
[1]

www.allitebooks.com

http://www.allitebooks.org

Unreal Engine
Game Development
Cookbook

Over 40 recipes to accelerate the process of learning
game design and solving development problems using
Unreal Engine

John P. Doran

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unreal Engine Game Development Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1271015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-816-3

www.packtpub.com

Cover image by John P. Doran

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
John P. Doran

Reviewers
Katax Emperore

Dennis Glowacki

Devin Sherry

Commissioning Editor
Edward Bowkett

Acquisition Editors
Reshma Raman

Owen Roberts

Content Development Editor
Rohit Kumar Singh

Technical Editor
Chinmay S. Puranik

Copy Editor
Swati Priya

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

John P. Doran is a technical game designer who has been creating games for over 10
years. He has worked on an assortment of games in teams comprising of just himself to over
70 students, mod, and professional projects.

He previously worked at LucasArts on Star Wars 1313 as a game design intern. He later
graduated from DigiPen Institute of Technology in Redmond, WA, with a BSc in game design.

He is currently working as a designer in DigiPen's research and development branch in
Singapore. He is also the lead instructor of DigiPen-Ubisoft Campus Game Programming
Program, instructing graduate level students in an intensive, advanced- level game
programming curriculum. In addition to that, he also teaches and assists students on various
subjects and gives lectures on C#, C++, Unreal, Unity, game design, and more.

He is also the author of Building an FPS Game with Unity, Unity Game Development
Blueprints, Getting Started with UDK, UDK Game Development, and Mastering UDK Game
Development, and has co-authored UDK iOS Game Development Beginner's Guide, all by
Packt Publishing. You can find more about him on his website, http://johnpdoran.com.

A big thank you goes to my brother Chris and my wife Hien for being
supportive and patient with me as I spent my free time and weekends
away from them to finish the book.

On that same note, I also want to thank Samir Abou Samra and Elie Hosry
for their support and encouragement while working on this book, as well as
the rest of the DigiPen Singapore staff.

Thanks so much to Owen Roberts who approached me to write again,
Rohit Kumar Singh for keeping me on track, as well as everyone else at
Packt, who were helpful, as always!

Last, but not least, I'd like to thank my family as well as my parents Joseph
and Sandra Doran, who took me seriously when I told them that I wanted
to make games for a living.

www.allitebooks.com

http://johnpdoran.com
http://www.allitebooks.org

About the Reviewers

Katax Emperore was born in January 1974. Since his childhood days, he loves board
games, science magazines, comic books, and graffiti painting. Katax was introduced to the
IT world when he got his first game platform, Fire Attack from the Game & Watch series by
Nintendo, back in the '80s. While spending hours on it, he became curious about the process
of creating games.

As a teenager, Katax owned Amiga 500 by Commodore on which he played hundreds of
games. However, one of the games stuck with him, Shadow of the Beast by Psygnosis.
He was enamored by the quality of graphics, music, and FX sounds involved in the game.
Katax realized that he would like to learn to create such games, and this was the first step.
Today, he can design and develop any game on various web pages and platforms.

The Amiga platform created a high-quality gaming experience supported by an advanced
hardware architecture that was way ahead of its time. It was a high-profile computer
with real stereo sound supported by the advanced Direct Memory Access technology for
multiprocessing. On this platform, Katax learned many aspects of programming, multitasking,
DMA, interactive applications, I/O port mappings, graphic design, and 3D. When Microsoft
introduced Windows 98, he got serious about programming, 3D, and graphic design, which
led him to base his education, and later his career, in the IT industry.

Around this time, Katax experienced live performance of digital visual art improvisation,
over music known as VJ performance. He was influenced by Jimi Hendrix's style of improvising
each track on a live stage. His style visualize forms, colors, and brightness of images and
videos, by playing live visual transitions over each pixel on the screen. Katax believes that it's
necessary for each game designer/developer to be a part of some art movement or activity
because it helps you in your career, both technically and spiritually.

www.allitebooks.com

http://www.allitebooks.org

Katax's favorite bands/artists include Klaus Schulze, Tangerine Dream, Hawkwind,
and Jimi Hendrix.

I am grateful to John Carmack from id Software for his efforts and great
work on 3D graphics programming. What he invented and developed back
in the '90s was the beginning of the wonderful genre of first-person shooter
games, which is my personal favorite. Also, I would like to thank Westwood
Studios for introducing the Command and Conquer (C&C) series to the
gaming world. This game pioneered many aspects of the modern real-time
strategy games, which later powered many subgenres in this area as well.
Great job, thank you!

Dennis Glowacki, with over a decade of experience rising from the modding and indie
community he released several Source and Unreal Engine projects before breaking into
the AAA industry where he contributed as an environment artist on Mortal Kombat X and
Battlefield: Hardline Premium. He has been awarded the titles of Unreal MVP and Unreal 4
Founder's Club member by Epic Games.

He has also worked on Source SDK Game Development Essentials by Packt Publishing and
How to Become a Video Game Artist by Watson-Guptill Publications, New York.

I would like to thank Trey McNair for all the pro tips he traded with me at
Electronic Arts and Rohail Leghari for making me a better teacher.

www.allitebooks.com

http://www.allitebooks.org

Devin Sherry is originally from Levittown on Long Island, New York. After graduating from
Island Trees High School in 2010, he studied game development and game design at the
University of Advancing Technology, where he earned his BA in game design in 2012.

During his time in college, he worked as a game and level designer with a group of students,
called Autonomous Games, on a real-time strategy-styled, third-person shooter called The
Afflicted using Unreal Engine 3/UDK. It was presented at GDC in 2013 at the GDC Play
Showcase. It is with this group of developers that he learned the valuable skillsets in the field
of game development using the Unreal technology.

Today, he works as an independent game developer, located in Tempe, Arizona. He works
on both personal and contracted projects. His achievements include the title Radial Impact,
which can be found in the Community Contributions section of the Learn Tab of Unreal Engine
4's Launcher and can be purchased on Steam. You can find his work on his YouTube channel,
Devin Level Design, where he educates viewers on game development within Unreal Engine
3, UDK, and Unreal Engine 4. He also works with the indie game development community on
various projects using the Unreal technology.

Whenever he can, he works in the field of technical support as well. In the realm of game
development, he has worked with groups such as Autonomous Games, Virtus Studios, and
Nordic Games to develop titles in both the independent and AAA sectors.

He has also co-authored Unreal Engine 4 Physics Essentials by Packt Publishing.

I would like to thank my parents, my brother, and my friends for supporting
my work and passions. I dedicate my work for this book to my nana. Thank
you, everyone, for the love and support.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Getting Acquainted with the UE4 Interface	 1

Introduction	 1
Installing UE4 and folder structure	 2
UI overview	 6
Navigating the viewport	 10
The Content Browser overview	 11
Importing your own content	 14

Chapter 2: Level Design – Building Out Levels or Greyboxing	 17
Introduction	 17
Building a room	 18
Building out a level	 28
Applying materials to geometry brushes	 39
Converting brushes to static meshes or volumes	 42

Chapter 3: Creating Quality Interior Environments 	 49
Introduction	 49
Placing static meshes	 50
Placing a particle system	 53
Using Groups	 54
Meshing an example map	 58
Adding life to static meshes	 68

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Building the Great Outdoors – Exterior Environments	 71
Introduction	 71
Creating a landscape	 72
Building an exterior level using the Sculpt mode	 77
Creating rivers with the Flatten tool	 80
Placing trees and rocks using the Foliage tool	 86
Streaming levels	 95

Chapter 5: Lights, Camera, Action – Cinematics	 101
Introduction	 101
An introduction to Matinee 	 101
Creating an opening cutscene	 104
Playing a Matinee via Blueprints	 112
Preventing a player from moving via cinematic mode	 116

Chapter 6: Lighting and Shadows	 121
Introduction	 121
Lighting overview – learning the types of lights	 121
Adding moveable lights – flashlight, part 1	 129
Creating a Day/Night cycle	 132

Chapter 7: Art Pipeline – Working with Materials	 143
Introduction	 143
Creating a custom material	 143
Creating a mirror material	 150
Using Textures and normal maps with Materials	 153
Creating glowing materials with static emissive lighting	 161
Seeing through walls	 165

Chapter 8: Blueprint Scripting – Level Effects	 171
Introduction	 171
Building a flickering light	 172
Converting from Level to Class Blueprints	 181
Using Trigger Volumes – opening a door using Matinee	 187
Adding to an existing Blueprint – flashlight, part 2	 198
Creating a Health/Damage system, part 1 – taking damage	 206

Chapter 9: C++ Programming – Gameplay	 215
Introduction	 215
Setting up your development environment	 216
Displaying text during runtime	 224
Networking 101 – creating collectables with networking	 229
Saving or loading games and keyboard input with C++	 242
Creating custom blueprint nodes	 248

iii

Table of Contents

Chapter 10: User Interface	 255
Introduction	 255
Creating a Health/Damage system, part 2 – creating a healthbar	 256
Dynamic enemy healthbars	 262
Creating a main menu	 273
Animating a menu 	 280

Chapter 11: Publishing and Deployment	 287
Introduction	 287
Packaging your project	 287
Creating an installer for Windows	 292

Index	 301

v

Preface
Unreal Engine 4 (UE4) is a complete suite of game development tools made for game
developers by game developers. A truly powerful tool for game development, there's never
been a better time to use it for both commercial as well as independent projects.

Unreal Engine Game Development Cookbook explores the creation of real-time interactive
simulations or games. Key aspects of UE4 will be explored to make UE4 more accessible to
readers and gear them with the knowledge so that they can focus on creation, knowing where
they need to go if they run into issues.

What this book covers
Chapter 1, Getting Acquainted with the UE4 Interface, starts you off with learning Unreal
Engine 4's interface and explores the most commonly used aspects in development.

Chapter 2, Level Design – Building Out Levels or Greyboxing, puts readers in the shoes of a
level designer, building rooms and using materials to make them look nicer.

Chapter 3, Creating Quality Interior Environments, shows how you can polish your levels
using meshes and particle systems and teaches you how to mesh a map properly and work
with groups.

Chapter 4, Building the Great Outdoors – Exterior Environments, teaches readers about how
to work with terrain, add trees and rocks, build rivers, and stream multiple levels in the game
at once.

Chapter 5, Lights, Camera, Action – Cinematics, shows readers how to create an opening
cutscene, play matinees, and deal with player movements in videos.

Chapter 6, Lighting and Shadows, introduces different types of lights in Unreal Engine 4 and
teaches you how to make them mobile like a flashlight the player can carry. It also explains
how to create dynamic lighting with a day/night cycle.

Preface

vi

Chapter 7, Art Pipeline – Working with Materials, explores Unreal's art pipeline, teaching you
how to create a number of materials from a simple image and glowing mirrors, and makes you
see through walls.

Chapter 8, Blueprint Scripting – Level Effects, shows you various ways to use blueprints, the
visual scripting language of Unreal Engine 4. It teaches you how to build a number of things
from flickering lights to doors and flashlights.

Chapter 9, C++ Programming – Gameplay, introduces C++ programming in Unreal Engine 4.
It lets you create your own development environment and a basic gametype. It also explains
you how to work with networking, save and load games with keyboard commands, and create
custom blueprint nodes.

Chapter 10, User Interface, brings you some insight on Slate and the UMG Editor to create a
number of UI elements, including health bars and an animated main menu to tie your whole
game together.

Chapter 11, Publishing and Deployment, teaches you how to package your project and create
an installer for it to get it out into the world for others to play.

What you need for this book
For developing projects with Unreal Engine 4, it is recommended that your computer has the
following specifications:

ff A desktop PC or Mac

ff Windows 7 64-bit or Mac OS X 10.9.2 or later

ff Quad-core Intel or AMD processor, 2.5 GHz or faster

ff NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher

ff 8 GB RAM

UE4 will run on desktops and laptops below these recommendations, but performance may
be limited. While most of the recipes can be completed on Mac or Windows, the writer has
created them using a Windows machine.

Who this book is for
Unreal Engine Game Development Cookbook is intended for readers who are getting used
to Unreal Engine 4 and would like to have guidance when it comes to particular parts of the
engine. It also targets those who want a handy reference for brave beginners to learn at an
accelerated pace. Level designers can use this book to gauge their understanding of the
editor, check for specific problems, and discover gems they may not have come across before.

Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the
reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In this recipe
we will extend and customize the built in GameMode class to do just that!"

Preface

viii

A block of code is set as follows:

void ACookbook_Chapter9GameMode::StartMatch()
{
 Super::StartMatch();

 if (GEngine)
 {
 GEngine->AddOnScreenDebugMessage(-1, 10.0f,
 FColor::Yellow,
 "Hello World!");
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 /** Base look up/down rate, in deg/sec. Other scaling may
 affect final rate. */
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category=Camera)
 float BaseLookUpRate;

 // Saves the game
 void SaveMyGameFile();

 // Loads the game
 void LoadMyGameFile();

 // Called every frame
 void Tick(float DeltaTime);

protected:

 /** Called for forwards/backward input */
 void MoveForward(float Value);

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Switch to the New Project tab
and you'll be given a selection of various templates to use for projects."

Preface

ix

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/8163OT_ColorImage.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/8163OT_ColorImage.pdf
https://www.packtpub.com/sites/default/files/downloads/8163OT_ColorImage.pdf

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Getting Acquainted

with the UE4 Interface

In this chapter, we'll cover the following recipes:

ff Installing UE4 and folder structure

ff UI overview

ff Navigating the viewport

ff The Content Browser overview

ff Importing your own content

Introduction
UE4, created by Epic Games, is a robust game engine that contains several different
game development tools, which can create any kind of game imaginable, with many areas
for specialization. It would be good for newcomers to the Engine to first have a basic
understanding of what the entire Unreal Engine consists of and then dive into the different
areas that they are interested in.

These first recipes may seem a bit difficult for those who are unfamiliar with game
development, but after a short period of time, it will become second nature to them. In this
chapter, readers will gain some fundamental knowledge and have some awareness that will
help and prepare them for the upcoming chapters.

Getting Acquainted with the UE4 Interface

2

Installing UE4 and folder structure
Now, in order to use UE4 at all, we have to have it installed on our computer. Even after we
install it, we may also want an overview of what it is. In case you haven't installed it yet, here is
how you can do this.

How to do it…
Now that we have our project set up, let's get started with creating our player:

1.	 In the web browser of your choice, go to http://unrealengine.com.

http://unrealengine.com

Chapter 1

3

2.	 Once on this page, click on the light blue GET UNREAL button.

3.	 Once on the Join the Community page, fill out the information and create
your account!

It's important at this point to note the subscription plan that Unreal has for its
user. You need to pay a 5 percent royalty to Unreal for any games that you publish.
Of course, if the title is released for free, you don't need to pay anything.

Getting Acquainted with the UE4 Interface

4

If you happen to be a student who is 13 or above and are enrolled in a
degree or diploma granting course of study, GitHub has a pack of resources
for student developers that currently includes free subscription to Unreal
Engine 4 for a year. If you have a school-issued e-mail address, valid
student identification card, or other official proof of enrollment, check it out
at https://education.github.com/pack.
If you happen to be a teacher or school administrator, it may also
be possible to get access to UE4 for your school. Find out more at
https://www.unrealengine.com/education.

4.	 Once you are logged in to your account, make sure that you are on the Subscription
tab and then click on the Download button on the right-hand side of the screen for
the operating system of your choice (I am using Windows).

https://education.github.com/pack
https://education.github.com/pack
https://www.unrealengine.com/education
https://www.unrealengine.com/education

Chapter 1

5

If by chance you don't see the preceding screen, you can always get the
latest version of the software at https://www.unrealengine.com/
dashboard.

5.	 Next, once the installer has finished downloading, open it up and start the
installation. If you see a security warning, click on the Run button.

6.	 Go through the installation process, but make sure that the destination folder you're
installing it in has a lot of disk space as UE4 will take up around 8 GB of space for
each version that you have installed. Once the installation is complete, the Epic
Games Launcher should open. If it doesn't, open it from your desktop.

7.	 Once the launcher is open, fill in your e-mail and password and then click on the
Sign In button.

https://www.unrealengine.com/dashboard
https://www.unrealengine.com/dashboard

Getting Acquainted with the UE4 Interface

6

8.	 When you log in, the current version of UE4 will begin to download. Take a break
as this will most likely take a while. Once the download is finished, you can see the
Launch button lit up.

There's more…
Now that you have your UE4 installation completed, it's a good idea to see what actually
has been installed. For a definition of what all of these folders are used for, please
refer to https://docs.unrealengine.com/latest/INT/Engine/Basics/
DirectoryStructure/index.html.

UI overview
One of the hardest things to understand when first starting out with a tool is knowing how
to actually access all of the tools that are contained in the engine. Let's take a look at the
interface of the Unreal Editor.

https://docs.unrealengine.com/latest/INT/Engine/Basics/DirectoryStructure/index.html
https://docs.unrealengine.com/latest/INT/Engine/Basics/DirectoryStructure/index.html

Chapter 1

7

Getting ready
When you actually launch UE4 from the launcher, the first thing that you'll be brought to
is Unreal Project Browser. Switch to the New Project tab, and you'll be given a choice
of various templates to use for projects. For now, we'll stay with Blueprint visual scripting
and will create a Blank project with starter content included so that we can see some
stuff in the project. For the project's name, I have put UIOverview. Once finished,
click on Create Project.

Getting Acquainted with the UE4 Interface

8

How to do it…
Now that we have our project set up, let's get started and see what the editor looks similar to:

1.	 Once the project is opened, close the tutorial popup that comes up (if it does).
This new window that's opened is referred to as the level editor, which is the core
of content creation in UE4. Here, you can see the default interface layout:

2.	 At the top-left of the editor, you can see the Modes tab, which contains
various tool modes to allow you to put things into the world, such as BSP brushes,
painting, and foliage and terrain. Below this, you can see the Content Browser tab,
which contains all of the models, textures, and data that make up our game worlds.
We'll be exploring this much more in The Content Browser overview recipe later in
this chapter.

3.	 In the center, the largest window that you see is the viewport , which is the actual
level that we are building. We will talk more about viewports in the Navigating the
viewport recipe.

Chapter 1

9

4.	 To the right of the window, you will see the Scene Outliner tab, which will display all
of the actors within our level. This is a useful tool for being able to find actors easily
as well as adding a parent/child relationship to objects. Below the Scene Outliner
tab, you'll see the Details tab, which contains information about whatever object is
currently selected in the level or the Scene Outliner tab. For each component on the
object, it will display the functionality for it, such as the transform and the materials
the object uses.

5.	 At the top, you'll see the tab bar, which will show the name of your project as well as a
tab for the level that you currently have running with its name.

6.	 Below this, you'll see the menu bar that will provide access to general tools and
commands:

�� The File menu lets you save and open maps as well as projects. It also
allows you to import/export actors.

�� The Edit menu allows you to copy and paste actors as well as configure
properties in the editor. In this menu, users can configure Editor and Project
Settings as well. It is in these settings that let you create the icons for the
game launcher, set up input actions for your game type, and so on.

�� The Window menu allows you to toggle visibility of the various things that
UE4 contains and save or reset your layouts.

�� The Help menu has a number of additional resources to help make working
in UE4 as painless as possible.

7.	 On the right-hand side of the menu bar, you'll see a search bar that you can use to
look for help. The far right of the bar shows whether you are currently connected to
source control through Subversion (SVN) or Perforce, which would be useful when
you're in teams.

8.	 Finally, below this in the center is the toolbar that contains a group of commonly used
shortcuts to make it easier to find certain things.

For more information on the default interface, check out https://docs.
unrealengine.com/latest/INT/Engine/UI/LevelEditor/
index.html.

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/index.html

Getting Acquainted with the UE4 Interface

10

Navigating the viewport
Now that we have an understanding of what the UI actually is all about, let's work with the
viewport and learn how to move around and use it.

How to do it…
To get started, let's first try to move around in the game world a bit by using just the mouse:

1.	 Inside the viewport, with the left mouse button clicked and held, move your mouse
forward and you should notice the level moving as well. If you move your mouse
backward, you should notice that the camera is moving in the same way, and when
we move the mouse to the left and right, the camera turns, it doesn't move.

2.	 Holding the right mouse button and moving the mouse will rotate the viewport
camera in a similar manner to a First-Person Shooter (FPS) game. Moving the
mouse up and down will make the camera loop upward and downward. And, when we
move the mouse to the left and right, the camera behaves in the same manner.

3.	 Holding the middle mouse button (scroll wheel) and moving the mouse will pan the
camera in the direction you move it as if it is on a track.

You can adjust the speed with which the camera moves by modifying the Camera
Speed property in the top-right of the viewport to increase or decrease the amount
of movement you need to travel via the camera. Alternatively, holding the left or right
mouse button and scrolling the middle mouse button (wheel) will also change the
camera speed.

4.	 In addition to rotating the camera like an FPS game, when holding down the right
mouse button you can also use the W, A, S, and D keys to allow you to move just like
you would in an FPS in Spectator mode.

Chapter 1

11

If you're not a fan of the right mouse button, you can hold any other button
on the mouse and move. If you aren't a fan of the W, A, S, and D keys, you
can also use the arrow keys or 8, 4, 6, and 2 keys on the numpad.

5.	 You can also use the E and Q keys in order to rise or fall in the air and the C and
Z keys to zoom in and out, respectively, by changing the field of view (FOV). This
change in FOV is only temporary though as when you release the right mouse button,
it will reset back to normal.

6.	 The final way we can move through the viewport is very similar to how Maya users can
move around their models. We activate this mode by holding the Alt key. If we click
and drag, we will tumble around whatever is there in our current pivot in a similar
manner as we orbit around the pivot. Clicking on the right mouse button and dragging
will zoom the camera in and out of the pivot, while holding down the middle mouse
button and dragging will move the camera in the direction of the mouse movement.
We can change where our pivot is easily by selecting the object we want to move
around and then pressing the F key to focus on it.

For more information on moving around the viewport, refer to
https://docs.unrealengine.com/latest/INT/Engine/
QuickStart/2/index.html.

The Content Browser overview
The Content Browser is a central repository for creating, importing, and modifying all of the
content that we use within UE4. This contains all of the assets that our project is made of,
and it's important to have a good idea about how to use it.

Getting ready
This recipe assumes that you have a project open with the sample assets included. If you
do not have that yet, feel free to follow the instructions in the Getting ready section of the UI
overview recipe.

www.allitebooks.com

https://docs.unrealengine.com/latest/INT/Engine/QuickStart/2/index.html
https://docs.unrealengine.com/latest/INT/Engine/QuickStart/2/index.html
http://www.allitebooks.org

Getting Acquainted with the UE4 Interface

12

How to do it…
Now that we know how to move around the viewport, we will next want to get acquainted
with the Content Browser, which is what we use in order to import or modify contents for
our project:

1.	 By default, the Content Browser tab is docked in the lower-left corner of the main
Level Editor interface, but it can be redocked anywhere within the Level Editor or
floated as its own window. You can make it float as a separate window by clicking on
the Content Browser tab and dragging it off. If you have a second monitor, having
one for the Content Browser tab can often be a nice way to work as you'll often be
grabbing things from there and bringing them into the world when building levels.

2.	 Close the Content Browser tab by clicking on the X button in the top-right corner of it.
To bring it back, go to Window | Content Browser | Content Browser 1.

Alternatively, you can also click on the Content shortcut icon above the
viewport or press Ctrl + Shift + F to bring the Content Browser tab back.

3.	 You can snap the Content Browser tab back to where it was by dragging the tag over
it and releasing. You can also create multiple Content Browser tabs to allow you to
see multiple things at a time or to move assets between folders easily.

4.	 The interface of the Content Browser tab needs space to look nice. Move your
mouse over to the edge of the Content Browser tab and drag to extend it. Do the
same from the top. Next, double-click on the StarterContent folder to open it.

Chapter 1

13

5.	 The top section is called the navigation bar. It allows you to create, import, and save
assets on the left-hand side as well as to move through the different folders in a
similar way to a web browser.

6.	 Below this on the left-hand side is the sources view. This contains a list of all the
folders and collections inside the project, formatted in Folder Hierarchy. Extend the
StarterContent folder in the view to see all the folders.

7.	 Below this is the Collections view, which provides easy access to your created
collections. Collections are a way for us to organize assets into personally-defined
groups, such as all characters or environment meshes for a level. Unlike being in
a folder, you can think of all of the objects in a collection as being a reference or
shortcut to that content. This can be collapsed if you're not using it by clicking on the
icon to the left of the Collections text.

8.	 On the right-hand side, below the navigation bar, is the asset management area. This
is used mostly for filtering out files or searching for a particular asset that we will see
below in the asset view.

9.	 Below that is the asset view, which is the largest section of the UI. This is a grid
displaying all the items that meet the filter requirements in the navigation bar's folder.
Right-clicking on an asset or folder will show contextual options based on the objects.
All of the assets you see can be dragged and dropped into a scene easily by clicking
on the Shapes folder and dragging one of the objects into your scene.

Getting Acquainted with the UE4 Interface

14

10. You can also create new objects within the folder you have selected by right-clicking
on some open space and then selecting the desired asset from the menu.

11. In the bottom-right corner of the Content Browser tab, you'll see View Options.
Select it and notice that you can view these assets in three different styles. Go
through each of them and note the differences. Each of them have their own
advantages and disadvantages; it's good to know that they all exist. You can also
change the size of the thumbnails and this may be helpful as the number of objects
that you have increases.

In View Options, users can also see the game engine's contents by selecting Show Engine
Content. This will allow you to see all of the content included in the engine, by default, which
can be quite useful for creating content for the game projects of your own.

Importing your own content
Now that we have a good foundation on the Content Browser tab, let's start off by bringing in
some of our own content into the game.

Getting ready
This recipe assumes that you have a project open with the sample assets included. If you
do not have that yet, feel free to follow the instructions in the Getting ready section of the UI
overview recipe.

In addition, this recipe uses assets from the example code provided for the book. If you do not
have it, download it from the Packt Publishing site at http://www.packtpub.com

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

15

How to do it…
Let's start off by importing a simple model from the Content Browser tab.

1.	 Make sure that the Content Browser tab is at the Game folder and then click on the
Import button.

2.	 Once there, browse to the location where the example code of this chapter is placed
and open the Ship folder. Select the Ship.fbx file and then click Open.

3.	 You'll be prompted with an FBX import dialog, click on Import, and you should see
your new asset included in the Content Browser tab, accompanied by Materials that
was created to be used for the Ship model.

Getting Acquainted with the UE4 Interface

16

4.	 The other way to import assets is simply by dragging and dropping them into the
Content Browser tab. Let's do this by opening up our Ship folder in our operating
system and then dragging it onto the asset view of the Content Browser tab. You'll
notice that textures (images) do not have a dialogue like the model did.

5.	 Currently, all of the objects have a * in the bottom-left corner of their images.
This is because they are currently not saved to the project. Fix this by clicking
on the Save icon (blue floppy disk) in the Content Browser tab.

Alternatively, you may also right click within the Content Browser tab and then
navigate to Import to /Game to import assets into your scene from whatever folder
you are currently in.

17

2
Level Design – Building

Out Levels or Greyboxing

In this chapter, we'll cover the following recipes:

ff Building a room

ff Building out a level

ff Applying materials to geometry brushes

ff Converting brushes to static meshes or volumes

Introduction
In the game industry, there are two main roles in level creation: environment artist and
level designer.

An environment artist is a person who builds the assets that go into the environment.
They use tools such as 3ds Max or Maya to create the 3D model and then use other
tools such as Photoshop or Gimp to create textures, including diffuse and normal maps.

A level designer is responsible for taking the assets that an environment artist creates
and assembling them in an environment for players to enjoy. He/she designs the gameplay
elements, creates the scripted events, and tests the gameplay. Typically, a level designer
creates environments through a combination of scripting techniques and uses some tools that
may still be in development. In our case, that tool is Unreal Engine 4.

Level Design – Building Out Levels or Greyboxing

18

One thing that is important to note is that most companies have their own
definitions for different roles. In some companies, a level designer may need
to create assets, and an environment artist may need to create a level layout.
There are also some places that hire someone to just do lighting or place
meshes (called a mesher) because he/she is so good at it.

In this chapter, we will be exploring the topics that are relevant to the role of a level designer.

Building a room
Now that we have an understanding of the interface of UE4, let's start with creating one of the
most basic things, a room.

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 Open the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Unreal Project Browser window by selecting the
New Project tab. Select Third Person and make sure that With Starter Content
is selected. Give the project a Name (for this chapter, I am using Blueprints_
Chapter2). Once you are done, click on Create Project.

Chapter 2

19

How to do it…
Now that we have our project set up, let's get started with building the room.

1.	 With the editor open, we will first create a new level for us to work in. To do that, go to
the top-left corner of the screen and go to File | New Level… or press Ctrl + N.

2.	 From here, the New Level window pops up. Click on the Empty Level template, and
you will find an empty level to work with.

If you look closely and tilt downward, you should see a never-ending grid that fades
into the distance. This is a guide to help show you distances and make it easier to
work within a 3D environment.

3.	 Next, we will want to place some geometry into the world in which we can build out
our room. To start out with, we will create a box. To do so, under the Modes tab, in
the top-left corner, click on the place icon (the one on the far left that resembles a
cube and lightbulb) to switch to the Place mode if not there already.

For more info on the Place mode, refer to https://docs.
unrealengine.com/latest/INT/Engine/UI/
LevelEditor/Modes/PlaceMode/index.html.

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Modes/PlaceMode/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Modes/PlaceMode/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Modes/PlaceMode/index.html

Level Design – Building Out Levels or Greyboxing

20

4.	 Now select the BSP category on the left-hand side, below the mode icons. From
there, click and drag the Box button into the world. You may see it show up as some
red lines initially, but give it a minute, and you'll see the box appear on the screen,
as shown in the following screenshot:

If you don't happen to see the box, that's because, by
default, UE4 has the default lighting mode set to Lit, and
as there is no light, everything will be just black once the
lighting is built. You can switch to Unlit mode by going to
the top-left area of the Level window and clicking on the Lit
button and then selecting Unlit from the dropdown, or just
using the hotkeys—Alt + 3, for Unlit and Alt + 4 for Lit.

Once the box is created and selected, note the Details tab on the right-hand side.
This tab contains all the information about this brush that can be modified. If you
know what size your brush will be, this can be very useful.

Chapter 2

21

5.	 From Brush Settings under the Details tab, change the X and Y values of the brush
to 1000 and the Z value to 25.

This will create a room that is about 10 x 10 m with a width of 25 cm. Be sure to note
that it is Z that is the vertical axis inside the Unreal Engine. The X and Y values define
how large we want our room to be, but I used a Z value of 25 because inside normal
buildings, the joists or horizontal foundation supports between levels are about 10
inches (approximately, 25 cm) thick.

By default, 1 unit in Unreal Engine is equal to 1 cm. If you'd like to change this
or customize this value, you can go to Settings | World Settings and modify
the VR | World to Meters value to 100 (1 m is equal to 100 cm).

6.	 Now that we have a floor created, let's add a reference for us to work with. Under the
Content Browser tab on the bottom-left, go into the Character folder and drag and
drop the HeroTPP skeletal mesh onto the scene.

Having a character reference in the world makes it a lot nicer for us to see how the
sizes of objects relate to our player.

7.	 If we were to run the game now, we won't be able to see anything due to lack of light.
Let's fix this. Under the Modes tab, change the section to Lights and drag and drop
Directional Light into the level.

Level Design – Building Out Levels or Greyboxing

22

A directional light acts similarly to the sun; no matter where it's placed, it will modify
the objects in the area.

Effect of a directional light

8.	 The next thing we are going to do is to create walls for this room. To do this, let's first
drag another box into our world, this time placing it above our floor. Once created,
inside the Details tab, under the Brush Settings section, set X to 10, Y to 1000,
and Z to 300.

Creating levels based on real world locations can be an
excellent exercise for a budding level designer. Should
you want to do that, the real world walls normally have a
thickness of 12 for interior walls and 16 for exterior walls.

Chapter 2

23

9.	 Once finished, select the wall and use the transform gizmo (the three arrows) to move
the object over the ground of our room (if you don't see the arrows, press the W key,
and if you still do not see it, toggle Game Mode by pressing the G key) Once over it,
press the End key, and you should see the brush fall down to hit the floor. Once this
is finished, move the wall in the X and Y axis using the transform tool until it is flush
with the edge of the level, which is to say they should be placed next to each other.

Creating walls for a room

10.	 We can add a ceiling to our room very easily. Click on the floor that we've created,
hold down the Alt key and then drag the item by the blue arrow to be flush with
the top of our wall that we created previously.

You'll notice that with the ceiling placed, there are now shadows covering a good
portion of our level. If we want to be able to see in the room, we will need to add a
new light, a Point Light.

Level Design – Building Out Levels or Greyboxing

24

11.	 Back in the Modes tab in Place mode, go down to the Lights section and select it.
Once selected, you should see the Point Light option on the right-hand side.

12.	 Drag and drop Point Light into the center of the room. You'll see that we can see in
the room now!

Chapter 2

25

A Point Light works similar to how a lightbulb does in the real world, shining equally
in all directions from a single point.

Alternatively, you can create a point light by holding the L key
and clicking on the center of the room.
For more information on point lights, refer to https://
docs.unrealengine.com/latest/INT/Engine/
Rendering/LightingAndShadows/LightTypes/
Point/index.html.

13.	 Next, let's close this room. With the wall selected, create a duplicate to go to the other
side of the room by holding the Alt key and dragging it to the other side.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html

Level Design – Building Out Levels or Greyboxing

26

14.	 Next, we will place the other two walls. We could create another box like the one
we created before and give it different values, but in this instance, we will use the
rotation tool instead. Select one of the walls and hold the Alt key and drag the item in
the X axis (red). After that switch to the rotation tool (E) and then rotate the wall 90
degrees along the Z axis (blue).

The original wall has been duplicated and rotated

15.	 When you let go, change back to the Translate tool (W) and then move the wall to fit
the empty slot.

Chapter 2

27

You can also use spacebar to toggle through the transform,
rotation, and scaling widgets. You should be able to tell which
is which, based on the gizmo that shows up, and can just hit
the spacebar until you find the one you want.

16.	 Then, duplicate this newly created wall in order to close the gap. Now, to see what's
going on in the level, you'll need to move into the map. Once inside, right-click on the
floor and select Play From Here.

With that done, you now have a room that we can walk into!

If, by any chance, you fall from the edges of the surface, press Esc to exit
the game, switch your view from Perspective to Top, right-click on one of the
objects (walls or surface), press F to focus on that object and then, finally,
switch your view back to Perspective.
Alternatively, you can also double-click on any object in Scene Outliner to
zoom the camera to it.
It is also possible to create a room by creating a box with a size of 1010,
1010, and 300 with Hollow enabled and a Wall Thickness of 10, but you will
lose a lot of control for larger areas.

Level Design – Building Out Levels or Greyboxing

28

Building out a level
When I started using Unreal Engine, it took me a long time in order to create any type of new
level. I would keep placing static meshes to hide areas of geometry that I missed or added
in blocking volumes to make it actually possible to go through certain places. One of the key
reasons I had problems with this, is because I didn't know how to create a good workflow and
the key to mapping things very easily by using brushes in the Geometry Editing mode.

Getting ready
Minimize the Perspective viewport by clicking on the button in the top-right corner of the
viewport (circled in the following image):

You will then see four windows and notice a grid of sorts in all the other viewports.

Chapter 2

29

You can click on the same button in the top-right corner of any of the four
windows to maximize it.
When in a different viewport, controls work a bit differently. Most importantly,
right-clicking and dragging will pan the camera. For more information on the
differences, refer to https://docs.unrealengine.com/latest/
INT/Engine/UI/LevelEditor/Viewports/ViewportControls/
index.html.

We will be using the grid as a guideline in the creation of our levels in the same way that we
use paper to draw things out, which is something some level designers do to get the general
feel of an area. Starting to build a general area needs to have planning ahead of time to have
a general idea of how you want to place buildings and guide the traversal of the player.

Some keyboard tips
Holding the left mouse button and dragging will allow you to select all the objects that are
contained within it, which we refer to as a marquee selection. If you are in the Geometry mode,
this will let you select individual/overlapping vertices, allowing you to increase or decrease the
size of your brushes very easily which we will be using to create our environment.

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/ViewportControls/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/ViewportControls/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/ViewportControls/index.html

Level Design – Building Out Levels or Greyboxing

30

Another useful tip is if you press Ctrl and hold and drag the left mouse button anywhere in
a viewport, it will move the brush, actor, and/or vertices that you have selected from any
position. This is a good way to move objects that may not be far away or not have to move the
screen and don't want to use the widget that is usually by the object.

If you hold Ctrl + Shift while moving an object, your camera will move with you as well. This
can be really useful for repeating things in a certain direction.

Also, you can select multiple objects by holding Ctrl and then clicking on multiple objects.

Seeing double – duplicating elements
Duplicating things that we have already created, such as walls or buildings, are an effective
way of blocking out an environment very quickly.

I did this in the setup of the previous recipe by duplicating the room that
we created in the first section.

As what we care about most here is creating the best gameplay possible. We pay less
attention to fine details here and basically, want to just block out an area so that we can
iterate as quickly as possible. After all, you're a lot more willing to get rid of or change a huge
box than a ridiculously detailed office building.

After placing a single brush in our level, you don't really need the builder brush again. Unless
you are creating something other than a box, you can just duplicate brushes and mould them
using the Geometry Editing mode to quickly shape out areas that usually makes it much
quicker to build.

How to do it…
With the knowledge of how to start a workflow, we can create a level:

1.	 Create a new level by going to File | New Level… and from that window,
select Default.

2.	 The floor that currently exists in the game is actually a static mesh. We don't need
this, so let's get rid of it by selecting it and then pressing the Delete key.

3.	 Next, we are going to the Restore Viewport button on the top-right of the viewport to
get the four viewport split screens.

4.	 Once there, let's add a box for our foundation. Go to the Modes tab and select the
Place button and go to the BSP section. Once there, drag and drop the Box to the
viewport to bring it into the world. Once created, go to the Details tab and change the
Brush Settings—X to 5000, Y to 3000, and Z to 300.

Chapter 2

31

I intentionally made this really tall because later, I will
decrease the value of this brush to create a little area that my
player can safely get around, and thus, I will not need to worry
about them falling out of the world.

You may have noticed that when we move brushes around, they snap to certain
positions. This effect is known as grid snapping and the amount of space moved is
dependent on the Grid Snapping variable in the top-right of your viewport (by default,
it's 10).

5.	 Increase the grid size to 50 by clicking on the grid icon on the top-right of any
viewport and selecting 50 for the Snap Sizes value.

Another way to modify the grid space is by pressing the [and] keys in the editor that
will decrease and increase the grid snap points, respectively, making the level more
or less detailed in your brush placement. Some people will want to use a smaller
area, but I argue that when blocking something out, we really only care about the big
picture and getting the overall feel of the area.

In case your brush is not aligned to the grid, you can right-click on the vertices, and
it will automatically snap it onto the grid. Working with the grid is a fundamental way
of making sure that you don't get any holes and/or overlays of your brushes while
creating a level.

www.allitebooks.com

http://www.allitebooks.org

Level Design – Building Out Levels or Greyboxing

32

6.	 Now duplicate our current brush by selecting it and holding the Alt key and then from
the Front viewport, drag it one step (50 units) upward.

Duplicating the current brush upwards

7.	 Now, under the Modes tab, select the Geometry Editing mode, which is the furthest
on the right. You'll notice that the edges or vertices of the selected brush will be
larger than they were earlier. Select the two vertices on the left-hand side of the
Front viewport and drag it one step (50 units) inward.

Selecting vertices via Geometry Editing mode

Chapter 2

33

8.	 Do the same thing for the right side and the top of the brush. To do this for the top,
which is much larger than the others, zoom out, select them both and then zoom in to
do the movement.

9.	 Finally, we will need to move to the Top viewport. To do this, click on the Front
selection and select Top and then drag the top and bottom vertices one step
inward from here.

10.	 Finally, move back to the perspective view to see things clearly. Under the Details
tab, change Brush Type to Subtractive.

Level Design – Building Out Levels or Greyboxing

34

A subtractive brush is used whenever you want to remove solid space, such as when
you want to create a door or window. A nice change from Unreal Engine 3 is the fact
that subtractive brushes only carves out space from the earlier created additive
brushes so that we can place additional brushes on top of it.

The use of the subtractive brush

With this, we now have an area that our player can inhabit. The player can jump on
things that are approximately 200 pixels high, so we need to keep that in mind when
developing our platforms as these walls are 250 pixels tall.

Chapter 2

35

11.	 Go to the Scene Outliner tab on the top-right of the screen and then double-click on
the Player Start object to center your camera on it. This is where the player will
start the game from, so let's translate it to one of the edges of our map, pressing the
End key to make it land on the ground.

Note that on the Player Start object there is a light blue arrow
pointing in a direction. This is the direction that the player
will face when spawning. You can also use the rotation tool to
rotate it to make the player face the direction you want.

12.	 Now, we want to give the player some guidance on where to go, so I'm going to close
off some areas inside the level. Drag and drop a new box into the level. Give it a size
of 20, 200, 300 and put it flush up against the wall.

Level Design – Building Out Levels or Greyboxing

36

13.	 Once this is done, create another duplicate and leave some space to create an
opening for the player to walk through. Finally, duplicate the brush again, rotate it 90
degrees in the Z axis and then use the Geometry Editing mode in order to have it
fit the room by selecting the vertices using a marquee selection and then using the
translate tool to move them into place.

As a reminder, to do a marquee selection, click and drag some
empty space on your screen and create a box that will hold the
vertices you want to select. If you have a brush selected and you
are in the Geometry mode, it will only select vertices from there.

Creating walls with openings for a player to walk through

14.	 Next, let's build something a little more interesting, a staircase. We can do that
by going into the Modes tab, selecting Place, going to the BSP section and then
selecting Linear Stair and dragging it into the world and finally, placing it onto
the ground.

By default, there are 10 steps and each step is 20 units tall, so by default,
the stairs are 200 units tall.

15.	 From this staircase, we are going to create a path to a tower. Create another box to
create a walkway along the staircase. Make this walkway 1100 units long. Duplicate
the brush, rotate it 90 degrees along the Z axis, and have it go down only 700 units.

Chapter 2

37

16.	 Duplicate the walkway again and have it only 500 units long. In the little 500 x 500 x
600 area, we've created a box to fill that hole.

Level Design – Building Out Levels or Greyboxing

38

17.	 To create a path for the player to get up there, on the last created walkway, click on
the left-hand side vertices from the Front viewport and drag it up to match the new
tower. It should look similar to a ramp heading up there, making it easier for people to
add one final walkway to get up to there.

18.	 Once it's all put together, we should have something that looks similar to the
following image:

Chapter 2

39

19.	 In the Perspective viewport, it may be a bit hard to see what's going on. To help
with this, place an additional Directional Light into the world with its rotation in the
opposite direction of the Light Source object that is already there so that we can see
where the shadows are. With this in the Details tab, change the Light's Intensity
to 1. This is what's referred to as a fill light.

Placing an additional Directional Light as a fill light

We now have a firm basis with which we can build even more complex and interesting levels!

Applying materials to geometry brushes
Once you have your level blocked out, you'll probably want it to look better than just some
greyboxes. We can very simply add some life to our world by adding materials to the surfaces
of our brushes. Let's do this now.

Getting ready
This recipe assumes that you have a project open with the Sample Assets included as well as
a room created with Geometry Brushes (BSP). If you do not have that yet, feel free to follow
the instructions for the Building a room recipe.

Level Design – Building Out Levels or Greyboxing

40

How to do it…
Now that we have our room created, let's add some materials to it:

1.	 Inside the Content Browser tab, go to the StarterContent/Materials folder.
Here, you'll see a number of materials that we can apply to the surfaces in our world.
Select the M_Wood_Floor_Walnut_Polished object and drag it onto the floor
of our room.

You can already see how its making the room look a lot nicer. This works well for a
one-time event, and technically, we can do the same thing for the walls, however, it
can become quite tedious over time. Thankfully, there are some tools we can use to
make our lives easier.

2.	 Select one of the walls inside our room. Once there, go to the Details tab and under
the Geometry section, click on the Select dropdown menu and then select Select All
Adjacent Wall Surfaces.

Chapter 2

41

3.	 You should see lines along all of the walls in place. After this, let's select a material
to use for the walls (I am using M_Basic_Wall) and then back at the Details tab
under Geometry, click on the Apply Material dropdown menu and then select Apply
Material: M_Basic_Wall.

4.	 Finally, we will want to add a ceiling to our world. Select the M_Concrete_Tiles
material and drag it onto the ceiling.

This is a great starting point, but there are some other features you may want to be
aware of. For instance, this wooden floor looks fine, but maybe you want the planks of
wood to be larger. You can very easily do this by going into the Details tab, and under
Surface Properties, modifying the Scale value to 2.0 in the U and V directions and
then clicking on Apply.

Level Design – Building Out Levels or Greyboxing

42

You may also want the planks to face horizontally instead of vertically. To do this, click
on the 90 button in the Rotate: section. You can also move the textures a little at a
time in order to get it perfect using the Pan option.

We can now work with materials on our brushes.

Converting brushes to static meshes or
volumes

As level designers, we will often greybox our levels to playtest and make sure that a level is
fun and works correctly. Once we get to a point where the level is not going to change very
much, we give our environment artists a model with the environment and then they can go
in and make everything pretty with complex meshes or create pieces for us to build it out
modularly. The first thing we will be doing in this recipe is creating the mesh that we can give
to our artists. The second thing we will be learning is how to convert brushes into volumes. As
you may be aware, the high-poly meshes that our environment artists would create could be
very computationally expensive to check against collision with other objects at runtime. A trick
that we will often use is to convert the brushes into a blocking volume that will still have the
collision as we've been using and then filling the world with meshes to look the best it can.

Chapter 2

43

In addition, you may have something like a doorway, and when you enter the hall, you want
something to happen. We can use a Trigger volume for this. Rather than creating a trigger
volume and then scaling it, it would be much easier to just use the doorway brush as a base.

Getting ready
This recipe uses a level of two rooms connected via a hallway with a subtractive brush
opening the way, which should be easily completed if you followed the Building out a level
recipe. If not, you can open the 3-ConvertingBrushToVolume (Persistent) setup level and
use it for this task.

Level Design – Building Out Levels or Greyboxing

44

How to do it…
Let's first export one of these rooms so that we can give them to our artist to work with:

1.	 If you have not already, minimize the Perspective viewport by clicking on the top-right
minimize button in the viewport to go to the four-window default view. With this done,
select all of the brush actors in the right room by doing a marquee selection. You may
have to unclick on an object, such as a point light by holding the Ctrl key and then
clicking on them. Once you have only brushes selected, in the Brush Settings section
under the Details tab, click on the downward facing arrow to open up the advanced
options and then click on Create Static Mesh. You'll be given an option to name it (I
am putting Room_StaticMesh). Then, click on Create Static Mesh.

Chapter 2

45

2.	 Once this is done, if you go into the Content Browser tab and the Game folder, you
should see your Static Mesh there! Finally, we need to export it so that our artist can
open it. Right click on the mesh and then select Export and save it as an FBX file!

After this, you can give the model to your artist, and they will know the size of the
area that you've created!

It's important to note that after you turn something into a
static mesh, you cannot convert it back to brushes again, so
before doing this, I always suggest saving a copy of the level.

Another thing that we may want to do, is for something to happen when we enter the
hallway, so we will want to have a trigger volume in the position. Rather than creating
one from scratch, let's use our subtractive brush as a base.

Level Design – Building Out Levels or Greyboxing

46

3.	 Inside of the hallway you want to add the trigger to, click on a wall created by the
subtractive brush.

Selecting the subtractive brush

4.	 Next, create a duplicate of this brush by holding the Alt key and then dragging it out
somewhat on the X axis (red).

5.	 In the Details tab under the Actor section, go to the Convert Actor action and select
Trigger Volume. After a few seconds, you'll see that it's converted to have green
edges and is of the same shape of brush as what we had beforehand!

Chapter 2

47

With this, we now have a good idea on how to convert brushes into other brush-like things!

If you are interested in learning what Trigger Volumes are and how they
can be used, check out the Using Trigger Volumes – opening a door
using Matinee recipe of Chapter 8, Blueprint Scripting – Level Effects.

49

3
Creating Quality Interior

Environments

In this chapter, we'll cover the following recipes:

ff Placing static meshes

ff Placing a particle system

ff Using Groups

ff Meshing an example map

ff Adding life to static meshes

Introduction
Continuing with the theme from the previous chapter, once we have created a level and
have it playtested, only then we will want to make it look nicer.

In fact, level designers will often pass off the level geometry to an environment artist to
recreate the level with new art assets.

Here, we will talk about the various ways in which we can polish our game to make the
insides of buildings look great. Meshes will fill up a scene and give some depth to help
with the suspension of disbelief, which is very important in game development.

Creating Quality Interior Environments

50

Placing static meshes
Once we have our level at a point where it needs to be polished, one of the first things we can
do is add meshes to decorate the level and make it feel more lived in. It's actually quite simple
to do, so let's get started!

Getting ready
This recipe assumes that you have a project open with the Sample Assets included as well as
a room created with Geometry Brushes (BSP). I have provided a sample level that will be used
for this demonstration (ModernHouseBase), which is included in the Example Code that you
can access from Packt's website at http://www.packtpub.com. If you are not familiar with
building levels using BSP, feel free to follow the instructions for the Building a Room recipe
from Chapter 2, Level Design – Building Out Levels or Greyboxing.

To open up the level files, create a new project with Starter Content included and then
move the Maps folder (or just the .umap file) into your project's Content folder. You can
easily access this folder from the Unreal Editor by going to the Content Browser tab and
then right-clicking on the Game folder and selecting Open with Explorer.

http://www.packtpub.com

Chapter 3

51

How to do it…
Now that we have our level open, let's start off by placing a single static mesh into our level:

1.	 Open the Content Browser tab. We first need to find the mesh that we want to use. If
you have Starter Content added, the meshes are located in the StarterContent\
Props folder.

With the folder open, you'll see a preview of all of the meshes that you can work with,
with a light blue border around them.

You can modify the size of the images by going to View Options and
modifying the Scale slider. There are a number of other options that
you can use as well to customize the Content Browser tab to your liking,
such as changing View Type of the contents from the default Tiles to List
or Columns.
For more information on customizing the Content Browser UI, refer to
https://docs.unrealengine.com/latest/INT/Engine/
Content/Browser/UI/index.html.

https://docs.unrealengine.com/latest/INT/Engine/Content/Browser/UI/index.html
https://docs.unrealengine.com/latest/INT/Engine/Content/Browser/UI/index.html

Creating Quality Interior Environments

52

2.	 Click on the SM_Chair mesh and then drag it into the level on the wooden floor of
our level. Once here, release it to place the mesh into the world.

Placing a chair mesh on the level's floor

3.	 Let's add one more mesh to our level in another way. Select the SM_TableRound
object in the Content Browser tab and then right-click inside the level, near the table.
From here, go to Place Actor | SM_TableRound.

Chapter 3

53

With this, we've learned two ways to add a static mesh to our level!

Note that just like working with brushes, whenever an object is selected, the Details panel will
fill itself with information about the actor that was added. From here, we can modify the Scale,
Location, and Rotation values of the added meshes and can also change the Mobility of that
mesh from Static to Moveable, which we will use later.

Placing a particle system
In a designer's toolbox, one of the most effective tricks used to make things look stunning are
particle systems. We can spawn a large number of particles which are small simple images
or meshes, without much of a performance hit. Particle systems control these particles and
their display and movement. They are very useful for elements such as liquid, smoke, clouds,
magic, and in this instance, fire, as we bring life to our house's fireplace.

Getting ready
This recipe assumes that you have a project open with the Sample Assets included as
well as a room created with Geometry Brushes (BSP). I have provided a sample level
(ModernHouseBase), which will be used for this demonstration. It is included in the Example
Code, which you can access from Packt's website. If you are not familiar with building levels
using BSP, feel free to follow the instructions for the Building a Room recipe of Chapter 2,
Level Design – Building Out Levels or Greyboxing.

How to do it…
Now that we have our level open, let's start off by placing a particle system into our level:

1.	 With the level opened, move your camera to the fireplace on the bottom story.

2.	 Adding particle systems is very similar to adding a static mesh. Open the Content
Browser tab, and we will first need to find the particle system that we want to
use. If you have the Starter Content added, the particle systems are located in the
StarterContent\Particles folder.

With the folder open, you'll see a preview of all of the particle systems that you can
work with, with a white border around all of them.

3.	 Click on the P_Fire system and then drag it into the level into the fireplace. Once
here, release it to place the particle system into the world.

Creating Quality Interior Environments

54

4.	 Now, starting off the particle system will be too large for our fireplace, but just like
working with the Geometry Brushes, we can also modify the properties here under the
Details tab. Change Rotation to -90, 70, -90 and Scale to .5 in all the axes.

A quick way to scale all of the axes together at once is by going to the
Details tab with the object selected and then, from the Transform
component, clicking on the lock button to the right of the three parameters
of the Scale property. Once we've locked the axes, we can then put in a
.5 value in one of the parts and the other two will change as well. This will
make the object always maintain its proper shape.

At this point, we now have an idea of just how easy it is to make our level look much nicer!

For more information on creating custom particle systems of your own refer
to https://docs.unrealengine.com/latest/INT/Engine/
Rendering/ParticleSystems/index.html.

Using Groups
When working on large projects, it's important to keep all of your content organized. With that
in mind, it's a good idea to keep your levels organized as well. In this section, we will learn
how we can use Groups to make your life easier. This will allow you to easily manage multiple
Actors at once.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/index.html

Chapter 3

55

Getting ready
This recipe assumes that you have a project open with a level created. I have provided a
sample level that will be used for this demonstration (ModernHouseBase). It is included in
the Example Code that you can access from Packt's website at http://www.packtpub.
com. If you are not familiar with building levels, feel free to follow the instructions for the
Building a Room recipe from Chapter 2, Level Design – Building Out Levels or Greyboxing.

How to do it…
Let's see just how easy it is to create a group:

1.	 The first group we are going to make is for the second floor of our house. With that in
mind, go back to the four viewport view by clicking on the top-right minimize button.

2.	 From the Front (also seen as World Outliner in future version of UE4) viewport, click
and drag from the top-left of the house to the floor of the second floor/ceiling of the
first floor. Once finished, hold the Shift button and select any items you may have
missed in either the viewport or in Scene Outliner (also seen as World Outliner in
future version of UE4), and remove the two brushes used for the fireplace as well as
particle systems.

Selecting items on the second floor

http://www.packtpub.com
http://www.packtpub.com

Creating Quality Interior Environments

56

While selecting objects, you can also hold Ctrl and click to select or
deselect the unwanted brushes or objects that were selected.

3.	 With the items you want to create selected, right-click and select Group or press
Ctrl + G.

4.	 Now deselect the items and then click on one of them again. You'll notice now that all
of the objects are selected if you select any of the items.

If you do not see the Group option on the context menu, make sure
that Allow Group Selection is enabled from the Settings menu
located on the top toolbar.

When you create a Group, an object of the GroupActor type is created inside the
Scene Outliner (in our case, it’s named GroupActor5, but it may be a different
number in your case). Just like selecting any of the objects in the group, selecting the
GroupActor object will automatically select all of the others as well.

5.	 One of the useful properties of having a group is that you can hide the meshes by
hitting the H key or pressing the eye icon to the right of the actor's name in the
Scene Outliner or by right-clicking and navigating to Visibility | Hide Selected.

Chapter 3

57

You can click on the closed eye icon in the Details panel or press Ctrl + H
to unhide all the objects that are currently hidden.

6.	 Another thing that you can do to make it easier to tell which group objects are
attached is to rename the objects as the name of our group. To do this, go to the
Details tab and select those brushes. Then, at the top, change the name of the
objects to 2nd Story by either double-clicking on the name in the Scene Outliner
tab or selecting the object/objects in it. After that, press F2 and edit the name. You
can also rename the objects via the Details tab at the top:

Renaming objects as name of a group

With this, we now have a good foundation of how we can use Groups to make our levels nicer!

For more information on Grouping, refer to https://docs.
unrealengine.com/latest/INT/Engine/Actors/
Grouping/index.html.

Alternatively, you may also create a folder in the Scene Outliner tab and put levels inside that.
That way you can organize scene contents in whichever way you'd like.

https://docs.unrealengine.com/latest/INT/Engine/Actors/Grouping/index.html
https://docs.unrealengine.com/latest/INT/Engine/Actors/Grouping/index.html
https://docs.unrealengine.com/latest/INT/Engine/Actors/Grouping/index.html

Creating Quality Interior Environments

58

Meshing an example map
Watching a single mesh being placed is nice and all, but actually watching an example
workflow is one of the best ways to see some of the tricks you can use to really polish
a level up. In this section, we will be doing just that.

Getting ready
This recipe assumes that you have the example project and the level I provided
(ModernHouseBase) opened that is included in the example code which you can access
from Packt's website.

How to do it…
Let's first export one of these rooms so that we can give them to our artist to work with:

1.	 Let's first add in a door. Move your viewport to the first floor of the house to the right
of the deck where you can see the glass opened up.

Chapter 3

59

2.	 Once there, let's access the StarterContent/Props folder and select the
SM_Door object and drag it into the world. Once placed, it will need to be rotated to
face our doorway (-90 degrees). After this, use the Translate tool to move the door
into the doorway, leaving 10 units of space in the Z and X directions, as shown in the
following image:

Placing a door

Creating Quality Interior Environments

60

3.	 Now select the door and duplicate it from the Front viewport by holding down the Alt
key and dragging it in the X axis. We don't want the doorknob to be on the same side,
so we will want to flip the door by right-clicking and navigating to Transform | Mirror
X. Then, move the door over to be flush with the other one so that they are touching
each other.

4.	 Next, let's add in the doorway. From the Content Browser tab, select SM_DoorFrame
and drag it into the world.

Chapter 3

61

5.	 It's initially created to only support one door at a time, but we can fix that with some
slight changes. In the Details tab, change the Scale value in the Y axis to 2.0. After
this, rotate the door to fit our doorway.

6.	 The next thing you may notice is the edges on our glass look strange. Rather than
creating some additional brushes to fill it in, we can use some additional meshes to
make our level look much nicer and more detailed, and cover up these tiny issues
that occur. In the Content Browser tab, select the SM_FillarFrame300 object and
then place it to cover our wall (rotated) so that it can face the glass. In order to fix
the mesh in the middle of the glass, you may need to temporarily change the
snapping to 5.

Creating Quality Interior Environments

62

As a reminder, to change the snapping of the grid you can press the
left/right bracket keys ([/]), which will decrease and increase the
snapping respectively, otherwise, you can adjust the snapping by
clicking on the dropdown menu next to the grid icon at the top of
the main viewport window.

Chapter 3

63

7.	 After this, we will duplicate the frame to fit it at an approximately equal distance from
the door as the first frame for symmetry. Then, we will place the frame at the edges of
the glass doors to help make the glass feel more realistic.

8.	 Next, we will need to take care of the tops and bottoms. From the Content Browser
tab, select SM_PillarFrame and rotate it down along the Y axis so that it faces the
floor. Once you complete that, scale it to 1.2 in the Z axis and place it between the
door frame and the edge of the glass.

Creating Quality Interior Environments

64

9.	 After this, duplicate it upwards with a scale of 1.95 to fill up the top and then
duplicate it once more with a scale of .2 to fill the gap on the other side of the door.
When you're done, it should look similar to this:

Scaling the objects to fit the frame

Chapter 3

65

10.	 Next, duplicate the bottom once again and rotate it -60 degrees in the X axis with a
scale of .9 in the Z axis. Then, bring it up to finish the window!

Creating Quality Interior Environments

66

11.	 Now that we have this section down, we can move over to the right to tackle the
windows. With this, we can select the SM_WindowFrame and drag it into place with
the smaller slot. Just like earlier, we can scale the object to fit it in the whole we've
created. In this instance, we will set it to (1.2, 1.1 and 1.7). To fit the larger
middle window, increase the Y Scale until it fits (I am using 3.5).

Chapter 3

67

12.	 With this knowledge, we can also fill out all of the windows and the door on the
second floor:

Creating Quality Interior Environments

68

13.	 Next, let's create a little decor inside the actual house. Move back to the fireplace
and place a SM_Couch object in front of it. After that, place two chairs on each side,
making sure to rotate them a little bit toward the fire. Giving some difference in angle
will help to make the world seem more realistic because objects in the real world that
humans interact with are almost always not at a fixed angle (except architecture).

And with this, we have a good idea about how to add meshes to a level to add life and
realism to it!

Adding life to static meshes
Though it is nice having a level with a lot of static meshes (this is by default), they don't move
at all (hence, they are called static). Static meshes are used for efficiency's sake, but there
comes a time where you want the player to be able to interact with those objects, such as
moving crates or shooting at things.

Chapter 3

69

Getting ready
This recipe assumes that you have the example project and the level I provided
(MeshingAnExampleMap) opened.

How to do it…
With that in mind, let's learn how we can breathe some life into our static meshes:

1.	 Select a static mesh inside your level, such as the SM_Chair object we have placed
in the fireplace.

2.	 Once selected, go to the Details tab and under Physics, check Simulate Physics.

Creating Quality Interior Environments

70

3.	 Once finished, go in and play the game.

At this point, if you run into the chair or shoot at the object, they will react correctly,
according to physics.

You may also want to make a static mesh movable for something such as
moving platforms and the like using Blueprints. To enable that functionality,
in the Details tab, change the Mobility property to Movable.

In the preceding image, you'll notice that it says, LIGHTING NEEDS TO BE REBUILT. This
is said anytime the world has changed in such a way that the current way the lighting data has
will not show the most up-to-date version of the level. To get a full appreciation of the level and
to have a better representation of how our light will be in the game, build your lighting by going
to Build | Build Lighting Only and wait for it to finish (when the popup on the bottom-right
says, "Lighting build completed").

For more information on lighting, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/QuickStart/index.html.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/QuickStart/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/QuickStart/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/QuickStart/index.html

71

4
Building the Great

Outdoors – Exterior
Environments

In this chapter, we'll cover the following recipes:

ff Creating a landscape

ff Building an exterior level using the Sculpt mode

ff Creating rivers with the Flatten tool

ff Placing trees and rocks using the Foliage tool

ff Streaming levels

Introduction
We've seen how to build levels using BSP and meshes. This is really great for man-made
structures, such as office buildings, houses, and floors, which are all made of things that look
similar to each other. However, things outdoors are very chaotic, with changes in elevation
and randomness everywhere. To help facilitate that, Unreal has tools such as Landscapes that
allow us to create massive worlds that our players can interact in.

Building the Great Outdoors – Exterior Environments

72

Creating a landscape
One of the first things that we will need to do to work with build terrain is to create a
landscape through Unreal Engine's Landscape mode, so let's get started!

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select First person and make sure that With Starter Content is selected. Give the
project a Name (Cookbook_Chapter4). Once you are done, click on Create Project.

How to do it…
Now that we have our project set up, let's get started with building a landscape:

1.	 With the editor up, we will first want to create a new level for us to work in. To do this,
go to the top-left of the screen and select File | New Level… or press Ctrl + N.

2.	 From here, you'll have the New Level window pop up. Click on the Default template,
and you will have an empty level to work with.

3.	 Since we are going to create everything from a terrain, we don't need to have
the default floor. So, select the SM_Template_Map_Floor mesh and delete it
by going to Edit | Delete or pressing the Delete key.

Chapter 4

73

4.	 After this, we will need to access the Modes tab on the top-left of the screen
and click on the icon that looks like a mountain to change the game to the
Landscape mode.

You'll know that we're in the Landscape mode when you can see a green grid showing up
inside the level.

You can also access the Landscape mode by pressing Shift + 3 on
your keyboard.

Under the mode image, you'll notice that the properties have changed to show three modes,
with two grayed out and the first one, Manage, selected. When selected, the Manage mode
allows us to create new landscapes and modify the properties that we have already created.
We will learn about the other modes later in this chapter.

Building the Great Outdoors – Exterior Environments

74

Right now, we'll only see the New Landscape section. Now, we don't actually have a landscape
created yet, but let's first set up some properties to make this seem more realistic:

1.	 Go into the Content Browser tab and the StarterContent\Material folder. Once
here, drag and drop the M_Ground_Grass material into the Material property under
the New Landscape section. This will make our landscape use this material on all of
the terrain, by default. Alternatively, you can also select the material in the Content
Browser tab and then within New Landscape, click the arrow to the right of the
Material variable and apply the material to the landscape.

It's possible to have multiple materials in your landscape to help
create cool effects. For details on this, refer to https://docs.
unrealengine.com/latest/INT/Engine/Landscape/
Editing/PaintMode/index.html.

There are a number of properties (that we can change at this point), which will
alter the landscape such as Location, Rotation, and Scale. There are also some new
properties that will affect the size and quality of the landscape. The default values
are balanced for quality and build time, so we're going to use them for the most part.

https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/PaintMode/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/PaintMode/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/PaintMode/index.html

Chapter 4

75

For more information on the New Landscape properties, refer to
https://docs.unrealengine.com/latest/INT/Engine/
Landscape/Creation/index.html#creatinganewlandsc
apeusingthelandscapetool.

2.	 Continuing in the New Landscape section of the Modes tab, change the Z property
of Location to -10 to place it below our character's starting point (the Player Start
object that looks similar to a hole in one with a gamepad controller to its next).

3.	 Finally, at the bottom-right of the New Landscape section, click on the Create button
to place the landscape into the world with our specifications.

Creating a landscape

https://docs.unrealengine.com/latest/INT/Engine/Landscape/Creation/index.html#creatinganewlandscapeusingthelandscapetool
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Creation/index.html#creatinganewlandscapeusingthelandscapetool
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Creation/index.html#creatinganewlandscapeusingthelandscapetool

Building the Great Outdoors – Exterior Environments

76

4.	 When it's first created, you may notice these dark lines in grids everywhere. This is
because we haven't built lighting yet, so let's go ahead and do this by selecting the
Build section's drop-down menu from the top toolbar above the level and selecting
Build Lighting Only or by pressing Ctrl + Shift + ; on your keyboard. Wait for a few
seconds, and the lighting should complete, however, there is a popup, which will
display a warning:

This is alerting us to the fact that we should add Lightmass Importance Volume
around the important parts of the level. Being a warning, it is something that we
could technically avoid. As game developers, it's important for us to remove warnings
wherever possible. To fix this, follow these steps:

5.	 Switch back to the Place tab, go under Volumes, and scroll down to the Lightmass
Importance Volume option. Drag and drop it into the center of the world. Once the
option is created under the Details tab, change the X, Y, and Z properties to 50000.
To check that everything is contained, restore the viewports and maneuver as needed
to get the yellow lines to fit in your level.

Chapter 4

77

In my example, I made the volume as big as needed to fit the terrain, but you may
make it smaller to fit with just what your level contains.

6.	 Build the lighting in the same manner as before, and everything should be set up
correctly!

For more information on creating landscapes and what all of
the properties mean, check out the Unreal documentation at
https://docs.unrealengine.com/latest/INT/
Engine/Landscape/Creation/index.html.

Building an exterior level using the
Sculpt mode

Of course, creating a landscape on its own looks just the same as a flat plane. In this section,
we are going to explore the foundation of building a level by making use of the Sculpt mode of
the Landscape tool.

Getting ready
In order to follow this recipe, you will need to have a landscape created. If you need assistance
with this, check out the Creating a landscape recipe earlier in this chapter.

https://docs.unrealengine.com/latest/INT/Engine/Landscape/Creation/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Creation/index.html

Building the Great Outdoors – Exterior Environments

78

How to do it…
With the knowledge of how to start a workflow, we can now apply that by quickly
creating a level:

1.	 With our landscape created, make sure you're in Landscape mode and select the
Sculpt option (to the right of the Manage icon) to go into the Sculpt mode.

This will bring us to options for modifying our terrain in many different ways. Currently,
the Sculpt tool is selected and if you move your mouse over the level, you'll notice a
light gray circle moving around with the mouse pulsing on and off; this is the brush for
our terrain creation and where we will either rise or fall.

Chapter 4

79

2.	 Clicking will raise the terrain into the air. Click around the edges of the world to create
some hills that we can work with. Changing the Brush Size setting will increase or
decrease the size of your brush, and the Brush Fallout setting will determine how
smooth or rough the brush will be. The Tool Strength setting will make things go up
quicker. Holding down Shift while clicking will lower the terrain instead.

Similar to setting the grid size, when working in the Landscape
mode, you can use the [and] keys to increase or decrease the
radius of your brush.

Adding height variation within our terrain

Building the Great Outdoors – Exterior Environments

80

Make sure that your Player Start object is above your terrain or else you will fall
through the world. If this does happen, drag the player to start up on top of the terrain
and hit the End key for it to fall.

When creating hills, it's a good idea to look at the multiple angles so that
you can make sure that none are too high or too short. Generally, you
want to have taller hills the further back you go or else you cannot see the
smaller ones since they're blocked.
To move your camera around, you can hold down the right mouse button
and drag it in the direction you want the camera to move around, pressing
the W, A, S, and D keys to pan. The scroll wheel can be scrolled to zoom in
and out from where the camera is.

Playing the game after placing the Player Start object on the terrain

With this, we have added some hills to the world!

Creating rivers with the Flatten tool
Now that we have some hills going on, let's add some holes, making use of an additional tool,
the Flatten tool.

Chapter 4

81

Getting ready
You will need to have a landscape created for this recipe. If you need assistance with this,
check out the Creating a landscape recipe earlier in this chapter.

How to do it…
With the knowledge of how to start a workflow, we can now apply that by quickly creating
a level!

1.	 In the Landscape Mode tab, click on the Sculpt tool tab and select the Flatten tool.

2.	 Check the Flatten Target selection and put in -100. By default, the Flatten tool
will flatten to the middle of the map, but this allows us to pick a new position for
it to go to.

3.	 Next, we want to increase Tool Strength to .8 to make it easier to dig out the river
by clicking and dragging around wherever we want water to be placed.

There are a lot of other sculpting tools that can be used for other
own purposes, but we don't have enough room to cover them all.
For more information on all of the Sculpt mode tools, refer to
https://docs.unrealengine.com/latest/INT/Engine/
Landscape/Editing/SculptMode/index.html.

www.allitebooks.com

https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/SculptMode/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/SculptMode/index.html
http://www.allitebooks.org

Building the Great Outdoors – Exterior Environments

82

4.	 Now that we have the ground for the river to be placed, we need to get our water
placed in the world. In the Modes tab, select the Place mode and drag and drop a
BSP Box object into the world. Under the X and Y axis, set the size to 50000, just like
our terrain, and shift it so that it is centered in the world, being above the water but
below our normal terrain.

5.	 Then, go to the Materials folder and drag and drop the M_Water_Lake material to
the Details tab under the Element 0 property of Surface Materials.

One thing to note is that if you have a material selected before you
create a BSP box, the material will automatically be applied to it
once it is brought into the world.

Chapter 4

83

6.	 Play the game and move over the water.

Playing the game with water in the world

7.	 This is looking really nice, except that we can currently walk on water. That's
because brushes always have collision. But, we can fix this by converting the
BSP into a static mesh.

Building the Great Outdoors – Exterior Environments

84

8.	 Select the Box Brush object from the Scene Outliner tab and under the Details
panel, go to Brush Settings and click on the little arrow at the bottom of the part to
show the extended options. Once here, click on the Create Static Mesh option.

Option to convert object into a static mesh

9.	 It will ask where you want to save it. Click on Create Static Mesh once again and it
will finally convert the object into a static mesh.

The river object is now converted into a static mesh

Chapter 4

85

But you will see that on the geometry, it says Invalid Lighting Settings, as
seen in the preceding image. To fix this, go to the mesh's location in the Content
Browser tab and double-click on it to open up the Static Mesh Editor.

10.	 Inside the Static Mesh Editor, in the Details tab, go to the LOD Settings section and
expand Build Settings if it isn't expanded already. From here, uncheck the Generate
Lightmap UVs option and then click on Apply Changes:

11.	 Finally, exit the Static Mesh Editor and go back into the Unreal Editor and select the
mesh once more. From the Details tab, change Collision to NoCollision.

Building the Great Outdoors – Exterior Environments

86

Alternatively, in the Static Mesh Editor for the mesh, you can also go
to Collision | Remove Collision, but this will make it so that all the
objects with that mesh will not have collision, whereas the Details tab
is only for that specific object in your level.

Playing the game with the removed collision allows the player go down into the water

Now you can go down into the water with no issues! It's looking pretty awesome!

Another cool way of creating rivers is making use of the Landscape
Splines tool. You can learn more about it at https://docs.
unrealengine.com/latest/INT/Engine/Landscape/
Editing/Splines/index.html

Placing trees and rocks using the
Foliage tool

Now that we have a world basis for our level, we want it to be more than just land and a river.

https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/Splines/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/Splines/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Editing/Splines/index.html

Chapter 4

87

Getting ready
This recipe assumes that you have a project open with the sample assets and landscape
included. If you do not have that yet, feel free to follow the instructions in the Creating a
landscape recipe.

How to do it…
Now that we have our room created, let's add some materials to it.

1.	 Under the Modes tab, click on the flower icon to open up the Foliage mode:

2.	 This should look fairly similar to the Landscape tool. But this time, there is a Meshes
section at the bottom with the text Drop Static Meshes Here. With this in mind, go
into the StarterContent/Props folder and drag a SM_Rock object into there.

Building the Great Outdoors – Exterior Environments

88

3.	 At this point, there is a variety of options that can be used to modify how the rocks
will be placed as well as how they will be drawn. First of all, if you draw on the level,
you will see far more rocks than you need to have drawn.

Placing rocks all over the level

This is nice for something like grass, but not at all for rocks.

Chapter 4

89

4.	 Press Ctrl + Z to undo what we did before. To lessen the amount, modify the Paint
Density property up at the top of the Foliage Mode Paint section to a much lower
number such as .006.

Building the Great Outdoors – Exterior Environments

90

5.	 Now they're showing up at a nice rate, but they all look very similar. This is fine for
something like trees, but rocks are much more random. To fix this, under the Meshes
tab, make sure that Show Painting settings is up and change Max Angle +/- and
Random Pitch +/- to 100.

6.	 They look even better now, but they're all of the same size. To adjust this, change
Scale Min to .5 and Max to 2.0.

Chapter 4

91

7.	 Finally, by default, foliage has no collision, but rocks need to collide so that the
players can collide when they touch the rocks. To fix this, go to the top of the
Meshes section and select Show Instance settings. Afterward, go to Collision
and under Collision Presets, select BlockAll.

It's nice! At this point, we now have painted rocks all over the level.

For some users, the Show Instance settings option may be hidden due
to the Modes tab not being wide enough, so expand it if that is the case.

Building the Great Outdoors – Exterior Environments

92

8.	 Of course, this is nice to work with now, but in the real world, we have other
things, such as trees, which will be a lot more up above the ground. But, by default,
Unreal does not give us tree meshes to work with. However, SpeedTree has some
sample trees that are free to download at http://store.speedtree.com/
unreal-engine-4/.

9.	 At the bottom-left of the website, there is a section that says you can download it
directly; do that. Once it finishes downloading, go to the ZIP file and unzip it. Next,
rename the folder to Trees.

http://store.speedtree.com/unreal-engine-4/
http://store.speedtree.com/unreal-engine-4/

Chapter 4

93

10.	 We will be moving a large amount of stuff into our game, so first save your project and
then drag and drop the Trees folder into the Game folder from the Content Browser
tab, and it will start to import the content into your game. You'll see options popping
up from time to time; hit Import each time to complete the process.

11.	 Now that everything is imported, you can save it by clicking on the Save All button
and selecting Save Selected.

12.	 Next, drag and drop the Broadlead_Desktop static mesh into the Foliage tool. Go
into Show Instance settings and add collision to the object as we described earlier.

Building the Great Outdoors – Exterior Environments

94

13.	 Afterward, we want to add some distance between each tree, so switch back to Show
Painting settings and change the Radius property to 200. After this, start painting
once again around the level where you want trees to be.

Adding trees to the map

14.	 Finally, build all this again and start up the game. You may notice that the build time
for lighting is probably going to take a lot longer than it has previously.

Final view of the terrain with trees and rocks

With this, we now have a much nicer looking level!

Chapter 4

95

Streaming levels
As levels get more and more complex, they can sometimes get quite unwieldy. One of the tools
that we have as designers is the ability to break our levels apart and load them in at runtime.
This is also incredibly useful for working in teams, where one person can work on one part of
the game and bring it all together later.

We will look at the easiest way to load in a level instantly, which is to have the level always
being loaded.

Getting ready
This recipe assumes you have two levels you'd like to have loaded at the same time. I will be
using the levels created in the Placing trees and rocks using the Foliage tool recipe in this
chapter and the Meshing an example map recipe from Chapter 3, Creating Quality Interior
Environments.

How to do it…
Let's first export one of these rooms so that we can give them to our artist to work with:

1.	 Open up the level that will be considered your base level. In our case, I will be using
the map that contains our completed landscape.

Building the Great Outdoors – Exterior Environments

96

2.	 Under Window, select Levels to open up the Levels window.

3.	 From Levels, click and select Add Existing….

4.	 From here, you'll be brought to the Open Level dialog box. From there, select the map
you want to be brought into the world. I selected the MeshingAn ExampleMap level.
After you have the level selected, press the Open button.

Chapter 4

97

5.	 Now if you planned ahead, your house and terrain will fit together nicely.

Final view of the house and the terrain

If this is not the case, go to the Levels window and right-click on one of the levels
and select Select Actors. Then, move the level to fit where you want it to be placed.
Of course, this assumes that you have some flat terrain somewhere. If not, use the
Flatten tool on the Foliage tab to flatten the area to make it easier for people to see.

Building the Great Outdoors – Exterior Environments

98

6.	 Of course, it seems like we are done now, but if we play the game, we won't be
able to find the house. There's actually a really good reason for this; the level isn't
actually loaded.

7.	 To fix this, from the Levels window, right-click on your house level and go to Change
Streaming Method | Always Loaded.

Chapter 4

99

If for some reason the method is grayed out, check to make sure your
level isn't locked. If it is, click on the lock on the right-hand side to enable
changes on the level. This is also a good tool to use if you want to make
sure that you're only modifying one level at a time.

8.	 Now let's build our lighting again and run the project!

Now, we can see our levels loaded together!

For those interested in having levels load dynamically over time rather
than all at once, you can use blueprints to have levels stream in and
out to create what seems like a seamless world. To see how to do
this, refer to https://wiki.unrealengine.com/Blueprint_
Manual_Level_Streaming.

https://wiki.unrealengine.com/Blueprint_Manual_Level_Streaming
https://wiki.unrealengine.com/Blueprint_Manual_Level_Streaming

101

5
Lights, Camera,

Action – Cinematics

In this chapter, we'll cover the following recipes:

ff An introduction to Matinee

ff Creating an opening cutscene

ff Playing a Matinee via Blueprints

ff Preventing a player from moving via cinematic mode

Introduction
Now that we have an understanding of creating environments, let's take some time to dive a
little deeper into creating cinematics that we can use to give our titles even more depth.

An introduction to Matinee
The Matinee tool is the driving force behind all the cinematic scenes within the Unreal Engine.
It gives users the ability to be the director within your game, giving you control over the
camera, the actor's movement, sound, as well as different cuts and animation effects. Think
of any moment in an Unreal game where you didn't have direct control over the character,
like in a cutscene. Chances are that was done in Matinee. However, Matinee can be used for
many other things, which we will discuss at the end of the chapter.

In order to create a Matinee, we will use the (aptly named) Matinee Editor that can be
accessed from the toolbar at the top of the screen.

Lights, Camera, Action – Cinematics

102

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project
tab. Select Third person and make sure that With Starter Content is selected
and give the project a Name (Cookbook_Chapter5). Once you are finished,
click on Create Project.

3.	 You should see a level similar to this:

Chapter 5

103

How to do it…
Having defined what Matinee is used for, let's begin using it.

1.	 With our level opened up, let's create our first Matinee by going to the top toolbar and
selecting Matinee and then clicking on the Add Matinee option.

2.	 From here, you'll be brought to the Matinee Editor window.

You can also create a Matinee by going to the Modes tab and then going
to the Place mode (Ctrl + 1) on the far left if you aren't there already
and then clicking on All Classes and finding the Matinee selection from
there. Afterward, drag and drop it into your level and once it's there, click
on the Open Matinee button.

Lights, Camera, Action – Cinematics

104

Now, there are a lot of things up here currently and it may be confusing to look at
them first, so let's briefly go over these windows:

1.	 Toolbar: The item at the very top is the toolbar; it contains various tools that
we can use to check on our animations.

2.	 Curve Editor: Below the toolbar, we have Curve Editor, which is used to have
fine control over properties that change over time (properties that make use
of Distributions). Mainly, this'll be the key frames that you create. In order
to see something on Curve Editor, you'll need to click on the gray box toggle
button from the Tracks tab.

3.	 Details: On the right-hand side, we have the Details tab that will tell you the
details about whatever key we have selected, such as whether it is active or
how the key should move.

4.	 Tracks: Here is where we will manipulate objects and where the bulk of your
work will be done. For those who have worked with video editing or animation
software, this will be very familiar as a timeline of the changes we want to
take place over time.

Creating an opening cutscene
Now that we have an understanding of what Matinee is, let's start building our first cutscene!

Getting ready
Before we start working, you should have a level opened and entered the Matinee Editor. For
assistance with this, check out the An introduction to Matinee recipe.

How to do it…
In order to create a cutscene, you need to perform the following steps:

1.	 Matinee animates movable objects over time, but it needs to know what objects to
animate and what properties of them to change. Under the Tracks tab on the left-
hand side, right click and select Add New Camera Group. Once there, it will ask you
for the name of your group; we will call it Camera01.

When doing this, a camera is automatically created in the scene at the current
position of the user camera within the editor.

Chapter 5

105

You can also create a camera actor in the scene by right-clicking and
navigating to Place Actor | Camera Actor. Once placed in the scene,
with the camera selected, you can create a Camera group using that
camera within Matinee.

Camera group added to the Tracks tab

At the bottom of the track, you'll notice a series of numbers separated by lines. This
represents the time that has passed from the beginning of the animation. Use the
mouse wheel, scrolling in and out, to zoom/rescale the timeline.

Rescaling the timeline

Lights, Camera, Action – Cinematics

106

The bright red triangles at the bottom symbolize the size of the entire animation
and you can click and drag them to modify its length. The green ones are used to
determine which part will you see when you play in the editor.

Dark red triangle showing key frame

Next, you may notice the dark red triangle at the 0.00 time marker under the
Movement row in the tracks. This is known as a key frame, which is a point in time
at which we want our Actor to be at a certain value. The first one is automatically
created for us, and basically stands for the starting point.

Chapter 5

107

2.	 Now drag the time bar to the 2.00 second mark so that we can add a key there.
Then, click on the Movement part of our Camera01 group and then press the
Add Key button on the top-left of the Toolbar tab to add a key.

You can also press Enter to create a key.

3.	 With the key selected (it is outlined), minimize the Matinee Editor and move back to
the main editor.

Lights, Camera, Action – Cinematics

108

4.	 You will notice that you have CameraActor selected in the Scene Outliner tab.
Either way, double-click on it inside the Scene Outliner tab to zoom to its position.
At this point, we can move our camera to modify its position. I will move the actor
down in the Z axis, and you should notice a line moving to show the transition
between the two.

Modifying position of the CameraActor object

Chapter 5

109

5.	 We can also modify the rotation, which we will do next to make it seem like we are
landing in front of the player.

Modifying the rotation of the CameraActor object

If you have both the editors up at the same time, you'll notice that you can
move the time bar and see the transition and exactly how it is done. You can also
press the Play and Loop buttons to watch it in real time. For instance, when the
editor shows it at this time…

Lights, Camera, Action – Cinematics

110

…the editor window will look similar to this:

You can also click on the camera icon, next to Camera_01 in the Tracks
tab in the Matinee Editor so that the entire viewport of the level editor
shows the view of the camera during the animation.

6.	 After creating this first key frame, we want to add another one at the end of the
animation to bring the camera forward, so we can create another key by pressing
the Enter key. After this, right-click on the newly created key and select Set Time and
under New Time, put in 5.

This can be nice when you know how exactly you want things to change. Play around
with the key frames, adding and modifying them, until you get whatever animation
you want to have.

Chapter 5

111

Another way to get the exact numbers for your key frames is by using the
Snap option, which you can select from the toolbar or from View | Snap.
This will make it so that when you add a key, it will be to the nearest .5
second or when you move, it will snap between the options.

When in the Matinee Editor, you can manually move key frames after
placing them initially into the timeline by holding Ctrl and clicking to drag
that key frame in the timeline in both a positive and a negative direction.

Lights, Camera, Action – Cinematics

112

7.	 Lastly, by default, Unreal will use whatever camera is attached to the player. We need
to use something called a director group in order to dictate which camera we should
be using at what time. So with that in mind, right-click underneath the Camera01
section under the Tracks tab and select Add New Director Group.

Creating a director group

8.	 With this in mind, we now have a DirGroup control in place with no key frames. Move
the time bar to 0, select the Director property for modification, and create a new
key by clicking on Add Key in the top-left of the screen. Once there, it will ask which
camera you wish to use. Select Camera01 and press Ok.

You may notice that on the top-left of each group, there is a camera icon on the far
right of the different groups with the DirGroup currently being selected. This shows
which camera you are currently looking at in the Game viewport in the main editor.
This can be nice for visualizing what you are doing.

9.	 When the animation is over, we want to return the control of the camera back to
the player, so create a new key at the end of the animation and change it to use
DirGroup. This will instantly change back to the player's camera, but we can also
add in a transition by right-clicking on the key and selecting Set Transition Time and
putting in 1 for the amount of time in seconds we want the transition for.

Playing a Matinee via Blueprints
After you have your animation ready, we need to play it in the actual game.

Chapter 5

113

Getting ready
Before we start working, you should have a level opened and have a completed Matinee.
For assistance with this, check out the Creating an opening cutscene recipe.

How to do it…
You need to execute these steps to play a Matinee via Blueprints:

1.	 Exit out of the Matinee Editor if you are in it and back in the Game tab, select the
MatineeActor object inside the scene (it looks like a clipboard) and then from
the top toolbar, navigate to Blueprints | Open Level Blueprint.

Alternatively, you can go to the Scene Outliner tab and select the
object from there, either by scrolling down until you see it or typing in
Matinee in the Search bar above it.

2.	 Once inside the Blueprint Editor, right-click inside the Event Graph tab and
navigate to Call Function On Matinee Actor 0 | Cinematic | Play.

For the dropdowns, you need to click on the triangle on the left-hand
side to expand it.

Adding a Play action to call on the MatineeActor

Lights, Camera, Action – Cinematics

114

If all goes well, you should see something like this:

If you do not see this, make sure that the MatineeActor object is
selected from the Scene Outliner tab.

3.	 Now, this is calling a function called Play, which will play our Matinee cutscene, but
there is no indication as to when this should be triggered (or called, in programmer
lingo). So, we need to add an Event, saying to play this animation when the game
starts. To do this, right-click and go to Add Event | Event Begin Play.

Chapter 5

115

4.	 Lastly, we need to connect the event to the play action. So, click and drag on the
right-side's arrow and connect it to the input of the Play action on the left-hand side.

When working with Blueprints, you may hear actions referred to as actions,
nodes, or whatever type they are (event, function, and so on).

5.	 Lastly, we'll clean up just a bit by clicking and dragging the MatineeActor variable
below, near the Target connection.

Lights, Camera, Action – Cinematics

116

6.	 Now, jump in and play the game! Just like we were planning, we fall down to the
player and move back to the normal player's control.

For more information on working with Matinee, refer to
https://docs.unrealengine.com/latest/
INT/Engine/Matinee/UserGuide/index.html.

Preventing a player from moving via
cinematic mode

Now that we know how to create Matinees, we should be able to create amazing cinematics
that make your levels really come alive! However, by default, when you play a cinematic,
the player can still move around and turn. This may be the desired behavior depending on
whether you're using something like a custom camera system, such as Resident Evil, or the
Matinee for moving objects such as moving platforms. But, for a cinematic, we don't want it.
Thankfully, there is a way to prevent this via Blueprints.

Getting ready
Before we start working, you should have a level opened and have a complete Matinee.
You should also have it playing in the actual game. For assistance with this, check out the
Playing a Matinee via Blueprints recipe.

How to do it…
1.	 Open up the level blueprint by going from the top tool bar and navigating to

Blueprints | Open Level Blueprint.

2.	 From here, we should have the appropriate nodes to play our Matinee.

3.	 To the right of the Play node, right click and type in Cinematic in the search bar.
At the bottom, you'll see the Game | Cinematic | Set Cinematic Mode option.
Select it to create its node and drag it so that the arrows are alongside each other.

The Set Cinematic Mode option enables us to remove the game's HUD, hide the
player, and prevent movement and turning in the game. Of course, depending on the
situation, you may want to use some or none of these options so that they're able to
be customized from the node.

4.	 Connect the output of the Play node to the input of the Set Cinematic Mode option.
Toggle the Cinematic Mode option to turn on the cinematic mode. Uncheck Hide
Player so that we can still see the player. Then, check Affects Movement and Affects
Tuning; this will prevent the player from moving or using the mouse to move around
while the cutscene is playing.

https://docs.unrealengine.com/latest/INT/Engine/Matinee/UserGuide/index.html
https://docs.unrealengine.com/latest/INT/Engine/Matinee/UserGuide/index.html
https://docs.unrealengine.com/latest/INT/Engine/Matinee/UserGuide/index.html

Chapter 5

117

If you were to play the game now, you would notice that it works…maybe a little
too well.

Lights, Camera, Action – Cinematics

118

That's because after we enabled cinematic mode, we never disabled it. Let's do this next.

1.	 To fix this, we will need to have an event whenever the Matinee ends. Select your
MatineeActor in the Scene Outliner tab and then go back into your level blueprint.

2.	 From here, right-click and select Create a Matinee Controller for MatineeActor.
You'll notice that it gives us a new node that contains a new Finished output that will
be activated whenever the matinee will end.

3.	 Next, create another Set Cinematic Mode action and uncheck Cinematic Mode and
Hide Player while checking the other three properties below.

4.	 Finally, connect the Finished output to the input of the Set Cinematic Mode node.

Chapter 5

119

5.	 At this point, if we go in and play the game, the player will not move during the
cinematic, but as soon as it's over, it can!

The final view after adding cinematic

To do this in another way, you can also use a Delay action and then set it
to another cinematic mode or even use Boolean values, once you've got
more experience in scripting to toggle their properties.

See also
There is an amazing amount of things that you can do within the Matinee editor. Sadly,
I don't have the space in the book to write about everything, but I do have some links that,
if you would like to know more, about some of the many other things you can do:

ff In addition to cutscenes, you can also use Matinee to create gameplay elements
such as moving platforms. A nice text tutorial about doing that is available at
https://wiki.unrealengine.com/Blueprint_Lift_Tutorial.

ff Vincent Stimpson has a series of two tutorial videos on Matinee—the first deals
with cameras with a fade effect (https://youtu.be/0tQFrJElkio), and the
second video is on some of the advanced techniques that you can use to work with
Matinee with animations and particle effects (https://www.youtube.com/
watch?v=071KTwZtyoo).

https://wiki.unrealengine.com/Blueprint_Lift_Tutorial
https://youtu.be/0tQFrJElkio
https://youtu.be/0tQFrJElkio
https://www.youtube.com/watch?v=071KTwZtyoo

121

6
Lighting and Shadows

In this chapter, we'll cover the following recipes:

ff Lighting overview – learning the types of lights

ff Adding moveable lights – flashlight, part 1

ff Creating a Day/Night cycle

Introduction
Lighting is one of the most important elements then creating environments. It can
communicate the theme, create atmosphere, and give a certain tone to each place that you
use it for. However, if done poorly, it can make levels look amateurish. In this chapter, we will
look at how to bring life to our game worlds.

Lighting overview – learning the types of
lights

Having defined why lighting is so important, let's start creating each of the types and talking
about what they do. In this recipe, we will see each of the different kinds of lights available in
the engine. We will also discuss how they are different and when and why to use each one.

Lighting and Shadows

122

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project
tab. Select First person and make sure that With Starter Content is selected.
Give the project a Name (Cookbook_Chapter6). Once you have finished, click on
Create Project.

3.	 You should see a level similar to this:

Chapter 6

123

How to do it…
To get started, let's see how we can go about adding lights to our level:

1.	 Move the camera toward a dark area of our level that we want to light up.
Once there, go to Modes | Lights and click on the Point light and drag and
drop the light into your level.

Adding a Point Light to your level

You can also press and hold the L key and then click to create a
point light at the location that was clicked.

Point Lights act in a similar manner to a light bulb; they will emit light in all
the directions from their center for a certain radius, losing power as the light gets
further away.

For more information on Point Lights, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/LightTypes/Point/index.html.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Point/index.html

Lighting and Shadows

124

2.	 We can also create lights from our Level tab. Let's do this by right-clicking anywhere
in the level and navigating to Place Actor | Spot Light.

Creating a Spot Light in your level

The object will appear facedown with lights going out in the direction that it is shining.
This actually goes much further out, so let's check this out.

Chapter 6

125

3.	 From Translation mode, switch to Rotation mode by pressing down the spacebar (or
E) and then rotating the object by -90 degrees along the Y axis to face the dark wall.

The cone shape effect of a Spot light

Spot lights act much like they do in the real world; specifically, they will emit light
from a point out in a cone shape. However, just like real spotlights, there is a center
section that is fully bright with the outer edge decreasing in power. We can do this in
Unreal as well using the Inner Cone Angle and Outer Cone Angle properties.

Lighting and Shadows

126

4.	 From the Light section under the Details panel, set the Inner Cone Angle value to 25
and the Outer Cone Angle value to 32. After that, increase the Intensity to 50000.0.

Managing cone angles and intensity

However, spotlights can also lose power as they move away, as shown in the
following example:

Chapter 6

127

For more information about Spot Lights, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/LightTypes/Spot/index.html.

5.	 The next light I want to point out is already in the example level by default. Go to the
Scene Outliner tab and select the DirectionalLight object by double-clicking on it.

Selecting directional light

Directional lights act much like the sun. Depending on their properties, they affect
the entire outer section of the level. You'll notice the arrows pointing in a certain
direction which is where the light will be emitting from.

6.	 Rotate the light by 40 degrees in the Y direction.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Spot/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Spot/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Spot/index.html

Lighting and Shadows

128

For more information on Directional Lights, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/LightTypes/Directional/index.html.

Rotating the directional light

7.	 Now the last light is the Sky Light, which is used to create ambient light from the
distant areas in the world. It then applies that light to the world so that the level's
lighting will match the rest of the level. To add this, use either method mentioned for
the Sky Light and put it into the level.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Directional/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Directional/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/Directional/index.html

Chapter 6

129

8.	 The Sky Light will only capture the screen when we rebuild the lighting by selecting
Recapture Scene or manually going to Build | Update Reflection Captures.

For more information on Sky Lights, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/LightTypes/SkyLight/index.html.

Adding moveable lights – flashlight, part 1
Now we have an understanding of how these lights work, but so far, they've all been static,
non-moving. However, in certain instances, we may want the lighting to change while the
game is going on. Let's do that by creating a moving light, in a similar manner to a flashlight!

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/SkyLight/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/SkyLight/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightTypes/SkyLight/index.html

Lighting and Shadows

130

Getting ready
Before we start working, we should have the NightScene level opened. This is provided in
the Example Code folder for this chapter that you can get off of Packt's website.

The NightScene level

This level is a quick example of a night environment with the lighting
reduced significantly. For more information on creating a scene using
lighting for night time, refer to https://docs.unrealengine.com/
latest/INT/Resources/Showcases/RealisticRendering/
NightScene/index.html.

How to do it…
To create a flashlight, perform the following steps:

1.	 The first thing we will want to do is create a SpotLight to use as our flashlight. We
can do that by right-clicking on the ground near the player and then navigating to
Place Actor | Spot Light.

https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/NightScene/index.html
https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/NightScene/index.html
https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/NightScene/index.html

Chapter 6

131

2.	 Rotate the spotlight 90 degrees so that it is facing away from the player's spawn
point. Then, change the Inner Cone Angle value to 8 and the Outer Cone Angle
value to 10. Lastly, we want this actor to be movable so that it can move, so in the
Details tab under Transform | Mobility, select the option that is the furthest to the
right (Movable).

Adjusting the cone angles of the spot light and making the player movable

For more information on moveable lights, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/LightMobility/DynamicLights/
index.html.

3.	 Now if you play the game, you will see additional objects in the Scene Outliner tab,
including an object called MyCharacter_C4 (or something similar). Select it and
scroll down to your SpotLight. Drag and drop the SpotLight object on top of the
MyCharacter object (use the mouse wheel to move the object selections up while
holding down the mouse).

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html

Lighting and Shadows

132

4.	 After this, set the Location value of the SpotLight to 0,0,0 so that it is at the
same position of the player. (As we mentioned before, children of an object have a
transition relative to the position of their parent.)

Setting the Location value of the spot light

As you can see, we now have a working flashlight in Unreal. There are a few issues
with this, for example, if we look up or down, the light will not go with us because the
camera has a different transform than our Character class. There's also the issue that
since we did this in the game (after the player has been spawned), when we will leave, it'll
reset to what it was beforehand. We know that the functionality is possible now, so how can
we make this work all the time, and have functionality? Adding it to our Character's Blueprint,
we'll dive into how to do this exactly, and the other things to to be considered in our Adding
to an existing Blueprint – flashlight, part 2 recipe, which you can find in Chapter 8, Blueprint
Scripting – Level Effects.

Creating a Day/Night cycle
If we are creating an open world title or any kind of game where the player is outdoors,
one thing that would be nice is the ability to have our world change the time of day at the
same rate.

Chapter 6

133

Getting ready
Before we start working, we should have a level created with a Sky_Sphere and a directional
light (the default map has this). To be sure, you can use the DayNightCycle-Before map
from the example code folder.

How to do it…
Perform the following steps to create a day/night cycle:

1.	 As we discussed before, we can use Directional Lights to act like the sun.
For our day/night cycle we will want our lighting to change over time, so let's select
the DirectionalLightStationary object from the Scene Outliner tab and then
from the Details tab, change the Mobility property to Movable. Finally, change the
name of the object to DirectionalLightMovable.

You can either rename the object from the Details tab or press F2
when selected in the Scene Outliner tab.

Making our DirectionalLight moveable

Lighting and Shadows

134

2.	 To have this lighting change reflect correctly, the next thing we should do is build the
lighting of our level by going to the toolbar above our level view and navigating to
Build | Build Lighting Only.

Now, if we were to rotate the light right now, we would see the Sky's color will be
modified:

However, the sun that is part of our SunSphere will not be modified by the changes.
To fix this, we will need to use Unreal's Blueprints system.

Chapter 6

135

3.	 Next, from the top-center toolbar, navigate to Blueprints | Open Level Blueprint, and
you should be brought to the following screen:

4.	 From the Blueprints editor, we right-click inside EventGraph and then select
Add Event | Event Tick.

This creates a new event that will get called every frame that it is active and it
has a parameter of Delta Seconds, which is how much time has elapsed for this
particular frame.

Lighting and Shadows

136

5.	 We want to have the Sky Sphere's sun at the same position as our Directional Light, so
let's do that first. Go to the Scene Outliner tab and select the SkySphereBlueprint
object by clicking on it. Once this is done, go back into the Blueprints screen and to
the right of the Event Tick event, type in Sun to show the properties that contain those
letters. From there, select the Update Sun Direction option:

If the object was selected correctly, we should see the Target variable already filled in with
the SkySphere.

To zoom in, use the mouse wheel. This action will find the rotation of the directional light in
our level and modify it so that the sun will face the same way.

If you want to see what Update Sun Direction is actually doing, feel free
to double-click on the action. We'll talk about what those actions mean
later on in Chapter 8, Blueprint Scripting - Level Effects.

Chapter 6

137

Blueprints are run while the game is played, so at this point, if we play the game, selecting the
DirectionalLightMovable object, and rotating it from the Details tab, we'll notice that
the sun in the sky rotates to face it!

Lighting and Shadows

138

Of course, at this point, we could rotate the light using a matinee for cutscenes and we'd
be done, but in this instance, we want it to move automatically, so let's modify the level
blueprint to do that.

1.	 Next, we want to have the directional light continuously rotate along the Y axis.
To do this, let's first move the Update Sun Direction action and the SkySphere
Blueprint object off to the side so that we can put something in between by
selecting both items and then dragging them. Finally, highlight the arrow from
the left side of the Update Sun Direction action, hold down the Alt key and then
click in order to break the connector.

The current state of the Event Graph (note the broken connection)

Chapter 6

139

2.	 From there, select the DirectionalLightMoveable actor from the Scene
Outliner tab and then right-click on Event Graph and select Add Actor Local
Rotation (searching for Rotation from the top search bar). Connect the Event Tick
event's output arrow to the Add Actor Local Rotation node and then connect its
output to the Update Sun Direction input. Finally, change the P (Pitch) value in the
Delta Rotation property of the Add Actor Local Rotation action to 10.

Working with DirectionalLightMoveable actor in the blueprint

The Add Actor Local Rotation node takes whatever value the Target object (directional light)
has as its current Rotation and adds to it by the Delta Rotation vector. We do this before we
update the sun's direction because we want the sun and the light to be at the same position
(the sun would be a tad off, otherwise). The 10 value acts as the speed at which we want to
move in that direction and can be modified to change the speed of our movement.

Now if we play the game, we'll notice that the sun is moving exactly as we wanted, but it is
moving extremely fast! We could modify this value to fit whatever speed we'd like, but first,
there's something that we need to note as we build even more complex actions—the Delta
Seconds property that we talked about earlier.

The Delta Seconds value (commonly referred to as the Delta Time or dt in mathematics) is
extremely important because in games, even though we often want things to run as quickly
as possible (usually 60 times per second), the more complex or graphically intensive things
get, the more time it takes the computer to do all of the calculations needed to update and
render the completed frame. Using this value as a modifier makes sure that our events are
dependent on time, not by frame, ensuring that the same things happen as time goes on.
Since the value will also normally be 1/60 (or ~0.016), being multiplied by 10 will give us a
much smaller number, which is what we want.

Lighting and Shadows

140

This value is a float, or floating point number; this is a variable or container of information that
we can store and use in various areas of code.

Taking that into account, let's use the Delta Seconds value in creating our Delta Rotation:

1.	 To the left of the Delta Rotation vector, right-click and create a Make Rot action
(it makes a rotator from a Pitch, Yaw, and Roll value). Connect the Return Value
from the Make Rot action to the Delta Rotation vector of the Add Actor Local
Rotation action.

2.	 To the left of the Make Rot action, right-click and create a Float * Float action, which
we will use to multiply two floating point numbers together (in coding, the operator
for multiplication is *). Connect the Delta Seconds value from Event Tick into one of
the two inputs and connect the output to Yaw of the Make Rot action. Finally, put in a
value of 10 or whatever modifier you want into the other input.

Using delta seconds within our rotation

Chapter 6

141

3.	 At this point, click on the Compile button, exit the level blueprint, and run the game!

It works perfectly and we can modify this 10 value to make the value go faster (20 for 2x
faster) or slower (1 for 10x slower), without having to worry about how complex the game is!

See also
We just touched the tip of the iceberg when it comes to working in lighting! After all, we can't
condense what someone's full time job is to 20 pages. However, I do have some external
resources that may be useful should you decide to do more with it:

ff While creating lighting, for efficiency's sake, it's important to keep in mind
what areas need to have the highest quality lighting and what can be reduced.
To do that we make use of lightmass. For information on that, refer to
https://docs.unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/Lightmass/Basics/index.html.

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/Lightmass/Basics/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/Lightmass/Basics/index.html

Lighting and Shadows

142

ff While it's not needed so much for games, there are a lot of people who want to
have realistic lighting for their levels for things such as architectural demos. For
more details on that, visit https://docs.unrealengine.com/latest/INT/
Resources/Showcases/RealisticRendering/index.html.

�� For this, you can also download the maps shown from the Epic Games
Launcher under the Learn tab if you select the Realistic Rendering option.

ff In case you run into any problems with your lighting, a good guide to look into
for troubleshooting can be found at https://wiki.unrealengine.com/
LightingTroubleshootingGuide.

ff You may also be interested in seeing the lighting of a map. 335Razor has a tutorial
that recreates the lighting in one of the Unreal test maps at https://www.
youtube.com/watch?v=KmY7X9cBQZ0.

https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/index.html
https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/index.html
https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/index.html
https://wiki.unrealengine.com/LightingTroubleshootingGuide
https://wiki.unrealengine.com/LightingTroubleshootingGuide
https://www.youtube.com/watch?v=KmY7X9cBQZ0
https://www.youtube.com/watch?v=KmY7X9cBQZ0

143

7
Art Pipeline – Working

with Materials

In this chapter, we'll cover the following recipes:

ff Creating a custom material

ff Creating a mirror material

ff Using Textures and normal maps with Materials

ff Creating glowing materials with static emissive lighting

ff Seeing through walls

Introduction
Artists are incredibly empowered by working in the Unreal Engine with many features created
to make their work come out as aesthetically pleasing as possible. In this chapter, we are
going to look at some of the ways that you can work within the art pipeline of Unreal Engine 4,
with some additional resources at the end of the chapter with even more content.

Creating a custom material
Materials are the building block of creating environments in Unreal and they are what
we use to apply to all of the surfaces of our environment, similar to putting paint onto a
wall in the real world.

Art Pipeline – Working with Materials

144

Specifically, it is a collection of textures and commands that will create a surface with
properties such as shininess and color. We've used materials previously when we added them
to walls when creating levels, but we've only been using the Starter Content folder that
has been provided to us.

However, you may want to create a material of your very own. Let's look into that now.

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project
tab. Select First person and make sure that With Starter Content is selected.
Give the project a Name (Cookbook_Chapter7). Once you are finished, click on
Create Project.

3.	 You should see a level similar to this:

Chapter 7

145

How to do it…
To start off with, we want to have an easy way to see what kind of material we are going to
create. To do that, let's open a map that has a lot of examples for us to work with.

1.	 Go into the Content Browser tab and then the StarterContent/Maps/
StarterMap file and double-click on it to open it. After loading, you should see a
level similar to this:

As you can see, all of the materials here are included currently in both a floor title and
circle object. This can be quite useful as you may want to create materials that work
in all kinds of situations.

Art Pipeline – Working with Materials

146

2.	 Let's make a copy of a base here for viewing our own material that we will create.
Select the set of items with no material (the checkerboard pattern), hold down the
Alt key, and drag it forward so that we have a new place to put our objects.

Creating our duplicated base

3.	 Now I want to differentiate my own content from the Starter Content folder,
so from the Game folder in the Content Browser tab, right-click and select to create
New Folder and name it Materials.

4.	 Select the newly created folder and, from the area, right-click and go to Create Basic
Asset | Material.

Chapter 7

147

5.	 After this, double-click on it to open up Material Editor.

Now just like normal in Unreal, all of the editors have a lot of content in them, so let's break
it down.

First, in the center is the actual information that will be used for creating our material, and
the entire area is for different operators and variables to modify these properties, much like
working in Blueprints. The base material node in the center is included with every material
and has a series of inputs associated with a different aspect of the material.

The top-left is a preview window to allow you to see how the material you're creating looks
similar to, and you can click on the buttons in the top-right to change the shape used for the
preview to help you, depending on what the material will go on. You can use the mouse to
move around, just like working with the editor, and you can also toggle the grid as well.

The bottom-left features the Details tab or properties for our element. We will use this in
order to modify the various properties that each node will have.

To the right, you'll see Palette panel, which lists all of the possible nodes you can use to
modify your material. However, you can also access this menu by right-clicking inside any
empty gray area in the center and typing in the name of the item if you know what it is.

For more information on the Material Editor UI check out
https://docs.unrealengine.com/latest/INT/Engine/
Rendering/Materials/Editor/Interface/index.html

https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/Editor/Interface/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/Editor/Interface/index.html

Art Pipeline – Working with Materials

148

Now that we know what everything is, let's start to modify this material, starting with
modifying the color:

1.	 First, you'll notice Base Color, which is similar to a diffuse map in 3D modeling
programs. It basically is the color that will be displayed. We can either give it a texture
to use, or we can use Constant3Vector, which is, to say, a number with three
elements to assign the amount of red, green, and blue values that an item has. To do
this, right-click in the empty space to the left of the Base Color to bring up the object
list and type in Constant3Vector and then select this new object.

You can also hold down the 3 key and then click in the graph area
to create a Constant3Vector node.

2.	 After this, from the Details tab, click on the box in front of the Constant section and
change the color to something you'd like, making sure to bring up the black bar so
that you can actually see something other than black.

If you happen to know the Hex value of a color through something like
Photoshop, you can also feel free to put that in. Alternatively, you can
also use the Color Picker tool to pick a color as well.

Chapter 7

149

3.	 When you're done setting the color, press the OK button. After this, connect the
output pin from the ConstantVector3 color into the Base Color value.

Setting the color

4.	 Now click on the Apply button on the top toolbar to commit those changes into the
editor. Then click on Save and move back into the editor. From there, drag and drop
the new material we have created onto both the objects.

Applying the colored material to our base

And with this, we've created a very simple colored material!

Art Pipeline – Working with Materials

150

Creating a mirror material
Now that we've created one of the simplest materials, let's get a little more complex by
creating a mirror material while learning about some of the other properties the Material
Editor has in the process!

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser window by selecting the New Project
tab. Select First person and make sure that With Starter Content is selected
and give the project a Name (Cookbook_Chapter7). Once you are done,
click on Create Project.

3.	 You should see a level similar to this:

Chapter 7

151

How to do it…
To start creating a mirror material, we will perform similar steps to what we've done before:

1.	 Go in and create another material in the Content Browser tab by going into the
Materials folder and right-clicking and selecting Material.

2.	 Rename the material to Mirror Material and double-click on it to enter into
Material Editor.

3.	 Just like before, we want to give a color to our mirror. To do this, right-click to the left
of the Base Color value and create Constant3Vector and give it a value of 1,1,1
(also known as white).

4.	 Next, we will want to modify the Metallic property, which will modify our material to
be more metallic and shiny. Create a constant value by right-clicking and searching
for Constant and set the value to 1.

Alternatively, you can also press and hold the 1 key and then click on the
material graph to create a single scalar constant value.

Art Pipeline – Working with Materials

152

Notice how it makes the item much more shiny just as metals are in real life. When
we set this value to 1, it means that it is a full metal object; we use 0 for non-metal
objects and increase the number for more metallic things.

For more information on the Metallic property, visit
https://docs.unrealengine.com/latest/INT/Resources/
ContentExamples/MaterialNodes/1_2/index.html.

5.	 Next, we will modify Roughness; this will modify the material in such a way that it will
look more rugged or shiny depending on what we set it to, and it just so happens that
when things are shiny, they are reflective, so we will set Roughness to 0.

From here, you get to see a skybox being reflected in the background that is
representative of what you'd see if you applied this material; everything around
it will be reflective like a mirror. The higher the value is for roughness, the less
reflective it will become.

For more information on the Roughness property, visit
https://docs.unrealengine.com/latest/INT/Resources/
ContentExamples/MaterialNodes/1_4/index.html.

https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_2/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_2/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_4/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_4/index.html

Chapter 7

153

6.	 With this, click on the Apply button and close the Editor.

7.	 Jump into the Example_Map level in the Maps folder and apply the newly
created Mirror Material to some of the surfaces by dragging and dropping
them onto the scene.

Applying the mirror effect

With this, we now have a new material that we can work with, with a really cool effect while
also seeing how the Roughness and Metallic properties work!

Using Textures and normal maps with
Materials

As time goes on, working with just colors isn't enough. You'll want to have more detailed
materials that look more like things in the real world, such as wood, water, and walls.
To do this, artists will often provide images that we can use for color data for the different
parts of materials.

Art Pipeline – Working with Materials

154

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select First person and make sure that With Starter Content is selected. Give the
project a Name (Cookbook_Chapter7). Once you are done, click on Create Project.

3.	 You should see a level similar to this:

How to do it…
Let's see how we can do this now:

1.	 The first thing we are going to do is add textures for us to work with. So, from the
Content Browser tab, right-click on the Game folder and select to create New Folder.
From there, set the name as Textures.

Chapter 7

155

2.	 Inside the Example Code folder for this chapter, open the Images folder and drag
and drop the images into this folder.

You may get a notification saying that JustPlaster_NRM file was imported as
a normal map. This is important as we'll be using it later, but first, let's get this
information into a material.

3.	 Go to our Materials folder and then right-click and create a new Material which
we will call PlasterWall. Then double-click to open the Material Editor.

Art Pipeline – Working with Materials

156

4.	 To add the texture's data as Texture Sample, we can simply drag and drop
them into the editor and move them around so the blueish normal map is
below the other texture.

Another way to place a texture sample is by selecting the texture
maps in the Content Browser tab and then in the material editor,
pressing and holding the T key, and clicking on the Material Editor
graph to create the texture sample node with a specific texture from
the Content Browser tab.

Chapter 7

157

5.	 Next, connect the color material's top white pin into Base Color.

You'll notice that it gives us more variation than just a simple color.

6.	 Next, we set the white pin of the bluish normal texture to Normal of the material.

Art Pipeline – Working with Materials

158

You'll notice immediately that Normal has a big effect on how the material works.
A normal map is used to give the illusion of lumps and bumps on a surface by simulating
the pixels being at different areas.

This effect may be larger than what we are looking for and from the normal map's information,
it seems like the green aspect of the map is making it look a lot more pronounced than it
should be. A Normal is a vector which points in a particular direction to give each pixel an
angle that the object is. That angle is defined by assigning the X, Y, and Z direction of the
surface normal to the R (Red), G (Green), and B (Blue) channels of the texture, respectively.
Thankfully, we can modify this using some additional operators.

For more information on normal maps, visit
http://wiki.polycount.com/wiki/Normal_map.

1.	 Move the normal map's texture sample over to the left to make room for another
node. Next, add a Multiply action by right clicking and searching for Multiply.

2.	 Then, below the normal map, right-click and create a Constant3Vector and set its
value to 0.1, 0.1, 1 in the Details tab.

3.	 Disconnect the normal from the Normal section of the material by holding down the
Alt key and then clicking on it. Then connect it to the A part of the Multiply node.

4.	 Next, connect the white pin from the Constant3Vector we created to the B slot.

http://wiki.polycount.com/wiki/Normal_map

Chapter 7

159

5.	 Finally, connect the white pin of Multiply to the Normal section of our material. It
should look similar to the following image:

Art Pipeline – Working with Materials

160

We multiplied each of the channels of the texture sample by a number we provided
in our purple-looking item. The green channel is set to .1, which means that we are
removing the harshness we were seeing previously by removing 90% of what was
there previously.

Note that this is not the same as the dot product or cross product,
which are totally different things (but are the two ways that you
can multiply vectors with vectors which have special mathematical
properties that are often used in collision), but are very useful for game
development if you're a programmer.

6.	 After this, click on Apply and then exit back into the Editor and apply our material to
some walls.

7.	 Save our newly created content and then click on Play!

As you can see, there are now some differences between the areas of the walls, making it
look much more realistic.

Chapter 7

161

Creating glowing materials with static
emissive lighting

If you've ever seen a movie such as Tron: Legacy or any game area with neon lights and the
like, it may seem very computationally expensive to have that in our levels because of how
they have a lot of lighting going on. We can add this efficiently to our materials by using the
emissive property.

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select First person and make sure that With Starter Content is selected. Give the
project a Name (Cookbook_Chapter7). Once you are done, click on Create Project.

3.	 You should see a level similar to this:

Art Pipeline – Working with Materials

162

How to do it…
The first thing we are going to want to do is open up a level that is made for this kind
of lighting.

1.	 Open up the Empty Room map created in the Example Code folder.

The Empty Room map

This map is the same as the map created in our previous Building a room recipe in
Chapter 2, Level Design – Building Out Levels or Greyboxing aside from removing the
directional and point light created in there. Needless to say, if lighting was built and
you played the game, it would be in pitch blackness.

2.	 Let's create a new material which will glow for us. To do that, right click on the
Materials folder and select to create a new material. Name it GlowMaterial and
then double-click on it to access the Material Editor.

3.	 First, let's set Shading Model to Unlit. This will make it so that it will only output the
emissive value for color, which is perfect for this particular application.

Chapter 7

163

For more information on Shading Models, refer to https://docs.
unrealengine.com/latest/INT/Engine/Rendering/
Materials/MaterialProperties/LightingModels/index.html.

4.	 Next, let's create a color to represent the color we want to have glowing. To do
this, right-click on the left-hand side of the Emissive Color section and select
Constant3Vector and change the color to something you like.

5.	 After this, in order for Emissive to give us a bloom color, we need to make the
value larger than 1. We can also modify the color itself using actions. Let's add
in a Multiply action to the right of the color.

6.	 Connect the white pin of the color to the A value of the Multiply(,10) action.
Then, connect the white pin at the end of the Multiply(,10) action to the
Emissive Color input.

7.	 Next, select the Multiply action and rather than creating a new node for the B value,
just go to the Details tab and put in a value in the Const B value, such as 10. If all
goes well, you should see a nice glow appear, as shown here:

Creating a glowing material

https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/MaterialProperties/LightingModels/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/MaterialProperties/LightingModels/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/MaterialProperties/LightingModels/index.html

Art Pipeline – Working with Materials

164

8.	 Click on Apply to have this applied to our players. Now, set the material to
our character in the screen and after a few seconds, it will appear to have a
nice glow effect.

9.	 Finally, let's play the game and see it in action.

Chapter 7

165

It's important to note that this does not actually cast a light into
the scene, but merely provides a glowing effect.
There are some in-progress tools that use a light propagation
volume to add lighting. You can check these at https://
forums.unrealengine.com/showthread.php?6914-
Light-Propagation-Volume-now-works-with-
Emissive-Material.
For more information on the Emissive property, refer to
https://docs.unrealengine.com/latest/INT/
Resources/ContentExamples/MaterialNodes/1_5/
index.html.

Seeing through walls
A neat feature of many titles is being able to see enemies or important objects through walls,
similar to the detective mode in Batman: Arkham Knight, the thermal vision in Splinter Cell, or
the outlines in Evolve and other games. Let's implement similar functionality now.

Getting ready
Before we start working within the Unreal Editor we will need to have a project to work with:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select First person and make sure that With Starter Content is selected. Give the
project a Name (Cookbook_Chapter7). Once you are done, click on Create Project.

3.	 You should see a level similar to this:

https://forums.unrealengine.com/showthread.php?6914-Light-Propagation-Volume-now-works-with-Emissive-Material
https://forums.unrealengine.com/showthread.php?6914-Light-Propagation-Volume-now-works-with-Emissive-Material
https://forums.unrealengine.com/showthread.php?6914-Light-Propagation-Volume-now-works-with-Emissive-Material
https://forums.unrealengine.com/showthread.php?6914-Light-Propagation-Volume-now-works-with-Emissive-Material
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_5/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_5/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/MaterialNodes/1_5/index.html

Art Pipeline – Working with Materials

166

How to do it…
In order to see other objects, let's first add an object that we'd like to see into the level:

1.	 Open up the Example_Map file and from the Content Browser tab, go into the
Character folder and drag a HeroTPP skeletal mesh into the level. This will be our
enemy that we will want to see no matter where they will be.

Adding the enemy

Chapter 7

167

2.	 Let's now create a new material that we can work with and give it a name
(SeeThruMaterial). Once it's created, open up the Material Editor.

3.	 First, create Constant3Vector with a color of your choice and assign it to the
Emissive Color property.

4.	 After this, deselect it so that nothing is selected and go to the Details tab. From here,
change the Blend Mode to Translucent.

This blending mode is used for objects that require some form of translucency and is
applied onto areas in front of it, but this mode also has another feature that is perfect
for what we want to do. We will look into it next.

For more information on how to use Transparency effectively, refer to
https://docs.unrealengine.com/latest/INT/Engine/
Rendering/Materials/HowTo/Transparency/index.html.

5.	 Go into the Translucency section and toggle the Disable Depth Bias property to be
enabled. This will say that we should draw this on the top of the screen even if we're
behind something else.

Setting the translucence value

https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/HowTo/Transparency/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/HowTo/Transparency/index.html

Art Pipeline – Working with Materials

168

6.	 Once you're done, hit the Apply button and then close the editor. Then, apply the
newly created material to the enemy and move around the camera to see the effect
that we generated!

Applying translucence to the enemy

7.	 To see it in action in the game, go to the toolbar and hit the Play button to start
the project!

Chapter 7

169

With this, we can see the object no matter what! Later on, you can use this recipe with the
knowledge of blueprints to toggle the effect.

Tom Looman also came up with another implementation using the
Render Custom Depth flag that looks similar to the game Evolve with
outlines. It can be found at http://www.tomlooman.com/ue4-
evolves-outline-post-effect/.

See also
Now, there is much more that exists in the Material editor, especially when you add more
complex interactions and/or apply them to meshes to create some interesting effects.
Here are some additional tutorials that may be useful to you going further:

ff Much like working with brushes, you can also modify the UVs of the materials.
Learn how to do this at https://www.youtube.com/watch?v=YcoHWSxFEko.

ff You can use a process called instancing using parameters to change the material
as the game continues. There's a good tutorial on this at https://www.youtube.
com/watch?v=NX-NNyGV3oQ.

ff Sjoerd De Jong (also known as Hourences) also has some amazing resources
for you to look at, with an Example Project of his with materials and meshes
that you can take apart, some videos of the project. I originally started learning
Unreal Engine 3 8 years ago from his tutorials, and I'm really glad to hear that he's
still creating awesome stuff. Check it out at http://www.hourences.com/
thesolusproject/.

ff While this book is focused on using Unreal Engine 4, it may be useful to see a brief
tutorial talking about building a level from scratch using a 3D modeling program and
bringing it into the engine. A fairly good example tutorial series by The 3D Tutor on the
subject can be found at https://www.youtube.com/watch?v=eJ0zu6GIqxQ&l
ist=PLK3nRt7ToxJ0kxAocxw1KvpM1tF3X5JB2.

ff Once you feel comfortable creating levels, you may also want to build out a
character with animations. An introduction to UE4's animation tools can be found
at https://www.youtube.com/watch?v=knbZ_g8Hgvk&list=PLZlv_N0_
O1gb2ZoKzTApbv3LvhaXJ9elg.

http://www.tomlooman.com/ue4-evolves-outline-post-effect/
http://www.tomlooman.com/ue4-evolves-outline-post-effect/
https://www.youtube.com/watch?v=YcoHWSxFEko
https://www.youtube.com/watch?v=NX-NNyGV3oQ
https://www.youtube.com/watch?v=NX-NNyGV3oQ
http://www.hourences.com/thesolusproject/
http://www.hourences.com/thesolusproject/
https://www.youtube.com/watch?v=eJ0zu6GIqxQ&list=PLK3nRt7ToxJ0kxAocxw1KvpM1tF3X5JB2
https://www.youtube.com/watch?v=eJ0zu6GIqxQ&list=PLK3nRt7ToxJ0kxAocxw1KvpM1tF3X5JB2
https://www.youtube.com/watch?v=knbZ_g8Hgvk&list=PLZlv_N0_O1gb2ZoKzTApbv3LvhaXJ9elg
https://www.youtube.com/watch?v=knbZ_g8Hgvk&list=PLZlv_N0_O1gb2ZoKzTApbv3LvhaXJ9elg

171

8
Blueprint Scripting –

Level Effects
In this chapter, we'll cover the following recipes:

ff Building a flickering light

ff Converting from Level to Class Blueprints

ff Using Trigger Volumes – opening a door using Matinee

ff Adding to an existing Blueprint – flashlight, part 2

ff Creating a Health/Damage system, part 1 – taking damage

Introduction
Introduced in Unreal Engine 4, Blueprints is a visual scripting language that is built into
the engine. By using visual scripting, instead of writing code from scratch inside Visual
Studio or some other IDE (which we will cover in the next chapter), we can use predefined
actions and connect them together, similar to drawing a graph. This is often a great starting
point for artists and game designers as it is much more visually oriented and easier to grasp
than just plain code.

There are two types of blueprints you can create:

ff Level Blueprint: This works similarly to how UE3's Kismet system worked as events
and actions that will occur in just this particular level. This is good for things such as
triggering enemies to spawn or moving platforms.

ff Class Blueprints: Introduced in UE4, this can be put into any level. They just work
using their predefined behavior that we create beforehand, similar to prefabs in Unity.

It may take some time to get used to it, but we will dive into some simple systems first.

Blueprint Scripting – Level Effects

172

Building a flickering light
For our first Blueprint, let's make use of the Level Blueprint system to create a simple action of
a flickering light. Often a staple of horror games, lights that flicker can cause fear in players of
not being able to see certain things for a random period of time.

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with:

1.	 Open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select First person and make sure that With Starter Content is selected and
give the project a Name (Cookbook_Chapter8). Once you are finished, click on
Create Project.

3.	 After the project is opened, go to the Example Code folder, drag and drop the
NightScene map provided into your project folder and open it:

Chapter 8

173

How to do it…
In the middle of the map, you'll notice that there is a light. We're going to make this randomly
start to flicker for a time:

1.	 For a light to change and work correctly with lighting, the first thing we will need
to do is change its Mobility to Movable on the far right. While this may imply the
object will move, this is also a way of saying we want the ability to make properties
(such as the Light's Intensity) modifiable while the game is running.

2.	 After this, move down and under Light, notice the value of the Intensity property.
Note that when modified, it makes the light brighter or darker.

3.	 Click on PointLight to select it and then from the top panel, go to
Blueprints | Open Level Blueprint.

This panel consists of a number of parts that will look familiar to those who have
worked with UE3's Kismet system. The EventGraph on the right-hand side will contain
the events and functions (which I'll sometimes also refer to as actions), which
are called inside the game. Think of this in terms of when something happens (the
events), we will do something (the functions).

Blueprint Scripting – Level Effects

174

4.	 From here, when we right-click within the main graph area in the center of the
Event Graph tab, we will see a context menu pop up. In the search bar, search for
Begin Play and select the Event Begin Play event. This event occurs whenever
the game starts, so as soon as the player is spawned, whatever functions are called
from it, will happen.

Adding the Event Begin Play event to the level blueprint

5.	 Next, we want to modify the light. To do this, we will right-click and select Create a
Reference to PointLight.

This will create a variable that is a reference to the object in the scene. We can use
this variable in the function's parameters.

Chapter 8

175

6.	 Click and drag the blue wire from the right-side of the point light and drag out to
place a new node. The menu that pops up will only show the actions, which can use
the point light. From here, type in Intensity and select the Set Intensity (Light
Component) function.

7.	 After this, connect the output (white arrow on the right-hand side) of the Event Begin
Play node to the input of the Set Intensity function.

Connecting the output of the Event Begin Play node to the input of the Set Intensity function

You'll notice that the function (note the fancy f icon on the left-hand side) has two
properties, the Target and the New Intensity. This will change the PointLight (Target)
to whatever the value on New Intensity is.

Blueprint Scripting – Level Effects

176

8.	 Click on the Compile button to commit our changes and then, back in the editor, hit
the Play button.

Starting the game after compiling

You'll notice that now the world is pitch black. This is because the value of Set
Intensity is now set to 0. If you have the Level Blueprint window open and then hit
the Play button again, you'll actually see the action being executed:

Execution in the level blueprint

Chapter 8

177

9.	 Of course, we don't want it to be set to 0. We want it to flicker with random values, so
let's create a new variable to be our new intensity. Drag out from the New Intensity
arrow toward the left, and you'll see a number of different functions that return a float
value. In the search bar, look for Random and from the list, select Random Float in
Range. Under Max, put in 2000.

Setting a random intensity in the level blueprint

To move around the Level Blueprint's Event Graph window, right-click
and hold, then drag. To zoom in and out, use the mouse wheel. To drag
individual elements around left-click and drag them. For more hotkeys
and information on moving around Blueprints, refer to https://
docs.unrealengine.com/latest/INT/Engine/Blueprints/
UserGuide/CheatSheet/index.html.

Now if you were to play the game, you should notice that the light has a different
brightness every time we play it. However, if we want the light to flicker, we should
change the intensity value a lot of times as long as the game is running.

10.	 To the right of the Set Intensity function, right-click and create a Delay function
node. Then, connect the exec output of Set Intensity to the input (left-hand side)
of the Delay action. Then connect the Completed output to the input of the Set
Intensity function.

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/CheatSheet/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/CheatSheet/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/CheatSheet/index.html

Blueprint Scripting – Level Effects

178

You can also hold the D key and then click to create a Delay function
within the Blueprints Editor.

Creating a loop for the Set Intensity function to be called every 0.2 seconds

This is effectively creating a loop, causing the Set Intensity function to be called after
every .2 seconds. If you hit the play button to see the actions executed, you'll notice
that the actions are continuously happening, and in the game, you'll see that the
values are indeed changing, but we notice that it will always change at a fixed rate
which is predictable. A flickering light would be nicer to not be as static in terms of
when the value changes so players are unsure as to when it will happen.

Chapter 8

179

Executing the flickering effect

11.	 For the sake of readability, move the Delay action to the right of the Set Intensity
function. Doing the same steps as before, create another Random Float in Range
for the Delay action's Duration variable with a value between 0 and 0.2.

12.	 When working on scripting like this, it is also a good idea to comment your code.
This will help people looking at your code (including your future self) to find
things more easily.

Blueprint Scripting – Level Effects

180

13.	 To do this, do a marquee selection around the entire blueprint by clicking slightly on
the top-left of the Event Begin Play action. Then, drag to the right and down until
all of the actions are selected and right-click on one of the functions. From here,
select Create Comment from Selection. Name the box that was created, Flashing
Light, and press Enter.

Adding comments to the script

You can also press the C key to create a comment around
whatever you have currently selected.

Chapter 8

181

14.	 Save your level and hit the Play button!

With that, our flickering light is working correctly and it's looking good!

Converting from Level to Class Blueprints
In the previous recipe, we used the Level Blueprint system in order to create a prototype of
a feature we may want to have. In this recipe, we will see how we can convert this prototyped
feature into a Class Blueprint which can be reused in every level.

Getting ready
Before we start working on this, we need to have a level blueprint to convert. Follow the
previous recipe or open up the FlashingLight level provided in the example code.

Blueprint Scripting – Level Effects

182

How to do it…
The Level Blueprint is great, but it's limited in the fact that everything created is stuck within
that level, and we'll generally have to copy/paste a lot to move things between levels (this was
a problem back in the UE3 days with Kismet). To solve this issue, we have Class Blueprint,
which we will create now:

1.	 With our Point Light selected, go to the Details tab and scroll down to the
Blueprint section. Then, click on the Replace With Composited Blueprint option.
When the Select Path dialog comes up, select the Blueprints folder and enter the
name FlashingLight_Blueprint, then press Create Blueprint.

You'll then be brought to the Class Blueprint for our newly created action and it has
the Point Light, which we created earlier, added. We are currently on the Components
tab, which is where all of the pieces that make this blueprint reside. We'll look over
this in another recipe, but for now, let's move over to the Event Graph tab.

Chapter 8

183

2.	 Click on the Event Graph tab. Just like before, we are given an empty blueprint
to work with. However, this time you'll notice that the My Blueprint tab now has
the PointLight_0 object as well as any other objects that may be part of the
Components tab.

3.	 Move over to our Level Blueprint and select all of the nodes we created.
Hit Ctrl + C to copy the nodes.

4.	 After this, move back to the Graph of FlashingLight_Blueprint again, select the
Event Graph tab and then paste (Ctrl + V).

You'll note that all of our previous content moved over nicely, except for the Point
Light. This is because we were previously using a reference to something in the level.
When working with blueprints, you are only able to access things inside the blueprint
itself (unless you can get a reference to it).

Blueprint Scripting – Level Effects

184

5.	 Delete the Unknown element by selecting it and then hitting the Del key.

Deleting the Unknown element causes an error

This causes an error because we do not have something set for Target, but we will
use our Blueprint's component to work with it.

6.	 From the My Blueprint tab, drag and drop the PointLight_0 object into the Event
Graph. You'll then have the two options of whether we want to modify the value of it
(Set) or obtain the value to use (Get). In this instance, we will use Get.

However, at this point, if we try to drag and drop the point light into the Target, you'll
notice that there is a conflict due to the types not being the same.

Chapter 8

185

This is easily solved, but I wanted to point out the similar problems like this may
happen on occasion, so let's fix it.

7.	 Delete the Set Intensity action and drag from Point Light 0 and create a new
Set Intensity function using the correct component. Then, connect everything back
the way it was in the previous version and then press the Compile button to make
sure everything is working correctly.

Creating new Set Intensity function

8.	 Lastly, move into the Level Blueprint window and delete our previously created
actions. We won't need them anymore (note the warning that exists now because the
object is now a blueprint).

Blueprint Scripting – Level Effects

186

9.	 Save your blueprint and the level and then hit the Play button.

Everything is the same as before! However, now that our light is a blueprint,
we can use it as many times as we want without having to copy/paste any actions.

10.	 Drag and drop two copies of the blueprint into the level and position them wherever
you'd like to and play the game again.

Playing the game with two copies of the blueprint

Chapter 8

187

Now we have multiple lights, reacting in their own independent ways while learning about
class blueprints! Also, since you have learned how to modify a property, you can also modify
any of the other properties of the light, such as its color, position, and so on!

Using Trigger Volumes – opening a door
using Matinee

Of course, there are many other things that we can do inside Blueprints instead of flickering a
light. Another example would be to open a door when we get near it making use of Matinee.

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with
which contains the Starter Content that Epic provides. After the project is opened, go to the
Example Code folder and drag and drop the HouseExample map provided into your project
folder and open it.

Blueprint Scripting – Level Effects

188

How to do it…
In order to have our doors open, we will want them to be animated. To do this, we will use
Unreal's Matinee system:

1.	 Select both doors and ensure that the Mobility section is set to Movable. If this is not
done, you may have errors in Matinee when we say we want to move them.

Currently, our doors do not have collision. Let's fix this by looking at the common
reasons for why things cannot be working correctly.

2.	 Back in the Details tab, go into Collision and note that Collision Presets is set to
BlockAll. This means that if the object has collision data, anything will collide with it.

3.	 The key thing to note is that the object will only collide if there is collision data. Let's
check this now. Scroll up to the Static Mesh component and double-click on the door
to open up the Static Mesh Editor.

Alternatively, you can also press Ctrl + B when the doors are selected
in the scene to automatically find the asset in the Content Browser
tab and then double-click from there.

Opening the Static Mesh Editor

Inside this editor, you can modify any properties that are part of this mesh, including
the materials used and the way it reacts to shadows.

Chapter 8

189

For more information on the Static Mesh Editor, refer to https://docs.
unrealengine.com/latest/INT/Engine/Content/Types/
StaticMeshes/Editor/index.html.

4.	 There's currently no collision on this object, so let's add it. Go to Collision and select
Add Box Simplified Collision, and with that, you'll notice that there are green lines
over the edge, which is correct enough for a simple model like this.

5.	 Click on the Save button and exit the Static Mesh Editor.

Now, if we play the game, you'll notice that we can no longer walk through it!

Playing the game after adding collision to it

https://docs.unrealengine.com/latest/INT/Engine/Content/Types/StaticMeshes/Editor/index.html
https://docs.unrealengine.com/latest/INT/Engine/Content/Types/StaticMeshes/Editor/index.html
https://docs.unrealengine.com/latest/INT/Engine/Content/Types/StaticMeshes/Editor/index.html

Blueprint Scripting – Level Effects

190

6.	 Now that the doors are ready, let's learn how to animate them. From the main toolbar,
navigate to Matinee | Add Matinee.

Opening up the Matinee Editor

Once this is created, there is a new Actor added to our SceneOutliner called
MatineeActor1, and the Matinee Editor opens up.

For information on the Matinee Editor and what each section is for, refer
to https://docs.unrealengine.com/latest/INT/Engine/
Matinee/UI/index.html.

7.	 Back in the main editor, click on the left door and then open up the Matinee Window
again. From the Tracks tab, right-click and select Add New Empty Group and give
it a name—Door1. Once this is created, right-click on Door1 and select Add New
Movement Track.

This is letting Matinee know that we want to modify the movement (position,
rotation, and scale) of the door object during our animation. It's also worthwhile to
note that if the door is not a moveable object, Unreal will automatically change it to
one at this point.

https://docs.unrealengine.com/latest/INT/Engine/Matinee/UI/index.html
https://docs.unrealengine.com/latest/INT/Engine/Matinee/UI/index.html

Chapter 8

191

8.	 Next, we want to do the same thing with the right door. Select it in the main editor
and then back in the Matinee Editor, right-click and create a new group with a
movement track.

Adding the movement track

Animations are done in terms of keyframes. You can already see one created on each
Movement track with those red triangles. This current animation lasts for 5 seconds
(which you can see with the 5.00 value where the edges are). Use the mouse wheel
to zoom in and out).

Blueprint Scripting – Level Effects

192

9.	 Click on the gray area where the time is to show a spot on the timeline. Move it to
around 1.5 seconds. Then, select each Movement track individually and click on
Add Key on the top-left (or press Enter). To see the animation with the playback
system, also move the green highlighted timeline to 1.5 seconds.

Setting a new keyframe at 1.5 seconds

This is stating that in 1.5 seconds, I want these objects to be somewhere else
and I want the computer to intelligently move between the two values (also known
as a tween).

Chapter 8

193

10.	 Now, select the key on the Door1 Movement and move back into the game. Switch to
the Rotation tool (E) and then rotate the door to open 120 degrees.

Rotating a door

11.	 Next, select the key on Door2 and do the same in the other direction. If you move
the timebar between the two keys, you should notice that it parts way between
opening the door.

Rotating the other door

Blueprint Scripting – Level Effects

194

12.	 When our Matinee is completed, close the editor.

We now want this animation to play whenever we get near the door, so with that in
mind, we can use Box Trigger to detect when we are near.

A trigger is something that detects collision, but unlike other things, with collider, it
does not attempt to block the player from entering it. This is used often in games for
the events that happen when something enters an area. If you've played a first person
shooter, you may notice a trigger being used whenever you see a group of enemies
spawning to attack the player because you entered an area.

13.	 Go to the Modes tab and then select Basic and drag and drop Box Trigger into the
scene where the door is. Scale and translate it until it covers the door and the space
ahead and behind it.

Setting a box trigger at the doors

Chapter 8

195

14.	 In the Scene Outliner tab, select our TriggerBox actor and scroll down to Blueprint.
From here, select Add Level Events for TriggerBox and from the popup, select
Add OnActorBeginOverlap. This will be called whenever our TriggerBox has been
overlapped by another object.

15.	 While we are here, also add an event for OnActorEndOverlap.

16.	 We want to play our Matinee when we collide with the trigger, so from the Scene
Outliner tab, go to MatineeActor and drag and drop it into the Blueprints window.
Then, drag from its blue line to bring up the possible functions that use it and search
for Play. Connect the output from BeginOverlap to the input of Play.

Blueprint Scripting – Level Effects

196

17.	 With that in mind, extend from the Matinee actor once again and search for Reverse.
Connect the output from EndOverlap to the input of Reverse.

Chapter 8

197

18.	 Hit the Compile button and play the game.

With this, you have learned to use Triggers to modify things that happen in the game!

For simple animations, such as the one done here, it's also
possible to make use of UE4's Timelines. For a tutorial on that,
visit https://docs.unrealengine.com/latest/INT/
Engine/Blueprints/UserGuide/Timelines/Examples/
OpeningDoors/index.html.
For additional examples on how to use Matinee to do different
things, refer to https://docs.unrealengine.com/latest/
INT/Engine/Matinee/HowTo/index.html.

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Timelines/Examples/OpeningDoors/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Timelines/Examples/OpeningDoors/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Timelines/Examples/OpeningDoors/index.html
https://docs.unrealengine.com/latest/INT/Engine/Matinee/HowTo/index.html
https://docs.unrealengine.com/latest/INT/Engine/Matinee/HowTo/index.html

Blueprint Scripting – Level Effects

198

Adding to an existing Blueprint – flashlight,
part 2

Now that we have some experience working with Blueprints, let's modify one that's
already been created for us. In this section, we will cover how to add a flashlight to our
game's character.

Getting ready
Before we start working within the Unreal Editor, we will need to have a project to work with.
Follow these steps:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select First person and make sure that With Starter Content is selected. Give the
project a Name (Cookbook_Chapter8). Once you are done, click on Create Project.

3.	 After the project is opened, go to the Example Code folder and drag and drop the
NightScene map provided in your project folder and open it:

Chapter 8

199

At this point, if you were to play the game, it would be incredibly dark, as shown in the
following screenshot:

How to do it…
For those who have gone through Chapter 6, Lighting and Shadows, this should look
quite familiar. In that chapter, we actually created a flashlight and then attached it to
our player at runtime.

Blueprint Scripting – Level Effects

200

However, we can modify the character's blueprint to make it so that our player will always have
a flashlight on. Follow these steps:

1.	 Go to the Content Browser tab and then to the Blueprints folder. Find the
MyCharacter file.

Selecting the My Character blueprint

This blueprint is what's spawned when the game is started. It contains all of the logic
for movement, the camera, and the shooting behaviour.

Chapter 8

201

2.	 Next, double-click on the file to open up the Blueprints for it. Initially, it will be on the
Event Graph tab, which will have a lot of scripts on it, very similar to a level blueprint.
But for now, click on the Viewport tab and zoom the camera out if needed.

The Viewport tab view in the blueprint editor

This section is similar to our level in that it has objects and they're placed in the
world of our object, but it's apart from the level. You can move around the viewport on
the right-hand side in exactly the same way as the main game. Zoom out so that you
can see everything.

Blueprint Scripting – Level Effects

202

3.	 To the left, you'll see a tab marked Components. Under this, it has the mesh, camera,
and everything else that is to do with the physical presence of the class. We can add
to this using the Add Component option. With this in mind, click on Add Component
and select Spot Light (if you can't see it, use the search bar at the top).

Adding a Spot Light to our character

You can see that the spotlight is already added for us.

4.	 Go back into the main editor and play the game again.

Chapter 8

203

You'll notice a couple of issues. First of all, the light is lighting the player in addition to
what's in front of it. Also, if we look up and down, it does not move with us.

5.	 With the game still playing, go back to the MyCharacter blueprint and select our
SpotLight object and move it (if the Move tool isn't there, press W). Notice that when
we move it in the blueprint, it modifies what is done in the game. Move the light until
it is in front of the barrel of the gun.

Moving the spot light in game

This solves the issue of lighting the player, but moving up and down is not working.
To do this, we can make the SpotLight object a child of the camera. That way,
whenever it moves, the light will move as well. Sadly, we cannot change this while
the game is running.

Blueprint Scripting – Level Effects

204

6.	 Stop the game and then drag and drop the SpotLight object on top of the
FirstPersonCamera object. You should see a green checkmark, saying that
we can attach it.

Attaching spotlight to the FirstPersonCamera object

7.	 After this, go into the SpotLight objects and set the same parameters that we did
in the Adding moveable lights – flashlight, part 1 recipe of Chapter 6, Lighting and
Shadows or translate the object so that it is in front of the camera with Inner Cone
Angle of 8 and Outer Cone Angle of 10.

8.	 Click on the Compile button to save all the changes we've made before and confirm
that it all works correctly with our project.

9.	 Lastly, let's add in the ability to turn the flashlight on and off using an input event.
Click on Event Graph and move it over until you have some empty space.

While in Event Graph, it may be beneficial to take a look at the actions
that are actually part of the player class, giving you an idea of what can
be done with blueprints and other actions that you can use!

Chapter 8

205

10.	 Right-click on the empty space and type in keyboard events. This will display
all of the keyboard keys and allow us to trigger events based on when they are
pressed or released.

11.	 Select F, and you'll see an event is created. To the right of it, right-click and create
a Toggle Visibility (SpotLight1) action. Toggle means that it will turn it off if it's on
and on if it's off.

If you want to specifically set a property, use the Set Visibility option
using a variable to tell what it should do.

12.	 Next, connect the Pressed output of the F event to the input of the Toggle Visibility
action.

Connecting the Pressed output to the input of the Toggle Visibility action

Blueprint Scripting – Level Effects

206

13.	 Compile, go to the Content Browser tab, save the MyCharacter blueprint,
and Play the game!

With this, we now have a flashlight that will follow our player's camera in all directions and
exist in every single level we have in the game! Here, you learned how to modify the already
existing blueprints and added in some simple player input using the F key to toggle visibility.

Creating a Health/Damage system,
part 1 – taking damage

Games will often need the ability to give health to players and/or enemies and players need
to have the ability to gain and/or lose the health. In this recipe, it being the first of a two-part
recipe, we will create the ability to take and heal damage, whereas later on in Chapter 10,
User Interface, we will use the UI tools in Unreal to display this information.

Chapter 8

207

Getting ready
Before we start working on this, we need to have a project created and set up for our
character to actually have health and a way to damage it. Follow these steps:

1.	 First, open up the Unreal Editor by clicking on the Launch button from the Unreal
Engine Launcher.

2.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Select Third person and make sure that With Starter Content is selected. Give the
project a Name (Cookbook_Chapter8). Once you are done, click on Create Project.

How to do it…
Now, once the project is created, the first step here will be to create some action to damage
the player. In this instance, I'm going to create a trigger. When the player touches the trigger,
it will get damaged. To make it easier to see, I'm going to add a fire particle system.
Follow these steps:

1.	 From the Content Browser tab, open up the StarterContent/Particles folder
and drag and drop the P_Fire particles onto the floor of the starting level.

2.	 Next, from the Modes tab, go to the Place mode (if you weren't there already) and
select the Volumes section. From the options, scroll all the way down until you see
Trigger Volume and then drag and drop that into the level so that the fire overlaps it.

Creating a trigger to damage the player

Blueprint Scripting – Level Effects

208

Now that we have the trigger in place, we need to create a blueprint to do the
damage for us.

3.	 With the Trigger Volume object selected, go to Blueprints | Open Level Blueprint.

4.	 From the Event Graph tab, right-click somewhere on the grid and then navigate to
Add Event for Trigger Volume 1 | Collision | Add On Actor Begin Overlap.

This event will be called whenever any other actor begins to overlap this actor.

For more information on OnActorBeginOverlap and all of the other
Collision Responses in UE4, refer to https://docs.unrealengine.
com/latest/INT/Engine/Physics/Collision/index.html.

5.	 Next, when we collide with the trigger, we want to damage the player. Thankfully,
Unreal comes with an Apply Damage action that we can use. To the right of the
OnActorBeginOverlap action, right-click and start typing Apply and when Apply
Damage is selected, press the Enter key.

https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/index.html
https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/index.html

Chapter 8

209

6.	 Connect the output from the OnActorBeginOverlap action to the input of the Apply
Damage action. Then, connect Other Actor of OnActorBeginOverlap (TriggerVolume)
to Damaged Actor of Apply Damage. Finally, under Base Damage, type in 10.

Blueprint to cause damage event when an object touches the trigger volume

What this will do is whenever an object touches the trigger volume, it will call a generic
damage event on that object with a damage parameter of 10. Note that this will only do
something if someone has created an AnyDamage event, which we will learn how to do
later on in this recipe.

Now that we have something that can damage the character, we need to actually give our
character a way to take damage:

1.	 Exit out of the level blueprint and from the Content Browser tab, open up the
ThirdPersonBP/Blueprints folder and double-click on the ThirdPerson
Character object to open it up.

2.	 From the MyBlueprint tab, you'll see a section called Variables; extend it out (if it's
not already extended) and press the + button to create a new variable. When it's
created, give it a name (CurrentHealth) and then from the Details tab, change
Variable Type value to Float.

Blueprint Scripting – Level Effects

210

3.	 After this, create another float variable called MaxHealth.

4.	 Next, click on the Compile button to verify everything is working correctly; then, we
can assign a Default Value of 100 to each of the two numbers.

Assigning Default Value to the numbers

5.	 Now that we have the health variables, we can use them. Move down the Event
Graph until you reach some empty space and right-click to create a new Event
AnyDamage event (Add Event | Game | Damage).

This event is called if the ApplyDamage function is called on an object. The default
character controllers do not have it, so we need to put it in.

First, we will subtract the damage from the current player's health and then, set the
current health to this new value.

6.	 Drag and drop the CurrentHealth variable from the Variables section of the
MyBlueprints tab into Event Graph. From the options, select Get.

Chapter 8

211

7.	 Next, create a float – float action (which will subtract a float from another float). On
the top, connect the Current Health variable. For the bottom, connect the Damage
value from the Event AnyDamage action.

Setting up the final behavior for the damage event

Next, we want to ensure that the value that we get from this, will always be
between 0 and our Max Health value (we can have someone later on create a
trigger with a negative Damage value for Apply Damage, which will then heal our
player). To do this, we can use a Clamp action that will make it so that when the
number is less than 0, it will set it to 0 or if it is larger than Max Health, it'll come
down to Max Health.

8.	 Right-click and create a Clamp(float) action. Connect Value to the output of
our subtraction action. Leave the Min value at its default of 0, but then for Max,
connect our MaxHealth variable (drag and drop and select Get).

Blueprint Scripting – Level Effects

212

9.	 Now that we have the valid value, we need to actually set this value. To the right
of the Clamp action, drag and drop a Current Health variable, but this time, select
the Set action. Connect the Clamp action's Return Value to the Current Health
variable of the Set action. Then, connect the output from Event Any Damage to the
input of the Set action.

Now we have the ability to take or heal damage to our player. Later on in Chapter 10,
User Interface, we have the second part of this recipe in which we use this recipe and
then create a healthbar to show the player exactly where their health is!

See also
We've covered quite a lot, but we have only touched the tip of the iceberg, that is, scripting.
To give yourself a little exposure to what else can be done with blueprints, take a look at the
following tutorials:

ff If you're working in teams, having a set of practices will make it much easier for you
to work together and perform well. Some recommended best practices for blueprints
can be found at https://docs.unrealengine.com/latest/INT/Engine/
Blueprints/BestPractices/index.html.

ff Scott McCutchen has created a tutorial for having a character swap their mesh
and animations during gameplay, making it seem like one character poofs out of
existence with another taking its place. Check it out at https://www.youtube.
com/watch?v=5R1z3rytu7Y.

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/BestPractices/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/BestPractices/index.html
https://www.youtube.com/watch?v=5R1z3rytu7Y
https://www.youtube.com/watch?v=5R1z3rytu7Y

Chapter 8

213

ff Another more advanced use of blueprints is in the creation of an inventory
system. Tom Looman has come up with a tutorial on one that you can check out at
http://www.tomlooman.com/tutorial-basic-inventory-system-in-
blueprint/.

ff This tutorial is a bit dated, but Joel Shapiro's blueprints tutorial does go through
the creation of a 2D platformer from scratch, so I think it's worth checking it out at
http://www.raywenderlich.com/97058/unreal-engine-tutorial-for-
beginners-part-1.

ff Finally, we also have a tutorial from Peter Newton where they build an AI, making use
of NavMeshes. While it is a long tutorial, it does go into a number of different aspects
of building an AI Bot. Check this out at https://wiki.unrealengine.com/AI_
Bot:_Blueprint_Scripting_Playlist.

http://www.tomlooman.com/tutorial-basic-inventory-system-in-blueprint/
http://www.tomlooman.com/tutorial-basic-inventory-system-in-blueprint/
http://www.raywenderlich.com/97058/unreal-engine-tutorial-for-beginners-part-1
http://www.raywenderlich.com/97058/unreal-engine-tutorial-for-beginners-part-1
https://wiki.unrealengine.com/AI_Bot:_Blueprint_Scripting_Playlist
https://wiki.unrealengine.com/AI_Bot:_Blueprint_Scripting_Playlist

215

9
C++ Programming –

Gameplay

In this chapter, we'll cover the following recipes:

ff Setting up your development environment

ff Displaying text during runtime

ff Networking 101 – creating collectables with networking

ff Saving or loading games and keyboard input with C++

ff Creating custom blueprint nodes

Introduction
So far, we've been using blueprints in order to generate gameplay. This has been great and
has worked well, but one of the main advantages that Unreal has over its competition, such as
Unity and Cry Engine, is the fact that you can get access to the full source code of the engine
and rework it to fit exactly what you're looking for.

It would be quite easy for me to write an entire book just about programming, and within these
few pages, I can't possibly cover everything you need to know to write code. Rather, in this
chapter, we are going to cover how to set up your development environment and some of the
possibilities of programming in C++ for UE4.

If you are interested in taking this further and learning how to program
C++ using UE4, read Learning C++ by Creating Games with UE4 by
Packt Publishing.

C++ Programming – Gameplay

216

When to use C++/Blueprints
One of the things that I often hear people asking is whether to use C++ or Blueprints within
their projects, or which one is better. As it currently stands, there's not really a straightforward
answer to it. If you aren't a programmer at all or feel that you're more of a designer, then
blueprints may be better for you due to the fact that it's more visually oriented. However, if
you've been coding for years, you may be frustrated with having to use so many nodes to do
some actions that you could write in a line of code. Factors such as the number of teammates
and the project itself can also be taken under consideration.

It's often a lot easier to transition into C++ after you've been using blueprints and Unreal for a
while as you'll be used to how Unreal names certain things, but we'll get some exposure in this
chapter as well. That being said, you'll often switch between the two within the same project,
with level-specific stuff being done in blueprint and content that will be reused in C++.

In previous versions of the Unreal Engine, runtime performance was something you also
needed to consider, but it's less of a problem now. Don't worry about it unless something done
in blueprint in your game is going to happen lots of times or is causing your game to slow
down a lot. If this does happen, check out the guide on improving performance at https://
www.unrealengine.com/blog/how-to-improve-game-thread-cpu-performance.

Often in game studios, designers will prototype a game mechanic so that it feels right and if
it's decided to be used in the game, it's revisited and if it needs to be revised, a programmer
can then reimplement it knowing exactly what the designer had in mind while making it
as efficient as possible. Lionhead Studios is currently doing this during the development
of their new game Fable Legends. For more information on that, refer to https://www.
unrealengine.com/showcase/fable-legends.

Setting up your development environment
One of the first things that we'll need to do when working in Unreal Engine 4 using C++ is
having our Integrated Developers Environment (IDE) set up and making it in such a way so
that we can run our new code. Let's see how we can do this now.

Getting ready
You'll need to install Visual Studio 2013 (at the time of writing, the 2015 RC version is
not supported, so you'll need to install 2013) on Windows or Xcode on Mac to work with
this chapter.

https://www.unrealengine.com/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/showcase/fable-legends
https://www.unrealengine.com/showcase/fable-legends

Chapter 9

217

How to do it…
Since I'm working in Windows, I'll be using Visual Studio in which there is a Community edition
that is free for students, open source projects, and teams of less than five people. Follow
these steps:

1.	 Open up your web browser and go to the Visual Studio Community's page at
https://www.visualstudio.com/en-us/downloads/download-visual-
studio-vs.aspx. Once the page is loaded, scroll down to the Visual Studio
downloads section and from Visual Studio 2013, select the Community 2013
edition and then click on Download.

Xcode can be downloaded from the Mac App Store for free at
https://itunes.apple.com/us/app/xcode/id497799835.

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://itunes.apple.com/us/app/xcode/id497799835

C++ Programming – Gameplay

218

2.	 Once you've got the installer installed, check the agree checkbox and then click on
the newly-appeared Next button.

Chapter 9

219

3.	 Just keep the initial default settings to install and then click on the Install button
and wait for it to download the software. This may take a while, so feel free to take
a rest and come back later (I had it go overnight, but depending on your Internet
connection, it may be completed sooner).

For more instructions on setting up Visual Studio to build a project from
scratch, visit https://docs.unrealengine.com/latest/INT/
Programming/Development/VisualStudioSetup/index.html.

4.	 Once Visual Studio is installed, we can then open up the Unreal Editor by clicking on
the Launch button from the Unreal Engine Launcher.

5.	 Start a new project from the Project Browser tab by selecting the New Project tab.
Click on the C++ tab and then select Third person and make sure that With Starter
Content is selected. Give the project a Name (Cookbook_Chapter9). Once you are
done, click on Create Project and wait for it to finish compiling the project.

If, on the bottom of your screen, you see a red box saying there was no
compiler found, you'll need to install Visual Studio 2013. If that's the
case, just follow the same instructions I mentioned earlier.

6.	 Now once we create the project, we'll see that unlike before when the editor opened
up by itself, this time Visual Studio or XCode has opened up for us as well.

7.	 If it is your first time opening Visual Studio, you may be asked to sign in. Do so if you'd
like to, or click on the Not now, maybe later button. Afterward, you may be asked to
choose a color theme (I picked Dark). Then, click on Start Visual Studio and wait for
it to finish preparing the program for use.

8.	 Now that we know what's in here, let's set up our project to actually compile correctly.
There are two steps that we'll need to look into. Firstly, at the top bar, you should
set the Solution Configurations property (if you hover your mouse over a part
of the toolbar for a short time it will display what property it is) and secondly, under
Solution Configurations, select DebugGame Editor. To see where the property
and dropdown are, take a look at the following screenshot:

https://docs.unrealengine.com/latest/INT/Programming/Development/VisualStudioSetup/index.html
https://docs.unrealengine.com/latest/INT/Programming/Development/VisualStudioSetup/index.html

C++ Programming – Gameplay

220

If you do not see the Solutions Configurations property, on the far right,
click on the dropdown button and make sure that the property is checked.

The Debug Game Editor mode builds the project with debug symbols enabled for
the Game code but not the Editor. This means that when the game is running, we'll
be able to debug it; you can learn more about this at https://msdn.microsoft.
com/en-us/library/k0k771bt.aspx.

For more information on all of the different kinds of configurations,
refer to https://docs.unrealengine.com/latest/INT/
Programming/Development/CompilingProjects/index.
html#buildconfiguration.

https://msdn.microsoft.com/en-us/library/k0k771bt.aspx
https://msdn.microsoft.com/en-us/library/k0k771bt.aspx
https://docs.unrealengine.com/latest/INT/Programming/Development/CompilingProjects/index.html#buildconfiguration
https://docs.unrealengine.com/latest/INT/Programming/Development/CompilingProjects/index.html#buildconfiguration
https://docs.unrealengine.com/latest/INT/Programming/Development/CompilingProjects/index.html#buildconfiguration

Chapter 9

221

9.	 That being said, it's hard for us to tell what that setting is in the default way that
Visual Studio is set up, but thankfully, the program is extremely configurable, so let's
increase the width of that dropdown menu. To do this, right-click on the toolbar and
select Customize.

10.	 From the menu that pops up, select Commands and then click on the toggle
by Toolbar.

11.	 Select the dropdown next to Toolbar and from there, select Standard.

12.	 From the Controls: list that pops up from the bottom-right side, scroll down the list
until you arrive at the Solutions Configurations option and select it.

C++ Programming – Gameplay

222

13.	 Then, click on the Modify Selection dropdown on the right-hand side. From the
window that pops up, under Width:, type in the value as 150. You should notice that
the area where DebugGame Editor is selected is much easier to read now. Afterward,
click on the Close button.

14.	 Now, let's run the editor to make sure everything's working correctly. In the Solution
Explorer tab on the right-hand side, right-click on the project name (Cookbook_
Chapter9) and navigate to Debug | Start New Instance.

15.	 It's going to ask whether you want to build the project, so select Yes, and our project
will be built.

The first thing that's happening here is that the compiler is going to compile the code.
When compiling the code, it's taking all of the files that are part of the project and
translating them from the source code that we've written and converting it into object
code (something that computers can understand). This is then taken by a linker,
which is the tool that will combine all of the modules we've created to produce an
executable file.

Chapter 9

223

For more information on compiling and linking, refer to
http://www.cprogramming.com/compilingandlinking.html.

This will take some time when we build a project for the first time, but in future this
will be much quicker because it will only compile the files that have changed since
the last time you compiled.

If you are using Xcode on the Mac side, navigating to Product | Run from
the menu will launch the UE4 Editor in the Debug mode and all the custom
C++ code will be available in the editor.
To configure Xcode properly for UE4, make sure the UE4 Editor is selected
as the current scheme—Xcode scheme selector.

With this, we should see our project open up!

http://www.cprogramming.com/compilingandlinking.html

C++ Programming – Gameplay

224

16.	 Close the editor and return to Visual Studio.

Now before we go on, I want to talk a little bit about the folders and content that are
created automatically for us. On the right-hand side, you'll see a tab called Solution
Explorer and under that, you'll see two folders—Engine and Games. Engine
contains the UE4 Solution, which is the Unreal Engine 4 itself in its full glory. For our
purposes, we can use it as a reference, but we will not be modifying it, we will rather
be extending from it. The next folder, Games, contains the games that we are creating
using UE4, and in my case, I'll see another solution in bold called Cookbook_
Chapter9. Being bolded means that if we click on the Local Windows Debugger
button, that'll be the project that'll be built when we tell Visual Studio to compile or
run our project. If you extend the solution folder, you'll find the following folders:

�� Config: This is where all of the configurations that make our game unique
will exist, and where settings, input, and so on will live. These files normally
have a .ini extension.

�� External Dependences: This contains all of the headers files for the
Unreal Engine. Also known as include files sometimes, header files hold
declarations for other files to use without having to see the source code.
These files normally have a .h extension to them.

�� Source: Inside it will be a folder with the same name as your project. This
is where we can modify how different modules will work with our projects
and add additional files for us to work with. These contain headers (.h) and
source files (.cpp).

With this, we now have our environment created to be able to start working in code!

Displaying text during runtime
While you're creating your project, one of the things that can be valuable to know is how to
give yourself information while the game is going on. This way, you can check the order of the
things being called and/or what values data have.

Since it was first written 40 years ago, it has been a tradition for beginning programmers to
write a function that displays "Hello World!" on the screen. Let's do that now!

Getting ready
Before we start working on this we need to have a project created and set up. So, follow the
previous recipe all the way to completion.

Chapter 9

225

How to do it…
In this recipe, we will extend and customize the built-in GameMode class to do just that:

1.	 With Visual Studio opened, go over to the Solution Explorer tab and open
up the Games/Cookbook_Chapter9/Source/Cookbook_Chapter9
folder, and you should see a number of files. Double-click on the Cookbook_
Chapter9GameMode.h file to open it.

This file contains the information for a class called ACookbook_
Chapter9GameMode. A class is a container that holds variables (data) and functions
(series of instructions). Think of this class as a blueprint full of information about
what this object is.

This is a child class of AGameMode which means that it contains everything that
AGameMode has, and we can add additional information to it as well as extend
functions that were created previously, which is what we are going to do.

2.	 Underneath the line ACookbook_Chapter9GameMode();, add the following line:
void StartMatch();

This is what's known as a function declaration and it is saying that somewhere
else, there is the implementation of this StartMatch function, which takes in no
parameters and returns nothing (void).

C++ Programming – Gameplay

226

3.	 Next, we need to write the function definition. To do this, from the Solution Explorer
tab, double-click on the Cookbook_Chapter9GameMode.cpp file to open it.

4.	 Then we need to write the StartMatch function, which will look similar to the
following:
void ACookbook_Chapter9GameMode::StartMatch()
{
 Super::StartMatch();

 if (GEngine)
 {
 GEngine->AddOnScreenDebugMessage(-1, 10.0f,
 FColor::Yellow,
 "Hello World!");
 }
}

This code is first doing what the parent's version did (by using Super). Afterward, it is
checking whether the game engine exists (if (GEngine)), and if it does, it is adding
a debug message on the screen that lasts for 10 seconds on the screen and says Hello
World!. The f at the end of the 10.0 stands for float, as in floating point number which
means that it can use a decimal value. The FColor::Yellow states that the color
of the text will be yellow and the -1 value lets the function know that we don't want to
replace a message if one is already there, we just want to create a new one.

For more information on the AddOnScreenDebugMessage
function, refer to https://docs.unrealengine.com/
latest/INT/API/Runtime/Engine/Engine/UEngine/
AddOnScreenDebugMessage/1/index.html.

After this, you may notice a red squiggly line underneath the GEngine part of our
code. This is because GEngine doesn't exist at this point, or rather it does, but we
don't know where it is. To find that variable, we will need to include the Engine.h file
in our script.

5.	 At the very top below the other #include directives, add the following line:
#include "Engine.h" //GEngine

The entire file should look similar to the following:

// Copyright 1998-2015 Epic Games, Inc. All Rights
 Reserved.

#include "Cookbook_Chapter9.h"
#include "Cookbook_Chapter9GameMode.h"
#include "Cookbook_Chapter9Character.h"

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/Engine/UEngine/AddOnScreenDebugMessage/1/index.html
https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/Engine/UEngine/AddOnScreenDebugMessage/1/index.html
https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/Engine/UEngine/AddOnScreenDebugMessage/1/index.html

Chapter 9

227

#include "Engine.h" //GEngine

ACookbook_Chapter9GameMode::ACookbook_Chapter9GameMode()
{
 // set default pawn class to our Blueprinted character
 static ConstructorHelpers::FClassFinder<APawn>
 PlayerPawnBPClass(TEXT("/Game/ThirdPerson/Blueprints/
 ThirdPersonCharacter"));
 if (PlayerPawnBPClass.Class != NULL)
 {
 DefaultPawnClass = PlayerPawnBPClass.Class;
 }
}

void ACookbook_Chapter9GameMode::StartMatch()
{
 Super::StartMatch();

 if (GEngine)
 {
 GEngine->AddOnScreenDebugMessage(-1, 10.0f,
 FColor::Yellow, "Hello World!");
 }
}

C++ Programming – Gameplay

228

The lines with // at the beginning are referred to as comments. These
are the texts that don't do anything to the code, but are used to help
people reading the code understand exactly what something below it is
doing. Comments can also be created by placing a /*, and until you see
a */, whatever is in between is commented.

6.	 After this, we need to compile our code to see any changes. Follow the method
we used previously or click on the Local Windows Debugger button to start it,
saying Yes when it asks you to build.

7.	 Once the program opens up, again click on the Play button.

Chapter 9

229

Just as we thought, when the game starts, it displays the text "Hello World!". Congratulations
on entering the world of programming!

In addition to printing on the screen, it's often useful to write things to
a log file so that you have access to the information wherever you are.
For information on that, there is an excellent guide at https://wiki.
unrealengine.com/Logs,_Printing_Messages_To_Yourself_
During_Runtime.

Networking 101 – creating collectables with
networking

Networking is one of the more complex things you can do as a programmer. Unreal uses a
client-server model for communication between multiple computers. In this case, the server is
the person who started the game and the clients are those who are playing the game with the
first person. In order for things happening on everyone's game to work correctly, we need to
call certain code at certain times to certain people.

For example, when a client wants to shoot his/her gun, they send a message to the server,
which will then determine whether you hit anything and then tell all the clients what happened
using replication. This can be important because some things, such as the Game Mode, only
exist on the server.

For more information on the client-server model, refer to https://
en.wikipedia.org/wiki/Client%E2%80%93server_model.

Getting ready
Before we start working on this, we need to have a project created and set up. Follow the
Setting up your development environment recipe all the way to completion.

https://wiki.unrealengine.com/Logs,_Printing_Messages_To_Yourself_During_Runtime
https://wiki.unrealengine.com/Logs,_Printing_Messages_To_Yourself_During_Runtime
https://wiki.unrealengine.com/Logs,_Printing_Messages_To_Yourself_During_Runtime
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

C++ Programming – Gameplay

230

How to do it…
To give you an idea of how it works, let's do a simple example of a coin collectable:

1.	 Navigate to File | New C++ Class, and you should see the Choose Parent Class
window pop up. Select Actor and then click on Next.

2.	 From there, we then want to set Name of our object to something that makes sense;
in this case, I named it CollectableObject. Once done, click on the Create Class
button to add it to the project and compile the code.

Chapter 9

231

3.	 Now, we should see two new files being created inside our Visual Studio
project: CollectibleObject.cpp and CollectibleObject.h.
Open up CollectableObject.h and put in the following code:
#pragma once

#include "GameFramework/Actor.h"
#include "CollectableObject.generated.h"

UCLASS()
class COOKBOOK_CHAPTER9_API ACollectableObject : public
 AActor
{
 GENERATED_BODY()

public:
 // Sets default values for this actor's properties
 ACollectableObject(const FObjectInitializer&
 ObjectInitializer);

 // Event called when something starts to overlaps the
 // sphere collider
 UFUNCTION()
 void OnBeginOverlap(class AActor* OtherActor,
 class UPrimitiveComponent*
 OtherComp,
 int32 OtherBodyIndex, bool
 bFromSweep,
 const FHitResult& SweepResult);

 // Our server function to update the score.
 UFUNCTION(Reliable, Server, WithValidation)
 void UpdateScore(int32 Amount);
 void UpdateScore_Implementation(int32 Amount);
 bool UpdateScore_Validate(int32 Amount);

};

Note that there is the COOKBOOK_CHAPTER9_API text before
ACollectableObject. This automatically-generated part of the
code uses the same name as our project. If you did not name your
project Cookbook_Chapter9, the name will be different.

C++ Programming – Gameplay

232

We've done a number of things in this new snippet of code. We've replaced the
original constructor with a new one that takes in a FObjectInitializer object as
a parameter. We've done this so that we can add a new component to the object. The
next thing we've done is that we have got rid of the Tick and BeginPlay functions
as we won't be using them.

After that, we've added a new function called OnBeginOverlap. We will be talking
more about what it does later, but for now, it will be a function that'll be called
whenever the object will be overlapped with another object (such as the player).
Lastly, we have three functions—UpdateScore, UpdateScore_Implementation,
and UpdateScore_Validate—which are used to call, implement, and validate the
replication properties as we specified in the UFUNCTION above its declaration.

For more information on replication and how the functions are named
in their certain way, refer to https://wiki.unrealengine.com/
Replication.

4.	 Next, open up the CollectibleObject.cpp file and put in the following code:
#include "Cookbook_Chapter9.h"
#include "CollectableObject.h"
#include "Engine.h" //GEngine

// Sets default values for this actor's properties
ACollectableObject::ACollectableObject(const
 FObjectInitializer& ObjectInitializer) :
 Super(ObjectInitializer)
{
 // Must be true for an Actor to replicate anything
 bReplicates = true;

 // Create a sphere collider for players to hit
 USphereComponent * SphereCollider =
 ObjectInitializer.CreateDefaultSubobject
 <USphereComponent>(this, TEXT("SphereComponent"));

 // Sets the size of our collider to have a radius of
 // 64 units
 SphereCollider->InitSphereRadius(64.0f);

 // Sets the root of our object to be the sphere collider
 RootComponent = SphereCollider;

https://wiki.unrealengine.com/Replication
https://wiki.unrealengine.com/Replication

Chapter 9

233

 // Makes it so that OnBeginOverlap will be called
 // whenever something hits this.
 SphereCollider->OnComponentBeginOverlap.AddDynamic(this,
 &ACollectableObject::OnBeginOverlap);
}

// Event called when something starts to overlaps the
// sphere collider
void ACollectableObject::OnBeginOverlap(
 class AActor* OtherActor,
 class UPrimitiveComponent* OtherComp,
 int32 OtherBodyIndex,
 bool bFromSweep,
 const FHitResult& SweepResult)
{
 // If I am the server
 if (Role == ROLE_Authority)
 {
 // Then a coin will be gained!
 UpdateScore(1);
 Destroy();
 }
}

// Do something here that modifies game state.
void ACollectableObject::UpdateScore_Implementation(int32
 Amount)
{
 if (GEngine)
 {
 GEngine->AddOnScreenDebugMessage(-1, 5.0f,
 FColor::Green,
 "Collected!");
 }
}

// Optionally validate the request and return false if the
// function should not be run.
bool ACollectableObject::UpdateScore_Validate(int32 Amount)
{
 return true;
}

C++ Programming – Gameplay

234

Again, as before, if you have a different name for your project, the
#include "Cookbook_Chapter9.h" line will also be different.

This code does a number of different things. The first function has the same name
as our object's class and has no return type. This special type of function is known
as a constructor. This function is special because it's the first thing that gets called
when an object is created. In this case, we make sure that our object is going to be
replicated, and then after that, we create a sphere collider that we tell (via a listener)
to call the OnBeginOverlap function when it collides with another object it using
the OnComponentBeginOverlap function.

For more information on the OnComponentBeginOverlap
function and the function needed to be given to it, refer to
https://docs.unrealengine.com/latest/INT/API/
Runtime/Engine/Components/UPrimitiveComponent/
OnComponentBeginOverlap/index.html.

After this, inside our OnBeginOverlap function, we first check if we are currently
on the server. We don't want things to get called multiple times, and we want the
server to be the one that tells the other clients that we've increased our score. We
also call the UpdateScore function, which will, in turn, call the UpdateScore_
Implementation function that we created and it will display a message, saying that
we've collected the object via printing out some text like we used earlier.

Finally, the UpdateScore_Validate function is required for us to have and
just tells the game that we should always run the implementation for the
UpdateScore function.

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/Components/UPrimitiveComponent/OnComponentBeginOverlap/index.html
https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/Components/UPrimitiveComponent/OnComponentBeginOverlap/index.html
https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/Components/UPrimitiveComponent/OnComponentBeginOverlap/index.html

Chapter 9

235

5.	 Save both files and go back into the Unreal Editor. From there, click on the
Compile button in order to update the game with the changes we've made without
having to close the game.

C++ Programming – Gameplay

236

6.	 Once you see a message at the bottom-right of the screen that says the compilation
is complete with no errors, we can then actually add our collectable objects to the
scene. From the Content Browser tab, select the ThirdPerson folder and then click
on the green Add New button and select Blueprint Class.

Chapter 9

237

7.	 From the popup asking you to select the parent class, go to the All Classes section
at the bottom and start typing in CollectableObject, then select it from the list.
Once selected, click on the Select button.

8.	 After this, it will have the newly-created object selected, which will need a name.
Type in Collectible and then press Enter.

C++ Programming – Gameplay

238

9.	 Double-click on our newly-created Collectible object to open up the
Blueprints Editor.

Blueprint editor for the Collectible object

You'll notice that there is a red sphere in the level, just like we wanted to be created
in our class file! Right now though, it'll almost be impossible for us to hit it because
we can't see anything. Let's add a particle system to make it easy to see.

Chapter 9

239

10.	 From the Components tab, select Add Component and then Particle System. From
the Details tab under the Particles section, select the dropdown to the right of the
Template property and then select P_Fire, and you should see the particle system
start playing.

Adding a fire particle system to the collectible

C++ Programming – Gameplay

240

11.	 Hit the Compile and Save buttons and then close the Blueprint Editor. After this, drag
and drop two of the objects in the world and set their Z Location to 200 so that you
can see the whole thing.

The level view after compilation

Chapter 9

241

12.	 Lastly, we'll need to have a way to play two versions of the project at once to see what
happens. Click on the dropdown to the right of the Play button and change Number
of Players to 2 and then click on the New Editor Window option, which will open two
windows with players.

Opening two simultaneous windows

And with this, you can see the message is replicated from the server to the client!

If you're interested in seeing another example of using networking
and replication, refer to https://wiki.unrealengine.com/
Networking/Replication.
In addition, you can also check out the Shooter Game example project
included with Unreal Engine 4 and read the files to get a feeling for
how it's used in a complete example.

https://wiki.unrealengine.com/Networking/Replication
https://wiki.unrealengine.com/Networking/Replication

C++ Programming – Gameplay

242

Saving or loading games and keyboard
input with C++

As games get more and more complex and longer and longer, players will often need to play
a game within multiple sessions. However, by default, players will need to start over from
scratch. In this recipe, we will be going over how to save a variable and load it at runtime.

Getting ready
Before we start working on this, we need to have a project created and set up. Follow the
Setting up your development environment recipe all the way to completion.

How to do it…
To give you an idea of how it works, let's do a simple example of saving a player's position
and rotation, which we can return to using keyboard input:

1.	 Navigate to File | New C++ Class, and you should see the Choose Parent Class
window pop up. Check the Show All Classes option, select SaveGame, and click
on Next.

Chapter 9

243

2.	 Next, it'll ask you for the name of your save class. In this instance, I'm going to leave it
as MySaveGame and click on Create Class and wait for it to finish compiling.

3.	 In the header file for the object, we'll need to add any variables that we want
to save. In this case, I want to save my player's position and rotation, so I'm going
to do the following:
#pragma once

#include "GameFramework/SaveGame.h"
#include "MySaveGame.generated.h"

/**
 *
 */
UCLASS()
class COOKBOOK_CHAPTER9_API UMySaveGame : public USaveGame
{
 GENERATED_BODY()

 public:

 UPROPERTY(VisibleAnywhere, Category = Basic)
 FVector PlayerPosition;

 UPROPERTY(VisibleAnywhere, Category = Basic)
 FRotator PlayerRotation;

};

The PlayerPosition variable is of type FVector, more commonly referred to
as a vector. A vector is a series of three values, X, Y, and Z, which we've been using
already for every object's position, and scaled in the appropriate axis. The rotation of
an object is stored in a special type called FRotator.

4.	 We aren't doing anything special inside the .cpp file, but that would be where
we would have set any default values. Instead, open up the Cookbook_
Chapter9Character.h file. Under the public section of the class, add in the
following bolded code:
// Copyright 1998-2015 Epic Games, Inc. All Rights Reserved.
#pragma once
#include "GameFramework/Character.h"
#include "Cookbook_Chapter9Character.generated.h"

C++ Programming – Gameplay

244

UCLASS(config=Game)
class ACookbook_Chapter9Character : public ACharacter
{
 GENERATED_BODY()

 /** Camera boom positioning the camera behind the
 character */
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category =
 Camera, meta = (AllowPrivateAccess = "true"))
 class USpringArmComponent* CameraBoom;

/** Follow camera */
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category =
 Camera, meta = (AllowPrivateAccess = "true"))
 class UCameraComponent* FollowCamera;

public:
 ACookbook_Chapter9Character();

 /** Base turn rate, in deg/sec. Other scaling may affect
 final turn rate. */
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
 Category=Camera)
 float BaseTurnRate;

 /** Base look up/down rate, in deg/sec. Other scaling may
 affect final rate. */
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
 Category=Camera)
 float BaseLookUpRate;

 // Saves the game
 void SaveMyGameFile();

 // Loads the game
 void LoadMyGameFile();

 // Called every frame
 void Tick(float DeltaTime);

protected:

 /** Called for forwards/backward input */
 void MoveForward(float Value);

 // Other declarations below

Chapter 9

245

5.	 Next, we need to implement the functionality in the MySaveGame.cpp file. At the top,
we need to add in some includes, so below the others, add the following:
#include "MySaveGame.h"
#include "Kismet/GameplayStatics.h"
#include "Engine.h" //GEngine

This will allow us to use the MySaveGame class and GEngine inside of the file.

6.	 After that we need to enable the ability for the Tick function to be called. To do this,
go to the constructor of the Character class (ACookbook_Chapter9Character)
and add the following bold line:
ACookbook_Chapter9Character::ACookbook_Chapter9Character()
{
 PrimaryActorTick.bCanEverTick = true;

 // Set size for collision capsule
 GetCapsuleComponent()->InitCapsuleSize(42.f, 96.0f);

 // Other code below

7.	 Now we can implement the Tick function:
void ACookbook_Chapter9Character::Tick(float DeltaTime)
{
 APlayerController * PController =
 Cast<APlayerController>(Controller);

 // Any time we cast, we need to check if the variable is
 valid
 if (PController != NULL)
 {
 // If Q is pressed, save the game
 if (PController->WasInputKeyJustPressed(EKeys::Q))
 {
 SaveMyGameFile();
 }
 // Otherwise, if E is pressed we will load
 else if (PController->WasInputKeyJustPressed(EKeys::E))
 {
 LoadMyGameFile();
 }
 }
}

C++ Programming – Gameplay

246

The Tick function is called in every frame in the game (at 60 FPS, the game is
running 60 frames per second), so it'll happen quite often, which is important when
it comes to checking input. If the player presses the Q or E key, we will call the Save
and/or Load functions, respectively.

8.	 After that, let's implement the function that will save the game:
void ACookbook_Chapter9Character::SaveMyGameFile()
{
 // Create a save object for us to store values
 UMySaveGame* SaveGameInstance =
 Cast<UMySaveGame>(UGameplayStatics::
 CreateSaveGameObject(UMySaveGame::StaticClass()));

 // Set the player's current location and rotation
 SaveGameInstance->PlayerPosition = GetActorLocation();
 SaveGameInstance->PlayerRotation = GetActorRotation();

 //Saves the new save file into the first save slot (0)
 with
 // a name of "SaveSlot"
 UGameplayStatics::SaveGameToSlot(SaveGameInstance,
 "SaveSlot", 0);

 if (GEngine)
 {
 // Notify the player that we saved
 GEngine->AddOnScreenDebugMessage(-1, 10.0f,
 FColor::Yellow, "Game Saved!");
 }
}

9.	 Finally, we need to implement the way to load the game:
void ACookbook_Chapter9Character::LoadMyGameFile()
{
 // Create a save object for us to store values to load
 UMySaveGame* LoadGameInstance =
 Cast<UMySaveGame>(UGameplayStatics::
 CreateSaveGameObject(UMySaveGame::StaticClass()));

 // Loads the save slot we created previously
 LoadGameInstance = Cast<UMySaveGame>
 (UGameplayStatics::LoadGameFromSlot("SaveSlot", 0));

Chapter 9

247

 //Set the player's location and rotation to what we saved
 SetActorLocationAndRotation(
 LoadGameInstance->PlayerPosition,
 LoadGameInstance->PlayerRotation);

 if (GEngine)
 {
 // Notify the player that we loaded
 GEngine->AddOnScreenDebugMessage(-1, 10.0f,
 FColor::Yellow, "Loaded!");
 }
}

10.	 With all that done, save all of the files, go back into the Unreal Editor and then hit the
Compile button.

11.	 Once the compilation finishes, start up the game by using the Play button.

Starting the game with Play button

C++ Programming – Gameplay

248

Now, whenever you press the Q button, your position and rotation will be saved and if you walk
around and then hit the E key, you'll be brought exactly to where you last left it!

If you're interested in taking this to the next level, there is a
tutorial on how to do file management, being able to create
and modify files on the player's hard drive at https://wiki.
unrealengine.com/File_Management,_Create_
Folders,_Delete_Files,_and_More.

Creating custom blueprint nodes
Blueprint is very powerful and has access to most of the functions that are created for a
particular class, but there may be certain pieces of code that you want to be always available
for use inside Blueprints. Thankfully, we can make use of a custom class extending from
Blueprint Function Library to do so.

Getting ready
Before we start working on this, we need to have a project created and set up. Follow the
Setting up your development environment recipe all the way to completion.

How to do it…
Often games will display a copyright notice on the main menu. We also do this at the
beginning of every class that we create at the header with it, by default, displaying this:

//Fill out your copyright notice in the Description page of
 //Project Settings.

https://wiki.unrealengine.com/File_Management,_Create_Folders,_Delete_Files,_and_More
https://wiki.unrealengine.com/File_Management,_Create_Folders,_Delete_Files,_and_More
https://wiki.unrealengine.com/File_Management,_Create_Folders,_Delete_Files,_and_More

Chapter 9

249

Rather than typing it in every time we want to show it, let's create a note that will get it for us
and in the process, teach us how we can create custom blueprint nodes that can do whatever
actions we'd like in the future:

1.	 Navigate to File | New C++ Class, and you should see the Choose Parent Class
window pop up. Scroll down and select Blueprint Function Library and then click
on Next.

2.	 Select the name you'd like for this class and then click on the Create Class button
and wait for it to compile.

3.	 Once compiled, go into the .h file and set it to the following code:
#pragma once

#include "Kismet/BlueprintFunctionLibrary.h"
#include "MyBlueprintFunctionLibrary.generated.h"

UCLASS()
class COOKBOOK_CHAPTER9_API UMyBlueprintFunctionLibrary :
 public UBlueprintFunctionLibrary

C++ Programming – Gameplay

250

{
 GENERATED_BODY()

public:
 // Create the Blueprint node and give it a name and category.
 // The next line is the function that is associated with this
 UFUNCTION(BlueprintPure, meta = (DisplayName =
 "Copyright Notice", CompactNodeTitle =
 "Copyright Notice"), Category = "Project Settings")
 static FString GetCopyrightNotice();

};

4.	 Now we need to implement the function in the .cpp file:
#include "Cookbook_Chapter9.h"
#include "MyBlueprintFunctionLibrary.h"

FString UMyBlueprintFunctionLibrary::GetCopyrightNotice()
{
 FString CopyrightNotice;

 // Get a string from a configuration file.
 GConfig->GetString(
 // Location of the string you want.
 TEXT("/Script/EngineSettings.GeneralProjectSettings"),

 // Name of the string you want.
 TEXT("CopyrightNotice"),

 // Variable you want to put the string in.
 CopyrightNotice,

 // Which ini file do you want to grab from
 GGameIni
);

 // Return the value of the variable ProjectVersion you've
 // just set.
 return CopyrightNotice;

}

Chapter 9

251

5.	 Go to Edit | Project Settings, and you should have a window pop up that has a
number of different properties you can assign. For our purposes, scroll down to Legal
and under Copyright Notice, put in what you'd like your copyright to say. In my case,
I'll change it to Copyright 2015 John P. Doran. All Rights Reserved.

Once you leave the window, these properties are actually saved to the DefaultGame.
ini file, which is located in the Config folder in the Solution Explorer tab.

As you can see, the property name is CopyrightNotice and it's located in the
/Script/EngineSettings.GeneralProjectSettings section, just as we
did in the code we created earlier.

For more information on reading and writing values from config files,
refer to https://wiki.unrealengine.com/Config_Files,
Read%26_Write_to_Config_Files.

6.	 Now that our code is complete, save all of the files and compile the project.

https://wiki.unrealengine.com/Config_Files, _Read_%26_Write_to_Config_Files
https://wiki.unrealengine.com/Config_Files, _Read_%26_Write_to_Config_Files

C++ Programming – Gameplay

252

7.	 After it compiles correctly, let's use our newly-created blueprint node. Click on the
Blueprints dropdown and select Open Level Blueprint.

8.	 Right-click and search for Copyright Notice, and you'll see that there is a node
located in our custom-made Project Settings category called Copyright Notice.
Select it, and you'll see it added to the screen with some large text displayed.

This text displayed is the content of the CompactNodeTitle property.
If left blank, it will show up like a normal node. Also notice that the
text displayed when you highlight the node is the comment above the
UFUNCTION line. Keep that in mind in the future when you want to
provide details to users about what your action does.

9.	 Let's display this string. So, to do this, right-click on the right-hand side of the
Copyright Notice node and select a Print String action. Connect the output of the
Copyright Notice to the In String variable of the Print String node.

10.	 Finally, create Event BeginPlay to connect to the Print String input. The final level
blueprint should look similar to this:

Chapter 9

253

11.	 Compile and close the level blueprint and from there, start the game!

Game view after compilation of level blueprint

With this, our copyright is displayed!

For more examples of how to create custom blueprint notes,
refer to https://wiki.unrealengine.com/Custom_
Blueprint_Node_Creation.

https://wiki.unrealengine.com/Custom_Blueprint_Node_Creation
https://wiki.unrealengine.com/Custom_Blueprint_Node_Creation

C++ Programming – Gameplay

254

See also
Programming is a way of life, and you can spend years becoming better and better at it. Once
you feel comfortable with the content in this chapter, take a look at some additional tutorials
and/or resources, which will hopefully be useful for you in the future:

ff Epic's official programming guide goes though a number of simple examples,
introducing content about the API as well as the way the architecture of the engine
is built. Check it out at https://docs.unrealengine.com/latest/INT/
Programming/index.html.

ff It may be outdated in terms of images, but the content of this tutorial goes through
the steps of creating an FPS game from scratch. It can be found at https://wiki.
unrealengine.com/First_Person_Shooter_C%2B%2B_Tutorial.

ff A number of official C++ Programming tutorials can be found at https://docs.
unrealengine.com/latest/INT/Programming/Tutorials/index.html.

ff For those wanting to take their networking game further, there is another tutorial by
Tom Looman about creating a survival game in the same vein as Day Z. You can find
this at http://www.tomlooman.com/survival-sample-game-for-ue4/.

https://docs.unrealengine.com/latest/INT/Programming/index.html
https://docs.unrealengine.com/latest/INT/Programming/index.html
https://wiki.unrealengine.com/First_Person_Shooter_C%2B%2B_Tutorial
https://wiki.unrealengine.com/First_Person_Shooter_C%2B%2B_Tutorial
https://docs.unrealengine.com/latest/INT/Programming/Tutorials/index.html
https://docs.unrealengine.com/latest/INT/Programming/Tutorials/index.html
http://www.tomlooman.com/survival-sample-game-for-ue4/

255

10
User Interface

In this chapter, we'll cover the following recipes:

ff Create a Health/Damage system, part 2 – creating a healthbar

ff Dynamic enemy healthbars

ff Creating a main menu

ff Animating a menu

Introduction
In order to create a good game project, you need to be able to communicate information to
the player. To do this, we need to create a user interface (UI), which will allow us to display
information such as the player's health, inventory, and others.

Inside Unreal 4, we use the Slate UI framework to create user interfaces, however, it's a very
complex system. To make things easier for end users, Unreal also released the Unreal Motion
Graphics (UMG) UI Designer, which is a visual UI authoring tool with a much easier workflow.
This is what we will be using in this chapter.

For more information on Slate, refer to https://docs.unrealengine.
com/latest/INT/Programming/Slate/index.html.

https://docs.unrealengine.com/latest/INT/Programming/Slate/index.html
https://docs.unrealengine.com/latest/INT/Programming/Slate/index.html

User Interface

256

Creating a Health/Damage system,
part 2 – creating a healthbar

Something that you'll be using often as a game developer is some kind of healthbar.
In this recipe, we will learn how to display a healthbar on the screen that will update
based off of the values of variables inside of blueprints.

Getting ready
Before we start working on this, we need to have a project created and set up for our
character. To do this, complete the Creating a Health/Damage system, part 1 – taking
damage recipe in Chapter 8, Blueprint Scripting – Level Effects.

How to do it…
Let's see how we can use the UMG editor to display a healthbar:

1.	 From the Content Browser tab, select the Content folder and then click on the
Add New button and select New Folder. Name this new folder UI.

2.	 Click on the Add New button once again and then go to User Interface | Widget
Blueprint. When it comes up, name it HUD (short for Heads Up Display).

The Widget Blueprint is a tool that can be used to place all of our UI elements
into a scene.

For more information on Widget Blueprints, refer to https://docs.
unrealengine.com/latest/INT/Engine/UMG/UserGuide/
WidgetBlueprints/index.html.

https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/WidgetBlueprints/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/WidgetBlueprints/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/WidgetBlueprints/index.html

Chapter 10

257

3.	 Double-click on the HUD to open it up inside the UMG Editor.

4.	 First things first! We are going to display a bar for our health, so from the Palette tab
on the left-hand side, open Common and then drag and drop Progress Bar onto the
middle screen.

5.	 With the newly-created Progress Bar selected, in the Details tab on the right-hand
side, rename Progress Bar to HealthBar and under Slot, click on the Anchors
dropdown and then click on the top-left side to have the bar move according to our
liking; I selected it and changed Size X to 600. Under Progress, you can move the
Percent property to see how the bar changes or how the value moves (note that it is
a value from 0 to 1).

User Interface

258

6.	 Under the Details tab from Appearance, change Fill Color to any color you like
(I chose red) and hit Okay.

Now that we have the visuals down, let's get to the implementation of our elements:

1.	 From the Details tab under the Progress component's Percent property, click on the
Bind button and then select Create Binding.

This will take us to the object's Graph mode with the appropriate node being created.

Chapter 10

259

2.	 Let's first rename this function to GetHealthPercentage by double-clicking on its
name from the Function dropdown.

Alternatively, you can right-click on its name and choose Rename from
the menu, or simply click on it and then press F2.

3.	 After this, let's set the correct value of our character. From the graph, right-click and
select Get Player Character.

This will give us Character Reference, but this is the default version of the
character, not the one we created in our blueprint, so we are going to need to cast
the object to our class (ThirdPersonCharacter).

Computers, by default, want to protect you from making mistakes, so when
you get a certain class, such as Character Reference, it will only let
you do things with it that Character Reference can do. The object
we're creating when we start the game is a child class of Character
Reference, which means it contains everything in Character
Reference blueprint plus more. Casting is a programmer's way of saying
that you know what the object is, and that you'll take responsibility if the
object doesn't. (This is usually done by the game crashing, so don't cast
unless you know what you're doing!)

4.	 Click and drag from the Return Value variable and from the action, select Cast to
ThirdPersonCharacter.

User Interface

260

5.	 Now that we have the cast, delete the connection from Get Health Percentage and
Return Node and then connect the output from Get Health Percentage to the input
of Cast to Third Person Character. Then, connect the output of the Cast to Third
Person Character action to the input of ReturnNode.

6.	 We still need to set the correct value, so from the As Third Person Character
output, this time create two Get actions—one for Current Health and the other
for Max Health.

7.	 After this, create a float/float action (divide a float by another float) and connect
CurrentHealth to the top and Max Health to the bottom.

8.	 Finally, connect the output of the division to Return Value of Return Node.

9.	 Compile, save, and then exit the editor.

10.	 Next, we need to tell the widget to display on the screen. Go to Blueprints |
Open Level Blueprint and this time, create an EventBeginPlay event.

Note that it is also possible to put the following blueprint actions into the
character's blueprint. For more information on converting from a level to a
class blueprint, refer to Chapter 8, Blueprint Scripting – Level Effects.

11.	 Then, to the right of this, right-click and create a Create Widget action. Under Class
from the dropdown, select HUD and connect the arrow from Event Begin Play to the
input of Create HUD_C Widget action.

Chapter 10

261

12.	 After this, click and drag from the output arrow and create an Add to Viewport event.
Then, connect the Return Value variable of our Create Widget action to the Target
variable of the Add to Viewport action.

13.	 Now let's compile, save our game, and play the level!

With this, we now have a simple healthbar system working for us! With this example in place,
you can make much more complex actions dealing with any kind of variable being displayed!

User Interface

262

Dynamic enemy healthbars
Another thing that you'll often see in games are healthbars for enemies that will appear over
their heads, changing as the game is being played. In this recipe, we will learn how we can do
what we've learned from the previous recipe and apply it here.

Getting ready
Before we start working on this, we need to have a project created and set up. Do the previous
recipe all the way to completion.

How to do it…
Of course, to actually have enemy healthbars, we will need to actually have an enemy, so let's
get that implemented first:

1.	 Go to the Content Browser tab and then to the ThirdPersonBP/Blueprints
folder. Right-click on the ThirdPersonCharacter object and then select
Duplicate and name the duplicated object AI.

2.	 Double-click on the blueprint to open up its EventGraph. We actually don't need any
of the previously-created stuff in Event Graph, so select all of the Unreal-created
content and then delete it. Do note that we do have the CurrentHealth and
MaxHealth properties and Event AnyDamage that we created earlier.

We won't be using the Event AnyDamage action in this recipe, but it will be good for
you to use it in your own internal testing.

Blueprint of the new AI object

Chapter 10

263

3.	 Close out of the blueprint for right now. We're going to create our enemy healthbar.

4.	 From the Content Browser tab, open the UI folder and navigate to Add New | User
Interface | Widget Blueprint. Give it a name (EnemyHealthbar). Double-click on it
to open up its editor.

It's important to note the lack of spaces between words when
naming anything in Unreal Engine 4. Either use _ or just capitalize
the next word's first letter.

5.	 Now the first thing we're going to do is create a custom resolution. We can do this by
clicking on the top-right button, Fill Screen, and then selecting Custom.

6.	 From here, let's keep the Width value at 100 and change the Height value to 25.

User Interface

264

7.	 Next, drag and drop a Progress Bar into the level and scale it to fit into the box.
Change the color again if you want to.

8.	 Next, rename the progress bar to something a little easier to read, such as
HealthProgressBar.

9.	 Compile and save the widget and exit out of the editor. Next, open our AI blueprint
again and this time, go into the Viewport tab.

Viewport tab of the AI blueprint

Chapter 10

265

10.	 Go into Add Component and select Widget. Once created, rename it to Healthbar.
Under the UI component, set the Widget Class property to EnemyHealthbar. Then,
under Draw Size, set X to 100 and Y to 25 (what we made the resolution earlier).
Then, rotate the healthbar until it is positioned above the enemy's head and rotates
appropriately.

Now, unlike our previous version of the healthbar where we only had to worry about having
one player, we can have multiple enemies on the screen. So, instead of having the widget
assign its appropriate value, we will use the enemy's blueprint:

1.	 Select the Event Graph tab and then drag and drop the Healthbar object from the
Components tab into Event Graph.

2.	 From the output of the Healthbar object, drag out and then create a Get User Widget
Object action.

3.	 From the Return Value output of the Get User Widget Object action, drag out and
then create a CastToEnemyHealthbar action.

4.	 Next, from the As Enemy Healthbar output, create a Get Health Progress Bar action.

User Interface

266

5.	 Finally, drag out Health Progress Bar to select the Set Percent action.

6.	 Next, we need to divide Current Health by Max Health once again. Drag and drop
the Current Health and Max Health objects from the Variables section and select
Get both times.

7.	 To the right of these, create a float/float action and connect Current Health to the
top and Max Health on the bottom.

8.	 Finally, create an Event Tick event and connect its output to the input of the
Cast to EnemyHealthbar action and then connect the output of the Cast to
EnemyHealthbar action to the input of the Set Percent action.

Chapter 10

267

9.	 Compile and save the Blueprint and then exit the editor.

10.	 After this, drag and drop an AI blueprint into our scene and then play the game.

When we are facing the enemy, we can now see the widget clearly, and we can see
that it's updated using its health values!

User Interface

268

However, we will want to fix an issue, that is, if we aren't facing the enemy, we can't
see the UI for it, as you can see in the following screenshot with two enemies, each
facing in the opposite direction:

To fix this, we will have the healthbar rotate toward the player.

11.	 Open up the AI blueprint once again. We need to get a couple of variables, namely
the player's position and the healthbars. Drag and drop a Healthbar variable from the
Components tab and to the right of it, create a Get World Location action.

12.	 Below this, create a Get Player Character action and to the right of that, create
another GetWorldLocation (Mesh) to get the information for the Mesh component.

Chapter 10

269

13.	 To the right of that, create a Find Look at Rotation action and connect the Start
variable to the Healthbar object's location and the Target variable to the player's.

Finding the Look at Rotation of the healthbar to the player

The rotational value that this will contain will make the object rotate toward us,
but it will look strange if we just set it because the bar will move up and down as
we move around it.

User Interface

270

This is due to the pivot point of the object that it's being rotated to being in the top-
left corner rather than in the center. To fix this, we can create a new object as a
parent that will work correctly.

14.	 Open up the AI Blueprint and with the Viewport tab being selected, go to the
Components tab and navigate to Add Component | Scene.

A scene component is a kind of an empty slate, but it has a Transfrom component so
that we can use it as holder or custom pivot, as in this case.

For more information on the Scene component, (also referred to as a
USceneComponent) refer to https://docs.unrealengine.com/
latest/INT/Programming/UnrealArchitecture/Actors/
Components/index.html#scenecomponents.

15.	 Move the Scene object until its centered around the Healthbar object and then from
the Components tab, drag and drop the Healthbar object on top of the Scene object
to make the Scene object the parent of the Healthbar object.

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors/Components/index.html#scenecomponents
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors/Components/index.html#scenecomponents
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors/Components/index.html#scenecomponents

Chapter 10

271

16.	 Next, we will need to replace the Healthbar variable with the Scene variable for the
GetWorldLocation action (select the Healthbar variable, press Delete and then move
Scene in and connect it).

Now, this is much better, but there's still some issues when jumping or getting too
near. This is because in reality, we only want Yaw to move.

17.	 From Return Value of the Find Look at Rotation action, drag out and select Break
Rot , which will give us each part of the rotation by itself.

18.	 To the right of this newly-created rotation, right-click and select Make Rot and
connect Yaw of the Break Rot action to Yaw of the Make Rot action.

19.	 Now, we need to right-click and select a Set World Rotation (Scene) action and
connect Return Value to New Rotation.

User Interface

272

20.	 Finally, connect the output of the Set Percent action to the input of the
SetWorldRotation action.

21.	 Compile the Blueprint, save it, and start the game!

Now our enemy's healthbars will rotate toward our player at all times!

Chapter 10

273

Creating a main menu
A main menu can serve as an introduction to your game and is a great place for us to discuss
some additional things that UMG has, such as texts and buttons. We'll also learn how we can
make buttons do things. Let's spend some time to see just how easy it is to create one!

For more information on the client-server model, refer to https://
en.wikipedia.org/wiki/Client%E2%80%93server_model.

How to do it…
To give you an idea of how it works, let's create an empty level to hold our menu:

1.	 Create a new level by going to File | New Level and select Empty Level.

2.	 Next, inside the Content Browser tab, go to our UI folder and navigate to Add New |
User Interface | Widget Blueprint and give it a name (MainMenu). Double-click on it
to open up the editor.

In this menu, we are going to have the title of the game, and then a series of buttons
the player can press.

3.	 From the Palette tab, open up the Common section and drag and drop a Button onto
the middle of the screen.

4.	 Select the button and change its Size X to 400 and Size Y to 80. We will also rename
the button to Play Game.

5.	 Drag and drop a Text object onto the Play Game button, and you should see it
snap onto the button as a child. Under Content, change Text to Play Game. Under
Appearance, change the color of the button to black and change the Font size to 32.

6.	 From the Hierarchy tab, select the Play Game button and copy and paste it to create
a duplicate. Move the button down, rename it to Quit Game, and change the text
Content as well.

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

User Interface

274

7.	 Move both of the objects so that they're on the bottom part of the HUD, slightly above
and side by side, as shown in the following image:

Chapter 10

275

8.	 Lastly, we'll want to set our pivots and anchors accordingly. When you select either
the Quit Game or Play Game buttons, you may notice a sun-like widget that displays
the Anchors of the object (known as the Anchor Medallion). In our case, open
Anchors from the Details panel and click on the bottom center option.

User Interface

276

9.	 Now that we have the buttons created, we want them to actually do something when
we click on them. Select the Play Game button and from the Details tab, scroll down
until you see the Events component. There should be a series of big green + buttons.
Click on the green button beside OnClicked.

10.	 Next, it will take us to Event Graph with the appropriate event created for us. To the
right of the event, right-click and create an Open Level action. Under Level Name, put
in whatever level you like (for example, StarterMap) and then connect the output of
the OnClicked action to the input of the Open Level action.

11.	 To the right of that, create a Remove from Parent action to make sure that when we
leave it, the menu doesn't stay.

Chapter 10

277

12.	 Finally, create a Get Player Controller action and to the right of it, a Set Show Mouse
Cursor action disabled so that the mouse will no longer be visible as we want to see
the mouse in the menu (drag from Return Value of the Player Controller to create a
new node and search for the mouse cursor action).

13.	 Now, go back to the Designer button and then select the Quit Game button. Click on
the OnClicked button as well and to the right of this one, create a Quit Game action
and connect the output of the OnClicked action to the input of the Quit Game action.

User Interface

278

14.	 Lastly, as a bit of polish, let's add our game title to the screen. Drag and drop another
Text object onto the scene, this time with Anchor at the top of center. From here,
change Position X to 0 and Position Y to 176.

15.	 Change the Alignment value of the X axis to .5 and check the Size to Content
option for it to automatically resize.

16.	 Set the Content component's Text property to the game's name
(in my case, Game Name).

17.	 Under the Appearance component, set the Font size to 93 and set the Justification
property to Center.

There are a number of other styling options that you may wish to use
when developing your HUDs. For more information on that, refer to
https://docs.unrealengine.com/latest/INT/Engine/
UMG/UserGuide/Styling/index.html.

https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/Styling/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/Styling/index.html

Chapter 10

279

18.	 Compile the menu, and save it, and now we need to actually have the widget show
up. To do so, we need to take the same steps as we did previously.

19.	 Open up Level Blueprint by going to to Blueprints | Open Level Blueprint and create
an EventBeginPlay event.

20.	 Then, to the right of that, right-click and create a Create Widget action. Under Class,
from the dropdown, select MainMenu and connect the arrow from Event Begin Play
to the input of Create MainMenu_C Widget.

21.	 After this, click and drag from the output arrow and create an Add to Viewport event.
Then, connect Return Value of our Create Widget action to Target of the Add to
Viewport action.

22.	 Lastly, we also want to display the player's cursor on the screen to show buttons. To
do that, right-click and select Get Player Controller. Then, from Return Value of that,
create a Set Show Mouse Cursor object. Connect the output of the Add to Viewport
action to the input of the Show Mouse Cursor action.

Blueprint to show player's cursor on the screen

User Interface

280

23.	 Compile, save, and run the project!

With this our menu is completed! We can quit the game with no problems, and pressing the
Play Game button will start our level!

Animating a menu
You may have created a menu or UI element at some point, but rather than having it static
and non-moving, let's spend some time looking at how we can animate the menus by having
them fly in and out or animate in some way. This will help add polish to the title as well as
enable players to notice things easier as they move in.

Getting ready
Before we start working on this, we need to have a project created and set up. Follow the
previous recipe all the way to completion.

Chapter 10

281

How to do it…
1.	 Open up the MainMenu blueprint once more and from the bottom-left in the

Animations tab, click on the +Animation button and give the new animation
a name (MenuFlyIn).

2.	 Select the newly-created animation, and you should see the window on the
right-hand side brighten up.

Creating a new animation

3.	 Next, click on the Auto Key toggle to have the animation editor automatically set keys
that are appropriate for our implementation.

4.	 If it's not there already, move the timeline bar (the white line with two orange ends on
the top and bottom) to the 0.00 mark on the animation timeline.

5.	 Next, select the Game Name object and under the Color and Opacity option, open it
up and change the A (alpha) value to 0.

User Interface

282

6.	 Now, move the timeline bar to the 1.00 mark and then open the color again and set
the A value to 1.

You'll notice that now there is a transition going from a completely transparent
text to a fully shown one. This is a good start. Let's have the buttons fly in after
the text appears.

7.	 Next, move the timeline bar to the 2.00 mark and select the Play Game button.
Now from the Details tab, you'll notice that under the variables there are new + icons
to the left of variables. This will save the value for use in the animations. Click on the
+ icon by the Position Y value.

If you use your scroll wheel while inside the dark gray portion of the
timeline, (where the keyframe numbers are displayed) it zooms in and
out. This can be quite useful as you create more complex animations.

Chapter 10

283

8.	 Now move the timeline bar to the 1.00 mark and move the Play Game button off the
screen. By doing the animation in this way, we are saving where we want it to be at
the end, and then we will go back and do the animations.

9.	 Do the same animation for the Quit Game button.

Animation for the Quit Game button

Now that our animation is created, let's make it so that when the object starts, it plays
this animation:

1.	 Click on the Graph button and from the MyBlueprint tab under the Graphs section,
double-click on the Event Construct event, which is called as soon as we add the
menu to the scene. Grab the pin on the end of it and create a Play Animation action.

User Interface

284

2.	 Drag and drop a MenuFlyIn animation into the scene and select Get. Connect its
output pin to the In Animation property of the Play Animation action.

Now that we have the animation working for the menu, let's have it play when we leave
the menu:

1.	 Select the Play Animation and Menu Fly In variables and copy them. Then, move to
the OnClicked (Play Game) action, drag the OnClicked event over to the left, and
remove its original connection to the Open Level action by holding down Alt and
clicking.

2.	 Paste (Ctrl + V) the new objects and connect the output of OnClicked (Play Game) to
the input of Play Animation. Now change the Play Mode to Reverse.

3.	 To the right of that, create a Delay action. For the Duration variable, we want to wait
as long as the animation is, so from the Menu Fly In variable, create another pin and
a Get End Time action. Connect Return Value of the Get End Time variable to the
input of the Delay action.

Chapter 10

285

4.	 Connect the output of the Play Animation variable to the input of the Delay
variable and the Completed output of the Delay variable to the input of the
Open Level action.

5.	 Now, we need to do the same for the OnClicked (Quit Game) event.

User Interface

286

6.	 Now compile, save, and run the game!

Our menu is now completed! You learned about how animation works inside UMG.

For more examples of using UMG for animation, refer to https://docs.
unrealengine.com/latest/INT/Engine/UMG/UserGuide/
Animation/index.html.

See also
I would love to write an entire book about creating UIs for games, but there just isn't enough
space in this book to dive deeply into it. However, for those interested in doing more complex
UI, here are some additional tutorials, which may prove to be beneficial:

ff Basic Inventory System in Blueprint: http://www.tomlooman.com/tutorial-
basic-inventory-system-in-blueprint/

ff Creating / Scripting an In-Game Pause Menu: https://docs.unrealengine.
com/latest/INT/Engine/UMG/QuickStart/5/index.html

ff Level Menus (UMG): https://www.youtube.com/watch?v=wPzIvBP8-PA

ff UMG Using a Gamepad: https://www.youtube.com/watch?v=tCXuNu4RETs

ff UMG, Create Scrollable List of Clickable Buttons From Dynamic Array:
https://wiki.unrealengine.com/UMG,_Create_Scrollable_List_of_
Clickable_Buttons_From_Dynamic_Array

https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/Animation/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/Animation/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/Animation/index.html
http://www.tomlooman.com/tutorial-basic-inventory-system-in-blueprint/
http://www.tomlooman.com/tutorial-basic-inventory-system-in-blueprint/
https://docs.unrealengine.com/latest/INT/Engine/UMG/QuickStart/5/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/QuickStart/5/index.html
https://www.youtube.com/watch?v=wPzIvBP8-PA
https://www.youtube.com/watch?v=tCXuNu4RETs
https://wiki.unrealengine.com/UMG,_Create_Scrollable_List_of_Clickable_Buttons_From_Dynamic_Array
https://wiki.unrealengine.com/UMG,_Create_Scrollable_List_of_Clickable_Buttons_From_Dynamic_Array

287

11
Publishing and

Deployment

In this chapter, we'll cover the following recipes:

ff Packaging your project

ff Creating an installer for Windows

Introduction
At this point, you should have created an entire project, but taking the time to get the projects
out into the world is just as important. Playing the game inside the editor is nice and all, but
playing the game as a standalone title has a special feel to it that you can't duplicate.

After exporting it to the computer, it is possible for you to just zip it up and send someone that
file, but you spent quality time on your project, and so, give it the respect it deserves. With
that in mind, people notice the polish that is put into games and the little things, such as an
installer, can help get people into the mood of your project early on and see your game as a
professional title.

Packaging your project
Before we can export our project and share it with others, we first need to package it.
Packaging is the name for a series of different steps, including compiling your project, then
cooking content into a format that the platform understands before finally putting the project
in a certain format. This will allow you to test/play your full game (instead of a single map) in
the same way that it would be when published.

Publishing and Deployment

288

Getting ready
Before we start working on this, we need to have a completed project. In my example, I
created a new blank project, but any of the things we worked on in the book should work fine.

How to do it…
Let's see just how the packaging works! Follow these steps:

1.	 From the File menu, navigate to Package Project | Windows | Windows (64 Bit).

2.	 From there, you should see a Browse For Folder dialog window pop up. Here, we
will want to place the files for the game. In my case, I selected Desktop and then
selected Make New Folder. From here, I renamed this new folder to UE4 EXPORT:

Chapter 11

289

3.	 After you've selected your folder, click on the OK button and you'll notice a new
message on the bottom-right of your screen, saying that the project is currently
being packaged.

This is done as a background process as it will often take some time, so you can still make
changes and work with the editor; note that the changes made during this period will not be
reflected in your packaged project.

Publishing and Deployment

290

It is also possible to display additional information about what's going on by clicking the
Show Log button. The output log can be useful in case something went wrong:

1.	 Once you see the message disappear, you should go back to the exported folder,
and once there, you should see a folder called WindowsNoEditor. Double-click
on that folder and you should see a number of files.

Chapter 11

291

2.	 Double-click on the .exe file and you should see your game started!

With this, we've now exported our project for others to play!

If, like this generic example, you do not have functionality for exiting the
game, feel free to press Alt + Tab to exit the game and then just simply
click on the X in the top-right.

For more information on exporting projects to different platforms, such
as iOS and Android, visit https://docs.unrealengine.com/
latest/INT/Engine/Basics/Projects/Packaging/index.
html#distribution.
If you're specifically interested in exporting to iOS, refer to
https://docs.unrealengine.com/latest/INT/Platforms/
iOS/QuickStart/index.html.
In addition, if you're specifically interested in exporting to Android, visit
https://docs.unrealengine.com/latest/INT/Platforms/
Android/GettingStarted/index.html.
For specifics on working with mobile projects, read Learning Unreal
Engine Android Game Development and Learning Unreal® Engine iOS
Game Development, both by Packt Publishing.

https://docs.unrealengine.com/latest/INT/Engine/Basics/Projects/Packaging/index.html#distribution
https://docs.unrealengine.com/latest/INT/Engine/Basics/Projects/Packaging/index.html#distribution
https://docs.unrealengine.com/latest/INT/Engine/Basics/Projects/Packaging/index.html#distribution
https://docs.unrealengine.com/latest/INT/Platforms/iOS/QuickStart/index.html
https://docs.unrealengine.com/latest/INT/Platforms/iOS/QuickStart/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html

Publishing and Deployment

292

Creating an installer for Windows
As I mentioned previously, having multiple folders that need to be included with our .exe is
somewhat of a pain. Rather than giving people a .zip file and hoping that they will extract it
all and then keep everything in the same folder, I'd rather have the process be automatic and
give the person an opportunity to have it installed, just like a professional game. With that in
mind, I'm going to go over a free way to create a Windows installer.

Getting ready
Before we start working on this, we need to have an exported project. If you do not have that
already, follow the previous recipe all the way to completion.

How to do it…
The first thing we need to do is get our setup program. For our demonstration, I will be using
Jordan Russell's Inno setup. Let's get started by first downloading it:

1.	 Go to http://jrsoftware.org/isinfo.php and from there, click on the
Download Inno Setup link.

http://jrsoftware.org/isinfo.php

Chapter 11

293

2.	 From here, click on the Stable Release button and select the isetup-5.5.6.exe file.
Once it's finished, double-click on the executable to open it, clicking on the Run
button if it shows a Security Warning and Yes to allow changes.

3.	 Under the Select Setup Language window, leave it as English and then click
on Ok.

4.	 From here, run through the installation, making sure to uncheck the Install Inno
Setup Preprocessor option since we won't be using it. Upon finishing, make sure
that Launch Inno Setup is checked and then press the Finish button.

When you open the program, it will look something similar to this:

Publishing and Deployment

294

5.	 From here, choose Create a new script file using the Script Wizard and then
select OK.

6.	 Now click on the Next button, and you'll come to the Application Information section.
Fill in your information and then click on Next.

7.	 Next, you'll come up to some information about the Application folder. In general,
you will not want to change this information, so I'd click Next.

Chapter 11

295

8.	 From here, we'll be brought to the Application Files section, where we need to
specify the files we want to install. Under Application main executable file:, select
Browse to go to the location of your Export folder, select the .exe file, and then
click on Open.

9.	 Now, we need to add in the project's folder (the same name as the .exe file).
Click on the Add Folder… button, select the project's name folder, and then click
on OK. In the popup that appears and asks whether you should include files in the
subfolders, click on Yes.

Publishing and Deployment

296

10.	 After that, we need to also add in the Engine folder. Click on the Add Folder…
button, select the Engine folder, and then click on OK. In the popup that appears
and asks whether you should include files in the subfolders, click on the Yes button.

11.	 Then, select each folder in the Other Applications files: section and click on the Edit
button. From here, set the Destination subfolder property to the same name as the
folder and then click on OK.

Chapter 11

297

12.	 Make sure that you do the same with the Engine folder as well and then click on the
Next button.

13.	 In the next menu, check whichever options you'd like, and then click on Next.

14.	 Now, you'll have an option to include a license file, such as a EULA or whatever your
publisher may require, and any personal stuff you want to tell your users before or
after installation. The program accepts .txt and .rtf files. Once you're ready, click
on the Next button.

15.	 Next, they'll allow you to specify what languages you want the installation to work for.
I'll just go for English, but you can add more. Afterward, click on Next.

Publishing and Deployment

298

16.	 We need to set where we want the setup to be placed as well as the icon for it or a
password. I created a new folder on my desktop called UE4DemoSetup and used it.
Then click on Next!

If you want to include a custom icon but don't have a .ico file,
you can visit http://www.icoconverter.com/ to create
one from an image file.

http://www.icoconverter.com/

Chapter 11

299

17.	 Next, you'll be brought to the Successfully Completed Script Wizard screen. After
this, click on Finish!

18.	 Now it will ask you whether you'd like to compile the script immediately. Select Yes.
It'll also ask you whether you want to save your script. Again, click on Yes. I saved it
to the same folder as my exporting directory. It'll take a while, but as soon as you see
Finished in the console window, it should be ready!

Publishing and Deployment

300

19.	 If you go to the same place as your export folder, you should see your installer!

20.	 If you run the project, you should see something similar to this:

With this, we now have a working installer for our game and a single file that we can share
with anyone. This will install everything correctly!

301

Index
Symbol
3ds Max 17

A
AddOnScreenDebugMessage function

reference 226
Anchor Medallion 275

B
Blueprint Editor 113
Blueprints

about 171
Class Blueprints 171
Level Blueprint 171
using 216

brushes
converting, to static meshes/volumes 42-47

C
C++

using 216
casting 259
Class Blueprints

about 171
Level Blueprint, converting to 182-187

client-server model
reference 273

collectables
collecting with networking 229-241

comments 228
compiler 222

config files
reference 251

constructor 234
content

importing 14-16
Content Browser 11-14
custom blueprint nodes

creating 248-253
reference 253

custom material
creating 144-149

D
day/night cycle

creating 132-141
Debug Game Editor mode 220
Delta Seconds 135, 139
Directional Lights

about 127
reference 128

director group 112
dynamic enemy healthbars

implementing 262-272

E
Emissive property

reference 165
environment artist 17
Event

playing, via Blueprints 114
example map

meshing 58-68
exterior level

building, Sculpt mode used 77-80

302

F
field of view (FOV) 11
fill light 39
First-Person Shooter (FPS) game 10
flashlight

adding, to existing Blueprint 198-206
creating 130-132

Flatten tool
about 80
for creating rivers 81-86

flickering light
building, Level Blueprint used 172-181

float 140
Folder Hierarchy 13
Foliage tool

for placing trees and rocks 86-94

G
gameplay

development environment,
setting up 216-224

text, displaying during runtime 224-229
games

loading, with C++ 242-248
saving, with C++ 242-248

geometry brushes
materials, applying 39-42

Geometry Brushes (BSP) 53
Gimp 17
grid snapping 31
Groups

about 54
using 55-57

H
Health/Damage system

creating 206-212

I
installer, for Windows

creating 292-300
Integrated Developers Environment (IDE) 216
items

seeing, through walls 165-169

K
keyboard input

using 242
keyboard tips, for building level 29, 30

L
landscape

creating 72-77
Landscape Splines tool

reference 86
level

building 28-39
elements, duplicating 30
streaming 95-99

Level Blueprint
about 171
converting, to Class Blueprints 183-187
for building flickering light 172-181

level designer 17
lighting

about 121
reference 70
types of lights 121, 122

Lightmass Importance Volume 76
linker 222
Lit mode 20

M
main menu

about 273
creating 273-280

marquee selection 29
materials

about 143
applying, to geometry brushes 39-42

Matinee
creating 101-103
playing, via Blueprints 112-116

Matinee Editor window
about 103
Curve Editor 104
Details tab 104
toolbar 104
tracks 104

303

Maya 17
menu

animating 280-286
mesher 18
mirror material

creating 150-153
moveable lights

adding 129
reference 131

N
networking

about 229
collectables, collecting with 229-241

New Landscape properties
reference 75

normal maps
reference 158
using, with materials 153-160

O
OnComponentBeginOverlap function

reference 234
opening cutscene

creating 104-112

P
particle system

placing 53
Photoshop 17
player

preventing, from moving via
cinematic mode 116-119

Point Lights
about 123, 124
reference 123

project
packaging 287-291

R
replication

reference 232

rivers
creating, with Flatten tool 80-86

room
building 18-27

S
Sculpt mode

for building exterior level 77-80
reference 81

Shading Models
reference 163

simple healthbar
creating 256-261

Sky Light
about 128, 129
reference 129

Slate
reference 255

SpeedTree
reference 92

Spot Lights
about 126
reference 125, 127

static emissive lighting (glow)
creating 161-164

Static Mesh Editor
about 188
reference 189

static meshes
life, adding to 68-70
placing 50-53

subtractive brush 34

T
text

displaying, during runtime 224-229
textures

using, with materials 153-160
Transparency

reference 167
trees and rocks

placing, with Foliage tool 87-94
trigger 194

304

Trigger Volumes
for animating door 187-197

tween 192
types of lights

Directional Lights 127
Point Lights 123
Sky Light 128, 129
Spot Lights 125, 126

U
UE4 (Unreal Engine 4)

about 1, 17
folder structure 2
installing 2-6

UI overview 6-9
Unlit mode 20
Unreal Motion Graphics (UMG)

UI Designer 255

V
vector 243
viewport

navigating 10, 11

W
Widget Blueprint

about 256
reference 256

Thank you for buying
iOS 9 Game Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning iOS 8 Game
Development Using Swift
ISBN: 978-1-78439-355-7 Paperback: 366 pages

Create robust and spectacular 2D and 3D games from
scratch using Swift – Apple's latest and easy-to-learn
programming language

1.	 Create engaging games from the ground up
using SpriteKit and SceneKit.

2.	 Boost your game's visual performance using
Metal - Apple’s new graphics library.

3.	 A step-by-step approach to exploring the world
of game development using Swift.

Mastering Cocos2d Game
Development
ISBN: 978-1-78439-671-8 Paperback: 290 pages

Master game development with Cocos2d to develop
amazing mobile games for iOS

1.	 Learn how to create beautiful and engaging
mobile games using Cocos2D-Swift.

2.	 Explore the cross-platform capabilities of
Cocos2d.

3.	 Get to grips with Cocos2d game development
tools and learn Swift, a powerful modern
approach to game development.

Please check www.PacktPub.com for information on our titles

iOS Game Programming
Cookbook
ISBN: 978-1-78439-825-5 Paperback: 300 pages

Over 45 interesting game recipes that will help you
create your next enthralling game

1.	 Learn to create 2D graphics with Sprite
Kit, game physics, AI behaviours, 3D game
programming, and multiplayer gaming.

2.	 Use native iOS frameworks for OpenGL to
create 3D textures, allowing you to explore 3D
animations and game programming.

3.	 Explore powerful iOS game features through
detailed step-by-step recipes.

Learning Unreal® Engine iOS
Game Development
ISBN: 978-1-78439-771-5 Paperback: 212 pages

Create exciting iOS games with the power of the new
Unreal® Engine 4 subsystems

1.	 Learn each step in the iOS game development
process, from start to finish.

2.	 Develop exciting iOS games with the Unreal
Engine 4.x toolset.

3.	 Step-by-step tutorials to build optimized iOS
games.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Acquainted with the UE4 Interface
	Introduction
	Installing UE4 and folder structure
	UI overview
	Navigating the viewport
	The Content Browser overview
	Importing your own content

	Chapter 2: Level Design – Building Out Levels or Greyboxing
	Introduction
	Building a room
	Building out a level
	Applying materials to geometry brushes
	Converting brushes to static meshes or volumes

	Chapter 3: Creating Quality Interior Environments
	Introduction
	Placing static meshes
	Placing a particle system
	Using Groups
	Meshing an example map
	Adding life to static meshes

	Chapter 4: Building the Great Outdoors – Exterior Environments
	Introduction
	Creating a landscape
	Building an exterior level using the
Sculpt mode
	Creating rivers with the Flatten tool
	Placing trees and rocks using the
Foliage tool
	Streaming levels

	Chapter 5: Lights, Camera, Action – Cinematics
	Introduction
	An introduction to Matinee
	Creating an opening cutscene
	Playing a Matinee via Blueprints
	Preventing a player from moving via cinematic mode

	Chapter 6: Lighting and Shadows
	Introduction
	Lighting overview - learning the types of lights
	Adding moveable lights – flashlight part 1
	Creating a Day/Night cycle

	Chapter 7: Art Pipeline – Working with Materials
	Introduction
	Creating a custom material
	Creating a mirror material
	Using Textures and normal maps with Materials
	Creating glowing materials with static emissive lighting
	Seeing through walls

	Chapter 8: Blueprint Scripting – Level Effects
	Introduction
	Building a flickering light
	Converting from Level to Class Blueprints
	Using Trigger Volumes – opening a door using Matinee
	Adding to an existing Blueprint – flashlight part 2
	Creating a Health/Damage system,
part 1 – taking damage

	Chapter 9: C++ Programming – Gameplay
	Introduction
	Setting up your development environment
	Displaying text during runtime
	Networking 101 – creating collectables with networking
	Save or load games and keyboard input
with C++
	Creating custom blueprint nodes

	Chapter 10: User Interface
	Introduction
	Create a Health/Damage System, part 2 – Creating a healthbar
	Dynamic enemy healthbars
	Creating a main menu
	Animating a menu

	Chapter 11: Publishing and Deployment
	Introduction
	Packaging your project
	Creating an installer for Windows

	Index

