

Swift	Essentials	Second	Edition

Table	of	Contents

Swift	Essentials	Second	Edition

Credits

About	the	Author

Acknowledgments

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Trademarks

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Exploring	Swift

Open	source	Swift

Getting	started	with	Swift

Numeric	literals

Floating	point	literals

String	literals

Variables	and	constants

Collection	types

Optional	types

Nil	coalescing	operator

Conditional	logic

If	statements

Switch	statements

Iteration

Iterating	over	keys	and	values	in	a	dictionary

Iteration	with	for	loops

Break	and	continue

Functions

Named	arguments

Optional	arguments	and	default	values

Guards

Multiple	return	values	and	arguments

Returning	structured	values

Error	handling

Throwing	errors

Catching	errors

Cleaning	up	after	errors

Command-line	Swift

Interpreted	Swift	scripts

Compiled	Swift	scripts

Summary

2.	Playing	with	Swift

Getting	started	with	playgrounds

Creating	a	playground

Viewing	the	console	output

Viewing	the	timeline

Displaying	objects	with	Quick	Look

Showing	colored	labels

Showing	images

Advanced	techniques

Capturing	values	explicitly

Running	asynchronous	code

Playgrounds	and	documentation

Learning	with	playgrounds

Understanding	the	playground	format

Adding	a	page

Documenting	code

Playground	navigation	documentation

Text	formatting

Symbol	documentation

Limitations	of	playgrounds

Summary

3.	Creating	an	iOS	Swift	App

Understanding	iOS	applications

Creating	a	single-view	iOS	application

Removing	the	storyboard

Setting	up	the	view	controller

Swift	classes,	protocols,	and	enums

Classes	in	Swift

Subclasses	and	testing	in	Swift

Protocols	in	Swift

Enums	in	Swift

Raw	values

Associated	values

Creating	a	master-detail	iOS	application

The	AppDelegate	class

The	MasterViewController	class

The	DetailViewController	class

Summary

4.	Storyboard	Applications	with	Swift	and	iOS

Storyboards,	scenes,	and	segues

Creating	a	storyboard	project

Scenes	and	view	controllers

Adding	views	to	the	scene

Segues

Adding	a	navigation	controller

Naming	scenes	and	views

Swift	and	storyboards

Custom	view	controllers

Connecting	views	to	outlets	in	Swift

Calling	actions	from	interface	builder

Triggering	a	segue	with	code

Passing	data	with	segues

Using	Auto	Layout

Understanding	constraints

Adding	constraints

Adding	a	constraint	with	drag	and	drop

Adding	constraints	to	the	Press	Me	scene

Adding	missing	constraints

Summary

5.	Creating	Custom	Views	in	Swift

An	overview	of	UIView

Creating	new	views	with	Interface	Builder

Creating	a	table	view	controller

Showing	data	in	the	table

Defining	a	view	in	a	xib	file

Wiring	a	custom	view	class

Dealing	with	intrinsic	size

Creating	new	views	by	subclassing	UIView

Auto	Layout	and	custom	views

Constraints	and	the	visual	format	language

Adding	the	custom	view	to	the	table

Custom	graphics	with	drawRect

Drawing	graphics	in	drawRect

Responding	to	orientation	changes

Custom	graphics	with	layers

Creating	a	ProgressView	from	layers

Adding	the	stop	square

Adding	a	progress	bar

Clipping	the	view

Testing	views	in	Xcode

Responding	to	change

Summary

6.	Parsing	Networked	Data

Loading	data	from	URLs

Dealing	with	errors

Dealing	with	missing	content

Nested	if	and	switch	statements

Networking	and	user	interfaces

Running	functions	on	the	main	thread

Parsing	JSON

Handling	errors

Parsing	XML

Creating	a	parser	delegate

Downloading	the	data

Parsing	the	data

Direct	network	connections

Opening	a	stream-based	connection

Synchronous	reading	and	writing

Writing	data	to	NSOutputStream

Reading	from	an	NSInputStream

Reading	and	writing	hexadecimal	and	UTF8	data

Implementing	the	Git	protocol

Listing	git	references	remotely

Integrating	the	network	call	into	the	UI

Asynchronous	reading	and	writing

Reading	data	asynchronously	from	an	NSInputStream

Creating	a	stream	delegate

Dealing	with	errors

Listing	references	asynchronously

Displaying	asynchronous	references	in	the	UI

Writing	data	asynchronously	to	an	NSOutputStream

Summary

7.	Building	a	Repository	Browser

An	overview	of	the	GitHub	API

Root	endpoint

User	resource

Repositories	resource

Repository	browser	project

URI	templates

Background	threading

Parsing	JSON	dictionaries

Parsing	JSON	arrays	of	dictionaries

Creating	the	client

Talking	to	the	GitHub	API

Returning	repositories	for	a	user

Accessing	data	through	the	AppDelegate

Accessing	repositories	from	view	controllers

Adding	users

Implementing	the	detail	view

Transitioning	between	the	master	and	detail	views

Loading	the	user’s	avatar

Displaying	the	user’s	avatar

Summary

8.	Adding	Watch	Support

Watch	applications

Adding	a	watch	target

Adding	the	GitHubAPI	to	the	watch	target

Creating	watch	interfaces

Adding	a	list	of	users	to	the	watch

Wiring	up	the	interface

Adding	an	image

Responding	to	user	interaction

Adding	context	and	showing	repositories

Adding	a	detail	screen

Populating	the	detail	screen

Best	practice	for	watch	applications

UI	thread	considerations

Stored	data

Appropriate	use	of	complications	and	glances

Summary

A.	References	to	Swift-related	Websites,	Blogs,	and	Notable	Twitter	Users

Language

Twitter	users

Blogs	and	tutorial	sites

Meetups

Afterword

Index

Swift	Essentials	Second	Edition

Swift	Essentials	Second	Edition
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2014

Second	Edition:	January	2016

Production	reference:	1200116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-887-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Dr	Alex	Blewitt

Reviewer

Antonio	Bello

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Denim	Pinto

Content	Development	Editor

Preeti	Singh

Technical	Editor

Siddhesh	Patil

Copy	Editor

Priyanka	Ravi

Project	Coordinator

Milton	D’souza

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Disha	Haria

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta

About	the	Author
Dr	Alex	Blewitt	has	over	20	years	of	experience	in	Objective-C,	and	he	has	been	using
Apple	frameworks	since	NeXTstep	3.0.	He	upgraded	his	NeXTstation	for	a	TiBook	when
Apple	released	Mac	OS	X	in	2001,	and	he	has	been	developing	on	it	ever	since.

Alex	currently	works	for	an	investment	bank	in	London,	writes	for	the	online	technology
news	site	InfoQ,	and	has	published	two	other	books	for	Packt	Publishing.	He	also	has	a
number	of	apps	on	the	Apple	AppStore	through	Bandlem	Limited.	When	he’s	not	working
on	technology	and	if	the	weather	is	nice,	he	likes	to	go	flying	from	the	nearby	Cranfield
airport.

Alex	writes	regularly	at	his	blog,	http://alblue.bandlem.com,	as	well	tweeting	regularly	on
Twitter	as	@alblue.

http://alblue.bandlem.com

Acknowledgments
This	book	would	not	have	been	possible	without	the	ongoing	love	and	support	of	my	wife,
Amy,	who	has	helped	me	through	both	the	highs	and	lows	of	life.	She	gave	me	the
freedom	to	work	during	the	many	late	nights	and	weekends	that	it	takes	to	produce	a	book
and	its	associated	code	repository.	She	truly	is	the	Lem	of	my	life.

I’d	also	like	to	thank	my	parents,	Ann	and	Derek,	for	their	encouragement	and	support
during	my	formative	years.	It	was	this	work	ethic	that	allowed	me	to	start	my	technology
career	as	a	teenager	and	to	incorporate	my	first	company	before	I	was	25.	I’d	also	like	to
congratulate	them	on	their	50th	wedding	anniversary	in	2015,	and	I	look	forward	to
reaching	that	goal	with	Amy.

Thanks	are	due,	especially,	to	the	reviewer	of	this	version	of	the	book:	Antonio	Bello,	as
well	as	the	previous	version	of	this	book:	Nate	Cook,	James	Robert,	and	Arvid	Gerstmann,
who	provided	excellent	feedback	on	the	contents	of	this	book	during	development	and
caught	many	errors	in	both	the	text	and	code.	Any	remaining	errors	are	my	own.

I’d	also	like	to	thank	my	children	Sam	and	Holly	for	inspiring	me,	and	I	hope	that	they	too
can	achieve	anything	that	they	set	their	minds	to.

Finally,	I’d	like	to	thank	Ben	Moseley,	and	Eren	Kotan,	both	of	whom	introduced	me	to
NeXT	in	the	first	place	and	set	my	career	going	on	a	twenty	year	journey	to	this	book

About	the	Reviewer
Antonio	Bello	is	a	veteran	software	developer	who	started	writing	code	when	memory
was	measured	in	bytes	instead	of	gigabytes	and	storage	was	an	optional	add-on.	During
his	professional	career,	he’s	worked	with	several	languages	and	technologies	until	he
landed	on	the	Apple	planet.

Today,	he	loves	developing	apps	for	the	iPhone,	Apple	Watch,	Apple	TV,	and	their
respective	backends.	Although	he	still	thinks	Objective-C	is	a	great	and	unconventional
language,	he	prefers	and	has	used	Swift	ever	since	it’s	been	announced.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Swift	Essentials	provides	an	overview	of	the	Swift	language	and	the	tooling	necessary	to
write	iOS	applications.	From	simple	Swift	commands	on	the	command	line	using	the	open
source	version	of	Swift,	to	interactively	testing	graphical	content	on	OS	X	with	the	Xcode
Playground	editor,	Swift	language	and	syntax	is	introduced	by	examples.

This	book	also	introduces	end-to-end	iOS	application	development	on	OS	X	with	Xcode
by	showing	how	a	simple	iOS	application	can	be	created,	followed	by	how	to	use
storyboards	and	custom	views	to	build	a	more	complex	networked	application.

The	book	concludes	by	providing	a	worked	example	from	scratch	that	builds	up	a	GitHub
repository	browser	for	iOS,	along	with	an	Apple	Watch	application.

What	this	book	covers
Chapter	1,	Exploring	Swift,	presents	the	open	source	version	of	Swift	with	the	Swift	Read-
Evaluate-Print-Loop	(REPL)	and	introduces	the	Swift	language	through	examples	of
standard	data	types,	functions,	and	looping.

Chapter	2,	Playing	with	Swift,	demonstrates	Swift	Xcode	Playgrounds	as	a	means	to
interactively	play	with	Swift	code	and	see	graphical	results.	It	also	introduces	the
playground	format	and	shows	how	playgrounds	can	be	documented.

Chapter	3,	Creating	an	iOS	Swift	App,	shows	how	to	create	and	test	an	iOS	application
built	in	Swift	using	Xcode,	along	with	an	overview	of	Swift	classes,	protocols,	and	enums.

Chapter	4,	Storyboard	Applications	with	Swift	and	iOS,	introduces	the	concept	of
Storyboards	as	a	means	of	creating	a	multiscreen	iOS	application	and	shows	how	views	in
the	Interface	Builder	can	be	wired	to	Swift	outlets	and	actions.

Chapter	5,	Creating	Custom	Views	in	Swift,	covers	custom	views	in	Swift	using	custom
table	views,	laying	out	nested	views,	and	drawing	custom	graphics	and	layered
animations.

Chapter	6,	Parsing	Networked	Data,	demonstrates	how	Swift	can	talk	to	networked
services	using	both	HTTP	and	custom	stream-based	protocols.

Chapter	7,	Building	a	Repository	Browser,	uses	the	techniques	described	in	this	book	to
build	a	repository	browser	that	can	display	information	about	users’	GitHub	repositories.

Chapter	8,	Adding	Watch	Support,	introduces	the	capabilities	of	the	Apple	Watch	and
shows	how	to	build	an	extension	for	the	iOS	app	to	provide	data	directly	on	the	watch.

The	Appendix,	References	to	Swift-related	Websites,	Blogs,	and	Notable	Twitter	Users,
provides	additional	references	and	resources	to	continue	learning	about	Swift.

What	you	need	for	this	book
The	exercises	in	this	book	were	written	and	tested	for	Swift	2.1,	which	is	bundled	with
Xcode	7.2,	and	verified	against	a	development	build	of	Swift	2.2.	To	experiment	with
Swift,	you	will	need	either	a	Mac	OS	X	or	Linux	computer	that	meets	the	requirements
shown	at	https://swift.org/download/.

To	run	the	exercises	involving	Xcode	in	Chapters	2–8,	you	need	to	have	a	Mac	OS	X
computer	running	10.9	or	above	with	Xcode	7.2	or	above.	If	newer	versions	of	Swift	are
released,	check	the	book’s	GitHub	repository	or	the	book’s	errata	page	at	Packtpub	for
details	about	any	changes	that	may	affect	the	book’s	content.

Note
The	Swift	playground	(described	in	Chapter	2,	Playing	with	Swift)	is	only	available	as	part
of	Xcode	on	OS	X	and	is	not	part	of	the	open	source	version	of	Swift.

Also,	iOS	and	watchOS	development	(Chapters	3-8)	is	only	possible	on	OS	X	with
Xcode;	it	is	not	possible	to	create	iOS	or	watchOS	applications	on	other	platforms.	Most
of	the	required	libraries	and	modules	for	iOS	development	are	not	available	as	part	of	the
open	source	version	of	Swift.

Xcode	can	be	installed	via	the	App	Store	as	a	free	download;	search	for	Xcode	in	the
search	box.	Alternatively,	Xcode	can	be	downloaded	from
https://developer.apple.com/xcode/downloads/,	which	is	referenced	from	the	iOS
Developer	Center	at	https://developer.apple.com/devcenter/ios/.

Once	Xcode	has	been	installed,	it	can	be	launched	from	/Applications/Xcode.app	or
from	Finder.	To	run	the	command	line-based	exercises,	Terminal	can	be	launched	from
/Applications/Utilities/Terminal.app,	and	if	Xcode	is	installed	successfully,	swift
can	be	launched	by	running	xcrun	swift.

The	iOS	applications	can	be	developed	and	tested	in	the	iOS	simulator,	which	comes
bundled	with	Xcode.	It	is	not	necessary	to	have	an	iOS	device	to	write	or	test	the	code.	If
you	want	to	run	the	code	on	your	own	iOS	device,	then	you	will	need	an	Apple	ID	to	sign
in,	but	the	application	will	be	limited	to	directly	connected	devices.	Similarly,	the	watch
application	can	be	tested	in	a	local	simulator	or	on	a	local	device.

Publishing	the	application	to	the	AppStore	requires	that	you	join	the	Apple	Developer
Program.	More	information	is	available	at	https://developer.apple.com/programs/.

https://swift.org/download/
https://developer.apple.com/xcode/downloads/
https://developer.apple.com/devcenter/ios/
https://developer.apple.com/programs/

Who	this	book	is	for
This	book	is	aimed	at	developers	who	are	interested	in	learning	the	Swift	programming
language,	either	using	the	open	source	version	of	Swift	on	Linux	or	the	version	bundled
with	Xcode	on	OS	X.	However,	after	Chapter	1,	Exploring	Swift,	the	remainder	of	the
chapters	use	Xcode	features	or	have	iOS	examples	which	can	only	be	used	on	OS	X	with
Xcode.	These	chapters	show	how	to	write	iOS	applications	on	OS	X	using	Swift.	No	prior
programming	experience	for	iOS	is	assumed,	though	a	basic	level	of	programming
experience	in	a	dynamically	or	statically	typed	programming	language	is	expected.	The
reader	will	be	familiar	with	navigating	and	using	Mac	OS	X	and,	in	the	cases	where
Terminal	commands	are	required,	the	developer	will	have	experience	of	simple	shell
commands	or	can	pick	it	up	quickly	from	the	examples	given.

Developers	familiar	with	Objective-C	will	know	many	of	the	frameworks	and	libraries
mentioned;	however,	existing	knowledge	of	Objective-C	and	its	frameworks	is	neither
necessary	nor	assumed.

The	sources	are	provided	in	a	GitHub	repository	at
https://github.com/alblue/com.packtpub.swift.essentials/,	and	they	can	be	used	to	switch
between	the	content	of	chapters	using	the	tags	in	the	repository.	Knowledge	of	Git	is
helpful	if	you	are	wanting	to	navigate	between	different	versions;	alternatively,	the	web-
based	interface	at	GitHub	may	be	used	instead.	It	is	highly	recommended	that	the	reader
becomes	familiar	with	Git	as	it	is	the	standard	version	control	system	for	Xcode	and	the	de
facto	standard	for	open	source	projects.	The	reader	is	invited	to	read	the	Git	topics	at	the
author’s	blog	http://alblue.bandlem.com/Tag/git/	if	they	are	unfamiliar	and	interested	in
learning	more.

https://github.com/alblue/com.packtpub.swift.essentials/
http://alblue.bandlem.com/Tag/git/

Trademarks
GitHub	is	a	trademark	of	GitHub	Inc.,	and	the	examples	in	this	book	have	not	been
endorsed,	reviewed,	or	approved	by	GitHub	Inc.	Mac	and	OS	X	are	trademarks	of	Apple
Inc.,	registered	in	the	U.S.	and	other	countries.	iOS	is	a	trademark	or	registered	trademark
of	Cisco	in	the	U.S.	and	other	countries	and	is	used	under	license.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	”
"hello".hasPrefix("he")	method	compiles	and	runs	successfully	on	OS	X	and	iOS.”

A	block	of	code	is	set	as	follows:

>	var	shopping	=	["Milk",	"Eggs",	"Coffee",]

shopping:	[String]	=	3	values	{

		[0]	=	"Milk"

		[1]	=	"Eggs"

		[2]	=	"Coffee"

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

func	setupView()	{

		contentMode	=	.Redraw

}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Xcode	documentation
can	be	searched	by	navigating	to	Help	|	Documentation	and	API	Reference.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Exploring	Swift
Apple	announced	Swift	at	WWDC	2014	as	a	new	programming	language	that	combines
experience	with	the	Objective-C	platform	and	advances	in	dynamic	and	statically	typed
languages	over	the	last	few	decades.	Before	Swift,	most	code	written	for	iOS	and	OS	X
applications	was	in	Objective-C,	a	set	of	object-oriented	extensions	to	the	C	programming
language.	Swift	aims	to	build	upon	patterns	and	frameworks	of	Objective-C	but	with	a
more	modern	runtime	and	automatic	memory	management.	In	December	2015,	Apple
open	sourced	Swift	at	https://swift.org	and	made	binaries	available	for	Linux	as	well	as
OS	X.	The	content	in	this	chapter	can	be	run	on	either	Linux	or	OS	X,	but	the	remainder
of	the	book	is	either	Xcode-specific	or	depends	on	iOS	frameworks	that	are	not	open
source.	Developing	iOS	applications	requires	Xcode	and	OS	X.

This	chapter	will	present	the	following	topics:

How	to	use	the	Swift	REPL	to	evaluate	Swift	code
The	different	types	of	Swift	literals
How	to	use	arrays	and	dictionaries
Functions	and	the	different	types	of	function	arguments
Compiling	and	running	Swift	from	the	command	line

https://swift.org

Open	source	Swift
Apple	released	Swift	as	an	open	source	project	in	December	2015,	hosted	at
https://github.com/apple/swift/	and	related	repositories.	Information	about	the	open	source
version	of	Swift	is	available	from	the	https://swift.org	site.	The	open-source	version	of
Swift	is	similar	from	a	runtime	perspective	on	both	Linux	and	OS	X;	however,	the	set	of
libraries	available	differ	between	the	two	platforms.

For	example,	the	Objective-C	runtime	was	not	present	in	the	initial	release	of	Swift	for
Linux;	as	a	result,	several	methods	that	are	delegated	to	Objective-C	implementations	are
not	available.	"hello".hasPrefix("he")	compiles	and	runs	successfully	on	OS	X	and
iOS	but	is	a	compile	error	in	the	first	Swift	release	for	Linux.	In	addition	to	missing
functions,	there	is	also	a	different	set	of	modules	(frameworks)	between	the	two	platforms.
The	base	functionality	on	OS	X	and	iOS	is	provided	by	the	Darwin	module,	but	on	Linux,
the	base	functionality	is	provided	by	the	Glibc	module.	The	Foundation	module,	which
provides	many	of	the	data	types	that	are	outside	of	the	base-collections	library,	is
implemented	in	Objective-C	on	OS	X	and	iOS,	but	on	Linux,	it	is	a	clean-room
reimplementation	in	Swift.	As	Swift	on	Linux	evolves,	more	of	this	functionality	will	be
filled	in,	but	it	is	worth	testing	on	both	OS	X	and	Linux	specifically	if	cross	platform
functionality	is	required.

Finally,	although	the	Swift	language	and	core	libraries	have	been	open	sourced,	this	does
not	apply	to	the	iOS	libraries	or	other	functionality	in	Xcode.	As	a	result,	it	is	not	possible
to	compile	iOS	or	OS	X	applications	from	Linux,	and	building	iOS	applications	and
editing	user	interfaces	is	something	that	must	be	done	in	Xcode	on	OS	X.

https://github.com/apple/swift/
https://swift.org

Getting	started	with	Swift
Swift	provides	a	runtime	interpreter	that	executes	statements	and	expressions.	Swift	is
open	source,	and	precompiled	binaries	can	be	downloaded	from
https://swift.org/download/	for	both	OS	X	and	Linux	platforms.	Ports	are	in	progress	to
other	platforms	and	operating	systems	but	are	not	supported	by	the	Swift	development
team.

The	Swift	interpreter	is	called	swift	and	on	OS	X	can	be	launched	using	the	xcrun
command	in	a	Terminal.app	shell:

$	xcrun	swift

Welcome	to	Swift	version	2.2!		Type	:help	for	assistance.

>

The	xcrun	command	allows	a	toolchain	command	to	be	executed;	in	this	case,	it	finds
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/swift

The	swift	command	sits	alongside	other	compilation	tools,	such	as	clang	and	ld,	and
permits	multiple	versions	of	the	commands	and	libraries	on	the	same	machine	without
conflicting.

On	Linux,	the	swift	binary	can	be	executed	provided	that	it	and	the	dependent	libraries
are	in	a	suitable	location.

The	Swift	prompt	displays	>	for	new	statements	and	.	for	a	continuation.	Statements	and
expressions	that	are	typed	into	the	interpreter	are	evaluated	and	displayed.	Anonymous
values	are	given	references	so	that	they	can	be	used	subsequently:

>	"Hello	World"

$R0:	String	=	"Hello	World"

>	3	+	4

$R1:	Int	=	7

>	$R0

$R2:	String	=	"Hello	World"

>	$R1

$R3:	Int	=	7

https://swift.org/download/

Numeric	literals
Numeric	types	in	Swift	can	represent	both	signed	and	unsigned	integral	values	with	sizes
of	8,	16,	32,	or	64	bits,	as	well	as	signed	32	or	64	bit	floating	point	values.	Numbers	can
include	underscores	to	provide	better	readability;	so,	68_040	is	the	same	as	68040:

>	3.141

$R0:	Double	=	3.141

>	299_792_458

$R1:	Int	=	299792458

>	-1

$R2:	Int	=	-1

>	1_800_123456

$R3:	Int	=	1800123456

Numbers	can	also	be	written	in	binary,	octal,	or	hexadecimal	using	prefixes	0b,	0o	(zero
and	the	letter	“o”)	or	0x.	Please	note	that	Swift	does	not	inherit	C’s	use	of	a	leading	zero
(0)	to	represent	an	octal	value,	unlike	Java	and	JavaScript	which	do.	Examples	include:

>	0b1010011

$R0:	Int	=	83

>	0o123

$R1:	Int	=	83

>	0123

$R2:	Int	=	123

>	0x7b

$R3:	Int	=	123

Floating	point	literals
There	are	three	floating	point	types	that	are	available	in	Swift	which	use	the	IEEE754
floating	point	standard.	The	Double	type	represents	64	bits	worth	of	data,	while	Float
stores	32	bits	of	data.	In	addition,	Float80	is	a	specialized	type	that	stores	80	bits	worth	of
data	(Float32	and	Float64	are	available	as	aliases	for	Float	and	Double,	respectively,
although	they	are	not	commonly	used	in	Swift	programs).

Some	CPUs	internally	use	80	bit	precision	to	perform	math	operations,	and	the	Float80
type	allows	this	accuracy	to	be	used	in	Swift.	Not	all	architectures	support	Float80
natively,	so	this	should	be	used	sparingly.

By	default,	floating	point	values	in	Swift	use	the	Double	type.	As	floating	point
representation	cannot	represent	some	numbers	exactly,	some	values	will	be	displayed	with
a	rounding	error;	for	example:

>	3.141

$R0:	Double	=	3.141

>	Float(3.141)

$R1:	Float	=	3.1400003

Floating	point	values	can	be	specified	in	decimal	or	hexadecimal.	Decimal	floating	point
uses	e	as	the	exponent	for	base	10,	whereas	hexadecimal	floating	point	uses	p	as	the
exponent	for	base	2.	A	value	of	AeB	has	the	value	A*10^B	and	a	value	of	0xApB	has	the
value	A*2^B.	For	example:

>	299.792458e6

$R0:	Double	=	299792458

>	299.792_458_e6

$R1:	Double	=	299792458

>	0x1p8

$R2:	Double	=	256

>	0x1p10

$R3:	Double	=	1024

>	0x4p10

$R4:	Double	=	4096

>	1e-1

$R5:	Double	=	0.10000000000000001

>	1e-2

$R6:	Double	=	0.01>	0x1p-1

$R7:	Double	=	0.5

>	0x1p-2

$R8:	Double	=	0.25

>	0xAp-1

$R9:	Double	=	5

String	literals
Strings	can	contain	escaped	characters,	Unicode	characters,	and	interpolated	expressions.
Escaped	characters	start	with	a	slash	(\)	and	can	be	one	of	the	following:

\\:	This	is	a	literal	slash	\
\0:	This	is	the	null	character
\':	This	is	a	literal	single	quote	'
\":	This	is	a	literal	double	quote	"
\t:	This	is	a	tab
\n:	This	is	a	line	feed
\r:	This	is	a	carriage	return
\u{NNN}:	This	is	a	Unicode	character,	such	as	the	Euro	symbol	\u{20AC},	or	a	smiley
\u{1F600}

An	interpolated	string	has	an	embedded	expression,	which	is	evaluated,	converted	into	a
String,	and	inserted	into	the	result:

>	"3+4	is	\(3+4)"

$R0:	String	=	"3+4	is	7"

>	3+4

$R1:	Int	=	7

>	"7	x	2	is	\($R1	*	2)"

$R2:	String	=	"7	x	2	is	14"

Variables	and	constants
Swift	distinguishes	between	variables	(which	can	be	modified)	and	constants	(which
cannot	be	changed	after	assignment).	Identifiers	start	with	an	underscore	or	alphabetic
character	followed	by	an	underscore	or	alphanumeric	character.	In	addition,	other	Unicode
character	points	(such	as	emoji)	can	be	used	although	box	lines	and	arrows	are	not
allowed;	consult	the	Swift	language	guide	for	the	full	set	of	allowable	Unicode	characters.
Generally,	Unicode	private	use	areas	are	not	allowed,	and	identifiers	cannot	start	with	a
combining	character	(such	as	an	accent).

Variables	are	defined	with	the	var	keyword,	and	constants	are	defined	with	the	let
keyword.	If	the	type	is	not	specified,	it	is	automatically	inferred:

>	let	pi	=	3.141

pi:	Double	=	3.141

>	pi	=	3

error:	cannot	assign	to	value:	'pi'	is	a	'let'	constant

note:	change	'let'	to	'var'	to	make	it	mutable

>	var	i	=	0

i:	Int	=	0

>	++i

$R0:	Int	=	1

Types	can	be	explicitly	specified.	For	example,	to	store	a	32	bit	floating	point	value,	the
variable	can	be	explicitly	defined	as	a	Float:

>	let	e:Float	=	2.718

e:	Float	=	2.71799994

Similarly,	to	store	a	value	as	an	unsigned	8	bit	integer,	explicitly	declare	the	type	as	UInt8:

>	let	ff:UInt8	=	255

ff:	UInt8	=	255

A	number	can	be	converted	to	a	different	type	using	the	type	initializer	or	a	literal	that	is
assigned	to	a	variable	of	a	different	type,	provided	that	it	does	not	underflow	or	overflow:

>	let	ooff	=	UInt16(ff)

ooff:	UInt16	=	255

>	Int8(255)

error:	integer	overflows	when	converted	from	'Int'	to	'Int8'

Int8(255)

^

>	UInt8(Int8(-1))

error:	negative	integer	cannot	be	converted	to	unsigned	type	'UInt8'

UInt8(Int8(-1))

^

Collection	types
Swift	has	three	collection	types:	Array,	Dictionary,	and	Set.	They	are	strongly	typed	and
generic,	which	ensures	that	the	values	of	types	that	are	assigned	are	compatible	with	the
element	type.	Collections	that	are	defined	with	var	are	mutable;	collections	defined	with
let	are	immutable.

The	literal	syntax	for	arrays	uses	[]	to	store	a	comma-separated	list:

>	var	shopping	=	["Milk",	"Eggs",	"Coffee",]

shopping:	[String]	=	3	values	{

		[0]	=	"Milk"

		[1]	=	"Eggs"

		[2]	=	"Coffee"

}

Literal	dictionaries	are	defined	with	a	comma-separated	[key:value]	format	for	entries:

>	var	costs	=	["Milk":1,	"Eggs":2,	"Coffee":3,]

costs:	[String	:	Int]	=	{

		[0]	=	{	key	=	"Coffee"	value	=	3	}

		[1]	=	{	key	=	"Milk"			value	=	1	}

		[2]	=	{	key	=	"Eggs"			value	=	2	}

}

Tip
For	readability,	array	and	dictionary	literals	can	have	a	trailing	comma.	This	allows
initialization	to	be	split	over	multiple	lines,	and	if	the	last	element	ends	with	a	trailing
comma,	adding	new	items	does	not	result	in	an	SCM	diff	to	the	previous	line.

Arrays	and	dictionaries	can	be	indexed	using	subscript	operators	that	are	reassigned	and
added	to:

>	shopping[0]

$R0:	String	=	"Milk"

>	costs["Milk"]

$R1:	Int?	=	1

>	shopping.count

$R2:	Int	=	3

>	shopping	+=	["Tea"]

>	shopping.count

$R3:	Int	=	4

>	costs.count

$R4:	Int	=	3

>	costs["Tea"]	=	"String"

error:	cannot	assign	a	value	of	type	'String'	to	a	value	of	type	'Int?'

>	costs["Tea"]	=	4

>	costs.count

$R5:	Int	=	4

Sets	are	similar	to	dictionaries;	the	keys	are	unordered	and	can	be	looked	up	efficiently.
However,	unlike	dictionaries,	keys	don’t	have	an	associated	value.	As	a	result,	they	don’t
have	array	subscripts,	but	they	do	have	the	insert,	remove,	and	contains	methods.	They

also	have	efficient	set	intersection	methods,	such	as	union	and	intersect.	They	can	be
created	from	an	array	literal	if	the	type	is	defined	or	using	the	set	initializer	directly:

>	var	shoppingSet:	Set	=	["Milk",	"Eggs",	"Coffee",]

>	//	same	as:	shoppingSet	=	Set(["Milk",	"Eggs",	"Coffee",])

>	shoppingSet.contains("Milk")

$R6:	Bool	=	true

>	shoppingSet.contains("Tea")

$R7:	Bool	=	false

>	shoppingSet.remove("Coffee")

$R8:	String?	=	"Coffee"

>	shoppingSet.remove("Tea")

$R9:	String?	=	nil

>	shoppingSet.insert("Tea")

>	shoppingSet.contains("Tea")

$R10:	Bool	=	true

Tip
When	creating	sets,	use	the	explicit	Set	constructor	as	otherwise	the	type	will	be	inferred
to	be	an	Array,	which	will	have	a	different	performance	profile.

Optional	types
In	the	previous	example,	the	return	type	of	costs["Milk"]	is	Int?	and	not	Int.	This	is	an
optional	type;	there	may	be	an	Int	value	or	it	may	be	empty.	For	a	dictionary	containing
elements	of	type	T,	subscripting	the	dictionary	will	have	an	Optional<T>	type,	which	can
be	abbreviated	as	T?	If	the	value	doesn’t	exist	in	the	dictionary,	then	the	returned	value
will	be	nil.	Other	object-oriented	languages,	such	as	Objective-C,	C++,	Java,	and	C#,
have	optional	types	by	default;	any	object	value	(or	pointer)	can	be	null.	By	representing
optionality	in	the	type	system,	Swift	can	determine	whether	a	value	really	has	to	exist	or
might	be	nil:

>	var	cannotBeNil:	Int	=	1

cannotBeNil:	Int	=	1

>	cannotBeNil	=	nil

error:	cannot	assign	a	value	of	type	'nil'	to	a	value	of	type	'Int'

cannotBeNil	=	nil

														^

>	var	canBeNil:	Int?	=	1

canBeNil:	Int?	=	1

>	canBeNil	=	nil

$R0:	Int?	=	nil

Optional	types	can	be	explicitly	created	using	the	Optional	constructor.	Given	a	value	x
of	type	X,	an	optional	X?	value	can	be	created	using	Optional(x).	The	value	can	be	tested
against	nil	to	find	out	whether	it	contains	a	value	and	then	unwrapped	with	opt!,	for
example:

>	var	opt	=	Optional(1)

opt:	Int?	=	1

>	opt	==	nil

$R1:	Bool	=	false

>	opt!

$R2:	Int	=	1

If	a	nil	value	is	unwrapped,	an	error	occurs:

>	opt	=	nil

>	opt!

fatal	error:	unexpectedly	found	nil	while	unwrapping	an	Optional	value

Execution	interrupted.	Enter	Swift	code	to	recover	and	continue.

Enter	LLDB	commands	to	investigate	(type	:help	for	assistance.)

Particularly	when	working	with	Objective-C	based	APIs,	it	is	common	for	values	to	be
declared	as	an	optional	although	they	are	always	expected	to	return	a	value.	It	is	possible
to	declare	such	variables	as	implicitly	unwrapped	optionals;	these	variables	behave	as
optional	values	(they	may	contain	nil),	but	when	the	value	is	accessed,	they	are
automatically	unwrapped	on	demand:

>	var	implicitlyUnwrappedOptional:Int!	=	1

implicitlyUnwrappedOptional:	Int!	=	1

>	implicitlyUnwrappedOptional	+	2

3

>	implicitlyUnwrappedOptional	=	nil

>	implicitlyUnwrappedOptional	+	2

fatal	error:	unexpectedly	found	nil	while	unwrapping	an	Optional	value

Tip
In	general,	implicitly	unwrapped	optionals	should	be	avoided	as	they	are	likely	to	lead	to
errors.	They	are	mainly	useful	for	interaction	with	existing	Objective-C	APIs	when	the
value	is	known	to	have	an	instance.

Nil	coalescing	operator
Swift	has	a	nil	coalescing	operator,	which	is	similar	to	Groovy’s	?:	operator	or	C#‘s	??
operator.	This	provides	a	means	to	specify	a	default	value	if	an	expression	is	nil:

>	1	??	2

$R0:	Int	=	1

>	nil	??	2

$R1:	Int	=	2

The	nil	coalescing	operator	can	also	be	used	to	unwrap	an	optional	value.	If	the	optional
value	is	present,	it	is	unwrapped	and	returned;	if	it	is	missing,	then	the	right-hand	side	of
the	expression	is	returned.	Similar	to	the	||	shortcut,	and	the	&&	operators,	the	right-hand
side	is	not	evaluated	unless	necessary:

>	costs["Tea"]	??	0

$R2:	Int	=	4

>	costs["Sugar"]	??	0

$R3:	Int	=	0

Conditional	logic
There	are	three	key	types	of	conditional	logic	in	Swift	(known	as	branch	statements	in	the
grammar):	the	if	statement,	the	switch	statement,	and	the	guard	statement.	Unlike	other
languages,	the	body	of	the	if	must	be	surrounded	with	braces	{};	and	if	typed	in	at	the
interpreter,	the	{	opening	brace	must	be	on	the	same	line	as	the	if	statement.	The	guard
statement	is	a	specialized	if	statement	for	use	with	functions	and	is	covered	in	the	section
on	functions	later	in	this	chapter.

If	statements
Conditionally	unwrapping	an	optional	value	is	so	common	that	a	specific	Swift	pattern
optional	binding	has	been	created	to	avoid	evaluating	the	expression	twice:

>	var	shopping	=	["Milk",	"Eggs",	"Coffee",	"Tea",]

>	var	costs	=	["Milk":1,	"Eggs":2,	"Coffee":3,	"Tea":4,]

>	var	cost	=	0

>	if	let	cc	=	costs["Coffee"]	{

.			cost	+=	cc

.	}

>	cost

$R0:	Int	=	3

The	if	block	only	executes	if	the	optional	value	exists.	The	definition	of	the	cc	constant
only	exists	for	the	body	of	the	if	block,	and	it	does	not	exist	outside	of	that	scope.
Furthermore,	cc	is	a	non-optional	type,	so	it	is	guaranteed	not	to	be	nil.

Note
Swift	1	only	allowed	a	single	let	assignment	in	an	if	block	causing	a	pyramid	of	nested
if	statements.	Swift	2	allows	multiple	comma-separated	let	assignments	in	a	single	if
statement.

>	if	let	cm	=	costs["Milk"],	let	ct	=	costs["Tea"]	{

.			cost	+=	cm	+	ct

.	}

>	cost

$R1:	Int	=	8

To	execute	an	alternative	block	if	the	item	cannot	be	found,	an	else	block	can	be	used:

>	if	let	cb	=	costs["Bread"]	{

.			cost	+=	cb

.	}	else	{

.			print("Cannot	find	any	Bread")

.	}

Cannot	find	any	Bread

Other	boolean	expressions	can	include	the	true	and	false	literals,	and	any	expression	that
conforms	to	the	BooleanType	protocol,	the	==	and	!=	equality	operators,	the	===	and	!==
identity	operators,	as	well	as	the	<,	<=,	>,	and	>=	comparison	operators.	The	is	type
operator	provides	a	test	to	see	whether	an	element	is	of	a	particular	type.

Tip
The	difference	between	the	equality	operator	and	the	identity	operator	is	relevant	for
classes	or	other	reference	types.	The	equality	operator	asks	Are	these	two	values
equivalent	to	each	other?,	whereas	the	identity	operator	asks	Are	these	two	references
equal	to	each	other?

There	is	a	boolean	operator	that	is	specific	to	Swift,	which	is	the	~=	pattern	match
operator.	Despite	the	name,	this	isn’t	anything	to	do	with	regular	expressions;	rather,	it’s	a

way	of	asking	whether	a	pattern	matches	a	particular	value.	This	is	used	in	the
implementation	of	the	switch	block,	which	is	covered	in	the	next	section.

As	well	as	the	if	statement,	there	is	a	ternary	if	expression	that	is	similar	to	other
languages.	After	a	condition,	a	question	mark	(?)	is	used	followed	by	an	expression	to	be
used	if	the	condition	is	true,	then	a	colon	(:)	followed	by	the	false	expression:

>	var	i	=	17

i:	Int	=	17

>	i	%	2	==	0	?	"Even"	:	"Odd"

$R0:	String	=	"Odd"

Switch	statements
Swift	has	a	switch	statement	that	is	similar	to	C	and	Java’s	switch.	However,	it	differs	in
two	important	ways.	Firstly,	case	statements	no	longer	have	a	default	fall-through
behavior	(so	there	are	no	bugs	introduced	by	missing	a	break	statement),	and	secondly,
the	value	of	the	case	statements	can	be	expressions	instead	of	values,	pattern	matching	on
type	and	range.	At	the	end	of	the	corresponding	case	statement,	the	evaluation	jumps	to
the	end	of	the	switch	block	unless	the	fallthrough	keyword	is	used.	If	no	case
statements	match,	the	default	statements	are	executed.

Note
A	default	statement	is	required	when	the	list	of	cases	is	not	exhaustive.	If	they	are	not,
the	compiler	will	give	an	error	saying	that	the	list	is	not	exhaustive	and	that	a	default
statement	is	required.

>	var	position	=	21

position:	Int	=	21

>	switch	position	{

.			case	1:	print("First")

.			case	2:	print("Second")

.			case	3:	print("Third")

.			case	4…20:	print("\(position)th")

.			case	position	where	(position	%	10)	==	1:

.					print("\(position)st")

.			case	let	p	where	(p	%	10)	==	2:

.					print("\(p)nd")

.			case	let	p	where	(p	%	10)	==	3:

.					print("\(p)rd")

.			default:	print("\(position)th")

.	}

21st

In	the	preceding	example,	the	expression	prints	out	First,	Second,	or	Third	if	the	position
is	1,	2,	or	3,	respectively.	For	numbers	between	4	and	20	(inclusive),	it	prints	out	the
position	with	a	th	ordinal.	Otherwise,	for	numbers	that	end	with	1,	it	prints	st;	for
numbers	that	end	with	2,	it	prints	nd,	and	for	numbers	that	end	with	3,	it	prints	rd.	For	all
other	numbers	it	prints	th.

The	4…20	range	expression	in	a	case	statement	represents	a	pattern.	If	the	value	of	the
expression	matches	that	pattern,	then	the	corresponding	statements	will	be	executed:

>	4…10	~=	4

$R0:	Bool	=	true

>	4…10	~=	21

$R1:	Bool	=	false

There	are	two	range	operators	in	Swift:	an	inclusive	or	closed	range,	and	an	exclusive	or
half-open	range.	The	closed	range	is	specified	with	three	dots;	so	1…12	will	give	a	list	of
integers	between	one	and	twelve.	The	half-open	range	is	specified	with	two	dots	and	a	less
than	operator;	so	1..<10	will	provide	integers	from	1	to	9	but	excluding	10.

The	where	clause	in	the	switch	block	allows	an	arbitrary	expression	to	be	evaluated
provided	that	the	pattern	matches.	These	are	evaluated	in	order,	in	the	sequence	they	are	in
the	source	file.	If	a	where	clause	evaluates	to	true,	then	the	corresponding	set	of
statements	will	be	executed.

The	let	variable	syntax	can	be	used	to	define	a	constant	that	refers	to	the	value	in	the
switch	block.	This	local	constant	can	be	used	in	the	where	clause	or	the	corresponding
statements	for	that	specific	case.	Alternatively,	variables	can	be	used	from	the	surrounding
scope.

Note
If	multiple	case	statements	need	to	match	the	same	pattern,	they	can	be	separated	with
commas	as	an	expression	list.	Alternatively,	the	fallthrough	keyword	can	be	used	to
allow	the	same	implementation	to	be	used	for	multiple	case	statements.

Iteration
Ranges	can	be	used	to	iterate	a	fixed	number	of	times,	for	example,	for	i	in	1…12.	To
print	out	these	numbers,	a	loop	such	as	the	following	can	be	used:

>	for	i	in	1…12	{

.			print("i	is	\(i)")

.	}

If	the	number	is	not	required,	then	an	underscore	(_)	can	be	used	as	a	hole	to	act	as	a
throwaway	value.	An	underscore	can	be	assigned	to	but	not	read:

>	for	_	in	1…12	{

.			print("Looping…")

.	}

However,	it	is	more	common	to	iterate	over	a	collection’s	contents	using	a	for	in	pattern.
This	steps	through	each	of	the	items	in	the	collection,	and	the	body	of	the	for	loop	is
executed	over	each	one:

>	var	shopping	=	["Milk",	"Eggs",	"Coffee",	"Tea",]

>	var	costs	=	["Milk":1,	"Eggs":2,	"Coffee":3,	"Tea":4,]

>	var	cost	=	0

>	for	item	in	shopping	{

.			if	let	itemCost	=	costs[item]	{

.					cost	+=	itemCost

.			}

.	}

>	cost

cost:	Int	=	10

To	iterate	over	a	dictionary,	it	is	possible	to	extract	the	keys	or	the	values	and	process	them
as	an	array:

>	Array(costs.keys)

$R0:	[String]	=	4	values	{

		[0]	=	"Coffee"

		[1]	=	"Milk"

		[2]	=	"Eggs"

		[3]	=	"Tea"

}

>	Array(costs.values)

$R1:	[Int]	=	4	values	{

		[0]	=	3

		[1]	=	1

		[2]	=	2

		[3]	=	4

}

Note
The	order	of	keys	in	a	dictionary	is	not	guaranteed;	as	the	dictionary	changes,	the	order
may	change.

Converting	a	dictionary’s	values	to	an	array	will	result	in	a	copy	of	the	data	being	made,

which	can	lead	to	poor	performance.	As	the	underlying	keys	and	values	are	of	a
LazyMapCollection	type,	they	can	be	iterated	over	directly:

>	costs.keys

$R2:	LazyMapCollection<[String	:	Int],	String>	=	{

		_base	=	{

				_base	=	4	key/value	pairs	{

						[0]	=	{	key	=	"Coffee"	value	=	3	}

						[1]	=	{	key	=	"Milk"			value	=	1	}

						[2]	=	{	key	=	"Eggs"			value	=	2	}

						[3]	=	{	key	=	"Tea"				value	=	4	}

				}

		_transform	=}

}

To	print	out	all	the	keys	in	a	dictionary,	the	keys	property	can	be	used	with	a	for	in	loop:

>	for	item	in	costs.keys	{

.			print(item)

.	}

Coffee

Milk

Eggs

Tea

Iterating	over	keys	and	values	in	a	dictionary
Traversing	a	dictionary	to	obtain	all	of	the	keys	and	then	subsequently	looking	up	values
will	result	in	searching	the	data	structure	twice.	Instead,	both	the	key	and	the	value	can	be
iterated	at	the	same	time,	using	a	tuple.	A	tuple	is	like	a	fixed-sized	array,	but	one	that
allows	assigning	pairs	(or	more)	of	values	at	a	time:

>	var	(a,b)	=	(1,2)

a:	Int	=	1

b:	Int	=	2

Tuples	can	be	used	to	iterate	pairwise	over	both	the	keys	and	values	of	a	dictionary:

>	for	(item,cost)	in	costs	{

.			print("The	\(item)	costs	\(cost)")

.	}

The	Coffee	costs	3

The	Milk	costs	1

The	Eggs	costs	2

The	Tea	costs	4

Both	Array	and	Dictionary	conform	to	the	SequenceType	protocol,	which	allows	them	to
be	iterated	with	a	for	in	loop.	Collections	(as	well	as	other	objects,	such	as	Range)	that
implement	SequenceType	have	a	generate	method,	which	returns	a	GeneratorType	that
allows	the	data	to	be	iterated	over.	It	is	possible	for	custom	Swift	objects	to	implement
SequenceType	to	allow	them	to	be	used	in	a	for	in	loop.

Iteration	with	for	loops
Although	the	most	common	use	of	the	for	operator	in	Swift	is	in	a	for	in	loop,	it	is	also
possible	(in	Swift	1	and	2)	to	use	a	more	traditional	form	of	the	for	loop.	This	has	an
initialization,	a	condition	that	is	tested	at	the	start	of	each	loop,	and	a	step	operation	that	is
evaluated	at	the	end	of	each	loop.	Although	the	parentheses	around	the	for	loop	are
optional,	the	braces	for	the	block	of	code	are	mandatory.

Note
It	has	been	proposed	that	both	the	traditional	for	loop	and	the	increment/decrement
operators	should	be	removed	from	Swift	3.	It	is	recommended	that	these	forms	of	loops	be
avoided	where	possible.

Calculating	the	sum	of	integers	between	1	and	10	can	be	performed	without	using	the
range	operator:

>	var	sum	=	0

.	for	var	i=0;	i<=10;	++i	{

.			sum	+=	i

.	}

sum:	Int	=	55

If	multiple	variables	need	to	be	updated	in	the	for	loop,	Swift	has	an	expression	list	that	is
a	set	of	comma-separated	expressions.	To	step	through	two	sets	of	variables	in	a	for	loop,
the	following	can	be	used:

>	for	var	i	=	0,j	=	10;	i<=10	&&	j	>=	0;	++i,--j	{

.			print("\(i),	\(j)")

.	}	

0,	10

1,	9

…

9,	1

10,	0

Tip
Apple	recommends	the	use	of	++i	instead	of	i++	(and	conversely,	--i	instead	of	i--)
because	they	will	return	the	result	of	i	after	the	operation,	which	may	be	the	expected
value.	As	noted	earlier,	these	operators	may	be	removed	in	a	future	version	of	Swift.

Break	and	continue
The	break	statement	leaves	the	innermost	loop	early,	and	control	jumps	to	the	end	of	the
loop.	The	continue	statement	takes	execution	to	the	top	of	the	innermost	loop	and	the
next	item.

To	break	or	continue	from	nested	loops,	a	label	can	be	used.	Labels	in	Swift	can	only	be
applied	to	a	loop	statement,	such	as	while	or	for.	A	label	is	introduced	by	an	identifier
and	a	colon	just	before	the	loop	statement:

>	var	deck	=	[1…13,	1…13,	1…13,	1…13]

>	suits:	for	suit	in	deck	{

.			for	card	in	suit	{

.					if	card	==	3	{

.							continue	//	go	to	next	card	in	same	suit

.					}

.					if	card	==	5	{

.							continue	suits	//	go	to	next	suit

.					}	

.					if	card	==	7	{

.							break	//	leave	card	loop

.					}

.					if	card	==	13	{

.							break	suits	//	leave	suit	loop

.					}

.			}	

.	}

Functions
Functions	can	be	created	using	the	func	keyword,	which	takes	a	set	of	arguments	and	a
body	of	statements.	The	return	statement	can	be	used	to	leave	a	function:

>	var	shopping	=	["Milk",	"Eggs",	"Coffee",	"Tea",]

>	var	costs	=	["Milk":1,	"Eggs":2,	"Coffee":3,	"Tea":4,]

>	func	costOf(items:[String],	_	costs:[String:Int])	->	Int	{

.			var	cost	=	0

.			for	item	in	items	{

.					if	let	ci	=	costs[item]	{

.							cost	+=	ci

.					}

.			}

.			return	cost

.	}

>	costOf(shopping,costs)

$R0:	Int	=	10

The	return	type	of	the	function	is	specified	after	the	arguments	with	an	arrow	(->).	If
missing,	the	function	cannot	return	a	value;	if	present,	the	function	must	return	a	value	of
that	type.

Note
The	underscore	(_)	on	the	front	of	the	costs	parameter	is	required	to	avoid	it	being	a
named	argument.	The	second	and	subsequent	arguments	in	Swift	functions	are	implicitly
named.	To	ensure	that	it	is	treated	as	a	positional	argument,	the	_	before	the	argument
name	is	required.

Functions	with	positional	arguments	can	be	called	with	parentheses,	such	as	the
costOf(shopping,costs)	call.	If	a	function	takes	no	arguments,	then	the	parentheses	are
still	required.

The	foo()	expression	calls	the	foo	function	with	no	argument.	The	foo	expression
represents	the	function	itself,	so	an	expression,	such	as	let	copyOfFoo	=	foo,	results	in	a
copy	of	the	function;	as	a	result,	copyOfFoo()	and	foo()	have	the	same	effect.

Named	arguments
Swift	also	supports	named	arguments,	which	can	either	use	the	name	of	the	variable	or	can
be	defined	with	an	external	parameter	name.	To	modify	the	function	to	support	calling
with	basket	and	prices	as	argument	names,	the	following	can	be	done:

>	func	costOf(basket	items:[String],	prices	costs:[String:Int])	->	Int	{

.			var	cost	=	0

.			for	item	in	items	{

.					if	let	ci	=	costs[item]	{

.							cost	+=	ci

.					}

.			}

.			return	cost

.	}

>	costOf(basket:shopping,	prices:costs)

$R1:	Int	=	10

This	example	defines	external	parameter	names	basket	and	prices	for	the	function.	The
function	signature	is	often	referred	to	as	costOf(basket:prices:)	and	is	useful	when	it
may	not	be	clear	what	the	arguments	are	for	(particularly	if	they	are	of	the	same	type).

Optional	arguments	and	default	values
Swift	functions	can	have	optional	arguments	by	specifying	default	values	in	the	function
definition.	When	the	function	is	called,	if	an	optional	argument	is	missing,	the	default
value	for	that	argument	is	used.

Note
An	optional	argument	is	one	that	can	be	omitted	in	the	function	call	rather	than	a	required
argument	that	takes	an	optional	value.	This	naming	is	unfortunate.	It	may	help	to	think	of
these	as	default	arguments	rather	than	optional	arguments.

A	default	parameter	value	is	specified	after	the	type	in	the	function	signature,	with	an
equals	(=)	and	then	the	expression.	This	expression	is	re-evaluated	each	time	the	function
is	called	without	a	corresponding	argument.

In	the	costOf	example,	instead	of	passing	the	value	of	costs	each	time,	it	could	be
defined	with	a	default	parameter:

>	func	costOf(items	items:[String],	costs:[String:Int]	=	costs)	->	Int	{

.			var	cost	=	0

.			for	item	in	items	{

.					if	let	ci	=	costs[item]	{

.							cost	+=	ci

.					}

.			}

.			return	cost

.	}

>	costOf(items:shopping)

$R2:	Int	=	10

>	costOf(items:shopping,	costs:costs)

$R3:	Int	=	10

Please	note	that	the	captured	costs	variable	is	bound	when	the	function	is	defined.

Note
To	use	a	named	argument	as	the	first	parameter	in	a	function,	the	argument	name	has	to	be
duplicated.	Swift	1	used	a	hash	(#)	to	represent	an	implicit	parameter	name,	but	this	was
removed	from	Swift	2.

Guards
It	is	a	common	code	pattern	for	a	function	to	require	arguments	that	meet	certain
conditions	before	the	function	can	run	successfully.	For	example,	an	optional	value	must
have	a	value	or	an	integer	argument	must	be	in	a	certain	range.

Typically,	the	pattern	to	implement	this	is	either	to	have	a	number	of	if	statements	that
break	out	of	the	function	at	the	top,	or	to	have	an	if	block	wrapping	the	entire	method
body:

if	card	<	1	||	card	>	13	{

		//	report	error

		return

}

//	or	alternatively:

if	card	>=	1	&&	card	<=	13	{

		//	do	something	with	card

}	else	{

		//	report	error

}

Both	of	these	approaches	have	drawbacks.	In	the	first	case,	the	condition	has	been
negated;	instead	of	looking	for	valid	values,	it’s	checking	for	invalid	values.	This	can
cause	subtle	bugs	to	creep	in;	for	example,	card	<	1	&&	card	>	13	would	never	succeed,
but	it	may	inadvertently	pass	a	code	review.	There’s	also	the	problem	of	what	happens	if
the	block	doesn’t	return	or	break;	it	could	be	perfectly	valid	Swift	code	but	still	include
errors.

In	the	second	case,	the	main	body	of	the	function	is	indented	at	least	one	level	in	the	body
of	the	if	statement.	When	multiple	conditions	are	required,	there	may	be	many	nested	if
statements,	each	with	their	own	error	handling	or	cleanup	requirements.	If	new	conditions
are	required,	then	the	body	of	the	code	may	be	indented	even	further,	leading	to	code
churn	in	the	repository	even	when	only	whitespace	has	changed.

Swift	2	adds	a	guard	statement,	which	is	conceptually	identical	to	an	if	statement,	except
that	it	only	has	an	else	clause	body.	In	addition,	the	compiler	checks	that	the	else	block
returns	from	the	function,	either	by	returning	or	by	throwing	an	exception:

>	func	cardName(value:Int)	->	String	{

.			guard	value	>=	1	&&	value	<=	13	else	{

.					return	"Unknown	card"

.			}

.			let	cardNames	=	[11:"Jack",12:"Queen",13:"King",1:"Ace",]

.			return	cardNames[value]	??	"\(value)"

.	}

The	Swift	compiler	checks	that	the	guard	else	block	leaves	the	function,	and	reports	a
compile	error	if	it	does	not.	Code	that	appears	after	the	guard	statement	can	guarantee	that
the	value	is	in	the	1…13	range	without	having	to	perform	further	tests.

The	guard	block	can	also	be	used	to	perform	optional	binding;	if	the	guard	condition	is	a
let	assignment	that	performs	an	optional	test,	then	the	code	that	is	subsequent	to	the
guard	statement	can	use	the	value	without	further	unwrapping:

>	func	firstElement(list:[Int])	->	String	{

.			guard	let	first	=	list.first	else	{

.					return	"List	is	empty"

.			}

.			return	"Value	is	\(first)"

.	}

As	the	first	element	of	an	array	is	an	optional	value,	the	guard	test	here	acquires	the
value	and	unwraps	it.	When	it	is	used	later	in	the	function,	the	unwrapped	value	is
available	for	use	without	requiring	further	unwrapping.

Multiple	return	values	and	arguments
So	far,	the	examples	of	functions	have	all	returned	a	single	type.	What	happens	if	there	is
more	than	one	return	result	from	a	function?	In	an	object-oriented	language,	the	answer	is
to	return	a	class;	however,	Swift	has	tuples,	which	can	be	used	to	return	multiple	values.
The	type	of	a	tuple	is	the	type	of	its	constituent	parts:

>	var	pair	=	(1,2)

pair:	(Int,	Int)	...

This	can	be	used	to	return	multiple	values	from	the	function;	instead	of	just	returning	one
value,	it	is	possible	to	return	a	tuple	of	values.

Note
Swift	also	has	in-out	arguments,	which	will	be	seen	in	the	Handling	errors	section	of
Chapter	6,	Parsing	Networked	Data.

Separately,	it	is	also	possible	to	take	a	variable	number	of	arguments.	A	function	can
easily	take	an	array	of	values	with	[],	but	Swift	provides	a	mechanism	to	allow	calling
with	multiple	arguments,	using	a	variadic	parameter,	which	is	denoted	as	an	ellipses	(…)
after	the	type.	The	value	can	then	be	used	as	an	array	in	the	function.

Note
Swift	1	only	allowed	the	variadic	argument	as	the	last	argument;	Swift	2	relaxed	that
restriction	to	allow	a	single	variadic	argument	to	appear	anywhere	in	the	function’s
parameters.

Taken	together,	these	two	features	allow	the	creation	of	a	minmax	function,	which	returns
both	the	minimum	and	maximum	from	a	list	of	integers:

>	func	minmax(numbers:Int…)	->	(Int,Int)	{

.			var	min	=	Int.max

.			var	max	=	Int.min

.			for	number	in	numbers	{

.					if	number	<	min	{

.							min	=	number

.					}

.					if	number	>	max	{

.							max	=	number

.					}

.			}

.			return	(min,max)

.	}

>	minmax(1,2,3,4)

$R0:	(Int,	Int)	=	{

		0	=	1

		1	=	4

}

The	numbers:Int…	argument	indicates	that	a	variable	number	of	arguments	can	be	passed
into	the	function.	Inside	the	function,	it	is	processed	as	an	ordinary	array;	in	this	case,

iterating	through	using	a	for	in	loop.

Note
Int.max	is	a	constant	representing	the	largest	Int	value,	and	Int.min	is	a	constant
representing	the	smallest	Int	value.	Similar	constants	exist	for	other	integral	types,	such
as	UInt8.max,	and	Int64.min.

What	if	no	arguments	are	passed	in?	If	run	on	a	64	bit	system,	then	the	output	will	be:

>	minmax()

$R1:	(Int,	Int)	=	{

		0	=	9223372036854775807

		1	=	-9223372036854775808

}

This	may	not	make	sense	for	a	minmax	function.	Instead	of	returning	an	error	value	or	a
default	value,	the	type	system	can	be	used.	By	making	the	tuple	optional,	it	is	possible	to
return	a	nil	value	if	it	doesn’t	exist,	or	a	tuple	if	it	does:

>	func	minmax(numbers:Int…)	->	(Int,Int)?	{

.			var	min	=	Int.max

.			var	max	=	Int.min

.			if	numbers.count	==	0	{

.					return	nil

.			}	else	{

.					for	number	in	numbers	{

.							if	number	<	min	{

.									min	=	number

.							}

.							if	number	>	max	{

.									max	=	number

.							}

.					}

.					return(min,max)

.			}

.	}

>	minmax()

$R2:	(Int,	Int)?	=	nil

>	minmax(1,2,3,4)

$R3:	(Int,	Int)?	=	(0	=	1,	1	=	4)

>	var	(minimum,maximum)	=	minmax(1,2,3,4)!

minimum:	Int	=	1

maximum:	Int	=	4

Returning	an	optional	value	allows	the	caller	to	determine	what	should	happen	in	cases
where	the	maximum	and	minimum	are	not	present.

Tip
If	a	function	does	not	always	have	a	valid	return	value,	use	an	optional	type	to	encode	that
possibility	into	the	type	system.

Returning	structured	values
A	tuple	is	an	ordered	set	of	data.	The	entries	in	the	tuple	are	ordered,	but	it	can	quickly
become	unclear	as	to	what	data	is	stored,	particularly	if	they	are	of	the	same	type.	In	the
minmax	tuple,	it	is	not	clear	which	value	is	the	minimum	and	which	value	is	the	maximum,
and	this	can	lead	to	subtle	programming	errors	later	on.

A	structure	(struct)	is	like	a	tuple	but	with	named	values.	This	allows	members	to	be
accessed	by	name	instead	of	by	position,	leading	to	fewer	errors	and	greater	transparency.
Named	values	can	be	added	to	tuples	as	well;	in	essence,	tuples	with	named	values	are
anonymous	structures.

Tip
Structs	are	passed	in	a	copy-by-value	manner	like	tuples.	If	two	variables	are	assigned	the
same	struct	or	tuple,	then	changes	to	one	do	not	affect	the	values	of	another.

A	struct	is	defined	with	the	struct	keyword	and	has	variables	or	values	in	the	body:

>	struct	MinMax	{

.			var	min:Int

.			var	max:Int

.	}

This	defines	a	MinMax	type,	which	can	be	used	in	place	of	any	of	the	types	that	are	seen	so
far.	It	can	be	used	in	the	minmax	function	to	return	a	struct	instead	of	a	tuple:

>	func	minmax(numbers:Int…)	->	MinMax?	{

.			var	minmax	=	MinMax(min:Int.max,	max:Int.min)

.			if	numbers.count	==	0	{

.					return	nil

.			}	else	{

.					for	number	in	numbers	{

.							if	number	<	minmax.min	{

.									minmax.min	=	number

.							}

.							if	number	>	minmax.max	{

.									minmax.max	=	number

.							}

.					}

.					return	minmax

.			}

.	}

The	struct	is	initialized	with	a	type	initializer;	if	MinMax()	is	used,	then	the	default
values	for	each	of	the	structure	types	are	given	(based	on	the	structure	definition),	but
these	can	be	overridden	explicitly	if	desired	with	MinMax(min:-10,max:11).	For	example,
if	the	MinMax	struct	is	defined	as	struct	MinMax	{	var	min:Int	=	Int.max;	var
max:Int	=	Int.min	},	then	MinMax()	will	return	a	structure	with	the	appropriate
minimum	and	maximum	values	filled	in.

Note

When	a	structure	is	initialized,	all	the	non-optional	fields	must	be	assigned.	They	can	be
passed	in	as	named	arguments	in	the	initializer	or	specified	in	the	structure	definition.

Swift	also	has	classes;	these	are	covered	in	the	Swift	classes	section	in	the	next	chapter.

Error	handling
In	the	original	Swift	release,	error	handling	consisted	of	either	returning	a	Bool	or	an
optional	value	from	function	results.	This	tended	to	work	inconsistently	with	Objective-C,
which	used	an	optional	NSError	pointer	on	various	calls	that	was	set	if	a	condition	had
occurred.

Swift	2	adds	an	exception-like	error	model,	which	allows	code	to	be	written	in	a	more
compact	way	while	ensuring	that	errors	are	handled	accordingly.	Although	this	isn’t
implemented	in	quite	the	same	way	as	C++	exception	handling,	the	semantics	of	the	error
handling	are	quite	similar.

Errors	can	be	created	using	a	new	throw	keyword,	and	errors	are	stored	as	a	subtype	of
ErrorType.	Although	swift	enum	values	(covered	in	Chapter	3,	Creating	an	iOS	Swift	App)
are	often	used	as	error	types,	struct	values	can	be	used	as	well.

Exception	types	can	be	created	as	subtypes	of	ErrorType	by	appending	the	supertype	after
the	type	name:

>	struct	Oops:ErrorType	{

.			let	message:String

.	}

Exceptions	are	thrown	using	the	throw	keyword	and	creating	an	instance	of	the	exception
type:

>	throw	Oops(message:"Something	went	wrong")

$E0:	Oops	=	{

		message	=	"Something	went	wrong"

}

Note
The	REPL	displays	exception	results	with	the	$E	prefix;	ordinary	results	are	displayed
with	the	$R	prefix.

Throwing	errors
Functions	can	declare	that	they	return	an	error	using	the	throws	keyword	before	the	return
type,	if	any.	The	previous	cardName	function,	which	returned	a	dummy	value	if	the
argument	was	out	of	range,	can	be	upgraded	to	throw	an	exception	instead	by	adding	the
throws	keyword	before	the	return	type	and	changing	the	return	to	a	throw:

>	func	cardName(value:Int)	throws	->	String	{

.			guard	value	>=	1	&&	value	<=	13	else	{

.					throw	Oops(message:"Unknown	card")

.			}

.			let	cardNames	=	[11:"Jack",12:"Queen",13:"King",1:"Ace",]

.			return	cardNames[value]	??	"\(value)"

.	}

When	the	function	is	called	with	a	real	value,	the	result	is	returned;	when	it	is	passed	an
invalid	value,	an	exception	is	thrown	instead:

>	cardName(1)

$R1:	String	=	"Ace"

>	cardName(15)

$E2:	Oops	=	{

		message	=	"Unknown	card"

}

When	interfacing	with	Objective-C	code,	methods	that	take	an	NSError**	argument	are
automatically	represented	in	Swift	as	methods	that	throw.	In	general,	any	method	whose
arguments	ends	in	NSError**	is	treated	as	throwing	an	exception	in	Swift.

Note
Exception	throwing	in	C++	and	Objective-C	is	not	as	performant	as	exception	handling	in
Swift	because	the	latter	does	not	perform	stack	unwinding.	As	a	result,	exception	throwing
in	Swift	is	equivalent	(from	a	performance	perspective)	to	dealing	with	return	values.
Expect	the	Swift	library	to	evolve	in	the	future	towards	a	throws-based	means	of	error
detection	and	away	from	Objective-C’s	use	of	**NSError	pointers.

Catching	errors
The	other	half	of	exception	handling	is	the	ability	to	catch	errors	when	they	occur.	As	with
other	languages,	Swift	now	has	a	try/catch	block	that	can	be	used	to	handle	error
conditions.	Unlike	other	languages,	the	syntax	is	a	little	different;	instead	of	a	try/catch
block,	there	is	a	do/catch	block,	and	each	expression	that	may	throw	an	error	is	annotated
with	its	own	try	statement:

>	do	{	

.			let	name	=	try	cardName(15)

.			print("You	chose	\(name)")

.	}	catch	{

.			print("You	chose	an	invalid	card")

.	}

When	the	preceding	code	is	executed,	it	will	print	out	the	generic	error	message.	If	a
different	choice	is	given,	then	it	will	run	the	successful	path	instead.

It’s	possible	to	capture	the	error	object	and	use	it	in	the	catch	block:

.	}	catch	let	e	{

.			print("There	was	a	problem	\(e)")

.	}

Tip
The	default	catch	block	will	bind	to	a	variable	called	error	if	not	specified

Both	of	these	two	preceding	examples	will	catch	any	errors	thrown	from	the	body	of	the
code.

Note
It’s	possible	to	catch	explicitly	based	on	type	if	the	type	is	an	enum	that	is	using	pattern
matching,	for	example,	catch	Oops(let	message).	However,	as	this	does	not	work	for
struct	values,	it	cannot	be	tested	here.	Chapter	3,	Creating	an	iOS	Swift	App	introduces
enum	types.

Sometimes	code	will	always	work,	and	there	is	no	way	it	can	fail.	In	these	cases,	it’s
cumbersome	to	have	to	wrap	the	code	with	a	do/try/catch	block	when	it	is	known	that
the	problem	can	never	occur.	Swift	provides	a	short-cut	for	this	using	the	try!	statement,
which	catches	and	filters	the	exception:

>	let	ace	=	try!	cardName(1)

ace:	String	=	"Ace"

If	the	expression	really	does	fail,	then	it	translates	to	a	runtime	error	and	halts	the
program:

>	let	unknown	=	try!	cardName(15)

Fatal	error:	'try!'	expression	unexpectedly	raised	an	error:	Oops(message:	

"Unknown	card")

Tip
Using	try!	is	not	generally	recommended;	if	an	error	occurs	then	the	program	will	crash.
However,	it	is	often	used	with	user	interface	codes	as	Objective-C	has	a	number	of
optional	methods	and	values	that	are	conventionally	known	not	to	be	nil,	such	as	the
reference	to	the	enclosing	window.

A	better	approach	is	to	use	try?,	which	translates	the	expression	into	an	optional	value:	if
evaluation	succeeds,	then	it	returns	an	optional	with	a	value;	if	evaluation	fails,	then	it
returns	a	nil	value:

>	let	ace	=	try?	cardName(1)

ace:	String?	=	"Ace"

>	let	unknown	=	try?	cardName(15)

unknown:	String?	=	nil

This	is	handy	for	use	in	the	if	let	or	guard	let	constructs,	to	avoid	having	to	wrap	in	a
do/catch	block:

>	if	let	card	=	try?	cardName(value)	{

.			print("You	chose:	\(card)")

.	}

Cleaning	up	after	errors
It	is	common	to	have	a	function	that	needs	to	perform	some	cleanup	before	the	function
returns,	regardless	of	whether	the	function	has	completed	successfully	or	not.	An	example
would	be	working	with	files;	at	the	start	of	the	function	the	file	may	be	opened,	and	by	the
end	of	the	function	it	should	be	closed	again,	whether	or	not	an	error	occurs.

A	traditional	way	of	handling	this	is	to	use	an	optional	value	to	hold	the	file	reference,	and
at	the	end	of	the	method	if	it	is	not	nil,	then	the	file	is	closed.	However,	if	there	is	the
possibility	of	an	error	occurring	during	the	method’s	execution,	there	needs	to	be	a
do/catch	block	to	ensure	that	the	cleanup	is	correctly	called,	or	a	set	of	nested	if
statements	that	are	only	executed	if	the	file	is	successful.

The	downside	with	this	approach	is	that	the	actual	body	of	the	code	tends	to	be	indented
several	times	each	with	different	levels	of	error	handling	and	recovery	at	the	end	of	the
method.	The	syntactic	separation	between	where	the	resource	is	acquired	and	where	the
resource	is	cleaned	up	can	lead	to	bugs.

Swift	has	a	defer	statement,	which	can	be	used	to	register	a	block	of	code	to	be	run	at	the
end	of	the	function	call.	This	block	is	run	regardless	of	whether	the	function	returns
normally	(with	the	return	statement)	or	if	an	error	occurs	(with	the	throw	statement).
Deferred	blocks	are	executed	in	reverse	order	of	execution,	for	example:

>	func	deferExample()	{

.			defer	{	print("C")	}

.			print("A")

.			defer	{	print("B")	}

.	}

>	deferExample()

A

B

C

Please	note	that	if	a	defer	statement	is	not	executed,	then	the	block	is	not	executed	at	the
end	of	the	method.	This	allows	a	guard	statement	to	leave	the	function	early,	while
executing	the	defer	statements	that	have	been	added	so	far:

>	func	deferEarly()	{	

.			defer	{	print("C")	}	

.			print("A")	

.			return	

.			defer	{	print("B")	}	//	not	executed

.	}				

>	deferEarly()

A

C

Command-line	Swift
As	Swift	can	be	interpreted,	it	is	possible	to	use	it	in	shell	scripts.	By	setting	the	interpreter
to	swift	with	a	hashbang,	the	script	can	be	executed	without	requiring	a	separate
compilation	step.	Alternatively,	Swift	scripts	can	be	compiled	to	a	native	executable	that
can	be	run	without	the	overhead	of	the	interpreter.

Interpreted	Swift	scripts
Save	the	following	as	hello.swift:

#!/usr/bin/env	xcrun	swift

print("Hello	World")

Tip
In	Linux,	the	first	line	should	point	to	the	location	of	the	swift	executable,	such	as
#!/usr/bin/swift.

After	saving,	make	the	file	executable	by	running	chmod	a+x	hello.swift.	The	program
can	then	be	run	by	typing	./hello.swift,	and	the	traditional	greeting	will	be	seen:

Hello	World

Arguments	can	be	passed	from	the	command	line	and	interrogated	in	the	process	using	the
Process	class	through	the	arguments	constant.	As	with	other	Unix	commands,	the	first
element	(0)	is	the	name	of	the	process	executable;	the	arguments	that	are	passed	from	the
command	line	start	from	one	(1).

The	program	can	be	terminated	using	the	exit	function;	however,	this	is	defined	in	the
operating	system	libraries	and	so	it	needs	to	be	imported	in	order	to	call	this	function.
Modules	in	Swift	correspond	to	Frameworks	in	Objective-C	and	give	access	to	all
functions	that	are	defined	as	public	API	in	the	module.	The	syntax	to	import	all	elements
from	a	module	is	import	module	although	it’s	also	possible	to	import	a	single	function
using	import	func	module.functionName.

Note
Not	all	foundation	libraries	are	implemented	for	Linux,	which	results	in	some	differences
of	behavior.	In	addition,	the	underlying	module	for	the	base	functionality	is	Darwin	on	iOS
and	OS	X,	and	is	Glibc	on	Linux.	These	can	also	be	accessed	with	import	Foundation,
which	will	include	the	appropriate	operating	system	module.

A	Swift	program	to	print	arguments	in	uppercase	can	be	implemented	as	a	script:

#!/usr/bin/env	xcrun	swift

import	func	Darwin.exit

#	import	func	Glibc.exit	#	for	Linux

let	args	=	Process.arguments[1..<Process.arguments.count]

for	arg	in	args	{

		print("\(arg.uppercaseString)")

}

exit(0)

Running	this	with	hello	world	results	in	the	following:

$./upper.swift	hello	world

HELLO

WORLD

Conventionally,	the	entry	point	to	Swift	programs	is	via	a	script	called	main.swift.	If

starting	a	Swift-based	command-line	application	project	in	Xcode,	a	main.swift	file	will
be	created	automatically.	Scripts	do	not	need	to	have	a	.swift	extension;	for	example,	the
previous	example	could	be	called	upper	and	it	would	still	work.

Compiled	Swift	scripts
While	interpreted	Swift	scripts	are	useful	for	experimenting	and	writing,	each	time	the
script	is	started,	it	is	interpreted	using	the	Swift	compiler	and	then	executed.	For	simple
scripts	(such	as	converting	arguments	to	upper	case),	this	can	be	a	large	proportion	of	the
script’s	execution	time.

To	compile	a	Swift	script	into	a	native	executable,	use	the	swiftc	command	with	the	-o
output	flag	to	specify	a	file	to	write	to.	This	will	then	generate	an	executable	that	does
exactly	the	same	as	the	interpreted	script,	only	much	faster.	The	time	command	can	be
used	to	compare	the	running	time	of	the	interpreted	and	compiled	versions:

$	time	./upper.swift	hello	world				#	Interpreted

HELLO

WORLD

real		0m0.145s

$	xcrun	swiftc	-o	upper	upper.swift	#	Compile	step

$	time	./upper	hello	world										#	Compiled

HELLO

WORLD

real		0m0.012s

Of	course,	the	numbers	will	vary,	and	the	initial	step	only	happens	once,	but	startup	is	very
lightweight	in	Swift.	The	numbers	are	not	meant	to	be	taken	in	magnitude	but	rather	as
relative	to	each	other.

The	compile	step	can	also	be	used	to	link	together	many	individual	Swift	files	into	one
executable,	which	helps	create	a	more	organized	project;	Xcode	will	encourage	having
multiple	Swift	files	as	well.

Summary
The	Swift	interpreter	is	a	great	way	of	learning	how	to	program	in	Swift.	It	allows
expressions,	statements,	and	functions	to	be	created	and	tested	along	with	a	command-line
history	that	provides	editing	support.	The	basic	collection	types	of	arrays	and	collections,
the	standard	data	types,	such	as	strings	and	numbers,	optional	values,	and	structures,	were
presented.	Control	flow	and	functions	with	positional,	named,	and	variadic	arguments,
along	with	default	values	were	also	presented.	Finally,	the	ability	to	write	Swift	scripts	and
run	them	from	the	command	line	was	also	demonstrated.

The	next	chapter	will	look	at	the	other	way	of	working	with	Swift	code	that	is	available	on
OS	X,	through	the	Xcode	playground.

Chapter	2.	Playing	with	Swift
Xcode	ships	with	both	a	command-line	interpreter	(which	was	covered	in	Chapter	1,
Exploring	Swift)	and	a	graphical	interface	called	playground	that	can	be	used	to	prototype
and	test	Swift	code	snippets.	Code	that	is	typed	into	the	playground	is	compiled	and
executed	interactively,	which	permits	a	fluid	style	of	development.	In	addition,	the	user
interface	can	present	a	graphical	view	of	variables	as	well	as	a	timeline,	which	can	show
how	loops	are	executed.	Finally,	playgrounds	can	mix	and	match	code	and	documentation
leading	to	the	possibility	of	providing	example	code	as	playgrounds	and	using
playgrounds	to	learn	how	to	use	existing	APIs	and	frameworks.

This	chapter	will	present	the	following	topics:

How	to	create	a	playground
Displaying	values	in	the	timeline
Presenting	objects	with	Quick	Look
Running	asynchronous	code
Using	playground’s	live	documentation
Creating	multiple	pages	in	a	playground
Limitations	of	playgrounds

Getting	started	with	playgrounds
When	Xcode	is	started,	the	welcome	screen	is	displayed	with	various	options,	including
the	ability	to	create	a	playground.	The	welcome	screen	can	be	shown	with	Command	+
Shift	+	1,	or	by	navigating	to	Window	|	Welcome	to	Xcode:

Creating	a	playground
Using	either	the	Xcode	welcome	screen	(which	can	be	opened	by	navigating	to	Window	|
Welcome	to	Xcode)	or	by	navigating	to	File	|	New	|	Playground,	create	MyPlayground	in
a	suitable	location	targeting	iOS.	Creating	the	playground	on	the	Desktop	will	allow	easy
access	to	testing	Swift	code,	but	it	can	be	located	anywhere	on	the	filesystem.

Playgrounds	can	be	targeted	either	towards	OS	X	applications	or	towards	iOS
applications.	This	can	be	configured	when	the	playground	is	created,	or	by	switching	to
the	Utilities	view	by	navigating	to	View	|	Utilities	|	Show	File	Inspector	or	pressing
Command	+	Option	+	1	and	changing	the	dropdown	from	OS	X	to	iOS	or	vice	versa:

When	initially	created,	the	playground	will	have	a	code	snippet	that	looks	as	follows:

//	Playground	-	noun:	a	place	where	people	can	play

import	UIKit

var	str	=	"Hello,	playground"

Tip
Playgrounds	targeting	OS	X	will	read	import	Cocoa	instead.

On	the	right-hand	side,	a	column	will	display	the	value	of	the	code	when	each	line	is
executed.	By	grabbing	the	vertical	divider	between	the	Swift	code	and	the	output,	the
output	can	be	resized	to	show	the	full	value	of	the	text:

Alternatively,	by	moving	the	mouse	over	the	right-hand	side	of	the	playground,	the	Quick
Look	icon	(the	eye	symbol)	will	appear.	If	this	is	clicked,	a	pop-up	box	will	show	the	full
details:

Viewing	the	console	output
The	console	output	can	be	viewed	in	the	Debug	Area.	This	can	be	shown	by	pressing
Command	+	Shift	+	Y	or	by	navigating	to	View	|	Debug	Area	|	Show	Debug	Area.	This
will	show	the	result	of	any	print	statements	that	are	executed	in	the	code.

Add	a	simple	for	loop	to	the	playground:

for	i	in	1…12	{

		print("I	is	\(i)")

}

The	output	is	shown	in	the	debug	area	below:

Viewing	the	timeline
The	timeline	shows	what	the	values	were	at	a	particular	time.	In	the	case	of	the	print	loop
that	was	shown	previously,	the	output	was	displayed	in	the	Debug	Area.	However,	it	is
possible	to	use	the	playground	to	inspect	the	value	of	an	expression	on	a	line	without
having	to	display	it	directly.	In	addition,	results	can	be	graphed	to	show	how	these	values
change	over	time.	The	value	of	the	graph	is	shown	in-line	with	the	source	code	unlike
previous	versions	of	Xcode,	which	displayed	them	on	the	right.

Add	another	line	above	the	print	statement	to	calculate	the	result	of	executing	an
expression,	(i-6)*(i-7),	and	store	it	in	a	j	constant.

On	the	line	next	to	the	variable	definition,	click	on	the	add	variable	history	(+)	symbol,
which	is	in	the	right-hand	column	(visible	when	the	mouse	moves	over	that	area).	After	it
is	clicked	,	it	will	change	to	an	(o)	symbol	and	display	the	graph	on	the	right-hand	side.
This	can	be	done	for	the	print	statement	as	well:

for	i	in	1…12	{

		let	j	=	(i-7)	*	(i-6)

		print("I	is	\(i)")

}

It	is	possible	to	display	a	timeline	slider	at	the	bottom	of	the	window	by	selecting	the
Show	Timeline	checkbox	in	the	Utilities	area.	This	adds	a	timeline	slider	at	the	bottom,
with	a	red	tick	mark,	and	this	can	be	used	to	slide	the	vertical	bar	to	see	the	exact	value	at
certain	points:

To	display	several	values	at	once,	use	additional	variables	to	hold	the	values	and	display
them	in	the	timeline	as	well:

for	i	in	1…12	{

		let	j	=	(i-7)	*	(i-6)

		let	k	=	i

		print("I	is	\(i)")

}

When	the	timeline	slider	is	dragged,	both	values	will	be	displayed	at	the	same	time.

Displaying	objects	with	Quick	Look
The	playground	timeline	can	display	objects	as	well	as	numbers	and	simple	strings.	It	is
possible	to	load	and	view	images	in	a	playground	using	classes,	such	as	UIImage	(or
NSImage	on	OS	X).	These	are	known	as	Quick	Look	supported	objects,	and	by	default
include:

String	(attributed	and	unattributed)
Views
Class	and	struct	types	(members	are	shown)
Colors

Tip
It	is	possible	to	build	support	for	custom-based	types	into	Swift	by	implementing	a
debugQuickLookObject	method	that	returns	a	graphical	view	of	the	data.

Showing	colored	labels
To	show	a	colored	label,	a	color	needs	to	be	obtained	first.	When	building	against	iOS,
this	will	be	UIColor;	but	when	building	against	OS	X,	it	will	be	NSColor.	The	methods
and	types	are	largely	equivalent	between	the	two,	but	this	chapter	will	demonstrate	using
iOS	types.

A	color	can	be	acquired	with	an	initializer	or	using	one	of	the	predefined	colors	that	are
exposed	in	Swift	using	methods,	as	follows:

import	UIKit	//	AppKit	for	OS	X

let	blue	=	UIColor.blueColor()	//	NSColor.blueColor()	for	OS	X

Tip
In	Xcode	7.1	and	above,	a	color	can	be	dragged	in	from	a	color	picker	into	the	Swift	code
directly	where	it	will	be	translated	as	a	color	initializer	with	the	specific	hardcoded	color
values.

The	color	can	be	used	as	the	textColor	of	a	UILabel,	which	displays	a	text	string	in	a
particular	size	and	color.	The	UILabel	needs	a	size,	which	is	represented	by	a	CGRect,	and
this	can	be	defined	with	an	x	and	y	position	along	with	a	width	and	height.	The	x	and	y
positions	are	not	relevant	for	playgrounds,	and	so,	they	can	be	left	as	zero:

let	size	=	CGRect(x:0,y:0,width:200,height:100)

let	label	=	UILabel(frame:size)//	NSLabel	for	OS	X

Finally,	the	text	needs	to	be	displayed	in	blue	and	with	a	larger	font	size:

label.text	=	str	//	from	the	first	line	of	the	code

label.textColor	=	blue

label.font	=	UIFont.systemFontOfSize(24)	//	NSFont	for	OS	X

When	the	playground	is	run,	the	color	and	font	are	displayed	in	the	timeline	and	are
available	for	quick	view.	Even	though	the	same	UILabel	instance	is	being	shown,	the
timeline	and	the	quick	look	values	show	a	snapshot	of	the	state	of	the	object	at	each	point,
making	it	easy	to	see	what	has	happened	between	changes:

Showing	images
Images	can	be	created	and	loaded	into	a	playground	using	the	UIImage	constructor	(or
NSImage	on	OS	X).	Both	take	a	named	argument,	which	is	used	to	find	and	load	an	image
with	the	given	name	from	the	playground’s	Resources	folder.

To	copy	a	file	into	the	playground’s	Resources	folder,	first	download	an	image,	such	as
http://alblue.bandlem.com/images/AlexHeadshotLeft.png,	and	save	it	as	alblue.png
in	a	suitable	location	such	as	the	Desktop.	In	order	to	add	it	to	the	playground,	the	project
navigator	needs	to	be	opened	with	Command	+	1	or	by	navigating	to	View	|	Navigators	|
Show	Project	Navigator.	Once	opened,	the	file	can	be	dragged	and	dropped	into	the
Resources	element	in	the	tree:

Tip
Xcode	7.1	allows	the	image	to	be	dragged	directly	into	the	source	code	area.	It	will
populate	a	UIImage	(or	NSImage)	as	well	as	copy	it	to	the	resources	area.	Xcode	7.0	and
below	will	just	copy	the	full	file	path	of	the	source	if	dragged	in.

Alternatively,	to	download	a	logo	with	the	command	line,	open	Terminal.app	and	run	the
following	commands:

$	mkdir	MyPlayground.playground/Resources

$	curl	http://alblue.bandlem.com/images/AlexHeadshotLeft.png	>	

MyPlayground.playground/Resources/alblue.png

An	image	can	now	be	created	in	swift	using	the	following:

let	alblue	=	UIImage(named:"alblue")

Tip
The	location	of	the	Resources	that	are	associated	with	a	playground	can	be	seen	in	the
File	Inspector	utilities	view,	which	can	be	opened	by	pressing	Command	+	Option	+	1.

The	created	image	can	be	displayed	using	Quick	Look	or	by	adding	it	to	the	value
history:

Tip
It	is	possible	to	use	a	URL	to	acquire	an	image	by	creating	an	NSURL	with
NSURL(string:"http://...")!,	then	loading	the	contents	of	the	URL	with
NSData(contentsOfURL:)!,	and	finally,	using	UIImage(data:)	to	convert	it	to	an	image.
However,	as	Swift	will	keep	re-executing	the	code	over	and	over	again,	the	URL	will	be
hit	multiple	times	in	a	single	debugging	session	without	caching.	It	is	recommended	that
NSData(contentsOfURL:)	and	similar	networking	classes	be	avoided	in	playgrounds.

Advanced	techniques
The	playground	has	its	own	XCPlayground	framework,	which	can	be	used	to	perform
certain	tasks.	For	example,	individual	values	can	be	captured	during	loops	for	later
analysis.	It	also	permits	asynchronous	code	to	continue	to	execute	once	the	playground
has	finished	running.

Capturing	values	explicitly
It	is	possible	to	explicitly	add	values	to	the	timeline	by	importing	the	XCPlayground
framework	and	using	XCPlaygroundPage.currentPage,	and	calling	captureValue	with	a
value	that	should	be	displayed	in	the	timeline.	This	takes	an	identifier,	which	is	used	both
as	the	title	and	to	group	related	data	values	in	the	same	series.	When	the	value	history
button	is	selected,	it	essentially	inserts	a	call	to	captureValue	with	the	value	of	the
expression	as	the	identifier.

For	example,	to	add	the	logo	to	the	timeline	automatically:

import	XCPlayground

let	page	=	XCPlaygroundPage.currentPage

let	alblue	=	UIImage(named:"alblue")

page.captureValue(alblue,	withIdentifier:"Al	Blue")

Opening	the	Assistant	Editor	will	show	the	timeline	along	with	the	recorded	values:

It	is	possible	to	use	the	identifier	to	group	the	data	that	is	being	shown	in	a	loop,	with	the
identifier	representing	categories	of	the	values.	For	example,	to	display	a	list	of	all	even
and	odd	numbers	between	1	and	6,	the	following	code	could	be	used:

for	n	in	1…6	{

		if	n	%	2	==	0	{

				page.captureValue(n,withIdentifier:"even")

				page.captureValue(0,withIdentifier:"odd")

		}	else	{

				page.captureValue(n,withIdentifier:"odd")

				page.captureValue(0,withIdentifier:"even")

		}

}

When	executed,	the	result	will	look	like:

Running	asynchronous	code
By	default,	when	execution	hits	the	end	of	the	current	playground	page,	the	execution
stops.	In	most	cases	this	is	desirable,	but	when	asynchronous	code	is	involved,	execution
may	need	to	continue	to	run	even	if	the	main	code	has	finished	executing.	This	may	be	the
case	if	networking	data	is	involved	or	if	there	are	multiple	tasks	whose	results	need	to	be
synchronized.

For	example,	wrapping	the	previous	even/odd	split	in	an	asynchronous	call	will	result	in
no	data	being	displayed:

dispatch_async(dispatch_get_main_queue())	{

		for	n	in	1…6	{

				//	as	before

		}

}

Tip
This	uses	one	of	Swift’s	language	features:	the	dispatch_async	method	which	is	actually
a	two-argument	method	that	takes	a	queue	and	a	block	type.	However,	if	the	last	argument
is	a	block	type,	then	it	can	be	represented	as	a	trailing	closure	rather	than	an	argument.

To	allow	playground	to	continue	executing	after	reaching	the	end,	add	the	following
assignment:

page.needsIndefiniteExecution	=	true

Although	this	suggests	that	the	execution	will	run	forever,	it	is	limited	to	30	seconds	of
runtime,	or	whatever	the	value	is	displayed	at	the	bottom-right	corner	of	the	screen.	This
timeout	can	be	changed	by	typing	in	a	new	value	or	using	the	+	and	–	buttons	to
increase/decrease	time	by	one	second.	In	addition	to	this,	the	execution	can	be	stopped	by
clicking	the	square	icon	on	the	lower	left-hand	side	of	the	window:

Playgrounds	and	documentation
Playgrounds	can	contain	a	mix	of	code	and	documentation.	This	allows	a	set	of	code,
samples,	and	explanations	to	be	mixed	in	with	the	playground	itself.

Learning	with	playgrounds
As	playgrounds	can	contain	a	mixture	of	code	and	documentation,	it	makes	them	an	ideal
format	to	view	annotated	code	snippets.	In	fact,	Apple’s	Swift	Tour	book	can	be	opened	as
a	playground	file.

Xcode	documentation	can	be	searched	by	navigating	to	Help	|	Documentation	and	API
Reference	or	by	pressing	Command	+	Shift	+	0.	In	the	search	dialog	that	is	presented,	type
Swift	Tour	and	then	select	the	first	result.	The	Swift	Tour	book	should	be	presented	in
Xcode’s	help	system,	as	follows:

A	link	to	download	and	open	the	documentation	as	a	playground	is	given	in	the	first
section;	if	this	is	downloaded,	it	can	be	opened	in	Xcode	as	a	standalone	playground.	This
provides	the	same	information,	but	it	allows	the	code	examples	to	be	dynamic	and	show
the	results	in	the	window:

A	key	advantage	of	learning	through	playground-based	documentation	is	that	the	code	can
be	experimented	with.	In	the	Simple	Values	section	of	the	documentation,	where
myVariable	is	assigned,	the	right-hand	side	of	the	playground	shows	the	values.	If	the
literal	numbers	are	changed,	the	new	values	will	be	recalculated	and	shown	on	the	right-
hand	side.

Understanding	the	playground	format
The	playground	is	an	OS	X	bundle,	which	means	that	it	is	a	directory	that	looks	like	a
single	file.	If	the	playground	is	selected	either	in	TextEdit.app	or	in	Finder,	then	it	looks
like	a	regular	file:

Under	the	covers,	it	is	actually	a	directory:

$	ls	-F

MyPlayground.playground/

Inside	the	directory,	there	are	a	number	of	files:

$	ls	-1	MyPlayground.playground/*

MyPlayground.playground/Contents.swift

MyPlayground.playground/Resources

MyPlayground.playground/contents.xcplayground

MyPlayground.playground/playground.xcworkspace

MyPlayground.playground/timeline.xctimeline

The	files	are	as	follows:

The	Contents.swift	file,	which	is	the	Swift	file	that	is	created	by	default	when	a
new	playground	is	created,	and	this	contains	the	code	that	is	typed	in	for	any	new
playground	content
The	Resources	directory,	which	was	created	earlier	to	hold	the	logo	image
The	contents.xcplayground	file,	which	is	an	XML	table	of	contents	of	the	files	that
make	up	the	playground
The	playground.xcworkspace,	which	is	used	to	hold	metadata	about	the	project	in
Xcode
The	timeline.xctimeline,	which	is	the	file	containing	timestamps	of	execution	that
are	generated	by	the	runtime	when	executing	a	Swift	file	and	the	timeline	is	open

The	table	of	contents	file	defines	which	runtime	environment	is	being	targeted	(for
example,	iOS	or	OS	X)	and	a	reference	to	the	timeline	file:

<playground	version='5.0'	target-platform='ios'	requires-full-

environment='true'	timelineScrubberEnabled='true'	display-mode='raw'>

		<timeline	fileName='timeline.xctimeline'/>

</playground>

Tip

An	Xcode	playground	directory	is	deleted	and	recreated	whenever	changes	are	made	in
Xcode.	Any	Terminal.app	windows	that	are	open	in	that	directory	will	no	longer	display
any	files.	As	a	result,	using	external	tools	and	editing	the	files	in	place	may	result	in
changes	being	lost.	In	addition,	using	ancient	versions	of	control	systems,	such	as	SVN
and	CVS,	may	find	their	version	control	metadata	being	wiped	out	between	saves.	Xcode
ships	with	the	industry	standard	Git	version	control	system,	which	should	be	preferred
instead.

Adding	a	page
By	default,	an	Xcode	playground	has	a	single	page	open.	However,	for	more
comprehensive	documentation	examples,	many	separate	pages	may	be	preferable.	For
example,	instead	of	creating	a	single	very	long	page	with	subheadings	(which	may	take	a
while	to	interpret	and	execute),	additional	pages	can	be	added,	each	with	their	own
specific	examples.	This	also	has	the	advantage	of	being	able	to	interactively	experiment
with	code	as	only	the	examples	on	a	page	need	to	be	recalculated.

To	add	a	new	page	to	an	existing	playground,	right-click	on	the	MyPlayground	top-level
element	in	the	project	navigator	and	select	the	New	Playground	Page	menu	item.
Alternatively,	navigate	to	File	|	New	|	Playground	Page	or	its	keyboard	shortcut,
Command	+	Option	+	N.	When	this	is	done,	the	first	page	becomes	Untitled	Page	and	the
newly	added	page	becomes	Untitled	Page	2:

Pages	can	be	reordered	by	dragging	and	dropping	them	in	the	project	navigator	on	the	left.
They	can	also	be	renamed	by	selecting	the	page,	then	clicking	it	to	reveal	a	text	field	that
can	be	renamed.	This	is	similar	to	renaming	files	in	the	Finder.	The	documentation’s
@previous	and	@next	links	allow	the	reader	to	navigate	through	the	pages,	as	described	in
the	following	section.

Note
When	working	with	a	playground	with	pages,	the	contents.xcplayground	file’s	version
number	is	updated	to	6.0,	and	a	new	Pages	directory	is	created	that	sits	alongside	the
Resources	top-level	folder.	Inside	the	Pages	directory,	each	page	is	represented	as	its	own
.xcplaygroundpage	folder,	which	contains	a	Contents.swift	file	and	an	individual
timeline.xctimeline	file.

Documenting	code
Swift	2	adopts	a	new	markup	scheme	for	documentation,	both	for	use	with	playgrounds
but	to	also	document	Swift	code.	As	a	result,	the	documentation	comments	are	described
as	applying	to	Playground	Comments	or	Symbol	Documentation.

Playground	comments	start	with	//:	for	single-line	comments,	and	uses	/*:	and	*/	for
block-level	comments.	These	are	rendered	in	playgrounds	as	in-line	documentation,	and
they	replace	the	nested	HTML	that	existed	in	prior	versions	of	Xcode.	Markup	defaults	to
showing	as	raw	text,	but	the	rendered	content	can	be	seen	by	navigating	to	Editor	|	Show
Rendered	Markup.	To	toggle	it	back	to	display	the	raw	markup	and	allow	the	text	to	be
edited,	navigate	to	Editor	|	Show	Raw	Markup.	This	setting	is	also	persisted	in	the
xcplayground	file	with	the	display-mode='rendered'	or	display-mode='raw'	attribute.

Symbol	documentation	starts	with	///	for	single-line	comments,	and	uses	/**	and	*/	for
block-level	comments.	Symbol	documentation	applies	to	variables	and	constants,
functions,	and	types.	Only	one	type	of	symbol	documentation	comment	(either	single-line
or	multiline,	but	not	both)	may	be	present	above	a	symbol	definition.	Multiple	contiguous
single-line	comments	will	be	merged	into	a	single	block.

Tip
Symbol	documentation	can	be	revealed	by	pressing	Command	+	Control	+	?	while	the
cursor	is	over	an	identifier,	or	by	pressing	Alt	and	clicking	on	the	identifier	in	Xcode.

Both	playground	and	symbol	documentation	allow	some	markup	to	be	used	for	text
formatting	purposes.	In	addition,	there	are	certain	symbol	format	commands	that	can	be
specified	with	a	hyphen,	followed	by	the	command	name,	and	then	a	colon.	These	are
used	to	introduce	documentation,	for	example,	for	a	specific	parameter	of	a	function,	the
return	type,	or	what	errors	are	thrown.

Playground	navigation	documentation
It	is	possible	to	create	navigational	links	between	pages	in	a	multipage	playground.	Each
page	has	a	name	(which	starts	off	as	Untitled	Page,	Untitled	Page	2,	and	so	on)	but	can
be	renamed	in	the	project	navigator.

To	rename	a	page,	open	the	project	navigator	with	Command	+	1	and	then	select	the	page
in	the	navigator	view.	The	name	can	be	made	editable	by	double-clicking	on	the	page
name,	which	turns	it	into	a	text	field:

Links	to	specific	pages	are	performed	with	a	link,	which	is	represented	as	[Link	Name]
(Page%20Name).	For	example,	to	create	a	link	to	the	first	page	that	was	just	shown,	the
following	can	be	used:

//:	Go	back	to	the	[first	page](Page%20One)

Tip
Spaces	in	the	page	name	need	to	be	URL	escaped,	so	a	space	is	represented	as	%20.	Using
+	does	not	work.

As	page	names	may	be	fragile,	it	is	recommended	to	use	the	Next	and	Previous	links
instead.	These	can	be	represented	using	the	@next	and	@previous	special	identifiers	as	the
page	names,	as	follows:

//:	Go	back	to	[the	previous	page](@previous),

//:	or	move	forward	to	[the	next	page](@next).

Using	@next	and	@previous	is	recommended	in	order	to	chain	multiple	pages	together
because	it	allows	pages	to	be	reordered	without	requiring	any	changes	to	the	content.
Pages	can	be	reordered	in	the	project	navigator	by	dragging	and	dropping	projects	up	and
down	the	order.

Note
Page	navigation	is	only	available	in	playgrounds.

Text	formatting
The	playground	and	symbol	documentation	can	use	a	number	of	different	formatting
styles	using	a	markup	language	to	represent	different	types	of	text.	These	include	the
following:

Bulleted	lists,	which	use	one	of	the	*,	+,	or	–	characters	as	the	bullet,	followed	by	a
single	space,	and	the	text

Numbered	lists,	which	use	a	number,	followed	by	a	period,	a	single	space,	and	the
text
Horizontal	rules,	which	use	four	dashes	----	to	generate	a	horizontal	rule	in	the	text
Block	quotations,	which	start	each	line	with	>	followed	by	a	single	space
Block	code,	which	is	either	indented	four	spaces	in	from	the	start,	or	begin	and	end
with	````
Headings,	using	#,	##,	or	###	for	level	1,	2,	or	3	headings,	respectively.	Alternatively,
heading	level	1	can	use	a	===	underneath	the	title	and	heading	level	2	can	use	---
underneath	the	title

Tip
Exactly	a	single	space	is	required	between	the	end	of	the	list	delimiter	(the	bullet	or	the
period)	and	the	following	text;	otherwise	it	will	not	be	rendered	as	expected

In	addition	to	the	block-level	formatting,	it	is	possible	to	use	in-line	formatting	elements:

Code	can	be	represented	with	`backticks`	around	the	words
Text	can	be	emphasized	in	italics	_like	this_	or	*like	this*
Text	can	be	marked	as	bold	using	__this__	or	**this**

Images	and	links	can	also	be	used	in	documentation:

Images	are	represented	with	![Alternate	Text](url	"hover	text")
Links	are	represented	with	[link	text](url)
Links	can	also	be	declared	with	[link	title]:	url	"hover	text",	and	then
referred	to	later	with	[link	title]

For	example,	here	is	a	markup	block	consisting	of	many	single-line	comments,	which	will
be	concatenated	into	a	single	documentation	block:

//:	#	Example	Documentation

//:	Navigate	to	the	[previous](@previous)	or	[next](@next)	page

//:	----

//:	Numbered	lists:

//:	1.	First	item

//:	2.	Second	item

//:	3.	Third	item

//:

//:	Bulleted	lists:

//:	*	First	item

//:	*	Second	item

//:			+	child	item

//:			+	child	item

//:	*	Third	item

//:

//:	How	to	do	loops	in	Swift	using	`for`:

//:

//:					for	i	in	1…12	{

//:							print("Looping	\(i)")

//:					}

//:

//:	>	This	is	a	block	quote

//:	>	which	is	merged	together

//:	>	using	_italics_	or	**bold**

//:

//:	Link	to	[AlBlue's	Blog](http://alblue.bandlem.com)

//:	Image	of	![AlBlue]

(http://alblue.bandlem.com/images/AlexHeadshotLeft.png	"AlBlue")

When	viewed	in	a	rendered	markup	view,	it	will	look	like:

Symbol	documentation
When	writing	documentation	for	symbols	(variables,	constants,	functions,	and	so	on),
additional	commands	can	be	used	to	indicate	particular	values.	These	are	represented	with
a	–	dash,	followed	by	a	command	name,	and	then	a	colon.	These	include	the	following:

-	parameter	name:	description:	This	is	the	description	of	a	parameter	called
name	in	the	function	or	method
-	parameters::	This	is	a	group	of	related	parameter	elements
-	returns:	description:	This	is	the	description	of	the	return	result
-	throws:	description:	This	is	the	description	of	any	errors	that	may	occur

There	are	also	a	number	of	field	commands	that	can	be	used	with	symbols.	These	are	all
represented	with	–	name:	description,	and	they	all	have	exactly	the	same	effect	but	with

a	different	text	name	in	the	symbol	reference.	These	include	the	following:

author:	This	is	the	name	of	the	author	who	wrote	this	section.
authors:	This	is	a	series	of	paragraphs	with	one	author	name	per	paragraph.
bug:	This	is	a	description	of	a	known	bug.
complexity:	This	is	a	description	of	the	complexity	of	the	function,	such	as	O(1)	or
O(N).	Use	*	to	represent	an	escaped	*	character	or	to	denote	higher	orders,	for
example,	O(N*N).
copyright:	This	is	a	copyright	statement.
date:	This	is	a	date	reference;	please	note	that	the	text	field	is	not	parsed	in	any	way.
experiment:	This	is	a	block-denoting	experiment.
important:	This	marks	something	as	important.
invariant:	This	describes	an	invariant	of	the	function.
note:	This	introduces	a	note.
precondition:	This	describes	what	must	be	true	for	the	function	that	has	to	be	called.
postcondition:	This	describes	what	must	be	true	after	the	function	returns.
remark:	This	adds	general	notes	to	the	symbol.
requires:	This	notes	what	is	required,	such	as	module	dependencies,	or	a	minimum
version	of	the	operating	system.
seealso:	This	adds	a	See	Also	link	to	the	documentation.
since:	This	is	documentation	indicating	when	the	functionality	first	arrived.
todo:	This	adds	a	note	to	do	later.
version:	This	documents	the	version	number	of	the	location.
warning:	This	adds	a	warning	note.

The	following	combines	a	number	of	these	documentation	examples	into	a	multi-line
documentation	block:

/**

Returns	the	string	in	SHOUTY	CAPS

-	parameter	input:	the	input	string

-	author:	Alex	Blewitt

-	returns:	The	input	string,	but	in	upper	case

-	throws:	No	errors	thrown

-	note:	Please	don't	shout

-	seealso:	String.uppercaseString

-	since:	2015

	*/

func	shout(input:String)	->	String	{

		return	input.uppercaseString

}

When	the	mouse	hovers	over	the	shout	function,	the	following	documentation	will	be
seen:

Limitations	of	playgrounds
Although	playgrounds	can	be	very	powerful	for	interacting	with	code,	there	are	some
limitations	that	are	worth	being	aware	of.	There	is	no	debugging	support	in	the
playground,	so	it	is	not	possible	to	add	a	breakpoint	and	use	the	debugger	and	find	out
what	are	the	values.

Given	that	the	UI	allows	tracking	values—and	that	it’s	very	easy	to	add	new	lines	with
just	the	value	to	be	tracked—this	is	not	much	of	a	hardship.	Other	limitations	of
playgrounds	include	the	following:

Only	the	simulator	can	be	used	for	the	execution	of	iOS-based	playgrounds.	This
prevents	the	use	of	hardware-specific	features	that	may	only	be	present	on	a	device.
The	performance	of	playground	scripts	is	mainly	based	on	how	many	lines	are
executed	and	how	much	output	is	saved	by	the	debugger.	It	should	not	be	used	to	test
the	performance	of	performance-sensitive	code.
Although	the	playground	is	well	suited	to	present	user	interface	components,	it
cannot	be	used	for	user	input.
Anything	requiring	entitlements	(such	as	in-app	purchases	or	access	to	iCloud)	is	not
possible	in	playground	at	the	current	time	of	writing.

Summary
This	chapter	presented	playgrounds,	an	innovative	way	of	running	Swift	code	with
graphical	representation	of	values	and	introspection	of	running	code.	Both	expressions	and
timeline	were	presented	as	a	way	of	showing	the	state	of	the	program	at	any	time,	as	well
as	graphically	inspecting	objects	using	Quick	Look.	The	XCPlayground	framework	can
also	be	used	to	record	specific	values	and	allow	asynchronous	code	to	be	executed.

The	next	chapter	will	look	at	how	to	create	an	iOS	application	with	Swift.

Chapter	3.	Creating	an	iOS	Swift	App
After	the	release	of	Xcode	6	in	2014,	it	has	been	possible	to	build	Swift	applications	for
iOS	and	OS	X	and	submit	them	to	the	App	Store	for	publication.	This	chapter	will	present
both	a	single	view	application	and	a	master-detail	application,	and	use	these	to	explain	the
concepts	behind	iOS	applications,	as	well	as	introduce	classes	in	Swift.

This	chapter	will	present	the	following	topics:

How	iOS	applications	are	structured
Single-view	iOS	applications
Creating	classes	in	Swift
Protocols	and	enums	in	Swift
Using	XCTest	to	test	Swift	code
Master-detail	iOS	applications
The	AppDelegate	and	ViewController	classes

Understanding	iOS	applications
An	iOS	application	is	a	compiled	executable	along	with	a	set	of	supporting	files	in	a
bundle.	The	application	bundle	is	packaged	into	an	archive	file	to	be	installed	onto	a
device	or	upload	to	the	App	Store.

Tip
Xcode	can	be	used	to	run	iOS	applications	in	a	simulator,	as	well	as	testing	them	on	a
local	device.	Submitting	an	application	to	the	App	Store	requires	a	developer	signing	key,
which	is	included	as	part	of	the	Apple	Developer	Program	at	https://developer.apple.com.

Most	iOS	applications	to	date	have	been	written	in	Objective-C,	a	crossover	between	C
and	Smalltalk.	With	the	advent	of	Swift,	it	is	likely	that	many	developers	will	move	at
least	parts	of	their	applications	to	Swift	for	performance	and	maintenance	reasons.

Although	Objective-C	is	likely	to	be	around	for	a	while,	it	is	clear	that	Swift	is	the	future
of	iOS	development	and	probably	OS	X	as	well.	Applications	contain	a	number	of
different	types	of	files,	which	are	used	both	at	compile	time	and	also	at	runtime.	These
files	include	the	following:

The	Info.plist	file,	which	contains	information	about	which	languages	the
application	is	localized	for,	what	the	identity	of	the	application	is,	and	the
configuration	requirements,	such	as	the	supported	interface	types	(iPad,	iPhone,	and
Universal),	and	orientations	(Portrait,	Upside	Down,	Landscape	Left,	and	Landscape
Right)
Zero	or	more	interface	builder	files	with	a	.xib	extension,	which	contain	user
interface	screens	(which	supersedes	the	previous	.nib	files)
Zero	or	more	image	asset	files	with	a	.xcassets	extension,	which	store	groups	of
related	icons	at	different	sizes,	such	as	the	application	icon	or	graphics	for	display	on
screen	(which	supersedes	the	previous	.icns	files)
Zero	or	more	storyboard	files	with	a	.storyboard	extension,	which	are	used	to
coordinate	between	different	screens	in	an	application
One	or	more	.swift	files	that	contain	application	code

https://developer.apple.com

Creating	a	single-view	iOS	application
A	single-view	iOS	application	is	one	where	the	application	is	presented	in	a	single	screen,
without	any	transitions	or	other	views.	This	section	will	show	how	to	create	an	application
that	uses	a	single	view	without	storyboards.	(Storyboards	are	covered	in	Chapter	4,
Storyboard	Applications	with	Swift	and	iOS.)

When	Xcode	starts,	it	displays	a	welcome	message	that	includes	the	ability	to	create	a	new
project.	This	welcome	message	can	be	redisplayed	at	any	time	by	navigating	to	Window	|
Welcome	to	Xcode	or	by	pressing	Command	+	Shift	+	1.

Using	the	welcome	dialog’s	Create	a	new	Xcode	project	option,	or	navigating	to	File	|
New	|	Project…,	or	by	pressing	Command	+	Shift	+	N,	create	a	new	iOS	project	with
Single	View	Application	as	the	template,	as	shown	in	the	following	screenshot:

When	the	Next	button	is	pressed,	the	new	project	dialog	will	ask	for	more	details.	The
product	name	here	is	SingleView	with	appropriate	values	for	Organization	Name	and
Identifier.	Ensure	that	the	language	selected	is	Swift	and	the	device	type	is	Universal:

Note
The	Organization	Identifier	is	a	reverse	domain	name	representation	of	the	organization,
and	the	Bundle	Identifier	is	the	concatenation	of	the	Organization	Identifier	with	the
Product	Name.	Publishing	to	the	App	Store	requires	that	the	Organization	Identifier	be
owned	by	the	publisher	and	is	managed	in	the	online	developer	center	at

https://developer.apple.com/membercenter/.

When	Next	is	pressed,	Xcode	will	ask	where	to	save	the	project	and	whether	a	repository
should	be	created.	The	selected	location	will	be	used	to	create	the	product	directory,	and
an	option	to	create	a	Git	repository	will	be	offered.

Tip
In	2014,	Git	became	the	most	widely	used	version	control	system,	surpassing	all	other
distributed	and	centralized	version	control	systems.	It	would	be	foolish	not	to	create	a	Git
repository	when	creating	a	new	Xcode	project.

When	Create	is	pressed,	Xcode	will	create	the	project,	set	up	template	files,	and	then
initialize	the	Git	repository	locally	or	on	a	shared	server.

Press	the	triangular	play	button	at	the	top-left	of	Xcode	to	launch	the	simulator:

If	everything	has	been	set	up	correctly,	the	simulator	will	start	with	a	white	screen	and	the
time	and	battery	shown	at	the	top	of	the	screen:

https://developer.apple.com/membercenter/

Removing	the	storyboard
The	default	template	for	a	single-view	application	includes	a	storyboard.	This	creates	the
view	for	the	first	(only)	screen	and	performs	some	additional	setup	behind	the	scenes.	To
understand	what	happens,	the	storyboard	will	be	removed	and	replaced	with	code	instead.

Note
Most	applications	are	built	with	one	or	more	storyboards.	It	is	being	removed	here	for
demonstration	purposes	only;	refer	to	the	Chapter	4,	Storyboard	Applications	with	Swift
and	iOS,	for	more	information	on	how	to	use	storyboards.

The	storyboard	can	be	deleted	by	going	to	the	project	navigator,	finding	the
Main.storyboard	file,	and	pressing	the	Delete	key	or	selecting	Delete	from	the	context-
sensitive	menu.	When	the	confirmation	dialog	is	shown,	select	the	Move	to	Trash	option
to	ensure	that	the	file	is	deleted	rather	than	just	being	removed	from	the	list	of	files	that
Xcode	knows	about.

Tip
To	see	the	project	navigator,	press	Command	+	1	or	navigate	to	View	|	Navigators	|	Show
Project	Navigator.

Once	the	Main.storyboard	file	has	been	deleted,	it	needs	to	be	removed	from
Info.plist,	to	prevent	iOS	from	trying	to	open	it	at	startup.	Open	the	Info.plist	file
under	the	Supporting	Files	folder	of	SingleView.	A	set	of	key-value	pairs	will	be
displayed;	clicking	on	the	Main	storyboard	file	base	name	row	will	present	the	(+)	and
(-)	options.	Clicking	on	the	delete	icon	(-)	will	remove	the	line:

Now	when	the	application	is	started,	a	black	screen	will	be	displayed.

Tip
There	are	multiple	Info.plist	files	that	are	created	by	Xcode’s	template;	one	file	is	used
for	the	real	application,	while	the	other	files	are	used	for	the	test	applications	that	get	built
when	running	tests.	Testing	is	covered	in	the	Subclasses	and	testing	in	Swift	section	later
in	this	chapter.

Setting	up	the	view	controller
The	view	controller	is	responsible	for	setting	up	the	view	when	it	is	activated.	Typically,
this	is	done	through	either	the	storyboard	or	the	interface	file.	As	these	have	been
removed,	the	window	and	the	view	controller	need	to	be	instantiated	manually.

When	iOS	applications	start,	application:didFinishLaunchingWithOptions:	is	called
on	the	corresponding	UIApplicationDelegate.	The	optional	window	variable	is	initialized
automatically	when	it	is	loaded	from	an	interface	file	or	a	storyboard,	but	it	needs	to	be
explicitly	initialized	if	the	user	interface	is	being	implemented	in	code.

Implement	the	application:didFinishLaunchingWithOptions:	method	in	the
AppDelegate	class	as	follows:

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{

		var	window:	UIWindow?

		func	application(application:	UIApplication,

			didFinishLaunchingWithOptions	launchOptions:

			[NSObject:AnyObject]?)	->	Bool	{

				window	=	UIWindow()

				window?.rootViewController	=	ViewController()

				window?.makeKeyAndVisible()

				return	true

		}

}

Tip
To	open	a	class	by	name,	press	Command	+	Shift	+	O	and	type	in	the	class	name.
Alternatively,	navigate	to	File	|	Open	Quickly…

The	final	step	is	to	create	the	view’s	content,	which	is	typically	done	in	the	viewDidLoad
method	of	the	ViewController	class.	As	an	example	user	interface,	a	UILabel	will	be
created	and	added	to	the	view.	Each	view	controller	has	an	associated	view	property,	and
child	views	can	be	added	with	the	addSubview	method.	To	make	the	view	stand	out,	the
background	of	the	view	will	be	changed	to	black	and	the	text	color	will	be	changed	to
white:

class	ViewController:	UIViewController	{

		override	func	viewDidLoad()	{

				super.viewDidLoad()

				view.backgroundColor	=	UIColor.blackColor()

				let	label	=	UILabel(frame:view.bounds)

				label.textColor	=	UIColor.whiteColor()

				label.textAlignment	=	.Center

				label.text	=	"Welcome	to	Swift"

				view.addSubview(label)

		}

}

This	creates	a	label,	which	is	sized	to	the	full	size	of	the	screen,	with	a	white	text	color	and

a	centered	text	alignment.	When	run,	this	displays	Welcome	to	Swift	on	the	screen.

Note
Typically,	views	will	be	implemented	in	their	own	class	rather	than	being	in-lined	into	the
view	controller.	This	allows	the	views	to	be	reused	in	other	controllers.	This	technique
will	be	demonstrated	in	the	next	chapter.

When	the	screen	is	rotated,	the	label	will	be	rotated	off	screen.	Logic	would	need	to	be
added	in	a	real	application	to	handle	rotation	changes	in	the	view	controller,	such	as
willRotateToInterfaceOrientation,	and	to	appropriately	add	rotations	to	the	views
using	the	transform	property	of	the	view.	Usually,	an	interface	builder	file	or	storyboard
would	be	used	so	that	this	is	handled	automatically.

Swift	classes,	protocols,	and	enums
Almost	all	Swift	applications	will	be	object	oriented.	Chapter	1,	Exploring	Swift,	and
Chapter	2,	Playing	with	Swift,	both	demonstrated	functional	and	procedural	Swift	code.
Classes,	such	as	Process	from	the	CoreFoundation	framework,	and	UIColor	and	UIImage
from	the	UIKit	framework,	were	used	to	demonstrate	how	classes	can	be	used	in
applications.	This	section	describes	how	to	create	classes,	protocols,	and	enums	in	Swift.

Classes	in	Swift
A	class	is	created	in	Swift	using	the	class	keyword,	and	braces	are	used	to	enclose	the
class	body.	The	body	can	contain	variables	called	properties,	as	well	as	functions	called
methods,	which	are	collectively	referred	to	as	members.	Instance	members	are	unique	to
each	instance,	while	static	members	are	shared	between	all	instances	of	that	class.

Classes	are	typically	defined	in	a	file	named	for	the	class;	so	a	GitHubRepository	class
would	typically	be	defined	in	a	GitHubRepository.swift	file.	A	new	Swift	file	can	be
created	by	navigating	to	File	|	New	|	File…	and	selecting	the	Swift	File	option	under	iOS.
Ensure	that	it	is	added	to	the	Tests	and	UITests	targets	as	well.	Once	created,	implement
the	class	as	follows:

class	GitHubRepository	{

		var	id:UInt64	=	0

		var	name:String	=	""

		func	detailsURL()	->	String	{

				return	"https://api.github.com/repositories/\(id)"

		}

}

This	class	can	be	instantiated	and	used	as	follows:

let	repo	=	GitHubRepository()

repo.id	=	1

repo.name	=	"Grit"

repo.detailsURL()	//	returns	https://api.github.com/repositories/1

It	is	possible	to	create	static	members,	which	are	the	same	for	all	instances	of	a	class.	In
the	GitHubRepository	class,	the	api	URL	is	likely	to	remain	the	same	for	all	invocations,
so	it	can	be	refactored	into	a	static	property:

class	GitHubRepository	{

		//	does	not	work	in	Swift	1.0	or	1.1

		static	let	api	=	"https://api.github.com"

		…

		class	func	detailsURL(id:String)	->	String	{

				return	"\(api)/repositories/\(id)"

		}

}

Now,	if	the	api	URL	needs	to	be	changed	(for	example,	to	support	mock	testing	or	to
support	an	in-house	GitHub	Enterprise	server),	there	is	a	single	place	to	change	it.	Before
Swift	2,	a	class	variables	are	not	yet	supported	error	message	may	be	displayed.

To	use	static	variables	in	Swift	prior	to	version	2,	a	different	approach	must	be	used.	It	is
possible	to	define	computed	properties,	which	are	not	stored	but	are	calculated	on
demand.	These	have	a	getter	(also	known	as	an	accessor)	and	optionally	a	setter	(also
known	as	a	mutator).	The	previous	example	can	be	rewritten	as	follows:

class	GitHubRepository	{

		class	var	api:String	{

				get	{

						return	"https://api.github.com"

				}

		}

		func	detailsURL()	->	String	{

				return	"\(GitHubRepository.api)/repositories/\(id)"

		}

}

Although	this	is	logically	a	read-only	constant	(there	is	no	associated	set	block),	it	is	not
possible	to	define	the	let	constants	with	accessors.

To	refer	to	a	class	variable,	use	the	type	name—which	in	this	case	is	GitHubRepository.
When	the	GitHubRepository.api	expression	is	evaluated,	the	body	of	the	getter	is	called.

Subclasses	and	testing	in	Swift
A	simple	Swift	class	with	no	explicit	parent	is	known	as	a	base	class.	However,	classes	in
Swift	frequently	inherit	from	another	class	by	specifying	a	superclass	after	the	class	name.
The	syntax	for	this	is	class	SubClass:SuperClass{...}.

Tests	in	Swift	are	written	using	the	XCTest	framework,	which	is	included	by	default	in
Xcode	templates.	This	allows	an	application	to	have	tests	written	and	then	executed	in
place	to	confirm	that	no	bugs	have	been	introduced.

Tip
XCTest	replaces	the	previous	testing	framework	OCUnit.

The	XCTest	framework	has	a	base	class	called	XCTestCase	that	all	tests	inherit	from.
Methods	beginning	with	test	(and	that	take	no	arguments)	in	the	test	case	class	are
invoked	automatically	when	the	tests	are	run.	Test	code	can	indicate	success	or	failure	by
calling	the	XCTAssert*	functions,	such	as	XCTAssertEquals	and	XCTAssertGreaterThan.

Tests	for	the	GitHubRepository	class	conventionally	exist	in	a	corresponding
GitHubRepositoryTest	class,	which	will	be	a	subclass	of	XCTestCase.	Create	a	new	Swift
file	by	navigating	to	File	|	New	|	File…	and	choosing	a	Swift	File	under	the	Source
category	for	iOS.	Ensure	that	the	Tests	and	UITests	targets	are	selected	but	the	application
target	is	not.	It	can	be	implemented	as	follows:

import	XCTest

class	GitHubRepositoryTest:	XCTestCase	{

		func	testRepository()	{

				let	repo	=	GitHubRepository()

				repo.id	=	1

				repo.name	=	"Grit"

				XCTAssertEqual(

						repo.detailsURL(),

						"https://api.github.com/repositories/1",

						"Repository	details"

)

		}

}

Make	sure	that	the	GitHubRepositoryTest	class	is	added	to	the	test	targets.	If	not	added
when	the	file	is	created,	it	can	be	done	by	selecting	the	file	and	pressing	Command	+
Option	+	1	to	show	the	File	Inspector.	The	checkbox	next	to	the	test	target	should	be
selected.	Tests	should	never	be	added	to	the	main	target.	The	GitHubRepository	class
should	be	added	to	both	test	targets:

When	the	tests	are	run	by	pressing	Command	+	U	or	by	navigating	to	Product	|	Test,	the
results	of	the	test	will	be	displayed.	Changing	either	the	implementation	or	the	expected
test	result	will	demonstrate	whether	the	test	is	being	executed	correctly.

Tip
Always	check	whether	a	failing	test	causes	the	build	to	fail;	this	will	confirm	that	the	test
is	actually	being	run.	For	example,	in	the	GitHubRepositoryTest	class,	modify	the	URL
to	remove	https	from	the	front	and	check	whether	a	test	failure	is	shown.	There	is	nothing
more	useless	than	a	correctly	implemented	test	that	never	runs.

Protocols	in	Swift
A	protocol	is	similar	to	an	interface	in	other	languages;	it	is	a	named	type	that	has	method
signatures	but	no	method	implementations.	Classes	can	implement	zero	or	more	protocols;
when	they	do,	they	are	said	to	adopt	or	conform	to	the	protocol.	A	protocol	may	have	a
number	of	methods	that	are	either	required	(the	default)	or	optional	(marked	with	the
optional	keyword).

Note
Optional	protocol	methods	are	only	supported	when	the	protocol	is	marked	with	the	@objc
attribute.	This	declares	that	the	class	will	be	backed	by	an	NSObject	class	for
interoperability	with	Objective-C.	Pure	Swift	protocols	cannot	have	optional	methods.

The	syntax	to	define	a	protocol	looks	similar	to	the	following:

protocol	GitHubDetails	{

		func	detailsURL()	->	String

		//	protocol	needs	@objc	if	using	optional	protocols

		//	optional	doNotNeedToImplement()

}

Note
Protocols	cannot	have	functions	with	default	arguments.	Protocols	can	be	used	with	the
struct,	class,	and	enum	types	unless	the	@objc	class	attribute	is	used;	in	which	case,	they
can	only	be	used	against	Objective-C	classes	or	enums.

Classes	conform	to	protocols	by	listing	the	protocol	names	after	the	class	name,	similar	to
a	superclass.

Tip
When	a	class	has	both	a	superclass	and	one	or	more	protocols,	the	superclass	must	be
listed	first.

class	GitHubRepository:	GitHubDetails	{

		func	detailsURL()	->	String	{

				//	implementation	as	before

		}

}

The	GitHubDetails	protocol	can	be	used	as	a	type	in	the	same	places	as	an	existing	Swift
type,	such	as	a	variable	type,	method	return	type,	or	argument	type.

Note
Protocols	are	widely	used	in	Swift	to	allow	callbacks	from	frameworks	that	would,
otherwise,	not	know	about	specific	callback	handlers.	If	a	superclass	was	required	instead,
then	a	single	class	cannot	be	used	to	implement	multiple	callbacks.	Common	protocols
include	UIApplicationDelegate,	Printable,	and	Comparable.

Enums	in	Swift
The	final	concept	to	understand	in	Swift	is	enumeration,	or	enum	for	short.	An	enum	is	a
closed	set	of	values,	such	as	North,	East,	South,	and	West,	or	Up,	and	Down.

An	enumeration	is	defined	using	the	enum	keyword,	followed	by	a	type	name,	and	a	block,
which	contains	the	case	keywords	followed	by	comma-separated	values	as	follows:

enum	Suit	{

		case	Clubs,	Diamonds,	Hearts	//	many	on	one	line

		case	Spades	//	or	each	on	separate	lines

}

Unlike	C,	enumerated	values	do	not	have	a	specific	type	by	default,	so	they	cannot
generally	be	converted	to	and	from	an	integer	value.	Enumerations	can	be	defined	with
raw	values	that	allow	conversion	to	and	from	integer	values.	Enum	values	are	assigned	to
variables	using	the	type	name	and	the	enum	name:

var	suit:Suit	=	Suit.Clubs

However,	if	the	type	of	the	expression	is	known,	then	the	type	prefix	does	not	need	to	be
explicitly	specified;	the	following	form	is	much	more	common	in	Swift	code:

var	suit:Suit	=	.Clubs

Raw	values
For	the	enum	values	that	have	specific	meanings,	it	is	possible	to	extend	the	enum	from	a
different	type,	such	as	Int.	These	are	known	as	raw	values:

enum	Rank:	Int	{

		case	Two	=	2,	Three,	Four,	Five,	Six,	Seven,	Eight,	Nine,	Ten

		case	Jack,	Queen,	King,	Ace

}

A	raw	value	enum	can	be	converted	to	and	from	its	raw	value	with	the	rawValue	property
and	the	failable	initializer	Rank(rawValue:)	as	follows:

Rank.Two.rawValue	==	2

Rank(rawValue:14)!	==	.Ace

Tip
The	failable	initializer	returns	an	optional	enum	value,	because	the	equivalent	Rank	may
not	exist.	The	expression	Rank(rawValue:0)	will	return	nil,	for	example.

Associated	values
Enums	can	also	have	associated	values,	such	as	a	value	or	case	class	in	other	languages.
For	example,	a	combination	of	a	Suit	and	a	Rank	can	be	combined	to	form	a	Card:

enum	Card	{

		case	Face(Rank,	Suit)

		case	Joker

}

Instances	can	be	created	by	passing	values	into	an	enum	initializer:

var	aceOfSpades:	Card	=	.Face(.Ace,.Spades)

var	twoOfHearts:	Card	=	.Face(.Two,.Hearts)

var	theJoker:	Card	=	.Joker

The	associated	values	of	an	enum	instance	cannot	be	extracted	(as	they	can	with	properties
of	a	struct),	but	the	enum	value	can	be	accessed	by	pattern	matching	in	a	switch
statement:

var	card	=	aceOfSpades	//	or	theJoker	or	twoOfHearts…

switch	card	{

		case	.Face(let	rank,	let	suit):	

				print("Got	a	face	card	\(rank)	of	\(suit)");

		case	.Joker:	

				print("Got	the	joker	card")

}

The	Swift	compiler	will	require	that	the	switch	statement	be	exhaustive.	As	the	enum	only
contains	these	two	types,	no	default	block	is	needed.	If	another	enum	value	is	added	to
Card	in	the	future,	the	compiler	will	report	an	error	in	this	switch	statement.

Creating	a	master-detail	iOS	application
Having	covered	how	classes,	protocols,	and	enums	are	defined	in	Swift,	a	more	complex
master-detail	application	can	be	created.	A	master-detail	application	is	a	specific	type	of
iOS	application	that	initially	presents	a	master	table	view,	and	when	an	individual	element
is	selected,	a	secondary	details	view	will	show	more	information	about	the	selected	item.

Using	the	Create	a	new	Xcode	project	option	from	the	welcome	screen,	or	by	navigating
to	File	|	New	|	Project…	or	by	pressing	Command	+	Shift	+	N,	create	a	new	project	and
select	Master-Detail	Application	from	the	iOS	Application	category:

In	the	subsequent	dialog,	enter	appropriate	values	for	the	project,	such	as	the	name
(MasterDetail),	the	organization	identifier	(typically	based	on	the	reverse	DNS	name),
ensure	that	the	Language	dropdown	reads	Swift	and	that	it	is	targeted	for	Universal
devices:

When	the	project	is	created,	an	Xcode	window	will	open	containing	all	the	files	that	are
created	by	the	wizard	itself,	including	the	MasterDetail.app	and
MasterDetailTests.xctest	products.	The	MasterDetail.app	is	a	bundle	that	is	executed
by	the	simulator	or	a	connected	device,	while	the	MasterDetailTests.xctest	and
MasterDetailsUITests.xctest	products	are	used	to	execute	unit	tests	for	the
application’s	code.

The	application	can	be	launched	by	pressing	the	triangular	play	button	on	the	top-left
corner	of	Xcode	or	by	pressing	Command	+	R,	which	will	run	the	application	against	the

currently	selected	target.

After	a	brief	compile	and	build	cycle,	the	iOS	Simulator	will	open	with	a	master	page	that
contains	an	empty	table,	as	shown	in	the	following	screenshot:

The	default	MasterDetail	application	can	be	used	to	add	items	to	the	list	by	clicking	on
the	add	(+)	button	on	the	top-right	corner	of	the	screen.	This	will	add	a	new	timestamped
entry	to	the	list.

When	this	item	is	clicked,	the	screen	will	switch	to	the	details	view,	which,	in	this	case,
presents	the	time	in	the	center	of	the	screen:

This	kind	of	master-detail	application	is	common	in	iOS	applications	for	displaying	a	top-
level	list	(such	as	a	shopping	list,	a	set	of	contacts,	to-do	notes,	and	so	on)	while	allowing
the	user	to	tap	to	see	the	details.

There	are	three	main	classes	in	the	master-detail	application:

The	AppDelegate	class	is	defined	in	the	AppDelegate.swift	file,	and	it	is
responsible	for	starting	the	application	and	set	up	the	initial	state
The	MasterViewController	class	is	defined	in	the	MasterViewController.swift
file,	and	it	is	used	to	manage	the	first	(master)	screen’s	content	and	interactions
The	DetailViewController	class	is	defined	in	the	DetailViewController.swift
file,	and	it	is	used	to	manage	the	second	(detail)	screen’s	content

In	order	to	understand	what	the	classes	do	in	more	detail,	the	next	three	sections	will
present	each	of	them	in	turn.

Tip
The	code	that	is	generated	in	this	section	was	created	from	Xcode	7.0,	so	the	templates
might	differ	slightly	if	using	a	different	version	of	Xcode.	An	exact	copy	of	the
corresponding	code	can	be	acquired	from	the	Packt	website	or	from	this	book’s	GitHub
repository	at	https://github.com/alblue/com.packtpub.swift.essentials/.

https://github.com/alblue/com.packtpub.swift.essentials/

The	AppDelegate	class
The	AppDelegate	class	is	the	main	entry	point	to	the	application.	When	a	set	of	Swift
source	files	are	compiled,	if	the	main.swift	file	exists,	it	is	used	as	the	entry	point	for	the
application	by	running	that	code.	However,	to	simplify	setting	up	an	application	for	iOS,	a
@UIApplicationMain	special	attribute	exists	that	will	both	synthesize	the	main	method	and
set	up	the	associated	class	as	the	application	delegate.

The	AppDelegate	class	for	iOS	extends	the	UIResponder	class,	which	is	the	parent	of	all
the	UI	content	on	iOS.	It	also	adopts	two	protocols,	UIApplicationDelegate,	and
UISplitViewControllerDelegate,	which	are	used	to	provide	callbacks	when	certain
events	occur:

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate,

			UISplitViewControllerDelegate	{

		var	window:	UIWindow?

		...

}

Note
On	OS	X,	the	AppDelegate	class	will	be	a	subclass	of	NSApplication	and	will	adopt	the
NSApplicationDelegate	protocol.

The	synthesized	main	function	calls	the	UIApplicationMain	method	that	reads	the
Info.plist	file.	If	the	UILaunchStoryboardName	key	exists	and	points	to	a	suitable	file
(the	LaunchScreen.xib	interface	file	in	this	case),	it	will	be	shown	as	a	splash	screen
before	doing	any	further	work.	After	the	rest	of	the	application	has	loaded,	if	the
UIMainStoryboardFile	key	exists	and	points	to	a	suitable	file	(the	Main.storyboard	file
in	this	case),	the	storyboard	is	launched	and	the	initial	view	controller	is	shown.

The	storyboard	has	references	to	the	MasterViewController	and	DetailViewController
classes.	The	window	variable	is	assigned	to	the	storyboard’s	window.

The	application:didFinishLaunchingWithOptions	is	called	once	the	application	has
started.	It	is	passed	with	a	reference	to	the	UIApplication	instance	and	a	dictionary	of
options	that	notifies	how	the	application	has	been	started:

func	application(

	application:	UIApplication,

	didFinishLaunchingWithOptions	launchOptions:

		[NSObject:	AnyObject]?)	->	Bool	{

		//	Override	point	for	customization	after	application	launch.

		...

}

In	the	sample	MasterDetail	application,	the
application:didFinishLaunchingWithOptions	method	acquires	a	reference	to	the
splitViewController	from	the	explicitly	unwrapped	optional	window,	and	the
AppDelegate	is	set	as	its	delegate:

let	splitViewController	=	

	self.window!.rootViewController	as!	UISplitViewController

splitViewController.delegate	=	self

Tip
The	…	as!	UISplitViewController	syntax	performs	a	type	cast	so	that	the	generic
rootViewController	can	be	assigned	to	the	more	specific	type;	in	this	case,
UISplitViewController.	An	alternative	version	as?	provides	a	runtime	checked	cast,	and
it	returns	an	optional	value	that	either	contains	the	value	with	the	correctly	casted	type	or
nil	otherwise.	The	difference	with	as!	is	a	runtime	error	will	occur	if	the	item	is	not	of
the	correct	type.

Finally,	a	navigationController	is	acquired	from	the	splitViewController,	which
stores	an	array	of	viewControllers.	This	allows	the	DetailView	to	display	a	button	on
the	left-hand	side	to	expand	the	details	view	if	necessary:

let	navigationController	=	splitViewController.viewController

	[splitViewController.viewControllers.count-1]

	as!	UINavigationController

navigationController.topViewController

	.navigationItem.leftBarButtonItem	=

	splitViewController.displayModeButtonItem()

The	only	difference	this	makes	is	when	running	on	a	wide-screen	device,	such	as	an
iPhone	6	Plus	or	an	iPad,	where	the	views	are	displayed	side-by-side	in	landscape	mode.
This	is	a	new	feature	in	iOS	8	applications.

Otherwise,	when	the	device	is	in	portrait	mode,	it	will	be	rendered	as	a	standard	back
button:

The	method	concludes	with	return	true	to	let	the	OS	know	that	the	application	has
opened	successfully.

The	MasterViewController	class
The	MasterViewController	class	is	responsible	for	coordinating	the	data	that	is	shown	on
the	first	screen	(when	the	device	is	in	portrait	orientation)	or	the	left-half	of	the	screen
(when	a	large	device	is	in	landscape	orientation).	This	is	rendered	with	a	UITableView,
and	data	is	coordinated	through	the	parent	UITableViewController	class:

class	MasterViewController:	UITableViewController	{

		var	detailViewcontroller:	DetailViewController?	=	nil

		var	objects	=	[AnyObject]()

		override	func	viewDidLoad()	{…}

		func	insertNewObject(sender:	AnyObject)	{…}

		…

}

The	viewDidLoad	method	is	used	to	set	up	or	initialize	the	view	after	it	has	loaded.	In	this
case,	a	UIBarButtonItem	is	created	so	that	the	user	can	add	new	entries	to	the	table.	The
UIBarButtonItem	takes	a	@selector	in	Objective-C,	and	in	Swift	is	treated	as	a	string
literal	convertible	(so	that	"insertNewObject:"	will	result	in	a	call	to	the
insertNewObject	method).	Once	created,	the	button	is	added	to	the	navigation	on	the
right-hand	side,	using	the	standard	.Add	type	which	will	be	rendered	as	a	+	sign	on	the
screen:

override	func	viewDidLoad()	{

		super.viewDidLoad()

		self.navigationItem.leftBarButtonItem	=	self.editButtonItem()

		let	addButton	=	UIBarButtonItem(

				barButtonSystemItem:	.Add,	target:	self,	

				action:	"insertNewObject:")

		self.navigationItem.rightBarButtonItem	=	addButton

		if	let	split	=	self.splitViewController	{

				let	controllers	=	split.viewControllers

				self.detailViewController	=	(controllers[controllers.count-1]	as!	

UINavigationController).topViewController	as?	DetailViewController

}

The	objects	are	NSDate	values,	and	are	stored	inside	the	class	as	an	Array	of	AnyObject
elements.	The	insertNewObject	method	is	called	when	the	+	button	is	pressed,	and	it
creates	a	new	NSDate	instance	which	is	then	inserted	into	the	array.	The	sender	event	is
passed	as	an	argument	of	the	AnyObject	type,	which	will	be	a	reference	to	the
UIBarButtonItem	(although	it	is	not	needed	or	used	here):

func	insertNewObject(sender:	AnyObject)	{

		objects.insertObject(NSDate.date(),	atIndex:	0)

		let	indexPath	=	NSIndexPath(forRow:	0,	inSection:	0)

		self.tableView.insertRowsAtIndexPaths(

			[indexPath],	withRowAnimation:	.Automatic)

}

Note
The	UIBarButtonItem	class	was	created	before	blocks	were	available	on	iOS	devices,	so	it
uses	the	older	Objective-C	@selector	mechanism.	A	future	release	of	iOS	may	provide	an

alternative	that	takes	a	block,	in	which	case	Swift	functions	can	be	passed	instead.

The	parent	class	contains	a	reference	to	the	tableView,	which	is	automatically	created	by
the	storyboard.	When	an	item	is	inserted,	the	tableView	is	notified	that	a	new	object	is
available.	Standard	UITableViewController	methods	are	used	to	access	the	data	from	the
array:

override	func	numberOfSectionsInTableView(

	tableView:	UITableView)	->	Int	{

		return	1

}

override	func	tableView(tableView:	UITableView,

	numberOfRowsInSection	section:	Int)	->	Int	{

		return	objects.count

}

override	func	tableView(tableView:	UITableView,

	cellForRowAtIndexPath	indexPath:	NSIndexPath)	->	UITableViewCell{

		let	cell	=	tableView.dequeueReusableCellWithIdentifier(

			"Cell",	forIndexPath:	indexPath)

		let	object	=	objects[indexPath.row]	as!	NSDate

		cell.textLabel!.text	=	object.description

		return	cell

}

override	func	tableView(tableView:	UITableView,

	canEditRowAtIndexPath	indexPath:	NSIndexPath)	->	Bool	{

		return	true

}

The	numberOfSectionsInTableView	function	returns	1	in	this	case,	but	a	tableView	can
have	multiple	sections;	for	example,	to	permit	a	contacts	application	having	a	different
section	for	A,	B,	C	through	Z.	The	numberOfRowsInSection	method	returns	the	number	of
elements	in	each	section;	in	this	case,	as	there	is	only	one	section,	the	number	of	objects	in
the	array.

Note
The	reason	why	each	method	is	called	tableView	and	takes	a	tableView	argument	is	a
result	of	the	Objective-C	heritage	of	UIKit.	The	Objective-C	convention	combined	the
method	name	as	the	first	named	argument,	so	the	original	method	was	[delegate
tableView:UITableView,	numberOfRowsInSection:NSInteger].	As	a	result,	the	name	of
the	first	argument	is	reused	as	the	name	of	the	method	in	Swift.

The	cellForRowAtIndexPath	method	is	expected	to	return	UITableViewCell	for	an
object.	In	this	case,	a	cell	is	acquired	from	the	tableView	using	the
dequeueReusableCellWithIdentifier	method	(which	caches	cells	as	they	go	off	screen
to	save	object	instantiation),	and	then	the	textLabel	is	populated	with	the	object’s
description	(which	is	a	String	representation	of	the	object;	in	this	case,	the	date).

This	is	enough	to	display	elements	in	the	table,	but	in	order	to	permit	editing	(or	just
removal,	as	in	the	sample	application),	there	are	some	additional	protocol	methods	that	are
required:

override	func	tableView(tableView:	UITableView,

	canEditRowAtIndexPath	indexPath:	NSIndexPath)	->	Bool	{

		return	true

}

override	func	tableView(tableView:	UITableView,

	commitEditingStyle	editingStyle:	UITableViewCellEditingStyle,

	forRowAtIndexPath	indexPath:	NSIndexPath)	{

		if	editingStyle	==	.Delete	{

				objects.removeObjectAtIndex(indexPath.row)

				tableView.deleteRowsAtIndexPaths([indexPath],

					withRowAnimation:	.Fade)

		}

}

The	canEditRowAtIndexPath	method	returns	true	if	the	row	is	editable;	if	all	the	rows
can	be	edited,	then	this	will	return	true	for	all	the	values.

The	commitEditingStyle	method	takes	a	table,	a	path,	and	a	style,	which	is	an
enumeration	that	indicates	which	operation	occurred.	In	this	case,
UITableViewCellEditingStyle.Delete	is	passed	in	order	to	delete	the	item	from	both
the	underlying	object	array	and	also	from	the	tableView.	(The	enumeration	can	be
abbreviated	to	.Delete	because	the	type	of	editingStyle	is	known	to	be
UITableViewCellEditingStyle.)

The	DetailViewController	class
The	detail	view	is	shown	when	an	element	is	selected	in	the	MasterViewController.	The
transition	is	managed	by	the	storyboard	controller;	the	views	are	connected	with	a	segue
(pronounced	seg-way;	the	product	of	the	same	name	based	it	on	the	word	segue	which	is
derived	from	the	Italian	word	for	follows).

To	pass	the	selected	item	between	controllers,	a	property	exists	in	the
DetailViewController	class	called	detailItem.	When	the	value	is	changed,	additional
code	is	run,	which	is	implemented	in	a	didSet	property	notification:

class	DetailViewController:	UIViewController	{

		var	detailItem:	AnyObject?	{

				didSet	{

						self.configureView()

				}

		}

		…	

}

When	DetailViewController	has	the	detailItem	set,	the	configureView	method	will	be
invoked.	The	didSet	body	is	run	after	the	value	has	been	changed,	but	before	the	setter
returns	to	the	caller.	This	is	triggered	by	the	segue	in	the	MasterViewController:

class	MasterViewController:	UIViewController	{

		…

		override	func	prepareForSegue(

			segue:	UIStoryboardSegue,	sender:	AnyObject?)	{

				super.prepareForSegue(segue,	sender:	sender)

				if	segue.identifier	==	"showDetail"	{

						if	let	indexPath	=	

							self.tableView.indexPathForSelectedRow()	{

								let	object	=	objects[indexPath.row]	as!	NSDate

								let	controller	=	(segue.destinationViewController	

									as!	UINavigationController)

									.topViewController	as!	DetailViewController

								controller.detailItem	=	object

								controller.navigationItem.leftBarButtonItem	=

									self.splitViewController?.displayModeButtonItem()

								controller.navigationItem.leftItemsSupplementBackButton	=

									true

						}

				}	

		}

}

The	prepareForSegue	method	is	called	when	the	user	selects	an	item	in	the	table.	In	this
case,	it	grabs	the	selected	row	index	from	the	table	and	uses	this	to	acquire	the	selected
date	object.	The	navigation	controller	hierarchy	is	searched	to	acquire	the
DetailViewController,	and	once	this	has	been	obtained,	the	selected	value	is	set	with
controller.detailItem	=	object,	which	triggers	the	update.

The	label	is	ultimately	displayed	in	the	DetailViewController	through	the

configureView	method,	which	stamps	the	description	of	the	object	onto	the	label	in	the
center:

class	DetailViewController	{

		...

		@IBOutlet	weak	var	detailDescriptionLabel:	UILabel!

		function	configureView()	{

				if	let	detail:	AnyObject	=	self.detailItem	{

						if	let	label	=	self.detailDescriptionLabel	{

								label.text	=	detail.description

						}

				}

		}

}

The	configureView	method	is	called	both	when	the	detailItem	is	changed	and	when	the
view	is	loaded	for	the	first	time.	If	the	detailItem	has	not	been	set,	then	this	has	no	effect.

The	implementation	introduces	some	new	concepts,	which	are	worth	highlighting:

The	@IBOutlet	attribute	indicates	that	the	property	will	be	exposed	in	interface
builder	and	can	be	wired	up	to	the	object	instance.	This	will	be	covered	in	more	detail
in	Chapter	4,	Storyboard	Applications	with	Swift	and	iOS,	and	in	Chapter	5,	Creating
Custom	Views	in	Swift.
The	weak	attribute	indicates	that	the	property	will	not	store	a	strong	reference	to	the
object;	in	other	words,	the	detail	view	will	not	own	the	object	but	merely	reference	it.
Generally,	all	@IBOutlet	references	should	be	declared	as	weak	to	avoid	cyclic
dependency	references.
The	type	is	defined	as	UILabel!	which	is	an	implicitly	unwrapped	optional.	When
accessed,	it	performs	an	explicit	unwrapping	of	the	optional	value;	otherwise	the
@IBOutlet	will	be	wired	up	as	a	UILabel?	optional	type.	Implicitly	unwrapped
optional	types	are	used	when	the	variable	is	known	to	never	be	nil	at	runtime,	which
is	usually	the	case	for	the	@IBOutlet	references.	Generally,	all	@IBOutlet	references
should	be	implicitly	unwrapped	optionals.

Summary
This	chapter	presented	two	sample	iOS	applications;	one	in	which	the	UI	was	created
programmatically,	and	another	in	which	the	UI	was	loaded	from	a	storyboard.	Together
with	an	overview	of	classes,	protocols,	and	enums,	and	an	explanation	of	how	iOS
applications	start,	this	chapter	gives	a	springboard	to	understand	the	Xcode	templates	that
are	frequently	used	to	start	new	projects.

The	next	chapter,	Storyboard	Applications	with	Swift	and	iOS,	will	go	into	more	detail
about	how	storyboards	are	created	and	how	an	application	can	be	built	from	scratch.

Chapter	4.	Storyboard	Applications	with
Swift	and	iOS
Storyboards	were	originally	introduced	in	Xcode	4.2	with	iOS	5.0.	Storyboards	solved	the
problem	of	being	able	to	graphically	present	the	flow	of	screens	in	an	iOS	application,	and
they	also	provided	a	way	to	edit	the	content	of	these	screens	in	one	place	instead	of	many
separate	xib	files.	Storyboards	work	in	the	same	way	with	Swift	as	with	Objective-C,	and
the	Swift	and	storyboards	section	shows	how	to	integrate	Swift	code	with	storyboard
transitions.

This	chapter	will	present	the	following	topics:

How	to	create	a	storyboard	project
Creating	multiple	scenes
Using	segues	to	navigate	between	scenes
Writing	custom	view	controllers
Connecting	views	to	outlets	in	Swift
Laying	out	views	with	Auto	Layout
Using	constraints	to	build	resizable	views

Storyboards,	scenes,	and	segues
By	default,	Xcode	7	creates	a	Main.storyboard	file	instead	of	a	MainWindow.xib	file	for
newly-created	iOS	projects.	The	UIMainStoryboardFile	key	in	the	Info.plist	file	points
to	the	application’s	main	storyboard	name	(without	the	extension).	When	the	application
starts	up,	the	Main.storyboard	file	is	loaded	instead	of	the	NSMainNib	entry.	Prior
versions	of	Xcode	allowed	developers	to	opt	in	or	out	of	storyboards,	but	with	Xcode	7,
storyboards	are	the	default	and	developers	cannot	easily	opt	out.	It	is	still	possible	to	use
the	xib	files	for	individual	sections	of	an	application	or	to	use	them	to	load	custom	classes
for	prototype	table	cells.	In	addition,	Xcode	7	creates	a	LaunchScreen.storyboard	to
display	as	a	splash	screen	(on	iOS	8	and	higher)	while	the	application	is	loading,	in
preference	to	prerendered	screens	at	fixed	resolutions.	This	allows	devices	with	many
different	resolutions	(including	future	unannounced	ones)	to	render	pixel-perfect	splash
screens	without	having	to	be	rendered	at	different	resolutions	for	each	new	device	size.

A	storyboard	is	a	collection	of	scenes	(separate	screens)	that	are	connected	with	segues
(pronounced	seg-ways).	Each	scene	is	represented	by	a	view	controller,	which	has	an
associated	view.	Segues	transition	between	different	scenes	with	a	customizable	user-
interface	transition,	such	as	a	slide	or	fade,	and	they	can	be	triggered	from	a	UI	control	or
programmatically.

Creating	a	storyboard	project
As	the	default	templates	with	Xcode	7	use	storyboards	by	default,	any	of	the	templates
will	work.	In	fact,	each	of	the	application	templates	set	up	a	specific	type	of	view
controller	and	template	code.	The	simplest	template	to	work	with	and	customize	is	the
Single	View	Application,	which	can	be	selected	by	navigating	to	File	|	New	|	Project….
Create	a	project	called	Storyboards,	which	uses	a	single-view	application,	for
experimentation	with	this	chapter.	(Refer	to	the	Creating	a	single	view	iOS	application
section	in	Chapter	3,	Creating	an	iOS	Swift	App,	for	more	details	on	how	to	create	a	new
application.)

Scenes	and	view	controllers
Standard	view	controllers	can	be	used	to	build	up	an	application,	which	includes	the
following:

Split	views	using	a	UISplitViewController	class,	which	can	contain	any	of	the
following	but	may	not	be	embedded	in	any	other	view	controller
Tabbed	views	using	a	UITabBarController	class,	which	can	contain	any	of	the
following	but	may	only	be	embedded	in	a	split	view	or	used	as	the	root	controller
Navigational	controls	can	be	added	to	existing	controllers	with	a
UINavigationController	class,	which	can	contain	any	of	the	following	and	may	be
embedded	in	any	of	the	preceding	or	used	as	a	root	view	controller
Paginated	views	using	a	UIPageViewController	class,	which	provide	both	sliding
and	page	curling	display	options
Tabular	views	using	a	UITableViewController	class
Grid	views	using	a	UICollectionViewController	class
Audio-visual	content	using	a	AVPlayerViewController	class
OpenGL	ES	content	using	a	GLKViewController	class
Custom	controller	content	using	a	UIViewController	class	or	a	custom	subclass

These	classes	can	be	mixed,	but	there	is	an	explicit	ordering	that	must	be	followed	to
satisfy	the	Apple	Human	Interface	Guidelines	(also	known	as	the	HIG).	These	are	all
optional,	but	if	combined,	they	need	to	obey	this	ordering:

In	addition	to	the	standard	view	controller	classes,	custom	subclasses	can	be	used	as	well.
This	is	covered	in	more	detail	in	the	Custom	view	controllers	section	later	in	this	chapter.

Adding	views	to	the	scene
The	Main.storyboard	file	can	be	opened	by	clicking	on	the	file	in	the	project	navigator.
An	editor	will	open,	which	shows	the	storyboard	as	a	set	of	scenes	along	with	the
document	outline	on	the	left.	In	a	single-page	application,	only	one	view	controller	will
exist.

The	arrow	to	the	left	of	the	view	controller	indicates	that	this	scene	is	the	initial	view
controller.	This	can	also	be	set	with	the	Is	Initial	View	Controller	checkbox,	which	can
be	seen	by	selecting	the	View	Controller	from	the	scene	and	navigating	to	the	attributes
inspector	(go	to	View	|	Utilities	|	Show	Attributes	Inspector,	or	press	Command	+
Option	+	4).	The	initial	view	controller	can	also	be	changed	to	a	different	scene	by
dragging	and	dropping	the	arrow	to	point	to	a	different	scene.

Views	are	added	by	dragging	and	dropping	them	from	the	object	library	at	the	bottom-
right	of	Xcode.	The	object	library	can	be	shown	by	navigating	to	View	|	Utilities	|	Show
Object	Library,	or	by	pressing	Command	+	Option	+	Control	+	3.	Click	on	a	view,	such
as	the	Label,	and	drag	it	into	the	view:

The	label’s	text	content	can	be	modified	by	double-clicking	on	the	label	in	the	view	and
typing	or	by	selecting	the	object	and	editing	the	text	attribute	in	the	attributes	inspector:

When	the	element	is	dragged,	blue	guide	lines	may	be	shown.	They	suggest	locations	for
the	views;	the	standard	is	to	have	a	20pt	gap	between	the	views	and	the	edge	of	the	screen
and	an	8pt	gap	between	adjacent	views.

Drag	the	Welcome	to	Swift	label	to	the	top-left	of	the	scene	and	then	drag	a	Button	from
the	object	library	into	the	scene.	Rename	the	button’s	title	to	Press	Me.	This	button	should
be	a	standard	space	(8pt)	away	from	the	label	and	aligned	at	the	baseline	(the	level	at
which	the	text	naturally	sits).

Note
At	this	point,	the	text	in	the	views	is	hardcoded	in	the	user	interface	file	and	the	alignment
is	manual,	which	means	that	the	views	will	not	resize	if	the	parent	view	is	modified.	These
problems	will	be	addressed	in	the	Connecting	views	to	outlets	in	Swift	and	Using	Auto
Layout	sections	later	in	this	chapter.

To	view	the	storyboard	in	the	simulator,	click	on	the	Play	button	at	the	top	or	press
Command	+	R	to	run	the	application.	A	window	should	be	shown	with	Welcome	to	Swift
and	Press	Me.	At	this	stage,	pressing	the	button	will	have	no	effect,	which	will	be	fixed	in
the	next	section.

Segues
A	segue	is	a	transition	to	a	different	scene	in	a	storyboard.	Segues	can	be	hooked	up	to
views	on	the	screen	or	can	be	triggered	via	code.	The	most	common	transitions	are	when
the	user	has	selected	a	view	in	the	user	interface,	such	as	a	button,	a	table	row,	or	a	details
icon,	and	a	new	scene	is	displayed.

To	demonstrate	a	segue,	a	new	scene	is	required.	Drag	a	View	Controller	from	the	object
library	and	drop	it	onto	the	storyboard.	The	exact	location	of	the	view	controller	doesn’t
matter,	but	conventionally,	scenes	are	organized	from	left	to	right	in	the	order	in	which
they	will	be	viewed,	so	dropping	it	on	the	right-hand	side	of	the	existing	view	controller	is
recommended,	as	shown	in	the	following	screenshot:

Once	the	View	Controller	has	been	added,	drop	a	label	onto	the	top-left	and	change	the
text	to	Please	do	not	press	this	button	again.	This	will	present	a	visual	clue	that	the
screen	has	changed	when	the	segue	is	followed.

Now,	select	the	Press	Me	button	and	press	the	Control	key	while	dragging	the	mouse	to
the	newly	created	view	controller.	When	the	mouse	button	is	released,	a	pop-up	menu	will
be	shown	with	a	number	of	options	that	are	grouped	into	Action	Segue	and	Non-
Adaptive	Action	Segue.	The	former	is	preferred;	the	latter	is	only	there	for	backward
compatibility	and	might	be	removed	in	the	future.

Tip
Alternatively,	the	object	can	be	selected	from	the	document	outline	on	the	left,	and
dragged	to	the	object	below	in	the	document	outline.	It	is	possible	to	drag	from	the	view	in
the	editor	area	to	an	object	in	the	document	outline	and	vice	versa.	Dragging	to	the
document	outline	is	sometimes	faster	and	more	accurate,	especially	when	there	are
multiple	scenes	in	a	storyboard.	The	document	outline	can	be	displayed	by	navigating	to
Editor	|	Show	Document	Outline,	if	it	is	not	visible,	or	by	clicking	on	the	icon	at	the
bottom-left	of	the	editor.

Choose	the	Show	option	and	a	segue	will	be	created	between	the	two	views.	This	is
represented	as	an	arrow	connecting	them	and	another	object	in	the	document	outline.	The
icon	inside	the	circular-segue	line	shows	what	kind	of	transition	will	occur;	a	push	will
have	an	arrow	pointing	to	the	left,	while	present	modally	will	be	represented	as	a	square
box.	The	popover	type	will	show	a	small	popover	icon	in	the	segue.

Run	the	application	in	the	simulator	and	click	the	Press	Me	button.	A	window	should	slide
up	and	display	the	second	message.

Note
There	will	be	no	way	to	dismiss	or	exit	the	second	screen.	This	is	intentional	and	will	be
fixed	in	the	next	section.

Adding	a	navigation	controller
When	there	are	multiple	screens	to	be	displayed,	a	parent	controller	is	required	to	keep
track	of	which	screen	is	currently	being	shown	and	what	the	next	step	(or	previous	step)	is.
This	is	the	purpose	of	a	navigation	controller;	although	it	has	no	direct	visual
representation,	it	is	represented	as	a	scene	in	a	storyboard	and	can	affect	the	layout	of	the
individual	elements	in	the	storyboard.

To	embed	the	initial	scene	into	a	navigation	controller,	select	the	initial	view	and	navigate
to	Editor	|	Embed	In	|	Navigation	Controller.	This	will	create	a	new	navigation
controller	view	and	place	it	to	the	left-hand	side	of	the	first	scene.	It	will	also	change	the
initial	view	controller	to	the	navigation	controller	and	set	up	a	relationship	segue	with	the
name	root	view	controller	between	the	navigation	controller	and	the	first	scene	that	is
represented	by	an	icon	that	is	similar	to	a	percent	symbol	but	with	the	line	rotated	the
other	way:

It	will	be	necessary	to	move	the	label	and	button	below	the	newly	added	navigation	bar	so
that	they	are	still	visible.	This	can	either	be	done	before	the	navigation	controller	is
introduced	or	by	selecting	through	overlapping	objects.

To	temporarily	hide	the	navigation	bar,	delete	the	relationship	segue	between	the
navigation	controller	and	the	welcome	scene,	and	the	navigation	bar	will	disappear.	This
will	allow	the	objects	to	be	selected	and	moved	elsewhere	temporarily	in	order	to	be
repositioned.	To	add	it	back	again,	press	the	Control	key	and	drag	the	mouse	cursor	from
the	navigation	controller	to	the	welcome	scene	and	choose	root	view	controller	under
Relationship	Segue;	or	alternatively,	set	the	Top	Bar	attribute	to	None	in	the	attribute
inspector.

Alternatively,	to	select	through	overlapping	objects,	first	select	the	object	in	the	document
outline	so	that	the	location	is	shown	with	the	drag	boxes.	Then,	press	the	Shift	key	and
right-click	it	for	a	pop-up	menu	of	the	objects	under	the	mouse	position	at	any	depth.
From	here,	the	object	can	be	selected	and	then	moved	with	the	arrow	keys	to	reposition

them	elsewhere.

Now	when	the	application	is	run	and	the	Press	Me	button	is	tapped,	the	message	will	be
shown	again	but	with	a	<	Back	navigation	menu	item	as	well,	as	shown	here:

Naming	scenes	and	views
When	working	with	many	scenes,	calling	all	of	them	View	Controller	Scene	is	not
helpful.	To	distinguish	between	them,	the	controllers	can	be	renamed	in	the	storyboard
editor.

To	change	the	name	of	a	scene,	select	its	view	controller	in	the	document	outline	and	go	to
View	|	Utilities	|	Show	Attributes	Inspector	or	press	Command	+	Option	+	3,	and	then
drill	down	to	the	Document	section	where	the	label	hint	will	read	Document	Label.
Typing	in	another	value,	such	as	Press	Me,	Message,	or	Initial	will	rename	both	the	view
controller	and	the	scene	in	the	document	outline:

Tip
By	default,	the	name	of	the	element	in	the	document	outline	is	taken	from	the	text	value	of
the	element	or	the	type	if	no	text	value	is	present.	This	means	that	updates	to	the	label	or
button	text	will	be	automatically	reflected	in	the	outline.	However,	it	is	possible	to	add
document	labels	to	any	view	in	the	document	outline.

Swift	and	storyboards
So	far	in	this	chapter,	the	storyboard	content	does	not	involve	any	Swift	or	other
programming	content—it	used	the	drag	and	drop	capabilities	of	the	storyboard	editor.
Fortunately,	it	is	easy	to	integrate	Storyboard	and	Swift	using	a	custom	view	controller.

Custom	view	controllers
Each	standard	view	controller	has	a	corresponding	superclass	(listed	in	the	Scenes	and
view	controllers	section	previously	in	this	chapter).	This	can	be	replaced	with	a	custom
subclass,	which	then	has	the	ability	to	influence	and	change	what	happens	in	the	user
interface.	To	replace	the	message	in	the	Message	Scene,	create	a	new	file	named
MessageViewCotroller.swift	with	the	following	content:

import	UIKit

class	MessageViewController:	UIViewController	{

}

Having	created	this	class,	it	can	be	associated	with	the	view	controller	by	selecting	it	in
the	storyboard	and	then	switching	to	the	identity	inspector	by	navigating	to	View	|
Utilities	|	Show	Identity	Inspector	or	pressing	Command	+	Option	+	3.	In	the	Custom
Class	section,	the	Class	will	show	UIViewController	as	a	hint.	Entering
MessageViewController	here	will	associate	the	custom	controller	with	the	view
controller:

This	will	have	no	visible	impact	to	the	message	scene;	running	the	application	will	be	the
same	as	before.	To	show	a	difference,	create	a	viewDidLoad	method	with	an	override
keyword	and	then	create	a	random	color	for	the	background	as	follows:

override	func	viewDidLoad()	{

		super.viewDidLoad()

		let	red	=	CGFloat(drand48())

		let	green	=	CGFloat(drand48())

		let	blue	=	CGFloat(drand48())

		view.backgroundColor	=	UIColor(

				red:red,

				green:green,

				blue:blue,

				alpha:1.0

)

}

Running	the	application	and	pressing	the	Press	Me	button	results	in	a	differently	colored
view	being	created	each	time.

Tip
This	does	not	demonstrate	good	user	experience,	but	is	used	here	to	demonstrate	the	fact
that	viewDidLoad	is	called	each	time	the	segue	occurs.	It	is	typically	used	to	set	up	view
state	just	before	showing	the	view	to	the	user.

Connecting	views	to	outlets	in	Swift
Each	view	controller	has	an	implicit	relationship	with	its	view,	and	each	view	has	its	own
backgroundColor	property.	This	example	will	work	regardless	of	what	the	view	happens
to	be.	What	if	the	view	controller	needs	to	interact	with	the	view’s	content	in	some	way?
The	view	controller	could	walk	the	view	programmatically,	looking	for	a	certain	type	of
view	or	for	a	view	with	a	particular	identifier,	but	there	is	a	better	way	to	do	this.

Both	the	interface	builder	and	storyboard	have	the	concept	of	outlets,	which	are	a
predefined	point	in	a	class	that	can	be	exposed	and	can	have	connections	between	the	UI
and	the	code.	In	Objective-C,	this	was	done	with	an	IBOutlet	qualifier.	In	Swift,	this	is
done	with	a	@IBOutlet	attribute.	In	effect,	they	are	variables	that	can	be	bound	to	the	UI.

Note
When	defining	a	class	with	a	@IBOutlet	attribute,	the	@objc	attribute	is	also	implicitly
added	marking	this	Swift	class	as	using	the	Objective-C	runtime.	As	all	the	UIKit	classes
are	already	Objective-C	types,	this	doesn’t	matter;	but	for	types	where	the	Objective-C
runtime	should	not	be	used,	care	should	be	taken	when	adding	attributes,	such	as
@IBOutlet.	The	@objc	attribute	can	also	be	used	for	non-UI	classes	that	need	to	use	the
Objective-C	runtime.

The	following	steps	are	required	to	create	an	outlet	in	a	Swift	view	controller:

1.	 Define	an	outlet	in	the	view	controller	code	with	@IBOutlet	weak	var	of	an	optional
type	of	the	connected	view.

2.	 Connect	the	outlet	in	the	view	controller	to	the	view	by	pressing	Control	and
dragging	the	mouse	cursor	from	the	view	to	the	outlet.

To	do	this,	open	the	assistant	editor	by	pressing	Command	+	Option	+	Enter	or	by	going
to	View	|	Assistant	Editor	|	Show	Assistant	Editor.	This	will	show	a	side-by-side	view
of	the	associated	source	file.	This	is	useful	to	display	the	associated	custom	view
controller	for	a	selected	view	in	the	storyboard	(or	the	interface	file).

Once	the	assistant	editor	is	displayed,	open	the	Message	Scene	from	the	storyboard	and
press	Control	while	dragging	the	mouse	cursor	from	the	message	label	to	the	assistant
editor	and	dropping	it	just	after	the	class	declaration:

A	pop-up	dialog	will	ask	what	to	call	the	field	and	present	some	other	information;	ensure
Outlet	is	selected,	name	it	message,	and	ensure	that	it	has	a	Weak	storage	type:

This	will	result	in	the	following	line	being	added	to	the	MessageViewController	class,
and	it	will	wire	up	the	label	to	the	property	as	follows:

class	MessageViewController:	UIViewController	{

		@IBOutlet	weak	var	message:	UILabel!

		…	

}

The	@IBOutlet	attribute	(defined	in	UIKit)	allows	interface	builder	to	bind	to	the
property.	The	Weak	storage	type—which	can	be	changed	in	the	pop-up	dialog—indicates
that	this	class	will	not	hold	a	strong	reference	to	the	object	so	that	when	the	view	is
dismissed,	the	controller	will	not	own	it.

Tip
Generally,	all	@IBOutlet	connections	should	be	marked	as	weak,	because	the	storyboard	or
the	xib	file	is	the	owner	of	the	object,	not	the	controller.	Ownership	does	not	pass	when
assigning	properties	from	interface	builder.	Changing	it	to	something	other	than	weak	may
lead	to	circular	references.	As	Swift	uses	a	reference	counting	approach	to	determine
when	an	object	is	no	longer	referenced,	a	circular	reference	between	strong	references	can
cause	memory	leaks.

The	exclamation	mark	on	the	end	of	the	type	UILabel!	indicates	that	it	is	an	implicitly
unwrapped	optional.	This	property	is	stored	as	an	optional	type,	but	the	accessor	code	will
automatically	unwrap	it	at	the	point	of	use.	As	the	view	controller	will	not	have	a
reference	to	the	message	at	the	point	of	initialization,	it	will	be	nil,	so	it	must	be	stored	as
an	optional.	However,	as	the	value	is	known	to	not	be	nil	after	the	view	has	been	loaded,
the	implicitly	unwrapped	optional	saves	the	?.	calls	that	would	otherwise	be	used	each
time	it	is	used.

Note
An	implicitly	unwrapped	optional	is	still	an	optional	value	under	the	covers;	it	is	syntactic
sugar	to	unwrap	it	at	the	point	of	use	each	time	the	value	is	accessed.	When	the	view	is

loaded,	but	before	the	viewDidLoad	method	is	called,	the	outlet’s	value	will	be	wired	to
the	instantiated	view	on	screen.

The	connections	can	be	seen	in	the	connections	inspector,	which	can	be	displayed	by
selecting	the	message	label	and	pressing	Command	+	Option	+	6	or	by	navigating	to	View
|	Utilities	|	Show	Connections	Inspector.	The	inspector	can	also	be	used	to	remove
existing	connections	or	add	new	ones.

Now	that	the	connection	has	been	made	between	the	message	view	and	the	custom
controller,	instead	of	changing	the	background	color	of	the	view,	change	the	background
color	of	the	message	instead,	as	follows:

message.backgroundColor	=	UIColor(...)

Run	the	application	and	the	message	will	have	the	background	color	changed	each	time
the	scene	is	displayed:

Calling	actions	from	interface	builder
In	the	same	way	that	outlets	are	variables	for	interface	builder	to	assign	to	(or	read	from),
actions	are	methods/functions	that	can	be	triggered	from	a	view	in	interface	builder.	The
@IBAction	attribute	is	used	to	annotate	a	method	or	function	that	can	be	wired	up.

Note
As	with	@IBOutlet,	using	@IBAction	on	a	function	causes	the	compiler	to	implicitly	add	a
@objc	attribute	to	the	class	in	order	to	force	it	to	use	the	Objective-C	runtime.

To	change	the	message	when	a	button	is	invoked,	a	suitable	changeMessage	is	required.
Historically,	the	signature	for	an	action	method	was	one	that	returned	void,	marked	with
IBAction,	and	took	a	sender	argument,	which	could	be	any	object.	In	Swift,	this	signature
translates	to	the	following:

@IBAction	func	changeMessage(sender:AnyObject)	{	…	}

However,	with	Swift,	the	sender	is	no	longer	a	required	argument.	It	is,	therefore,	possible
to	bind	an	action	with	the	following	signature:

@IBAction	func	changeMessage()	{	…	}

If	the	signature	is	changed,	any	existing	bindings	must	be	deleted	and	recreated,	as	an
error	will	be	reported	otherwise.

Tip
It	is	difficult	to	convert	from	a	func	that	doesn’t	take	an	argument	to	one	that	takes	an
argument.	It	is	easier	to	have	a	func	that	takes	an	argument	that	isn’t	required.	If	not	sure,
choose	the	function	signature	that	takes	a	sender	object	and	then	just	ignore	it.

The	changeMessage	function	can	randomly	select	a	message	and	set	the	text	on	the	label,
as	follows:

let	messages	=	[

		"Ouch,	that	hurts",

		"Please	don't	do	that	again",

		"Why	did	you	press	that?",

]

@IBAction	func	changeMessage()	{

		message.text	=	messages[

				Int(arc4random_uniform(

						UInt32(messages.count)))]

}

When	the	function	is	invoked,	the	message	text	will	change	to	a	value	that	is	defined	in
the	array.	To	call	the	function,	it	needs	to	be	wired	up	in	the	storyboard	editor.	Add	a	new
Button	from	the	object	library	to	the	message	scene,	with	a	Change	Message	label.	To
connect	it	to	the	action,	press	Control	and	drag	the	mouse	cursor	from	the	Change
Message	button	in	Message	Scene	and	drop	it	on	the	Message	view	controller	at	the	top:

A	pop-up	menu	will	then	display	the	outlets	and	actions	that	this	can	be	connected	to.
Select	the	changeMessage	from	the	list:

Tip
If	changeMessage	isn’t	listed,	check	that	the	view	controller	is	defined	to	be
MessageViewController	and	verify	that	the	@IBAction	attribute	is	added	to	the
changeMessage	function.

Now	when	the	application	is	run	and	the	Change	Message	button	is	pressed,	the	label	will
change	to	one	of	the	hardcoded	values.

Note
The	message	label	will	not	change	in	size	because	the	view	has	no	automatic	layout
associated	with	it.	The	Using	Auto	Layout	section	in	this	chapter	explains	how	to	fix	this
problem.

Triggering	a	segue	with	code
A	segue	can	be	triggered	programmatically	from	code	if	additional	setup	is	required	or	if
there	are	data	parameters	that	need	to	be	passed	from	one	view	controller	to	another	(such
as	the	currently-selected	object).

Segues	have	named	segue	identifiers,	which	are	used	in	code	to	trigger	specific	segues.	To
test	this	out,	drag	a	new	View	Controller	from	the	library	(by	pressing	Command	+
Option	+	Control	+	3	or	by	navigating	to	View	|	Utilities	|	Show	Object	Library)	onto	the
main	storyboard	and	name	it	About.	Drag	a	Label	and	give	it	the	text:	About	this	App.

Next,	create	a	segue	by	pressing	Control	and	dragging	the	mouse	cursor	between	the
Message	scene	to	the	new	scene.	The	named	identifier	can	be	set	as	about	through	the
attributes	inspector	(shown	by	pressing	Command	+	Option	+	4	or	by	navigating	to	View	|
Utilities	|	Show	Attributes	Inspector):

Finally,	drag	a	new	Button	to	the	Change	Message	scene	and	call	it	About.	Instead	of
directly	calling	the	segue,	create	a	new	@IBAction	called	about.	When	this	button	is
pressed,	the	following	code	will	be	run:

@IBAction	func	about(sender:	AnyObject)	{

		performSegueWithIdentifier("about",	sender:	sender)

}

When	the	About	button	is	pressed,	the	About	screen	will	be	displayed.

Passing	data	with	segues
Typically,	in	a	master-detail	application,	data	needs	to	be	passed	from	one	scene	to	the
next.	This	may	be	the	currently	selected	object,	or	it	may	require	additional	information	to
be	processed.	When	the	segue	is	called,	the	view	controller’s	prepareForSegue	method	is
called,	with	the	destination	segue	and	the	sending	object.	This	allows	any	internal	state	of
the	view	controller	to	be	passed	to	the	new	segue.

The	UIStoryboardSegue	contains	an	identifier,	which	was	set	in	the	previous	section.	As
the	prepareForSegue	method	may	be	called	on	the	MessageViewController	for	any
number	of	segues,	it	is	common	for	a	switch	statement	to	be	used	on	the	identifier	so	that
the	right	action	can	be	taken.	For	a	single	segue,	an	if	statement	can	be	used	as	follows:

override	func	prepareForSegue(segue:	UIStoryboardSegue,

		sender:	AnyObject?)	{

		if	segue.identifier	==	"about"	{

						let	dest	=	segue.destinationViewController	as	UIViewController

						dest.view.backgroundColor	=	message.backgroundColor

		}

}

Here,	the	prepareForSegue	method	is	called	with	segue,	which	contains	the	destination
(the	scene)	and	the	identifier.	The	if	statement	ensures	that	the	correct	identifier	is
matched.	In	this	case,	the	background	color	of	the	message	label	(which	is	chosen
randomly	when	the	view	is	loaded)	is	passed	to	the	destination	view’s	background	color;
however,	any	property	on	either	the	view	controller	or	the	view	can	be	set	here.

Using	Auto	Layout
Auto	Layout	has	been	part	of	Xcode	for	the	last	few	releases,	and	it	was	added	to	support
an	evolution	from	the	previous	springs-and-struts	approach	that	predated	Mac	OS	X.	First
released	on	iOS	6.0,	it	has	evolved	to	the	point	where	size-independent	displays	can	now
be	created	as	the	default.

Understanding	constraints
In	Xcode	5,	interface	builder	enabled	Auto	Layout	by	default	for	the	first	time.	When	a
label	was	dragged	to	the	top	or	bottom	of	the	parent	view,	a	dotted	blue	line	would
indicate	that	the	label	was	correctly	spaced,	and	a	constraint	would	be	generated.

However,	in	many	cases,	the	constraints	weren’t	created	correctly	or	had	undesired	effects.
For	example,	positioning	a	button	in	the	center	at	the	top	may	not	maintain	the	location
depending	on	whether	the	constraint	being	added	was	absolute	(200px	from	the	right)	or
relative	(in	the	center	of	the	screen).	In	both	cases,	the	button	may	look	like	it	was
positioned	correctly,	only	to	fail	when	the	device’s	screen	orientation	rotates	or	it	is	run	on
a	screen	of	different	size.

In	Xcode	6,	although	the	guidelines	are	still	displayed	as	views	are	moved	around,	relative
constraints	are	not	created.	Instead,	each	view	is	given	an	exact	hardcoded	position	that
does	not	change	with	screen	rotation	or	with	a	change	of	display	size.

In	Xcode	7,	Auto	Layout	is	the	preferred	way	of	creating	applications,	and	views	are
implicitly	selected	for	Auto	Layout.	In	addition,	separate	user	interfaces	can	be	created	for
different	size	classes,	which	allows	applications	such	as	Calculator	and	Mail	to	provide
different	user	interfaces	that	are	based	on	the	device’s	rotation.	On	larger	screen	devices
that	have	the	ability	to	dock	applications	next	to	each	other,	the	size	classes	are	used	to
determine	how	each	application	looks	and	behaves.

Constraints	must	be	added	manually	to	the	views	in	order	to	restore	the	right	behavior,	and
as	manual	constraints	are	added,	absolute	constraints	are	removed.

Adding	constraints
In	the	example	application,	the	Welcome	to	Swift	label	and	the	Press	Me	button	are	next
to	each	other,	a	small	distance	from	the	top.	However,	when	the	screen	is	rotated	in	the
simulator,	by	pressing	Command	and	the	left	or	right	arrow	keys,	the	spacing	between	the
labels	and	the	top	doesn’t	change,	so	the	labels	look	further	away.

The	desired	outcome	is	that	the	label	remains	a	standard	distance	away	from	the	top-left
edge	and	the	button	remains	aligned	to	the	label’s	baseline.

There	are	two	separate	constraints	that	need	to	be	applied	to	the	label:

Be	a	standard	vertical	distance	away	from	the	top	of	the	parent	view
Be	a	standard	horizontal	distance	away	from	the	left	of	the	parent	view

There	are	also	two	constraints	that	need	to	be	applied	to	the	button:

Be	aligned	with	the	label’s	baseline
Be	a	standard	vertical	distance	away	from	the	label

There	are	different	ways	of	adding	a	constraint,	which	are	covered	in	the	following
sections.

Adding	a	constraint	with	drag	and	drop
A	quick	way	to	add	a	constraint	is	to	press	Control	and	drag	the	mouse	cursor	from	the
view	to	the	top	of	the	container.	Depending	on	the	direction	of	the	drag,	different	options
will	be	displayed.	Dragging	vertically	upwards	presents	the	vertical	alignment	options:

The	Vertical	Spacing	to	Top	Layout	Guide	option	will	insert	a	recommended	break
between	the	navigation	bar	and	the	label.	There	is	a	Center	Horizontally	in	Container
option,	which	is	also	a	vertical	separation	but	not	appropriate	in	this	case.

The	other	types	that	are	active—Equal	Widths,	Equal	Heights,	and	Aspect	Ratio—
allow	multiple	views	to	be	sized	relative	to	each	other.

Dragging	horizontally	will	show	a	different	set	of	options	at	the	top,	including	Leading
Space	to	Container	Margin	and	Center	Vertically	in	Container:

If	the	mouse	is	dragged	at	an	angle,	both	sets	of	options	will	be	displayed,	as	follows:

Adding	constraints	to	the	Press	Me	scene
To	set	the	constraints	for	the	welcome	label,	press	Control	and	drag	the	mouse	cursor	from
the	label	to	the	left,	and	select	Leading	Space	to	Container	Margin.	An	orange	line	will
appear,	and	an	orange	outline	will	be	displayed:

Note
The	orange	line	indicates	an	ambiguous	constraint,	which	means	that	some	constraints
have	been	added	to	the	view	but	are	not	enough	to	uniquely	position	the	label.	In	this	case,
the	label	is	positioned	from	the	left	of	the	container,	but	it	could	be	anywhere	with	respect
to	the	top	or	bottom	of	the	screen.	The	red	dotted	lines	show	where	the	Auto	Layout
algorithm	will	place	the	view	with	the	constraints	that	are	currently	specified.

To	resolve	this	problem,	press	Control	and	drag	the	mouse	pointer	from	the	label	to	the	top
and	select	Vertical	Spacing	to	Top	Layout	Guide.	Once	this	is	done,	two	constraints	will
be	displayed	in	blue,	which	represent	the	constraints	about	the	object:

Tip
If	there	is	an	orange	box	surrounding	the	label	along	with	a	warning	that	says	Frame	for
label	will	be	different	at	run-time,	this	can	be	fixed	with	the	Update	Frames	option	that
is	discussed	in	the	next	section.

The	constraints	can	also	be	seen	in	the	document	outline	on	the	left-hand	side:

If	the	application	is	run	now	and	rotated,	the	label	is	correctly	repositioned,	but	the	button
is	not:

Adding	missing	constraints
To	find	out	which	views	have	no	constraints,	click	through	the	views	one	by	one	in	the
document	outline	and	check	the	size	inspector	(which	can	be	seen	by	pressing	Command	+
Option	+	5	or	by	navigating	to	View	|	Utilities	|	Show	Size	Inspector).	For	views	that
have	constraints	set,	there	will	be	content	shown	under	the	Constraints	section:

If	a	view	has	no	constraints	associated	with	it,	then	this	section	will	be	empty.	Interface
builder	has	an	option	to	create	missing	constraints	for	selected	views,	which	can	be
accessed	by	navigating	to	Editor	|	Resolve	Auto	Layout	Issues	|	Add	Missing
Constraints	or	from	the	Resolve	Auto	Layout	Issues	menu	at	the	bottom-right,	which
looks	like	a	triangle	between	two	vertical	lines.

When	selected,	the	options	in	the	top-half	apply	to	selected	views	only,	while	the	options
in	the	bottom-half	work	on	all	the	views	in	the	selected	view	controller:

The	options	include:

Update	Frames:	This	is	based	on	the	current	constraints;	it	automatically	repositions
and	resizes	the	views	to	correspond	to	what	will	happen	at	runtime
Update	Constraints:	This	is	based	on	the	current	positions	of	the	objects	and
attempts	to	recalculate	the	existing	constraints	(but	not	create	new	ones)
Add	Missing	Constraints:	This	is	based	on	the	approximate	positioning	of	the
components	and	adds	constraints	that	creates	the	same	result
Reset	to	Suggested	Constraints:	This	is	equivalent	to	clearing	all	the	constraints
associated	with	the	views	and	then	reading	missing	constraints
Clear	Constraints:	This	removes	all	the	constraints	associated	with	the	views

To	add	constraints	to	the	Press	Me	button,	click	on	the	view	and	then	navigate	to	Editor	|
Resolve	Auto	Layout	Issues	|	Selected	Views	|	Add	Missing	Constraints.	There	should

be	two	constraints	added:	a	baseline	alignment	with	the	label,	and	a	horizontal	space	to	the
label.

To	see	the	effect	of	the	Update	Frames	operation,	move	the	label	and	the	button	to
different	places	in	the	view	controller.	Orange	lines	and	dotted	outlines	will	be	shown,
indicating	that	there	is	an	ambiguous	constraint.	Navigate	to	Choose	Editor	|	Resolve
Auto	Layout	Issues	|	All	Views	in	View	Controller	|	Update	Frames,	and	the	views	will
automatically	move	to	the	right	places	and	resize.

Note
The	views	are	sized	to	their	intrinsic	size,	which	is	the	size	that	just	fits	the	content.	For
example,	a	label’s	intrinsic	size	is	the	size	in	which	the	text	can	fit	into	the	space	in	the
current	font.	This	can	be	used	to	fix	the	size	of	the	label	in	the	Message	Scene;	by	adding
constraints,	the	changing	text	will	result	in	the	intrinsic	size	being	recalculated,	and	the
background	color	will	be	correctly	sized.

Now,	run	the	application	and	rotate	the	device,	by	pressing	Command	and	the	left	and
right	arrow	keys	to	see	the	view	resize	itself	correctly.

Summary
This	chapter	introduced	the	concept	of	storyboards	as	a	sequence	of	scenes	that	are
connected	with	segues,	which	can	either	be	wired	with	the	GUI	or	driven
programmatically.	Finally,	Auto	Layout	can	be	used	to	build	applications	that	respond	to
differences	in	screen	orientation	or	size,	as	well	as	respond	to	changes	in	view	size	or
other	properties.

The	next	chapter	will	present	how	to	create	custom	views	in	Swift.

Chapter	5.	Creating	Custom	Views	in
Swift
User	interfaces	can	be	built	by	combining	standard	views	and	view	controllers	through
Interface	Builder,	Storyboard	Editor,	or	with	custom	code.	However,	it	will	eventually
become	necessary	to	break	apart	a	user	interface	into	smaller,	reusable,	and	easier	to	test
segments.	These	are	known	as	custom	views.

This	chapter	will	present	the	following	topics:

Customizing	table	views
Building	and	laying	out	custom	view	subclasses
Drawing	graphical	views	with	drawRect
Creating	layered	graphics	with	animation

An	overview	of	UIView
All	iOS	views	are	rooted	in	an	Objective-C	class	called	UIView,	which	comes	from	the
UIKit	framework/module.	The	UIView	class	represents	a	rectangular	space	that	may	be
associated	with	UIWindow	or	constructed	to	represent	an	off-screen	view.	Views	that
perform	user	interactions	are	generally	subclasses	of	UIControl.	Both	UIView	and
UIViewController	inherit	from	the	UIResponder	class,	which	in	turn	inherits	from
NSObject:

On	Mac	OS	X,	views	are	rooted	in	NSView	and	come	from	the	AppKit	framework.
Otherwise,	these	two	implementations	are	very	similar.	A	new	Xcode	project	will	be	used
to	create	custom	view	classes.	Create	a	new	project	called	CustomViews	that	is	based	on
the	Tabbed	Application	template.	To	start	with	a	blank	sheet,	delete	the	generated	view
controllers	from	the	Main.storyboard	and	their	associated	FirstViewController	and
SecondViewController	classes.

Creating	new	views	with	Interface	Builder
The	easiest	way	to	create	a	custom	view	is	to	use	Interface	Builder	to	drag	and	drop	the
contents.	This	is	typically	done	with	a	UITableView	and	a	prototype	table	cell.

Creating	a	table	view	controller
Drag	in	a	Table	View	Controller	from	the	object	library	onto	the	main	storyboard,	and
drag	and	drop	from	the	tab	bar	controller	to	the	newly	created	table	view	controller	to
create	a	relation	segue	called	view	controllers.	(Segues	are	covered	in	more	detail	in	the
Storyboards,	Segues	,	and	Scenes	section	in	Chapter	4,	Storyboard	Applications	with	Swift
and	iOS.)

By	default,	the	table	view	controller	will	have	dynamic	property	content—that	is,	it	will	be
able	to	display	a	variable	number	of	rows.	This	is	defined	in	the	Table	View	section	of
Attributes	Inspector,	which	can	be	displayed	by	selecting	Table	View	from	the	scene
navigator	and	then	pressing	Command	+	Option	+	4:

Note
There	is	an	option	for	tables	to	have	static	content;	a	fixed	number	of	rows	in	the	table.
This	is	sometimes	useful	when	creating	scrollable	content	that	can	be	partitioned	into
slices,	even	if	it	doesn’t	look	like	a	table.	Most	of	the	elements	in	the	iOS	settings	are
represented	as	a	fixed-size	table	view.	At	the	top	of	the	table	view	are	one	or	more
prototype	cells.	These	are	used	to	define	the	look	and	feel	of	the	table	items.	By	default,	a
UITableViewCell	is	used,	which	has	a	label	and	an	image,	but	a	prototype	cell	can	be	used
to	add	more	data	to	the	entries.

The	prototype	cell	can	be	used	to	provide	additional	information	or	views.	For	example,
two	labels	can	be	dragged	into	the	view;	one	label	can	be	centered	at	the	top	and	can	be
displayed	in	the	headline	font,	while	the	second	can	be	left-aligned.

Drag	two	UILabels	from	the	object	library	into	the	prototype	cell	and	arrange	them	using
Auto	Layout,	appropriately.

To	change	a	label’s	font,	select	the	label	in	the	editor	and	go	to	Attributes	Inspector.	In
the	Label	section,	click	on	the	Font	Chooser	icon	and	select	Headline	or	Subhead,	as
appropriate:

When	finished,	the	prototype	cell	will	look	similar	to	the	following	screenshot:

When	the	application	is	run,	an	empty	table	will	be	seen.	This	is	because	the	table	doesn’t
have	any	items	displayed	at	the	moment.	The	next	section	shows	how	to	add	data	to	a
table	so	that	it	binds	and	displays	items	to	the	prototype	cell.

Showing	data	in	the	table
A	UITableView	acquires	data	from	a	UITableViewDataSource.	The
UITableViewController	class	already	implements	the	UITableViewDataSource	protocol,
so	only	a	small	number	of	methods	are	required	to	provide	data	for	the	table.

Tip
As	UITableView	was	originally	implemented	in	Objective-C,	the	methods	that	are	defined
in	the	protocol	take	a	tableView.	As	a	result,	all	of	the	UITableViewDataSource	delegate
methods	in	Swift	end	up	being	called	tableView	with	different	arguments.

Create	a	new	SampleTable	class	that	extends	UITableViewController.	Implement	the
class	as	follows:

import	UIKit

class	SampleTable:	UITableViewController	{

		var	items	=	[

				("First",	"A	first	item"),

				("Second",	"A	second	item"),

]

		required	init?(coder:NSCoder)	{

				super.init(coder:coder)

		}

		override	func	tableView(tableView:	UITableView,

				numberOfRowsInSection	section:Int)	->	Int	{

				return	items.count

		}

		override	func	tableView(tableView:	UITableView,

				cellForRowAtIndexPath	indexPath:	NSIndexPath)

					->	UITableViewCell	{

				let	cell	=	tableView.

					dequeueReusableCellWithIdentifier("prototypeCell")!

				

				//	configure	labels

				return	cell

		}

}

Once	the	data	source	methods	are	implemented,	the	labels	need	to	be	configured	to	display
the	data	from	the	array.	There	are	three	things	that	need	to	be	done:	the	prototype	cell	must
be	acquired	from	the	xib	file;	the	labels	need	to	be	extracted;	and	finally	the	table	view
controller	needs	to	be	associated	with	the	custom	SampleTable	class.

Firstly,	the	cellForRowAtIndex	function	needs	an	identifier	for	reusable	cells.	The
Identifier	is	set	on	the	prototype	cell	in	the	main	storyboard.	To	set	this,	select	the
prototype	cell	and	go	to	the	Attributes	Inspector.	Enter	prototypeCell	in	the	Identifier
of	the	Table	View	Cell	section:

The	identifier	is	used	in	the	dequeueReusableCellWithIdentifier	method	of	the
tableView.	When	a	xib	is	used	to	load	the	cell,	the	return	value	will	either	reuse	a	cell	that
has	gone	off	screen	earlier,	or	a	new	cell	will	be	instantiated	from	the	xib.

Each	label	can	be	given	a	non-zero	integer	Tag	so	that	the	label	can	be	extracted	from	the
prototype	cell	using	the	viewWithTag	method:

let	titleLabel	=	cell.viewWithTag(1)	as!	UILabel

let	subtitleLabel	=	cell.viewWithTag(2)	as!	UILabel

To	assign	tags	to	the	views,	select	the	Heading	Label,	navigate	to	Attributes	Inspector,
and	change	Tag	to	1.	Do	the	same	thing	for	the	Subheading	Label	with	Tag	set	to	2:

Now,	the	text	values	for	the	row	can	be	set:

let	(title,subtitle)	=	items[indexPath.row]

titleLabel.text	=	title

subtitleLabel.text	=	subtitle

Finally,	the	SampleTable	needs	to	be	associated	with	the	table	view	controller.	Click	the
table,	go	to	Identity	Inspector,	and	enter	SampleTable	in	the	Custom	Class	section:

When	the	application	is	run,	the	following	view	will	be	displayed:

Tip
To	hide	the	status	bar,	add	or	change	Status	bar	is	initially	hidden	to	YES	and	View
controller-based	status	bar	appearance	to	NO	in	the	Info.plist	file.	Please	note	that
Xcode	7	displays	a	CGContextRestoreGState:	invalid	context	0x0	error	message
when	using	these	options,	which	is	a	known	issue	that	may	be	fixed	in	later	releases.

Defining	a	view	in	a	xib	file
It	is	possible	to	create	a	view	using	Interface	Builder,	save	it	as	a	xib	file,	and	then
instantiate	it	on	demand.	This	is	what	happens	under	the	covers	with	UITableView—there
is	a	registerNib:forCellReuseIdentifier:	method,	which	takes	a	xib	file	and	an
identifier	(which	corresponds	to	prototypeCell	in	the	previous	example).

Create	a	new	interface	file	named	CounterView.xib	to	represent	the	view,	by	navigating
to	File	|	New	|	File	|	iOS	|	User	Interface	|	View.	When	opened,	it	will	display	as	an
empty	view	with	no	content	and	in	a	600	x	600	square.	To	change	the	size	to	something
that	is	a	little	more	reasonable,	go	to	Attributes	Inspector	and	change	the	size	from
Inferred	to	Freeform.	At	the	same	time,	change	the	Status	Bar,	Top	Bar,	and	Bottom
Bar	to	None.	Then	switch	to	the	Size	Inspector	and	modify	the	view’s	Frame	Rectangle
to	300	x	50:

This	should	resize	the	view	so	that	it	is	displayed	as	300	by	50	instead	of	the	previous	600
by	600,	and	the	status	bar	and	other	bars	should	not	be	seen.	Now	add	a	Stepper	from	the
object	library	by	dragging	it	to	the	left-hand	side	of	the	view	and	dragging	a	Label	to	the
right.	Adjust	the	size	and	add	the	missing	constraints	so	that	the	view	looks	similar	to	the
following	screenshot:

Wiring	a	custom	view	class
Create	a	new	CounterView	class	that	extends	UIView,	and	define	an	@IBOutlet	for	the
label	and	an	@IBAction	change	method	that	takes	a	sender.

Open	the	CounterView.xib	file	and	select	the	view.	Change	Custom	Class	to	be
CounterView.	Wire	the	stepper’s	valueChanged	event	to	the	change	method	and	connect
the	label	outlet:

Implement	the	change	function	such	that	the	label	text	is	changed	when	the	stepper	is
picked:

import	UIKit

class	CounterView:	UIView	{

		@IBOutlet	weak	var	label:UILabel!

		@IBAction	func	change(sender:AnyObject)	{

				let	count	=	(sender	as!	UIStepper).value

				label.text	=	"Count	is	\(count)"

		}

}

The	CounterView	will	be	added	to	the	table	header	of	the	SampleTable.	Each
UITableViewController	has	a	reference	to	its	associated	UITableView,	and	each
UITableView	has	an	optional	headerView	(and	footerView)	that	is	used	for	the	table	as	a
whole.

Note
The	UITableView	also	has	sectionHeader	and	sectionFooter,	which	are	used	to	separate
different	sections	of	the	table.	A	table	can	have	multiple	sections—for	example,	one
section	per	month—and	a	separate	header	and	footer	can	be	used	per	section.

To	create	a	CounterView,	the	xib	file	must	be	loaded.	This	is	done	by	instantiating	a
UINib	with	a	nibName	and	a	bundle.	The	most	appropriate	place	to	do	this	is	in	the
viewDidLoad	method	of	the	SampleTable	class:

class	SampleTable:	UITableViewController	{

		override	func	viewDidLoad()	{

				let	xib	=	UINib(nibName:"CounterView",	bundle:nil)

				//	continued

Once	the	xib	is	loaded,	the	view	must	be	created.	The	instantiateWithOwner	method
allows	the	object(s)	in	the	xib	to	be	deserialized.

Note
It	is	possible	to	store	multiple	objects	in	a	xib	file	(for	example,	to	define	a	separate	view
that	is	suitable	for	a	small	display	device	versus	a	big	display	device);	but	in	general,	a	xib
file	only	contains	one	view.

The	owner	is	passed	to	the	view	so	that	any	connections	can	be	wired	up	to	the	File’s
Owner	in	the	interface.	This	is	typically	either	self	or	nil	if	there	are	no	connections:

				//	continued	from	before

				let	objects	=	xib.instantiateWithOwner(self,	options:nil)

				//	continued

This	returns	an	array	of	AnyObject	instances,	and	so	casting	the	first	element	to	a	UIView
is	a	common	step.

Tip
It	is	possible	to	use	objects[0],	but	this	will	cause	a	failure	if	the	array	is	empty.	Instead,
use	objects.first	to	get	an	optional	value	that	contains	the	first	element.

Using	the	as?	cast,	it	is	possible	to	convert	the	optional	value	to	a	more	specific	type,	and
from	this,	perform	the	assignment	to	the	tableHeaderView:

				//	continued	from	before

				let	counter	=	objects.first	as?	UIView

				tableView.tableHeaderView	=	counter

		}

When	this	application	is	run	in	the	simulator,	the	following	header	is	seen	at	the	top	of	the
table:

One	of	the	advantages	of	having	a	xib	to	represent	the	user	interface	is	that	it	can	be
reused	in	many	places	with	a	single	definition.	For	example,	it	is	possible	to	use	the	same
xib	to	instantiate	another	view	for	the	footer	of	the	table,	as	follows:

tableView.tableFooterView	=	

		xib.instantiateWithOwner(self,options:nil).first	as?	UIView

When	the	application	is	run	now,	counters	are	created	at	the	top	and	bottom	of	the	table:

Dealing	with	intrinsic	size
When	a	view	is	added	into	a	view	that	is	being	managed	with	Auto	Layout,	its	intrinsic
content	size	is	used.	Unfortunately,	views	that	are	defined	in	Interface	Builder	have	no
way	of	setting	their	intrinsic	size	programmatically	or	specifying	it	in	Interface	Builder.
Size	Inspector	allows	this	value	to	be	changed,	but	as	Xcode	notes,	this	has	no	effect	at
runtime:

If	a	custom	class	is	associated	with	the	view,	then	an	appropriate	intrinsic	size	can	be
defined.	Add	a	method	to	CounterView	that	overrides	the	intrinsicContentSize	method
and	returns	a	CGSize,	allows	some	xib	customization,	and	returns	the	maximum	of	the
label’s	intrinsic	size	and	a	value,	such	as	(300,50):

override	func	intrinsicContentSize()	->	CGSize	{

		let	height	=	max(50,label.intrinsicContentSize().height)

		let	width	=	max(300,label.intrinsicContentSize().width)

		return	CGSize(width:	width,	height:	height)

}

Now	when	the	view	is	added	into	a	view	that	is	managed	by	Auto	Layout,	it	will	have	an
appropriate	initial	size	although	it	can	grow	larger.

Note
The	size	should	take	into	account	the	size	of	the	various	views	that	are	contained	inside,	as
well	as	any	font	sizes	or	themes,	which	might	change	the	view.	Using	the	label’s
intrinsicSize	to	calculate	a	maximum	is	a	good	idea.

Creating	new	views	by	subclassing
UIView
Although	the	xib	files	offer	a	mechanism	to	customize	classes,	the	majority	of	UIKit
views	outside	of	standard	frameworks	are	implemented	in	custom	code.	This	makes	it
easier	to	reason	what	the	intrinsic	size	should	be	as	well	as	to	receive	code	patches	and
understand	diffs	from	version	control	systems.	The	downside	of	this	approach	is	when
using	Auto	Layout,	writing	the	constraints	can	be	a	challenge	and	the	intrinsic	sizes	are
often	misreported	or	return	the	unknown	value:	(-1,-1).

A	custom	view	can	be	implemented	as	a	subclass	of	UIView.	Subclasses	of	UIView	are
expected	to	have	two	initializers,	one	that	takes	a	frame:CGRect	and	one	that	takes	a
coder:NSCoder.	The	frame	is	generally	used	in	code,	and	the	rect	specifies	the	position
on	screen	(0,0	is	the	top-left)	along	with	the	width	and	height.	The	coder	is	used	when
deserializing	from	a	xib	file.

To	allow	custom	subclasses	to	either	be	used	in	Interface	Builder	or	instantiated	from
code,	it	is	good	practice	to	ensure	that	both	the	initializers	create	the	necessary	views.	This
can	be	done	using	a	third	method	called	setupView,	which	is	invoked	from	both.

Create	a	class	called	TwoLabels	that	has	two	labels	in	a	view:

import	UIKit

class	TwoLabels:	UIView	{

		var	left:UILabel	=	UILabel()

		var	right:UILabel	=	UILabel()

		required	init?(coder:NSCoder)	{

				super.init(coder:coder)

				setupView()

		}

		override	init(frame:CGRect)	{

				super.init(frame:frame)

				setupView()

		}

		//	...

}

The	setupView	call	will	add	the	subviews	to	the	view.	Code	that	goes	in	here	should	be
executed	only	once.	There	isn’t	a	standard	name,	and	often,	example	code	will	place	the
setup	in	one	or	other	of	the	init	methods	instead.

It	is	conventional	to	have	a	separate	method,	such	as	configureView,	to	populate	the	UI
with	the	current	set	of	data.	This	can	be	called	repeatedly	based	on	the	state	of	the	system;
for	example,	a	field	may	be	enabled	or	disabled	based	on	some	condition.	This	code
should	be	repeatable	so	that	it	does	not	modify	the	view	hierarchy:

func	setupView()	{

		addSubview(left)

		addSubview(right)

		configureView()

}

func	configureView()	{

		left.text	=	"Left"

		right.text	=	"Right"

}

In	an	explicitly	sized	environment	(where	the	text	label	is	being	set	and	placed	at	a
particular	location),	there	is	a	layoutSubviews	method	that	is	called	to	request	the	view	to
be	laid	out	correctly.	However,	there	is	a	better	way	to	do	this,	which	is	to	use	Auto
Layout	and	constraints.

Auto	Layout	and	custom	views
Auto	Layout	is	covered	in	the	Using	Auto	Layout	section	of	Chapter	4,	Storyboard
Applications	with	Swift	and	iOS.	When	creating	a	user	interface	explicitly,	views	must	be
sized	and	managed	appropriately.	The	easiest	way	to	manage	this	is	to	use	Auto	Layout,
which	requires	constraints	to	be	added	in	order	to	set	up	the	views.

Constraints	can	be	added	or	updated	in	the	updateConstraints	method.	This	is	called
after	setNeedsUpdateConstraints	is	called.	Constraints	may	need	to	be	updated	if	views
become	visible	or	the	data	is	changed.	Typically,	this	can	be	triggered	by	placing	a	call	at
the	end	of	the	setupView	method,	as	follows:

func	setupView()	{

		//	addSubview	etc

		setNeedsUpdateConstraints()

}

The	updateConstraints	method	needs	to	do	several	things.	To	prevent	autoresizing
masks	being	translated	into	constraints,	each	view	needs	to	call
setTranslatesAutoresizingMaskIntoConstraints	with	an	argument	of	false.

Tip
To	facilitate	the	transition	between	springs	and	struts	(also	known	as	autoresizing	masks)
and	Auto	Layouts,	views	can	be	configured	to	translate	springs	and	struts	into	Auto
Layout	constraints.	This	is	enabled	by	default	for	all	views	in	order	to	provide	backward
compatibility	for	existing	views,	but	it	should	be	disabled	when	implementing	Auto
Layouts.

Either	the	constraints	can	be	incrementally	updated	or	the	existing	constraints	can	be
removed.	A	removeConstraints	method	allows	existing	constraints	to	be	removed	first,	as
follows:

override	func	updateConstraints()	{

		translatesAutoresizingMaskIntoConstraints	=	false

		left.translatesAutoresizingMaskIntoConstraints	=	false

		right.translatesAutoresizingMaskIntoConstraints	=	false

		removeConstraints(constraints)

		//	add	constraints	here

}

Constraints	can	be	added	programmatically	using	the	NSLayoutConstraint	class.	The
constraints	that	are	added	in	Interface	Builder	are	also	instances	of	the
NSLayoutConstraint	class.

Constraints	are	represented	as	an	equation;	properties	of	two	objects	are	related	as	an
equality	(or	inequality)	of	the	following	form:

//	object.property	=	otherObject.property	*	multiplier	+	constant

To	declare	that	both	labels	are	of	equal	width,	the	following	can	be	added	to	the
updateConstraints	method:

//	left.width	=	right.width	*	1	+	0

let	equalWidths	=	NSLayoutConstraint(

		item:	left,

		attribute:	.Width,

		relatedBy:	.Equal,

		toItem:	right,

		attribute:	.Width,

		multiplier:	1,

		constant:	0)

addConstraint(equalWidths)

Constraints	and	the	visual	format	language
Although	adding	individual	constraints	gives	us	ultimate	flexibility,	it	can	be	tedious	to	set
up	programmatically.	The	visual	format	language	can	be	used	to	add	multiple	constraints
to	a	view.	This	is	an	ASCII-based	representation	that	allows	views	to	be	related	to	each
other	in	position	and	extrapolated	into	an	array	of	constraints.

Constraints	can	be	applied	horizontally	(the	default)	or	vertically.	The	|	character	can	be
used	to	represent	either	the	start	or	end	of	the	containing	superview,	and	–	is	used	to
represent	the	space	that	separates	views,	which	are	named	in	[]	and	referenced	in	a
dictionary.

To	constrain	the	two	labels	that	are	next	to	each	other	in	the	view,	H:|-[left]-[right]-|
can	be	used.	This	can	be	read	as	a	horizontal	(H:)	with	a	gap	from	the	left	edge	(|-)
followed	by	the	left	view	([left]),	a	gap	(-),	a	right	view	([right]),	and	finally,	a	gap
from	the	right	edge	(-|).	Similarly,	vertical	constraints	can	be	added	with	a	V:	prefix.

The	constraintsWithVisualFormat	method	on	the	NSLayoutConstraint	class	can	be
used	to	parse	visual	format	constraints.	It	takes	a	set	of	options,	metrics,	and	a	dictionary
of	views	that	are	referenced	in	the	visual	format.	An	array	of	constraints	is	returned,	which
can	be	passed	into	the	addConstraints	method	of	the	view.

To	add	constraints	that	ensure	the	left	and	right	views	have	equal	widths,	a	space
between	them,	and	a	vertical	space	between	the	top	of	the	view	and	the	labels,	the
following	code	can	be	used:

override	func	updateConstraints()	{

		//	…

		let	options	=	NSLayoutFormatOptions()

		let	namedViews	=	["left":left,"right":right]

		addConstraints(NSLayoutConstraint.

				constraintsWithVisualFormat("H:|-[left]-[right]-|",

						options:	options,	metrics:	nil,	views:	namedViews))

		addConstraints(NSLayoutConstraint.

				constraintsWithVisualFormat("V:|-[left]-|",

						options:	options,	metrics:	nil,	views:	namedViews))

		addConstraints(NSLayoutConstraint.

				constraintsWithVisualFormat("V:|-[right]-|",

						options:	options,	metrics:	nil,	views:	namedViews))

		super.updateConstraints()

}

Note
If	there	are	ambiguous	constraints,	then	an	error	will	be	printed	to	the	console	when	the
view	is	displayed.	Messages	that	include	the	NSAutoresizingMaskLayout	constraints
indicate	that	the	view	has	not	disabled	the	automatic	translation	of	the	autoresizing	mask
into	the	constraints.

Adding	the	custom	view	to	the	table
The	TwoLabels	view	can	be	tested	by	adding	it	as	a	footer	to	the	SimpleTable	that	was
created	previously.	The	footer	is	a	special	class,	UITableViewHeaderFooterView,	which
needs	to	be	created	and	added	to	tableView.	The	TwoLabels	view	can	then	be	added	to	the
footer’s	contentView:

let	footer	=	UITableViewHeaderFooterView()

footer.contentView.addSubview(TwoLabels(frame:CGRect.zero))

tableView.tableFooterView	=	footer

Now	when	the	application	is	run	in	the	simulator,	the	custom	view	will	be	seen:

Custom	graphics	with	drawRect
Subclasses	of	UIView	can	implement	their	own	custom	graphics	by	providing	a	drawRect
method	that	implements	the	custom	drawing	routines.	The	drawRect	method	takes	a
CGRect	argument,	which	indicates	the	area	to	draw	in.	However,	the	actual	drawing
commands	are	performed	on	a	Core	Graphics	context,	which	is	represented	by	the
CGContext	class	and	can	be	obtained	by	a	call	to	UIGraphicsGetCurrentContext.

The	Core	Graphics	context	represents	a	drawable	area	in	iOS,	and	it	is	used	to	print	as
well	as	draw	graphics.	Each	view	has	the	responsibility	to	draw	itself;	the	rectangle	will
either	be	the	full	area	(for	example,	the	first	time	that	a	view	is	drawn)	or	it	may	be	a
subset	of	the	area	(for	example,	when	a	dialog	has	been	displayed	and	then	subsequently
removed).

Core	Graphics	is	a	C-based	interface	(rather	than	Objective-C-based),	so	the	API	is
exposed	as	a	set	of	functions	beginning	with	the	UIGraphics	prefix.	As	with	other
drawing	APIs,	the	program	can	set	the	current	drawing	color,	draw	lines,	set	a	fill	color,
fill	rectangles,	and	so	on.

To	test	this,	create	a	class	called	SquaresView	that	is	a	subclass	of	UIView	in	a	new	Swift
file.

All	views	have	the	standard	init	methods;	delegate	them	to	the	superclass’s
implementation.	Finally,	create	a	drawRect	method	that	takes	a	CGRect.	This	will	be	where
the	custom	drawing	occurs.	The	skeleton	will	look	like	the	following:

import	UIKit

class	SquaresView:	UIView	{

		required	init?(coder:	NSCoder)	{

				super.init(coder:coder)

				setupView()

		}

		override	init(frame:	CGRect)	{

				super.init(frame:frame)

				setupView()

		}

		func	setupView()	{

		}

		override	func	drawRect(rect:	CGRect)	{

				//	drawing	code	goes	here

		}

}

Open	the	Main.storyboard,	drag	in	another	UIViewController	and	set	the	custom	class
of	the	view	to	SquaresView	in	Identity	Inspector.	Drag	in	a	relationship	segue	between
the	tabbed	view	controller	and	the	new	view	controller,	and	set	the	tab	bar	item	to	Squares
which	will	allow	testing	to	move	to	a	different	view.	If	the	application	is	run,	a	blank	view
will	be	seen	in	the	Squares	tab.

Drawing	graphics	in	drawRect
To	draw	graphics	in	the	view,	it	is	necessary	to	acquire	a	CGContext	and	then	set	a
drawing	(stroke)	color.	A	UIColor	can	be	acquired	and	then	converted	into	a	CGColor	to
be	able	to	set	it	on	the	graphics	context.

Finally,	a	rectangle	can	be	drawn	with	CGContextStrokeRect:

override	func	drawRect(rect:	CGRect)	{

		let	context	=	UIGraphicsGetCurrentContext()

		let	red	=	UIColor.redColor().CGColor

		CGContextSetStrokeColorWithColor(context,	red)

		CGContextStrokeRect(context,	

				CGRect(x:50,	y:50,	width:100,	height:100))

}

When	this	is	run	in	the	simulator,	a	red	rectangle	will	be	displayed	on	the	Squares	tab.

To	draw	a	green	square	with	a	black	outline	in	the	middle	requires	a	filled	green	square	to
be	drawn	first,	followed	by	a	black	square	afterwards.	(Drawing	them	in	the	opposite
order	will	result	in	the	solid	green	square	obliterating	the	black	square.)

There	are	two	different	colors	in	a	Core	Graphics	context:	the	stroke	color,	which	is	used
to	draw	lines	and	paths,	and	the	fill	color,	which	is	used	when	creating	a	filled	path.
Although	the	CGContextSetFillColorWithColor	function	exists,	in	Swift,	there	is	an
easier	way	of	setting	this	directly	with	UIColor	using	the	setFill	or	setStroke	methods.
The	following	code	will	create	the	green	square	with	a	black	border:

UIColor.greenColor().setFill()

UIColor.blackColor().setStroke()

CGContextFillRect(context,

		CGRect(x:75,	y:75,	width:50,	height:50))

CGContextStrokeRect(context,

		CGRect(x:75,	y:75,	width:50,	height:50))

Now	when	the	application	is	run,	the	following	will	be	seen:

Responding	to	orientation	changes
When	the	screen	rotates,	the	view	is	stretched	and	squashed,	resulting	in	the	square
turning	into	a	rectangle.	The	drawRect	call	is	not	called	when	the	view	changes
orientation;	the	existing	display	is	squashed	and	stretched	automatically.

To	prevent	this,	the	content	mode	of	the	view	can	be	changed.	There	is	a
UIViewContentMode	enumeration	that	can	be	specified	to	cause	different	behaviors.	Using
Redraw	will	result	in	the	drawRect	being	called	when	the	orientation	changes	or	when	the
bounds	changes	size.

Note
The	other	enum	values	are	documented	in	the	UIViewContentMode	type,	and	they	include
scaling	options	as	well	as	being	centered	or	attached	to	one	of	the	edges	or	corners.

The	squares	can	be	centered	on	the	screen;	instead	of	starting	at	the	position	50,50,	the
view’s	center	property	can	be	accessed	to	find	out	what	the	position	is.	Modify	the	code
as	follows:

func	setupView()	{

		contentMode	=	.Redraw

}

override	func	drawRect(rect:	CGRect)	{

		let	context	=	UIGraphicsGetCurrentContext()

		let	red	=	UIColor.redColor().CGColor

		CGContextSetStrokeColorWithColor(context,red)

		CGContextStrokeRect(context,

				CGRect(x:center.x-50,	y:center.y-50,	width:100,	height:100))

		UIColor.greenColor().setFill()

		UIColor.blackColor().setStroke()

		CGContextFillRect(context,

				CGRect(x:center.x-25,	y:center.y-25,	width:50,	height:50))

		CGContextStrokeRect(context,

				CGRect(x:center.x-25,	y:center.y-25,	width:50,	height:50))

}

Now	when	the	application	is	run,	the	squares	will	be	centered	on	the	screen.	If	the	screen
rotates,	drawRect	will	be	invoked	again	and	the	display	will	be	redrawn.

Custom	graphics	with	layers
Drawing	graphics	by	overriding	drawRect	is	not	very	performant	because	all	the	drawing
routines	are	executed	on	the	CPU.	Offloading	the	graphics	drawing	to	the	GPU	is	both
more	performant	and	more	power	efficient.

iOS	has	a	concept	of	layers,	which	are	Core	Graphics	optimized	drawing	contents.
Operations	composed	on	a	layer,	including	adding	a	path,	can	be	translated	into	code	that
can	execute	on	the	GPU	and	be	rendered	efficiently.	In	addition,	Core	Animation	can	be
used	to	animate	changes	on	layers	efficiently.	Core	Animation	is	provided	in	the
QuartzCore	framework/module;	the	two	terms	are	interchangeable.	It	is	more	generally
known	as	Core	Animation.

The	download	progress	icon	on	iOS	can	be	recreated	as	a	ProgressView	containing	layers
for	the	circular	outline,	a	layer	for	the	square	stop	button	in	the	middle,	and	a	layer	for	the
progress	arc.	The	final	view	will	composite	these	three	layers	together	to	provide	the
finished	view.

Every	UIView	has	an	implicit	associated	layer,	which	can	have	sublayers	added	to	it.	As
with	views,	newly-added	layers	overlay	existing	layers.	There	are	several	core	animation
layer	classes	that	can	be	used,	which	are	subclasses	of	CALayer,	and	they	are	as	follows:

The	CAEAGLLayer	class	provides	a	way	to	embed	OpenGL	content	into	a	view
The	CAEmitterLayer	class	provides	a	mechanism	to	generate	emitter	effects,	such	as
smoke	and	fire
The	CAGradientLayer	class	provides	a	way	to	create	a	background	with	a	gradient
color
The	CAReplicatorLayer	class	provides	a	means	to	replicate	the	existing	layers	with
different	transformations,	which	allows	effects,	such	as	reflections	and	coverflow,	to
be	displayed
The	CAScrollLayer	class	provides	a	way	to	perform	scrolling
The	CAShapeLayer	class	provides	a	means	to	draw	and	animate	a	single	path
The	CATextLayer	class	allows	text	to	be	displayed
The	CATiledLayer	class	provides	a	means	to	generate	tiled	content	at	different	zoom
levels,	such	as	a	map
The	CATransformLayer	class	provides	a	means	to	transform	layers	into	3D	views,
such	as	a	coverflow	style	image	animation

Creating	a	ProgressView	from	layers
Create	another	view	class	called	ProgressView	which	extends	UIView.	Set	it	up	with	the
default	init	methods,	a	setupView,	and	a	configureView	method:

import	UIKit

class	ProgressView:	UIView	{

		required	init?(coder:	NSCoder)	{

				super.init(coder:coder)

				setupView()

		}

		override	init(frame:	CGRect)	{

				super.init(frame:frame)

				setupView()

		}

		func	setupView()	{

				configureView()

		}

		func	configureView()	{

		}

}

Create	a	new	Layers	Scene	in	the	Main.storyboard	by	dragging	a	UIViewController
from	the	object	library	onto	the	storyboard.	Connect	it	to	the	tab-bar	controller	by
dragging	a	relationship	segue	to	the	newly	created	layers	view	controller.	Add	the
ProgressView	by	dragging	a	View	from	the	object	library	and	giving	it	a	Custom	Class	of
ProgressView.	Size	it	with	an	approximate	location	of	the	middle	of	the	screen.

Now	add	an	instance	variable	to	the	ProgressView	class	called	circle	and	create	a	new
instance	of	CAShapeLayer.	In	setupView,	set	strokeColor	as	black	and	fillColor	as
nil.	Finally,	add	the	circle	layer	to	the	view’s	layer	so	that	it	is	displayed:

let	circle	=	CAShapeLayer()

func	setupView()	{

		circle.strokeColor	=	UIColor.blackColor().CGColor

		circle.fillColor	=	nil

		self.layer.addSublayer(circle)

		configureView()

}

CAShapeLayer	has	a	path	property,	which	is	used	to	perform	all	the	drawing.	The	easiest
way	to	use	this	is	to	create	a	UIBezierPath	and	then	use	the	CGPath	accessor	to	convert	it
to	a	CGPath.

Note
A	bezier	curve	is	a	way	of	representing	a	smooth	curve	between	two	points	and	one	or
more	additional	control	points.	These	can	be	scaled	accurately	and	are	easy	to	compute	in
a	graphics	card.	A	UIBezierPath	provides	a	way	to	represent	one	or	several	bezier	paths
together,	resulting	in	smooth	and	efficient	curve	generation.

Unlike	the	UIGraphics*	methods,	there	are	no	separate	draw*	and	fill*	operations;
instead,	either	the	fillColor	or	strokeColor	is	set	and	then	the	path	is	filled	or	stroked

(drawn).	The	UIBezierPath	can	be	constructed	by	adding	segments,	but	there	are	several
initializers	that	can	be	used	to	draw	specific	shapes.	For	example,	circles	can	be	drawn
with	the	ovalInRect	initializer:

func	configureView()	{

		let	rect	=	self.bounds

		circle.path	=	UIBezierPath(ovalInRect:	rect).CGPath

}

Now	when	the	application	is	run,	a	small	black	circle	will	be	seen	on	the	Layers	tab:

Adding	the	stop	square
The	stop	square	can	be	added	by	creating	another	layer.	This	will	allow	the	stop	button	to
be	turned	on	or	off	as	necessary.	(For	example,	during	a	download,	the	stop	button	can	be
displayed,	and	when	the	download	is	completed,	it	can	be	animated	away.)

Add	a	new	constant	called	square	of	type	CAShapeLayer.	It	will	help	to	create	a	constant,
black,	as	it	will	be	used	again	elsewhere	in	this	class:

class	ProgressView:	UIView	{

		let	square	=	CAShapeLayer()

		let	circle	=	CAShapeLayer()

		let	black	=	UIColor.blackColor().CGColor

}

The	setupView	method	can	now	be	updated	to	deal	with	additional	layers.	As	it	is
common	to	set	them	up	in	the	same	way,	using	a	loop	is	a	quick	way	to	set	up	multiple
layers,	as	follows:

func	setupView()	{

		for	layer	in	[square,	circle]	{

				layer.strokeColor	=	black

				layer.fillColor	=	nil

				self.layer.addSublayer(layer)

		}

		configureView()

}

The	path	for	the	square	can	be	created	using	the	rect	initializer	of	UIBezierPath.	To
create	a	rectangle	that	will	be	centered	inside	the	circle,	use	the	insetBy	method	with	an
appropriate	value:

func	configureView()	{

		let	rect	=	self.bounds

		let	sq	=	rect.insetBy(dx:	rect.width/3,	dy:	rect.height/3)

		square.fillColor	=	black

		square.path	=	UIBezierPath(rect:	sq).CGPath

		circle.path	=	UIBezierPath(ovalInRect:	rect).CGPath

}

Now	when	the	application	is	run,	the	following	will	be	seen:

Adding	a	progress	bar
The	progress	bar	can	be	drawn	as	an	arc	representing	the	amount	of	data	that	has
downloaded	so	far.	On	other	iOS	applications,	the	progress	bar	starts	at	the	12	o’clock
position	and	then	moves	clockwise.

There	are	two	ways	to	achieve	this:	using	an	arc	that	is	drawn	up	to	some	particular
amount,	or	by	setting	a	single	path	that	represents	the	entire	circle	and	then	using
strokeStart	and	strokeEnd	to	define	which	segment	of	the	path	should	be	drawn.	The
advantage	of	using	strokeStart	and	strokeEnd	is	that	they	are	animatable	properties,
which	allow	some	animated	effects.

The	arc	needs	to	be	drawn	from	the	top,	moved	clockwise	to	the	right,	and	then	back	up
again.	The	strokeStart	and	strokeEnd	are	CGFloat	values	between	0	and	1,	so	they	can
be	used	to	represent	the	progress	of	the	download.

Tip
Easy	as	Pi

Although	circles	are	often	split	into	360	degrees	(mainly	because	360	has	a	lot	of	factors
and	is	easily	divisible	into	different	numbers),	computers	tend	to	work	in	radians.	There
are	2pi	radians	in	a	circle;	so	half	a	circle	is	pi,	and	a	quarter	of	a	circle	is	pi/2.

There	is	a	UIBezierPath	convenience	initializer	that	can	draw	an	arc;	the	center	and
radius	are	specified	along	with	a	startAngle	and	endAngle	point.	The	start	and	end
points	are	both	specified	in	radians,	with	0	being	the	3	o’	clock	position	and	going
clockwise	or	anticlockwise	as	specified:

To	draw	progress	starting	from	the	top	of	the	circle,	the	start	point	must	be	specified	as	-
pi/2.	Drawing	clockwise	from	here	around	the	complete	circle	takes	it	to	-pi/2	+	2pi,
which	is	3	*	pi/2.

Tip
Computers	use	pi	a	lot,	defined	in	usr/include/math.h,	which	is	included	transitively
from	UIKit	through	the	Darwin	module.	The	constants:	M_PI,	M_PI_2	(pi/2),	and	M_PI_4
(pi/4),	and	the	inverses:	M_1_PI	(1/pi),	and	M_2_PI	(2/pi),	are	available.

The	middle	of	the	diagram	can	be	calculated	by	accessing	self.center,	and	the	radius	of

the	circle	will	be	half	the	minimum	width	or	height.	To	add	the	path,	create	a	new
CAShapeLayer	called	progress,	add	it	into	the	layers	array,	and	optionally	give	it	a
different	width	and	color	to	distinguish	it	from	the	background:

class	ProgressView:	UIView	{

		let	progress	=	CAShapeLayer()

		var	progressAmount:	CGFloat	=	0.5

		…

		func	setupView()	{

				for	layer	in	[progress,	square,	circle]	{

						…

				}

				progress.lineWidth	=	10

				progress.strokeColor	=	UIColor.redColor().CGColor

				configureView()

		}

		func	configureView()	{

				…

				let	radius	=	min(rect.width,	rect.height)	/	2

				let	center	=	CGPoint(x:rect.midX,	y:rect.midY)

				progress.path	=	UIBezierPath(

						arcCenter:	center,

						radius:	radius,

						startAngle:	CGFloat(-M_PI_2),

						endAngle:	CGFloat(3*M_PI_2),

						clockwise:	true

).CGPath

				progress.strokeStart	=	0

				progress.strokeEnd	=	progressAmount

		}

}

When	this	is	run,	the	progress	bar	will	be	seen	behind	the	circle:

Clipping	the	view
The	problem	with	the	progress	line	is	that	it	extends	beyond	the	circular	boundary	of	the
progress	view.	A	simple	approach	may	be	to	try	and	calculate	a	half-width	distance	from
the	radius	and	redraw	the	circle,	but	this	is	fragile	as	changes	to	the	line	width	may	result
in	the	diagram	not	looking	right	in	the	future.

A	better	approach	is	to	mask	the	graphics	area	so	that	the	drawing	does	not	go	outside	a
particular	shape.	By	specifying	a	mask,	any	drawing	that	occurs	within	the	mask	is
displayed;	graphics	that	are	drawn	outside	the	mask	are	not	displayed.

A	mask	can	be	defined	as	a	rectangular	area	or	the	result	of	a	filled	layer.	Creating	a
circular	mask	requires	creating	a	new	mask	layer	and	then	setting	a	circular	path	as	we	did
before.

Note
A	mask	can	only	be	used	by	a	single	layer.	If	the	same	mask	is	needed	for	more	than	one
layer,	either	the	mask	layer	needs	to	be	copied	or	the	mask	can	be	set	on	a	common	parent
layer.

Create	a	new	CAShapeLayer	that	can	be	used	for	the	mask,	and	create	a	path	that	is	based
on	the	UIBezierPath	with	an	ovalInRect.	The	mask	can	then	be	assigned	to	the	mask
layer	of	the	progress	layer:

class	ProgressView:	UIView	{

		let	mask	=	CAShapeLayer()

		func	configureView()	{

				…	

				mask.path	=	UIBezierPath(ovalInRect:rect).CGPath

				progress.mask	=	mask

		}

}

Now	when	the	display	is	shown,	the	progress	bar	does	not	bleed	over	the	edge:

Testing	views	in	Xcode
To	test	the	view	in	Interface	Builder	directly,	the	class	can	be	marked	as	@IBDesignable.
This	gives	permission	for	Xcode	to	instantiate	and	run	the	view	as	well	as	update	it	for	any
changes	that	are	made.	If	the	class	is	marked	as	@IBDesignable,	then	Xcode	will	attempt
to	load	the	view	and	display	it	in	storyboard	and	xib	files.

However,	when	the	class	loads,	the	UI	will	not	be	displayed	properly,	because	the	frame
size	needs	to	be	initialized	correctly.	Override	the	layoutSubviews	method	to	call
configureView,	which	ensures	that	the	view	is	properly	redrawn	when	the	view	changes
size	or	is	displayed	for	the	first	time:

@IBDesignable	class	ProgressView:	UIView	{

		…	

		override	func	layoutSubviews()	{

				setupView()

		}

}

Now	when	the	ProgressView	is	added	or	displayed	in	Interface	Builder,	it	will	be
rendered	in	place.	Build	the	project,	then	open	the	Main.storyboard,	and	click	on	the
Progress	View;	after	a	brief	delay,	it	will	be	drawn.

Xcode	can	also	be	used	to	edit	different	attributes	of	an	object	in	Interface	Builder.	This
allows	the	view	to	be	tested	without	running	the	application.

To	allow	Interface	Builder	to	edit	properties,	they	can	be	marked	as	@IBInspectable:

@IBDesignable	class	ProgressView:	UIView	{

		@IBInspectable	var	progressAmount:	CGFloat	=	0.5	

		…

}

After	building	the	project,	open	the	storyboard,	select	Progress	View	and	go	to	Attributes
Inspector.	Just	above	the	View	section	will	be	a	Progress	View	section	with	the	Progress
Amount	field	that	is	based	on	the	@IBInspectable	field	of	the	same	name:

Responding	to	change
If	UISlider	is	added	to	Layers	View,	changes	can	be	triggered	by	adding	@IBAction	to
allow	the	valueChanged	event	to	propagate	the	value	to	the	caller.

Create	an	@IBAction	function,	setProgress,	which	takes	a	sender	and	then,	depending	on
the	type	of	that	sender,	extracts	a	value:

@IBAction	func	setProgress(sender:AnyObject)	{

		switch	sender	{

				case	let	slider	as	UISlider:	progressAmount	=

						CGFloat(slider.value)

				case	let	stepper	as	UIStepper:	progressAmount	=	

						CGFloat(stepper.value)

				default:	break

		}

}

Tip
Using	a	switch	statement	that	is	based	on	the	type	allows	additional	views	to	be	added	in
the	future.

The	valueChanged	event	on	UISlider	can	now	be	connected	to	setProgess	on
ProgressView.

Assigning	the	progressAmount	value	alone	has	no	visible	effect,	so	a	property	observer
can	be	used	to	trigger	display	changes	whenever	the	field	is	modified.	A	property	observer
is	a	block	of	code	that	gets	called	before	(willSet)	or	after	(didSet)	a	property	is
changed:

@IBInspectable	var	progressAmount:	CGFloat	=	0.5	{

		didSet	{

				setNeedsLayout()

		}

}

Now	when	the	application	is	run	and	the	slider	value	is	moved,	the	download	amount	will
be	updated	in	the	view:

Tip
If	the	image	doesn’t	update	when	the	slider	changes	value,	check	that	didSet	on
progressAmount	triggers	a	setNeedsLayout	call,	and	that	the	layoutSubviews	function
correctly	calls	configureView.

Observe	that	the	changes	to	progressAmount	are	animated	automatically,	so	if	the	slider	is
quickly	moved	from	one	end	to	the	other	the	download	arc	will	smoothly	animate.

Tip
The	property	observer	uses	setNeedsLayout	to	trigger	a	call	to	layoutSubviews	in	order
to	achieve	the	change	in	display.	As	changes	only	need	to	be	picked	up	when	a	size
change	occurs	or	when	a	property	is	changed,	this	is	more	efficient	than	implementing
other	methods,	such	as	drawRect,	which	will	be	called	every	time	the	display	needs	to	be
updated.

Summary
In	this	chapter,	we	looked	at	several	different	ways	to	create	views	in	iOS.	The	first
approach	was	to	use	Interface	Builder	to	build	the	view	graphically	and	analyze	some	of
the	problems	that	this	can	cause.	We	then	looked	at	subclassing	UIView	and	adding	other
views	to	build	up	a	custom	view.	Finally,	we	presented	two	different	ways	of	drawing
custom	graphics;	first	with	drawRect,	and	subsequently,	with	layers.	The	next	chapter	will
show	you	how	to	use	networking	APIs	in	iOS	to	download	networked	data.

Chapter	6.	Parsing	Networked	Data
Many	iOS	applications	need	to	communicate	with	other	servers	or	devices.	This	chapter
presents	both	HTTP	and	non-HTTP	networking	in	Swift,	and	how	data	can	be	parsed	from
either	JSON	or	XML.	It	first	demonstrates	how	to	load	data	efficiently	from	URLs,
followed	by	how	to	stream	larger	data	responses.	It	then	concludes	with	how	to	perform
both	synchronous	and	asynchronous	network	requests	over	protocols	other	than	HTTP.

This	chapter	will	present	the	following	topics:

Loading	data	from	URLs
Updating	the	user	interface	from	a	background	thread
Parsing	JSON	and	XML	data
Stream-based	connections
Asynchronous	data	communication

Loading	data	from	URLs
The	most	common	way	to	load	data	from	a	remote	network	source	is	to	use	an	HTTP	(or
HTTPS)	URL	of	the	form
https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/CustomViews/CustomViews/SampleTable.json

URLs	can	be	manipulated	with	the	NSURL	class,	which	comes	from	the	Foundation
module	(which	is	transitively	imported	from	the	UIKit	module).	The	main	NSURL
initializer	takes	a	String	initializer	with	a	full	URL,	although	other	initializers	exist	to
create	relative	URLs	or	for	references	to	file	paths.

The	NSURLSession	class	is	typically	used	to	perform	operations	with	URLs,	and	individual
sessions	can	be	created	through	the	initializer	or	the	standard	shared	session	can	be	used.
The	NSURLConnection	class	was	used	in	older	versions	of	iOS	and	Mac	OS	X.	References
to	this	class	can	still	be	seen	in	some	tutorials,	or	may	be	required	if	Mac	OS	X	10.8	or
iOS	6	needs	to	be	supported;	otherwise,	the	NSURLSession	class	should	be	preferred.

The	NSURLSession	class	provides	a	means	to	create	tasks.	These	include:

Data	task:	This	can	be	used	to	process	network	data	programmatically
Upload	task:	This	can	be	used	to	upload	data	to	a	remote	server
Download	task:	This	can	be	used	to	download	to	local	storage	or	to	resume	a
previous	or	partial	download

Tasks	are	created	from	the	NSURLSession	class	methods,	and	can	take	a	URL	argument
and	an	optional	completion	handler.	A	completion	handler	is	a	lot	like	a	delegate,	except
that	it	can	be	customized	per	task,	and	it	is	usually	represented	as	a	function.

Tasks	can	be	suspended	or	resumed	to	stop	and	start	the	process.	Tasks	are	created	in	a
suspended	state	by	default,	and	so	they	have	to	be	initially	resumed	to	start	processing.

When	a	data	task	completes,	the	completion	handler	is	called	back	with	three	arguments:
an	NSData	object	that	represents	the	returned	data,	an	NSURLResponse	object	that
represents	the	response	from	the	remote	URL	server,	and	an	optional	NSError	object	if
anything	failed	during	the	request.

With	this	in	place,	the	SampleTable	that	was	created	in	the	previous	chapter	can	load	data
from	a	network	URL	by	obtaining	a	session,	initiating	a	data	task,	and	then	resuming	it.
The	completion	handler	will	get	called	when	the	data	is	available,	which	can	be	used	to
add	the	content	to	the	table.

Modify	the	viewDidLoad	method	of	the	SampleTable	class	to	load	the	SampleTable.json
file	by	adding	the	following	to	the	end	of	the	method:

let	url	=	NSURL(string:	"https://raw.githubusercontent.com/

		alblue/com.packtpub.swift.essentials/master/

		CustomViews/CustomViews/SampleTable.json")!

let	session	=	NSURLSession.sharedSession()

let	encoding	=	NSUTF8StringEncoding

let	task	=	session.dataTaskWithURL(url,completionHandler:

	{data,response,error	->	Void	in

https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/CustomViews/CustomViews/SampleTable.json

		let	contents	=	String(data:data!,encoding:encoding)!

		self.items	+=	[(url.absoluteString,contents)]

		//	table	data	won't	reload	–	needs	to	be	on	ui	thread

		self.tableView.reloadData()

})

task.resume()

This	creates	an	NSURL	and	an	NSURLSession,	and	then	creates	a	data,	task	and	immediately
resumes	it.	After	the	content	is	downloaded,	the	completion	handler	is	called,	which
passes	the	data	as	an	NSData	object.	The	String	initializer	is	used	to	decode	UTF8	text
from	the	NSData	object,	and	is	explicitly	cast	to	a	String	so	that	it	can	be	added	to	the
items	array.

Tip
The	NSURLSession	class	also	provides	other	factory	methods,	including	one	that	takes	a
configuration	argument	that	includes	options,	such	as	whether	responses	should	be	cached,
whether	network	connections	should	go	over	the	cellular	network,	and	whether	any
cookies	or	other	headers	should	be	sent	with	the	task.

Finally,	the	item	is	added	to	the	items	and	the	tableView	is	reloaded	to	show	the	new
data.	Please	note	that	this	does	not	work	immediately	if	it	is	not	run	on	the	main	UI	thread;
the	table	has	to	be	rotated	or	moved	in	order	to	redraw	the	display.	Running	on	the	UI
thread	is	covered	in	the	Networking	and	user	interface	section	later	in	this	chapter.

Dealing	with	errors
Errors	are	a	fact	of	life,	especially	on	mobile	devices	with	intermittent	connectivity.	The
completion	handler	is	called	with	a	third	argument,	which	represents	any	error	raised
during	the	operation.	If	this	is	nil,	then	the	operation	was	a	success;	if	not,	then	the
localizedDescription	property	of	the	error	can	be	used	to	notify	the	user.

For	testing	purposes,	if	an	error	is	detected	add	the	localizedDescription	to	the	items	in
the	list.	Modify	the	viewDidLoad	method	as	follows:

let	task	=	session.dataTaskWithURL(url,	completionHandler:

	{data,response,error	->	Void	in

		if	error	==	nil	{

				let	contents	=	String(data:data!,encoding:encoding)!

				self.items	+=	[(url.absoluteString,contents)]

		}	else	{

				self.items	+=	[("Error",error!.localizedDescription)]

		}

		//	table	data	won't	reload	–	needs	to	be	on	UI	thread

		self.tableView.reloadData()

})

An	error	can	be	simulated	using	a	nonexistent	hostname	or	an	unknown	protocol	in	the
URL.

Dealing	with	missing	content
Errors	are	reported	if	the	remote	server	cannot	be	contacted,	such	as	when	the	hostname	is
incorrect	or	the	server	is	down.	If	the	server	is	operational,	then	an	error	will	not	be
reported;	but	it	is	still	possible	that	the	file	that	is	requested	will	not	be	found,	or	that	the
server	will	experience	an	error	while	serving	the	request.	These	are	reported	with	HTTP
status	codes.

Note
If	an	HTTP	URL	is	not	found,	the	server	sends	back	a	404	status	code.	This	can	be	used	by
the	client	to	determine	whether	a	different	file	should	be	accessed	or	whether	another
server	should	be	queried.	For	example,	browsers	will	often	ask	the	server	for	a
favicon.ico	file	and	use	this	to	display	a	small	logo;	if	this	file	is	missing,	then	a	generic
page	icon	is	displayed	instead.	In	general,	4xx	responses	are	client	errors,	while	5xx
responses	are	server	errors.

The	NSURLResponse	object	doesn’t	have	the	concept	of	an	HTTP	status	code,	because	it
can	be	used	for	any	protocol,	including	ftp.	However,	if	the	request	used	HTTP,	then	the
response	is	likely	to	be	HTTP	and	so	it	can	be	cast	to	an	NSURLHttpResponse,	which	has	a
statusCode	property.	This	can	be	used	to	provide	more	specific	feedback	when	the	file	is
not	found.	Modify	the	code	as	follows:

if	error	==	nil	{

		let	httpResponse	=	response	as!	NSHTTPURLResponse

		let	statusCode	=	httpResponse.statusCode

		if	(statusCode	>=	400	&&	statusCode	<	500)	{

				self.items	+=	[("Client	error	\(statusCode)",

					url.absoluteString)]

		}	else	if	(statusCode	>=	500)	{

				self.items	+=	[("Server	error	\(statusCode)",

					url.absoluteString)]

		}	else	{

				let	contents	=	String(data:data!,encoding:encoding)!

				self.items	+=	[(url.absoluteString,contents)]

		}

}	else	{...}

Now,	if	the	server	responds	but	indicates	that	either	the	client	made	a	bad	request	or	the
server	suffered	a	problem,	the	user	interface	will	be	updated	appropriately.

Nested	if	and	switch	statements
Sometimes,	the	error	handling	logic	can	get	convoluted	with	handling	different	cases,
particularly	if	there	are	different	values	that	need	to	be	tested.	In	the	previous	section,	both
the	NSError	and	HTTP	statusCode	needed	to	be	checked.

An	alternative	approach	is	to	use	a	switch	statement	with	where	clauses.	These	can	be
used	to	test	multiple	different	conditions	and	also	show	which	part	of	the	condition	is
being	tested.	Although	a	switch	statement	requires	a	single	expression,	it	is	possible	to
use	a	tuple	to	group	multiple	values	into	a	single	expression.

Another	advantage	of	using	a	tuple	is	that	it	permits	the	cases	to	be	matched	on	types.	In
the	networking	case,	some	URLs	are	based	on	http	or	https,	which	means	that	the
response	will	be	an	NSHTTPURLResponse	type.	However,	if	the	URL	is	a	different	type
(such	as	a	file	or	ftp	protocol),	then	it	will	be	of	a	different	subtype	of	NSURLResponse.
Unconditionally	casting	to	NSHTTPURLResponse	with	as	will	fail	in	these	cases	and	cause	a
crash.

The	tests	can	be	rewritten	as	a	switch	block	as	follows:

switch	(data,response,error)	{

		case	(_,_,let	e)	where	e	!=	nil:

				self.items	+=	[("Error",e.localizedDescription)]

		case	(_,let	r	as	NSHTTPURLResponse,_)	

			where	r.statusCode	>=	400	&&	r.statusCode	<	500:

				self.items	+=	[("Client	error	\(r.statusCode)",

					url.absoluteString)]

		//	see	note	below

		case	(_,let	r	as	NSHTTPURLResponse,_)	

			where	r.statusCode	>=	500:

				self.items	+=	[("Server	error	\(r.statusCode)",

						url.absoluteString)]

		default:

				let	contents	=	String(data:data!,encoding:encoding)!

				self.items	+=	[(url.absoluteString,contents)]

}

In	this	example,	the	default	block	is	used	to	execute	the	success	condition,	and	the	prior
case	statements	are	used	to	match	the	error	conditions.

The	case	(_,_,let	e)	where	e	!=	nil	case	is	an	example	of	a	conditional	pattern
match.	The	underscore,	which	is	called	a	wildcard	pattern	in	Swift	(also	known	as	a	hole
in	other	languages),	is	something	that	will	match	any	value.	The	third	parameter,	let	e,	is
a	value	binding	pattern,	and	has	the	effect	of	let	e	=	error	in	this	case.	Finally,	the
where	clause	adds	the	test	to	ensure	this	case	only	occurs	when	e	is	not	nil.

Tip
It	would	be	possible	to	use	the	identifier	error	instead	of	let	e	in	the	case	statement,
using	case	(_,_,_)	where	error	!=	nil	would	have	had	the	same	effect.	However,	it	is
bad	practice	to	capture	values	outside	of	the	switch	statement	for	case	matching	purposes
because	if	the	error	variable	is	renamed,	then	the	case	statement	may	become	invalid.

Generally,	use	let	patterns	inside	case	statements	to	ensure	that	the	correct	expression
value	is	being	matched.

The	second	and	third	cases	perform	both	a	let	assignment	and	a	type	test/conversion.
When	case	(_,let	r	as	NSHTTPURLResponse,_)	is	matched,	not	only	is	the	value	of
that	part	in	the	tuple	assigned	the	constant	r,	but	it	is	also	cast	to	an	NSHTTPURLRepsonse.
If	the	value	is	not	of	type	NSHTTPURLResponse,	then	the	case	statement	is	automatically
skipped.	This	is	equivalent	to	an	if	test	with	an	is	expression	followed	by	a	cast	with	as.

Although	the	patterns	are	the	same	in	both,	the	where	clauses	are	different.	The	first	where
clause	looks	for	the	case	where	r.statusCode	is	400	or	greater	and	less	than	500,	while
the	second	is	matched	where	r.statusCode	is	500	or	greater.

Tip
Whether	nested	if	statements	or	the	switch	statement	is	used,	the	code	that	performs	the
test	is	likely	to	be	very	similar.	It	typically	comes	down	to	developer	preference,	but	more
developers	are	likely	to	be	familiar	with	nested	if	statements.	In	Swift,	the	switch
statement	is	more	powerful	than	in	other	languages,	and	so,	this	kind	of	pattern	is	likely	to
become	more	popular.

An	alternative	with	Swift	2	is	to	use	the	guard	statement	to	ensure	that	if	certain	error
conditions	occur,	then	appropriate	action	can	be	taken	instead.	The	guard	statement	is	like
an	if	statement	where	there	is	no	true	block	and	the	false	block	must	always	leave	the
function.	For	example,	the	code	could	be	rewritten	as:

guard	error	==	nil	else	{

		self.items	+=	[("Error",error!.localizedDescription)]

		return

}

let	statusCode	=	(response	as!	NSHTTPURLResponse).statusCode

guard	statusCode	<	500	else	{

		self.items	+=	[("Server	error	\(statusCode)",

				url.absoluteString)]

		return

}

guard	statusCode	<	400	else	{

		self.items	+=	[("Client	error	\(statusCode)",

			url.absoluteString)]

		return

}

let	contents	=	String(data:data!,encoding:encoding)!

self.items	+=	[(url.absoluteString,contents)]

Please	note	that	the	guard	block	must	exit	the	calling	function;	so,	if	additional	operations
are	required,	either	the	body	of	the	implementation	must	be	moved	to	a	different	function
or	the	switch	or	if	blocks	used	instead.	The	examples	later	in	this	chapter	assume	the	use
of	the	if	blocks	for	simplicity.

Networking	and	user	interfaces
One	outstanding	problem	with	the	current	callback	approach	is	that	the	callback	cannot	be
guaranteed	to	be	called	from	the	main	thread.	As	a	result,	user	interface	operations	may
not	work	correctly	or	throw	errors.	The	right	solution	is	to	set	up	another	call	using	the
main	thread.

Accessing	the	main	thread	in	Swift	is	done	in	the	same	way	as	it	is	in	Objective-C:	using
Grand	Central	Dispatch	(GCD).	The	main	queue	can	be	accessed	with
dispatch_get_main_queue,	which	is	used	by	the	thread	that	all	UI	updates	should	use.
Background	tasks	are	submitted	with	dispatch_async	to	a	queue.	To	invoke	the
reloadData	call	on	the	main	thread,	wrap	it	as	follows:

dispatch_async(dispatch_get_main_queue(),	{

		self.tableView.reloadData()

})

This	style	of	call	will	be	valid	for	both	Objective-C	and	Swift	(although	Objective-C	uses
the	^	(caret)	as	a	block	prefix).	However,	Swift	has	a	special	syntax	for	functions	that	take
blocks;	the	block	can	be	promoted	out	of	the	function’s	argument	and	left	as	a	trailing
argument.	This	is	known	as	a	trailing	closure:

dispatch_async(dispatch_get_main_queue())	{

		self.tableView.reloadData()

}

Although	this	is	a	minor	difference,	it	makes	it	look	like	dispatch_async	is	more	like	a
keyword,	such	as	if	or	switch,	which	takes	a	block	of	code.	This	can	be	used	for	any
function	whose	final	argument	is	a	function;	there	is	no	special	syntax	needed	in	the
function	definition.	Additionally,	the	same	technique	works	for	functions	that	are	defined
outside	of	Swift;	in	the	case	of	dispatch_async,	the	function	is	defined	as	a	C-language
function	and	can	be	transparently	used	in	a	portable	way.

Running	functions	on	the	main	thread
Whenever	the	UI	needs	to	be	updated,	the	update	must	be	run	on	the	main	thread.	This	can
be	done	using	the	previous	pattern	to	perform	updates	as	they	will	always	be	threaded.
However,	it	can	be	a	pain	to	remember	to	do	this	each	time	it	is	required.

It	is	possible	to	build	a	Swift	function	that	takes	another	function	and	runs	it	on	the	main
thread	automatically.	NSThread.isMainThread	can	be	used	to	determine	whether	the
current	thread	is	the	UI	thread	or	not;	so	to	run	a	block	of	code	on	the	main	thread,
regardless	of	whether	it’s	on	the	main	thread	or	not,	the	following	can	be	used:

func	runOnUIThread(fn:()->())	{

		if	NSThread.isMainThread()	{

				fn()

		}	else	{

				dispatch_async(dispatch_get_main_queue(),	fn)

		}

}

This	allows	code	to	be	submitted	to	the	background	thread	using:

self.runOnUIThread(self.tableView.reloadData)

Tip
Due	to	the	lack	of	parenthesis,	the	reloadData	function	is	not	called,	but	it	is	passed	in	as
a	function	pointer.	It	is	dispatched	to	the	correct	thread	inside	the	runOnUIThread	function.

If	there	is	more	than	one	function	that	needs	to	be	called,	an	inline	block	can	be	created.
As	this	can	be	passed	as	a	trailing	closure	to	the	runOnUIThread	method,	the	parenthesis
are	optional:

self.runOnUIThread	{

		self.tableView.backgroundColor	=	UIColor.redColor()

		self.tableView.reloadData()

		self.tableView.backgroundColor	=	UIColor.greenColor()

}

Parsing	JSON
The	most	popular	mechanism	to	send	structured	data	over	a	network	is	to	encode	it	in
JSON,	which	stands	for	JavaScript	Object	Notation.	This	provides	a	hierarchical	tree
data	structure,	which	can	store	simple	numeric,	logical,	and	string-based	types,	along	with
array	and	dictionary	representations.

Both	Mac	OS	X	and	iOS	come	with	a	built-in	parser	for	JSON	documents,	in	the
NSJSONSerialization	class.	This	provides	a	means	to	parse	a	data	object	and	return	an
NSDictionary	that	contains	the	key/value	pairs	of	a	JSON	object,	or	an	NSArray	to
represent	JSON	arrays.	Other	literals	are	parsed	and	are	represented	as	either	NSNumber	or
NSString	values.

The	JSON	parser	uses	JSONObjectWithData	to	create	an	object	from	an	NSData	object
containing	a	string.	This	is	typically	the	format	that	is	returned	by	network	APIs,	and	it
can	be	created	from	an	existing	string	using	dataUsingEncoding	with	one	of	the	built-in
encoding	types,	such	as	NSUTF8StringEncoding.

A	simple	JSON	array	of	numbers	can	be	parsed	as	follows:

let	array	=	"[1,2,3]".dataUsingEncoding(NSUTF8StringEncoding)!

let	parsed	=	try?	NSJSONSerialization.JSONObjectWithData(

		array,	options:.AllowFragments)

The	return	type	of	this	is	an	optional	AnyObject.	The	optionality	represents	the	fact	that
the	data	content	may	not	be	valid	JSON	data.	This	can	be	cast	to	an	appropriate	type	using
the	as	keyword;	if	there	is	a	parsing	failure,	then	an	error	will	be	thrown.

The	options	can	be	used	to	indicate	whether	the	return	type	should	be	mutable	or	not.
Mutable	data	allows	the	caller	to	add	or	delete	items	after	being	returned	from	the	parsing
function;	if	not	specified,	the	return	value	will	be	immutable.	The	NSJSONReadingOptions
options	include	MutableContainers	(containing	data	structures	are	mutable),
MutableLeaves	(the	child	leaves	are	mutable),	and	AllowFragments	(allow	nonobject,
non-array	values	to	be	parsed).

The	SampleTable.json	file	(referred	to	in	the	viewDidLoad	method)	stores	an	array	of
entries,	with	title	and	content	fields	holding	text	data	per	entry:

[{"title":"Sample	Title","content":"Sample	Content"}]

To	parse	the	JSON	file	and	entries	to	the	table,	replace	the	default	clause	in	the
SampleTable	with	the	following:

default:

		let	parsed	=	try?	NSJSONSerialization.JSONObjectWithData(

				data!,	options:.AllowFragments)	as!	NSArray

		for	entry	in	parsed	{

				self.items	+=	

						[(entry["title"]	as!	String,

								entry["content"]	as!	String)]

		}

Running	the	application	will	show	the	Sample	Title	and	Sample	Content	entries	in	the
table,	which	have	been	loaded	and	parsed	from	the	book’s	GitHub	repository.

Handling	errors
If	there	are	problems	parsing	the	JSON	data	then	the	return	type	of	the	try?
JSONObjectWithData	function	will	return	a	nil	value.	If	the	type	is	implicitly	unwrapped,
then	accessing	the	element	will	cause	an	error:

do	{

	let	parsed	=	try	NSJSONSerialization.JSONObjectWithData(data!,

	options:.AllowFragments)	{

		//	do	something	with	parsed

}	catch	let	error	as	NSError	{

		self.items	+=	[("Error",	

			"Cannot	parse	JSON	\(error.localizedDescription)")]

		//	show	message	to	user

}

The	parsed	value	will	be	of	type	AnyObject?	although	the	let	block	will	implicitly
unwrap	the	value,	known	as	optional	binding.	In	the	previous	section,	the	code	was	cast	to
an	NSArray	directly,	but	if	the	returned	result	contains	different	types	(for	example,	an
NSDictionary	or	one	of	the	fragment	types	NSNumber	or	NSString),	then	attempting	to
cast	to	a	type	that	is	incompatible	with	the	runtime	type	will	cause	a	failure.

The	type	of	the	object	can	be	tested	with	if	[object]	is	[type].	However,	as	the	next
step	is	usually	to	cast	it	to	a	different	class	with	as,	a	shorthand	form	as?	can	perform	both
the	test	and	the	cast	in	one	step:

	if	let	array	=	parsed	as?	NSArray	{

		for	entry	in	array	{

				//	process	elements

		}

}	else	{

		self.items	+=	[("Error",	"JSON	is	not	an	array")]

}

A	switch	statement	can	be	used	to	check	the	type	of	multiple	values	at	the	same	time.	As
the	values	are	optional	AnyObject	objects,	they	need	to	be	converted	to	a	String	before
they	can	be	used	in	Swift:

for	entry	in	array	{

		switch	(entry["title"],	entry["content"])	{

				case	(let	title	as	String,	let	content	as	String):

						self.items	+=	[(title,content)]

				default:

						self.items	+=	[("Error",	"Missing	unknown	entry")]

		}

}

Now	when	the	application	is	run,	any	errors	are	detected	and	handled	without	the
application	crashing.

Parsing	XML
Although	JSON	is	more	commonly	used,	there	are	still	many	XML-based	network
services.	Fortunately	XML	parsing	has	existed	in	iOS	since	version	5	in	the	NSXMLParser
class	and	is	simple	to	access	from	Swift.	For	example,	some	data	feeds	(such	as	blog
posts)	use	XML	documents,	such	as	Atom	or	RSS.

The	NSXMLParser	is	a	stream-oriented	parser;	that	is,	it	reports	individual	elements	as	they
are	seen.	The	parser	calls	the	delegate	to	notify	when	elements	are	seen	and	have
finished.	When	an	element	is	seen,	the	parser	also	includes	any	attributes	that	were
present;	and	for	text	nodes,	the	string	content.	Parsing	an	XML	file	involves	some	state
management	in	the	parser.	The	example	used	in	this	section	will	be	to	parse	an	Atom
(news	feed)	file,	whose	(simplified)	structure	looks	like	this:

<feed	xmlns="http://www.w3.org/2005/Atom">

		<title>AlBlue's	Blog</title>

		<link	href="http://alblue.bandlem.com/atom.xml"	rel="self"/>

		<entry>

				<title	type="html">QConLondon	and	Swift	Essentials</title>

				<link	href="http://alblue.bandlem.com/2015/01/qcon-swift-

essentials.html"/>

				...	

		</entry>

		...

</feed>	

In	this	case,	the	goal	is	to	extract	all	the	entry	elements	from	the	feed,	specifically	the
title	and	the	link.	This	presents	a	few	challenges	that	will	become	apparent	later	on.

Creating	a	parser	delegate
Parsing	an	XML	file	requires	creating	a	class	that	conforms	to	the	NSXMLParserDelegate
protocol.	To	do	this,	create	a	new	class,	FeedParser,	that	extends	NSObject	and	conforms
to	the	NSXMLParserDelegate	protocol.

It	should	have	an	init	method	that	takes	an	NSData,	and	an	items	property	that	will	be
used	to	acquire	the	results	after	they	have	been	parsed:

class	FeedParser:	NSObject,	NSXMLParserDelegate	{

		var	items:[(String,String)]	=	[]

		init(_	data:NSData)	{

				//	parse	XML

		}

}

Tip
The	NSXMLParserDelegate	protocol	requires	that	the	object	also	conform	to	the
NSObjectProtocol.	The	easiest	way	to	do	this	is	to	subclass	NSObject.	The	first
mentioned	super	type	is	the	super	class;	the	second	and	subsequent	super	types	must	be
protocols.

Downloading	the	data
The	XML	parser	can	either	parse	a	stream	of	data	as	it	is	downloaded,	or	it	can	take	an
NSData	object	that	has	been	downloaded	previously.	On	successful	download,	the
FeedParser	can	be	used	to	parse	the	NSData	instance	and	return	the	list	of	items.

Although	individual	expressions	can	be	assigned	temporary	values	that	are	similar	to	last
time,	the	statement	can	be	written	in	a	single	line	(although	please	note	that	the	error
handling	is	not	present).	Add	the	following	to	the	end	of	the	viewDidLoad	method	of
SampleTable:

session.dataTaskWithURL(

		NSURL(string:"https://alblue.bandlem.com/Tag/swift/atom.xml")!,

		completionHandler:	{data,response,error	->	Void	in

				if	let	data	=	data	{

						self.items	+=	FeedParser(data).items

						self.runOnUIThread(self.tableView.reloadData)

				}

}).resume()

This	will	download	the	Atom	XML	feed	for	the	Swift	posts	from	the	author’s	blog	at
https://alblue.bandlem.com.	Currently,	the	data	is	not	parsed,	so	nothing	will	be	added	to
the	table	in	this	step.

Tip
Make	sure	that	both	the	download	operation	and	the	parsing	are	handled	off	the	main
thread	as	both	of	these	operations	may	take	some	time.	Once	the	data	is	downloaded,	it
can	be	parsed,	and	after	it	is	parsed,	the	UI	can	be	notified	to	redisplay	the	contents.

https://alblue.bandlem.com

Parsing	the	data
To	process	the	downloaded	XML	file,	it	is	necessary	to	parse	the	data.	This	involves
writing	a	parser	delegate	to	listen	for	the	title	and	link	elements.	However,	the	title
and	link	elements	exist	both	at	the	individual	entry	level	and	also	at	the	top	level	of	the
blog.	It	is	therefore	necessary	to	represent	some	kind	of	state	in	the	parser,	which	detects
when	the	parser	is	inside	an	entry	element	to	allow	the	correct	values	to	be	used.

Elements	are	reported	with	the	parser:didStartElement:	method	and	the
parser:didEndElement:	method.	This	can	be	used	to	determine	if	the	parser	is	inside	an
entry	element	by	setting	a	boolean	value	when	an	entry	element	starts	and	resetting	it
when	the	entry	element	ends.	Add	the	following	to	the	FeedParser	class:

var	inEntry:Bool	=	false

func	parser(parser:	NSXMLParser,

	didStartElement	elementName:	String,

	namespaceURI:	String?,	qualifiedName:	

	String?,	attributes:	[String:String])	{

		switch	elementName	{

				case	"entry":

						inEntry	=	true

				default:	break

		}

}

The	link	stores	the	value	of	the	references	in	an	href	attribute	of	the	element.	This	is
passed	when	the	start	element	is	called,	so	it	is	trivial	to	store.	At	this	point,	the	title	may
not	be	known,	so	the	value	of	the	link	has	to	be	stored	in	an	optional	field:

var	link:String?

...

//	in	parser:didStartElement	method

case	"entry":

		inEntry	=	true

case	"link":

		link	=	attributes["href"]

default	break;

The	title	stores	its	data	as	a	text	node,	which	needs	to	be	implemented	with	another
boolean	flag	indicating	whether	the	parser	is	inside	a	title	node.	Text	nodes	are	reported
with	the	parser:foundCharacters:	delegate	method.	Add	the	following	to	the
FeedParser:

var	title:String?

var	inTitle:	Bool	=	false

...

//	in	parser:didStartElement	method

case	"entry":

		inEntry	=	true

case	"title":

		inTitle	=	true

case	"link":

...

func	parser(parser:	NSXMLParser,	foundCharacters	string:String)	{

		if	inEntry	&&	inTitle	{

				title	=	string

		}

}

By	storing	the	title	and	link	as	optional	fields	when	the	end	of	the	entry	element	is
seen,	the	fields	can	be	appended	into	the	items	list,	followed	by	resetting	the	state	of	the
parser:

func	parser(parser:	NSXMLParser,

	didEndElement	elementName:	String,

	namespaceURI:	String?,	qualifiedName:	String?)	{

		switch	elementName	{

				case	"entry":

						inEntry	=	false

						if	title	!=	nil	&&	link	!=	nil	{

								items	+=	[(title!,link!)]

						}

						title	=	nil

						link	=	nil

				case	"title":

						inTitle	=	false

				default:	break

		}

}

Finally,	having	implemented	the	callback	methods,	the	remaining	steps	are	to	create	an
NSXMLParser	from	the	data	passed	in	previously,	set	the	delegate	(and	optionally,	the
namespace	handling),	and	then	invoke	the	parser:

init(_	data:NSData)	{

		let	parser	=	NSXMLParser(data:	data)

		parser.shouldProcessNamespaces	=	true

		super.init()

		parser.delegate	=	self

		parser.parse() }

Tip
The	assignment	of	self	to	the	delegate	cannot	be	done	until	after	super.init	has	been
called.

Now	when	the	application	is	run,	a	set	of	news	feed	items	will	be	displayed.

Tip
If	running	on	iOS	9	targets	and	downloading	from	http	sites,	a	App	Transport	Security
has	blocked	a	cleartext	HTTP	resource	load	message	may	be	seen	in	the	console.	The
solution	to	fix	this	is	to	add	an	exception	in	the	Info.plist	file,	which	permits
connections	via	HTTP,	either	for	the	explicit	domain	or	for	all	domains.	Add	the	following
to	the	Info.plist	after	the	first	<dict>	element:

<key>NSAppTransportSecurity</key>

<dict>

		<key>NSAllowsArbitraryLoads</key>

		<true/>

</dict>

Now	when	the	application	is	run,	the	error	should	no	longer	be	seen.

Direct	network	connections
Although	most	application	networking	will	involve	downloading	content	over	standard
protocols,	such	as	HTTP(S),	and	using	standard	representations,	there	are	times	when
having	a	specific	data	stream	protocol	is	required.	In	this	case,	a	stream-oriented	process
will	allow	individual	bytes	to	be	read	or	written,	or	a	datagram	or	packet-oriented	process
can	be	used	to	send	individual	packets	of	data.

There	are	networking	libraries	to	support	both;	an	NSStream	higher-level	Objective-C
based	class	provides	a	mechanism	to	drive	stream-based	responses,	and	although	lower-
level	packet	connections	are	possible	with	the	CoreFoundation	or	the	POSIX	layer,	local
multiplayer	gaming	using	the	MultipeerConnectivity	module	is	often	appropriate.

Note
Local	networking	with	the	MultipeerConnectivity	module	involves	creating	an
MCSession,	followed	by	sendData	to	send	NSData	objects	to	connected	peers,	and	using
the	MCSessionDelegate	to	receiveData	from	connected	peers.	This	is	often	used	to
synchronize	the	state	of	the	world,	such	as	the	player’s	current	location	or	health.

Opening	a	stream-based	connection
A	stream	is	a	reliable,	ordered	sequence	of	bytes,	which	is	used	by	most	internet	protocols.
Streams	can	be	created	from	a	network	host	and	port	using	the	NSStream	class	method
getStreamsToHostWithName.	This	allows	an	NSInputStream	and	NSOutputStream	to	be
acquired	at	the	same	time.

Note
As	this	is	an	existing	Objective-C	API,	the	streams	are	returned	via	inout	parameters.	In
Swift,	this	translates	to	the	parameters	being	passed	back	with	an	ampersand	(&)	and
declaring	the	variables	as	optional.

The	input	and	output	streams	can	then	be	used	to	send	data	asynchronously	or
synchronously.	Asynchronous	mechanisms	involve	scheduling	the	data	processing	on	the
application’s	run-loop	and	is	covered	in	the	Asynchronous	reading	and	writing	section.
Synchronous	mechanisms	use	read	and	write	to	receive	or	send	buffers	of	data.

Tip
Once	the	streams	have	been	acquired,	they	need	to	be	open	to	receive	or	send	data.
Forgetting	this	step	will	result	in	no	networking	data	being	sent.

To	simplify	acquiring	the	streams,	the	following	can	be	created	as	an	extension	of	the
NSStream	class.	An	extension	makes	a	method	appear	to	come	from	an	original	class	but	is
implemented	externally	to	that	class.	Add	a	StreamExtensions.swift	file	to	the
CustomViews	project	with	the	following	content:

extension	NSStream	{

		class	func	open(host:String,_	port:Int)

			->	(NSInputStream,	NSOutputStream)?	{

				var	input:NSInputStream?

				var	output:NSOutputStream?

				NSStream.getStreamsToHostWithName(

						host,	port:	port,	

						inputStream:	&input,

						outputStream:	&output)

				guard	let	i	=	input,	o	=	output	else	{

						return	nil

				}

				o.open()

				i.open()

				return	(i,o)

		}

}

A	connection	to	a	remote	host	can	be	obtained	by	calling	NSStream.open(host,port),
which	returns	an	open	pair	of	input/output	streams.

Synchronous	reading	and	writing
The	NSInputStream	method	read	allows	bytes	to	be	read	from	a	stream	synchronously,
while	the	NSOutputStream	method	write	allows	bytes	to	be	written	to	a	stream.	These
take	different	types,	but	the	most	common	approach	is	to	create	an	array	of	bytes	[UInt8]
in	Swift	as	the	buffer,	and	then	read	into	or	out	of	it	with	an	UnsafeMutablePointer
(equivalent	to	an	ampersand	in	C).

The	read	and	write	methods	both	return	a	number	of	bytes	read/written.	This	can	be
negative	(in	the	case	of	an	error),	zero,	or	positive	in	the	case	of	bytes	having	been
processed.	Both	calls	take	a	buffer	and	a	maximum	length,	though	it	is	not	guaranteed	that
the	full	maximum	length	will	be	processed.

Tip
Always	check	the	return	value	of	write	or	read	as	it	is	possible	that	only	part	of	the	buffer
has	been	written.	Best	practice	(for	synchronous	connections)	is	to	wrap	the	call	in	a
while	loop	or	have	some	other	form	of	retry	in	order	to	ensure	that	all	the	data	is	written.

Writing	data	to	NSOutputStream
To	make	it	easier	to	write	NSData	content	to	streams,	an	extension	method	on
NSOuptutStream	can	be	created	that	performs	a	full	write,	based	on	the	size	of	the	data:

extension	NSOutputStream	{

		func	writeData(data:NSData)	->	Int	{

				let	size	=	data.length

				var	completed	=	0

				while	completed	<	size	{

						let	wrote	=	write(UnsafePointer(data.bytes)	+

							completed,	maxLength:size	-	completed)

						if	wrote	<	0	{

								return	wrote

						}	else	{

								completed	+=	wrote

						}

				}

				return	completed

		}

}

This	code	takes	an	NSData	and	writes	it	to	the	underlying	stream,	returning	the	number	of
bytes	written	(or	a	negative	value	if	there	are	problems).	The	return	value	of	the	write
method	is	checked,	and	if	the	value	is	negative,	it	is	returned	to	the	caller	directly.
Otherwise,	the	completed	counter	is	incremented	with	the	number	of	bytes	written.

If	the	number	of	written	bytes	reaches	the	size	of	the	data	requested,	then	the	value	is
returned.	Otherwise	the	loop	recurs,	this	time	starting	at	the	point	where	it	left	off.

Note
Although	uncommon	in	Swift,	pointer	arithmetic	is	possible	by	acquiring	an
UnsafePointer	to	the	data.bytes	array,	and	then	incrementing	it	by	the	number	of	bytes

already	written.	The	length	of	the	remaining	bytes	is	calculated	with	size-completed.

Reading	from	an	NSInputStream
A	similar	approach	can	be	used	to	read	a	full	buffer	from	an	NSInputStream	by	creating	a
readBytes	method	that	returns	an	array	of	bytes	of	a	known	size,	and	a	means	to	convert
this	to	an	NSData	for	easier	processing/parsing:

extension	NSInputStream	{

		func	readBytes(size:Int)	->	[UInt8]?	{

				let	buffer	=	Array<UInt8>(count:size,repeatedValue:0)

				var	completed	=	0

				while	completed	<	size	{

						let	read	=	self.read(

							UnsafeMutablePointer(buffer)	+	completed,

							maxLength:	size	-	completed)

						if	read	<	0	{

								return	nil

						}	else	{

								completed	+=	read

						}

				}

				return	buffer

		}

		func	readData(size:Int)	->	NSData?	{

				if	let	buffer	=	readBytes(size)	{

						return	NSData(

							bytes:	UnsafeMutablePointer(buffer),

							length:	buffer.count)

				}	else	{

						return	nil

				}

		}

}

The	readData	method	returns	an	NSData,	while	the	readBytes	method	returns	an	array	of
UInt8	values.	The	NSData	approach	is	useful	in	some	cases	(particularly,	creating	a	String
from	the	returned	data),	and	in	other	cases,	being	able	to	process	the	bytes	directly	is
useful	(for	example,	parsing	binary	formats).	Having	both	allows	either	to	be	used	as
appropriate.

Tip
Synchronous	reads	can	block	forever;	if	the	client	application	requests	exactly	10	bytes
but	the	server	only	sends	9	bytes,	then	it	will	hang	permanently	until	the	tenth	byte	is	sent.
It	is	best	practice	to	use	asynchronous	reads,	which	cannot	block	in	this	way.

Reading	and	writing	hexadecimal	and	UTF8	data
Being	able	to	process	data	as	UTF8	values	or	hexadecimal	values	can	be	useful	in	some
protocols.	Although	both	NSString	and	NSData	provide	means	to	convert	to	and	from
UTF8,	the	syntax	is	overly	verbose	as	it	is	based	on	pre-existing	Objective-C	methods.

To	facilitate	the	conversions,	extension	methods	can	be	created	to	provide	a	simple	way	of

converting	to	and	from	UTF8	representations.	In	addition	to	class	and	instance	functions,
it	is	possible	to	use	extensions	to	add	dynamic	properties	to	an	existing	object.	This	can	be
used	to	create	utf8data	and	utf8string	properties	on	NSData	and	String	by	adding
extensions	in	a	file	Extensions.swift,	as	follows:

extension	NSData	{

		var	utf8string:String	{

				return	String(data:self,

					encoding:NSUTF8StringEncoding)!

		}

}

extension	String	{

		var	utf8data:NSData	{

				return	self.dataUsingEncoding(

						NSUTF8StringEncoding,	allowLossyConversion:	false)!

		}

}

This	allows	expressions,	such	as	data.utf8string	and	string.utf8data,	which	are
much	more	compact.	Each	time	the	expression	is	evaluated,	the	associated	getter	function
will	be	called.

Tip
There	is	no	standard	convention	to	name	extensions	in	Swift	at	the	time	this	book	was
written.	If	there	are	extensions	to	a	single	type	of	data—such	as	the	streams	previously—
then	the	file	can	be	named	[Type]Extensions.swift.	Alternatively,	the	name	can	be	used
for	the	type	of	methods	that	are	called;	for	example,	in	this	case,	UTF8Extensions.swift
could	have	been	used.

Parsing	hexadecimal	data	from	strings	and	integers	can	also	be	added	to	the	String	and
Int	types,	as	follows:

extension	String	{

		func	fromHex()	->	Int	{

				var	result	=	0

				for	c	in	self.characters	{

						result	*=	16

						switch	c	{

						case	"0":result	+=	0						case	"1":result	+=	1

						case	"2":result	+=	2						case	"3":result	+=	3

						case	"4":result	+=	4						case	"5":result	+=	5

						case	"6":result	+=	6						case	"7":result	+=	7

						case	"8":result	+=	8						case	"9":result	+=	9

						case	"a","A":result	+=	10	case	"b","B":result	+=	11

						case	"c","C":result	+=	12	case	"d","D":result	+=	13

						case	"e","E":result	+=	14	case	"f","F":result	+=	15

						default:	break

						}

				}

				return	result;

		}

}

extension	Int	{

		func	toHex(digits:Int)	->	String	{

				return	String(format:"%0\(digits)x",self)

		}

}

This	allows	hex	values	to	be	created	with	int.toHex	and	string.fromHex.

Implementing	the	Git	protocol
It	is	possible	to	write	a	client	to	query	a	remote	git	server	using	the	git://	protocol	to
determine	the	hashes	of	remote	tags/branches/references.

Note
The	git://	protocol	works	by	sending	packet	lines	of	data	with	each	line	prefixed	with
four	hexadecimal	digits	in	ASCII,	indicating	the	length	of	the	rest	of	the	data	(including
the	four	initial	digits).	Sending	a	git-upload-pack	request	will	return	a	list	of	references
on	the	remote	repository.

As	the	git://	protocol	uses	packet	lines,	create	a	PacketLineExtensions.swift	file	with
the	following	content:

extension	NSOutputStream	{

		func	writePacketLine(message:String	=	"")	->	Int	{

				let	data	=	message.utf8data

				let	length	=	data.length

				if	length	==	0	{

						return	writeData("0000".utf8data)

				}	else	{

						let	prefix	=	(length	+	4).toHex(4).utf8data

						return	self.writeData(prefix)	+	self.writeData(data)

				}

		}

}

When	an	empty	NSData	object	is	passed,	the	special	packet	line	0000	is	written,	indicating
the	end	of	the	conversation.	When	a	non-empty	NSData	is	written,	the	length	of	the	data	is
written	as	a	hexadecimal	value	(including	the	4	bytes	for	the	length),	followed	by	the	data
itself.

Note
This	will	result	in	a	protocol	conversation	such	as:

>	004egit-upload-pack	

/alblue/com.packtpub.swift.essentials.git\0host=github.com\0

<	00dfadaa46b98ce211ff819f0bb343395ad6a2ec6ef1	HEAD\0multi_ack	thin-pack	

side-band	side-band-64k	ofs-delta	shallow	no-progress	include-tag	

multi_ack_detailed	symref=HEAD:refs/heads/master	agent=git/2:2.1.1+github-

611-gd89bd9f

<	003fadaa46b98ce211ff819f0bb343395ad6a2ec6ef1	refs/heads/master

>	0000

<	0000

Reading	a	packet	line	is	similar:

extension	NSInputStream	{

		func	readPacketLine()	->	NSData?	{

				if	let	data	=	readData(4)	{

						let	length	=	data.utf8string.fromHex()

						if	length	==	0	{

								return	nil

						}	else	{

								return	readData(length	-	4)

						}

				}	else	{

						return	nil

				}

		}

		func	readPacketLineString()	->	NSString?	{

				if	let	data	=	self.readPacketLine()	{

						return	data.utf8string

				}	else	{

						return	nil

				}

		}

}

In	this	case,	the	first	4	bytes	are	read	to	determine	what	the	remaining	length	is.	If	it	is
zero,	a	nil	value	is	returned	to	indicate	the	end	of	stream.	If	it	is	non-zero,	the	data	is	read
(less	the	4	that	is	used	for	the	packet	line	length	header).	An	additional
readPacketLineString	is	provided	to	allow	an	easy	creation	of	the	packet	line	as	an
NSString.

Listing	git	references	remotely
To	remotely	query	a	git	repository	for	references,	the	git-upload-pack	command	needs
to	be	sent	along	with	a	reference	to	the	repository	in	question,	and	optionally,	a	host.	To
provide	an	API	to	query	this	programmatically,	create	a	RemoteGitRepository	class	with
an	initializer	that	stores	the	host,	port,	and	repository,	and	an	lsRemote	function,	which
returns	the	value	of	the	references:

class	RemoteGitRepository	{

		let	host:String

		let	repo:String

		let	port:Int

		init(host:String,	repo:String,	_	port:Int	=	9418)	{

				self.host	=	host

				self.repo	=	repo

				self.port	=	port

		}

		func	lsRemote()	->	[String:String]	{

				var	refs	=	[String:String]()

				//	load	the	data

				return	refs

		}

}

To	load	the	data	from	the	repository,	a	connection	to	the	remote	host	needs	to	be	made	on
the	default	port	(in	this	case,	9418	is	the	default	for	the	git://	protocol).	Once	the	streams

are	opened,	the	git-upload-pack	[repository]\0host=[host]\0	packet	line	is	sent,	and
subsequently,	lines	can	be	read	of	the	form	hash	reference.	Add	the	following	to	the
lsRemote	function:

//	load	the	data

if	let	(input,output)	=	NSStream.open(host,port)	{

		output.writePacketLine(

			"git-upload-pack	\(repo)\0host=\(host)\0")

		while	true	{

				if	let	response	=	input.readPacketLineString()	{

						let	hash	=	String(response.substringToIndex(41))

						let	ref	=	String(response.substringFromIndex(41))

						if	ref.hasPrefix("HEAD")	{

								continue

						}	else	{

								refs[ref]	=	hash

						}

				}	else	{

						break

				}

		}

		output.writePacketLine()

		input.close()

		output.close()

}

Calling	the	lsRemote	function	on	a	RemoteGitRepository	instance	with	an	appropriate
host	and	repo	will	return	a	list	of	hashes	by	reference.

Integrating	the	network	call	into	the	UI
As	the	network	can	introduce	delays	or	can	even	result	in	a	complete	failure,	network	calls
should	never	be	performed	on	the	UI	thread.	Previously,	the	SampleTable	was	used	to
introduce	a	runOnUIThread	function.	A	similar	approach	can	be	used	to	run	a	function	on
a	background	thread.	Add	the	following	to	the	SampleTable	class:

func	runOnBackgroundThread(fn:()->())	{

		dispatch_async(

			dispatch_get_global_queue(

				DISPATCH_QUEUE_PRIORITY_DEFAULT,	0)

			,fn)

}

This	will	permit	viewDidLoad	to	invoke	a	call	in	order	to	query	the	remote	references	from
the	repository,	and	add	them	to	the	table.	As	before,	the	call	to	update	the	table	must	be
called	from	the	UI	thread.	Add	the	following	to	the	end	of	the	viewDidLoad	method:

runOnBackgroundThread	{

		let	repo	=	RemoteGitRepository(host:	"github.com",	

			repo:	"/alblue/com.packtpub.swift.essentials.git")

		for	(ref,hash)	in	repo.lsRemote()	{

				self.items	+=	[(ref,hash)]

		}

		self.runOnUIThread(self.tableView.reloadData)

}

Now	when	the	application	is	launched,	entries	corresponding	to	the	branches	and	tags	in
the	remote	repository	should	be	added	to	the	table.

Asynchronous	reading	and	writing
As	well	as	synchronous	reading	and	writing,	it	is	also	possible	to	perform	asynchronous
reading	and	writing.	Instead	of	spinning	in	a	while	loop,	the	application	can	be	use
callbacks	scheduled	on	the	application’s	run	loop.

To	receive	callbacks,	a	class	that	implements	NSStreamDelegate	must	be	created	and
assigned	to	the	stream’s	delegate	field.	When	events	occur,	the	stream	method	is	called
with	the	type	of	event	and	the	associated	stream.

The	stream	is	registered	with	scheduleInRunLoop	(using	NSRunLoop.mainRunLoop()	with
a	NSDefaultRunLoopMode	mode).	Finally,	the	stream	can	be	opened.

Tip
If	the	stream	is	opened	before	the	delegate	is	set	or	scheduled	in	the	run	loop,	then	events
will	not	be	delivered.

Events	are	defined	in	the	NSStreamEvent	class,	and	they	include	HasSpaceAvailable	(for
output	streams)	and	HasBytesAvailable	(for	input	streams).	By	responding	to	callbacks,
the	application	can	process	results	asynchronously.

Tip
When	using	Swift,	the	NSStreamDelegate	is	treated	as	a	weak	delegate	on	the	input	stream
or	output	stream.	This	presents	problems	when	using	an	inline	class	to	provide	input
parsing;	doing	so	will	result	in	an	EXC_BAD_ACCESS	as	the	delegate	is	automatically
reclaimed	by	the	runtime.	This	can	be	avoided	by	storing	a	strong	circular	reference	to
self	in	the	initializer	and	assigning	it	to	nil	when	the	streams	are	closed.

Reading	data	asynchronously	from	an	NSInputStream
This	is	especially	useful	for	asynchronous	protocols,	such	as	XMPP,	which	may	send
additional	messages	at	arbitrary	times.	It	also	allows	battery-powered	devices	to	not	spin
the	CPU	if	the	remote	server	is	slow	or	hangs.

To	receive	data	asynchronously,	a	delegate	must	implement	the	NSStreamDelegate
method	stream(stream:handleEvent).	When	data	is	available,	the	HasBytesAvailable
event	will	be	sent,	and	data	can	be	read	accordingly.

To	convert	the	previous	example	to	an	asynchronous	form,	a	few	changes	need	to	be
made.	Firstly,	the	open	extension	method	that	was	created	in	Opening	a	stream	connection
section	needs	to	be	augmented	with	a	connect	method,	but	which	does	not	perform	the
open	immediately:

class	func	open(host:String,_	port:Int)

	->	(NSInputStream,	NSOutputStream)?	{

		if	let	(input,output)	=	connect(host,port)	{

				input.open()

				output.open()

				return	(input,output)

		}	else	{

				return	nil

		}

}

class	func	connect(host:String,_	port:Int)

		->	(NSInputStream,	NSOutputStream)?	{

				var	input:NSInputStream?

				var	output:NSOutputStream?

				NSStream.getStreamsToHostWithName(

						host,	port:	port,	

						inputStream:	&input,

						outputStream:	&output)

				guard	let	i	=	input,	o	=	output	else	{

						return	nil

				}

				return	(i,o)

		}	

}

Tip
In	order	to	receive	events	asynchronously,	the	delegate	must	be	set	and	the	stream	must	be
scheduled	on	a	run	loop	before	the	stream	is	opened.

Creating	a	stream	delegate
To	create	a	stream	delegate,	create	a	file	called	PacketLineParser.swift	with	the
following	content:

class	PacketLineParser:	NSObject,	NSStreamDelegate	{

		let	output:NSOutputStream

		let	callback:(NSString)->()

		var	capture:PacketLineParser?

		init(_	output:NSOutputStream,	_	callback:(NSString)	->	())	{

				self.output	=	output

				self.callback	=	callback

				super.init()

				capture	=	self

		}

		func	stream(stream:	NSStream,	handleEvent:	NSStreamEvent)	{

				let	input	=	stream	as!	NSInputStream

				if	handleEvent	==	NSStreamEvent.HasBytesAvailable	{

						if	let	line	=	input.readPacketLineString()	{

								callback(line)

						}	else	{

								output.writePacketLine()

								input.close()

								output.close()

								capture	=	nil

						}

				}

		}

}

This	parser	has	a	callback,	which	is	invoked	for	each	packet	line	read;	when	the
HasBytesAvailable	event	is	sent,	the	line	is	read	(using	the	same	synchronous	mechanism
as	before)	and	then	passed	to	the	callback.	Unlike	the	synchronous	approach,	there	is	no

while	loop	here—when	data	is	available,	it	triggers	the	parsing	of	the	data.

Tip
As	this	will	be	assigned	to	an	input	stream	delegate	(which	holds	a	weak	reference),	it	is
necessary	to	capture	a	cyclic	reference	to	itself	with	capture	=	self	in	order	to	avoid	the
runtime	from	evicting	the	instance.	When	the	streams	are	closed,	the	capture	will	be	set
to	nil,	which	will	release	the	instance.

The	readPacketLine	returns	nil	to	indicate	either	an	error	or	a	completed	stream;	in	this
case,	an	empty	packet	line	is	sent	(to	tell	the	remote	server	that	no	further	interaction	is
required),	and	then	both	streams	are	closed.

Dealing	with	errors
It	is	necessary	to	clean	up	the	streams	and	remove	them	from	run	loops,	both	when	the
stream	content	is	successful	and	when	communication	errors	occur.	In	addition	to	the
HasBytesAvailable	event,	there	are	also	events	that	are	sent	when	the	stream’s	end	is
encountered	or	an	error	occurs.

These	should	be	handled	in	the	same	way	as	when	the	connection	comes	to	a	natural	end;
resources	should	be	tidied,	and	in	particular,	the	streams	should	be	removed	from	run	loop
processing.	Finally,	the	cyclic	reference	should	be	removed	to	permit	the	delegate	object
to	be	removed.

The	existing	close	code	can	be	moved	to	its	own	separate	function,	and	additional	cases
of	the	stream	ending	or	errors	occurring	can	perform	the	same	cleanup:

func	stream(stream:	NSStream,	handleEvent:	NSStreamEvent)	{

		let	input	=	stream	as!	NSInputStream

		if	handleEvent	==	NSStreamEvent.HasBytesAvailable	{

				if	let	line	=	input.readPacketLineString()	{

						callback(line)

				}	else	{

						closeStreams(input,output)

				}

		}

		if	handleEvent	==	NSStreamEvent.EndEncountered	

		||	handleEvent	==	NSStreamEvent.ErrorOccurred	{

				closeStreams(input,output)

		}

}

func	closeStreams(input:NSInputStream,_	output:NSOutputStream)	{

		if	capture	!=	nil	{

				capture	=	nil

				output.removeFromRunLoop(NSRunLoop.mainRunLoop(),

					forMode:	NSDefaultRunLoopMode)

				input.removeFromRunLoop(NSRunLoop.mainRunLoop(),

					forMode:	NSDefaultRunLoopMode)

				input.delegate	=	nil

				output.delegate	=	nil

				if	output.streamStatus	!=	NSStreamStatus.Closed	{

						output.writePacketLine()

						output.close()

				}

				if	input.streamStatus	!=	NSStreamStatus.Closed	{

						input.close()

				}

		}

}

Listing	references	asynchronously
To	provide	a	list	of	references	asynchronously,	the	delegate	has	to	be	set	up	with	a	suitable
callback	that	will	parse	the	returned	data.	Instead	of	the	method	returning	a	dictionary
(which	would	require	synchronous	blocking),	a	callback	will	be	passed,	which	can	be
called	with	references	as	they	are	found.

Note
Please	note	that	there	are	two	separate	callbacks:	the	PacketLineParser	callback	(which
reads	in	network	data	and	returns	NSString	instances	on	a	per-packet-line	basis),	and	the
reference	parsing	callback	(which	translates	the	NSString	into	a	(String,String)	tuple).

To	start	the	process,	the	git-upload-pack	needs	to	be	sent	synchronously	after	which
subsequent	responses	will	be	processed	asynchronously.	This	can	be	done	by	creating	a
new	method,	lsRemoteAsync,	in	the	RemoteGitRepository	class,	which	takes	a	callback
function	for	the	(String,String)	tuple:

func	lsRemoteAsync(fn:(String,String)	->	())	{

		if	let	(input,output)	=	NSStream.connect(host,port)	{

				input.delegate	=	PacketLineParser(output)	{

				(response:NSString)	->	()	in

						let	hash	=	String(response.substringToIndex(41))

						let	ref	=	String(response.substringFromIndex(41))

						if	!ref.hasPrefix("HEAD")	{

								fn(ref,hash)

						}

				}

				input.scheduleInRunLoop(NSRunLoop.mainRunLoop(),	

					forMode:	NSDefaultRunLoopMode)

				input.open()

				output.open()

				output.writePacketLine(

					"git-upload-pack	\(repo)\0host=\(host)\0")

		}

}

This	creates	a	connection	(but	without	opening	the	streams),	sets	the	delegate,	and
schedules	the	run	loop	for	the	input	stream,	and	finally,	opens	both	streams	for	interaction.
Once	this	is	done,	the	initial	git-upload-pack	message	is	sent	as	before.	At	this	point	the
lsRemoteAsync	method	returns,	and	subsequent	events	occur	when	input	data	is	received
from	the	server.

When	a	line	is	received	through	the	PacketLineParser	callback,	it	is	split	into	a	reference
and	a	hash	and	then	hands	the	results	to	the	callback	passed	into	the	argument	in	the	first
place.

Note
Asynchronous	programming	often	involves	many	callbacks.	Instead	of	a	synchronous
program	that	may	look	like	A;B;C;,	an	asynchronous	program	often	looks	like
A(callback:B(callback:C)).	When	an	input	trigger	occurs—a	network	request,	user
interaction,	or	timer	firing—a	sequence	of	actions	can	occur	via	these	nested	callbacks.

Asynchronous	pipelines	are	generally	preferred	for	battery	performance	reasons	as
blocking	in	a	while	spin	loop	will	waste	CPU	energy	until	the	condition	is	satisfied.

Displaying	asynchronous	references	in	the	UI
To	display	the	asynchronous	data	to	the	screen,	the	callback	must	be	modified	to	allow
individual	elements	to	update	the	GUI.

In	SampleTable,	instead	of	calling	repo.lsRemote	(which	performs	a	synchronous
lookup),	use	repo.lsRemoteAsync	instead.	This	requires	a	callback,	which	can	be	used	to
update	the	table	data	and	causes	the	view	to	reload	the	contents:

//	for	(ref,hash)	in	repo.lsRemote()	{

//			self.items	+=	[(ref,hash)]

//	}

repo.lsRemoteAsync()	{	(ref:String,hash:String)	in

		self.items	+=	[(ref,hash)]

		self.runOnUIThread(self.tableView.reloadData)

}

Now	when	the	application	is	run,	the	references	will	be	updated	asynchronously	and	the
UI	will	not	be	blocked	by	a	slow	or	hung	server.

Writing	data	asynchronously	to	an	NSOutputStream
Asynchronous	sending	is	not	as	useful	as	asynchronous	reading	unless	large	uploads	are
required.	If	there	is	a	lot	of	data,	then	it	is	unlikely	to	be	written	synchronously	in	a	single
write	call.	It	is	better	to	perform	any	additional	writes	asynchronously.

To	write	data	asynchronously	requires	storing	the	completed	count	as	a	variable	outside	of
the	function.	The	write	method	can	be	used	to	replace	the	while	loop	as	before	by	writing
a	segment	of	the	data	on	each	iteration	of	the	stream	method.	Although	the	code	isn’t
needed	in	this	example,	code	would	look	something	like	this:

…

self.data	=	data

//	initial	write	to	kick	off	subsequent	events

completed	=	output.write(UnsafePointer(data.bytes),	

	maxLength:	data.length

…

var	completed:Int

var	data:NSData?

func	stream(stream:	NSStream,	handleEvent:	NSStreamEvent)	{

		let	output	=	stream	as!	NSOutputStream

		if	handleEvent	==	NSStreamEvent.HasSpaceAvailable	

			&&	data	!=	nil	{

				let	size	=	data!.length

				completed	+=	output.write(

					UnsafePointer(data!.bytes)	+	completed,

					maxLength:	size	–	completed)

				if	completed	==	size	{

						completed	=	0

						data	=	nil

				}

		}

}

Asynchronous	data	always	starts	with	a	call	to	synchronously	write	the	data.	If	not	all	of
the	data	is	written	(in	other	words,	completed	<	size)	then	subsequent	callbacks	will
occur	on	the	NSStreamDelegate.	This	can	then	pick	up	where	the	data	value	left	off	using
a	similar	technique	to	the	synchronous	case	but	without	a	while	loop.	Instead	of	the
iteration	blocking	to	write	the	whole	data	value,	the	stream	call	will	be	called	multiple
times	(in	effect	replacing	each	iteration	of	the	while	loop).	On	the	final	run,	when
completed	==	size,	the	data	is	released,	and	the	completion	counter	is	reset.

Note
The	stream	callback	is	called	enough	times	to	write	all	the	data.	If	no	data	is	written,	then
events	are	no	longer	called.	New	data	is	only	written	when	an	additional	value	is	passed.
Care	must	be	taken	when	writing	data	from	different	threads	as	the	data	value	is	processed
as	an	instance	variable,	and	overwriting	it	may	cause	data	to	be	lost.	The	reader	is	invited
to	extend	the	single	element	data	into	an	array	of	outstanding	data	elements	so	that	they
can	be	queued	up	appropriately.

Summary
This	chapter	presented	the	common	techniques	that	are	used	to	deal	with	networked	data
in	Swift-based	applications	with	a	particular	focus	on	how	to	maximize	battery	usage	on
portable	devices	using	asynchronous	techniques	to	access	data.

As	most	network	requests	are	likely	to	provide	either	a	JSON	or	XML-based
representation	over	HTTP(S),	the	first	section	of	this	chapter	covered	using	NSURLSession
and	the	asynchronous	dataTask	operations	to	pull	data	down	from	a	remote	server.	The
second	and	third	sections	then	presented	how	this	data	can	be	parsed	from	either	JSON	or
XML	depending	on	the	format	required.

The	last	section	presented	how	to	make	network	connections	directly	to	deal	with
protocols	other	than	HTTP;	and	as	an	example,	showed	how	a	remote	git	command	can
be	executed	to	find	out	what	references	are	available	in	a	remote	git	repository.	This	was
presented	in	two	forms:	as	a	synchronous	API	(to	demonstrate	the	technique	of	how	to
work	with	streams,	and	to	explain	the	git	protocol),	followed	by	its	conversion	to	an
asynchronous	API,	which	can	be	used	to	minimize	CPU	cycles	and,	thus,	battery	usage,	to
allow	other	such	translations	to	be	performed	in	the	future.

The	next	chapter	will	present	how	to	integrate	all	of	the	ideas	covered	in	this	book	into	an
iOS	application	to	display	GitHub	repositories.

Chapter	7.	Building	a	Repository	Browser
Having	covered	how	to	integrate	the	components	necessary	to	build	an	application,	this
chapter	will	create	a	repository	browser	that	allows	user	repositories	to	be	displayed	using
the	GitHub	API.

This	chapter	will	present	the	following	topics:

An	overview	of	the	GitHub	API
Talking	to	the	GitHub	API	with	Swift
Creating	a	repository	browser
Maintaining	selection	between	view	controllers

An	overview	of	the	GitHub	API
The	GitHub	API	provides	a	REST-based	interface	using	JSON	to	return	information	about
users	and	repositories.	Version	3	of	the	API	is	documented	at
https://developer.github.com/v3/	and	is	the	version	used	in	this	book.

Tip
The	API	is	rate	limited;	at	the	time	of	writing,	anonymous	requests	can	be	made	up	to
sixty	times	per	hour,	while	logged	in	users	have	a	higher	limit.	The	code	repository	for	this
book	has	sample	responses	that	can	be	used	for	testing	and	development	purposes.

https://developer.github.com/v3/

Root	endpoint
The	main	entry	point	to	GitHub	is	the	root	endpoint.	For	the	main	GitHub	site,	this	is
https://api.github.com,	and	for	GitHub	Enterprise	installations,	it	will	be	of	the	form
https://hostname.example.org/api/v3/	along	with	user	credentials.	The	endpoint
provides	a	collection	of	URLs	that	can	be	used	to	find	specific	resources:

{

	...

		"issue_search_url":	"https://api.github.com/search/issues?q={query}

{&page,per_page,sort,order}",

		"issues_url":	"https://api.github.com/issues",

		"repository_url":	

"https://api.github.com/repos/{owner}/{repo}","user_url":	

"https://api.github.com/users/{user}"		"user_repositories_url":	

"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}",	}

The	services	are	URI	templates.	Text	in	braces	{}	is	replaced	on	demand	with	the	values
of	parameters;	text	that	starts	with	{?a,b,c}	is	expanded	to	form	?a=&b=&c=	if	present,
and	is	missing	otherwise.	For	example,	with	a	user	of	alblue,	the	user_url	of	the	user
resource	at	https://api.github.com/users/{user}	becomes
https://api.github.com/users/alblue.

https://api.github.com

User	resource
The	user	resource	for	a	specific	user	contains	information	about	their	repositories
(repos_url),	name,	and	other	information,	such	as	a	location	and	blog	(if	provided).	In
addition,	the	avatar_url	provides	a	URL	to	an	image	that	can	be	used	to	display	the
user’s	avatar.	For	example,	https://api.github.com/users/alblue	contains:

{

		...

		"login":	"alblue",

		"avatar_url":	"https://avatars.githubusercontent.com/u/76791?v=2",

		"repos_url":	"https://api.github.com/users/alblue/repos",

		"name":	"Alex	Blewitt",

		"blog":	"http://alblue.bandlem.com",

		"location":	"Milton	Keynes,	UK",

		...

}

The	repos_url	link	can	be	used	to	find	the	user’s	repositories.	This	is	what	is	reported	at
the	root	endpoint	as	the	user_repositories_url	with	the	{user}	already	replaced	with
the	username.

Repositories	resource
Repositories	for	a	user	can	be	accessed	via	the	repos_url	or	user_repositories_url
references.	This	returns	an	array	of	JSON	objects	containing	information,	such	as:

[{	

		"name":	"com.packtpub.e4.swift.essentials",

		"html_url":

				"https://github.com/alblue/com.packtpub.swift.essentials",

		"clone_url":

				"https://github.com/alblue/com.packtpub.swift.essentials.git",

		"description":	"Swift	Essentials",

},{

		"name":	"com.packtpub.e4",

		"html_url":

				"https://github.com/alblue/com.packtpub.e4",

		"clone_url":

				"https://github.com/alblue/com.packtpub.e4.git",

		"description":

				"Eclipse	Plugin	Development	by	Example:	Beginners	Guide",

},{

		"name":	"com.packtpub.e4.advanced",

		"html_url":

				"https://github.com/alblue/com.packtpub.e4.advanced",

		"clone_url":

				"https://github.com/alblue/com.packtpub.e4.advanced.git",

		"description":

				"Advanced	Eclipse	plug-in	development",

}...]

Repository	browser	project
The	RepositoryBrowser	client	will	be	created	from	the	Master	Detail	template.	This	sets
up	an	empty	application	that	can	be	used	on	a	large	device	with	a	split	view	controller	or	a
navigator	view	controller	on	a	small	device.	In	addition	to	this,	actions	to	add	entries	are
also	created.

To	create	a	project	with	tests,	ensure	that	the	Include	Unit	Tests	option	is	selected	when
creating	the	project:

To	build	the	APIs	necessary	to	display	content,	several	utility	classes	are	needed:

The	URITemplate	class	processes	URI	templates	with	a	set	of	key/value	pairs
The	Threads	class	allows	functions	to	be	run	in	the	background	or	in	the	main	thread
The	NSURLExtensions	class	provides	easy	parsing	of	JSON	objects	from	a	URL
The	DictionaryExtensions	class	provides	a	means	of	creating	a	Swift	dictionary
from	a	JSON	object
The	GitHubAPI	class	provides	access	to	the	GitHub	remote	API

URI	templates
URI	templates	are	defined	in	RFC	6570	at	https://tools.ietf.org/html/rfc6570.	They	can	be
used	to	replace	sequences	of	text	surrounded	by	{}	in	a	URI.	Although	GitHub’s	API	uses
optional	values	{?...},	the	example	client	presented	in	this	chapter	will	not	need	to	use
these,	and	so,	they	can	be	ignored	in	this	implementation.

The	template	class	replaces	the	parameters	with	values	from	a	dictionary.	To	create	the
API,	it	is	useful	to	write	a	test	case	first,	following	test	driven	development.	A	test	case
class	can	be	created	by	navigating	to	File	|	New	|	File…	|	iOS	|	Source	|	Unit	Test	Case
Class	and	creating	a	subclass	of	XCTestCase	in	Swift.	The	test	code	will	look	like:

import	XCTest

class	URITemplateTests:	XCTestCase	{

		func	testURITemplate()	{

				let	template	=	"http://example.com/{blah}/blah/{?blah}"

				let	replacement	=	URITemplate.replace(

					template,values:	["blah":"foo"])

				XCTAssertEqual("http://example.com/foo/blah/",

					replacement,"Template	replacement")

		}

}

Tip
Don’t	forget	to	ensure	that	the	URITemplateTests.swift	file	is	added	to	the	necessary	test
targets.

The	replace	function	requires	string	processing.	Although	the	function	can	be	a	class
function	or	an	extension	on	String,	having	it	as	a	separate	class	makes	testing	easier.	The
function	signature	looks	like:

import	Foundation

class	URITemplate	{

		class	func	replace(template:String,	values:[String:String])

			->	String	{

				var	replacement	=	template

				while	true	{

						//	replace	until	no	more	{…}	are	present

				}

				return	replacement

		}

}

Tip
Make	sure	that	the	URITemplate	class	is	added	to	the	test	target	as	well;	otherwise,	the	test
script	will	not	compile.

The	parameters	are	matched	using	a	regular	expression,	such	as	{[^}]}.	To	search	or
access	this	from	a	string	involves	a	Range	of	String.Index	values.	These	are	like	integer
indexes	into	the	string,	but	instead	of	referring	to	a	character	by	its	byte	offset,	the	index	is
an	abstract	representation	(some	character	encodings,	such	as	UTF8,	use	multiple	bytes	to

https://tools.ietf.org/html/rfc6570

represent	a	single	character).

The	rangeOfString	method	takes	a	string	or	regular	expression	and	returns	a	range	if
there	is	a	match	present	(or	nil	if	there	isn’t).	This	can	be	used	to	detect	whether	a	pattern
is	present	or	to	break	out	of	the	while	loop:

//	replace	until	no	more	{…}	are	present

if	let	parameterRange	=	replacement.rangeOfString(

		"\\{[^}]*\\}",

		options:	NSStringCompareOptions.RegularExpressionSearch)	{

		//	perform	a	replacement	of	parameterRange

}	else	{

		break

}

The	parameterRange	contains	a	start	and	end	index	that	represent	the	locations	of	the	{
and	}	characters.	The	value	of	the	parameter	can	be	extracted	with
replacement.substringWithRange(parameterRange).	If	it	starts	with	{?	it	is	replaced
with	an	empty	string:

//	perform	a	replacement	of	parameterRange

var	value:String

let	parameter	=	replacement.substringWithRange(parameterRange)

if	parameter.hasPrefix("{?")	{

		value	=	""

}	else	{

		//	substitute	with	real	replacement

}

replacement.replaceRange(parameterRange,	with:	value)

Finally,	if	the	replacement	is	of	the	form	{user},	then	the	value	of	user	is	acquired	from
the	dictionary	and	used	as	the	replacement	value.	To	get	the	name	of	the	parameter,
startIndex	has	to	be	advanced	to	the	successor,	and	endIndex	has	to	be	reversed	to	the
predecessor	to	account	for	the	{	and	}	characters:

//	substitute	with	real	replacement

let	start	=	parameterRange.startIndex.successor()

let	end	=	parameterRange.endIndex.predecessor()

let	name	=	replacement.substringWithRange(

	Range<String.Index>(start:start,end:end))

value	=	values[name]	??	""

Now	when	the	test	is	run	by	navigating	to	Product	|	Test	or	by	pressing	Command	+	U,
the	string	replacement	will	pass.

Note
The	??	is	an	optional	test	that	is	used	to	return	the	first	argument	if	it	is	present,	and	the
second	argument	if	it	is	nil.

Background	threading
Background	threading	allows	functions	to	be	trivially	launched	on	the	UI	thread	or	on	a
background	thread	as	appropriate.	This	was	explained	in	Chapter	6,	Parsing	Networked
Data,	in	the	Networking	and	user	interface	section.	Add	the	following	as	Threads.swift:

import	Foundation

class	Threads	{

		class	func	runOnBackgroundThread(fn:()->())	{

				dispatch_async(dispatch_get_global_queue(

					DISPATCH_QUEUE_PRIORITY_DEFAULT,	0),fn)

		}

		class	func	runOnUIThread(fn:()->())	{

				if	NSMainThread.isMainThread()	{

						fn()

				}	else	{

						dispatch_async(dispatch_get_main_queue(),	fn)

				}

		}

}

The	Threads	class	can	be	tested	with	the	following	test	case:

import	XCTest

class	ThreadsTest:	XCTestCase	{

		func	testThreads()	{

				Threads.runOnBackgroundThread	{

						XCTAssertFalse(NSThread.isMainThread(),	

							"Running	on	background	thread")

						Threads.runOnUIThread	{

								XCTAssertTrue(NSThread.isMainThread(),

									"Running	on	UI	thread")

						}

				}

		}

}

When	the	tests	are	run	with	Command	+	U,	the	tests	should	pass.

Parsing	JSON	dictionaries
As	many	network	responses	are	returned	in	JSON	format	and	to	make	JSON	parsing
easier,	extensions	can	be	added	to	the	NSURL	class	to	facilitate	the	acquiring	and	parsing	of
content	that	is	loaded	from	network	locations.	Instead	of	designing	a	synchronous
extension	that	blocks	until	data	is	available,	using	a	callback	function	is	best	practice.
Create	a	file	NSURLExtensions.swift	with	the	following	content:

import	Foundation

extension	NSURL	{

		func	withJSONDictionary(fn:[String:String]	->	())	{

				let	session	=	NSURLSession.sharedSession()

				session.dataTaskWithURL(self)	{

						data,response,error	->	()	in

						if	let	json	=	try?	NSJSONSerialization.JSONObjectWithData(

								data!,	options:	.AllowFragments)	as?	[String:AnyObject]	{

								fn(json!)	//	will	give	a	compile	time	error

						}	else	{

								fn([String:String]())

						}

				}.resume()

		}

}

This	provides	an	extension	for	an	NSURL	to	provide	a	JSON	dictionary.	However,	the	data
type	returned	from	the	JSONObjectWithData	method	is	[String:AnyObject],	not
[String:String].	Although	it	may	be	expected	that	it	could	just	be	cast	to	the	right	type,
the	as	will	perform	a	test,	and	if	there	are	mixed	values	(such	as	a	number	or	a	nil),	then
the	entire	object	will	be	considered	invalid.	Instead,	the	JSON	data	structure	must	be
converted	to	a	[String:String]	type.	Add	the	following	as	a	standalone	function	to
NSURLExtensions.swift:

func	toStringString(dict:[String:AnyObject])	->	[String:String]	{

		var	result:[String:String]	=	[:]

		for	(key,value)	in	dict	{

				if	let	valueString	=	value	as?	String	{

						result[key]	=	valueString

				}	else	{

						result[key]	=	"\(value)"

				}

		}

		return	result

}

This	can	be	used	to	convert	the	[String:AnyObject]	in	the	JSON	function:

fn(toStringString(json!))	//	fixes	compile	time	error

The	function	can	be	tested	with	a	test	class	using	the	data:	protocol	by	passing	in	a
base64	encoded	string	representing	the	JSON	data.	To	create	a	base64	representation,
create	a	string,	convert	it	to	a	UTF8	data	object	and	then	convert	it	back	to	a	string
representation	with	a	data:	prefix:

import	XCTest

class	NSURLExtensionsTest:	XCTestCase	{

		func	testNSURLJSON()	{

				let	json	=	"{\"test\":\"value\"}".

					dataUsingEncoding(NSUTF8StringEncoding)!

				let	base64	=	json.base64EncodedDataWithOptions(

.EncodingEndLineWithLineFeed)

				let	data	=	String(data:	base64,	

					encoding:	NSUTF8StringEncoding)!

				let	dataURL	=	NSURL(string:"data:text/plain;base64,\(data)")!

				dataURL.withJSONDictionary	{

						dict	in

						XCTAssertEqual(dict["test"]	??	"",	"value",

							"Value	is	as	expected")

				}

				sleep(1)

		}

}

Please	note	that	the	sleep(1)	is	required	as	parsing	the	response	has	to	happen	in	the
background	thread	and,	therefore,	may	not	be	immediately	available.	By	adding	a	delay	to
the	function	it	gives	a	chance	for	the	assertion	to	be	executed.

Parsing	JSON	arrays	of	dictionaries
A	similar	approach	can	be	used	to	parse	arrays	of	dictionaries	(such	as	those	that	are
returned	by	the	list	repositories	resource).	The	differences	here	are	the	type	signatures
(which	have	an	extra	[]	to	represent	the	array),	and	the	fact	that	a	map	is	being	used	to
process	the	elements	in	the	list:

func	withJSONArrayOfDictionary(fn:[[String:String]]	->	())	{

		…	

		if	let	json	=	try?	NSJSONSerialization.JSONObjectWithData(

			data,	options:	.AllowFragments)	as?	[[String:AnyObject]]	{

				fn(json!.map(toStringString))

		}	else	{

				fn([[String:String]]())

		}

The	test	can	be	extended	as	well:

let	json	=	"[{\"test\":\"value\"}]".

	dataUsingEncoding(NSUTF8StringEncoding)!

…

dataURL.withJSONArrayOfDictionary	{

		dict	in	XCTAssertEqual(dict[0]["test"]	??	"",	"value",

	"Value	is	as	expected")

}

Creating	the	client
Now	that	the	utilities	are	complete,	the	GitHub	client	API	can	be	created.	Once	that	is
complete,	it	can	be	integrated	with	the	user	interface.

Talking	to	the	GitHub	API
A	Swift	class	will	be	created	to	talk	to	the	GitHub	API.	This	will	connect	to	the	root
endpoint	host	and	download	the	JSON	for	the	service	URLs	so	that	subsequent	network
connections	can	be	made.

To	ensure	that	network	requests	are	not	repeated,	an	NSCache	will	be	used	to	save	the
responses.	This	will	automatically	be	emptied	when	the	application	is	under	memory
pressure:

import	Foundation

class	GitHubAPI	{

		let	base:NSURL

		let	services:[String:String]

		let	cache	=	NSCache()

		class	func	connect()	->	GitHubAPI?	{

				return	connect("https://api.github.com")

		}

		class	func	connect(url:String)	->	GitHubAPI?	{

				if	let	nsurl	=	NSURL(string:url)	{

						return	connect(nsurl)

				}	else	{

						return	nil

				}

		}

		class	func	connect(url:NSURL)	->	GitHubAPI?	{

				if	let	data	=	NSData(contentsOfURL:url)	{

						if	let	json	=	try?	NSJSONSerialization.JSONObjectWithData(

							data,options:.AllowFragments)	as?	[String:String]	{

								return	GitHubAPI(url,json!)

						}	else	{

							return	nil

						}

				}	else	{

						return	nil

				}

		}

		init(_	base:NSURL,	_	services:[String:String])	{

				self.base	=	base

				self.services	=	services

		}

}

This	can	be	tested	by	saving	the	response	from	the	main	GitHub	API	site	at
https://api.github.com	into	an	api/index.json	file	by	creating	an	api	directory	in	the	root
level	of	the	project	and	running	curl	https://api.github.com	>	api/index.json	from
a	Terminal	prompt.	Inside	Xcode,	add	the	api	directory	to	the	project	by	navigating	to	File
|	Add	Files	to	Project…	or	by	pressing	Command	+	Option	+	A,	and	ensure	it	is
associated	with	the	test	target.

It	can	then	be	accessed	with	an	NSBundle:

import	XCTest

class	GitHubAPITests:	XCTestCase{

https://api.github.com

		func	testApi()	{

				let	bundle	=	NSBundle(forClass:GitHubAPITests.self)

				if	let	url	=	bundle.URLForResource("api/index",

					withExtension:"json")	{

						if	let	api	=	GitHubAPI.connect(url)	{

								XCTAssertTrue(true,"Created	API	\(api)")

						}	else	{

								XCTAssertFalse(true,"Failed	to	parse	\(url)")

						}

				}	else	{

						XCTAssertFalse(true,"Failed	to	find	sample	API")

				}

		}

}

Tip
The	dummy	API	should	not	be	part	of	the	main	application’s	target,	but	rather	of	the	test
target.	As	a	result,	instead	of	using	NSBundle.mainBundle	to	acquire	the	application’s
bundle,	NSBundle(forClass)	is	used.

Returning	repositories	for	a	user
The	APIs	returned	from	the	services	lookup	include	user_repositories_url,	which	is	a
template	that	can	be	instantiated	with	a	specific	user.	It	is	possible	to	add	a	method
getURLForUserRepos	to	the	GitHubAPI	class	that	will	return	the	URL	of	the	user’s
repositories.	As	it	will	be	called	frequently,	the	results	should	be	cached	using	an	NSCache:

func	getURLForUserRepos(user:String)	->	NSURL	{

		let	key	=	"r:\(user)"

		if	let	url	=	cache.objectForKey(key)	as?	NSURL	{

				return	url

		}	else	{

				let	userRepositoriesURL	=	services["user_repositories_url"]!

				let	userRepositoryURL	=	URITemplate.replace(

					userRepositoriesURL,	values:["user":user])

				let	url	=	NSURL(string:userRepositoryURL,	relativeToURL:base)!

				cache.setObject(url,	forKey:key)

				return	url

		}

}

Once	the	URL	is	known,	data	can	be	parsed	as	an	array	of	JSON	objects	using	an
asynchronous	callback	function	to	notify	when	the	data	is	ready:

func	withUserRepos(user:String,	fn:([[String:String]])	->	())	{

		let	key	=	"repos:\(user)"

		if	let	repos	=	cache.objectForKey(key)	as?	[[String:String]]	{

				fn(repos)

		}	else	{

				let	url	=	getURLForUserRepos(user)

				url.withJSONArrayOfDictionary	{

						repos	in

						self.cache.setObject(repos,forKey:key)

						fn(repos)

				}

		}

}

This	can	be	tested	using	a	simple	addition	to	the	GitHubAPITests	class:

api.withUserRepos("alblue")	{

		array	in

		XCTAssertEqual(24,array.count,"Number	of	repos")

}

Note
The	sample	data	contains	24	repositories	in	the	following	file,	but	the	GitHub	API	may
contain	a	different	value	for	this	user	in	the	future:

https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/RepositoryBrowser/api/users/alblue/repos.json

https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/RepositoryBrowser/api/users/alblue/repos.json

Accessing	data	through	the	AppDelegate
When	building	an	iOS	application	that	manages	data,	deciding	where	to	declare	the
variable	is	the	first	decision	that	has	to	be	made.	When	implementing	a	view	controller,	it
is	common	for	view-specific	data	to	be	associated	with	that	class;	but	if	the	data	needs	to
be	used	across	multiple	view	controllers,	there	is	more	choice.

A	common	approach	is	to	wrap	everything	into	a	singleton,	which	is	an	object	that	is
instantiated	once.	This	is	typically	achieved	with	a	private	var	in	the	implementation
class,	with	a	class	func	that	returns	(or	instantiates	on	demand)	the	singleton.

Tip
The	Swift	private	keyword	ensures	that	the	variable	is	only	visible	in	the	current	source
file.	The	default	visibility	is	internal,	which	means	that	code	is	only	visible	in	the	current
module;	the	public	keyword	means	that	it	is	visible	outside	of	the	module	as	well.

Another	approach	is	to	use	the	AppDelegate	itself.	This	is	in	effect	already	a	singleton	that
can	be	accessed	with	UIApplication.sharedApplication().delegate,	and	is	set	up
prior	to	any	other	object	accessing	it.

Tip
The	AppDelegate	should	not	be	overused	to	store	data.	Instead	of	adding	too	many
properties,	consider	creating	a	separate	class	or	struct	to	hold	the	values.

The	AppDelegate	will	be	used	to	store	the	reference	to	the	GitHubAPI,	which	could	use	a
preference	store	or	other	external	means	to	define	what	instance	to	connect	to,	along	with
the	list	of	users	and	a	cache	of	repositories:

class	AppDelegate	{

		var	api:GitHubAPI!

		var	users:[String]	=	[]

		var	repos:[String:[[String:String]]]	=	[:]

		func	application(application:	UIApplication,

			didFinishLaunchingWithOptions:	[NSObject:	AnyObject]?)

			->	Bool	{

				api	=	GitHubAPI.connect()

				users	=	["alblue"]

				return	true

		}

}

To	facilitate	loading	repositories	from	view	controllers,	a	function	can	be	added	to
AppDelegate	to	provide	a	list	of	repositories	for	a	given	user:

func	loadRepoNamesFor(user:String,	fn:([[String:String]])->())	{

		repos[user]	=	[]

		api.withUserRepos(user)	{

				results	in

				self.repos[user]	=	results

				fn(results)

		}

}

Accessing	repositories	from	view
controllers
In	the	MasterViewController	(created	from	the	Master	Detail	template	or	a	new	subclass
of	a	UITableViewController),	define	an	instance	variable,	AppDelegate,	which	is
assigned	in	the	viewDidLoad	method:

class	MasterViewController:UITableViewController	{

		var	app:AppDelegate!

		override	func	viewDidLoad()	{

				app	=	UIApplication.sharedApplication().delegate

					as?	AppDelegate

				…

		}

}

The	table	view	controller	provides	data	in	a	number	of	sections	and	rows.	The
numberOfSections	method	will	return	the	number	of	users	with	the	section	title	being	the
username	(indexed	by	the	users	list):

override	func	numberOfSectionsInTableView(tableView:	UITableView)

	->	Int	{

		return	app.users.count

}

override	func	tableView(tableView:	UITableView,

	titleForHeaderInSection	section:	Int)	->	String?	{

		return	app.users[section]

}

The	numberOfRowsInSection	function	is	called	to	determine	how	many	rows	are	present
in	each	section.	If	the	number	is	not	known,	0	can	be	returned	while	running	a	background
query	to	find	the	right	answer:

override	func	tableView(tableView:	UITableView,

	numberOfRowsInSection	section:	Int)	->	Int	{

		let	user	=	app.users[section]

		if	let	repos	=	app.repos[user]	{

				return	repos.count

		}	else	{

				app.loadRepoNamesFor(user)	{	_	in

						Threads.runOnUIThread	{

								tableView.reloadSections(

									NSIndexSet(index:	section),

									withRowAnimation:	.Automatic)

						}

				}

				return	0

		}

}

Tip
Remember	to	reload	the	section	on	the	UI	thread;	otherwise,	the	updates	won’t	display

correctly.

Finally,	the	repository	name	needs	to	be	shown	in	the	value	of	the	cell.	If	a	default
UITableViewCell	is	used,	then	the	value	can	be	set	on	the	textLabel;	if	it	is	loaded	from
a	storyboard	prototype	cell,	then	the	content	can	be	accessed	appropriately	using	tags:

override	func	tableView(tableView:	UITableView,

	cellForRowAtIndexPath	indexPath:	NSIndexPath)

	->	UITableViewCell	{

		let	cell	=	tableView.dequeueReusableCellWithIdentifier(

			"Cell",	forIndexPath:	indexPath)

		let	user	=	app.users[indexPath.section]

		let	repo	=	app.repos[user]![indexPath.row]

		cell.textLabel!.text	=	repo["name"]	??	""

		return	cell

}

When	the	application	is	run,	the	list	of	repositories	will	be	displayed,	grouped	by	the	user:

Adding	users
At	this	moment,	the	list	of	users	is	hardcoded	into	the	application.	It	would	be	preferable
to	remove	this	hardcoded	list	and	allow	users	to	be	added	on	demand.	Create	an	addUser
function	in	the	AppDelegate	class:

func	addUser(user:String)	{

		users	+=	[user]

		users.sortInPlace({	$0	<	$1	})

}

This	allows	the	detail	controller	to	call	the	addUser	function	and	ensure	that	the	list	of
users	is	ordered	alphabetically.

Note
The	$0	and	$1	are	anonymous	parameters	expected	by	the	sort	function.	This	is	a
shorthand	form	of	users.sort({	user1,	user2	in	user1	<	user2}).	It	is	also	possible
to	sort	the	array	using	the	<	function	on	the	array	itself	using	users.sortInPlace(<).

The	add	button	can	be	created	in	the	MasterViewController	in	the	viewDidLoad	method
such	that	the	insertNewObject	method	is	called	when	tapped:

override	func	viewDidLoad()	{

		super.viewDidLoad()

		let	addButton	=	UIBarButtonItem(barButtonSystemItem:	.Add,

			target:	self,	action:	"insertNewObject:")

		self.navigationItem.rightBarButtonItem	=	addButton

		…

}

When	the	add	button	is	selected,	a	UIAlertController	dialog	can	be	shown	with	a
number	of	actions	with	handlers	that	will	be	called	to	add	the	user.

Add	(or	replace)	the	insertNewObject	in	the	MasterViewController,	as	follows:

func	insertNewObject(sender:	AnyObject)	{

		let	alert	=	UIAlertController(

			title:	"Add	user",

			message:	"Please	select	a	user	to	add",

			preferredStyle:	.Alert)

		alert.addAction(UIAlertAction(

			title:	"Cancel",	style:	.Cancel,	handler:	nil))

		alert.addAction(UIAlertAction(

			title:	"Add",	style:	.Default)	{

				alertAction	in

				let	username	=	alert.textFields![0].text

				self.app.addUser(username!)

				Threads.runOnUIThread	{

						self.tableView.reloadData()

				}

		})

		alert.addTextFieldWithConfigurationHandler	{

				textField	->	Void	in

				textField.placeholder	=	"Username";

		}

		presentViewController(alert,	animated:	true,	completion:	nil)

}

Now,	the	users	can	be	added	in	the	UI	by	clicking	the	Add	(+)	button	at	the	top	right	of
the	application.	Each	time	the	application	is	launched,	the	users	array	will	be	empty,	and
users	can	be	re-added.

Tip
Users	could	persist	between	launches	using	NSUserDefaults.standardUserDefaults	and
the	setObject:forKey	and	stringArrayForKey	methods.	The	implementation	of	this	is
left	to	the	reader.

Implementing	the	detail	view
The	final	step	is	to	implement	the	detail	view	so	that	when	a	repository	is	selected,	per-
repository	information	is	shown.	At	the	time	the	repository	is	selected	from	the	master
screen,	the	username,	and	repository	name	are	known.	These	can	be	used	to	pull	more
information	from	the	repository	and	add	the	items	into	the	detail	view.

Update	the	view	in	the	storyboard	to	add	four	labels	and	four	label	titles	for	username,
repository	name,	number	of	watchers,	and	number	of	open	issues.	Wire	these	into	outlets
into	the	DetailViewController:

@IBOutlet	weak	var	userLabel:	UILabel?

@IBOutlet	weak	var	repoLabel:	UILabel?

@IBOutlet	weak	var	issuesLabel:	UILabel?

@IBOutlet	weak	var	watchersLabel:	UILabel?

To	set	content	on	the	details	view,	the	user	and	repo	will	be	stored	as	(optional)	strings,
and	the	additional	data	will	be	stored	in	string	key/value	pairs.	When	they	are	changed,
the	configureView	method	should	be	called	to	redisplay	content:

var	user:	String?	{	didSet	{	configureView()	}	}

var	repo:	String?	{	didSet	{	configureView()	}	}

var	data:[String:String]?	{	didSet	{	configureView()	}	}

The	configureView	call	will	also	need	to	be	called	after	the	viewDidLoad	method	is	called
to	ensure	that	the	UI	is	set	up	as	expected:

override	func	viewDidLoad()	{	configureView()	}

In	the	configureView	method,	the	labels	may	not	have	been	set,	so	they	need	to	be	tested
with	an	if	let	statement	before	the	content	is	set:

func	configureView()	{

		if	let	label	=	userLabel	{	label.text	=	user	}

		if	let	label	=	repoLabel	{	label.text	=	repo	}

		if	let	label	=	issuesLabel	{

				label.text	=	self.data?["open_issues_count"]

		}

		if	let	label	=	watchersLabel	{

				label.text	=	self.data?["watchers_count"]

		}

}

If	using	the	standard	template,	the	splitViewController	of	the	AppDelegate	needs	to	be
changed	to	return	true	after	the	detail	view	is	amended:

func	splitViewController(

	splitViewController:	UISplitViewController,

	collapseSecondaryViewController	

		secondaryViewController:UIViewController!,

	ontoPrimaryViewController

		primaryViewController:UIViewController!)	->	Bool	{

		return	true

}

Note
The	splitViewController:collapseSecondaryViewController	method	determines
whether	or	not	the	first	page	that	is	displayed	is	the	master	(true)	or	detail	(false)	page.

Transitioning	between	the	master	and	detail	views
The	connection	between	the	master	and	detail	view	is	triggered	with	the	showDetail
segue	in	MasterViewController.	This	can	be	used	to	extract	the	selected	row	from	the
table,	which	can	then	be	used	to	extract	the	selected	row	and	section:

override	func	prepareForSegue(segue:	UIStoryboardSegue,

	sender:	AnyObject?)	{

		if	segue.identifier	==	"showDetail"	{

				if	let	indexPath	=	self.tableView.indexPathForSelectedRow	{

						//	get	the	details	controller

						//	set	the	details

				}

		}

}

The	details	controller	can	be	accessed	from	the	segue’s	destination	controller—except	that
the	destination	is	the	navigation	controller,	so	it	needs	to	be	unpacked	one	step	further:

//	get	the	details	controller

let	controller	=	(segue.destinationViewController	as!

	UINavigationController).topViewController

	as!	DetailViewController

//	set	the	details

Next,	the	details	need	to	be	passed	in,	which	can	be	extracted	from	indexPath,	as	in	the
prior	parts	of	the	application:

let	user	=	app.users[indexPath.section]

let	repo	=	app.repos[user]![indexPath.row]

controller.repo	=	repo["name"]	??	""

controller.user	=	user

controller.data	=	repo

Finally,	to	ensure	that	the	application	works	in	split	mode	with	SplitViewController,	the
back	button	needs	to	be	displayed	if	in	split	mode:

controller.navigationItem.leftBarButtonItem	=

	self.splitViewController?.displayModeButtonItem()

controller.navigationItem.leftItemsSupplementBackButton	=	true

Running	the	application	now	will	show	a	set	of	repositories,	and	when	one	is	selected,	the
details	will	be	displayed:

Tip
If	a	crash	is	seen	when	displaying	the	detail	view,	check	in	the	Main.storyboard	that	the
connector	for	a	nonexistent	field	is	not	defined.	Otherwise	an	error	similar	to	This	class	is
not	key	value	coding-compliant	for	the	key	detailDescriptionLabel	might	be	seen,
which	is	caused	by	the	Storyboard	runtime	attempting	to	assign	a	missing	outlet	in	the
code.	Open	the	Main.storyboard,	go	to	the	connections	inspector,	and	remove	the
connection	to	the	missing	outlet.

Loading	the	user’s	avatar
The	user	may	have	an	avatar	or	icon	that	they	have	uploaded	to	GitHub.	This	information
is	stored	in	the	user	information,	which	is	accessible	from	a	separate	lookup	in	the	GitHub
API.	Each	user’s	avatar	will	be	stored	as	a	reference	with	avatar_url	in	the	user
information	document,	such	as	https://api.github.com/users/alblue,	which	will	return
something	like	this:

{

		…	

		"avatar_url":	"https://avatars.githubusercontent.com/u/76791?v=2",

		…	

}

This	URL	represents	an	image	that	can	be	used	in	the	header	for	the	user’s	repository.

To	add	support	for	this,	the	user	info	needs	to	be	added	to	the	GitHubAPI	class:

func	getURLForUserInfo(user:String)	->	NSURL	{

		let	key	=	"ui:\(user)"

		if	let	url	=	cache.objectForKey(key)	as?	NSURL	{

				return	url

		}	else	{

				let	userURL	=	services["user_url"]!

				let	userSpecificURL	=	URITemplate.replace(userURL,

					values:["user":user])

				let	url	=	NSURL(string:userSpecificURL,	relativeToURL:base)!

				cache.setObject(url,forKey:key)

				return	url

		}

}

This	looks	up	the	user_url	service	from	the	GitHub	API,	which	returns	the	following
URI	template:

		"user_url":	"https://api.github.com/users/{user}",

This	can	be	instantiated	with	the	user	and	then	the	image	can	be	loaded	asynchronously:

import	UIKit…

func	withUserImage(user:String,	fn:(UIImage	->	()))	{

		let	key	=	"image:\(user)"

		if	let	image	=	cache.objectForKey(key)	as?	UIImage	{

				fn(image)

		}	else	{

				let	url	=	getURLForUserInfo(user)

				url.withJSONDictionary	{

						userInfo	in

						if	let	avatar_url	=	userInfo["avatar_url"]	{

								if	let	avatarURL	=	NSURL(string:avatar_url,

									relativeToURL:url)	{

										if	let	data	=	NSData(contentsOfURL:avatarURL)	{

												if	let	image	=	UIImage(data:	data)	{

														self.cache.setObject(image,forKey:key)

														fn(image)

https://api.github.com/users/alblue

}	}	}	}	}	}	}

Once	the	support	to	load	the	user’s	avatar	has	been	implemented,	it	can	be	added	to	the
view’s	header	to	display	it	in	the	user	interface.

Tip
The	set	of	nested	if	statements	here	suggests	that	it	may	be	better	to	refactor	to	Swift’s
guard	statement	instead.	This	would	ensure	that	the	indentation	does	not	increase	on	each
condition.	The	refactoring	is	left	as	an	exercise	for	the	reader.

Displaying	the	user’s	avatar
The	table	view	that	presents	the	repository	information	by	user	can	be	amended	so	that
along	with	the	user’s	name,	it	also	displays	their	avatar	at	the	same	time.	Currently,	this	is
done	in	the	tableView:titleForHeaderInSection	method,	but	an	equivalent
tableView:viewForHeaderInSection	method	is	available	that	provides	more
customization	options.

Although	the	method	signature	indicates	that	the	return	type	is	UIView,	in	fact,	it	must	be	a
subtype	of	UITableViewHeaderFooterView.	Unfortunately,	there	is	no	support	to	edit	or
customize	these	in	Storyboard,	so	they	must	be	implemented	programmatically.

To	implement	the	viewForHeaderInSection	method,	obtain	the	username	as	before,	and
set	it	to	the	textLabel	of	a	newly	created	UITableViewHeaderFooterView.	Then,	in	the
asynchronous	image	loader,	create	a	frame	that	has	the	same	origin	but	a	square	size	for
the	image,	and	then	create	and	add	the	image	as	a	subview	of	the	header	view.	The	method
will	look	like	this:

override	func	tableView(tableView:	UITableView,

	viewForHeaderInSection	section:	Int)	->	UIView?	{

		let	cell	=	UITableViewHeaderFooterView()

		let	user	=	app.users[section]

		cell.textLabel!.text	=	user

		app.api.withUserImage(user)	{

				image	in

				let	minSize	=	min(cell.frame.height,	cell.frame.width)

				let	squareSize	=	CGSize(width:minSize,	height:minSize)

				let	imageFrame	=	CGRect(origin:cell.frame.origin,

					size:squareSize)

				Threads.runOnUIThread	{

						let	imageView	=	UIImageView(image:image)

						imageView.frame	=	imageFrame

						cell.addSubview(imageView)

						cell.setNeedsLayout()

						cell.setNeedsDisplay()

				}

		}

		return	cell

}

Now	when	the	application	is	run,	the	avatar	will	be	displayed	overlaying	the	user’s
repositories:

Summary
This	chapter	has	shown	how	to	integrate	the	subjects	that	were	created	in	this	book	to
integrate	them	into	a	functional	application	to	interact	with	a	remote	network	service,	such
as	GitHub,	and	be	able	to	present	this	information	in	a	tabular	way.

By	ensuring	that	all	network	requests	are	implemented	on	background	threads,	and	that
returned	data	is	updated	on	the	UI	thread,	the	application	will	remain	responsive	to	the
user’s	input.	Graphics	and	custom	views	can	be	created	to	provide	headings,	or	the
Storyboard	could	be	modified	to	include	more	graphics	for	each	repository.

Chapter	8.	Adding	Watch	Support
Apple	released	watchOS	to	the	public	with	the	release	of	the	Apple	Watch	in	April	2015.
However,	with	the	release	of	watchOS	2	in	September	2015,	developers	have	been	able	to
write	extensions	that	run	on	the	watch	itself	rather	than	relying	on	a	companion	iOS
device	being	available.	This	chapter	will	show	how	to	add	watch	support	to	the	existing
Repository	Browser	application	(created	in	Chapter	7,	Building	a	Repository	Browser.)

This	chapter	will	present	the	following	topics:

Adding	a	watch	extension	to	an	existing	project
The	type	of	watch	interfaces
Using	tables,	text,	and	images
How	to	transition	between	screens	with	selected	context
Best	practices	for	watch	applications

Watch	applications
A	watch	application	consists	of	code	that	can	execute	on	the	watch	itself.	A	watch
application	is	developed	in	Swift	and	run	as	a	watch	extension	and	a	watch	app.	For
watchOS	2,	both	run	on	the	watch.	(On	watchOS	1,	the	watch	extension	ran	on	the
companion	iPhone.)	This	chapter	will	assume	watchOS	2	is	being	used	in	order	to	run
Swift-compiled	code	directly	on	the	watch.

Note
As	the	first	version	of	watchOS	did	not	allow	code	to	be	executed	on	the	watch,	the	code
was	bundled	up	into	a	watch	extension,	which	ran	as	part	of	the	companion	application	on
the	iPhone.	The	watch	app	contained	resources	and	other	images	which	were	presented
directly	on	the	watch.	With	watchOS	2,	the	separation	became	less	relevant.	A	future
version	of	Xcode	or	watchOS	may	result	in	the	two	concepts	becoming	combined.

Adding	a	watch	target
To	add	watch	support	for	an	existing	application,	a	new	target	must	be	created	for	the
watch.	Open	the	existing	Repository	Browser	application,	navigate	to	File	|	New	|
Target,	and	select	WatchKit	App	from	the	watchOS	section:

Once	this	is	created,	it	will	ask	for	the	name	of	the	watch	application.	This	can’t	be	the
same	name	as	the	enclosing	project,	so	call	it	RepositoryBrowserWatch	instead.	The
language	should	be	Swift;	the	other	user	interface	elements	(Complications,	Glance,	and
Notifications)	are	not	relevant	to	this	project,	and	so,	it	can	be	deselected:

When	Finish	is	pressed,	the	following	new	elements	will	be	created	in	the	project:

RepositoryBrowserWatch:	This	is	the	watch	application,	which	provides	the
interface	descriptions	for	the	application
RepositoryBrowserWatch	Extension:	This	is	the	content	corresponding	to	the	watch
application’s	executable	code
InterfaceController.swift:	This	is	the	Swift	file	corresponding	to	the	user
interface	element	that	gets	automatically	created
ExtensionDelegate.swift:	This	is	the	Swift	file	corresponding	to	the	user
application	as	a	whole	(similar	to	an	AppDelegate	on	a	traditional	iOS	application)

Adding	the	GitHubAPI	to	the	watch	target
In	order	to	allow	the	watch	application	to	use	the	GitHubAPI	that	was	developed	in
Chapter	7,	Building	a	Repository	Browser,	the	following	code	should	be	added	to	the
ExtensionDelegate:

var	api:GitHubAPI!

var	users:[String]	=	[]

var	repos:[String:[[String:String]]]	=	[:]

func	loadReposFor(user:String,	fn:([[String:String]])->())	{

		repos[user]	=	[]

		api.withUserRepos(user)	{

				results	in

				self.repos[user]	=	results

				fn(results)

		}

}

func	addUser(user:String)	{

		users	+=	[user]

		users.sortInPlace({	$0	<	$1	})

}

This	will	initially	generate	a	compile-time	error	because	the	GitHubAPI	class	(and	the
dependent	classes)	is	not	currently	associated	to	the	watch	target.	To	resolve	this,	select
the	GitHubAPI,	Threads,	NSURLExtensions,	and	URITemplate	Swift	files	and	open	the	file
inspector	by	pressing	Command	+	Option	+	1	or	by	navigating	to	View	|	Utilities	|	Show
File	Inspector.	Ensure	these	are	added	to	the	RepositoryBrowserWatch	Extension
target	by	selecting	the	appropriate	checkbox:

Now	when	the	watch	target	is	built	and	run,	a	watch	simulator	will	show	up	with	a	black
screen	and	the	time	at	the	top-right	of	the	application.	If	this	is	not	displayed,	verify	that

the	target	selected	is	for	the	watch	application:

Creating	watch	interfaces
A	watch’s	user	interface	is	built	up	of	elements	in	a	similar	way	to	iOS	applications,
except	that	the	user	toolkit	is	built	using	WatchKit	instead	of	UIKit.	In	the	same	way	that
classes,	such	as	UITableView,	exist,	corresponding	classes,	such	as	WKInterfaceTable,
also	exist.	There	are	minor	differences;	for	example,	the	UITableView	will	dynamically
populate	the	elements	upon	display,	but	the	WKInterfaceTable	will	expect	to	be	told	in
advance	how	many	rows	exist	and	what	these	rows	are.

Adding	a	list	of	users	to	the	watch
Unlike	the	UITableView,	which	provides	section	headers	to	group	rows,	a
WKInterfaceTable	only	permits	a	single	list	of	items.	Instead,	the	application	will	be
designed	so	that	the	first	screen	will	show	a	list	of	users,	and	then	the	second	screen	will
show	the	selected	user’s	repositories.

For	testing	purposes,	add	the	following	into	the	applicationDidFinishLaunching	method
of	the	ExtensionDelegate	class:

api	=	GitHubAPI.connect()

addUser("alblue")

This	will	allow	other	classes	to	query	the	ExtensionDelegate	property	users	to	show
some	content.	As	with	the	AppDelegate	of	an	iOS	application,	there	is	a	global	singleton
that	can	be	accessed.	Add	the	following	to	the	InterfaceController:

let	delegate	=	WKExtension.sharedExtension().delegate	as!	ExtensionDelegate

To	display	a	list	of	users,	the	interface	itself	must	have	a	table.	Each	table	row	has	its	own
controller	class,	which	can	be	a	simple	NSObject	subclass.	To	display	a	list	of	user	names,
create	a	UserRowController	class	that	has	a	single	label.	As	this	is	a	private
implementation	detail	of	the	InterfaceController,	it	makes	sense	to	include	it	in	the
same	file:

class	UserRowController:	NSObject	{

		@IBOutlet	weak	var	name:	WKInterfaceLabel!

}

Add	the	following	to	the	InterfaceController	class,	which	will	be	connected	to	the
interface	later:

		@IBOutlet	weak	var	usersTable:	WKInterfaceTable!

Now,	the	table	can	be	populated	in	the	awakeWithContext	method.	This	involves	setting
the	number	of	rows,	and	the	type	of	the	rows.	Add	the	following:

let	users	=	delegate.users

usersTable.setNumberOfRows(users.count,	withRowType:	"user")

for	(index,user)	in	users.enumerate()	{

		let	controller	=	usersTable.rowControllerAtIndex(index)	as!	

UserRowController

		controller.name.setText(user)

}

If	the	application	is	run	at	this	point,	several	errors	will	occur	because	the	IBOutlet
references	have	not	been	connected,	and	the	row	type	user	has	not	been	associated	with
the	UserRowController	class.

Wiring	up	the	interface
Having	generated	the	content	for	the	users,	the	interface	must	be	wired	to	the
implementation	detail.	Open	Interface.storyboard	in	the	RepositoryBrowserWatch
folder	and	go	to	Interface	Controller	Scene.	This	will	present	a	black	watch	surrounded
with	a	clock	and	Any	Screen	Size	displayed	at	the	bottom.	Like	iOS	application
interfaces,	they	can	come	in	different	sizes	(38mm	or	42mm	at	the	time	of	writing).

Open	the	object	library	by	pressing	Command	+	Option	+	Control	+	3	or	by	navigating	to
View	|	Utilities	|	Show	Object	Library.	Type	table	into	the	search	field	and	then	drag	it
into	the	watch	interface:

From	the	Interface	Controller	in	the	document	outline	on	the	left,	press	Control	and	drag
down	to	the	table	to	create	a	connection	to	the	usersTable	outlet	that	is	defined	in	the
interface	controller:

When	the	InterfaceController	is	instantiated,	the	usersTable	will	be	wired	up	to	the
outlet.	However,	there	are	still	no	connections	to	the	rows.	To	do	this,	drag	a	label	into	the
dotted	area	with	the	Table	Row	placeholder.	To	ensure	that	the	label	takes	up	all	the
available	space,	set	the	size	to	Relative	to	Container	with	a	factor	of	1	for	both	Width
and	Height:

In	order	to	connect	the	label’s	text	with	the	UserRowController,	two	things	have	to	be
done.	Firstly,	the	type	of	the	row	must	be	set	to	correspond	to	the	UserRowController
class,	which	will	allow	the	label	to	be	wired	up	to	the	name	outlet.	Secondly,	the	row	must
be	given	the	identifier	user	to	allow	it	to	be	connected	with	the	rowType	that	was	specified
in	the	previous	section.

To	set	the	row	controller’s	class,	open	the	Identity	Inspector	by	pressing	the	Command	+
Option	+	3	keys	or	by	navigating	to	View	|	Utilities	|	Show	Identity	Inspector.	Choose
UserRowController	from	the	dropdown,	which	should	also	set	the	module	name
RepositoryBrowserWatch_Extension.	Once	this	is	done,	the	user	controller	can	make	a
connection	to	the	label	by	pressing	Control	and	dragging	to	the	label,	followed	by
choosing	the	name	outlet:

To	set	the	row	controller’s	type,	switch	to	the	Attributes	Inspector	by	pressing	the
Command	+	Option	+	4	keys	or	by	navigating	to	View	|	Utilities	|	Show	Attributes
Inspector,	and	entering	the	rowType	that	was	used	previously,	which	is	user:

Now	when	the	application	is	run	the	list	of	users	should	be	seen,	which	includes	alblue:

Adding	an	image
It	is	possible	to	use	the	existing	API	to	return	an	image	for	the	user,	and	this	can	be
displayed	using	a	WKInterfaceImage	in	a	similar	way	to	the	text	name.	First,	an	outlet
needs	to	be	created	in	the	UserRowController	so	that	it	can	be	connected	to	the	interface:

class	UserRowController:	NSObject	{

		@IBOutlet	weak	var	name:	WKInterfaceLabel!

		@IBOutlet	weak	var	icon:	WKInterfaceImage!

}

The	interface	now	needs	to	be	updated	to	add	the	image.	This	can	be	done	by	searching
for	image	in	the	object	library	and	then	dragging	it	into	the	user	row.

The	watch	prefers	that	image	sizes	are	known	in	advance,	so	the	size	of	the	image	can	be
fixed	with	a	size	of	32	by	32	pixels,	which	will	be	sufficient	for	both	the	larger	and
smaller	watch	sizes.	Marking	the	image	as	Aspect	Fit	will	ensure	that	the	image	doesn’t
get	resized	inappropriately,	and	that	the	whole	image	will	be	displayed.

Tip
It	is	possible	to	click	the	+	icon	next	to	the	size	and	then	specify	different	dimensions	for
the	two	different	watches.

Aligning	the	image	on	the	right	and	on	the	center	will	give	the	same	impression	for	both
sizes	of	watch.	Changing	the	alignment	to	Right	and	Center	will	allow	the	display	to
adjust	to	different	sizes.	It	may	also	make	sense	to	modify	the	user’s	name	width	from
Relative	to	Container	to	Size	to	Fit,	but	this	is	not	strictly	necessary.	Finally,	connect	the
outlet	from	the	user	row	with	the	image	using	Control	and	dragging	the	mouse,	followed
by	choosing	the	icon	outlet.	The	resulting	user	interface	will	look	like	this:

Having	created	and	wired	up	the	image,	the	last	step	is	to	populate	the	data.	In	the
InterfaceController	method	awakeFromContext,	after	setting	the	user’s	name,	add	a
call	to	the	API	to	acquire	the	image	similar	to	the	DetailViewController	in	the	last
chapter:

controller.name.setText(user)	//	from	before

delegate.api.withUserImage(user)	{

		image	in	controller.icon.setImage(image)

}

Now	when	the	application	is	run,	after	a	brief	pause,	the	user’s	avatar	will	be	seen:

Responding	to	user	interaction
Typically,	a	watch	user	interface	will	present	information	to	the	user	or	let	them	select	or
manipulate	it	in	some	way.	When	items	are	presented	in	a	table,	then	it	is	natural	to	let	the
user	tap	on	the	row	to	show	a	subsequent	screen.	Watch	applications	use	segues	to	move
from	one	screen	to	another	in	a	similar	way	to	iOS	applications.

The	first	step	will	involve	creating	a	new	controller	file	called
RepositoryListController.swift.	This	will	be	used	to	hold	the
RepositoryListController	and	RepositoryRowController	classes,	in	a	very	similar
way	to	the	existing	InterfaceController.	As	with	the	other	view,	there	will	be	a	table	to
store	the	rows,	and	each	row	will	have	a	name	label:

class	RepositoryRowController:	NSObject	{

		@IBOutlet	weak	var	name:	WKInterfaceLabel!

}

class	RepositoryListController:	WKInterfaceController	{

		let	delegate	=	WKExtension.sharedExtension().delegate	as!	

ExtensionDelegate

		@IBOutlet	weak	var	repositoriesTable:	WKInterfaceTable!

}

Tip
Don’t	forget	to	add	the	RepositoryListController.swift	file	to	the
RepositoryBrowserWatch	Extension	target,	or	it	will	not	be	possible	to	use	that	as	the
implementation	class.

Once	these	classes	have	been	created,	the	Interface.storyboard	can	be	opened	and	a
new	Interface	Controller	dragged	in	from	the	object	library.	This	will	create	an	empty
screen,	which	can	have	other	objects	added.

Tip
Ensure	that	the	Interface	Controller	is	selected,	instead	of	the	Glance	Interface
Controller	or	the	Notification	Interface	Controller	as	these	are	used	for	different
purposes.

Once	the	interface	controller	has	been	created,	drag	a	Table	from	the	object	library	onto
the	interface	controller,	and	then	drag	a	Label	from	the	object	library	into	the	row
placeholder	in	the	same	way	as	in	the	previous	interface	controller	example.

The	interface	controller	will	need	to	be	updated	to	point	to	the
RepositoryListController	class;	this	can	be	done	by	selecting	the	interface	controller
and	going	to	the	Identity	Inspector	as	before.	Once	the	RepositoryListController
implementation	is	defined,	press	Control	and	drag	it	from	the	interface	controller	icon	to
the	table	and	wire	it	to	the	repositoriesTable.

Tip
These	connections	are	made	in	the	same	way	as	they	were	for	the	usersTable	in	the

previous	section.

The	row	placeholder’s	class	can	be	defined	by	selecting	the	placeholder	under	the
Repositories	Table	in	the	document	outline,	and	then	setting	the	row	controller’s	identity
to	repository	in	the	Attributes	Inspector.	This	will	allow	the	repository	row	placeholder
to	connect	the	name	attribute	to	the	label	in	the	scene.

The	last	connection	is	to	add	a	segue	from	the	users	screen	to	the	repositories	screen.	Press
Control	and	drag	from	the	user	row	in	the	Users	Table	to	the	repository	list	controller,
and	in	the	popup,	select	a	Push	Segue.

The	final	connection	will	look	like	this:

When	the	user	is	selected	in	the	first	screen,	the	second	screen	should	slide	over.	At	the
moment	this	will	be	empty	but	the	repositories	will	be	populated	in	the	next	section.

Adding	context	and	showing	repositories
To	pass	data	from	one	screen	to	another	requires	a	context	to	be	set.	Each	WKInterface
screen	has	an	awakeWithContext	function	that	can	be	used	to	pass	an	arbitrary	object	into
the	screen	when	it	is	displayed.	This	can	be	used	to	supply	a	user	object,	which	in	turn	can
be	used	to	look	up	a	set	of	repositories.

The	first	element	is	setting	the	context	object	when	transitioning	out	of	a	screen.	In	the
InterfaceController	class,	add	a	new	method	contextForSegueWithIdentifier,	as
follows:

override	func	contextForSegueWithIdentifier(

	segueIdentifier:	String,

	inTable	table:	WKInterfaceTable,

	rowIndex:	Int)	->	AnyObject?	{

		return	delegate.users[rowIndex]

}

Now	when	the	RepositoryListController	is	displayed,	the	currently-selected	user	will
be	passed	through.	To	receive	the	object,	create	an	awakeWithContext	method	in	the
RepositoryListController	class,	as	follows:

override	func	awakeWithContext(context:	AnyObject?)	{

		super.awakeWithContext(context)

		if	let	user	=	context	as?	String	{

				print("Showing	user	\(user)")

		}

}

Tip
This	will	allow	the	code	to	be	debugged	at	this	point	to	verify	that	the	object	is	being
passed	through	as	expected.

Displaying	a	list	of	repositories	requires	using	the	API	to	generate	a	list	of	data,	creating
the	appropriate	number	of	rows,	and	then	setting	the	row	contents	as	before.	This	can	be
implemented	by	updating	the	awakeWithContext	method	in	the
RepositoryListController,	as	follows:

if	let	user	=	context	as?	String	{

		delegate.loadReposFor(user)	{

				result	in

				self.repositoriesTable.setNumberOfRows(

					result.count,	withRowType:	"repository")

				for	(index,repo)	in	result.enumerate()	{

						let	controller	=	self.repositoriesTable

							.rowControllerAtIndex(index)	as!	RepositoryRowController

						controller.name.setText(repo["name"]	??	"")

		}

}

Now	when	the	watch	application	is	run,	and	a	user	selected,	a	list	of	repositories	should	be
populated	in	the	second	screen:

Adding	a	detail	screen
The	final	part	of	the	watch	application	is	to	create	a	modal	screen	that	is	similar	to	the
DetailViewController	in	the	iOS	application.	When	the	user	selects	a	repository,	details
about	the	repository	should	be	presented	modally.

This	will	be	implemented	with	a	new	RepositoryController.swift	file,	which	will
contain	a	WKInterfaceController	and	have	four	labels	that	can	be	wired	up	in	the
interface:

class	RepositoryController:	WKInterfaceController	{

		@IBOutlet	weak	var	repo:	WKInterfaceLabel!

		@IBOutlet	weak	var	issues:	WKInterfaceLabel!

		@IBOutlet	weak	var	watchers:	WKInterfaceLabel!

		@IBOutlet	weak	var	forks:	WKInterfaceLabel!

}

Tip
Don’t	forget	to	add	the	RepositoryController.swift	file	to	the
RepositoryBrowserWatch	Extension	target,	or	it	will	not	be	possible	to	use	that	as	the
implementation	class.

To	add	the	screen,	open	the	Interface.storyboard	and	drag	another	Interface
Controller	from	the	object	library	onto	the	canvas.	In	the	Identity	Inspector,	set
RepositoryController	as	the	Class	type,	which	will	allow	the	labels	to	be	wired	up
subsequently.

Drag	four	Label	objects	into	the	watch	interface.	They	will	line	up	automatically	in	a	row,
one	under	each	other.	These	can	be	given	placeholder	text	of	Repo,	Issues,	Watchers,	and
Forks—although	the	content	of	these	will	be	changed	programmatically.	By	dragging	and
dropping	from	the	Repository	Controller	onto	each	of	the	labels,	wire	up	the	connections
for	the	outlets	so	that	they	can	be	controlled	programmatically.

Finally,	wire	up	the	segue	from	the	repository	list	controller	so	that	when	the	repository
row	controller	under	the	Repositories	Table	is	selected,	a	Modal	selection	segue	is
chosen.	The	completed	set	of	connections	should	look	like	this	in	Xcode:

At	this	point	the	application	can	be	tested,	and	selecting	a	repo	should	transition	into	the
new	screen	although	the	correct	content	won’t	be	displayed	yet.

Populating	the	detail	screen
To	wire	up	the	labels	in	the	detail	screen,	a	similar	process	has	to	be	followed	for	the
previous	screen:	the	context	needs	to	be	set	from	the	transitioning	screen,	and	then	the
data	needs	to	be	populated	into	the	receiving	screen.

In	the	RepositoryListController,	the	selected	repository	information	needs	to	be	passed
on	through	the	contextForSegueWithIdentifier	method.	However,	unlike	the	users	list
(which	is	persisted	in	the	ExtensionDelegate),	there	is	no	such	stored	repositories	data
list.	As	a	result,	it	is	necessary	to	persist	a	temporary	copy	of	the	repositories	when	the
screen	is	woken.

Modify	the	awakeWithContext	method	of	the	RepositoryListController	class	to	store
entries	in	the	repos	property	so	that	when	one	is	selected	it	can	be	used	to	set	the	context
when	transitioning	out	of	the	screen:

var	repos	=	[]

override	func	awakeWithContext(context:	AnyObject?)	{

		super.awakeWithContext(context)

		if	let	user	=	context	as?	String	{

				delegate.loadReposFor(user)	{

						//	as	before

						self.repos	=	result

				}

		}	else	{

				repos	=	[]

		}

}

override	func	contextForSegueWithIdentifier(

	segueIdentifier:	String,

		inTable	table:	WKInterfaceTable,

		rowIndex:	Int)	->	AnyObject?	{

		return	repos[rowIndex]

}

Now	when	the	repository	is	selected,	the	key/value	pairs	will	be	passed	on	through	the
cached	content	from	before.

The	last	step	in	filling	in	the	details	screen	is	to	use	this	context	object	to	set	up	the	labels.
In	the	RepositoryController	class,	add	an	awakeWithContext	method	that	receives	the
key/value	dictionary,	and	uses	the	fields	to	display	information	about	the	repository:

override	func	awakeWithContext(context:	AnyObject?)	{

		if	let	data	=	context	as?	[String:String]	{

				repo.setText(data["name"])

				issues.setText(data["open_issues_count"])

				watchers.setText(data["watchers_count"])

				forks.setText(data["forks_count"])

		}

}

Now	when	the	application	is	run,	the	user	should	be	able	to	step	through	each	of	the	three
screens	to	see	the	content.

Best	practice	for	watch	applications
As	watches	are	very	low-powered	devices	with	limited	networking,	care	should	be	taken
to	reduce	networking	where	possible.	The	example	application	shown	here	(using	several
REST-based	calls	to	a	backend	server)	is	sending	and	receiving	more	data	than	needed;	if
this	was	being	designed	as	a	custom	application,	then	the	protocol	should	be	minimized	to
avoid	unnecessary	data	transmission.

The	example	application	also	presented	user	information	as	a	list	of	text	data,	which	may
not	be	the	most	appropriate	way	of	showing	data.	Consider	other	mechanisms	to	present
information	in	a	more	graphical	way	where	appropriate.

UI	thread	considerations
It	is	generally	bad	practice	to	perform	any	networking	on	the	main	thread,	such	as	the
lookups	for	the	API,	and	for	the	query	for	a	user’s	repositories.	Instead,	the	lookups
should	be	run	in	a	background	thread,	switching	back	to	the	UI	thread	where	necessary	to
perform	updates.

For	example,	in	the	API	lookup	for	the	connection,	the	connect	method	looks	like	this:

class	func	connect(url:NSURL)	->	GitHubAPI?	{

		if	let	data	=	NSData(contentsOfURL:url)	{

				...

		}

}

This	uses	optional	initializers	to	return	a	GitHubAPI	whether	the	network	connection
succeeded	or	not,	but	this	means	that	the	call	has	to	block	before	it	can	be	used.	This
means	that	the	GitHubAPI()	initializer	called	in	the	applicationDidFinishLaunching
will	be	blocking	the	application’s	startup,	which	is	not	excellent	user	experience.	Instead,
it	is	better	to	do	something	like	this:

Threads.runOnBackgroundThread()	{

		if	let	data	=	NSData(contentsOfURL:url)	{

				…

				Threads.runOnUIThread()	{

						//	update	the	UI	as	before

				}

		}

}

Adding	background	threads	increases	the	complexity,	but	this	means	that	the	application
will	start	faster.	It	may	be	necessary	to	update	the	UI	initialization	logic	such	that	the	calls
to	the	API	are	deferred	until	the	network	service	is	available,	or	show	other	loading
progress	indicators	to	give	the	user	feedback	that	something	is	happening.

Stored	data
The	user	list	in	the	example	application	only	stores	a	single	variable,	which	is	hardcoded
into	the	application.	Normally,	this	won’t	be	the	case,	but	the	watch	is	not	set	up	for	data
input.	Instead,	the	companion	iOS	application	should	be	used	to	define	a	list	of	users	(with
appropriate	error	checking	and	interface)	and	then	communicate	that	with	the	watch
application.

There	are	two	ways	of	achieving	this.	The	best	way	is	to	use	the	iCloud	infrastructure	and
have	the	document	updated	on	the	iOS	device	and	then	mirrored	to	the	watch
automatically.	This	will	allow	the	user	to	transition	to	new	iOS	devices	or	watches	in	the
future	without	needing	to	recreate	the	list.

An	alternative	way	is	to	send	messages	between	the	watch	and	the	iOS	device	using	the
WatchConnectivity	module	and	the	WCSession	type.	This	provides	a	singleton	that	is
accessible	through	the	WCSession.defaultSession(),	which	can	be	used	to	send	and
receive	messages	between	the	iOS	device	and	the	paired	watch.	Please	note	that	the
session	may	not	be	supported,	so	it	should	be	checked	with	session.isSupported()	first;
and	if	it	is,	then	it	must	be	activated	with	session.activate()	before	any	messages	can
be	sent	or	received.	Incoming	messages	are	routed	to	the	associated	delegate.

The	watch	can	also	persist	data	using	the	session’s	watchDirectoryURL,	which	returns	the
location	that	temporary	data	can	be	written	to.	This	can	be	used	to	add	additional
information	which	is	loaded	at	startup.	For	example,	the	GitHubAPI	could	cache	the	API
once	it	has	been	initially	retrieved,	then	used	for	subsequent	requests,	and	reloaded
automatically	if	necessary.

Appropriate	use	of	complications	and	glances
The	watch’s	interface	predominantly	uses	different	types	of	widgets	for	different
interactions.	A	complication	is	a	small	utility	widget	that’s	displayed	on	the	screen	of	the
watch	face	(for	example,	the	rising	sun	or	a	stopwatch	timer).	A	notification	is	a	small
brief	information	update	(similar	to	the	notifications	on	iOS	such	as	an	incoming
message),	which	can	be	used	to	perform	simple	actions	(such	as	responding	with	a
yes/no/maybe)	or	to	launch	the	full	application.	A	glance	is	a	simple	location-derived	item
that	may	give	the	user	a	way	of	telling	them	that	something	is	nearby	when	they	raise	their
wrist.

Depending	on	the	type	of	application	created,	there	may	be	appropriate	ways	that	these
can	be	used	in	order	to	give	the	user	specific	information	on	demand.	However,	they
shouldn’t	be	used	just	for	the	sake	of	using	them;	if	they	aren’t	going	to	provide	any	useful
information,	they	should	not	be	used.

There	are	also	other	ways	of	interacting	with	the	application;	for	example,	watchOS	2	has
support	for	direct	interaction	of	the	digital	crown	and	force	pushes.	For	more	information,
see	the	Apple	Watch	Human	Interface	Guidelines.

Summary
Watch	applications	can	run	code	in	the	same	way	that	they	run	on	an	iOS	device	although
the	way	in	which	they	are	uploaded	to	the	watch	is	slightly	different.	Running	code	on	the
simulator	is	very	different	to	running	on	a	real	device;	the	network	and	processor	are	much
more	limited	than	will	be	expected	for	a	desktop	class	machine	(or	even	an	iOS	device).
As	a	result,	testing	on	a	real	device	is	essential	in	order	to	test	the	full	experience.

This	chapter	presented	how	watch	applications	and	extensions	are	built,	how	they	are
packaged	in	the	form	of	watch	extensions	and	watch	apps,	and	how	they	can	share	code
with	a	parent	application	to	avoid	code	duplication.	The	watch	interface	demonstrated	how
to	transition	between	screens	using	segues	to	implement	a	watch	extension	of	the	iOS
application	that	was	created	in	the	previous	chapter.

Appendix	A.	References	to	Swift-related
Websites,	Blogs,	and	Notable	Twitter
Users
Learning	any	language	initially	focuses	on	the	syntax	and	semantics	of	the	language,	but	it
quickly	moves	on	to	learning	the	suite	of	both	standard	and	additional	libraries	that	allow
programmers	to	be	productive.	A	single	book	cannot	hope	to	list	all	possible	libraries	that
will	be	needed;	this	book	is	intended	to	be	the	start	of	a	learning	journey.

For	further	reading,	this	appendix	presents	a	number	of	additional	resources	that	may	be
useful	to	the	reader	in	order	to	continue	this	journey.	In	addition,	look	out	for	other	books
by	Packt	Publishing	that	present	different	aspects	of	Swift.	This	list	of	resources	is
necessarily	incomplete;	new	resources	will	become	available	after	the	publication	of	this
book,	but	you	may	be	able	to	find	new	developments	as	they	occur	by	following	the	feeds
and	posts	of	the	resources	given	here.

Language
The	Swift	language	is	developed	by	Apple,	and	a	number	of	documents	are	available	from
the	Swift	developer	page	at	https://developer.apple.com/swift/.	This	includes	a	language
reference	guide	and	an	introduction	to	the	standard	library:

The	Swift	programming	language	can	be	found	at
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
The	Swift	standard	library	reference	can	be	found	at
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
Integrating	Swift	and	Cocoa	can	be	found	at
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/
Swifter	provides	a	list	of	all	Swift	functions	at	http://swifter.natecook.com

The	Swift	language	was	open	sourced	in	December	2015	and	has	a	new	home	at
https://swift.org,	along	with	the	new	Swift	blog	at	https://swift.org/blog/.

https://developer.apple.com/swift/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/
http://swifter.natecook.com
https://swift.org
https://swift.org/blog/

Twitter	users
There	are	a	lot	of	active	Twitter	users	that	use	Swift;	in	many	cases	posts	will	be	marked
with	the	#swift	hashtag,	and	can	be	found	at	http://twitter.com/search?q=%23swift.
Popular	users	that	the	author	follows	include	(in	alphabetical	Twitter	handle	name):

@AirspeedSwift:	This	twitter	has	a	good	selection	of	tweets	and	retweets	of	Swift-
related	subjects
@ChrisEidhof:	This	is	author	of	the	Functional	Swift	book	and	@objcio
@CodeWithChris:	This	twitter	is	a	collection	of	tutorials	on	iOS	programming
@CodingInSwift:	This	twitter	contains	cross-posts	by	a	collection	of	Swift	resources
@CompileSwift:	This	twitter	contains	posts	on	Swift
@cwagdev:	Chris	Wagner	writes	some	of	the	iOS	tutorials	with	Ray	Wenderlich
@FunctionalSwift:	This	is	a	selection	of	functional	snippets,	along	with	a	Functional
Swift	book
@LucasDerraugh:	This	is	the	creator	of	video	tutorials	on	YouTube
@NatashaTheRobot:	This	twitter	contains	a	great	summary	of	what’s	happening,
along	with	newsletters	and	cross	references
@nnnnnnnn:	Nate	Cook,	who	reviewed	an	earlier	version	of	this	book	and	provides
the	Swifter	list	just	mentioned
@PracticalSwift:	This	is	a	good	collection	of	blog	posts	talking	about	the	Swift
language
@rwenderlich:	Ray	Wenderlich	has	many	posts	relating	to	iOS	development;	a
wealth	of	information	and	more	recently	Swift	topics	as	well
@SketchyTech:	This	is	a	collection	of	blog	posts	on	Swift
@SwiftCastTV:	These	are	video	tutorials	of	Swift
@SwiftEssentials:	This	is	the	twitter	feed	for	this	book
@SwiftLDN:	This	Twitter	posts	Swift	meetups	based	in	London,	also	invites	great
Swift	talks	and	presenters

In	addition	to	the	Swift-focused	Twitter	users,	there	are	a	number	of	other	Cocoa
(Objective-C)	developers	who	blog	regularly	on	topics	relating	to	the	iOS	and	OS	X
platforms.	Given	that	any	Objective-C	framework	can	be	integrated	into	a	Swift	app	(and
vice	versa),	quite	often,	there	will	be	useful	information	from	reading	these	posts:

@Cocoanetics:	Oliver	Drobnik	writes	about	iOS	and	provides	training
@CocoaPods:	CocoaPods	is	a	dependency	management	system	for	Objective-C
frameworks	(pods)	and	is	being	extended	into	the	Swift	domain
@Mattt:	Mattt	Thompson	writes	about	many	iOS	subjects,	is	the	author	of	the
AFNetworking	and	AlamoFire	networking	libraries,	and	who	moved	to	Apple	to
write	the	Swift	package	manager
@MikeAbdullah:	Mike	Abdullah	writes	about	general	iOS	development
@MikeAsh:	Mike	Ash	knows	everything	there	is	to	know,	and	what	he	doesn’t	know,
he	finds	out
@MZarra:	Marcus	S.	Zarra	has	written	a	lot	about	Core	Data	and	synching

http://twitter.com/search?q=%23swift

@NSHipster:	This	is	a	collection	of	assembled	iOS	and	Cocoa	posts	that	are	organised
by	Mattt	Thompson
@objcio:	This	is	a	monthly	publication	on	Objective-C	topics	with	some	Swift
@PerlMunger:	Matt	Long	posts	about	Swift,	Cocoa,	and	iOS

The	reviewers	of	this	book	included:

@AnilVrgs:	Anil	Varghese
@Ant_Bello:	Antonio	Bello
@ArvidGerstmann:	Arvid	Gerstmann
@jiaaro:	James	Robert
@nnnnnnnn:	Nate	Cook

The	author’s	personal	and	book	twitter	accounts	are:

@AlBlue	is	the	author’s	twitter	account
@SwiftEssentials	is	the	book’s	twitter	account

Meetups	such	as	@SwiftLdn	keep	a	track	of	interesting	Swift	writers	in	a	Twitter	list	at
https://twitter.com/SwiftLDN/lists/swift-writers/members,	which	may	have	more	up-to-
date	recommendations	than	this	section,	as	well	as	the	Ray	Wenderlich	team	at
https://twitter.com/rwenderlich/lists/raywenderlich-com-team/members.

https://twitter.com/SwiftLDN/lists/swift-writers/members
https://twitter.com/rwenderlich/lists/raywenderlich-com-team/members

Blogs	and	tutorial	sites
There	are	a	number	of	blogs	that	cover	Swift	and	related	technologies.	Here	are	a	selection
that	you	may	be	interested	in:

https://developer.apple.com/swift/blog/	is	the	official	Apple	Swift	blog
http://airspeedvelocity.net	is	the	blog	for	@AirspeedSwift
http://alblue.bandlem.com/Tag/swift/	is	the	author’s	blog	on	Swift
http://mikeabdullah.net	is	Mike	Abdullah’s	blog
http://mikeash.com	writes	the	Friday	Q&A	series	on	all	things	iOS	and	OS	X
http://natecook.com/blog/tags/swift/	is	Nate	Cook’s	blog	on	Swift
http://nshipster.com	is	the	blog	for	@NSHipster
http://objc.io	is	the	blog	for	@objcio
http://practicalswift.com	is	collected	by	@PracticalSwift
http://sketchytech.blogspot.co.uk	is	a	collected	blog	of	Swift	articles	by
@SketychTech

http://swiftessentials.org	is	the	companion	site	for	this	book,	along	with	the
repository	at	https://github.com/alblue/com.packtpub.swift.essentials/
http://swiftnews.curated.co	is	collected	by	@NatashaTheRobot
http://www.cimgf.com	presents	a	collection	of	topics	on	Cocoa,	by	Marcus	S	Zarra
and	others
http://www.raywenderlich.com	has	a	collection	of	tutorials	about	iOS	development,
including	both	Cocoa	and	Swift

https://developer.apple.com/swift/blog/
http://airspeedvelocity.net
http://alblue.bandlem.com/Tag/swift/
http://mikeabdullah.net
http://mikeash.com
http://natecook.com/blog/tags/swift/
http://nshipster.com
http://objc.io
http://practicalswift.com
http://sketchytech.blogspot.co.uk
http://swiftessentials.org
https://github.com/alblue/com.packtpub.swift.essentials/
http://swiftnews.curated.co
http://www.cimgf.com
http://www.raywenderlich.com

Meetups
A	number	of	local	iOS	developer	groups	existed	before	Swift	was	created;	they	have	since
been	supplanted	by	Swift-specific	groups.	These	will	of	course	vary	by	geographic
location,	but	a	few	meetup	sites	exist,	such	as	EventBrite	at	http://www.eventbrite.co.uk,
and	Meetup	at	http://www.meetup.com.

There	are	also	likely	to	be	Twitter	groups	or	meetups	near	you;	for	example,	in	London,
there	is	@SwiftLDN	at	https://twitter.com/SwiftLDN	who	have	regular	meetings	listed	at
http://www.meetup.com/swiftlondon/.	In	New	York,	the	http://www.meetup.com/NYC-
Swift-Developers/	group	is	fairly	active.	In	San	Francisco,	both
http://www.meetup.com/swift-language/	and	http://www.meetup.com/San-Francisco-
SWIFT-developers/	are	active.

http://www.eventbrite.co.uk
http://www.meetup.com
https://twitter.com/SwiftLDN
http://www.meetup.com/swiftlondon/
http://www.meetup.com/NYC-Swift-Developers/
http://www.meetup.com/swift-language/
http://www.meetup.com/San-Francisco-SWIFT-developers/

Afterword
A	journey	of	a	thousand	miles	begins	with	a	single	step.	Your	journey	to	writing	great
Swift	applications	has	just	begun.	As	with	any	journey,	traveling	companions	can	provide
support,	assistance,	and	encouragement;	and	many	of	the	companions	given	here	can
provide	connections	to	many	more.	I	hope	you	enjoy	your	journey.

Index
A

AppDelegate	class
about	/	The	AppDelegate	class

Apple	Human	Interface	Guidelines(HIG)	/	Scenes	and	view	controllers
assistant	editor	/	Connecting	views	to	outlets	in	Swift
asynchronous	reading	and	writing

about	/	Asynchronous	reading	and	writing
data,	reading	from	NSInputStream	/	Reading	data	asynchronously	from	an
NSInputStream
stream	delegate,	creating	/	Creating	a	stream	delegate
errors,	dealing	with	/	Dealing	with	errors
references,	listing	/	Listing	references	asynchronously
references,	displaying	in	UI	/	Displaying	asynchronous	references	in	the	UI
data,	writing	to	NSOutputStream	/	Writing	data	asynchronously	to	an
NSOutputStream

Auto	Layout
about	/	Using	Auto	Layout
using	/	Using	Auto	Layout
constraints	/	Understanding	constraints
constraints,	adding	/	Adding	constraints
constraints,	adding	with	drag	and	drop	/	Adding	a	constraint	with	drag	and	drop
constraints,	adding	to	Press	Me	scene	/	Adding	constraints	to	the	Press	Me	scene
missing	constraints,	adding	/	Adding	missing	constraints

B
best	practice,	watch	application

about	/	Best	practice	for	watch	applications
UI	thread	considerations	/	UI	thread	considerations
stored	data	/	Stored	data
use	of	complication	/	Appropriate	use	of	complications	and	glances
use	of	glances	/	Appropriate	use	of	complications	and	glances

C
classes

about	/	Classes	in	Swift
client

creating	/	Creating	the	client
GitHub	API,	talking	to	/	Talking	to	the	GitHub	API
repositories,	returning	for	user	/	Returning	repositories	for	a	user
data,	accessing	through	AppDelegate	/	Accessing	data	through	the	AppDelegate

collection	types
about	/	Collection	types

command-line	Swift
about	/	Command-line	Swift
interpreted	Swift	scripts	/	Interpreted	Swift	scripts
compiled	Swift	scripts	/	Compiled	Swift	scripts

compiled	Swift	scripts
about	/	Compiled	Swift	scripts

complication	/	Appropriate	use	of	complications	and	glances
conditional	logic

about	/	Conditional	logic
if	statements	/	If	statements
switch	statements	/	Switch	statements

constants
about	/	Variables	and	constants

core	animation	layer	classes
about	/	Custom	graphics	with	layers
CAEAGLLayer	class	/	Custom	graphics	with	layers
CAEmitterLayer	class	/	Custom	graphics	with	layers
CAGradientLayer	class	/	Custom	graphics	with	layers
CAReplicatorLayer	class	/	Custom	graphics	with	layers
CAScrollLayer	class	/	Custom	graphics	with	layers
CAShapeLayer	class	/	Custom	graphics	with	layers
CATextLayer	class	/	Custom	graphics	with	layers
CATiledLayer	class	/	Custom	graphics	with	layers
CATransformLayer	class	/	Custom	graphics	with	layers

Core	Graphics	context	/	Custom	graphics	with	drawRect
custom	graphics,	with	drawRect

about	/	Custom	graphics	with	drawRect
drawing	/	Drawing	graphics	in	drawRect
orientation	changes,	responding	to	/	Responding	to	orientation	changes

custom	graphics,	with	layers
about	/	Custom	graphics	with	layers
ProgressView,	creating	from	layers	/	Creating	a	ProgressView	from	layers
stop	square,	adding	/	Adding	the	stop	square

progress	bar,	adding	/	Adding	a	progress	bar
view,	clipping	/	Clipping	the	view
views,	testing	in	Xcode	/	Testing	views	in	Xcode
change,	responding	to	/	Responding	to	change

custom	view,	creating	by	subclassing	UIView
about	/	Creating	new	views	by	subclassing	UIView
Auto	Layout,	using	/	Auto	Layout	and	custom	views
constraints,	adding	/	Constraints	and	the	visual	format	language
visual	format	language	/	Constraints	and	the	visual	format	language
custom	view,	adding	to	table	/	Adding	the	custom	view	to	the	table

custom	view,	creating	with	Interface	Builder
about	/	Creating	new	views	with	Interface	Builder
table	view	controller,	creating	/	Creating	a	table	view	controller
data,	displaying	in	table	/	Showing	data	in	the	table
view,	defining	in	xib	file	/	Defining	a	view	in	a	xib	file
custom	view	class,	wiring	/	Wiring	a	custom	view	class
intrinsic	size,	dealing	with	/	Dealing	with	intrinsic	size

D
data	loading,	from	URLs

about	/	Loading	data	from	URLs
errors,	dealing	with	/	Dealing	with	errors
missing	content,	dealing	with	/	Dealing	with	missing	content
nested	if	and	switch	statements	/	Nested	if	and	switch	statements
networking	/	Networking	and	user	interfaces
user	interfaces	/	Networking	and	user	interfaces
functions,	running	on	main	thread	/	Running	functions	on	the	main	thread

DetailViewController	class
about	/	The	DetailViewController	class

DictionaryExtensions	class	/	Repository	browser	project
direct	network	connections

about	/	Direct	network	connections
stream-based	connection	/	Opening	a	stream-based	connection
synchronous	reading	and	writing	/	Synchronous	reading	and	writing
asynchronous	reading	and	writing	/	Asynchronous	reading	and	writing

documentation,	playground
about	/	Playgrounds	and	documentation
starting	/	Learning	with	playgrounds
playground	format	/	Understanding	the	playground	format
page,	adding	/	Adding	a	page
code,	documenting	/	Documenting	code
playground	navigation	documentation	/	Playground	navigation	documentation
text,	formatting	/	Text	formatting
symbol	documentation	/	Symbol	documentation

drawRect
about	/	Custom	graphics	with	drawRect

E
enums

about	/	Enums	in	Swift
raw	values	/	Raw	values
associated	values	/	Associated	values

ExtensionDelegate.swift	/	Adding	a	watch	target

F
floating	point	literals

about	/	Floating	point	literals
functions

about	/	Functions
named	arguments	/	Named	arguments
optional	arguments	/	Optional	arguments	and	default	values
default	values	/	Optional	arguments	and	default	values
guard	statement	/	Guards
multiple	return	values	and	arguments	/	Multiple	return	values	and	arguments
structured	values,	returning	/	Returning	structured	values
error	handling	/	Error	handling
errors,	throwing	/	Throwing	errors
errors,	catching	/	Catching	errors
clean	up,	performing	after	errors	/	Cleaning	up	after	errors

G
GitHub	API

about	/	An	overview	of	the	GitHub	API
overview	/	An	overview	of	the	GitHub	API
root	endpoint	/	Root	endpoint
user	resource	/	User	resource
repositories	resource	/	Repositories	resource

GitHubAPI	class	/	Repository	browser	project
glance	/	Appropriate	use	of	complications	and	glances

I
Interface	Builder

custom	view,	creating	with	/	Creating	new	views	with	Interface	Builder
InterfaceController.swift	/	Adding	a	watch	target
interpreted	Swift	scripts

about	/	Interpreted	Swift	scripts
iOS	applications

about	/	Understanding	iOS	applications
iteration

about	/	Iteration
iterating	over	keys	and	values,	in	dictionary	/	Iterating	over	keys	and	values	in	a
dictionary
with	for	loops	/	Iteration	with	for	loops
break	statement	/	Break	and	continue
continue	statement	/	Break	and	continue

J
JSON

parsing	/	Parsing	JSON
errors,	handling	/	Handling	errors

M
master-detail	iOS	application

creating	/	Creating	a	master-detail	iOS	application
about	/	Creating	a	master-detail	iOS	application
AppDelegate	class	/	The	AppDelegate	class
MasterViewController	class	/	The	MasterViewController	class
DetailViewController	class	/	The	DetailViewController	class

MasterViewController	class
about	/	The	MasterViewController	class

meetups
references	/	Meetups

members
about	/	Classes	in	Swift

methods
about	/	Classes	in	Swift

N
navigation	controller

adding	/	Adding	a	navigation	controller
scenes,	naming	/	Naming	scenes	and	views
views,	naming	/	Naming	scenes	and	views

navigation	documentation,	playground
about	/	Playground	navigation	documentation

nil	coalescing	operator
about	/	Nil	coalescing	operator

notification	/	Appropriate	use	of	complications	and	glances
NSURLExtensions	class	/	Repository	browser	project
numeric	literals

about	/	Numeric	literals
binary	/	Numeric	literals
octal	/	Numeric	literals
hexadecimal	/	Numeric	literals

O
open	source	Swift

about	/	Open	source	Swift
optional	types

about	/	Optional	types

P
playground

starting	/	Getting	started	with	playgrounds
creating	/	Creating	a	playground
console	output,	viewing	/	Viewing	the	console	output
timeline,	viewing	/	Viewing	the	timeline
documentation	/	Playgrounds	and	documentation
format	/	Understanding	the	playground	format
limitations	/	Limitations	of	playgrounds

properties
about	/	Classes	in	Swift

protocol
about	/	Protocols	in	Swift
defining	/	Protocols	in	Swift

Q
QuartzCore	framework	/	Custom	graphics	with	layers
Quick	Look

objects,	displaying	/	Displaying	objects	with	Quick	Look
colored	labels,	displaying	/	Showing	colored	labels
images,	displaying	/	Showing	images

R
repositories,	accessing	from	view	controllers

about	/	Accessing	repositories	from	view	controllers
users,	adding	/	Adding	users
detail	view,	implementing	/	Implementing	the	detail	view
master	and	detail	views,	transitioning	/	Transitioning	between	the	master	and
detail	views
user	avatar,	loading	/	Loading	the	user’s	avatar
user	avatar,	displaying	/	Displaying	the	user’s	avatar

repository	browser	project
about	/	Repository	browser	project
URI	templates	/	URI	templates
background	threading	/	Background	threading
JSON	dictionaries,	parsing	/	Parsing	JSON	dictionaries
JSON	arrays	of	dictionaries,	parsing	/	Parsing	JSON	arrays	of	dictionaries

RepositoryBrowserWatch	/	Adding	a	watch	target
RepositoryBrowserWatch	Extension	/	Adding	a	watch	target

S
scenes

about	/	Storyboards,	scenes,	and	segues
segues

about	/	Storyboards,	scenes,	and	segues,	Segues
demonstrating	/	Segues

single-view	iOS	application
about	/	Creating	a	single-view	iOS	application
creating	/	Creating	a	single-view	iOS	application
storyboard,	removing	/	Removing	the	storyboard
view	controller,	setting	up	/	Setting	up	the	view	controller

storyboard	integration,	with	Swift
about	/	Swift	and	storyboards
custom	view	controllers	/	Custom	view	controllers
views,	connecting	to	outlets	in	Swift	/	Connecting	views	to	outlets	in	Swift
actions,	calling	from	interface	builder	/	Calling	actions	from	interface	builder
segue,	triggering	with	code	/	Triggering	a	segue	with	code
data,	passing	with	segues	/	Passing	data	with	segues

storyboard	project
creating	/	Creating	a	storyboard	project
standard	view	controllers	/	Scenes	and	view	controllers
views,	adding	to	scene	/	Adding	views	to	the	scene

storyboards
about	/	Storyboards,	scenes,	and	segues

stream-based	connection
about	/	Opening	a	stream-based	connection

string	literals
about	/	String	literals

subclasses
about	/	Subclasses	and	testing	in	Swift

Swift
URL	/	Open	source	Swift
about	/	Getting	started	with	Swift
download	link	/	Getting	started	with	Swift
numeric	literals	/	Numeric	literals
floating	point	literals	/	Floating	point	literals
string	literals	/	String	literals
variables	/	Variables	and	constants
constants	/	Variables	and	constants
collection	types	/	Collection	types
optional	types	/	Optional	types
nil	coalescing	operator	/	Nil	coalescing	operator
classes	/	Swift	classes,	protocols,	and	enums,	Classes	in	Swift

subclasses	/	Subclasses	and	testing	in	Swift
testing	/	Subclasses	and	testing	in	Swift
protocols	/	Protocols	in	Swift
enums	/	Enums	in	Swift
references	/	Language
blogs	and	tutorial	site	references	/	Blogs	and	tutorial	sites

symbol	documentation
about	/	Symbol	documentation

synchronous	reading	and	writing
about	/	Synchronous	reading	and	writing
data,	writing	to	NSOutputStream	/	Writing	data	to	NSOutputStream
data,	reading	from	NSInputStream	/	Reading	from	an	NSInputStream
hexadecimal	and	UTF8	data,	reading	/	Reading	and	writing	hexadecimal	and
UTF8	data
hexadecimal	and	UTF8	data,	writing	/	Reading	and	writing	hexadecimal	and
UTF8	data
git	protocol,	implementing	/	Implementing	the	Git	protocol
git	references,	listing	remotely	/	Listing	git	references	remotely
network	call,	integrating	into	UI	/	Integrating	the	network	call	into	the	UI

T
testing,	in	Swift

about	/	Subclasses	and	testing	in	Swift
Threads	class	/	Repository	browser	project
Twitter	users

references	/	Twitter	users

U
UIView

overview	/	An	overview	of	UIView
URITemplate	class	/	Repository	browser	project
user	interaction,	responding	to

about	/	Responding	to	user	interaction
context,	adding	/	Adding	context	and	showing	repositories
repositories,	showing	/	Adding	context	and	showing	repositories
detail	screen,	adding	/	Adding	a	detail	screen
detail	screen,	populating	/	Populating	the	detail	screen

V
variables

about	/	Variables	and	constants

W
watch	application

about	/	Watch	applications
Watch	target,	adding	/	Adding	a	watch	target
GitHubAPI,	adding	to	Watch	target	/	Adding	the	GitHubAPI	to	the	watch	target
best	practice	/	Best	practice	for	watch	applications

watch	interfaces
creating	/	Creating	watch	interfaces
list	of	users,	adding	to	watch	/	Adding	a	list	of	users	to	the	watch
wiring	up	/	Wiring	up	the	interface
image,	adding	/	Adding	an	image

X
XCPlayground	framework

about	/	Advanced	techniques
values,	capturing	explicitly	/	Capturing	values	explicitly
asynchronous	code,	executing	/	Running	asynchronous	code

XCTest	framework
about	/	Subclasses	and	testing	in	Swift

XML
parsing	/	Parsing	XML
parser	delegate,	creating	/	Creating	a	parser	delegate
data,	downloading	/	Downloading	the	data
data,	parsing	/	Parsing	the	data

	Swift Essentials Second Edition
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Trademarks
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Exploring Swift
	Open source Swift
	Getting started with Swift
	Numeric literals
	Floating point literals
	String literals
	Variables and constants
	Collection types
	Optional types
	Nil coalescing operator
	Conditional logic
	If statements
	Switch statements
	Iteration
	Iterating over keys and values in a dictionary
	Iteration with for loops
	Break and continue
	Functions
	Named arguments
	Optional arguments and default values
	Guards
	Multiple return values and arguments
	Returning structured values
	Error handling
	Throwing errors
	Catching errors
	Cleaning up after errors
	Command-line Swift
	Interpreted Swift scripts
	Compiled Swift scripts
	Summary
	2. Playing with Swift
	Getting started with playgrounds
	Creating a playground
	Viewing the console output
	Viewing the timeline
	Displaying objects with Quick Look
	Showing colored labels
	Showing images
	Advanced techniques
	Capturing values explicitly
	Running asynchronous code
	Playgrounds and documentation
	Learning with playgrounds
	Understanding the playground format
	Adding a page
	Documenting code
	Playground navigation documentation
	Text formatting
	Symbol documentation
	Limitations of playgrounds
	Summary
	3. Creating an iOS Swift App
	Understanding iOS applications
	Creating a single-view iOS application
	Removing the storyboard
	Setting up the view controller
	Swift classes, protocols, and enums
	Classes in Swift
	Subclasses and testing in Swift
	Protocols in Swift
	Enums in Swift
	Raw values
	Associated values
	Creating a master-detail iOS application
	The AppDelegate class
	The MasterViewController class
	The DetailViewController class
	Summary
	4. Storyboard Applications with Swift and iOS
	Storyboards, scenes, and segues
	Creating a storyboard project
	Scenes and view controllers
	Adding views to the scene
	Segues
	Adding a navigation controller
	Naming scenes and views
	Swift and storyboards
	Custom view controllers
	Connecting views to outlets in Swift
	Calling actions from interface builder
	Triggering a segue with code
	Passing data with segues
	Using Auto Layout
	Understanding constraints
	Adding constraints
	Adding a constraint with drag and drop
	Adding constraints to the Press Me scene
	Adding missing constraints
	Summary
	5. Creating Custom Views in Swift
	An overview of UIView
	Creating new views with Interface Builder
	Creating a table view controller
	Showing data in the table
	Defining a view in a xib file
	Wiring a custom view class
	Dealing with intrinsic size
	Creating new views by subclassing UIView
	Auto Layout and custom views
	Constraints and the visual format language
	Adding the custom view to the table
	Custom graphics with drawRect
	Drawing graphics in drawRect
	Responding to orientation changes
	Custom graphics with layers
	Creating a ProgressView from layers
	Adding the stop square
	Adding a progress bar
	Clipping the view
	Testing views in Xcode
	Responding to change
	Summary
	6. Parsing Networked Data
	Loading data from URLs
	Dealing with errors
	Dealing with missing content
	Nested if and switch statements
	Networking and user interfaces
	Running functions on the main thread
	Parsing JSON
	Handling errors
	Parsing XML
	Creating a parser delegate
	Downloading the data
	Parsing the data
	Direct network connections
	Opening a stream-based connection
	Synchronous reading and writing
	Writing data to NSOutputStream
	Reading from an NSInputStream
	Reading and writing hexadecimal and UTF8 data
	Implementing the Git protocol
	Listing git references remotely
	Integrating the network call into the UI
	Asynchronous reading and writing
	Reading data asynchronously from an NSInputStream
	Creating a stream delegate
	Dealing with errors
	Listing references asynchronously
	Displaying asynchronous references in the UI
	Writing data asynchronously to an NSOutputStream
	Summary
	7. Building a Repository Browser
	An overview of the GitHub API
	Root endpoint
	User resource
	Repositories resource
	Repository browser project
	URI templates
	Background threading
	Parsing JSON dictionaries
	Parsing JSON arrays of dictionaries
	Creating the client
	Talking to the GitHub API
	Returning repositories for a user
	Accessing data through the AppDelegate
	Accessing repositories from view controllers
	Adding users
	Implementing the detail view
	Transitioning between the master and detail views
	Loading the user's avatar
	Displaying the user's avatar
	Summary
	8. Adding Watch Support
	Watch applications
	Adding a watch target
	Adding the GitHubAPI to the watch target
	Creating watch interfaces
	Adding a list of users to the watch
	Wiring up the interface
	Adding an image
	Responding to user interaction
	Adding context and showing repositories
	Adding a detail screen
	Populating the detail screen
	Best practice for watch applications
	UI thread considerations
	Stored data
	Appropriate use of complications and glances
	Summary
	A. References to Swift-related Websites, Blogs, and Notable Twitter Users
	Language
	Twitter users
	Blogs and tutorial sites
	Meetups
	Afterword
	Index

