https://github.com/
gscalzo/Swift2ByExample/tree/7_ASAP_9_ASAPWithServer.

https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_9_ASAPWithServer
https://github.com/gscalzo/Swift2ByExample/tree/7_ASAP_9_ASAPWithServer

ASAPServer, a Server in Swift

[344]

Summary
The Swift in the server is still in its infancy, and most features and performances
are missing.

Nonetheless, we have understood that the possibilities are endless: can you imagine,
for example, having the same code to serialize and deserialize the model between
the client and the server? Or having web socket communication between apps
with a server implemented in Swift? That would be really cool.

There are already a couple of projects that, with a different strategy, have the same
goal: to be the best and most useful server framework for Swift. One is called Zewo,
https://github.com/Zewo, which is basically a collection of small and effective
modules to cover all the server needs from the HTTP to routers, web sockets, and
so on, and the other is called Perfect, https://www.perfect.org, which has a more
conventional and monolithic approach.

Both of them are still under heavy development, and the API compatibility is not a
guarantee between the versions; nonetheless, they are already extremely powerful
and flexible, and you can only imagine how they would be in the near future,
when languages and tools will be mature enough.

With this chapter, we finish our practical introduction to Swift, which began with an
introduction of the language and the most import features of Swift.

We then implemented different kind of apps, simple games, utility apps, 2D and
3D games, and finally, even a Linux server in Swift.

However, we just scratched the surface of our possibilities and all of these apps can
be improved, extended, and remixed. And, of course, tons of different apps can be
built using the programming bricks we learned together.

The code for the apps is available on GitHub at this link: https://github.com/
gscalzo/Swift2ByExample.

I'll continue to update the code every time a new version of Swift breaks the
compatibility, and you can reach me for any questions or feedback, either by
opening a GitHub issue or sending me an e-mail—it shouldn't be difficult
to find my e-mail address.

Now it's your turn to build the magic.

https://github.com/Zewo
https://www.perfect.org
https://github.com/gscalzo/Swift2ByExample
https://github.com/gscalzo/Swift2ByExample

[345]

Index
A
Alamofire

about 137
reference link 61

app record
creating, on iTunes Connect 224-226

App Transport Security (ATS) 177
ASAP app, connecting

about 338
cart 340-342
order 343
products 338-340

ASAP cart
about 311
checkout 316
items, removing from 316-324
product, adding to 312-315

ASAP e-commerce store
about 298
e-commerce product list 299-301
product cell 303-306
products, parsing 307-311
products, storing 307-311

ASAPServer
about 335
cart 336, 337
interface 327, 328
order 337
products 335

Auto Layout 44
Automatic Reference Counter (ARC) 2

B
background image, weather app

downloading 159
searching, in Flickr 159-162

background, weather app
blurring 156, 157

Box2D
URL 181

C
Cartography

about 91, 137
reference link 135

closure 14
CocoaPods

about 98
URL 98

Cocoa Runtime 63
COLLADA

URL 252
concentration memory game

about 59
completing 86
dataSource, connecting 71-73
delegate, connecting 71-73
finishing 82
game logic, implementing 82, 83
game screen 66
menu screen 61
pair, obtaining 84, 85

[346]

skeleton, building 60
wrong turn, playing 85

Cube Runner app
about 237, 238
collision detection, implementing 269-271
cubes, adding 257-262
empty scene, building 239, 240
fighter, adding 252-254
fighter, moving 256, 257
Game Center integration 279-282
game over, implementing 272-274
game skeleton 243, 244
green torus, adding to scene 241
implementing 243
light, adding 242
light, moving 242
menu, implementing 245-249
music, adding 266, 267
obstacles, adding 263
real game, creating 269
scene, setting up 249-251
score, adding 264, 265
touches, adding 264, 275-277
world, texturing 254, 255

D
deck of cards implementation

about 73
assets, adding 78
CardCell structure 79-81
card entity 74, 75
card images, adding 78
deck, crafting 75
deck, finishing 77, 78
deck, shuffling 76
expected behavior, defining 73
touches, handling 81

E
e-commerce app

about 283
login and registration 284
open cart 286
products grid 285
register screen 286
skeleton app 286-298

enhancement, Flappy Bird app
adding 217
screen, shaking 221, 222
sound effects, adding 217-219
soundtrack, playing 219-221

F
fake user accounts

creating, to test Game Center 229, 230
fast enumeration 13
features, Game Center

achievements 223
leaderboards 223
multiplayer 223

Flappy Bird app
about 181
Bird node, adding 196-199
birds, colliding with pipes 212
code, explaining 190
collision-detection engine,

setting up 206-210
completing 212
components, interacting 206
enhancement, adding 217
flight, implementing of bird 199, 200
flying bird 196
obstacles, adding 201
pipes node, implementing 201-205
player, authenticating 230-234
restarting popup, adding 214-216
score, adding 213, 214
scrolling, implementing 193-195
skeleton, building 182
stage for bird 189
three-dimensional world, simulating with

parallax 191-193
Flat UI Colors

URL 64
FlickrKit 137
FXBlurView 137

G
Game Center

about 223
authentication 281
enabling 226-228

[347]

fake user accounts, creating to
test 229, 230

features 223
leaderboard, displaying 281
score, reporting 281
setting up 223, 224

game screen, concentration memory game
about 66
collection view, adding 68, 69
components, sizing 70
structure 66, 67

Grand Central Dispatch (GCD) 222
Guess the Number app

about 39, 40
code, adding 52-56
dots, connecting 47-52
graphic components, adding 43-46
skeleton app, building 41-43

H
HelloWorld skeleton server 329-332
High Order Function 34
HTTP DELETE 328
HTTP GET 328
HTTP POST 328

I
interpolation 13
items

removing, from ASAP cart 316-324
iTunes Connect

app record, creating on 224-226
reference link 225

J
JSON 330

L
Lato

URL 101
LatoFont 137
Linux environment

preparing 332-334

M
MACROs 29
menu screen, concentration memory game

about 61
basic menu screen, implementing 61-64
creating 64-66

MGSwipeTableCell
URL 109

O
Objective-C 2
Object library 45
Object-Oriented Programming (OOP) 34
OpenWeatherMap

URL 165
OS X environment

preparing 328, 329
OS X skeleton server

about 328
download link 328

P
Pamgaea

reference link 219
product

adding, to ASAP cart 312-315
properties 17

S
SceneKit 238
screen, TodoList app

building 103
datastore and View Controller,

connecting 105, 106
datastore, implementing 104
entities, adding 103
finishing touches 108
swappable cells 109-112
tableView, configuring 106, 107

skeleton app, TodoList app
building 90
empty app, implementing 90-97
third-party libraries, adding with

CocoaPods 98, 99

[348]

Todos View Controller,
implementing 99-102

skeleton, Flappy Bird app
building 182
menu, implementing 184-188
project, creating 182-184

skeleton, weather app
assets, adding 137-139
building 135
project, creating 136, 137

SpriteKit 189
Swift

about 1
common behavior objects, defining 20, 21
constants 5-7
custom compound types, creating 16-19
defining 2
enumerations, on steroids 25, 26
errors, catching 29-33
existence, checking of optional value 24
extended pattern matching 27-29
flow, controlling 10-13
functional programming patterns 33-36
loose coupling, with protocols 22
objects composing, protocol extensions

used 22, 23
URL 33
using 1
values transforming, functions used 14, 15
variables 5-7
variables, collecting in containers 8, 10
Xcode, defining 3-5

Swift Package Manager 329
Swift Packet Manage 327
Swiftra 330
Swift Version Manager 328
SwiftyJSON 137

T
TodoList app

about 87-89
List View Controller 128-131
reference link, for source code 131
screen, building 103
skeleton app, building 90

TodoDatastore, finishing 127
Todo task, adding 112
Todo view, adding 113-119
Todo View Controller, adding 120-126

type inference 7

U
UICollectionView

reference link 59
UI, weather app

completing 145
CurrentWeatherView,

implementing 145-148
implementing 140
in blocks 140-144
next day's forecast, viewing in

WeatherDaysForecastView 152-156
WeatherHourlyForecastView,

building 148-152

V
Vagrant file

reference link 334
Value Type 17

W
weather app

about 133, 134
actual forecast, retrieving 165
background, blurring 156, 157
background image, downloading 159
background image, searching

in Flickr 159-162
connecting, to server 173-177
Core Location framework service,

using 162-164
CurrentWeatherView, rendering 168-171
forecast, obtaining from

OpenWeatherMap 165-168
geolocalising 162
skeleton, building 135
UI, completing 145
UI, implementing 140
WeatherDaysForecastView, rendering 172

[349]

WeatherHourlyForecastView,
rendering 171, 172

WeatherIconsKit 137
WWDC 2015

URL 24

X
Xcode 7

URL 3

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to the World of Swift
	The first look at Swift
	Let's go to the playground
	The building blocks – variables and constants
	Collecting variables in containers
	Controlling the flow
	Transforming the values using functions
	Structs – custom compound types
	Classes – common behavior objects
	Loose coupling with protocols
	Composing objects using protocol extensions
	Checking the existence of an optional value
	Enumerations on steroids
	Extended pattern matching
	Catching errors
	Swift functional programming patterns

	Summary

	Chapter 2: Building a Guess the Number App
	The app is…
	Building a skeleton app
	Adding the graphics components
	Connecting the dots
	Adding the code

	Summary

	Chapter 3: A Memory Game in Swift
	The app is…
	Building the skeleton of the app
	The menu screen
	Implementing the basic menu screen
	Creating a nice menu screen

	The game screen
	The structure
	Adding a collection view
	Sizing the components

	Connecting the dataSource and the delegate
	Implementing a deck of cards
	What we are expecting
	The card entity
	Crafting the deck
	Shuffling the deck
	Finishing the deck
	Put the cards on the table
	Adding the assets
	The CardCell structure
	Handling touches

	Finishing the game
	Implementing the game logic
	We got a pair
	We made the wrong move
	Et voilà! The game is completed

	Summary

	Chapter 4: A TodoList App in Swift
	The app is…
	Building a skeleton app
	Implementing an empty app
	Adding third-party libraries with CocoaPods
	Implementing the Todos view controller

	Building the Todos screen
	Adding entities
	Implementing datastore
	Connecting datastore and View Controller
	Configuring tableView
	Finishing touches
	Swipe that cell!

	Adding a Todo task
	The add a Todo view
	The add a Todo View Controller
	Finishing TodoDatastore
	List View Controller
	Where do we go from here?

	Summary

	Chapter 5: A Pretty Weather App
	The app is…
	Building the skeleton
	Creating the project
	Adding assets

	Implementing the UI
	The UI in blocks

	Completing the UI
	Implementing CurrentWeatherView
	Building WeatherHourlyForecastView
	Seeing the next day's forecast in WeatherDaysForecastView

	Blurring the background
	Downloading the background image
	Searching in Flickr

	Geolocalising the app
	Using Core Location

	Retrieving the actual forecast
	Getting the forecast from OpenWeatherMap
	Rendering CurrentWeatherView
	Rendering WeatherHourlyForecastView
	Rendering WeatherDaysForecastView

	Connecting to the server
	Where do we go from here?
	Summary

	Chapter 6: Flappy Swift
	The app is…
	Building the skeleton of the app
	Creating the project
	Implementing the menu

	A stage for a bird
	SpriteKit in a nutshell
	Explaining the code
	Simulating a three-dimensional world
using parallax
	How to implement scrolling

	A flying bird
	Adding the Bird node
	Making the bird flap

	Pipes!
	Implementing the pipes node

	Making the components interact
	Setting up the collision-detection engine

	Completing the game
	Colliding with pipes
	Adding the score
	Adding a restart pop-up

	Summary

	Chapter 7: Polishing Flappy Swift
	Adding juiciness
	Let there be sounds!
	Playing the soundtrack
	Shaking the screen!

	Integrating with Game Center
	What Game Center provides
	Setting up Game Center
	Creating an app record on iTunes Connect
	Enabling Game Center
	Creating fake user accounts to test
Game Center
	Authenticating a player

	Summary

	Chapter 8: Cube Runner
	The app is…
	Introduction to SceneKit
	What is SceneKit?
	Building an empty scene
	Adding a green torus
	Let there be light!
	Let's make it move!

	Implementing Cube Runner
	The game skeleton
	Implementing the menu

	Flying in a 3D world
	Setting up a scene
	Adding a fighter
	Texturing the world
	Make it move
	Adding cubes
	Adding more obstacles

	Adding a few touches
	The score
	Let's add music

	Summary

	Chapter 9: Completing Cube Runner
	Creating a real game
	Detecting collisions
	Game over!
	Adding the juice
	Game Center

	Summary

	Chapter 10: ASAP – an E-commerce App in Swift
	The app is…
	The first requirement: login and registration
	The second requirement: the products grid
	The third requirement: the open cart

	The skeleton app and register screen
	The skeleton app

	The ASAP e-commerce store
	The e-commerce product list
	The product cell
	Parsing and storing products

	The ASAP cart
	Adding a product to the cart
	Removing items from cart and checkout

	Summary

	Chapter 11: ASAPServer, a Server in Swift
	The interface of the ASAP Server
	One skeleton server for two OSes
	An OS X skeleton server
	Preparing the OS X environment
	The HelloWorld skeleton server
	Preparing the Linux environment

	The ASAPServer
	The Products
	The cart
	The order

	Connecting the ASAP app
	The products
	The Cart
	The order

	Summary

	Index

