\"‘?I.":' SIS

Swift 3 for
Absolute Beginners

Third Edition

Gary Bennett
Brad Lees

ApPress:

http://www.allitebooks.org

Swift 3 for Absolute
Beginners

Gary Bennett
Brad Lees

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Swift 3 for Absolute Beginners

Gary Bennett Brad Lees
Scottsdale, Arizona, USA Phoenix, Arizona, USA
ISBN-13 (pbk): 978-1-4842-2330-7 ISBN-13 (electronic): 978-1-4842-2331-4

DOI10.1007/978-1-4842-2331-4
Library of Congress Control Number: 2016962063
Copyright © 2016 by Gary Bennett and Brad Lees

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser

of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Aaron Black

Technical Reviewer: Stefan Kaczmarek

Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,
Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing

Coordinating Editor: Jessica Vakili

Copy Editor: Ann Dickson

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springer.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

Printed on acid-free paper

[vww allitebooks.cond

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUtROrS........ccucerismmmissmms s ——————————— Xiii
About the Technical REVIEWETcccussssssmssmsssmssssssssssssssmsssssssssssssssssssssssnssssssnsssannns Xv
INtroduction........cccvvcemiismne s —————————_————— Xvii
Chapter 1: Becoming a Great i0S Developerccuueeurrmsssnssssssssnsssssssssssssssssssssssss 1
Chapter 2: Programming BaSiCS.....cccuuumsamnmmssssnsnsssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 11
Chapter 3: It’s All About the Datacccovnnmmemmmmnnmmmmsss i ————————— 23
Chapter 4: Making Decisions, Program Flow, and App Design........ccusseemrrnsssannnns 37
Chapter 5: Object-Oriented Programming with Swift.........ccoiussenmmsnnmsssannsssnnnssnns 59
Chapter 6: Learning Swift and Xcodeccuuunmmmmmmmmmmmmmssssssssssnmssmsssssssssssssssssssssnns 77
Chapter 7: Swift Classes, Objects, and Methodscccuseemmmnsssennnnnsssssnsssssssnnns 97
Chapter 8: Programming Basics in SWiftccccvmnnnsennnnnsesnmnssssnmssnns 125
Chapter 9: Comparing Datacccimmmmmmmmmmmsssnmmsssssnmssssssnmsssssssmsssssssssssssnnnns 151
Chapter 10: Creating User INterfacesccccuuemmmmssssnnnmmssssnnnssssssssssssssssssssssssnnnss 165
Chapter 11: Storing Information............cccininnemmmnnnsmnmmssnmss————————— 193
Chapter 12: Protocols and Delegatescccuseemmmssssnsnmmssssssnmsssssnsnssssssnsnsssssnnnnns 219
Chapter 13: Introducing the Xcode Debuggerccccunsummnmnssssnnnssssssnnsssssssnnns 237
Chapter 14: A Swift iPhone Appccccevrrnmmmssssssnmmmmmmmssssssssnssessssssssssssnmmmns 251
Chapter 15: Apple Watch and WatchKit..........cccevvnnemmmmmnssnnnnmsssssnnnmssssnsssssnnns 271
Chapter 16: A Swift HealthKit iPhone App.....cccccommmmmmmmmssssssnnmmsmmmssssssssssssssnns 297
INA@X.eiiieiiiesrsmsnsansssns s sn s sas s s 317
iii

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUtROIS.........ccccmmssmsmssnsmmssnsssnssssss s sannnnsnnnnnns xiii
About the Technical REVIEWETccususssassssnssssssssassssnsssasssssssssnsssassssassssnsssassssasssansss XV
INtroductionccccumiemmmsssmnmsssenmssssnmssnnssssnnn s s san s san s s nn s an s n s Xvii
Chapter 1: Becoming a Great i0S Developerccuueeurrmsssnssssssssnsssssssssssssssssssssssss 1
Thinking Like @ DEVEIOPETccccvcerirercersir s sn s sn s snssnesnn s 1
Completing the Development CYCIEcoccveverererere e ses e e s s e e s sne s 4
Introducing Object-Oriented Programmingccoceeriernncnenniesnscse s sessessesessens 6
Working with the Playground Interface..........cccoovvrvrcrsrcssscsser e 8
1111 1P OSSR 9
WhAE'S NEXL ... e s 10

o (C] (0T3P 10
Chapter 2: Programming BaSIiCS.....ccuuusssmsnmrssssnnssssssssnsssssssssssssssssnssssssssnnssssssnnnnss 11
TOUMING XCOB........ererereririr sttt n s e sn s sn s sn s nn e e sn e sn e snesnennennenen 11
Exploring the Workspace WinUOW ... e sssseas 12
Navigating YOUr WOIKSPACEc.cocrurueercrerieecresisecse e s sss s 13
Editing YOUF PrOJECE FIlESc.ceeceeeeeee et 14
Creating Your First Swift Playground Program..........ccccecevererenesnessessessssssssssssssssssssessens 15
Installing and Launching XCOOE 8.........ccoevererererererereressereesersesesesessesssessesesassessssessessssessesessssesassanaens 16
USING XCOUE 8.....c.eeereeereererereeeree s e sersesas e sse e sse e saesesaesas e sae e sassesassassesassesaesesassesasssssesassessesesasnssassanaens 19
Xcode Playground IDE: Editor and ReSults Areascccuevrveersersessessessessessessessesssnnnnns 20
111 1] 1P SRS 22

v

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 3: It’s All About the Datacccnnmmmmmm s ———————— 23

Numbering Systems Used in Programmingc.ccccuceeninenniennsnesnsesssessessssessesessens 23
21 O 23
BYEES. .t E AR e Re R R e R e e Re e Re e Re e eRenEnaeas 25
HEXAAECIMAL......ciiciiiciiiii s 26
0 28

DAtA TYPLS ...uerererere sttt n e n e nn e n e nn e nenn 28

Declaring Constants and Variables............ccocvvrvrrrnniennnninsnsensesses s e e sessessens 29

0 0110 - 1R 30

Using Variables in Playgroundsccoueiernnenenensesnssssessssssssssssssssssssssssssssssssssssssens 31

E3 U411 S 35

Chapter 4: Making Decisions, Program Flow, and App Design........ccusemmrnsssannnns 37

B0O0IEAN LOGIC......cccerererierererere st sse sttt sn s sn s sn e sa s sn s nnenn s 37
Truth TADIES ..o ———————————————————— 38
COMPAriSON OPEIALOIS.......cceveereerereerererererseserseseraesesserassessesessssessessssessssesseserssssssssssersssessesessessssesanaens 40

DESIGNING APPS...eieiererersrrsrssrssesse s s s e s s e s e s e s e s e s e s e s e s e s e s e s e e sn e e s nn e e e e e nnnnnnnnnnnnnnas 40
PSEUAOCOME ..o 41
Optionals and Forced UNWrappPingccooccceererenemessniessnsesesesesssssssssessssessesessssssssssssessssesssssssssssnssssnens 43
FIOWCRAMING......coiececree et e e e n et ne e s ne e nean 45
Designing and Flowcharting an EXample APp ..o sesss e sessssessssessssssssssssens 45
THE APP’S DESION ...t e r e e e e b e e R e R e s Re e e e R e e R e e nenrnns 46
Using Loops to Repeat Program Statements...........cccoccervricnecennessnscssc e sessssennens 47

Coding the Example App in SWifl ..o e 49
Nested if Statements and else if Statements ... 52
Removing EXtra CRAraCerSccovuecerererrsescsisise s s sessnsnas 52
Improving the Code Through Refactoring.........coceceererirencnernescrirsseses e senes 52
RUNNING ThE APP oottt e e e e pn s 52
DeSign REQUITEMENTScccoereieiecririeercrere e e e e s s 53

E3 1111 P2 S 56

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 5: Object-Oriented Programming with Swift.........cccccnnemmnnnsennnnnissnnnn 59
LTI 0 T RS S 59
What IS @ ClaSS?......cccceeerirrerriseriesesesssse s sss s ss s s s s s s s sns s snssnsssssssssnes 60
Planning ClaSSESc.cuvverrerrersersersersessessessesssssessessessesssssssssssessssssssssssssssssssssssssssssssssssssens 61
Planning PrOPEIEScccvurereerereererererereserse s e e raesessesessesaesessesessesesaesassesassesassssasssssesassessesessenssasanaens 61
Planning MEthOTS.........cccvrererererre st rere s ae e e e s e se s e sa s sae e sae e sae s e saesae e s aesesaenesanananns 63
IMPIEMENtiNgG the CASSESccceueeererererererrerererererereres e raesersesessere s e sas e ssesesaesesaesassesassessesesasnesaeanaens 66

14 LT 172 o 72
WHY USE QOP?......oeeererer sttt n s s sn s nn e p e sn s sn e sn e nnennnnn 73
OOP IS EVEIYWREIE ...t sse st ns s s s sse s s nsnsnsnas 73
Eliminate Redundant Codecccoureeeererenencrinseesessese s ses s s sessssnns 73
EQSE Of DEDUGGING.covrrrreerererreeeresseesesesssssesesss e s ssss e e sss s s e s ss s e sssa e e sessa s e ssssessssssssessssssssnsenes 74
Ease Of REPIACEMENL.........ccoeeecer e enp s 74
AAVANCEU TOPICS..eeverrereerieerserraerserssesessssssesssesssessessssssesssesassssessssssessesssessssssesssessssnssaesas 74
] 1 TR 74
0§10 03T R 74

E3 1141 4P 2 75
Chapter 6: Learning Swift and Xcodeccccuusemmmmnssssnnmmssssssnnmssssssnsssssssssssssssannnns 77
LA 0 T 77
Understanding the Language Symbols..........ccooeeeierencccscce s 77
Implementing ObJEcts iN SWift ..o 78
Writing Another Program in XCOUEccveerrerrersessensessensesssssessesses e sesses e sessnsssssssssnsnnns 80
Creating the PrOJECT........co et a e e e nn s 81
11T PR 96
Chapter 7: Swift Classes, Objects, and Methodscccuseemrrnsssnnnmssssnsnnsssssnnns 97
Creating @ SWift ClasSccocverrerererere e sse e sresnesnesn s snesn s snesnennas 97
INSEANCE VAMADIESccveeeeiirieeires e e s e p s 98
MEBENOUS ...t AR e R e R e e e R e e s 99

vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

USING YOUFr NEW ClaSS......ccccoeierererrenrserinsessesssesss e e s sssss s ssssessssssssssssssnsssssens 100
Creating YOUF PrOJECT ...ttt 100
AdAING ODJECES ... e esp e e p e e e nrans 103
WIItING thE ClASSceceeeeeccirire st a e p e nnnp s 107
Creating the USEr INTEITACE..........cccerureercrireecriree s nns 110
HOOKING UP the COE ...ttt nns 115
RUNNING the PrOGram.........cccoeeeecirereecses e s s sss e sassssssnnns 119
Taking Type methods 10 the NeXt LEVEL ...t 121

Accessing the Xcode Documentation.........c.cov s 121

SUMMANY ...ttt ss s s sr s n e a s e s s e r s s sn e e s e e e s e e nn e snennennennenn e e e nne e e nnnnnennnnnan 122

Chapter 8: Programming Basics in SWiftcccucmnimmnmmnnmisnmmmemmsmsmsmen. 125

USING LBL VS, VAI ...t ss e s e sresne s e s aesr s s e nn e sn e snesnssn e nennsnnennennnnans 125

Understanding COIIECLIONScceeeviiernimiesrneressnesesse s sns s s snnse s 126

USING AITAYS ... s s s e s e s s e s sae s s sa e s e e sne s e e ne s n e ae s nesae s nne e e e nnesannsneans 126

Using the Dictionary CIassccuirmmninnnissnsssssss s 128

Creating the BookStore AppliCation............ccceeevererereseese e ses e ses s e e sessnssenenns 129
Creating YOUR ClaSS......ccoueeeerererueeserssseeesssssesessssssssesesssss s e s sesssessnsnsens 133
INtrOAUCING PrOPEITIESecceietecerirse e n s s e nannn e e 134
ACCESSING PrOPEITIES ...t e p e p e nnnnans 135

Finishing the BoOKSTOre Program...........cccvvvverseniensensessessessessessessesssssessessssssssassasssssnnns 135
Creating the VIBWccccerrerercrrcree e seseses e ssssersssesassessesassesassessssessssesssssssesassessssessssssassessesassesssnenes 135
AdUING PrOPEITIES ..c.veueeveereererererrersesersesersesassessssersssessssssssssssessssessesesssssssesassesssssssssssssssssessssessenessssnaes 138
T [0 Ty To W 0o] o] O 140
Creating a Simple Data MOl CIASScccvrrereererrererererererersssersesessesessessssessssessssessesssssssssesassesseneres 142
Modifying MasterViEWCONIIOIIEKceevrererrerrerereesererereresersssersesessesessesassesassessssessssssassessesassesssnenes 144
Modifying the DetailVieWCONTIOIIEKcccveeerrerereerere s s s ree s se e e s e sas e saesesae e sassasaesassesanneres 147

11 1T ORI 149

viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 9: Comparing Datacccemmmmmmnmmmssssnmmmssssnmmsssssnmmssssnssssssssssnnn 151
Revisiting BOO0IEAN LOGICcceeerrerrersersessessesssssesssssessessnnsans 151
Using Relational OPerators..........ccocceeereresesesesse e ssessessnns 152
CoOmMPArING NUMDEIS.....cv vt s s e e s s e e nn e e e 152
Creating an EXample XCOUE APP....ccerreerererrrnesesersnesesessssessessssesssessnns 153
Using Boolean EXPreSSIONScccceeerereereerssrsessnns 158
0] T o LT TR (T 159
Using the switch Statement ... 160
COMPAriNG DALEScceceeirerirscrec e e a e e e R R e s 161
Combining COMPAISONS......ccccceireirerrresrre e e e s e b e r e e resrene e aesa e e r e ns 162
1111 11 SRS 163
Chapter 10: Creating User Interfacesc..cccusmmmsssmsmsssnsmssssssssssssssssssssssnssssnnsas 165
Understanding Interface BUIlercoccoeeeeerecc s e e 166
The Model-View-Controller Pattern............cccovveeeneiiesnscsessssesessssesessesssessesessesssssssens 166
Human Interface GUIdEliNgS..........ccovveveeericrssnc s 168
Creating an Example iPhone App with Interface BUilderccooeevvevrervrcesceecenennns 169
USING INTEITACE BUILAEccceeeeeeeeetseeer et 175
The DOCUMENT QULIINE ... p e e 176
THE ODJECE LIDIAYcoveeeceeee e 177
Inspector Pane and SEIECIOr Bar............cco e seens 180
Creating the VIBW ... na e 181
USING QULIETS ... s e pnnn e e 182
USING ACHIONS ...t e s e s e s e e s s ae e e s nae e e e nnnnnannes 185
THE ClASSvveeecerreecsisis et e e e e s s e e s e R e e s R e e A e R e e e e s R e e e e s e s e e s ans 187

E3 1111 P2 7SS 190
Chapter 11: Storing Information...........cccunneemmmmmnnnms e —————— 193
Storage ConsSiderations..........cccvveeerrerrernernes s e e sn s 193
PreferENCEScoce v n e n e nn e nn e nn e nnnnn 193
WHEING PrefereNCEScvcce e s p e r e e s p e p e nenrnnas 194
ReadiNg PrEfErENCEScovveeeecrrccce et p e p e s e p e p e s 195

ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

DAtADASEScocererererere e e n e e 195
Storing Information in @ Database...........cccevrrerrerrrrr s ———— 195
Getting Started with Core Data..........cccoeeeeereneccrecec e 196
THE MOTEL.....c.ceeeee et 198
Managed ODJECT CONTEXL ..o 207
Setting Up the INTEIACE. ..o a e s a e s a e se s e 207
RS0 2 218
Chapter 12: Protocols and Delegatescucusmmsemssesssnsssnssasssasssasssnssssssasssanans 219
MuUltiple INNEHTANCEcceeeeerieereree s s n e s n e n e s e n e nas 219
Understanding ProtoCOIS..........cccceeeeierencsere e see e ssesresnssnesnssnssnesnssnssnesnnnnns 221
0L (0 TeT0] B O G PSR R 221
DElegationcoceeirce e —————————— 222
Protocol and Delegation EXampleccceercrcencnsssenses s ses e e e sennns 222
GEtting StArtedccoceeeicrrrirerr e ————————— 224
HOW [EWOIKS ... 236
1111 112 SRS 236
Chapter 13: Introducing the Xcode Debuggercccevnnmmnmmmssssnnnssssssnnsssssssnnns 237
Getting Started with DebUGQINgcccoeeeeerecececere e e 237
Setting BreakpPointS..... ... e p e e n e e nn e 238
Using the Breakpoint Navigator ..o e s s e ssssens 239
DEDUQGGING BASICScceereruecrereeieeerirseee s se s e e e een e 242
Working with the Debugger CONTIOIS.........ccceriirerne s re e seenes 244
Using the Step CoNtrols..........ccovceeeeriiennsiresrere e 245
Looking at the Thread Window and Call STACKcccceeverrierrrrnnncrre e 246
Debugging Vari@hles..........cocorurerererineerererse s ens 246
Dealing with Code Errors and Warnings..........ccvverrersersessessessessessssssssesssssessessssssssessenns 248
1 (0] £ 248
L1211 T3 249
SUMMANY ...ttt s s s s sr s s sa s e s n s n s s e sr e r s e e nr s nn e e e e e nnenn e e e nnennennennennnnnnnnnnnan 250

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 14: A Swift iPhone App ... 251
IS S €T 0] 72 L o TS 251
R (0 1 O 261
ADD SUMMAIY ... sa e e s sae s e s s n e s aesa e s saese e sa e snesaesaesasnnennennennnnns 269
Chapter 15: Apple Watch and WatchKit..........cccennnemmmmnnssnnnnnsssssnsmssssssssssssnnns 271
Considerations When Creating @ watChOS Appcoeeereerersrc s e senens 271
Creating an Apple WatCh AP ...coccvererrrirrrr e ses e ses e sss e ssssessassassassassassasnnnns 271
Adding More FUNCLIONAIILYcccceeerererserersesre e sse e e sse e s sne s s sn s snesnesnssnssnssne e s 289
SUMMEAIY ...ttt a s s ae e s re e s e a s e s ae e s nnnnnnns 295
Chapter 16: A Swift HealthKit iPhone App.......cccvsssemmmmssssssnmssssssssssssssssssssssnsns 297
Introduction to Core BIUELOOth ... s 298
Central and Peripheral DEVICESccccocrererrenenererrnesesesesssesesessessesesssssessssssssssesssssssssssssssssssssssssssnns 298
Peripheral AQVEITISINGccccovurerererereeserisse s e e s e se s sss s e s se s s sasssssssnens 299
Peripheral Data SIrUCIUIE...........ccoceeeeieecrere e e 299

3T o TT o TR TC AT] oSS 301
ADD SUMMAIY ... s ae e a e s nr s s ne e nn e nnis 313
WhAE'S NEXL? ...oeeeiiiciri s s ne s 315
11T - 317

xi

About the Authors

Gary Bennett is president of xcelMe.com. xcelMe teaches iPhone/iPad
programming courses online. Gary has taught hundreds of students how
to develop iPhone/iPad apps. He has created several very popular apps
himself, and his students have some of the best-selling apps on the iTunes
App Store. Gary also worked for 25 years in the technology and defense
industries. He served 10 years in the U.S. Navy as a nuclear engineer
aboard two nuclear submarines. After leaving the Navy, Gary worked for
several companies as a software developer, CIO, and president. As CIO, he
helped take VistaCare public in 2002. Gary also co-authored iPhone Cool
Projects for Apress. Gary lives in Scottsdale, Arizona, with his wife Stefanie
and their four children.

Brad Lees has more than 12 years’ experience in application development
and server management. He has specialized in creating and initiating
software programs in real-estate development systems and financial
institutions. His career has been highlighted by his positions as
information systems manager at The Lyle Anderson Company; product
development manager for Smarsh; vice president of application
development for iNation; and IT manager at The Orcutt/Winslow
Partnership, the largest architectural firm in Arizona. A graduate of
Arizona State University, Brad and his wife Natalie reside in Phoenix with
their five children.

xiii

About the Technical Reviewer

Stefan Kaczmarek has over 15 years of software development experience
specializing in mobile applications, large-scale software systems, project
management, network protocols, encryption algorithms, and audio/video
codecs. As chief software architect and co-founder of SKJM, LLC, Stefan
developed a number of successful mobile applications including iCam
(which has been featured on CNN, Good Morning America, The Today
Show, and the “Dog Lover” iPhone 3GS television commercial) and iSpy
Cameras (which held the #1 Paid iPhone App ranking in a number of
countries around the world including the UK, Ireland, Italy, Sweden, and
South Korea). Stefan resides in Phoenix, Arizona, with his wife Veronica
and their two children.

XV

Introduction

Over the last seven years, we've heard the following comments countless times:

e “T've never programmed before, but I have a great idea for an iPhone/iPad/
AppleTV app.”
e “Canlreallylearn to program the iPhone or iPad?”

To the latter we answer, “Yes, but you have to believe you can.” Only you are going to tell yourself you
can’t doit.

For the Newbie

This book assumes you may have never programmed before. The book is also written for someone who

may have never programmed before using object-oriented programming (OOP) languages. There are many
Swift books out there, but all of these books assume you have programmed before and know OOP and
computer logic. We wanted to write a book that takes readers from knowing little or nothing about computer
programming and logic to being able to program in Swift. After all, Swift is a native programming language
for the iPhone, iPad, and Mac.

Over the last seven years, we have taught thousands of students at xcelMe.com to be iPhone/iPad (i0OS)
developers. Many of our students have developed some of the most successful iOS apps in their category in
the iTunes App Store. We have incorporated what we have learned in our first two courses, “Introduction to
Object-Oriented Programming” and “Logic and Swift for iPhone/iPad Developers,” into this book.

For the More Experienced

Many developers who programmed years ago or programmed in a non-OOP language need a background
in OOP and Logic before they dive Swift. This book is for you. We gently walk you through OOP and how it is
used in iOS development to help make you a successful iOS developer.

How This Book Is Organized

You'll notice that we are all about successes in this book. We introduce the OOP and Logic concepts in
Playgound and then move those concepts to Xcode and Swift. Many students are visual learners or they
learn by doing. We use both techniques. We’'ll walk you through topics and concepts with visual examples
and then take you through step-by-step examples while reinforcing the concepts.

We often repeat topics in different chapters to reinforce what you have learned and apply these skills in
new ways. This enables new programmers to reapply development skills and feel a sense of accomplishment
as they progress. Don’t worry if you feel you haven’t mastered a topic. Keep moving forward!

xvii

INTRODUCTION

The Formula for Success

Learning to program is an interactive process between your program and you. Just like learning to play
an instrument, you have to practice. You must work through the examples and exercises in this book.
Understanding the concept doesn’t mean you know how to apply it and use it.

You will learn a lot from this book. You will learn a lot from working through the exercises in this book.
However, you will really learn when you debug your programs. Spending time walking through your code
and trying to find out why it is not working the way you want is an unparalleled learning process. The
downside of debugging is a new developer can find it especially frustrating. If you have never wanted to
throw your computer out the window, you will. You will question why you are doing this and whether you
are smart enough to solve the problem. Programming is very humbling, even for the most experienced
developer.

Like a musician, the more you practice the better you get. By practicing, we mean programming! You
can do some amazing things as a programmer. The world is your oyster. Seeing your app in the iTunes App
Store is one of the most satisfying accomplishments. However, there is a price, and that price is time spent
coding and learning.

Having taught many students to become iOS developers, we have put together a formula for what makes
students successful. Here is our formula for success:

e Believe you can do it. You'll be the only one who says you can’t do this, so don't tell
yourself that.

e Work through all the examples and exercises in this book.
e Code, code, and keeping coding. The more you code, the better you'll get.

e Be patient with yourself. If you were fortunate enough to have been a 4.0 student
who could memorize material just by reading it, don’t expect your memorization
skills to translate to easy success in Swift coding. The only way you are going to learn
is to spend time coding.

® You learn by reading this book. You really learn by debugging your code.

e Use the free xcelMe.com webinars and YouTube videos explained at the end of this
introduction.

e Don'tgive up!

The Development Technology Stack

We will walk you through the process of understanding the development process for your iOS apps and what
technology you need. However, briefly looking at all the technology pieces together is helpful. These are the
key iOS development technology pieces you will need to know in order to build a successful app and get it
on the app store:

e Apple’s Developer Website
e App Telemetry

e App Analytices

e iPhone Swift SDK

xviii

INTRODUCTION

Swift

Object-Oriented Programming and Logic
Xcode IDE

Debugging

Performance Tuning

We know this is a lot of technology. Don’t worry—we will go through it and will be comfortable using it.

Required Software, Materials, and Equipment

One of the great things about developing iOS apps is just about everything you need is free to develop your

app.

Xcode

Swift

macOS Sierral0.12.1 or higher

Xcode Integrated Developers Environment
iOS SDK

iPhone and iPad Simulator

All you need to get started is a Mac and knowledge of where to download everything, which we will

cover.

Operating System and IDE

When developing iOS apps, you have to use Xcode and the macOS. You can download both of these for free
from the Mac App Store (see Figure 1.)

Xix

INTRODUCTION

> * E B 9% C

Featured Top Charis Categovies Purchased Updases

Our Top Picks for MacBook Pro LUMINAR

Enhanced far Touch Bar Quick Links

Final Cut Pro Motion =7 Compressar Spark - Lowve your emai
L
R R 4

ﬁ :x\-cx @ sukinhics {oer -]

Fantastical 2 - Calenda djay Pro Pixgimatar PCalc
"SI0 oo = oo Panss)

LR
el

Passward - Password Alfinity Designes [i DayOne Airmail 3
e

0

e ek e e

Focus - Productivity Ti

M Desigrer Pro 3 B OmniGraine 7 Drep - Colos Pickar
¢ = . 0 X 0
1 LE 3 5 5 3

o Making Music
Morsy Maragement
Personal Projects
AWk

1] @
Apps for Writers Invaluable

o ; =
a'(. e Jtilitie
practicemax.

@ e FERAWT-F - - el ot

BEOVede 0RO T HS?

Figure 1. The Mac App Store

Software Development Kits

You will need to register as a developer. You can do this for free at http://developer.apple.com/ios
(see Figure 2).

XX

http://developer.apple.com/ios

INTRODUCTION

& Developer Discover Develop Distribute Support Account Q

iI0S + Apps

and services that enable new

s o
) How sbout pizeat
Yool Let ma just finish this 1 U T
@ omo s i mest you thare. (o oI] [4] o, |
ekt
o L asme gi @ w..i«« LIRS e
[>] [5 > l-"““"*] E
... 0 Coffoe with Allisen
n— ot 2P & -~ | ——

Figure 2. Apple’s Developer website

When you are ready to upload your app to the iTunes App Store, you will need to pay $99/year in order
to obtain access.

Figure 2 Apple’s Developer Website (editor, caption not sure why
I can’t apply that style)

Dual Monitors [editor not sure why this “Strong” format is doing this]

We recommend developers have a second monitor connected to their computer. It is great to step through
your code and watch your output window and iPad simulator at the same time on dual independent
monitors.

Apple hardware makes this easy. Just plug your second monitor into the port of any Mac, with the
correct adapter of course, and you have two monitors working independently of one another. (See Figure 3.)
Note that dual monitors are not required. You will just have to organize your open windows to fit on your
screen if you don’t have two monitors.

XXi

INTRODUCTION

® 0 < EHH Built-in Retina Display Q, Search

L LA Arrangement S el

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

Mirror Displays
AirPlay Display: = Off
Show mirroring options in the menu bar when available Gather Windows ?

Figure 3. Configuring a second monitor

Nearly every week, we have live webinars and discuss a topic from the book or a timely item of interest.
These webinars are free, and you can register for them at www.xcelme.com/latest-videos/. See Figure 4.

xxii

http://www.xcelme.com/latest-videos/

INTRODUCTION

in¥ f X

HOME COURSES SCHEDULE CONSULTING ABOUT CONTACTUS FAQ FREE VIDEOS

XCEL DFFERENT

Free Swift i0S & tvOS Webinars

Every Friday at 10:30am Pacific time xcelMe.com is providing FREE webinars.

Gary Benneft discusses Swift 2.0, tvOS, xCodae, Interface Builder, i0S, Maker topics, and answers your programming questions,
Webinars are recorded and available on his YouTube channel.
Make sure you subscribe to his channel to be notified when new videos are uploaded

To register for the FREE webinar, click HERE.

Once registered you will receive an email confirming registration with information you need to join the Webinar.

Recorded Chapter Tutorials

Using Swift 2 Playgrounds — Recorded 11/16/2015 (Click Here)
More on Swift 2 Playgrounds — Recorded 11/16/2015 (Click Here)
One Hour of Code - IBM's New Swift Playground Recorded 12/9/2015 (Click Here)
Basic Swift 2 Data Types Recorded 12/14/2015 (click here)

It's all About the Data (click hare)

Making Decisions, Program Flow, and App Design (click here)
Optionals and Forced Unwrapping (click here)

Swift Classes, Objects, and Methods (click here)

Programming Basics in Swift (click here)

Comparing Data (click here)

Creating User Interfaces (click here)

Storing Information (click here)

Intreducing the Xcode Debugger (click here)

More Delegates and Protocols (click here)

Figure 4. Register for free webinars at www. xcelme.com/latest-videos/

At the end of the webinars, we do a Q&A. You can ask a question on the topic discussed or any topic in

Additionally, all the webinars are recorded and available on YouTube. Make sure you subscribe to the
YouTube channel so you are notified when new recordings are uploaded.

Free Book Forum

We have developed an online forum for this book at http://forum.xcelme.com, where you can ask
questions while you are learning Swift and get answers from the authors. You will also find answers to the
exercises and additional exercises to help you learn. (See Figure 5.)

xxiii

http://www.xcelme.com/latest-videos/
http://forum.xcelme.com/

INTRODUCTION

xcelMe.com

xcelMe Training Center And Interactive Developer Forum.

FORU

TOPICS

How To Access Your Course Webinars And How To Use The Forum

New students need to download the attached pdf and follow instructions to register for your webinars after you purchase the 3
class. Additionally, there are directions and updates on how to access your course and forum, post questions, navigate the

message board, watch training videos, etc.

Moderator: gary.bennett

Book -> Swift 2.0 for Absolute Beginners: iPhone and Mac Programming Made Easy 2nd Edition

This forum contains answers readers may have for each chapter as well as any corrections to the book. The forum also
contains the Source Code for the book.

Moderator: gary.bennett

Book -> Developing for Apple TV using tvOS and Swift

This forum contains answers readers may have for each chapter as well as any corrections to the book. The forum also
contains the Source Code for the book.

Moderator: gary.bennett

Book -> Objective-C for Absolute Beginners: (2nd Edition) iPhone and Mac Programming Made Easy

This forum contains all the assignments and questions readers may have for each chapter.

Moderator: gary.bennett

Free Live Webinars for iPhone Developers

This forum lists the schedule for upcoming live webinars for iPhone developers. Webinars are live and have limited seats.
Current and former students get first notifications. Seats for all others is first-come-first serve.

The sessions are recorded and will be made available to current and former students on this forum.

Moderator: gary.bennett

Current Student & Alumni Recorded Webinars and More

This Forum is for current and former students C
Moderator: gary.bennett

Student/Instructor AppStore Applications

@)

17

)

10

20

®| @

@)

Applications that xcelme instructors and students have successfully posted on iTunes AppStore. 39
Moderator: gary.bennett
tvOS using Swift 2.0 for the new Apple TV o

Moderator: gary.bennett

Swift 2.0 Course 1 - Intro to OOP and Logic

Swift Course 1 - Intro to OOP and Logic 11
Moderator: gary.bennett

Swift 2.0 Course 2 - Swift for i0S Developers

Swift Course 2 - Swift for I0S Developers 11
Moderator: gary.bennett

Swift 2.0 Course 3 - Cocoa Touch for iOS Developers

Swift Course 3 - Cocoa Touch for iOS Developers !
Moderator: gary.bennett

Swift 2.0 Course 4 - iPhone and iPad Programming Part 1

Swift Course 4 - iPhone and iPad Programming Part 1 11
Swift 2.0 Course 5 - iPhone and iPad Programming Part 2

Swift Course 5 - iPhone and iPad Programming Part 2 11
Moderator: gary.bennett

Swift 2.0 Class 6 - iPad Programming 0

CNCHCHOHCHONONOND)

Swift Class 6 - iPad Programming, Apple Watch, HealthKit
Moderator: gary.bennett

Figure 5. Reader forum for accessing answer to exercise and posting questions for authors

XXiv

CHAPTER 1

Becoming a Great i0S Developer/

Now that you're ready to become a software developer and have read the introduction of this book, you

need to become familiar with several key concepts. Your computer program will do exactly what you tell it to
do—no more and no less. It will follow the programming rules that were defined by the operating system and
the Swift programming language. Your program doesn'’t care if you are having a bad day or how many times
you ask it to perform something. Often, what you think you've told your program to do and what it actually
does are two different things.

Key to Success If you haven't already, take a few minutes to read the introduction of this book. The
introduction shows you where to go to access the free webinars, forums, and YouTube videos that go with each
chapter. Also, you'll better understand why this book uses the Swift playground programming environment and
how to be successful in developing your i0S apps.

Depending on your background, working with something absolutely black and white may be
frustrating. Many times, programming students have lamented, “That’s not what I wanted it to do!” As you
begin to gain experience and confidence in programming, you'll begin to think like a programmer. You will
understand software design and logic, and you will experience having your programs perform exactly as you
want, and you will enjoy the satisfaction associated with this.

1.1 Thinking Like a Developer

Software development involves writing a computer program and then having a computer execute that
program. A computer program is the set of instructions that you want the computer to perform. Before
beginning to write a computer program, it is helpful to list the steps that you want your program to perform
in the order you want them accomplished. This step-by-step process is called an algorithm.

If you want to write a computer program to toast a piece of bread, you would first write an algorithm.
The algorithm might look something like this:

1. Take the bread out of the bag.

2. Place aslice of bread in the toaster.
3. Press the “toast” button.
4. Wait for the toast to pop up.
5. Remove the toast from the toaster.
© Gary Bennett and Brad Lees 2016 1

G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_1

CHAPTER 1 © BECOMING A GREAT I0S DEVELOPER

At first glance, this algorithm seems to solve the problem. However, the algorithm leaves out many
details and makes many assumptions. Here are some examples:

e Whatkind of toast does the user want? Does the user want white bread, wheat bread,
or some other kind of bread?

e How does the user want the bread toasted? Light or dark?

e What does the user want on the bread after it is toasted: butter, margarine, honey,
or strawberry jam?

e Does this algorithm work for all users in their cultures and languages? Some cultures
may have another word for toast or not know what toast is.

Now, you might be thinking this is getting too detailed for making a simple toast program. Over the
years, software development has gained a reputation of taking too long, costing too much, and not being
what the user wants. This reputation came to be because computer programmers often start writing their
programs before they have actually thought through their algorithms.

The key ingredients to making successful applications are design requirements. Design requirements
can be formal and detailed or simple like a list on a piece of paper. Design requirements are important
because they help the developer flesh out what the application should and should not do when complete.
Design requirements should not be completed in a programmer’s vacuum, but should be produced as the
result of collaboration between developers, users, and customers.

Another key ingredient to your successful app is the user interface (Ul) design. Apple recommends you
spend more than 50 percent of the entire development process focusing on the UI design. The design can
be done using simple pencil and paper or using Xcode’s storyboard feature to lay out your screen elements.
Many software developers start with the UI design, and after laying out all the screen elements and having
many users look at paper mock-ups, they write the design requirements from their screen layouts.

Note If you take anything away from this chapter, let it be the importance of considering design
requirements and user interface design before starting software development. This is the most effective (and
least expensive) use of time in the software development cycle. Using a pencil and eraser is a lot easier and
faster than making changes to code because you didn’t have others look at the designs before starting to
program.

After you have done your best to flesh out all the design requirements, laid out all the user interface
screens, and had the clients or potential customers look at your design and give you feedback, you can begin
coding. Once coding begins, design requirements and user interface screens can change, but the changes
are typically minor and are easily accommodated by the development process. See Figures 1-1 and 1-2.

CHAPTER 1 © BECOMING A GREAT I0S DEVELOPER

SIGN UP

PRIVACY POLICY TERMS OF USE

Figure 1-1. This is a Ul mock-up of the Log In screen for an iPhone mobile rental report app before
development begins. This UI design mock-up was completed using InVision

CHAPTER 1 * BECOMING A GREAT 10S DEVELOPER

the rental report app

Figure 1-2. This is the completed iPhone rental report app. This app is called WalkAround

Figure 1-1 shows a mock-up of a rental report app screen prior to development. Developing mock-up
screens along with design requirements forces developers to think through many of the application’s
usability issues before coding begins. This enables the application development time to be shortened and
makes for a better user experience and better reviews on the App Store. Figure 1-2 shows how the view for
the rental report app appears when completed. Notice how mock-up tools enable you to model the app to
the real thing.

Completing the Development Cycle

Now that you have the design requirements and user interface designs and have written your program,
what’s next? After programming, you need to make sure your program matches the design requirements and
user interface design and ensure that there are no errors. In programming vernacular, errors are called bugs.
Bugs are undesired results of your programming and must be fixed before the app is released to the App
Store. The process of finding bugs in programs and making sure the program meets the design requirements
is called testing. Typically, someone who is experienced in software testing methodology and who didn’t
write the app performs this testing. Software testing is commonly referred to as quality assurance (QA).

CHAPTER 1 © BECOMING A GREAT I0S DEVELOPER

Note When an application is ready to be submitted to the App Store, Xcode gives the file an .app or .ipa
extension, for example, appName . app. That is why iPhone, iPad, and Mac applications are called apps. This
book uses program, application, and app to mean the same thing.

During the testing phase, the developer will need to work with the QA staff to determine why the
application is not working as designed. The process is called debugging. It requires the developer to step
through the program to find out why the application is not working as designed. Figure 1-3 shows the
complete software development cycle.

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design) must occur to make
the application more usable for the customers. After the design requirements and user interface changes are
made, the process starts again.

At some point, the application that everyone has been working so hard on must be shipped to the App
Store. Many considerations are taken into account as to when in the cycle this happens:

e Costof development

e Budget

e Stability of the application
e Return on investment

There is always the give-and-take between developers and management. Developers want the app to
be perfect, and management wants to start realizing revenue from the investment as soon as possible. If
the release date were left up to the developers, the app would likely never ship to the App Store. Developers
would continue to tweak the app forever, making it faster, more efficient, and more usable. At some point,
however, the code needs to be pried from the developers’ hands and uploaded to the App Store so it can do
what it was meant to do.

CHAPTER 1 * BECOMING A GREAT 10S DEVELOPER

Introducing Object-Oriented Programming

As discussed in detail in the introduction, playgrounds enable you to focus on object-oriented
programming (OOP) without having to cover all the Swift programming syntax and complex Xcode
development environment in one big step. Instead, you can focus on learning the basic principles of OOP
and using those principles quickly to write your first programs.

For decades, developers have been trying to figure out a better way to develop code that is reusable,
manageable, and easily maintained over the life of a project. OOP was designed to help achieve code reuse
and maintainability while reducing the cost of software development.

OOP can be viewed as a collection of objects in a program. Actions are performed on these objects to
accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or screen/view on the iPad
can all be objects. You may want to act on the plane by making the plane bank. You may want the person to
walk or to change the color of the screen of an app on the iPad.

Playgrounds execute your code as you complete each line, such as the one shown in Figure 1-4. When
you run your playground applications, the user can apply actions to the objects in your application. Xcode is
an integrated development environment (IDE) that enables you to run your application from within your
programming environment. You can test your applications on your computer first before running them on
your iOS devices by running the apps in Xcode’s simulator, as shown in Figure 1-5.

SE— ~—
< Looping All the Sides } |
in this puzzie, Byte must collect four gems that are
lecated in the same relative locations around a square.
You'll create a loop that repeats the code below for each
of the sides 10 solve the entire puzzie.
) Prea / \\ ¢ Kbrary, then drop
ol it b
(2) Tapr st the loop.
@) Tap \ | ace, then drag it
= dowr \ / Jeinto the loop.
L] /—\
for i in 1 ... [¢ =
moveForward()
collectGen()
moveFormard()
moveForward()
moveForward()
turnRight()
}
P Run My Code
‘!
l o) (e @ J A
N —

Figure 1-4. There are multiple objects in this playground view

CHAPTER 1 © BECOMING A GREAT I0S DEVELOPER

iPhone Bs - i0S 10.0 (14A5339a)

Carrier & 9:09 PM [X3
() Oranges
e Bananas
= Milk
e Bread
Delete List

Figure 1-5. This sample iPhone app contains a table object to organize a list of groceries. Actions such as
“rotate left” or “user did select row 3” can be applied to this object.

Actions that are performed on objects are called methods. Methods manipulate objects to accomplish
what you want your app to do. For example, for a jet object, you might have the following methods:

goUp

goDown

bankLeft
turnOnAfterburners
lowerLandingGear

The table object in Figure 1-5 is actually called UITableView when you use it in a program, and it could
have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

CHAPTER 1 © BECOMING A GREAT I0S DEVELOPER

Most objects have data that describes those objects. This data is defined as properties. Each property
describes the associated object in a specific way. For example, the jet object’s properties might be as
follows:

altitude = 10,000 feet
heading = North

speed = 500 knots

pitch = 10 degrees

yaw = 20 degrees
latitude = 33.575776
longitude = -111.875766

For the UITableView object in Figure 1-5, the following might be the properties:

whiteGroundColor = Red
selectedRow = 3
animateView = No

An object’s properties can be changed at any time when your program is running, when the user
interacts with the app, or when the programmer designs the app to accomplish the design requirements.
The values stored in the properties of an object at a specific time are collectively called the state of an object.

State is an important concept in computer programming. When teaching students about state, we ask
them to go over to a window and find an airplane in the sky. We then ask them to snap their fingers and
make up some of the values that the plane’s properties might have at that specific time. Those values might
be as follows:

altitude = 10,000 feet
latitude = 33.575776
longitude = -111.875766

Those values represent the state of the object at the specific time that they snapped their fingers.

After waiting a couple minutes, we ask the students to find that same plane, snap their fingers again,
and record the plane’s possible state at that specific point in time.

The values of the properties might then be something like the following:

altitude = 10,500 feet
latitude = 33.575665
longitude = -111.875777

Notice how the state of the object changes over time.

Working with the Playground Interface

Playgrounds offer a great approach to using the concepts just discussed without all the complexity of
learning Xcode and the Swift language at the same time. It takes only a few minutes to familiarize yourself
with the playground interface and begin writing a program.

CHAPTER 1

BECOMING A GREAT 10S DEVELOPER

Technically speaking, the playground interface is not a true IDE like you will be using to write your

iOS apps, but it is pretty close and much easier to learn in. A true IDE combines code development, user
interface layout, debugging tools, documentation, and simulator/console launching for a single application;
see Figure 1-6. However, playgrounds offer a similar look, feel, and features to the Xcode IDE you develop
apps with.

iPhane 63 - i0S 10.0 (14A5339a)

[®]] I
S13PM 1%
s
v [Lister i» | Quiek Hels
e Copyright (C) 2016 Inc. ALl Rights Reserved Colof - E
S See LIC Jtat fo sample’s licensing infon
w [0 Lister 105 Apo .
Oranges
Main Agn Abstract: e 9 Search Documentation
Main sty boand The "ListDocumentsViewController’™ displays a lisg
Launch Screen storpooand s/ (-] Bananas
- AppDeiegate switt import UIKit)
» [Conte irport WatehConnectivity (-] Milk
v [view Comnradon irport ListerKit
+/ ListDocumen._ontroller swift 2 -
e o class ListDocumentsviewController: UITableviewControl (-] Bread
b e UIDocumentMenuDelagate, UlDocumentPickerDelsgate,
+ Lst¥iewControter swift /f MARK: Types =
» [0 ews
» B9 Toews struct MainStoryboard {
- struct ViewControllerldentifiers {
= Supporting Fles static let listviemController = "listview
Teuday Widges static let listviewNavigationController =
Listerkit Framewark [108] }
» [Lister WatchKH Apn i e
o B S Wikl struct TableViewCellldentifiers {
S Lt It orh s static let listDocumentCell = "listDocume
» [Lister water App }
» [0 Lister 0% X App X
» (1) Shared Listerkit Framework Code .
/1 MARK: SegueHandlerType
» (1 Sharea Lister Aesources
* [Framewerks enus Segueldentifier: String {
* [0 Products case ShowNewlistDocument
case ShowlistDocument
case ShowlistDocumentFromUserActivity
}
/f MARK: Properties Deléte List
var listsControll i
gldser {
listsController.delege
}
}
private var pendingLaunchContext: ApplaunchContext? Wi Pl sttt
tapes 8 vir
private var watchAppInstalledAtLastStateChange = false
” Steryboard Aeterence - Prevedes
V| U Dhacerasder F3r 3 view CANT nan
the real pre-commit handler we can't R
actua!.ly‘add any new fences due to CA T
restriction (ot il v veirigiiok
Vheonsh 8 teprarc of views
= Jato & = &1 Cutput ® =

Figure 1-6. The Xcode IDE with the iPhone simulator

In the next chapter, you will go through the playground interface and write your first program.

Summary

Congratulations, you have finished the first chapter of this book. It is important that you have an
understanding of the following terms because they will be reinforced throughout this book:

e Computer program
e Algorithm
e Design requirements

e Userinterface

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © BECOMING A GREAT I0S DEVELOPER

e Bug
e Quality assurance (QA)
¢ Debugging

e Object-oriented programming (OOP)

e Object
e Property
e Method

e State of an object

¢ Integrated development environment (IDE)

What’s Next

The remaining chapters provide the information you need to learn Swift and write iOS applications. Terms
and concepts are introduced and reinforced over and over so you will begin to get more comfortable with
them. Keep going and be patient with yourself.

Exercises

e Answer the following questions:
e Whyisit so important to spend time on your user requirements?
e Whatis the difference between design requirements and an algorithm?
e Whatis the difference between a method and a property?
e Whatis abug?
e Whatis state?

e Write an algorithm for how a soda machine works from the time a coin is inserted
until a soda is dispensed. Assume the price of a soda is 80 cents.

e Write the design requirements for an app that will run the soda machine.

10

CHAPTER 2

Programming Basics

This chapter focuses on the building blocks that are necessary to become a great Swift programmer. This
chapter covers how to use the playground user interface, how to write your first Swift program, and how to
use the Xcode Integrated Development Environment (IDE).

Note We will introduce you to using playgrounds, which will enable you to program right away without
worrying about the complexities of Xcode. We have used this approach teaching Objective-C and Swift, and we
know that it helps you learn the concepts quickly, without discouragement, and gives you a great foundation to
build upon.

Touring Xcode

Xcode and playgrounds make writing Swift code incredibly simple and fun. Type a line of code, and the
result instantly appears immediately. If your code runs a period of time, like a loop or branch, you can watch
its progress in the timeline area. When you've completed your code in the playground, it is easy to move your
code to a Swift iOS project. With Xcode playgrounds, you can do the following:

e Design or modify an algorithm, observing the results every step of the way
e Create new tests, verifying that they work before promoting them into your test suite

First, you'll need to learn a little more about the Xcode user interface. When you open an Xcode iOS
project, you are presented with a screen that looks like Figure 2-1.

© Gary Bennett and Brad Lees 2016 11
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_2

CHAPTER 2 PROGRAMMING BASICS

ane » B D usee) g Prone 8s Firdsred runieeg Lister on iPhons B4 m e [ell=l=]
LiszDosumentsiiowContraier. e +
AR QA& E@o @ B < B Lster) [Lister 105 Ace | 10 Main Ago) [0 ol = L Mo Selection (@ oo
v B e & I MRRKY Types Quick Help
README md . struct MainStoryboard { No elp
v [Lisier K05 App struct ViewControllerIdentifiers { - i
w [0 Main App static let listviewController = ~listviewController® Rk DS REr etk
Main. stirybosed static let listviewNavigationContreller = "listviewNavigationCentroller® =
¥
Laurch Screen storyboard 3
= AppDeiegate swit 7 struct TableviewCellldentifiers {
» [Comext] | static let listDocumentCell = "listDocusentCell”
w [17 View Controlers e +
» ¥
[ListDocumen_ontroar swift 38
« HewlUstDocu..ontrolier swift - // MARK: SegueHandlerType
= ListviewControlier.swift M Z
» » enum Segueldentifier: String { t coen
et 0 case ShowhewListDocument e
» [Tesss W cose ShowListDocument Vi Controlier - A contratier that
» [Supporting Files. 2 case ShowlistDocumentFromUserActivity [[—
»] Today Widget o }
P Fi - Prcvides o
1 I L Eramework SO % // MARK: Properties :m:?"':‘n::":’".""."‘
¥ (5] Listar Waichiit App " [—pr——
& [Shared Lister Watchiit Code var listsContreller: ListsControllerl {
& [Lister Waich App = didset i Navigation Contraller - &
- [0 Lisier 08 % App: » listsContreller.delegate = self < cominier thal MaRIgES navgaten
- "] 1 hvinagh & biearchy of shews
& [77] Shared Linterkit Framemr Code i }
& [1) Shared Lister Resources
2 r t AD nehContext? Taible View C: 0
» [Framewories i private var pendinglaunchContext: Asplaunchiontext? conareiies shat wanage 5 ki viv.
Products = t
* “ private var watchAppInstalledAtLastStateChange = false
“ A % Callection View Comtraller - &
&7 £ MARK: Initializers contyoiien thal Maneges 4 Cobection
8 e
" regquired init?{coder aDecoder: NSCoder} {
50 super.init{coder: abecoder) Tab Bar Comtreller - & contralier
1) that manages 3 et ot vam comtecliers
82 if wCSession.isSupported() { PP Wam A T B .
] WCSession,defaultSession().delegate = self
wCSession.defaultSession().activatesession() | Spit Wiew Cantrolier - 4
% 1 campetae view contralier that
bl } manages 1ot @l Fight viem coniToe
Ll £f MARK: View Life Cycle Page View Controller - Prevents 8
W tequince of vam cortroters s
& override func viewDidLoad() { o
E = 4
= T GLKA Wiew Cantroller - A
the real pre-commit handler we can't = comiroes shat manages » GLYA view
actually add any new fences due to CA
restriction AVKit Blayer View Controllar - 4
L) v consroBed that mansges &
| MiPapar chpset,
+ @ @E | Aoz = Al Dutput 2 @ i 00| =

Figure 2-1. Xcode Integrated Developer Environment with a Swift project

The Xcode user interface is set up to help you efficiently write your Swift applications. The user interface
helps new programmers learn the user interface for an iOS application. You will now explore the major
sections of Xcode’s IDE workspace and playgrounds.

Exploring the Workspace Window

The workspace window, shown in Figure 2-2, enables you to open and close files, set your application
preferences, develop and edit an app, and view the text output and error console.

12

CHAPTER 2 = PROGRAMMING BASICS

Madgator selectorbar —— Toolar . Jumg bars

> = J . ¥ l S} Inspector uslector bar

———r——x

Navigator | . (" Editor) i Ut Mapastel pune
= = (=)
T
salecion bar
!
pane

Filter baae Debug bar

Figure 2-2. Xcode’s workspace window

The workspace window is your primary interface for creating and managing projects. The workspace
window automatically adapts itself to the task at hand, and you can further configure the window to fit your
work style. You can open as many workspace windows as you need.

The workspace window has four main areas: Editor, Navigator, Debug, and Utility.

When you select a project file, its contents appear in the Editor area, where Xcode opens the file in the
appropriate editor.

You hide or show the other three areas by using buttons in the view selector in the toolbar. These
buttons are in the top-right corner of the window.

D Clicking this button shows or hides the Navigator area. This is where you view and maneuver
through files and other facets of your project.

|;| Clicking this button shows or hides the Debug area. This is where you control program execution
and debug code.

Clicking this button shows or hides the Utility area. You use the Utility area for several purposes,
most commonly to view and modify attributes of a file and to add ready-made resources to your project.

Navigating Your Workspace

You can access files, symbols, unit tests, diagnostics, and other features of your project from the Navigator
area. In the navigator selector bar, you choose the navigator suited to your task. The content area of each
navigator gives you access to relevant portions of your project, and each navigator’s filter bar allows you to
restrict the content that is displayed.

13

CHAPTER 2 = PROGRAMMING BASICS
Choose from these options in the navigator selector bar:

E Project navigator. Add, delete, group, and otherwise manage files in your
project, or choose a file to view or edit its contents in the editor area.

E Symbol navigator. Browse the class hierarchy in your project.

Q Find navigator. Use search options and filters to quickly find text within
your project.

Issue navigator. View issues such as diagnostics, warnings, and errors
found when opening, analyzing, and building your project.

Test navigator. Create, manage, run, and review unit tests.

== Debug navigator. Examine the running threads and associated stack
information at a specified point of time during program execution.

= Breakpoint navigator. Fine-tune breakpoints by specifying characteristics
such as triggering conditions and see all your project’s breakpoints in one place.

@ Report navigator. View the history of your builds.

Editing Your Project Files

Most development work in Xcode occurs in the Editor area, which is the main area that is always visible
within the workspace window. The editors you will use most often are as follows:

e Source editor: Write and edit Swift source code.

e [Interface Builder: Graphically create and edit user interface files (see Figure 2-3).

Project editor: View and edit how your apps should be built, such by specifying build
options, target architectures, and app entitlements.

14

CHAPTER 2 = PROGRAMMING BASICS

A
(T R e e Lister | B Listarkie: Suscaeded | Tadey ot 513 Al @ &< A0 20
P —
(=5 g » 2 ¢ B User | By Uister 10 2 | [0 wawie age [l e snaeytaen | [l i sy o (Rase) | Seieciion L0 H e EQ 0 e
v B L - [0 List Vi Cotradier B
TR » I Lister Soeme
[t List Brocrarnernt o
[Te——— e E i]
» [St View Coraratier 8. R
* (B3 Wawgation Contreber o=
b B View Sormreter Seese . .
e |+ Bl Herigution Gormater..

[0 View a3 Phons 831G -5 g%+ B o tal -

I N - - KR View Cantruiler 4
[App] if we're in the real pre-comait handler we canirate that wankgan & TR
can't actually add any new fences due to CA
restriction ANKH Flayes View Controber - &
=)] T = A Curpet 3 & Do

Figure 2-3. Xcode's Interface Builder showing a storyboard file

When you select a file, Xcode opens the file in an appropriate editor. In Figure 2-3, the file
Main.storyboard is selected in the Project navigator, and the file is open in Interface Builder.
The editor offers three controls:

Clicking this button opens the Standard editor. You will see a single editor
pane with the contents of the selected file.

o
O Clicking this button opens the Assistant editor. You will see a separate
editor pane with content logically related to that in the Standard editor pane.

-
€7 Clicking this button opens the Version editor. You will see the differences

between the selected file in one pane and another version of that same file in a
second pane. Used when working with source control.

Creating Your First Swift Playground Program

Now that you have learned a little about Xcode, it’s time to write your first Swift playground program and
begin to understand the Swift language, Xcode, and some syntax. First, you have to install Xcode.

15

CHAPTER 2 PROGRAMMING BASICS

Installing and Launching Xcode 8

Xcode 8 is available for download from the Mac App Store for free, as shown in Figure 2-4. Figure 2-5 shows
the Apple Developer Program.

Xcode

ple TV, and Apple Watch 3 unified

reate great applications for Ma
ng, and debu ing. The Xcode

h the Swift programming language m s easier and

mare fun than ever before

-.Maore
What's New in Version 8.0

Xcode 8 includes Swift 3, and SDKs for i0S 10, watchOS 3, tvOS 10, and macOS Sierra

—.Maore

@ XNcode Fis Bt Veew Fid Nevge Bdtr Product Debug Source Control Window belp T E weariad O 8=
It | s Tractaa e Suceanded | Toses @ BAT i

LRl L B " B L e T B S

s 4 St Wt D

AN PaldrrROTRO my

Figure 2-4. Xcode 8 is available for download from the Mac App Store for free

16

CHAPTER 2 = PROGRAMMING BASICS

® & Apple Inc

Apple Developer

& Developer Nscove esig Yevelop Distributs spport | t Q

Developer Insights

See how developers

approach finding success
on the App Store.

Figure 2-5. The Apple Developer Program

Note This package has everything you need to write i0S apps. To develop iOS apps, you will need to
apply for the Apple Developer Program and pay $99 when you’re ready to submit to the App Store. See
http://developer.apple.com. In 2015, Apple combined the i0S, watchOS, Mac 0S X, and Safari developer
programs into one program called the Apple Developer Program.

Now that you have installed Xcode, let’s begin writing a Swift playground.

17

http://developer.apple.com/
http://developer.apple.com/

CHAPTER 2 PROGRAMMING BASICS

Launch Xcode and click “Get started with a playground,” as shown in Figure 2-6.

Welcome to Xcode

Version 8.0 (8A218a)

Get started with a playground
Explore new ideas quickly and easily.

f\ Create a new Xcode project

~ ‘| Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.

Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

Figure 2-6. Creating your first Swift playground

18

CHAPTER 2 = PROGRAMMING BASICS

Using Xcode 8

After launching Xcode, follow these steps:

1. Let’s name the playground HelloWorld and select iOS as the platform, as shown
in Figure 2-7. Then click Next and save your app in the folder of your choice.

Choose options for your new playground:

Name | HelloWorld

Platform: i0S

Cancel Previous

Figure 2-7. Name your playground HelloWorld and select iOS as the platform

19

CHAPTER 2 ' PROGRAMMING BASICS

Xcode does a lot of work for you and creates a playground file with code ready for you to use. It also
opens your playground file in your Xcode editor so you can start, as shown in Figure 2-8.

0 ® Ready | Today at 7:39 PM = O | <000 -dIET
HelioWorld. playground +

s Helloworld

//: Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground" "Hello, playground"”
str = "Hello World' “Hello World"
8 print(str) “Hello World\n'
s f
|
= » |

Figure 2-8. The playground window

You now need to become familiar with the Xcode playground IDE. Let’s look at two of the most often
used features:

e The Editor area

e The Results area

Xcode Playground IDE: Editor and Results Areas

The Editor area is the business end of the Xcode playground IDE—where your dreams are turned into
reality. It is where you write your code. As you write your code, you will notice it changes color. Sometimes,
Xcode will even try to autocomplete words for you. The colors have meanings that will become apparent as
you use the IDE. The Editor area is also where you debug your apps.

Note Even if we’ve mentioned it already, it is worth saying again: You will learn Swift programming by
reading this book, but you will really learn Swift by writing and debugging your apps. Debugging is where
developers learn and become great developers.

Let’s add a line of code to see the power of Swift playgrounds. Add line 6 shown in Figure 2-8. As soon as
you enter the line of code, Xcode automatically executes the line and shows the result, “Hello World”.

20

CHAPTER 2 = PROGRAMMING BASICS

When you write Swift code, everything is important—commas, capitalization, and parentheses. The
collection of rules that enable the compiler to compile your code to an executable app is called syntax.

Line 5 creates a string variable called str and assigns “Hello, playground” to the variable.

Line 6 reassigns “Hello World” to the variable str.

Let’s create a syntax error by entering line 8 shown in Figure 2-9.

"N Ready | Today at 7:42 PM 0! s [=l=l=]
HelloWorld.playground +
o] + HelloWorld <0 >
1 //: Playground - noun: a place where people can play
import UIKit
Error !CQH var str = "Hello, playground" Hello, playground
str = "Hello World" Hello World
© ¢ print(stz) Hello World\n Results updated
9 | as you type
Error Location Edt A
= »

Figure 2-9. The playground with a syntax error caught by the Swift compiler

On line 8, print is a function that will print the contents of its parameters in the Results area. As you
enter code, the Results area automatically updates with the results for each line of code that you entered.
Now, let’s fix the app by spelling the str variable correctly, as shown in Figure 2-10.

21

CHAPTER 2 PROGRAMMING BASICS

@ [] Ready | Today at 7:46 PM = O <02 0O

HelloWorld. playground +
28 3 HelioWorld

//: Playground - noun: a place where people can play

import UIKit

5 wvar str = "Hello, playground" "Hello, playground"
7 str = "Hello World" "Hello World"
8 print(std) "Hello World\n"
Error Fixed
= >

Figure 2-10. Syntax error fixed

Feel free to play around and change the text that is printed. You may want to add multiple variables or
add two strings together. Have fun!

Summary

In this chapter, you built your first basic Swift playground. We also covered new Xcode terms that are key to
your understanding of Swift.

Key to Success As mentioned in the introduction of the book, you can visit http: //www.xcelme.com/ and
click the Free Videos tab to view videos related to this chapter. The videos will help you understand more about
Xcode, IDEs, and playgrounds. Also visit http://forum.xcelme.com/ to ask questions about these concepts.

The concepts that you should understand are as follows:
e Playground
e Editor area

e Results area

EXERCISE

Extend your playground by adding a line of code that prints any text of your choosing.

22

http://www.xcelme.com/
http://forum.xcelme.com/

CHAPTER 3

It's All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory. However, zeros and
ones are not very useful to developers or app users, so you need to know how your program uses data and
how to work with the data that is stored.

In this chapter, you look at how data is stored on computers and how you can manipulate that data.
You then use playgrounds to learn more about data storage.

Numbering Systems Used in Programming

Computers work with information differently than humans do. This section covers the various ways
information is stored, tallied, and manipulated by devices such as your iPhone and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and manipulate data. A bit has a
value of either 0 or 1. When computers were first introduced, transistors and microprocessors didn’t exist.
Data was manipulated and stored by vacuum tubes being turned on or off. If the vacuum tube was on, the
value of the bit was 1, and if the vacuum tube was off, the value was 0. The amount of data a computer was
able to store and manipulate was directly related to how many vacuum tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator and Computer (ENIAC).
It took up more than 136 square meters and had 18,000 vacuum tubes. It was about as powerful as your
handheld calculator.

Today, computers use transistors to store and manipulate data. The power of a computer processor
depends on how many transistors are placed on its chip or CPU. Like the vacuum tube, transistors have an
off or on state. When the transistor is off, its value is 0. If the transistor is on, its value is 1. At the time of this
writing, the A10 processor powers the iPhone 7 and 7S Plus, has a 4-core ARM processor with approximately
3.3 billion transistors, up from 149 million transistors on the A4 and the first iPad. The A10 processor is 120x
times faster than the original iPhone. Figure 3-1 shows the processor that was in iPhone 4 and the first iPad.

© Gary Bennett and Brad Lees 2016 23
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_3

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

Figure 3-1. Apple’s proprietary A10 processor

Moore’s Law

The number of transistors on your iPhone’s or iPad’s processor is directly related to your device’s processing
speed, graphics performance, memory capacity, and the sensors (accelerometer, gyroscope) available in the
device. The more transistors there are, the more powerful your device is.

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a processor. He
observed that the number of transistors in a processor doubled every 18 months from 1958 to 1965 and
would likely continue “for at least 18 months.” The observation became famously known as Moore’s Law and
has proven accurate for more than 55 years (see Figure 3-2).

24

CHAPTER 3

Microprocessor Transistor Counts 1971-2011 & Moore's Law

WLore SPAC 1Y

IT’S ALL ABOUT THE DATA

2,600,000,000 - San-Carw Kee T400 i e Ko Westnare £
OnaCarn Narar 1@ 0
1IMIWDIWO- P":;:;;. R
Nl v W acte®
AMD W10
mesne 353
100,000,000 - P A
P ppe o L e
(Yriid
€ 10,000,000 o haten
8 QAVDC RS
- & Porbar
o
w ey
2 1,000,000 -
=
F LS 2]
100,000 - "
e [L Ul
MM O O
AL
10,000 we Yy ewn
o, . olm
L=) OMOE T
2‘300‘ 0N mra e
r T T T
1971 1980 1990 2000 2011

Date of introduction

Figure 3-2. Moore’s law (Source: Wikipedia)

Note

There is a downside to Moore’s Law, and you have probably felt it in your wallet. The problem with

rapidly increasing processing capability is that it renders technology obsolete quickly. So, when your iPhone’s
two-year cell phone contract is up, the new iPhones on the market will be twice as powerful as the iPhone you

had when you signed up. How convenient for everyone!

Bytes

A byte is another unit used to describe information storage on computers. A byte is composed of eight
bits and is a convenient power of two. Whereas a bit can represent up to two different values, a byte can
represent up to 28, or 256, different values. A byte can contain values from 0 to 255.

Note

we will introduce these systems in this chapter so you can understand data types.

In Chapter 13, we discuss Base-2, Base-10, and Base-16 number systems in more detail. However,

25

http://dx.doi.org/10.1007/978-1-4842-2331-4_13

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

The binary number system represents the numerical symbols 0 and 1. To illustrate how the number 71
would be represented in binary, you can use a simple table of eight bits (1 byte), with each bit represented as a
power of two. To convert the byte value 01000111 to decimal, simply add up the on bits, as shown in Table 3-1.

Table 3-1. The Number 71 Represented as a Byte (64 +4+2+ 1)

Power of 2 2 26 2° 2 28 2? 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22, or 00010110, as shown in
Table 3-2.

Table 3-2. The Number 22 Represented as a Byte (16 + 4 + 2)

Power of 2 2 26 25 2 28 2? 2 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255, or 11111111, as shown in
Table 3-3.

Table 3-3. The Number 255 Represented as a Byte (128 + 64+ 32+ 16+8+4+2+ 1)

Power of 2 2 26 25 2¢ 2° 2? 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 1 1 1 1 1 1 1 1

To represent the number 0 in binary, turn on the bits that add up to 0, or 00000000, as shown in Table 3-4.

Table 3-4. The Number 0 Represented as a Byte

Power of 2 2 26 2° 24 2° 2? 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 0 0 0 0 0

3.1.3 Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized by computers,
namely, the hexadecimal format. The hex format is simply a “compressed” version of binary, where
instead of eight characters used to represent a byte (eight bits), you can use two characters, for example,
00 or 2A or FE You will encounter hexadecimal numbers when you are debugging your apps. The
hexadecimal system is a base-16 number system. It uses 16 distinct symbols: 0 to 9 to represent the values
0to 9 and A to F to represent the values 10 to 15. For example, the hexadecimal number 2AF3 is equal

26

CHAPTER 3 * IT’S ALL ABOUT THE DATA

in decimal to (2 x 16°) + (10 x 16%) + (15 x 16") + (3 x 16°), or 10,995. You may want to play with the Mac
Calculator application in Programmer mode to see how hex relates to decimal and binary.

Figure 3-3 shows the ASCII table of characters. Because one byte can represent 256 characters, this
works well for Western characters. For example, hexadecimal 20 represents a space. Hexadecimal 7D
represents a right curly brace (}).You can also see this by playing with the Mac Calculator app in Programmer
mode. It can convert the values to ASCII.

Dec HxOct Char Dec Hx Oct Himl Chr |Dec Hx Oct Html Chr Hx Htmil Ch
0 0 000 NUL {null) 32 20 040 Space| 64 40 100 «#64; [| 96 60 140 «#96;
1 1001 (start of heading) 33 21 041 ! ! 65 41 101 «§65; A | 97 61 141 «#97; a
2 2002 : {start of text) 34 22 042 s#34: 66 42 102 «#66; B | 98 62 142 «#98: D
3 3 003 {end of text) 35 23 043 # # 67 43 103 «§67; C | 99 63 143 «#99; «
4 4 004 (end of transmission) 36 24 044 $ § 68 44 104 «#68; D [100 64 144 «#100; d
5 5 005 (engquiry) 37 25 045 %: % 69 45 105 «§69; E |101 65 145 «#101; =
6 6 006 U {acknowledge) 35 26 046 &: « 70 46 106 «¥70; F |102 66 146 «#102; £
7 7 007 {bell) 39 27 047 «#39; ' 71 47 107 «§71; G |103 67 147 &#¥l03; ¢
8 & 010 {backspace) 40 28 050 ((72 48 110 «#72; H |104 68 150 «#104; h
9 9011 {horizontal tab) 41 29 051 «#41;) 73 49 111 «§73; I |105 69 151 «#105; 1
10 A 012 (NL line feed, new line)| 42 ZA 052 «#42; ° 74 4A 112 «874; J |106 6A 152 «#106;]
11 B 013 (vertical tab) 43 2ZB 053 &«#43; + 75 4B 113 «#75; K (107 6B 153 «#107; k
12 € 014 (NP form feed, new page)| 44 2C 054 «#44; , 76 4C 114 «#76; L |108 6C 154 l 1
13 D 015 (carriage return) 45 2D 055 «#45; - 77 4D 115 «#77: M |109 6D 155 &«#109;
14 E 0le (shifrt out) 46 ZE 056 . . 78 4E 116 «§78; N |110 6E 156 n: n
15 F 017 (shift in) 47 2F 057 / / 79 4F 117 «§79; 0 |111 6F 157 «#lll; o
16 10 020 (data link escape) 45 30 060 0: 0 80 50 120 «#80; P |112 70 160 «#ll2; p
17 11 021 {device control 1) 49 31 061 1: 1 81 51 121 «#§81; 0 |113 71 161 &«#113: ¢
18 12 o022z {device control 2) S0 32 062 2 2 82 52 122 «#82; P |114 72 162 «#lld; ¢
19 13 023 (device control 3) 51 33 063 3: 3 §3 53 123 «#83; 5 |115 73 163 «#ll5; s

20 14 024 (device control 4) 52 34 064 «#52; 4 84 54 124 «F84; T |1l6 74 164 &#lle6; ©

21 15 025 . {negative acknowledge) S3 35 065 5 5 85 55 125 «#85: U |117 75 165 u u

22 16 026 ({synchronous idle) 54 36 066 «#54; 6 86 56 126 «#86; V |118 76 166 «#¥ll8: v

23 17 027 ETE (end of trans. block) 55 37 067 7: 7 87 57 127 «#87; W |119 77 167 &#l19; w

24 18 030 {cancel) 56 38 070 «#56: © 88 58 130 «#88; X |120 78 170 x ¥

25 19 031 {end of medium) 57 39 071 «#57: 9 89 59 131 «§68; ¥ |121 79 171 «#l21: ¥

26 1A 032 i (substitute) 58 3A 072 «#58; : 90 S5A 132 «#50; I 1122 7A 172 «#l22; =

27 1B 033 ESC (escape) 59 3B 073 <#59; : 91 SB 133 «§91; [|123 7B 173 &#l23; |

28 1C 034 (file separator) 60 3C 074 < < 92 5C 134 «#92; \ |l124 7C 174 «#l24; |

29 1D 035 (group separator) 61 3D 075 «#¥6l; = 93 5D 135 «#93;] |125 7D 175 «#¥1l25; |
30 1E 036 {record separator) 62 3E 076 > > 94 SE 136 «#94; * |126 7E 176 «#126; -
31 1F 037 {unit separator) 63 3F 077 «#63;: 7 95 5F 137 «#95; _ |127 7F 177 «#127; LEL

Source: www.LeokupTables.com

122 ¢ 144 E 161 i 177 193 L 209 = 225 5 241

120 o 145 = 162 & 17@ B 194 + 20 226 T 242 >

130 ¢ 146 &= 163 u 179 | 195} 211 L 227 = 243 <

131 & 147 o 164 120 196 - 212 & 228 % 244 T

132 4 148 o 165 1 181 4 197 4 213 29 o 245)

133 & 149 o 166 ° 182 198k 214 230 246 -

134 2 150 u 167 * 183 4 199 | 215 4 231 ¢ 247 =

135 ¢ 151 o 168 184 4 200 & 216 + 232 & 248 ¢

136 & 152 169 185 4 01 f 217 A 233 ® 249

137 & 153 0 170 - 186 | 202 & 218 [24 0o 250

138 ¢ 154 U 17195, % 187 3 203 5 219 1 235§ 251

139 1 156 £ 172 % 188 4 204 | 220 u 236 o 252 _

140 1 157 ¥ 173 189 4 05 = 221 | 237§ 253 ¢

141 i 158 _ 174 « 190 4 06 ¥ 222] 28 = 254 m

142 A 159 f 175 » 191 4 207 * 223 = 239 A 255

143 A 160 4 176 192 b 08 L 224 o 240 =

Source: www.lookupTables.com

Figure 3-3. ASCII characters
27

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

Unicode

Representing characters with a byte worked well for computers until about the 1990s, when the personal
computer became widely adopted in non-Western countries where languages have more than 256
characters. Instead of a one-byte character set, Unicode can have up to a four-byte character set.

To facilitate faster adoption, the first 256 code points are identical to the ASCII character table. Unicode
can have different character encodings. The most common encoding used for Western text is called UTF-8.
The “8” is how many bits are used per character, so it’s one byte per character, like ASCII.

As an iPhone developer, you will probably use this character encoding the most.

Data Types

Now that we've discussed how computers store data, we will cover an important concept called data types.
Humans can generally just look at data and the context in which it is being used to determine what type of
data it is and how it will be used. Computers need to be told how to do this. So, the programmer needs to tell
the computer the type of data it is being given. Here’s an example: 2 + 2 = 4.

The computer needs to know you want to add two numbers together. In this example, they are integers.
You might first believe that adding these numbers is obvious to even the most casual observer, let alone a
sophisticated computer. However, it is common for users of iOS apps to store data as a series of characters,
not a calculation. For example, a text message might read “Everyone knows that2 + 2 =4"

In this case, the example is a series of characters called a string. A data type is simply the declaration to
your program that defines the data you want to store. A variable is used to store your data and is declared
with an associated data type. All data is stored in a variable, and the variable has to have a variable type. For
example, in Swift, the following are variable declarations with their associated data types:

var x: Int = 10
var y: Int = 2
var z: Int = 0
var submarineName: String = "USS Nevada SSBN-733"

Data types cannot be mixed with one another. You cannot do the following:
z = X + submarineName

Mixing data types will cause either compiler warnings or compiler errors, and your app will not run.
Table 3-5 gives examples of the basic data types in Swift.

Table 3-5. Swift Data Types

Type Examples

Int 1,5,10,100

Float or Double 1.0, 2.222, 3.14159

Bool true, false

String "Star Wars", "Star Trek"
ClassName UIView, UILabel, and so on

28

CHAPTER 3 * IT’S ALL ABOUT THE DATA

Declaring Constants and Variables

Swift constants and variables must be declared before they are used. You declare constants with the let
keyword and variables with the var keyword. Constants never change during the program, but variables do
change during the program.

There are two ways to declare variables: explicit and implicit.

Here is the syntax for declaring a variable’s type explicitly:

var name: type = value
var firstNumber: Int = 5

However, declaring the type is normally optional, and removing the type shortens the code and makes it
easier because there is less code to type and maintain.
Here is the syntax for declaring a variable’s type implicitly:

var name = value
var firstNumber = §

You can use implicit most of the time because Swift is smart enough to figure out what the variable is
by what you assign to it.

If a variable isn’t going to change, you should declare it as a constant. Constants never change.
Constants start with the keyword let, as shown here:
let secondNumber = 10

To best understand how variables and constants are declared, here are two examples:

let maximumNumberOfStudents
var currentNumberOfStudents

30
5

This code can be read as follows: “Declare a new constant called maximumNumberOfStudents, and give it
avalue of 30. Then, declare a new variable called currentNumberOfStudents, and give it an initial value of 5.
In this example, the maximum number of students is declared as a constant because the maximum
value never changes. The current number of students is declared as a variable because this value must be

incremented or decremented after the student enrollment changes.

Most data you will use in your programs can be classified into four different kinds—Booleans, numbers,
strings, and objects. We will discuss how to work with numbers and object data types in the remainder of
this chapter. In Chapter 4, we will talk more about Boolean data types when you learn how to write apps with
decision making.

Note Localizing your app is the process of writing your app so users can buy and use it in their native
language. This process is too advanced for this book, but it is a simple one to complete when you plan from the
beginning. Localizing your app greatly expands the total number of potential customers and revenue for your
app without your having to rewrite it for each language. Be sure to localize your app. It is not hard to do and
can easily double or triple the number of people who buy it. For more information on localizing your app, visit
Apple’s “Build Apps for the World” site: https://developer.apple.com/internationalization/.

29

[vww allitebooks.cond

http://dx.doi.org/10.1007/978-1-4842-2331-4_4
https://developer.apple.com/internationalization/
http://www.allitebooks.org

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

Optionals

Swift introduces an important concept called optionals that developers need to understand. Even for
experienced iOS developers, this concept is new. Optionals are not a hard topic to understand, but they take
some time to get used to.

Use optionals when a value may be absent. An optional says the following:

e Avariable may or may not have a value assigned to it.

There are times when a constant or variable might not have a value. Listing 3-1 shows an example of the
integer initializer called Int(), which converts a String value to an Int.

Listing 3-1. Converting a string to an integer

1 var myString = "42"
2 let someInteger = Int(myString)
3 // somelnteger is inferred to be of type "Int?", or "optional Int"

The constant someInteger is assigned the integer value 42. someInteger is also assigned the type of
Int?. The question mark indicates that it is an optional type, meaning that the variable or constant’s value
may be absent. See Listing 3-2.

Listing 3-2. Unable to convert a string to an integer

1 var myString = "Hello World"
2 let someInteger = Int(myString)
3 // somelnteger's value is now absent

Line 2 in Listing 3-2 has a problem. It is not possible to convert “Hello World” from a String to an Int.
So, the value of someInteger is said to be absent or nil because on line 2, someInteger is inferred to be an
optional Int.

Note Objective-C programmers may have used nil to return an object from a method, with nil meaning
“the absence of a valid object.” This works for objects but not well for structures, basic C types, or enumeration
values. Objective-C methods typically return a special value, like NSNotFound, indicating the absence of a valid
object. This assumes that the method’s caller knows the special value to test against. Optionals indicate the
absence of a value for any type at all, without using special constants.

The Integer Int() initializer might fail to return a value, so the method returns an optional Int, rather
than an Int. Again, the question mark indicates that the value it contains is optional, meaning that it might
contain some Int value, or it may contain no value at all. The value is either some Int or is nothing at all.

Swift’s nil is not the same as nil in Objective-C. With Objective-C, nil is a pointer to a nonexistent
object. In Swift, nil is not a pointer; it is the absence of a value. Optionals of any type can be set to nil, not
just object types.

In Chapter 4, you will learn how to “unwrap” optionals and check for the object of a valid object.

30

http://dx.doi.org/10.1007/978-1-4842-2331-4_4

CHAPTER 3 * IT’S ALL ABOUT THE DATA

Using Variables in Playgrounds

Now that you have learned about data types, let’s write your code in a playground that adds two numbers
and displays the sum.

1. Open Xcode and select “Get started with a playground,” as shown in Figure 3-4.

Welcome to Xcode

Version 8.0 (8A218a)

Get started with a playground
Explore new ideas quickly and easily.

Create a new Xcode project
~ | Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.

Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

Figure 3-4. Creating a playground

31

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

2. Name your playground DataTypes, as shown in Figure 3-5. Press Next and select
a directory to save your playground.

Choose options for your new playground:

Name DataTypes

Platform: i0OS

<3

Cancel Previous

Figure 3-5. Naming your playground

32

Next

CHAPTER 3 * IT’S ALL ABOUT THE DATA

3. When your playground is created, two lines of code are already placed in your

code for you, as shown in Figure 3-6.

6 |

|
=

L Ready | Today at 8:24 PM
DataTypes.playground
« DataTypes
//: Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground"
>

Figure 3-6. Two lines of code

4. Add the code to this playground, as shown in Listing 3-3.

Listing 3-3. Playground adding

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground”

var firstNumber = 2
var secondNumber = 3

var totalSum = firstNumber + secondNumber

firstNumber = firstNumber + 1
secondNumber = secondNumber + 1

Hello, playground

33

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

15 totalSum = firstNumber + secondNumber
16

17

18 print("totalSum = \(totalSum)")

Your playground should look like Figure 3-7.

@ @ Ready | Today at 8:26 PM

DataTypes.playground
« DataTypes

i/

//: Playground — noun: a place where people can play

import UIKit

var str = "Hello, playground" Hello, playground’
var firstNumber = 2 2
var secondNumber = 3 3
var totalSum = firstNumber + secondNumber 5
3
1 4
m = firstNumber + secondNumber 7

lprint("totalSum = \(totalSum)") totalSum = 7\n
19

Figure 3-7. Playground displaying the results of your Swift app

One of the neat features of playgrounds is that as you type in your code, Swift executes the line of code
as you enter it so you can immediately view the results.

The // used in Swift programming enables programmers to make comments about their code.
Comments are not compiled by your applications and are used as notes for the programmer or, more
importantly, for programmers who follow the original developer. Comments help both the original
developer and later developers understand how the app was developed.

Sometimes, it is necessary for comments to span several lines or just part of a line. This can be
accomplished with /* and */. All the text between /* and */ is treated as comments and is not compiled.

print is a function that can take one parameter and print its contents.

34

CHAPTER 3 * IT’S ALL ABOUT THE DATA

Note If your editor doesn’t have the same menus or gutter (the left column that contains the line numbers
of the program) you saw in the previous screenshots, you can turn these settings in Xcode preferences.
You can open Xcode preferences by clicking the Xcode menu in the menu bar and then selecting Preferences.
See Figure 3-8.

Editing Indentation

| Show: @ Line number,

4 Code folding ribbon
Focus code blocks on hover
Page guide at column: ;
| Highlight instances of selected symbol

Delay: 0.25 . seconds

Code completion: 3 Suggest completions while typing
Use Escape key to show completion suggestions
Automatically insert closing braces ("}")
Enable type-over completions
Automatically balance brackets in Objective-C method calls

While editing: Automatically trim trailing whitespace
Including whitespace-only lines

Default text encoding: Unicode (UTF-8) B
Default line endings: macOS / Unix (LF) E

Convert existing files on save

Code coverage: Show iteration counts

Figure 3-8. Adding line numbers to the gutter

Summary

In this chapter, you learned how data is used by your apps. You saw how to initialize variables and how to
assign data to them. We explained that when variables are declared, they have a data type associated with
them and that only data of the same type can be assigned to variables. The differences between variables

and constants were also discussed, and we also introduced optionals.

35

CHAPTER 3 ' IT’S ALL ABOUT THE DATA

EXERCISES

e Write code within a Swift playground that multiplies two integers and displays the result.
e Write code within a Swift playground that squares a float. Display the resulting float.

e Write code within a Swift playground that subtracts two floats, with the result being
stored as an integer. Note that rounding does not occur.

36

CHAPTER 4

Making Decisions, Program Flow,
and App Design

One of the great things about being an i0S developer is you get to tell your devices exactly what you want
them to do and they do it—your devices will do tasks over and over again without getting tired. That’s
because iOS devices don’t care how hard they worked yesterday, and they don’t let feelings get in the way.
These devices don’t need hugs.

There is a downside to being a developer: You have to think of all the possible outcomes when it comes
to your apps. Many developers love having this kind of control. They enjoy focusing on the many details of
their apps; however, it can be frustrating having to handle so many details. As mentioned in the introduction
to this book, there is a price to pay for developing apps, and that price is time. The more time you spend
developing and debugging, the better you will get with all the details, and the better your apps will perform.
You have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Your devices produce results, many of
which are based on true and false conditions.

In this chapter, you learn about computer logic and controlling the flow of your apps. Processing
information and arriving at results are at the heart of all apps. Your apps need to process data based on
values and conditions. To do this, you need to understand how computers perform logical operations and
execute code based on the information your apps have acquired.

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators such as AND and OR and
the unary operator NOT to determine whether your conditions have been met. Binary operators take two
operands. Unary operators take one operand.

We just introduced a couple of new terms that can sound confusing; however, you probably use Boolean
logic every day. Let’s look at a couple of examples of Boolean logic with the binary operators AND and OR in a
conversation parents sometimes have with their teenage children:

“You can go to the movies tonight if your room is clean AND the dishes are put away.”

“You can go to the movies tonight if your room is clean OR the dishes are put away.”

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly introduced the Boolean
data type. A variable that is defined as Boolean can contain only the values TRUE and FALSE.

var seeMovies: Bool = false
In the preceding example, the AND operator takes two operands: one to the left and one to the right of

the AND. Each operand can be evaluated independently with a TRUE or FALSE.

© Gary Bennett and Brad Lees 2016 37
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_4

http://dx.doi.org/10.1007/978-1-4842-2331-4_3

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In the first example,
the teenager has to clean his or her room AND have the dishes done. If either one of the conditions is FALSE,
the result is FALSE—no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or both conditions can be
TRUE to yield a TRUE result. In the second example, just a clean bedroom would result in the ability to go to
the movies.

Note In Objective-C and other programming languages, Boolean variables can hold integer variables;
o represents FALSE, and any nonzero value represents TRUE. Swift’s strong type checking doesn’t allow this.
Boolean variables in Swift can be assigned only true or false.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result. Here’s an example:

“You can NOT go to the movies.”

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE and a FALSE
operand to a TRUE. Here, the result is a FALSE.

AND, OR, and NOT are three common Boolean operators. Occasionally, you need to use more complex
operators. XOR, NAND, and NOR are other common operations for iOS developers.

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR operator works is
the XOR operator will return a TRUE result if only one argument is TRUE, not both.

Swift does not have these operators built in, but consider that NAND and NOR mean NOT AND and NOT
OR. After evaluating the AND or OR argument and the results, simply negate the results.

Truth Tables

You can use a tool to help you evaluate all the Boolean operators called a truth table, and it is a
mathematical table used in logic to evaluate Boolean operators. They are helpful when trying to determine
all the possibilities of a Boolean operator. Let’s look at some common truth tables for AND, OR, NOT, XOR, NAND,
and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.

e TRUE AND TRUE =TRUE

e TRUE AND FALSE =FALSE
e FALSE AND TRUE = FALSE
e FALSE AND FALSE =FALSE

Placing these combinations in a truth table results in Table 4-1.

Table 4-1. An AND Truth Table

A B AAND B
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE

FALSE FALSE FALSE

38

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

An AND truth table produces a TRUE result only if both of its operands are TRUE.
Table 4-2 illustrates an OR truth table and all possible operands.

Table 4-2. An OR Truth Table

A B AORB
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

An OR truth table produces a TRUE result if one or both of its operands are TRUE.
Table 4-3 illustrates a NOT truth table and all possible operands.

Table 4-3. A NOT Truth Table

A NOTA
TRUE FALSE
FALSE TRUE

A NOT flips the bit or negates the original operand’s Boolean value.
Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.

Table 4-4. An XOR Truth Table

A B AXORB
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

The operator XOR yields a TRUE result if only one of the operands is TRUE.
Table 4-5 illustrates a NAND truth table and all possible operands.

Table 4-5. A NAND Truth Table

A B ANAND B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE

39

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Table 4-6 illustrates a NOR truth table and all possible operands.

Table 4-6. A NOR Truth Table

A B ANORB
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

The easiest way to look at the NAND and NOR operators is to simply negate the results from the AND and OR
truth tables, respectively.

Comparison Operators

In software development, you can compare different data items using comparison operators. These
operators produce a logical TRUE or FALSE result. Table 4-7 shows the list of comparison operators.

Table 4-7. Comparison Operators

Operator Definition

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Exactly equal to

1= Not equal to

Note If you're constantly forgetting which way the greater than and less than signs go, use a crutch we
learned in grade school: If the greater than and less than signs represent the mouth of an alligator, the alligator
always eats the bigger value. It may sound silly, but it works.

Designing Apps

Now that we've introduced Boolean logic and comparison operators, you can start designing your apps.
Sometimes it's important to express all or parts of your apps to others without having to write the actual code.
Writing pseudocode helps a developer think out loud and brainstorm with other developers regarding
sections of code that are of concern. This helps to analyze problems and possible solutions before coding begins.

40

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Pseudocode

Pseudocode refers to writing code that is a high-level description of an algorithm you are trying to solve.
Pseudocode does not contain the necessary programming syntax for coding; however, it does express the
algorithm that is necessary to solve the problem at hand.

Pseudocode can be written by hand on paper (or a whiteboard) or typed on a computer.

Using pseudocode, you can apply what you know about Boolean data types, truth tables, and
comparison operators. Refer to Listing 4-1 for some pseudocode examples.

Note Pseudocode is for expressing and teaching coding ideas. Pseudocode will not execute!

Listing 4-1. Pseudocode Examples Using Conditional Operators in if-then-else Code

X =75
y==6
isComplete = TRUE
if x<y
{
// in this example, x is less than 6
do stuff
}
else
{
do other stuff
}
if isComplete == TRUE
{
// in this example, isComplete is equal to TRUE
do stuff
}
else
{
do other stuff
}

// another way to check isComplete == TRUE
if isComplete

{

// in this example, isComplete is TRUE
do stuff

}

// two ways to check if a value is false
if isComplete == FALSE

do stuff

41

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

else

{
// in this example, isComplete is TRUE so the else block will be executed

do other stuff
}

// another way to check isComplete == FALSE
if lisComplete

{
do stuff
}
else
{
// in this example, 1isComplete is TRUE so the else block will be executed
do other stuff
}

Note that ! switches the value of the Boolean it’s applied to, so using ! makes a TRUE value into a FALSE
and makes a FALSE value into a TRUE. This is the Logical NOT operator in Swift.

Often, it is necessary to combine your comparison tests. A compound relationship test is one or more
simple relationship tests joined by either 8& or | | (two pipe characters).

88 and | | are the logical AND and logical OR, respectively in Swift. The pseudocode in Listing 4-2
illustrates logical AND and logical OR operators.

Listing 4-2. Using && and || Logical Operators Pseudocode

X =5
y=©6
isComplete = TRUE

// using the logical AND

if x <y && isComplete == TRUE

{
// in this example, x is less than 6 and isComplete == TRUE
do stuff

}

if x <y || isComplete == FALSE

// in this example, x is less than 6.

// Only one operand has to be TRUE for an OR to result in a TRUE.
// See Table 4-2 A OR Truth Table

do stuff

}

// another way to test for TRUE
if x <y && isComplete

{

// in this example, x is less than 6 and isComplete == TRUE
do stuff

42

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

// another way to test for FALSE
if x <y && lisComplete

{

do stuff
}
else
{

// isComplete == TRUE

do other stuff

}

Optionals and Forced Unwrapping

Chapter 3 introduced optionals. Optionals are variables that might not contain a value. Since optionals may
not contain a value, you need to check for that before you access them.

You start by using an if statement to determine whether the optional contains a value by comparing
the optional against nil. If the optional has a value, it is considered to be “not equal to” nil, as shown in
Listing 4-3.

Line 4 in Listing 4-3 checks to see whether the optional variable is not equal to nil. In this example, the
someInteger value is absent, and it is equal to nil, so line 8 code is executed.

Listing 4-3. Checking Whether an Optional Has a Value

1 var myString = "Hello world"

2 let someInteger = Int(myString)

3 // somelnteger's value is now absent

4 if someInteger != nil {

5 print("someInteger contains an integer value.")

6 }

7 else {

8 print("someInteger doesn't contain an integer value.")
9}

Now that you have added a check to make sure your optional does or doesn’t contain a value, you can
access its value by adding an exclamation mark (!) to the end of the optional’s name. The ! means you
have checked to ensure the optional variable has a value and use it. This is called forced unwrapping of the
optional’s value. See Listing 4-4.

Listing 4-4. Forced Unwrapping

1 var myString = "42"

2 let someInteger = Int(myString)

3 // somelnteger contains a value

4 if someInteger != nil {

5 print("someInteger contains a value. Here it is: \(someInteger!)")
6}

7 else {

8 print("someInteger doesn't contain an integer value.")

9}

43

http://dx.doi.org/10.1007/978-1-4842-2331-4_3

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Note Displaying the contents of a variable in a print function is done with \ ().

Optional Binding

You can find out whether an optional contains a value and, if so, assign a temporary constant or variable to
that value in a single action. (See Listing 4-5.) This is called optional binding. Optional binding can be used
with if and while statements to determine whether an optional has a value and, if so, extract the value to a
constant or variable.

Listing 4-5. Optional Binding Syntax to a Constant

1 let someOptional: String? = "hello world"

2 if let constantName = someOptional {

3 print("constantName contains a value, Here it is: \(constantName)")
4}

If you want to assign the optional to a variable so you can manipulate that variable, you can assign the
optional to a var, as shown in Listing 4-6.

Listing 4-6. Optional Binding Syntax to a Variable

1 let someOptional: String? = "hello world"

2 if var variableName = someOptional {

3 print("variableName contains a value, Here it is: \(variableName)")
4 }

Notice in Listings 4-5 and 4-6 that you didn’t need to use the !. If the conversion was successful, the
variable or constant was initialized with the value contained within the optional, so the ! was not necessary.

It may be confusing that the Logical NOT operator and the process of forced unwrapping occur at the
same time since they both use the ! character. The Logical NOT operator is located before a variable or
constant, and the forced unwrapping operator is located after an optional constant or variable.

Implicitly Unwrapped Optionals

There are instances after the value is first set when you know that an optional will always have a value. In
these instances, it’s useful to remove the need to check and unwrap an optional every time it needs to be
accessed. These kinds of optionals are called implicitly unwrapped optionals.

Because of the program’s structure, you know that the optional has a value, so you can give permission
for the optional to be safely unwrapped whenever it needs to be accessed. The ! is not needed every time
you use it; instead, you place an ! after the optional’s type when you declare it. Listing 4-7 shows the
comparison between an optional String and an implicitly unwrapped optional String.

Listing 4-7. Comparison of an Optional String and an Implicitly Unwrapped Optional String

1 var optionalString: String? = "My optional string."

2 var forcedUnWrappedString: String = optionalString! // requires an !

3

4 var nextOptionalString: String! = "An implicitly unwrapped optional."

5 var implicitUnwrappedString: String = nextOptionalString // no need for an !

44

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Flowcharting

After the design requirements are finalized, you can create pseudocode sections of your app to solve
complex development issues. Flowcharting is a common method of diagramming an algorithm. An
algorithm is represented as different types of boxes connected by lines and arrows. Developers often use
flowcharting to express code visually, as shown in Figure 4-1.

No
—} Process —} ":}tli r::t —}-

No

Yes

T

Process Disk :>

®
1

Yes

LA
N

=

Process

Figure 4-1. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an end without a stop.
This helps developers make sure all of the branches in their code are accounted for and that they cleanly
stop execution.

Designing and Flowcharting an Example App

We have covered a lot of information about decision-making and program flow. It’s time to do what
programmers do best: write apps!

The app you have been assigned to write generates a random number between 0 and 100 and asks the
user to guess the number. Users have to do this until the number is guessed. When users guess the correct
answer, they will be asked if they want to play again.

45

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

The App’s Design

Using your design requirements, you can make a flowchart for your app. See Figure 4-2.

e

getRandomNumber
roundRandomNumber
printRandomNumber

b

Ask user 10 guess
number b <) 2\

0-100 -

Guess

@ Yes

Display correct quess. Display guess ﬂ
AsK user If they want 100 low 3

10 continue piaying

Display guess P
too high [“|

Yes
== Keep playing

No

Figure 4-2. Flowchart for guessing a random number app

Reviewing Figure 4-2, you'll notice that as you approach the end of a block of logic in your flowchart,
there are arrows that go back to a previous section and repeat that section until some condition is met. This
is called looping. It enables you to repeat sections of programming logic—without having to rewrite those
sections of code over—until a condition is met.

46

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Using Loops to Repeat Program Statements

A loop is a sequence of program statements that is specified once but can be repeated several times in
succession. A loop can repeat a specified number of times (count-controlled) or until some condition
(condition-controlled) occurs.

In this section, you'll learn about count-controlled loops and condition-controlled loops. You will also
learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop repeats a specified number of times. In Swift, this is a for loop. A for loop has a
counter variable, which enables the developer to specify the number of times the loop will be executed. See
Listing 4-8.

Listing 4-8. A Count-Controlled Loop
for i in 0..<10 {

print(i)
1}

//....continue

The loop in Listing 4-8 will loop ten times. The variable i starts at zero and increments at the end of the
} by one. The incrementing is done by the i++ in the for statement; i++is equivalenttoi = i + 1.Theniis
incremented by one to ten and checked to see whether it is less than ten. This for loop will exit wheni = 10
and the } is reached.

Note It is common for developers to confuse the number of times they think their loops will repeat. If the
loop started at 1 in Listing 4-8, the loop would repeat nine times instead of ten.

You use the for-in loop to iterate over collections of items, such as ranges of numbers, items in an
array, or characters in a string.

Listing 4-9 prints a few entries in the ten times table.
Listing 4-9. Counter Variable Initialized in the for Loop Declaration
for index in 1...10 {

print("\(index) times 10 is \(index * 10)")

//....continue

Condition-Controlled Loops

Swift has the ability to repeat a loop until some condition changes. You may want to repeat a section of your
code until a false condition is reached with one of your variables. This type of loop is called awhile loop. A
whileloop is a control flow statement that repeats based on a given Boolean condition. You can think of a
while loop as a repeating if statement. See Listing 4-10.

47

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Listing 4-10. A Swift while Loop Repeating

var isTrue = true
while isTrue
{
// do something
isTrue = false // a condition occurs that sometimes sets isTrue to FALSE

}

//....continue

The while loop in Listing 4-10 first checks whether the variable isTrue is true—which it is—so the
{loop body} is entered where the code is executed. Eventually, some condition is reached that causes
isTrue to become false. After completing all the code in the loop body, the condition (isTrue) is checked
once more, and the loop is repeated. This process is repeated until the variable isTrue is set to false.

Infinite Loops

An infinite loop repeats endlessly, either because of the loop not having a condition that causes termination
or because of the loop having a terminating condition that can never be met.

Generally, infinite loops can cause apps to become unresponsive. They are the result of a side effect of a
bug in either the code or the logic.

Listing 4-11 is an example of an infinite loop caused by a terminating condition that can never be met.
The variable x will be checked with each iteration through the while loop but will never be equal to 5. The
variable x will always be an even number because it was initialized to zero and incremented by two in the
loop. This will cause the loop to repeat endlessly. See Listing 4-12.

Listing 4-11. An Example of an Infinite Loop

var X = 0
while x != 5

{

// do something
X=X+ 2

}

//....continue

Listing 4-12. An Example of an Infinite Loop Caused by a Terminating Condition That Can Never Be Met

while true

{
}

//....continue

// do something forever

48

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Coding the Example App in Swift

Using your requirements and what you learned, try writing your random number generator in Swift.
To program this app, you have to leave the playground and do this as a Mac Console app. Unfortunately, at
this time, a playground doesn’t enable you to interact with a running app, so you can’t capture keyboard input.

Note You can download the complete random number generator app at http://forum.xcelme.com. The
code is the topic of Chapter 4.

Your Swift app will run from the command line because it asks the user to guess a random number.

1. Open Xcode and start a new project. Choose the Command Line Tool project.
See Figure 4-3.

Choose a template for your new project:

i0s watchOS tv o

ross-platform -

Application
Cocoa Game
Application

Framework & Library

£y X & \r
=)] r
‘ _.f :r‘_.]_l:‘,’ \\.:[[
Cocoa Library Metal Library XPC Service Bundle
Framework

Other

L]

& ”, ®

Cancel "~ Next

Figure 4-3. Starting a new Command Line Tool project

49

http://forum.xcelme.com/
http://dx.doi.org/10.1007/978-1-4842-2331-4_4

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

2. Call your project RandomNumber (see Figure 4-4). Ensure that the Language
drop-down is Swift. Save the project anywhere you prefer on your hard drive.

Choose options for your new project:

Product Name: = RandomNumber]
Team: None a
Organization Name: xcelMe
Organization Identifier: com
Bundle Identifier: com.RandomMNumber

Language: Swift

<3

Cancel Previous W

Figure 4-4. Project options for RandomNumber
3. Openthemain.swift file. Write the code in Listing 4-13.

Listing 4-13. Source Code for Your Random Number Generator App

1//
2 // main.swift
3 // Guess

import Foundation

var randomNumber = 1

var userGuess: Int? = 1

10 var continueGuessing = true
11 var keepPlaying = true

12 var input = ""

13

O o~N O

50

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

14 while keepPlaying {

15 randomNumber = Int(arc4random uniform(101)) //get a random number between 0-100
16 print("The random number to guess is: \(randomNumber)")

17 while continueGuessing {

18 print("Pick a number between 0 and 100.")

19 input = NSString(data: FileHandle.standardInput.availableData, encoding:String.
Encoding.utf8.rawValue)! as String // get keyboard input

20 input = input.replacingOccurrences(of: "\n", with: "", options: NSString.
CompareOptions.literal, range: nil) // strip off the \n

21 userGuess = Int(input)

22 if userGuess == randomNumber {

23 continueGuessing = false

24 print("Correct number!")

25 }

26 //nested if statement

27 else if userGuess! > randomNumber {

28 // user guessed too high

29 print("Your guess is too high")

30 }

31 else{

32 // no reason to check if userGuess < randomNumber. It has to be.

33 print("Your guess is too low")

34 }

35 }

36 print ("Play Again? Y or N")
37 input = NSString(data: FileHandle.standardInput.availableData, encoding:String.
Encoding.utf8.rawValue)! as String

38 input = input.replacingOccurrences(of: "\n", with: "", options: NSString.
CompareOptions.literal, range: nil)

39

40 if input == "N" || input == "n" {

41 keepPlaying = false

42

43 continueGuessing = true

44 }

In Listing 4-13, there is new code that we haven’t discussed before. The first new line of code (line 15) is
as follows:

randomNumber = Int(arc4random_uniform(101))
This line will produce a random number between 0 and 100. arc4random_uniform() is a function that
returns a random number.

The next line of new code is on line 19:

19 input = NSString(data: FileHandle.standardInput.availableData,
encoding:String.Encoding.utf8.rawValue)! as String // get keyboard input

This enables you to get keyboard input for the user. We will talk about this syntax in later chapters.

51

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

The next new line of code is on line 21:
userGuess = Int(input)

Int takes a string initializer and converts it to an integer.

Nested if Statements and else if Statements

Sometimes, it is necessary to nest if statements. This means that you need to have if statements nested
inside an existing if statement. Additionally, it is sometimes necessary to have a comparison as the first step
in the else section of the if statement. This is called an else if statement (recall line 27 in Listing 4-13).

else if userGuess! > randomNumber

Removing Extra Characters

Line 20 in Listing 4-13 is as follows:

input = input.replacingOccurrences(of: "\n", with: "", options:
NSString.CompareOptions.literal, range: nil) // strip off the \n

Reading keyboard input can be difficult. In this case, it leaves a remnant at the end of your string, \n,
and you need to remove it. This is a newline character that is generated when the users press the Return key
on their keyboards.

Improving the Code Through Refactoring

Often, after you get your code to work, you examine the code and find more efficient ways to write it.
The process of rewriting your code to make it more efficient, maintainable, and readable is called code
refactoring.

As you review your code in Swift, you will often notice that you can eliminate some unnecessary code.

Note As developers, we have found that the best line of code is the line that you don’t have to write—Iless
code means less to debug and maintain.

Running the App

To run your app, click the Play button at the top left of your screen in your Swift project. See Figure 4-5.

Note If you're not seeing the output console when you run your app, make sure you have selected the
same options at the top-right and bottom-right corners of the editor (choose View > Debug Area > Activate
Console). See Figure 4-5.

52

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

I
ff main.swift
/I Guess

import Foundation

var randomiumber = 1
var userGuess:Int? = 1

var continueGuessing = true
var keepPlaying = true
var input = "*

{
Int{arc4érandom_uniform{1e1}} //
dom number to guess is: \(ra

print ("Pick a number between 8 and 100. ")
NSString(data: FileHandle.standardInput,availableData, encoding:String.Encoding.utf8.rawvalue)! as String //get keybosrd imput
.replacingOccurrences{of: “\n", with: **, options: NSString.CompareOptions.literal, range: nil) //strip off the /n

(]

uessl »
ser guessed too hig
print{"Your guess is too high")

3 else{
-3 /! no reason to check if userGuess < randomNumber. It has to be.
3 print{"Your guess is too low")

}

print ("Play Again? ¥ or N*)

tm N ing(data: FileHandle.standardInput.availableData, encoding:String.Encoding.utf8.rawvalue)! as String
= i .replacingOccurrences(of: *\n", with: "", options: NSString.CompareOptions.literal, range: nil)

false

"
ng =

ing = true

Your guess is too high

Pick a number between @ and 1680.
34

Your guess is too low

Pick a number between @ and 1680.
36

Figure 4-5. The console output of the Swift random number generator app

Design Requirements

As discussed in Chapter 1, the most expensive process in the software development life cycle is writing code.
The least expensive process in the software development life cycle is gathering the requirements for your
application; yet, this latter process is the most overlooked and least used in software development.

Design requirements usually begin by asking clients, customers, and/or stakeholders how the
application should work and what problems it should solve.

With respect to apps, requirements can include long or short narrative descriptions, screen mock-ups,
and formulas. It is far easier to open your word processor and change the requirements and screen mock-
ups before coding begins than it is to modify an iOS app. The following is the design requirement for one
view of an iPhone mobile banking app:

. View: Accounts view.

e Description: Displays the list of accounts the user has. The list of accounts will be in
the following sections: Business Accounts, Personal Accounts and Car Loans, IRA,
and Home Equity Loans.

e Cells: Each cell will contain the account name, the last four digits of the account, the
available balance, and the present balance.

53

http://dx.doi.org/10.1007/978-1-4842-2331-4_1

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

A picture is worth a thousand words. Screen mock-ups are helpful to developers and users because they
can show how the views will look when they are completed. There are many tools that can quickly design
mock-ups; one of these tools is OmniGraffle. See Figure 4-6 for an example of a screen mock-up used for
design requirements generated by OmniGraffle.

iij CANVASES - ! -

.

——r—

e

Samenanscasnett

5 Account P
Canvas 14 kel

=

-4 3
B: CONTENTS = % 2
v
7 s Layeril vings (xx1772)

[Adjustable Arrow Business Accounts ailable Balance $123421)

o /Present Balance sz

) T Business Checking (xx4327)
Available Balance s210022 7 IRA (o17?)
Present Balance $4201.35 XX

Avallable Balance $1234.21)
Business Savings (xx1234) Prsgen Dalence ®ine
Available Balance s1234.21)
o Car Loan (xx172)

Prosent Balance s2123.22 Ouastanding Princlple §iakias

A Text: Personal Accounts Next Pryment Amount 212322

S0 Group Personal Accounts Ove Date O&;m)

(o] st Pay Amount

=0 Group Checking (xx3423) / Last Pay Date o7 Te008

. Lo Available Balance £2100. }

I Rectangle Present Balance $4201 %,

A Text: Modified by: Gary B -

A Text: Wed Jul 14 2010
A Text: Page 14 of 23 s

Home Locations Contact Us FAQ Log Out

Home Equity Loan (xx7672)

Outstanding Principle s123421
A Text: Business Accounts Naxt Payment Amount s21za.22
= Due Date 08/17/2009 -:I
-0 Group Last Pay Amount 45289
o Last Pay Date QTNT2009
[Rectangle

sl

A Text: Native

A Text: Account Page
Rectangle
50 Group =

Native

Modified by: Gary Bennett Page 14 of 23 Wed Jul 14 2010

Figure 4-6. Screen mock-up for a mobile banking app using OmniGraffle and the Ultimate iPhone Stencil
plug-in. This mock-up was done for the original Woodforest Banking app in 2010

Many developers believe that design requirements take too long and are unnecessary. This is not the
case. There is a lot of information presented on the Accounts screen in Figure 4-6. Many business rules can
determine how information is displayed to the users, along with all of the error handling when things go bad.
When designing your app, working with all the business stakeholders at the beginning of the development
process is critical to getting it right the first time.

54

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Figure 4-7 is an example of all stakeholders being involved in your app’s development. Having all
stakeholders involved in every view from the beginning will eliminate multiple rewrites and application bugs.

App Store » Finance > Woodforest Financial Group

: \ Woodforest Mobile Banking =

Woodfareat Financial Group »
Details | Ratings and Reviews Related

iPhone Screenshots

Transter Mabile Deposit
i s , e Checking & Savings Schedube Account Transfer Choose an Option
Athoonmmsﬁgm__ | d i 11 |
3 Checking (..1175) From: Chacking 1175 « Make a Deposit
© Accouns Current Baance: 59,0329
Rating: 4+ Aottt Bakinc: $9.103.29 T Chocking [2850) & Dopost History
: Hasiers Checking (...3853)
ing (..
Tranafer Amount:
LINKS e Cuiment Batarma =187 s e
3y Bills Mialatte Balance: 52187
Privacy Pobcy Mama: Weaidy Savings
Duvelaper Wetrsite « Motila Daposit Checking (...4982)
Cument Bafance: $1.74 Teanstor By February 13, 2014
\ Locations Mvalachs Balinca: ST
© Wesddforest National Bank 2013 r | B P — Woskiy
- Checking (...5884)
BB Gifl Cands Cumet Batance: 7870976 Humber Of Timas:
Avalable Baanco: sTasEa
t. contacius
Savings {-.5114) Cancel “
@ Frequently Asked Questions Current Batarce: $1o8
Auadatie Balance S108
© 2014 Woodfoenst National Bank
Member FDIC
" S - (] = w 5 3 [&= W S 3 [] =1 2 S s a =

Figure 4-7. Woodforest Mobile Banking app as it appeared on the App Store in 2015; compare this with the
app requirements Accounts screen in Figure 4-6

Additionally, Apple recommends that developers spend at least 50 percent of their development time
on the user interface’s design and development.
Balsamiq also has great tools for laying out your iOS app’s look. See Figure 4-8.

55

CHAPTER 4 © MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

Unleash Your Creativity!

Balsamig Mockups is a rapid wireframing tool
that helps you Work Faster & Smarter. It
reproduces the experience of sketching on a
whiteboard, but using a computer.

Making mockups is fast. You'll generate more
ideas, so you can throw out the bad ones and
discover the best solutions.

Quick Add User Interface Library
Build a user interface at the Tons of Ul elements.
speed of thought. Just drag and drop!

Get Honest Feedback

Improve your designs by getting immediate and
meaningful feedback. Sketch-style wireframes
help focus the conversation on content and
interaction, not minute details (those can come
later).

Sketch-Style Controls Clean Wireframes Option
They look like sketches on Need to present your
purpose! It encourages work? Switch to the
brainstorming. clean wireframe skin!

balsamiq.com

buttor|

Button

Button Bar / Tab Bar

Help Button

Multiline Button

Pointy Butten [iPhone Button
Radio Button

Radio Button Group

jo [tw

i

Cancal

Figure 4-8. Balsamiq.com web site for creating wireframe mock-ups

Summary

This chapter covered a lot of important information on how to control your applications; program flow and
decision-making are essential to every iOS app. Make sure you have completed the Swift example in this
chapter. You might review these examples and think you understand everything without having to write this
app. This will be a fatal mistake that will prevent you from becoming a successful i0OS developer. You must
spend time coding this example. Developers learn by doing, not by reading.

56

e AND
e OR

e XOR
e NAND

The terms in this chapter are important. You should be able to describe the following:

CHAPTER 4

NOR

NOT

Truth tables

Negation

All comparison operators
Application requirement
Logical AND (88)

Logical OR (| |)

Optionals and forced unwrapping
Optional binding

Implicitly unwrapped optionals
Flowchart

Loop

Count-controlled loops

For loop

Condition-controlled loops
Infinite loops

whileloops

Nested if statements

Code refactoring

MAKING DECISIONS, PROGRAM FLOW, AND APP DESIGN

EXERCISES

Extend the random number generator app to print to the console how many times the
user guessed before guessing the correct random number.

Extend the random number generator app to print to the console how many times the
user played the app. Print this value to the console when the user quits the app.

57

CHAPTER 5

Object-Oriented Programming
with Swift

Over the past 15 years, the programming world focused on the development paradigm of object-oriented
programming (OOP). Most modern development environments and languages implement OOP. Put simply,
OOP forms the basis of everything you develop today.

You may be asking yourself why we waited until Chapter 5 to present OOP using Swift if it is the primary
development style of today. The simple answer is that it is not an easy concept for new developers. This
chapter will go into detail about the different aspects of OOP and how they affect your development.

Implementing OOP into your applications correctly will take some front-end planning, but you will
save yourself a lot of time throughout the life of your projects. OOP has changed the way development is
done. In this chapter, you will learn what OOP is. OOP was initially discussed in the first chapter of this book,
but this chapter will go into more detail about it. You will revisit what objects are and how they relate to
physical objects you find in the world. You will look into what classes are and how they relate to objects. You
will also learn the steps you need to take when planning your classes and some visual tools you can use to
accomplish these steps. When you have read this chapter and have worked through the exercises, you will
have a better understanding of what OOP is and why it is necessary for you as a developer.

At first, objects and object-oriented programming may seem difficult to understand, but the hope is that
as you progress through this chapter, they will begin to make sense.

The Object

As discussed in Chapter 1, OOP is based on objects. Some of the discussion about objects will be a review,
but it will also go into more depth. An object is anything that can be acted upon. To better understand what a
programming object is, you will first look at some items in the physical world around you. A physical object
can be anything around you that you can touch or feel. Take, for example, a television. Some characteristics
of a television include type (plasma, LCD, or CRT), size (40 inches), brand (Sony or Vizio), weight, and

cost. Televisions also have functions. They can be turned on or off. You can change the channel, adjust the
volume, and change the brightness.

Some of these characteristics and functions are unique to televisions, and some are not. For example,

a couch in your house would probably not have the same characteristics as a television. You would want
different information about a couch, such as material type, seating capability, and color. A couch might have
only a few functions, such as converting to a bed or reclining.

Now let’s talk specifically about objects as they relate to programming. An object is a specific item. It
can describe something physical like a book, or it could be something such as a window for your application.
Objects have properties and methods. Properties describe certain things about an object such as location,
color, or name. Conversely, methods describe actions the object can perform such as close or recalculate.

© Gary Bennett and Brad Lees 2016 59
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_5

http://dx.doi.org/10.1007/978-1-4842-2331-4_5
http://dx.doi.org/10.1007/978-1-4842-2331-4_1

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

In this example, a TV object would have type, size, and brand properties, while a Couch object would have
properties such as color, material, and comfort level.In programming terms, a property is a variable
that is part of an object. For example, a TV would use a string variable to store the brand and an integer to
store the height.

Objects also have commands the programmer can use to control them. The commands are called
methods. Methods are the way that other objects interact with a certain object. For example, with the
television, a method would be any of the buttons on the remote control. Each of those buttons represents
a way you can interact with your television. Methods can and often are used to change the values of
properties, but methods do not store any values themselves.

As described in Chapter 1, objects have a state, which is basically a snapshot of an object at any given
point in time. A state would be the values of all the properties at a specific time.

In previous chapters, you saw the example of the bookstore. A bookstore contains many different
objects. It contains book objects that have properties such as title, author, page count, and publisher.
It also contains magazines with properties such as title, issue, genre, and publisher. A bookstore also
has some nontangible objects such as a sale. A sale object would contain information about the books
purchased, the customer, the amount paid, and the payment type. A sale object might also have some
methods that calculate tax, print the receipt, or void the sale. A sale object does not represent a tangible
object, but it is still an object and is necessary for creating an effective bookstore.

Because the object is the basis of OODP, it is important to understand objects and how to interact with
them. You will spend the rest of the chapter learning about objects and some of their characteristics.

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which properties and methods

an object will have. A class is basically a cookie cutter that can be used to create objects that have similar
characteristics. All objects of a certain class will have the same properties and the same methods. The values
of those properties will change from object to object.

A class is similar to a species in the animal world. A species is not an individual animal, but it does
describe many similar characteristics of the animal. To understand classes more, let’s look at an example of
classes in nature. The Dog class has many properties that all dogs have in common. For example, a dog may
have a name, an age, an owner, and a favorite activity. An object that is of a certain class is called an instance
of that class. If you look at Figure 5-1, you can see the difference between the class and the actual objects that
are instances of the class. For example, Lassie is an instance of the Dog class. In Figure 5-1, you can see a Dog
class that has four properties (Breed, Age, Owner, and Favorite Activity).Inreallife, a dog will have many
more properties, but these four are for this demonstration.

60

http://dx.doi.org/10.1007/978-1-4842-2331-4_1

Class

Breed

Age
Owner

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Objects

Lassle

Breed: Collie
Age: 5
Owner: Jeff
Favorite Activity: Helping People
Ly-

Spot

Breed: Dalmation

>| Age: 2

Owner: Fire Department

Favorite Activity [Set ‘ Favorite Activity: Riding in a Fire Truck
Doo

Breed: Great Dane

Age: 10

Owner: Shaggy

Favorite Activity: Eating Scooby Snacks

Figure 5-1. An example of a class and its individual objects

Planning Classes

Planning your classes is one of the most important steps in your development process. While it is possible
to go back and add properties and methods after the fact (and you will definitely need to do this), it is
important that you know which classes are going to be used in your application and which basic properties
and methods they will have. Spending time planning your different classes is important at the beginning of
the process.

Planning Properties

Let’s look at the bookstore example and some of the classes you need to create. First, it is important to
create a Bookstore class. A Bookstore class contains the blueprint of the information each Bookstore
object stores, such as the bookstore’s name, address, phone number, and logo (see Figure 5-2). Placing this
information in a class rather than hard-coding it in your application will allow you to easily make changes to
this information in the future. You will learn the reasons for using OOP methodologies later in this chapter.
Also, if your bookstore becomes a huge success and you decide to open another one, you will be prepared
because you can create another object of class Bookstore.

61

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Bookstore
Name
Addressi
Address?2
City
State
Zip
Phone Number
Logo

Figure 5-2. The Bookstore class

Let’s also plan a Customer class (see Figure 5-3). Notice how the name has been broken into First Name
and Last Name. This is important to do. There will be times in your project when you may want to use only
the first name of a customer, and it would be hard to separate the first name from the last if you didn’t plan
ahead. Let’s say you want to send a letter to a customer letting them know about an upcoming sale. You do
not want your greeting to say, “Dear John Doe.” It would look much more personal to say, “Dear John.

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The Customer class

You will also notice how the address is broken into its different parts instead of grouping it all together.
The Address Line 1,Address Line 2, City, State, and Zip are separate. This is important and will be
usedin your application. Let’s go back to the letter you want to send to customers about an upcoming sale.
You might not want to send it to all of the customers who live in different states. By separating the address,
you can easily filter out those customers you do not want to include in your mailings.

We have also added the attribute of Favorite Book Genre to the Customer class. We added this to show
you how you can keep many different types of information in each class. This field may come in handy if you
have a new mystery title coming out and you want to send an e-mail alerting customers who are especially

62

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

interested in mysteries. By storing this type of information, you will be able to specifically target different

portions of your customer base.

A Book class is also necessary to create the bookstore (see Figure 5-4). You will store information about
the book such as author, publisher, genre, page count, and edition number (in case there are multiple
editions). The Book class will also have the price for the book.

Book

Author

Publisher

Genre

Year Published
Number of Pages
Edition

Price

Figure 5-4. The Book class

You can add another class called Sale (see Figure 5-5). This class is more abstract than the other classes
discussed because it does not describe a tangible object. You will notice how we have added a reference to
a customer and a book to the Sale class. Because the Sale class will track sales of books, you need to know

which book was sold and to which customer.

Sale

Customer
Book

Date

Time

Amount
Payment Type

Figure 5-5. The Sale class

Now that you know the properties of the classes, you need to look at some methods that each of the

classes will have.

Planning Methods

You will not add all of the methods now, but the more planning you can do at the beginning, the easier it will
be for you later. Not all of your classes will have many methods. Some may not have any methods at all.

63

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Note When planning your methods, remember to have them focus on a specific task. The more specific
the method, the more likely it is that it can be reused.

For the time being, you will not add any methods to the Book class or the Bookstore class. You will focus
on your other two classes.

For the Customer class, you will add methods to list the purchase history of that client. There may be
other methods that you will need to add in the future, but you will add just that one for now. Your completed
Customer class diagram should look like Figure 5-6. The line near the bottom separates the properties from
the methods.

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-6. The completed Customer class

For the Sale class, we have added three methods. We added Charge Credit Card, Print Invoice, and
Checkout (see Figure 5-7). For the time being, you do not need to know how to implement these methods,
but you need to know that you are planning on adding them to your class.

64

Sale

Customer
Book

Date

Time

Amount
Payment Type

Print Invoice
Checkout

[Charge Credit Card

Figure 5-7. The completed Sale class

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Now that you have finished mapping out the classes and the methods you are going to add to them,
you have the beginnings of a Unified Modeling Language (UML) diagram. Basically, this is a diagram
used by developers to plan their classes, properties, and methods. Starting your development process
by creating such a diagram will help you significantly in the long run. An in-depth discussion of UML
diagrams is beyond the scope of this book. If you would like more information about this subject,
smartdraw.com has a great in-depth overview of them; see http://www. smartdraw.com/uml-diagram/.
Omnigroup (www.omnigroup.com) provides a great UML diagram program for macOS called Omnigraffle.

Figure 5-8 shows the complete diagram.

Figure 5-8. The completed UML diagram for the bookstore

Bookstore Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card
Logo Print Invoice

Checkout

Book Customer
Author First Name
Publisher Last Name
Genre Address Line 1
Year Published Address Line 2
Number of Pages City
Edition State
Price Zip

Phone Number
Email Address
Favorite Book Genre

List Purchase History

65

http://www.smartdraw.com/uml-diagram/
http://www.omnigroup.com/

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Implementing the Classes

Now that you understand the objects you are going to be creating, you need to create your first object. To do
so, you will start with a new project.

1. Launch Xcode. Select File » New » Project.

2. SelectiOS on the top menu. On the right side, select Master-Detail Application.
For what you are doing in this chapter, you could have selected any of the
application types (see Figure 5-9). Click Next.

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform ™ Filter
Application
'H__"_ ;
1 ; =
22 s00 *

Single View Game Master-Detail Page-Based Tabbed
Application Application Application

oo

50 G2

Sticker Pack iMessage
Application

Framework & Library

e]
N = L

Cocoa Touch Cocoa Touch Metal Library
Framewnrk Static | ihrary

Cancel [Next |

Figure 5-9. Creating a new project

3. Enter a product name for your project. We will use the name of BookStore. You
will also have to enter a company name and a company identifier. The company
identifier is usually com. companyname (that is, com.innovativeware). Leave the
checkboxes on this screen as they appear by default. You will not be worrying
about Core Data right now; it’s discussed in Chapter 11. Also, leave the current
language selection set to Swift. Click Next to select a location to save your project
and then save your project.

4. Select the BookStore project from the Project navigator on the left side of the
screen (see Figure 5-10). This is where the majority of your code will reside.

66

http://dx.doi.org/10.1007/978-1-4842-2331-4_11

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

aoe p B g BookStore | i iPhone SE BookSiore: Ready | Tocay at 2:39 P
BR QA A © T o @ B <> [cosue
v [BookStorn O Genora: Capabiftios Rosoures Tage [Bui'd Sotings Buid Fhoges Buid Rules
¥ [BooiSy
- g PROJECT ?
+ AppDeiegate. swift : T Identity
+ Master¥iewControliorswit I Sonkcny
+ DetaiviewControlier.swilt TARGETS Display Name
prlias T e
Bundie Identifier | com. v, BookStare
[Assots.xcassots
Launch3crean storybasrd Version |10
o plist Dele 1
» [Producte.
¥ Signing
1B hutomatically manage sianing
p caeate s ate geoti
Toam | Mone B
Provisianing Profile Xzode Managed Profie
Sgning Certificate. 105 Developer
Statas @ Signing for “DoskStone” reguines & developmant
team.
Seleet o deveispeen n the project eanor,
¥ Deploymont Infa
Deployment Target n
Devices | iPhone B
Main Inertace |Main B
Device Orientation B Portrait
"] Upsico Down
Landisoapg Lett
18 Landscape Right
Sratus Bar Style | Dedaut B
+|® QE||+ - &

Hige s1%us bar

| 1sentity ana Type

Hama HookStore

Locamen Abioule
DeeeStonescodoana]

Full Path {UsersioeadicesOropbas)
Apreas Swilt 3iCede!
Chaoter 5/BockStone)
BooStone seodeana]

| Preject Bocument

Project Format Xeode 32-compatibly
Crgasinasen Mvouatinware

Chiss Pretic

| et sotvage

noent Usng Spaces

wighe 4f%
Tan g

\Wrap ines

(4}

Figure 5-10. Selecting the BookStore project

5. Select File » New » File.

6. From the pop-up window, make sure iOS is selected at the top and then click the

Cocoa Touch Class on the bottom (see Figure 5-11). Then click Next.

67

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Choose a template for your new file:

m watchOS tvOS macOS

‘ Source
@)
Ul Test Case Class

m h

Objective-C File Header File

User Interface

Storyboard View

Cancel

Figure 5-11. Creating a new Swift class file

7. You will now be given the opportunity to name your class (see Figure 5-12). For

o

Unit Test Case
Class

C

C File

Empty

N}

Playground

Ca+

C++ File

Launch Screen

@ Filter

3

Swift File

N\

Metal File

this exercise, you will create the Customer class. Again, make sure the Language
is set to Swift. Click Next and save the file in the default location.

68

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Choose options for your new file:

Class: | Customer|

Subclass.. NSObject kgl
Language: Swift w
Cancel Previous | (SIS

Figure 5-12. Creating the file

Note For ease of use and for understanding your code, remember that class names should always be
capitalized in Swift. Object names should always start lowercase. For example, Book would be an appropriate
name for a class, and book would be a great name for an object based on the Book class. For a two-word
object, such as the book’s author, an appropriate name would be bookAuthor. This type of capitalization is
called lower camel case.

8. Nowlook in your main project folder; you should have a new file. It is called
Customer.swift.

Note If you had created a class in Objective-C, Customer.h and Customer.m files would have been
created. The .h file is the header file that contains information about your class. The header file lists all of the
properties and methods in your class, but it does actually contain the code related to them. The .m file is the
implementation file, which is where you write the code for your methods. In Swift, the entire class is contained
in a single file.

69

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

9. The Customer.swift file should now be selected, and you will see the window
shown in Figure 5-13. Notice it does not contain a lot of information currently.
The first part, with the double slashes (//), consists of comments and is not
considered part of the code. Comments allow you to tell those who might read
your code what each portion of code is meant to accomplish. The second part of
the file is your new Customer class. The new class declaration is as follows:

class Customer: NSObject {

ece p o BockStore) il iPhona SE BockStore: Ready | Today at 409 P 4 | EEi=jiim]
BEaAOCDBDoS @ |8 < B DockStore) [Customer.swilt | No Selection D@
¥ (& BookStore A Identity and Type
L rMame Cusliomer. swily
B Customer.swift ’ . ™
v [BookStore b Type | Defouls - Swift Source |
+ AppDelegate swift ’ . ALl h .
+ MasterViewContralier. switt 4 RECHi. Relits 16 via =
. DetaiviewControlier.swift ispart UIKit e -
5 Full Path jUsers /bradlees/Dropbax
Main.storyboard 1 closs Customer: NSdbict { Apress Swill 3iCode)
S Ass0ls X003561s Chapler §/BockStonn/
1) LEWil
LaunehScroan.staryocard Customer.awift
o pat ©n Demand Resourcs Tags
» Products

Target Membership

A BooeStare
Teat Settings
Text Encoging | Uricode (UTF-B) a
Line Endings |_Default - macoS / Unix ILF1)
indent Lsing Spaces B
O 0 @O

No Matches

Figure 5-13. Your empty Customer class

Note In Swift, a class does not need to be in its own file. Many classes can be defined in a single Swift file,

but this can be difficult to maintain when your project contains a lot of classes. It is usually cleaner and more
organized to have a separate file for each class.

Now let’s transfer the properties from the UML diagram to the actual class.

Tip Properties should always start with a lowercase letter. There can be no spaces in a property name.

70

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

For the first property, First Name, add this line to your file:

var firstName =

This creates an object in your class called firstName. Notice you did not tell Swift what type of property
firstName is. In Swift, you can declare a property and not specify the type, and a property can be assigned
a type based on the value we initially assign it. By giving the property an initial value of "", you tell the Swift
compiler to make firstName a String. In Swift, all non-optional properties require a default value either
when they are declared or in the class initializer. We will discuss optionals later in this book.

Note In Objective-C, all properties are required to declare a type. For example, to create the same
firstName property, you would use the following code:

NSString *firstName;

This declares an NSString with the name firstName. In Swift, you can declare only a variable and allow the
system to determine the type.

Since all of the properties will be vars, you just need to repeat the same procedure for the other ones.
When that is complete, your Swift file should look like Figure 5-14.

B 2 Q AN © == o B |8 < [5) BookStore) . Customer.swift faveriteGenre
b 4 g] BookStore 1/)
_ 2 // Customer.swift
. Customer.swift 3 // BookStore
Wi
v BookStore
s // Created by Thornukeo on 8/12/16.
= AppDelegate.swift & // Copyright e 2016 Innovativeware. All rights reserved.
» MasterViewController.swift /"
« DetailViewController.swift 9 import UIKit
Main.storyboard class Customer: NSObject {
5| Assets.xcassets 12 var firstName = ""
L hS ; d 13 var lastName = ""
aunchScreen.storyboar . var addressLinel = ""
Info.plist 15 var addressLine2 =
1 var city = ""
» [] Products 7 VoT stote = e
var zip = "

var phoneNumber = ""
3 var emailAddress = ""
b3l var favoriteGenre = |'"

Figure 5-14. The Customer class interface with properties

71

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Now that the class declaration is complete, you will need to add your method. Methods should be
contained in the same class file and location as the properties. You will add a new method that returns an
array. This code will look like the following:

func listPurchaseHistory() -> [String] {
return ["Purchase 1", "Purchase 2"]
}

This code might seem a little confusing. The empty parentheses tell the compiler that you are not
passing any parameters to the method. The -> tells the system what you return from your method. [String]
tells you that you are returning an array of strings. In the final version, you will actually want to return
purchase objects, but you are using String for now. This code will not yet compile because you do not
return an array, so you added a return of a simple array. That is all that needs to be done in the Swift file to
create the class. Figure 5-15 shows the final Swift file.

[

2 Q N & = o 3 a2 € [BookStore) . Customer.swift) No Selection

v (&) BookStore 1 4/

. 2 // Customer.swift
B Customer.swift 3 // BookStore

//
v BookStore
f/ Created by Thornuko on 8/12/16.
s AppDelegate.swift 5 // Copyright @ 2016 Innovativeware. All rights reserved.
+| MasterViewController.swift 4 I/
+| DetailViewController.swift ? import UIKit

Main.storyboard class Customer: NSObject {

5] Assets.xcassets var firstName = "*
var lastName = ""
LaunchScreen.storyboard

var addressLinel

Info.plist var addressLine2 = ""
var city = "o
> Products ki var state: = ==
var zip = "~

var phoneNumber = ""

var emailAddress = ""

var favoriteGenre = ""

func listPurchaseHistory() -> [String) {

return ["Purchase 1", "Purchase 2"]

Figure 5-15. The finished Customer class Swift file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to genetic inheritance.
You might have inherited your eye color from your mother or hair color from your father, or vice versa.
Classes can, in a similar way, inherit properties and methods from their parent classes, but unlike genetics,
you do not inherit the values of those properties. In OOP, a parent class is called a superclass, and a child
class is called a subclass.

72

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Note In Swift, there is no superclass unless specifically stated.

You could, for example, create a class of printed materials and use subclasses for books, magazines,
and newspapers. Printed materials can have many things in common, so you could define properties in the
superclass of printed materials and not have to redundantly define them in each individual class. By doing
this, you further reduce the amount of redundant code that is necessary for you to write and debug.

In Figure 5-16, you will see a layout for the properties of a Printed Material superclass and how that
will affect the subclasses of Book, Magazine, and Newspaper. The properties of the Printed Material class
will be inherited by the subclasses, so there is no need to define them explicitly in the class. You will notice
that the Book class now has significantly fewer properties. By using a superclass, you will significantly reduce
the amount of redundant code in your programs.

Book
Author
Genre
Edition
[Printed Material
Title
Publish Date eaogazine
Page Count o Genire
Price
Publisher \
Newspaper
Date

Figure 5-16. Properties of the super- and subclasses

Why Use 00P?

Throughout this chapter, we have discussed what OOP is and have even discussed how to create classes and
objects. However, it’s also important to discuss why you want to use OOP principles in your development.

If you take a look at the popular programming languages of the day, all of them use the OOP principles
to a certain extent. Swift, Objective-C, C++, Visual Basic, C#, and Java all require the programmer to
understand classes and objects to successfully develop in those languages. In order to become a developer
in today’s world, you need to understand OOP. But why use it?

OOP Is Everywhere

Just about any development you choose to do today will require you to understand object-oriented
principles. On macOS and in i0S, everything you interact with will be an object. For example, simple
windows, buttons, and text boxes are all objects and have properties and methods. If you want to be a
successful programmer, you need to understand OOP.

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write code to print a receipt
when a customer checks out, you will want that same code available when you need to reprint a receipt.
If you placed your code to print the receipt in the Sale class, you will not have to rewrite this code again.

73

CHAPTER 5 © OBJECT-ORIENTED PROGRAMMING WITH SWIFT

This not only saves you time but often helps you eliminate mistakes. If you do not use OOP and there is a
change to the invoice (even something as simple as a graphic change), you have to make sure you make the
change in your desktop and mobile applications. If you miss one of them, you run the risk of having the two
interfaces behave differently.

Ease of Debugging

By having all of the code relating to a book in one class, you know where to look when there is a problem
with the book. This may not sound like such a big deal for a little application, but when your application gets
to hundreds of thousands or even millions of lines of code, it will save you a lot of time.

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you can change out classes
and give your new class completely different functionality. However, the modified class can still interact with
the rest of the application in the same way as your current class. This is similar to car parts. If you want to
replace a muffler on a car, you do not need to get a new car. If you have code related to your invoice scattered
all over the place, it makes it much more difficult to change items about a class.

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are some other topics that are
important to your understanding.

Interface

As discussed in this chapter, the way the other objects interact with a class is with methods. In Swift, you

can set access levels on your methods. Declaring a method private will make it accessible only to objects
derived from it. By default, Swift methods are internal and can be accessed by any object or method in the
current module. This is often called the interface because it tells other objects how they can interact with
your objects. Implementing a standard interface throughout your application will allow your code to interact
with different objects in similar ways. This will significantly reduce the amount of object-specific code you
need to write.

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object of another class. This
is usually done by creating methods and properties that are similar to those of another class. A great example
of polymorphism that you have been using is the bookstore. In the bookstore, you have three similar classes:
Book, Magazine, and Newspaper. If you wanted to have a big sale for your entire inventory, you could go
through all of the books and mark them down. Then you could go through all of the magazines and mark
them down and then go through all of the newspapers and mark them down. That would be more work than
you would need to do. It would be better to make sure all of the classes have a markdown method. Then
you could call that on all of the objects without needing to know which class they were as long as they were
subclasses of a class that contained the methods needed. This would save a bunch of time and coding.
Asyou are planning your classes, look for similarities and for methods that might apply to more than
one type of class. This will save you time and speed up your application in the long run.

74

CHAPTER 5 * OBJECT-ORIENTED PROGRAMMING WITH SWIFT

Summary

You've finally reached the end of the chapter! Here is a summary of the things that were covered:

Object-oriented programming (OOP): You learned about the importance of OOP and
the reasons why all modern code should use this methodology.

Objects: You learned about OOP objects and how they correspond to real-world
objects. You also learned about abstract objects that do not correspond to real-world
objects.

Classes: You learned that a class determines the types of data (properties) and the
methods that each object will have. Every object needs to have a class. It is the
blueprint for the object.

Creating a class: You learned how to map out the properties and methods of your
classes.

Creating a class file: You used Xcode to create a class file.

Editing a file: You edited the Swift file to add your properties and methods.

EXERCISES

Try creating the class files for the rest of the classes you mapped out.

Map out an Author class. Choose the kind of information you would need to store about
an author.

For the daring and advanced:

Try creating a superclass called PrintedMaterial Map out the properties that a class
might have.

Create classes for the other types of printed materials a store might carry.

75

CHAPTER 6

Learning Swift and Xcode

For the most part, all programming languages perform the typical tasks any computer needs to do—store
information, compare information, make decisions about that information, and perform some action based
on those decisions. The Swift language makes these tasks easier to understand and accomplish. The real
trick with Swift (actually, the trick with most programming languages) is to understand the symbols and
keywords used to accomplish those tasks. This chapter continues the examination of Swift and Xcode so you
can become even more familiar with them.

A Newcomer

As you may know, Swift has not been around for long. Development of the Swift language began about four
years ago by Chris Lattner, and on September 9, 2014, Swift 1.0 was officially released. Swift borrows many
ideas from Objective-C, but it also incorporates many features used by modern programming languages.
Swift was designed from the ground up to be accessible to the average programmer.

Currently, there are two main types of programming languages. Compiled languages such as
Objective-C and C++ are known for being rigid and requiring certain syntax. Compiled languages are also
significantly faster in execution. Interpreted languages, such as Ruby, PHP, and Python, are known for being
easier to learn and code but slower in their execution. Swift is a language that bridges the gap between the
two. Swift incorporates the flexibility that makes interpreted languages so popular with the performance
required for demanding applications and games. In fact, Apple claims that Swift applications will perform
faster than those written in Objective-C. In some of Apple’s tests, Swift performed almost four times faster
than Python and 40 percent faster than Objective-C.

Understanding the Language Symbols

Understanding symbols is a basic part of any programming language. Symbols are punctuation used to
portray specific meanings in source code. Understanding the symbols of a language is required to be able to
use the language. Here are some of the symbols and language constructs used in Swift, most of which you've
already encountered in one way or another:

e {: Thisis the begin brace. It's used to start what’s commonly referred to as a block of
code. Blocks are used to define and surround a section of code and define its scope.

e }: Thisis the end brace. It’s used to end a block of code. Wherever there is a begin
brace ({), there must always be an accompanying end brace (}).

© Gary Bennett and Brad Lees 2016 77
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_6

CHAPTER 6 © LEARNING SWIFT AND XCODE

e []: These are the open and close brackets. They are used in the declaration and
consumption of arrays.

e func methodName() -> String: This is how a Swift function is defined. The word
methodName, of course, can represent any name. The word String can also change.
It represents what type of information the method returns. In this example, String
indicates the method will return a string, or a group of characters (data types were
introduced in Chapter 3 and will be covered in more depth in later chapters). This
will be discussed in more depth later in the chapter.

Figure 6-1 shows an example of Swift code.

og < & Chapter6 Chapter6) 3 ViewController.swift

func logMessage() {
let hello = "Hello World!"
3 print(hello)

Figure 6-1. Example of Swift code

Line 1 represents a Swift function. The empty parentheses, (), indicate that this function does not
receive any variables. The fact that the parentheses are not followed by -> signifies that this function does
not return any type of data and, if invoked, would not return a value to the caller.

The end of line 1 and line 4 are the braces that define a block of code. This block is what defines the
method. Every method has at least one block.

Line 2 creates a constant named hello. As you learned in previous chapters, a constant is a value that
cannot change. The value of the constant hello is assigned “Hello World!” Because you assign hello to a
String value, hello becomes a String and can use any method related to Strings (recall that you first saw
strings in Chapter 3). Line 3 could be rewritten as follows:

let hello: String = "Hello World!"

Line 3 is a call to the print function. You pass the object to the method in order to print the hello
String object.

Although it does look a little cryptic to someone who is just learning Swift, the simple and terse syntax
doesn’t take too much time to learn.

Implementing Objects in Swift

Swift was built from the ground up to be object-oriented. It incorporates the best parts of Objective-C
without the constraints of being compatible with C. It also takes some of the best features of a scripted
language. The following are some of the concepts that make Swift object-oriented. Don’t worry if some of
these terms seem unfamiliar; they will be discussed in later chapters (Chapters 7 and 8 cover the basics).

e Pretty much everything is an object.
e Objects contain instance variables.
e Objects and instance variables have a defined scope.

e Classes hide an object’s implementation.

78

http://dx.doi.org/10.1007/978-1-4842-2331-4_3
http://dx.doi.org/10.1007/978-1-4842-2331-4_3
http://dx.doi.org/10.1007/978-1-4842-2331-4_7
http://dx.doi.org/10.1007/978-1-4842-2331-4_8

CHAPTER 6 * LEARNING SWIFT AND XCODE

Note As you saw in Chapter 5, the term class is used to represent, generically, the definition or type of an
object. An object is created from the class. For example, an SUV is a class of vehicle. A class is a blueprint of
sorts. A factory builds SUVs. The results are SUV objects that people drive. You can’t drive a class, but you can
drive an object built from a class.

So, how do these concepts translate to Swift? Swift is flexible in the implementation of classes.

Note Even though in Swift a single file may contain many different classes, a programmer will want to
separate the code into different files to make access easier.

Let’s look at a complete definition of a Swift class called HelloWorld (Figure 6-2).

import Foundation

LI N

class HelloWorld {

func logMessage() {
7 let hello = "Hello World!"
8 print(hello)

Figure 6-2. HelloWorld class

In Figure 6-2, a class called HelloWor1ld is being defined. This class has only one method defined:
logMessage. What do all these strange symbols mean? Using the line numbers as a reference, you can review
this code line by line.

Line 1 contains a compiler directive, import Foundation. For this little program to know about certain
other objects, you need to have the compiler read other interface files. In this case, the Foundation file
defines the objects and interfaces to the Foundation framework. This framework contains the definition of
most non-user-interface base classes of the iOS and macOS systems. You will not be using any Foundation
framework-specific objects in this example, but it is a default part of any new Swift file.

The actual start of the object is on line 4, as follows:

class HelloWorld {

HelloWorld is the class. If you wanted HelloWorld to be a subclass of a logging class you had created,
such as LogFile, you would change the declaration as follows:

class HelloWorld: LogFile {

79

http://dx.doi.org/10.1007/978-1-4842-2331-4_5

CHAPTER 6 © LEARNING SWIFT AND XCODE

Line 6 contains a method definition for this object, as follows:
func logMessage() {

When you're defining a method, you must decide whether you want the method to be a type or an
instance method. In the case of the HelloWorld object, you are using the default method type, which is an
instance. This method can only be used after an object is created. If the word class is added before the func,
the method can be used before an object is created, but you will not have access to properties in the object. If
you changed logMessage to a type method, it would be as follows:

class func logMessage() {

Lines 7 and 8 contain the body of the method. You learned about the details of the statements earlier in
the chapter.

That'’s the complete description of class HelloWor1ld; there’s not a whole lot here. More complicated
objects simply have more methods and more properties.

But wait, there is more. Now that you have a new Swift class defined, how is it used? Figure 6-3 shows
another piece of code that uses the newly created class.

let myHelloWorld = HelloWorld()
myHelloWorld. logMessage()

Figure 6-3. Calling a Swift method

The first line defines a constant called myHelloWorld. It then assigns the constant to an instance of
the HelloWorld class. The second line simply calls the logMessage method of the myHelloWor1ld object.
Those who have spent time in Objective-C will quickly see how much shorter and efficient both the class
declaration and the object creation are in Swift.

Note Instantiation makes a class a real object in the computer’s memory. A class by itself is not really
usable until there is an instance of it. Using the SUV example, an SUV means nothing until a factory builds one
(instantiates the class). Only then can the SUV be used.

Note Method calls can also accept multiple arguments. Consider, for example,
myCarObject.switchRadioBandTo(FM, 104.7).The method here would be switchRadioBandTo.
The two arguments are contained in the parentheses. Being consistent in naming methods is critical.

Writing Another Program in Xcode

When you first open Xcode, you'll be presented with a Welcome to Xcode screen. This screen provides some
nice shortcuts to access recently used Xcode projects. Until you are more comfortable with Xcode, keep the
“Show this window when Xcode launches” check box selected.

80

CHAPTER 6 * LEARNING SWIFT AND XCODE

Creating the Project

You are going to start a new project, so click the “Create a new Xcode project” icon. Whenever you want to
start a new iOS or macOS application, library, or anything else, use this icon. Once a project has been started
and saved, the project will appear in the Recent list on the right of the display.

For this Xcode project, you will choose something simple. Make sure the iOS Application is selected.
Then select Single View Application, as shown in Figure 6-4. Then simply click the Next button.

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform ®
Application
E— = -
(1] ¥ =
\ J &E ®00 * wan
Single View Game Master-Detail Page-Based Tabbed
Application Application Application Application
oo O
oo PR
Sticker Pack iMessage
Application Application

Framework & Library

L) & &
=i
Cocoa Touch Cocoa Touch Metal Library
Framewnrk Static | ihrary

Cancel [Next |

Figure 6-4. Choosing a new project from a list of templates

There are several types of templates. These templates make it easier to start a project from scratch in
that they provide a starting point by automatically creating simple source files.

Once you've chosen the template and clicked the Next button, Xcode presents you with a dialog box
asking for the project’s name and some other information, as shown in Figure 6-5. Type a product name
of Chapter6. The organization identifier needs to have some value, so we used com. innovativeware. Also
make sure the Devices drop-down is set to iPhone. If you are planning on running this app on an actual iOS
device or submitting it to the App store, you will need to select your team from the drop-down. If you do not
select it now, it can be added to the project later.

81

vww allitebooks.conl

http://dx.doi.org/10.1007/978-1-4842-2331-4_6
http://www.allitebooks.org

CHAPTER 6 © LEARNING SWIFT AND XCODE

Choose options for your new project:
The development team for the new target

Product Name: Chapterg
Team: None ﬁ
Organization Name: Innovativeware
Organization Identifier: com.innovativeware
Bundle Identifier: com.innovativeware.Chapteré
Language: Swift H
Devices: iPhone il

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous [N SN

Figure 6-5. Setting up the product name, company, and type

Once you've supplied all the information, click the Next button. Xcode will ask you where to save the
project. You can save it anywhere, but the desktop is a good choice because it’s always visible.

Once you've picked where to save the project, the main Xcode screen will appear (see Figure 6-6). In the
leftmost pane is the list of source files. The right two-thirds of the screen is dedicated to the context-sensitive
editor. Click a source file, and the editor will show the source code. Clicking a . storyboard file will show the
Screen Interface editor.

82

CHAPTER 6 * LEARNING SWIFT AND XCODE

ece p A Chapters) @l Phone SE Finished running Chapters on iPhone SE = 9 SRl Edi0
B RS Aaasae = o B Chapterts D e
I's " " " " Ype

¥ L Chapter§ 0 Genenl Capabisties Resource Togs Info Build Settings Build Phasos Build Rules | Identity and
¥ Chapieré Name Chapter

PROJECT

» AppDelegate.switt 5 ¥ Identity -
B chapters Location Absciute

= ViewContealler.swift i Charh® e

Chapterf.xcodenre]

TARGETS

Main.storyboard Oisplay Name
v+ Chagter it Full Peth [Usersjbradiecs/Dropboxf
Assets xcasset x "
eI Bundie idontifler com.innovativeware Chapterd Apcess Swilt 3{Cade]
LsunchScreen.storyboard Chapter 8/Chapter6]
Infa.plist Version 1.0 Chapters.scodeore] o
» [Products Bulld 4 e

Project Format Xcode 3.2-compativie [

¥ Signing Crganization [Anovativewane
Automatically manage signing Cioes Eros
rote il crye e Text Settings
b B Indons Using_ Spaces B
Provisioning Profile Xcode Mansged Profile hiod Tab 41 Indent L
Signing Certificate 05 Developer D 0o®e o

Status D Signing for “ChapierG” reguires a dovelopment
team.

¥ Deployment Info No Matches

Deployment Target

Deviees iPhane

(<ol <

Main Interface Main

@ O+ - & Device Oriontation 3 Portrait

Figure 6-6. The Xcode 8 main screen

The first app is going to be simple. This iPhone app will contain a button. When the button is clicked,
your name will appear on the screen. So, let’s start by first looking more closely at some of the stub source
code that Xcode built for you. The nice thing about Xcode is that it will create a stub application that will
execute without any modification. Before you start adding code, let’s look at the main toolbar of Xcode,
as shown in Figure 6-7.

® ® »r 4 Chapter | i) iPhone SE Finished running Chapters on iPhane SE = @ < 0O 00O
Figure 6-7. The Xcode 8 toolbar

At first glance, there are three distinct areas of the toolbar. The left area is used to run and debug the
application. The middle area displays status as a summary of compiler errors and warnings. The far-right
area contains a series of buttons that customize the editing view.

As shown in Figure 6-8, the left portion of the toolbar contains a Play button that will compile and run
the application. If the application is running, the Stop button will not be grayed out. Since it’s grayed out,
you know the application is not running. The scheme selection can be left alone for now. Schemes will be
discussed in more detail in Chapter 13.

@ ®) /A Chapter6) {i§ iPhone SE

Figure 6-8. Close-up of the left portion of the Xcode toolbar

83

http://dx.doi.org/10.1007/978-1-4842-2331-4_13

CHAPTER 6 © LEARNING SWIFT AND XCODE

The right side of the Xcode toolbar contains buttons that change the editor. The three buttons represent
the Standard editor (selected), the Assistant editor, and the Version editor. For now, just click the Standard
editor button, as shown in Figure 6-9.

= @ | <l || LT

Figure 6-9. Close-up of the right portion of the Xcode toolbar

Next to the editor choices are a set of View buttons. These buttons can be toggled on and off. For
example, the one chosen in Figure 6-10 represents the current view shown in Figure 6-7, a list of the program
files on the left third of the screen, the main editor in the middle third, and the Utilities in the right portion
of the screen. Any combination, or none, can be chosen to help customize the main workspace window.

The last button opens the Utilities area. Chapter 13 discusses this button. For now, let’s get back to your first
iPhone app.

eae p Sy Chaptert | il iPhone SE Finished running Chagtert on iPhcne SE rirad 1| [i

M2 Q 5 < L crapters Chagters) [l ViewController.swift | No Selection D &
v [Craters /i = \dontity and Type

A Chapter8 Name ViewController swift

= AppDelegate swift ; Type Default - Swift Scurce %]
& viewControner switt vat All d =
Main.storybosrd ! Location Relative 1o Group [~]
3 ViewControfler. swift £
import UTKit
Full Path [Users/oracioes Dropboxf
class ViewController: UIView troller { Apress Swift 3Code/
‘Chapter 6/Chapter!
ove

e viewdidicad() { Chapter)
i i) ViewControfler. swift
any sdditional setup after loading the view, typicelly

On Demand Resource Tags

idReceiveMenarywarningl) {
My * 0

o5 that can be recreated,

3 Target Mambership
B 5 Chapters

@]

Figure 6-10. Looking at the source code in the Xcode editor

Click the ViewController.swift file, as shown in Figure 6-10. The editor shows some Swift code that
defines a ViewController class.

You will notice two functions in the code. viewDidLoad is called immediately after a view is loaded and
can be used for setting up the view. This is a good place to put code that sets up labels, buttons, colors, and
so on. didReceiveMemoryWarning is called when your application is getting low on memory. You can use this
function to decrease the amount of memory required by your application.

84

http://dx.doi.org/10.1007/978-1-4842-2331-4_13

CHAPTER 6 * LEARNING SWIFT AND XCODE

Note For now, you're simply going to add a few lines of code and see what they do. It’s not expected
that you understand what this code means right now. What’s important is simply going through the motions to
become more familiar with Xcode. Chapter 7 goes into more depth about what makes up a Swift program, and
Chapter 10 goes into more depth about building an iPhone interface.

Next, you'll add a few lines of code into this file, as shown in Figure 6-11. Line 13 defines an iPhone
label on the screen where you can put some text. Line 15 defines the method showName. You'll be calling this
method in order to populate the iPhone label. A label is nothing more than an area on the screen where you
can put some text information.

// ViewController.swift
// Chapteré

1/
5 // Created by Thornuko on 8/15/16.
6 // Copyright @ 2816 Innovativeware. All rights reserved.
71/

9 import UIKit

class ViewController: UIViewController {

@IBOutlet weak var namelLabel: UIlLabel!

o

15 @IBAction func showName(sender: AnyObject) {

16 namelLabel.text = "My Name is Brad!|"

17 }

18

19 override func viewDidLoad() {

20 super.viewDidLoad()

2 // Do any additional setup after loading the view, typically from a nib.
22 }

23

24 override func didReceiveMemoryWarning() {

25 super.didReceiveMemoryWarning()

26 // Dispose of any resources that can be recreated.
27 }

28

29

30 }

Figure 6-11. Code added to the ViewController.swift file

Caution Type the code exactly as shown in the example, including case. For instance, UILabel can’t be
uilabel or UILABEL. Swift is a case-sensitive language, so UILabel is completely different from uilabel.

You will notice that the code you added has @1BOutlet and @IBAction in front of them. These attributes
are necessary when connecting objects with the interface designer. IBOutlet allows you to control an
interface object with code. IBAction allows you to execute code when something happens in the interface
such as tapping a button.

85

http://dx.doi.org/10.1007/978-1-4842-2331-4_7
http://dx.doi.org/10.1007/978-1-4842-2331-4_10

CHAPTER 6 © LEARNING SWIFT AND XCODE

Note 1BOutlet and IBAction both start with IB, which is an acronym from Interface Builder. Interface
Builder was the tool used by NeXT and then Apple for building user interfaces.

You now have the necessary code in place, but you don’t yet have an interface on the iPhone. Next,
you're going to edit the interface and add two interface objects to your app.

To edit the iPhone’s interface, you need to click the Main.storyboard file once. The . storyboard file
contains all the information about a single window or view. Xcode 8 also supports .xib (pronounced zib) files.

Note Each .xib file represents one screen on an iPhone or iPad. Apps that have multiple views will have
multiple . xib files, but many different views can be stored in each storyboard file.

You will use Xcode’s interface editor to connect a UI object, such as a Label object, to the code you just
created. Connecting is as easy as clicking and dragging.

Click the last view button in the upper-right part of the screen, as shown in Figure 6-12. This opens the
Utilities view for the interface. Among other things, this Utilities view shows you the various interface objects
you can use in your app. You're going to be concerned with only the right-most objects: Button and Label.
Figure 6-13 shows the Object Library. There are other libraries available, but for now you will be using only
the third one from the left.

e0e p 5. Chapters) % iPhone SE Finighed -unring Chaptert on iPhoae SE D o«
£ B chanerts Chapiuers Maka, zioryboard Maka, 5.0ryo0ard (ase) | Fo Salaciion O &] & 0 @

» [View Controller Scene
View Controller

B viewController.swift

Assets.xcassets
LaunchScreon.storyboard
Info.plist

» 1 Products

)
©

= = C vl o iFhone oo il nnd 3 | tad &

Figure 6-12. The iPhone interface you're going to modify

86

CHAPTER 6 * LEARNING SWIFT AND XCODE

O 0 @ &=

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.

Navigation Controller - A
< controller that manages navigation
through a hierarchy of views.

Figure 6-13. The Object Library

The first step is to click the Button object in the Utilities window. Next, drag the object to the iPhone
view, as shown in Figure 6-14. Don’t worry; dragging the object doesn’t remove it from the list of objects in
the Utilities view. Dragging it creates a new copy of that object on the iPhone interface.

87

CHAPTER 6~ LEARNING SWIFT AND XCODE

Custom Class

e

® E Class o8
- Module

Identity

Restoration ID

User Defined Runtime Attributes

O o o Key Path Type Value
Buttorm
O O o

+

Document

Label
X
Object ID Cqi-mK-7Gk
D 0 @
\ Button - Intercepts touch events and
v Button sends an action message to a target

object when it's tapped.

Bar Button Item - Represents an
Iltem | item on a UIToolbar or
UINavigationltem object.

Fixed Space Bar Button Item -
Jrereesans] Represents a fixed space itemon a
UlToclbar object.

Figure 6-14. Moving a Button object onto the iPhone view

Next, double-click the Button object that was just added to the iPhone interface. This allows you to
change the title of the button, such as to Name, as shown in Figure 6-15. Many different interface objects work
just like this. Simply double-click, and the title of the object can be changed. This can also be done in the
actual code, but it’s much simpler to do in Interface Builder.

88

CHAPTER 6 © LEARNING SWIFT AND XCODE

Figure 6-15. Modifying the Button object’s title

Once the title has been changed, drag a Label object to right below the button, as shown in Figure 6-16.

89

CHAPTER 6 © LEARNING SWIFT AND XCODE

L
3__
(1]

5 z
L

Figure 6-16. Adding a Label object to the iPhone interface

Custom Class

Class o ﬁ
Module B

Identity

Restoration ID

User Defined Runtime Attributes

Key Path Type Value
+
Document
Label
X
Object ID Cqi-mK-7Gk
DO 3

Label - A variably sized amount of
Label seiic ext.

For now, you can leave the label’s text as “Label” since this makes it easy to find on the interface. If you
clear the label’s text, the object will still be there, but there is nothing visible to click in order to select it.
Expand the size of the label by dragging the center white square to the right, as shown in Figure 6-17.

Name
: 260.0
: 21.0

L abel

Figure 6-17. Expanding the label’s size

90

CHAPTER 6 * LEARNING SWIFT AND XCODE

Now that you have a button and the label, you can connect these visual objects to your program. Start
by right-clicking (or Control-clicking) the Button control. This brings up a connection menu, as shown in
Figure 6-18.

¥ Triggered Segues
action
Outlet Collections
gestureRecognizers
Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed
Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

© @ QOO0 O0ROBE @ O

Figure 6-18. Connection menu for the Button object

Next, click and drag from the Touch Up Inside connection circle to the View Controller icon, as shown
in Figure 6-19. Touch Up Inside means the user clicked inside the Button object. Dragging the connection
to the View Controller connects the Touch Up Inside event to the ViewController object. This causes the
object to be notified whenever the Button object is clicked.

91

CHAPTER 6 © LEARNING SWIFT AND XCODE

v [Z] View Controller Scene

Custom Class

(v view Cofitroller)] Class
Top Layout Suide b B | Module
Bottom Layout Gide -
v View 3 Identity
B Name Restoration 1D
L Label
-
wi) First Responder User Defined Runtime Attributes
[E Exit

Storyboard Entry Point

=)] Viewas:iP

Key Path Type Value

Sent Events

Did End On Exit

Editing Changed

Editing Did Bagin
Editing Did End

Primary Action Triggered

Touch Cancal

Touch Down

Touch Down Repeat

Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Outside

Touch Up Inside

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Cutlet Collection

Figure 6-19. Connecting the Touch Up Inside event to the object

Once the connection is dropped, a list of methods that can be used in your connection is displayed,
as shown in Figure 6-20. In this example, there is only one method, showName:. Selecting the showName:
method connects the Touch Up Inside event to the object.

v View Controller Scene

b.§ showNameWithSender:

~ Top Layout Guide
Bottom Layout Guide
v View
B Name
L Label
%1 First Resnonder

Figure 6-20. Selecting the method to handle the Touch Up Inside event

92

v

v

v

Figure 6-21. The connection is now complete

CHAPTER 6 * LEARNING SWIFT AND XCODE

Once the connection has been made, the details are shown on the button’s connection menu, as shown
in Figure 6-21.

Triggered Segues
action

Outlet Collections
gestureRecognizers
Sent Events

Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel

Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside

Touch Up Outside
Value Changed
Referencing Outlets

New Referencing Outlet
v Referencing Outlet Collections

% View Controller
showNameWithSender:

O OO0 @O00000O0O0O0O0OO0O0O O O

Next, you create a connection for the Label object. In this case, you don’t care about the Label events;
instead, you want to connect the ViewController’s nameLabel outlet to the object on the iPhone interface.
This connection basically tells the object that the label you want to set text on is on the iPhone interface.
Start by right-clicking the Label object on the iPhone interface. This brings up the connection menu for
the Label object, as shown in Figure 6-22. There are not as many options for a Label object as there were for
the Button object.

93

CHAPTER 6 © LEARNING SWIFT AND XCODE

¥ Outlet Collections
gestureRecognizers
¥ Referencing Outlets

New Referencing Outlet
¥ Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-22. Connection menu for the Label object

As mentioned, you are not here to connect an event. Instead, you connect what's referred to as a
referencing outlet. This connects a screen object to a variable in your ViewController object. Just like with
the button, you should drag the connection to the View Controller icon, as shown in Figure 6-23.

v [Z] view Controller Scene Custom Class
(LY VieuxC |)| 1 = 1 Class
Top Layuut Guide 2 =B
Bottom Layout Guida_ -

Module

v View . Identity
B Name
L Label
“: First Responder
[Exit

Storyboard Entry Point

Restoration ID

User Defined Runtime Attributes
Key Path Type Value

Name

¥ Outlet Collections
gestureRecognizers
¥ Referencing Outlets

New Referencing Outlet
¥ Referencing Outlet Collections
New Referencing Qutlet Collection

Label - A variably sized amou
Label static text

Figure 6-23. Connecting the referencing outlet to the object

Once the connection is dropped on the View Controller icon, a list of outlets in your ViewController
object will be displayed, as shown in Figure 6-24. Of the two choices, you want to choose nameLabel. This is
the name of the variable in the ViewController object you are using.

94

CHAPTER 6 * LEARNING SWIFT AND XCODE

v [Z] View Controller Scene

¥ nameLabel
test

view
Bottd ay

v View
B Name

Figure 6-24. Selecting the object’s variable to complete the connection
Once you've chosen nameLabel, you're ready to run your program. Click the Run button (which looks

like a Play button) at the top-left corner of the Xcode window (see Figure 6-8). This will automatically save
your files and start the application in the iPhone Simulator, as shown in Figure 6-25.

iPhone SE - i0S 10.0 (14A5322e) iPhone SE - i0S 10.0 (14A5322e)
Carrier 7:47 PM - Carrier ¥ 7:47 PM -
MName Name
Label My Name is Brad!

Figure 6-25. The app running, before and after the button is clicked

95

CHAPTER 6 © LEARNING SWIFT AND XCODE

By clicking the Name button, the label’s text will change from its default value of “Label” to “My Name is
Brad!” or whatever value you entered. If you want to, go back into the interface and clear the default label text.

Summary

The examples in this chapter were simple, but ideally they've whetted your appetite for more complex
applications using Swift and Xcode. In later chapters, you can expect to learn more about object-oriented
programming and more about what Swift can do. Pat yourself on the back because you've learned a lot
already. Here is a summary of the topics discussed in this chapter:

e The origins and brief history of the Swift language

e Some common language symbols used in Swift

e A Swift class example

e Using Xcode a bit more, including discussing the HelloWorld. swift source file

e Connecting visual interface objects with methods and variables in your
application object

EXERCISES

e (lear the default text of “Label” in the program and re-run the example.

e (Change the size of the Label object on the interface to be smaller in width. How does
that affect your text message?

e Delete the referencing outlet connection of the label and rerun the project. What
happens?

e If you think you have the hang of this, add a new button and label to the
ViewController object and to the interface. Change the label from displaying your
name to displaying something else.

96

CHAPTER 7

Swift Classes, Objects,
and Methods

If you haven’t already read Chapter 6, please do so before reading this chapter because it provides a great
introduction to some of the basics of Swift. This chapter builds on that foundation. By the end of this chapter,
you can expect to have a greater understanding of the Swift language and how to use the basics to write
simple programs. The best way to learn is to take small programs and write (or rewrite) them in Swift just to
see how the language works.

This chapter covers what composes a Swift class and how to interact with Swift objects via methods.
It uses a simple radio station class as an example of how a Swift class is written. This will impart an
understanding of how to use a Swift class. This chapter also teaches you how to formulate a design for
objects that are needed to solve a problem. The chapter touches on how to create custom objects, as well as
how to use existing objects provided in the foundation classes.

This chapter expands on Chapter 6’s topics and introduces some of the concepts described in detail in
Chapter 8.

Creating a Swift Class

Classes are simple to create in Swift. Generally, a class will be contained in its own file, but a single file can
hold many classes if desired.
Here is a sample of the first line from a class’s declaration:

class RadioStation

Here, the class name is RadioStation. Swift classes, by default, do not inherit from a superclass. If you
want to make your Swift class inherit from another class, you can do this like so:

class RadioStation: Station

In this example, RadioStation is now a subclass of Station and will inherit all of the properties and
methods of Station. Listing 7-1 shows the full definition of a class.

© Gary Bennett and Brad Lees 2016 97
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_7

http://dx.doi.org/10.1007/978-1-4842-2331-4_6
http://dx.doi.org/10.1007/978-1-4842-2331-4_6
http://dx.doi.org/10.1007/978-1-4842-2331-4_8

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Listing 7-1. A Swift Class
import UIKit

class RadioStation: Station {

var frequency: Double

override init() {

1
2
3
4
5 var name: String
6
7
8
9 name = "Default"”

10 frequency = 100

11

12

13 class func minAMFrequency() -> Double {

14 return 520.0

15 }

16

17 class func maxAMFrequency() -> Double {

18 return 1610.0

19 }

20

21 class func minFMFrequency() -> Double {

22 return 88.3

23 }

24

25 class func maxFMFrequency() -> Double {

26 return 107.9

27 }

28

29 func band() -> Int {

30 if frequency >= RadioStation.minFMFrequency() & frequency <=
RadioStation.maxFMFrequency() {

31 return 1 //FM

32 } else {

33 return 0 //AM

34 }

35 }

36

37 }

Instance Variables

Listing 7-1 shows a sample class with two different properties: name and frequency. Line 1 imports the
UIKit class definitions (more on that in a bit). Line 3 starts the definition of the class by defining its name
(sometimes called the type). Lines 5 and 6 define the properties for the RadioStation class.

Whenever the RadioStation class is instantiated, the resulting RadioStation object has access to these
properties, which are only for specific instances. If there are ten RadioStation objects, each object has its
own variables independent of the other objects. This is also referred to as scope, in that the object’s variables
are within the scope of each object.

98

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Methods

Almost every object has methods. In Swift, the common concept to interact with an object is calling a
method on an object, like so:

myStation.band()

The preceding line will call a method named band on an instance of the RadioStation class object.

Methods can also have parameters passed along with them. Why pass parameters? Parameters are
passed for several reasons. First (and most common), the range of possibilities is too large to write as
separate methods. Second, the data you need to store in your object is variable—like a radio station’s
name. In the following example, you will see that it isn’t practical to write a method for every possible radio
frequency; instead, the frequency is passed as a parameter. The same applies to the station name.

myStation.setFrequency(104.7)

The method name is setFrequency. Method calls can have several parameters, as the following
example illustrates:

myStation = RadioStation.init(name: "KZZP", frequency: 104.7)

In the preceding example, the method call consists of two parameters: the station name and its
frequency. What's interesting about Swift relative to other languages is that the methods are essentially
named parameters. If this were a C++ or Java program, the call would be as follows:

myObject = new RadioStation("KZzP", 104.7)

While a RadioStation object’s parameters might seem obvious, having named parameters can be a
bonus because they more or less state what the parameters are used for or what they do.

Using Type methods

A class doesn’t always have to be instantiated to be used. In some cases, classes have methods that can
actually perform some simple operations and return values before a class is instantiated . These methods are
called type methods. In Listing 7-1, the method names that start with class are type methods.

Type methods have limitations. One of their biggest limitations is that none of the instance variables
can be used. Being unable to use instance variables makes sense since you haven'’t instantiated anything.
A type method can have its own local variables within the method itself but can’t use any of the variables
defined as instance variables.

A call to a type method would look like this:

RadioStation.minAMFrequency. ()
Notice that the call is similar to how a method is called on an instantiated object. The big difference is

that instead of an instance variable, the class name is used. Type methods are used quite extensively in the
macOS and iOS frameworks. They are used mostly for returning some fixed or well-known type of value or to

99

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

return a new instance of an object. These types of type methods are referred to as initializers. Here are some
initializer method examples:

1. Date.timeIntervalSinceReferenceDate // Returns a number
2. String(format:"http://%@", "1000") // Returns a new String object
3. Dictionary<String, String>() // Returns a new Dictionary object.

All of the preceding messages are type methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1, 2001, which is the
reference date.

Line 2 returns a new String object that has been formatted and has a value of http://1000.

Line 3 is a form that is commonly used because it actually allocates a new object. Typically, the line is
not used by itself, but in a line like this:

var myDict = Dictionary<String, String>()

So, when would you use a type method? As a general rule, if the method returns information that
is not specific to any particular instance of the class, make the method a type method. For example, the
minAMFrequency in the preceding example would be the same for all instances of any RadioStation.
object-this is a great candidate for a type method. However, the station’s name or its assigned frequency
would be different for each instance of the class. These should not (and indeed could not) be type methods.
The reason for this is that type methods cannot use any of the instance variables defined by the class.

Using Instance Methods

Instance methods (lines 29 to 35 in Listing 7-1) are available only once a class has been instantiated. Here’s
an example:

1 var myStation: RadioStation // This declares a variable to hold the RadioStation
object.

2 myStation = RadioStation() // This creates a new RadioStation object.

3 var band = myStation.band() // This method returns the Band of the RadioStation.

Line 3 calls a method on the RadioStation object. The method band returns a 1 for FM and a 0 for AM.
An instance method is any method that does not contain the class declaration before it.

Using Your New Class

You've created a simple RadioStation class, but by itself it doesn’t accomplish a whole lot. In this section,
you will create the Radio class and have it maintain a list of RadioStation classes.

Creating Your Project
Let’s start Xcode and create a new project named RadioStations.
1. Launch Xcode and select “Create a new Xcode project.”

2. Make sure you choose an iOS application and select the Single View Application
template, as shown in Figure 7-1.

100

http://1000/

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Choose a template for your new project:

m watchOS tvOS mac0S Cross-platform | \.
Application
el ¥ -
L) ®00 T
Single View Game Master-Detail Page-Based Tabbed
Application Application Application Application
00 ")
0o e
Sticker Pack iMessage
Application Application

Framework & Library

¢ & &

Cocoa Touch Cocoa Touch Metal Library
Framewnrk Statie |ihrary
Cancel Next

Figure 7-1. Selecting a template in the new project window

3. Once you've selected the template, click the Next button.
4. Setthe product name (application name) to RadioStations.

5. Set the company identifier (a pretend company will do) and set the device family
to iPhone (as shown in Figure 7-2). Make sure Swift is selected in the Language
drop-down list.

101

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Choose options for your new project:

Product Name: RadioStations
Team: None ﬁ
Organization Name: Innovativeware
Organization Identifier: com.innovativeware

Bundle Identifier: com.innovativeware.RadioStations

<

Language: Swift

Devices: iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous ﬁ

Figure 7-2. Naming the new iPhone application

6. Click the Next button, and Xcode will ask you where you want to save your new
project. You can save the project on your desktop or anywhere in your home
folder. Once you've made your choice, simply click the Create button.

7. Once you've clicked the Create button, the Xcode workspace window should be
visible, as shown in Figure 7-3.

102

CHAPTER 7

SWIFT CLASSES, OBJECTS, AND METHODS

08 » B 7 RadicStations) i IProne SE RadioStations: Ready | Today at 4-31PM E o DO DO
BR QA ST @ 8 <> B s [
| ¥ [Radiwswtions (1] General Capabiities Rescurce Tags Irte Build Sattings Bulid Fhases Bulkd Rules identity and Type

Rndiosttion
[RadioStations e _ Kame | RagioStations.

» AppDelegate swift + identity

[Radi Lexation | Abtaute
+ ViewControler.swit 1 RedioStations e e -
TARGETS " 10N RCOCEDIO)
Main storyboard 5

- wainstons Disalay Name Full Path [Usersbradices Dropbox/

[Aszets noassets i " T Aprass Switt HTocer
o Dundie ldentiFer | com. nnovativeware RadioStations e AR anal
e, veision ['@ RadioStations.scodesrs] ©

» [Preducts Buig 1 | Praeet Dacument
Project Format | Xcode 3.2-compativie [
¥ Signing Crganization IPnovativewa e
Clagt Prafix
| Toxt Settings
Team | MNone a Indera Usivg | Spaces B
Prowisloning Prafie Xcode Managed Profie ied B et e Ak
Signng Certificste iOS Developer B wrap ines
Ststus @ Signieg for *AadioStations* roquires 3 bDDea
duvelopment toam.
Seleet o deveiopment 103m i e Ereject ooEne
* Deployment info
Deployment Target E Mo Matches
Dovices | Phore B
Manirtertace | Man B
Davice Orierrtation [Portrait
+ (& ©E| + o Unsice Down ®E

Figure 7-3. The workspace window in Xcode

Adding Objects

Now you can add your new objects.

1. First, create your RadioStation object. Right-click the RadioStations project and

select New File (as shown in Figure 7-4).

103

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

= # RadioStations) §i§ iPhone SE

B 28 QA © == o B |8 B Radic

@Hm = S - Ger

- Show in Finder

L : . |
. Open with External Editor YOJECT
~ Open As » [& RadioStation:
- Show File Inspector e

S Y

Add Files to “RadioStations”..

o B 1

» [
New Group
New Group from Selection

Sort by Name
Sort by Type

Find in Selected Groups...
Source Control b

Project Navigator Help

Figure 7-4. Adding a new file

2. The next screen, shown in Figure 7-5, asks for the new file type. Simply choose
Cocoa Touch Class from the Source group, and then click Next.

104

Choose a template for your new file:

m watchOS tvOS macOS

Source
@
Cocoa Touch Class Ul Test Case Class

m h

Obijective-C File Header File

User Interface

Storyboard View
Cancel

Figure 7-5. Selecting the new file type

3. The following screen will ask you the name of the class. Enter RadioStation.
Keep Subclass set to NSObject and make sure Language is set to Swift. See

Figure 7-6

)

Unit Test Case
Class

C

C File

Empty

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

3

Playground

Ce+

C++ File

Launch Screen

N

Swift File

N\

Metal File

105

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Choose options for your new file:

Class: RadioStatiorI

Subclass of: NSObject

Language: Swift

[<>)

Cancel previous | [CISN

Figure 7-6. Naming the New Class

4, The next screen asks you the location to save the newly created file. Simply click
the Create button since the location in which Xcode chooses to save the files is
within the current project.

5. Your project window should now look like Figure 7-7. Click the RadioStation.
swift file. Notice that the stub of your new RadioStation class is already present.
Now, fill in the empty class so it looks like Listing 7-1, your RadioStation Swift file.

106

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

B 32 Q AN © = b B 88 < [RadioStations) . RadioStation.swift) No Selection
v) RadioStations 1| // :) :
. - 2 // RadioStation.swift
| - RadioStation.swift 3 // RadioStations
» 3 1K/
¥ | | RadioStat
i 5 // Created by Thornuko on B/18/16.
» AppDelegate.swift 6 [/ Copyright © 2016 Innovativeware. All rights reserved.
» ViewController.swift /
Main.storyboard 7 import UIKit
B} Assets.xcassets class RadioStation: NSObject {
LaunchScreen.storyboard
Info.plist }
» |] Products

Figure 7-7. Your newly created file in the workspace window

Writing the Class

Now that you have created your project and your new RadioStation.swift file, you are ready to begin
creating your class.

1. The class file you'll use here is the same one you used at the beginning of this
chapter, and it will work perfectly for the radio station application. Click the
RadioStation.swift file, and enter the code in your class, as shown in Figure 7-8.

107

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

1 //

2 // RadioStation.swift

32 // RadioStations

4 [/

5 // Created by Thornuko on 8/18/16.

6 // Copyright © 2016 Innovativeware. All rights reserved.
7| £/

8

9 import UIKit

10

11 class RadioStation: NSObject {

12

13 var name: String

1% var frequency: Double

15

16 override init() {

17 name="Default"

18 frequency=100

19 }

20

21 class func minAMFrequency() -> Double {
2 return 520.0

23 }

24

25 class func maxAMFrequency() => Double {
26 return 1610.0

27 }

class func minFMFrequency() -> Double {
return 88.3
}

class func maxFMFrequency() -> Double {
return 107.9
}

func band() -> Int {
if frequency »>= RadioStation.minFMFrequency() &&
frequency <= RadioStation.maxFMFrequency() {
return 1 //FM
} else {
return 0 //AM
}

|

EGEEREEE BUYRREABBLERR

Figure 7-8. The RadioStation class file

108

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

We will come back to a few items in Figure 7-8 and explain them further in a moment; however, with the
RadioStation class defined, you can now write the code that will actually use it.

2. Click the ViewController.swift file. You'll need to define a few variables for this
class to use, as shown in Figure 7-9.

// ViewController.swift
// RadioStations

Created by Thornuko on 8/18/16.
// Copyright © 2016 Innovativeware. All rights reserved.

OO~ W -
S
—

import UIKit

-
o

11 class ViewController: UIViewController {

12

13 {réIBOUtlet var stationName: UlLabel! b,
14 @IBOutlet var stationFrequency: UlLabel!
15 @IBOutlet var stationBand: UlLabel!

16

17 var myStation: RadioStation

18

19 required init?(coder aDecoder: NSCoder) {
20 myStation = RadioStation()

21 myStation.frequency = 102.5

22 myStation.name = "KNIX"

7 super.init(coder: aDecoder)

24 }

25 \. _4/
26 override func viewDidlLoad() {

27 super.viewDidLoad()

28 // Do any additional setup after loading the view,
typically from a nib.

29 }

31 override func didReceiveMemorywWarning() {

32 super.didReceiveMemoryWarning()

33 // Dispose of any resources that can be recreated.
34 }

35

36

371 }

Figure 7-9. Adding a RadioStation object to the View Controller

109

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Lines 13 to 15 are going to be used by your iOS interface to show some values on the screen (more on
these later). Line 17 defines the variable myStation of type RadioStation. Lines 19 to 24 contain the required
init method. In Swift, classes do not require an initializer method, but it is a good place to set the default
values of your object. This method sets up the variables used in that class. Also, don’t forget to include the
curly braces ({ .. }).

Creating the User Interface
Next, the main window has to be set up in order to display your station information.

1. Click the Main.storyboard file. This file produces the main iPhone screen. Click
the Object Library icon, as shown in Figure 7-10.

e0e p A Ra..ns) il iPhone SE RadioStations: Ready | Today at 8:57 AM = i DO
B2 Q A & & > @ W < 2 RadioStations R 1Y Main.storyboard (Base) | No Selection O EaE o 0 @
v & RadioStations » [view Controller Scene

= RadioStation.swift View Controller

¥ | RadioStations
= AppDelegate.swift
= ViewController. swift
Assets xcassets
LaunchScrean.storyboard
Info.plist

L Products

View Controller - & controller that
manages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard

Navigation Controller - A
< controller that manages navigation
throuah a hierarchy of views

Figure 7-10. Adding a Label object to your iPhone screen

110

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

2. Dragand drop three Label objects onto the screen, as shown in Figure 7-11. The
labels can be aligned in any manner, or as shown in Figure 7-11.

Class (] n
W
[ﬁ'ﬁ E Module .
Identity
Restoration ID
Station Name: User Defined Runtime Attributes
Key Path Type Value
Frequency:
Band: +
Document
Label
X
Object ID 8bC-Xf-vdC
Lock Inherited - (Nothing)
Notes = = = = --- ..
&
OO e
Label - A variably sized amount of
I-a be static text.
[] View as:iPhone 6s (wC rR) B8 @ label (]

Figure 7-11. All three Label objects on the iPhone screen

111

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

3. You're going to need space, however. Once the Label objects are on the iPhone
screen, double-click each Label object in order to change its text so that the
iPhone screen looks something like Figure 7-11.

4. Next, add a Button object to the screen, as shown in Figure 7-12. This button,
when clicked, will cause the screen to be updated with your radio station

information.
custom Class
@ = Class (4] n
- Module
Identity
Station Name: Restoration ID
F User Defined Runtime Attributes
requency: Key Path Type Value
Band:
4+
Document
o o o
Label
Buttorm
o o a X
Object ID UBQ-0o-fde
Lock Inherited - (Nothing) B
Notes =E===--—-[[E .-
o
LEESINC)
\ Button - Intercepts touch events and
Button sends an action message to a target
object when it's tapped.

Figure 7-12. Adding a Button object to the screen

112

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

5. Justlike with the Label object, simply double-click the Button object in order to

change its title to My Station. The button should automatically resize to fit the
new title.

6. Next, youneed to add the Label fields that will hold the radio station information.
These fields are situated just after the existing Label objects. Figure 7-13 shows
the placement of the first label. Once the Label object is placed, it needs to be
resized so that it can show more text, as shown in Figure 7-14.

Custom Class

Class o -
by = Module »

Identity

Restoration ID
Station Name: a_ageﬁ

User Defined Runtime Attributes

Key Path Type Value
Frequency:
Band:
Document
Label
" X%
My Station
Object ID KaS5-pX-bUu

Lock Inherited - (Nothing) +
Notes =E===--0HE .7

Label - A variably sized amount of
l—abei static text.

Figure 7-13. Adding another Label object

113

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Station-Name:------—-+t-abel--—--—---- —— "%]

Frequency:

Band:

My Station

Figure 7-14. Stretching the Label object

Note Stretching the Label object allows the Label’s text to contain a reasonably long string. If you didn’t
resize the Label object, the text would be cut off (since it wouldn't fit), or the font size would get smaller.

'By using either code or Interface Builder, you can customize how the Label object reacts to text that is too large to fit.
The behavior described is based on typical defaults for the Label object.

114

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

7. Repeat adding and sizing a Label object next to the existing Frequency and Band
Labels, as shown in Figure 7-15. It’s okay to leave the default text of the label set
to “Label” for now.

€
I

Station Name: Label

Frequency: Label

Band: Label

My Station

Figure 7-15. Adding another Label object

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these interface elements to the

variables in your program. As you saw in Chapter 6, you do this by connecting the user interface objects with
the objects in your program.

1. Start by connecting the Label object to the right of Station Name to your variable,
as shown in Figure 7-16. Right-click (or Control-click) the View Controller object
and drag it to the Label object next to the Station Name text to bring up the list of
outlets.

115

http://dx.doi.org/10.1007/978-1-4842-2331-4_6

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

v Tfﬂ View Controller Scene
v

“aw Controller
Top L_a_féﬁi'a‘u:-‘é;-h____
Bottom Layout G... e
v View T

Station Name: —

L

L Frequency: ” X T
o ik Station Name: Labei
B My Station

L

L

Label
Label Frequency: Label

L Label
fﬁ First Responder

B exit Band: Label

- Storyboard Entry Poi...

My Station

Figure 7-16. Creating a connection

2. When the connection is dropped from the View Controller icon, another small
menu will be shown. Click the property name that you want to display in this
Label object—in this case, you want the stationName property, as shown in

Figure 7-17.
0= B
()
Station Name: Outlets
stationBand
stationFrequency
- stationName
Frequency: o
Band: Label

Figure 7-17. Connecting the Label to your stationName variable

116

Lo

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

3. Now, the interface Label object is connected to the stationName property.
Whenever you set the property’s value, the screen will also be updated. Repeat
the previous connection steps for Frequency and Band.

To hook up your button, you need a method in the ViewController class to handle this. You could
go to the ViewController.swift file and add it there. There is also a shortcut to adding @IBOutlet
properties and @IBAction methods. On the right side of the Xcode toolbar, click the Assistant Editor icon
shown in Figure 7-18. (It looks like two circles.)

Ii§

(@) | O & O
Figure 7-18. The Assistant Editor icon

After clicking the Assistant Editor icon, a second window will pop open showing the ViewController
source. Right-click (or Controller-click) and drag the button to the code window, as shown in Figure 7-19.

Tyt
2 // ViewController.swift
] = 3 // RadioStations
1 4 4
- § f// Created by Thornuko on 8/18/16.
// Copyright ® 2016 Innovativeware. All rights
reserved.

A
Station Name: Label , import UIKit

class ViewController: UIViewController {

Frequency: Label ® 13 @IBOutlet var stationName: UILabel!
8 14 @IBOutlet var stationFrequency: U
@IBOutlet var stationBand: UILabel!

abel!

Band: Label 1 var myStation: RadioStation

required init?{coder aDecoder: NSCoder) {
myStation = RadioStation()

myStat .name = "KNIX"
o g .. B 23 super.init(coder: aDecoder)
My Statiom 2 }
o o g 25
e 2 override func viewDidLoad() {
™ 2 super.viewDidLoad()
. // Do any additional setup after loading the
view, typically from a nib.
}

override func didReceiveMemoryWarning() {
5 super.didReceiveMemorywarning()
B8 // Dispose of any resources that can be
. recreated.

= -
3 Insert Outlet, Action, or Outlet Collection

a7 } L

Figure 7-19. Using the Assistant editor to create your method

117

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

4. When you release the mouse, a little window will pop up, as shown in Figure 7-20.

‘ 29 } o
30
e — B override fu
Connection | Action C) B super.d
Object View Controller p3 // Disp
rec:
Name | buttonClick| 34 }
Type AnyObject a »
Event | Touch Up Inside 2 :’; }
Arguments | Sender) B

| Cancel Connect |

Figure 7-20. Creating the action

Select Action and set the name to buttonClick. Xcode will now create your method for you.
Finish your method by adding the code shown in Figure 7-21.

D 36 @IBAction func buttonClick(_ sender: AnyObject) {
37 stationName.text = myStation.name
38 stationFrequency.text = String(format: "%.1f", myStation.
frequency)
39
40 if myStation.band() == 1 {
41 stationBand.text = "FM"
42 } else {
43 stationBand.text = "AM"
4 }
45 }
46
47| }

Figure 7-21. Finished buttonClick method

Let’s walk through the code you just added. First, on line 36, you'll notice the IBAction attribute. This
lets Xcode know that this method can be called as a result of an action. So, when you go to connect an action
to your application, you will see this method.

118

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Lines 37 and 38 both set the text fields to the values found in your RadioStation class. Line 37 is as
follows:

stationName.text = myStation.name

The stationName variable is what you just connected to the user interface Label object, and
myStation.name is used to return the name of the station.

Line 38 effectively does the same thing as line 37, but you have to first convert the double value (the
station’s frequency) to a String. The "%.1f” means that you convert a floating-point value and should see
only one digit after the decimal point.

Lines 40 to 44 make use of both the instance variables and the type methods of the RadioStation class.
Here, you simply call the method band() on the myStation object. If so, the station is an FM station and band()
will return a 1; otherwise, assume it’s the AM band. Lines 41 and 43 show the band value on the screen.

Note The Button sends the Touch Up Inside event whenever a user touches the inside of the button and
then releases—not until the user lifts their finger is the event actually sent.

Running the Program

Once the connection has been made, you're ready to run and test your program! To do this, simply click the
Play button at the top left of the Xcode window, as shown in Figure 7-22.

®) ® ® /A Ra...ions) @i§ iPhone SE

Figure 7-22. Click the Play button to run your program

If there are no compile errors, the iPhone Simulator should come up, and you should see your
application. Simply click the My Station button, and the radio station information will be displayed, as
shown in Figure 7-23.

119

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

iPhone SE -i0S 10.0 (14A5339a)

Carrier ¥ 10:46 AM = 4
Station Name: KNIX
Frequency: 102.5
Band: FM

My Station

Figure 7-23. Showing your radio station information

If things don’t quite look or work right, retrace your steps and make sure all the code and connections
described in this chapter are in place.

120

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

Taking Type methods to the Next Level

In your program, you haven'’t taken advantage of all the type methods for RadioStation, but this chapter
does describe what a type method is and how it is used. Use that knowledge to try a few of the exercises
mentioned at the end of this chapter. Just play around with this simple working program by adding or
changing class or instance methods to get an idea of how they work.

Accessing the Xcode Documentation

There is a wealth of information provided in the Xcode developer documentation. When Xcode is opened,
select Help » Documentation and API Reference (see Figure 7-24) to open the Documentation window.

Source Control Window
Search
Documentation and API Reference

Xcode Help
What's New in Xcode
Release Notes

Quick Help for Selected Item ~36?
Search Documentation for Selected Text ~ 3§/

Figure 7-24. The Xcode Help menu

Once it’s opened, the search window can be used to look up any of the Swift classes you've used in this
chapter, including the String class documentation, as shown in Figure 7-25.

121

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

String

33 Foundation Structure

String

2: Objective-C
£ Swift Standard Licrary

45 AdcressBosk A Unicode string value. Language
11 AderessBookl Swift
+5 AdSupport

On This Page

Qverview

A string is a series of characters, such as “Swift". Strings in Swift are Unicode correct,
locale insensitive, and designed to be efficient. The ing type bridges with the
Objective-C class N5String and offers interoperability with C functions that works with
strings.

See Also

‘You can create new strings using string literals or string Interpolations. A string literal s a

series of characters enclosed in quotes.
I Eventiit

£ Evertkinun

+ Heanrk ;
50 let greeting = "Welcome!”
& HealthiGsla

+5 HomeXit

String interpolations are string literals that evaluate any included expressions and convert
the results to string form. String interpolations are an easy way to build a string from
multiphe pieces. Wrap each expression in a string interpolation in parentheses, prefixed by a
hackslash.

Figure 7-25. Xcode documentation

There are several different things to discover about the String class shown in Figure 7-25. Go through
the documentation and the various companion guides that Apple provides. This will give you a more
thorough understanding of the various classes and the various methods supported by them.

Summary

Once again, congratulate yourself for being able to single-handedly stuff your brain with a lot of information!
Here is a summary of what was covered in this chapter:

e Swift classes review
e Type methods
e Instance methods
e Creatingaclass
e Limitations of using type methods vs. instance methods
e Initializing the class and making use of the instance variables

e Making use of your new RadioStation object

e Building an iPhone app that uses your new object
e Connecting interface classes to properties

e Connecting user interface events to methods in your class

122

CHAPTER 7 © SWIFT CLASSES, OBJECTS, AND METHODS

EXERCISES

Change the code that creates your RadioStation class and make the station’s name
much longer than what can appear on the screen. What happens?

Change the current button and add a new button. Label the buttons FM and AM. If
the user clicks the FM button, show an FM station. If the user clicks the AM button,
display an AM station. (Hint: you’ll need to add a second RadioStation object to the
ViewController.swift file.)

Clean up the interface a little by making sure that the user doesn’t see the text “Label”
when the iPhone application first starts.

e Fix the issue by using the interface tool.
e How could you fix this by adding code to the application instead?

Add more validation to the @IBAction func buttonClick(_ sender: AnyObject)
method. Right now, it validates FM ranges, but not AM ranges. Fix the code so that it
also validates an AM range.

e If the radio station frequency is out of bounds, use the existing labels to display
some type of error message.

123

CHAPTER 8

Programming Basics in Swift

Swift is an elegant language. It mixes the efficiency of a compiled language with the flexibility and modern
features of many scripting languages.

This chapter introduces some of the more common concepts in Swift, such as properties and collection
classes. It also shows how properties are used from within Xcode when dealing with user interface elements.
This sounds like a lot to accomplish, but Swift, the Foundation framework, and the Xcode tool provide a
wealth of objects and methods and a way to build applications with ease.

Using let vs. var

If you have spent much time with Swift, you have seen the word var appear before variable declarations.
You may also have seen let before other declarations. The word var is used to define a variable, while the
word let is used to define a constant. This means that if you declare a value with let, you will not be able to
change the value. The following code defines a constant:

let myName = "Brad"

Once you define a constant, you cannot change the value.

Caution Xcode 8 will now warn you if you declare a variable and never change its value. It will
recommend using let instead of var.

myName = "John"

This will give you an error. If you want to create a mutable or changeable variable, you need to use var.
For example, you can do the following:

var myName = "Brad"
myName = "John"

This will not give you any errors because myName is now a variable. This does not relate to only Strings
and Ints, butit can also be used with collections and other objects.

Variables give you more flexibility, so why would anyone ever want to use a constant? The quick answer
is performance. If you know that you have a value that will not change, the compiler can optimize that value
as a constant.

© Gary Bennett and Brad Lees 2016 125
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_8

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Understanding Collections

Understanding collections is a fundamental part of learning Swift. In fact, collection objects are fundamental
constructs of nearly every modern object-oriented language library (sometimes they are referred to as
containers). Simply put, a collection is a type of class that can hold and manage other objects. The whole
purpose of a collection is that it provides a common way to store and retrieve objects efficiently.

There are several types of collections. While they all fulfill the same purpose of being able to hold other
objects, they differ mostly in the way objects are retrieved. The most common collections used in Swift are
the Array and the Dictionary.

Both of these collections can be created as constants or regular variables. If you create a collection as a
constant, you must fill it with the objects at the time of creation. It cannot be modified after that point.

Using Arrays

The Array class is like any other collection in that it allows the programmer to manage a group of objects.
An array is an ordered collection, which means that objects are entered in an array in a certain order and
retrieved in the same order.

Note There are some methods for working with arrays that allow you to change the order of the objects or
to add an object at a specific location in the array.

The Array class allows an object to be retrieved by its index in the array. An index is the numeric
position that an object would occupy in the array. For example, if there are three elements in the array, the
objects can be referenced with indexes from 0 to 2. Like with most things in Swift and other programming
languages, indexes start at 0, not 1. See Listing 8-1.

Listing 8-1. Accessing Objects in an Array

var myArray: [String] = ["One", "Two", "Three"]
print (myArray[o0])
print (myArray[1])
print (myArray[2])

B wWw N R

Asyou can see, objects in the array can be retrieved via their index. The indexes start at 0 and can’t
exceed the size of the array minus 1. You can easily calculate the size of the array by sending a count message
to the Array object, as shown here:

var entries = myArray.count

In fact, every collection type, including Array and Dictionary, will respond to the count message.
Adding items to the end of an array is simple. You can just call the append method on the array. See
Listing 8-2.

Listing 8-2. Adding Objects to an Array

var myArray: [String] = ["One", "Two", "Three"]
myArray.append("Four")
myArray.append("Five")
myArray.append("Six")

A wWN PR

126

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Swift provides you with many different methods for adding items to an array. If you want to add
multiple objects to an array, you can use the standard += (often called plus equals) operator. Listing 8-3
creates an array and then adds three more String objects to the array on line 2. Notice the new values are in
brackets instead of parentheses.

Listing 8-3. Adding Multiple Objects to an Array

1 var myArray: [String] = ["One", "Two", "Three"]
2 myArray += ["Four", "Five", "Six"]

As discussed earlier, an array is actually ordered. The order of the objects in your array is important.
There may be times where you need to add an item at a certain position in the array. You can accomplish
this with the insert(at:) method, as shown in Listing 8-4.

Listing 8-4. Adding a String to the Beginning of an Array

1 var myArray: [String] = ["Two", "Three"]
2 myArray.insert("One", at: 0)

The array now contains One, Two, Three.

Accessing items in an array is simple. You can use standard square brackets to access an object at a
certain position. For example, myArray[0] would give you the first object in the array. If you want to loop
through each of the items in the array, you can use something called fast enumeration or For-In Loops.
Listing 8-5 is an example of fast enumeration.

Listing 8-5. Fast Enumeration

1 var myArray: [String] = ["One", "Two", "Three"]
2 for myString in myArray {

3 print(myString)

4}

The magic happens in line 2 of Listing 8-5. You tell Swift to assign each value of myArray to a new
constant called myString. You can then do whatever you want to do with myString. In this case, you just
print it. It will go through all of the objects in the array without you having to know the total number of
objects. This is a fast and effective way to pull items out of an array.

Removing objects from an array is simple, too. You can use the remove(at:) method, as shown in
Listing 8-6.

Listing 8-6. Removing an Object

1 var myArray: [String] = ["One", "Two", "Three"]
2 myArray.remove(at: 1)

3 for myString in myArray {

4 print(myString)

5

The output from Listing 8-6 will be One, Three. This is because you removed the object with the index
of 1. Remember, this is the second object in the array because array indexes always begin at 0.

You have seen how flexible Swift is in letting you interact with arrays. They are powerful collections that
you will use on a regular basis as a programmer. This section covered the basics of arrays, but there are many
more things arrays can do.

127

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Using the Dictionary Class

The Swift Dictionary class is also a useful type of collection class. It allows the storage of objects, just like the
Array class, but Dictionary is different in that it allows a key to be associated with the entry. For example,
you could create a dictionary that stores a list of attributes about someone such as a firstName, lastName,
and so on. Instead of accessing the attributes with an index like with an array, the dictionary could use a
String like "firstName". However, all keys must be unique—thatis, "firstName" cannot exist more than
once. Depending on your program, finding unique names is normally not a problem.

Here’s an example of how you create a dictionary:

var person: [String: String] = ["firstName": "John", "lastName": "Doe"]

This creates a simple dictionary called person. The next part of the declaration tells the dictionary what
kinds of objects the keys and the values will be. In this case, the keys are Strings, and the values are Strings.
You then add two keys to the dictionary. The first key is firstName, and that key has a value of John. The
second key is 1astName, and that has a value of Doe. You can access the values in the dictionary by using a
similar notation to arrays:

print(person["firstName"])

This code will print the name Optional("John") since that is the value for the key firstName. The
Optional appears in the previous example because the value of a key in a dictionary is an optional value.
You can use the same style of code to change the values in a dictionary. Let’s say, for this example, that John
now likes to go by Joe instead. You can change the value in the dictionary with a simple line of code:

person["firstName"] = "Joe"
You can add a new key to a dictionary with the same notation:
person["gender"] = "Male"

If you decide you want to remove a key from a dictionary, such as the gender key you just added, you
can do so by setting the value of that key to nil:

person["gender"] = nil

Now the dictionary will contain only firstName and lastName. Remember that dictionaries are not
ordered. You cannot rely on the order, but there will be times when you need to iterate over a dictionary. This
is done in a manner similar to arrays. The main difference is that in an array, you assign one variable, while
in a dictionary, you need to assign the key and the value. See Listing 8-7.

Listing 8-7. Iterating over a Dictionary

var person: [String: String] = ["firstName": "John", "lastName": "Doe"]
for (myKey, myValue) in person {

print(myKey + ": " + myValue)
}

A wWN PR

128

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

This example will print the following:

firstName: John
lastName: Doe

Dictionaries are a great way to organize data that does not need to be ordered. It is also a great way
to look up data based on a certain key. They are very flexible in Swift and should be used to organize and
optimize your code.

Creating the BookStore Application

You are going to create an app that will demonstrate how to use arrays. You will create a UITableView and
use an array to populate the UITableView with data. Let’s start by creating the base application project.
Open Xcode and select a new Master-Detail Application project, as shown in Figure 8-1. In this project, you
will create a few simple objects for what is to become your bookstore application: a Book object and the
BookStore object. You'll visit properties again and see how to get and set the value of one during this project.
Lastly, you'll put the bookstore objects to use, and you'll learn how to make use of objects once you've
created them.

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform ®

Application

1 ¥ -
§ e ®0O0 * was
Single View Game Master-Detail Page-Based Tabbed
Application Application Application Application
oo o
o 9,

Sticker Pack iMessage
Application Application

Framework & Library

~ & -
& \ -37
. = =
Cocoa Touch Cocoa Touch Metal Library

Framework Static Library

Cancel [Next

Figure 8-1. Creating the initial project based on the Master-Detail Application template

129

CHAPTER 8 © PROGRAMMING BASICS IN SWIFT

1. Click the Next button and name the project BookStore, as shown in
Figure 8-2. The company name is required—you can use any company name,
real or otherwise. The example uses com.innovativeware, which is perfectly fine.
Make sure the device family is iPhone and that the Language is set to Swift. Do
not check the Use Core Data checkbox.

Choose options for your new project:

Product Name: = BookStore]
Team: None (V]
Organization Name: Innovativeware

Organization Identifier: com.innovativeware

Bundle Identifier: com.innovativeware.BookStore
Language: Swift <
Devices: iPhone <]

Use Core Data
Include Unit Tests
Include UI Tests

Cancel Previous m—

Figure 8-2. Selecting the product (application) name and options

Note This type of app would be a good candidate for using Core Data, but Core Data is not introduced until
Chapter 11. You will use an array for data storage in this app.

2. Once everything is filled out, click the Next button. Xcode will prompt you to
specify a place to save the project. Anywhere you can remember is fine—the
desktop is a good place.

3. Once you decide on a location, click the Create button to create the new project.
This will create the boilerplate BookStore project, as shown in Figure 8-3.

130

http://dx.doi.org/10.1007/978-1-4842-2331-4_11

CHAPTER 8 © PROGRAMMING BASICS IN SWIFT

@0 ® P HE A Bookstore) B IPhone SE BookStore: Ready | Today at 11:20 AM E o <03 0O
BR QA E o @ B <> Rboko 0o
v - {[] cenenal Capabiities Resource Tags Info Build Settings Build Phases Build R 'dentity snd Type
¥ 17 BookStare e Name BookStore
= AppDelegate. swift ¥ identity
B Bookstore Location Absolute &
+ MasterViewControlier swift BookStore xcodepro]
= DetallViewController.swift TARGET Display Name ol Pt U -
sers/bradises Dropba:
© Mainstoryboard 4 BookStore Aprass Swift 3Codel
Bundie ldentifier com.innovativeware. BookStore
[Assets acaszors mmummmw .
+ LaunchScreen.storyboard Version 1.0 it i)
o info.plist Build 1 Project Document
¥ [Products Project Format Xcode 3.2-compativle |
¥ Signing Organization Innavativeware
8 Automatically manage signing S
Xoode will creste and uodate profies, aop D3, end
contficatos Text Settings
T e o e s Spaces]
" Widths a2 42
Provisioning Profile Xcode Managed Profile Tan [~
Signing Certificate i05 Developer 18 Wrap lines
Status Q) Signing for “BackStore” recuires & Sevelopment
. D OGO
Select » development team in the praject editor.
¥ Deployment Infa
Oeplomuen T - No Matches
Devices Phone a
Main Interface Main n
Device Orientation &) Portrait
Upside Down
+ |® OB+ - @ 8 Landscape Left 8@

Figure 8-3. The source listing of the boilerplate project

131

CHAPTER 8 © PROGRAMMING BASICS IN SWIFT

4. Click the plus (+) sign at the lower-left of the screen in the Navigator area to add
a new object to the project. Choose File. Then choose the iOS section on the top

and choose Swift File on the right, as shown in Figure 8-4. It’s also possible to
right-click (or Control-click) the Navigation area and then select the New File

menu option. There is no difference between this approach and clicking the plus
sign—do whatever feels more natural.

Choose a template for your new file:

m watchOS

Source

Cocoa Touch
Class

m

Objective-C File

User Interface

Storyboard

Cancel

macO0S

Ul Test Case
Class

h

Header File

View

Figure 8-4. Creating a new Swift file

5. You're choosing a plain Swift file, which will create a new empty Swift file that
you're going to use for the Book class. After selecting this, click the Next button.

6. Xcode will ask you what to name your file. Use the name Book. Xcode will also
ask to which folder it should save the new file. To keep things simple, choose

Unit Test Case
Class

C

C File

Empty

Playground

Cr

C++ File

Launch Screen

N\

Metal File

the BookStore folder in your project. This is where all the other class files for the
project are stored.

132

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

7. Double-click the BookStore folder and then click the Create button. You'll see the
main edit window for Xcode and the new file, Book. swift, in the Navigator area,
as shown in Figure 8-5.

@ ® b M B.re | @ iPhone SE BookStore: Ready | Today at 11:41 AM = il | =E
B R Q & ¢ = |88 < [BookStore) = Book.swift | No Selection = O]
¥ & Bookstore i ! \dentity and Type

« Book.swift Name Book.swift

v BookStore

ed by Thernuko on B8/28/16. Type Default - Swift Source
s AppDelegate. swift /! Copyright ® 2816 Innovativeware. All rights reserved.

: 7 Location Relative to Group
= MasterViewController.swift "

o m

N . Book.swift
= DetailViewController.swift import Foundatien ol
Mai board Full Path [Users/oradiees/Dropbox/
lain.storyboar Apress Swift 3/Code/
Assets.xcassets Chapter 8/BookStore/
LaunchScreen.storyboard Book.swift o
Info.plist On Demand Resource Tags

[2 Products

Target Membership
B A BookStore

D@ o

Figure 8-5. The empty Swift file

8. Repeat the previous steps and create a second object called BookStore. This will
create a BookStore.swift file. You'll be using this class later in this chapter. For
now, you'll concentrate on the Book class.

9. Click the Book.swift file and let’s start defining your new class!

Creating Your Class

By adding a Swift rather than a Cocoa Touch class, Xcode creates an empty Swift file. You can add
multiple classes to this file. Swift is more flexible, and it is not necessary to have only one class per file.
Xcode allows you to add the classes as you want.

Note Itis still a good idea to keep your Swift classes in separate files. This makes organizing and finding
classes easier, especially when you're dealing with large projects. However, there will be cases where a smaller
class is only used with another class and it makes sense to keep them in the same file.

133

CHAPTER 8 © PROGRAMMING BASICS IN SWIFT

Let’s create the Book class. Type the following code into the Book. swift file:

class Book {

}

Now you have your class, as shown in Figure 8-6. That is all you need to do to create a class.

1 //

2 // Book.swift
3 // BookStore
t [/
5 // Created by Thornuko on 8/20/16.

6 // Copyright @ 2016 Innovativeware. All rights reserved.

7 1/

9 import Foundation
10

11 class Book {

12

13 }

Figure 8-6. The empty Book class

Introducing Properties

The class is simply called Book. True, you have a class, but it doesn’t store anything at this point. For this class
to be useful, it needs to be able to hold some information, which is done with properties. When an object is
used, it has to be instantiated. Once the object is instantiated, it has access to its properties. These variables
are available to the object as long as the object stays in scope. As you know from Chapter 7, scope defines the
context in which an object exists. In some cases, an object’s scope may be the life of the program. In other
cases, the scope might be just a function or method. It all depends on where the object is declared and how
it’s used. Scope will be discussed later in more depth. For now, let’s add some properties to the Book class to
make it more useful.(See Listing 8-8.)

Listing 8-8. Adding Instance Variables to the Book.swift File

1 //

2 // Book.swift

3 // BookStore

4 //

5 // Created by Thornuko on 8/20/16.
6 // Copyright © 2016 Innovativeware. All rights reserved.
7 //

8

9 import Foundation

10 class Book {

11 var title: String = ""

12 var author: String = ""

134

http://dx.doi.org/10.1007/978-1-4842-2331-4_7

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

13 var description: String =
14
15 }

Listing 8-8 shows the same Book object from before, but now there are three new properties placed
inside the braces, on lines 11 to 13. These are all String objects, which means they can hold text information
for the Book object. So, the Book object now has a place to store title, author, and description information.

Accessing Properties

Now that you have some properties, how can you use them? How are they accessed? Unfortunately, simply
declaring a property doesn’t necessarily give you access to it. There are two ways to access these variables:

e One way, of course, is within the Book object.

e The second way is from outside the object—that is, another part of the program that
uses the Book object.

If you are writing the code for a method within the Book object, accessing its property is quite simple.
For example, you could simply write the following:

title = "Test Title"

From outside the object, you can still access the title variable. This is done through the use of dot
notation:

myBookObject.title = "Test Title"

Finishing the BookStore Program

With the understanding of properties, you are going to now venture forth to create the actual bookstore
program. The idea is simple enough—create a class called BookStore that will be stocked with a few Book
objects.

Creating the View

Let’s start by first getting the view ready. If you need a refresher on how to build an interface in Xcode, refer
to Chapter 6.

1. Clickthe Main.storyboard file in the Navigator area. This will display Xcode’s
Interface Builder, as shown in Figure 8-7. You will see five scenes in the
Main.storyboard file. Navigate to the right to find the Detail Scene.

135

http://dx.doi.org/10.1007/978-1-4842-2331-4_6

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

g8 < i_ BookStore BookStore Main.storyboard Main.storyboard (Base) ; No Selection

" Related Items
» [£J mMaster scene

ey

¥ || Detail Scene — - —
v Detail Detail
Top Layout Guide
Bottom Layout Guide
» View
< Detalil
3} First Responder
[E] Exit
-

> |L] Split View Controller Scene

[

» = Master Scene

Detail view content goes here
=)

» || Navigation Controller Scene

Figure 8-7. Preparing the Bookstore’s Detail View

2. Bydefault, when you create a blank Master-Detail application, Xcode adds a
label with the text “Detail View content goes here.” Select and delete this Label
object because you are going to add your own. You're going to add some new
fields to display some details about a selected book. Since you deleted this
control, you also need to remove the code that references it.

a. IntheDetailViewController.swift file, remove the following line:
@IBOutlet weak var detailDescriptionlLabel: UILabel!

b. Inthevar detailltem: AnyObject? property declaration, remove the
following line:

self.configureView()

136

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

In the method named configureView, remove the following lines:

// Update the user interface for the detail item.
if let detail: AnyObject = self.detailltem {
if let label = self.detailDescriptionLabel {
label.text = detail.description }

}

Your DetailViewController.swift file should now look like Figure 8-8.

0O~ oo W =

M AN N = o) b ol = ol =l = =3 =3
N =O0OwO~<~OOm -~ WwMN = O 0

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//
1/
I/
1/
1/
//
1/

DetailViewController.swift
BookStore

Created by Thornuko| on 8/20/16.
Copyright ® 2016 Innovativeware. All rights reserved.

import UIKit

class DetailViewController: UIViewController {

}

func configureView() {

}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view,
typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

var detailItem: NSDate? {
didSet {
// Update the view.
self.configureView()

Figure 8-8. Modified DetailViewController

137

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

3. Dragsome Label objects from the Object Library onto the Detail View, as shown
in Figure 8-9. Make sure that the lower Label controls are wider than the default.
This is so that they can hold a fairly large amount of text. The two Label objects
with the text “Label” in them are the ones you're going to hook up to hold two of
the values from the Book object: Title and Author.

Detail

Title:
Label

Author:
Label

Figure 8-9. Adding some Label objects

Adding Properties

Next, you'll add some properties to the DetailViewController class. These properties will correspond to the
Detail View’s Label objects.

1. Click the Assistant Editor icon (it looks like two circles) in the top-right corner of
Xcode to open the Assistant editor. Make sure the DetailViewController.swift
file is showing in the editor.

2. Hold the Control key and drag the first blank Label control to the code on the
right side, as shown in Figure 8-10. Name the first one titlelLabel (see
Figure 8-11) and click Connect. Repeat the process with the second one, naming
itauthorLabel. This will add two variables to your DetailViewController class,
as seen in Listing 8-9, and hook them to the Label controls in the interface.

138

Title:

Author:
Label

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

DetailViewController.swift
BookStore

Created by Thornuko on 8/28/16.
Copyright ® 2816 Innovativeware. All rights
reserved.

import UIKit

[1 class DetailViewController: UIViewController {

J| Insert Outlet or Outlet Collection

func configureview() {

- 18 ¥
_G;% 19
20 override func viewDidLoad() {
7 super.viewDidLoad()
22 // Do any additional setup after
loading the view, typically from a
nib.
23
2% ¥
2%
26 override func didReceiveMemoryWarning() {
27 super.didReceiveMemoryWarning()
28 // Dispose of any resources that can be
recreated.
29 }
0
3 var detailltem: NSDate? {
2 didset {
33 // Update the view.
34 self.configureview()
£ }
% }
a7
Figure 8-10. Creating variables
I & //
2| //
Connection | Outlet SIe|
> 9 imp(
Object (1) Detail 0
: 1 clas
Name ItltleLabel I .
Type UlLabel v 1
Storage | Weak s) s
né
| Cancel | | Connect | 77
. - o A8
(| 19
(m] o 70

Figure 8-11. Naming the new variable

139

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Listing 8-9. Modifying the DetailViewController.swift File to Include the New Labels

1 @IBOutlet weak var titlelabel: UILabel!
2 @IBOutlet weak var authorlLabel: UILabel!
Adding a Description

Now you need to add the description to the view. The description is a little different in that it can span
multiple lines. For this, you're going to use the Text View object.

1. Start by adding the “Description:” label to the view, as shown in Figure 8-12.

Detail

Title:
Label

Author:
Label

Description:

Figure 8-12. Adding a new Label object for the description

2. Next, add the Text View object to the Detail Scene, as shown in Figure 8-13. The
advantage the Text View object has is that it’s easy to display multiple lines of
text. While the Label object can display multiple lines, it’s not as clean as the
Text View object.

140

Detail

Title:
Label

Author:
Label

Description:

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing pecu, sed do
eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit

Figure 8-13. Adding a Text View to the Detail View

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Module E

Identity

Restoration ID

User Defined Runtime Attributes

Key Path Type Value
+
Document
Label
O {3 @

Text Field - Displays editable text
Te)(t ‘ and sends an action message to a
target object when Return is tapped.

Text View - Displays multiple lines
of editable text and sends an action
message to a target object when Ret...

Note By default, the Text View control is filled with all kinds of seemingly random text. This text is called
Lorem Ipsum text. If you ever need to fill up a page with text, you can find any number of Lorem Ipsum
generators on the Web. As for the Text View control, the text can stay as it is since you’ll remove it during
runtime. Plus, if it’s cleared, it becomes a little more difficult spotting exactly where the Text View control is on

the screen—it’s white on white!

141

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

3. For the program to take advantage of the Text View, you'll need to create an
outlet for it, just like you did for the title and description. Simply Control-
drag the Text View to your DetailViewController file, as you did earlier.
Name this variable descriptionTextView. The finished variable portion of
DetailViewController will look like Listing 8-10.

Listing 8-10. Adding an Outlet for the Text View to Hold a Description
import UIKit

class DetailViewController: UIViewController {

1

2

3

4

5 @IBOutlet weak var titleLabel: UILabel!
6 @IBOutlet weak var authorlLabel: UILabel!
7

8

@IBOutlet weak var descriptionTextView: UITextView!

4. Notice that the type is UITextView instead of UILabel—this is important.

Caution As mentioned, it's important to make the descriptionTextView property a UITextView
type. If, for example, it was accidentally made a UILabel object, Xcode wouldn’t be able to find the
descriptionTextView outlet when trying to connect the Text View from the screen to the outlet. Why? Xcode
knows that the control is a UITextView and is looking for an outlet that is of type UITextView.

Creating a Simple Data Model Class

For the application to work, it needs to have some data to display. To do this, you're going to use the
BookStore object you created earlier as the data model class. There’s nothing different about a data model
class except that its whole purpose is to allow an application to access data via an object.

Modify the BookStore.swift file to look like Listing 8-11.

Listing 8-11. Modifying the BookStore.swift Class to Include an Array

1//

2 // BookStore.swift

3 // BookStore

//

// Created by Brad Lees on 8/20/16.

// Copyright © 2016 Innovativeware. All rights reserved.
//

N

import Foundation

B W oo~y OYWU

0

11 class BookStore {

12 var theBookStore: [Book] = []
13 }

142

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

On line 12, you add a variable that will hold the list of books; the property is simply named
theBookStore. Note that theBookStore is an array, which will allow you to add a series of objects, in this
case, a set of Book objects.

Next, let’s continue adding the code to the Swift file, BookStore. swift, as shown in Listing 8-12.

Listing 8-12. Implementing the BookStore Data Object

1//
2 // BookStore.swift
3 // BookStore

4 //

5 // Created by Brad Lees on 8/20/16.

6 // Copyright © 2016 Innovativeware. All rights reserved.
77/

8

9 import Foundation

10

11 class BookStore {

12 var theBookStore: [Book] = []

13

14 init() {

15 var newBook = Book()

16 newBook.title = "Swift for Absolute Beginners"
17 newBook.author = "Bennett and Lees"

18 newBook.description = "iOS Programming made easy."
19 theBookStore.append(newBook)

20

21 newBook = Book()

22 newBook.title = "A Farewell To Arms"

23 newBook.author = "Ernest Hemingway"

24 newBook.description = "The story of an affair between an English nurse and an
American soldier on the Italian front during World War I."
25

26 theBookStore.append(newBook)

27 }

28 }

In Listing 8-12, lines 14 to 27 define the init method of the object, which is called whenever the object
is first initialized. In this method, you initialize the two books you plan to add to your bookstore. Line 15 is
where the first Book object is allocated and initialized. Lines 16 to 18 add a title, author, and description to
your first book. Finally, line 19 adds the new Book object to the theBookStore array. The important thing to
note here is that once the object is added to the array, the code can forget about it; the array now owns that
object. Because of this, line 21 is not a problem.

Line 21 allocates a new Book object overwriting the old value. This tells the compiler that you're no
longer interested in using the old value.

Lines 22 to 26 simply initialize and add the second book to the array.

That’s it! That’s all you need to define a simple data model class. Next, you need to modify
MasterViewController to access this class so that it can start displaying some data.

143

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Modifying MasterViewController

The simple application has two view controllers: the main view controller, which is called
MasterViewController, and a secondary one called DetailViewController. View controllers are objects
that simply control the behavior of a view. For the application to start displaying data from the data model,
you need to first modify MasterViewController—this is where the navigation of the application begins. The
following code is already in place in the template that Xcode has provided. You're just going to modify it to
add your data model.

First, you'll need to modify the MasterViewController.swift file. You need to add a variable to hold
the Bookstore object. Listing 8-13 shows that the instance variable is added as a property on line 15.

Listing 8-13. Adding the BookStore Object

1//

2 // MasterViewController.swift

3 // BookStore

4 //

5 // Created by Thornuko on 8/20/16.

6 // Copyright (c) 2016 Innovativeware. All rights reserved.
717/

8

9 import UIKit
10

11

12 class MasterViewController: UITableViewController {
13
14 var detailViewController: DetailViewController? = nil

15 var objects = [AnyObject]()
16 var myBookStore: BookStore = BookStore()

Now that the BookStore object is initialized, you need to tell MasterViewController how to display the
list of books—not the detail, just the book titles. To do this, you'll need to modify a few methods. Fortunately,
Xcode has provided a nice template, so the modifications are small.

MasterViewController is a subclass of what'’s called a UITableViewController class, which displays
rows of data to the screen. In this case, these are rows of book titles (well, just two for this simple program,
but a list nonetheless).

There are three main methods that control what and how data is displayed in a
UITableViewController.

e The first is numberOfSections(in:): Since the application has only one list, or
section, this method returns 1.

e Thesecond is tableView(_:numberOfRowsInSection:): In this program, you return
the number of books in the bookstore array. Since this is the only section, the code is
straightforward.

e The third method is tableView(_ :cellForRowAt:): This method is called for each
row that is to be displayed on the screen, and it’s called one row at a time.

Listing 8-14 details the changes you need to make to get the list of books displaying on the view. The
changes start on line 63 in the source file.

144

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Listing 8-14. Setting Up the View to Display the Books

63 override func numberOfSections(in tableView: UITableView) -> Int {

64 return 1

65 }

66

67 override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int)
-> Int {

68 return myBookStore.theBookStore.count

69 }

70

71 override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

72 let cell = tableView.dequeueReusableCellWithIdentifier("Cell", forIndexPath:
indexPath)

73 cell.textlLabel!.text = myBookStore.theBookStore[indexPath.row].title

74 cell.accessoryType =.disclosureIndicator

75 return cell

76 }

Out of all of this code, you need to modify only a few lines. Everything else can stay the way it is. This is
one of the advantages of using the Xcode templates. Line 68 simply returned 1; you needed to change it so
that it now returns the count of items in the BookStore class.

Line 73 looks a little more complicated. Basically, each line of the UITableView is what is called a cell (a
UITableViewCell to be specific). Line 73 sets the text of the cell to the title of a book. Let’s look at that code a
little more specifically:

cell.textlLabel!.text = myBookStore.theBookStore[indexPath.row].title

First, myBookStore is the BookStore object, which is pretty clear. You're referencing the array in
the BookStore object called theBookStore. Since theBookStore is an array, you can access the book
you want in brackets in the indexPath.row. The value indexPath.row specifies which row you're
interested in—indexPath.row will always be less than the total count minus 1. So, calling myBookStore.
theBookStore[indexPath.row] returns a Book object. The last part, . title, accesses the title property
from the returned Book object. The following code is equivalent to what you just did in one line:

1 var book: Book
2 book = myBookStore.theBookStore[indexPath.row]
3 cell.textlLabel!.text = book.title

Now, you should be able to build and run the application and see the two books you created in the data
model, as shown in Figure 8-14.

145

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Carrier = 12:28 PM 9 04

Edit Master +
Swift for Absolute Beginn...

A Farewell To Arms

Figure 8-14. Running the application for the first time

But, you're not done yet. You need to make the application display the book when you click one of
them. To make this happen, you need to make one last modification to MasterViewController.

The method prepareForSegue is called whenever a row is touched on the screen. This method is called
each time your app transitions to a different view in the Storyboard. Listing 8-15 shows the small changes
you need to make in order to hook the Detail View to the book data.

Listing 8-15. Selecting the Book When Touched

50 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

51 if segue.identifier == "showDetail" {

52 if let indexPath = self.tableView.indexPathForSelectedRow {

53 let selectedBook:Book = myBookStore.theBookStore[indexPath.row]
54 let controller = (segue.destination as! UINavigationController).
topViewController as! DetailViewController

55 controller.detailltem = selectedBook

56 controller.navigationItem.leftBarButtonItem = self.splitViewController?.
displayModeButtonItem()

57 controller.navigationItem.leftItemsSupplementBackButton = true
58 }

59 }

60 }

Ifline 53 looks similar to line 73 in Listing 8-14, that’s because it’s basically the same thing. Based on
indexPath.row, you select the specific book from the BookStore object and save it in a constant called
selectedBook.

On line 55, you take selectedBook and store it in a property called detailItem that is already part of the
existing DetailViewController class. That's all you need to do in MasterViewController. You've basically
passed off the book to DetailViewController. You're almost done. Now you need to make a few small
modifications to the DetailViewController so that it displays the Book object properly.

146

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Modifying the DetailViewController

Earlier in this chapter, you modified the DetailViewController so that it would display some detail
information about a book. In the code you just finished, you modified the MasterViewController so that

it passes the selected book to the DetailViewController. Now all that remains is to simply move the
information from the Book object in the DetailViewController to the appropriate fields on the screen. All of
this is done in one method—configureView—as seen in Listing 8-16.

Listing 8-16. Moving the Book Object Data to the Detail View

19 func configureView() {

20 if let detail: AnyObject = self.detailltem {

21 let myBook = detail as! Book

22 titleLabel.text = myBook.title

23 authorLabel.text = myBook.author

24 descriptionTextView.text = myBook.description
25 }

26 }

The configureView method is one of many convenient methods included in the Xcode template and is
called whenever the DetailViewController is being initialized. This is where you will move your selected
Book object’s information to the fields in the view.

Lines 20 to 26 in the DetailViewController. swift file is where you move the information from the
Book object to the view. If you recall, line 51 in Listing 8-15 set the selected book into a property on the
DetailViewController called detailItem. Lines 20 to 21 pull that item out into a Book object called myBook.

Lines 22 to 24 simply move each of the Book object’s properties to the view controls you built earlier in
the chapter.

There is one more line of code that needs to be changed. Line 40 declared detailItem as an NSDate. We
need to change it to be a Book object. We also need to remove the call to configureView on line 43. The final
declaration should look like Listing 8-17.

Listing 8-17. Changing the detailltem
40 var detailltem: Book? {

41 didSet {

42 // Update the view.
43 }

44 }

Now we need to tell your view to call the configureView method when it is loaded. Add the following
line to the end of the viewDidLoad function:

self.configureView()

147

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

That’s all you need to do in this class. If you build and run the project and click one of the books, you
should see something like Figure 8-15.

iPhone SE - i0S 10.0 (14A5339a)

Carrier & 12:47 PM) 4
£ Master Detail
Title:

A Farewell To Arms

Author:
Ernest Hemingway

Description:

The story of an affair between an English nurse
and an American soldier on the Italian front
during World War 1.

Figure 8-15. Viewing the book details for the first time

148

CHAPTER 8 = PROGRAMMING BASICS IN SWIFT

Summary

We've reached the end of this chapter! Here is a summary of the topics covered:

Understanding collection classes: Collection classes are a powerful set of classes that
come with Foundation and allow you to store and retrieve information efficiently.

Using properties: Properties are variables that are accessible once the class has been
instantiated.

Looping with for...in: This feature offers a new way to iterate through an enumerated
list of items.

Building a Master-Detail application: You used Xcode and the Master-Detail
Application template to build a simple bookstore program to display books and the
details of an individual book.

Creating a simple data model: Using the collection classes you learned about, you
used an array to construct a BookStore object and used it as a data source in the
bookstore program.

Connecting data to the view: You connected the Book object’s data to the interface
fields using Xcode.

EXERCISES

Add more books to the bookstore using the original program as a guide.
On the Master Scene, remove the Edit button as we will not be using it in this app.
Enhance the Book class so it can store another attribute—a price or genre, for example.

Modify the DetailViewController so that the new fields are displayed. Remember to
connect an interface control to a property.

Change the BookStore object so that a separate method is called to initialize the list of
Book objects (instead of putting it all in the init method).

There is another attribute to a UITableViewCell called the detailTextLabel. Try to
make use of it by setting its text property to something.

Using Xcode to modify the interface, play with changing the background color of the
DetailviewController in the storyboard file.

For a tougher challenge:

Sort the books in the BookStore object so they appear in ascending order on the
MasterDetailView.

149

CHAPTER 9

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will perform as you program:
comparing data. In the bookstore example, you may need to compare book titles if your clients are looking for
a specific book. You may also need to compare authors if your clients are interested in purchasing books by a
specific author. Comparing data is a common task performed by developers. Many of the loops you learned
about in Chapter 8 will require you to compare data so that you know when your code should stop looping.

Comparing data in programming is like using a scale. You have one value on one side and another value
on the other side. In the middle, you have an operator. The operator determines what kind of comparison is
being done. Examples of operators are “greater than,” “less than,” or “equal to.”

The values on either side of the scale are usually variables. You learned about the different types of
variables in Chapter 3. In general, the comparison functions for different variables will be slightly different. It
is imperative that you become familiar with the functions and syntax to compare data because this will form
the basis of your development.

For the purposes of this chapter, we will use an example of a bookstore application. This application will
allow users to log in to the application, search for books, and purchase them. We will cover the different ways
of comparing data to show how they would be used in this type of application.

Revisiting Boolean Logic

In Chapter 4, we introduced Boolean logic. Because of its prevalence in programming, we will revisit this
subject in this chapter and go into more detail.

The most common comparisons that you will program your application to perform are comparisons
using Boolean logic. Boolean logic usually comes in the form of if/then statements. Boolean logic can have
only one of two answers: yes or no. The following are some good examples of Boolean questions that you will
use in your applications:

e Is5larger than 3?
e Does now have more than five letters?
e Is6/1/2010 later than today?

Notice that there are only two possible correct answers to these questions: yes and no. If you are asking
a question that could have more than these two answers, that question will need to be worded differently for
programming.

Each of these questions will be represented by an if/then statement. (For example, “If 5 is greater than 3,
then print a message to the user”) Each if statement is required to have some sort of relational operator.
A relational operator can be something like “is greater than” or “is equal to.”

To start using these types of questions in your programs, you will first need to become familiar with the
different relational operators available to you in the Swift language. We will cover them first. After that, you
will learn how different variables can behave with these operators.

© Gary Bennett and Brad Lees 2016 151
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_9

http://dx.doi.org/10.1007/978-1-4842-2331-4_8
http://dx.doi.org/10.1007/978-1-4842-2331-4_3
http://dx.doi.org/10.1007/978-1-4842-2331-4_4

CHAPTER 9 © COMPARING DATA

Using Relational Operators

Swift uses five standard comparison operators. These are the standard algebraic operators with only one real
change: In the Swift language, as in most other programming languages, the “equal to” operator is made by
two equals signs (==). Table 9-1 describes the operators available to you as a developer.

Table 9-1. Comparison Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Equal to

Note A single equals sign (=) is used to assign a value to a variable. Two equals signs (==) are needed to
compare two values. For example, if(x=9) will try to assign the value of 9 to the variable x, but now Xcode
throws an error in this case. if(x==9) will do a comparison to see whether x equals 9.

Comparing Numbers

One of the difficulties developers have had in the past was dealing with different data types in comparisons.
Earlier in this book, we discussed the different types of variables. You may remember that 1 is an integer.

If you wanted to compare an integer with a float such as 1.2, this could cause some issues. Thankfully,

Swift helps with this. In Swift, you can compare any two numeric data types without having to typecast.
(Typecasting is still sometimes needed when dealing with other data types, which we cover later in the
chapter.) This allows you to write code without worrying about the data types that need to be compared.

Note Typecasting is the conversion of an object or variable from one type to another.

In the bookstore application, you will need to compare numbers in many ways. For example, let’s say
the bookstore offers a discount for people who spend more than $30 in a single transaction. You will need to
add the total amount the person is spending and then compare this to $30. If the amount spent is larger than
$30, you will need to calculate the discount. See the following example:

var discountThreshold = 30
var discountPercent = 0

var totalSpent = calculateTotalSpent()

if totalSpent > discountThreshold {
discountPercent = 10
}

152

CHAPTER 9 © COMPARING DATA

Let’s walk through the code. First, you declare the variables (discountThreshhold, discountPercent,
and totalSpent) and assign a value to them. Notice you do not need to specify the type of number for the
variables. The type will be assigned when you assign it a value. You know that discountThreshold and
discountPercent will not contain decimals, so the compiler will create them as Ints. In this example, you
can assume you have a function called calculateTotalSpent, which will calculate the total spent in this
current order. You then simply check to see whether the total spent is larger than the discount threshold; if it
is, you set the discount percent. If we wanted a customer who spent exactly $30 to get the same discount, we
could use a >=instead ofa >. Also notice that it was not necessary to tell the code to convert the data when
comparing the different numeric data types. As mentioned earlier, Swift handles all this.

Another action that requires the comparison of numbers is looping. As discussed in Chapter 4, looping
is a core action in development, and many loop types require some sort of comparison to determine when to
stop. Let’s take a look at a for loop:

var numberOfBooks: Int
number0fBooks = 50

for y in 0..<numberOfBooks {
doSomething()
}

In this example, you iterate, or loop, through the total number of books in the bookstore. The for
statement is where the interesting stuff starts to happen. Let’s break it down.

The for loop declares a variable with an initial value of 0 and will increment it while it is less than
numberOfBooks. This is a much quicker way of doing for loops than was required in Objective-C.

Creating an Example Xcode App
Now let’s create an Xcode application so you can start comparing numeric data.

1. Launch Xcode. From the Finder, go to the Applications folder. Drag Xcode to the
Dock because you will be using it throughout the rest of this book. See Figure 9-1.

<] B Applications
¢ =+ z Bom o vl & o
Favorites Name ~ Date Modified Size Kind
5 propbox %, Spectacle May 10, 2016, 10:49 AM App
=] Chapter 7 9 Steam 0 App
: Stickies App
D All My Files @ System Preferences
¢ iCloud Drive TextEdit P
@ AirDrop @ Time Machine App
& unciutter 1MB
Applications » 1 Utilities
5 Desktop & VLC > 110.3 MB
(B wunderlist Jun 16, 8:52 AM 1264MB A

IR Dooumsnts ¥ Xcode May 9, 2016, 8:35 AM 869GB _ App

1 of 99 selected, 168.671 GB available

Figure 9-1. Launching Xcode

153

http://dx.doi.org/10.1007/978-1-4842-2331-4_4

CHAPTER 9 © COMPARING DATA

2. Click “Create a New Xcode Project” to open a new window. On the top under iOS,
select Single View Application on the right side. Click Next, as shown in Figure 9-2.

Choose a template for your new project:

m watchOS

Application

A

d

Single View
Application

O
O

oo

Sticker Pack
Application

Framework & Library

L)
&
Cocoa Touch
Framework

Cancel

tvOS

mac0S Cross-platform

T

x

Game

@,

iMessage
Application

L=

Cocoa Touch
Static Library

Figure 9-2. Creating a new project

Master-Detail
Application

?

s

Metal Library

Page-Based
Application

@

Tabbed
Application

Note The Single View Application template is the most generic and basic of the iOS application types.

3. On the next page, enter the name of your application. Here we used Comparison
as the name, but you can choose any name you like. This is also the window
where you select which device you would like to target. Leave it as iPhone for
now, as shown in Figure 9-3.

154

CHAPTER 9 © COMPARING DATA

Choose options for your new project:

Product Name: Comparison
Team: None [T
Organization Name: Innovativeware

Organization Identifier: com.innovativeware

Bundle Identifier: com.innovativeware.Comparison

Language: Swift <)

Devices: iPhone ﬂ

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous m

Figure 9-3. Selecting the project type and name

Note Xcode projects, by default, are saved in the Documents folder in your user home.

4. Once the new project is created, you will see the standard Xcode window. Select
the arrow next to the Comparison folder to expand it if it is not already expanded.
You will see several files. The main file for your project is called AppDelegate.swift.
You will also see a ViewController.swift file. This file is the source that controls
the single window that is created by default for you in this type of app. For the
purposes of these examples, you will be focusing on the AppDelegate. swift file.

5. Click the AppDelegate.swift file. You will see the following code:
func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Override point for customization after application launch.
return true

155

CHAPTER 9 © COMPARING DATA

6. Themethod application: didFinishLaunchingWithOptions is called after
each time the application is launched. At this point, your application will launch
and display a window. You will add a little Hello World to your application.
Before the line returns true, you need to add the following code:

NSLog("Hello World")

This line creates a new String with the contents Hello World and passes it to the NSLog function that is
used for debugging.

Note The NSLog method is available to Objective-C and Swift. It is commonly used for debugging an
application because you can show information easily in the Debug area.

Let’s run the application to see how it works:
1. Click the Run button in the default toolbar.

2. TheiOS simulator will launch. This will just display a window. Back in Xcode, a
Console window will appear at the bottom of the screen, as shown in Figure 9-4.
You can always toggle this window by selecting View » Debug Area » Show/
Hide Debug Area.

2016-08-26 16:03:47.033138 Comparison[49300:4871971] subsystem: com.apple.UIKit, category: Hl
generate_symptoms: ©, enable_oversize: 1, privacy_setting: 2, enable_private_data: ©
2016-08-26 16:03:47.0839844 Comparison[49300:4071971] subsystem: com.apple.UIKit, category: HI
generate_symptoms: @, enable_oversize: 1, privacy_setting: 2, enable_private_data: @
2016-08-26 16:03:47.852828 COmparison[69300:4071968] subsystem: com.apple.BaseBoard, categor)
generate_symptoms: @, enable_oversize: @, privacy_setting: @, enable_private_data: @
2616-38 -26 16 B3:47.871965 Conpanson[fo‘?SBO 1-6?1248] subsystem com.apple.UIKit, category: Si
. g5 §T9, ena - able_private_data: ©

X H] £t o com.apple.BackBoardServices.1
8, genoratc synptomr e, cnahla oversize: 0. pnvacy_sottmg @, enable_private_data: ©

Figure 9-4. Debugger window

You will now see several lines of text in your debugger. You will need to look down several lines to see
the output of the NSLog call. The first part of the line shows the date, time, and name of the application. The
Hello World part was generated by the NSLog line that you added.

1. Gobackto Xcode and open the AppDelegate.swift file.

2. Goto the beginning of the line that begins with NSLog. This is the line that is
responsible for printing the Hello World section. You are going to comment
out this line by placing two forward slashes (//) in front of the line of code.
Commenting out code tells Xcode to ignore it when it builds and runs the
application. In other words, code that is commented out will not run.

3. Once you comment out the line of code, the code will no longer be run so Hello
World will no longer show in the log.

156

CHAPTER 9 © COMPARING DATA

4. 'We want to use the log to output the results of comparisons. Add one line, as
shown here:

NSLog("The result is \(6 > 5 ? "True" : "False")”)

Note The previous code, (6>5 ? "True" : "False"),is called a ternary operation. It is essentially just a
simplified way of writing an if/else statement.

5. Place this line in your code. This line is telling your application to print The
result is.Then it will print True if 6 is greater than 5, or it will print False if 5 is
greater than 6.

Because 6 is greater than 5, it will print True.

You can change this line to test any comparisons we have already discussed in this chapter or any
of the examples you will do later.

Let’s try another example.

var 1 = 5
var y = 6
NSLog("The result is %@", (y > i ? "True" : "False"))

In this example, you create a variable and assign its value to 5. You then create another variable and
assign the value to 6. You then change the NSLog example to compare the variables i and y instead of using
actual numbers. When you run this example, you will get the result shown in Figure 9-5.

2016-88-26 16:07:30.343266 Comparison[49566:4882918] subsystem: com.apple.UIKit, category:
generate_symptoms: @, enable_oversize: 1, privacy_setting: 2, enable_private_data: @
2016-088-26 16:07:30.400 Comparison[49566:4082918] The result is True

2016-088-26 16:07:30.408737 Comparison[49566:40882918] subsystem: com.apple.BackBoardService
@, generate_symptoms: @, enable_oversize: @, privacy_setting: @, enable_private_data: @

Figure 9-5. NSLog output

Note You may get compiler warnings when using this code. The compiler will tell you that the false portion
of the ternary operator will never be executed. The compiler can look at the values while you are typing the
code and know that the comparison will be true.

You will now explore other kinds of comparisons, and then you will come back to the application and
test some of them.

157

CHAPTER 9 © COMPARING DATA

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used to determine whether a
value is true or false. Here’s an example:

var j =5

if §»>0{
someCode()

}

The if statement will always evaluate to true because the variable j is greater than zero. Because of that,
the program will run the someCode () method.

Note In Swift, if a variable is optional and therefore not assigned a value, you should use a question mark
after the variable declaration. For example, var j becomes var j:Int?.

If you change the value of j, the statement will evaluate to false because j is now 0. This can be used
with Bool and number variables.

var j =0

if 3>0¢
someCode()

}

Placing an exclamation point in front of a Boolean expression will change it to the opposite value (a
false becomes a true, and a true becomes a false). This line now asks “If not j>0,” which, in this case, is
true because j is equal to 0. This is an example of using an integer to act as a Boolean variable. As discussed
earlier, Swift also has variables called Bool that have only two possible values: true or false.

var j =0

if 1(j > 0) {
someCode()

}

Note Swift, like many other programming languages, uses true or false when assigning a value to a
Boolean variable.

Let’s look at an example related to the bookstore. Say you have a frequent buyers’ club that entitles
all members to a 15 percent discount on all books they purchase. This is easy to check. You simply set the
variable clubMember to true if the person is a member and false if he or she is not. The following code will
apply the discount only to club members:

var discountPercent = 0
var clubMember: Bool = false

if clubMember {
discountPercent = 15
}

158

CHAPTER 9 © COMPARING DATA

Comparing Strings

Strings are a difficult data type for most C languages. In ANSI C (or standard C), a string is just an array
of characters. Objective-C took the development of the string even further and made it an object called
NSString. Swift has taken the String class even further and made it easier to work with. Many more
properties and methods are available to you when working with an object. Fortunately for you, String has
many methods for comparing data, which makes your job much easier.

Let’s look at an example. Here, you are comparing passwords to see whether you should allow a
user to log in:

var enteredPassword = "Duck"
var myPassword = "duck"

var continuelogin = false

if enteredPassword == myPassword {
continuelogin = true
}

The first line just declares a String and sets it value to Duck. The next line declares another String and
sets its value to duck. In your actual code, you will need to get the enteredPassword string from the user.

The next line is the part of the code that actually does the work. You simply ask the strings if
they are equal to each other. The example code will always be false because of the capital "D" in the
enteredPassword versus the lowercase "d" in the myPassword.

There are many other different comparisons you might have to perform on strings. For example, you
may want to check the length of a certain string. This is easy to do.

var enteredPassword = "Duck"
var myPassword = "duck"
var continuelogin = false
if enteredPassword.characters.count > 5 {
continuelogin = true
}

Note count is a property that can be used to count strings, arrays, and dictionaries.

This code checks to see whether the entered password is longer than five characters.

There will be other times when you will have to search within a string for some data. Fortunately, Swift
makes this easy to do. String provides a function called contains, which allows you to search within a string
for another string. The function contains takes only one argument, which is the string for which you are
searching.

var searchTitle: String

var bookTitle: String

searchTitle = "Sea"

bookTitle = "2000 Leagues Under the Sea"

if bookTitle.contains(searchTitle) {
addToResults()
}

159

CHAPTER 9 © COMPARING DATA

This code is similar to other examples you have examined. This example takes a search term and checks
to see whether the book title has that same search term in it. If it does, it adds the book to the results. This
can be adapted to allow users to search for specific terms in book titles, authors, or even descriptions.

For a complete listing of the methods supported by String, see the Apple documentation at
https://swift.org/documentation/#the-swift-programming-language.

Using the switch Statement

Up to this point, you've seen several examples of comparing data by simply using the if statement.
if someValue == SOME_CONSTANT {

} eléé. if someValue == SOME_OTHER_CONSTANT {

} eléé. if someValue == YET SOME_OTHER_CONSTANT {

}

If you need to compare a variable to several constant values, you can use a different method that can
simplify the comparison code: the switch statement.

Note In Objective-C, you could only use integers to compare in a switch statement. Swift allows
developers more freedom in using the switch statement.

The switch statement allows you to compare one or more values against another variable.
var customerType = "Repeat"
switch customerType { // The switch statement followed by a begin brace
case "Repeat": // Equivalent to if (customerType == "Repeat")

// Call functions and put any other statements here after the case.

case "New":

case. "‘éeasonal" :
de'Fal‘JI‘l’.c: // Default is required in Swift
} // End of the switch statement.
The switch statement is powerful, and it simplifies and streamlines comparisons to several different values.

In Swift, the switch statement is a powerful statement that can be used to simplify repeated
if/else statements.

160

https://swift.org/documentation/#the-swift-programming-language
https://swift.org/documentation/#the-swift-programming-language

CHAPTER 9 © COMPARING DATA

Comparing Dates

Dates are a fairly complicated variable type in any language, and unfortunately, depending on the type
of application you are writing, they are common. Swift 3 now has its own native Date type. This means
developers no longer have to use the Cocoa date type NSDate. The new Swift 3 Date class has a lot of nice
methods that make comparing dates easy. We will focus on the compare function. The compare function
returns an ComparisonResult, which has three possible values: orderedSame, orderedDescending, and
orderedAscending.

// Today's Date
let today: Date = Date()

// Sale Date = Tomorrow
let timeToAdd: TimelInterval = 60*60*24
let saleDate: Date = today.addingTimeInterval(timeToAdd)

var saleStarted = false
let result: ComparisonResult = today.compare(saleDate)

switch result {
case ComparisonResult.orderedAscending:
// Sale Date is in the future
saleStarted = false
case ComparisonResult.orderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true
default:
// Sale Start Date is now
saleStarted = true

}

This may seem like a lot of work just to compare some dates. Let’s walk through the code and see
whether you can make sense of it.

let today: Date = Date()
let timeToAdd: TimeInterval = 60*60%*24
let saleDate: Date = today.addingTimeInterval(timeToAdd)

Here, you declare two different Date objects. The first one, named today, is initialized with the system
date or your device date. Before creating the second date, you need to add some time to the first date. You do
this by creating a TimeInterval. This is a number in seconds. To add a day, you add 60*60*24. The second
date, named saleDate, is initialized with a date some time in the future. You will use this date to see whether
this sale has begun. We will not go into detail about the initialization of Date objects.

Note In most programming languages, dates are dealt with in a specific pattern. They usually start with
the four-digit year followed by a hyphen, then a two-digit month followed by a hyphen, and then a two-digit day.
If you are using a data format with a time, this data is usually presented in a similar manner. Times are usually
presented with the hour, minute, and second, each separated by a colon. Swift inherits time zone support from
Cocoa.

161

CHAPTER 9 © COMPARING DATA

The result of using the compare function of a Date object is a ComparisonResult. You have to declare a
ComparisonResult to capture the output from the compare function.

let result: ComparisonResult = today.compare(saleDate)

This simple compares the two dates. It places the resulting ComparisonResult into the constant
called result.

switch result {

case ComparisonResult.orderedAscending:
// Sale Date is in the future
saleStarted = false

case ComparisonResult.orderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true

default:
// Sale Start Date is now
saleStarted = true

}

Now you need to find out what value is in the variable result. To accomplish this, you perform a switch
statement that compares the result to the three different options for ComparisonResult. The first line finds
out whether the sale date is greater than today’s date. This means that the sale date is in the future, and thus
the sale has not started. You then set the variable saleStarted to false. The next line finds out whether the
sale date is less than today. If it is, the sale has started, and you set the saleStarted variable to true. The
next line just says default. This captures all other options. You know, though, that the only other option is
orderedSame. This means the two dates and times are the same, and thus the sale is just beginning.

There are other methods that you can use to compare Date objects. Each of these methods will be more
efficient at certain tasks. We have chosen the compare method because it will handle most of your basic date
comparison needs.

Note Remember that a Date holds both a date and a time. This can affect your comparisons with dates
because it compares not only the date but also the time.

Combining Comparisons

As discussed in Chapter 4, you'll sometimes need something more complex than a single comparison. This
is where logical operators come in. Logical operators enable you to check for more than one requirement.
For example, if you have a special discount for people who are members of your book club and who spend
more than $30, you can write one statement to check this.

var totalSpent = 31

var discountThreshhold = 30
var discountPercent = 0
var clubMember = true

if totalSpent > discountThreshhold && clubMember {
discountPercent = 15

162

http://dx.doi.org/10.1007/978-1-4842-2331-4_4

CHAPTER 9 © COMPARING DATA

We have combined two of the examples shown earlier. The new comparison line reads as follows: “If
totalSpent is greater than discountThreshold AND clubMember is true, then set the discountPercent to
15 For this to return true, both items need to be true. You can use | | instead of 88 to signify “or” You can
change the previous line to this:

if totalSpent > discountThreshhold || clubMember {
discountPercent = 15
}

Now this reads as follows: “If totalSpent is greater than discountThreshold OR clubMember is true,
then set the discount percent to 15.” This will return true if either of the options is true.

You can continue to use the logical operations to string as many comparisons together as you need. In
some cases, you may need to group comparisons using parentheses. This can be more complicated and is
beyond the scope of this book.

Summary

You've reached the end of the chapter! Here is a summary of the topics that were covered:
e Comparisons: Comparing data is an integral part of any application.

e Relational operators: You learned about the five standard relational operators and
how each is used.

e Numbers: Numbers are the easiest pieces of information to compare. You learned
how to compare numbers in your programs.

e Examples: You created a sample application where you could test your comparisons
and make sure that you are correct in your logic. Then you learned how to change
the application to add different types of comparisons.

e Boolean: You learned how to check Boolean values.

e Strings: You learned how strings behave differently from other pieces of information
you have tested.

e Dates: You learned how difficult it can be to compare dates and that you must be
careful to make sure you are getting the response you desire.

EXERCISES

e Modify the example application to compare some string information.

e Write a Swift application that determines whether the following years are leap years:
1800, 1801, 1899, 1900, 2000, 2001, 2003, and 2010. Output should be written to
the console in the following format: The year 2000 is a leap year Or The year
2001 is not a leap year. See http://en.wikipedia.org/wiki/Leap year for
information on determining whether a year is a leap year.

163

http://en.wikipedia.org/wiki/Leap_year

CHAPTER 10

Creating User Interfaces

Interface Builder enables iOS developers to easily create their user interfaces using a powerful graphical user
interface. It provides the ability to build user interfaces by simply dragging objects from Interface Builder’s

library to the editor.

Interface Builder stores your user interface design in one or more resource files, called storyboards.
These resource files contain the interface objects, their properties, and their relationships.

To build a user interface, simply drag objects from Interface Builder’s Object Library pane onto your
view or scene. Actions and outlets are two key components of Interface Builder that help you streamline the

development process.

Your objects trigger actions in your views, and the actions are connected to your methods in the app’s
code. Outlets are declared in your . swift file and are connected to specific controls as properties. See

Figure 10-1.

ece » T Rertaerabs | it Savdontisnber: Sustesed | Teey 1 704 4

Label

Figure 10-1. Interface Builder

© Gary Bennett and Brad Lees 2016

pre VewCorcolermett | [gorerarcactaali]

Tt UIKit

s ViewController: UIViewContro

artastie

wiewbloLoad() {
idLoad(}

"Bl SHTUp ATTOE Loaging Tha view, ©

© didReceiveMemoryarning(] {
digReceiveeTorydarningi)
se of any rescurces that cen be recreated.

© generatection(_ sender: ulBwtten) {
ated = (arcérasdoa() % 134) + 1
berLabel.tewt = “\[genarated}®

165

G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_10

CHAPTER 10 CREATING USER INTERFACES

Note Interface Builder was once a stand-alone application that developers used to design their user
interfaces. Starting with Xcode 4.0, Interface Builder has been integrated into Xcode.

Understanding Interface Builder

Interface Builder saves the user interface file as a bundle that contains the interface objects and relationships
used in the application. These bundles previously had the file extension .nib. Version 3.0 of Interface
Builder used a new XML file format, and the file extension changed to .xib. However, developers still call
these files nib files. Later Apple introduced storyboards. Storyboards enable you to have all of your views in
one file with a . storyboard extension.

Unlike most other graphical user interface applications, XIBs and storyboards are often referred to as
[reeze-dried because they contain the archived objects themselves and are ready to run.

The XML file format is used to facilitate storage with source control systems such as Subversion and Git.

In the next section, we’ll discuss an app design pattern called Model-View-Controller. This design
pattern enables developers to more easily maintain code and reuse objects over the life of an app.

The Model-View-Controller Pattern

Model-View-Controller (MVC) is the most prevalent design pattern used in iOS development, and learning
about it will make your life as a developer much easier. MVC is used in software development and is
considered an architectural pattern.

Architectural patterns describe solutions to software design problems that developers can use in their
code. The MVC pattern is not unique to iOS developers; it is being adopted by many makers of integrated
development environments (IDEs), including those running on Windows and Linux platforms.

Software development is considered an expensive and risky venture for businesses. Frequently, apps
take longer than expected to write, come in over budget, and don’t work as promised. Object-oriented
programming (OOP) produced a lot of hype and gave the impression that companies would realize savings
if they adopted its methodology, primarily because of the reusability of objects and easier maintainability of
the code. Initially, this didn’t happen.

When engineers looked at why OOP wasn'’t living up to these expectations, they discovered a key
shortcoming with how developers were designing their objects: Developers were frequently mixing objects
in such a way that the code became difficult to maintain as the application matured, the code moved to
different platforms, or hardware displays changed.

Objects were often designed so that if any of the following changed, it was difficult to isolate the objects
that were impacted:

e Business rules
e User interfaces
e (Client-server or Internet-based communication

Objects can be broken down into three task-related categories. It is the responsibility of the developer to
ensure that each of these categories keeps their objects from drifting across other categories.

166

CHAPTER 10 © CREATING USER INTERFACES

As objects are categorized in these groups, apps can be developed and maintained more easily over
time. The following are examples of objects and their associated MVC category for an iPhone banking
application:

Model
e Accountbalances
e User encryption
e Account transfers

e Accountlogin

e Accountbalances table cell
e Account login spinner control
Controller
e Account balance view controller
e Account transfer view controller
e Logon view controller
The easiest way to remember and classify your objects in the MVC design pattern is the following:

e Model: Unique business or application rules or code that represent the real world.
This is where the data resides.

e View: Unique user interface code
e Controller: Anything that controls or communicates with the model or view objects

Figure 10-2 represents the MVC paradigm.

Model >

Figure 10-2. MVC paradigm

Neither Xcode nor Interface Builder forces developers to use the MVC design pattern. It is up to the
developers to organize their objects in such a way to use this design pattern.

It is worth mentioning that Apple strongly embraces the MVC design pattern, and all of the frameworks
are designed to work in an MVC world. This means that if you also embrace the MVC design pattern,
working with Apple’s classes will be much easier. If you don’t, you'll be swimming upstream.

167

CHAPTER 10 CREATING USER INTERFACES

Human Interface Guidelines

Before you get too excited and begin designing dynamic user interfaces for your app, you need to learn some
of the ground rules. Apple has developed one of the most advanced operating systems in the world with i0S
10. Additionally, Apple’s products are known for being intuitive and user-friendly. Apple wants users to have
the same experience from one app to the next.

To ensure a consistent user experience, Apple provides developers with guidelines on how their apps
should look and feel. These guidelines, called the Human Interface Guidelines (HIG), are available for
i0S, macOS, watchOS, and tvOS. You can download these documents at http://developer.apple.com, as
shown in Figure 10-3.

Distribute

i Developer Discover

i0S Human Interface Guidelines [

Overview Ve

Design Principles I |
What's New in i0S 10 |

Interface Essentials

9:41

Interaction 1 %
1 Monday, June2
Features
I .
Visual Design | Coffee with Alison =) o
| m‘l‘a‘:ﬂ_ AL C-\“
Graphics %o
. B waps pesmanons P = B
Ul Bars e 11
e
Ul Views o
To San Francisco International Arport >
Ul Controls & et
Extensions
Technologies
Resources

3 = & J
As an app designer, you have the opportunity to deliver an extraordinary product that rises to the top of the App Store
charts. To do so, you'll need to meet high expectations for quality and functionality.

Three primary themes differentiate i0S from cther platforms:

« Claritv. Throuahout the svstem. text is leaible at everv size. icons are precise and lucid. adornments are subtle and

Figure 10-3. Apple’s Human Interface Guidelines for iOS devices

168

http://developer.apple.com/

CHAPTER 10 © CREATING USER INTERFACES

Note Apple’s HIG is more than recommendations or suggestions. Apple takes it very seriously. While the
HIG doesn’t describe how to implement your user interface designs in code, it is great for understanding the
proper way to implement your views and controls.

The following are some of the top reasons apps are rejected in Apple’s iTunes App Store:
e The app crashes.
e The app violates the HIG.
e The app uses Apple’s private APIs.

e The app doesn’t function as advertised on the iTunes App Store.

Note You can read, learn, and follow the HIG before you develop your app, or you can read, learn, and
follow the HIG after your app gets rejected by Apple and you have to rewrite part or all of it. Either way, all i0S
developers will end up becoming familiar with the HIG.

Many new iOS developers find this out the hard way, but if you follow the HIG from day one, your iOS
development will be a far more pleasurable experience.

Creating an Example iPhone App with Interface Builder

Let’s get started by building an iPhone app that generates and displays a random number, as shown in
Figure 10-4. This app will be similar to the app you created in Chapter 4, but you'll see how much more
interesting the app becomes with an iOS user interface (UT).

169

http://dx.doi.org/10.1007/978-1-4842-2331-4_4

CHAPTER 10 CREATING USER INTERFACES

iPhone SE - i0S 10.0 (14A5339a)
Carrier ¥ 7:28 AM (ST 4

Seed Random Number Generator

Generate Random Number

53

Figure 10-4. Completed iOS random number generator app

1. Open Xcode and select Create a new Xcode project. Make sure you select Single
View Application for iOS and then click Next, as shown in Figure 10-5.

170

CHAPTER 10 © CREATING USER INTERFACES

a template for your new project:

B Jotcnos oS macOs Cross-platform

Game
Sticker Pack iMessage
Application Application

Framework & Library

Cocoa Touch Cocoa Touch
Framework Static Library
Cancel

Master-Detail
Application

By

Metal Library

®

00 N aae
Page-Based Tabbed
Application Application

Figure 10-5. Creating an iPhone app based on the Single View Application template

2. Name your project RandomNumber, select Swift for the language and iPhone for
the Device, click Next, and save your project, as shown in Figure 10-6.

171

CHAPTER 10 CREATING USER INTERFACES

Choose options for your new project:

@Name:] RandomNumbed .~

Team: None
Organization Name: xcelMe

Organization Identifier: com

Bundle Identifier: S

Use Core Data
Include Unit Tests
Include Ul Tests

Figure 10-6. Naming your iPhone project

172

Previous

Next

CHAPTER 10 © CREATING USER INTERFACES

3. Your project files and settings are created and displayed, as shown in Figure 10-7.

o0e p [| ﬁﬁnmﬂwumbﬂ » i} iPhone SE RandomMumber: Ready | Today at 6:15 AM
RandomNumber.xcodepro)
BR QA & = o @ (8 [RandomNumber
v [RandomNumber || Genera Capabiiities Resource Tags Into Bulld Settings Bulld Phases Bulld Rules
v [Randomh
andomiumber e
| AppDelegate.swift B R ¥ Identity
«| ViewController.swit __Siemtidsnoimied
Main.storyboard TARGETS Dispioy Name
[Assats.xcassots #+ : RandomNurnber)
- e, Bundie ldentificr | com.RandomNumber
LaunehSereen.storyboard] RandomblumberTe..
Info.plist () RandompumberuL. version 1.0
» | 7| RangomNumberTests Buld 1
» [RandomNumberUiTests
» [Products
v signing

Automatically manage sign

Team None B
Pravisioning Profile Xcode Managed Profile
Sigring Certificate |05 Developer
Status @ Signing for “RandomMumber” requines a

development team.
Select a development team in the project editor.

¥ Deployment info

Deployment Target

Deviees | iPhone

Main Interface Main

Davice Orientation) Portrait
Upside Down
Landscape Lett
Landscape Right

Status Bar Style | Default B
Hide status bar
Requires full screen
¥ App leons and Launch images
App lcons Source | Agplcon Be
Launch Images Source Use Asset Cataleg..

= @E |+ - = Launch Screen File | LaunchScreen B

Figure 10-7. Source files

Although you have only one controller in this project, it’s good programming practice to make your
MVC groups at the beginning of your development. This helps remind you to keep the MVC paradigm and
not put all of your code unnecessarily in your controller.

4. Right-click the RandomNumber folder and then select New Group, as shown in
Figure 10-8.

173

CHAPTER 10 CREATING USER INTERFACES

ece p B ¢ RandomNumber | §i§ iPhone SE RandomNumber: Ready | Today at 6:20 AM
RandomMumBer.xcodeprof
BRAAS=c @ H % Randomblumber
v [§) Randombumbar] General Capagiities Resource Tags Into Build Settings Build Phases
L Apg Show inl Finder ; v identity
Vied Open with External Editor domNumber
. N Open As |- A
Show Flle Inspector AP e
(5] Assq HomNumber
! . Bundie identifier | com.RandomNumber
Laut New File... domNumberTe...
infa, Add Files to "RandomNumber”.. jomnumberul_ Viersion | 10
» 7] Randot itd |1
Delete B
» Randol
> Prod
- ¥ Signi
New Group from Selection Signing
Automatically manage signin
Sort by Name x oate and update prafie: 5
Sort by Type
Find in Selected Groups... e | Hon B
Provisioning Profile Xcode Managed Profile
Source Control >
Signing Certificate iDS Developer
Preject Navigator Help
| Stawus @ Signing for "RandomNumber requines o
development team.
Seloct 3 dovelopment team in the project editce
¥ Deployment Info
Deployment Target B
Davices | [Phore B
Main Interlece Maln n
Device Orientaticn [Portrait
| Upside Down
Landscape Left
Landscape Right
Status Bar Style Default B
Hide s1atus bar
Reauires full screen
¥ App lcons and Launch Images
App lzons Source Appleas Be
Launch Images Source Use Asset Catalog...
® O & Launch Sereen il LaurcnScroen]

Buld Rules

Figure 10-8. Creating new groups

174

Create a Models group, a Views group, and a Controllers group.

Drag the ViewController.swift file to the Controllers group. Drag the Main.
storyboard and LaunchScreen.storyboard files to the Views group. Having
these groups reminds you to follow the MVC design pattern as you develop your
code and prevents you from placing all of your code in the controllers, as shown
in Figure 10-9.

CHAPTER 10 © CREATING USER INTERFACES

[] [] > 7 RandomMumber) §i§ iPhone SE RandomNumber: Ready | Today at 6:256 AM
Main.storyboard
bR Q A ©® mE o B (B3 B Views Main.storyboarg Main.storyboard (Base)) No Selection
¥ [5) RandomNumber v [view Controller Scene
¥ Bl Randomthumbac v () View Controlier
» [Models | Top Layout Guide
¥ [Views || Bottom Layout G... View Controller
B Main.storyboard . View —
LaunchScreen.storyboard i First Responder |
¥ [Controller B exit

yboard Entry Py
. ViewController.swit Shorybose Extry ok

»| AppDelegate.swift
[Assets.xcassets
Info.plist
> RandomNumberTests
> RandomNumberUiTests

> Products

Figure 10-9. MVC groups with controller and storyboard files organized

Developers have found it helpful to keep their storyboard and XIB files with their controllers as their
projects grow. It is not uncommon to have dozens of controllers and XIB files in your project. Keeping them
together helps keep everything organized. Using storyboards resolves many of the issues of having lots of XIBs.

7. Click the Main.storyboard file to open Interface Builder.

Using Interface Builder

The most common way to launch Interface Builder and begin working on your view is to click the storyboard
or XIB file related to the view, as shown in Figure 10-10.

175

CHAPTER 10 CREATING USER INTERFACES

ece i A RandomNumber | @ Prone SE Randembumber: Ready | Todsy a1 6:29 AM =E2<so00Q30
Inspector Selector Bar 1
Main stonyboard P S \
W < & mancomsumier RangomMumbor Views Main. storyboard Main steryboard (Base) | [B view Cortrolior Scone Vigw Cantrolior Wiew OB 90 @
v [E] view Comtralinr Scomn View
View Controfier Show | Frame Rectangie B
T Top Layout Guice
L Bottom Layout 6. ® BE % ¥
— LI View -
{0 First Responder Width Hewtt
B et Mersge | Posion View B
» Storyboard Entry ol =
*——- Interface Builder Objects mowennizing | L -']
+ .

Utility Area

r

D{leD
Library Selector Bar ’

Dock Editor Area View Controlior - A csnualr that

masages a view

Steryboard Reference - Provides o
platsholder fer & view contreller in bn
wxternal sloryboard.

Havigatien Cantraller - A
i

Tabto View Controler - &
coniralier 173t Manages 3 tasle view

Collection View Controller - &
eomtrslies Lhat manages 3 colection

Tab Bar Contreiler - A sanoliar
o | mhat manages a set of view contrailers

st repraent &

Canvas Split View ControBer -
comouiie view controlies that
manages bl and right wew contrale

=] View as: iPhone B5 [+ C «R) — wox + = 1o el | B8 & -
Figure 10-10. Interface Builder in the workspace window

When Interface Builder opens, you can see your scenes displayed on the canvas. You are now able to
design your user interface. First, you need to understand some of the sub-windows within Interface Builder.

The Document Outline
The storyboard shows all the objects that your view contains. The following are some examples of these objects:
e Buttons
e Labels
o Textfields
e Web views
e Map views
e Picker views

e Table views

Note You can expand the width of the Document Outline to see a detailed list of all your objects, as shown
in Figure 10-11. To get more real estate for the canvas, you can shrink or hide your file navigator.

176

ece » 2 Randomnumber | il IProne SE

By < B Randomnumber Rargombumaer views

v [View Cortroller Scene
v View Controfer
Top Layout Guice
Botiom Layout G,

{0 First Responder
= ex
Stonyboord Entry P

CHAPTER 10 © CREATING USER INTERFACES

RandamMumber: Ready | Teday at 6:36 AM &S0 3 O
Main.storyboard
MR, Story boare Main.storyboard (Basel ¢ [View Controtier Scone. Wiew Contralier View D@ 0@
View
Show Frame Rectangle 2]
» B x ¥

D@ o

Wiew Comtrofier - A contreser mat
manages & view

Storyboard Reference - Provides
olacehsider for o view costrolles in an
extarnal storyboaed.

conteglar that manages navigation
Thressgh a bisraseiny o views.

< Nawigation Contrellor - &

Table View Controller - &
conteoler that manages a table e,

Collection View Cantraller - &
controber that manages 3 celection

Tabs Bar Controller
that masages a 5
that repeesent tak bs

controiter
strolhers

Figure 10-11. The Document Outline’s width is expanded to show a detailed view of all the objects in your

storyboard.

The Object Library

The Object Library is where you can exploit your creativity. It's a smorgasbord of objects that you can drag

and drop into the View.

e The Library pane can grow and shrink by moving the window splitter in the middle
of the view, as shown in Figure 10-12.

177

CHAPTER 10 CREATING USER INTERFACES

LD {} @ 3

(_Hm View Controller - A controller that
- y manages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.

y <\ Navigation Controller - A

| controller that manages navigation
_~ through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

~ Collection View Controller - A
controller that manages a collection
view.

Tab Bar Controller - A controller
that manages a set of view controllers
that represent tab bar items.

Split View Controller - A
composite view controller that
manages left and right view controlle...

/D\ Page View Controller - Presents a

| sequence of view controllers as
/' pages.

s o \l GLKit View Controller - A
t\\— / controller that manages a GLKit view.

Figure 10-12. Expand the Library pane to see more controls and slide the splitter to resize the window with
the mouse

178

For Cocoa Touch objects, the Library contains the following (see Figure 10-13):

CHAPTER 10 © CREATING USER INTERFACES

Controls
Data views
Gesture recognizers

Objects and controllers

Window and bars
O (] @

Label

Button 1 Text | =

Figure 10-13. Various Cocoa Touch objects in the Library pane

179

CHAPTER 10 CREATING USER INTERFACES

Inspector Pane and Selector Bar

The Inspector pane enables you to change the properties of the controls to make your objects follow your
command. The Inspector pane has six tabs across the top, as shown in Figure 10-14.

DheE ¥ 3 6

View
Content Mode Scale To Fill

Semantic Unspecified

)] o

Tag 0

Interaction @3 User Interaction Enabled
| Multiple Touch

Alpha

1S
Background [IIB
B

Tint HEEE Default

Drawing 3 Opaque
| Hidden
Clears Graphics Context
| Clip To Bounds
Autoresize Subviews

Stretching (1] b o3
X Y
1S i o
Width Height
D) @

Figure 10-14. The Attributes inspector and Selector Bar

180

CHAPTER 10 © CREATING USER INTERFACES

e File inspector

e Quick Help inspector
¢ Identity inspector

e Attributes inspector
e Size inspector

e Connections inspector

Creating the View

The random number generator will have three objects in the view: one label and two buttons. One button
will generate the seed, another button will generate the random numbey, and the label shows the random
number generated by the app.

1. Draga Label control from the Library Pane Controls section to the View window,
as shown in Figure 10-15.

ece » Py Rendeebiumber | il iPhons SE Rsndembumbor: Ready | Today at 6:46 A = e <00

Main storyboard

88 < B Randombumiser Rancoebiumber Wiews) [} Main sioryooard | [l Maln storyboard (Base)] View Cortrber Scene View Controfier Wiewe [L] Labe! O ¢ =
[view Controlier Scema ekl
v () View Controfier Toz| Piain B
=] Too Layout Guice Late
ot LA Cotor | W Dataut B
v [view =
il Seed Rangem., » B Font | System 170 mis
B Generate Ran 1 - agrnest e O W W -
L]Lazel - i E
R L — Berunior [Enadled
Eea Highightea
Saceyboard Entry ol
Baselne | _Aign Basaines B
Ling Break | Truncate Ta B
Autostrink | Faned Fort Size =]
Tighten Letter Spacing
Seed Random Number Generator
Hghighied BN Dotault B
Shadow | =) Defaut B
Shaston Ottset [/3
wieth ight
e
Content Mede | Left B
1 @

0og

GLNIE View Controller - &
contrater that manages & GLGE vien

VKR Player View Controller - &
e cantrater that managed &
APlaye cbject

OBIBEL - Provides & Lemgiste bor
abiects and conioers not drectly
svsilsble in Innerlues Bulder.

Labig] L & by sirea smoum ot
static st

BUEN - Interzapts touch events and
Bullon senes an scies masiags 16 & target
bt when it Lot

— G RO s

Figure 10-15. Placing objects in the view

181

CHAPTER 10 CREATING USER INTERFACES

2. Drag two buttons from the Library window to the View window.
3. Click the top button and change its title to Seed Random Number Generator.

4. Click the bottom button and change its title to Generate Random Number, as
shown in Figure 10-15.

Now you get to use a great feature of Xcode. You can quickly and easily connect your outlets and actions
to your code. Xcode actually goes one step further; it will create some of the code for you. All you have to do
is drag and drop.

5. Click the Assistant Editor icon at the top right of the screen. This will display
the associated . swift file for the view selected in the storyboard, as shown in
Figure 10-16.

soe » oy Ranssabiurber |) Phane 5T Pundurhuembor. Auady | Taday st 647 A A (=l=H=

Fn_oer) [0 Viawe | [MaLsed) [elaosh ! [Vioere 0 veoter) [7] view :[L]sbet | 5

renytted oy e

idRece ivesemaryarning() {
gfecniveMesaryWarningl]

Joe oow

Lael

Figure 10-16. Using the Assistant Editor to display the .swift file

Note If the correct associated . swift file doesn’t appear when you click the Assistant Editor icon, make
sure you selected and highlighted the view. Automatic also has to be selected in the Assistant Editor’s jump bar.

Using Outlets
Now you can connect your label to your code by creating an outlet.

1. Control-drag from the label in the view to the top of your class file, as shown
in Figure 10-17. This is holding down the Control key on the keyboard while
clicking and dragging with the mouse. You can also right-click and drag.

182

CHAPTER 10 © CREATING USER INTERFACES

2 // ViewController.swift
i J// RandomMumber

. " I
® B & // Created by Gary Bennett on 8/29/16.
// Copyright ® 2816 xcelMe. All rights reserved.
L3 A
7 import UIKit
class ViewController: UIViewController {
g °—~'_ ’overrme TTIEFCL] Insert Outlet or Outlet Collecti
’ super.viewDidLoad
// Do any additional setup after loading the
Seed Random Number Generator } view, typically from a nib.
/ 18 override func didReceiveMemoryWarning() {
19 super.didReceiveMemoryWarning()
2 // Dispose of any resources that can be
recreated.

Generate Random Number 21 }

La:ﬁ_ el ’ §

ooo

Figure 10-17. Control-dragging to create the code for the randomNumberLabel outlet

2. A pop-up window will appear. This enables you to name and specify the type
of outlet.

3. Complete the pop-up as shown in Figure 10-18 and click the Connect button.

183

CHAPTER 10 CREATING USER INTERFACES

// viewController.swift
// RandomNumber

// Created by Gary Bennett on 8/29/16.
/! Copyright ¢ 2016 xcelMe. All rights reserved.

Connection | Dutiet =1 1 import UIKit
otpect (2 View Controlier
Name | randomNumberLabe|
Type UlLabe n 3

i override func viewDidLoad() {
i super.viewDidLead()
Cancel Connect |) // Do any additional setup after loading the
+ view, typically from a nib.
.._ }

| class ViewController: UIViewController {

Sterage | Weak

Seed Random Number Generator 18

19 override func didReceiveMemoryWarning() {

20 super .didReceiveMemoryWarning()

1 // Dispose of any resources that can be
recreated.

Generate Random Number

oo

Label

ooo

Figure 10-18. Pop-up for randomNumberLabel outlet

The code is created for the outlet, and the outlet is now connected to the Label object in your
Main.storyboard file. The shaded circle next to line 13 indicates the outlet is connected to an object in the
Main.storyboard file, as shown in Figure 10-19.

184

CHAPTER 10 © CREATING USER INTERFACES

// Created by Gary Bennett on 8/29/16.

// Copyright © 2016 xcelMe. All rights reserved.
/
o E
- import UIKit
class ViewController: UlIViewController {
@IBOutlet weak var randomNumberLabel: UILabel!
rride func viewDidLoad() {
er.viewDidLoad()
f/ Do any additional setup after loading the
- view, typically from a nib.
Seed Random Number Generator 1 }
cverride func didReceiveMemoryWarning() {
super.didReceiveMemorywarning()
se of any resources that can be
d.
erate Ra im }
}
o
& 0 =

Figure 10-19. Outlet property code generated and connected to the Label object

There is a declaration that may be new to you called IBOutlet, commonly referred to simply as an
outlet. Outlets signal to your controller that this property is connected to an object in Interface Builder.
IBOutlet will enable Interface Builder to see the outlet and enable you to connect the property to the object
in Interface Builder.

Using the analogy of an electrical wall outlet, these property outlets are connected to objects. Using
Interface Builder, you can connect these properties to the appropriate object. When you change the
properties of a connected outlet, the object that it is connected to will automatically change.

Using Actions

User interface object events, also known as actions, trigger methods.
Now you need to connect the object actions to the buttons.

1. Control-drag from the Seed Random Number Generator button to the bottom
of your class. Complete the pop-up as indicated in Figure 10-20 and click the
Connect button. Make sure you change the connection to an Action and not an
Outlet.

185

CHAPTER 10 © CREATING USER INTERFACES
o @ B
-
o a
o Seed Random Number Generator o
=} o 0
Connection [Action
: =N Otject () View Controlier
Generate Random Nu Name | seedAction
N
Label

Figure 10-20. Completing the pop-up for the Seed method

186

ViewController.swift
RandomNumber

Created by Gary Bennett on 8/29/16.
Copyright ® 2016 xcelMe. All rights reserved.

import UIKit

class ViewController: UlViewController {

@IBQutlet weak var randomNumberLabel: UILabel!

override funec viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the
view, typically from a nib.

}

override func didReceiveMemorywarning() {
super.didReceiveMemorywarning()
// Dispose of any resources that can be
recreated.

CHAPTER 10 © CREATING USER INTERFACES

2. Repeat the previous steps for the Generate Random Number button (see
Figure 10-21).

// ViewController.swift
/! RandomNumber

/! Created by Gary Bennett on 8/29/16.
// Copyright ® 2016 xcelMe. All rights reserved.

- 7 import UIKit
class ViewController: UIViewController {
® 13 @IB0utlet weak var randomNumberLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the

view, typically from a nib.
Seed Random Number Generator 18 }

override func didReceiveMemorywarning() {
super.didReceiveMemoryWarning()
i // Dispose of any resources that can be
o o recreated.
Generate Random Number] = }
o o

o-o-0

® 25 @IBAction func seedAction(_ sender: UIButton) {
h

Label ® 28 @IBAction func generateAction(_ sender: UIButton) {

Figure 10-21. Generate and Seed actions connected to their Button objects

The Class

All that is left is to complete the code for your outlet and actions in the . swift file for the controller.
Open the ViewController.swift file and complete the seedAction and generateAction methods, as
shown in Figure 10-22.

187

CHAPTER 10 CREATING USER INTERFACES

i

import UIKit
class ViewController: UIViewController {
® 13 @IBOutlet weak var randomNumberlLabel: UILabel!

15 override func viewDidLoad() {

super.viewDidLoad()

// Do any additional setup after loading the view, typically
from a nib.

}

override func didReceiveMemorywarning() {
. super.didReceiveMemorywarning()
2 // Dispose of any resources that can be recreated.

2 }
® 25 @IBAction func seedAction(_ sender: UIButton) {
26 srandom(CUnsignedInt(time(nil)))
27 randomNumberLabel.text = "Generator seended"
28 }
® 30 @IBAction func generateAction(_ sender: UIButton) {
k]| let generated = (arcé4random() % 100) + 1
32 randomNumberLabel.text = "\(generated)"”

Figure 10-22. The seedAction and generateAction methods completed

There is some code you should examine a bit further. The following line seeds the random generator
so that you get a random number each time you run the app. There are easier ways of to do this, but for the
purposes of this section, you just want to see how actions and outlets work.

srandom(CUnsignedInt(time(nil)))

In the following code, the property text sets the UILabel value in your view. The connection you
established in Interface Builder from your outlet to the Label object does all the work for you.

randomNumber . text
There is just one more thing you need to do now. Select the Main.storyboard file and then select your

view controller scene. Then click Resolve Auto Layout Issues. Then click Add Missing Constraints. This will
enable your controls to center correctly in your view, as shown in Figure 10-23.

188

CHAPTER 10 © CREATING USER INTERFACES

Toae)) Sone BE e Ranasvalumos an #hand 56

Mainsorybesd

g < B ot B usr sarysose msee) [viem Cortrater scens | () view Costroter -] dctomati | . VewCostroservwt | () generssaseton) + x

| otieen Lyt 6.

3] saed avoon
i Garerate Ran.. 8= e
R Rardon e -
sotraer
oryacerd Loy Py
¢ func viewDidLosdd) {
ex. viewDicload)
ional setup after loading the view, typlcally
$eed Randcm Number Generator t
icRecelvererarywarningl) {
L iveMesorywarningl)
K s of any Tesaurces that can be recreated.
¥
Genevate Random Mumbe IR foni_ sender: UIButton) {
(timeinilld]
Xt = “Generator seended*
b
Label BlBaction furc generatsActiond_ sender: UIButton) {

n ot generates = (arcarandom() X 1881 + 1
% 5 rardenturbarlatel. text = “\igenerated]”
¥
] View as: Bhore 83 (€ <A - wox + :.-
B e [Q > g uar s
persist_le s info_ttl: 8, debug_ttl: @,
generate_s rsize: 1, privacy_setting: 2,

enable_pri

Figure 10-23. Auto Layout

That's it!
To run your iPhone app in the iPhone simulator, click the Play button. Your app should launch in the
simulator, as shown in Figure 10-24.

189

CHAPTER 10 CREATING USER INTERFACES

iPhone SE - i0S 10.0 (14A5339a)
Carrier ¥ 7:15 AM 4

Seed Random Number Generator

Generate Random Number

87

Figure 10-24. The completed random number generator app running in the iOS simulator

To generate the random number, tap the Generate Random Number button.

Summary

Great job! Interface Builder saves you a lot of time when creating user interfaces. You have a powerful set of
objects to use in your application and are responsible for a minimal amount of coding.

Interface Builder handles many of the details you would normally have to deal with.

You should be familiar with the following terms:

e Storyboard and XIB files

e Model-View-Controller

e Architectural patterns

e Human Interface Guidelines (HIG)
e Outlets

e Actions

190

CHAPTER 10 © CREATING USER INTERFACES

EXERCISES

Extend the random number generator app to show a date and time in a Label object
when the app starts.

After showing a date and time label, add a button to update the data and time label
with the new time.

191

CHAPTER 11

Storing Information

As a developer, there will be many different situations when you will need to store data. Users will expect
your application (app) to remember preferences and other information each time they launch it. Previous
chapters discussed the BookStore app. With this app, users will expect your application to remember all
of the books in the bookstore. Your application will need a way to store this information, retrieve it, and
possibly search and sort this data. Working with data can sometimes be difficult. Fortunately, Apple has
provided methods and frameworks to make this process easier.

This chapter discusses two different formats in which data will need to be stored. It discusses how to
save a preference file for an iOS device and then how to use an SQLite database in your application to store
and retrieve data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these differences will affect
how you work with data. Let’s start by discussing the Mac and how you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user has their own
home folder where preferences and information related to that user are stored. Not all of the users will have
access to write to the Applications folder or to the application bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every person who uses
the iPhone has the same permissions and the same folders. There are some other factors to consider with
the iPhone, though. Every application on an iOS device is in its own sandbox. This means that files written
by an application can be seen and used only by that individual application. This makes for a more secure
environment for the iPhone, but it also presents some changes in the way you work with data storage.

Preferences

There are some things to consider when deciding where to store certain kinds of information. The easiest
way to store information is within the preferences file, but this method has some downsides.

e All of the data is both read and written at the same time. If you are going to be writing
often or writing and reading large amounts of data, this could take time and slow
down your application. As a general rule, your preferences file should never be larger
than 100KB. If your preferences file starts to become larger than 100KB, consider
using Core Data as a way to store your information.

e The preferences file does not provide many options when it comes to searching and
ordering information.

© Gary Bennett and Brad Lees 2016 193
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_11

CHAPTER 11 © STORING INFORMATION

The preferences file is really nothing more than a standardized XML file with accompanying classes and
methods to store application-specific information. A preference would be, for example, the sorting column
and direction (ascending/descending) of a list. Anything that is generally customizable within an app should
be stored in a preferences file.

Caution Sensitive data should not be stored in the preferences file or in a database without additional
encryption. Luckily, Apple provides a way to store sensitive information. It is called the keychain. Securing data
in the keychain is beyond the scope of this book.

Writing Preferences

Apple has provided developers with the UserDefaults class; this class makes it easy to read and write
preferences for i0S, Mac OS XmacOS, tvOS, and watchOS. The great thing is that, in this case, you can use
the same code for i0S, macOS, and tvOS. The only difference between the two implementations is the
location of the preferences file.

Note For macOS, the preferences file is named com. yourcompany.applicationname.plist and is
located in the /Users/username/Library/Preferences folder. On i0S, the preferences file is located in your
application’s container in the /Library/Preferences folder.

All you need to do to write preferences is to create a UserDefaults object. This is done with the
following line:

var prefs: UserDefaults = UserDefaults.standard

This instantiates the prefs object so you can use it to set preference values. Next, you need to set
the preference keys for the values that you want to save. The BookStore app example will be used to
demonstrate specific instructions throughout this chapter. When running a bookstore, you might want to
save a username or encrypted password in the preferences. You also might want to save things such as a
default book category or recent searches. The preferences file is a great place to store this type of information
because this is the kind of information that needs to be read only when the application is launched.

Also, on i0S, it is often necessary to save your current state. If a person is using your application and then
gets a phone call, you want to be able to bring them back to the exact place they were in your application when
they are done with their phone call. This is less necessary now with the implementation of multitasking, but your
users will still appreciate it if your application remembers what they were doing the next time they launch it.

Once you have instantiated the object, you can just call setForKey to set an object. If you wanted to save
the username of sherlock.holmes, you would call the following line of code:

prefs.set ("sherlock.holmes", forKey: "username"

After a certain period of time, your app will automatically write changes to the preferences file. You can
force your app to save the preferences by calling the synchronize function, but this should only be used if
you cannot wait for the next synchronization interval such as if you app is immediately going to exit. To call

the synchronize function, you would write the following line:

prefs.synchronize()

194

CHAPTER 11 STORING INFORMATION

With just three lines of code, you are able to create a preference object, set a preference value, and write
the preferences file. It is an easy and clean process. Here is all of the code:

var prefs: UserDefaults = UserDefaults.standard
prefs.set("sherlock.holmes", forKey: "username"
prefs.synchronize()

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step is to obtain the
UserDefaults object. This is done in the same way as it was done in the writing process:

var prefs: UserDefaults = UserDefaults.standard

Now that you have the object, you are able to access the preference values that are set. For writing, you
use the set syntax; for reading, you use the string(forKey:) method. You use the string(forKey:) method
because the value you put in the preference was a String. In the writing example, you set preferences for
the username and for the number of books in the list to display. You can read those preferences by using the
following simple lines of code:

var username = prefs.string(forKey: "username"
var booksInlList = prefs.integer(forKey: "booksInList")

Pay close attention to what is happening in each of these lines. You start by declaring the variable
username, which is a String. This variable will be used to store the preference value of the username you
stored in the preferences. Then, you just assign it to the value of the preference username. You will notice
that in the read example you do not use the synchronize method. This is because you have not changed the
values of the preferences; therefore, you do not need to make sure they are written to a disk.

Databases

You have learned how to store some small pieces of information and retrieve them at a later point. What
if you have more information that needs to be stored? What if you need to conduct a search within this
information or put it in some sort of order? These kinds of situations call for a database.

A database is a tool for storing a significant amount of information in a way that it can be easily
searched or retrieved. When reading data from a database, pieces of data are returned rather than the entire
file. Many applications you use in your daily life are based on databases of some sort. Your online banking
application retrieves your account activity from a database. Your supermarket uses a database to retrieve
prices for different items. A simple example of a database is a spreadsheet. You may have many columns and
many rows in your spreadsheet. The columns in your spreadsheet represent different types of information
you want to store. In a database, these are considered attributes. The rows in your spreadsheet would be
considered different records in your database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers associate databases with
enterprise database servers such as Microsoft SQL Server or Oracle. These applications can take time to set
up and require constant management. For most developers, a database system like Oracle would be too

195

CHAPTER 11 © STORING INFORMATION

much to handle. Luckily, Apple has included a small and efficient database engine called SQLite in iOS,
macOS§, and tvOS. This allows you to gain many of the features of complex database servers without the
overhead.

SQLite will provide you with a lot of flexibility in storing information for your application. It stores the
entire database in a single file. It is fast, reliable, and easy to implement in your application. The best thing
about the SQLite database is that there is no need to install any software; Apple has taken care of that for you.

However, SQLite does have some limitations that, as a developer, you should be aware of.

e SQLite was designed as a single-user database. You will not want to use SQLite in an
environment where more than one person will be accessing the same database. This
could lead to data loss or corruption.

e Inthe business world, databases can grow to become very large. It is not surprising
for a database manager to handle databases as large as half a terabyte, and in some
cases databases can become much larger than that. SQLite should be able to handle
smaller databases without any issues, but you will begin to see performance issues if
your database starts to get too large.

e SQLite lacks some of the backup and data restore features of the enterprise database
solutions.

For the purposes of this chapter, you will focus on using SQLite as your database engine. If any of the
mentioned limitations are present in the application you are developing, you may need to look into an
enterprise database solution, which is beyond the scope of this book.

Note SQLite (pronounced “sequel-lite”) gets its name from Structured Query Language (SQL, pronounced
“sequel”). SQL is the language used to enter, search, and retrieve data from a database.

Apple has worked hard to iron out a lot of the challenges of database development. As a developer, you
will not need to become familiar with SQL because Apple has taken care of the direct database interaction
for you through a framework called Core Data, which makes interacting with the database much easier.
Core Data has been adapted by Apple from a NeXT product called Enterprise Object Framework, and
working with Core Data is a lot easier than interfacing directly with the SQLite database. Directly accessing a
database via SQL is beyond the scope of this book.

Getting Started with Core Data

Let’s start by creating a new Core Data project.

1. Open Xcode and select File » New » Project. To create an iOS Core Data project,
select iOS from the menu on the top. Then select Single View Application, as
shown in Figure 11-1.

196

CHAPTER 11 STORING INFORMATION

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform Q)
Application
1] F =
L AR ecCO ® see
Single View Game Master-Detail Page-Based Tabbed
Application Application Application Application
oo)
0o ®.
Sticker Pack iMessage
Application Application

Framework & Library

N g T

=i
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel [Next]

Figure 11-1. Creating a new project

2. Click the Next button when you're done. The next screen will allow you to enter

the name you want to use. For the purposes of this chapter, you will use the name
BookStore.

3. Near the bottom, you will see the checkbox called Use Core Data. Make sure this
is checked and then click Next, as shown in Figure 11-2.

Note Core Data can be added to any project at any point. Checking that box when creating a project will
add the Core Data frameworks and a default data model to your application. If you know you are going to use
Core Data, checking this box will save you time.

197

CHAPTER 11 © STORING INFORMATION

Choose options for your new project:

Product Name: BookStore
Team: None [T}
Organization Name: Innovativeware
Organization Identifier: com.innovativeware
Bundle Identifier: com.innovativeware.BookStore
Language: Swift [T]
Devices: iPhone [T}

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous [Next |

Figure 11-2. Adding Core Data to your project

4, Selectalocation to save the project and click Create.

Once you are done with that, your new project will open. It will look similar to a standard application,
except now you will have a BookStore.xcdatamodeld file. This file is called a data model and will contain the
information about the data that you will be storing in Core Data.

The Model

In your BookStore folder on the right, you will see a file called BookStoreCoreData.xcdatamodeld. This file
will contain information about the data you want stored in the database. Click the model file
(.xcdatamodeld) to open it. You will see a window similar to the one shown in Figure 11-3.

198

CHAPTER 11 STORING INFORMATION

ene » A B..re) i iPhone SE

B Q & ¢ 8 o E | < ® (® Default
¥ & BookStore ENTITIES

BookStore: Ready | Today at 6:18 PM i | = C

bl ¥ Entities
v BookStore . -
= AppDelegate.swift

Entity ~ Abstract Class
= ViewController.swift

Main.storyboard
Assets xcassets
LaunchScreen.storyboard

Info.plist

> Products

= - (+13 0.

Qutline Style Add Entity dd Attribute Editor Style

Figure 11-3. The blank model

The window is divided into four sections. On the left, you have your entities. In more common terms,
these are the objects or items that you want to store in the database.

The top-right section contains the entity’s attributes. Attributes are pieces of information about the
entities. For example, a book would be an entity, and the title of the book would be an attribute of that entity.

Note In database terms, entities are your tables, and the attributes of the entities are called columns. The
objects created from those entities are referred to as rows.

The middle window on the right will show you all the relationships of an entity. A relationship connects
one entity to another. For example, you will create a Book entity and an Author entity. You will then relate them
so that every book can have an author. The bottom-right portion of the screen will deal with fetched properties.

Fetched properties are beyond the scope of this book, but they allow you to create filters for your data.
Let's create an entity.

1. Click the plus sign in the bottom-left corner of the window, or select
Editor » Add Entity from the menu, as shown in Figure 11-4.

199

CHAPTER 11 © STORING INFORMATION

[] ® #\ B.re) §i§ iPhone SE BookStore: Ready | Today at 6:22 PM = @& 1 = 1
B2 a A © 838 o B8 B B il B . @ Entity
v & BookStore

ENTITIES v Attributes
¥ | BookStore I3 Entity

FETCH

= AppDelegate.swift

= ViewController.swift

Ma n.slﬂf"'boﬂ'd CONFIGURATIONS
Assets.xcassets @ pefauit
LaunchScreen.storyboard
Info,plist

" BookStore.xcdatamodeld

¥ Relationships
» Products

-+

¥ Fetched Properties

= o e
J Qutline Style Add Entity Add Attribute Editor Style

Figure 11-4. Adding a new entity

2. On the left side, double click the Entity name and change the name to Book.

Note You must capitalize your entities’ names.

Now let’s add some attributes. Attributes would be considered the details of a
book, so you will store the title, author, price, and year the book was published.
Obviously, in your own applications, you may want to store more information,
such as the publisher, page count, and genre, but you want to start simple. Click
the plus sign at the bottom right of the window, or select Editor » Add Attribute,

as shown in Figure 11-5. If you do not see the option to add an attribute, make
sure you have selected the Book entity on the left side.

200

CHAPTER 11 STORING INFORMATION

ENTITIES
3 Book

FETCH REQUESTS

¥ Attributes

Attribute
m attribute Undefined

CONFIGURATIONS
@ Default

+

¥ Relationships

2lationsnip .

Figure 11-5. Adding a new attribute

4. You will be given only two options for your attribute, the name and the data type.
Let’s call this attribute title. Unlike entities, attribute names must be lowercase.

5. Now, you will need to select a data type. Selecting the correct data type is
important. It will affect how your data is stored and retrieved from the database.
The list has 12 items in it and can be daunting. We will discuss the most common
options and, as you become more familiar with Core Data, you can experiment
with the other options. The most common options are String, Integer 32,
Decimal, and Date. For the title of the book, select String.

String: This is the type of attribute used to store text. This should be used to store
any kind of information that is not a number or a date. In this example, the book
title and author will be strings.

Integer 32: There are three different integer values possible for an attribute. Each
of the integer types differs only in the minimum and maximum values possible.
Integer 32 should cover most of your needs when storing an integer. An integer is
a number without a decimal. If you try to save a decimal in an integer attribute,
the decimal portion will be truncated. In this example, the year published will be
an integer.

Decimal: A decimal is a type of attribute that can store numbers with decimals.
A decimal is similar to a double attribute, but they differ in their minimum
and maximum values and precision. A decimal should be able to handle any

currency values. In this example, you will use a decimal to store the price of the
book.

Date: A date attribute is exactly what it sounds like. It allows you to store a date
and time and then performs searches and lookups based on these values. You
will not use this type in this example.

201

CHAPTER 11 © STORING INFORMATION

6. Let’s create the rest of the attributes for the book. Now, add price. It should
be a Decimal. Add the year the book was published. For two-word attributes,
it is standard to make the first word lowercase and the second word start with
a capital letter. For example, an ideal name for the attribute for the year the
book was published would be yearPublished. Select Integer 32 as the attribute

type. Once you have added all of your attributes, your screen should look like
Figure 11-6.

Note Atiribute names cannot contain spaces.

ENTITIES

¥ Attributes
I3 Book
Attribute . Type
FETCH REQUESTS
N price Decimal
CONFIGURATIONS B title String <
@ Default [yearPublished Integer 32 ¢
+ —

¥ Relationships

Relationship Destinatior

Figure 11-6. The finished Book entity

Note If you are used to working with databases, you will notice that you did not add a primary key. A
primary key is a field (usually a number) that is used to uniquely identify each record in a database. In Core
Data databases, there is no need to create primary keys. The Framework will manage all of that for you.

Now that you have finished the Book entity, let’s add an Author entity.
1. Add a new entity and call it Author.
2. To this entity, add 1lastName and firstName, both of which are strings.

Once this is done, you should have two entities in your entity list. Now you need to add the
relationships.

1. Click the Book entity, and then click and hold on the plus sign that is located on the
bottom right of the screen. Select Add Relationship, as shown in Figure 11-7. (You
can also click the plus under the Relationships section of the Core Data model.)

202

CHAPTER 11 STORING INFORMATION

e v Attributes
E Author
I3 Book Attribute
rice imal ~
FETCH REQUESTS m? Decima ¢
title String o
CONFIGURATIONS [0 yearpublished S 3
@ Default i

¥ Relationships

Relationship . Destination Inverse

relationship No Value No Inverse

Figure 11-7. Adding a new relationship

2. You will be given the opportunity to name your relationship. You usually give a
relationship the same name as the entity to which it derived from. Type in author
as the name and select Author from the Destination drop-down menu.

3. You have created one- half of your relationship. To create the other half, click the
Author entity. Click the plus sign located at the bottom right of the screen and
select Add Relationship. You will use the entity name that you are connecting
to as the name of this relationship, so you will call it books. (You are adding an
s to the relationship name because an author can have many books.) Under
Destination, select Book, and under Inverse, select the author relationship you
made in the previous step. In the Utilities window on the right side of the screen,
select the Data Model Inspector. Select To Many for the type of the relationship.
Your model should now look like Figure 11-8.

Note Sometimes in Xcode, when working with models, it is necessary to press the Tab key for the names of
entities, attributes, and relationships to update. This little quirk can be traced all the way back to WebObjects tools.

ENTITIES : et
= ; ¥ Attributes
Re&ted tems Name books
@ Book = i Properties Transient
firstN i o
FE EQUESTS 8 firstName g ¥ Destination Book
B 1astName String <
CONFIGURATIONS Inverse author
Default 4+ Delete Rule Nullify

Type To Many
¥ Relationships Arrangement Ordered

Count

author

Optional

Gope

Minimum

Maximum

Advanced Index in Spotlight
Store in External Record File

User Info

Figure 11-8. The final relationship

203

CHAPTER 11 © STORING INFORMATION

Now you need to tell your code about your new entity. To do this, hold down Shift and select the
Book entity and the Author entity and then select Editor » Create NSManagedObject Subclass from the
Application menu. Your screen should look like Figure 11-9.

Select the data models with entities you would like to manage

Select Data Model

Cancel [Next |

Figure 11-9. Adding the managed objects to your project

This screen allows you to select the data model you would like to create managed objects for. In this
case, you have only a single data model. In some complicated applications, you may have more than one.
Managed objects represent instances of an entity from your data model. Select the BookStore data model
and click Next.

You will now be presented with a screen to select the entities to create managed objects, as seen in
Figure 11-10. Select both and click Next.

204

CHAPTER 11 STORING INFORMATION

Select the entities you would like to manage

Select Entity
Book
Author
Cancel Previous | Next |

Figure 11-10. Select the entities to create managed objects

Select the storage location and add it to your project, as seen in Figure 11-11. Then click Create.
You will notice that four files have been added to your project. Book+CoreDataProperties.swift and
Author+CoreDataProperties.swift contain the information about the book and author entities you just
created. Book+CoreDataClass.swift and Author+CoreDataClass.swift will be used for logic relating to
your new entities. These files will need to be used to access the entities and attributes you added to your data
model. These files are fairly simple because Core Data will do most of the work with them. You should also
notice that if you go back to your model and click Book, it will have a new class in the Data Model Inspector.
Instead of an NSManagedObject, it will have a Book class.

205

CHAPTER 11 © STORING INFORMATION

<>

EN oo E oo =5 BookStore

Favorites Name

Recents > BookStore
1 Dropbox '
Chapter 7

& All My Files

¢ iCloud Drive

#3: Applications

] Desktop

@ Documents

O Downloads

Group 4 BookStore H
Targets /. BookStore

New Folder Options Cancel

Figure 11-11. Select the save location for your new managed objects

Let’s look at some of the contents of Book+CoreDataProperties.swift:

import Foundation
import CoreData

extension Book {
@nonobjc public class func fetchRequest() -> NSFetchRequest<Book> {

return NSFetchRequest<Book>(entityName: "Book");
}

@NSManaged public var title: String?
@NSManaged public var yearPublished: Int32
@NSManaged public var price: NSDecimalNumber?
@NSManaged public var author: Author?

206

Size

Create

CHAPTER 11 STORING INFORMATION

You will see that the file starts by including the Foundation and Core Data frameworks. This
allows Core Data to manage your information. This file contains an extension to the Book class. An extension
allows you to add new computed properties and functionality to an existing class. By creating the
Book+CoreDataClass.swift and the Book+CoreDataProperties.swift files, Xcode allows the developer
to separate the attributes from the basic logic. The superclass for the new Book object is NSManagedObject.
NSManagedObject is an object that handles all of the Core Data database interaction. It provides the methods
and properties you will be using in this example. Later in the file, you will see the three attributes and the
one relationship you created.

Managed Object Context

You have created a managed object class called Book. The nice thing with Xcode is that it will generate

the necessary code to manage these new data objects. In Core Data, every managed object should exist
within a managed object context. The context is responsible for tracking changes to objects, carrying out
undo operations, and writing the data to the database. This is helpful because you can now save a bunch of
changes at once rather than saving each individual change. This speeds up the process of saving the records.
As a developer, you do not need to track when an object has been changed. The managed object context will
handle all of that for you.

Setting Up the Interface
The following steps will assist you in setting up your interface:

1. Inthe BookStore folder in your project, you should have a Main.storyboard
file. Click this file and Xcode will open it in the editing window, as shown in
Figure 11-12.

» =] View Controller Scene
View Controller

D OO

View Controller - A controller that
MAnages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard

Navigation Controller - &
< controller that manages navigation
through a hierarchy of views

Figure 11-12. Creating the interface

207

CHAPTER 11 © STORING INFORMATION

2. There should be a blank window. To add some functionality to your window, you
need to add some objects from the Object Library. Type table into the search
field on the bottom right of the screen. This should narrow the objects, and you
should see Table View Controller and Table View. Drag the Table view to the

view, as shown in Figure 11-13.

v [2 view Controlier Scene
v View Controlier
Top Layout Guide
Bottom Layout Guide
v View
Table View
@ First Responder
[E exit

Storyboard Entry Point

Figure 11-13. Adding the Table view

208

i1 View as: iPhone 65 («C ~R)

12 @ tahle

Custom Class

Class < u

Module H

Restoration ID

User Defined Runtime Attributes
Key Path Type Value

Document

Label

x
D OGO

Table View Controller - &
controller that manages a table view.

Table View - Displays data in a list
of plain, sectioned, or groupad rows.

Table View Cell - Detines the
attributes and behavior of cells (rows)
in a table view.

CHAPTER 11 STORING INFORMATION

3. You now have a Table View. You will need to stretch the Table View to fill your
view. To create cells in your Table View, you need to add a UITableViewCell.
Search for table in your Object Library, and drag a Table View Cell to your table.
You now have a table and a cell on your view, as shown in Figure 11-14.

¥ [¥] View Controller Scene
v View Controlier
Top Layout Guide
Bottom Layout Guide
v View
v Table View
¥ Table View Cell
> Content View
@) First Responder
[E] Exit

Storyboard Entry Point

Figure 11-14. Adding the Table View Cell

@

Table View Cell

<

Style Basic

Image i
identifier

Selection Default

Accessory None

Editing Acc. None

GO OO

Focus Style Default

Indentation ol 10 2
Level Width
+ Indent While Editing
Shows Re-order Controls

(%]

Separator Default Insets

Table View Controller - &
controller that manages a table view.

Table View - Displays data in a list
of plain, sectioned, or grouped rows.

Table View Cell - Defines the
attributes and behavior of cells (rows)
in a table view.

209

CHAPTER 11 STORING INFORMATION

4. Select the cell, and in the Attributes Inspector in the utilities section set Style to
Basic. Also, set the Identifier to Cell. The identifier is used for when your Table
View contains multiple styles of cells. You will need to differentiate them with
unique identifiers. For most of your projects, you can set this to Cell and not
worry about it, as shown in Figure 11-15.

Table View Cell
Style Basic E
Image E
Identifier Cell

Selection Default
Accessory None
Editing Acc. None

Focus Style Default

Ol > 4 of <>

10

£ >

Indentation 0
Level Width

Indent While Editing
Shows Re-order Controls

Separator Default Insets @

Figure 11-15. Changing the style and identifier of the cell

210

CHAPTER 11 STORING INFORMATION

5. When using a Table View, it is usually a good idea to put it in a Navigation
Controller. You will be using the Navigation Controller to give you space to put an
Add button on your Table View. To add a Navigation Controller, select your View
Controller in the Scene list, which is the window to the left of your storyboard
that shows your View Controllers (your View Controller will have a yellow icon
next to it). From the Application menu, select Editor » Embed In » Navigation
Controller, as shown in Figure 11-16.

® Xcode File Edit View Find Navigate ¥I0g Product Debug Source Control Window Help >20
@0 @® P W BookStore) @ IPhone SE Canvas » 1
Zoom >
BRQaAAsO=o B B) Show Document Outline Meln..zse)) [View Controlier Scene View
v [Bookstore v [viewConl Reveal in Document Outline Oe =
» Book+CoreDataClass.swift
ew C = —
B Book+CoreDataProperties.swift Top Align » rototype Cells
s Author+CoreDataClass.swift Bott Arrange P fite
+ Author+CoreDataProperties.swift v || Viey
¥ [BookStore ¥ 1/ Snap to Guides
= AppDelegate.swift e Guides >
= ViewController.swift " }
Main.storyboard [exit
1 Assets.xcassels » Storybt S .
ot e Localization Locking B
Info.plist v Automatically Refresh Views Navigation Controller
" BookStore.xcdatamodeld Tab Bar Controller
» | Products) — :
Resolve Auto Layout Issues >
Refactor to Storyboard...

T T

Figure 11-16. Embedding in a Navigation Controller

211

CHAPTER 11 STORING INFORMATION

6. You will now have a navigation bar at the top of your view. You will now add a
button to the bar. This type of button is called a UIBarButtonItem. Search for bar
button in your Object Library and drag a Bar Button item to the top right of your
view on the navigation bar, as shown in Figure 11-17.

Simulated Metrics
View Controller Size Inferred

Status Bar Inferred

Top Bar Inferred

Prototype Cells Bottom Bar Inferred

(O o Of o)

Title
Navigation Controller

Bar Visibility) Shows Navigation Bar
Shows Toolbar
Hide Bars On Swipe
On Tap
When Keyboard Appears
When Vertically Compact

View Controller

Title
@

Bar Button Item - Represents an
Iltem | item on a UlToolbar or
UlNavigationitem object.

Fixed Space Bar Button Item -
[sssesnens] Represents a fixed space item on a
UlToolbar object.

Flexihle Snace Bar Button Item -

Figure 11-17. Adding a Bar Button Item to the navigation bar

7. Select the Bar Button Item and change the System Item from Custom to Add.
This will change the look of your Bar Button Item from the word Item to a plus
icon, as shown in Figure 11-18.

212

CHAPTER 11 STORING INFORMATION

Bar Button Iltem
Style Bordered

System Item Add
Tint Default

Bar Item
Title
Image
Tag]
Enabled

Figure 11-18. Changing the Bar Button Item

8. Now you have created the interface, you need to hook it up to your code. Hold
down the Control key and drag your Table view to the View Controller in the
Document Outline, as shown in Figure 11-19.

v [Z] View Controller Scene

(v % View Controller)
\ || Top Layout Guide
_\ Bottom Layout Guide

v View
\ 4 Table View
v Cell

> Content View
¥ < Navigation Item
Left Bar Button Iltems
¥ ° Right Bar Button Items
wen | Add
) First Responder

[E] Exit

Figure 11-19. Connecting the Table view

213

CHAPTER 11 © STORING INFORMATION

9. A pop-up will appear allowing you to select either the dataSource or the delegate,
as shown in Figure 11-20. You will need to assign both to the View Controller. The
order in which you select the items does not matter, but you will have to Control-
drag the Table View twice.

v [=] View Controller Scene

v Outlets
dataSource

delegate

v | | View
v & Table View

Figure 11-20. Hooking up the Table View

10. Now your Table View should be ready to go. You need to hook up your button to
make it do something. In the top right of your Xcode window, click the Assistant
Editor button (it looks like two circles). This will open your code on the right side
and your storyboard on the left side. Now Control-drag your Add button to the
View Controller code on the right, as shown in Figure 11-21.

| Today at 7:34 PM = @ <80 B

<) Right Bar Button Items) ~ Add @ 54 () Automatic > @ ViewController.swift) No Selection + X

I/
2 f/ ViewController.swift
3 // BookStore

® = & /1
- 5 // Created by Thornuko on 8/27/16.
+ 6 [/ Copyright ® 2816 Innovativeware. All rights reserved.
711
B
P 9 import UIKit
10

class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the wview,
typically from a nib.

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

o Insert Outlet, Action, or Outlet Collection

BRI R BRI B M
(-
Ce

(-2

Figure 11-21. Adding an action for your Button object

214

CHAPTER 11 STORING INFORMATION

11. It does not matter where you place the Add button in your code as long as it is in
your class and outside of any methods. It should be after your class properties
just for organization. When you let go, you will be prompted for the type of
connection you are creating. Set Connection to Action. Then add a name for your
new method, such as addNew, as shown in Figure 11-22. Click Connect to finish
the connection.

18 ove:
Connection | Action .C._' ;z
Object View Controller 21 }
Name ~addNew :
Type AnyObject E 25; }
| Cancel | | Connect | %

Figure 11-22. Changing the type and name of the connection

12. You also need to create an outlet for your Table View. Drag your Table View from
the View Controller scene to the top of the code (just under the class definition,
as seen in Figure 11-23). Make sure the connection is set to Outlet and name the
Table View myTableView. You will need this outlet later to tell your Table View to
refresh. Click Connect to finish the connection.

v B View Cortrallor Scane .I // ViewController.swift
v View Controller) .{; BookStore
Top Layout Buide 5 ;'.f Created by Thornuke on B/27/1é.
Bottom Layout Guide & // Copyright ®= 2816 Innovativeware. All rights reserved.
v View '
D - T 5 | e dmport urkit

v Cell e, - ;i .
> Content View ~— 7 _cla.ss'hawContxollox. UIViewController {

AT Prototype Cells e, e — p
¥ < MNavigation ltem 5 3 overrioe tunc viewuioLoao NLELTeReIREEIR. Tl R oL
; L 15 L () e

Left Bar Button ltems super.viewDidLoad

5 - // Do any additional setup after loading the view,
¥ ' Right Bar Butten Items typically from a nib.
~ Add 18 }
o " i
o F'rf“ Responder | override func didReceiveMemorywarning() {
[E exit super.didReceiveMemorywWarning()
= — a o 20 // Dispose of any resources that can be recreated.
¥ [Navigation Controller Scene n ¥
n

¥ (<) Navigation Contraller |® 23 @1BAction func addNew(_ sender: AnyObject) {
Navigation Bar 24
@) First Responder

[Exit

Figure 11-23. Creating an outlet for the Table view

215

CHAPTER 11 © STORING INFORMATION

The interface is complete now, but you still need to add the code to make the interface do something.
Go back to the Standard editor (click the list icon to the left of the two circles icon in the top right of the
Xcode toolbar) and select the ViewController. swift file from the file list on the left side. Because you
now have a Table View you have to worry about, you need to tell your class that it can handle a Table View.
Change your class declaration at the top of your file to the following:

class ViewController: UIViewController, UITableViewDelegate, UITableViewDataSource {

You added UITableViewDelegate and UITableViewDataSource to your declaration. This tells your
controller that it can act as a table view delegate and data source. These are called protocols. Protocols tell
an object that they must implement certain methods to interact with other objects. For example, to conform
to the UITableViewDataSource protocol, you need to implement the following method:

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int

Without this method, the Table View will not know how many rows to draw.
Before continuing, you need to tell your ViewController.swift file about Core Data. To do this, you
add the following line to the top of the file just under import UIKit:

import CoreData

You also need to add a managed object context to your ViewController class. Add the following line
right after the class ViewController line:

var managedObjectContext: NSManagedObjectContext!

Now that you have a variable to hold your NSManagedObjectContext, you need to instantiate it so you
can add objects to it. To do this, you need to add the following lines to your override func viewDidlLoad()
method:

let appDelegate: AppDelegate = UIApplication.shared.delegate as! AppDelegate
managedObjectContext = appDelegate.persistentContainer.viewContext as NSManagedObjectContext

The first line creates a constant that points to your application delegate. The second line points your
managedObjectContext variable to the application delegate’s managedObjectContext. It is usually a good
idea to use the same managed object context throughout your app.

The first new method you are going to add is one to query your database records. Call this method
loadBooks.

1 func loadBooks() -> [Book] {

2 let fetchRequest: NSFetchRequest<Book> = Book.fetchRequest()
3 var result: [AnyObject] = []

4 do {

5 result = try managedObjectContext.fetch(fetchRequest)
6 } catch let error as NSError {

7 NSLog("My Error: %@", error)

8 }

9
0

return result as! [Book]
1

}

216

CHAPTER 11 STORING INFORMATION

This code is a little more complex than what you have seen before, so let’s walk through it. Line 1
declares a new function called loadBooks, which returns an array of AnyObject. This means you will receive
an array that can contain any type of objects you want. In this case, the objects will be Book. You then return
the array once you have it loaded.

You will now need to add the data source methods for your Table View. These methods tell your Table
View how many sections there are, how many rows are in each section, and what each cell should look like.
Add the following code to your ViewController.swift file:

1 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {

2 return loadBooks().count

3 }

4

5 public func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -»>
UITableViewCell {

6 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell") as
UITableViewCell?

7 let book: Book = loadBooks()[indexPath.row]

8 cell?.textlabel?.text = book.title

9 return cell!

10 }

In line 2, you call a count on your array of Book for the number of rows in your Table view. In lines 5 to
9, you create your cell and return it. Line 6 creates a cell for you to use. This is standard code for creating a
cell. The identifier allows you to have more than one type of cell in a Table View, but that is more complex.
Line 7 grabs your Book object from your loadBooks () array. Line 8 assigns the book title to your textLabel
in the cell. The textLabel is the default label in the cell. This is all you need to do to display the results of
your loadBooks method in the Table view. You still have one problem. You do not have any books in your
database yet.

To fix this issue, you will add code to the addNew method you created earlier. Add the following code
inside the addNew method you created:

1 @IBAction func addNew(_ sender: AnyObject) {

2 let book: Book = NSEntityDescription.insertNewObject(forEntityName: "Book", into:
managedObjectContext) as! Book

3 book.title = "My Book" + String(loadBooks().count)
4 do {

5 try managedObjectContext.save()

6 } catch let error as NSError {

7 NSLog("My Error: %@", error)

8

9 myTableView.reloadData()

10 }

11 }

Line 2 creates a new Book object for your book in the database from the Entity name and inserts that
object into the managedObjectContext you created before. Remember that once the object is inserted into
the managed object context, its changes are tracked, and it can be saved. Line 3 sets the book title to My Book
and adds the number of items in the array. Obviously, in real life, you would want to set this to a name either
given by the user or from some other list. Lines 4-8 save the managed object context.

217

CHAPTER 11 © STORING INFORMATION

In Swift 3.0, error handling has been changed. Now you try and then throw an error when you perform an
operation that might cause an error. Line 9 tells the UITableView to reload itself to display the newly added Book.
Now build and run the application. Click the + button several times. You will add new Book objects to your object
store, as shown in Figure 11-24. If you quit the app and relaunch it, you will notice that the data is still there.

iPhone SE - i0S 10.0 (14A533%a)

Carrier & 8:29 PM S
+
My Book1
My Book2
My Book3
My Book4

Figure 11-24. The final app

This was a cursory introduction to Core Data for i0S. Core Data is a powerful AP], but it can also take a
lot of time to master.

Summary

Here is a summary of the topics this chapter covered:

e Preferences: You learned to use UserDefaults to save and read preferences from a
file, on i0OS, macOS§, tvOS, and watchOS.

e Databases: You learned what a database is and why using one can be preferable to
saving information in a preferences file.

e Database engine: You learned about the database engine that Apple has integrated
into macOS§, tvOS, and iOS and its advantages and limitations.

e Core Data: Apple provides a framework for interfacing with the SQLite database.
This framework makes the interface much easier to use.

e Bookstore application: You created a simple Core Data application and used
Xcode to create a data model for your bookstore. You also learned how to create
arelationship between two entities. Finally, you used Xcode to create a simple
interface for your Core Data model.

EXERCISES

e Add a new view to the app for allowing the user to enter the name of a book.
e Provide a way to remove a book from the list.

e (reate an Author object and add it to a Book object.

218

CHAPTER 12

Protocols and Delegates

Congratulations! You are acquiring the skills to become an iOS developer! However, iOS developers need to
understand two additional topics in order to be successful: protocols and delegates. It is not uncommon for
new developers to get overwhelmed by these topics, which is why we introduced the foundational topics of
the Swift language first. After reading this chapter, you will see that protocols and delegates are really useful
and not hard to understand and implement.

Multiple Inheritance

We discussed object inheritance in Chapter 2. In a nutshell, object inheritance means that a child can inherit
all the characteristics of its parent, as shown in Figure 12-1.

© Gary Bennett and Brad Lees 2016 219
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_12

http://dx.doi.org/10.1007/978-1-4842-2331-4_2

CHAPTER 12 © PROTOCOLS AND DELEGATES

Object A

Object B

Object C

Figure 12-1. Typical Swift inheritance

C++, Perl, and Python all have a feature called multiple inheritance, which enables a class to inherit
behaviors and features from more than one parent, as shown in Figure 12-2.

CHAPTER 12 © PROTOCOLS AND DELEGATES

s

Object D

Figure 12-2. Multiple inheritance

Problems can arise with multiple inheritance because it allows for ambiguities to occur. Therefore, Swift
does not implement multiple inheritances. Instead, it implements something called a protocol.

Understanding Protocols

Apple defines a protocol as alist of function declarations, unattached to a class definition. A protocol is
similar to a class with the exception that a protocol doesn’t provide an implementation for any of the
requirements; it describes only what an implementation should look like.

The protocol can be adopted by a class to provide an actual implementation of those requirements. Any
type that satisfies the requirements of a protocol is said to conform to that protocol.

Protocol Syntax

Protocols are defined like classes are, as shown in Listing 12-1.

Listing 12-1. Protocol Definition

protocol RandomNumberGenerator {

var mustBeSettable: Int { get set }
var doesNotNeedToBeSettable: Int { get }

func random() -> Double

221

CHAPTER 12 © PROTOCOLS AND DELEGATES

If a class has a superclass, you list the superclass name before any protocols it adopts, followed by a
comma, as shown in Listing 12-2.

Listing 12-2. Protocol Listed after Superclass

class MyClass: MySuperclass, RandomNumberGenerator, AnotherProtocol {
// class definition goes here
}

The protocol also specifies whether each property must have a gettable or gettable and settable
implementation. A gettable property is read-only, whereas a gettable and settable property is not (shown
earlier in Listing 12-1).

Properties are always declared as variable properties, prefixed with var. Gettable and settable
properties are indicated by { get set } after their type declaration, and gettable properties are indicated by

{ get }.

Delegation

Delegation is a design pattern that enables a class or structure to hand off (or delegate) some of its
responsibilities to an instance of another type. This design pattern is implemented by defining a protocol
that encapsulates the delegated responsibilities. Delegation can be used to respond to a particular action or
to retrieve data from an external source without needing to know the underlying type of that source.

Listing 12-3 defines two protocols for use with a random number guessing game.

Listing 12-3. Protocol Definitions

protocol RandomNumberGame {
var machine: Machine { get }
func play()

protocol RandomNumberGameDelegate {
func gameDidStart(game: RandomNumberGame)
func game(game: RandomNumberGame, didStartNewTurnWithGuess randomGuess: Int)
func gameDidEnd(game: RandomNumberGame)

The RandomNumberGame protocol can be adopted by any game that involves random number generating
and guessing. The RandomNumberGameDelegate protocol can be adopted by any type of class to track the
progress of a RandomNumberGame protocol.

Protocol and Delegation Example

This section shows you how to create a more sophisticated random number guessing app to illustrate how
to use protocols and delegation. The app’s home view displays the user’s guess and whether the guess was
high, low, or correct, as shown in Figure 12-3.

222

CHAPTER 12 © PROTOCOLS AND DELEGATES

iPhone SE - i0S 10.0 (14A5339a)
Carrier ¥ 10:44 AM =4

The guess was 50
Guess too high

Guess Random Number

Figure 12-3. Guessing game app home view

When the users tap the Guess Random Number button, they are taken to an input screen to enter their
guess, as shown in Figure 12-4.

iPhone SE - i0S 10.0 (14A5339a)
Carrier ¥ 10:45 AM - #

€ Back Guess

Your previous guess was 50

Save Guess

Figure 12-4. Guessing game app user input view

223

CHAPTER 12 © PROTOCOLS AND DELEGATES

When the users enter their guess, the delegate method passes the guess back to the home view, and the
home view displays the result.

Getting Started

Follow these steps to create the app:

1. Create a new Swift project based on the Single View Application template, name
it RandomNumberDelegate, and save it, as shown in Figure 12-5.

Choose options for your new project:

Product Name: RandomNumberDeIegateI
Team: None
Organization Name: xcelMe

Organization |dentifier: com

Bundle Identifier: com.RandomNumberDelegate

Language: Swift
Devices: iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous Next

Figure 12-5. Creating the project

2. From the Document Outline, select View Controller. Then select Editor » Embed
In » Navigation Controller. This embeds your View Controller in a Navigation
Controller and enables you to easily transition back and forth between other
View Controllers, as shown in Figure 12-6.

224

Canvas
Zoom

Show Document Qutline
Reveal in Document Outline

BRaasOC=

CHAPTER 12 © PROTOCOLS AND DELEGATES

e | Today at 8:48 &AM

Main.storyboard
1)+ Mainstoryboard | - Main.sto..rd (Base)) [View Controtler Scene) (L)) View Controller

7 B RandomNumberDelegate ider
¥ RandomhumberDelegate :r'";'a: . : D E
1 AppCeiouste sellt Size 9 Fit Content = -
2 ViewController. swilt
| Main.storyboard | » Starybt o Snap to Guides
[0 Assats xcassets Guides >
*| LaunchSerean.storyboard ' :
» [RandomNumberDelegateTasts Localization Locking -
» " RandomNumberDelogateUlTests |
» . Products v Automatically Refresh Views Navigation Controller !
Refresh All Vi Tab Bar Controller £
D elected Views !
Resolve Auto Layout Issues > | | e
Refactor to Storyboard...
| Lae
: Tary
|-
P
{
Figure 12-6. Embedding the View Controller in a Navigation Controller
3. Inthe View Controller, add two Label objects and two Button objects along with
four controls, which will control the view, as shown in Figure 12-7 and Listing 12-4.
B08 P B RarcombumbeDoiegatn | G iProre 3T Randormijumbe Delegate: Resdy | Todey o 58 AM
Mainstorgboand
B mansomamberDsiegme) Rand_gate [Maie_owe) [Main sterybosrd (Basel | Mo Sewction B W morav: [§ venCorvoersen [§ vanCorrooer + X

OR Q& 8o @ @<
¥ [RandomuumberDeiegatn # [l View Controler Scoma
v Rencombhumbeecgate » (D View Comiratier

i f/ ViemController.swift
i // RandoshusberDelegate

-+ Appleiegate futt = Yoo Layour Guide. Al ff
[vimacenticie it | Barom Lnyoun 6. # // Created by Gary Bennett on 8/29/16.
v vew ¢ ff Copyright ® 2916 xcelMe. All rights reserved.
7 haeecs acsenete L User Gussss L o @ B 2 e
.
L r i
LauncrScreen siontoand) oy Agan Bt - % import wIKit
Inte.plst ®
i ®) e P 1 class ViewController: UlviemController {
 Rancombumosr e egateiTests p u
. ! Ext 9
- Podichs * Srorybosnd Entry Pl

No guesses yet

Guess Random Number

Blay Again?

Figure 12-7. Outlets necessary to control the view

FlB0utlet weax var userGuesslabelOutlet: Ullabel!
#lE0utlet weak var outComeLabelOutLet: UlLobel!
SIB0UTlET Weak var let: Ul
EI80utlet weax var guessButtomDutlet: UlButton!

cverride func viewDidicad() {
super . viewDidload()
Jf Do any acditional setup after loading the view, typically
from a nib.

MREY

}

everride func didReceiveMemaryWarningl() {
super . didReceiveMesoryWarni
/4 Dispose of amy rescurces that can be recreated.

225

CHAPTER 12 © PROTOCOLS AND DELEGATES

Listing 12-4. 1BAction Function

47 // event triggered by playAgain Button
48 @IBAction func playAgainAction(sender: AnyObject) {

49 createRandomNumber ()

50 playAgainButtonOutlet.isHidden = true // only show the button when the user
guessed the right #

51 guessButtonOutlet.isHidden = false // show the button

52 outComelLabelOutlet.text = ""

53 userGuessLabelOutlet.text = "New Game"

54 previousGuess = ""

55 }

4. Add the code in Listing 12-5 for the functions to handle when the user guesses a
number and to handle creating a random number.
Listing 12-5. User Guess Delegate Function and createRandomNumber Function

57 // function called from the GuessInputViewController when the user taps on the Save
Button button

58 func userDidFinish(_ controller: GuessInputViewController, guess: String) {
59 userGuesslLabelOutlet.text = "The guess was " + guess

60 previousGuess = guess

61 let numberGuess = Int(guess)

62 if (numberGuess! > randomNumber){

63 outComelLabelOutlet.text = "Guess too high"

64

65 else if (numberGuess! < randomNumber) {

66 outComelLabelOutlet.text = "Guess too low"

67 }

68 else {

69 outComeLabelOutlet.text = "Guess is correct”

70 playAgainButtonOutlet.isHidden = false //show the play again button
71 guessButtonOutlet.isHidden = true //hide the guess again number

72 }

73 // pops the GuessInputViewController off the stack

74 if let navController = self.navigationController {

75 navController.popViewController(animated: true)

76 }

77 }

78 // creates the random number

79 func createRandomNumber() {

80 randomNumber = Int(arc4random uniform(100)) //get a random number between 0-100
81 print("The random number is: \(randomNumber)") //lets us cheat

82 return

83 }

226

5.

CHAPTER 12 © PROTOCOLS AND DELEGATES

Declare and initialize the two variables on lines 13 and 14 in Listing 12-6.

Listing 12-6. Variable Declarations and Initializations

11 class ViewController: UIViewController, GuessDelegate {

12
13
14
15
16
17
18
19
20

var previousGuess =

var randomNumber = 0

@IBOutlet weak var userGuesslLabelOutlet: UILabel!
@IBOutlet weak var outComelLabelOutlet: UILabel!
@IBOutlet weak var playAgainButtonOutlet: UIButton!
@IBOutlet weak var guessButtonOutlet: UIButton!!

6.

Modify the function viewDidLoad() to handle how the view should look when it
first appears and create the random number to guess, as shown in Listing 12-7.

Listing 12-7. viewDidLoad Function

32 override func viewDidLoad() {

33
34
35
36
37
38
39

super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
self.createRandomNumber ()

playAgainButtonOutlet.isHidden = true

outComeLabelOutlet.text = ""

Now you need to create a view to enable the users to enter their guesses. In

the Main.storyboard file, drag a new View Controller next to the home View
Controller and add a label, a text field, and a button. For the Text Field object, in
the Placeholder property, type Number between 0-100, as shown in Figure 12-8.

227

CHAPTER 12 © PROTOCOLS AND DELEGATES

ene » 1 g fancomiumberDelegate) I ihone SE RandomhumberDelegate: Ready | Today 3t 5:08 AM 1@
Main stceybeard
BR Q A © B o @ M < B rendomNumberDelogate Rangers..Delogate | [l Main.steryboard | [l Mainstor. rd iBase) B View Co.ter Scera) (D View Controbier | [[] View | [F| Mumber batween 0-200 { @
¥ B RandomAumberDeiagte v [view Contraller Scens

¥ () View Cortrotier

«| AppDulagute.gwilt 5| Top Lavout Guide
B viewControser switt C1| Botoen Lavent G
v [view
[Assetscassets L | ser Guess L
L Lot x :‘" pos ;;’ View Controlter 0 & B
Info.pist B Play Again But..
A Do -t B | Guess Button.. - —
FRarclomNumbes CulegateTs
= 2 T First Respoedes
RandomNumE-DelegateLiT
r e Bt
1 Pochaens Storyboard Entry PoL.
[View Controller Scene
¥ (L) View Controfier
Top Layout Guide
C] Botzoen Layent 0
v L view Mo guesses yet Maks & gusss
B] Save Guess
F | umoer batw...
L] Make guess
@ First Responder Label ¥ o
E et
= Save Guess
Guess Random Number Save Gu
Play Again?

Figure 12-8. Create the Guess View Controller and objects

8. Youneed to create a class for the Guess Input View Controller. Create a Swift
file and save it as GuessInputViewController.swift. Select File » New »
File. Then choose iOS » Source » Cocoa Touch Class and name the class
GuessInputViewController. It's subclassed from UIViewController, as shown
in Figure 12-9.

228

CHAPTER 12 © PROTOCOLS AND DELEGATES

Choose options for your new file: F

Class: GuesslnpulftliewController

Subclass of: UlViewController n
Also create XIB file
Language: Swift
Cancel Previous Next E

Figure 12-9. Create the GuessInputViewController.swift file

9. Let’s associate the GuessInputViewController class with the Guess View
Controller created in Step 8. From the Main.storyboard file, select the
Guess Input View Controller, select the Identity Inspector, and select or type
GuessInputViewController in the Class field, as shown in Figure 12-10.

BB F | B | A e | g iPore 50 RanaorwumberDetegats: Basdy | Tocay ot ¥aH A 100 E @ [m ==
Mansimeptosr ik
DRQ.CAGEDB@ |(E¢ -] =] [Mansiorybonra | [Msiestorysoend ibaset) B Guess inpat View Commier Scese | () Guess input View Contober ‘@ OCe@mdae
+ (@ Fansomsnom Deiegme [View Cortrater Scane e et |
¥ Srertumbaercate mﬂ
- Aopleegus st ¥ I G it Ve Cori.. an <
. ViewCorerster et el Oman et Vi o
1 Toc Loyt G e
. GumsvrpevmwCortie i it Pa—
7 hasate scasania EL— View Contralter [+) R
Leuechicresn sioross B — - iy
e pin
b Bancortiumbers gt T
b RarcontirbeDeegael e P Tee -
B st
i
Decument
Nao guesses yat Make a guess [
Obieet © Ouiz- O
Label T - |
P |
[N |
Guess Random Number P - | Vi Comtradin - 4 conmssan it
E sy 8 v

Play Again?

Figure 12-10. Creating the GuessInputViewController.swift file
229

CHAPTER 12 © PROTOCOLS AND DELEGATES

Now let’s create and connect the actions and outlets in the GuessInputViewController class, as shown
in Listing 12-8.

Note To see the bound rectangles around your controls in your storyboard, as shown in Figure 12-11,
select Editor » Canvas » Show Bounds Rectangle.

Listing 12-8. Class Listing

9 import UIKit

10

11 // protocol used to send data back to the home view controller's userDidFinish
12 protocol GuessDelegate {

13 func userDidFinish(_ controller:GuessInputViewController, guess: String)
14 }

15

16 class GuessInputViewController: UIViewController, UITextFieldDelegate {

17

18 var delegate: GuessDelegate? = nil
19 var previousGuess: String = ""

20

21

22 @IBOutlet weak var guessLabelOutlet: UILabel!
23 @IBOutlet weak var guessTextOutlet: UITextField!

24

25 override func viewDidLoad() {

26 super.viewDidLoad()

27

28 // Do any additional setup after loading the view.
29 if(!previousGuess.isEmpty) {

30 guessLabelOutlet.text = "Your previous guess was \(previousGuess)"
31 }

32 guessTextOutlet.becomeFirstResponder()

33 }

34

35 override func didReceiveMemoryWarning() {

36 super.didReceiveMemoryWarning()

37 // Dispose of any resources that can be recreated.
38 }

39

40 @IBAction func saveGuessAction(_ sender: AnyObject) {
41 if (delegate != nil) {

42 delegate!.userDidFinish(self, guess: guessTextOutlet.text!)
43 }

44 }

45

46 }

230

CHAPTER 12 © PROTOCOLS AND DELEGATES

10. You are almost done. You need to connect the scene with a segue. A segue
enables you to transition from one scene to another. Control-drag from the Guess
Random Number button to the Guess Input View Controller and select Show as
the type of Action Segue, as shown in Figure 12-11.

) E Guess Input View Controller
- L
No guesses yet Make a guess
Label
o o o e
o Guess Random Numbes__ o b
; o o = 5]
Play Again?

Figure 12-11. Creating the segue that transitions scenes when the Guess Random Number button is tapped

11. Now you need to give the segue an identifier. Click the segue arrow, select the
Attributes Inspector, and name the segue MyGuessSegue, as shown in Figure 12-12.

231

CHAPTER 12 © PROTOCOLS AND DELEGATES

gate RandomNumberDelegate | [lj Main.storyboard | [l Main.storyboand (8ase) & [l View Controlier Scene

Mo guesses yet

Label

Guess Random Number

J

Play Again?

(EJ@

Figure 12-12. Creating the segue identifier

Show segue 1o “Guess input View Controlier (0> Dea9l1a

Storyboard Segue
wentitier | MyGuessSegue|

Class o

wind | Show (0.5, Push) =0
| mates

Peei & Pop [Preview & Commit Segues

Guess Input View Controller

Make a guess

Doneno

View Controller - A controlier that
manages & view.

Save Guess

Storybosrd Reference - Provides o
placehalder for a view controller in an
rrrrr nal sloryboard

Navigation Contreller - &
< contiaiier that Manages Ravigation
thecisgh & Rararehy of views

Table View Controller - A
controlier that manages a table wew.

%, Calection View Controller - A
controller that manages a colection

Note Make sure you press Return when you type the segue identifier. Xcode may not pick up the property

change if you don’t press Return.

Now you need to write the code to handle the segue. In the ViewController class, add the code in

Listing 12-9.

Listing 12-9. prepareForSegue Function

24 override func prepare(for segue: UIStoryboardSegue, sender: Any!) {

25 if segue.identifier == "MyGuessSegue" {

26 let vc = segue.destination as! GuessInputViewController

27 vc.previousGuess = previousGuess // passes the previousGuess property to the
GuessInputViewController

28 vc.delegate = self

29 }

30 }

232

CHAPTER 12 © PROTOCOLS AND DELEGATES

When the user taps the Guess Random Number button, the segue gets called, and the function
prepareForSegue gets called. You first check to see whether it was the MyGuessSegue segue. You then
populate the vc variable with the GuessInputViewController.

Lines 27 and 28 pass the previousGuess number and delegate to the GuessInputViewController.

12. Ifyouhaven’t added the GuessDelegate delegate to the ViewController class, do
it now, as shown in Listing 12-10.
Listing 12-10. ViewController Class with GuessDelegate Listed

11 class ViewController: UIViewController, GuessDelegate {

12
13 var previousGuess = ""
14 var randomNumber = 0

13. Lastly, we need to add our constraints to our two views. Add missing constraints
as shown in Figures 12-13 and 12-14.

233

CHAPTER 12 © PROTOCOLS AND DELEGATES

ML SN YUUTU

88 ¢ » [B RandomNumberDelegate) [Ra..ate) [l Ma..ard) [} Ma..se)) [B] View Controlier Scene) () View Controller O @ @A
[View Controller Scene Simulated Metrics
¥ () View Contralier size _Inferrec
il i
%B:pn;:y:nt Gun;a E ® B Status Bar _Inferrec
ayout G.. Top Bar Inferrec
» [view Bottom Bar _Inferrec
9 First Responder .
Exit View Controller
» Storyboard Entry Poi...
<) Show segue *MyGue... Title
Is Initi
v [B cuess input View Cont... 0 st
¥ () Guess Input View Co Lyyout S Adus
s O Hi
[F] Top Layout Guide :::
Ll:_!] Bottom Layout G... N
v[iv 0 guesses yet [UseF
ew
|i!“|SweGuess aww:gm
| F| Number betw... =
[L]Make a guess Label —
{@§ First Responder Transition Style Cover \
Exit Presentation | _Full Ser
"] Defin
Guess Random Number .—1 L
. ; 0D O
@ View Control
Play Again? Do
Storyboard F
placeholder for
" external storyl
Navigation C
controller that
through a hierz
‘) Table View C
controller that
. Collection Vi
controller that
wiew.
Tab Bar Cont
that manages 3
@ [] Viewas:iPhoneBs («C+R) — 100% -} = }n{‘ taf ' 5/ that represent
E =» ' Split View Cc
ite wi
com.apple.UIKit, category: kel avaoes eft
Touch, enable_level: @,
persist_level: @, default_ttl: - m;‘mg
1, info_ttl: @, debug_ttl: @, pages.
Auto & [} All Qutput 2 (@ Fn WIOo| e @

Figure 12-13. Add missing constraints to both views

234

‘Delegate) @i iPhone SE Finished running RandomNumberDelegate an iPhone SE

CHAPTER 12

| B8 ¢ > [B RendomNumberDelegate) [0 Ra_ate) [Ma_ard) [|j Ma_se)) [View Controlier Scene) () View Controller
v [view Controller Scene
w () View Controlier
[Top Layout Guide
| [Bottom Layout G.. - @ E
» [View -
@D First Responder
= exit
» Storyboard Entry Poi...
) Show segue "MyGue...
[Guess input View Cont...
w (£ Guess Input View Co...
5] Top Lavout Guige
2] Botiom Layout G.- No guesses yet |
v [view i 2SSES yel :
[B] Save Guess
[F] Number betw...
| L] Make a quess Label]
& First Responder
Exit
Guess Random Number l
Play Again? |
®] Viewas:iPhoneBs(«C~R)] — 100% -+ B tof
= »
com.apple.UIKit, category:
Touch, enable_level: 0,
persist_level: 0, default_t

Figure 12-14. Add missing constraints to both views

Size Inferred
Status Bar _Inferred

| Topser inferred B

Bottom Bar _Inferred B

View Controller
Tite

I8 15 initial View Controlier

Layout @) Adjust Scroll View Insets
(] Hide Bottom Bar on Push
@ Resize View From NIB
7] Use Full Screen (Deprecated)

Extend Edges £ Under Top Bars

@ Under Bottom Bars
("] Under Opague Bars

Transition Style |_Cover Vertical 2]
Prosentation | Full Screen B

[Defines Context
(] Provides Context

0 0en
View Controller - & controller that
MANAGES A View.

| placahoider for a view controller in an
* external storyboard,

Navigation Controller - &
| controller that manages navigation
throwgh a hierarchy af views,

Table View Controller - A
controller that manages a table view.

Collection View Controller - &
controlier that manages a collection
Selected Views
Update Frames
Update Constraints lers
Add Missing Constraints r
Reset to Suggested Constraints

Clear Constraints [

All Views in View Controller ..
Update Frames |‘
s

PROTOCOLS AND DELEGATES

235

CHAPTER 12 © PROTOCOLS AND DELEGATES

How It Works

Here is how the code works:

e When the user taps the Guess Random Number link, prepareForSegue is called. See
line 24 in Listing 12-9.

e Because the ViewController conforms to the GuessDelegate (see line 11 in Listing
12-10), you can pass self to the delegate in GuessInputViewController.

e The GuessInputViewController scene is displayed.

e When the user guesses a number and taps Save Guess, the saveGuessAction is called
(see line 40 in Listing 12-8).

e Sinceyou passed ViewController as the delegate, it can pass the guess back to the
ViewController.swift file via the userDidFinish method (see line 42 in Listing 12-8).

¢ Now you can determine whether the user guessed the correct answer and pop the
GuessInputViewController view from the stack (see line 62 in Listing 12-5).

Summary

This chapter covered why multiple inheritance is not used in Swift and how protocols and delegates work.
When you think of delegates, think of helper classes. When your class conforms to a protocol, the delegate’s
functions help your class.

You should be familiar with the following terms:

e Multiple inheritance
e Protocols

e Delegates

EXERCISES

e Change the random number the computer guesses from 0-100 to 0-50.

¢ Inthe main scene, display how many guesses the user has made trying to guess the
random number.

¢ In the main scene, display how many games the user has played.

236

CHAPTER 13

Introducing the Xcode Debugger W,

Not only is Xcode provided free of charge on Apple’s developer site and the Mac App Store, but it is also a
great tool. Aside from being able to use it to create the next great Mac, iPhone, iPad, AppleTV, and Apple
Watch apps, Xcode has a debugger built right into the tool.

What exactly is a debugger? Well, let’s get something straight—programs do exactly what they are
written to do, but sometimes what is written isn’t exactly what the program is really meant to do. This
can mean the program crashes or just doesn’t do something that is expected. Whatever the case, when a
program doesn’t work as planned, the program is said to have bugs. The process of going through the code
and fixing these problems is called debugging.

There is still some debate as to the real origin of the term bug, but one well-documented case from 1947
involved the late Rear Admiral Grace Hopper, a Naval reservist and programmer at the time. Hopper and her
team were trying to solve a problem with the Harvard Mark IT computer. One team member found a moth in
the circuitry that was causing the problem with one of the relays. Hopper was later quoted as saying, “From
then on, when anything went wrong with a computer, we said it had bugs in it.”!

Regardless of the origin, the term stuck and programmers all over the world use debuggers, such as
the one built into Xcode, to help find bugs in programs. But people are the real debuggers; debugging tools
merely help programmers locate problems. No debugger, whatever the name might imply, fixes problems on
its own.

This chapter highlights some of the more important features of the Xcode debugger and explains how
to use them. Once you are finished with this chapter, you should have a good enough understanding of the
Xcode debugger and of the debugging process in general to allow you to search for and fix the majority of
programming issues.

Getting Started with Debugging

If you've ever watched a movie in slow motion just so you can catch a detail you can’t see when the movie
is played at full speed, you've used a tool to do something a little like debugging. The idea that playing the
movie frame by frame will reveal the detail you are looking for is the same sort of idea you apply when
debugging a program. With a program, sometimes it becomes necessary to slow things down a bit to see
what’s happening. The debugger allows you to do this using two main features: setting a breakpoint and
stepping through the program line by line—more on these two features in a bit. Let’s first look at how to get
to the debugger and what it looks like.

First, you need to load an application. The examples in this chapter use the BookStore project from
Chapter 8, so open Xcode and load the BookStore project.

"Michael Moritz, Alexander L. Taylor III, and Peter Stoler, “The Wizard Inside the Machine,” Time, Vol.123, no. 16:
pp. 56-63.

© Gary Bennett and Brad Lees 2016 237
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_13

http://dx.doi.org/10.1007/978-1-4842-2331-4_8

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

Second, make sure the Debug build configuration is chosen for the Run scheme, as shown in Figure 13-1.
To edit the current scheme, choose Product » Scheme » Edit Scheme from the main menu. Debug is
the default selection, so you probably won'’t have to change this. This step is important because if the
configuration is set to Release, debugging will not work at all.

BookStore) [iPhone SE

> }"‘B"“d Info Arguments Options Diagnostics
target

Run . z

> ’ Debug Build Configuration Debug

> ,T”S‘ Executable tore.app
= Debug executable

> - Profile
Releas Debug Process As
Analyze

4 a Debug

P Archive Launch @) Automatically

>

Release Wait for executable to be launched
Duplicate Scheme Manage Schemes... Shared

Figure 13-1. Selecting the Debug configuration

While this book won’t discuss Xcode schemes, just know that by default Xcode provides both a Release
configuration and a Debug configuration for any macOS, i0S, watchOS, or tvOS project you create. The main
difference as it pertains to this chapter is that a Release configuration doesn’t add any program information
that is necessary for debugging an application, whereas the Debug configuration does.

Setting Breakpoints

To see what’s going on in a program, you need to make the program pause at certain points that you as a
programmer are interested in. A breakpoint allows you to do this. In Figure 13-2, there is a breakpoint on
line 24 of the program. To set this, simply place the cursor over the line number (not the program text, but
the number 24 to the left of the program text) and click once. You will see a small blue arrow behind the line
number. This lets you know that a breakpoint is set.

If line numbers are not being displayed, simply choose Xcode » Preferences from the main menu, click
the Text Editing tab, and select the Line Numbers checkbox.

238

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

17 Class MaSTEIV1ewLONTIIrOLller: UllaDieviewLontroLllier 4

Main.storyboard . g
- var detailViewController: DetailViewController? = nil
B Assets.wcassets . var objects = [Anyl()
LaunchScreen.storyboard 15 var myBookStore: BookStore = BookStore()
Info.plist
L3 Products

super.vie d
/! Do any onal setup after loading the view, typically from a nib.
self.na tem.leftBarButtonItem = self.editButtonItem

ED let addButton = UIBarButtonltem(barButtonSystemItem: .add, target: self, action: #selector

llers
self.detailviewController = (controllers{controllers.count-1] as!
UINavigationController).topViewController as? DetailViewController
}
¥

override func viewwillAppear(_ animated: Bool) {
self.clearsSelectionOnViewwWillAppear = self.splitViewController!.isCellapsed
super.viewWillAppear({animated)

}

Figure 13-2. Your first breakpoint

The breakpoint can be removed by dragging the breakpoint to the left or right of the line number
column and then dropping it. You can also right-click (or Control-click) the breakpoint, and you will be
given the option to delete or disable a breakpoint. Figure 13-3 shows the right-click menu for a breakpoint.
Disabling a breakpoint is convenient if you think you might need it again in the future.

e 2CLl 'IIUHJ.BLI LAVIIA LGIHIe LT I LWVOL WU L LUITA LTI e aC
23
N .) - tonItem(barButtons
Edit Breakpoint...))
Disable Breakpoint tBarButtonltem = ¢

tViewController {
lit.viewControllex
pller = (controlle
roller).topViewCor

Delete Breakpoint

Reveal in Breakpoint Navigator

31

Figure 13-3. Right-clicking a breakpoint

Setting and deleting breakpoints are pretty straightforward tasks.

Using the Breakpoint Navigator

With small projects, knowing the locations of all the breakpoints isn’t necessarily difficult. However, once a
project gets larger than, say, your small BookStore application, managing all the breakpoints could be a little
more difficult. Fortunately, Xcode provides a simple method to list all the breakpoints in an application; it’s
called the Breakpoint Navigator. Just click the Breakpoint Navigator icon in the navigation selector bar, as
shown in Figure 13-4.

239

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

00) B /A BookStore) i iPhone SE

EIEQ&@%@@ 88 ¢ > [Book
v @ BookStore 4 Breakpoints | | ! 16 T
v > DetailViewController.swift - ::; CIBOutlet
[configureView() line 24 B | v func conf:
20 if lei
(@] viewDidLoad() line 30 B | pa
= DetailViewController line 41 [l 22 t:
23 al
¥ = BookStore.swift 3
& init() line 17 B | > }
26 }
27
28 override *

Figure 13-4. Accessing the Breakpoint Navigator in Xcode

Once you've clicked the icon, the navigator will list all the breakpoints currently defined in the
application grouped by source file. From here, clicking a breakpoint will take you to the source file with the
breakpoint. You can also easily delete and disable breakpoints from here.

To disable/enable a breakpoint in the Breakpoint Navigator, click the blue breakpoint icon in the list (or
wherever it appears). Don’t click the line; it has to be the little blue icon, as shown in Figure 13-5.

240

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

B2 QA A © = Db 8 |8 < > [sookstore)
: !/

// DetailvViewContro
// BookStore

!/

// Created by Thorn
// Copyright @ 2016
i

v @ BookStore 5 Breakpoints
¥ 3| MasterViewController.swift
[viewDidLoad() line 24
[viewDidLoad() line 28
[prepare(for:sender:) line 5§

OoO~NOoOE0 N =

¥ 3 DetailvViewController.swift 9 import UIKit

= g = 10

[configureview() line 21 11 class DetailViewCont
(Y] viewDidLoad() line 30 12
13

O 14 @IBOutlet weak v

‘ 15 @PIBOutlet weak v
16

‘-’_‘.- 17 @PIBOutlet weak v
18

19 func configureVi

| 20 if let detai

OEe let myBo

22 titlelab

| 23 authorlLa

24 descriont

Figure 13-5. Using the Breakpoint Navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you plan to put the
breakpoint back in the same place again. The debugger will not stop on these faded breakpoints, but they
remain in place so they can be conveniently enabled and act as a marker to an important area in the code.

It's also possible to delete breakpoints from the Breakpoint Navigator. Simply select one or more
breakpoints and press the Delete key. Make sure you select the correct breakpoints to delete since there is no
undo feature.

It's also possible to select the file associated with the breakpoints. In this case, if you delete the file listed
in the Breakpoint Navigator and press Delete, all breakpoints in that file will be deleted.

Note that breakpoints are categorized by the file that they appear in. In Figure 13-5, the files are
DetailViewController.swift and MasterViewController.swift, with the breakpoints listed below those
file names. Figure 13-6 shows an example of what a file looks like with more than a single breakpoint.

241

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

B &8 Q A ©

v BookStore 5 Breakpoints

o & B2 < > |& BookStore) || BookStore) ¥ Detail\

// DetailViewController.swift
// BookStore

¥ 3 MasterViewController.swift \
[viewDidLoad() line 24)
[viewDidLoad() line 28 [Y
[prepare(for:sender:) line 55 D/
¥ = DetailViewController.swift 9 import UIKit
[configureView() line 21 y -)
11 class DetailViewController: UIViewContrc

4
[viewDidLoad() line 30 B | ©

13

1
2

3

A

5 // Created by Thornuko on 8/20/16.

6 // Copyright @ 2016 Innovativeware. All
7
8

O 1 @IBOutlet weak var titleLabel: UILak
O 15 @IBOutlet weak var authorLabel: UILa
16
o 17 @IBOutlet weak var descriptionTextVi
18
19 func configureview() {
20 if let detail:AnyObject = self.d
| 21] let myBook = detail as! Book
22 titlelabel.text = myBook.tit
23 authorlLabel.text = myBook.au

Figure 13-6. A file with several breakpoints

Debugging Basics

Set a breakpoint on the statement shown in Figure 13-2. Next, as shown in Figure 13-7, click the Run button
to compile the project and start running it in the Xcode debugger.

[NON @ el /A BookStore) i iPhone SE

Figure 13-7. The Build and Debug buttons in the Xcode toolbar

Once the project builds, the debugger will start. The screen will show the debugging windows, and the
program will stop execution on the line statement, as shown in Figure 13-8.

242

CHAPTER 13 /' INTRODUCING THE XCODE DEBUGGER

let addButton = UlBarButtonItem(barButtonSystemItem: .add, target: self, action: #selector(insertNewdbject{(_:))) Thread 1: breakpaint 2.1

23
Y
2% self.navigationItem.rightBarButtonltem = addButton
2 if let split = self.splitvViewController {

27 let controllers = split.viewControllers
D self.detailviewController = (controllers[controllers.count-1) as! UINavigationController).topViewController as?

DetailviewController

t 1]

n

n

3

3

3

3

57

33

»

&

2

}

override func viewwWillAppear(_ animated: Bool) {
self.clearsSelectionOnViewwillAppear = self.splitViewController!.isCollapsed
super.viewWillAppear(animated)

}

override func didReceiveMemoryWarning() {
super.didReceiveMemorywWarning()
/! Dispose of any rescurces that can be recreated.

}
func insertNewObject(_ sender: Any) {
&3 objects.insert(NSDate(), at: e]
'[EI » 0> &~ £ |0 3 -;i'_) Booksmm 01’hmd1 1 0 MasterViewController.viewDidLoad() -> ()
> [self = (BookStore MasterViewController) 0x00007feacBe02b80 info_ttl: @, debug_ttl: @, generate_symptoms: @, enable_oversize: 1,
privacy_setting: 2, enable_private_ da L]

i)

» [addButton [UIEsrButton 16-88-22 16:30:38. 442348 1 ¥
m'i‘. (UISplitvViewController) com.apple gory: MachPort, enable_level: 1, persist_level: @,
I8 controllers ([UIViewController]) default_ttl: @, info_ttl: &, debug_ttl: @, generate_symptoms:
enable_oversize: @, privacy_setting: @, enable_private_data: @

2016-88-22 14:30:38.458409 BookStore[1307:4804614] subsystem: com.apple.UIKit,

category: StatusBar, enable_level: 8, persist_level: 8, default_ttl: @,
info_ttl: @, debug_ttl: @, generate_sysptoms: @, enable_oversize: 1,
privacy_setting: 2, enable_private_data: @

(11db)

Auto & ® All Qutput & ® Woo

Figure 13-8. The Debugger view with execution stopped on line 24

The Debugger view adds some additional windows. The following are the different parts of the
Debugger view shown in Figure 13-8:

e Debugger controls (circled in Figure 13-8): The debugging controls can pause,
continue, step over, step into, and step out of statements in the program. The stepping
controls are used most often. The first button on the left is used to show or hide the
debugger view. In Figure 13-8, the debugger view is shown. Figure 13-9 labels the
different pieces of the debugger view.

@08 p W A BookStore) W iPhone SE Running BoakStore on iPhone SE 1 E o 00Q O

BRQACEo B B < [BookStore | + BoakStore.swift) No Selection <
= 5 | F"'
¥ BookStore FID 20080 Q® /1 BookStore.swift
3 // BookStore
i cpu 8 i
% /f Created by Brad Lees on B/20/16.
5 Memary & /f Copyright ® 2814 Innovativeware. All rights reserved.
1 i
=) Disk Zerokgjs | ¢
i - ¢ import Foundation
Natwork Zero KAJs .
(-] # class BookStore {
v @ Theead 1 Quoue: com.apple.main-thread (sorial) var theBookStore: [8ook] = 1]
) 7 0 BockStore.init() -» BookStare " init() {

Y 1 BookStore. _aliocating_Init() -> BookStore =

1 2 MasterviewControllier.initicoder : NSCoder] -> MasterviewControll.. [IEELD
Y 3 @obic MasterViewControlie L
[4 -(uiClassSwapper init oder:]
3 5 umibDecoderDecode

var newBook = Book()
Ltit = “Swift for Absolute Beginners®

ion = *i05 Programsing make casy®
ppend [newBook)

it{coder : NSCoder] -> MasterView..

newBook = Book()

= "A Farewsll To Arms®

t Hemingway®

Tha stery nf an affair Batwoen an English nurse and an Amorican

2'“"Debug’ Nawgator : s B o o Bk

Os- J\-.\,-‘..-m—/‘a— BooksStore | () Throad 1) I 0 BookStore.init() -> BookStore

[& umibDecaderDecode rValue

3 5 -iumsavigationControlier intWithCoder:] » [0 self = (5ookstors Bocksiers) OxO000610000032d80 | 2016-18-87 u.asm 648448 BookStore[20060:6636627]
} > apple MachPort,

530 IR acodmDacedaohectfar ok % anable_level: i, persist level: 8, default.til: 8,

O umnisDecoserecodeUbjectf orvalue infa_ul a, Mu‘_ttl @, generate_symptoms: 8,

ol @, privacy ~etting: @,
O Decoder decodeObjectForkey:] V . b] Ole
13 -[UViewController initwithCoder:) LS M S store [2006016535386]
o i . on:n wlit c\’ arla es le.UTKit, category: StatusBar,
SplitviewControllor inlt o anable_level: @, persist_level: @, default_ttl: @,
ecoderDecodeObjectForvalue info_ttl: @, debug_ttl: @, generate_symptoms: @,

2 A s o enable_oversize: 1, privacy_setting: 2,

Bennett and Lees” Trread 1: breakpoint 2.1

® THAE | awos & Al Output 3 @ ®/00

Figure 13-9. The debugger locations

243

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

e Variables: The Variables view displays the variables currently in scope. Clicking the
little triangle just to the left of a variable name will expand it.

e Console: The output window will show useful information in the event of a crash or
exception. Also, any NSLog or print output goes here.

e Debug navigator: The stack trace shows the call stack as well as all the threads
currently active in the program. The stack is a hierarchical view of what methods are
being called. For example, main calls UTApplicationMain, and UIApplicationMain
calls the UIViewController class. These method calls “stack” up until they finally

return.

Working with the Debugger Controls

As mentioned previously, once the debugger starts, the view changes. What appears are the debugging
controls (circled in Figure 13-8). The controls are fairly straightforward and are explained in Table 13-1.

Table 13-1. Xcode Debugging Controls

Control

Description

>]

0>

12

-

Clicking the Stop button will stop the execution of the program. If
the iPhone or iPad emulator is running the application, it will also
stop as if the user force quit the app. Clicking the Run button (looks
like a Play button) starts debugging. If the application is currently in
debug mode, clicking the Run button again will restart debugging the
application from the beginning; it’s like stopping and then starting
again.

Clicking this button causes the program to continue execution.

The program will continue running until it ends, the Stop button is
clicked, or the program runs into another breakpoint.

When the debugger stops on a breakpoint, clicking the Step Over
button will cause the debugger to execute the current line of code
and stop at the next line of code.

Clicking the Step In button will cause the debugger to go into the
specified function or method. This is important if there is a need to
follow code into specific methods or functions. Only methods for
which the project has source code can be stepped into.

The Step Out button will cause the current method to finish
executing, and the debugger will go back to the method that
originally called it.

244

CHAPTER 13 I INTRODUCING THE XCODE DEBUGGER

Using the Step Controls

To practice using the step controls, let’s step into a method. As the name implies, the Step In button follows
program execution into the method or function that is highlighted. Select the DetailViewController.swift
file on the left side. Then set a breakpoint on line 30, which is the call to self.configureView(). Click the
Run button and select a book from the list. Your screen should look similar to Figure 13-10.

11 class DetailViewController: UIViewController {

O 14 @IBOutlet weak var titlelLabel: UILabel!
D 15 @IBOutlet weak var authorLabel: UlLabel!
16

0 17 @IBOutlet weak var descriptionTextView: UlTextView!
18
19 func configureview() {

20 if let detail:AnyObject = self.detailltem {

2 let myBook = detail as! Book

22 titleLabel.text = myBook.title

23 authorLabel.text = myBook.author

24 descriptionTextView.text = myBook.description
25 }

26 ¥

27

28 override func viewDidLoad() {

29 super.viewDidLoad()

ED self.configureView() Thread 1: breakpoint 2.1
3N // Do any additional setup after loading the view, typically from a nib.
32
33 }

Figure 13-10. The debugger stopped on line 38

=

Click the Step Into button, , which will cause the debugger to go into the configureView()
method of the DetailViewController object. The screen should look like Figure 13-11.

9 import UIKit

11 class DetailViewController: UIViewController {

014 PIBOutlet weak var titlelLabel: UILabel!
O 15 @IBOutlet weak var authorlLabel: UIlLabel!
16
D 17 PIBOutlet weak var descriptionTextView: UITextView!
18
19 func configureview() {
200 if let detail:AnyObject = self.detailltem { Thread 1: step in
2 let myBook = detail as! Book
22 titleLabel.text = myBook.title
23 authorLabel.text = myBook.author
24 descriptionTextView.text = myBook.description
25 }
26 }
27
28 override func viewDidLoad() {
29 super.viewDidLoad()
self.configureView()
3 // Do any additional setup after loading the view, typically from a nib.
32
33 }

Figure 13-11. Stepping into the configureView method of the DetailViewController object
245

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

A
The control Step Over, = , continues execution of the program but doesn’t go into a method. It

/T\

simply executes the method and continues to the next line. Step Out, ~ , is a little like the opposite of
Step In. If the Step Out button is clicked, the current method continues execution until it finishes. The
debugger then returns to the line after Step In was clicked. For example, if the Step In button is clicked on the
line shown in Figure 13-9 and then the Step Out button is clicked, the debugger will return to the
viewDidLoad() method of the DetailViewController. swift file on the statement shown in Figure 13-9
(line 30 in the example), which was the line where Step In was clicked.

Looking at the Thread Window and Call Stack

As mentioned earlier, the Debug navigator displays the current thread. However, it also displays the call
stack. If you look at the difference between Figures 13-9 and 13-10 as far as the thread window goes, you
can see that Figure 13-10 has the configureView method listed because DetailViewController calls the
configureView method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a list of functions
that are currently being called. That’s an important distinction. Once the configureView method is finished
and returns (line 26), configureView will no longer appear in the call stack. You can think of a call stack
almost like a breadcrumb trail. The trail shows you how to get back to where you started.

Debugging Variables

It is possible to view some information about a variable (other than its memory address) by hovering your
mouse cursor over the variable in the code. When you get to where the value of a variable has been assigned
in the local scope, you will most likely see the variable in the bottom Variables view. In Figure 13-12, you
can see the newBook variable, and it has a title of Swift for Absolute Beginners. You can also see that there

is no author or description assigned. In debugging, when you are stopped on a line, it is before the line is
executed. This means that even though you are paused on the line to assign the author property, it has not
been assigned yet.

246

CHAPTER 13 /' INTRODUCING THE XCODE DEBUGGER

11 class BookStore {

12 var theBookStore: [Book] = []
13
1 init() {
15 var newBook = Book()
16 newBook.title = "Swift for Absolute Beginners"
KD newBook.author = "Bennett and Lees" Thread 1: breakpoint 2.1
18 newBook.description = "i0S Programming make easy"
19 theBookStore.append({newBook)
20
27 newBook = Book()
22 newBook.title = "A Farewell To Arms"
23 newBook.author = "Ernest Hemingway"
24 newBook.description = "The story of an affair between an English nurse and an American

soldier on the Italian front during World wWar I."

26 theBookStore.append({newBook)

27

28 }

29

30 }

k1|

= » > & L 2 M1 S <7 | BooksStore)) Thread 1) Il 0 BookStore.init() -> BookStore

» [self = (BookStore.BockStore) 0X0000600000029¢60 |default ttl: @, info ttl: o, debug_ttl: o,

newBook = (EookStore.Book) 0x00006000000b4520 generate_ svmptomsé e, ngble 0\‘3151:9- e'B
_ . [. " privacy_setting: @, enable_private_data:

P title = (String) "Swift for Absolute Beginners' 2016-08-23 16:46:08.194923
P author = (String) " BookStore[5262:296940] subsystem:
» description = (String) ** com.apple.UIKit, category: StatusBar,

enable_level: @, persist_level: 8,

default_ttl: @, info_ttl: @, debug_ttl: @,
generate_symptoms: ©, enable_oversize: 1,
| privacy_setting: 2, enable_private_data: @

Figure 13-12. Viewing a variable value

Position the mouse cursor over any place the newBook variable appears and click the disclosure triangle
to display the Book object. You should see what is displayed in Figure 13-13.

14 init() {
ard 15 var newBook = Book()
16 newBook.title = "Swift for Absolute Beginners"
‘newBook:. author = "Bennett and Lees"
18 ney 9ok.description = "i0S Programming make easy"
¥ 0x00006000000b4520 @)
b title = (String) "Swift for Absolute Beginners"
» author = (String) "" To Arms"

g A ningway"
> description = (String) story of an affair bet:
' soldier on the Italian front during World War
25
26 theBookStore.append(newBook)

AT

Figure 13-13. Hovering over the newBook variable reveals some information

Hovering over the newBook variable reveals its information. In Figure 13-13, you can see the newBook
variable expanded.

247

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode debugger, fixing them is part of the entire
debugging process. Before a program can be run (with or without the debugger), all errors must be fixed.
Warnings won'’t stop a program from building, but they could cause issues during program execution. It’s
best not to have warnings at all.

Errors

Let’s take a look at a couple of types of errors. To start, let’s add an error to the code. On line 15 of the
MasterViewController.swift file, change the following:

var myBookStore: BookStore = BookStore()
to the following:
var myBookStore: BookStore = BookStore[]

Save the changes and then build the project by pressing r+B. There will be an error, as shown in
Figure 13-14, that may show up immediately or after the build.

+ AppDelegate.swift 4R

& MasterViewController.swift 9 import UIKit

2] DetailViewController.swift 1 class MasterViewController: UITableViewCont r{
Main.storyboard EWE i

- As var detailViewController: DetailViewController? = nil

! Assets.xcassels % var objects = [Anyl()
LaunchScreen.storyboard 0 var myBookStore: BookStore = BBAKSTGTE[] © Type 'BookStore Type' has no subscript members
Info.plist 17

» [Products B

Figure 13-14. Viewing the error in Xcode

Next, move over to the Issue Navigator window, as shown in Figure 13-15, by clicking the triangle with
the exclamation point. This view shows all the errors and warnings currently in the program—not just the
current file, MainViewController. swift, but all the files. Errors are displayed as a white exclamation point
inside a red octagon. In this case, you have one error. If the error doesn't fit on the screen or is hard to read,
simply hover over the error on the Issue Navigator, and the full error will be displayed.

B R a @ & = o B B < & BookStore BookStore) . MasterViewController.switt) [8 MasterViewController <0
1 I
Buildtime (1) BT 3 I terViewController.swift
7.
v 4By BookStore 1 issue [] . 1/
v © Swift Compller Eror !/ Created by Thornuke on 8/20/14.

. . // Copyright e 2014 Innovativeware. All rights reserved.
0 Type ‘BookStore.Type' has no 2 1
subscript members

MasterViewController.swift import UIKit

1 class MasterViewController: UITableViewController {

var detailViewController: DetailViewController? = nil
3 var objects = [Any]()
L1 BB var myBookStore: BookStore = BookStore[] @ Type BookStore Type' has na subscript members

|

Figure 13-15. Viewing the Issue Navigator

248

CHAPTER 13 /' INTRODUCING THE XCODE DEBUGGER

Generally, the error points to the problem. In the previous case, the BookStore object was initialized as
an array rather than as an object.
Go ahead and fix the error by changing [] to ().

Warnings

Warnings indicate potential problems with the program. As mentioned, warnings won’t stop a program from
building but may cause issues during program execution. It’s outside the scope of this book to cover those
warnings that may or may not cause problems during program execution; however, it’s good practice to
eliminate all warnings from a program.

Add the following code to the MasterViewController.swift viewDidlLoad method:

if false {

print("False")
}

The print command will never be executed because false will never be equal to true. Build the
project by pressing 3+B. A warning will be displayed, as shown in Figure 13-16.

B8 QM © = o &

Buildtime (1) B:ILTLE
v -;,*‘ BookStore 1 issue

¥ /. Swift Compiler Warning

=3 Will never be executed
MasterViewController.swift

Figure 13-16. Viewing the warnings in the Issue Navigator

Clicking the first warning in the Issue Navigator will show you the code that is causing the first problem,
as shown in Figure 13-17.

249

CHAPTER 13 © INTRODUCING THE XCODE DEBUGGER

M < B Bocksiee BookStore) . MasterViewControlierswift | Mo Selection <Aad

(=2
o
@

-

i
/ TR

!
v 7 BockStore 1 ssue iy
w [\ Swift Compler Waming / n B/28/16
! Tivewsre

A Wil never ba exacuted
MasterViewControder swift 4
import UIKit

class MasterViewController: UIT

var detailviewController
war objects =
war ryBookStor

wDiclosdl) {
il)

arButtonSystenlt tt self, sction:
3]

on = dgBuTTON

trollers.count=1] ss) UlNavigationController).

it (ralsol(
grint(*False") W sever e emecuted
}

Figure 13-17. Viewing your first warning

In the main window, you can see the warning. In fact, this warning gives you a clue as to the problem
with the code. The warning states the following:

“Will never be executed”

This is a simple example of a warning. You can receive warnings for many things such as unused
variables, incomplete delegate implementations, and unexecutable code. It is good practice to clean up the
warnings in your code to avoid issues down the road.

Summary

This chapter covered the high-level features of the free Apple Xcode debugger. Regardless of price, Xcode is
an excellent debugger. Specifically, in this chapter, you learned about the following:

e The origins of the term bug and what a debugger is

e The high-level features of the Xcode debugger, including breakpoints and stepping
through a program

e Using the debugging controls called Continue, Step Over, Step In, and Step Out

e Working with the various debugger views, including threads (call stack), Variables
view, Text editor, and Console Output

e Looking at program variables

e Dealing with errors and warnings

250

CHAPTER 14

A Swift iPhone App

In Chapter 8, you created a basic bookstore iPhone app with Swift. In this chapter, you will add some features
to the app to make it a bit more functional and use many of the technologies you have learned in this book,
such as creating a class, using delegates and protocols, and using actions and outlets. You'll also learn about
some new techniques such as switches, UIAlertController, and landmarks.

Let’s Get Started

The bookstore example in Chapter 8 enabled you to view books in your bookstore in a TableView and
then tap the book to see its details. In this chapter, you will add the following capabilities to the Chapter 8
bookstore app:

e Addingabook
e Deleting a book
e Modifying a book

See Figures 14-1 and 14-2.

© Gary Bennett and Brad Lees 2016 251
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_14

http://dx.doi.org/10.1007/978-1-4842-2331-4_8
http://dx.doi.org/10.1007/978-1-4842-2331-4_8
http://dx.doi.org/10.1007/978-1-4842-2331-4_8

CHAPTER 14 © A SWIFT IPHONE APP

iPhone 6 Flus - i0S 10.0 (14A5339a)
Carrier ¥ 2:21PM .

Edit Master als
Swift for Absolute Beginners

A Farewell To Arms

Figure 14-1. Add book functionality

252

CHAPTER 14 I A SWIFT IPHONE APP

iPhone 6s Plus - i0S 10.0 (14A5339a)

Carrier ¥ 5:25 PM -
£ Master Detail Delete
Title:
Swift for Absolute Beginners
Author:

Bennett and Lees

Pages: O
Read:
Description:

i0S Programming make easy

Edit

Figure 14-2. Adding edit and delete functionality along with using a UISwitch

The first step is to define the AddBookViewController, as shown in Listing 14-1.

Listing 14-1. The prepareForSegue Function
48 // MARK: - Segues

49

50 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

51 if segue.identifier == "showDetail" {

52 if let indexPath = self.tableView.indexPathForSelectedRow {

53 let selectedBook:Book = myBookStore.theBookStore[(indexPath as
NSIndexPath).row]

54

55 let nav = segue.destination as! UINavigationController

56 let vc = nav.topViewController as! DetailViewController

57

58 vc.detailItem = selectedBook

59 vc.delegate = self

60 }

61 }

253

CHAPTER 14 A SWIFT IPHONE APP

62 else if segue.identifier == "addBookSegue" {

63 let vc = segue.destination as! AddBookViewController
64 vc.delegate = self

65 }

66

67 }

Note Something new in Swift is on line 48: "// MARK: - Segues". // MARK: is called a landmark. It
is replacement of the #pragma mark, which is used in Objective-C. Landmarks help break up the code in the
jump bar and enable you to quickly get to sections of code indicated by the landmark. When you type something
following // MARK:, Xcode places the landmark in the jump bar’s drop-down, as shown in Figure 14-3. If you
justtype // MARK: -, Xcode adds a line separator in the jump bar’s drop-down. Swift also supports // TODO:
and // FIXME: landmarks to annotate your code and list them in the jump bar.

A BookStare) il iPnont 6 Plus Finisned running BookStore on i#hone & Plus 9: E @ SN0l
MasterViswController swift

B o B |[B® ¢ > B oookston BockStors | B MasterviewControllerswi [3 MasterViewCantrolier <d
s . . . @ detaiiviewControier
2 override func viewWillAppear(_ animati objacts
sl self.clearsSelectionOnViewWillAppt Collapsed
'3 super.viewWillAppear(animated) B mygookstare
S } [viewdidLoad()
3 [viewwillAppear(_:)
3 override func didReceiveMemoryWarning! EdReceiveMo ingD)

lar.awitt 8 super.didReceiveMemoryWarning() @ segibriatbeb bl

ns

srswift k2 // Dispose of any resources tha 8 =
¥
5 B Segues

func insertMewObject(_ sender: Any) { [prepare(tor:sender:)

EEEE

vhoard objects.insert(NSDate(), at: 8) -
let indexPath = IndexPath{row: @, (] Tabla View

[self.tableview.insertRows{at: [int [numberOiSections in:)

} [tableView(_numberOfRowsinSection:)
o

@ // MARK: - Segues [tabiloviewt_:cellForfowat:)

5 [tabiloview(_scanEditRowAt:)

& s Tide func prepare(for seguel TIERt| [tableView(_-commit:forRowt:)
51 if segue.igentilier == "showDetail .«
52 if let indexPath = self.tsbleView.indexPathForSelectedRow {
53 let selectedBook:Book = myBookStore.theBookStore[{indexPath as NSIndexPath).row]
5 let vc = segue.destination as! DetailviewController
L] ve.detailltem = selectedBook

0 vc.delegate = self
(] |
= 3
] else if segue.identifier == "addBookSegue" {

0w let ve = segue.destination as! AddBookViewController
2] vc.delegate = self
&2
&
L }
&
L // MARK: - Table View
&7
L override func numberOfSections{in tebleView: UITableView) => Int {
& return 1
m }

E =

[

Figure 14-3. Swift’s new landmarks

254

CHAPTER 14 I A SWIFT IPHONE APP

Now add the new view controller AddBookViewController mentioned in line 63 in Listing 14-1. Add a
View Controller object to the storyboard by dragging a View Controller to the Main.storyboard file. Then
add the objects in Figure 14-4 to enable the user to add a new book. Feel free to move the scene around to
make it clear how they relate to each other, as shown in Figure 14-4.

®» E
L1}
Text Field
Text Fleld
Text Field Read? \ Switch
Description
ext:View

Save Book Button

C—

Figure 14-4. Adding the AddBookViewController and objects

No Selection

O 6O

View Controller - A controlier that
manages a view,

Storyboard Reference - Provides a
placeholder for a view contraller in an
external storyboard,

MNavigation Controller - A
controlier that manages navigation
through a hierarchy of views.,

Table View Controller - &
controlier that manages a table view.

Collection View Controller - &
that manages a

view,

Tab Bar Controller - A controlier
that manages 2 set of view controllers
that represent tab bar items.

Split View Contraller - &
compasite view controlier that

Add a Show Segue object from the Add Button Bar Item to the new View Controller by Control-dragging
or right-clicking and dragging from the Add Button Bar Item to the new View Controller, as shown Figure 14-5.

255

CHAPTER 14 A SWIFT IPHONE APP

Main.storyboard
KkStore) + Main.storyboard) [} Main.storyboard (Base)) [5] Master Scene) () Master <0>
a B i Add Book
-
Mastei
Prototype Cells
Title [
| Read? | ||
Description ‘
Save Book .
— \
Table View
Prototype Content

Figure 14-5. Add a Show Segue object to the new View Controller

Modify the insertNewObject function in the MasterViewController.swift, as shown in Listing 14-2.

Listing 14-2. insertNewObject Function

42 func insertNewObject(_ sender: Any) {
43 self.performSegue(withIdentifier: "addBookSegue", sender: nil)
44 }

256

CHAPTER 14 I A SWIFT IPHONE APP

Identify the Segue object by clicking the segue arrow and setting the identifier to addBookSegue, as
shown in Figure 14-6.

kstore) [l Main...yboard) [l Main...(Base)) [E] Master Scene) () Show segue “addBookSegue” to *Add Book* ¢ @ > D ® @ B ®

2 B Storyboard Segue
| Add Book
| r € Identifier addBookSegue -]

Master Add Book e o
| Module E

Kind Shew (e.g, Push) E
Title \ 2 Animates
DO E O

Prototype Cells

Read? £\ view Controller - 4 controller that
L /| manages a view.
Description

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.,

Save Book i
b J_.—/. . Mavigation Contraller - A
[<) that

. through a hierarchy of vlew!l-’
Table View

' Table View Controller - &
/| controller that manages a table view.

. Collection View Controller - &

Figure 14-6. Naming the Segue object addBookSegue

Now you need to create a Swift class to go with the new View Controller. Create a new iOS Cocoa Touch
class file and name it AddBookViewController, as shown in Figure 14-7. Make sure you select a subclass of
UIViewController.

257

CHAPTER 14 A SWIFT IPHONE APP

Choose options for your new file:

Class: | AddBooKviewController
Subclass of: UlViewController
Also create XIB file

Language: Swift

Cancel Previous m

Figure 14-7. Adding the AddBookViewController class

Now you have to associate the new AddBookViewController class to the new View Controller. Select
the View Controller, and in the Identity Inspector, type AddBookViewController for the class, as shown in
Figure 14-8.

258

Main.storyboard
B« B BookStore BookStare Main.storybaard Main.storyboard (Base) | [B] Add Book Scene Add Book
» [Master Scene (= -
» [Detail Seene - [-
» [split View Controller S... Add Book
¥ [Master Scene
») Master
) First Respender
[E] Exit
Show segue “addBa... Read?
Show Detail segue *s...

» [Mavigation Controller... Description

v [5] Add Book Scene
¥ | Aod Book Save Book
Top Layout Guide i
Battom Layout G...
» Vaw
< Add Book
@) First Responder

[e

CHAPTER 14 I A SWIFT IPHONE APP

L

Custom

Identity

D@00 e

Class

Class | AzaBookviewCentralier © i3

Moduie B

Starybeard 0

Figure 14-8. Associating the AddBookViewController class to the new View Controller

0DoeEO

View Controlier - & controter that
manages & view

Storytoard Refarance - Provides a
piacehokder for 3 view controller in an
external storyboard,

Navigation Controller - A
controller that manages navigation
through a hieraechy af views.

Table View Contraller - &
controlior that Manages 3 tabie view,

Collection View Contraller - &
contioller that manages a collection
view

Tah Bar Controller - & controfier
that manages & set of view conirolkrs
thas ransacant rah har itame

Set the title of the view to Add Book by adding a Navigation Item to the View Controller scene and
double-clicking the Navigation Bar. Open the AddBookViewController.swift file and add the code shown in
Listing 14-3.

Listing 14-3. The AddBookViewController.swift File

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

import UIKit

protocol BookStoreDelegate {
func newBook(_ controller: AnyObject, newBook: Book)
func editBook(_ controller: AnyObject, editBook: Book)
func deleteBook(_ controller: AnyObject)

}

class AddBookViewController: UIViewController {
var book = Book()
var delegate: BookStoreDelegate?
var read = false
var editBook = false

@IBOutlet weak var titleText: UITextField!
@IBOutlet weak var authorText: UITextField!
@IBOutlet weak var pagesText: UITextField!
@IBOutlet weak var switchOutlet: UISwitch!

259

CHAPTER 14 © A SWIFT IPHONE APP

31 @IBOutlet weak var descriptionText: UITextView!
32

33

34 override func viewDidLoad() {

35 super.viewDidLoad()

36 if editBook == true {

37 self.title = "Edit Book"

38 titleText.text = book.title

39 authorText.text = book.author

40 pagesText.text = String(book.pages)

41 descriptionText.text = book.description
42 if book.readThisBook {

43 switchOutlet.isOn = true

44 }

45 else {

46 switchOutlet.isOn = false

47 }

48 }

49

50 // Do any additional setup after loading the view.
51 }

52

53 override func didReceiveMemoryWarning() {

54 super.didReceiveMemoryWarning()

55 // Dispose of any resources that can be recreated.
56 }

57

58

59 @IBAction func saveBookAction(_ sender: UIButton) {
60 book.title = titleText.text!

61 book.author = authorText.text!

62 book.description = descriptionText.text

63 book.pages = Int(pagesText.text!)!

64 if switchOutlet.isOn {

65 book.readThisBook = true

66 }

67 else {

68 book.readThisBook = false

69 }

70 if (editBook) {

71 delegate!.editBook(self, editBook:book)
72 }

73 else {

74 delegate!.newBook(self, newBook:book)
75 }

76

77

78 }

79

80 }

260

CHAPTER 14 I A SWIFT IPHONE APP

To the Book class, add two properties: pages and readThisBook. These are shown in lines 15 and 16 in
Listing 14-4.

Listing 14-4. Book Class Changes

11 class Book {

12 var title: String = ""

13 var author: String = ""

14 var description: String = ""
15 var pages: Int = 0

16 var readThisBook: Bool = false
17 }

Switches

Connect the outlets in the AddBookViewController class by dragging them from their open circles to the
controls, as shown in Figure 14-9.

T P B e e 8 g

func deleteBook(controller:AnyDbject)

Add Book
class AddBookViewController: UIViewController {
var book = Book()

var delegate:BookStoreDelegate? = nil

var read = false;

var editBook; = false;

@IB0utlet weak var titleText: UlTextField!
@IB0utlet weak var authorText: UITextField!
@IB0utlet weak var pagesText: UITextField!
@IB0utlet weak var switchQutlet: UISwitch!

Description *——-' 3 @IBDUtlet weak var descriptionText: UITextView!

override func viewDidLoad() {
Save Book 35 super.viewDidLoad()
1S if(editBook; == true){
f.title = "Edit Book"
ext.text = book.title
horText.text = book.author
&0 pagesText.text = String .pages)
1 descriptionText.text = book.description

&2 if (book.readThisBook){

& switchQutlet.on = true
g }

& else {

switchOutlet.on = false
}

// Do anv additional setun after loadina the

Figure 14-9. Connecting the outlets

Connect the saveBookAction action by dragging the outlet circle to the Save Book button, as shown in
Figure 14-10.

261

CHAPTER 14 A SWIFT IPHONE APP

» authorText.text = book.author
0 pagesText,text = String{book.pages)
descriptionText.text = book.description
if (book.readThisBook){
switchOutlet.on = true

2

3

A

5 else {
Add Book “ switchOutlet.on = false

e

&8

5

50

}
// Do any additional setup after loading the
view.
4
o 5 override func didReceiveMemoryWarning() {
ead: ! 54 super.didReceiveMemoryWarning()
85 // Dispose of any resources that can be
pgsgr_ipti_onf . } recreated.

58
% 59 @IBAction func saveBookAction(sender: UIButton) {
Save Book | 50 book.title = titleText.text!

61 book.author = authorText.text!

62 book.description = descriptionText.text
63 book.pages = Int{pagesText,text!)!

6 if(switchOutlet.on) {

85 book. readThisBook = true

5

67 else {

8 book.readThisBook = false

9 }

70 if (editBook) {

n delegate!.editBook(self, editBook:book)
n

| else {

7 delegate!.newBook(self, newBook:book)
75 }

Figure 14-10. Connecting the saveBookAction

In the DetailViewController class, add the code shown in Listing 14-5.

Listing 14-5. New Properties

20 @IBOutlet weak var pagesOutlet: UILabel!
21 @IBOutlet weak var switchOutlet: UISwitch!
22

23 var delegate: BookStoreDelegate? = nil

24
25 var myBook = Book()

Alert Controllers

Add the controls for Pages, Read, and Edit for the DetailViewController. Connect the outlets by dragging
the open circles to their controls, as shown in Figure 14-11.

262

CHAPTER 14 I A SWIFT IPHONE APP

\4// % import UIKit

10

=4 13 class DetailViewController: UIViewController {

Detail ® 1s @IB0utlet weak var titleLabel: UILabel!

|® 16 @IB0utlet weak var authorLabel: UILabel!

® 17 @IBOutlet weak var descriptionTextView: UITextView!
Title:
Label
Author:
Label

@IBOutlet weak var pagesOutlet: UILabel!
@IBOutlet weak var switchOutlet: UISwitch!

var delegate:BookStoreDelegate? = nil

var myBook = Book()

Pages: = Label

Read: | |
0 var detailltem: AnyObject? {
31 didSet {
T 32 // Update the view.
Description; 5
34 }

7 override func prepareForSegue(segue: UIStoryboardSegue,
sender: AnyObject?) {

36 if segue.identifier == "editDetail" {

39 let vc = segue.destinationViewController as!

AddBookViewController

“0 vc.delegate = delegate

4l vc.editBook = true

Edit 42 vc.book = myBook

Figure 14-11. Adding the Pages and Read outlets

DetailViewController, as shown in Listing 14-6.

Listing 14-6. Displaying a UIAlertController

74
75

76
77
78
79
80
81
82
83
84
85
86
87

@IBAction func deleteBookAction(_ sender: UIBarButtonItem) {

The Read switch is disabled in this view by unchecking the Enabled property in the Attributes Inspector.
Add the code for displaying a UIAlertController when the Delete button is tapped on the

let alertController = UIAlertController(title: "Warning", message: "Delete this

book?", preferredStyle: .alert)

let noAction = UIAlertAction(title: "No", style: .cancel) { (action) in
print("Cancel")

}

alertController.addAction(noAction)

let yesAction = UIAlertAction(title: "Yes", style: .destructive) { (action) in

self.delegate!.deleteBook(self)

}
alertController.addAction(yesAction)

present(alertController, animated: false, completion: nil)

263

CHAPTER 14 A SWIFT IPHONE APP

Add the Delete Bar Button Item to the right navigation location and connect it to the action, as shown in

Figure 14-12.

Tithe:
Label

Label

Pages: Label

Read: |

) > Description:

5
52
&3
B4
-

let myBook = detail as! Book L
titleLabel.text = myBook.title Module
authorLabel.text = myBook.author |
descriptionTextView.text = myBook. | User Defined Runtime Attributes
4 description Key Path Type Value
}
override func viewDidLoad() {
super.viewDidLoad()
self.configureview() t ...,P- {.]\w-..e— ..T.wm.-.w-
additional setup after loading Edit l.\..,:.:,_

from a nib.

} Item
override func didReceiveMemoryWarning() {
super.didReceiveMemorywWarning()
// Dispose of any resources that can be
recreated. * e
¥

@IBAction func deleteBookAction(_ sender:

UIBarButtonItem) {

let alertController = UIAlertController
(title: "Warning”, message: "Delete
this book?", preferredStyle: .alert)

let noAction = UIAlertAction({title: "MNo",
style: .cancel) { (action) in
print({“Cancel")

alertContreller.addActicn(ncAction)

let yesAction = UIAlertAction{title:
"Yes", style: .destructive) { (action) Jrossssend
in
self.delegate!.deleteBook(self)

}
alertController.addAction{yesAction) o

Figure 14-12. Adding the Delete Right Bar Button Item and action

The UIAlertController will warn the user that the book currently displayed in the
DetailViewController is about to be deleted and will enable the user to decide whether to delete it. The
UIAlertController has two buttons: Yes and No. When the user taps the right Bar Button Item (Delete), the
UIAlertController will be as shown in Figure 14-13 when you are finished.

264

Bar Button em - Represents an
item o 3 UiTecibar or
UiNawigationitem cbiect.

Tab Bar - Provides 3 mechanism for
displaying a tak bar at the battom of
the screen.

Tab Bar Item - Represents an tem
N 3 UITabBar cbject.

Search Bar - Displays an editable
saarch bar, containing the search
lcon, that sonds an actien message 1

Search Bar and Search Display
Cantreller - Displays an sditable
search bar connected to a search dis...

Fixed Space Bar Button ltem -
Represents a fixed space item on a
WiToalbar object

Flexible Space Bar Button ltem -
Represents a flexible space fem on a

CHAPTER 14 I A SWIFT IPHONE APP

Dee iPhone 6s Plus - i0S 10.0 (14A5338a)

Warning
Delete this book?

Yes

Figure 14-13. UlAlertController being displayed

When the user taps Yes to delete the book, you want to call the deleteBook delegate method as
described in the MasterViewController class. Add the BookStoreDelegate as shown in Listing 14-7.
Listing 14-7. Adding the BookStoreDelegate

11 class MasterViewController: UITableViewController, BookStoreDelegate {

Let’s now talk about the three delegate methods: newBook, deleteBook, and editBook, as defined in
the AddBookViewController class in Listing 14-3 (lines 11 to 15). Add these three functions at the end of the
MasterViewController class, as shown in Listing 14-8.

Listing 14-8. Conforming to the Protocol

99 // MARK: - Delegate Methods conforming to the protocol BookStoreDelegate as defined in
the AddBookViewController
100 func newBook(_ controller:AnyObject,newBook:Book) {

101 myBookStore. theBookStore.append(newBook)

102 tableView.reloadData()

103 _ = navigationController?.popViewController(animated: true)
104 }

105

265

CHAPTER 14 A SWIFT IPHONE APP

106 func deleteBook(_ controller:AnyObject){

107 let indexPath = tableView.indexPathForSelectedRow

108 let row = (indexPath as NSIndexPath?)?.row

109 myBookStore.theBookStore.remove(at: row!)

110 tableView.reloadData()

111 _ = navigationController?.popViewController(animated:false)
112 }

113

114 func editBook(_ controller:AnyObject, editBook:Book){

115 let indexPath = tableView.indexPathForSelectedRow

116 let row = (indexPath as NSIndexPath?)?.row

117 myBookStore.theBookStore.insert(editBook, at: row!)

118 myBookStore.theBookStore.remove(at: row!+1)

119 tableView.reloadData()

120 _ = navigationController?.popViewController(animated: true)
121 }

The function newBook adds a new book to the bookstore; appending the array with the newBook does
this, as shown in line 93. Line 94 then reloads the Table View by calling all the Table View delegate methods:

numberOfSectionsInTableView
numberOfRowsInSection
cellForRowAtIndexPath

Finally, you pop the DetailViewController from the navigation stack by calling popToRootViewCont
rollerAnimated(true). Popping the view from the navigation stack means the view is removed, similar to
tapping the Back button.

The function deleteBook removes the book from the bookStore array. First, you determine
which row was selected in the tableView and use that index to delete the book in the array by calling
removeAtIndex(row!), as shown on line 109.

The function editBook enables the user to edit an existing book in the bookStore array. To do this, the
function inserts the edited book in the array at the row that was selected, as shown on line 111. Then the
function deletes the original book that was pushed down one index when you inserted the book in the array,
as shown on line 117.

Now add the Edit button to the bottom of the DetailViewController and add a Show Segue from the
Edit button to the AddBookViewController, as shown in Figure 14-14.

266

Book

Description|
Save Book
-] -
-
I.‘Ta(ail Delete
Label]
Label |
Labe||
— @)
Edi

Figure 14-14. Adding the Show Segue object

CHAPTER 14 = A SWIFT IPHONE APP

267

CHAPTER 14 A SWIFT IPHONE APP

Select the Segue you just created, select the Attributes Inspector, and name the identifier editDetail.

See Figure 14-15.

)

0O 0eD

,:g‘: Long Press Gesture Recognizer -
- Provides a recogrizer for long press.
gestures which are invoked on the V..

:-(‘.:k_- Navigation Bar - Provides a
| | mechanism for displaying a

navigation bar just below the status...

I ' Mavigation Item - Represents a
< state of the navigation bar, including

a title.

Toolbar - Provides a mechanism for
| displaying a toolbar at the bottom of
|Edt | the screen.

®© @ B
-
Detail Delete

Tit...

Label

Auth... |

Label

Pages: | Label |

Description:

Figure 14-15. Naming the Segue’s identifier

268

1

Bar Button Item - Represents an
Item | item on a UIToolbar or
object.

| Tab Bar - Provides a mechanism for
i | displaying a tab bar at the bottom of
| % === | the screen.

[Tab Bar Itom - Represents an item
| ©on a UiTabBar object.

| Search Bar - Displays an editable
| search bar, containing the search
| | lcon, that sends an action message...

Controller - Displays an editable

|| Search Bar and Search Display
| search bar connected 1o a search di..

| Fixed Space Bar Button Item -
pressins] Represents a fixed space item ona
r _| UiToolbar object.

CHAPTER 14 I A SWIFT IPHONE APP

In the DetailViewController, add the prepareForSegue method before the configureView method, as
shown in Listing 14-9.

Listing 14-9. Add the prepareForSegue Method

37 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

38 if segue.identifier == "editDetail" {

39 let vc = segue.destination as! AddBookViewController
40 vc.delegate = delegate

41 vc.editBook = true

42 vc.book = myBook

43

44 }

45 }

Finally, modify the configureView function in the DetailViewController to properly populate the
Pages and Read switch outlets, as shown in Listing 14-10.

Listing 14-10. Modify the configureView

47 func configureView() {

48 if let detail = self.detailltem {

49 myBook = detail

50 titleLabel.text = myBook.title

51 authorLabel.text = myBook.author

52 descriptionTextView.text = myBook.description
53 pagesOutlet.text = String(myBook.pages)
54 if myBook.readThisBook {

55 switchOutlet.isOn = true

56 }

57 else {

58 switchOutlet.isOn = false

59 }

60 }

61 }

App Summary

Compile and run the app. You should set breakpoints at the delegate functions to watch the program flow. It
is a great app to see how delegates can be used to pass information from one view to another.

Additionally, you can add functionality to the app to make the information persistent by using Core
Data or NSUserDefaults.

EXERCISES

e Add more books to the bookstore using the original program as a guide.
e Enhance the Book class so it can store another attribute—a price or ISBN, for example.

e Add persistence to the app by using Core Data or NSUserDefaults.

269

CHAPTER 15

Apple Watch and WatchKit

In September 2014, Apple announced the Apple Watch, which it considers to be the next chapter in Apple’s
history. This watch not only handles phone calls and text messages, but it also assesses the wearer’s health
by tracking heart rate and exercise. At the same time, Apple announced WatchKit, a framework designed for
developing apps for the Apple Watch. WatchKit will be very familiar to developers already familiar with UIKit.

Initially, the Apple Watch had some serious limitations with development. The watch acted as an
additional screen for an iPhone app. This required the watch to be close to the phone to function and also
caused apps to run slowly. In June 2015, Apple announced watchOS 2.0. This new update included many
new features, but the biggest one for developers was the ability to create apps that had code that ran on
the Apple Watch instead of on the phone. Developers were able to create stand-alone apps that performed
much better and were more responsive. Now, Apple has released watchOS 3.0 with even more developer
improvements.

Considerations When Creating a watchOS App

One of the great things about developing for watchOS is that all of the development is done in Swift or
Objective-C, just like with other iOS devices. The Apple Watch does have some different things that you need
to consider before you jump into development.

e The Apple Watch screen is very small. You are limited to 38mm or 42mm, depending
on the size of the watch. This means you will not have a lot of space for unnecessary
Ul elements. Your interface will need to be compact and well organized. Also, due
to the two sizes being close in size, you have to create one interface and have it look
good on either size.

e Sharing data between the phone and the watch requires some planning. With
watchOS 3.0, Apple has made it even easier to share data. Primarily, Apple has
enhanced the WCSession class. The use of this class is beyond the scope of this book.

e WatchKit for watchOS 3.0 provides many different ways to interact with users
not only through apps, but also through glances, actionable notifications, and
complications. Well-written apps can take advantage of multiple interactions where
it makes sense. These interactions are beyond the scope of this book.

Creating an Apple Watch App

The first step is to create a new project in Xcode. AT the top, select Application under the watchOS header as
the project type. Then select iOS App with WatchKit App, as shown in Figure 15-1.

© Gary Bennett and Brad Lees 2016 271
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_15

CHAPTER 15 APPLE WATCH AND WATCHKIT

Choose a template for your new project:

i0s tvOS macOS Cross-platform @
Application

@

\ /
b

i0S App with
WatchKit App

Framework & Library

& 8

Watch Watch Static
Framework Library

Figure 15-1. Creating the watchOS app

Next, you will be given the option of naming your project. We will call the one in this chapter BookStore.
You will also notice that a watchOS app has different options from a standard iOS app. We will not be adding a
notification or complication screne to this app, so make sure they are all unchecked, as shown in Figure 15-2.

Note WatchKit provides additional interaction types that not available in i0S apps. Glances are quick looks
into your app. For example, a bookstore app might have a glance that shows the best sellers. Glances use a
special interface on the watch. Complications allow your app to provide simple information on the watch face
itself.

272

Choose options for your new project:

CHAPTER 15 APPLE WATCH AND WATCHKIT

Cancel

Figure 15-2. watchOS App options

Product Name: | BookStore

Team:

Organization Name:
Organization Identifier:
Bundle Identifier:
Language:

Devices:

None a

Innovativeware

com.innovativeware

com.innovativeware.BookStore
Swift &
iPhone B

Include Notification Scene
Include Complication
Include Unit Tests

Include Ul Tests

Xcode will then prompt you to save your project. Once you've saved it, you will be presented with your
new project. On the left side, you will notice two additional targets in your project. One is the BookStore
WatchKit App, which contains the interface (storyboard and assets) for your app. The second new target
is the BookStore WatchKit Extension. This will contain all of the code for your app to run on watchOS. See

Figure 15-3.

273

CHAPTER 15 APPLE WATCH AND WATCHKIT

m
i
m

B & Q& © = o 8
v | | BookStore
. AppDelegate.swift
4 ViewController.swift
'] Main.storyboard
|5 Assets.xcassets
] LaunchScreen.storyboard
.| Info.plist
(v[j BookStore WatchKit App)
'] Interface.storyboard
[55] Assets.xcassets
) Info.plist
v | 7] BookStore WatchKit Extension
s InterfaceController.swift

s ExtensionDelegate.swift

|5 Assets.xcassets
_ - Info.plist Y,
» | | Products

Figure 15-3. New targets

Click the Interface.storyboard in the BookStore WatchKit App target and you should see a screen
similar to Figure 15-4. This is your empty watchOS app storyboard. You will notice the size is significantly
smaller than a standard iOS storyboard.

274

BookStor...chKit App

B aAAOC=Eo @ |B <

v [5) BookStore

& Bookstore
v [intertace Controlier Scene
w [BookStore

» AppDelegate swift

» ViewController, swift

Interface Controller
Main Entry Point

Main. storyboard
i Assets xcassats
LaunchScreen storyboard
Info.plist
v BookStore WatchKit App
5] Assets xcassets
Info.plist
v BookStore Watchiit Extension
» InterfaceController swift
« ExtensionDelegate. swift
5 Assets xcassets
Info.plist

» 7 Products

Figure 15-4. Interface storyboard

CHAPTER 15 APPLE WATCH AND WATCHKIT

Interface.storyboard interface Controlier

nterface...rd (Base) [interface Controlier Scene

Since you are going to create a list of books for the watchOS app, you need to add a table to the
storyboard. On the bottom right, search for table and drag the table into the Interface Controller Scene, as

shown in Figure 15-5.

275

CHAPTER 15 APPLE WATCH AND WATCHKIT

Vertical Detail Paging

View
Alpha 1.
Hidden
& Installed

Semantic Unspecified

Alignment
Table RO\,‘V Horizontal = Left

l l vertical Top

o]

D OO o

Table - Displays ene or more rows of
data.

Figure 15-5. Adding a table

Xcode will now give you a Table Row as part of the table. This is similar to the prototype rows you used

for creating table views in your iOS apps. You need to create a class to control it, but for now, you will add a
label to it. Search for a label in the Object Library and drag one onto the row. See Figure 15-6.

276

CHAPTER 15 APPLE WATCH AND WATCHKIT

Baseline | Align Baselines

Il.
lo

Alignment| IF I W

Lines

€3

View

Alpha

»

Hidden
Installed
Semantic | Unspecified

]

Alignment
Horizontal | Left
vertical Top
Size
Width | Size To Fit Content

oo oo

Height | Size To Fit Content

{(}) @ O

Label Label - Displays a static text string.

919!14 Date - Displays the current date and
time

59:59 Timer - Displays a string that counts
¥ up or down to a specified time

] View as: Apple Watch 38mm 200% 88 |(® 1abel o

Figure 15-6. Adding a label to the table row

By default, the label will be located in the top-left corner of the Table Row. Check the Attribute Inspector
to make sure the height and width can grow in size to fit the content. See Figure 15-7. This will help ensure
that your app runs well on both sizes of Apple Watches.

277

CHAPTER 15 APPLE WATCH AND WATCHKIT

View Hide

<>

Alpha 1

| Hidden
Installed

Semantic = Unspecified

Alignment
Horizontal Left
Vertical Top

Size
Width Size To Fit Content

Height | Size To Fit Content

Figure 15-7. Allowing the label to grow

Now the label will expand to fit the entire row. By default, however, the label will only show one line of
text. Since you are adding book titles, you may need multiple lines to fit all of the text you want to add. With
the label selected, look in the Attributes Inspector on the right side. Find the Lines attribute and set it to 0, as
shown in Figure 15-8. Setting the number of lines to 0 tells Xcode that it can use as many lines as needed.

278

CHAPTER 15 APPLE WATCH AND WATCHKIT

Width | Size To Fit Content

Height Size To Fit Content

Label
Text Labe!
Text Color 3 Default H
Font | Body |ﬂ
Min Scale 1]
r Baseline Align Baselines H
Alignment = = = =
(Lines ojs
View
Alpha 1
Hidden
Installed
Semantic Unspecified E
Alignment
Horizontal Left H
Vertical Top H
Size
]
kJ

Label Label - Displays a static text string.

Date - Displays the current date and
9/9/14 .

N Timer - Displays a string that counts
59:59 up or down to a specified time

Figure 15-8. Setting the Lines attribute

Now you need to add some code to get the user interface working. On the left side, expand the BookStore
WatchKit extension folder and select the InterfaceController.swift file, as shown in Figure 15-9. The
InterfaceController is the default controller for the initial scene in a WatchKit storyboard.

279

CHAPTER 15 APPLE WATCH AND WATCHKIT

B R a A © m o B (B <] WatchKit i s| Inter: ontrolier.swift) No Selection
v [E BookStore 1 /7 p
2 /I InterfaceController.swift
¥ | | BookStore 3 // BookStore WatchKit Extension
2 & Il
» Delegate.swift A
App 98 : § // Created by Thorn on B/29/16.
s ViewController.swift & // Copyright ® 2816 Innovativeware. All rights reserved.
Main.storyboard 4
|55 Assets.xcassels 9 import WatchKit

: tF :
LaunchScreen.storyboard Ampaxt. Foundation

Info.plist 2 ;
13 class InterfoceController: WKInterfaceController
¥ || BookStore WatchKit App . i -
Interface.storyboard 15 override func awake(withContext context: Any?) {

B as: e, super.awake(withContext: context)
| Assets xcasset:

info.plist 18 // Configure interface objects here.
? }
¥ || BookStore WatchKit Extension 2
. InterfaceController.swift Fa override func willActivate() {
- . // This method is called when watch view controller is about to be visible to user

» ExtensionDelegate.swift 7 super.willActivate()
|55 Assets.xcassets ¥

Info.plist 2 override func didDeactivate() {

/f This method is called when watch view controller is no longer visible

» | | Products super.didDeactivate()

Figure 15-9. Opening the InterfaceController.swift file

You will notice the default methods in the new controller file are different than they were for a standard
UIViewController. willActivate() is equivalent to viewWillAppear().

The first thing you need to do is add a class definition for a row. To do this, add the following code to the
bottom of the file outside of the close brace (}) for the InterFaceController class.

1 class BookRow: NSObject {

2 @IBOutlet weak var bookLabel: WKInterfacelabel!

3

4}

Line 1 declares a new class called BookRow. It is a subclass of NSObject. Line 2 creates a property called

bookLabel. bookLabel’s class is WKInterfacelabel. This is similar to a UILabel that you have used before,
but it works with WatchKit.

Note Swift allows for multiple classes to be declared in the same Swift file. This works well when you are
only using that class with the other classes in the file. In this case, we are only going to use the row class with
the InterfaceController class.

The InterfaceController.swift file will now look like Figure 15-10.

280

CHAPTER 15 APPLE WATCH AND WATCHKIT

1| //

2 // InterfaceController.swift

3 // BookStore WatchKit Extension

« //

5 // Created by Thorn on 8/29/16.

6 // Copyright e 2016 Innovativeware. All rights reserved.
7 1/

8

9 import WatchKit
10 import Foundation

13 class InterfaceController: WKInterfaceController {

15 override func awake(withContext context: Any?) {
16 super.awake(withContext: context)

17

18 // Configure interface objects here.

19

20

27 override func willActivate() {

2 // This method is called when watch view controller is about to be visible to user
bx) super.willActivate()

24

25

2 override func didDeactivate() {

27 // This method is called when watch view controller is no longer visible
28 super.didDeactivate()

bl

30

3n)

2

33 class BookRow: NSObject {

3% @IBOutlet weak var bookLabel: WKInterfacelabel!
35

3%)}

37

8

Figure 15-10. Modified InterfaceController.swift file

You can now connect the outlets to the interface. Select Interface.storyboard. Now select the
Assistant Editor by selecting the icon with two circles in the top right of the Xcode window, as shown in
Figure 15-11.

Il

(@) < O O 3

Figure 15-11. Opening the Assistant Editor

281

CHAPTER 15 APPLE WATCH AND WATCHKIT

With the Assistant Editor, Xcode provides a quick way for developers to create objects and associate
them with outlets in the interface. You will first need to create a table property representing the Table.
Control-drag from the table in the Interface Controller Scene into the InterfaceController class on the
right, as shown in Figure 15-12.

¥ [B] interface Controlier Scene
¥ (& Interface Controfier
¥ [#lrane

v Table Row Cortroller

v [Group
Wil atchKit
Main Entry Point Erounda Lo
class InterfaceController: WiInterfaceController {
O——GVETTIGE TURC SWERETWITACGRTERT ICW {
super.swake{withContext: contewey

/4 configure interface objects here.
}

override func

class BookRow: NSObject {
1B0utlet weak var bookLabel: Wilnterfac. bel!

Figure 15-12. Control-drag to create an outlet

Once you release the Table object on the InterfaceController class, Xcode will prompt you to enter
the type of outlet you are creating. Leave the defaults as is, except change the Name to mainTable, as shown
in Figure 15-13.

import Wa
Connection Outlet 10 import Fa
Object B Interface Controller 12

- 13 class Int
Name | mainTable]

2 overr
T WKInterfaceTable
ype ‘i A6 s
Storage | Weak 17
1 /
Cancel Connect | 19 }
: overr
/

Figure 15-13. Naming your outlet

282

CHAPTER 15 APPLE WATCH AND WATCHKIT

Select the "lines of text" icon in the top right of the Xcode window to return to the Standard Editor.
Under the Interface Controller Scene, select the Table Row Controller, as shown in Figure 15-14.

v [&] Interface Controller Scene

v Interface Controller
v Main Table
v ([l Table Row Controller
v Group
bl Labe
Main Entry Point

Figure 15-14. Selecting the Table Row Controller

Set the class of the Table Row Controller by selecting the Identity Inspector on the right side and
selecting BookRow in the Class drop-down menu, as shown in Figure 15-15.

283

CHAPTER 15 APPLE WATCH AND WATCHKIT

Custom Class

Class | | (] n

Module | ADBannerView I
AppDelegate
Document BookRow
tensionDelegat
Label Exte .sonDc egate
GLKView
AT Can an am

Object ID Ptx-Cw-ysM

Lock |_Inherited - (Nothing) <]
Notes =E===-0@ -
@:

Figure 15-15. Changing the table row class to BookRow

Now that your app knows the type of table row you are using in your code, you need to add an identifier
for the row. This helps in the case you have multiple row types for a single table. Select the Attributes
Inspector and enter MyBookRow as the identifier, as shown in Figure 15-16.

D e @ ¥ e

Row Controller

Identifier MyBookRow{
Selectable

Figure 15-16. Changing the table row identifier

You can now hook up the WKInterfacelabel you created earlier. Under the Interface Controller Scene,
control-drag from the book row to the label, as shown in Figure 15-17.

284

CHAPTER 15 I APPLE WATCH AND WATCHKIT

o9 ¢ > [BookStore)| BookS..it App)

v Interface Controller Scene

v () Interface Controller
¥ | Main Table
v\ Group
("»i Label)
—> Main Entry Point

Figure 15-17. Control-dragging from the row to the label

You will be prompted to select an outlet from the available outlets, as shown in Figure 15-18. There is
currently only one available outlet, so select bookLabel.

v) Interface Controller
¥ Main Table
v ® MyBookRow

Outlets
bookLabel

—> Main Entry Point

Figure 15-18. Connecting the bookLabel outlet

Your table and label are now all hooked up. Now you need some data to display. You are going to reuse
some data you created in Chapter 8. Using the Finder on your Mac, drag the Book.swift and BookStore.
swift files from the Chapter 8 folder into the BookStore WatchKit Extension folder in Xcode. Check the
"Copy items if needed" check box to copy the files to the new project. Once you are done, you will have the
Book.swift and BookStore.swift files in your target, as shown in Figure 15-19.

285

http://dx.doi.org/10.1007/978-1-4842-2331-4_8
http://dx.doi.org/10.1007/978-1-4842-2331-4_8

CHAPTER 15 © APPLE WATCH AND WATCHKIT

v BookStore WatchKit App
_____ Interface.storyboard
1| Assets.xcassets
Info.plist
v BookStore WatchKit Extension
s BookStore.swift
3 Book.swift
3 InterfaceController.swift
+ ExtensionDelegate.swift
= Assets.xcassets
Info.plist

| 2 Products

Figure 15-19. Adding in the data files

You have the data and interface complete. You now need to hook them up so the interface knows about
the data. You need to declare a new property that will hold the BookStore object. Under your declaration of
themainTable objectin the InterfaceController. swift file, you need to add the following line:

var myBookStore: BookStore = BookStore()

This creates a property of type BookStore called myBookStore and initializes it to an instance of
BookStore.

We will use the configureTable() method to set up the table. Add the following code to the class,

outside of any of the other methods:

1 func configureTable() {

2 mainTable.setNumberOfRows (myBookStore.theBookStore.count, withRowType:
"MyBookRou")

3 for index in 0...(myBookStore.theBookStore.count - 1) {

4 if let myRow = mainTable.rowController(at: index) as? BookRow {

5 myRow.bookLabel.setText(myBookStore.theBookStore[index].title)

6 }

7 }

8 }

Line 1 declares the new method. Line 2 sets the number of rows in the table to the number of books in
the bookstore. You'll use myBookStore.theBookStore.count to get that number. We also tell the table which
row identifier to use with the table. Line 3 is a loop that assigns index to 0 and goes until it gets assigned to
the number of books: 1. The reason you subtract 1 from the number of books is because Swift (and most
modern programming languages) starts its arrays with 0. This means if you have an array with two items, the
items will be in positions 0 and 1. If you try to look at position 2, you will receive an error.

286

CHAPTER 15 I APPLE WATCH AND WATCHKIT

Line 4 tries to create a new row for the table using the index variable you created in the previous line.
Line 5 takes the row and assigns the Book title to bookLabel. Now we need to call configureTable when the
view is being activated. Add the following line to the willActivate function:

configureTable()

0~ Ot f R =

14

After entering those lines, the InterfaceController.swift file will look like Figure 15-20.

InterfaceController.swift
BookStore WatchKit Extension

Created by Thorn on 8/29/16.
Copyright @ 2016 Innovativeware. All rights reserved.

import Watchkit
import Foundation

class InterfaceController: WKInterfaceController {

}

@IBOutlet var mainTable: WKInterfaceTable!
var myBookStore: BookStore! = BookStore()

override func awake(withContext context: Any?) {
super.awake(withContext: context)

// Configure interface objects here.

}

override func willActivate() {
// This method is called when watch view controller is about to be visible to user
super.willActivate()

override func didDeactivate() {
// This method is called when watch view controller is no longer visible
super.didDeactivate()

}

mainTable.setNumberOfRows(myBookStore.theBookStore.count, withRowType: "MyBookRow")
for index in O...(myBookStore.theBookStore.count - 1) {
if let myRow = mainTable.rowController(at: index) as? BookRow {
myRow.bookLabel.setText(myBookStore.theBookStore[index].title)

class BookRow: NSObject {

@IBOutlet weak var booklLabel: WKInterfacelabel!

Figure 15-20. InterfaceController.swift file

You now have enough in place to run the app. From the target menu, select BookStore WatchKitApp

and then select the size of the Apple Watch you would like the simulator to use, as shown in Figure 15-21. If
this is your first time launching the Watch Simulator, it may take some time and ask for permissions on the
Phone Simulator before the app will run successfully.

287

CHAPTER 15 © APPLE WATCH AND WATCHKIT

T Tt e Product Debug Source Control Window Help
E | /A, BookStore 13
' ; : succe
_I Mine5s (no paired Apple Watch)
> Edit Scheme... roller.s
New Scheme...
i Manage Schemes...]‘ Generic iOS Device + watchOS Device

—r

import WatchK
import Founda 8§ iPhone 6 + Apple Watch - 38mm

v @ iPhone 6 Plus + Apple Watch - 42mm

class Interfal M’Jﬁi\b
@IBOutlet §# iPhone 7 Plus + Apple Watch Series 2 - 42mm
var myBoo
) Add Additional Simulators...
override Download Simulators...

SUpOTREEEE LEEE e e R

// Configure interface obijects here.

Figure 15-21. Selecting the WatchKit target

Once the app is launched, you will see a watch screen with the two books in the myBookStore object.
You can go back to the BookStore. swift file and add more books if you want to play around with the
scrolling. The app should look like Figure 15-22.

Apple Watc...
12:40
Swift for Absolute
Beginners

A Farewell To Arms

Figure 15-22. First WatchKit app launch

288

Adding More Functionality

In the last section, you created a WatchKit app, but it’s very limited in functionality. In this section, you will
add a new scene to the app to show book detail when a book is selected. Because you will be adding a scene,
you will use an additional controller file. Right-click the BookStore WatchKit Extension folder and select New
File, as shown in Figure 15-23.

v prnan

(_,..

.

Show in Finder

Open with External Editor
Open As B>
Show File Inspector

Add Files to “BookStore”..
Delete

New Group
New Group from Selection

Sort by Name
Sort by Type

Find in Selected Groups...
Source Control B

Project Navigator Help

Figure 15-23. Adding new controller file

10
11
12
13
14
15
16
17

import WatchKit

class DetailController: WKInterfaceController {
@IBOutlet var labelTitle: WKInterfacelabel!
@IBOutlet var labelAuthor: WKInterfacelabel!

CHAPTER 15 I APPLE WATCH AND WATCHKIT

Make sure the new file is a Swift file and name it DetailController. swift. It should now appear in
your file list. Add the following code after the import Foundation line:

@IBOutlet var labelDescription: WKInterfacelLabel!

289

CHAPTER 15 © APPLE WATCH AND WATCHKIT

18 var book: Book!

19

20 override func awake(withContext context: Any?) {
21 super.awake(withContext: context)

22 if let book = context as? Book {

23 labelTitle.setText(book.title)

24 labelAuthor.setText (book.author)

25 labelDescription.setText(book.description)
26 }

27 }

28 }

Line 10 imports the WatchKit framework. This is necessary when dealing with any WatchKit class
such as WKInterfaceController or WKInterfacelabel. Line 13 declares a new WKInterfaceController
subclass called DetailController. Lines 14-16 create the label outlets you will be using to display the book
information. Line 18 declares the Book property called book. Line 20 is the awakeWithContext method. It is
passed an object called context, which is of type Any. This is where the Book object will be passed. Line 22
takes the context and assigns it to a book object. Lines 23-25 take the pieces of information from the book
and assign them to the labels.

You now need to add the following method to the InterfaceController class:

override func contextForSegue(withIdentifier segueldentifier: String,
in table: WKInterfaceTable,
rowIndex: Int) -> Any? {
return myBookStore.theBookStore[rowIndex]

}

This method passes the book to the DetailController when it receives the rowIndex of the selected
row. Now you need to create the interface. Select Interface.storyboard on the left side. Drag an Interface
Controller from the Object Library to the storyboard as shown in Figure 15-24.

290

CHAPTER 15 APPLE WATCH AND WATCHKIT

itroller

DO O

Interface Controller - Manages a
screen's interface objects

] View as: Apple Watch 38mm 161%
Notification Interface Controller
- Manages an interface for a
mmm= mm me e imrmmammmms s e e e fica ategory.
Extension[83423:6841917] subsystem: ClockKit, category: naiication categon
remotecomplication, enable_level: @, persist_level: @,
default_ttl: @, info_ttl: @, debug_ttl: @, generate_symptoms: Storyboard Reference - Provides a
@, enable_oversize: @, privacy_setting: 2, enable_private_data: placeholder for an interface controller
. A in an external storyboard.
Program ended with exit code: @

D All Qutput $ - il 00 88 @ interface o

Figure 15-24. Adding new controller file

201

CHAPTER 15 APPLE WATCH AND WATCHKIT

Select the second Interface Controller Scene and set the class to DetailController, as shown in Figure 15-25.

O & B ¥ ©

Custom Class

Class DetailController @
DetailController
| InterfaceController
Document | WKInterfaceController

Label | WKUserNotificationinterfac...

Module

X
Object ID dCt-2K-ICv
Lock Inherited - (Nothing)
Notes = = = = --- iy

=30 HiEad
@<

Figure 15-25. Setting the new controller class
Now drag three label objects onto the interface. These labels will be for the book title, author, and

description. See Figure 15-26. watchOS does not provide all of the layout options that iOS, tvOS, or macOS
do. As a developer, time will need to be spent designing simple watchOS interfaces.

292

CHAPTER 15 APPLE WATCH AND WATCHKIT

Label
®
Object ID Bpa-VU-rCD
Lock Inherited - (Nothing) | <)
=—-=20;a .7

Notes

r)(s

Accessibility
Accessibility Enabled
Label
Hint

Value

Traits Button
Link
Image
Selected

Static Text

Search Field
Plays Sound
Keyboard Key
Summary Element
Updates Frequently

D060

Label Label - Displays a static text string.

atch 38mm — 161% -+

Date - Displays the current date and
9‘(9’!14 time. e ’

Extension[83423:6841917] subsystem: ClockKit, category:
remotecomplication, enable_level: ©, persist_level: @,
default_ttl: @, info_ttl: @, debug_ttl: @, generate_symptoms: . _)
@, enable_oversize: @, privacy_setting: 2, enable_private_data: | §Q;5g !/mer - Displaysa string that counts
] up or down to a specified time.

Program ended with exit code: @

All Output @ il |07 | 88 @ rabel <]

Figure 15-26. New labels

Now you need to connect the outlets of the new labels. Control-drag from the Detail Controller Scene to
each of the labels and assign them to their respective property. See Figure 15-27.

293

CHAPTER 15 APPLE WATCH AND WATCHKIT

v ?_“ Detail Controller Scene
¥ (% Detail Contraller
(%I Label
el Label
[Label

Figure 15-27. Connecting the outlets

The data should all be displaying now. You need to create the segue and test the app once again.
Control-drag from the MyBookRow under the Interface Controller Scene to the Detail Controller. You will be
prompted to select the type of segue. Select push. See Figure 15-28.

v [Z] Interface Controller Scene

v Interface Controller
v Main Table
b Group

Lbl Book Label
Mjin Entry Point

v [Z] Detil Controller Scene
I
(v _ Oetail Controller)
Lbl Label Title
Lbl Label Author
Lbl Label Description

Figure 15-28. Creating the segue

294

CHAPTER 15 APPLE WATCH AND WATCHKIT

Now run the app and select a row. You should see the detail controller you just created, as shown in
Figure 15-29.

Apple Watc...

< CHCTS)
Swift for Absolute...

Bennett and Lees
I0S Programming...

Figure 15-29. Detail view scene

Summary

This chapter covered an introduction to developing for the Apple Watch. Specifically, in this chapter, you
learned the following:

e How to create a new WatchKit app

e How to use the WatchKit controls WKInterfaceController, WKInterfaceTable, and
WKInterfacelabel

¢ How to create multiple scenes and add segues between them

e How to handle passing data from one scene to the next

EXERCISES

e Set up the labels on the detail scene to display all of the data.

e Add more books to your BookStore S0 you can play with the scrolling in the app.

295

CHAPTER 16

A Swift HealthKit iPhone App /

HealthKit enables iOS developers to integrate health and fitness devices with their app and integrate the
data with Apple’s easy-to-read dashboard. HealthKit enables health and fitness apps on an iOS device to
work together and report device data in the Health app dashboard. See Figure 16-1.

| a9 oA
LA A f

Figure 16-1. The Health app’s dashboard

© Gary Bennett and Brad Lees 2016 297
G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4_16

CHAPTER 16 - A SWIFT HEALTHKIT IPHONE APP

HealthKit is the accompanying developer SDK included in iOS 8 and newer. The SDK enables other
applications to access health data with the user’s permission. For example, a blood pressure application
could share its information with the user’s doctor.

A number of companies support HealthKit, including Polar, EPIC, Mayo Clinic, and RunKeeper.

Note To work through this example, you’ll need an active developer account. You won’t be able to enable
the HealthKit Capability and access the HealthKit Store without one.

Introduction to Core Bluetooth

The Core Bluetooth framework lets your iOS apps communicate with Bluetooth’s low-energy devices
(Bluetooth LE or BLE, for short). BLE devices include heart rate monitors, digital scales, digital thermostats,
and more.

The Core Bluetooth framework is an abstraction of the Bluetooth LE specification and defines a set of
protocols for communicating with Bluetooth LE devices.

Asyou learn about HealthKit in this chapter, you'll also learn about the key concepts of the Core
Bluetooth framework, including how to use the framework to discover, connect to, and retrieve data from
BLE-compatible devices. You will learn these skills by building a heart rate monitoring application that
communicates with a BLE heart monitor and displays the information on an animated user interface along
with storing the information in Apple’s Health app.

The heart rate monitor we use in this example is the Polar H7 Bluetooth Smart Heart Rate Sensor that
can be purchased from Amazon.com. If you don’t have one of these devices, you can still follow along with
the tutorial, but you'll need to modify the code for whatever BLE device you have.

Central and Peripheral Devices

There are two major components involved in BLE communication: the central and the peripheral. (See
Figure 16-2.)

e The central is the boss that wants information from one or more workers in order to
accomplish a specific task.

e The peripheral is the worker that sends and receives data that is consumed by the
central devices. The peripheral has the data the central wants.

298

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

Client Server

Client Server
Wants Data Has Data

Central Peripheral

Figure 16-2. Understanding central and peripheral devices

Peripheral Advertising

Advertising is the primary way that peripherals make their presence known via BLE.

In addition to advertising their existence, advertising packets can also contain some data, such as the
peripheral’s name. The packets can even contain some extra data related to what the peripheral collects. For
the heart rate monitor application, the packets also provide heartbeats per minute information.

The central scans for these advertising packets, identifies any peripherals it finds relevant, and connects
to individual devices for more information.

Peripheral Data Structure

Advertising packets are very small and cannot contain large amounts of data, so to get more data, a central
needs to connect to a peripheral to obtain all of the data available.

Once the central connects to a peripheral, it needs to choose the data it is interested in. With BLE, data
is organized into services and characteristics:

e Aserviceis a collection of data and associated behaviors describing a specific
function or feature of a device. A device can have more than one service. The heart
rate monitor exposing heart rate data from the monitor’s heart rate sensor is a great
example of this.

e A characteristic provides additional details about a peripheral’s service. A service can
have more than one characteristic. The heart rate service, for example, may contain
a characteristic that describes the intended body location of the device’s heart rate
sensor and an additional characteristic that transmits heart rate measurement data.

299

CHAPTER 16 - A SWIFT HEALTHKIT IPHONE APP

Once a central has established a connection to a peripheral, it is free to discover the full range of
services and characteristics of the peripheral, and to read or write the characteristic values of the available
services.

CBPeripheral, CBService, and CBCharacteristic

A peripheral is represented by the CBPeripheral object, while the services relating to a specific peripheral
are represented by CBService objects. (See Figure 16-3.)

[CBPeripheral]

_[CBService]

—[CBService]

Figure 16-3. Structure of a peripheral’s services and characteristics object hierarchy

The characteristics of a peripheral’s service are represented by CBCharacteristic objects, which are
defined as attribute types containing a single logical value.

Each service and characteristic you create must be identified by a universally unique identifier, or
UUID. UUIDs can be 16- or 128-bit values, but if you are building your client-server (central-peripheral)
application, you'll need to create your own 128-bit UUIDs. Also, make sure the UUIDs don’t collide with
other potential services in close proximity to your device.

300

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

Building the App

We are going to build a simple heart rate monitor app that works with a BLE heart rate monitor. In the
process of building this app, you will learn a lot about HealthKit and BLE, such as the following:

e How to set up your heart rate monitor

¢ How torequest permissions to access and store HealthKit data
e Howtoread BLE data and format it to show in the Health app
e How the Core Bluetooth Framework works

e How to display information from the heart rate BLE monitor (See Figure 16-4.)

Connected

Figure 16-4. The Heart Rate Monitor app

301

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

1. Create a Single View Application, as shown in Figure 16-5.

Choose a template for your new project:

watchOS tvOS macOS Cross-platform [@|
Application
(1] t.d = ass)
Single View Game Master-Detail Page-Based Tabbed
Application Application Application Application
- : ‘ :
Sticker Pack iMessage
Application Application

Framework & Library

¢ & &

Cocoa Touch Cocoa Touch Metal Library
Framework Static Library

Figure 16-5. Creating a single view application

302

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

2. Name your app and save the project, as shown in Figure 16-6.

Choose options for your new project:

Product Name: : HeartRaleMonitod ||
Team: None

Organization Name: xcelMe

Organization ldentifier: com

Bundile Identifier: com.HeartRateMonitor

Language: Swift
Devices: iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous m

Figure 16-6. Naming the project

303

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

3. Change the bundle identifier to the identifier you are going to use to submit to
the App Store and include the HealthKit.framework. Also, select your developer
team, as shown in Figure 16-7.

eoe p | Ay HeartRateManitor . Gary's iPhone. Finished running HeartRateManitar on Gary's iPhone an
BR QA ©@ B @ B [Mearthiateranitor
[HeartRateManitor | el "
b 45} 0 Genera Capabiities Resource Togs Ine Buid Settings Buid Phases
¥ £S5 Hoalthici framawerk e -
¥ [HeartEatehoniior Include your Bundie Identifier *Emh idertifier | com xoeime. HRM =
T E B HeartRateMonizor
el titements Version |10
+ AppDelegate. swift ARGETS ki T
o ViewControliar. switt
Main storyboard T HearTateRlon torTe.
[Assets xcassets) HeartRatemonitorl.. ¥ Signing
LaunchScreen storyboard
oyl Autematically manage sigring
Info.plist Xeute il ;
a Heartpng
a Human.png Team Gary Bernett (Personal Team - gwbennett@m...

¥ [| HeartRateMontorTests
» [HearRmeMoniterUTests
* [Products Signing Certificate Prone Developer: gwbennetimac.com (S4423...

Provisgioning Profile Xcode Managed Profie

¥ Deployment info
Deployment Target

Devices | IPhone

Main Interface | Main

Davice Orientation B Portrait
"1 Upsice Down
Landscape Left
Langscope Rght

Status Bar Style | Defautt B

biide s2atus bar
Reauines full screen

¥ App lcons and Launch Images
App icons Scurce | Apgicon a o
Launch knages Source | Use Asset Cataiog

Lsunch Scroen Flle | LsuncnScreen B

¥ Embedded Binaries

¥ Linked Frameworks and Libraries

Bulg Rules.

S HoathKit framewors Required

Figure 16-7. Adding your own bundle identifier, team, and HealthKit.framework

4. In order to use HealthKit, you need to add the HealthKit entitlement. Change the
project’s capabilities to add HealthKit, as shown in Figure 16-8.

304

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

[] e oy teart_cnitor) [] Gary's Prone Finished running HeartRateMonitor an Gary's IPhane 1 = o <00k |
o> W o @ B < B HeartRateMoniter <oy
] General Resource Tage Info. Build Settings Build Phases Buid Rules
PROJECT -
* (1) Maps

& HeartRateMonitor

Iil HeartRateMonitor entitiements
= AppDoiegate.swift
» ViewCortrolier swift

/- HeartRataMonitor P Sy, Mevthain Shartig
e ——
e

Main.storyboard
Bl Asants cosmnty |HesrtRateMontorn . *) Background Modes

LaunchScreen.storyboard

info.plist

» L], inter-App Audic
& Heartpng
 Human.png
» [HeartRateMonitorTests * (5 App Groups
» HeartRateMonitorUiTests
» (5] Products » - Data protection
* 2, HomeKit

8 eﬁﬂﬁﬁlﬂﬁﬁ]

- Wireless Accessory Configuration

Figure 16-8. Including the HealthKit capabilities in the project

5. The app doesn’t automatically get access to the HealthKit data, so it first needs
to ask permission. Open the ViewController.swift file to add all of the related
code this app needs.

6. Import the Core Bluetooth and HealthKit frameworks, add the Core Bluetooth
delegate protocols, and declare the properties, as shown in Listing 16-1. The
ViewController needs to implement the CBCentralManagerDelegate protocol
to enable the delegate to monitor the discovery, connectivity, and retrieval
of peripheral BLE devices. The ViewController also needs to implement the
CBPeripheralDelegate protocol so it can monitor the discovery, exploration,
and interaction of a remote peripheral’s services and properties.

Listing 16-1. Adding Core Bluetooth, HealthKit, and Properties

8 import UIKit

9 import CoreBluetooth

10 import HealthKit

11

12

13 class ViewController: UIViewController, CBCentralManagerDelegate, CBPeripheralDelegate{
14
15 let PULSESCALE: NSNumber = 1.2
16 let PULSEDURATION: NSNumber = 0.2

17 var heartRate: UInti6!

18 let healthKitStore: HKHealthStore = HKHealthStore()

305

CHAPTER 16 - A SWIFT HEALTHKIT IPHONE APP

19 var centralManager:CBCentralManager!
20 var connectingPeripheral: CBPeripheral!
21 var pulseTime: Timer!

The core of the HealthKit Framework is the HKHealthStore class, as shown on line 18 in Listing 16-1.
Now that you've created an instance of HKHealthStore, the next step is to request authorization to use it.

The users are the masters of their data, and they control which metrics you can track. This means you
don’t request global access to the HealthKit Store. Instead, you request access to the specific types of objects
the app needs to read or write to the store.

7. Addthe Heart.png and Human.png files from the Chapter 16 project to this
project. Then create the outlets for the labels, as shown in Figure 16-9.

Note You can refer to the Chapter 16 project that can be downloaded from forum.xcelme.com as
described in the introduction. It includes the PNG files used for the app and it shows you the auto-layout
constraints if you need help.

HeartRatemon ton B I B view Comrolier Scere View Controier € 4 > | B sutomatic 1 . ViewControterewint © [pulseTime
rt CoreBluetooth

¥ [view Controier Scene O 1 i
rt Healthkit

View Cortrolier

wt Guidge

viewController: UlviewController, CBCentralManagerDelegate, CBPeripheralle

T PULSESCALE:

er = 1.2
umber = 8.2

var hear
let healthKitst
var centralManager
var connectingPeriph
ar pulseTime:Timer!

althStore = HKHealthStore()
ntralManager!

k var bpmOutlet: UlILabel!
var connectedfutlet: UILabell
k var heartview: UlImageView!

unc viewDidAppear(_ animated: Bool) {
f.viewDidLoad()
er = CBCentralManager(delegate: self, queue: DispatchQueue.m
nstore()

equestAuthorisationForte

alManagerDidupdateState(_ central: CBCentralManager){
central.state{
poweredon:

Figure 16-9. Creating the HealthKit Store object and creating outlets

8. Add the viewDidAppear method as shown in Listing 16-2. You need to instantiate
the centralManager and request authorization to the HealthKit Store.

Listing 16-2. Add the init as Shown

27 override func viewDidAppear(_ animated: Bool) {

28 super.viewDidAppear(animated)

29 centralManager = CBCentralManager(delegate: self, queue: DispatchQueue.main)
30 requestAuthorisationForHealthStore()

31 heartRate = 0

306

http://dx.doi.org/10.1007/978-1-4842-2331-4_16
http://dx.doi.org/10.1007/978-1-4842-2331-4_16

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

32 } Add the centralManagerDidUpdateState method as shown in Listing 16-3.
This ensures that the device is BLE compliant and it can be used as the central
device object of the CBCentralManager. If the state of the central manager is
powered on, the app will receive a state of CBCentralManagerStatePoweredOn. If
the state changes to C(BCentralManagerStatePoweredOff, all peripheral objects
that have been obtained from the central manager become invalid and must be
rediscovered.

Listing 16-3. Add the centralManagerDidUpdateState Method

39 func centralManagerDidUpdateState(central: CBCentralManager){

40
4
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10.

switch central.state {
case .poweredOn:
print("poweredOn")

let serviceUUIDs: [CBUUID] = [CBUUID(string:"180D")]

let lastPeripherals = centralManager.retrieveConnectedPeripherals(withServic

es: serviceUUIDs)

print(lastPeripherals.count)

if lastPeripherals.count > 0 {
connectingPeripheral = lastPeripherals.last as CBPeripheral?;
connectingPeripheral.delegate = self
centralManager.connect(connectingPeripheral, options: nil)
connectedOutlet.text = "Connected"

}
else {
centralManager.scanForPeripherals(withServices: serviceUUIDs, options: nil)
connectedOutlet.text = "Disconnected”
}
default:

print(central.state)

}

The next step is to determine if you have established a connection to the

heart rate monitor. Add the didDiscoverServices and didDiscoverServices
methods. When you establish a local connection to a peripheral, the central
manager object calls the didDiscoverPeripheral method of its delegate object.

In the implementation, we first set the view controller to be the delegate of the peripheral object so

that it can notify the view controller. If no error occurs, we next ask the peripheral to discover the services
associated with the device. Then we determine the peripheral’s current state to see if we have established a
connection. (See Listing 16-4.)

307

CHAPTER 16 - A SWIFT HEALTHKIT IPHONE APP

Listing 16-4. Add the didDiscoverPeripheral and didDiscoverServices Methods

61 func centralManager(_ central: (BCentralManager, didDiscover peripheral: (BPeripheral,
advertisementData: [String : Any], rssi RSSI: NSNumber) {

62

63 connectingPeripheral = peripheral

64 connectingPeripheral.delegate = self

65 centralManager.connect(connectingPeripheral, options: nil)
66 connectedOutlet.text = "Connected"

67 }

68

69 func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral)
{

70

71 peripheral.discoverServices(nil)

72

73

74 func peripheral(peripheral: CBPeripheral, didUpdateValueFor characteristic:
(BCharacteristic, error: Error?) {

75 if let actualError = error{

76 print("\(actualError)")

77

78 telse {

79 switch characteristic.uuid.uuidString{

80 case "2A37":

81 update(characteristic.value!)

82 default:

83 print("")

84 }

85 }

86 }

87

88 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {
89

90 if let actualError = error{

91 print("\(actualError)")

92

93 else {

94 for service in peripheral.services as [CBService]!{
95 peripheral.discoverCharacteristics(nil, for: service)
96 }

97 }

98 }

11. Now add the didDiscoverCharacteristicsForService method, as shown in
Listing 16-5.

This method lets you determine the characteristics the service has. First, we check if the service
is the heart rate service. Then we iterate through the characteristics array and determine if any of the
characteristics are a heart rate monitor notification characteristic. If so, we subscribe to this characteristic,
which tells the CBCentralManager to notify us when the characteristic changes.

308

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

If the characteristic is the body location characteristic, there is no need to subscribe. You just read the value.
If the service is the device info service, look for the manufacturer name and read it.

Listing 16-5. Add the didDiscoverCharacteristicsForService Method

100 func peripheral(_ peripheral: (BPeripheral, didDiscoverCharacteristicsFor Service:
(BService, error: Error?) {

101

102 if let actualError = error{

103 print("\(actualError)")

104

105 else {

106

107 if service.uuid == CBUUID(string:"180D"){

108 for characteristic in (service.characteristics as [CBCharacteristic]?)!{

109 switch characteristic.uuid.uuidString{

110

111 case "2A37":

112 // Set notification on heart rate measurement

113 print("Found a Heart Rate Measurement Characteristic")

114 peripheral.setNotifyValue(true, for: characteristic)

115

116 case "2A38":

117 // Read body sensor location

118 print("Found a Body Sensor Location Characteristic")

119 peripheral.readValue(for: characteristic)

120

121 case "2A39":

122 // Write heart rate control point

123 print("Found a Heart Rate Control Point Characteristic")

124

125 var rawArray: [UInt8] = [o0x01];

126 let data = NSData(bytes: &rawArray, length: rawArray.count)

127 peripheral.writeValue(data as Data, for: characteristic, type:
(BCharacteristicWriteType.withoutResponse)

128

129 default:

130 print("")

131 }

132

133 }

134 }

135 }

136 }

To understand how to interpret the data from a BLE characteristic, you need to check the Bluetooth
specification. For this example, visit https://developer.bluetooth.org/gatt/characteristics/Pages/
CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml

A heart rate measurement consists of a number of flags, followed by the heart rate measurement itself,
energy information, and other data.

Add the update function shown in Listing 16-6. The update function is called each time the peripheral
sends new data.

309

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml

CHAPTER 16 - A SWIFT HEALTHKIT IPHONE APP

The update function converts the contents of the characteristic value to a data object. Next, you get
the byte sequence of the data object. Then you calculate the bpm variable, which will store the heart rate
information.

To calculate the BPM, we obtain the first byte at index 0 in the array as defined by buffer[0] and mask
out all but the first bit. The result returned will either be 0, which means that the first bit is not set, or 1 if it
is set. If the first bit is not set, retrieve the BPM value at the second byte location at index 1 in the array and
convert it to a 16-bit value based on the host’s native byte order.

12. Add the pulse method. Output the value of BPM to your bpmOutlet UILabel.
Set up a timer object that calls pulse at 0.8-second intervals; this performs the
basic animation that simulates the beating of a heart through the use of Core
Animation, as shown in Listing 16-7.

Listing 16-6. Add the update Method
138 func update(_ heartRateData:Data){

139 var buffer = [UInt8](repeating: 0x00, count: heartRateData.count)

140 (heartRateData as NSData).getBytes(8buffer, length: buffer.count)

141

142 var bpm:UInt16?

143 if buffer.count >= 2 {

144 if buffer[o] & ox01 == 0 {

145 bpm = UInt16(buffer[1])

146 }else {

147 bpm = UInt16(buffer[1]) << 8

148 bpm = bpm! | UInti6(buffer([2])

149 }

150 }

151

152 if let actualBpm = bpm {

153 print("actualBpm \(actualBpm)")

154 bpmOutlet.text = String(actualBpm)

155

156 let rate = 60.0 / Float(self.heartRate)

157 print("\(rate)")

158 saveHeartRateIntoHealthStore(Double(bpm!))

159

160 let oldBpm = self.heartRate

161 self.heartRate = bpm

162 if oldBpm == 0 {

163 pulse()

164 self.pulseTime = Timer.scheduledTimer(timeInterval: 0.8, target: self,

165 selector: #selector(ViewController.pulse), userInfo: nil, repeats:
false)

166 }

167

168 } else {

169 print("bpm \(bpm)")

170 self.bpmOutlet.text = "\(bpm)"

171 }

172 }

310

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

Listing 16-7. The pulse function

174 func pulse() {

175 let pulseAnimation = CABasicAnimation(keyPath: "transform.scale")

176 pulseAnimation.toValue = PULSESCALE

177 pulseAnimation.toValue = NSNumber(value: 1.2)

178 pulseAnimation.fromvalue = NSNumber(value: 1.0)

179

180 pulseAnimation.duration = PULSEDURATION

181 pulseAnimation.duration = 0.2

182 pulseAnimation.repeatCount = 1

183 pulseAnimation.autoreverses = true

184 pulseAnimation.timingFunction = CAMediaTimingFunction(name:
kCAMediaTimingFunctionEaseIn)

185 heartView.layer.add(pulseAnimation, forKey: "scale")

186 let rate = 60.0 / Float(self.heartRate)

187 self.pulseTime = Timer.scheduledTimer(timeInterval: TimeInterval(rate), target:

self, selector: #selector(ViewController.pulse), userInfo: nil, repeats: false)
188 }

13. Now add the didUpdateValueForCharacteristic method, as shown in
Listing 16-8. The didUpdateValueForCharacteristic function will be called
when CBPeripheral reads a value or updates a value periodically. We need to
implement this method to check to see which characteristic’s value has been
updated, and then call one of the helper methods to read in the value.

Listing 16-8. Add the didUpdateValueForCharacteristic Method

74 func peripheral(peripheral: CBPeripheral, didUpdateValueFor characteristic:
(BCharacteristic, error: Error?) {

75 if let actualError = error {

76 print("\(actualError)")

77

78 } else {

79 switch characteristic.uuid.uuidString {
80 case "2A37":

81 update(characteristic.value!)
82 default:

83 print("")

84 }

85 }

86 }

14. Add the saveHeartRateIntoHealthStore method, as shown in Listing 16-9.

In this method, you first create a sample object using HKQuantitySample. In order to create this sample,
you need the following:

¢ A Quantity type object, like HKQuantityType, initialized using the proper sample
type.

e A Quantity sample, like HKQuantity’s start and end date, which in this case is the
current date and time in both cases.

311

CHAPTER 16 - A SWIFT HEALTHKIT IPHONE APP

Listing 16-9. Add the saveHeartRateIntoHealthStore Function

192 fileprivate func saveHeartRateIntoHealthStore(height:Double) -> Void

193 {

194 // Save the user's heart rate into HealthKit.

195 let heartRateUnit: HKUnit = HKUnit.count().unitDivided(by: HKUnit.minute())

196 let heartRateQuantity: HKQuantity = HKQuantity(unit: heartRateUnit, doubleValue:
height)

197

198 let heartRate : HKQuantityType = HKQuantityType.quantityType(forIdentifier:
HKQuantityTypeIdentifier.heartRate)!

199 let nowDate: Date = Date()

200

201 let heartRateSample: HKQuantitySample = HKQuantitySample(type: heartRate

202 , quantity: heartRateQuantity, start: nowDate, end: nowDate)

203 self.healthKitStore.save(heartRateSample, withCompletion: { (success, error) ->
Void in

204 if(error != nil) {

205 // Error saving the workout

206 print("done")

207

208 else {

209 // Workout saved

210 print("done")

211

212 }

213 3]

15. Add the requestAuthoriationForHealthStore function as shown in Listing 16-10.
You're creating a Set with all the types you need to read from the HealthKit Store:
characteristics (blood type, sex, and birthday), samples (body mass and height),
and workouts.

Then you check if the HealthKit Store is available. For universal apps, this is crucial because HealthKit
may not be available on every device. Finally, the app performs the actual authorization request; it invokes
requestAuthorisationToShareTypes with the previously defined types for reads. Now that your code knows
how to request authorization, you need to create a way for your app to invoke it.

Listing 16-10. Add the requestAuthorisationForHealthStore Function

220 fileprivate func requestAuthorisationForHealthStore() {

221

222 let dataTypesToRead = Set(arraylLiteral:

223 HKObjectType.characteristicType(forIdentifier:
HKCharacteristicTypeIdentifier.dateOfBirth)!,

224 HKObjectType.quantityType(forIdentifier: HKQuantityTypeldentifier.
bodyMass)!,

225 HKObjectType.quantityType(forIdentifier: HKQuantityTypeIdentifier.height)!

226)

227

228 //Requesting the authorization

229 healthKitStore.requestAuthorization(toShare: nil, read: dataTypesToRead) {

(success, error) -> Void in

312

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

230 if(success)

231 {

232 print("success")
233 }

234 }

235 }

App Summary

You are done adding code, so run the app. When the app starts, it asks permission to access the HealthKit
Store. If this is the first time the app has run, HealthKit Store asks the user for permission, as shown in
Figure 16-10.

4 Back to Settings 9:02 AM B 4

Don't Allow Health Access Allow

Health
"HeartRateMonitor” would like to access and
update your Health data in the categories

below
All Categories Off

ALLOW "“HEARTRATEMONITOR" TO READ
DATA:

) Dateof Birth

Height

olele

Weight

Figure 16-10. HealthKit asking the user permission to access the app

As the app runs and is displaying data, it is also storing data in the HealthKit Store. You can see that data
by opening the Health app, as shown in Figure 16-11.

313

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

No Service ¥ 6:58 AM 4 -

< Al Heart Rate

Year]

Show on Dashboard

Show All Data 3
Add Data Point >
Share Data >
Unit bpm
g o =%
Dashboard Health Data Sources Medical ID

Figure 16-11. The heart rate data being stored in the HealthKit Store

If you want to view the heart rate data in the Health app’s dashboard (Figure 16-12), you need to enable
the Show on Dashboard switch, as shown in Figure 16-11.

314

CHAPTER 16 A SWIFT HEALTHKIT IPHONE APP

No Service F 6:59 AM 4 -
Dashboard
Day Week Month Year

B & O

Dashboard Health Data Sources Medical ID

Figure 16-12. The heart rate data being displayed in the dashboard

What’s Next?

You did it! You should have a great foundation to write outstanding apps. The best place to start is with your
own idea for an app. Start writing it today. You are going to have lots of questions. That is how you are going
to continue to learn. Keep moving forward and don’t stop, no matter if you get discouraged sometimes.

If you do get discouraged, visit www.xcelMe.com/forum. There are great resources on this site for finding
answers to your questions. There is a topic for this book and each chapter in the book. Feel free to post your
own questions. The authors of this book help answer the posts. Also, there are free videos on www.xcelMe.
com. In the live sessions, you can ask Gary Bennett questions. Just click the Free Videos tab at the top of the
page, as shown in Figure 16-13.

Good luck and have fun!

EXERCISES

e Enable the app to read data from the HealthKit Store.
e Enable the app to connect and disconnect to the heart rate monitor.
e Enable the users to set visual and audible alarms when their heart rate gets too high.

315

http://www.xcelme.com/forum
http://www.xcelme.com/
http://www.xcelme.com/

Index

A

Apple Developer Program, 17
Apple Watch and watchKit
creation
adding label, 277
adding table, 276
Assistant Editor, 282
bookLabel outlet, 285
BookRow, 284
BookStore, 286
control-dragging, 285
data files, 286
expanding label, 278
InterfaceController class, 282
InterfaceController.swift file, 280, 287
Interface storyboard, 275
lines attribute, 279
myBookStore, 286
new targets, 274
Table Row Controller, 283
table row identifier, 284
WatchKit app launch, 288
WatchKit target, 288
watchOS options, 273
Xcode 7,271
functionality
controller class, 292
controller file, 289, 291
DetailController.swift, 289-290
detail view scene, 295
labels, 293
outlets connecting, 294
segue, 294
watchOS app, 271
Apps design
condition-controlled loop, 47-48
count-controlled loop, 47
flowcharting, 45-46
forced unwrapping, 43
infinite loop, 48

© Gary Bennett and Brad Lees 2016

optionals, 43
implicitly unwrapped, 44
optional binding bind, 44
pseudocode
conditional operators, 41-42
definition, 41
logical operators, 42-43
arc4random_uniform()function, 51
Array
fast enumeration, 127
object, 126-127
ordered collection, 126
string, 127

Balsamiq, 56
Bluetooth low energy (BLE) device
bundle identifier, 304
central device, 298-299
centralManagerDidUpdateState Method, 307
didDiscoverCharacteristicsForService
function, 308, 309
didDiscoverPeripheral methods, 308
didDiscoverServices methods, 308
HealthKit capabilities, 305
HealthKit.framework, 304
HealthKitStore object, 306
heart rate data, 314
heart rate monitor, 301
peripheral device
advertising, 299
CBCharacteristic object, 300
CBPeripheral object, 300
CBService object, 300
data structure, 299
project naming, 303
pulse function, 311
requestAuthorizationForHealthStore
function, 312

317

G. Bennett and B. Lees, Swift 3 for Absolute Beginners, DOI 10.1007/978-1-4842-2331-4

INDEX

Bluetooth low energy (BLE) device (cont.)
saveHeartRateIntoHealthStore function, 311
single view application, 302
training videos and forum, 315
update method, 310
user permission, 313
ViewController.swift file, 305
viewDidAppear method, 306
Bookstore application
access variables, 135
add book function, 252
AddBookViewController
identifying addBook Segue, 257
identity inspector, 259
landmarks, 254
objects, 255
property, 261
show segue object, 256
swift class creation, 258
swift file and adding code, 256, 259-260
alert view controllers
adding delegate method, 265
adding pages and read outlets, 263
delete button bar, 263
modifying configureView, 269
segue object, 267, 268
UlIAlertViewController, 265
boilerplate project, 131
data model class, 142-143
DetailViewController, 147-148
description, 140-141
edit and delete function, 253
instance variables, 134
master-detail, 129
MasterViewController, 144-146
product application, 130
properties, 138-139
swift file, 132
switches, 261-262
view creation, 135-138

BookStoreCoreData.xcdatamodeld

attributes, 199
date, 201
decimal, 201
integer 32, 201
string, 201
Data Model Inspector, 203
entity, 199
fetched properties, 199
interface creation
Assistant Editor button, 214
Attributes Inspector, 210
Bar Button Item, 212
code implementation, 216

318

connection setup, 215
Document Outline, 213
identifier, 210
Navigation Controller, 211
Table View, 208
UlBarButtonltem, 212
UlTableViewCell, 209
managed objects, 204, 207
NSManagedObject, 204-205
relationships, 199, 202
Boolean operators
AND, 37, 38
comparison operators, 40
NAND, 39
NOR, 40
NOT, 38, 39
OR, 38, 39
XOR, 38, 39
Bugs, 4, 237

C

Class
Book class, 63
Bookstore class, 62
customer class, 62
definition, 60, 97
instance, 60
instance variables, 98
methods
initializers, 100
instance methods, 100
type methods, 99
planning methods, 63, 65
RadioStations, 100
action creation, 118
adding, objects, 103, 105, 107
Assistant Editor icon, 117
buttonClick method, 118
company identifier, 101
connections, 115-116
execution, 119-120
iPhone application, 102
single view application, 101
stationName instance variable, 116
user interface creation, 110-113, 115
workspace window, 103
writing class, 107-109
Sale class, 63
Xcode documentation
help menu, 121
string class, 122
Code refactoring, 52
Collections, 126

Comparing data
Boolean expression
Bool and number variables, 158
comparing strings, 159-160
some_code() method, 158
Boolean logic, 151
comparing numbers, 152-153
comparison operators, 152
switch statement, 160, 162-163
Xcode app
debugger window debugger, 156
Launch Xcode, 153
NSLog function, 156
NSLog output, 157
project type and name, 155
Single View Application, 154
configureView() method, 147, 245

D, E

Data
bits
Apple’s A8 processor, 24
definition, 23
Moore’s law, 25
bytes, 25-26
constant, 29
hexadecimal system, 26-27
optionals, 30
playgrounds, 31, 33-35
types, 28
Unicode, 28
variables, 29
Data storage
database
Core Data, iOS, 196, 198, 218
definition, 195
SQLite (see SQLite)
iPhone, 193
Mac, 193
preferences file, 193-195
Debugging, 5
Delegation
definition, 222
guessing game app
class listing, 230
GuessInputViewController, 228-229
home view, 223
IBAction function, 226
intializations, 227
outlet objects, 225
prepareForSegue function, 232
project creation, 224
RandomNumber function, 226
segue identifier, 231-232

INDEX

user input view, 223

variable declarations, 227

View Controller, 225, 228

viewDidLoad function, 227
DetailViewController, 147-148
Dictionary class, 128-129
didUpdateValueForCharacteristic function, 311

FG

Fast enumeration, 127

H

HealthKit iPhone app
Core Bluetooth framework
(see Bluetooth low energy (BLE) device)
Health app dashboard, 297
Human Interface Guidelines (HIG), 168-169

I,LJ, K

Instance methods, 100
Integrated development environment (IDE), 6
Interface Builder
actions and outlets, 165
HIG, 168-169
iPhone app
actions, 185-187
disable autolayout, 188-189
document outline, 176-177
inspector pane, 180
iPhone simulator, 189-190
new group creation, 173-174
Object Library, 177-179
outlets, 182, 184-185
random number generator, 169-170
seed and generate methods, 187, 188
selector bar, 180
Single View Application, 170-171
source files, 173
storyboard resolvers, 174-175
view creation, 181-182
MVC (see Model-View-Controller (MVC))
storyboards and XIBs, 165, 175
workspace window, 176
XML file format, 166
iOS developer
algorithm, 1
bugs, 4
computer program, 1
debugging, 5
design requirements, 2
iTunes App Store, 5
OmniGraffle, 2-3

319

INDEX

iOS developer (cont.)

OOP (see Object-oriented programming (OOP))

quality assurance, 4

testing, 4

user interface (UI), 2
Woodforest mobile banking, 4

L

Language symbols, 77-78
logMessage () method, 80
Loops
condition-controlled, 47-48
count-controlled, 47
infinite, 48

MasterViewController, 144-146
MasterViewController.swift viewDidLoad
method, 249
Model-View-Controller (MVC)
architectural patterns, 166
objects, 166-167
OOP, 166
schematic representation, 167
software development, 166
Moore’s law, 24-25

N

NSUserDefaults class, 194

(0

Objective-C, 77
Object-oriented programming (OOP), 166
class (see Class)
debugging, 74
eliminate redundant code, 74
IDE, 6
implementation
BookStore project, 66-67
creation, 66
Customer.swift file, 70
property, 70-71
inheritance, 72-73
interface, 74
methods, 7
object
definition, 59
methods, 60
properties, 59
playground interface, 8-9
polymorphism, 74

320

principles, 6, 73

properties, 8

replacement, 74

state, 8

UlTableView object, 7-8
Objects implementation, 78-80
OmniGraffle, 2-3, 54
OOP. See Object-oriented

programming (OOP)

Optionals, 30

P

Playground interface, Xcode IDE, 9
Polymorphism, 74
Preferences file
reading, 195
writing, 194
Programming
Array class. Array
bookstore application
access variables, 135
add description, 140-141
add properties, 138-139
boilerplate project, 131
data model class, 142-143
DetailViewController, 147-148
instance variables, 134
master-detail application, 129
MasterViewController, 144-146
product application, 130
swift file, 132
view creation, 135-138
collection, 126
dictionary class, 128-129
let vs. var, 125
Protocols
definition, 221
guessing game app
class listing, 230

GuessInputViewController, 228-229

home view, 223

IBAction function, 226

intializations, 227

outlet objects, 225

prepareForSegue function, 232

project creation, 224

RandomNumber function, 226

segue identifier, 231-232

user input view, 223

variable declarations, 227

View Controller, 225, 228

viewDidLoad function, 227
multiple inheritance, 219-221
syntax, 221

Q

Quality assurance (QA), 4

R

Relational operators
comparing numbers, 152-153
comparison operators, 152
Xcode app
debugger window, 156
Launch Xcode, 153
NSLog function, 156
NSLog output, 157
project type and name, 155
Single View Application, 154

S

showName method, 85, 92
some_code() method, 158
SQLite, 196
Storing information, databases. See Data storage
String, 28
stringForKey method, 195
Swift app
code refactoring, 52
design requirements
Balsamiq, 56
OmniGraffle, 54
Woodforest, 55
else if statement, 52
nest if statements, 52
newline character, 52
output, 52-53
random number generator, 49-51
Switch statement
combining comparisons, 162
if statement, 160
NSComparisonResult, 161
NSDate class, 161
variable, 160
synchronize function, 194

T

Type methods, 99

uv
UlTableView object, 7-8
Unified Modeling Language (UML), 65
User interface (UI), 2

INDEX

w

Woodforest mobile banking, 54, 55

XY, Z

Xcode

opening screen, 80
documentation, 121, 122
project creation
app running, 95
Button object, 88, 91
connection menu, 93
context-sensitive editor, 82
didReceiveMemoryWarning, 84
@IBOutlet and @IBAction, 85
iOS Application, 81
iPhone interface objects, 86
Label object, 90, 94
label’s size expantion, 90
main screen, 83
Main.storyboard file, 86
Object Library, 87
object’s variable selection, 95
referencing outlet, 94
setting up, 81-82
showName method, 85, 92
storyboard file, 82
templates list, 81
toolbars, 83
Touch Up Inside, 91-92
View buttons, 84
ViewController.swift file, 84, 85
viewDidLoad, 84

Xcode 8

installation, 16
launch, 18
playground window, 20

Xcode debugger

BookStore project, 237
Breakpoint
Navigator, 239, 241-242
breakpoint settings, 238
build and debug buttons, 242
code errors, 248
code warnings, 249-250
configuration, 238
console, 244
debugger controls, 243, 244
definition, 237
interrupted program
execution, 243
stack trace, 244

321

INDEX

Xcode debugger (cont.)
step control
configureView() method, 245
debugging variables, 246-247
self.configureView(), 245
Step Into button, 245
Step Out button, 246
thread window and call stack, 246
variables view, 244
Xcode playground IDE
editor area, 20
results area, 21

322

Xcode’s IDE

assistant editor, 15
Interface Builder, 15
navigators, 13-14
playgrounds, 11
project editor, 14
source editor, 14
standard editor, 15
user interface, 12
version editor, 15
workspace window, 13
Xcode 8, 16-17, 19-20

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Becoming a Great iOS Developer
	1.1 Thinking Like a Developer
	 Completing the Development Cycle
	 Introducing Object-Oriented Programming
	 Working with the Playground Interface
	 Summary
	 What’s Next
	 Exercises

	Chapter 2: Programming Basics
	Touring Xcode
	Exploring the Workspace Window
	 Navigating Your Workspace
	Editing Your Project Files

	Creating Your First Swift Playground Program
	Installing and Launching Xcode 8
	 Using Xcode 8

	 Xcode Playground IDE: Editor and Results Areas
	 Summary

	Chapter 3: It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Moore’s Law

	 Bytes
	3.1.3 Hexadecimal
	Unicode

	 Data Types
	 Declaring Constants and Variables
	 Optionals
	 Using Variables in Playgrounds
	 Summary

	Chapter 4: Making Decisions, Program Flow, and App Design
	Boolean Logic
	Truth Tables
	 Comparison Operators

	 Designing Apps
	Pseudocode
	Optionals and Forced Unwrapping
	Optional Binding
	 Implicitly Unwrapped Optionals

	 Flowcharting
	 Designing and Flowcharting an Example App
	 The App’s Design
	 Using Loops to Repeat Program Statements
	Count-Controlled Loops
	Condition-Controlled Loops
	Infinite Loops

	 Coding the Example App in Swift
	Nested if Statements and else if Statements
	Removing Extra Characters
	 Improving the Code Through Refactoring
	Running the App
	 Design Requirements

	 Summary

	Chapter 5: Object-Oriented Programming with Swift
	The Object
	 What Is a Class?
	 Planning Classes
	Planning Properties
	 Planning Methods
	Implementing the Classes

	 Inheritance
	 Why Use OOP?
	OOP Is Everywhere
	 Eliminate Redundant Code
	 Ease of Debugging
	 Ease of Replacement

	 Advanced Topics
	Interface
	 Polymorphism

	 Summary

	Chapter 6: Learning Swift and Xcode
	A Newcomer
	 Understanding the Language Symbols
	 Implementing Objects in Swift
	 Writing Another Program in Xcode
	Creating the Project

	 Summary

	Chapter 7: Swift Classes, Objects, and Methods
	Creating a Swift Class
	Instance Variables
	 Methods
	Using Type methods
	 Using Instance Methods

	 Using Your New Class
	Creating Your Project
	 Adding Objects
	 Writing the Class
	 Creating the User Interface
	 Hooking Up the Code
	 Running the Program
	 Taking Type methods to the Next Level

	 Accessing the Xcode Documentation
	 Summary

	Chapter 8: Programming Basics in Swift
	Using let vs. var
	Understanding Collections
	Using Arrays
	 Using the Dictionary Class
	 Creating the BookStore Application
	Creating Your Class
	 Introducing Properties
	 Accessing Properties

	 Finishing the BookStore Program
	Creating the View
	 Adding Properties
	 Adding a Description
	 Creating a Simple Data Model Class
	 Modifying MasterViewController
	Modifying the DetailViewController

	 Summary

	Chapter 9: Comparing Data
	Revisiting Boolean Logic
	 Using Relational Operators
	Comparing Numbers
	 Creating an Example Xcode App

	 Using Boolean Expressions
	Comparing Strings

	 Using the switch Statement
	 Comparing Dates
	Combining Comparisons

	 Summary

	Chapter 10: Creating User Interfaces
	Understanding Interface Builder
	 The Model-View-Controller Pattern
	 Human Interface Guidelines
	 Creating an Example iPhone App with Interface Builder
	 Using Interface Builder
	 The Document Outline
	The Object Library
	 Inspector Pane and Selector Bar
	 Creating the View
	 Using Outlets
	 Using Actions
	The Class

	 Summary

	Chapter 11: Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary

	Chapter 12: Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	 Protocol Syntax
	 Delegation
	 Protocol and Delegation Example
	Getting Started
	How It Works
	Summary

	Chapter 13: Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls

	Using the Step Controls
	Looking at the Thread Window and Call Stack
	 Debugging Variables

	Dealing with Code Errors and Warnings
	Errors
	 Warnings

	Summary

	Chapter 14: A Swift iPhone App
	 Let’s Get Started
	 Switches
	 Alert Controllers

	 App Summary

	Chapter 15: Apple Watch and WatchKit
	 Considerations When Creating a watchOS App
	 Creating an Apple Watch App
	 Adding More Functionality
	 Summary

	Chapter 16: A Swift HealthKit iPhone App
	Introduction to Core Bluetooth
	Central and Peripheral Devices
	Peripheral Advertising
	Peripheral Data Structure
	CBPeripheral, CBService, and CBCharacteristic

	Building the App
	App Summary
	What’s Next?

	Index

