
www.allitebooks.com

http://www.allitebooks.org

Test-Driven Development
with Mockito

Learn how to apply Test-Driven Development and the
Mockito framework in real life projects, using realistic,
hands-on examples

Sujoy Acharya

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Test-Driven Development with Mockito

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1151113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-329-3

www.packtpub.com

Cover Image by David Studebaker (das189@tigereye.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sujoy Acharya

Reviewers
Mike Ensor

Daniel Pacak

Acquisition Editor
Rebecca Youe

Commissioning Editor
Neil Alexander

Technical Editors
Shiny Poojary

Akashdeep Kundu

Copy Editors
Alisha Aranha

Roshni Banerjee

Sarang Chari

Janbal Dharmaraj

Tanvi Gaitonde

Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Sherin Padayatty

Proofreader
Saleem Ahmed

Indexer
Priya Subramani

Graphics
Yuvraj Mannari

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sujoy Acharya works as a software architect with Siemens Technology and
Services Pvt. Ltd. (STS). He grew up in a joint family and pursued his graduation
in the field of computer science and engineering. His hobbies are watching movies,
playing outdoor sports, and downloading the latest movies.

He likes to research upcoming technologies. His major contributions are in the fields
of Java, J2EE, Web service, Ajax, GWT, and Spring.

He designs and develops healthcare software products. He has over 10 years
of industrial experience and has designed and implemented large-scale
enterprise solutions.

I would like to thank my wonderful wife, Sunanda, for her patience
and endless support in spending many hours reviewing my draft
and providing valuable inputs.

I would also like to thank my mother and late father for their
support, blessings, and encouragement.

Last, but not the least, I'd like to thank Neha Nagwekar and the
Packt Publishing team for their help and valuable inputs.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Mike Ensor is a hands-on software architect who has 16 years of experience
in backend development, e-commerce, CMS, distributed systems, and Big Data
implementations. Throughout his career he has continually pushed the use of
test-driven development, and emphasized the merits of agile-based development.
He has been a speaker at past conferences that primarily focusing on implementing
emerging testing strategies during software development. Outside of work, Mike
is an avid ice hockey player, amateur home brewer, world traveler, and enjoys
snowboarding as much as he can.

Daniel Pacak is a self-made Java programmer who fell in love with coding
during his studies of Nuclear Physic at Warsaw University of Technology; it was
in 2006 when no one cared about TDD. He acquired his professional experience
by working on several business-critical projects for clients in the financial services,
telecommunications, e-commerce, and the travel industry.

When he's not coding, he enjoys lifting heavy weights in the gym nearest to his office.

I am very thankful to my parents for their support and the first PC
they sponsored back in 1998. That was when it all started.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Familiar with TDD	 7

Definition of test	 7
The big picture	 13
Refactoring	 14
Summary	 16

Chapter 2: Refactoring – Roll the Dice	 17
Refactoring	 17

Reasons behind refactoring	 17
Refactoring schedule	 18
When not to refactor	 19
Stopping refactoring	 19
Code smell	 26

Switch statements	 26
Duplicate code	 31
Comments	 33
Long methods and parameter list	 33
Large classes (aka GOD object)	 34
Agent classes	 35
Lazy, dead class and dead code	 37
Over engineering (speculative generality)	 38
Wrong inheritance (refused bequest)	 38

Summary	 39
Chapter 3: Applying TDD	 41

Understanding different test types	 41
Understanding TDD – a real-life example	 45

Definition	 45
Common healthcare vocabulary	 45
Procedure	 45

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The service catalogue	 45
MRN	 45
Encounter	 46

Summary	 52
Chapter 4: Understanding the Difference between Inside-out and
Outside-in	 53

Understanding outside-in	 53
An example of ATDD	 54
Understanding the advantages and disadvantages of outside-in	 58

Understanding inside-out	 58
Understanding the advantages and disadvantages of inside-out	 59

Summary	 60
Chapter 5: Test Doubles	 61

Categories of test doubles	 61
Dummy	 62
Stub	 62
Fake	 63
Mock	 64

Summary	 65
Chapter 6: Mockito Magic	 67

An overview of Mockito	 67
Why you should use Mockito	 67

Qualities of unit testing	 68
Drinking Mockito	 69
Verifying redundant invocation	 75

Rationale	 75
The argument matcher	 76

Rationale	 76
Why we need wildcard matchers	 77
The ArgumentMatcher class	 78

Throwing exceptions	 80
Consecutive calls	 81
Stubbing with callbacks – using the Answer class	 81
Spying objects	 83
Using doReturn()	 84
Working with Void methods	 87
Argument capture	 88
Summary	 89

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 7: Leveraging the Mockito Framework in TDD	 91
Applying Mockito	 91

Customer requirements	 92
Building the application	 93

Summary	 108
Chapter 8: World of Patterns	 109

Characteristics of a bad design	 109
Design principles	 110
Design patterns	 112

Classification of patterns	 112
Replacing conditional logic with command	 113
Applying a command pattern	 114

Replacing conditional logic with strategy	 116
Strategy pattern	 117

Summary	 119
Chapter 9: TDD, Legacy Code, and Mockito	 121

What is legacy code?	 121
Problems with legacy code	 122
Diving into the legacy puzzle	 122
Refactoring legacy code	 124
The role of Mockito	 128
Summary	 130

Appendix A: TDD Tools and Frameworks	 131
Discovering Eclipse	 131
Useful keys for TDD and refactoring	 132
General settings	 136
JUnit 4.x	 137

Running the first unit test	 137
Exception handling	 138
The test suite	 139
Ignoring a test	 139
Asserting a value	 139

Summary	 140
Appendix B: Agile Practices	 141

Exploring continuous integration	 141
Exploring Jenkins	 142

Configuring Jenkins	 142
Adding a build job	 142
Source code management	 144
Build triggers	 144
Scripting	 144

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Post-build actions	 145
Security	 146

Revealing Agile methodologies	 146
Working with the Scrum methodology	 146

Roles	 147
Meetings	 147
The story board	 149

Exploring the Kanban development process	 149
Summary	 151

Index	 153

Preface
Test-Driven Development (TDD) is an evolutionary approach to development.
It offers test-first development where the production code is written only to satisfy
a test. The simple idea of writing a test first reduces the extra effort of writing unit
tests after coding.

In Test-Driven Development, test doubles and mock objects are extensively used to
mock out external dependencies. Mockito is an open source, unit-testing framework
for Java; it allows for the creation, verification, and stubbing of a mock object.

The focus of the book is to provide the readers with comprehensive details
on how effectively Test-Driven Development with Mockito can be used for
software development. The book begins by giving us an overview of TDD and
its implementation. The application of Mockito in TDD is explained in separate
chapters. Each chapter provides hands-on examples and step-by-step instructions
to develop and execute the code.

What this book covers
This book is about Test-Driven Development and the Mockito framework. Each
chapter in this book provides hands-on examples, where we look at how to use
TDD and various Mockito features in a step-by-step fashion in detail.

Chapter 1, Getting Familiar with TDD, provides an overview on Test-Driven
Development, the definition of test, the big picture, and the first TDD example.
By the end of this chapter, the reader will be able to understand the core concept
of TDD.

Chapter 2, Refactoring – Roll the Dice, focuses on getting the reader quickly started
with code refactoring and code smells. By the end of this chapter, the reader will be
able to identify code smells and refactor the smells.

Preface

[2]

Chapter 3, Applying TDD, explains the life cycle of TDD and focuses on getting the
reader quickly started with Test-Driven Development. By the end of this chapter,
the reader will be able to follow the TDD life cycle and write test-first code.

Chapter 4, Understanding the Difference Between Inside-out and Outside-in, explains the
commonly used techniques of TDD. By the end of this chapter, the reader will be
able to understand the core concept of classical and mockist TDD.

Chapter 5, Test Doubles, illustrates the concept of test doubles. Dummy, Stub, Mock,
and Fake doubles are explained in detail. By the end of this chapter, the reader will
be able to understand the core concept of Test Doubles.

Chapter 6, Mockito Magic, explains the concept of mock objects using the Mockito
framework and provides examples to help the reader understand Mockito APIs.
By the end of this chapter, the reader will be able to use Mockito APIs and various
features of Mockito.

Chapter 7, Leveraging the Mockito Framework in TDD, explains the advanced features
of the Mockito framework, and illustrates usages of Mockito in Test-Driven
Development. By the end of this chapter, the reader will be able to use TDD
with Mockito.

Chapter 8, World of Patterns, covers the definition and characteristics of a good design,
design principles, design patterns, and usages of pattern to refactor code. By the end
of this chapter, the reader will be able to identify a bad design and apply the design
principle and patterns to refactor the bad design.

Chapter 9, TDD, Legacy Code and Mockito, covers the definition and characteristics of
legacy code and provides examples to refactor the legacy code and write unit tests
using Mockito. By the end of this chapter, the reader will be able to write unit tests
and refactor the legacy code.

Appendix A, TDD Tools and Frameworks, deals with TDD tools and frameworks. It
explains the basics of Eclipse and the effective use of keyboard shortcuts to refactor
the code and expedite its development; it also explains JUnit 4.0 basics, JUnit 4.0
unit tests, and annotations. By the end of this appendix, the reader will have good
understanding of the JUnit 4.0 framework and will be able to smartly use Eclipse
using keyboard shortcuts.

Appendix B, Agile Practices, deals with agile concepts and explains continuous
integration, provides an example to set up Jenkins to accomplish CIT, and explains
the Scrum and Kanban development concepts. By the end of this appendix, the
reader will have good understanding of continuous integration and will be able to
build an automation using Jenkins and agile development methodology concepts
such as Scrum and Kanban.

Preface

[3]

What you need for this book
You will need the following software to be installed before running the examples:

•	 Java 5 or higher. JDK 1.5 or higher can be downloaded from the Oracle
site: http://www.oracle.com/technetwork/java/javasebusiness/
downloads/java-archive-downloads-javase5-419410.html.

•	 An Eclipse editor. The latest version of Eclipse is Kepler (4.3). Kepler
can be downloaded from the following site http://www.eclipse.org/
downloads/.

•	 Mockito is required for the creation and verification of mock objects, and for
stubbing. Mockito can be downloaded from https://code.google.com/p/
mockito/downloads/list.

Who this book is for
This book is for developers who want to develop software according to Test Driven
Development using Mockito and to leverage various Mockito features. Developers
don't need prior knowledge of TDD, Mockito, or JUnit.

It is ideal for developers who have some experience in Java application development
as well as some basic knowledge of unit testing, but it covers the basic fundamentals
of TDD and JUnit testing to get you acquainted with these concepts before you
use them.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the import directive."

A block of code is set as follows:

public class LoanManager {

 private final LoanCalculator loanCalculator;
 public LoanManager(){
 loanCalculator = new LoanCalculator();
 }

Preface

[4]

 public LoanManager(LoanCalculator dependency){
 loanCalculator = dependency;
 }

 public void calculateMaxLoan(Person person){
 loanCalculator.calculate(person);
//other code
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

@Test(expected=RuntimeException.class)
public void inventory_access_raises_Error() {

when(inventory.getItemsExpireInAMonth()).thenThrow(new
RuntimeException("Database Access fail"));

bazar.issueDiscountForItemsExpireIn30Days(.30);
fail("Code should not reach here");
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Familiar with TDD
Test-Driven Development (TDD) is an evolutionary development approach.
It offers test-first development where the production code is written only to
satisfy a test and refactor.

In this chapter we will look at the following topics:

•	 Definition of tests
•	 Examples of TDD
•	 The big picture
•	 Steps of TDD

Definition of test
We all go through class tests and medical tests; musicians often check musical
instruments before the program. A test is an assessment of our knowledge,
a proof of concept, or an examination of data.

A class test is an examination of our knowledge to ascertain whether we can go to
the next level. For software, it is the validation of functional and non-functional
requirements before it is shipped to customers.

Like other things, Java code can be unit tested using a code-driven unit-testing
framework.

Getting Familiar with TDD

[8]

The following are a few of the available code-driven unit-testing frameworks
for Java:

•	 SpryTest
•	 Jtest
•	 JUnit framework (junit.org)
•	 TestNG

JUnit is the most popular and widely used unit-testing framework for Java.

In this book, we will be using JUnit 4.0 for unit testing code.

To learn more about JUnit framework, refer to Appendix A, TDD Tools and Frameworks.

Object-function programming languages, such as Scala and Groovy, are becoming
very popular. They are intended to be compiled as bytecode, and executable code
can be run on JVM. Also, they can access Java libraries. Scala/Groovy helps in
writing brief, useful tests.

Using Scalatest (http://www.scalatest.org/), you can unit test Scala code as well
as Java code.

Usually, developers unit test the code using the main method or by executing the
application. Neither of them is the correct approach. Mixing up production code
with tests is not a good practice. It creates a code maintainability problem. The best
approach is to create a separate source folder for unit tests and put the test class in
the same package as the main class. Usually, if a class name is TaxCalculator, its
test should have the name TaxCalculatorTest.

Let us write a program to calculate tax for the FY2012-13 and test it.

The rules are as follows:

•	 If the taxable income is less than USD 500,000, then deduct 10 percent as tax
•	 The tax is 20 percent for taxable income between USD 500,000 and USD

1,000,000
•	 The tax is 30 percent for taxable income above USD 1,000,000

So, let us look into the steps that are as follows:

1.	 Launch Eclipse and create a Java project TDD_With_Mockito. By default,
Eclipse will create an empty project with a source folder src. We will add
packages and Java files under the src source folder. But, as mentioned in the
preceding section, the best practice is to have a separate source folder for unit
tests. We will add all our unit tests under the test source folder.

Chapter 1

[9]

2.	 To create a source folder test, right-click on the project. Eclipse will open a
pop-up menu. Expand the New menu and click on the Source Folder menu
item. It will open the New Source Folder pop-up. In the Folder Name textbox,
enter test and hit the Finish button. It will add the test source folder.

3.	 Now add a new JUnit 4.0 test TaxCalculatorTest in the test folder. To
execute unit tests, Eclipse needs the JUnit library in the classpath, so Eclipse
will recommend adding the JUnit 4.0 library to the classpath. You can accept
the recommendation or manually add the JUnit library to the classpath.

Add a test to verify the first rule that the tax is 10 percent when the taxable
income is less than USD 500,000.

4.	 Create a public void method when_income_less_than_5Lacs_then_
deducts_10_percent_tax () in TaxCalculatorTest.java. Annotate the
method with the @test annotation. JUnit 4.0 needs this annotation to identify
a test:
@Test
public void when_income_less_than_5Lacs_then_deducts_10_percent_
tax() {

}

For tests, we will follow the convention: when_some_condition is met_
then_this_happens.
We will use underscores (underscore in a method name is not recommended
for production code) for test methods.

Getting Familiar with TDD

[10]

5.	 In this test method, write new TaxCalculator(). The compiler will
complain that the class doesn't exist. Press Ctrl + 1; Eclipse will suggest the
creation of a TaxCalculator class. Select the option and create the class in
the com.edu.chapter01 package under the src source folder.

6.	 We have the calculator class ready! Now we need to add a method that will
take the total taxable income as an input and return the payable tax amount.
Write double payableTax = taxCalculator.calculate(400000.00);
and the compiler will tell you that this method doesn't exist. Press Ctrl+1
and select Create method calculate(double) in type 'TaxCalculator'.

7.	 Our API is ready. We need to verify that this method returns 10 percent
of 400,000. To do that, we have to take the help of the JUnit framework.
We will assert the expected and actual values. Write assertTrue
(40000 == payableTax);.

The org.junit.Assert class provides a set of static assertion methods.
We can statically import any method we need.
assertEquals(expected, actual) is a method that takes two values: expected and
actual. If actual calculated value doesn't match the expected value, it throws
an exception and the test fails. It indicates that there is something wrong in the
calculation.
We should have used this method here. But assertEquals is deprecated for
double values. So, to verify an expected double, we will not use this deprecated
method. For any other data type, assertEquals is the best choice.
We can use BigDecimal instead of the primitive double. BigDecimal
is recommended for double value calculation, such as subtraction and
multiplication.

8.	 Run the test (press Alt + Shift + X then T). The test will fail. The calculate()
method returns 0. Open the TaxCalculator class and change the
calculate() method to return 40,000, that is, 10 percent of USD 400,000.
Save the file and run the test. Bingo! It works. The following is the test:
@Test
public void when_income_less_than_5Lacs_then_deducts_10_percent_
tax() {
 TaxCalculator taxCalculator = new TaxCalculator();
 double payableTax = taxCalculator.calculate(400000.00);
 assertTrue(40000 == payableTax);
}

Following is the code snippet:
public class TaxCalculator {
 public double calculate(double taxableIncome) {

Chapter 1

[11]

 return 40000;
 }

}

9.	 Now check the boundary values 0 and 500,000. Modify the test method
and call the calculate method with 0 and 500,000.
@Test
public void when_income_less_than_5Lacs_then_deducts_10_percent_
tax() {
 TaxCalculator taxCalculator = new TaxCalculator();
 double payableTax = taxCalculator.calculate(400000.00);
 assertTrue(40000 == payableTax);

 payableTax = taxCalculator.calculate(0);
 assertTrue(0 == payableTax);

 payableTax = taxCalculator.calculate(500000.00);
 assertTrue(50000 == payableTax);

}

Run the test.
The test fails because it expects 0, but the actual method returns 40,000.
If we return 0 from calculate(), it will fail the 40,000 data condition; if we
return 50,000, then it will fail 40,000 and 0, that is, both conditions. So for the
three test conditions, we need three values—40,000, 0, and 50,000. Returning
40,000 from the calculate method causes this test failure. It seems we
need to return 10 percent of the taxable income. Add this condition to our
calculate() method.
The code will look something like this:

public class TaxCalculator {
 public double calculate(double taxableIncome) {
 return (taxableIncome / 10);
 }

}

Rerun the test. It will pass. So we covered a random value and two boundary
value conditions.

Getting Familiar with TDD

[12]

10.	 Now, write another test and enter any amount greater than 500,000 as an
input to the calculate() method. Oops! The test fails! We need to return 20
percent above 500,000 and 10 percent below USD 500,000. Change the code to
return 20 percent of USD 300,000 and 10 percent of USD 500,000.
@Test
public void when_income_between_5lacs_and_10lacs_then_deducts_
fifty_thousand_plus_20_percent_above_5lacs() {
 TaxCalculator taxCalculator = new TaxCalculator();
 double payableTax = taxCalculator.calculate(800000.00);
 double expectedTaxForFirstFiveHundredThousand = 50000;
 double expectedTaxForReminder = 60000;
 double expectedTotalTax =
 expectedTaxForFirstFiveHundredThousand +
 expectedTaxForReminder;
 assertTrue(expectedTotalTax == payableTax);
}

Change the calculate() method to return 110,000:
public class TaxCalculator {
 public double calculate(double taxableIncome) {
 return 110000;
 }
}

Our new test runs fine, but the existing tests are broken. So, reverse the
change. We need to return 10 percent of the taxable income when the
amount is less than 500,000, otherwise the test will return 110,000.

public class TaxCalculator {
 public double calculate(double taxableIncome) {
 if(taxableIncome > 500000){
 return 110000;
 }
 return (taxableIncome / 10);
 }
}

11.	 Everything is green. All tests are proving the concept. It's time to test some
other value. We will try USD 900,000. The test will fail since it doesn't get the
expected value; instead calculate returns 110,000. We need to add code to
return 20 percent above USD 500,000

public class TaxCalculator {
 public double calculate(double taxableIncome) {
 if(taxableIncome > 500000){
 return 50000+((taxableIncome-500000)/5);
 }
 return (taxableIncome / 10);

Chapter 1

[13]

 }
}

Yes, it is working for both the tests! Add another test to work with income
greater than USD 1,000,000.

What we just completed is TDD.

Kent Beck is the originator of Extreme Programming and TDD. He has authored
many books and papers. Please visit the following link for details:

http://en.wikipedia.org/wiki/Kent_Beck

TDD gives us the following benefits:

•	 Clean, testable, and maintainable code.
•	 Another benefit to incrementally building your code is that your API is easier

to work with, because the code is written and used at the same time.
•	 When we document our code, and then update the code but forget to update

the documentation, it creates confusion. You can document your code and
keep it updated or write your code and unit tests in such a way that anybody
can understand the intent. In TDD, tests are written to provide enough
documentation of code. So, the test is our documentation, but we need to
clean the tests too in order to keep them readable and maintainable.

•	 We can write many tests with boundary value conditions, zero, negative
numbers, and so on, and verify our code. You are trying to break your own
code as soon as possible. There is no need to package the whole application
and ship it to quality assurance (QA) or the customer to discover issues.

•	 You should also avoid over engineering the class that you are writing.
Just write what's needed to make all tests green.

The big picture
It doesn't matter how small or big a project is; every project has an architecture.
An architect (or designer) takes design decisions to satisfy the functional goal of the
project and normalizes non-functional requirements, such as security, availability,
performance, and scalability. In this process, different components of the system and
interaction between these components are identified.

Getting Familiar with TDD

[14]

For example, health provider organizations (hospitals) provide care 24/7, so
the patient check-in software needs to be available at all times. Also, it needs to
communicate with insurance companies to validate policy information, send
claims, and receive remittances. Here, the architecture should define the different
components of the system, the protocol to communicate with insurance companies,
and how to deploy the system so that it complies 24/7.

For testing architecture, unless the code is ready for testing, you cannot test quality
attributes and functionality. What if during testing we find the communication
protocol we defined is wrong? All the effort of architecture and coding is wasted.

It is not wise to put months of effort in the architecture; cards, sequence diagrams,
and models are essential to represent the architecture, but only drawing conceptual
diagrams doesn't help. Before the construction phase, the baseline architecture needs
to be provided to the development team. While building this baseline architecture,
write testable code, identify problems, and attack them quickly. If anything goes
wrong, that can be fixed early.

We all often have trouble believing our own code is broken. In the traditional waterfall
approach, the developers write the code and pass the completed development to the
software testers. The testers try to break the system and find bugs!

TDD helps a lot here. The flow is the reverse of conventional flow and iterative.

The following are the steps involved in TDD:

Write Code to
Pass the test

Add a Test
Refactor and
Apply Design

A test is written for a requirement, a code is added to pass the test, the code
is cleaned, and the design is identified. Then again another test is added; this
process continues.

Refactoring
The third step of TDD is refactoring. Let us revisit the code we wrote for
TaxCalculator:

public class TaxCalculator {

 public double calculate(double taxableIncome) {
 if(taxableIncome > 1000000){
 return 150000 + (((taxableIncome-1000000)*30)/100);

Chapter 1

[15]

 }

 if(taxableIncome > 500000){
 return 50000+((taxableIncome-500000)/5);
 }

 return (taxableIncome / 10);
 }

}

The tests are running fine but the code looks ugly. It is not readable. What is
150000 + (((taxableIncome-1000000)*30)/100)? Extract methods to explain
the intent of the code. Create two methods isIncomeIn30PercentTaxRange(…) and
isIncomeIn20PercentTaxRange(..) to check the amount greater than 1,000,000
and 500,000 respectively. Replace conditions with methods. And rerun the tests. If
any test fails, then immediately reverse the code. Change and identify the root cause.

public double calculate(double taxableIncome) {
 if(isIncomeIn30PercentTaxRange(taxableIncome)){
 return 150000 + (((taxableIncome-1000000)*30)/100);
 }

 if(isIncomeIn20PercentTaxRange(taxableIncome)){
 return 50000+((taxableIncome-500000)/5);
 }

 return (taxableIncome * .10);
}

Still not readable! When taxable income is more than 1,000,000, deduct 30 percent
above 1,000,000 and for an amount less than 1,000,000, apply another strategy.
This can be represented using the following code:

public double calculate(double taxableIncome) {
 if(isIncomeIn30PercentTaxRange(taxableIncome)){
 return deduct30PercentAbove10Lacs(taxableIncome) +
 calculate(1000000);
 }

 if(isIncomeIn20PercentTaxRange(taxableIncome)){
 return deduct20PercentAbove5Lacs(taxableIncome) +
 calculate(500000);
 }

 return (taxableIncome * .10);
}

Getting Familiar with TDD

[16]

protected double deduct20PercentAbove5Lacs(double taxableIncome) {
 return (taxableIncome-500000)*.20;
}

protected double deduct30PercentAbove10Lacs(double taxableIncome) {
 return (taxableIncome-1000000)*.30;
}

Now the code is more readable and maintainable. This process is known as
Refactoring. We will explore more of this in the next chapter.

Summary
In this chapter we read about TDD, practiced test-first development, and covered
the TDD big picture.

By now, the reader will be able to understand the core concept of TDD.

Chapter 2, Refactoring – Roll the Dice, focuses on getting the reader quickly started
with code refactoring and code smells.

Refactoring – Roll the Dice
Refactoring is restructuring code to improve readability, maintainability,
and extensibility.

In this chapter we will look at the following topics:

•	 Definition of refactoring
•	 Refactoring examples
•	 Code smells
•	 Starting and stopping refactoring

Refactoring
Refactoring is a series of small steps to change the internal structure of code without
altering its external behavior. Refactoring is applied to make the code readable,
maintainable, and clean.

Reasons behind refactoring
Refactoring is required to achieve the following points:

•	 Easy to add new features/code: Design erodes very quickly. Developers add
features and hack the design to accomplish short-term goals. Refactoring
helps in maintaining the design.

Refactoring – Roll the Dice

[18]

•	 Improves the design of the existing code: Open/closed, DRY, and YAGNI
are very useful design principles. If any piece of code violates them, refactor
the code.

°° DRY: This principle means Don't Repeat Yourself. If a class has a
duplicate code, it violates the DRY principle. If we find any bug
in the duplicate code, we have to fix the same code in all places.
It removes code duplication—so bug fixing is easy now.

°° Open/closed: This principle states that a piece of code should be
open for extension but closed for modification, that means the design
should be done in such a way that a new functionality should be
added with minimum changes in the existing code.

°° YAGNI: This principle refers to over engineering. The full form of
YAGNI is You Aren't Gonna Need It. Add code for today's feature,
not for tomorrow.

•	 Improves readability and understanding: If you don't understand the
code, maintenance becomes a nightmare. Removing duplicates and
dead code, giving proper names to methods and classes, removing
unnecessary comments, making short methods and small classes, delegating
responsibilities of a GOD object to other classes, applying a proper design
pattern to conserve the open/closed principle, and so on make code clean
and easy to change.

Refactoring schedule
It is important to know when we can start refactoring; following are the
triggering points:

•	 Adding a new feature: To add a new feature to an existing code, it is
necessary to understand the code. If you don't understand the intent of the
code/design or if the code is too complex to change/add a new feature,
immediately start refactoring.

•	 Fixing bug: Fixing bugs? Look for code smells and start refactoring.
•	 During code review: Code review helps to improve the code. Many times

I found that I missed something in the design and caught it at the time of
code reviewing. It also improves reviewers' knowledge. So, during code
review, if you find anything annoying, immediately start refactoring.

Chapter 2

[19]

When not to refactor
We read about the triggers of refactoring and the reasons for refactoring, but we
must also know when not to refactor. The following points describe the situations
when we should not continue refactoring:

•	 Code does not work: When an application is broken, it is unwise to start or
continue refactoring, unless the functionalities are back online.

•	 Not enough tests: We can refactor a code with confidence when we have
supporting tests. If anything goes wrong during refactoring, tests will raise
errors and alert us that we broke something. If a piece of code is not well
covered by unit tests, do not refactor it.

•	 Rewrite: When the code is too fragile! We need to estimate which one is
easier: rewrite or refactor?

Stopping refactoring
It's tricky to know when to stop refactoring; software quality improvement is an
ongoing process, always there is plenty of scope for improvement, but we cannot
refactor forever. Remember the core agile principle of good enough. Following are the
conditions of when to stop refactoring:

•	 All tests are green
•	 Class and method names are meaningful
•	 No code duplication (the code uses the smallest number of classes

and methods)
•	 Each class is doing its own work; if needed, it delegates work to other classes
•	 No bidirectional dependencies—A > B and B > A
•	 Moreover, the code expresses the purpose
•	 Finally, adding a new feature is not causing cascading changes in all

layers/modules

Look at the following class OnceYouBuyYouStartCryingTelephone and try to
understand the purpose of this class:

public class OnceYouBuyYouStartCryingTelephone {
 public static final int TWO_G = 2;
 public static final int THREE_G = 3;
 public static final int FOUR_G = 4;
 private Map<String, String> names = new HashMap<String,
 String>();

www.allitebooks.com

http://www.allitebooks.org

Refactoring – Roll the Dice

[20]

 private Map<String, Integer> types = new HashMap<String,
 Integer>();
 private Map<String, Date> cd = new HashMap<String, Date>();

 /**
This method activates a connection for a customer and stores different
information in following maps for future use names, types and cd. if
the connection type is 2G then requests TRY for a valid 2G number.
if portability is not an issue then TRY provides a valid number, that
number is stored for the customer. Then we activate the connection.
For 3G - user needs data plan , we don't ask TRY for 3G...we don't
have permission for 3G data in many cities, so we will hack TRY
database and assign an id. If TRY catches us then we will disconnect
the data plan and deactivate the customer.
	
 Is there any legal consumer forum issue?
 For 4G- we don't have 4th generation spectrum. we will provide 3G
with a wrapper of 4G
 * @param a
 * @param s
 * @param b
 * @param c
 * @param z
 * @param gen
 * @return
 **/
 public String add(String a, String s, String b,
 String c, Date z, int gen) {
 if (a == null || c == null || z == null)
 throw new RuntimeException();
 String r = "";
 if (s != null) {
 r = r + " " + s;
 if (a != null)
 r = r + " " + a;
 if (b != null)
 r = r + " " + b;
 if (c != null)
 r = r + c;
 } else {
 if (a != null)
 r = r + " " + a;
 if (b != null)
 r = r + " " + b;
 if (c != null)

Chapter 2

[21]

 r = r + c;
 }

 String n = Number.next();

 names.put(n, r);
 cd.put(n, z);

 if (gen == TWO_G) {
 activate2GCon(n);
 types.put(n, TWO_G);
 } else if (gen == THREE_G) {
 activate3GCon(n);
 types.put(n, THREE_G);
 } else if (gen == FOUR_G) {
 activate4GCon(n);
 types.put(n, FOUR_G);
 } else {
 throw new IllegalStateException();
 }

 return n;
 }

 /**
 * This method takes number as input and generates post paid bills
 * @param n
 * @return
 **/
 public String bill(String n) {
 Integer gen = types.get(n);
 if (gen == null) {
 throw new RuntimeException();
 }
 switch (gen.intValue()) {
 case TWO_G:
 return gen2GBill(n);
 case THREE_G:
 return gen3GBill(n);
 case FOUR_G:
 return gen4GBill(n);

 default:
 break;

Refactoring – Roll the Dice

[22]

 }
 return "";
 }

 public void chargeIncomingSms(String num) {
 //code....
 //....
 }

This class has the following characteristics:

•	 An add() method with a long argument list.
•	 The add() method accepts single-character variables. What is the purpose

of String a?
•	 Method name add() doesn't tell you the intent of the method. Does it

add numbers?
•	 The add() method is doing many things, single-character variables are

participating in some calculation, nested if conditions.
•	 add() has a a twenty-line-long documentation. Is it a code documentation

or business strategy documentation? Does it describe the add() method?
•	 There is a private class-level variable cd. What is cd? Compact disk? Seems

like no one is using it.
•	 There is a bill() method. bill() has nested if conditions similar to those

in the add() method.
•	 The class is adding something that we don't understand, generating bills, and

charging for incoming text messages.

As per the refactoring guidelines, this class has the following issues:

•	 Not readable, therefore, not maintainable.
•	 Duplicate code and nested if conditions in the add() and bill() methods.
•	 The class is doing many things—GOD object. The add() method is also

doing many things.
•	 The add() method is very long.
•	 Unnecessary comments are present.
•	 The class is violating the open-close principle. A new enhancement will touch

almost all methods in this class.
•	 Finally, the class doesn't have JUnits.

Chapter 2

[23]

To make the code readable, we will carry out the following steps:

1.	 First, write a few tests and check the method output for different inputs.
2.	 Then try to make the code readable.
3.	 Re-run the tests. They will ensure that the functionality is not changed.

Let us apply the following steps:

1.	 We will create a OnceYouBuyYouStartCryingTelephone.java class
under the com.packtpub.chapter02 package and copy the code to this class.

2.	 Add a test class com.packtpub.chapter02.
OnceYouBuyYouStartCryingTelephoneTest under the test source
folder. Here, we will start with the add() method. With some code analysis,
we can determine that the input values for a, c, z, and gen are mandatory
because the method will throw an exception if any of the three string values
are null or gen is not 2,3, or 4. Let's write some tests to cover these conditions
by passing in null for each variable and asserting the exception.
OnceYouBuyYouStartCryingTelephone telephone = new
OnceYouBuyYouStartCryingTelephone();

 @Test(expected=RuntimeException.class)
 public void when_input_a_is_null_then_throws_exception()
throws Exception {
 telephone.add(null, null, null, null, null, 0);
 fail("code should not reach here");
 }

 @Test(expected=RuntimeException.class)
 public void when_input_c_is_null_then_throws_exception()
throws Exception {
 telephone.add("a", null, null, null, null, 0);
 fail("code should not reach here");
 }

 @Test(expected=RuntimeException.class)
 public void when_input_z_is_null_then_throws_exception()
throws Exception {
 telephone.add("a", null, null, "c", null, 0);
 fail("code should not reach here");
 }

 @Test(expected=RuntimeException.class)
 public void when_input_gen_is_invalid_then_throws_exception()
throws Exception {

Refactoring – Roll the Dice

[24]

 telephone.add("a", null, null, "c", new Date(), 0);
 fail("code should not reach here");
 }

 @Test
 public void when_valid_input_then_adds_inputs() throws
Exception {
 assertNotNull(telephone.add("a", null, null, "c", new
Date(), OnceYouBuyYouStartCryingTelephone.THREE_G));

 }

3.	 The add() method is building a message from strings a, s, b, and c and then
putting it to name map. So, looks like it is building a name from four strings.
Variables a and c are mandatory. The variables a and c could be first and last
name, b could be null and added between a and c. So, b is a middle name
and s is a prefix. That's fine, but how could we test this? Okay, the bill()
method generates bills with names. We have to call the bill() method
to test the name. Also, the add() method is returning a string, which is
generated from the Number object. So add() is generating a number:
@Test
public void when_all_name_attributes_are_passed_then_forms_the_
name()
 throws Exception {
 String johnsFirstName = "john";
 String johnsLastName = "smith";
 String johnsMiddleName = "maddison";
 String johnsNamePrefix = "dr.";

String number = telephone.add(johnsFirstName,
johnsNamePrefix,johnsMiddleName,
johnsLastName, new Date(),
 OnceYouBuyYouStartCryingTelephone.FOUR_G);

 assertNotNull(number);
 String billDetails = telephone.bill(number);
 assertTrue(billDetails.contains(johnsNamePrefix));
 assertTrue(billDetails.contains(johnsLastName));
 assertTrue(billDetails.contains(johnsMiddleName));
 assertTrue(billDetails.contains(johnsFirstName));
}

Chapter 2

[25]

4.	 Now we have the test. So, we can start removing noises. First, change
the method argument a to firstName and replace all references of a
with firstName.

5.	 Then, run the tests to make sure nothing is broken. If the tests run fine,
take another argument and change the name. It should look like the
following code:
public String add(String firstName, String prefix, String
 middleName, String lastName, Date z, int gen) {
 if (firstName == null || lastName == null || z ==
 null)
 throw new RuntimeException();
 String personName = "";
 if (prefix != null) {
 personName = personName + " " + prefix;
 if (firstName != null)
 personName = personName + " " + firstName;
 if (middleName != null)
 personName = personName + " " + middleName;
 if (lastName != null)
 personName = personName + lastName;
 } else {
 if (firstName != null)
 personName = personName + " " + firstName;
 if (middleName != null)
 personName = personName + " " + middleName;
 if (lastName != null)
 personName = personName + lastName;
 }

6.	 Well, the method name add() doesn't tell you anything about the objective of
the method. We can rename it to addConnection(). Select the add() method
and hit Alt + Shift + R, then enter the new name and hit Enter. It will rename
the method and replace all the add() references with the new name. Revisit
the test. Tests are still holding names such as a and c. Refactor the tests to
have proper names such as when_input_first_name_is_null…().

What we have done here is called refactoring. We should always look at our code
and grasp the possible refactoring opportunities. Refactoring makes the code healthy
and clean.

Refactoring – Roll the Dice

[26]

Google™ contributed an Eclipse plugin, CodePro AnalytiX™, to
generate tests from existing code, code health check-ups, and many
more useful things. This is a great tool to have. This can be downloaded
from the following link:
https://developers.google.com/java-dev-tools/codepro/
doc/?csw=1

Now we will learn about code smell, and refactor the preceding example in the shed
of code smell.

Code smell
Code smell is an indication that something is wrong in the code. Kent Beck
introduced this term. Smells are indication that you need refactoring.

By looking at a piece of code, how can one say if it stinks or not? Experts researched
many projects, million lines of code, and came up with a catalogue of smells. For a
detailed list, please visit the following link:

http://c2.com/cgi/wiki?CodeSmell

The examples of code smell are described in the following sections.

Switch statements
The switch (case) statement and nested if conditions (if, else if, and so on) are
an essential part of decision making. But they become ugly when we add many cases
or many levels of if-else-if. It makes our design complex, reduces readability,
and violates the open/closed principle. Often we copy the same switch statement in
different classes and create conceptual code duplications.

In the preceding refactoring example, we found that duplicate nested if
conditions are present in both addConnection() and bill() methods. They are
conceptual duplicates. This can be refactored by applying polymorphic behavior
(strategy pattern).

Create an interface called PhoneConnection and define the required methods,
activate(String connectionForUserName, String number) and
generateBillFor(String number).

public interface PhoneConnection {
 boolean activate(String connectionForUserName, String number);
 String generateBillFor(String number);
}

Chapter 2

[27]

Create an enum called ConnectionType to define the possible connection types—such
as 2G, 3G, or 4G. If a new connection type is required, we just need to add a constant
in the ConnectionType enum:

public enum ConnectionType {
 TWO_G(), THREE_G(), FOUR_G();
}

Implement the PhoneConnection interface and provide specific behavior.

Create a class for 2G connections. Call it TwoGConnection. It has to implement
the activate and genearteBillFor methods. Just copy the content of the
activate2GCon(...) method to the activate(...) method and gen2GBill()
to generateBillFor().

Wait a second, gen2GBill() accesses a class-level variable named map, which
is set from the addConnection() method. We will copy this map variable to the
new class, set the username from the activate() method, and access it from the
generateBillFor() method:

public class TwoGConnection implements PhoneConnection {
 private Map<String, String> numberAndNameMap = new
 HashMap<String, String>();
 @Override
 public boolean activate(String connectionForUserName, String
 number) {
 System.out.println("activating 2G for
 user="+connectionForUserName+"and number=" +number);
 numberAndNameMap.put(number, connectionForUserName);
 return true;
 }

 @Override
 public String generateBillFor(String number) {
 return "2G bill for "+numberAndNameMap.get(number);
 }

}

Similarly, define a ThreeGConnection class:

public class ThreeGConnection implements PhoneConnection {

 private Map<String, String> numberAndNameMap = new
 HashMap<String, String>();
 @Override

Refactoring – Roll the Dice

[28]

 public boolean activate(String connectionForUserName, String
 number) {
 System.out.println("activationg 3G for
 user="+connectionForUserName+"and number=" +number);
 numberAndNameMap.put(number, connectionForUserName);
 return true;
 }

 @Override
 public String generateBillFor(String number) {
 return "3G bill for "+numberAndNameMap.get(number);
 }

}

Now, modify the OnceYouBuyYouStartCryingTelephone class, add a map
variable to hold ConnectionType and PhoneConnection, and add a void method
initialize to populate the map. Here, initialize the map with all connection types
and their implementations, as shown in the following code:

 private Map<ConnectionType, PhoneConnection> connectionForATypeMap
= new HashMap<ConnectionType, PhoneConnection>();
 public OnceYouBuyYouStartCryingTelephone(){
 initialize();
 }

 protected void initialize() {
 connectionForATypeMap.put(ConnectionType.TWO_G,
 new TwoGConnection());
 connectionForATypeMap.put(ConnectionType.THREE_G,
 new ThreeGConnection());
 }

We will explain the preceding code later.

Modify the addConnection() method so that it passes a ConnectionType instance
of enum type instead of an int argument gen. This will break all tests. Fix the tests by
passing enum-type.

We have a compilation error in the addConenction() method. Nested if conditions
will fail to compile. It expects a number but gets a ConnectType instance of type
enum. Remove the nested if conditions and replace them with the following piece
of code:

 String n = Number.next();

Chapter 2

[29]

 names.put(n, personName);
 cd.put(n, z);

 PhoneConnection connection =
 connectionForATypeMap.get(connectionType);

 if (connection == null) {
 throw new IllegalStateException();
 }
 connection.activate(personName, n);

What we have done here is made the class open for extension and close for
modification. Now, if we add a new connection type, we don't have to touch the
addConnection() method. We only need to add a constant in the enum type and
an implementation class for that new connection type.

Run the tests. Everything will work except a test. Bill generation still has the nested
if conditions.

This method asks a map variable to get the connection type for a number, which
we removed along with the nested if conditions in the addConenction() method.
We have to create a map of number and ConenctionType and set it from the
addConnection() method. Also, we no longer need the names map. We moved the
names map to the implementation classes. Now, the addConnection() method will
look like the following code:

public String addConnection(String firstName, String prefix, String
middleName, String lastName, Date z, ConnectionType connectionType) {
 if (firstName == null || lastName == null || z == null)
 throw new RuntimeException();
 String personName = "";
 if (prefix != null) {
 personName = personName + " " + prefix;
 if (firstName != null)
 personName = personName + " " + firstName;
 if (middleName != null)
 personName = personName + " " + middleName;
 if (lastName != null)
 personName = personName + lastName;
 } else {
 if (firstName != null)
 personName = personName + " " + firstName;
 if (middleName != null)
 personName = personName + " " + middleName;
 if (lastName != null)

Refactoring – Roll the Dice

[30]

 personName = personName + lastName;
 }

 String number = Number.next();

 connectionTypeForNumberMap.put(number, connectionType);
 cd.put(number, z);

 PhoneConnection connection =
 connectionForATypeMap.get(connectionType);

 if (connection == null) {
 throw new IllegalStateException();
 }
 connection.activate(personName, number);

 return number;
 }

Now, modify the nested if conditions in the bill method:

public String bill(String number) {
 ConnectionType connectionType =
 connectionTypeForNumberMap.get(number);

 if (connectionType == null) {
 throw new RuntimeException();
 }

PhoneConnection connection =
 connectionForATypeMap.get(connectionType);

 return connection.generateBillFor(number);
 }

See, the bill() method is so simple now. The test will pass.

So one way to overcome nested if conditions issue is polymorphism
and strategy patterns.

Chapter 2

[31]

Duplicate code
Duplicate code is the stinky kind. It means the same code structure is present in
more than one place in a program. Duplicate code could be either of the following
two types:

•	 copy-paste duplicate
•	 conceptual duplication

Duplicate code violates the DRY principle—Don't Repeat Yourself. If any bug is
found in a duplicate code, the developer has to fix it in all places.

Revisit the code we have in the addConnection() method. We removed the
conceptual duplication from addConnection() and bill() by employing strategy
patterns. But still we have duplicate code:

String personName = "";
 if (prefix != null) {
 personName = personName + " " + prefix;
 if (firstName != null)
 personName = personName + " " + firstName;
 if (middleName != null)
 personName = personName + " " + middleName;
 if (lastName != null)
 personName = personName + lastName;
 } else {
 if (firstName != null)
 personName = personName + " " + firstName;
 if (middleName != null)
 personName = personName + " " + middleName;
 if (lastName != null)
 personName = personName + lastName;
 }

The same code is repeated to build a person name (as highlighted in the
preceding code).

To remove the duplicate, extract the common code, select the highlighted portion of
the code, and hit Alt + Shift + M. It will ask for a method name; enter buildName().

Refactoring – Roll the Dice

[32]

Modify the method into the following:

protected String buildName(String firstName, String middleName,
 String lastName) {
 StringBuilder personName = new StringBuilder();
 if (firstName != null) {
 personName.append(firstName).append(" ");
 }
 if (middleName != null) {
 personName.append(middleName).append(" ");
 }
 if (lastName != null) {
 personName.append(lastName);
 }
 return personName.toString();
 }

Change addConenction() to use this method and don't use String for the
concatenation operation as it creates multiple objects. Instead use a StringBuilder
class instance:

 StringBuilder personName = new StringBuilder();
 if (prefix != null) {
 personName.append(prefix).append(" ");
 }

 personName.append(
 buildName(firstName, middleName, lastName));

Wait a minute! Should it not be the responsibility of buildName() to return a name?
Why do we need to append a name with a prefix? The buildName() method should
take care of this. It should take all four parameters and return a name:

public String addConnection(String firstName, String prefix,
 String middleName, String lastName, Date z,
 ConnectionType connectionType) {
 if (firstName == null || lastName == null || z == null)
 throw new RuntimeException();

 String personName = buildName(prefix, firstName,
middleName, lastName);

 }

Chapter 2

[33]

Are we missing anything? Yes. Check the TwoGConnection and ThreeGConnection
classes. They have the same variable defined for storing the username. You can
refactor that by creating an abstract class and moving the map to that class and
2G/3G will extend this class and access the map variable.

Also, the Template method can be used (common methods can be moved to a super
class and to provide a hook to the subclasses). Different subclasses will inherit from
the base class and either implement the hooks or leave it.

So, duplication can be refactored using extracting methods, templates, and
aspect-oriented programming. Visit the following link for further details on
aspect-oriented programming:

http://en.wikipedia.org/wiki/Aspect-oriented_programming

Comments
"Don't comment bad code – rewrite it."

-Kernighan and Plaugher

Comment is another smell. Our addConnection() method doesn't need any comment.
It will be cleaner. It may stop supporting 2G connections in the future, but we will not
update the comment to remove the reference of 2G. Comments are never updated.

Sometimes we comment out code and forget to remove them. Always remove
unused, commented-out code—they create confusion.

Long methods and parameter list
Long methods are error prone. When you see 200 lines of code in a method,
it becomes almost impossible to maintain the method. It violates the single
responsibility principle 99 percent of the time.

The best way to resolve this is by extracting small methods and calling them. Each
method does only one thing. But the problem with this approach is if we need to pass
too many parameters (long parameter list) to the extracted method, it becomes stinky.

Instead of creating temporary objects from a concrete object, keep the object and pass
that to the extracted method:

public String addConnection(String firstName, String prefix,
 String middleName, String lastName, Date z,
 ConnectionType connectionType);

Refactoring – Roll the Dice

[34]

The preceding code can be refactored using a new request object, call it PersonName.
Move firstName, lastName, and so on to this new class. Add getters/setters for
these attributes and pass this to the addConnection method. Also change the
buildName() method to accept the PersonName object:

public String addConnection(PersonName personName, Date z,
 ConnectionType connectionType);

protected String buildName(PersonName name) {
 StringBuilder personName = new StringBuilder();
 if (name.getPrefix() != null) {
 personName.append(name.getPrefix()).append(SPACE);
 }
 if (name.getFirstName() != null) {
 personName.append(name.getFirstName()).append(SPACE);
 }
 if (name.getMiddleName() != null) {

 personName.append(name.getMiddleName()).append(SPACE);
 }
 if (name.getLastName() != null) {
 personName.append(name.getLastName());
 }
 return personName.toString();
 }

Here, the request object holds all parameters as class members. So, if a new field
is needed to pass to the method, just add a new attribute to the request class. If we
need to pass the name suffix, we don't have to change the addConenction method.

Large classes (aka GOD object)
Like long methods, large classes are hard to maintain. It also violates the single
responsibility principle. In other words, they are known as GOD objects. Like
almighty GOD, doing everything.

Delegation is the best approach to handle this smell. S/W development teams
have a manager, database administrators, architects, UI designers, developers,
testers, and so on, and everybody plays a role. So, is it possible to have one member
doing everything?

Similarly, a single class cannot do everything; it increases complexity and reduces
extensibility. Large classes should delegate responsibilities to other members.

Chapter 2

[35]

Following is an example where TourConductor is a class responsible for
conducting tours. It has many responsibilities such as ticket booking, local cab/
bus booking, hotel booking, marketing, providing food to the guests, noting down
expenses, keeping the account up-to-date, and so on. Instead of a single class
doing all, refactoring and delegating responsibilities to many classes can set the
TourConductor free.

Following is the class diagram of TourConductor:

TourConductor
void bookAir Ticket()
void bookHotel();
void bookCabs();
void cook();
void noteExpenses();
void arrangeMedicine();
void registerUser();
void bankTransactions();
void noteDownUserGrievance();
void feedback();
void nextTourStrategy();

TourConductor

Accountant accountant
DataEbtryOperator operator
BookingStaff staff
Cook cook
.....
Other members
TourConductor can delegate work to
different classes

Accountant

void bankTransactions();
void noteExpenses();

BookingStaff

void bookTickets();
void bookCabs();

Cook

void food();

DataEntryOperator
void registerUser();
void noteDownGrievance();
void feedback();

Agent classes
We often see classes calling a series of methods on another class to perform logic.
These classes are called agents; better if we can bypass them. Instead of an agent
invoking the methods of another class, the latter class should provide a method for
the client.

Remember the buildName example?

Refactoring – Roll the Dice

[36]

Look at the PersonName class and the buildName() method that builds the name
from inputs:

public class PersonName implements Serializable {

 private static final long serialVersionUID = 1L;
 private String firstName;
 private String middleName;
 private String lastName;
 ...
 All getters and setters
}

protected String buildName(PersonName name) {
 StringBuilder personName = new StringBuilder();
 if (name.getPrefix() != null) {
 personName.append(name.getPrefix()).append(SPACE);
 }
 if (name.getFirstName() != null) {
 personName.append(name.getFirstName()).append(SPACE);
 }
 if (name.getMiddleName() != null) {

 personName.append(name.getMiddleName()).append(SPACE);
 }
 if (name.getLastName() != null) {
 personName.append(name.getLastName());
 }
 return personName.toString();
 }

Here, OnceYouBuyYouStartCryingTelephone is an agent class. PersonName should
provide a method to getformattedName() instead of another class accessing all
fields of a PersonName class.

Move the method from the builder method to PersonName and then replace all calls
to the builder method with PersonName.getFormattedName();.

Chapter 2

[37]

Lazy, dead classes and dead code
Class inheritance creates many classes, which are inherited from a base class but
never used or invoked at all. They are conceptually dead classes.

Often we refactor agent classes but don't delete them. They are no longer referred to
and, hence, should be removed. It violates the YAGNI principle—You Ain't Gonna
Need It.

The buildName() method in the OnceYouBuyYouStartCryingTelephone class is
dead once we move the method to the PersonName class.

We create methods for future use but no one calls these. These methods are dead
code. They create ambiguity. Readers, don't understand what to do? Method stays
forever and creates more confusion?

Many eclipse plugins help to find out dead code/class. CodePro™ is one of them.
The following screenshot shows the CodePro dead code finder in Eclipse:

Refactoring – Roll the Dice

[38]

We can see the result of dead code search using CodePro in the following screenshot:

Over engineering (speculative generality)
S/W engineers speculate and over-engineer. When we develop, we think of special
conditions for the future, create hooks, and increase the complexity of the system.
It defeats the YAGNI principle.

I was helping a developer with a performance issue, who was working with a feature
to display a list of items in a disclosure panel (blinds), where each row is expandable.
Headers display a minimal set of data and when the user clicks on the header, the
blind is expanded to display details.

Many UI frameworks provide this facility. For better performance, you should load
only the header information and when the user clicks on the header, system should
fetch the detail data.

The developer thought of a future enhancement that the layout of the detail section
of each blind may not be the same; depending upon data, layout may be changed.
He coded a layout manager to handle this future requirement. But this requirement
never came; it defeated the main purpose of lazy loading. Rather, it increased
the complexity.

Wrong inheritance (refused bequest)
Inheritance is a good thing to do, but often we create a hierarchy of classes, where
seldom a class belongs to the ladder. This subclass has only few things in common
with the superclass, but mainly works with its own set of features.

To refactor, use delegation. Instead of inheriting from the superclass, create a
superclass instance and delegate calls to that instance.

Chapter 2

[39]

Summary
This chapter covered refactoring and code smell. It defined refactoring and provided
information about the refactoring schedule, the rationale behind refactoring, and
when to trigger or stop refactoring. This chapter elaborated on code smell and
provided simple examples to understand the refactoring and code smell concepts.

With this chapter, the reader should be able to identify and refactor
code smells.

Chapter 3, Applying TDD, explains the life cycle of Test-Driven Development (TDD)
and focuses on getting the reader quickly started with it.

www.allitebooks.com

http://www.allitebooks.org

Applying TDD
The previous chapters, Chapter 1, Getting Familiar with TDD and Chapter 2, Refactoring
– Roll the Dice, gave us an overview of TDD, refactoring, and code smells from 1000
feet. It's time to take a closer look.

Now we know that the automated unit tests are a safety net for refactoring. Unit tests
are re-run with every code change; failing tests indicate that something went wrong.
So, the code is monitored continuously.

In this chapter we will apply Test-Driven Development (TDD) to write testfirst code.

Understanding different test types
We write tests for anything that can break basically into an algorithm or a logic, for
example, the logic of calculating service tax. But we don't write tests for obvious things
that can't go wrong, such as getters/setters of data transfer objects or constructors or
any class that just sets the value from one object to another object (doesn't perform any
conversion). But for data transfer objects, if I add a special logic for hashCode()
or equals() methods, I should definitely write tests to validate the logic.

Test-Driven Development (TDD) is the new way of programming. Here the rule is
very simple; it is as follows:

1.	 Write a test to add a new capability (automate tests).
2.	 Write code only to satisfy tests.
3.	 Re-run the tests—if any test is broken, revert the change.

Applying TDD

[42]

4.	 Refactor and make sure all tests are green.
5.	 Continue with step 1.

start

Add a Test
(add new capability)

Compile Code and Test

Fix the Error

Run the Test,
it should fail

Add Code to
satisfy testRun tests

Run testsRefactor

YES

YES

YES

NO

NO

NO Fixed

failing?

all Tests are green?

compliation error?

The given figure describes the life cycle of TDD

Have you ever faced a situation where you added new capabilities to a module and
found that these new capabilities broke the existing functionalities and you had to
rework every bit of code you added?

Chapter 3

[43]

As shown in the following picture, the left-hand side represents functionalities
before enhancement:

Functionality is broken after enhancement

This can happen if this rule of thumb is not followed—Do not write any
code unless you have a failing unit test and do not write more code than is
sufficient to make the test pass. Big upfront coding creates this issue.

Test-Driven Development reduces the time to market. From the starting, small
testable pieces are developed; testers can test and accept the features from the very
beginning instead of waiting for the end of development.

Applying TDD

[44]

The following figure represents the old way of software development, the horizontal
axis is time and the vertical axis is features. Here, features start moving after the
testing has started. So, time to market a feature is dependent on all steps—redesign,
coding, and testing.

Requirement
Engineering Design Coding

Time To Market

Time

Testing &
Bug Fixing

The following figure shows the TDD life cycle. This is iterative in nature. Here
coding and testing starts very early. Features are delivered to customers faster than
the previous way. First, requirement elicitation is conducted; as soon as the key
requirements are gathered the design phase starts. Once the base line architecture is
complete, the coding starts. Finally, once the testable unit is coded, the testing phase
starts. So, the deliverable feature is ready as soon as the testing of the first testable
unit is done.

.

Chapter 3

[45]

Understanding TDD – a real-life example
We will apply TDD for a healthcare domain problem.

Definition
Design a healthcare system for an imaginary health service provider Q2HS (Quickest
Quality Health Service). Q2HS is new to healthcare and doesn't have tie-ups with
any insurance company. They need a system to generate bills and receive money
from patients. The bill will include patients' account numbers, procedure details,
and charges. The system should support all available payment options.

Common healthcare vocabulary
Different languages/words create ambiguity and confusion. So, if we have
a common vocabulary that everyone understands, it gives clarity.

Also, proper naming doesn't need any documentation. Metaphors or commonly-used
names for classes/methods make it simple to understand the intent of the code.

Like other domains, healthcare has its own vocabulary.

Procedure
The services provided to a patient, for example, physiotherapy, injection, oxygen,
and so on. Each procedure has a unique code.

The service catalogue
The cost of procedure changes with time. Service catalogues keep track of price for
each procedure/service. Systems should allow users to update costs of services and
allow configuring procedures.

MRN
To uniquely identify patients, we need to generate a Medical Record Number
(MRN) system.

Applying TDD

[46]

Encounter
It's a contract between a hospital and a patient, an encounter is created when a
patient is admitted to a hospital. Encounter has start and discharge date and time,
guarantor information, insurance details, and so on. Multiple visits to a hospital
creates multiple encounters.

Unless procedure setup is ready, it cannot be used. First create a procedure and add
it to the service catalogue.

Create a test class and add a test to add a procedure to the catalogue.

A procedure needs an ID and service description. In the test method type Procedure
and pass the ID and description to it. Compiler will raise an error saying that the
Procedure class doesn't exist. Create a class called Procedure:

Create a catalogue object and pass a Procedure object to it. Resolve all compilation
errors, create new classes, and add the required methods:

public void user_can_add_a_service_to_catalogue() {
 Procedure proc = new Procedure("1234", "Basic Oxygen Setup");
 ServiceCatalogue catalogue = new ServiceCatalogue();

 catalogue.add(proc, BigDecimal.TEN);
 assertNotNull(catalogue.find(proc.getId()));
 assertEquals(catalogue.find(proc.getId()), proc);
}

Chapter 3

[47]

The system will generate a class with empty add() and find() methods.

Now run the test. The test will fail since it expects a procedure, but the find()
method returns null.

Now write a code to pass the test. Return a procedure from the find() method.

public Procedure find(String id) {
 return new Procedure(null, null);
}

Applying TDD

[48]

Re-run the test. Oops! It is still failing, it is expecting the procedure that was passed
to the add() method. Following is the stacktrace of the error:

java.lang.AssertionError: expected:<com.packtpub.chapter03.Procedure@1a16869>
but was:<com.packtpub.chapter03.Procedure@1cde100>

Add code to store the Procedure class that was passed to add() and return it from
find():

public class ServiceCatalogue {
 private Procedure proc;
 public void add(Procedure proc, BigDecimal ten) {
 this.proc = proc;
 }
 public Object find(String id) {
 return proc;
 }
}

Run the test again.

Voila! The first green bar. Test passed!!!

Time to add a new capability to the catalogue. The find() method returns the
procedure that was added, but it shouldn't return any procedure if the procedure is
not configured.

Add a test to validate that:

@Test
public void catalogue_returns_null_for_an_unconfigured_procedure_id()
throws Exception {
 Procedure proc = new Procedure("1234", "Basic Oxygen Setup");
 ServiceCatalogue catalogue = new ServiceCatalogue();
 catalogue.add(proc, BigDecimal.TEN);

Chapter 3

[49]

 assertNull(catalogue.find("4567"));
}

Run the test. The test is failing with the following error java.lang.AssertionError:
expected null, but was <com.packtpub.chapter03.Procedure@1a16869>.

Add code to pass the test. Okay, we will return the procedure if the ID matches:

 public Procedure find(String id) {
 if (proc.getId().equals(id)) {
 return proc;
 }
 return null;
 }

Re-run the test. Yes green again!

We should add a new capability now. Does it work for multiple procedures?

@Test
public void catalogue_returns_procedure_for_a_configured_procedure_
id() {
 Procedure proc1 = new Procedure("1234", "Basic Oxygen Setup");
 Procedure proc2 = new Procedure("6789", "Basic Oxygen Setup");
 ServiceCatalogue catalogue = new ServiceCatalogue();
 catalogue.add(proc1, BigDecimal.TEN);
 catalogue.add(proc2, BigDecimal.TEN);
 assertNotNull("Expected a procedure",catalogue.find("1234"));
}

Nope! The new test is failing. It expects the proc1 object but gets nothing. Okay,
the problem is we store only the latest object that we passed to the add() method.
We should keep all procedures. To do this, use a container to store all procedures
and look up the container to find the procedure by ID.

What should we use as a container? Array? Vector? List?

Arrays cannot grow automatically; we don't have any synchronization issue, so let's
use an ArrayList object:

public class ServiceCatalogue {
 private List<Procedure> procs = new ArrayList<Procedure>();

 public void add(Procedure proc, BigDecimal ten) {
 procs.add(proc);
 }

Applying TDD

[50]

 public Procedure find(String id) {
 for (Procedure proc : procs) {
 if (proc.getId().equals(id)) {
 return proc;
 }
 }
 return null;
 }

Wait a minute. A catalogue should return the price of a procedure. The
ServiceCatalogue class should provide an API to return the price. So, add a test to
query price. We can use existing tests for this, just need to change the name. Add a
method named BigDecimal findPriceBy(String id) to ServiceCatalogue to
resolve the compilation error:

public void catalogue_returns_procedure_and_price_for_a_configured_
procedure() {
//ignoring code for space
assertEquals(catalogue.findPriceBy(proc1.getId()), BigDecimal.TEN);
assertEquals(catalogue.findPriceBy(proc2.getId()), BigDecimal.ONE);
}

Add code to findPriceBy(String id) to pass the test. Store the price in a variable.

No, the test is failing for the first procedure. It returns ONE but test expects TEN.
Same issue is that we are storing the price in a variable but we need to store all
procedure prices.

Chapter 3

[51]

We need a data structure to store the procedure ID and its price.

Change the code to pass the failing test. Keep a map of the ID and price. Return the
price from the map:

Yes, all green again!

Now, it is time to refactor the tests. A duplicate code is present in the test class.
Each test method is creating instances of ServiceCatalogue.

JUnit provides an annotation @Before. If this annotation is added to a public
method, that method is invoked before every test. This is equivalent to the setUp()
method of JUnit 3.X.

Similarly, there is the @After annotation. This annotation acts as the teardown()
method. After every test, teardown() is called.

Create a public method setUp() or init(), add @Before annotation, and create
an instance of ServiceCatalogue in this method. From all tests, remove the
initialization constructor call.

Re-run the tests to make sure that everything is working fine:

public class ServiceCatalogueTest {
 ServiceCatalogue catalogue;
 @Before public void setup() {
 catalogue = new ServiceCatalogue();
 }

 @Test
 public void user_can_add_a_service_to_catalogue() {
 Procedure proc = new Procedure("1234", "Basic Oxygen Setup");
 catalogue.add(proc, BigDecimal.TEN);
 assertNotNull(catalogue.find(proc.getId()));
 assertEquals(catalogue.find(proc.getId()), proc);
 }

Applying TDD

[52]

Similarly, a duplicate code is present. We are constructing a procedure object and
setting it to the catalogue. Create a Plain Old Java Object (POJO) class that accepts
the ID, description, and price, add a method in the test class to accept variable
arguments of that POJO class, and set the procedure to the catalogue:

 private void addToCatalogue(Proc... procs) {
 for (Proc proc : procs) {
 catalogue.add(proc.procedure, proc.price);
 }
 }

From tests, call this method:
addToCatalogue(new Proc("1234", "Injection", BigDecimal.TEN),
 new Proc("5678", "Basic Oxygen Setup", BigDecimal.ONE));

We are done with refactoring; a new functionality can be started. Follow the TDD
flowchart and add a new capability.

Summary
In this chapter we learned what type of tests should be written, the life cycle of TDD,
steps to apply TDD, and how to apply TDD in a real-life projects.

In the next chapter we will explore the two types of TDD—inside-out and outside-in.

Understanding the Difference
between Inside-out and

Outside-in
In this chapter, we will cover different styles of TDD and write code using them.

Commonly, TDD has the following styles:

•	 Outside-in
•	 Inside-out

Understanding outside-in
Generally, the outside-in approach covers use case level functionality or is intended
for acceptance tests. These tests provide regression suits and system documentation;
if they fail, user/customer acceptance also fails.

In this category, developers pick a story or use case and drill into low-level unit tests.
Basically, the objective is to obtain high-level design. The different system interfaces
are identified and abstracted. Once different layers/interfaces are identified, unit-level
coding can be started.

Here, developers look at the system boundary and create a boundary interface
depending upon a use case/story. Then, collaborating classes are created. Mock
objects can act as a collaborating class. This approach of development relies on code
for abstraction.

Understanding the Difference between Inside-out and Outside-in

[54]

Acceptance Test-Driven Development (ATDD) falls into this category.
FitNesse fixtures provide support for ATDD. This is stateful. It is also known
as the top-down approach.

An example of ATDD
As a health professional (doctor), I should get the health information of all my critical
patients who are admitted as soon as I'm around 100 ft from the hospital.

Here, how patient information is periodically stored in the server, how GPS tracks
the doctor, how the system registers the doctor's communication medium (sends
report to the doctor by e-mail or text), and so on can be mocked out. A test will be
conducted to deal with how to fetch patient data for a doctor and send the report
quickly. Gradually, other components will be coded.

Report Dispatcher

Patient Information Outbound Messaging
Interface

Location Sensor
(GPS)

The preceding figure represents the high-level components of the user story.

Here, Report Dispatcher is notified when a doctor approaches a hospital, then the
dispatcher fetches patient information for the doctor and sends him the patient
record. Patient Information, Outbound Messaging Interface, and Location Sensor
(GPS) parts are mocked, and the dispatcher acts as a collaborator.

In Chapter 1, Getting Familiar with TDD, the TaxCalculator example, we passed
taxable income as the input and got payable tax as the output. Now we have a
requirement to calculate the taxable income from the total income, calculate the
payable tax, and send an e-mail to the client with details.

Chapter 4

[55]

We have to gather the annual income, medical expense, house loan premium, life
insurance details, provident fund deposit, and apply the following rule to calculate
the taxable income:

•	 Up to USD 100,000 is not taxable and can be invested as medical insurance,
provident fund, or house loan principal payment

•	 Up to USD 150,000 can be used as house rent or house loan interest

Now we will build a TaxConsultant application using the outside-in style.

Following are the steps:

1.	 Create a new test class com.packtpub.chapter04.outside.
in.TaxConsultantTest under the test source folder.

2.	 We need to perform three tasks; that are, calculate the taxable income,
the payable tax, and send an e-mail to a client. We will create a class
TaxConsultant to perform these tasks. We will be using Mockito to mock
out external behavior. Add a test to check that when a client has investment,
then our consultant deducts an amount from the total income and calculates
the taxable income. Add a test when_deductable_present_then_taxable_
income_is_less_than_the_total_income () to verify it so that it can
calculate the taxable income:
@Test
public void when_deductable_present_then_taxable_income_
is_less_than_the_total_income () {
 TaxConsultant consultant = new TaxConsultant();
}

Add the class under the src source folder. Now we have to pass different
amounts to the consultant. Create a method consult() and pass the
following values:
@Test
public void when_deductable_present_then_taxable_income_is_less_
than_the_total_income () {
 TaxConsultant consultant = new TaxConsultant();
 double totalIncome = 1200000;
 double homeLoanInterest = 150000;
 double homeLoanPrincipal =20000;
 double providentFundSavings = 50000;
 double lifeInsurancePremium = 30000;

 consultant.consult(totalIncome,homeLoanInterest,
homeLoanPrincipal,providentFundSavings,
lifeInsurancePremium);
}

Understanding the Difference between Inside-out and Outside-in

[56]

In the outside-in approach, we mock out objects with interesting behavior.
We will mock out taxable income behavior and create an interface named
TaxbleIncomeCalculator. This interface will have a method to calculate
the taxable income. We read that a long parameter list is code smell; we will
refactor it later:

public interface TaxbleIncomeCalculator {
 double calculate(double totalIncome, double homeLoanInterest,
double homeLoanPrincipal, double providentFundSavings, double
lifeInsurancePremium);
}

3.	 Pass this interface to TaxConsultant as the constructor argument:
@Test
public void when_deductable_present_then_taxable_income_is_less_
than_the_total_income () {
 TaxbleIncomeCalculator taxableIncomeCalculator = null;
 TaxConsultant consultant = new TaxConsultant
 (taxableIncomeCalculator);

We need a tax calculator to verify that behavior. Create an interface called
TaxCalculator:

public interface TaxCalculator {
 double calculate(double taxableIncome);
}

4.	 Pass this interface to TaxConsultant:
TaxConsultant consultant = new TaxConsultant(taxableIncomeCalculat
or,taxCalculator);

Now, time to verify the collaboration. We will use Mockito to create mock
objects from the interfaces. We will learn more about mocking using Mockito
in Chapter 6, Mockito Magic. For now, the @Mock annotation creates a proxy
mock object. In the setUp method, we will use MockitoAnnotations.
initMocks(this); to create the objects:

@Mock TaxbleIncomeCalculator taxableIncomeCalculator;
@Mock TaxCalculator taxCalculator;

TaxConsultant consultant;
@Before
public void setUp() {
 MockitoAnnotations.initMocks(this);
 consultant= new TaxConsultant(
 taxableIncomeCalculator,taxCalculator);
}

Chapter 4

[57]

5.	 Now in test, verify that the consultant class calls
TaxableIncomeCalculator and TaxableIncomeCalculator
makes a call to

6.	 TaxCalculator. Mockito has the verify method to test that:
verify(taxableIncomeCalculator, only())
calculate(eq(totalIncome), eq(homeLoanInterest),
eq(homeLoanPrincipal), eq(providentFundSavings),
eq(lifeInsurancePremium));

verify(taxCalculator,only()).calculate(anyDouble());

Here, we are verifying that the consultant class delegates the call to mock
objects. only() checks that the method was called at least once on the mock
object. eq() checks that the value passed to the mock object's method is equal
to some value.
Here, the test will fail since we don't have the calls. We will add the
following code to pass the test:

public class TaxConsultant {

 private final TaxbleIncomeCalculator taxbleIncomeCalculator;
 private final TaxCalculator calculator;

 public TaxConsultant(TaxbleIncomeCalculator
 taxableIncomeCalculator, TaxCalculator calc) {
 this.taxbleIncomeCalculator =
 taxableIncomeCalculator;
 this.calculator = calc;
 }

 public void consult(double totalIncome, double homeLoanInterest,
double homeLoanPrincipal, double providentFundSavings, double
lifeInsurancePremium) {

 double taxableIncome = taxbleIncomeCalculator.calculate
 (totalIncome,homeLoanInterest, homeLoanPrincipal,
 providentFundSavings,lifeInsurancePremium);

 double payableTax= calculator.calculate(taxableIncome);
 }

}

The test is being passed; we can now add another delegator for e-mail and
call it EmailSender.

Understanding the Difference between Inside-out and Outside-in

[58]

7.	 Our façade class is ready. Now we need to use TDD for each interface
we extracted. We have already done this in the TaxCalculator example
in Chapter 1, Getting Familiar with TDD. Similarly, we can apply TDD for
TaxableIncomeCalculator and EmailSender.

Understanding the advantages and
disadvantages of outside-in
The advantages are as follows:

•	 Outside-in is an acceptance test or customer oriented
•	 System interfaces are not predefined; tests identify the interfaces

and protocol of interaction
•	 Design evolves from the test

The disadvantages are as follows:

•	 Maintainability of tests.
•	 If use case or story criteria changes, it creates a ripple effect in unit-level

codes, which is a single place of failure.
•	 Production code lives with mocks and fakes. If forgotten, they live forever.

Understanding inside-out
Inside-out is the form that is mostly followed by developers. High-level objects and
interaction are designed first, then unit level classes are coded using TDD. Mostly
inside-out is a stateless development. Pure JUnit tests with mocking fall under
this section.

Developers start with a component/class and add tests for the component; as the
tests evolve, new components and interaction between these new components come
into picture.

This is also known as the bottom-up approach. Inside-out is used once the
outside-in interfaces are coded. This approach is also known as classical TDD.

The following figure describes the classical approach of the Report
Dispatcher example:

Chapter 4

[59]

<<Class>>
Report Dispatcher

IPatientInformationProxy patientInfoProxy
IOutboundMessageProxy messageProxy
ILocationSensor sensor

<<Interface>>
ILocationSensor

void register(IDevice aDevice)
void remove(IDevice aDevice)
void postDeviceFoundEvent()
void postDeviceOutOfRangeEvent()

LocationSensor

Responsibilities
--send Text and email to doctors
--register a device
--remove a device
--Track a device position
--Fetch patient information

The ReportDisptacher class and its collaborators are defined when the architecture
is designed..

All methods such as register() and postDeviceFoundEvent() are defined when
the baseline architecture is designed.

Using TDD, the actual implementation class LocationSensor can be coded.

For the tax calculation example, we will first start with three interfaces. Using TDD,
we will unit test them and create the façade class using these three interfaces.

Understanding the advantages and
disadvantages of inside-out
The advantages are as follows:

•	 Maintainable, clean production code

Understanding the Difference between Inside-out and Outside-in

[60]

The disadvantages are as follows:

•	 Upfront design is already done.
•	 Time to market a feature is slow as compared to outside-in because someone

is creating the big upfront design. Unless the layers are created, unit-level
tests cannot be started.

Summary
This chapter provided an overview of classical and mockist TDD. In classical TDD,
real objects are used and integrated, and mocks are only preferred if a real object is
not easy to instantiate. In mockist TDD, mocks have higher priority than real objects.

More about classical and mockist TDD can be found at http://martinfowler.com.

In the next chapter, we will cover test double. Mock objects are a special type
of test double.

Test Doubles
We know about stunt doubles—a trained replacement used for dangerous action
sequences in movies, like jumping out of the Empire State Building, a fight sequence
on top of a burning train, jumping from an airplane, or similar actions, mainly fight
scenes. Stunt doubles are used to protect the elite real actors or when the actor is
not available.

Similarly, sometimes it is not possible to unit test a code because of the unavailability
of collaborator objects or the cost of instantiation for the collaborator.

If a code is dependent on database access, it is not possible to unit test the code
unless the database is available, or if my code needs to send information to a printer
and my machine is not connected to LAN.

Test doubles act as stunt doubles. They are a skilled replacement of the
collaborator class.

Test doubles can be created to impersonate collaborators.

Categories of test doubles
Test doubles are categorized into four types. The following figure demonstrates
the types:

Test Double

Dummy Stub Mock Fake

Test Doubles

[62]

Dummy
An example of a dummy would be a movie scene where the double doesn't perform
anything, but only its screen presence is required. It is used when the actual actor is
not present but his attendance is needed for a scene, for example, watching the US
open tennis finals match.

Similarly, dummy objects are passed for mandatory parameter objects:

Book javaBook = new Book("Java 101", "123456");
Member dummyMember = new DummyMember());
javaBook.issueTo(dummyMember);
assertEquals(javaBook.numberOfTimesIssued(),1);

Here, a dummy member was created and passed to a book object in order to test
if that book can report how many times it was issued. Here, a member is not used
anywhere, but is needed for Book.issueTo(...).

Stub
A stub delivers indirect inputs to the caller when the stub's methods are called. Stubs
are programmed only for the test scope. Stubs may record other information, such as
how many times they are invoked.

Account transaction should be rolled back if the ATM money dispenser fails to
dispense money. How can we test this when we don't have the ATM machine,
or how can we simulate the scenario in which the dispenser fails:

public interface Dispenser {
 void dispense(BigDecimal amount) throws DispenserFailed;
}

public class AlwaysFailingDispenserStub implements Dispenser{
 public void dispense(BigDecimal amount) throws DispenserFailed{
 throw new DispenseFiled (ErrorType.HARDWARE,"not responding");
 }
}

class ATMTest...
@Test
public void transaction_is_rolledback_when_hardware_fails() {
 Account myAccount = new Account("John", 2000.00);
 TransactionManager txMgr =
 TransactionManager.forAccount(myAccount);
 txMgr.registerMoneyDispenser(new AlwaysFailingDispenserStub());

Chapter 5

[63]

 WithdrawalResponse response = txMgr.withdraw(500.00);
 assertEquals(false, response.wasSuccess());
 assertEquals(2000.00, myAccount.remainingAmount());
}

Here, AlwaysFailingDispenserStub raises an error whenever the dispense()
method is invoked. It allows testing of the transactional behavior when hardware
is not present.

Fake
Fake objects are working implementations; the class mostly extends the original
class, but usually performs a hack, which makes it unsuitable for production.

public class AddressDao extends SimpleJdbcDaoSupport{
 public void batchInsertOrUpdate(List<AddressDTO> addressList,
 User user){
 List<AddressDTO> insertList =
 buildListWhereLastChangeTimeMissing(addressList);
 List<AddressDTO> updateList =
 buildListWhereLastChangeTimeValued(addressList);
 int rowCount = 0;
 if (!insertList.isEmpty()) {
 rowCount =
 getSimpleJdbcTemplate().batchUpdate(INSERT_SQL,…);
 }
 if(!updateList.isEmpty()){
 rowCount +=
 getSimpleJdbcTemplate().batchUpdate(UPDATE_SQL,…);
 }
 if(addressList.size() != rowCount){
 raiseErrorForDataInconsistency(…);
 }
 }
}

AddressDAO extends from the Spring framework class and provides an API to mass
update. The same method is used to create a new address and update the existing;
if the count doesn't match, it raises an error. This class cannot be tested directly;
it needs getSimpleJdbcTemplate().

public class FakeAddressDao extends AddressDao{
 public SimpleJdbcTemplate getSimpleJdbcTemplate() {
 return jdbcTemplate;
 }
}

Test Doubles

[64]

FakeAddressDao extends from AddressDao but only overrides the
getSimpleJdbcTemplate() method and returns a JDBC template stub. So this
class cannot be used in production, but inherits all functionalities of the DAO,
so this can be used for testing.

Mock
Mock objects have expectations; a test expects a value from a mock object, and
during execution, the mock object returns the expected result. Also, mock objects
can keep track of invocation count, that is, how many times a method is called on
a mock object.

public class ATMTest {

 @Mock Dispenser failingDispenser;
 @Before
 public void setUp() throws Exception {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void transaction_is_rolledback_when_hardware_fails()
 throws DispenserFailed {
 Account myAccount = new Account(2000.00, "John");
 TransactionManager txMgr =
 TransactionManager.forAccount(myAccount);
 txMgr.registerMoneyDispenser(failingDispenser);

 doThrow(new
 DispenserFailed()).when(failingDispenser).
 dispense(isA(BigDecimal.class));
 txMgr.withdraw(500);
 assertTrue(2000.00 == myAccount.getRemianingBalance());
 verify(failingDispenser, new
 Times(1)).dispense(isA(BigDecimal.class));

 }

}

Here, the mock (Mockito) version of the ATM test is used. The same object can be
used in different tests, just the expectation needs to be set. Here, doThrow() raises
an error whenever the mock object is called with any BigDecimal value.

Chapter 5

[65]

Summary
This chapter provided an overview of test doubles and different test double types
with examples, including topics such as dummy, stub, mock, and fake.

In the next chapter, we will cover Mockito. It will explain the concept of mock
objects using the Mockito framework and provide examples to understand the
Mockito APIs.

Mockito Magic
This chapter distills the Mockito framework to its main core and provides technical
examples. No previous knowledge of mocking is necessary.

The following topics are covered in this chapter:

•	 Overview of Mockito
•	 Qualities of unit tests
•	 Exploring Mockito APIs
•	 Examples of using of Mockito

An overview of Mockito
Mockito is an open source mock unit testing framework for Java. In the previous
chapter we read about test doubles and mock objects. Mockito allows mock object
creation, verification, and stubbing.

To know more about Mockito, visit the following link:

http://code.google.com/p/mockito/

Why you should use Mockito
Automated tests are a safety net, they run and notify if the system is broken so that
the offending code can be fixed very quickly.

If a test suite runs for an hour, the purpose of quick feedback is compromised.

Every time a piece of code is checked-in, the automated tests run and take hours
to complete. So, a developer cannot check in new code until the test run is complete.
This blocks the progress of the development.

Mockito Magic

[68]

A test may take time to execute due to the following reasons:

•	 Maybe a test acquires a connection from the database and fetches/updates
data

•	 Connects to the Internet and downloads files
•	 Interacts with an SMTP server to send e-mail
•	 Performs I/O operations

Now the question comes, do we really need to acquire a database connection or download
files to unit test code?

The answer is yes. If it doesn't connect to a database or download the latest stock
price, few parts of the system remains untested. So, DB interaction or network
connection is mandatory for a few parts of the system. To unit test these parts,
the external dependencies need to be mocked out.

Mockito plays a key role to mock out external dependencies. It mocks out database
connection or any external I/O behavior so that the actual logic can be unit tested.

Qualities of unit testing
Unit tests should adhere to the following rules:

•	 Order independent and isolated: The test class ATest.java should not be
dependent on the output of the test class BTest.java, or the test shouldn't
fail if BTest.java is executed after ATest.java

•	 Trouble-free setup and run: Unit tests should not require DB connection
or Internet connection or clean up temp directory

•	 Effortless execution: Unit tests should not be "It works fine on Server abc
but doesn't run on my local"

•	 Formula 1 execution: A test should not take more than a second to finish
the execution

Here, Mockito plays a key role; it provides APIs to mock out the external
dependencies and achieve the qualities mentioned here.

Chapter 6

[69]

Drinking Mockito
Download the latest Mockito binary from the following link and add to the
project dependency:

http://code.google.com/p/mockito/downloads/list

To add Mockito JAR files to the project dependency, carry out the following steps:

1.	 Extract the JAR files into a folder.
2.	 Open an Eclipse project.
3.	 Go to the Libraries tab in the project build path.
4.	 Click on the Add External JARs... button and browse to the Mockito

JAR folder.
5.	 Select all JAR files and hit OK.

Mockito Magic

[70]

Retail shops publicize different promotional offers such as "buy one get 2 free" or
"buy 2.5 kg sugar and get 30 percent off". The following BiggestBazarRetail class
represents a retail shop:

public class BiggestBazarRetail {

 public int issueDiscountForItemsExpireIn30Days(double discountRate) {
 List<Item> headingExpiryItems = inventory.getItemsExpireInAMonth();
 for (Item anItem : headingExpiryItems) {
 double newPrice = anItem.getPrice() - anItem.getPrice() *
 discountRate;
 if (newPrice > anItem.getBasePrice()) {
 inventory.update(anItem, newPrice);
 publicAddressSystem.announce(new Offer(anItem, newPrice));
 }
 }
 return inventory.itemsUpdated();
}
 public BiggestBazarRetail(Inventory inventory,
 PublicAddressSystem publicAddressSystem) {}
}

The preceding BiggestBazarRetail class issues discounts on items. It fetches all
items that are going to expire, applies the discount if the new price is not less than
the base price, and then updates the item price and announces the new price in the
public address system.

We need to unit test the discount() method.

In order to execute the discount() method, the Inventory and
PublicAddressSystem (PAS) objects are required. They are resource-intensive
objects—Inventory accesses databases and instantiates if PAS requires hardware,
driver software, and so on.

We will use Mockito to mock these two objects.

Mockito cannot mock final classes, methods, anonymous classes,
and primitive types.

Mockito provides static methods for mocking any class. We need to import the static
mock() method. Then, to create the mock object, we just need to pass the class type.
The following screenshot shows the details:

Chapter 6

[71]

Change the Inventory class to a final class and run the test.

The following screenshot shows that the test will fail because the Inventory class is
a final class:

Annotation is also supported for mocking.

Annotate a variable definition with @Mock and in the setup method (any method
that runs before every test—JUnit 4.0 @before) call MockitoAnnotation.
initMocks(object).

Mockito Magic

[72]

The following screenshot describes the setup process:

Let's test the discount example. Carry out the following steps:

1.	 Create mock objects for Inventory and PAS.
2.	 Instantiate the test class and pass the mock objects as constructor arguments.
3.	 Add a test method and stub the mock objects to get the expected result.
4.	 Call the issueDiscountForItemsExpiresIn30Days() method.
5.	 Verify that the mock objects are invoked.

Chapter 6

[73]

The code snippet shown in the following screenshot describes the details:

Mockito provides when-then stubbing methods; when() is a static Mockito API
method, we use it when we want the mock to return a particular value when a
particular method is called.

Here, the first bazar object was created with two mock proxy objects; the database
call was stubbed with returning a list of items. During execution, the Mockito proxy
object returns this list whenever the getItemsExpireInAMonth() method is called.

The verify() method is a static method, which can be used to check the void
methods and cover if a code execution path called this method or not.

Mockito Magic

[74]

In our example, update(anItem, newPrice) is a database update call. We don't
have a database, so we had to pass the mock inventory object to stub the database
call. If at least one item qualifies for discount, that item's price will be updated.

Hence, using verify we verified that our discount logic is working fine. How? We
passed one item to the discount() method and it called an update on the inventory,
which means that the object is qualified for discount. verify raises an error if the
method on the mock object is not invoked but expected.

Now, we will pass an item which will not qualify for discount. The current item price
is USD 100.00 and the base price was 90.00. Now if we issue a discount of 30 percent,
the price will be 70.00, which is lower than the buying price. This will incur a loss;
hence, no discount will be issued.

The following code snippet creates an Item method with the base price USD 90.00
and current price USD 100.00:

Run the test, it will fail saying that the inventory update was expected but not invoked.

Chapter 6

[75]

Following is the failing test:

Verifying redundant invocation
To verify the redundant invocations, we need to go through the following:

Rationale
Mock objects are used to stub external dependencies. We set an expectation and a
mock object returns the expected value. In some conditions a behavior should not be
invoked, or sometimes we may need to call it a certain number of times. The verify
method comes into the picture to verify the invocation of mock objects.

If a stubbed behavior should not be called but due to the bug in the code the method
is called, verify if it flags the error. Void methods don't return values, verify is very
handy to test a void method's behavior.

The Verify() method has an overloaded version which takes Times as an argument.

Times is a Mockito framework class of org.mockito.internal.verification and
it takes an Integer argument wantedNumberOfInvocations.

If 0 is passed to Times it infers that the method will not be invoked in the testing
path. We will pass 0 to Times(0) to make sure that the update and announce
methods are not invoked. If a negative number is passed to the Times constructor,
Mockito throws MockitoException - org.mockito.exceptions.base.
MockitoException, and shows the Negative value is not allowed here error.

Mockito Magic

[76]

The following code snippet displays this:

Another way of checking that a method is never invoked is by using the
never() method:

verify(inventory, never()).update(….);

The argument matcher
Argument matchers play a key role in mocking. Following are the rationale
and examples of Argument matchers.

Rationale
Mock objects return expected values. But when it needs to return different values
for different arguments, argument matcher comes into play. Suppose we have a
method that takes a player name as the input and returns the number of runs as the
output. We want to stub it and return 100 for Sachin and 10 for xyz. We have to use
argument matcher to stub this.

Mockito returns expected values when a method is stubbed. If the method takes
arguments, the argument must match during the execution. For example, the
getValue(int someValue) method is stubbed in the following way:

when(mockObject.getValue(1)).thenReturn(expected value);

Chapter 6

[77]

Here, the getValue method is called with mockObject.getValue(100). Then, the
parameter doesn't match (it is expected that the method will be called with 1, but
at runtime it encounters 100), so the mock object fails to return the expected value.
It will return the default value of the return type—if the return type is Boolean, it'll
return false; if object then null, and so on.

Mockito verifies argument values in natural Java style by using an equals()
method. Sometimes, we use argument matchers when extra flexibility is required.

Mockito provides built-in matchers such as anyInt(), anyDouble(), anyString(),
anyList(), anyCollection().

More built-in matchers and examples of custom argument matchers / hamcrest
matchers can be found at the following link:

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Matchers.
html

Examples of other matchers are isA(java.lang.Class<T> clazz),
any(java.lang.Class<T> clazz), and eq(T) or eq(primitive
value).

In the retail shop example, we verified invocation of announcement with
isA(Offer.class):

verify(pas).announce(isA(Offer.class));

isA checks that if the passed object is an instance of the class type passed in the isA
argument. any(T) also works in the same way.

Why we need wildcard matchers
If a method creates a new object and invokes a method on a mock object, then
from the test method we cannot control the input. In publicAddressSystem.
announce(new Offer(…)); it created a new offer and sent to the announce method.
From the test we cannot get the that object.

Mockito Magic

[78]

If we are using argument matchers, all arguments have to be provided
by matchers.
We're passing three arguments—all of them are passed using matchers:
verify(mock).someMethod(anyInt(), anyString(),
eq("third argument"));

The following example will fail because the first and the third argument
are not passed using matchers.
verify(mock).someMethod(1, anyString(), "third
argument");

The ArgumentMatcher class
The ArgumentMatcher class allows the creation of customized argument matchers.
ArgumentMatcher is a hamcrest matcher with the predefined describeTo() method.

Use the Matchers.argThat(org.hamcrest.Matcher) method and pass an instance
of the hamcrest matcher.

Consider a StockListener class, it takes a stock and then gets the quote from the
stockbroker. If the current price is higher than the buying price, it sells the stock,
otherwise it buys some more:

public class StockListener {
 private final StockBroker broker;

 public void takeAction(Stock stock){
 double currentPrice = broker.getQoute(stock);
 if(currentPrice <= stock.boughtAt()){
 broker.buy(stock, 100);
 }else{
 broker.sell(stock, 10);
 }

}

We will create a mock for the StockBroker.getQoute method that takes a Stock
object. We would like to make this method conditional. If it is a blue-chip stock, the
current price will be higher than the old price, or else it will be lower.

How would we identify a blue-chip share? Okay, if the stock ID is SBI or HDFC, we will
consider them as blue-chip stocks.

Chapter 6

[79]

Let us create a custom matcher to identify blue chip shares. The following code
shows a custom argument matcher:

class BlueChipStockMatcher extends ArgumentMatcher<Stock>{

 @Override
 public boolean matches(Object argument) {
 Stock myStock = (Stock)argument;
 return "SBI".equals(myStock.getId()) ||
 "HDFC".equals(myStock.getId());
 }
}

The code in the following screenshot uses the custom matcher to sell shares:

In the preceding code, we passed SBI as a stock. So, the matcher identified it as
BlueChip and the argument matched; so, the mock object returned the quote as
1000.00. This is higher than the stock value 500.00. Therefore the StockListener
object sold the stock.

Following is a custom matcher example to buy a share:

When we pass "XYZ" stock ID to the matcher, the argument doesn't match
BlueChipStock. So, the mock object returns the default return value 0.00 and the
listener class buys the share.

Mockito Magic

[80]

Throwing exceptions
Unit tests are not meant only for happy paths. We should test our code for the failure
conditions. Mockito provides an API to raise errors during testing. Suppose we are
testing a flow where we compute some value and then print it to a printer—if the
printer is not configured or a network error happens or the page is not loaded, the
system throws exceptions. We can test this using Mockito's exception APIs.

How do we test exceptional conditions such as database access failure?

Mockito provides a method thenThrow(Throwable), this method throws an
exception when the stubbed method is invoked.

We will stub the inventory to throw an exception when a method is called:

@Test(expected=RuntimeException.class)
public void inventory_access_raises_Error() {

when(inventory.getItemsExpireInAMonth()).thenThrow(new
RuntimeException("Databse Access fail"));

bazar.issueDiscountForItemsExpireIn30Days(.30);
fail("Code should not reach here");
}

Here, JUnit 4.0 provides a way to test an exception: @Test(expected=<exception>).

We are stubbing the inventory to throw an exception when
getItemsExpireInAMonth() is invoked. If it doesn't throw the exception,
the code will reach fail("…"). This method raises the AssertionFailure error.

Void methods don't return values, to throw exception from a void method use the
following code snippet:

doThrow(exception).when(mock).voidMethod(arguments);
 @Test(expected=RuntimeException.class)
 public void voidMethod_to_throw_exception() throws Exception {
 doThrow(new RuntimeException()).when(pas).announce(isA(Offer.
class));
 pas.announce(new Offer(null, 0));
 fail("Code should not reach here");
 }

Chapter 6

[81]

Consecutive calls
You can use Mockito's consecutive calls in the following situations:

•	 When you are calling a stubbed method in a loop and you need different
results for different calls

•	 When you need the second invocation to throw an exception

We need to test a condition where the first call will return some value from the DB,
the next call should not find any value, and then it should return a value.

thenReturn(objects...) takes variable arguments and comma separated return
values as shown in the following code:

@Test
 public void consecutiveCalls() throws Exception {
 when(inventory.getItemsExpireInAMonth()).
thenReturn(expiredList,null);
 assertEquals(expiredList, inventory.getItemsExpireInAMonth());
 assertEquals(null, inventory.getItemsExpireInAMonth());
 }

See, thenReturn is taking two values; the first call will return expiredList, then
onwards each call will return null.

This can be achieved in another way—Mockito methods return stub objects and
follow a builder pattern to make a chain of calls:

when(inventory.getItemsExpireInAMonth()).thenReturn(expiredList).
thenReturn(null).thenThrow()
can be combined with thenReturn() to throw exception and return value
when(inventory.getItemsExpireInAMonth()).thenThrow
(…).thenReturn(null)

Stubbing with callbacks – using the
Answer class
A stubbed method returns a hardcoded value during the method invocation; but if
we need to compute something and return a dynamic result, the answer or callbacks
are used.

Answers allows stubbing with the generic Answer interface. This is a callback; when
a stubbed method on a mock object is invoked, the answer(InvocationOnMock
invocation) method of the Answer object is called. This Answer object's answer()
method returns the actual object.

Mockito Magic

[82]

The call is similar to thenReturn() and thenThrow():

when(mock.someMethod()).thenAnswer(new Answer() {…});

The Answer interface looks like this:

public interface Answer<T> {
 T answer(InvocationOnMock invocation) throws Throwable;
}

InvocationOnMock holds the key. It can return the arguments passed to the method
and also return the mock object:

Object[] args = invocation.getArguments();
Object mock = invocation.getMock();

In the blue-chip stock example, we hardcoded the return value to 1000.00 for
blue-chip shares. If we pass the BlueChip share to the listener with a price higher
than 1000.00, the listener will behave as if a non-blue-chip share is received.

We can fix this using Answer and make the test totally configurable.

The following code snippet creates an Answer class:

We created a class BlueChipShareRises, this class returns a double value. When
the callback method answer is invoked, it type casts the first argument to the Stock
object and returns the stock's buying price plus 1. In this way, no matter what the
stock price was, BlueChipShareRises will always return a higher value than the
buying price.

But, the problem is that if we pass this answer object to any other stubbing method
where the method doesn't take Stock as an argument, then it will fail with a class
cast exception.

Chapter 6

[83]

The following code snippet tests the custom Answer object:

We stubbed the getQoute method with the BlueChipStockMatcher argument
matcher and then instead of returning hardcoded value, answered the call with the
new BlueChipShareRises() answer object.

When the takeAction method is called with the SBI stock of amount 1000.00, the
answer object returned 1000.00+1 = 1001.00 as current quote. The listener found
that this amount is greater than 1000.00, so it asked the stockbroker to sell the stock.

Spying objects
We cannot stub the behavior of a real object. When we need original object behavior
most of the time and mocked behavior only at certain times, then we can spy the
real object. Once an expectation is set for a method, on a spy object, then the spy
no longer returns the original value. It starts returning the stubbed value but still it
exhibits the original behavior for the other methods that are not stubbed. Spy is very
useful for legacy tests.

Using Mockito, we can create spies of real objects. Unlike stubbing, when we use the
spy then the real methods are called (unless a method was stubbed).

Spy is also known as partial mocking, one example of real use of spy is dealing with
legacy code.

Declaration of spy objects:

SomeClass realObject = new RealImplemenation();
SomeClass spyRealObject = spy(realObject);

Mockito Magic

[84]

Spy can stub real method calls and make calls to real methods if not stubbed.
Following is an example of a spy object:

 @Test
 public void spyTest() throws Exception {
 Stock realStock = new Stock("ICICI", 30.00);
 Stock spy = spy(realStock);

 //call real method from spy
 assertEquals("ICICI", spy.getId());

 //Changing value using spy
 spy.changePrice(100.00);

 //verify spy has the changed value
 assertTrue(100 == spy.boughtAt());
 //Stubbing method
 when(spy.boughtAt()).thenReturn(5.00);
 //Changing value using spy
 spy.changePrice(666.00);
 //Stubbed method value returned
 assertTrue(666 != spy.boughtAt());
 assertTrue(5.00 == spy.boughtAt());

 }

Here, until the spy was stubbed for the method boughAt, it was returning the real
value. But when we stubbed it, it started returning the stubbed value.

Using doReturn()
doReturn() is similar to stubbing a method and returns the expected value.
But this is used only when when(mock).thenReturn(return) cannot be used.

when-thenReturn is more readable than doReturn(), also doReturn() is not type
safe. thenReturn checks method return types and raises compilation error if an
unsafe type is passed.

Here is the syntax for using the doReturn() test:

doReturn(value).when(mock).method(argument);

public class DoReturnTest {
 @Mock
 StockBroker broker;

 @Before

Chapter 6

[85]

 public void setUp() {
 MockitoAnnotations.initMocks(this);
 }
 @Test
 public void doReturn_is_not_type_safe() throws Exception {
 //get Qoute returns double
 when(broker.getQoute(isA(Stock.class))).thenReturn(5.00);
 //returning string for getQoute…although return type is
 double
 doReturn("string").when(broker).getQoute(isA(Stock.class));
 broker.getQoute(new Stock("A1", 40.00));

 }
}

The following screenshot shows how the test fails:

Spying real objects and calling real methods on a spy has side effects, to avoid this
side effect use doReturn() instead of thenReturn().

Mockito Magic

[86]

The following code describes the side effect of spying and calling thenReturn():

The spy object calls a real method when trying to stub get(index); and
unlike the mock objects, the real method was called and it failed with an
ArrayIndexOutOfBounds error.

The following screenshot displays the failure message:

This can be protected using doReturn() as shown is the following code:

Chapter 6

[87]

Working with Void methods
In an earlier section, we read that doThrow is used for throwing exceptions
for void methods.

Similarly, if you want to perform some logic on void method calls, you can use
doAnswer(). In the following code, we are implementing a logic that when the buy
method will be invoked on the broker, the stock price has to be changed to 100.00.
But buy is a void method. So, I created an anonymous inner class answer to change
the value. When buy is called, the stock price was changed to 100.00:

@Test
public void doAnswer_void_methods() throws Exception {
Stock myStock = new Stock("A2", 0.00);
doAnswer(new Answer<Double>() {
 public Double answer(InvocationOnMock invocation) throws
 Throwable
 {
 Object[] args = invocation.getArguments();
 Stock stock = (Stock)args[0];
 //changing the value of stock to 100.00
 stock.changePrice(100.00);
 return null;
 }

}).when(broker).buy(myStock, 10);

assertTrue(0.00== myStock.boughtAt());
broker.buy(myStock, 10);
assertTrue(100.00== myStock.boughtAt());
}

doNothing() does nothing. By default, all void methods do nothing. But if you need
consecutive calls on a void method, the first call will throw an error, the next call will
do nothing, then the next call will perform some logic using doAnswer():

doThrow(new RuntimeException()).
 doNothing().doAnswer(someAnswer).when(mock).someVoidMethod();
mock.someVoidMethod() //this call throws exception
mock.someVoidMethod();// this call does nothing

doCallRealMethod() is used when you want to call the real implementation of a
method on a mock object:

doCallRealMethod().when(mock).someVoidMethod();

Mockito Magic

[88]

Argument capture
This is used to verify the arguments passed to a stubbed method. Sometimes we
compute a value, then create another object using the computed value, and then call
a mock object using that new object; this computed value is not returned from the
original method but used for some other computation. Argument captor provides an
API to test the computed value.

Suppose we are passing the first name, middle name, last name, and age to a method.
This method builds a person name string using the first, middle, and last name and
then creates the Person object and sets the name and age on it. Finally, it saves the
person object to the database. Here, we cannot stub the save behavior from testing
with a specific value since the Person object is created inside the method. We can mock
the save using a generic matcher object such as isA(Person.class) and then verify
that the Person object contains the correct name and age using the argument captor.

Mockito verifies argument values in natural Java style by using an equals()
method. This is also the recommended way of matching arguments because it makes
tests clean and simple. In some situations though, it is helpful to assert on certain
arguments after the actual verification.

The following code uses ArgumentCaptor and verifies that it uses the stock ID "A"
and not any other value when calling the method:

@Test
 public void argument_captor() throws Exception {
 //Creating a captor for Stock class
 ArgumentCaptor<Stock> argument =
 ArgumentCaptor.forClass(Stock.class);
 //calling a method on mock object
 broker.getQoute(new Stock("A", 5.00));

 //Passing argument captor to verify to collect the
 argument
 verify(broker).getQoute(argument.capture());

 //confirm that "A" was passed
 assertEquals("A", argument.getValue().getId());

 }

Like Mockito, jMock and EasyMock are the two other Java-based frameworks that
support mocking for automated unit tests.

jMock and EasyMock provide mocking capabilities but the syntax is not so simple like
Mockito. You can visit http://jmock.org/ or http://easymock.org/ for details.

Chapter 6

[89]

Summary
In this chapter, Mockito was described in depth and technical examples were
provided to demonstrate the capability of Mockito.

Chapter 7, Leveraging the Mockito Framework in TDD, explains advance features of the
Mockito framework and illustrates the uses of Mockito in Development.

By the end of the next chapter, the reader will be able to use TDD with Mockito.

www.allitebooks.com

http://www.allitebooks.org

Leveraging the Mockito
Framework in TDD

The classical TDD style uses real objects whenever possible and uses test doubles
only when a real object and its behaviors are hard to understand. On the other hand,
Mockist TDD style uses mock for all types of external dependencies.

The following are examples of external dependencies—to access google.com, a
computer needs to connect to the Internet using a modem or broadband or dongle.
Similarly, to perform a task if a piece of code needs to interact with another class or
module or another application, this dependency is called external dependency.
A payroll application may need an LDAP service to authenticate users or a Java
class needs a data access object to save objects to a database.

In this chapter we will use Mockist TDD style to mock external dependencies and
explore Test-Driven Development.

Applying Mockito
Thanks to tablets and smartphones, video games are very popular now. No need to
carry heavy laptops, gaming is possible anywhere, anytime.

Like Google Play store, we will build an online portal for the aspiring game
developers. Let's call it MockGameDepot.org.

Anybody can upload their game, but they need to register with MockGameDepot.
org with a PayPal user account. A game developer by default inherits the Basic
membership feature.

Basic membership has the following rules: cannot upload any free game, minimum
game price has to be USD 20.00, and MockGameDepot will charge 30 percent of the
game price as hosting and publishing fees.

Leveraging the Mockito Framework in TDD

[92]

There are four membership types: Basic, Standard, Premium, and Professional.
This is shown in the following screenshot.

A game developer can upgrade his/her account anytime, but all games will inherit old
membership feature till the next billing cycle. For example, John, a free/Basic member,
joined MockGameDepot on July 10, 2013 and he launched a 3D game on July 11. Many
people loved his game, appreciated its high standard, and it achieved 50 downloads
in five days. So, John upgraded his membership to Standard on July 20; but this
upgradation will be applicable only after August 10, 2013.

Anybody can download games, but they have to pay the price (if not a free game)
using a PayPal site before downloading the game.

MockGameDepot needs a scheduler job; it will run every month and calculate
the payable amount for the game developers and then deposit the amount to the
developers' PayPal accounts. PayPal charges on the transaction amount and the
number of transactions, so minimize the number of transactions. If a developer
launched three games in a month, instead of sending three invoices we just send one
with three line items. Finally, the job will send e-mails to individual developers with
the payment advice.

Customer requirements
So, basically the job has to do the following:

•	 Retrieve transaction information for all downloads in the last 30 days
•	 Retrieve membership information of the game developers

Chapter 7

[93]

•	 Calculate the payable amount for each game developer
•	 Send payment advice to PayPal
•	 Send e-mails to game developers
•	 Update transactions as settled

Naming is important and a name should describe the intent of a class. This job is
doing account settlement, so we will call it the Reconciliation job.

Building the application
We will build the job using the following steps:

1.	 Create a test ReconciliationJobTest under the package com.packtpub.
chapter07. We will start with a test when no transaction is performed, then
the job should return the number of records processed as 0. Following the
TDD approach, we first created the class ReconciliationJob and then
added the reconcile() method; but because of space constraints we are not
describing this here. Please refer to Chapter 3, Applying TDD for more details.

Leveraging the Mockito Framework in TDD

[94]

Notice that the reconcile() method is returning 0:

public class ReconciliationJob {

 public int reconcile() {
 return 0;
 }

}

The test is running fine; now add another test to verify when a transaction takes
place, then the processing count returns 1. When it returns 1 from reconcile(), the
first test fails. We need a mechanism to get the unsettled transactions within the last
30 days. The job should read this from the database, we don't want to interact with
the DB, which will make our test a slow test. So, we will create an interface to get the
information. Name this interface FinancialTransactionDAO.

Now, the Job class has a dependency—FinancialTransactionDAO. Pass this to Job
through the following constructor argument:

public class ReconciliationJob {
 private final FinancialTransactionDAO financialTxDAO;

 public ReconciliationJob(FinancialTransactionDAO
financialTxDAO) {
 this.financialTxDAO = financialTxDAO;
 }

 public int reconcile() {
 return 0;
 }

}

Note that FinancialTransactionDAO is defined as final. This
approach is known as the stateless pattern or immutable object pattern.
If we define all class-level variables as final, then no one can change the
state of the class. This will make the class immutable. As a result of this,
the class can work with a multithreaded application without worrying
about synchronization.

Chapter 7

[95]

After this change, the test will not compile. Pass a DAO object to the constructor
from the test:

 FinancialTransactionDAO financialTransactionDAO;
 @Before
 public void setUp(){
 job = new ReconciliationJob(financialTransactionDAO);
 }
Change Job class to ask DAO to return the transactions.
 public int reconcile() {
 List<TransactionDto> unSettledTxs = financialTxDAO.
retrieveUnSettledTransactions();
 return unSettledTxs.size();
 }

Resolve the compilation error. Create a class TransactionDto and add a method to
the FinancialTransactionDAO interface to return a list of transactions.

Note that the data transfer object is named as TransactionDto.
Transaction is a very common name used in Spring transaction, JTA
transaction, and so on. So, we appended dto to avoid confusion. A
better approach is to name it Transaction and put the class under
the com.packtpub.chapter07.dto package. The dto package will
tell us that this is a data transfer object.

public interface FinancialTransactionDAO {
 List<TransactionDto> retrieveUnSettledTransactions();
}

Run the test. It will fail with NullPointerException. The test should pass an
implementation of the DAO interface. We will use Mockito to mock this. Use
the @Mock annotation.

 @Mock FinancialTransactionDAO financialTransactionDAO;
 @Before
 public void setUp(){
 MockitoAnnotations.initMocks(this);
 job = new ReconciliationJob(financialTransactionDAO);
 }

Leveraging the Mockito Framework in TDD

[96]

Note that the first line in the setup method is MockitoAnnotations.
initMocks(this). This line ensures that all variables with the @Mock
annotation will be translated as mock objects. If we forget to add this line
in the setup method, the test will fail with a NullPointerException
as the mock objects are not initialized.
Another approach is to annotate the test class with @
RunWith(MockitoJUnitRunner.class). It will convert all
the @Mock annotations to mock objects. If we use this runner then
MockitoAnnotations can be omitted.

@RunWith(MockitoJUnitRunner.class)
public class TaxConsultantTest {

Mockito uses reflection to create a mock object from a @Mock annotation.

Run the test again. All green now. We will concentrate on when DAO returns 1
transaction. Stub the retrieval method to return a transaction:

@Test
public void reconcile_returns_Transaction_count() throws Exception {
 List<TransactionDto> singleTxList = new
 ArrayList<TransactionDto>();
 singleTxList.add(new TransactionDto());
 when(financialTransactionDAO.retrieveUnSettledTransactions()).
 thenReturn(singleTxList);
 assertEquals(1, job.reconcile());
}

Here, we used when(mock.method()).thenReturn(value);. Now, run the tests.

We are good to add a new feature. We need membership information for a
developer. TransactionDto will hold the developer ID and we will retrieve
his/her membership from the DB. Using TDD, we will create a MembershipDAO
and a MembershipStatusDto instances. Then pass this new DAO to Job. Alter

Chapter 7

[97]

TransactioDto to hold the developer targetId so that membership information can
be fetched from the targetId. Add the setTargetId and getTargetId methods to
TransactionDto.

Modify the Job class and create a final variable for MembershipDAO, and pass a
MembershipDAO instance to the constructor to set the final variable:

private final MembershipDAO membershipDAO;

public ReconciliationJob(FinancialTransactionDAO financialTxDAO,
 MembershipDAO membershipDAO){
 this.financialTxDAO = financialTxDAO;
 this.membershipDAO = membershipDAO;
 }

Modify the setup method in the test class to pass a mock MembershipDAO to the
Job class:

@Mock
MembershipDAO membershipDAO;
@Before
public void setUp() {
 MockitoAnnotations.initMocks(this);
 job = new ReconciliationJob(financialTransactionDAO,
membershipDAO);
}

Add a method to MembershipDAO to return the membership status of a developer.
The getStatusFor(String id) method will return MembershipStatusDto.
This DTO contains the deductible amount for a member.

If a developer is a basic member, deductible is 30 percent or 0.30; for a professional
member, the deducible is only eight percent or 0.08, as shown in the membership table.

Create the MembershipStatusDto class and add the deductible as a double variable
and add getter and setter for the deductible:

public interface MembershipDAO {
 MembershipStatusDto getStatusFor(String id);
}

As mentioned in the requirements, by default all developers inherit the Basic
membership. So, modify the setup method in test and stub MembershipDAO to
return basicMembership. Set the deductible to 0.30:

@Before
 public void setUp() {

Leveraging the Mockito Framework in TDD

[98]

 MockitoAnnotations.initMocks(this);
 job = new ReconciliationJob
 (financialTransactionDAO, membershipDAO);
 MembershipStatusDto basicMembership =
 new MembershipStatusDto();

 basicMembership.setDeductable(.30);

 when(membershipDAO.getStatusFor(anyString())).
thenReturn(basicMembership);
}

Now, add a test to verify that the reconcile method calls membershipDAO
to fetch the membership details for a developer. In the test, create a list of
transactions and add only one transaction with the developer's ID as DEV001. Stub
financialTransactioDAO to retrieve this list.

During test execution, the job will get this list and then it should ask membershipDAO
to get the details of developer DEV001. We will verify that in the test using Mockito's
verify() API:

@Test
public void when_transaction_exists_Then_membership_details_is_
retrieved_for_the_developer() throws Exception {
 List<TransactionDto> singleTxList =
 new ArrayList<TransactionDto>();
 TransactionDto transactionDto = new TransactionDto();
 transactionDto.setTargetId("DEV001");
 singleTxList.add(transactionDto);
 when(financialTransactionDAO.retrieveUnSettledTransactions()).
thenReturn(singleTxList);
 assertEquals(1, job.reconcile());
 verify(membershipDAO).getStatusFor(anyString());
 }

The test will fail. Add the code to call MembershipDAO.

Modify the reconcile() method to call the membershipDAO instance with the first
element of the returned list:

 public int reconcile() {
 List<TransactionDto> unSettledTxs = financialTxDAO
 .retrieveUnSettledTransactions();

 MembershipStatusDto membership = membershipDAO
 .getStatusFor(unSettledTxs.get(0).getTargetId());

Chapter 7

[99]

 return unSettledTxs.size();

 }

Oops! The first test is failing with an ArrayIndexOutOfBoundException. When no
transaction is present, the DAO returns an empty list. Revert the change, check if the
list is not empty, and then only pass the zeroth element:

public int reconcile() {
 List<TransactionDto> unSettledTxs = financialTxDAO
 .retrieveUnSettledTransactions();

 if(!unSettledTxs.isEmpty()) {
 MembershipStatusDto membership = membershipDAO
 .getStatusFor(unSettledTxs.get(0)
.getTargetId());
 }

 return unSettledTxs.size();
 }

Re-run the test. It is working now.

We tested with no transaction and then with a single transaction. Now add a test
to verify multiple transactions. This is a very important stage in TDD. Once we are
done with one, we should test our code against many.

In a test we will create two transactions: one for John and another one for Bob. We
will expect that for both developers membershipDAO will be called. We are going to
use ArgumentCaptor and Times to verify the invocation. Verification will check the
number of invocations by passing new Times(2), then the argument captor will
capture arguments for all invocations. Finally, we will ask the argument captor to
return the list of invocations and from that list we will verify whether membershipDAO
was invoked for both Bob and John:

@Test
 public void when_transactions_exist_then_membership_details_is_
retrieved_for_e
 ach_developer()
 throws Exception {
 List<TransactionDto> multipleTxs = new
 ArrayList<TransactionDto>();
 TransactionDto johnsTransaction = new TransactionDto();
 String johnsDeveloperId = "john001";
 johnsTransaction.setTargetId(johnsDeveloperId);

Leveraging the Mockito Framework in TDD

[100]

 TransactionDto bobsTransaction = new TransactionDto();
 String bobsDeveloperId = "bob999";
 bobsTransaction.setTargetId(bobsDeveloperId);

 multipleTxs.add(johnsTransaction);
 multipleTxs.add(bobsTransaction);

 when(financialTransactionDAO.
 retrieveUnSettledTransactions())
 .thenReturn(multipleTxs);

 assertEquals(2, job.reconcile());

ArgumentCaptor<String> argCaptor =
ArgumentCaptor.forClass(String.class);

verify(membershipDAO, new
 Times(2)).getStatusFor(argCaptor.capture());

 List<String> passedValues = argCaptor.getAllValues();

assertEquals(johnsDeveloperId, passedValues.get(0));
assertEquals(bobsDeveloperId, passedValues.get(1));

 }

The test will fail. Our reconcile() method passes only the zeroth value of the
transaction. We need to modify code to loop through the transaction list so that for
each transaction membershipDAO is invoked. In this test for John and Bob, code will
be changed to the following:

public int reconcile() {
 List<TransactionDto> unSettledTxs = financialTxDAO
 .retrieveUnSettledTransactions();

 for (TransactionDto transactionDto : unSettledTxs) {
 MembershipStatusDto membership = membershipDAO
 .getStatusFor(transactionDto.getTargetId());
 }

 return unSettledTxs.size();
 }

Run the test suite. It will be green.

Chapter 7

[101]

Now time to add a new feature: Calculation of payable amount and send to PayPal.
PayPal provides RESTful APIs and express checkout options for application
to PayPal communication. We will mock out PayPal integration and call a
façade—name it PayPalFacade.

Add a test to verify that the PayPal is invoked. We created the PayPalFacade
interface and passed it to the job constructor:

@Mock PayPalFacade payPalFacade;
@Before
public void setUp(){
 MockitoAnnotations.initMocks(this);
 job = new ReconciliationJob(financialTransactionDAO,
membershipDAO, payPalFacade);
}

Modify TransactionDto to hold payPalId of the developer and the amount of
transactions (game price):

public class TransactionDto {

 private String targetId;
 private String targetPayPalId;
 private double amount;
 //getter & setters
}

PayPalFacade will take a request object to pass targetPayPalId, total amount,
and description. Call it PaymentAdviceDto. Create the DTO with all fields:

public class PaymentAdviceDto {
 private final double amount;
 private final String targetPayPalId;
 private final String desc;

 public PaymentAdviceDto(double amount, String targetPayPalId,
 String desc) {
 this.amount = amount;
 this.targetPayPalId = targetPayPalId;
 this.desc = desc;
 }

Leveraging the Mockito Framework in TDD

[102]

In the test, verify that the advice was sent. Create a transaction list for David, a
developer. The createTxDto(...) method creates a TransactionDto instance from
the developer ID, PayPal ID, and game price:

@Test
public void when_transaction_exists_Then_sends_Payble_TO_PayPal()
 throws Exception {
 List<TransactionDto> davidsTransactionList =
new ArrayList<TransactionDto>();

 String davidsDeveloperId = "dev999";
 String davidsPayPalId = "david@paypal.com";
 double davidsSuperMarioGamePrice = 100.00;

 davidsTransactionList.add(createTxDto
 (davidsDeveloperId,davidsPayPalId,
 davidsSuperMarioGamePrice));

 when(financialTransactionDAO.
 retrieveUnSettledTransactions())
 .thenReturn(davidsTransactionList);

 assertEquals(1, job.reconcile());
 verify(payPalFacade).sendAdvice(isA(PaymentAdviceDto.class));
 }

The test will fail to verify the call. Add the code to call the facade with a
PaymentAdviceDto instance:

 public int reconcile() {
 List<TransactionDto> unSettledTxs = financialTxDAO
 .retrieveUnSettledTransactions();

 for (TransactionDto transactionDto : unSettledTxs) {
 MembershipStatusDto membership = membershipDAO
 .getStatusFor(transactionDto.getTargetId());

 payPalFacade.sendAdvice(new PaymentAdviceDto(0.00,
 transactionDto.getTargetPayPalId(),
 "Post payment for developer "+
 transactionDto.getTargetId()));
 }

 return unSettledTxs.size();
 }

Chapter 7

[103]

The test will pass now. Now it's time to add a new capability.

Are we missing anything? Yes. We need to calculate the amount payable. How do
we test this? Stub MemebershipDAO to return a Basic membership dto object. This
means 30 percent is deductable from the original game price.

If the game price is USD 100.00, then PayPal payment advice should be USD 70.00.
Use Mockito's ArgumentCaptor method to verify that:

@Test
public void calculates_payable() throws Exception {
 List<TransactionDto> ronaldosTransactions =
new ArrayList<TransactionDto>();

 String ronaldosDeveloperId = "ronaldo007";
 String ronaldosPayPalId = "Ronaldo@RealMdrid.com";
 double ronaldosSoccerFee = 100.00;

 ronaldosTransactions.add(createTxDto
 (ronaldosDeveloperId,ronaldosPayPalId,
 ronaldosSoccerFee));

 when(financialTransactionDAO.
 retrieveUnSettledTransactions())
 .thenReturn(ronaldosTransactions);

 assertEquals(1, job.reconcile());

 ArgumentCaptor<PaymentAdviceDto> calculatedAdvice =
 ArgumentCaptor.forClass(PaymentAdviceDto.class);

 verify(payPalFacade).
sendAdvice(calculatedAdvice.capture());

 assertTrue(70.00 ==
 calculatedAdvice.getValue().getAmount());
 }

The test will fail since the calculation is never done in code. Modify the code to
return 70. Then add another test with the transaction amount USD 200.00 and
check that it returned USD 140.00.

Leveraging the Mockito Framework in TDD

[104]

The following screenshot shows the failing test:

Finally, derive the formula—transactionDto.getAmount() –
transactionDto.getAmount() * membership.getDeductable();

This test will pass.

The code will look like the following code snippet:

for (TransactionDto transactionDto : unSettledTxs) {

double payableAmount = transactionDto.getAmount() –
 transactionDto.getAmount() * membership.getDeductable();

payPalFacade.sendAdvice(new PaymentAdviceDto(payableAmount,
transactionDto.getTargetPayPalId(), "Post payment for developer "+
transactionDto.getTargetId()));

}

Okay, now it's time to test multiple transactions—one with USD 200.00 and another
with USD 150.00, and Standard and Premium memberships. The deductable is
15 percent and 10 percent respectively. The memberShip(double percent)
method creates membershipStatusDto. Stub the membershipDAO instance to
return membership deductable 15 percent for John and 10 percent for Dave. Use
ArgumentCaptor to capture the PayPalFacade call. Then, verify that the correct
deductable was computed and passed to facade for both the developers:

@Test
public void calculates_payable_with_multiple_Transaction() throws
Exception {
 List<TransactionDto> transactionList =
new ArrayList<TransactionDto>();

Chapter 7

[105]

 String johnsDeveloperId = "john001";
 String johnsPayPalId = "john@gmail.com";
 double johnsGameFee = 200;

 transactionList.add(createTxDto
(johnsDeveloperId, johnsPayPalId, johnsGameFee));

String davesDeveloperId = "dave888";
 String davesPayPalId = "IamDave009@yahoo.co.uk";
 int davesGameFee = 150;

 transactionList.add(createTxDto
(davesDeveloperId, davesPayPalId, davesGameFee));

 when(financialTransactionDAO.
retrieveUnSettledTransactions())
 .thenReturn(transactionList);

 when(membershipDAO.getStatusFor(eq(johnsDeveloperId))).
 thenReturn(memberShip(.15));

 when(membershipDAO.getStatusFor(eq(davesDeveloperId))).
 thenReturn(memberShip(.10));

 assertEquals(2, job.reconcile());

ArgumentCaptor<PaymentAdviceDto> calculatedAdvice
 = ArgumentCaptor .forClass(PaymentAdviceDto.
class);

verify(payPalFacade, new Times(2)).sendAdvice(
 calculatedAdvice.capture());

assertTrue(170.00 == calculatedAdvice.getAllValues().
get(0).getAmount());

assertTrue(135.00 == calculatedAdvice.getAllValues()
.get(1).getAmount());
 }

Now add a new capability to update transactions and send e-mails. You can follow
the same strategy we used earlier. Mock MailSender and stub the update method
of the DAO.

Leveraging the Mockito Framework in TDD

[106]

One thing is still missing. How can we minimize the PayPal Transactions?

If a developer develops two games, we should invoke PayPal facade only once not
twice. PayPal charges against each transaction and also multiple transaction calls can
create performance issues.

Add a test for the developer Janet, who has two games: FishPond and TicTacToe.
Default membership is Basic, with 30 percent deductable.

The test will look like the following code snippet:

@Test
public void calculates_payable_with_multiple_Transaction_For_same_
developer()
 throws Exception {
 List<TransactionDto> janetsGameFees =
 new ArrayList<TransactionDto>();

 String janetsDeveloperId = "janet12567";
 String janetsPayPalId = "JanetTheJUnitGuru@gmail.com";
 double fishPondGameFee = 200;
 double ticTacToeGameFee = 100;

 janetsGameFees.add(createTxDto
 (janetsDeveloperId, janetsPayPalId, fishPondGameFee));

janetsGameFees.add(createTxDto
(janetsDeveloperId, janetsPayPalId, ticTacToeGameFee));

 when(financialTransactionDAO.
retrieveUnSettledTransactions())
 .thenReturn(janetsGameFees);

 assertEquals(2, job.reconcile());

ArgumentCaptor<PaymentAdviceDto> calculatedAdvice
= ArgumentCaptor
 .forClass(PaymentAdviceDto.class);

 verify(payPalFacade, new Times(1)).
sendAdvice(calculatedAdvice.capture());

 assertTrue(210.00 == calculatedAdvice.getValue().getAmount());

 }

Chapter 7

[107]

This test fails since the code is written for each transaction, but we need developer-
wise transactions. So, collect developer-wise transactions and then send to paypal.

The following code rewrites the reconcile() method:

public int reconcile() {
 List<TransactionDto> unSettledTxs = financialTxDAO
 .retrieveUnSettledTransactions();
Map<String, List<TransactionDto>> developerTxMap = new
LinkedHashMap<String, List<TransactionDto>>();

//Setting a developer wise Transaction map.
for (TransactionDto transactionDto : unSettledTxs) {
List<TransactionDto> transactions = developerTxMap
 .get(transactionDto.getTargetId());
if (transactions == null) {
 transactions = new ArrayList<TransactionDto>();
 }
 transactions.add(transactionDto);
 developerTxMap.put(transactionDto.getTargetId(), transactions);
 }

//Looping through the developer Id , only once paypal is called
for (String developerId : developerTxMap.keySet()) {
MembershipStatusDto membership = membershipDAO
 .getStatusFor(developerId);
String payPalId = null;
double totalTxAmount = 0.00;
for (TransactionDto tx : developerTxMap.get(developerId)) {
 totalTxAmount += tx.getAmount();
 payPalId = tx.getTargetPayPalId();
}
double payableAmount = totalTxAmount - totalTxAmount
 * membership.getDeductable();
payPalFacade.sendAdvice(new PaymentAdviceDto(payableAmount,
 payPalId, null));
 }
return unSettledTxs.size();
}

Leveraging the Mockito Framework in TDD

[108]

Note that we are using the double datatype in the monetary
calculation. You should never use double for monetary types because
of subtle rounding errors. Use BigDecimal or Joda Money.

I have intentionally omitted a few portions of the code due to space constraints,
please download the code bundle for further details.

Summary
In this chapter, we explored Test-Driven Development using Mockito. All external
dependencies were mocked using Mockito APIs. E-mail service and PayPal are
examples of external dependencies. PayPal provides RESTful and classic APIs for
application-to-application communication. For details visit the PayPal developer Wiki.
Following is the PayPal developer’s sandbox link: https://www.sandbox.paypal.
com/home

In the next chapter we will explore design principles and patterns, and refactor code
smells applying design patterns.

World of Patterns
In this chapter we will cover the following topics:

•	 Characteristics of a bad design
•	 Design principles
•	 Design patterns
•	 Applying patterns

Characteristics of a bad design
According to Robert Martin, there are three important characteristics of a bad design:

•	 Rigidity: The code is difficult to change. A simple change affects many parts
of the system.
A change in one place causes a ripple effect, and adding a new field in UI
needs modification in the view layer, business logic layer, and database layer.

•	 Fragility: Every time a change is made in one place/module, the change
breaks a different module. The change is not local to that module; hence,
maintenance becomes a nightmare. A fix for one issue causes failure in
another place.
For example, a change in a local API in module A should not cause problems
for module B. Module B should only know about the public API of module A.

World of Patterns

[110]

•	 Immobility: Immobility is the inability to re-use a component/software.
The component comes with a baggage. The effort to separate wanted parts
from the baggage is higher than duplicating the behavior or redesigning the
component. So reusability is compromised.

For example, there is an existing security module for the payroll system,
but this cannot be used for the order module because the security module
is almost an integrated part of the payroll, maybe directly accessing payroll
database tables to get user information.

If a design exhibits any of these qualities, the design is bad.

Design principles
Design principles are a set of guidelines that help to avoid bad design.

At a higher level, the design guidelines are:

•	 Modularity: It is a logical partitioning that allows complex software
to be manageable. Partitioning can be based on similar functionalities,
similar domain objects (in a healthcare system, the modules could be
a patient management module, a financial/payment module, and so on),
or other criteria.

•	 High cohesion: It is the responsibility of a single module (class). If a class is
doing tax calculation, sending e-mails, and formatting user input, then the
cohesion is less, which indicates that multiple things/activities are being
done. High cohesion indicates doing only a particular type of task.

•	 Low coupling: It means dependency on other module/code. Low
dependency enforces high cohesion.

Low-level design principles are:

•	 Open/Closed principle: Code should be open for extensions but closed for
modifications. A template method and strategy pattern can be used. A simple
example is a class creating and returning enemies for a video game. Consider
the following code snippet:
if(gameLevel == 2){ return RedDragon();}
else if(gameLevel == 3) { return PandoraOmen()}
else { return new Monster()}

If a new enemy is created for level 4, this class needs to be modified so that
Monster is not returned for level 4. Instead, if we create a map of enemies,
then this method will be simple and no modification will be required for a
new type:

Chapter 8

[111]

Map<Integer, Enemy> enemyMap = new ...
enemyMap.put(2, new RedDragon());
enemyMap.put(4, new SnakeMan());

When a new enemy is required, just put that in the map (open for extension).
The method will look as follows:

public Enemy getEnemy(int gameLevel){
 return enemyMap.get(gameLevel);
}

•	 Dependency inversion principle: High-level modules shouldn't depend on
low-level modules / concrete classes; instead, they depend upon abstraction.
This is also known as Inversion of Control (IoC). A class may depend
on another class for sorting objects, and there could be multiple sorting
algorithms; now, instead of depending on any concrete implementation,
the class should depend on an interface or abstract class for sorting. All
implementation will inherit/implement that abstraction, and the caller will
pass the actual implementation.

•	 Interface segregation principle: Clients should not be forced to depend
on interfaces that they don't use. Instead of a fat general purpose interface,
create multiple client-specific interfaces. Interface A defines three methods
read(), update(Object o), and display(). A client who only has
authorization to read data from a service provider may not need display()
or update(), but the interface is forcing the client to be aware about the other
methods that it doesn't need.

•	 Single responsibility principle: A class should have only one reason to
change on high cohesion. Multiple responsibilities increase complexity.

•	 Liskov substitution principle: Derived types must be completely
substitutable for their base types. If a new subclass is created from a base
class, then in any place, a subclass can be passed for a base class.

•	 Public void process method: In the process method, public void
process(Collection<Item> items), we can pass LinkedList, ArrayList,
or vector, but not HashMap.

•	 Law of Demeter (LoD): It is the law of loose coupling.

°° Each unit should have only limited knowledge about other
units—only units "closely" related to the current unit.

°° Each unit should only talk to its friends and not strangers.
°° Only talk to your immediate friends. The following is an example

for violating this rule:

personDao.getPerson().getName()

World of Patterns

[112]

Design patterns
Design patterns are lessons learnt over the years. A pattern is a solution to the
recurring problems. Every pattern has four parts:

•	 Name: It is the common vocabulary. By using a name, we can describe a
problem, its solution, and consequences.

•	 Problem: It tells us when to apply the pattern.
•	 Solution: It shows us how the problem is resolved.
•	 Consequences: It shows us the results and trade-offs of applying the pattern.

This is the most important part of a pattern, and is critical for making
the design decision. For example, if a problem can be solved using either
pattern A or pattern B, how would you select the one you need? Read the
consequences of applying pattern A and B and then choose the one that suits
your need.

Classification of patterns
Depending upon the purpose of the pattern, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, (aka Gang of Four (GoF)), categorized patterns into
three sections:

•	 Creational patterns: This handles the process of object creation
•	 Structural patterns: This deals with the composition of classes or objects
•	 Behavioral patterns: This characterizes the ways in which classes or objects

interact and distribute responsibility

Read the book Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides for more
information about patterns.

We refactor code to improve the quality of a code. During refactoring, we can change
code to apply a pattern. The following are a few examples of refactoring patterns.

Nested if is a code smell. It violates the open/closed principle. During refactoring,
we can apply a pattern to remove the smell.

The patterns to refactor code smell are explained further.

Chapter 8

[113]

Replacing conditional logic with command
A controller class, in a web and swing application, handles different types of
requests and delegates the requests to the appropriate handler classes, for example,
a controller servlet or an action servlet.

A controller class (controller servlet) gets polluted very easily. The controller
receives requests for action, routes it to the appropriate handler, and satisfies the
request. When a new service is created, the controller class is opened to add the new
capability to serve the new service type.

It becomes a mess of if-else-if. Note the following code snippet, which contains a
series of if-else-if handling different actions. A client can ask for any type of request;
the receiver now knows about every type of request and how to handle a request.
This is violating two principles—open/closed and single responsibility.

If(LOG.equals(action)){
 // log information
}
else if(SAVE.equals(action)){
 //persist to database
}
else if(PDF_REPORT.equals(action)){
 //generate pdf report
}
else if(EMAIL.equals(action)){
 //send email
}
else if(DISPLAY.equals(action)){
 // display data to UI
}

The preceding code smell can be refactored by applying the command pattern.

A command pattern is a GoF pattern; it decouples a request and the receiver of
the request.

World of Patterns

[114]

The following figure shows the class diagram of a command pattern:

Note..
receiver.action()

Receiver
action()

Client Invoker

setCommand()

<<Interface>>
Command

execute()
undo()

ConcreteCommand
execute()
undo()

The description of the preceding figure is given in the following list:

•	 Command: It declares an interface for an executing action.
•	 ConcreteCommand: It defines binding between a receiver and an action.

Additionally, it implements the Command interface.
•	 Client: It creates ConcreteCommand and sets its receiver.
•	 Invoker: It asks the command to execute the request.
•	 Receiver: It knows how to perform an actual operation. For example,

it knows how to send an e-mail or how to generate a pdf.

Applying a command pattern
Create a Command interface with an execute(Map<String,String> parameters)
method. We don't need the undo() operation, so we will not add undo(). We are
passing Map<String, String> because of the need to extract information from a
request object in order to send e-mails or perform any operation.

Create a concrete e-mail command to send an e-mail. This will require SMTP
information or an e-mail client. In short, this command needs an e-mail client:

public class SendEmailCommand implements Command{
 private final EmailClient client;
 public SendEmailCommand(EmailClient client){
 this.client = client;
 }
 public void execute(Map<String, String> param){

Chapter 8

[115]

 //code to call client with info. Build the email info from param
 client.sendEmail(emailInfo);
 }
}

Similarly, create PDFGeneratorCommand for a PDF report, DataRetrieverCommand
for displaying data, LoggingCommand for logging information, and UpdateCommand
for updating the database.

Now, as the second step, delegate calls to the appropriate command objects.
The code will be as follows:

If(LOG.equals(action)){
 new LoggingCommand().execute(paramMap);
}
else if(SAVE.equals(action)){
 new UpdateCommand().execute(paramMap);
}
else if(PDF_REPORT.equals(action)){
 new PDFGeneratorCommand ().execute(paramMap);
}
else if(EMAIL.equals(action)){
 new SendEmailCommand ().execute(paramMap);
}
else if(DISPLAY.equals(action)){
 new DataRetrieverCommand ().execute(paramMap);
}

Here comes the 3rd step. Create a map of commands for each action. Populate the
map with commands, and call this buildCommand() method from the constructor
of the class, so that the map is populated as soon as the controller class is created:

Map<String, Command> handlerCommand = new HashMap<String, Command>();
public void buildCommands(){
 handlerCommand = new HashMap<String, Command>();
 handlerCommand.put(LOG, LoggingCommand(…));
 handlerCommand.put(SAVE, UpdateCommand (…));
 handlerCommand.put(PDF_REPORT, PDFGeneratorCommand (…));
 handlerCommand.put(EMAIL, SendEmailCommand (emailClient));
 handlerCommand.put(DISPLAY, DataRetrieverCommand (…));
}

World of Patterns

[116]

Now, the big step—remove all if-else-if, call the map to get the command for the
request name, and then execute the command:

handlerCommand.get(action).execute()

Do we need a null check here? I would say, no! If an action is not
present, it should fail.

For a new command type, only the builder method will be modified to add the new
type. Do you know how web servers handle multiple requests?

Exactly! Using a command queue.

Note that you should never use a pattern if not required. If you encounter a situation
like the preceding, to handle dissimilar requests and nested if conditions, you can
apply the command pattern. Please read and understand the command pattern
before using it.

A macro command in the command pattern is a composite command that performs
multiple tasks. If, in the preceding example, we needed to log information for every
request, then we could inherit other commands from LoggingCommand and call
super.execute() when required.

Replacing conditional logic with strategy
The same thing can be done in multiple ways! We choose the best fit and apply that.

Let us consider a code that takes a list of data transfer objects and sorts them
depending on predefined conditions, and not on the input:

public void sort(List<T> list){
 if(condition 1){
 //Bubble sort logic
 }
 else if(condition 2){
 //some logic for heap sort
 }
 else{
 //some other logic
 }
}

In the command pattern, we have seen that dissimilar requests are handled using
commands. Strategy pattern lets the algorithm vary independently from clients that
use the algorithm. This pattern relies on the design principle that favors composition
over inheritance or encapsulation that varies.

Chapter 8

[117]

Strategy pattern
The following figure represents the class diagram of strategy pattern:

Context
<<Interface>>

Strategy

algorithm()

ConcreteAlgorithmA

algorithm()

ConcreteAlgorithmC

algorithm()

ConcreteAlgorithmB

algorithm()

The following are the strategy pattern components:

•	 Strategy (Compositor): Strategy declares an interface common to all
supported algorithms. Context uses this interface to call the algorithm
defined by a ConcreteStrategy.

•	 ConcreteAlgorithm (A, B, C): It implements the algorithm using the
interface Strategy.

•	 Context (Composition): It is configured with a ConcreteStrategy object.
It maintains a reference to a Strategy object.

We will define an interface, SortingAlgorithm, with a method sort(List<T >
list).

We will then create an algorithm for bubble sort, merge sort, heap sort, and so on,
and implement the SortingAlgorithm interface.

The following is the resultant code:

class SortingHandler <T>{
 private SortingAlgorithm<T> algorithm;
 public void setAlgorithm(SortingAlgorithm<T> algo){
 this.algorithm = algo;
 }
 public void sort(List<T> dtos){
 algorithm.sort(dtos);
 }
}

World of Patterns

[118]

Set the algorithm to the appropriate algorithm type depending on the
predefined condition.

We can also use a factory method design pattern for algorithm creation.

The fact is no single design pattern is left alone. Every pattern has its tradeoffs.
To balance a the negative effect of a pattern, we often use composite patterns such
as template method, strategy/factory, and strategy/command.

Other useful patterns are factory methods, decorator, and composite.

Java supports overloaded constructors but doesn't allow us to have different names
for different constructors. Factory methods such as pattern helps here.

We can redesign the SortingHandler class to work with the factory method and
strategy pattern:

public class SortingHandler<T>{

 private final SortingAlgorithm<T> algorithm;

 private SortingHandler(SortingAlgorithm<T> algo){
 this.algorithm = algo;
 }

 public static<T> SortingHandler<T> createBubbleSorter(){
 return new SortingHandler<T>(new BubbleSort<T>());
 }

 public static<T> SortingHandler<T> createHeapSorter(){
 return new SortingHandler<T>(new HeapSortAlgorithm<T>());
 }

 public void sort(List<T> listOfDtos){
 algorithm.sort(listOfDtos);
 }

 public static void main(String[] args) {
 SortingHandler<Long> bubbleLongSorter =
 SortingHandler.createBubbleSorter();
 bubbleLongSorter.sort(new ArrayList<Long>());

 }
}

Chapter 8

[119]

Here, we create a private constructor so that no one can call this, and then add
factory methods with proper names. However, createBubbleSorter() reflects the
type of strategy or algorithm. From the create method, we are instantiating the heap
sort or bubble sort algorithm and passing it to the private constructor. Now if any
client needs heap sorting, it will call that factory method and create the object. If a
client needs bubble sort, it will call the bubble sort factory method.

Always remember, never refactor a code unless it has enough JUnit tests.
If you can't add code without refactoring the existing code, first add tests
and then start refactoring.

Summary
This chapter covered the definition and characteristics of a good design, design
principles, design patterns, and usage of patterns in refactoring.

By the end of this chapter, the reader will be able to identify a bad design and apply
design principles/patterns to refactor a bad design.

Chapter 9, TDD, Legacy Code, and Mockito will cover the definition and characteristics
of legacy code and provide examples to refactor legacy code and write unit tests
using Mockito.

TDD, Legacy Code,
and Mockito

In this chapter, we will cover the following topics:

•	 Definition of legacy code
•	 Problems with legacy code
•	 Unit testing legacy code using Mockito

What is legacy code?
We have heard a lot about legacy code. It is a code that is not mine but has been
obtained from someone else. Maybe it came from a 10-year-old existing project or
maybe from another team that cannot maintain the code and lets us work with it,
or maybe acquired from another company.

We often use legacy as slang—a complex code that is either difficult to understand
or very rigid and fragile, almost impossible to change or to add new features to.

Any code with no unit test is legacy code. If the code doesn't have a
test, it doesn't matter how good the program is or how easy it is to add
new features. That's it! Tests allow us to change the code quickly and
verify the change faster.

We know that when we change code, we need the existing tests, but the problem
with legacy code is that when we add tests, it needs to change the code.

TDD, Legacy Code, and Mockito

[122]

Problems with legacy code
To create tests, we need to instantiate the class in the test harness, but the problem
with legacy code is that it is difficult to break a dependency and instantiate a class
in a test harness. One example is in the constructor of the class instantiating many
objects, reading the form properties file, or even making database connections.
There could be many callers of the class, so you cannot change the constructor to
pass dependencies; otherwise, it will cause a series of compilation errors.

We will take a look at a legacy code (not JUnit) and try to write a test for the class.

Diving into the legacy puzzle
In many projects, the framework forces us to inherit classes from the architecture
superclass. If you don't extend the architecture class, the object will not be persisted
with or it won't work at all. We will examine a legacy code of a healthcare
domain project.

In a healthcare system, a patient may go to a hospital multiple times. Sometimes, for
outpatient visits, the patient may come to the hospital every 2-3 days. For every visit,
a new encounter is created and each encounter stores details such as the number of
services used and the financial details. The following figure shows the class diagram:

Patient Encounter

Charges

FinancialSummary

has 1..n

has

has

1..n

1..1

Figure 01

Here, the architecture base class is BaseObject:

public abstract class BaseObject implements Serializable {
 private static final long serialVersionUID = 1L;
 private DirtyState dirtyState;
 private Long objectId;

 public DirtyState getDirtyState() {
 return dirtyState;

Chapter 9

[123]

 }

 public void setDirtyState(DirtyState dirtyState) {
 this.dirtyState = dirtyState;
 }

 public BaseObject(Long objectId) {
 Map<String, String> config
 =PropertyFileReader.readConfig();
 String url = config.get(ArchitectureConstants.DBUrl);
 String userName =
 config.get(ArchitectureConstants.DBUserName);
 String password =
 config.get(ArchitectureConstants.DBPassword);

 DataAccessFacade.register(url,
 userName,
 password);
 if (null == objectId) {
 setDirtyState(DirtyState.insert);
 } else {
 BaseObject obj =
 MemoryManager.getInstance().lookUpInCurrentThread(
 objectId);
 if (obj == null) {
 obj =
 DataAccessFacade.retrieveObject(objectId);
 setDirtyState(DirtyState.fresh);
 }

 MemoryManager.getInstance().putInConext(objectId, obj);
 }

 this.objectId = objectId;
 }

 public Long getObjectId() {
 return objectId;
 }

 public int save(){
 return 0;
 }
}

TDD, Legacy Code, and Mockito

[124]

Every business object extends this class. In a constructor, it takes Long objectId;
objectId is a unique sequence number. It looks in the memory cache, and if the
object is already there in cache, it returns that, else it makes a database trip to
fetch the data. If the object exists nowhere, it creates a new object. The class in the
preceding code also defines a method for object states—new, dirty, and so on.

DirtyState is an enum, it holds different states—new, dirty, or fresh. When an
object is retrieved from the DB, the BusinessObject class sets the status of the object
as fresh; when a setter method is invoked on a business object and some value is
changed, the object status becomes dirty; and when a new instance of a business
object is created (which is not present in the database) the business object holds the
status as insert.

The problem is in the constructor that accesses the memory cache, reads from the
property file, and even makes a database trip. We cannot create any business object
to test any behavior. It will either read a file or the cache or make a database trip, so
the test will be a slow test.

Refactoring legacy code
Such changes of legacy code without the safety net of a unit test coverage should
be done with special care as we are not yet able to know if we broke something.
Fortunately, there are usually coarse-grained tests somewhere—even if it's a manual
one, stepping through a sequence of web pages for example.

There is the class PaymentHandler, which calculates the patient's due amount.
To add a test for this class, we need to break the constructor chaining:

public class PaymentHandler extends BaseObject{

 public PaymentHandler(Long objectId) {
 super(objectId);
 }

 public Map<Patient, Double> calculateDue(){
 HashMap<Patient, List<Encounter>> hashMap = new
 HashMap<Patient, List<Encounter>>();

 for(Encounter
 enc:DataAccessFacade.findAllUnprocessedEncounters()){
 if(enc.getFinancialSummary().getAmountDue() > 0){
 if(hashMap.containsKey(enc.getPatient())){
 hashMap.get(enc.getPatient()).add(enc);
 }else{

Chapter 9

[125]

 List<Encounter> encs = new
 ArrayList<Encounter>();
 encs.add(enc);
 hashMap.put(enc.getPatient(), encs);
 }
 }
 }

 Map<Patient, Double> map = new HashMap<Patient, Double>();

 for(Patient pat:hashMap.keySet()){
 double due =0.00;
 for(Encounter enc:hashMap.get(pat)){
 due+= enc.getFinancialSummary().getAmountDue();
 }

 map.put(pat, due);
 }

 return null;
 }
}

I wanted to instantiate the class in the test class, it took four seconds to instantiate the
class. This is a slow test—a test should not take more than 0.5 seconds—as we have
to bypass the DB dependency, among other things.

One way is to parameterize the superclass constructor. Add another constructor that
will just bypass all calls if called from the test method and works fine if called from
the production code.

The following screenshot shows the test result:

TDD, Legacy Code, and Mockito

[126]

Move the DB call, property file reading, and so on in the initialize method and
pass Long objId and the Boolean flag initializationRequired. If the flag is true
only then should you do the initialization. Create another constructor that takes Long
and Boolean flags and calls the initialize method. From the existing constructor,
make the call to this new constructor and pass true for initialization:

 public BaseObject(Long objId, boolean
 initializationRequired){
 initialize(objId,initializationRequired);
 }
 public BaseObject(Long objectId) {
 this(objectId, true);
 }

In PaymentHandler, add a new constructor to call the super constructor with the
Boolean flag:

public class PaymentHandler extends BaseObject{

 public PaymentHandler(Long objectId) {
 super(objectId);
 }
 public PaymentHandler(Long objectId, boolean isInit) {
 super(objectId, isInit);
 }
}

From the test code, call this constructor with false. Now the test runs under
0.31 seconds.

The next issue to deal with is static calls. You cannot override a static method call.
The only possible way out is to refactor and move the static call to the nonstatic
protected method. From the test, fake out the main class and override this method
to return mock objects.

protected List<Encounter> getEncounters() {
 return DataAccessFacade.findAllUnprocessedEncounters();
}

Test will look like this.
public class PaymentHandlerTest {

 PaymentHandler handler;
 @Mock Patient patient;

 List<Encounter> encounters;

Chapter 9

[127]

 @Before
 public void setUp(){
 MockitoAnnotations.initMocks(this);
 encounters = new ArrayList<Encounter>();
 handler = new TestablePaymentHandler(1L);

 }

 @Test
 public void sanity() throws Exception {
 //This empty test ensures that legacy objects get instantiated
 }

 class TestablePaymentHandler extends PaymentHandler{
 public TestablePaymentHandler(Long objectId) {
 super(objectId, false);
 }

 protected List<Encounter> getEncounters() {
 return encounters;
 }
 }
}

Now we are good to go with normal mocking with Mockito.

Another issue is that legacy methods create objects and invoke methods directly on
those objects.

From the test, you cannot control the object. The best way to fix this issue is to extract
a protected method and from the method instantiate the object, like we did for a
static method, or pass the instance of the object as a dependency through a setter
method or constructor.

Consider the following class:

public class LoanManager {

 public void calculateMaxLoan(Person person){
 new LoanCalculator().calculate(person);
 //other code goes here…
 }
}

TDD, Legacy Code, and Mockito

[128]

This code can be changed to pass LoanCalculator as a constructor dependency. But
this will break all existing clients of LoanManager. So, we need to keep the default
constructor as it is. We will add another constructor to pass LoanCalculator as a
constructor argument and change the default constructor to instantiate the calculator.

public class LoanManager {

 private final LoanCalculator loanCalculator;
 public LoanManager(){
 loanCalculator = new LoanCalculator();
 }

 public LoanManager(LoanCalculator dependency){
 loanCalculator = dependency;
 }

 public void calculateMaxLoan(Person person){
 loanCalculator.calculate(person);
//other code
 }
}

Now we can pass the mocked instance of LoanCalculator and stub the
calculate method.

The role of Mockito
In the preceding example, we saw that when we could not instantiate an object,
we added a constructor in the class hierarchy to bypass the database call or property
file access.

The same thing can be done easily using Mockito. In the following example, we will
create a mock patient object using Mockito and then stub the getAllEncounters()
method. This method accesses the database to fetch the encounter details. We can
stub it using Mockito as follows:

@RunWith(MockitoJUnitRunner.class)
public class MockitoForLegacyTest {

 @Mock Patient aPatient;

 @Test
 public void when_patient_is_required() throws Exception {
 when(aPatient.getAllEncounters()).thenReturn(new

Chapter 9

[129]

ArrayList<Encounter>());
 assertNotNull(aPatient.getAllEncounters());
 }
}

We can mock complex objects but we cannot call setter or getter methods on them.
For example, if we call registerName, it will not change the value of the patient
name. Here, a spy method can help. We will create a real Encounter object using the
constructor modification. We will add a constructor to Encounter, pass a Boolean
value, and call the super constructor to pass objId and the Boolean value:

public class Encounter extends BaseObject {
 private static final long serialVersionUID = 1L;

 public Encounter(Long objectId) {
 super(objectId);
 }

 protected Encounter(Long objectId, boolean isInit) {
 super(objectId, isInit);
 }

From a test, we will call this constructor to create a real Encounter object. Then we
will spy the real object. For real methods, we will call the method on spy and for
methods that access the database or read a file (a time consuming or resource seeker
method), we will stub it using Mockito's when(T.method()).thenReturn(value):

@Test
public void spying_an_encounter() throws Exception {
 Encounter anEnc = new Encounter(0L, false);
 //creating a spy, for real methods
 Encounter anEncSpy = spy(anEnc);

 Date today = new Date();
 anEncSpy.setStartDate(today);
 assertEquals(today, anEncSpy.getStartDate());

 //mockout the addCharge method
 doNothing().when(anEncSpy).
addCharge(isA(EncounterCharges.class));

anEncSpy.addCharge(encounterCharges);

 }

TDD, Legacy Code, and Mockito

[130]

Legacy code needs attention. Before you make any changes, always search the
workspace to find out the clients that call the class you are modifying.

Summary
In this chapter, we covered the definition and characteristics of legacy code, refactored
legacy code, and applied Mockito. For details of working with legacy code please read
the book Working Effectively with Legacy Code by Michael C. Feathers.

TDD Tools and Frameworks
In this appendix, we will cover the following topics:

•	 The basics of Eclipse
•	 How effectively keyboard shortcuts can be used in Eclipse to expedite

Test-Driven Development and refactoring
•	 JUnit 4.0 basics
•	 Unit tests using JUnit 4.0

Discovering Eclipse
Do you want to impress your boss? Stop using the mouse and learn to use keyboard
shortcuts instead. Using the mouse requires one hand, but, to use the keyboard, you
can use both hands (you definitely don't have to be ambidextrous).

Eclipse can be downloaded from http://www.eclipse.org/downloads. As of
today, the latest IDE version is KEPLER 4.3.

TDD Tools and Frameworks

[132]

The mother of all shortcuts is Ctrl + Shift + L. Press the combination of keys together.
Eclipse brings up the list of key shortcuts. The pop-up list is displayed in the
following screenshot:

Useful keys for TDD and refactoring
The following are the useful refactoring shortcuts:

•	 The extract method: A key refactoring technique is the extract method. It
allows readability, reusability, and cohesion. To extract a method from an
existing code snippet, follow these instructions: select the code you want
to take out and hit Alt + Shift + M. You need to enter the method name
and, optionally, you can choose the access modifier—either private, public,
default, or protected, as shown in the following screenshot:

Appendix A

[133]

•	 Rename a resource: During refactoring, we rename methods, variables,
and interfaces/classes. Select the resource and hit Alt + Shift + R:

Eclipse highlights the resource at all places where it is used. Change the
name and hit Enter; it will replace the name in all places. You don't have to
go and fix many files.

•	 Move a resource: Select the resource and hit Alt + Shift + V. It will throw a
pop-up showing all packages. Use the up and down arrow keys to navigate:

TDD Tools and Frameworks

[134]

•	 Inline a resource: Select the resource and hit Alt + Shift + I. It displays the
occurrence count and preview. Here c is inlined by a+b. Every occurence of c
is replaced with a+b:

•	 Moving up and down: Alt + arrow key (up or down).
•	 Creating constants: Magic numbers or constant variables can be created by

selecting the variable and hitting Alt + Shift + T and A.
•	 Generate getters/setters: Hit Alt + Shift + S and R, then tab out and select the

fields you need. Or, press Alt + A to generate getters/setters for all fields.
•	 Switching files: To switch between open files press Ctrl + F6.

Appendix A

[135]

•	 Other shortcuts: Hit Alt + Shift + T and then press a key you need—press A
to create a constant. This pop-up launches refactoring tasks. Hit Alt + Shift +
S to launch a pop-up and then press a key to perform a specific task (this is
basically required for source code formatting, adding constructors, and so on):

To run a test or main program, press Alt + Shift + X and an option; for debugging,
just press Alt + Shift + D and an option:

TDD Tools and Frameworks

[136]

General settings
Press Alt + W + P to open the Preferences window. Use arrow keys—the right-arrow
key to maximize and the left-arrow key to minimize the window to visit the options
highlighted in the following screenshot. Typing is useful—check the following boxes
to automatically insert semicolons and end braces:

You can also configure other options to use in Eclipse.

Appendix A

[137]

JUnit 4.x
JUnit is a unit testing framework for Java. It allows developers to unit test code
elegantly. The latest version of JUnit 4 (Version 4.11) can be downloaded from the
following link:

http://junit.org/

Inheritance in Java is not a smart thing to implement. You cannot extend more than
one class.

Previous versions of JUnit had the following drawbacks:

•	 Test classes had to extend the TestCase class
•	 We used public methods for setup and teardown; signatures and names

were hardcoded
•	 Every test method had to start with a name such as test<Name>

JUnit 4 is annotation based. Any public method, to act as a setup or teardown,
just needs to annotate with @Before or @After. Any method, to act as a test
method, just needs to annotate the method with @Test. It provides two more
annotations—@BeforeClass and @AfterClass. Moreover, there is no need
to extend from TestCase; any POJO class can be a test case.

Running the first unit test
Open an Eclipse project, add the JUnit 4.0 JAR files to the project classpath,
and create a simple class named JUnit4Test.java.

Add a public void method and annotate it with the @Test annotation (import org.
junit.Test;):

 @Test
 public void myFirstTest() {
 System.out.println("Executing myFirstTest");
 }

Run the test from Run | Run As | JUnit Test or press Alt + Shift + X and then
press T.

It will execute the method and print Executing myFirstTest.

TDD Tools and Frameworks

[138]

Now add two static public void methods and annotate one with @AfterClass
and the other with @BeforeClass. Add a default constructor and put the sysout
comment. Now run the test again. It will first execute the static method with
the @BeforeClass annotation and then the constructor, then the test, and finally
the @AfterClass method.

Add two more public methods. Annotate one with @Before and another
with @After. Now run the test—it will execute @Before before every test
and @After after every test.

The following is the output from the console:

@BeforeClass is invoked once

 Constructor is invoked

@Before is executed...

Executing myFirstTest [test first may get executed after test second]

@After is executed...

 Constructor is invoked

@Before is executed...

Executing mySecondTest[test second may get executed before test first]

@After is executed...

@AfterClass is invoked once

@Before and @After are used to set up data for testing and cleaning up, such as
acquiring a database connection in the @Before method and closing the connection
in the @After method.

Exception handling
The @Test annotation takes an argument expected=<<Exception class name>>.
class.

To test a negative test condition, exception handling in the unit test is very
important. For example, if an API needs three not-null objects and the caller passes
a null argument, the API should throw an exception complaining that the caller is
violating the contract. This condition can be easily tested using the JUnit 4 expected
feature. If the API doesn't throw an exception, the test will fail:

 @Test(expected= IllegalArgumentException.class)
 public void exception() {
 throw new IllegalArgumentException();
 }

Appendix A

[139]

The test suite
To run the test suite or multiple test cases, JUnit 4 provides Suite.class. @Suite.
SuiteClasses takes comma-separated test classes as follows:

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
@RunWith(Suite.class)
@Suite.SuiteClasses({JUnit4Test.class, My2ndTest.class})
public class JunitSuit { }

Ignoring a test
Use @Ignore (the reason being, why wouldn't you want to ignore?)

Asserting a value
JUnit provides the Assert class with many static methods to compare expected
and orginal values. Suppose there is a class called Calculator that takes two int
parameters, adds the values, and returns the result. If you want to test this, you can
pass value 1 and 2 to the add() method and expect that 3 will be returned:

 @Test
 public void assertMe() throws Exception {
 int expected = 1+2;
 assertEquals(expected, new Calculator().add(1, 2));
 }

TDD Tools and Frameworks

[140]

If the logic in the Calculator class is wrong, the test will fail. In the following code
snippet, the Calculator class does not add two arguments, but returns only parameter
a. This is wrong; it should add the argument a and b and then return the result:

 class Calculator {
 public int add(int a, int b) {
 return a;
 }
 }

The unit test will complain and ask you to fix this; the preceding JUnit test will fail
as the test expects that the add() method will return 3, but, in reality, it returns 1.

Unit testing is not about testing all the methods of a class; rather, it
is about testing the behavior. A class can have multiple methods,
but it is up to you to write a proper test.

Summary
In this appendix, we've covered Eclipse basics and used keyboard shortcuts to
refactor code and expedite development. Also, we've learned about JUnit 4.x basics,
used the JUnit 4.x framework to write Java unit tests, and used JUnit 4.x annotations.

In the next appendix, we will cover agile practices—continuous integration and
agile methodologies.

Agile Practices
In this appendix we will cover the following topics:

•	 Continuous integration
•	 Jenkins as a continuous integration tool
•	 Agile development methodologies—Scrum and Kanban

Exploring continuous integration
Continuous integration is an eXtreme Programming (XP) concept. It was introduced
to prevent integration issues. Developers commit code periodically and every commit
is built. Automated tests verify whether everything is integrated or not. It helps in the
incremental development and periodic delivery of the working software.

Continuous integration is meant to make sure that we're not breaking something
unconsciously in our hurry. We want to run the tests continuously and we need to be
warned if they fail.

In a good software development team, we'd find TDD as well as CI.

For continuous integration, you need a common code repository to store files
(such as SVN, Rational ClearCase, CVS, Git, and so on.), automated builds, and tests.

Every developer works with a local copy of the common code repository and when
he is done, he commits his changes to the common repository. Then the automated
build process builds the change on the common repository, automated unit tests run
and flag error if anything is broken.

If a code compilation or test fails, the developer who made the change gets the
information and fixes the code. So, the turnaround time is very quick.

Numerous CI tools are available in the market, CruiseControl and Jenkins are the
widely used ones.

Agile Practices

[142]

Exploring Jenkins
Jenkins is an open source continuous integration tool written in Java. It runs on any
web container compliant with Servlet Specification 2.4. The new Apache Tomcat
server is an example of a web container with which Jenkins can be integrated as a
Windows service.

Jenkins supports plugins and various source control tools including CVS, SVN, Git,
Mercurial, and ClearCase. It can execute automated builds on ANT and Maven
projects. Jenkins is free (MIT license) and runs on any operating system.

To install Jenkins in your local machine follow the instructions in the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins

Once Jenkins is installed, we will apply the following steps to configure a project.

Configuring Jenkins
Once Jenkins is up and running, the user can access the URL and configure Jenkins
to start continuous integration.

Adding a build job
To setup an automated build process the user has to configure a job. Click on the
New Job hyperlink to add a new project type. As of now, Jenkins supports five
types. The following screenshot displays the types:

Appendix B

[143]

Choose the first option Build a free-style software project.

In the New Project page, enter the project name and select the default selections.
The following screenshot shows the screen we use for creating a new project:

Agile Practices

[144]

Source code management
Jenkins needs to know about the source file repository location to build a project.
There is a Source Code Management section for doing this. There, specify your
source code repository type and location. The following screenshot displays the
details of the Source Code Management:

Build triggers
Once the repository is configured, the build trigger can be set. Triggering a build can
be done in one of the following ways:

•	 Triggered by file commit (existing file changed, new file added or deleted)
•	 Triggered when another build is complete
•	 Scheduled to run after a specific amount of time

The following screenshot displays the options:

Scripting
By default, Jenkins supports four types of project build scripts: Ant, Maven, Batch
file, and Shell. More plugins can be downloaded to get more options. The following
screenshot shows the default options:

Appendix B

[145]

Post-build actions
Jenkins provides the liberty to execute another project or send e-mail or many other
post-build execution options. Plugins are available to enable other options. For
example, the Amazon Web Services environment provides the S3 bucket option.

Suppose we have Java project module A and another module B such that B depends
on A. We can create two separate Jenkins jobs, and after executing project A we can
set post-build action as build another project.

Jenkins provides an option for SMTP setup. Once set up, Jenkins can send e-mails to
the recipients after every successful/failed build.

The following screenshot shows the post-build options:

Agile Practices

[146]

Security
If the Jenkins URL is not secured, anybody can browse the URL and start or stop a
build. Also, there is a risk of deleting a project.

Jenkins supports LDAP-based authentication and authorization. We can install
plugins for the custom user store. The following screenshot shows the options:

Revealing Agile methodologies
Agile is a software development methodology. As the name suggests, it is quick and
supports ease of change. Agile is an idea supported by a set of values and beliefs.

Waterfall or sequential project development process is unpredictable; prediction
doesn't have any base, it is mostly done using someone's experience or guess work.
For example, in waterfall, project management commits to a customer that software
will be delivered within 12 months; but in reality, PM doesn't have any base to
predict this and the predictions fail.

Agile is more predictable—it is iterative and incremental. In Scrum, an iteration is
called a sprint.

Sprint time varies from a couple of weeks to a couple of months. To learn more
about the Agile manifesto, visit the following website:

http://agilemanifesto.org/

Working with the Scrum methodology
Scrum is a very popular implementation of the Agile methodology. Scrum manifests
for a self-organized team, continuous feedback, incremental build, and testing.

Appendix B

[147]

To achieve this, software requirements are broken into small testable pieces. Each
testable requirement piece is called a user story. A group of stories is called an epic,
a group of epics called a feature.

A story description is self-explanatory.

Here is an example of a story: "As an admin user I can log in to the admin console".
Each story must have an acceptance test associated with it. Acceptance tests are the
criterion of acceptance. Following is an example of AT:

•	 Log in with admin user credentials, admin menu should be visible
•	 Log in with normal user credentials, admin menu should not be visible

Before accepting a story, testers verify the software and check if ATs are met. If
development or testing is blocked for an issue, the team focuses on resolving the
issue. At the end of each sprint, stories are demonstrated to customers and feedback
is taken.

Roles
Scrum is a type of nonbureaucratic management. Instead of someone outside,
the team decides what will be delivered.

Scrum comes up with three roles:

•	 Product manager: The manager shadows customers and provides what
they require

•	 Scrum master: The Scrum master facilitates the team
•	 Scrum team: The team consists of analysts, architects, developers, testers,

tech writers, and so on

Meetings
Scrum doesn't advocate for long meetings. Although it defines five meetings:

•	 Backlog grooming: Customers (including the product manager) come up
with user requirements. Before each sprint, the product backlog is created or
modified based on customer requirements.
During backlog grooming meeting, requirements are understood and big
requirements are broken into epics and testable user stories.
The team also carries out complexity estimation (aka T-shirt size of the story).
Pointing range is a Fibonacci series—1, 2, 3, 5, 8, 13,...

Agile Practices

[148]

Here, 1 represents a very trivial number or a least complex task. 2 means
complexity of work is twice as of 1.
Team decides what 1 is, it could be adding a widget to an UI for display or a
SQL to fetch data.

•	 Sprint planning: Sprint planning is scheduled at the beginning of the sprint.
The product owner explains what are the real business import features for
the customers, and then the team decides what the epics/stories do, which
will be included in the coming sprint. The team considers the T-shirt size.
Finally the team pulls in stories from product backlog to sprint backlog.

•	 Daily stand-up meeting: Every day the Scrum team members spend a total
of 15 minutes reporting to each other. The agenda is for summarizing the
work of the previous day, current day, and to determine whether any help is
required (due to any impediment).
Each team member speaks about his/her status. As the name suggests,
standing up at the meeting helps to reduce the time. The meeting should not
exceed more than 15 minutes. If anyone is blocked or anything critical
needs to be resolved, then only the required members meet again after the
stand-up meeting.

•	 Sprint review: After a Sprint ends, the team holds a sprint review meeting to
demonstrate a working product to the product owner and the stakeholders.
After the demonstration, the product owner reviews the sprint backlog
(created during the planning) and declares which items are considered
as complete.
If anything was committed but not done, team provides the explanation
to all stakeholders for the slippage.

•	 Retrospective: Reflection in the mirror tells you who you are. In the
retrospective meeting, the team reflects on its own process, inspects
behavior/process, and takes action for future sprints.

Each member, not mandatorily, speaks about things that went wrong, went
fine, and those that made him/her mad.
The Scrum master helps to identify the owner of each item and owner takes
action. One example could be that white board/projector/meeting rooms
weren't available for critical technical walkthrough. Someone can take this
item and work with office administrators to allocate a dedicated meeting
room for the team.
Another example could be that analysts spoke about many things but did
not document them.

Appendix B

[149]

The story board
Scrum teams keep a board with working stories. This board reflects the status of the
team. The board contains many columns, such as On Deck/TO-DO, Analysis Active,
Analysis Done, Development, Development Done, Testing, and Done. You can visit
scrumy.com to get a clearer picture.

TODO represents the stories accepted by the team, Analysis active shows that
stories are being worked on by the business analysts, Analysis Done represents
stories that will be picked up by the developers, developers work on Development
stories, Testing column represents stories being tested by the testers, and the Done
column represents stories accepted by the team.

The following figure represents a story board:

Exploring the Kanban development process
Kanban is a highly efficient way of managing software development processes.

The software development process mainly consists of three key things: analysis,
development, and testing. The progress of the process depends on the progress
of these three areas. If analysts deliver five features in a week, developers code 10
features in a week; but testers can test only two features per week, then the output
of the software process is two features per week.

In the preceding example, if analysts and developers keep delivering five
and 10 features respectively, then after the second week testing will block
16 (20 - 4 = 16) features.

Here, testing is the bottleneck. So the progress of the software development process
is the progress of the bottleneck.

Agile Practices

[150]

The Kanban process helps to resolve the bottleneck, it introduces a work-in-progress
(WIP) limit. Kanban has a story board and each swim lane in the board has a
work-in-progress limit.

These work-in-progress limits are the critical difference between a Kanban board and
Scrum story board. Limiting the amount of work-in-progress at each step prevents
bottlenecks dynamically.

Development can have a maximum work-in-progress limit. Once maximum features
are code, the developers cannot take any more features. Instead, they will help in
testing. Hence, the software development flow is not stuck. Similarly, analysts will
help with testing when done with analysis.

In the preceding example, testing was a bottleneck. But in a real project, a bottleneck
could be development, analysis, or testing.

The main theme is to control the flow and resolve bottlenecks. Visit the following
URL to get a feel of a Kanban story board:

https://kanbanflow.com

The following figure represents a Kanban story board with a WIP limit:

The following figure represents a Kanban board with a WIP limit exceeded:

Appendix B

[151]

Summary
In this appendix we covered continuous integration, Jenkins as a continuous
integration tool, and Jenkins project configurations.

Also, we uncovered Agile development methodologies, Scrum development
methodologies, user stories, epics, roles in a Scrum team, Scrum meetings, story
board, Kanban methodology, WIP limits and tools.

Index
Symbols
@After annotation 51
@After method 138
@Before annotation 51
@Before method 138
@Test annotation 138

A
Acceptance Test-Driven Development. See

ATDD
activate() method 27
addConnection() method 26-31, 34
add() method 22, 24, 25, 47, 139
agent classes 35, 36
Agile 146
Agile manifesto

URL 146
Answer class

used, for stubbing with callbacks 81-83
application

building 93-108
ArgumentCaptor method 103
argument matcher

rationale 76, 77
wildcard matchers, need for 77

ArgumentMatcher class 78, 79
arguments

capturing 88
ArrayList object 49
ATDD

about 54
example 54-58

B
Backlog grooming 147
bad design

characteristics 109, 110
bill() method 22-30
buildCommand() method 115
build job

adding 142, 143
buildName() method 32-37
build trigger

setting 144
BusinessObject class 124

C
calculate() method 10, 11
code smell

about 26
agent classes 35, 36
comment 33
dead class 37
dead code 37
duplicate code 31, 32
large classes 34
lazy 37
long methods 33, 34
over engineering 38
parameter list 33, 34
switch statements 26-30
wrong inheritance 38

collaborator class 61
command

conditional logic, replacing with 113, 114
Command interface 114

[154]

command pattern
applying 114, 116

comment 33
conditional logic

replacing, with command 113, 114
replacing, with strategy 116

consecutive calls 81
constants

creating 134
consultant class 57
continuous integration

exploring 141
create method 119
createTxDto(...) method 102
cusmoter requirements, Mockito 92

D
Daily stand-up meeting 148
dead class 37
dead code 37
design patterns

about 112
classifying 112
command pattern, applying 114-116
conditional logic, replacing with command

113, 114
conditional logic, replacing with strategy

116
design principles

about 110
higher level design guidelines 110
low-level design principles 110, 111

DirtyState 124
discount() method 70
dispense() method 63
doReturn()

using 84-86
dummy, test doubles 62
duplicate code 31, 32

E
EasyMock

URL 88

Eclipse
discovering 131
URL 131

encounter, TDD 46-52
epic 147
equals() method 41, 88
exception handling 138
external dependency 91
extract method 132
eXtreme Programming (XP) 141

F
fake, test doubles 63, 64
feature 147
files

switching 134
find() method 47, 48

G
general settings 136
generateBillFor() method 27
getAllEncounters() method 128
getItemsExpireInAMonth() method 73
getQoute method 83
getSimpleJdbcTemplate() method 64
getters/setters

generating 134
getValue method 77
GOD object. See large classes

H
hashCode() method 41
healthcare vocabulary, TDD 45
higher level design guidelines 110

I
initialize method 126
inside-out

about 58, 59
advantages 59
disadvantages 60

Inversion of Control (IoC) 111
issueDiscountForItemsExpiresIn30Days()

method 72

[155]

J
Jenkins

configuring 142
exploring 142
installing, URL 142

Jenkins, configuring
build job, adding 142, 143
build trigger 144
post-build actions 145
project build scripts 144
security 146
source code management 144

jMock
URL 88

JUnit
about 137
drawbacks 137

JUnit 4
URL 137

JUnit 4.x
about 137
exception handling 138
test, ignoring 139
test suit 139
unit test, running 137, 138
value, asserting 139, 140

JUnit framework
URL 8

K
Kanban development process

exploring 149
Kanban story board

URL 150

L
large classes 34
legacy code

about 121
disadvantages 122
refactoring 124-128

legacy puzzle
dividing into 122, 124

long methods 33, 34
low-level design principles 110, 111

M
Medical Record Number. See MRN
meetings

Backlog grooming 147
Daily stand-up meeting 148
retrospective meeting 148
Sprint planning 148
Sprint review 148

Mockito
about 67, 128-130
applying 91, 92
consecutive calls 81
drinking 69-74
need for 67, 68
URL 67

Mockito, applying
application, building 93-108
cusmoter requirements 92

mock, test doubles 64
MRN 45

O
objects

spying 83, 84
org.junit.Assert class 10
outside-in

about 53
advantages 58
ATDD example 54-58
disadvantages 58

over engineering 38

P
parameter list 33, 34
PersonName object 34
post-build actions, Jenkins 145
procedure, TDD 45
project build scripts, Jenkins 144
protected method 127
public method 51

[156]

Q
Q2HS 45
quality assurance (QA) 13
Quickest Quality Health Service. See Q2HS

R
rationale, argument matcher 76, 77
rationale, redundant invocation 75, 76
reconcile() method 93, 94, 98, 100
redundant invocation

rationale 75, 76
verifying 75

refactoring
about 14-17
avoiding 19
code smell 26
constants, creating 134
extract method 132
files, switching 134
getters/setters, generating 134
need for 17, 18
resource, inlining 134
resource, moving 133
resource, renaming 133
scheduling 18
shortcuts 132-135
stopping 19-26

ReportDisptacher class 59
resource

inlining 134
moving 133
renaming 133

retrospective meeting 148
roles, Scrum 147

S
Scalatest

URL 8
Scrum methodology

meetings 147-149
roles 147
working with 146

security, Jenkins 146
ServiceCatalogue class 50

service catalogue, TDD 45
setUp() method 51
SortingAlgorithm interface 117
source code management, Jenkins 144
sprint 146
Sprint planning 148
Sprint review 148
static method 127
StockBroker.getQoute method 78
Stock object 82
strategy

conditional logic, replacing with 116
strategy pattern

about 117-119
components 117

Stubbing
with callbacks, Answer class used 81-83

stub, test doubles 62, 63
switch statements 26-30

T
takeAction method 83
TaxCalculator class 10
TDD

about 45
defining 45
encounter 46-52
healthcare vocabulary 45
MRN 45
procedure 45
process 13, 14
service catalogue 45

teardown() method 51
Template method 33
test

about 7-13
ignoring 139

test doubles
categories 61
dummy 62
fake 63, 64
mock 64
stub 62, 63

Test-Driven Development. See TDD
test method 11

[157]

V
value

asserting 139, 140
verify() method 57, 73
Void methods

working with 87

W
wildcard matchers

need for 77
wrong inheritance 38

test suit 139
test types 41-44
ThreeGConnection class 27
Throwing Exceptions 80
TODO 149

U
unit test

rules 68
running 137, 138

user story 147

Thank you for buying
Test-Driven Development with Mockito

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Mockito
ISBN: 978-1-78216-797-6 Paperback: 66 pages

Learn how to create stubs, mocks, and spies, and
verify their behavior using Mockito

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Stub methods with callbacks

3.	 Verify the behavior of test mocks

4.	 Assert the arguments passed to functions of
mocks

Instant RSpec Test-Driven
Development How-to
ISBN: 978-1-78216-522-4 Paperback: 68 pages

Learn RSpec and redefine your approach toward
software development

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Learn how to use RSpec with Rails

3.	 Easy to read and grow examples

4.	 Write idiomatic specifications

Please check www.PacktPub.com for information on our titles

Robot Framework Test Automation
ISBN: 978-1-78328-303-3 Paperback: 98 pages

Create test suites and automated acceptance tests
from scratch

1.	 Create a Robot Framework test file and a test
suite

2.	 Identify and differentiate between different test
case writing styles

3.	 Full of easy- to- follow steps, to get you started
with Robot Framework

Jasmine JavaScript Testing
ISBN: 978-1-78216-720-4 Paperback: 146 pages

Leverage the power of unit testing to create bigger
and better JavaScript applications

1.	 Learn the power of test-driven development
while creating a fully-featured web application

2.	 Understand the best practices for
modularization and code organization while
putting your application to scale

3.	 Leverage the power of frameworks such as
BackboneJS and jQuery while maintaining the
code quality

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Familiar with TDD
	Definition of test
	The big picture
	Refactoring
	Summary

	Chapter 2: Refactoring – Roll the Dice
	Refactoring
	Reasons behind refactoring
	Refactoring schedule
	When not to refactor?
	Stopping refactoring
	Code smell
	Switch statements
	Duplicate code
	Comments
	Long method and parameter list
	Large class (aka GOD object)
	Agent classes
	Lazy, dead class and dead code
	Over-engineering (speculative generality)
	Wrong inheritance (refused bequest)

	Summary

	Chapter 3: Applying TDD
	Understanding different test types
	Understanding TDD – a real-life example
	Definition
	Common healthcare vocabulary
	Procedure
	Service catalogue
	MRN
	Encounter

	Summary

	Chapter 4: Understanding the Difference between Inside-Out and Outside-In
	Understanding outside-in
	Example of ATDD
	Understanding advantages and disadvantages of outside-in

	Understanding inside-out
	Understanding advantages and disadvantages of inside-out

	Summary

	Chapter 5: Test Doubles
	Categories of test doubles
	Dummy
	Stub
	Fake
	Mock

	Summary

	Chapter 6: Mockito Magic
	Mockito overview
	Why should you use Mockito?

	Qualities of unit testing
	Drinking Mockito
	Verifying redundant invocation
	Rationale

	Argument matcher
	Rationale
	Why do we need wildcard matchers?
	The ArgumentMatcher class

	Throwing Exceptions
	Consecutive calls
	Stubbing with callbacks – using the Answer class
	Spying objects
	Using doReturn()
	Working with Void methods
	Argument capture
	Summary

	Chapter 7: Leveraging the Mockito Framework in TDD
	Applying Mockito
	Customer requirements
	Building the application

	Summary

	Chapter 8: World of Patterns
	Characteristics of a bad design
	What are the design principles?
	Design patterns
	Classification of patterns
	Replace conditional logic with command
	Apply a command pattern

	Replace conditional logic with strategy
	Strategy pattern

	Summary

	Chapter 9: TDD, Legacy Code,
and Mockito
	What is legacy code?
	Problem with legacy code
	Diving into the legacy puzzle
	Refactoring legacy code
	The role of Mockito
	Summary

	Appendix A: TDD Tools and Frameworks
	Discovering Eclipse
	Useful keys for TDD and refactoring
	General settings
	JUnit 4.x
	Running the first unit test
	Exception handling
	The test suite
	Ignoring a test
	Asserting a value

	Summary

	Appendix B: Agile Practices
	Exploring continuous integration
	Exploring Jenkins
	Configuring Jenkins
	Adding a build job
	Source code management
	Build triggers
	Scripting
	Post-build actions
	Security

	Revealing Agile methodologies
	Working with the Scrum methodology
	Roles
	Meetings
	Story board

	Exploring the Kanban development process

	Summary

	Index

