
SOF T WARE DESIGN

User Story Mapping

ISBN: 978-1-491-90490-9

US $34.99 CAN $36.99

“	I	have	met	only	a	few	
Agile	experts	whom		
I	consider	qualified	to	
actually	help	a	serious	
product	team	raise	its	
game	to	the	level	its	
company	needs	and	
deserves.	Jeff	Patton		
is	one	of	them.”

—Marty Cagan
Partner, Silicon Valley Product Group

Twitter: @oreillymedia
facebook.com/oreilly

User story mapping is a valuable tool for software
development, once you understand why and how to
use it. This insightful book examines how this often
misunderstood technique can help your team stay
focused on users and their needs without getting lost
in the enthusiasm for individual product features.

Author Jeff Patton shows you how changeable story
maps enable your team to hold better conversations
about the project throughout the development
process. Your team will learn to come away with a
shared understanding of what you’re attempting to
build and why.

 ■ Get a high-level view of story mapping,
with an exercise to learn key concepts
quickly

 ■ Understand how stories really work, and
how they come to life in Agile and Lean
projects

 ■ Dive into a story’s lifecycle, starting with
opportunities and moving deeper into
discovery

 ■ Prepare your stories, pay attention while
they’re built, and learn from those you
convert to working software

Jeff Patton is an independent consultant, agile process
coach, product design process coach, and instructor with
more than 15 years of experience designing and building
software products. He’s been focused on agile approaches
since working on an early extreme programming team
in 2000.

U
ser Story M

apping
Patton

Jeff Patton
with Peter Economy

Forewords by Martin Fowler,
Alan Cooper, and Marty Cagan

User Story
Mapping
DISCOVER THE WHOLE STORY,
BUILD THE RIGHT PRODUCT

www.allitebooks.com

http://www.allitebooks.org

SOF T WARE DESIGN

User Story Mapping

ISBN: 978-1-491-90490-9

US $34.99 CAN $36.99

“	I	have	met	only	a	few	
Agile	experts	whom		
I	consider	qualified	to	
actually	help	a	serious	
product	team	raise	its	
game	to	the	level	its	
company	needs	and	
deserves.	Jeff	Patton		
is	one	of	them.”

—Marty Cagan
Partner, Silicon Valley Product Group

Twitter: @oreillymedia
facebook.com/oreilly

User story mapping is a valuable tool for software
development, once you understand why and how to
use it. This insightful book examines how this often
misunderstood technique can help your team stay
focused on users and their needs without getting lost
in the enthusiasm for individual product features.

Author Jeff Patton shows you how changeable story
maps enable your team to hold better conversations
about the project throughout the development
process. Your team will learn to come away with a
shared understanding of what you’re attempting to
build and why.

 ■ Get a high-level view of story mapping,
with an exercise to learn key concepts
quickly

 ■ Understand how stories really work, and
how they come to life in Agile and Lean
projects

 ■ Dive into a story’s lifecycle, starting with
opportunities and moving deeper into
discovery

 ■ Prepare your stories, pay attention while
they’re built, and learn from those you
convert to working software

Jeff Patton is an independent consultant, agile process
coach, product design process coach, and instructor with
more than 15 years of experience designing and building
software products. He’s been focused on agile approaches
since working on an early extreme programming team
in 2000.

U
ser Story M

apping
Patton

Jeff Patton
with Peter Economy

Forewords by Martin Fowler,
Alan Cooper, and Marty Cagan

User Story
Mapping
DISCOVER THE WHOLE STORY,
BUILD THE RIGHT PRODUCT

www.allitebooks.com

http://www.allitebooks.org

Jeff Patton

User Story Mapping

www.allitebooks.com

http://www.allitebooks.org

User Story Mapping
by Jeff Patton

Copyright © 2014 Jeff Patton. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editors: Mary Treseler and Amy Jollymore
Production Editor: Kara Ebrahim
Copyeditor: Rachel Monaghan
Proofreader: Elise Morrison

Indexer: Ellen Troutman
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2014: First Edition

Revision History for the First Edition:

2014-09-05: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491904909 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. User Story Mapping, the image of a lilac-breasted
roller, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-491-90490-9

[LSI]

www.allitebooks.com

http://safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491904909
http://www.allitebooks.org

For Stacy, Grace, and Zoe who are my biggest supporters and make all
my effort worthwhile.

And in memory of Luke Barrett, a dear colleague and mentor of mine.
Luke made a difference in my life as he did countless others.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword by Martin Fowler. xi
Foreword by Alan Cooper. xiii
Foreword by Marty Cagan. xvii
Preface. xxi
Read This First. xxix

1. The Big Picture. 1
The "A" Word 1
Telling Stories, Not Writing Stories 3
Telling the Whole Story 3
Gary and the Tragedy of the Flat Backlog 5
Talk and Doc 6
Frame Your Idea 8
Describe Your Customers and Users 9
Tell Your Users' Stories 10
Explore Details and Options 14

2. Plan to Build Less. 21
Mapping Helps Big Groups Build Shared Understanding 22
Mapping Helps You Spot Holes in Your Story 25
There’s Always Too Much 26
Slice Out a Minimum Viable Product Release 27
Slice Out a Release Roadmap 28
Don’t Prioritize Features—Prioritize Outcomes 29
This Is Magic—Really, It Is 30
Why We Argue So Much About MVP 32
The New MVP Isn’t a Product at All! 34

v

www.allitebooks.com

http://www.allitebooks.org

3. Plan to Learn Faster. 37
Start by Discussing Your Opportunity 38
Validate the Problem 39
Prototype to Learn 40
Watch Out for What People Say They Want 41
Build to Learn 41
Iterate Until Viable 44
How to Do It the Wrong Way 44
Validated Learning 46
Really Minimize Your Experiments 48
Let’s Recap 48

4. Plan to Finish on Time. 51
Tell It to the Team 52
The Secret to Good Estimation 53
Plan to Build Piece by Piece 54
Don’t Release Each Slice 56
The Other Secret to Good Estimation 56
Manage Your Budget 57

What Would da Vinci Do? 59
Iterative AND Incremental 62
Opening-, Mid-, and Endgame Strategy 63
Slice Out Your Development Strategy in a Map 64
It’s All About Risk 64
Now What? 65

5. You Already Know How. 67
1. Write Out Your Story a Step at a Time 67

Tasks Are What We Do 68
My Tasks Are Different Than Yours 69
I’m Just More Detail-Oriented 70

2. Organize Your Story 71
Fill in Missing Details 72

3. Explore Alternative Stories 72
Keep the Flow 74

4. Distill Your Map to Make a Backbone 75
5. Slice Out Tasks That Help You Reach a Specific Outcome 76
That’s It! You’ve Learned All the Important Concepts 77
Do Try This at Home, or at Work 78
It’s a Now Map, Not a Later Map 79
Try This for Real 81

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

With Software It’s Harder 82
The Map Is Just the Beginning 84

6. The Real Story About Stories. 89
Kent’s Disruptively Simple Idea 89
Simple Isn’t Easy 91
Ron Jeffries and the 3 Cs 92

1. Card 93
2. Conversation 93
3. Confirmation 94

Words and Pictures 95
That’s It 96

7. Telling Better Stories. 97
Connextra’s Cool Template 97
Template Zombies and the Snowplow 102
A Checklist of What to Really Talk About 104
Create Vacation Photos 107
It’s a Lot to Worry About 108

8. It’s Not All on the Card. 109
Different People, Different Conversations 109
We’re Gonna Need a Bigger Card 110
Radiators and Ice Boxes 113
That’s Not What That Tool Is For 116

Building Shared Understanding 116
Remembering 118
Tracking 119

9. The Card Is Just the Beginning. 121
Construct with a Clear Picture in Your Head 122
Build an Oral Tradition of Storytelling 123
Inspect the Results of Your Work 124
It’s Not for You 126
Build to Learn 127
It’s Not Always Software 128
Plan to Learn, and Learn to Plan 129

10. Bake Stories Like Cake. 131
Create a Recipe 132
Breaking Down a Big Cake 133

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

11. Rock Breaking. 137
Size Always Matters 137
Stories Are Like Rocks 139
Epics Are Big Rocks Sometimes Used to Hit People 140
Themes Organize Groups of Stories 142
Forget Those Terms and Focus on Storytelling 142
Start with Opportunities 143
Discover a Minimum Viable Solution 144
Dive into the Details of Each Story During Delivery 146
Keep Talking as You Build 148
Evaluate Each Piece 149
Evaluate with Users and Customers 150
Evaluate with Business Stakeholders 152
Release and Keep Evaluating 153

12. Rock Breakers. 155
Valuable-Usable-Feasible 156
A Discovery Team Needs Lots of Others to Succeed 158
The Three Amigos 159
Product Owner as Producer 163
This Is Complicated 164

13. Start with Opportunities. 167
Have Conversations About Opportunities 167
Dig Deeper, Trash It, or Think About It 168
Opportunity Shouldn’t Be a Euphemism 173
Story Mapping and Opportunities 173
Be Picky 179

14. Using Discovery to Build Shared Understanding. 181
Discovery Isn’t About Building Software 181
Four Essential Steps to Discovery 182

1. Frame the Idea 183
2. Understand Customers and Users 183
3. Envision Your Solution 186
4. Minimize and Plan 196

Discovery Activities, Discussions, and Artifacts 199
Discovery Is for Building Shared Understanding 200

15. Using Discovery for Validated Learning. 201
We’re Wrong Most of the Time 201

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Bad Old Days 203
Empathize, Focus, Ideate, Prototype, Test 204
How to Mess Up a Good Thing 208
Short Validated Learning Loops 209
How Lean Startup Thinking Changes Product Design 210

Start by Guessing 211
Name Your Risky Assumptions 212
Design and Build a Small Test 212
Measure by Running Your Test with Customers and Users 214
Rethink Your Solution and Your Assumptions 215

Stories and Story Maps? 215

16. Refine, Define, and Build. 217
Cards, Conversation, More Cards, More Conversations… 217
Cutting and Polishing 218
Workshopping Stories 218
Sprint or Iteration Planning? 222
Crowds Don’t Collaborate 225
Split and Thin 227
Use Your Story Map During Delivery 232
Use a Map to Visualize Progress 233
Use Simple Maps During Story Workshops 234

17. Stories Are Actually Like Asteroids. 239
Reassembling Broken Rocks 241
Don’t Overdo the Mapping 243
Don’t Sweat the Small Stuff 244

18. Learn from Everything You Build. 247
Review as a Team 247
Review with Others in Your Organization 251
Enough 253
Learn from Users 254
Learn from Release to Users 255
Outcomes on a Schedule 255
Use a Map to Evaluate Release Readiness 256

The End, or Is It?. 259

Acknowledgments. 261

Table of Contents | ix

References. 265

Index. 267

x | Table of Contents

Foreword by Martin Fowler

One of the beneficial consequences of the rise of Agile software de‐
velopment is the notion of splitting up large sets of requirements into
smaller chunks. These chunks—stories—enable much more visibility
into the progress of a development project. When a product is built
story-by-story, with each story’s implementation fully integrated into
the software product, everyone can see the product grow. By using
stories that make sense to users, developers can steer the project by
determining which stories to build next. This greater visibility helps
encourage greater participation from users—no longer do they have
to wait a year or more to see what the development team’s been up to.

But this chunking has some negative consequences. One of these is
that it’s easy to lose the big picture of what a software system should
do. You can end up with a jumble of pieces that don’t fit into a coherent
whole. Or you can end up building a system that isn’t really helpful to
the users, because you’ve missed the essence of what’s needed by get‐
ting lost in the details.

Story mapping is a technique that provides the big picture that a pile
of stories so often misses.

That’s it, really—the description of this book in a single sentence. And
that sentence carries with it the promise of a lot of value. A big picture
helps communicate effectively with users, it helps everyone involved
avoid building unnecessary features, and it provides an orientation for
a coherent user experience. When I talk to my colleagues at Thought‐
Works about what they do to develop their stories, story mapping
regularly comes up as a core technique. Often they’ve learned that
technique from workshops run by Jeff, because he’s the one who
developed the technique and can best communicate it. This book

xi

allows more people to understand this technique directly from its
source.

But this isn’t just a book for people who have something like "business
analyst" on their business card or online profile. Perhaps the biggest
disappointment for me in the decade of the adoption of Agile methods
is the way that many programmers see stories as a one-way commu‐
nication from analysts to them. Right from the beginning, stories were
supposed to spark conversations. If you really want to come up with
effective software to support an activity, then you need to look to those
who build software as a vital source of ideas for its capabilities, because
it’s programmers who know best what software can do. Programmers
need to understand what their users are trying to achieve and should
collaborate in building the stories that capture those users' needs. A
programmer who understands story mapping can better see the
broader user context and can participate in framing the software—
leading to a better job.

When Kent Beck (who originated the notion of a "story") developed
his ideas on software development, he called out communication as a
key value of effective teams. Stories are the building blocks of com‐
munication between developers and those who use their work. Story
maps organize and structure these building blocks, and thus enhance
this communication process—which is the most critical part of soft‐
ware development itself.

—Martin Fowler
June 18, 2014

xii | Foreword by Martin Fowler

Foreword by Alan Cooper

In Mary Shelley’s famous science-fiction novel, Frankenstein, the mad
Doctor Frankenstein builds a creature from disparate pieces of dead
humans and brings the creature to life with the then-new technology
of electricity. Of course, we know that this is not actually possible. You
cannot create life by sewing together random body parts.

Yet this is what software developers attempt to do all the time. They
add good features to software, one at a time, and then wonder why few
users love their product. The heart of the conundrum is that develop‐
ers are using their construction method as a design tool, but the two
are not interchangeable.

It’s entirely reasonable that programmers build software one feature
at a time. That’s a perfectly good strategy, proven over the years. What
has also been proven over the years is that, when used as a method for
designing the behavior and scope of a digital product, one-feature-at-
a-time yields a Frankenstein monster of a program.

While they are intimately related, the practice of designing software
behavior and the practice of building that software are distinctly dif‐
ferent, and are typically performed by different people with different
skill sets. The many hours that interaction designers spend observing
users and mapping behavior patterns would drive most programmers
batty. Conversely, the hours of sweating over algorithms are too soli‐
tary for most designers.

But when the two strains of practice—design and development—col‐
laborate, the work becomes electric and has the potential to create a
living, breathing product. Teamwork breathes life into the monster
and makes people love it.

xiii

While the idea of collaboration is neither new nor particularly in‐
sightful, it is actually very difficult to do effectively. The way that de‐
velopers work—their pace, language, and rhythm—is quite different
from that of interaction designers.

Practitioners in each of the two fields are strong, capable, and inter‐
nally well disciplined, yet they share a single, common weakness. It is
really hard to express a design problem in programming terms, and it
is equally hard to express a development problem in design terms. The
two sister disciplines lack a common tongue. And that junction be‐
tween the two disciplines is precisely where Jeff Patton lives.

Jeff ’s method of story mapping makes sense to developers, and it
makes equal sense to designers. Story mapping is the Rosetta Stone
for our digital age.

Despite protestations to the contrary, Agile development is not a very
useful design tool. It is a way of thinking about development that is
design-friendly, which is a very good thing, but by itself it won’t get
you to a product that users love. On the other hand, so many times we
have seen good designs, well documented, given to developers—Agile
or not—who manage to kill the essence of the design in the process of
implementation.

Patton’s story mapping approach is the bridge over this chasm. Inter‐
action design is all about finding the user’s truth and telling it as a
narrative. Software development is all about breaking those narratives
into tiny, functional chunks and implementing and integrating them.
It’s so ridiculously easy for the essence of the narrative to slip away
during this complex process. Yes, the functions are implemented, but
the patient dies on the operating room table.

By mapping out the user’s stories, the design retains its narrative
structure yet can still be deconstructed for effective implementation.
The designer’s story, which is a formalized version of the user’s story,
remains intact throughout the development.

The conventional corporate world has proven that it is nearly impos‐
sible for a team of two or three hundred people to build a product that
people love. Meanwhile the startup community has proven that a team
of four or five people can build small products that people love, but
even these little products eventually grow big and lose their spark. The
challenge we face is creating big software that people love. Big software

xiv | Foreword by Alan Cooper

serves large audiences doing complex, commercially viable jobs. It’s
ridiculously hard to make such software fun to use and easy to learn.

The only way we are going to build big software that is not a Frank‐
enstein monster is by learning how to integrate the disciplines of soft‐
ware design and development. Nobody knows how to do that better
than Jeff Patton.

—Alan Cooper
June 17, 2014

Foreword by Alan Cooper | xv

Foreword by Marty Cagan

I’ve had the extremely good fortune to be able to work with many of
the very best technology product teams in the world. People creating
the products you use and love every day. Teams that are literally
changing the world.

I’ve also been brought in to try to help companies that are not doing
so well. Startups racing to get some traction before the money runs
out. Larger companies struggling to replicate their early innovation.
Teams failing to continuously add value to their business. Leaders
frustrated with how long it takes to go from idea to reality. Engineers
exasperated with their product owners.

What I’ve learned is that there is a profound difference between how
the very best product companies create technology products, and the
rest. And I don’t mean minor differences. I mean everything from how
leaders behave to the level of empowerment of teams; to the way teams
work together; to how the organization thinks about funding, staffing,
and producing products; to the culture; to how product, design, and
engineering collaborate to discover effective solutions for their
customers.

This book is titled User Story Mapping, but you’ll soon see it is about
much more than this powerful yet simple technique. This book gets
to the heart about how teams collaborate, communicate, and ulti‐
mately come up with good stuff to build.

Many of you have never had a chance to see up close how a strong
product team operates. All you may know is what you’ve seen at your
company or where you’ve worked before. So what I’d like to do here

xvii

is to try to give you a flavor of just how different the best teams are
from the rest.

With a grateful nod to Ben Horowitz’s Good Product Manager, Bad
Product Manager, here’s a glimpse into some of the important differ‐
ences between strong product teams and weak teams:

Good teams have a compelling product vision that they pursue with
a missionary-like passion. Bad teams are mercenaries.
Good teams get their inspiration and product ideas from their score‐
card KPIs, from observing customers struggle, from analyzing the
data customers generate from using their product, and from con‐
stantly seeking to apply new technology to solve real problems. Bad
teams gather requirements from sales and customers.
Good teams understand who their key stakeholders are, they under‐
stand the constraints that these stakeholders operate in, and they are
committed to inventing solutions that not only work for users and
customers, but also work within the constraints of the business. Bad
teams gather requirements from stakeholders.
Good teams are skilled in the many techniques to rapidly try out
product ideas to determine which ones are truly worth building. Bad
teams hold meetings to generate prioritized roadmaps.
Good teams love to have brainstorming discussions with smart
thought leaders from across the company. Bad teams get offended
when someone outside their team dares to suggest they do something.
Good teams have product, design, and engineering sit side-by-side,
and embrace the give and take between the functionality, the user
experience, and the enabling technology. Bad teams sit in their re‐
spective functional areas, and ask that others make requests for their
services in the form of documents and scheduling meetings.
Good teams are constantly trying out new ideas in order to innovate,
but doing so in ways that protect the revenue and the brand. Bad
teams are still waiting for permission to run a test.
Good teams insist they have the skill sets necessary to create winning
products, such as strong interaction design. Bad teams don’t even
know what interaction designers are.
Good teams ensure that their engineers have time to try out the dis‐
covery prototypes every day so that they can contribute their thoughts
on how to make the product better. Bad teams show the prototypes
to the engineers during sprint planning so they can estimate.
Good teams engage directly with end users and customers every week
to better understand their customers, and to see the customer’s re‐
sponse to their latest ideas. Bad teams think they are the customer.

xviii | Foreword by Marty Cagan

Good teams know that many of their favorite ideas won’t end up
working for customers, and even the ones that could will need several
iterations to get to the point where they provide the desired outcome.
Bad teams just build what’s on the roadmap and are satisfied with
meeting dates and ensuring quality.
Good teams understand the need for speed and how rapid iteration
is the key to innovation, and they understand this speed comes from
the right techniques and not forced labor. Bad teams complain they
are slow because their colleagues are not working hard enough.
Good teams make high-integrity commitments after they’ve evalu‐
ated the request and ensured they have a viable solution that will
actually work for the customer and the business. Bad teams complain
about being a sales-driven company.
Good teams instrument their work so that they can immediately un‐
derstand how their product is being used and make adjustments
based on the data. Bad teams consider analytics and reporting a "nice
to have."
Good teams integrate and release continuously, knowing that a con‐
stant stream of smaller releases provides a much more stable solution
for their customers. Bad teams test manually at the end of a painful
integration phase and then release everything at once.
Good teams obsess over their reference customers. Bad teams obsess
over competitors.
Good teams celebrate when they achieve a significant impact to the
business KPIs. Bad teams celebrate when they finally release
something.

I realize you might be wondering what all this has to do with story
maps. I think you’ll be surprised. And that’s precisely why I am a fan
of story maps.

I have met only a few Agile experts whom I consider qualified to ac‐
tually help a serious product team raise its game to the level its com‐
pany needs and deserves. Jeff Patton is one of them. I have observed
him working hands on in the trenches with teams in the midst of
product discovery. I introduce him into companies because he is ef‐
fective. Teams love him because he is knowledgeable yet humble.

The days of product managers gathering up and documenting re‐
quirements, designers scrambling just to put some lipstick on the
product, and engineers sheltered in the basement, coding, are long
gone for the best teams. And it’s time they are gone for your team, too.

—Marty Cagan
June 18, 2014

Foreword by Marty Cagan | xix

Preface

Live in it, swim in it, laugh in it, love in it / Removes embarrassing
stains from contour sheets, that’s right / And it entertains visiting
relatives, it turns a sandwich into a banquet.

— Tom Waits, "Step Right Up"

This book was supposed to be a small thing…a pamphlet, really.

I set out to write about a simple practice I called story mapping. I, and
lots of other folks, build simple maps to help us work together with
others and to imagine the experience of using a product.

Story mapping keeps us focused on users and
their experience, and the result is a better

conversation, and ultimately a better
product.

Building a map is dead simple. Working together with others, I’ll tell
the story of a product, writing each big step the users take in the story
on sticky notes in a left-to-right flow. Then, we’ll go back and talk

xxi

about the details of each step, and write those details down on sticky
notes and place them vertically under each step. The result is a simple
grid-like structure that tells a story from left to right, and breaks it into
details from top to bottom. It’s fun and fast. And those details make a
better backlog of stories for our Agile development projects.

How complicated could writing a book about this be?

But it turns out that even the simple things can be pretty sophisticated.
And writing about why you would want to build a story map, what’s
going on when you build one, and all the different ways you can use
one took me a lot of pages. There was more to this simple practice than
I thought.

If you’re using an Agile development process, you’re likely filling
backlogs with user stories. I’d assumed that since stories were such a
common practice, it’d be a waste of time for me to write about them
in this book. But I was wrong. In the decade and a half since stories
were first described by Kent Beck, they’re more popular—and more
misunderstood and misused—than ever before. That makes me sad.
And, what’s more, it kills all the benefit we get from story mapping.

So, in this book, I would like to correct as many big misconceptions
as I can about stories and the way they’re used in Agile and Lean soft‐
ware development. That’s why, in the words of Tom Waits, I’ve turned
this "sandwich into a banquet."

Why Me?
I like making things. What motivates me is the joy I get from creating
a piece of software and seeing people use it and benefit from it. I’m a
reluctant methodologist. I found I needed to learn how process and
practice work to get better at them. I’m only now learning after 20-
plus years in software development how to teach what I’ve learned.
And I know that what I teach is a moving target. What I understand
changes every week. How best to explain it changes almost as fast. All
that’s kept me from writing a book for years.

But it’s time.

Stories and story maps are such a good idea. They’ve benefited so many
people. They’ve made their lives better, and the products they build
better. But while some people’s lives are getting better, there are more

xxii | Preface

people struggling with stories than ever before. I want to help stop
that.

This book is something I can make to help. And, if it improves the
work lives of even a few, I’ll celebrate.

This Book Is for You If You’re Struggling with
Stories
Because so many organizations have adopted Agile and Lean process‐
es, and stories along with them, you may fall into one or more of the
traps caused by misconceptions about stories. Traps like these:

• Because stories let you focus on building small things, it’s easy to
lose sight of the big picture. The result is often a "Franken-product"
where it’s clear to everyone using the product that it’s assembled
from mismatched parts.

• When you’re building a product of any significant size, building
one small thing after another leaves people wondering when you’ll
ever be done, or what exactly you’ll deliver. If you’re the builder,
you wonder, too.

• Because stories are about conversations, people use that idea to
avoid writing anything down. Then they forget what they talked
about and agreed to in the conversations.

• Because good stories are supposed to have acceptance criteria, we
focus on getting acceptance criteria written, but there’s still not a
common understanding of what needs to be built. As a conse‐
quence, teams don’t finish the work they plan on in the timeframe
they planned to.

• Because good stories are supposed to be written from a user’s per‐
spective, and there are lots of parts that users never see, team
members argue that "our product doesn’t have users, so user stories
won’t work here."

If you’ve fallen into any of those traps, then I’ll try to wipe away the
misconceptions that lead to those traps in the first place. You’ll learn
how to think of the big picture, how to plan and estimate in the large
(and in the small), and how to have productive conversations about
what users are trying to accomplish, as well as what a good piece of
software needs to do to help them.

Preface | xxiii

Who Should Read This Book?
You should, of course. Especially if you bought it. I, for one, think
you’ve made a wise investment. If you’re just borrowing it, you should
order your own now, and return the one you’ve borrowed when the
new one arrives at your door.

However, reading this book offers specific reasons and benefits for
practitioners in specific roles:

• Product managers and user experience (UX) practitioners in com‐
mercial product companies should read this book to help them
bridge the gap between thinking about whole products and user
experience and thinking about tactical plans and backlog items.
If you’ve been struggling to get from the vision you’re imagining
to the details your teams can build, story maps will help. If you’ve
been struggling to help others imagine the experience of—and
empathize with—the users of your product, story mapping will
help. If you’ve been struggling to figure out how to incorporate
good UX and product design practice, this book will help. If you’ve
been working to incorporate Lean Startup–style experimentation
in the way you work, this book will help.

• Product owners, business analysts, and project managers in infor‐
mation technology (IT) organizations should read this book to help
them bridge the gap between their internal users, stakeholders,
and developers. If you’ve been struggling to convince lots of stake‐
holders in your company to get on the same page, then story maps
will help. If you’ve been struggling to help developers see the big
picture, story maps will help.

• Agile and Lean process coaches with the goal of helping individuals
and teams improve should read this book. And, as you do, think
about the misconceptions people in your organization have about
stories. Use the stories, simple exercises, and practices described
in this book to help your teams improve.

• Everyone else. When using Agile processes, we often look to roles
like product owners or business analysts to steer a lot of the work
with stories, but effective use of stories requires that everyone get
the basics. When people don’t understand the basics, you hear
complaints that "stories aren’t well written" or that they’re "too
big," or that they "don’t have enough detail." This book will help,
but not in the way you think. You and everyone else will learn that

xxiv | Preface

stories aren’t a way to write better requirements, but a way to or‐
ganize and have better conversations. This book will help you un‐
derstand what kinds of conversations you should be having to help
you get the information you need when you need it.

I’m hoping you identify with one or more of the groups I just described.
If you don’t, give this book to someone who does.

If you do, let’s get started.

A Few Conventions Used in This Book
I suspect this isn’t the only book on software development you’ve ever
read, so nothing should surprise you.

The Headings Inside Each Chapter Guide You Through
the Subject
Use them to find your way or skip over stuff you’re not interested in
right now.

Key points look like this. Imagine me saying
these a bit louder than all the other text.

If you’re skimming, read the key points. If you like them, or they’re
not dead obvious, read the text before and after them. That should
make them clear.

Sidebars are used to describe:

• Interesting but not critical concepts. These should be fun distrac‐
tions. At least I hope they are.

• Recipes for specific practices. You should be able to use these rec‐
ipes to help you get started with a specific practice.

• Stories and examples contributed by others. You should get some
good ideas from these that you could try in your organization.

The book is organized into specific sections. You could read it a section
at a time, or use the sections to help you find ideas for a specific chal‐
lenge you have right now.

Preface | xxv

How This Book Is Organized
I bought a cool new color laser printer a while back. I opened the box,
and sitting on top of the printer was a pamphlet with "Read This First"
in big red letters on it. I wondered, "Should I really read this first?"
because I usually don’t do as I’m told. But I’m glad I did, because there
were lots of plastic guards in various places inside the printer to keep
it safe during shipping, and if I’d plugged it in before removing them,
I might have damaged the printer.

This story might sound like a tangent, but it’s not.

This book contains a "Read This First" chapter because there are two
critical concepts and associated vocabulary that I’ll use throughout the
rest of the book. I’d like you to have those concepts in your head before
you get started. If you start to story map before you understand them,
I can’t guarantee your safety.

Story Mapping from 10,000 Feet
Chapters 1–4 will give you a high-level view of story mapping. If you’ve
been using stories for a while and played with a story map before, this
section should give you enough to get going right away.

Chapter 5 gives you a nifty exercise to help you learn the key concepts
used to create a great story map. Try it out with a group in your office,
and everyone who participates will get it. And I promise you the maps
they create for your products will come out better afterward.

Grokking User Stories
Chapters 6–12 tell the story behind stories, how they really work, and
how to make good use of them in Agile and Lean projects. Inside story
maps are lots of little stories you can use to drive day-to-day develop‐
ment. Even if you’re an Agile veteran, I promise you’ll learn something
about stories you didn’t already know. And, if you’re new to stories,
you’ll learn enough to surprise the Agile know-it-alls at your office.

Better Backlogs
Chapters 13–15 dive deep into the lifecycle of a story. I’ll discuss spe‐
cific practices that help you use stories and story maps, starting with
big opportunities and moving through the discovery work to identify
a backlog full of stories that describe a viable product. You’ll learn how

xxvi | Preface

story maps and lots of other practices can help you every step of the
way.

Better Building
Chapters 16–18 dive deeper into using stories tactically, iteration-by-
iteration or sprint-by-sprint. You’ll learn how to get stories ready, to
pay attention while they’re built, to really get them done, and to really
learn from each story you convert to working software.

I find that the last few chapters of many software development books
are the extra junk. I can usually ignore them. Unfortunately, I didn’t
write any of those chapters. You’ll need to read the whole book. My
only consolation to you is that you’ll get some useful nuggets out of
every chapter that you can put to work right away.

Let’s get to it.

Safari® Books Online
Safari Books Online is an on-demand digital li‐
brary that delivers expert content in both book
and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and pre‐
publication manuscripts in one fully searchable database from pub‐
lishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hun‐
dreds more. For more information about Safari Books Online, please
visit us online.

Preface | xxvii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at http://bit.ly/
user-story-mapping.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxviii | Preface

www.allitebooks.com

http://bit.ly/user-story-mapping
http://bit.ly/user-story-mapping
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

Read This First

This book has no introduction.

Yes, you read that right. Now, you might immediately ask yourself,
"Why doesn’t Jeff ’s book have an introduction? Did he forget to write
it? Is he beginning to slip after all these years?! Did the dog eat it?"

No, I didn’t forget to write an introduction to this book. And, no, I’m
not beginning to slip. At least I don’t think I am. And my dog didn’t
eat it (although my daughter’s guinea pig looks suspicious). It’s just
that I’ve long believed that authors spend too much time convincing
me I should read their book, and a great deal of that convincing lives
in the introduction. The meat of most books usually doesn’t start until
Chapter 3. And I’m sure it’s not only me who does this, but I usually
skip the introduction.

This book actually starts here.

And you’re not allowed to skip this because it really is the most im‐
portant part. In fact, if you only get two points from this book, I’ll be
happy. And those two points are right here in this chapter:

• The goal of using stories isn’t to write better stories.
• The goal of product development isn’t to make products.

Let me explain.

The Telephone Game
I’m sure you remember when you were a kid and you played this weird
"telephone game" where you whispered something to somebody, who

xxix

whispered it to someone else, and so on around the group, until the
last person reveals the totally garbled message and everyone laughs.
Today, my family still plays this game at home with my kids around
the dinner table. Note to parents: this is a good activity to occupy kids
bored with adult dinner conversation.

In the grown-up world, we’ve continued this game—only we don’t
whisper to each other. We write lengthy documents and create official-
looking presentations that we hand off to someone, who proceeds to
get something completely different out of it than we intended. And
that person uses that document to create more documents to give to
different people. However, unlike that game we played as kids, we don’t
all laugh at the end.

When people read written instructions, they interpret them different‐
ly. If you find that a little hard to believe (it’s in writing, after all!), then
let me show you a few examples of instructions gone very, very wrong.

This is the cover of Jen Yates’s book Cake Wrecks (Andrews McMeel
Publishing). (Thanks to Jen and John Yates for supplying these.) The
book sprang from her wildly entertaining website, cakewrecks.com.
Please don’t go there if you don’t have at least an hour to waste. The
site shows photos of oddly decorated cakes that defy explanation—but
Jen explains them in spite of that. Now, one of the recurring themes
in both the site and the book is misinterpreted requirements. But of
course she doesn’t refer to them as requirements because it’s such a
nerdy word. She calls them literals because the reader read and literally
interpreted what was written. Looking at the photos, I can imagine
someone listening to a customer and writing down what he wants,
then handing that to someone else who’ll decorate a cake.

xxx | Read This First

http://cakewrecks.com

Customer: Hello, I’d like to order a cake.
Employee: Sure, what would you like written on it?
Customer: Could you write "So long, Alicia" in purple?
Employee: Sure.
Customer: And put stars around it?
Employee: No problem. I’ve written this up, and will hand it to my
cake decorator right away. We’ll have it for you in the morning.

This is the result:

Here’s another. In software development, we call these nonfunctional
requirements:

Read This First | xxxi

1. There are a lot of articles that try to describe what went wrong with the Mars Orbiter.
Here’s one of them: http://www.cnn.com/TECH/space/9909/30/mars.metric.02/.

These are funny examples, and we can laugh about wasting twenty
bucks on a cake. But sometimes the stakes are much greater than that.

You’ve probably heard the story about the 1999 crash of a $125 million
NASA Mars Climate Orbiter.1 OK, maybe you haven’t. But here’s the
punch line. If any project is sunk up to its eyeballs in requirements and
written documentation, it’s a NASA project. However, despite all the
filing cabinets full of requirements and documentation, the orbiter
crashed because while NASA used the metric system for its measure‐
ments, members of the Lockheed Martin engineering team used the
old imperial measurement system to develop navigation commands
for the vehicle’s thrusters. While no one knows exactly where the or‐
biter ended up, some think it has found its happy place orbiting the
sun somewhere past Mars.

Ironically, we put stuff in writing to communicate more clearly and to
avoid risk of misunderstanding. But, way too often, the opposite is
true.

Shared documents aren’t shared
understanding.

Stop for a minute and write that down. Write it on a sticky note and
put it in your pocket. Consider getting it tattooed somewhere on your
body so you can see it when you’re getting ready for work in the
morning. When you read it, it’ll help you remember the stories I’m
telling you now.

Shared understanding is when we both understand what the other
person is imagining and why. Obviously, there wasn’t shared under‐
standing between several cake decorators and the people who gave
them instructions in writing. And, at NASA, someone important
didn’t share understanding with others working on the guidance sys‐
tem. I’m sure if you’ve been involved in software development for a
while, you don’t have to reach back far in your memory to recall a
situation where two people believed they were in agreement on a fea‐
ture they wanted to add to the software, but later found out that the
way one imagined it was wildly different from the other.

xxxii | Read This First

http://www.cnn.com/TECH/space/9909/30/mars.metric.02/

Building Shared Understanding Is Disruptively
Simple
A former coworker of mine, Luke Barrett, first drew this cartoon to
describe this problem. I asked him where he first saw it, but he didn’t
remember. So someone out there isn’t getting the credit he or she de‐
serves. For years I saw Luke step through these four frames as slides
in a PowerPoint deck while I casually dismissed them as interesting
but obvious. Apparently I’ve got a thick head. It’s taken me many years
to understand how this cartoon illustrates the most important thing
about using stories in software development.

The idea is that if I have an idea in my head and I describe it in writing,
when you read that document, you might quite possibly imagine
something different. We could even ask everyone, "Do you all agree
with what’s written there?" and we might all say, "Yes! Yes, we do."

However, if we get together and talk, you can tell me what you think
and I can ask questions. The talking goes better if we can externalize
our thinking by drawing pictures or organizing our ideas using index
cards or sticky notes. If we give each other time to explain our thoughts
with words and pictures, we build shared understanding. It’s at this

Read This First | xxxiii

point, though, that we realize that we all understood things differently.
That sucks. But at least now we know.

It’s not that one person is right or wrong, but that we all see different
and important aspects. Through combining and refining our different
ideas, we end up with a common understanding that includes all our
best ideas. That’s why externalizing our ideas is so important. We can
redraw sketches or move sticky notes around, and the cool thing is
that we’re really moving ideas around. What we’re really doing is
evolving our shared understanding. That’s super-hard with just words
alone.

When we leave this conversation, we may still name the same feature
or enhancement, it’s just that now we actually mean the same thing.
We feel aligned and confident we’re moving forward together. That’s
the quality we’re managing to. And, sadly, it’s intangible. You can’t see
or touch "shared understanding," but you can feel it.

Stop Trying to Write Perfect Documents
There are a great number of people who believe that there’s some ideal
way to document—that, when people read documents and come away
with different understandings, it’s either the reader’s fault or the docu‐
ment writer’s. In reality, it’s neither.

The answer is just to stop it.

Stop trying to write the perfect document.

Go ahead and write something, anything. Then use productive con‐
versations with words and pictures to build shared understanding.

The real goal of using stories is shared
understanding.

Stories in Agile development get their name from how they should be
used, not what you write down. If you’re using stories in development
and you’re not talking together using words and pictures, you’re doing
it wrong.

If your goal in reading this book is to learn to write better stories, you’ve
got the wrong goal.

xxxiv | Read This First

Good Documents Are Like Vacation Photos
If I show you one of my vacation photos, you might see my kids on a
beach and politely say, "That’s cute," but when I look at my vacation
photo, I remember a particular beach in Hawaii that we had to drive
more than an hour on a deeply rutted four-wheel-drive trail, and then
hike another half-hour over lava fields to get to. I remember my kids
whining, saying nothing could possibly be worth this, and me won‐
dering the same thing. But it was. We enjoyed a blissful day on an
incredible beach where very few people were, which is why we took
the trouble to get there. The turtles came up on the shore to bask on
the sand, which was the icing on the cake of this fabulous day.

Of course, if you look at the picture you won’t know all that because
you weren’t there. I remember all that because I was.

For better or worse, this is the way documents actually work.

If you participate in lots of discussions about what software to build,
and then create a document to make sense of it, you might share it
with someone else who was there. You might both agree it’s good. But
remember, your shared understanding is filling in details that aren’t
in the document. Another reader who wasn’t there won’t get the same
things from it that you will. Even if she says she gets it, don’t believe

Read This First | xxxv

her. Get together and use the document to tell a story the same way I
used my vacation photo to tell you my story.

Document to Help Remember
I’ve heard people joke, "We’re using an Agile process because we’ve
stopped writing documents." It’s a joke for people who know, because
a story-driven process needs lots of documents to work. But those
documents don’t always look at all like traditional requirements
documents.

It takes talking and sketching and writing and working with sticky
notes or index cards. It’s pointing to documents we brought into the
conversation and marking them up with highlighter and scribbled
notes. It’s interactive and high energy. If you’re sitting at a conference
table while a single person types what you say into a story management
system, you’re probably doing it wrong.

When you’re telling stories, most anything can be used as a tool to
communicate. And as we tell these stories, and write lots of notes, and
draw lots of pictures, we need to keep them. We carry them around to
look at later, photograph, and retype into more documents.

xxxvi | Read This First

But, remember, what’s most important isn’t what’s written down—it’s
what we remember when we read it. That’s the vacation photo factor.

Talk, sketch, write, use sticky notes and cards, and then photograph
your results. Even better, shoot a short video of you talking through
what’s on the board. You’ll remember lots of details in a remarkable
depth that you could never possibly document.

To help remember, photograph and shoot
short videos of the results of your

conversations.

Talking About the Right Thing
There are lots of people who believe their job is collecting and com‐
municating requirements. But it’s not.

The truth is, your job is to change the world.

Yes, I said that to get your attention. And, yes, I know that sounds like
hyperbole. That’s because that phrase is usually associated with world
peace, eliminating poverty, or even more far-fetched goals like getting
politicians to agree with one another. But I’m serious. Every great idea
you turn into a product solution changes the world in some small, or
not-so-small, way for the people who use it. In fact, if it doesn’t, you’ve
failed.

Now and Later
There’s a simple, change-the-world model that I personally use and
keep in my head all the time, and you need to keep it in your head too
while you’re having story conversation and building shared
understanding.

Read This First | xxxvii

I draw the model like this:

The model starts by looking at the world as it is now. When you look
at the world as it is now, you’re going to find people who are unhappy,
mad, confused, or frustrated. Now, the world’s a big place, so we’ll focus
mostly on the people who use the software we make, or the people we
hope will use it. When you take a look at what they’re doing—and the
tools they use and how they’re doing things—you’re going to come up
with ideas, and the ideas might be for:

• Entirely new products you can build
• Features to add to an existing product
• Enhancements to products that you’ve built

At some point in time, you’ll have to communicate details about your
ideas to some other people, and you might start to do some design and
specification. If you’re going to hand all this off to someone else, then
you might indeed call all these details your requirements. But it’s im‐
portant to remember that requirements are just another name for the
ideas we have that would help people.

Given those requirements, we go through some process that results in
a delivery, and out comes some software that actually lands in the
world, and it lands in the world later. And what we hope is true is that
those people who were initially unhappy, mad, frustrated, or confused
will become happy when that software lands. Now, they’re not happy
because they saw the pretty box it came in—software doesn’t usually
come in boxes these days anyway. They’re not happy because they read

xxxviii | Read This First

2. The clean language and distinction between output and outcome was first made clear
to me in a talk by Robert Fabricant called "Behavior Is Our Medium". Prior to that, I’d
struggled with language that was clear in my head—and everyone else’s too. Happily,
it was clear in Robert’s head.

the release notes, or downloaded the app to their mobile device.
They’re happy because when they use the software, or the website, or
the mobile app, or whatever you’ve built, they do things differently—
and that’s what makes them happy.

Now, the truth is that you can’t please everyone all of the time. Your
mother should have told you that. Some people will be happier than
others with whatever it is that you produce, and some might still be
unhappy no matter how hard you’ve worked and how amazing your
product might be.

Software Isn’t the Point
Everything between the idea and the delivery is called output. It’s what
we build. People working in Agile software development will deliber‐
ately measure velocity of output and try to speed up their rate of out‐
put. As people are building software, they are, of course, concerned
about the cost of what they’re doing and the speed at which what they’re
doing gets done, as they should be.

But, while it’s necessary, the output isn’t the real point; it’s not the
output that we really wanted. It’s what comes after as a result of that.
It’s called outcome. Outcome is what happens when things come out
—that’s why it’s called that—and it’s difficult because we don’t get to
measure outcome until things do come out. And we don’t measure
outcome by the number of features delivered, or what people have the
capability to now do. We measure what people actually do differently
to reach their goals as a consequence of what you’ve built, and most
important, whether you’ve made their lives better.2

That’s it. You’ve changed the world.

You’ve put something in it that changes the way people can reach their
goals, and when they use it, the world is different for them.

If you remember, your goal isn’t to just build a new product or feature.
When you have conversations about that feature, you’ll talk about who
it’s for, what they do now, and how things will change for them later.
That positive change later is really why they’d want it.

Read This First | xxxix

http://vimeo.com/3730382

Good story conversations are about who and
why, not just what.

OK, It’s Not Just About People
I care about people as much as the next guy, but truthfully, it’s not just
about making people happy. If you work for a company that pays you
and others, you’ve got to focus on what ultimately helps your organi‐
zation earn more, protect or expand its market, or operate more effi‐
ciently. Because, if your company isn’t healthy, then you won’t have the
resources (or the job) to help anyone.

So I’ve got to revise this model a bit. It actually starts by looking inside
your organization. There you’ll find even more people who aren’t
happy. And it’s usually because the business isn’t performing as well as
they’d hope. To fix this, they may have ideas to focus on specific cus‐
tomers or users and to make or improve the software products they’re
using. You see, it ultimately is about people, because:

Your company can’t get what it wants unless
your customers and users get something they

want.

The flow continues by choosing the people to focus on, the problems
to solve, and the ideas to turn into working software. And from there
—if the customers buy, and the users use it, and people are happy—
eventually the business that sponsored this development will see the
benefit it’s looking for. That’ll be reflected in things like increased rev‐
enue, lower operational costs, happier customers, or expanded market
share. This makes lots of people inside your company happy. It should
make you happy, too, since you’ve just helped your company stay
healthy while making real people’s lives better in the process. It’s a
win-win.

xl | Read This First

It’s that longer-term stuff that happens as a consequence of good out‐
comes that’s I’ll label impact. Outcomes are often something you can
observe right away after delivery. But impact takes longer.

Build Less
There’s an uncomfortable truth about the software world, and I suspect
it’s true of lots of other places. But I know software. And what I know
is that:

There’s always more to build than we have
time or resources to build—always.

One of the common misconceptions in software development is that
we’re trying to get more output faster. Because it would make sense
that if there was too much to do, doing it faster would help, right? But
if you get the game right, you will realize that your job is not to build
more—it’s to build less.

Minimize output, and maximize outcome
and impact.

At the end of the day, your job is to minimize output, and maximize
outcome and impact. The trick is that you’ve got to pay close attention
to the people whose problems you’re trying to solve. These include the
people who will choose to buy the software to solve a problem in their
organizations, the choosers, as well as the people who use it, the users.
Sometimes they’re the same people. Sometimes they’re not.

Read This First | xli

Your business has lots of possible users and customers it could focus
on. Your businesses strategy should give you some guidance about
who to focus on to get the impact you want. I promise you that no
business has the resources to make everyone happy—it’s just not
possible.

Don’t get me wrong here. Building more software faster is always a
good idea. But it’s never the solution.

More on the Dreaded "R" Word
For almost the entire first decade of my software career, which I spent
building software for brick-and-mortar retailers, I got away without
using the word requirements—at least, not much. It just wasn’t a rele‐
vant term for what I was doing. I had lots of different customers who
all had specific ideas about what would help them. I also knew I worked
for a company that had to make money by selling my product. In fact,
I’d spent long hours standing at trade shows helping my company sell
its product to a wide variety of customers. I knew at the end of the day
that I would have to continue to work with those customers after I
shipped the products my team and I developed, and so I diligently
worked to act in their best interest. This meant I couldn’t give everyone
everything they wanted, because they wanted different things. And my

xlii | Read This First

3. Because I strongly agree with the sentiment, I’m paraphrasing the way Kent Beck cau‐
tions against the misuse of the term requirement in his book Extreme Programming
Explained (Addison-Wesley).

company and team didn’t have infinite time, so I had to work hard to
figure out the least I could build to make people happy. That may sound
frustrating, but it’s actually the fun part.

As the company grew, we added more traditional software people. At
one point, the head of a different team came to me and said, "Jeff, I
need you to make these changes to the product you’re working on."

I said, "Great, no problem. Tell me who they’re for and what problems
this solves for them."

Her response? "They’re the requirements."

I replied, "I get it. Just tell me a bit about who they’re for, and how
they’re going to use this, and where it fits into the way they work."

She looked at me like I was stupid and said to me one last time with
an air of finality, "They’re requirements."

It was at that moment that I learned that the word requirements actually
means shut up.

For a great many people, that’s exactly what requirements do. They
stop conversations about people and the problems we’re solving. The
truth is, if you build a fraction of what’s required you can still make
people very happy.3

Remember: at the end of the day, your job isn’t to get the requirements
right—your job is to change the world.

That’s All There Is to It
If you get nothing else from this book, remember these things:

• Stories aren’t a written form of requirements; telling stories
through collaboration with words and pictures is a mechanism
that builds shared understanding.

• Stories aren’t the requirements; they’re discussions about solving
problems for our organization, our customers, and our users that
lead to agreements on what to build.

Read This First | xliii

• Your job isn’t to build more software faster: it’s to maximize the
outcome and impact you get from what you choose to build.

Stories as they’re intended are a completely different way of thinking
about the challenges we face working together to create software—and
lots of other things, for that matter. If you can work together effectively
and create things that solve problems, you will rule the world. Or at
least some small part of it inhabited by your products.

As you read this book, my hope is that you get back to the basics of
using stories. I hope you work together with others, telling stories
about your users and customers and how you can help them. I hope
you draw pictures, and build big sticky-note models. I hope you feel
engaged and creative. I hope you feel like you’re making a difference.
Because when you do it right, you are. And it’s a lot more fun, too.

Now it’s time to talk about the most fun you can possibly have telling
stories, and that’s when you’re using a story map.

xliv | Read This First

CHAPTER 1

The Big Picture

"I love Agile development! Every few weeks we see more working
software. But it feels like I’ve lost the big picture."

If I had a dime for every time I heard something like that from an Agile
team member, I’d have…well…a lot of dimes. I hear it a lot. You may
have even said something like that yourself. Well, I’ve got good news
for you. Using an Agile process and a story-driven approach doesn’t
mean you have to sacrifice the big picture. You can still have healthy
discussions about your whole product and still see progress every few
weeks.

Since you’ve patiently read the "Read This First" chapter, I’m going to
bypass all the junk about stories and proceed directly to how story
maps solve one of the biggest problems in Agile development. If you’re
already familiar with writing stories on Agile projects, this chapter
may be enough to get you started.

The "A" Word
If you’re reading this book, you likely know that story mapping is a
way to work with user stories as they’re used in Agile processes. Now,
it’s at this point that every other book that has something to do with
Agile development reproduces the "Manifesto for Agile Software De‐
velopment," that thing written in 2001 by 17 guys who were frustrated
with some of the big counterproductive process trends going on at the
time. I’m glad they wrote it. And I’m glad that the impact of their work
has been felt by so many.

1

1. Photo taken by Piutus, found on Flickr and licensed under the Creative Common
Attribution license.

But I’m sorry to disappoint you—I’m not going to reprint the mani‐
festo and gush about why it matters. I believe you already know why
it does. And, if you haven’t read the manifesto, then you should.

In the space that the manifesto would have taken up in this chapter, I
am instead including a funny kitten photo.1 Why? Because it has been
proven time and time again that funny kitten photos on the Internet
get far more attention than any manifesto could ever hope to.

So, you might wonder, what does this kitten have to do with Agile?
Actually, nothing. But Agile definitely has something to do with this
book, and with stories and the evolution of story mapping.

<Cue the flashback music…>

I was working at a startup in San Francisco in 2000, and the company
had hired Kent Beck (the guy who created Extreme Programming and
first described the idea of stories) as a consultant to get the software
development process going. I’m rewinding way back, but the impor‐
tant thing is this story idea is an old one. If you’re just starting out with
using stories, you lost any early adopter status you could have had a
decade or so ago. Kent and others who pioneered Extreme Program‐
ming knew that all those ways of doing requirements in the past didn’t
work out well. Kent’s simple idea was that we should get together and

2 | Chapter 1: The Big Picture

https://flic.kr/p/4PifQX

tell our stories; that by talking we could build shared understanding,
and together we’d arrive at better solutions.

Telling Stories, Not Writing Stories
When I first heard the term story, it bugged me. I’ll admit it. The idea
that we’d trivialize the important things that people wanted by calling
them stories didn’t seem right. But I’m a slow learner—a point I
brought up earlier when discussing shared understanding. It took me
a while to really get that:

Stories get their name from how they should
be used, not what should be written.

Even before I’d really understood why stories had that name, I realized
that I could write down a bunch of stories—a sentence or a short title
—on sticky notes or cards. I could move them around and prioritize
them to decide which one was more important. Once I decided that
one was more important than another, then we could start having a
discussion about it. This was super-cool. Why hadn’t I ever written
things on cards and organized them this way before?

The problem was that this one card could be something that might
take a software developer just a couple hours to add to a product, or
maybe a couple days or a couple weeks, or maybe a month—who
knew? I didn’t—at least not until we started talking about it.

I got into a nasty argument while working with stories on my very first
Agile project when I began a story conversation and learned that my
story was too big. I’d hoped to get this story done in the next iteration.
The developers I spoke with informed me otherwise. I felt like I’d done
something wrong. The developers identified a small part we could talk
about that could be accomplished in our next iteration. But I left frus‐
trated that we couldn’t talk about the big picture. I really wanted to
understand how much time the big thing I really needed would take.
I’d hoped this discussion would accomplish that, and it didn’t.

Telling the Whole Story
In 2001 I left the team I was on and started doing things differently. I,
and my team, tried an approach to writing stories that focused on the
big picture. We worked to understand the product we were building

Telling Stories, Not Writing Stories | 3

and to make tradeoffs together. We used that bunch of index cards
with story titles to organize our thoughts and break down that big
picture into the small parts we could build next. In 2004, I wrote my
first article about this idea. I didn’t coin the term story mapping, how‐
ever, until 2007.

It turns out that the name you give something matters. It was after
giving the practice a good name that I really saw it spread. I thought
it was a great invention at the time—that is, until I started running into
more people who were doing similar if not exactly the same things. I’d
discovered a pattern.

I first heard this definition of a pattern from my friend Linda Rising:
when you tell someone about a great idea and he says, "Yeah, we do
something like that, too." It’s not an invention, it’s a pattern.

Story mapping is a pattern. It’s what sensible people do to make sense
of a whole product or whole feature. It’s what they do to break down
large stories into smaller ones. Don’t feel bad if you didn’t arrive at it
on your own. You would have eventually. But reading this book will
save you weeks or months of frustration.

Story maps are for breaking down big stories
as you tell them.

Today, company after company has adopted the idea of story mapping.
My friend Martina at SAP said in a message she sent in September
2013 that:

…at this point more than 120 USM [User Story Mapping] workshops
have officially been recorded. A lot of POs just simply love it! It is
simply a well-established approach at SAP.

Every week I hear from someone else from somewhere else telling me
how mapping stories helped solve a problem for them. These days, I
learn more from talking to others than I ever could on my own.

The original idea of stories was a simple one. It turned our focus away
from shared documents and toward shared understanding. A com‐
mon way to use stories is to build a list of them, prioritize them, and
begin talking about them and then turning them into software one at
a time. That sounds pretty reasonable when you hear about it. But it
can create some big problems.

4 | Chapter 1: The Big Picture

www.allitebooks.com

http://www.allitebooks.org

2. Read about Gary in the Business Insider article "How This Guy Launched A Multi-
Million Dollar Startup Without Any VC Money".

Gary and the Tragedy of the Flat Backlog
A few years ago I met Gary Levitt. Gary was a businessperson in the
process of launching a new web product. The web product is out there
right now, and it’s called Mad Mimi, which when Gary conceived of
his product, was short for music industry marketing interface.2 Gary
is a musician who had his own band. He managed his band, helped
manage others, and was also a studio musician and created recordings
for clients.

The day I met Gary he had an order from the Oprah Winfrey show
for dozens of intros and outros, little bits of music that are used to go
out to and come in from commercials and things like that. Producers
of television shows buy those the way people laying out a newsletter
buy clip art, so it’s like audio clip art. Gary had an idea for a fairly big
application that would help musicians like him and people he knew to
collaborate with one another on projects like the one he was working
on, along with lots of other things a band manager and musician would
need to do to manage and promote his band.

Gary wanted to get the software built so he worked with somebody,
and that somebody was working in an Agile way. That person told
Gary to write down a list of all the things he wanted, prioritize the list,
and then they would talk about the highest-valued things—the most
important—and start building them one at a time. That list of things

Gary and the Tragedy of the Flat Backlog | 5

http://read.bi/UtcIIE
http://read.bi/UtcIIE

is what Agile processes refer to as a backlog, and it seemed to make
sense to Gary to create the list and start with the most important things
first. So that’s what he did.

Gary created his backlog and the development team started building
things a bit at a time. In the meantime, Gary was hemorrhaging cash
as he continued to pay for each piece of software that was built. The
software was slowly taking shape, but Gary could tell it was going to
take a lot longer for it to match his vision and he was going to run out
of cash long before then.

I knew the person who was working with Gary. My friend knew Gary
was stressing out and wanted to help him. The somebody I knew asked
if I could have a conversation with Gary, to talk with him and help him
get his ideas organized. I contacted Gary and made arrangements to
meet him at his office in Manhattan.

Talk and Doc
Gary and I started talking. And as he talked, I wrote cards with key
points from what he said. There’s a mantra that I like when I build
story maps. I’ll say "talk and doc" (short for the verb document), which
basically means don’t let your words vaporize. Write them down on
cards so you can refer back to them later. You’ll notice how pointing
to a few words on a card quickly helps everyone recall the conversation
about it. We can slide them around the table where we can reorganize
them. We start using useful words like this and that as we point to
cards. It saves lots of time. Helping Gary externalize his thoughts was
critical to getting shared understanding. It wasn’t a habit for him, so
it was easy for me to write the cards as he told the story.

Talk and doc: write cards or sticky notes to
externalize your thinking as you tell stories.

We started by placing cards on a tabletop, but quickly ran out of space.
Gary was moving offices the day I visited with him, and much of the
furniture in the New York City loft where he was located was off the
floor. So we moved our growing map of cards onto the floor.

6 | Chapter 1: The Big Picture

At the end of the day, the floor looked like this:

Think — Write — Explain — Place
When working with a team to build a story map, or having discussions
about anything, create a simple visualization to support your discus‐
sion. One of the things that goes wrong is lots of ideas vaporize—that
is, we say them, and people nod as if they’ve heard. The ideas are not
written down or referred to. Then, later in the conversation, the ideas
come up again and unfortunately need to be re-explained because
people didn’t really hear or forgot them.

Get in the habit of writing down a little about your idea before ex‐
plaining it.

1. If you’re using cards or sticky notes, write down a few words
about your idea immediately after thinking it.

2. Explain your idea to others as you point to the sticky note or card.
Use big gestures. Draw more pictures. Tell stories.

3. Place the card or sticky into a shared workspace where everyone
can see, point to, add to, and move it around. Hopefully, there
will be lots of other ideas from you and others in this growing
pile.

I find that when I’m doing my best to listen to others, what they’re
saying causes me to think of other ideas. I used to try to hold those
ideas in my head and wait for a moment to inject them into the con‐
versation, resorting to outright interruption if the time didn’t come
soon enough. But then I realized I’d stopped listening to the person

Talk and Doc | 7

who was talking, as my limited brainpower was focused on recalling
my great idea. Today, I simply scribble the idea on a sticky note and
set it aside to wait for a better point in the conversation to inject it.
Somehow writing it pops it out of my head so I can focus on what I’m
hearing. And reading it from the sticky later helps me recall my idea
and explain it.

I wasn’t here to capture Gary’s requirements. And the first thing we
talked about wasn’t that list of features. We had to back up a bit and
start at the beginning.

Frame Your Idea
Our first conversation focused on framing his product idea. We talked
about his business and what his goals were. Why are you building this?
Tell me about the benefits for you and for the people who will use this.
What problems does it solve for those people and for you? As you read
this you might detect I’ve got that now-and-later model in my head.
I’m trying to understand the outcomes Gary is looking for, not the
output he wants to build.

If I put two cards down, one above the other, then people assume that
the one above is more important. Without saying a word, if I simply
slide a card above another, I’ve indicated something about importance.
Try that with a list of goals. Purposely put them in the wrong order
and watch the person you’re working with reach out to adjust them. I
did this with Gary and his goals, and it helped him express what was
more important to him.

8 | Chapter 1: The Big Picture

Describe Your Customers and Users
Gary and I continued to talk and doc. The next conversation Gary and
I had was about the customers who would buy, and users who would
use, his piece of software. We listed the different types of users. We
talked about what benefits they would get, and asked why they would
use the product and what we thought they would do with it. What was
in it for them? We built a big pile of those. The cards naturally seemed
to fall with most important users higher in the pile. Funny how it works
out that way without an explicit decision.

Before we’d gone into any detail at all, I could already see that Gary’s
vision was big. One of the tough realities about software development
is that there’s always more to build than we have time and money for.
So the goal should never be to build it all. The goal is to minimize the
amount we build. So the first question I asked Gary was, "Of all these
different users and the things they want to do, if we were to focus on
thrilling just one of those users, who would it be?"

Gary chose one and we started to really tell stories.

Describe Your Customers and Users | 9

Mad Mimi User Types

These are the different types of users Gary described for Mad Mimi.
Just naming them and writing a little about what they want helped us
both see that there was a lot here. Even before discussing features,
we’d decided to defer creating software for some types of users.

Tell Your Users' Stories
I next said, "OK, let’s imagine the future. Let’s assume for a minute this
product is live and let’s talk about a day in the life of someone who
uses it and start telling the story. First, they would do this, and then
this, and so on and so on." And we told the story in a flow from left to
right. Sometimes we backtracked and put things to the left of other
things, and because they were on cards, we could easily rearrange
them.

The other interesting thing that happens naturally when working with
cards is if I put one to the left and another to the right, without saying
a word I’ve indicated sequence. This is kind of magical for me—but
I’m easily entertained. I marvel at how much we can communicate
without saying a word.

Reorganizing cards together allows you to
communicate without saying a word.

10 | Chapter 1: The Big Picture

As we talk and doc, and as I write down our conversation, we’re build‐
ing something really important. No, it’s not that pile of cards on the
floor. The something that’s really important is shared understanding.
We’re getting on the same page. This is something Gary had never
done with anyone before about his product idea, at least not at this
level of detail. He’d never even given it this much thought himself. The
high points were in his head, sort of like the action scenes you’d see in
a movie preview.

Before now, Gary had done what he was asked to do. He’d written a
bunch of story titles, put them in a list, and talked about them one at
a time. The conversations were more about the details of what to build
and less about this big picture. And there were a lot of holes in Gary’s
big picture. You’ll find that no matter how clear you are about your
story, talking through it while you map will help you discover the holes
in your own thinking.

Mapping your story helps you find holes in
your thinking.

As we dug deeper, we realized that the story also wasn’t just about one
user. Gary’s started with a band manager who wanted to promote his
band and the work he was doing to create the promotion and email it
to fans. Then we quickly had to talk about the fan of the band, and tell
her story about seeing the promotion and then making plans to see a
show.

Then, if we were promoting the band someplace, we’d need to tell the
story of the venue’s manager and the information he’d like to learn
about the promotion. By this time, our map was wide enough that we
bumped into the wall, so we had to continue the story in another layer
below the first. That’s why the map in the photograph has two layers.

Tell Your Users' Stories | 11

During the story, sometimes Gary would get to a part where he was
excited and he’d start describing lots of details. One card above another
can indicate priority. But it can also mean decomposition, which is just
a fancy word for smaller details that are part of a bigger thing. As Gary
described the details, I’d record them on a card, and place them below
the big user step above. For instance, when Gary described creating
the flyer that band managers would use to promote their gigs, he was
extra passionate and had lots of details to discuss.

Gary lived in New York City, and when bands are composing flyers
he’s imagining all these really cool things he sees stuck on walls and
lampposts in New York. They might look like they were put together
with glue and tape and then photocopied, but some were really elegant
and artistic. After recording a handful of details, I said, "Let’s come
back and get to the details later. Let’s continue on and move this story
forward." It’s easy to get lost in the details, especially the ones you’re
passionate about. But, when we’re trying to get the big picture, it’s
important to get to the end of the story before catching all those details.
Another mantra I use when mapping, at least at this stage, is "think
mile wide, inch deep"—or for people in sane countries using the metric
system: "kilometer wide, centimeter deep." Get to the end of the story
before getting lost in the details.

Focus on the breadth of the story before div‐
ing into the depth.

Eventually we did get to the end of Gary’s story. The band manager
had successfully promoted a gig to thousands of fans who spread the
word, and the show was a wild success. The product vision so far was
clear in both our heads. I said, "Now let’s go back and fill in the details
and consider some of the alternatives."

12 | Chapter 1: The Big Picture

Mimi’s Big Story
If you read across the top of Gary’s map, you’ll see big activities like:

• Signing up
• Changing my service
• Viewing my band stats
• Working with my show calendar
• Working with my audience
• Publicizing a show
• Signing up for a band’s email list
• Viewing promotions online

There were lots of other big things at the top of the map, but that’s a
good subset to give you an idea of what you’d write on a card. Notice
how we can assume who does what. When Gary said, "Publicizing a
show," he knew he was talking about the band manager. When I said,
"signing up for the band’s email list," Gary knew I was talking about
the band’s fan. Those cards were close by and easy to point to during
our conversation.

"Publicizing a show" was a big thing. It broke down into these steps
arranged left to right underneath the "Publicizing the show" card.

• Start a show promotion.
• Review the promo flyer Mimi created for me.
• Customize the promo flyer.
• Preview the promo flyer I created.

Notice how what we wrote on every card are short verb phrases that
say what the specific type of user wants to do. Writing them this way
helped us tell the story: "the band manager would then publicize the
show. To do that he’d start a promotion, then review the flyer Mimi
created, then customize it, and then…" Notice how when you put "and
then" in between what’s written on each card, you get a nice story.

Tell Your Users' Stories | 13

Explore Details and Options
After we’ve got the breadth of the story map in place, it starts thick‐
ening up. The cards we put at the top of each of the columns in the
map become big things, and then the details break down below
them. We stop at each step in the user’s story and ask:

• What are the specific things they’d do here?
• What are alternative things they could do?
• What would make it really cool?
• What about when things go wrong?

At the end of this we’d gone back and filled in a lot of details. The result
was that we had told the story about a day in the life of a band manager,
as well as the other people important to the band manager’s success:
fans and venue managers.

14 | Chapter 1: The Big Picture

The Details
If you look inside a story step like "Customize the promo flyer," you’d
see details like:

• Upload an image
• Attach an audio file
• Embed a video
• Add free text
• Change the layout
• Start with a promotion I’ve used before

You can see that even these smaller steps will need a lot more discus‐
sion to work out the details. But at least we could begin to name them
all.

Notice how what’s written on the cards are also those short verb
phrases that help you tell stories. We can string this together with
phrases like "or he might" like this: "to customize the flyer the band
manager might upload an image, or he might attach an audio file or
embed a video, or…" It’s pretty cool, really.

I asked Gary, "Now what? We have all these other users with other
things they want to do—do you want to talk about them? You can see
that if we keep talking we’ll need a bigger room. And, Gary, if you do
all this stuff, it will take a lot of money to build this product. We could
talk about the rest of this stuff, but if we built this much and you
launched your product and just did this, that looks like it’d be a valuable
product."

Gary agreed, and he said, "I’m going to stop there."

The sad part of this story is that I asked Gary, "You’ve been building a
lot of software so far, but how much of the software you’ve built is on
this map we’ve created?"

"Nearly none of it," Gary replied, "because when I built a list and pri‐
oritized things, I sort of assumed we needed to start somewhere else.
I was thinking about the whole big vision of this thing, the vision that
would have taken me years to reach, and now that we’ve had this dis‐
cussion I wouldn’t have started there at all."

Explore Details and Options | 15

Story mapping is all about having a good old-fashioned conversation
and then organizing it in the form of a map. The part that most people
look at is the map—that left-to-right shape with the steps people take
to tell a big story. The top to bottom is about the details. But the critical
parts that frame the product and give more context are often hung
above and around the map. They’re the product’s goals, and informa‐
tion about its customers and users. If you keep a map on the wall, you’ll
find it’s good idea to add user interface (UI) sketches and other notes
around the map.

In just a day working together, Gary and I built shared understanding
around the product he wanted to build. But there was a storm cloud
forming above our heads, and we knew it. Inside each of those cards
we wrote were lots of details and lots more discussions. And, for Gary,
all those details and all those discussions equated to money he would
need to spend to build software—money he didn’t have. He’d learned
one of the fundamental truths about software development: there’s
always more to build than you’ll have time for.

Now, there are a lot of other big assumptions Gary was making about
the people who’d use his product, and if they really wanted to, or really
could use it as he envisioned. But, right now, those things weren’t his
biggest concern. He needed to work harder to minimize his product
idea to something that was feasible first.

16 | Chapter 1: The Big Picture

Gary’s story eventually has a very happy ending. But in the next chapter
I’ll tell the story of another organization that learned it had way too
much to build, and how it used a map to find a viable solution.

Artgility—Creativity in Art Meets Creativity in IT
Ceedee (Clare) Doyle, Agile Project Manager and Coach,

Assurity Ltd, Wellington, NZ

Background
The Learning Connexion (TLC) is an art college in Wellington, New
Zealand, that teaches art and creativity. TLC’s programs are unique
because they are based on "learning by doing"; that is, the practice is
the theory. In conjunction with tutors, students develop briefs that
connect with the ideas they choose to explore.

TLC was a typical small-to-medium-size organization that had de‐
veloped ad hoc IT systems to support the needs it had at the time.
Student information was collected in five different places and was
different in each! TLC needed some way to manage students that
would work for it and the way it teaches, which is quite different from
most educational establishments.

TLC had no experience with IT projects. Each small application that
had been built for it had been done by somebody’s-brother’s-friend’s-
flatmate’s-dog using simple technologies like Microsoft Excel and
Access. The sole commercial application (used for statutory report‐
ing) double-handled data from the other four sources.

As a former student, I had kept in touch with the team and when they
needed some help they contacted me. In 2009 I had been in IT for
nine years and had wanted to do an Agile project for the last three,
ever since I had heard about it. This was the right place, the right
project, and the right time to do it!

Project Phoenix
The initial workshops were going to be two half-day sessions with key
staff members. I was working with a large, diverse group, and my goal
was to develop shared understanding. I started with an overview of
how story mapping works and an overview of the big steps in the
school’s student management process.

Explore Details and Options | 17

Up until I showed them this picture (the backbone of the story map),
the team members each had an idea of what they did, but, as Alice the
sponsor said, it was probably the first time they all had a clear picture
of their own business process and how all the steps interacted.

From there we brainstormed what people wanted the system to do.
The scope was massive, and the stories were many.

The beauty was that these were creative people and they were used to
the "appreciative enquiry" method, so braindumping everything they
could think of that the system needed to do was something they took
to like a baker makes bread.

The main headings (from the diagram) were Enquiries → Admissions
→ Enrollments → Classes → Complete work → Completion →
Graduation.

18 | Chapter 1: The Big Picture

Using the story mapping guidelines, we then walked through each
section to make sure that it made sense, and got the flow for a student
through each step of the process. Several people had lights go on sud‐
denly, as they realized where they fit into the overall process and why
they had to do some of their activities, and others realized they were
being left out of certain steps that would make a big difference to
them. Stepping through the story map and my emphasis on having
stories vertically—which happened together—showed places where
they could work together better and steps that were doubled up. Until
this point, the team had little view of what everyone else was doing,
but they suddenly developed shared understanding of how the whole
process worked and a common lexicon. In one example, Classes was
renamed Delivery because not all students attend classes.

Explore Details and Options | 19

When it came to prioritizing, it wouldn’t have worked to identify the
must-haves, should-haves, and could-haves—it was either in or out.
It was very simple: "we cannot go live without this" above the line,
and everything else below it. After we’d walked through the Enquiries,
the team got it and spent the remainder of the day doing the rest. I
was able to step out of it! The staff took over and started adding sub‐
headings to better describe that "these things all have to happen to‐
gether, and then these things." So, by the end, they had created, as a
group, a big picture of the steps a student follows to get from initial
enquiry to graduation.

What started out as two half-day sessions turned into three full days
of workshops in which people came and went as the need arose (they
had to teach classes, and so forth). The flexibility of the workplace
meant that nearly all the staff came through the Phoenix room and
had their two cents' worth. They found the process really useful to get
the big picture and for everyone to have their wants included. It also
identified where there were gaps and made it easy to sift out what was
really vital. At the end of it, we had a clear picture of what was to be
in the first cut of the software.

20 | Chapter 1: The Big Picture

CHAPTER 2

Plan to Build Less

There’s always more to build than you have
people, time, or money for. Always.

Speaking in absolutes like "always" and "never" always gets me in trou‐
ble. But with the statement above, I honestly can’t recall a situation
where it wasn’t true although I have no sciencey data to back this up.
No one has ever once come to me saying, "We were asked to add this
new feature, and happily we had lots more time than we needed."

But one of the coolest things about using a story map is that it gives
you and other collaborators a space to think through alternatives and
to find a way to get a great outcome in the time that you have.

Grab a cup of coffee and settle into your chair. It’s time for a story.

This story is about my friends at Globo.com, the largest media com‐
pany in Brazil. Globo.com owns television and radio stations, pro‐
duces made-for-TV movies and original programming, and publishes
newspapers. It is a media monster in Brazil, and the largest Portuguese-
language media company in the world.

Globo.com knows better than most organizations on the planet what
unmovable deadlines really are. For example, it produces a cool ver‐
sion of a fantasy football game that’s revised and improved every year
for World Cup soccer—the sport that most of the planet refers to as
football. If Globo.com is late with development of that game, it doesn’t
have the luxury of changing the release date. Why not? Because the
rest of the world won’t reschedule the World Cup. Globo.com will
produce features and content for the Olympics games that Brazil will

21

http://globo.com

host in 2016, and I can guarantee you that it’ll get it done in time—it
has to. And it’ll produce features and content for the release of nu‐
merous new television programs and reality TV shows. None of these
things can be rescheduled if Globo.com is late. Globo.com must al‐
ways finish on time. And, since that’s the reality of its business, Glo‐
bo.com is good at it. That’s not because the company is faster than
everyone else—sure, it’s fast, but it’s not that fast. It’s because it’s smart
about doing less.

Mapping Helps Big Groups Build Shared
Understanding
Take a look at this:

That’s just a portion of a pretty big map built by leaders of eight teams
from three different groups at Globo.com working together. The teams
from Sports, News, and Entertainment built this together to think
through the work they needed to do to rebuild, revamp, and renovate
their underlying content management system. This is the system that
drives all those news websites, sports websites, soap opera websites,
features that help publicize and recruit people for reality TV shows,
and much, much more. This massive system needs to be able to handle
large quantities of video feeds, real-time scores and election results,
photographs, fast-breaking news stories, and much more. It has a lot
to do, and it needs to look good doing it.

When I arrived at the Globo.com offices the day they built this map,
the teams working together were about to fall into the flat backlog
trap. Individual teams had prepared their respective prioritized

22 | Chapter 2: Plan to Build Less

backlogs. It was already clear there was a huge amount of work to do,
and each team depended on the other. For instance, to get a good news
site out would need not just the news team, but also all the other teams
that built the foundational components that let the news website use
photos, videos, real-time data, and lots of other things.

I sat down with them and reminded them of something they already
knew: "I understand that you’re different teams because you’re focus‐
ing on different areas, but it’s a major revision of one content man‐
agement system. You’ll have to release together. You can’t plan a release
until you can see it all together. You’ve got to visualize all these de‐
pendencies." They agreed and quickly went to work reorganizing their
individual backlogs into a map. Within a few hours they built a map
on the wall using sticky notes that told the story of their content man‐
agement system.

I wasn’t in the room while team members worked together to build
the map. But when I returned later in the day, I was amazed at how
quickly they’d built it. They were pleased with themselves, and had
every right to be. They’d made sense of several complex backlogs, or‐
ganizing them into one coherent product story. And now each team
could see where its work fit into the big picture.

Map for a product release across multiple
teams to visualize dependencies.

Anatomy of a Big Map
Globo’s map is good example of what a typical map looks like after
you’ve framed, mapped, and explored lots of details.

The Backbone Organizes the Map
At the top of the map is the backbone, which sometimes has a couple
of different levels. You might start with the basic flow of the story,
which is one level. But, when it gets really long, it’s useful to go up one
more level to summarize things further. Later, I’ll add some language
about what I like to put at each level, but I’m reminded of an old friend
of mine who told me to stop trying to come up with precise language.
"It’s just big things and little things," he’d tell me. And he’s right.

The whole thing kind of looks like you extracted the spine out of a
weird, Seussian animal. You’ve got this long backbone at the top with

Mapping Helps Big Groups Build Shared Understanding | 23

lots of irregularly spaced vertebrae, and these long ribs of varying
length hanging down from it.

Map in Whole Deliverable Releases
This map was built by multiple teams at Globo. There are develop‐
ment teams responsible for video, and teams charged with the task of
building the stuff on the backend that editors use to create and manage
content. There are teams responsible for some of the underlying met‐
adata and associations between data—that semantic markup junk that
I can never quite grok. And there are people who handle the external
presentation and how good this stuff looks when users and/or con‐
sumers see it. And still more people are looking after specific features
relevant to news, sports, or entertainment.

Multiple teams had to work together on this map because, for this
major revision, no single team could release its part without the oth‐
ers. The teams built a single map because they needed to think
through the release holistically.

Map in a Narrative Flow Across Many Users and Systems
The map started with people on the left, and the things they had to
do to set up basic widgets for the screens that held news stories, pic‐
tures, and videos. There were other types of people who then com‐
bined those onto pages for soap opera or news websites. Then there
were editors who added content to pages. This entire backbone tells
the story of how lots of different people at Globo.com construct and
manage content in its website.

When you read the backbone of the map from left to right, it tells a
story about all the people who use the system and what they do in
order to create and manage sites and content. The left-to-right order

24 | Chapter 2: Plan to Build Less

is what I call a narrative flow, which is an academic way of saying the
order in which we’d tell the story. Of course, all these people are doing
everything all at once, and sometimes things don’t move in a perfect
order, but we know that. We just put them in an order that helps us
tell the story.

For this big system, that narrative flow has to cut through many dif‐
ferent users' and systems' stories. I like to place stickies or simple per‐
sona thumbnails above the backbone so I can see who we’re talking
about at particular times in the story. And it’s OK to anthropomorph‐
ize backend services or complex stuff the system does. My friends at
SAP create fictitious personas for their systems and use pictures of
R2D2 or C3PO from Star Wars.

Mapping Helps You Spot Holes in Your Story
When I talk with people who have built story maps, they’ll tell me,
"Every time we do this we find holes. We find things that we thought
another team should be taking care of, but it didn’t know. We find the
necessary stuff in between the big important features that we’d forgot
to talk about." By mapping together, Globo.com found some of that.

After you’ve envisioned the whole product or feature, it’s easier to start
to play the "What-About" game. That’s where we start asking, "What
about when this goes wrong?" Or "What about these other users?" Play
What-About with any concern you have, and add stickies to the body

Mapping Helps You Spot Holes in Your Story | 25

of the map for feature ideas you’ll need in order to address these things
in your software. In Chapter 1, Gary played What-About to consider
options and alternatives. When you do this with other teams, you’ll
find they’re terrific at spotting problems that might arise where dif‐
ferent systems connect to each other.

One of the criticisms people sometimes make about story mapping is
that every time they sit down and create story maps, they end up with
way too much. But it’s my belief that we’re just finding the stuff now
that would have bitten us later on, and that’s a good thing.

In the old-school approach to software development, when we’d find
that new stuff later on—after we’d already estimated delivery time and
committed to a delivery date—we’d call that new stuff scope creep. I
personally believe that scope doesn’t creep; understanding grows. And
what happens when people build one of these story maps is that they
find the holes in their understanding.

Scope doesn’t creep; understanding grows.

There’s Always Too Much
When I left the content management teams at Globo.com, everything
was wonderful—understanding was rampant and the teams knew
what to do. However, when I came back to check in with them a couple
days later, they were struggling again because they realized that there
was so much work to be done, that it would likely take more than a
year to accomplish everything on the map. And, of course, as savvy
readers can appreciate, when software developers say it’s going to take
a year to get something done, they really mean two years. It’s not be‐
cause they’re incompetent, or that they are calendar-challenged, it’s
just that estimating the time to do something we’ve never done before
is something we suck at. And, by nature, we’re often optimistic
animals.

They said to me, "There’s way too much. We have a lot to do here and
it’s going to take a long time."

"Do you have to do it all?" I asked.

They, of course, replied, "Yes, because it’s all part of one, big content
management system."

26 | Chapter 2: Plan to Build Less

"But projects don’t run that long around here," I replied. "I know your
CEO and he’s going to want to see results much faster—right?"

"Yes," they confirmed, "he wants to see something live in time for the
upcoming Brazilian election in a few months!"

"Do you need all of this to go live for the election?" I asked.

As soon as I asked the question, I could see light bulbs click on. Of
course they didn’t need everything. Up 'til now, they’d been focused on
identifying sequence and dependency assuming they’d need to build
everything. They did, but it was really a question of when. They shifted
their thinking to focus on outcomes.

Focus on what you hope will happen outside
the system to make decisions about what’s

inside the system.

Globo.com focused on Brazilian elections. The teams thought specif‐
ically about the great outcome of successfully impressing visitors, ad‐
vertisers, and Globo’s parent media company with newer, sexier styles
of interactive content throughout the election. If they did that, they’d
have a win.

This wasn’t their first time facing down an impossible delivery date.
They thought about it for a bit, and realized that they definitely needed
to go live with the news website, and potentially some other things that
supported it because that’s where visitors and others would go to
monitor Brazilian elections. Focusing on the news website meant pay‐
ing attention to innovative ways to show real-time election data and
breaking news stories faster. And, of course, there was a newer, up-to-
date visual design overlaying everything.

Slice Out a Minimum Viable Product Release
The teams grabbed a roll of blue painter’s tape and stretched lines
across the map left to right to make horizontal slices. They then went
to work moving cards up and down, above and below the blue lines
to designate which things needed to be done in the first slice, and which
could be done later.

Slice Out a Minimum Viable Product Release | 27

The thought process worked a bit like this: If we go live for the Brazilian
elections, a lot of people in Brazil will see this thing. It’s going to land
with a splash. It’s going to affect these websites of ours and we’ll look
good. Everything in this slice is what users will need to be able to do after
the software is released so they can make that splash.

Focus on outcomes—what users need to do
and see when the system comes out—and slice

out releases that will get you those
outcomes.

Slice Out a Release Roadmap
The map contained innovative things that would improve all Glo‐
bo.com’s web properties. But it really was going to take a long time to
get all of it done. Hitting the market window that the elections created
would be too big an opportunity to miss. Focusing on that helped
Globo identify the first release.

The teams then went to work thinking about what kinds of web prop‐
erties and market events should anchor the next releases. They posted
sticky notes to the left of each slice with a few words describing their
intention for each release slice—their target outcomes. Then they
continued to move cards up and down into their correct slices.

28 | Chapter 2: Plan to Build Less

In the end, they had an incremental release strategy that let them tackle
all the work they needed to do to replace the whole content manage‐
ment system over time, and in such a way that they saw real benefit
with each release. If they read down the left edge of the map, they had
a list of named releases, each with specific target outcomes. This is a
release roadmap.

Notice how the list isn’t a bunch of features. It’s a list of real-world
benefits—because, remember, your job isn’t to build software, it’s to
change the world. The hard part is choosing which people you want
to change the world for, and how.

Focusing on specific target outcomes is the
secret to prioritizing development work.

And the opposite is true as well; that is, if you don’t know what your
target outcomes are—the specific benefits you’re trying to get—then
prioritization is close to impossible.

Don’t Prioritize Features—Prioritize
Outcomes
Notice also how the Globo teams started with a big goal of replacing
their entire content management system. Replacing the content man‐
agement system is the output, the stuff they were going to deliver.
Doing that would result in lots of positive outcomes. The secret to

Don’t Prioritize Features—Prioritize Outcomes | 29

breaking down that really big chunk of output was to focus on a small‐
er, specific outcome.

Remember: behind outcomes are specific behavior changes for spe‐
cific people engaged in specific activities. By focusing on the upcoming
Brazilian elections, Globo chose to focus on the people who follow the
news, especially those looking for up-to-the-minute election details.
But, in placing its focus on those people, it left out soap opera lovers,
sports lovers, and lots of other types of users. Those other people would
have to be satisfied with the current site for a while longer. Remember,
you can’t please everyone all the time.

This Is Magic—Really, It Is
I may be easily impressed, but slicing is one of the coolest things about
organizing software ideas into a story map.

Many times I, and the teams I’ve worked with, have placed all our ideas
about the perfect product into a map and been overwhelmed by the
amount of work we’d have if we created it all. It all seems important.
But then we step back and think about the specific people who will use
our product, and what they’ll need to accomplish to be successful. We
distill that into a sentence or two. Then we carve away everything we
don’t need, and we’re shocked at how small our viable solution really
is. It’s magic.

Gary from Chapter 1 went on to do something similar with his prod‐
uct. He eventually narrowed focus to the band manager, the fan, and
Mimi’s internal administrator—because you’ve got to keep the site
running. Gary chose to leave out venue managers and production
musicians. In the end, what he realized is that by focusing on just those
few people and the activity of promoting, he ended up with a great
email promotion platform. So, for those of you who are Mimi users
today, that’s the experience you know.

Externalizing our thinking in a big visible map makes all these steps
easier. It makes it possible for lots of people to collaborate to accom‐
plish it.

30 | Chapter 2: Plan to Build Less

Finding a Smaller Viable Release
Chris Shinkle, SEP

FORUM Credit Union is one of the nation’s largest and most tech‐
nologically progressive credit unions. Although the company had a
competent and creative development culture, it approached SEP to
build a new online banking system that rivaled existing commercial
off-the-shelf (COTS) solutions. Its goals included adding capabilities
for its mobile banking, personal finance management, and text
banking.

SEP kicked off the engagement with a two-day, collaborative story-
mapping discovery session that included outcomes, personas, and
story mapping. The session helped facilitate a structured conversation
to prioritize a large set of feature ideas. The outcomes and personas
were not enough, however, to prioritize the stories. By the end of two
days, the story map covered nearly two walls in the 1,000+ square-
foot development area!

After the story map was constructed, SEP guided the FORUM stake‐
holders through a simple prioritization model:
Differentiator

A feature that set them apart from their competition

Spoiler
A feature that is moving in on someone else’s differentiator

Cost reducer
A feature that reduces the organization costs

Table stakes
A feature necessary to compete in the marketplace

This Is Magic—Really, It Is | 31

SEP indicated each story’s category using different color sticky notes.
Interesting discussions emerged—in fact, some stakeholders' differ‐
entiators were another stakeholder’s table stakes. It was clear many of
these conversations were happening for the first time! The story map
with the prioritization model enabled conversations to happen that
had not happened before. It helped guide the team to come to a shared
understanding around priorities.

After labeling the stories, SEP used a voting system to help stake‐
holders converge the ideation and discussion into the most mean‐
ingful set of outcome-focused features. To everyone’s surprise, several
stories were deemed postpone-worthy or unnecessary. Rough calcu‐
lations revealed several hundred thousand dollars in savings before
one line of code was written.

When asked about using story mapping to kick off the project, Doug
True, FORUM’s CEO, said, "When we first kick-started this project
with a story mapping process including the use of personas, I was
skeptical. Specifically, I was concerned with the time invested to this
softer side of the project. On the second day it clicked and the wor‐
thiness of the time materialized. In fact, now, I couldn’t imagine pur‐
suing a project of this scope and member-facing impact without such
a process."

Why We Argue So Much About MVP
There’s a term that’s been kicking around in the software development
industry for a long time: minimum viable product, or simply MVP.

32 | Chapter 2: Plan to Build Less

Frank Robinson is credited with originally coining the term MVP, but
these days definitions from Eric Ries and Steve Blank dominate. In
spite of multiple smart people trying to define the term, everyone still
seems confused—including me. Every organization I run into that uses
that term means something slightly different. Even people in the same
organization and the same conversation often mean different things.

Like most words in the dictionary, it has multiple meanings. I’m going
to give you three definitions for the term: a bad one, and two good
ones.

Here’s the bad one:

Minimum viable product is not the crappiest
product you could possibly release.

And the MVP isn’t the product that your users could use, but only in
the simplest of circumstances, and only if they had a high threshold
for pain. I commonly see organizations rationalizing their bad product
decisions with the argument that someone could use the product,
when it’s clear to everyone involved that they probably wouldn’t choose
to.

If Globo.com had used this definition for slicing out its first release, it
would have had a negative outcome. No one would have been im‐
pressed. The brand would have been hurt, and the company would
have been worse off than if it had released nothing at all.

When we use the term viable when talking about a living organism, it
means that an organism can survive in the world on its own without
dying. And when we talk about software, we mean the same thing.

The minimum viable product is the smallest
product release that successfully achieves its

desired outcomes.

I like this definition best. Minimum is a subjective term. So be specific
about who it’s subjective to—because it’s not you. Be specific about
who your customers and users are, and what they need to accomplish.
What’s minimum to them? I promise you, it’ll help the conversation
hugely. It’s still a tough conversation. But the alternative is the "HiPPO"
method—the "highest paid person’s opinion." That one sucks worse.

Why We Argue So Much About MVP | 33

The term I prefer these days is minimum viable solution. Most of the
things I work with organizations on aren’t whole, new products.
They’re new features or capabilities, or improvements on features al‐
ready out there. So the term solution seems to make more sense. So let
me revise my definition:

The minimum viable solution is the smallest
solution release that successfully achieves its

desired outcomes.

Here comes the hard part…

We’re just guessing.

When we slice out a bunch of software functionality and call it a min‐
imum viable solution, we don’t really know if it is.

The problem with outcomes is that you can’t really observe them until
things come out. When you slice out a release, you’re forced to hy‐
pothesize what will happen. You might have to guess about what cus‐
tomers will buy your product, what users will choose to use it, if they
can use it, and what’s feasible to build in the time you have. You’re
forced to guess at how much will make them happy. That’s a lot of
guessing.

This sucks, because if you guess too low, well, that’s less than minimal,
and you’ve failed. If you guess too high, which many people do to hedge
their bets, then you’ve spent too much money and often risk not getting
things done at all. And worst of all, you could be just dead wrong, and
no amount of what you ship will matter at all.

It’s no wonder that the "crappiest product you could possibly release"
definition still thrives. Because that’s the one we don’t need to guess
about.

The New MVP Isn’t a Product at All!
I know that some of you may have been feeling progressively twitchy
over the last couple of chapters. You may have thought to yourself,
Jeff’s overlooking the most important thing of all! And you might be
right. Some of the most important things you can discuss during story
and story map conversations are:

34 | Chapter 2: Plan to Build Less

• What are our biggest, riskiest assumptions? Where is the
uncertainty?

• What could I do to learn something that would replace risks or
assumptions with real information?

This leads me to my third definition of MVP, as popularized by Eric
Ries in his book The Lean Startup (Crown Business). Eric learned the
hard way, as most of us do, that we’re just guessing. Eric worked for a
company that released a product that it thought was viable, but it was
wrong. Intelligently, he changed his strategy to focus on learning—to
focus on validating all those assumptions the company had made in
its first MVP release. Eric makes the important point that we need to
create smaller experiments, prototypes that test our hypothesis about
what’s minimal and viable. And if you adopt Eric’s way of thinking,
which you should, your first product should really be an experiment
—and the one after that, and the one after that, until you really prove
that you’ve got the right product.

A minimal viable product is also the smallest
thing you could create or do to prove or dis‐

prove an assumption.

While it was pretty cool that the folks at Globo.com were able to create
a plan to build less, they weren’t fooling themselves. They knew there
was lots left to learn to prove their assumptions were good. From here
they and everyone else need to create a plan to learn more. And that’s
where we’ll pick up our story in the next chapter.

The New MVP Isn’t a Product at All! | 35

CHAPTER 3

Plan to Learn Faster

This is my friend Eric, standing in front of his backlog and task board
in his team room. He’s a product owner working hard with his team
to build a successful product, but right now it’s not. That doesn’t worry
Eric, though. He has a strategy for making his product successful. And
so far it’s working.

Eric works for a company called Liquidnet. Liquidnet is a global trad‐
ing network for institutional investors. Long before Eric came to stand
in front of the board in the picture, someone at his company identified

37

a group of customers Liquidnet could serve better, along with a few
ideas of how to do that. Eric is part of a team that took those ideas and
ran with them. That’s what product owners do. If you thought they
were always acting on their own great ideas, well, you’re wrong. One
of the hard parts of being a product owner is taking ownership of
someone else’s idea and helping to make it successful, or proving that
it isn’t likely to be. The best product owners, like Eric, help their entire
team take ownership of the product.

Start by Discussing Your Opportunity
Eric didn’t start his work by building a backlog of user stories. He
started with the big idea someone had, and treated it like an oppor‐
tunity for his company—because it was. He had conversations with
leadership in his company to understand more. They discussed:

• What is the big idea?
• Who are the customers? Who are the companies we think would

buy the product?
• Who are the users? Who are the types of people inside those com‐

panies we think would use the product, and what would they be
using it for?

• Why would they want it? What problems would it solve for cus‐
tomers and users that they couldn’t solve today? What benefit
would they get from buying and using it?

• Why are we building it? If we build this product and it’s successful,
how does that help us?

Eric needed to build shared understanding with others in his organi‐
zation before he could take ownership of the opportunity. He knew he
was going to need to tell the story of this product many times over the
coming months, so he’d better get the big stuff right now.

Your first story discussion is for framing the
opportunity.

38 | Chapter 3: Plan to Learn Faster

Validate the Problem
Eric trusts his leadership’s intuition, but he knows that this big idea is
a hypothesis. He knows the only way to be sure the idea will succeed
is when they actually see it succeed.

He first spent time talking to customers and users directly to really
learn about them. Along the way he validated that there really were
customers who had the problem, and they really were interested in
buying a solution. Eric talked to the people who’d likely use the prod‐
uct. They didn’t have the product today, and had only poor work‐
arounds to address the problems the new product idea would solve.

Validate that the problems you’re solving
really exist.

While Eric’s been talking with customers and users, he’s been building
up a pool of people he thinks are good candidates to try his new soft‐
ware. Some companies refer to these people as customer development
partners. Keep track of this detail, because it’s going to come up later
in the story.

Actually, during this stage, it wasn’t just Eric. Eric was working with a
small team of others who spent lots of time talking to their customers,
and, in doing so, found that solving the problem wasn’t so easy—and
that there were other problems that needed to be solved first. The
important thing for you to take away is that the more they learned, the
more the original opportunity was changed—eventually, a lot. It’s
lucky they didn’t just get to work building what they were told to. That
wouldn’t have served their customers or their organization.

By now Eric and his team, after talking to customers, had specific ideas
for the type of solution they could build that users could use, and by
doing so get the benefit their employers wanted. Now, here’s where
Eric and his team could have gone "all in"—where they could have bet
it all. They could have built a backlog of stories that described their
solution and set a team to work building it. Because they’re smart
people, they’d have used a story map to move from the big idea to the
specific parts to build. But, because they’re really smart, the last thing
they’re going to do at this point is to build software.

Validate the Problem | 39

Prototype to Learn
It’s around here that Eric began to act as the owner for this product.
He moved to envision his solution first as a bunch of simple narrative
stories—user scenarios. Then he moved to envisioning the idea as a
simple wireframe sketch. And then he created a higher-fidelity pro‐
totype. This wasn’t working software. It was a simple electronic
prototype, created with a simple tool like Axure, or maybe even
PowerPoint.

All of these are learning steps for Eric. They help him envision his
solution. Ultimately, he wants to put his solution in front of his users
to see what they think. But he knows he first needs to feel confident it
solves their problems before he puts it in front of them.

Sketch and prototype so you can envision
your solution.

Now, I’ve hidden an important detail from you. Eric was actually an
interaction designer. He’s the kind of designer who’s used to spending
time with customers and users, and used to building these simple pro‐
totypes. But, for this new product, he’s also the product owner—the
one ultimately responsible for the product’s success. There are other
product owners in Eric’s company who don’t have his design skills, and
they very sensibly pair with designers to help with both interviewing
users and envisioning solutions.

Eric did eventually bring prototypes back to users. And I wasn’t there,
so I don’t know what really happened for Eric. But I’ve been in these
situation lots of times, and I’m always surprised about what I learn
from the people who’ll really use my solution. All I can tell you is, be
prepared for surprises and bad news. In fact, celebrate the bad news,
because you could have received the same bad news months later, after
you’d built the software. That’s when it really sucks. Right now, it’s
cheap to make changes, and you should. And Eric did.

Prototype and test with users to learn wheth‐
er your solution is valuable and usable.

After iterating his solution many times and showing it to his custom‐
ers, Eric was confident he had a pretty good solution idea. Surely now
he could get that backlog built, and get his team of developers to work

40 | Chapter 3: Plan to Learn Faster

turning that prototyped solution into real working software. But Eric’s
not going to do that. Well, not exactly that. That’s a bigger bet than he’s
willing to take.

Watch Out for What People Say They Want
Eric has prototyped what he believes is a viable solution. But he’s not
really sure if it’s minimal—because he showed people lots of cool ideas.
And if you show people all the cool ideas, of course they’ll love them.
But Eric knows his job is to minimize the amount he builds and still
keep people happy. How much could he take away and still have a
viable solution?

Eric also knows something else that’s a bit disturbing. He knows the
people who said they’d like it and use it are just guessing, too.

Think back to when you’ve bought something yourself. You may have
looked at the product. You might have watched a salesperson demon‐
strate the cool features. You may have tried out the cool features for
yourself, and you could imagine really using and loving the product.
But when you bought the product and actually started using it, you
found the cool features didn’t matter so much. What really mattered
were features you hadn’t thought about. And, worst of all, maybe you
didn’t really need the product that much after all. OK, maybe it’s just
me I’m talking about. But I’ve got lots of stuff in my garage that I wish
I’d never bought.

Back to Eric. He knows his customers and users can imagine the prod‐
uct would be great to use, and knowing that gives him the conviction
to up his bet. But the real proof is when those people actually choose
to use it every day. That’s the real outcome he’s looking for—and the
only outcome that’ll get his company the benefit it really wants. And
it’s going to take more than a prototype to learn that.

Build to Learn
Now, here’s where Eric gets to show how smart he really is.

Eric and his team actually do get to work building software. But their
first goal isn’t to build a minimum viable product. Actually, it’s to build
something less than minimal—just enough that potential users could
do something useful with it. This is a product that wouldn’t impress
too many people, and they might even hate it. It’s definitely not a

Watch Out for What People Say They Want | 41

product you’d want your marketing and sales people out there pitch‐
ing. In fact, the only people you’d want to see this product are people
who may one day use the product, and honestly care about finding a
product that solves their problem.

It just so happens that Eric has a small group of people just like that.
It’s the customers and users he worked with earlier when he was learn‐
ing about and validating the problem. They’re his development part‐
ners. They’re the ones who gave feedback on early prototypes. And
there’s a subset of them that Eric believes can best help him learn.
They’re the ones he’ll put this first, less-than-minimum—and defi‐
nitely not viable—product in front of. He hopes they’ll become his
early adopters.

And that’s what he did.

This is Eric pointing out a slice of his current backlog. When this pic‐
ture was taken, he’d already released software to his development
partners. After he did, he made a point of talking to them to get their
feedback. His team also built in some simple metrics so they could
measure whether people were really using the software, and what they
did in the software specifically.

Eric knows that people are polite. They may say they like a product,
but then never use it. The "using it" is the real outcome he wants, and
polite isn’t helping him. Eric also knows some people are demanding.

42 | Chapter 3: Plan to Learn Faster

They may list all the problems the product has, or complain about
bugs, but the metrics may be telling us that they use it every day anyway.
And that’s a good thing, in spite of all their complaining. The com‐
plaining is good, too, because it gives Eric ideas about where his next
improvements should be.

Eric’s backlog is organized as a story map with the backbone in yellow
stickies across the top. Those yellow stickies have short verb phrases
on them that tell the big story of what his users will do in the product,
but at a high level. Below it are all the details—the specific things they’ll
do and need to really use the product. While the details he and his
team work on change from release to release, the backbone stays pretty
consistent.

The top slice, above the tapeline, is the one Eric and his team are
working on right now. This release will take Eric two sprints. He’s using
a Scrum development process where his sprints are two-week time-
boxes. So two sprints equate to basically a month. Below that are slices
running down the board. The next slice contains what they think the
next release might be, and so on. To the left of each slice, just as with
the Globo.com team, hangs a sticky note with the release name and a
few words about what they want to learn in this release. Except for the
top release, which has a Dilbert cartoon posted over it. It’s an inside
joke in their team that I wasn’t in on.

If you look closely, the top of that current slice is sort of cleaned out.
I’ve drawn in some sticky notes where they used to be. But they’re not
there anymore because those things that were on the top are the first
things his team will build. As the team members worked together to
plan their work, they removed those sticky notes and placed them on
a task board to the right of the story-mapped backlog. That task board

Build to Learn | 43

shows the stories they’re working on now in this sprint, along with
delivery task—the specific things that the developers and testers will
need to do to turn the ideas in the story into working software.

One finer point of Eric’s story-mapped backlog, and one that proves
he’s smart, is the thickness of that topmost slice. It’s twice as thick as
the slices below it. When Eric and his team finish a slice and deliver
it to their development partners—what they call their beta customers
—they’ll move the sticky notes up from the slice below. When they do,
they’ll have lots more detailed discussion about this next sliced-out
release. They’ll play What About to find problems and fill in details.
They’ll talk about some of the ideas in the next release, and this dis‐
cussion may result in their splitting the big idea into two or three
smaller ideas. And then, they’ll need the vertical height in that slice to
prioritize—to make choices about what to build first.

See how smart they are?

Iterate Until Viable
Eric may have started this whole process with an idea about what the
minimum viable product might be, but he’s purposely built something
less than minimal to start with. He’s then adding a bit more every
month. He’s getting feedback from his development partners—both
the subjective stuff from talking to them, and the more objective stuff
he gets from looking at data.

He’ll keep up this strategy, slowly growing and improving the product,
until his development partners actually start using the product rou‐
tinely. In fact, what Eric’s hoping for is that they become people who’d
recommend the product to other people—real reference customers.
When they do, that’s when he knows he’s found minimum and viable.
And that’s when the product is safe to market and sell like crazy. If Eric
and his team had tried to sell it before, they’d have ended up with lots
of disappointed customers—people a lot less friendly than those with
whom he built personal relationships throughout this process.

How to Do It the Wrong Way
What Eric could have done is to take his last, best prototype, break it
down into all its constituent parts, and start building it part by part.
Many months later, he’d have had something to release. And he’d have

44 | Chapter 3: Plan to Learn Faster

learned then if his big guess was right. You’ll need to trust me on this,
but it wouldn’t have been—because it rarely is.

This is a simple visualization made by my friend Henrik Kniberg. It
beautifully illustrates a broken release strategy where at every release
I get something I can’t use, until the last release when I get something
I can.

Henrik suggests this alternative strategy:

If I plan my releases this way, in each release I deliver something people
can actually use. Now, in this silly transportation example, if my goal
is to travel a long distance and carry some stuff with me, and you gave
me a skateboard, I might feel a bit frustrated. I’d let you know how
difficult it was to travel long distances with that thing—although it was
fun to goof around with it in the driveway. If your goal was to leave
me delighted, you might feel bad about that. But your real goal was to
learn, which you did. So that’s good. You learned I wanted to travel
farther, and if you picked up on it, you also learned I valued having
fun.

In Henrik’s progression, things start picking up at around the bicycle
release because I can actually use it as adequate transportation. And,
at about motorcycle level, I can really see this working for me—and
I’m having fun too. That could be minimum and viable for me. If I

How to Do It the Wrong Way | 45

really love the motorcycle thing, maybe my next best step would be a
bigger, faster Harley-Davidson, and not a sports car. I’m headed for a
midlife crisis right now and that Harley is sounding pretty good. But
it’s after I try the motorcycle, and we both learn something from that,
that we can best make that decision.

Treat every release as an experiment and be
mindful of what you want to learn.

But what about other folks who need to travel longer distance, and
who have kids? For that target market, none of these would be good
choices.

Always keep your target customers, users, and the outcomes you’re
hoping for in mind. It’s really tough to get the same great outcome
from all types of users. So focus.

Validated Learning
What my friend Eric did is apply a validated learning strategy—one of
the important concepts in Lean Startup thinking. Eric knew that the
problems he was solving, the customers and users he was solving them
for, and the solutions he had in mind were all assumptions. Lots of
them were pretty good assumptions. But they were assumptions just
the same. Eric set out to understand the assumptions and then validate
them, moving from the problems customers and users faced to the
solutions he had for them. At each step he did or built something with
the explicit goal of learning something.

46 | Chapter 3: Plan to Learn Faster

1. Marty first described what he means by product discovery in this 2007 essay. He later
describes it in more detail in his book Inspired: How to Create Products Customers
Love (SVPG Press).

What Eric did is the heart of the build-measure-learn loop described
by Eric Ries. And by Ries’s definition, each release that Eric shipped
was a minimum viable product. But you can see that it wasn’t viable
in the eyes of his target customers and users—at least, not yet. For that
reason, I like referring to Ries’s MVP as a minimum viable product
experiment—or MVPe for short. It’s the smallest thing I could build to
learn something. And what I learn is driving toward understanding
what’s really viable in the eyes of my target customers and users.

Eric used lots of tools and techniques along the way. But telling stories
using words and pictures was always part of the way he worked. Using
a map to organize his stories helped him keep his customers, users,
and their journey in mind as he iteratively improved his product to
viable.

I like using the term product discovery to describe what we’re really
doing at this stage. Our goal isn’t to get something built; rather, it is to
learn if we’re building the right thing. It just so happens that building
something to put in front of customers is one of the best ways to learn
if we’re building the right thing. I borrow my definition of discovery
from Marty Cagan.1 And my definition of discovery includes Lean

Validated Learning | 47

http://www.svpg.com/product-discovery

Startup practice, Lean User Experience practice, Design Thinking
practice, and loads of other ideas. And what I do during discovery
continues to evolve. But the goal stays the same: to learn as fast as
possible whether I’m building the right thing.

Really Minimize Your Experiments
If we recognize that our goal is to learn, then we can minimize what
we build and focus on building only what we need to learn. If you’re
doing this well, it means that what you build early may not be pro‐
duction ready. In fact, if it is, you’ve likely done too much.

Here’s an example: when I was a product owner for a company that
built software for large, chain retailers, I knew my products needed to
run on a big Oracle database on the backend. But the database guys
were sometimes a pain for me to work with. They wanted to scrutinize
every change I made. Sometimes simple changes would take a week
or more. That slowed down my team and me too much. The database
guys' concerns made sense, since all the other applications depended
on that database. Breaking it was really risky for everyone. But they
had a well-oiled process for evaluating and making database changes
—it just took a long time.

The riskiest part for me was making sure my product was right. So we
built early versions of software using simple, in-memory databases.
Of course, they wouldn’t scale, and we could never release our early
versions to a large general audience. But our early minimum viable
product experiments (we didn’t call them that then) allowed us to test
ideas with a small subset of customers and still use real data. After
several iterations with customers, and after we found a solution we
believed would work, we’d then make the database changes and switch
our application off the in-memory database. The database guys liked
us too, because they knew that when we made changes, we were con‐
fident they were the right ones.

Let’s Recap
Gary used a map to get out of the flat-backlog trap and see the big
picture of his product, and then to really start focusing on who it was
for and what it should be.

48 | Chapter 3: Plan to Learn Faster

The teams at Globo.com used a map to coordinate a big plan across
multiple teams and slice out a subset of work they believed would be
a viable solution.

Eric used a map to slice out less-than-viable releases into minimum
viable product experiments that allowed him to iteratively find what
would be viable.

There’s one last challenge that seems to plague software development,
and that’s finishing on time. Suppose you’re confident that you have
something that should be built. And suppose others are depending on
it going live on a specific date. There’s a secret to finishing on time
that’s been known by artists for centuries. In the next chapter, we’ll
learn how to apply it to software.

Let’s Recap | 49

CHAPTER 4

Plan to Finish on Time

This is Aaron and Mike. They work for a company called Workiva.
Workiva makes a suite of products on a platform called Wdesk. It solves
big problems for large companies, and it’s one of the biggest software-
as-a-service companies you’ve likely never heard of.

Aaron and Mike look happy, don’t they? But that’s typical for people
who’ve worked together to solve tough problems. Or could it be be‐
cause the guy on the right has a beer in his hand? Nah, that’s not it. It’s
that feeling from having solved a tough problem that’s making them
happy. The beer is just a reward for solving the tough problem. If you

51

don’t get beer, or an equivalent reward, for solving tough problems
where you work, you should have a talk with someone about that.

Aaron and Mike have just completed several rounds of product dis‐
covery, and they’re confident they have something that should be built
and go into production.

For them, discovery started with framing the feature idea they were
working with to really understand who it was for and why they were
building it. Then they talked directly to customers to validate their
guesses about how they were working today and what the real prob‐
lems were. After that, they built simple prototypes. For Aaron and
Mike, they were able to build simple electronic prototypes in Axure
and test them with customers remotely—first to see if they valued the
solution, and then to be confident that it was usable. For the feature
they were working on, they didn’t feel like they needed to prototype
in working software to learn what they needed.

After multiple iterations with simple prototypes, they finally felt con‐
fident they had something worth building. That may sound like a lot
of work, but they did it all in about three days. Their last step was to
create a backlog and a plan for delivering the feature. That’s their plan
in the picture. It’s a good plan. And that’s why they’re happy.

It’s important to note that this map isn’t about a whole product, it’s just
about a feature they’re adding to an existing product. That’s why it’s
smaller than Gary’s in Chapter 1, or that of the Globo.com teams. I’m
telling you this because some people mistakenly believe they need to
map their whole product to make a small change, and they use that as
a reason not to map.

Map only what you need to support your
conversation.

Tell It to the Team
To build this new feature, these two guys will need to build shared
understanding with their team. Their team needs to be able to point
out problems and possibilities for improvement, and to estimate how
long it’s going to take. That’s what they built this final map for. They
used it to tell the feature’s story—step by step, from the user’s per‐
spective. Notice the printed screens injected into the map? They poin‐
ted at screens and highlighted details while walking through the map

52 | Chapter 4: Plan to Finish on Time

so those listening could better envision the solution. The people at
Disney who walk through movies using a storyboard have nothing on
these guys.

When team members asked why the screen behaves as it does, they
had stories to tell about variations they’d tried, and how users behaved.
When the team asked detailed questions about exactly what happens
when data is entered, or information submitted, these guys had given
it thought and could answer. Or, when they didn’t know, they discussed
ideas with the team, and made notes on the prototypes or sticky notes
in the model. They even added a couple of sticky notes for details they
hadn’t thought of, but the team did. Aaron told me that the team spot‐
ted several technical dependencies that he and Mike would never have
found.

The Secret to Good Estimation
Anyone who’s been in the software development game for any length
of time knows that one of the biggest challenges is estimating how long
development will actually take. I’m going to let you in on one of the
best-kept secrets of good estimation:

The best estimates come from developers who
really understand what they’re estimating.

The Secret to Good Estimation | 53

There are lots of methods that promise to give more accurate estimates.
I’m not going to cover any of those here. But I will tell you none of
them work if the people building the software don’t have shared un‐
derstanding with one another, and with those who envisioned it.

Building shared understanding shouldn’t be a well-kept secret about
estimation. So you should go tell someone else right now.

Plan to Build Piece by Piece
The team at Workiva can’t really get away with building less at this
point. They can’t do what Globo.com did in Chapter 2 and cut things
away, because they’ve already validated that they need it all. When they
were prototyping, they were able to cut away a lot and validate that
their solution was still valuable to customers. But, when you look at
their map, it’s cut into three slices.

"Why would they care?" you might ask. A third of what the customers
want is sort of like delivering a third of a sports car. No one could drive
it. But Mike is the product owner. He doesn’t get to walk away after
he’s identified a good solution. His role changes now, and he’s a bit
more like a director in a movie. He’s got to be there as every scene is
shot. And he’s got to decide which scenes should be shot first, and
which scenes get shot last. He knows that in the end the entire movie
needs to come together and look like one coherent whole.

54 | Chapter 4: Plan to Finish on Time

www.allitebooks.com

http://www.allitebooks.org

So Mike worked with his team to create a development plan. This is
what they did: they sliced their map into three, crosscutting slices.

The first slice cuts all the way through the functionality. Once they
build all those pieces, they can see the functionality working from end
to end. It wouldn’t work in all the situations it needs to, and if they
shipped to users this way, those users would howl. But Mike and his
team will be able to see the software running end to end. They’ll be
able to put real data in it to see how well it performs, and they could
apply some automated testing tools to it to see how well it scales. They
can learn a lot about the technical risks that might cause them trouble
later on. They can be more confident going forward that they will be
able to release on time. Or, at least they’ll spot the unforeseen chal‐
lenges that would slow them down. I call this first slice a functional
walking skeleton—a term I borrowed from Alistair Cockburn. I’ve
heard others call this a "steel thread" or a "tracer bullet."

They’ll layer on the second slice to build up the functionality—to get
it closer to releasable. Along the way, they’re likely to learn some things
they couldn’t predict. They may have overlooked some characteristics
this feature should have—finer points that weren’t explored in the
prototype. They may have found that the system just doesn’t perform
the way they expected and some extra work will need to be done to get
the speed they want out of it. These are the "predictably unpredicta‐
bles"—a concept closely related to Donald Rumsfeld’s "unknown un‐
knowns." Don’t pretend they don’t exist. You know they do.

Finally, they’ll layer on the third slice to refine the feature, to make it
as polished as it can be. They’ll also add in some of those unpredictable
things.

Plan to Build Piece by Piece | 55

Don’t Release Each Slice
Each of these slices isn’t a release to customers and users: it’s a mile‐
stone the team members will use to stop and take stock of where they
are. From a user and customer perspective it’s incomplete, so save
yourselves the embarrassment.

Mike and Aaron’s team estimated this feature to be about two months'
worth of work. Like Eric, they used two-week sprints, so it would take
them four sprints. I guess they could have made four slices, one for
each sprint, but they weren’t thinking of it that way. And you shouldn’t,
either. Think of these slices as three different buckets with different
learning goals for each. Decide which sprints or iterations they’ll go
into when the time comes.

The Other Secret to Good Estimation
One thing that seems to be a secret, but really shouldn’t be, is that
estimates are…estimated. Hit the Web and find any list of oxymor‐
ons. I’m confident you’ll find this term there: accurate estimate. If we
knew exactly how long things would take, then we wouldn’t have called
it an estimate, would we?

But if you build little bits of software, one thing you can be pretty sure
of is how long they took to build. That’s called measurement, and that’s
quite a bit more accurate.

56 | Chapter 4: Plan to Finish on Time

Ok, so here’s the other secret: the more frequently you measure, the
better you get at predicting. If you commute to work every day, I sus‐
pect you’re pretty good at predicting how long it’ll take. If I asked you
how long it’d take to get to a different address in roughly the same area,
I’ll bet you could predict how long commuting there would take within
plus or minus about 10 minutes. That’s the way estimation works.

By slicing large things into small things, we get more opportunities to
measure. Of course, there’s some subtlety to this, but as a general
principle, you’ll get better predictions if you’ve got more examples of
how long similar things have taken to build.

As a product owner, Mike is ultimately on the hook for getting this
feature released on time. He’s a good product owner, so he helps ev‐
eryone in his small team take some ownership of that goal too. He
treats these early estimates as his delivery budget.

Manage Your Budget
Mike and Aaron worked together with developers they trust early on
to get an initial time estimate. They treat it as a budget. And they ac‐
tively manage it.

With every small piece the team builds, they can measure how long
that piece took to build. They treat what they’ve built as spending
against their budget. They may find that they’re halfway through their
budgeted time, but only a third of the way through building the feature.
Certainly they didn’t expect that, but now they’re aware and they can
do something about it. They could borrow some budget from other
features they’re working on. Or there may be small changes they could
make to the feature that won’t substantially change the benefit users
get. Or they could just face the music and see what they can do to
change expectations with the people they’ve promised delivery to.

Depending on how bad it is, they may all need more beer.

When slicing out a development strategy, they’ll look to tackle the
things that may blow their budget as early as possible. Those are the
risky things. And it’s conversations with the whole team that help spot
them.

Manage Your Budget | 57

Exposing Risk in the Story Map
Chris Shinkle, SEP

A large security company set out to build a mid-price-point, wireless,
access control system for medium-size buildings (e.g., schools, doc‐
tors' offices, retail, etc.). The company hired SEP to develop the firm‐
ware within the locks as well as the wireless ZigBee gateway with
which they communicated.

The project was technically exciting, but had all the ingredients for
failure, including skimpy budget, tight timeline, midstream leader‐
ship changes, untested technology, and tons of scope bloat.

Of course, things quickly began to unravel. The project team had
missed several milestones. The client was unhappy and team morale
was low. During a retrospective, the team discovered the biggest driv‐
er for missing dates was unplanned work, mostly due to uncertainties
and realized risks. Something needed to change.

Like any group of smart engineers, the team tackled the problem head
on. Their solution? Modify the story map.

At a high level, they increased the frequency and fidelity of their story
map. By increasing the frequency of story mapping at each interim
release, they suspected they would increase the likelihood of identi‐
fying more risks. By increasing the fidelity of the map to include "Risk

58 | Chapter 4: Plan to Finish on Time

Stories" (in addition to normal Activities, Tasks, and Details), they
suspected they would be able to visualize, discuss, and better manage
the risks.

The results were astounding.

The team knew that the width and depth of a typical story map gave
a sense of the project size. They also knew the number of paths
through the map was a good indicator of complexity. But, since un‐
certainty and risk weren’t previously reflected in the story map, the
map didn’t depict the actual amount of work (including learning) to
be done.

The new map, with Risk Stories, gave a better picture for the size and
complexity of the road ahead. Project size and complexity were better
represented, because they were composed of both the original known
stories as well as the new "unknown stories"—the risks, or the knowl‐
edge the team needed to gain to confidently move ahead with the
known stories.

As you’d expect, the story map became much more useful for plan‐
ning. It now highlighted risks and uncertainties that would need time
from the team. The ability to incorporate that time into planning
made the team much more predictable and reliable.

Side benefits included a tangible way to measure and update stake‐
holders on learning. In conjunction with the traditional feature burn-
down chart, the team included a risk burn-down chart. It was partic‐
ularly helpful for the customer to see the risk burn-down data when
the feature burn-down didn’t look great.

At the end of the day, the team learned that increasing the frequency
of story map creation and adding new Risk Stories are powerful ways
to make your maps better reflect reality.

What Would da Vinci Do?
I often ask myself that. OK, I don’t really. But maybe I should.

What Mike and Aaron have done is to follow a strategy used by artists
to finish in time. It’s one I’ve used for years with software. And, when
I first met my friends at Globo.com, I found it’s one they use, because
as I mentioned before, if they’re late with cool, new interactive stuff
for the Olympics, the Olympic committee won’t reschedule the Olym‐
pics. I’ll guess this strategy is one you even use routinely, without
thinking.

Manage Your Budget | 59

1. I got the idea for this simple visualization from John Armitage’s 2004 paper "Are Agile
Methods Good for Design?" John describes approaching user experience design this
way. I’m suggesting we carry the metaphor into the way we build as well.

Let me first explain what da Vinci doesn’t do. But, unfortunately, it’s
too often what people building software do try to do.

Suppose you were da Vinci, and you wanted to create a painting and
were working the way a naïve software team does.1 You might start
with what you believe is a clear vision of the painting in your mind.
Then you break up the painting into its parts. Let’s say you had five
days to paint this painting. Every day you’d paint more parts. At the
end of day five, huzzah!—you’re done! What could be simpler?

Only, it doesn’t work like that—at least not for artists. This way of
creating things assumes our vision is correct and accurate. It also as‐
sumes something about the skill of the creator and her ability to pre‐
cisely define parts without seeing them in context. If you do this in
software development, it’s called an incremental strategy. It’s the way
a bricklayer might build a wall. And it works if each piece is as regularly
sized and well defined as a brick.

When I used to draw as a kid, I fell into this trap. I’d often be drawing
some sort of animal and start with the head. I’d work on that 'til it was
perfect, then continue to draw the rest of the body—legs, tail, and so

60 | Chapter 4: Plan to Finish on Time

on. By the time I got close to done, I could see that the proportions of
my animal had gotten a bit off. The head was too big, or too small for
the rest of the body. The legs seem to be twisted at an odd angle. And
the pose of the creature just seemed a bit stiff. At least, that was my
perspective as a talented six-year-old—and all six-year-olds are talen‐
ted artists.

It was later in life that I learned I’d benefit from sketching the whole
composition first. From there I could get proportions right, and make
changes to the pose of the creature. I’d maybe even reconsider what I
was going to draw.

I wasn’t there with da Vinci, but I expect he did something much the
same.

Even da Vinci would probably acknowledge that his vision wasn’t per‐
fect, and that he’d learn something as he was creating the painting. On
day one, I imagine he first sketched the composition, or maybe did a
light underpainting. I can imagine him at this point making changes
to the composition. "Hey, I think the smile is going to be an important
part. I’ll move her hand away from her mouth. And those mountains
in the background…too much."

By midweek, da Vinci is adding lots of color and form to the painting,
but he’s still making changes as he goes. By the end of the week, he
knows he’s running out of time, so all his effort shifts to refining the

Manage Your Budget | 61

painting. One wonders if the Mona Lisa missing her eyebrows was a
deliberate choice, or if da Vinci simply ran out of time to add a new,
fully refined feature.

Great art is never finished, only abandoned.
— Leonardo da Vinci

That quote is attributed to da Vinci, and it speaks to the notion that
we could continue to add and refine forever, but that, at some point,
we need to deliver the product. And, if da Vinci’s work and that of lots
of other artists are good examples, we—the people who appreciate the
work—have no idea it was abandoned. To us, it looks finished.

Iterative AND Incremental
An artist or author works this way. In fact, the people who put together
the morning paper or evening news work this way. The people who
create live theater work this way. Anyone who must deliver on a dead‐
line, and learn as he goes, recognizes this strategy.

Use iterative thinking to evaluate and make
changes to what you’ve already made.

In software development, iterate has two meanings. From a process
perspective, it means to repeat the same process over and over. That’s
why the development time-box used in Agile development is often
called an iteration. But when you use this term to describe what you’re
doing with the software you build, it means to evaluate and change it.
And changing software after it’s built is too often seen as a failure. It’s
where terms like bad requirements or scope creep get used to repri‐
mand the people who made decisions about what to build. But we all
know that change is a necessary result of learning.

Use incremental thinking to make additions.

Unfortunately, we can easily get trapped in the whirling eddies of iter‐
ation. So we’ve got to keep our eye on the calendar and keep incre‐
mentally adding more. The artist adds more not only by adding whole
new things to a painting, but also by building up things that were
already added.

62 | Chapter 4: Plan to Finish on Time

You might do the same things in software by first creating a simple
version of functionality without any extras. You might think of this as
your sketch. After using the simple version, you’d build it up by adding
more functionality to it. Over time, it builds up to be the finished
version you and others may have originally envisioned. If things go
really well, it builds up to something different than you originally en‐
visioned, but better because it benefits from what you’ve learned.

Opening-, Mid-, and Endgame Strategy
This may hurt your head a bit, but I’m going to mix some metaphors
here. I personally rely on a strategy based on a chess metaphor when
creating software. I’m a crap chess player who barely knows how to
play the game, so if I’m misusing the metaphor, you’re not allowed to
write me and correct me. No matter how small the product or feature
release, I prefer to slice my release backlog into three groups:
Opening game

Focus on the essential features or user steps that cross through the
entire product. Focus on things that are technically challenging
or risky. Skip the optional things users might do. Skip the sophis‐
ticated business rules you know you’ll need before you can release.
Build just enough to see the product working end-to-end.

Midgame
Fill in and round out features. Add in stuff that supports optional
steps users might take. Implement those tough business rules. If
you’ve done your opening game stuff right, you’ll be able to start
testing the product end-to-end for things like performance, scal‐
ability, and usability. Those are all the quality concerns that are
hard to bake in. We need to be aware of them, and constantly test
them.

Endgame
Refine your release. Make it sexier, and more efficient to use. Since
you can use it now with real data and at scale, here’s where you’ll
find improvement opportunities that were hard to see from a
prototype. It’s here that you’ll have feedback from users you’ll be
able to apply.

Opening-, Mid-, and Endgame Strategy | 63

Slice Out Your Development Strategy in a Map
If you’ve discovered what you believe is a viable first release to cus‐
tomers and users, work together as a team to slice that first public
release again into opening game, mid game, and endgame stories. The
team creating the product is best at identifying where the risks and
opportunities to learn are. They’ll feel the strongest ownership over
the plan they create together.

That’s what Aaron and Mike did with the help of their whole devel‐
opment team. Look again at how happy they are.

It’s All About Risk
In Chapter 3, Eric had to deal with the risk of identifying the wrong
product. He used a strategy of slicing out releases that allowed him to
put whole products in front of customers.

In this chapter, Aaron and Mike are focused on technical risk, the
things that might blow their delivery schedule or cause the feature to
cost much more than they expected. They won’t show what they end
up with at the end of every cycle to customers and users because they
already know it’s not sufficient. But they’ll take a good, hard look at it
themselves and with their team, and use what they learn to safely steer
the development of this feature.

64 | Chapter 4: Plan to Finish on Time

It’s subtle, but you might have caught in Chapter 2 that Eric was taking
two two-week sprints to build his next minimum viable product ex‐
periment. And he had to decide which things to build in the first sprint,
and which to build in the second sprint. He used this kind of thinking
to make those decisions. He and his team put the risky bits first—the
parts that Eric or his team wanted to see working sooner so that they
could course-correct before they put it in front of their customers.

Now What?
You’ve seen four pretty good examples of building and using maps for
different purposes. There are a lot more ways to use maps that we’ll
explore in later chapters. But before you get too far, I want to show
you my favorite trick for teaching others how to map. I promise if you
try it, you’ll map like an expert from that moment on.

Let’s pick up there in Chapter 5.

Now What? | 65

CHAPTER 5

You Already Know How

If you think that creating a story map is complicated, or mystical, or
in any way hard to do, let me assure you right now that it’s not. In fact,
you’re already wired to understand all the basic concepts used to create
a map. Let’s work through an example right now, taken from everyday
life. And, to make it simple, we’ll use your life. Along the way I’ll give
some names to those important concepts you already understand.

Grab a pad of sticky notes and a pen, and follow along with me. Don’t
worry—take your time. I’ll wait.

Ready?

1. Write Out Your Story a Step at a Time
Close your eyes, and think back to the moment you woke up this
morning. You did wake up this morning, right? What’s the first thing
you recall doing? Now, open your eyes, and write it down on a sticky
note. I’ll write along with you. My first sticky note says, "Hit snooze."
Unfortunately, it usually does. On bad mornings I may have to hit it
two or three times.

Now, peel off that sticky and put it on the table in front of you. Then,
think of the next thing you did. Got it? Now, write it on the next sticky,
peel it off, and place it next to the first one. Then keep going. My next
couple of stickies say, "Turn off alarm" and "Stumble to the bathroom."

Keep writing sticky notes until you’ve gotten ready for work, or what‐
ever you’re doing today. I usually end with "Get into my car" to start

67

my drive for work. I expect it’ll take you three or four minutes to write
all your stickies.

Tasks Are What We Do
Take a look at all the sticky notes you wrote. Notice how all of them
start with a verb? Well, almost all of them. These short verb phrases
like "Take a shower" and "Brush teeth" are tasks, which just means
something we do in order to reach a goal. When we describe the tasks
people using our software do in order to reach their goals, we’ll call
them user tasks. It’s the most important concept to building good story
maps—not to mention writing and telling good stories. You’ll find that
almost all the sticky notes in story maps about what people do using
your software use these short verb phrases.

Now stop here for a minute and think about how easy that was. I asked
you to write down what you did, and naturally out of your brain tasks
came out. I think it’s pretty cool that the most important concept is
the most natural.

68 | Chapter 5: You Already Know How

Don’t get too hung up on that word task. If you’re a project manager,
you’ve noticed project plans are full of tasks. If you’ve been using sto‐
ries in Agile development, you know that planning work involves
writing a bunch of development and testing tasks. If you’re neither a
project manager nor a software developer, watch out when you use the
word task because those other people might think you mean the kind
of tasks they usually think about, and they’ll tell you you’re using it
wrong.

User tasks are the basic building blocks of a
story map.

Now, count the number of tasks you wrote down.

Most people write somewhere between 15 and 25. If you wrote more,
that’s fabulous. If you wrote less, man, you’ve got a simple life. I wish
I could get ready in the morning that quickly. But you may want to
look back at your list and see if there’s anything you skipped writing
down.

My Tasks Are Different Than Yours
I’m sure this doesn’t come as a surprise to you, but people are different
from one another. You’ll see these differences expressed in the way
they choose to do things.

For instance, some people have both the motivation and self-discipline
to exercise almost every morning. If you wrote a couple of tasks related
to exercise, you rock! I’m still working on that myself.

Some people simply have more responsibilities because of the house‐
hold they live in. If you’ve got kids, I promise you wrote down several
tasks that people without kids didn’t. If you have a dog, you may have
a task or two dedicated to taking care of the dog.

Keep that in mind when you’re thinking about people using your soft‐
ware. They may have different goals when using it. They may use it in
different contexts that force them to take into account other people or
things.

1. Write Out Your Story a Step at a Time | 69

I’m Just More Detail-Oriented
In this exercise, some people just write a lot more details than oth‐
ers. They might take something like "Make breakfast" and instead write
"Put bread in the toaster," "Pour a glass of juice," or, if you’re my wife,
"Add kale to the smoothie," which is one of the tasks I really hate her
doing.

Tasks are like rocks. If you take a big rock and hit it with a hammer,
it’ll break into a bunch of smaller ones. Those smaller rocks are still
rocks. It’s the same thing with tasks. Now I don’t know when a rock is
big enough to be called a boulder, or small enough to be called a pebble,
but there’s a cool way to tell a big task from a small task.

My friend Alistair Cockburn described the goal level concept in his
book Writing Effective Use Cases (Addison-Wesley Professional).
Don’t worry, we’re not going to start writing use cases. It’s just that the
concept is really useful when we’re talking about human behavior.

Alistair uses an altitude metaphor where sea level is in the middle, and
everything else is either above or below sea level. A sea-level task is
one we’d expect to complete before intentionally stopping to do some‐
thing else. Did you write "Take a shower" in your list of tasks? That’s a
sea-level task because you don’t get halfway through your shower and
think, Man, this shower is dragging on. I think I’ll grab a cup of coffee
and finish this shower later. Alistair calls these functional-level tasks
and annotates them with a little ocean wave. But I’ll just call them tasks.

70 | Chapter 5: You Already Know How

Tasks like "Take a shower" break down into lots of smaller subtasks like
"Adjust water temperature" and "Wash hair," and, if you’re my wife,
something involving an exfoliating loofah thing. Remember, people
are different, and you’ll see behavior differences in the way they ap‐
proach tasks. Alistair annotates these with a little fish because they’re
below the ocean.

Finally, we could roll up a bunch of tasks into a summary-level task.
Taking a shower, shaving, brushing teeth, and all that other stuff you
do in the morning after you get out of bed could roll up into a summary
task. I’m not sure what I’d call it, though. "Getting cleaned up?" "Morn‐
ing ablutions?" Ablutions is a silly word. Don’t use that.

Use the goal-level concept to help you aggre‐
gate small tasks or decompose large tasks.

2. Organize Your Story
If you haven’t done this already, organize your tasks in a left-to-right
flow with what you did first on the left, and what you did later on the
right.

Try telling a story by pointing at the first sticky note and saying, "First
I did this," and then pointing to the next sticky and saying, "then, I did
this." Now keep going moving from left to right and telling your story.

2. Organize Your Story | 71

You can see that each sticky note is a step, and hidden in between each
sticky note is the nifty little conjunction phrase "…and then I…"

I’ll call this left-to-right order the narrative flow, which is a fancy way
of saying "storytelling order." We’ll call this whole thing a map and
that narrative flow is its left-to-right axis.

Wow, my flow got pretty wide. I started stacking things that happen
in and around the same time. As I lay out the flow, I see I already missed
a few details, and I’m trying to decide if they matter.

Maps are organized left-to-right using a nar‐
rative flow: the order in which you’d tell the

story.

Fill in Missing Details
The cool thing about this arrangement of sticky notes is that it allows
us to see the whole big story. Seeing the story organized in a narrative
flow allows you to more easily see the parts of the story that are missing.

Look back at your growing map and look for steps you might have
missed.

I added just a few more. There’s lots of details that are below sea level
that I’ve decided to not write down. If I did, there’d be hundreds of
stickies.

3. Explore Alternative Stories
So far this is dead obvious, right? Learning this was hardly worth the
paper you’re wasting. But wait, it’s about to get interesting.

72 | Chapter 5: You Already Know How

Take a minute and think about what you did yesterday morning. If
there are different things you did yesterday morning than you did this
morning, write them down and add them to your map.

Think of mornings when things went wrong. What if there was no hot
water? What did you do then? What if you were out of milk or cereal
or whatever you normally eat for breakfast? What if your daughter
flew into a panic because she forgot to do her homework that’s due
today, which is what happens in my house every once in a while. Then
what? Write tasks for what you’d do and add them to the map.

Now, think about your ideal morning. What would make your morn‐
ing perfect? For me, it would be getting some exercise and enjoying a
long breakfast while I catch up on some reading. But then I’d have to
get up a lot earlier and stop hitting snooze.

Notice also that you’ll want to put some tasks in a column, both to save
space and because they seem similar to other tasks you might normally
do. For example, you might find that you’ve got tasks for making a
really great breakfast that you can put in a column along with the tasks
for making the quick breakfast you normally make.

My friend David Hussman calls this "playing What-About," a phrase
you might remember from Chapter 2 and Chapter 3. Unfortunately,
we could play What-About for a long time and make this map huge.
I added a few more things to my map specifically for things I wish I’d
done, like exercising or doing a bit of relaxing reading during break‐
fast. I also added a few more common alternatives that often happen
in the morning.

Details, alternatives, variations, and excep‐
tions fill in the body of a map.

3. Explore Alternative Stories | 73

Keep the Flow
Notice that when you start to add these new tasks, you’ll likely have to
reorganize your narrative flow. I know I did. For instance, I’d need to
slip that exercise thing in between getting up and taking a shower. And
I’d have to add in "Put on exercise clothes," which isn’t the same as the
"Get dressed" step after taking a shower.

If you relax and put things where it seems natural, you’ll find a nar‐
rative flow that feels right. When you tell your story now, you’ll find
that you can tell it a bunch of different ways. You can tell the typical
day story, the fabulous day story, and the story that has an emergency
or two—all by pointing at different stickies as you talk through it from
left to right. Try using some other conjunctions to glue your tasks
together. You might say, "I usually do this, but sometimes I do this" or
"I do this, or this, and then this." (I’m expecting you to fill in the word
this with what you actually do, because I can’t see what you’re pointing
at from here.)

When I was a kid, there was a popular series of children’s books called
Choose Your Own Adventure. Maybe you remember them. The idea
was that you’d read to the end of a section and then be given a couple
of choices about what the hero of the story would do next. After each
choice was a page number. Once you made your choice, you would
turn to that page and continue reading the story from there. Truthfully,
I was never a fan of those books. I always seemed to end up at the same
place no matter what choice I made; there never seemed to be enough
choices to make a really great adventure. The map works a little like
that, except better. The number of ways through a map is almost lim‐
itless—which, if you’re thinking about the way real people might use
a software product to meet their goals, is actually pretty accurate.

If you want to make things really challenging, do this exercise with a
couple of people you work with. You’ll learn more than you ever want‐
ed to know about the people you work with, and you’ll have a bit of
fun finding a narrative flow everyone agrees on. By "fun," I mean "ar‐
gument." There are always people who eat breakfast before showering,
and some who eat after. There’s the great tooth-brushing debate—do
you brush before or after breakfast, or both?

Relax.

If you’re arguing, it likely means that it doesn’t matter. For instance,
putting breakfast before or after taking a shower is a matter of

74 | Chapter 5: You Already Know How

preference. Go with what’s most common for the group you’re working
with. You’ll find people won’t argue about things that do matter. For
example, putting "Get dressed" after "Take a shower" isn’t just a matter
of preference. Doing it the other way around results in showing up to
work wearing wet clothes.

4. Distill Your Map to Make a Backbone
By now, your map should be looking pretty wide, and if you’ve ex‐
plored lots of options, maybe a little deep. It’ll likely have 30 or more
tasks. It should look like the spine and ribs of a weird animal.

If you step back a bit and look across your map from left to right, you’ll
find there are bunches of stories that seem to go together—for in‐
stance, all those things you do in the bathroom to get ready, or all those
things in the kitchen to make breakfast, or that junk you do to check
the weather, grab a coat, and load your bag with your laptop or other
stuff you’ll need before leaving the house. Can you see those clusters
of tasks that seem to go together to help you reach a bigger goal?

Above each of these clusters of similar stickies, put a different colored
sticky note. Write a short verb phrase on it that distills all the tasks
underneath it.

If you don’t have a different color of sticky note, I’ll let you in on a
secret. Every package of sticky notes comes with two shapes! Rotate a
sticky note 45 degrees and, poof, you’ve got a cool diamond shape. Use
that if you want to make a sticky look different.

These sticky notes with a higher goal-level task are called activities.
Activities organize a bunch of tasks done by similar people at similar
times in order to reach a particular goal. When you read the activities
across the top of the map, they’re in a narrative flow, too. The row of
stickies is the backbone of the map. If you’ve got a map with lots of
stickies in it and you wanted to share it, a good way to start is by telling
a high-level story. Just read the backbone of the map, with the "…and
then they…" conjunction between each activity.

Activities aggregate tasks directed at a
common goal.

4. Distill Your Map to Make a Backbone | 75

Here’s my growing map with activities added to give the map a back‐
bone. It makes it easier to read and find things, at least for me. And it
makes it easier to really get the big picture of what’s going on in my
morning.

Activities and high-level tasks form the back‐
bone of a story map.

Activities don’t seem to have common language the way tasks do. For
instance, what do you call that thing you do before leaving the house?
That thing where you gather up your bag, find a shopping list, check
the weather, and grab an umbrella if you need it? I could call it "gath‐
ering up my junk." You might call it something different.

When you build these for your products and your customers, you’ll
want to call it what they call it.

5. Slice Out Tasks That Help You Reach a
Specific Outcome
Now, here’s the really cool part—the part where you get to use the map
to help you imagine something that didn’t happen.

If you look at the map you’ve built, you’ll probably see "Hit snooze" or
"Turn off alarm" somewhere on the left edge. Imagine that this morn‐
ing you can skip that one. You can skip it because last night you forgot
to set your alarm. Your eyes shot open and looked at your clock and
you saw you needed to be somewhere in just a few minutes. You’re
really late! Don’t panic—we’re just pretending.

Write "Get out the door in a few minutes" on a sticky and place it to
the left of the map near the top. Now, imagine a line slicing through
the middle of the map left to right—kinda like a belt. Now, move all
the tasks below that line if you wouldn’t do them to reach the goal of

76 | Chapter 5: You Already Know How

getting out in a few minutes. Don’t move the activities down, even if
there are no tasks left under them. Having the activity with no tasks
in it lets you show that you aren’t going to hit that goal this morning.

You’ll likely be left with just a few tasks in the top slice. Now go back
through the flow and fill in tasks that are missing and that you would
do if you were late. For example, you might normally take a shower,
but when you’re late you instead add in tasks like "Splash water on
face" or "Use a washcloth to wash the particularly stinky parts of my
body." When doing this activity with a group of developers, I often see
the task "Apply extra deodorant." I’m not judging. I’m just saying.

Here’s my map sliced to find the tasks I’ll need to get out the door in
a few minutes.

You can try this trick by thinking of different goals to hang on the left
side. Like "Have the most luxurious morning ever" or "Leave for a two-
week vacation." You’ll find the narrative flow stays pretty durable, but
that you’ll need to add or remove tasks to help you reach that different
goal.

Use slices to identify all the tasks and details
relevant to a specific outcome.

That’s It! You’ve Learned All the Important
Concepts
That was really easy, wasn’t it? As you built this map you learned that:

• Tasks are short verb phrases that describe what people do.
• Tasks have different goal levels.
• Tasks in a map are arranged in a left-to-right narrative flow.

That’s It! You’ve Learned All the Important Concepts | 77

• The depth of a map contains variations and alternative tasks.
• Tasks are organized by activities across the top of the map.
• Activities form the backbone of the map.
• You can slice the map to identify the tasks you’ll need to reach a

specific outcome.

Do Try This at Home, or at Work
Now, I’m pretty sure a great number of you were just reading along
and not really mapping as you read. Don’t think I didn’t notice. But if
you’re one of those slackers who didn’t map your morning, promise
me you will try it. It’s hands down my favorite way of teaching these
basic mapping concepts. If you’re trying out mapping for the first time
in your organization, get a small group of people together and run
through this exercise. You’ll all learn the basics. And you’ll be well on
your way to being able to map anything.

Do You Need to Shower Before Work?
Rick Cusick, Reading Plus, Winooski, Vermont

We ran the morning map exercise with four developers, the product
owner, a tester, a UX lead, and two of our product trainers. Split into
two teams, we captured each person’s morning rapidly, and then sor‐
ted and resorted our respective mornings into a single representation
of what "an average morning" looked like. People enjoyed the work
of building the map, even though they had never done it before or
considered it in terms of building our own product’s experience.

My goals in approaching the exercise were to promote the efficiency
of visualizing our work, demonstrate how putting the map together
created shared understanding, and leverage the value of seeing the

78 | Chapter 5: You Already Know How

experience in an accessible format. The unexpected benefits were the
effects of close collaboration—working as a team on a project where
the goal was revealed through the work itself—and the moments of
empathy for one another. "I didn’t realize you dropped your kids off
at school every day." "You do yoga in the morning before work?" "I
can’t go without breakfast—I’ll be useless!"

There was some confusion around events that happened simultane‐
ously, or with causality. "If I read the paper while I’m drinking coffee,
is that one or two sticky notes?" "On Fridays, my wife takes the kids
to school, so how do I represent that?" The other challenge was a
concern that the linear nature of time in a left-to-right story map
wasn’t able to capture all possibilities. As the facilitator, I found it
gratifying to see that kind of thinking in progress during the exercise,
even if I didn’t have all the answers right then.

As we prioritized activities, some hard choices were made to comic
effect. "Do we need to shower before work?" is a funny if somewhat
odiferous joke that popped out. "No matter what else we cut out, we
have to wake up, get dressed, and drive to work," observed one par‐
ticipant, with another quickly piping up, "Unless you are working
from home!"

Soon after this exercise, story maps became our preferred way to
communicate an experience, prioritize user stories, and schedule
iterations and releases. It had entered the company’s vernacular and
the development culture, and continues through the present day.

One lesson I learned, having run this same exercise now for multiple
teams in our organization, is to use an icebreaker to prime the mindset
of the participants. Start the session by having each person write just
one thing he or she did between waking up and getting to work. Then
ask each person to answer the question: "Why did you take that ac‐
tion?" I found that this starts a background mental thread that shows
up in later planning sessions: "What is the value of this user story?
Why would our users do this?"

It’s a Now Map, Not a Later Map
I suspect a few of you caught this, but the map you just created has a
fundamental difference from the maps created in the first four chap‐
ters. The maps Gary, Globo.com, Eric, and Mike and Aaron created
all imagine how users will use their products in the future—later, after
the product is delivered. They wrote tasks and activities that they

It’s a Now Map, Not a Later Map | 79

imagined people doing in the product. But the map you created is a
map about the way you do things now—this morning, as a matter of
fact. And, as it turns out, the concepts are the same in both. So be
relieved I haven’t wasted your time.

One of the cool things about "now story maps" is that you can build
them to better understand how people work today. You just did this
to learn how you got ready this morning. You can learn even more if
you go back and add other things to the map. The easy things to add
are:
Pains

Things that don’t work, parts people hate

Joys or rewards
The fun things, the things that make it worth doing

Questions
Why do people do this? What’s going on when they do?

Ideas
Things people could do, or that we could build that would take
away pain, or make the joys even better

Lots of people in the user experience community have been building
these for years to better understand their users. Sometimes they’re
called journey maps, but they’re the same basic idea.

80 | Chapter 5: You Already Know How

Try This for Real
In the early 2000s, I led a team at a small product company called
Tomax. We built software for brick-and-mortar retailers—those shop‐
ping places we used to go to before spending all our time online. We’d
taken on a new customer that ran a large chain of paint and interior
decoration stores. Now, we knew quite a bit about retail—and about
the users who sold things at point of sale and managed inventory—
but there were some things we didn’t know that were specific to paint
and decor stores. For instance, we didn’t know how to sell custom-
tinted paint or custom blinds. And we had to learn fast.

To help us learn, we asked for the help of these three ladies. They’re
not software people. They’re interior decorators working for the com‐
pany that wanted our software. From them we learned the ins and outs
of selling custom blinds. So that we could learn quickly, we asked them
to think back to the last time they sold custom blinds. We asked them
to write down everything they did—from the moment a customer
contacted them, until the moment the blinds were installed and their

Try This for Real | 81

customer was happy. Now that should sound familiar, because we
asked them to do the same thing you just did to map your morning—
and it went pretty much the same way. They could name what they did
to sell custom blinds as easily as you could name what you did to get
ready in the morning. And, when we organized their tasks, we all
learned that there wasn’t any one way to do things, that they each did
things differently or in a different order. You’ll see the same thing if
you try the getting-up-in-the-morning map with a small group of dif‐
ferent people.

From this simple storytelling and mapping activity, we all built shared
understanding of how they worked now. It was from here that we could
begin to translate this map into the things they’d need to do in the
software we’d create later.

With Software It’s Harder
I won’t lie to you. If you’re a software professional, it may take you a
while to stop talking about features and screens, and to start writing
short verb phrases that say what people are really trying to do. Keep
practicing. You’ll get it.

This will be really hard if you don’t know exactly who your user is,
what she’s trying to accomplish, or how she goes about it. Sadly, trying
to build a map in this situation will just point out what you don’t know.
If that’s where you are, then you’ll need to learn more about people
and what they do. Better yet, work with them directly to create a map.

82 | Chapter 5: You Already Know How

Six Simple Steps to Story Mapping
I can boil down the last four chapters into just six steps. You might be
thinking, Why didn’t he do that in the first place? But then I’d have
skipped telling you the stories, and just given you the requirements.
And that just doesn’t work.

While I know there are lots of right ways to build up and use a story
map, I have found that the following six-step process works well for
me:

1. Frame the problem. Who is it for, and why are we building it?
2. Map the big picture. Focus on breadth, not depth. Go a mile wide

and an inch deep (or a kilometer wide and a centimeter deep, for
my friends in the rest of the world). If you don’t have a clear
solution in mind, or even if you think you do, try mapping the
world as it is today, including pains and joys your users have.

3. Explore. Go deep and talk about other types of users and people,
how else they might do things, and the kinds of things that can
(and likely will) go wrong. For extra credit, sketch, prototype,
test, and refine solution ideas—changing and refining the map
as you go.

4. Slice out a release strategy. Remember: there’s always too much
to build. Focus on what you’re trying to achieve for your business,
and on the people your product will serve. Slice away what’s not
needed to reveal minimum solutions that both delight people and
help your organization reach its goals.

5. Slice out a learning strategy. You may have identified what you
think is a minimum viable solution, but remember that it’s a hy‐
pothesis until you prove otherwise. Use the map and discussion
to help you find your biggest risks. Slice the map into even smaller
minimum viable product experiments that you can place in front
of a subset of your users to learn what’s really valuable to them.

6. Slice out a development strategy. If you’ve sliced away everything
you don’t need to deliver, you’ll be left with what you do need.
Now slice your minimum viable solution into the parts you’d like
to build earlier and later. Focus on building things early that help
you learn to spot technical issues and development risks sooner.

With Software It’s Harder | 83

The Map Is Just the Beginning
Building a map helps you see the big picture, to see the forest for the
trees. That’s one of the biggest benefits of story mapping. But if you’re
the one responsible for building the forest, you’ll need to do it one tree
at a time. You’ve already learned the two most important things that
make stories work:

• Use storytelling with words and pictures to build shared
understanding.

• Don’t just talk about what to build: talk about who will use it and
why so you can minimize output and maximize outcome.

Keep these things in mind, and everything will fall into place as you
go forward.

It’s time we talked about some of the tactics for using stories "tree by
tree," because a lot can go wrong, and there are a few more things you
need to know to use stories well.

User Story Mapping at SAP—It’s All About Scaling
Andrea Schmieden

When Jeff first presented his concept of user story mapping, it im‐
mediately made sense to us at SAP. It seemed to be a simple yet pow‐
erful method to turn a product vision into a backlog, and understand
what we were going to develop, for whom, and why. So we decided to
give it a try.

Yet, as we soon were to discover, what might be a simple thing for a
lone entrepreneur or an individual Scrum team is a completely dif‐
ferent beast for product development teams consisting of several
Scrum teams. At SAP, with its large development organization of
about 20,000 developers, large product development teams with de‐
pendencies on other teams are generally the norm, not the exception.
We needed to come up with a reliable way to scale user story mapping
for a large organization.

The Challenge
So, the challenge for us was two-fold:

• How can we map complex products without getting lost in
stickies?

84 | Chapter 5: You Already Know How

1. Cover Story is one of the many great practices found in the book Gamestorming by
Dave Gray, et al. (O’Reilly).

• How can we popularize the method within the development or‐
ganization and enable people to use it?

1. User Story Mapping for Large Products
To find answers to the first question, we decided it was best to run a
few pilot workshops with actual projects. We started out with a small
team of enthusiastic coaches and approximately 10 pilot projects, the
largest consisting of 14(!) Scrum teams. In this pilot phase, we varied
the method in several aspects, such as workshop formats, contents,
project phases, map formats, and more. After several feedback rounds
and iterations, we arrived at a set of good practices that for now seem
to work pretty well in our large-scale development context.

Key Good Practices
When a team first uses user story mapping, we recommend the in‐
volvement of an experienced coach. The coach sets up a meeting with
the requestor and discusses the workshop goals, whom to invite,
agenda, relevant inputs, and so forth. Typically, we do a facilitated
one-day workshop with the whole team and smaller follow-up ses‐
sions as required.

On the day of the workshop, we typically start with a product vision
exercise such as the well-known Elevator Pitch or the Cover Story1

format where the team describes what they would like to read about
their product in a trade journal article a year from now. This shows
whether the team has a common understanding about the general
direction, or whether they might need to invest in some additional
research (e.g., additional interviews, prototype testing, etc.).

The next step is to look at the typical users of the product. If the
workshop goal is to specify a detailed backlog, the user roles or per‐
sonas should result from the user research phase. If the project is in
an early phase, the team writes down their assumptions. These can
then be tested in user research phases. This has proven to be a good
way to prepare the user research. This is also an aspect where design
thinking practices and user story mapping work very well together.

We next use a three-tier approach to defining user stories: (1) start‐
ing with high-level usage steps, these are broken down into (2) finer
activities per user role, which in turn are broken down into (3) con‐
crete user stories in the format "as <role>, I want <functionality>, so

The Map Is Just the Beginning | 85

http://gamestorming.com/?s=cover+stor
http://gamestorming.com/?s=cover+story

that <value>." These user stories add up to a first product backlog.
This three-tier approach is especially useful for bigger projects. On
each tier, the team can decide where it makes sense to drill down into
the details and where dependencies to other teams need to be con‐
sidered. This approach helps focus on the key development tasks at
hand while keeping the big picture in mind.

To make the map easier to grasp, we use color-coded stickies for ac‐
tivities and user stories related to an individual persona or role, as you
can see in the following graphic.

Often, while the team is creating the map, additional aspects come
up, such as "white spots" where the team needs to do more research,
or open questions, dependencies, or gaps. To highlight these issues,
we use stickies in different colors or different sizes. At first it might
seem awkward to put all these open issues on the map. However, in
our experience, this is one of the most useful aspects of the mapping
process: you get an honest and tangible impression of the things that
need further clarification. After the issues are on the table, it’s a lot
easier to tackle them.

When the team has reached a reasonable level of detail, we prioritize
the user stories in the backlog. Depending on the size of the project
and the project phase, this is sometimes done even on the activities
level rather than the user stories level. We typically use simple voting
techniques, such as dot voting. Sometimes, we use a simplified Kano
model for the voting, which means that the teams tag user stories as
"Must haves," "Delighters," or "Satisfiers." These simple voting results
are again a good basis for further alignment and validation with
stakeholders, end users, and customers.

86 | Chapter 5: You Already Know How

As one of our product owners put it, "As a product owner, you often
have the challenge to fit lots of requirements into a very tight timeline.
We invited our customers to a one-day user story mapping workshop,
and it proved to be a very efficient and effective way to get to a com‐
mon understanding of their priorities."

Further details, detailed effort estimations, and so forth are usually
not part of the workshop, but rather are discussed in smaller groups
afterward.

2. Scaling User Story Mapping
To scale and roll out this approach, the initial team of coaches pro‐
vided materials such as an Excel-based template for maps, templates
for personas, a standard workshop agenda, wiki articles, and method
description "cheat sheets." In addition, an internal tool for user story
mapping is being developed.

However, materials are one thing, and running a workshop is another.
So, again, we strongly recommend involving an experienced coach in
the process. To be able to provide enough coaches, the initial coaching
team trained more coaches. These "junior coaches" attended a work‐
shop with a senior coach, facilitated individual sessions, and then ran
workshops on their own. We also ran workshops and "train the train‐
er" sessions in SAP’s main development locations worldwide. To make
sure we learn from one another, and from the various experiences,
we implemented a global network call where coaches can share ques‐
tions and good practices backed up by wiki pages and communities
of practice. And, last but not least, we learned a lot from numerous
great exchanges with Jeff.

Our efforts at scaling user story mapping were successful. We ran
more than 200 facilitated workshops in various units and locations,
and now most teams are able to use user story mapping successfully
on their own.

The Map Is Just the Beginning | 87

CHAPTER 6

The Real Story About Stories

Story mapping is a remarkably simple idea. Using a simple map, you
can work with others to tell a product’s story and see the big picture
form as you do. Then, you carve up that big picture to make good
planning decisions. Underneath all that is the simple concept of Agile
stories.

Kent’s Disruptively Simple Idea
The idea of stories originated with a very smart guy by the name of
Kent Beck. Kent was working with other people on software develop‐
ment in the late '90s, and he noticed that one of the biggest problems
in software development sprang from the traditional process approach
of using documents to describe precisely what we want—that is, the
requirements. By now you know the problem with that. Different
people can read the same document and imagine different things. They
can even "sign off " on the document believing they’re in agreement.

89

It’s later, when we get into the thick of developing software—or even
later than that, after it’s delivered—that we realize we weren’t thinking
of the same things. Lots of people call this lack of shared understanding
"bad requirements."

Let me vent a minute here. I have the pleasure of working with lots of
teams. And we often start work together by talking about their biggest
challenges. And, hands down, the one I hear most is "bad require‐
ments." And then everyone points at that document. The document
writer feels bad—as if he should have written more, or less, or used
some cool requirements technique. Those who signed off feel bad at
first, and then indignant. "Surely you didn’t expect I’d read every detail!
After all, we talked about this for days. I just expected you’d understood
what I said. I can’t understand your silly requirements document any‐
way." And the people building the software feel blindsided. They mud‐
dled their way through those cryptic documents and what they built
was still wrong. Everyone hates the document in the end. Yet we still
keep trying to write a better one.

We can both read the same document, but
have a different understanding of it.

90 | Chapter 6: The Real Story About Stories

But misunderstanding the document is only half the problem. We
waste lots of time and money building what the document describes,
only to find out later that what actually solves the intended problem
is something very different. You heard me right. Those documents
often accurately describe the wrong thing. Documents usually de‐
scribe what we need, but not why we need it. If the person building
software could simply speak with someone who understood the users
who will be using the software and why they’ll be using it, there’s often
a more cost-effective way to delight those users. Without talking, we
just never know about it.

The best solutions come from collaboration
between the people with the problems to solve

and the people who can solve them.

Kent’s simple idea was to stop it—to stop working so hard on writing
the perfect document, and to get together to tell stories. Stories get their
name not from how they’re supposed to be written, but from how
they’re supposed to be used. Let me repeat that with more emotion.
Right now you should stop whatever you’re doing and say this out
loud:

Stories get their name from how they’re sup‐
posed to be used, not from what you’re trying

to write down.

Kent’s idea was simple. If we get together and talk about the problem
we’re solving with software, who’ll use it, and why, then together we
can arrive at a solution, and build shared understanding along the way.

Simple Isn’t Easy
A while back I began to notice that this entire story thing had gone a
bit sideways; that is, lots of the people writing books, teaching, and
using them focused on the activity of writing stories. If I had a dime
for every time I’ve been asked how to write good stories, I’d have even
more dimes than I collected a few chapters ago.

With all the focus on writing stories, I went back to Kent to make sure
I wasn’t missing something here. Over the course of an email conver‐
sation, Kent explained where the idea came from:

Simple Isn’t Easy | 91

1. There’s some evidence that a fact wrapped in a story is much more memorable than
the fact presented alone—22 times more memorable, according to psychologist Jerome
Bruner.

What I was thinking of was the way users sometimes tell stories about
the cool new things the software they use does. [For example,] if I
type in the zip code and it automatically fills in the city and state
without me having to touch a button.
I think that was the example that triggered the idea. If you can tell
stories about what the software does and generate interest and vision
in the listener’s mind, then why not tell stories before the software
does it?

— Kent Beck via personal email, Aug 2010

So the idea is telling, and you know you’re doing it right if you’re gen‐
erating energy, interest, and vision in the listener’s mind. That’s big.
And it sounds a lot more fun than reading a typical requirements
document.1

But folks who start using stories for software development—and who
still have a traditional process model in their heads—tend to focus on
the writing part. I’ve seen teams replace their traditional requirements
process with story writing, and then get frustrated trying to write sto‐
ries to precisely communicate what should be built. If you’re doing
that now, stop it.

If you’re not getting together to have rich dis‐
cussions about your stories, then you’re not

really using stories.

Ron Jeffries and the 3 Cs
In the book Extreme Programming Installed, Ron Jeffries et al.
(Addison-Wesley Longman Publishing) describe the story process
best:
Card

Write what you’d like to see in the software on a bunch of index
cards.

Conversation
Get together and have a rich conversation about what software to
build.

92 | Chapter 6: The Real Story About Stories

Confirmation
Together agree on how you’ll confirm that the software is done.

If it sounds simple, it’s because it is. Just remember, simple isn’t easy.

1. Card
Imagine you’re responsible for working with a team to get some soft‐
ware built. Imagine that software as best you can. Then, for each thing
users want to do with the product, write a card. You’ll end up with a
bunch of them. Kent’s original idea was to write them on index cards
because it’s easy to organize a bunch of cards on a tabletop. It’s easier
to prioritize them, or organize them into a structure that helps you see
the big picture—a structure like a story map, of course.

The bunch of cards that describes the whole product, or all the changes
we’d like to make to a product we have, is called a product backlog.
That term originated with the Agile process Scrum. Someone I know
once said, "I hate that term backlog. We haven’t even started to build
software, and it already sounds like we’re behind!" I’m not sure I have
a better name for that bunch of stories, but if you can think of a good
one, please use it, and let me know what it is.

2. Conversation
The conversation might start with you describing what you’re think‐
ing, and the person listening might form an idea in her head based
upon what she heard. Because it’s hard to explain things perfectly, and
because it’s easy to imagine different things based on our past

Ron Jeffries and the 3 Cs | 93

experience, the listener likely imagined something different than you.
But that’s where the magic comes in.

Because this is a conversation, the listener can ask questions and it’s
the back and forth that will correct that understanding and help ev‐
eryone arrive at some shared understanding.

In a traditional software process, the goal for the person who had the
requirements is to get them written down correctly; and for the person
who’s going to build the software, it’s to understand them correctly.
Because this is a story-driven process, you each have a different shared
goal. Your goal is to work together to understand the problem being
solved by building software, and solve it as best you can. Eventually,
you’ll need to agree on what you should build that you both believe
will help the users of the product.

Let me say this again, because it’s an important point:

Story conversations are about working to‐
gether to arrive at a best solution to a problem

we both understand.

3. Confirmation
All this talking is cool, but we’ve eventually got to build some software
—right? So, when we feel like we’re converging on a good solution,
we’ll need to start focusing on the answer to these questions:
If we build what we agree to, what will we check to see that we’re
done?

The answer to this question is usually a short list of things to
check. This list is often called acceptance criteria, or story tests.

When it comes time to demonstrate this later at a product review,
how will we do that?

The answer to this question often reveals some holes. For example,
you could make the software work, but to demonstrate it you’ll
need to get your hands on some realistic data. Discussing dem‐
onstration may add a few more bullets to your list of acceptance
criteria.

94 | Chapter 6: The Real Story About Stories

Words and Pictures
The path to get to this agreement isn’t just a single card and lots of
hand waving. The conversation goes best if it includes lots of things
such as simple personas, workflow diagrams, UI sketches, and any
other traditional software model that’ll help explain things. That way,
you don’t have to just wave hands—you can point a lot, too. Whatever
we bring into the conversation we’ll mark up, write on, correct, and
change. We’ll even create a lot of things on the spot during that con‐
versation. Use a whiteboard or flipchart paper. And don’t forget to take
some "vacation photos" before you leave. Photos of what you’ve created
will help you recall all the details of the conversation that would be
difficult to write down.

Good story conversations have lots of words and pictures.

Words and Pictures | 95

Keep the acceptance criteria you decide on big and visible during the
conversation. This team uses flipchart paper to record as they go.

That’s It
That’s all there is. That’s Kent’s disruptively simple idea. And, if you do
it, I promise you it’ll change everything.

Unless it doesn’t.

For people used to working the old-fashioned way, this conversation
can go really badly. They fall back into their old patterns of the person
bringing in stuff, trying to work hard to communicate exactly what he
wants to the other person, and the other person working hard to try
to understand and then punch holes in what the other person is saying.
If this goes on too long, they often feel like punching holes in each
other, which is not conducive to getting things done.

There are some things to keep in mind to help these conversations go
better. Happily, that’s what the next chapter is about.

96 | Chapter 6: The Real Story About Stories

CHAPTER 7

Telling Better Stories

The idea of stories is simple. Maybe too simple. For lots of people in
software development, conversations like these feel very foreign…and
a little uncomfortable. And people often revert to talking about re‐
quirements like they always used to.

When Kent Beck originally described the idea of stories, he didn’t call
them user stories, he just called them stories—because that’s what he
hoped you’d be telling. But very soon after the first books on Extreme
Programming were published, stories picked up the more descriptive
prefix user so that we’d remember to have conversations from the per‐
spective of the people outside the software. Changing the name wasn’t
enough, however.

Connextra’s Cool Template
This is my friend Rachel Davies. And she’s holding a story card.

97

In the late 1990s she worked for a company called Connextra. Con‐
ntextra was one of the earliest adopters of Extreme Programming, the
Agile process where stories came from. When the Connextra folks
started using stories, they found they ran into some common prob‐
lems. Most of the people who wrote the stories at Connextra were from
sales and marketing. They tended to write down the feature they
needed. But, when it came time for developers to have conversations,
they needed to find that original stakeholder and get a good conver‐
sation started—one that included who and why. Just having the name
of the feature wasn’t helping the team find the right people to talk to,
or to start the right discussions. And, back then, there wasn’t much
guidance about what could or should be on a card. The template
evolved over time at Connextra. It wasn’t Rachel’s invention specifi‐
cally. Rather, it was the entire organization’s desire to build things that
mattered.

After using the template for a while, the folks at Connextra wanted to
show off their cool new trick. They printed a bunch of example cards
to show off at XPDay 2001, a small conference in London. That’s what
Rachel is holding. It’s her last card, and might very well be the last card
in existence, so that makes it a historical artifact.

98 | Chapter 7: Telling Better Stories

The template goes like this:
As a [type of user]
I want to [do something]
So that I can [get some benefit]

The folks at Connextra used this simple template to write the descrip‐
tions of their stories. Note that their stories still have short, useful titles.
They found that writing this little extra bit to start to tell the story
forced them to pause and think about: who, what, and why. And, if
they didn’t know, they might question whether they should be writing
the story at all.

When they sat down to have the story conversation, they’d pick up
that card and then read that description. That description started the
conversation.

Use the simple story template to start
conversations.

If you’re picking up an individual card outside of a story map, the
template is a good way to boot up the conversation. Remember in
Chapter 1 that one of the cards in the body of Gary’s map said, "Upload

Connextra’s Cool Template | 99

an image." And that card was one of the details under the card
"Customize my promo flyer." What I write on the cards in a map are
those short verb phrases—the tasks the users are performing with my
software. But when I pick one up by itself, I’ll need to pick up the story
in the middle of the user’s big journey described in the map. I might
say:

"As a band manager, I want to upload an image so that I can customize
my promo flyer."

That’s a pretty cool trick. I can find the cards for different users hanging
above the map, and the users' bigger goal is often in the card above the
one you’re viewing at any one time.

But remember—it’s just a conversation starter. And, in fact, the con‐
versation might continue like this:

"Why would the band manager want to customize the flyer?"
"Well, because it won’t have his band’s photo on it automatically, and
he’d want it to be there. And he cares a lot about being original—he
wouldn’t want it to look like everyone else’s."
"That makes sense. Where do people like band managers keep those
photos?"
"Well, they’re all over the place, really. They may be on their local hard
drives, in Flickr accounts, or in other places on the Web."
"Hmm…that’s different than I was originally thinking. I assumed
they’d just be on their hard drives."
"No, lots of the people we’ve talked to have them spread all over the
place. It’s kind of a problem."

In fact, a lot of the conversation I had with Gary went like that. As we
were talking, we’d write something down on a whiteboard or on the
card itself. Before too long we’d be sketching ideas.

You can see that the very short template isn’t nearly enough to be the
specification. But when we start a conversation using that template,
we end up in a much richer conversation than if we’d just talked about
a file uploader.

Rediscovering the Small Conversation
Mat Cropper, ThoughtWorks

I was working as a business analyst on a ThoughtWorks project for a
UK government agency. We were responsible for delivery, but also

100 | Chapter 7: Telling Better Stories

for giving the client team some practical experience around Agile
methodologies. That being the case, we were quite a big team of some
25 or so technologists and businesspeople. One room, 25 different air
conditioning setting preferences—you get the idea!

To start off, the product owner and I would write stories, and then at
the beginning of every two-week iteration, the entire team got to‐
gether for planning. It was a necessarily big meeting, and it was a car
crash. "Why are we doing it this way?" "These stories are way too big/
small." "It doesn’t make sense." "I have this strong preference for a
particular technical implementation." These were common (and frus‐
trating) discussions. To be honest, I left those meetings feeling pretty
dejected. It felt like a personal failure.

Something had to be done to fix this, so we decided that rather than
have one meeting with everybody to discuss everything, we would
move to conversations with a tighter focus. Backlog grooming, for
example, took place in week one of the iteration with a small group
(project owner, project manager, business analyst, technical architect)
who kicked the tires of the various stories so that when we did a
grooming session as a full team later there would be much fewer dis‐
tractions. The conversation was about tweaking and improving our
stories, and we ignored things like prioritization, story points, and so
forth. It worked.

We also made sure that we were much more constructively creating
stories. I’d have an idea of the stories I was working on that week, and
they’d be up on the card wall in the "In Analysis" column. Each day
in our team’s standup, I’d call out that I was working on a particular
story, and could use some time from a developer pair to pull it to‐
gether. We’d sit down, discuss what we were aiming for, usually touch
on the technical aspects, and then get it all down on paper. We ignored
Trello, which we were using for our digital card wall at the time, and
focused instead on the face-to-face conversations, sometimes stand‐
ing at a whiteboard. Working as a group, down in the detail, is actually
pretty rewarding, and as it took only about 20 minutes each time, it
wasn’t too much of an overhead either. People were genuinely happy
to pair and contribute.

As a happy consequence, our large backlog grooming sessions were
a breeze, and we also found that story sizes were becoming more and
more uniform. Iteration planning became less of a pain as a result.
The quality of the conversations leading to the documenting of a story
had improved, and so had the work we were producing.

Connextra’s Cool Template | 101

Template Zombies and the Snowplow
The term template zombies comes from the book Adrenaline Junkies
and Template Zombies: Understanding Patterns of Project Behavior by
Tom DeMarco et al. (Dorset House). The name says it all, but I’ll give
you the authors' definition:

Template Zombie:
The project team allows its work to be driven by templates instead of
by the thought process necessary to deliver products.

As simple as that template is, it gets abused quite a bit. I see people
really struggle to force ideas into the template when they just don’t fit.
Stories about backend services or security issues can be challenging. I
see people writing and thinking about things from their own perspec‐
tive, not that of the people who ultimately benefit: "as a product owner,
I want you to build a file uploader so that the customer requirements
are met." Nasty things like that.

Even worse, the template has become so ubiquitous, and so commonly
taught, that there are those who believe that it’s not a story if it’s not
written in that form. Many people have even quit using titles on stories
and write only that long sentence on every single card. Imagine trying
to read through a list of stories written that way. Imagine trying to tell
someone a story using a story map where every sticky is written that
way. It’s tough on the brain.

All of this makes me sad. Because the real value of stories isn’t what’s
written down on the card. It comes from what we learn when we tell
the story.

It doesn’t need to be written in a template to
be considered a story.

102 | Chapter 7: Telling Better Stories

1. This photo was taken by Ruth Hartnup, found on Flickr, and licensed under the Cre‐
ative Commons Attribution License.

The person in this picture is learning to ski.1 If you’ve ever learned to
ski, and someone helpful is teaching you, you’ll do what this person is
doing. It’s called a snowplow. It’s where you put the tips of your skis
together and lean on the inside edges of your skis. It’s the easiest way
to control your speed and stay upright when you’ve got two slippery
boards clamped to your feet. It’s the way I’d recommend learning to
ski. But it’s not best practice—it’s a best learning practice. There’s no
Olympic snowplow event. You won’t impress anyone on the slopes
with your cool snowplow stance. It’s nothing to be embarrassed of,
though. If people see you skiing that way, they’ll know you’re learning.

For me, the story template works a bit like learning the snowplow. Use
it to write the descriptions of your first stories. Say it aloud to start
your story conversations. But don’t get too concerned if you find that

Template Zombies and the Snowplow | 103

it doesn’t always work. Just like the snowplow technique for skiers, it’s
not the best choice for difficult terrain.

My favorite template: if I’m writing stories on sticky notes or cards,
and they won’t be sitting inside a bigger story map, I’ll first give them
a short, simple title, and then under it I’ll write:

Who:
What:
Why:

And I’ll give a couple of lines in between each, because I’ll want to
specifically name all the different whos, say a little about the what, and
make notes about the different reasons why. I’ll want to leave room on
the card to add extra information when we start talking about the
stories. It’s actually a pet peeve of mine when people write the title in
the middle of the card, because it doesn’t leave me any room to make
notes when we start talking. But I’m nitpicky that way.

A Checklist of What to Really Talk About
▢ Really talk about who

Please don’t just talk about "the user." Be specific. Talk about which
user you mean. For Gary, he could talk about the band manager
or the music fan.

Talk about different types of users. For many pieces of software,
especially consumer software, there are very diverse types of users
using the same functionality. Talk about the functionality from
different users' perspectives.

Talk about the customers. For consumer products, the customer
(or chooser) may be the same person as the user. But for enterprise
products, we’ll need to talk about the people who make buying
decisions, their organization as a whole, and how they benefit.

Talk about other stakeholders. Talk about the people sponsoring
the software’s purchase. Talk about others who might collaborate
with users.

There’s rarely just one user who matters.

▢ Really talk about what
I like my stories to start with user tasks—the things people want
to do with my software. But what about services like the kind way

104 | Chapter 7: Telling Better Stories

beneath the user interface that authorizes your credit card for a
purchase, or authenticates you on an insurance website? Your
users didn’t make a deliberate choice to get their credit cards pass:
[authorized] or have their credentials verified. It’s OK to talk about
the services and the different systems that call them. It’s OK to talk
about specific UI components and how the screen behaves. Just
don’t lose sight of who cares, and why.

▢ Really talk about why
Talk about why the specific user cares. And dig deeply into the
"whys," because there are often a few, and they’re layered. You can
keep "poking it with the why stick" for a long time to really get at
the underlying reasons why.

Talk about why other users care. Talk about why the user’s com‐
pany cares. Talk about why business stakeholders care. There are
lots of great things hidden inside why.

▢ Talk about what’s going on outside the software
Talk about where people using your product are when they use it.
Talk about when they’d use the product, and how often. Talk about
who else is there when they do. All those things give clues about
what a good solution might be.

▢ Talk about what goes wrong
What happens when things go wrong? What happens when the
system is down? How else could users accomplish this? How do
they meet their needs today?

▢ Talk about questions and assumptions
If you talk about all those things, you’ve likely stumbled across
something you don’t know. Identify your questions and discuss
how important they are to get answered before you build software.
Decide who’ll do the legwork to get those questions answered, and
bring them back to your next conversation. You’ll find it takes lots
of conversations to think through some stories.

Take time to question your assumptions. Do you really under‐
stand your users? Is this really what they want? Do they really have
these problems? Will they really use this solution?

Question your technical assumptions. What underlying systems
do we rely on? Do they really work the way we think? Are there
technical risks we need to consider?

A Checklist of What to Really Talk About | 105

All these questions and assumptions may require deliberate work
to resolve or learn. Make a plan to do just that.

▢ Talk about better solutions
The really big win comes when those in a story conversation dis‐
card some original assumptions about what the solution should
be, go back to the problem they’re trying to solve, and then to‐
gether arrive at a solution that’s more effective and more eco‐
nomical to build.

▢ Talk about how
When sitting in a story conversation, I often hear someone anx‐
iously say, "We should be talking about the what, not the how!" By
that they mean we should be talking about what users need to do,
not how the code should be written. And I feel the same anxious‐
ness when we talk about the "what" without talking about the
"why." But the truth is, we’re trying to optimize for all three in a
good story conversation. What goes wrong is when either party
assumes that a particular solution or the way it’s implemented is
a "requirement." Without explicitly talking about how (and if
you’re a developer, I know you’re thinking about it), it’s difficult
to think about the cost of the solution. Because, if a solution is too
expensive, then it may not be a good option.

Be respectful of the expertise of others in the conversation. Don’t
tell a highly trained technical person how to do her work. Don’t
tell someone intimately familiar with users and their work that he
doesn’t understand. Ask questions, and genuinely try to learn
from each other.

106 | Chapter 7: Telling Better Stories

▢ Talk about how long
Ultimately, we need to make some decisions to go forward with
building something or not. And it’s tough to make this sort of
buying decision without a price tag.

For software, that usually means how long it’ll take to write the
code. In early conversations, that might be expressed as "a really
long time" or "a few days." Even better is comparing it to some‐
thing already built—"about the same as that feature for comment‐
ing we built last month." As we get closer to building something,
and we’ve had more conversations and made more decisions, we’ll
be able to be a bit more precise. But we always know we’re talking
about estimates here, not commitments.

Create Vacation Photos
Because there’s a lot to talk about, and you won’t want to forget it,
make sure you’re recording specific things that help you remember
the decisions you made, or the questions and assumptions you’ll need
to look into. Don’t forget to externalize your thinking so that others in
the discussion see what’s recorded.

If you write it down, you can pick it up and refer to it later. If it’s posted
on the wall, you can just point at it. And, if you’re talking together as
a team, you’ll find you won’t have to repeat everything so often, because
people will remember—especially if you anchored your conversations
with simple drawings and documents…those vacation photos.

Create Vacation Photos | 107

This small group is having a story discussion. As they talk, they visu‐
alize their ideas and make notes about what they decide.

My favorite approach is to do exactly what they’re doing. I record on
flipchart paper or a whiteboard as we talk. I like making a note of who
was in the conversation directly on the board, and then photographing
the board when I’m done. I’ll share the photo using a wiki or other
tool. I know I can extract details or write them up more formally when
I need them later. If I can’t remember exactly what was said, one of
those people in the conversation might. It’s a good thing I wrote their
names down.

It’s a Lot to Worry About
It’s daunting to think about how much there is you could be talking
about in stories. At this point, you may want to go back to the good
old days when all you needed to do was worry about understanding
the "requirements." Back when it wasn’t your job to really solve prob‐
lems. Back when you just needed to build what you were told to, and
it was someone else’s problem to make sure it was the right thing to
build. But I believe that you, and most people out there, really like
solving problems. So now’s your chance.

It may have occurred to you that with all these things to talk about,
there will be a lot of information to keep track of. And all that stuff
isn’t going to fit on a sticky note or an index card. You’re right. It won’t.
So let’s talk next about what really does go on that card, and what
doesn’t.

108 | Chapter 7: Telling Better Stories

CHAPTER 8

It’s Not All on the Card

Yes, the big idea was that short story titles on cards would help us plan
and facilitate lots of conversations between the people who could build
software and the people who understood the problems that needed to
be solved with it. But, sadly, it takes more than a couple of people to
get a finished piece of software out the door.

On a typical team you’ll find project managers, product managers,
business analysts, testers, user experience designers, technical writers,
and some other roles I’m probably forgetting. They’re all looking at
the same cards, but the conversations they have are going to be dif‐
ferent because they’ve all got different concerns to look after.

Different People, Different Conversations

If I’m a product manager or product owner, and I’m responsible for
the success of this product, then I have to know a little more about my
target market. I need to form some hypothesis about how many people

109

will buy or use this product, or how it’s going to affect the profitability
of my company. I’ll want to talk about those things.

If I’m a business analyst, I might be diving into a lot of details, so I
need to understand what’s going on in the user interface, and the busi‐
ness rules in the system that are behind the user interface.

If I’m a tester, I need to think about where the software is likely to
fail. I need to have some conversations to help me put together a good
test plan.

If I’m a UI designer, I don’t want to be told what the UI looks like any
more than a developer wants to be told the way the code should be
written. I’ll want to know who’s using it, and why and what they’re
doing, so I can design a useful and usable user interface.

Finally, if I’m a project manager responsible for coordinating this
group of people, I’ll have to pay attention when all of them are talking
to make decisions about all these details. I’ll need to pay attention to
dependencies, schedules, and the status of development when it gets
started.

That’s a lot of conversations. And some of them have to happen before
others. And many of them happen more than once. So, to make it
accurate, we’d probably have to add another dozen C s to the 3 C s. But
happily, if you’re really having conversations and building shared un‐
derstanding along the way, you’ll avoid lots of misunderstandings and
course corrections.

There are many different kinds of conversa‐
tions with different people for every story.

We’re Gonna Need a Bigger Card
When you say the words in that heading, I hope you’re thinking of the
old movie Jaws when, after seeing the huge shark up close and personal
for the first time, Police Chief Brody says to Quint, "You’re gonna need
a bigger boat."

110 | Chapter 8: It’s Not All on the Card

You see, the original idea was also that I could pick up a card and write
the title on the front, and then as we had conversations, I could flip it
over on the back and write the details of all the things we agreed to
that came up. I could sketch the user interface and write a lot of other
information on the card. On some projects, it can really work this way.
It’s cool when it can, and it’s usually a side effect of small teams working
closely together with a lot of tacit knowledge. Those are the teams that
don’t have to write much to remember.

But I don’t think even Kent and the folks who perfected the concept
of stories actually thought that all these conversations between all these
different people could be contained on just a single card, and in fact,
they usually aren’t.

The metaphor that works for me is a card in a library card catalog, for
people who are old enough to remember when libraries actually had
card catalogs. Stories written on cards work a bit like those.

We’re Gonna Need a Bigger Card | 111

If I pick up a card from a card catalog, it’s going to have just enough
information for me to identify the book. It likely has a title, the author
name, a description, the page count of the book, the category of the
book—like "nonfiction"—and a code (remember Mr. Dewey’s deci‐
mals?) to a location where I can actually find a copy of the book in the
library. The card’s just a token that’s easy to find and organize. No one
confuses the cards with a book. The card catalog is handy because it
takes a lot less space than thousands of books would. And I can orga‐
nize cards in different ways—by author, for example, or by subject.

Your stories will work the same way; that is, you may write them on
cards, keep them in a list in a spreadsheet, enter them into your favorite
tracking tool, or enter them in the tracking tool your company makes
you use—you know, the one everyone grumbles about. In a library,
you know there’s a book out there somewhere, and if you have iden‐
tified the right card filed away in the card catalog, it’s easy to find it.
Similarly, with a story, you know there’s a growing amount of infor‐
mation out there somewhere. It grows and evolves with each conver‐
sation. And, hopefully, however your company chooses to keep track
of the information, it’s easy to find, too.

If you want to go really old school, keep the details of all those dis‐
cussions taped onto big sheets of flipchart paper on the wall so you
can keep talking about them whenever you want. But remember: you’ll
want to take them down when you’ve completed the work or else you’ll
run out of wall space. And you’ll want to photograph them and keep
those photos somewhere for posterity.

112 | Chapter 8: It’s Not All on the Card

How Tool Creators Have Good Story Discussions

This is my friend Sherif, who’s a product manager at a company called
Atlassian. Atlassian makes Confluence, a popular wiki used in a huge
variety of organizations to keep track of the knowledge those organ‐
izations accumulate, among other things. They also make JIRA, one
of the more popular tools for managing work in Agile development.
You’d think a company that focuses on building tools used for keeping
and sharing information electronically would use its own tools— "eat
their own dog food," so to speak—and you’d be right that Atlassian
does. But it also understands how to have good face-to-face
conversations.

When I walk around the Atlassian office in Sydney, I see the walls
covered with sticky notes, whiteboard drawings, and screen wire‐
frames. If you look closely, you’ll see that the sticky notes reference
ticket numbers in those tools the team relies on. They nimbly move
back and forth from tools to physical space. When Sherif shows me
what they keep in Confluence, I’m amazed at the combination of
photographs, short videos, and back-and-forth discussions.

Radiators and Ice Boxes
In his book Agile Software Development: The Cooperative Game
(Addison-Wesley Professional), Alistair Cockburn coined the term
information radiator to describe how big, visible information on the

Radiators and Ice Boxes | 113

wall radiates useful stuff into the room. People walking by look at it
and engage with it. When the information is alive and useful, lots of
conversations end up at the wall, where people can point to and add
to the information accumulating there.

When I walk into environments where the walls are clear, or even
covered with pleasant artwork—or worst of all, motivational posters
—it makes me sad. There’s so much great collaboration that could be
happening every day with those useful walls. If what’s on the wall is an
information radiator, some refer to the tools people use as an infor‐
mation icebox—because that’s where information goes to be preserved
—and potentially be crusted over with that thin layer of ice like that
stuff in the back of your freezer. (I’m always shocked by what I find
back there.)

That’s what’s really remarkable to me about Atlassian. They keep in‐
formation alive and useful, both in and out of the tools they use.

What’s Really on a Story Card?
Imagine a card from a library’s card catalog. That card’s got useful
information on it to help you organize it and confirm you’re talking
about the right book. A good story card is a bit like that.

Common things you’d expect to find on a card are:
Short title

One that’s easy to insert into a conversation when you’re talking
about it. A good title is the most valuable part of your story. Don’t
be afraid to rewrite it if it’s confusing people.

114 | Chapter 8: It’s Not All on the Card

Description
A sentence or two that describes what we’re imagining. It’s a good
idea to describe who, what, and why—who uses or needs it, what
they’ll do with it, and what benefit they hope to get from it.

As you begin to discuss stories, you’ll add information that summa‐
rizes some of your discussions. That’ll include stuff like:
Story number

When you get a bunch of these or put them into a tracking system,
this will help you find them—sort of like the Dewey Decimal
System in a library. But, whatever you do, please don’t start re‐
ferring to your stories by their number. If you do, it’s a sure signal
you haven’t chosen a very good title. And even librarians don’t
refer to books by their Dewey Decimal numbers.

Estimate, size, or budget
As you begin to discuss the story, you’ll want a prediction on how
long it might take to build the software. There are lots of terms
for this, like estimate, size, or budget. Use the term your company
uses.

Value
You might have lengthy discussions about the relative value of
one thing over another. Some might use a numeric scale. Some
might annotate cards with high, medium, or low.

Metrics
If you really care about results, identify specific metrics you’ll
track after the software is released to determine whether the soft‐
ware was successful.

Dependencies
Other stories that this one might depend on or go with.

Status
Is it planned for a particular release? Is it started? In progress?
Done?

Dates
Just as a book’s card has the date it was published, you might keep
the date this story was added, started, and finished.

You could scribble any other notes you like on the card. Or flip it to
the back and write notes or bulleted acceptance criteria.

Radiators and Ice Boxes | 115

The only thing that’s required on your card is a good title. All those
other bits of information could be helpful, but you and your team get
to decide which you’d like to use.

Not too much fits on the card, and that’s good. Remember, it’s just a
token you’ll use to plan with. You could use cards, or sticky notes, too.
Having the physical cards lets you use handy words like this and that
in conversations as you point to cards on a wall or tabletop. You can’t
do that with a thick document. With cards, you can shuffle them
around a desk, rank them by importance, tape them to the wall, and
wave them around while you’re talking to make your point more em‐
phatically. If you were doing that with a thick document, you could
hurt someone—perhaps yourself. And, of course, you’ll want to ar‐
range bunches of cards into story maps to tell even bigger stories.

That’s Not What That Tool Is For
A lumberjack comes across a man in the forest. The man is working
hard trying to chop down a tree by hitting it with a hammer. The
lumberjack stops the man and says, "Hey, you’re using the wrong tool!
Try this…" and hands the man a saw. The man thanks him, and the
lumberjack continues on his way, happily knowing that he’s helped.
The man then begins striking the tree with the saw the same way he
was with the hammer.

This joke reminds me that we can use the wrong tool for the job, and
we can also use the tool wrong.

When I tell people how companies like Atlassian use tools, they’re
usually surprised. They’re often surprised because they’ve been trying
to use tools as a replacement for whiteboards and sticky notes. And,
predictably, they’ve been struggling with that. It may be that they’re
using the wrong tool for the wrong job, or using the right tool wrong.
To figure out what might be going wrong, it’s best to look at the job
first, and not the tool.

Building Shared Understanding
When we’re working together to tell stories and make decisions about
solutions to build, our first goal is to build shared understanding. This
is where externalizing and organizing your thoughts is critical. And
nothing beats face-to-face work in front of a whiteboard, armed with
sticky notes. But, if you’ve got to accomplish this task with others

116 | Chapter 8: It’s Not All on the Card

working remotely, this is tough. Video conference tools that let you
see one another’s faces don’t help much, since it’s not their faces you
need to see—it’s the ideas you’ll be placing on the wall or tabletop.

Use a document camera or web camera dur‐
ing a video conference to let remote people see

what’s being created on the wall.

I’ve worked with teams that have video cameras at both ends of a video
conference, and the call focuses on the growing models on the wall,
not the team members' faces.

If you use a tool to visualize, it’s ideal if people on both sides of the
conversation can add and move things around, just like they could if
they were working together at a whiteboard. This is a screen from a
tool called Cardboard.

The person using Cardboard is creating a map at the same time as
David Hussman, one of Cardboard’s creators, maps on a wall. Others
who are sharing the same map from other locations see it come to‐
gether in real time. They can add, remove, and change cards, and ev‐
eryone can see what everyone else is doing. You can virtually "step
back" and look at the entire wall at once, which is handy because com‐
puter screens are just a tiny portal on what you could see if you were
working at a wall.

That’s Not What That Tool Is For | 117

When collaborating remotely, use tools that
allow everyone to see, add to, and organize

the model concurrently.

Happily, I’m seeing a lot more tools enter the market that understand
and support working together to build shared understanding. This is
a good thing.

Remembering
When we’ve worked hard together to get on the same page, we should
be keeping copies of whatever models or examples we’ve created to
use as vacation photos—to help us remember all the details we’ve dis‐
cussed. Tools like Atlassian’s Confluence offer a rich wiki for storing
not just words, but also pictures and video. Taking and keeping pic‐
tures and videos after working together is one of fastest ways to
document.

These folks at Atlassian are doing just that. They’ve snapped a picture
after working at a wall, and uploaded it to their wiki for safekeeping.

118 | Chapter 8: It’s Not All on the Card

Use tools to post pictures, videos, and text to
help you retain and remember your

conversations.

I personally like staying lo-fi and keeping information on the wall, but
if I worry at all about a cleaning person taking it down at night, I’ll
photograph and keep it just in case. If I’m sharing information with
people who couldn’t be in the room, even virtually, I’ll shoot a short
video stepping through the model on the wall and post that where
others can see it.

Tracking
One of the things that tools most excel at is taking all the work we’ve
planned on doing, and letting us track its progress. Tools are great at
keeping track of the numbers that are tedious for us—things like ex‐
actly when we started, when we finished, and how much we’ve got left
to do. The better tools will generate useful insights for us as we rou‐
tinely track what we’re doing.

That’s Not What That Tool Is For | 119

This is a cumulative flow diagram generated by Atlassian’s JIRA prod‐
uct. It’s a chart that shows the work we’re doing and its state over time.
And it’s a chart I would hate to produce by hand.

For single, collocated teams and small projects, the wall will do just
fine. But, if you’ve got larger teams working from different physical
locations, and longer-running projects, use a tool to keep track of all
the details.

Use tools to sequence, track, and analyze
progress.

The trick is using the right tool for the right job. Don’t try to use a really
great tracking tool to build shared understanding. And don’t struggle
to do complex analysis on a whiteboard.

It’s been an Agile ideal to keep things simple and fast, to stay working
on index cards and whiteboards as much as possible. And I promise
you if you can stay small and fast and avoid unnecessary tools, you’ll
be happier. But remember: those tools are just a means to an end. Next,
we’ll need to talk about what happens after the card.

120 | Chapter 8: It’s Not All on the Card

CHAPTER 9

The Card Is Just the Beginning

The three C s are just the beginning.

I know I said earlier that I don’t feel obligated to quote the Agile Man‐
ifesto, but I’m going to anyway—well, at least a small part of it. One of
the value statements in the manifesto reads "Working software over
comprehensive documentation." I could rephrase that as "working
software over comprehensive conversation," and the meaning would
be the same. All those conversations—and the documentation that
helps us recall them—are just a means to an end. Eventually we’ll need
to build something.

121

If we finish the cycle, the model looks like this:

There are some gotchas that always manage to sneak in here after we’ve
got shared understanding and agreement on what we’ll build. Keep an
eye out for them.

Construct with a Clear Picture in Your Head
After having conversations, and writing down details that’ll help us
remember those conversations, and writing down confirmation—that
is, our agreement about the things we’ll check to confirm we’re done
—we’re finally ready to make something:

• Software developers can get started building the software.
• Testers can create test plans and test.

122 | Chapter 9: The Card Is Just the Beginning

• UI designers can create detailed UI design and digital assets, if
they haven’t already done so as part of arriving at a shared
understanding.

• Technical writers can write or update help files or other
documents.

The most important thing here is that all these people are armed with
the same picture in their heads: the picture they built while talking
together.

I’m going to pause here for effect.

Now, I’m going to say this next part slowly, so you should read it slowly.

Handing off all the details about the story to
someone else to build doesn’t work.

Don't do that.

If you and a group of people have worked together to understand what
should be built, and if you’ve documented all the important things
someone needs to know to build it, you may be very tempted here to
hand it off to someone else. After all, when you look at the information,
it’s crystal clear to you. But don’t fool yourself. It’s clear to you because
your really smart brain is filling in all the details that aren’t written
down. Your brain is so good at it that it’s hard for you to detect what
could be missing. Remember, those details are your vacation photos,
not theirs.

Build an Oral Tradition of Storytelling
Sharing stories is reasonably simple. Someone who does understand
the story, and the information collected that helps tell the story, needs
only spend a little time retelling the story to the next person who needs
to learn. Now, this should go lots faster than early conversations where
you worked together to make tough decisions, since hopefully you
won’t need to remake them. Use what’s written to help tell the story.
Talk and point to pictures. Let your listener ask questions and make
changes to the pictures that help her remember. Help her turn the
information associated with the story into her own vacation photos.

Build an Oral Tradition of Storytelling | 123

There’s a nasty anti-pattern I often see here. Some think that since
anyone in a team might pick up the story and do work on it, everyone
on the team should be involved in every conversation. Perhaps you
work at this company. You’ll know it because you’ll hear lots of people
complaining that there are way too many meetings. By the way, "meet‐
ing" is often the euphemism we use for unproductive collaboration.

Effective discussion and decision making goes best with small groups
of two to five. It’s dinner conversation sized. You know that if you have
a group of friends sharing a meal, it’s easy to hold a single conversation
when there are just a few of you. But any more than about five people
is where it becomes a real effort.

Let small groups work together to make decisions, and then use con‐
tinued conversations to share the results with everyone else.

Inspect the Results of Your Work
If you’re on the team, you’ll all work together armed with shared un‐
derstanding about what you’re building, and why. As you work to‐
gether, you’ll keep having conversations because you never think of
everything. But when the software is done, you’ll all come back to‐
gether and talk about it.

This is a good time to congratulate yourselves on a job well done. It’s
pretty cool to see real progress. In traditional software development,
the opportunities to see the results of your hard work can come a lot
less frequently, and they’re rarely shared as a team. In a typical Agile
process like Scrum, you’ll be sharing every couple of weeks at an end-
of-sprint product review. In the healthiest of teams, team members get
together frequently to inspect their work as it’s done. But you’ll need

124 | Chapter 9: The Card Is Just the Beginning

to go beyond show and tell. After congratulating yourselves, take time
for a short but serious reflection on the quality of the work you did.

When talking about quality, I start with discussions of these three
aspects:
User experience quality

Review the work from the perspective of its target user. Is it
straightforward to use? Is it fun to use? Does it look good? Is it
consistent with your brand and other functionality?

Functional quality
Does the software do what you agreed it would without bugs or
errors? Testers and other team members have hopefully spent time
testing and you’ve fixed any bugs already. But good testers can
often tell you that there are likely more bugs lurking in your prod‐
uct that may emerge later. Or hopefully they can say that it feels
rock solid.

Code quality
Is the software we wrote high quality? Consistent with our stand‐
ards? We may own this stuff for a while, so it’d be good to know
if we think it’ll be easy to extend and maintain, or if we’ve just
added a pile of technical debt we’ll need to address later.

I have some bad news for you here. You’re likely to find things you
believe should change about what you’ve done.

It’ll help everyone’s sanity to separate out two concerns. First: did we
build what we agreed to build? And then: if it’s what we agreed to build,
now that we see it, should we make some changes?

Everyone will have worked hard together at the outset to figure out
what to build that would solve users' problems and be economical to
build. You’ll have done your best to identify the things to check to
confirm that it’s done. Check all those things, and congratulate your‐
selves if you’ve accomplished that much. You got exactly what you
agreed you wanted to get.

Now, here’s where some old Rolling Stones song lyrics play in my head.
If you know the song, hum along: "You can’t always get what you want.
But, if you try sometime, you just might find, you get what you need."
The irony with software is that it’s exactly the opposite.

You’ll work together to agree on what you want. And, if you’re working
with a competent team, you’ll see that you can get pretty good at getting

Inspect the Results of Your Work | 125

it. It’s only after seeing it, though, that you can better evaluate if it’s
what you need. This sucks. But don’t blame yourselves—that’s just the
way it works.

You do, however, have a way of fixing it. And it starts by writing a card
with your ideas about what to change in the software to fix it. This, of
course, sucks if you’d planned on being right the first time. Maybe
Mick Jagger was right after all. Maybe what you really needed was to
learn that being right the first time is a risky strategy—especially in
software.

It’s Not for You
I’m sorry. I’ve got even more bad news.

In reality, the person who originally wrote the card and who started
this entire cycle is likely not the person who will use the software every
day. The person who originally wrote the card, and the entire team
who worked together, may believe they’ve nailed it—that they’ve built
the perfect solution to the challenges their target users have.

Don’t fool yourself.

If we’re on this team together and we’re smart, we’ll take the software
out to users and test it with them. This isn’t show and tell, either. We’ll
test by watching them use the software to reach a real goal they’ll nor‐
mally need to accomplish using the software.

Have you ever sat with someone as she uses software you’ve helped
build? Think back to the first time you did. How did it go? I wasn’t in
the room with you at the time, but I’m willing to bet that it didn’t go
the way you expected.

If you’ve ever sat next to a user as she uses your product, you know
what I mean. If you’ve never done this, then do it.

You’ll need to test with the people who’ll actually buy, adopt, and use
your product at some regular frequency. I often wait until I’ve built up
a bit of software—enough that they could use it to accomplish some‐
thing they couldn’t before. Whatever frequency you adopt, don’t let
more than a couple weeks go by without seeing a genuine user interact
with the software.

Everyone on the team doesn’t need to be there with users. In fact, it’ll
kind of creep the users out if everyone is. But being there builds

126 | Chapter 9: The Card Is Just the Beginning

empathy that you won’t get any other way. It’s a powerful motivator to
see people struggling to use your product, especially when you were
so confident they wouldn’t need to. If you were there, share what you
saw with others by telling stories back to them.

After testing with users, you’ll identify problems to fix and obvious
ways to improve the software. And for each one of those things, you
should write a story card with your ideas for improving the software.

Build to Learn
If you’d labored under the belief that using stories would stop your
team from writing bad software, you were at least half right. In fact,
all the conversations between smart people focused on understanding
the problem—and how what we’re building solves it—go a long way
toward making a much better product. But we need to acknowledge
that building software isn’t the same as working on an assembly line.
You’re not just building one more widget like the one you built a few
minutes ago. Each new story we create software to support is some‐
thing new.

One of the luminaries in the Agile development community is my
aforementioned friend, Alistair Cockburn, who once told me, "For
every story you write, you need to put three into your backlog of
stories."

I asked him why, and he said, "You just do."

I asked, "What should I write on the other two?"

"It doesn’t matter what you write."

"What do you mean?" I asked, "I have to write something on them!"

Alistair replied, "Well, if you have to write something on them, then
write what you want on the first card, and on the second card write
‘Fix the first card.' Then on the third card, write ‘Fix the second one.'
If you aren’t going around this cycle three times for each story, you’re
not learning."

In a traditional process, learning gets referred to as scope creep or bad
requirements. In an Agile process, learning is the purpose. You’ll need
to plan on learning from everything you build. And you’ll need to plan
on being wrong a fair bit of the time.

Build to Learn | 127

Eric’s strategy used in Chapter 3 helped him build smaller solutions
and continue to iterate them until they were viable. Eric counted on
learning from every release.

The Mona Lisa strategy used by Mike and Aaron in Chapter 4 helped
them slice every story down into smaller, thinner, undeliverable bits
so they could learn sooner and manage their delivery budget wisely to
finish on time.

These are both great learning strategies. Try those. Invent your own.
But please don’t assume you’re always right. I promise you’ll be
disappointed.

It’s Not Always Software
In 2011, Kent Beck—the creator of the story—opened one of the first
Lean Startup conferences with his revision of the Agile Manifesto. If
I’d done it, it might have been blasphemy. But he’s one of its creators,
so he should know. He revised the value about working software to
read:

Validated learning over working software (or comprehensive
documentation)

If you remember from Chapter 3, validated learning is the super-
valuable concept that comes from the Lean Startup process. The key
word there is learning. What makes it validated learning is discussing
what we want to learn as part of making something, and then going
back and considering the consequences—reflecting on what we learned
or didn’t learn. And one of the things we’re realizing is that we don’t
always need to build software to learn. But we do usually need to make
or do something.

I like using stories to drive the work we do to build simple prototypes,
or to plan the work we’re doing to interview or observe users. I like
talking about the who, what, and why for those things, too. I like
agreeing on what we’ll make before we make it. And I look back at the
consequences of having done it to consider what we’ve learned.

Try using stories to drive the making of any‐
thing, whether it’s software or not.

128 | Chapter 9: The Card Is Just the Beginning

Plan to Learn, and Learn to Plan
Story maps are useful for breaking up our big product or feature ideas
into smaller parts. Chapter 3 and Chapter 4 were about slicing up those
smaller parts into buildable chunks where each chunk was focused on
learning something. But there’s a different way to break things down
that you need to be aware of, and to keep separate in your head. It’s the
work we do to break down a story into our plan to make something.
That’s what we’ll talk about in the next chapter.

Plan to Learn, and Learn to Plan | 129

CHAPTER 10

Bake Stories Like Cake

Two weeks ago it was my daughter’s birthday and we wanted a cake.
Our family has our own baker—a person we call to make our cakes.
Now, we’re not rich or afraid to make cakes ourselves. It’s just that
Sydnie, our baker, makes incredibly fantastic-tasting cakes. We don’t
know exactly what culinary magic she wields to pull it off, but when‐
ever we ask our kids what kind of cake they want for their birthday,
the shout "We want a Sydnie cake!" seals the deal for our baker.

To get a cake, I call Sydnie on the phone. She’ll ask who the cake is for
and what the occasion is. Two weeks ago I told her Grace was turning
12. "What’s Grace into?" she asks. We talk a bit about what Grace likes
and what she was thinking of. We also talk about what shapes of cake
pans Sydnie has, and what kind of cake design is feasible for her to
have ready in time. We agree on a bird-shaped cake this time.

That’s how telling a story works. Sydnie asked lots of who, what, and
why questions. She asked about the context—where and when we’d be
serving the cake, and how many people would be there. During the
conversations, we considered a few different options. We talked long
enough to build shared understanding. And, because we’ve gotten lots
of cakes from Sydnie, we already have some shared understanding
about how they’ll look and taste when we get them. If we didn’t, we’d
have wanted to see some pictures or taste some cake, and the phone
wouldn’t have worked well for that.

131

Create a Recipe
During our discussion, Sydnie is thinking about how she’ll make the
cake. She has to so she can figure out if she can make it in time. When
it comes time to make the cake, she’ll have a list of things she’ll need
to do—things like measuring flour, sugar, butter, eggs, and milk. She’ll
need to mix, bake, decorate, and likely perform some other top-secret
steps I don’t know about. I suspect she has different recipes for different
kinds of cakes, and a checklist of things she has to do for every cake
before it’s stuck in a box and ready to pick up. If Sydnie wrote down
the list of all the things she has to do, she’d have a work plan full of
specific cake-baking tasks.

The same thing happens when someone brings a story to a develop‐
ment team. Together they make decisions on specifically what to build,
and the development team creates their work plan, composed of lots
of development tasks. The development team includes testers, UI de‐
signers, technical writers, or whatever people and skills are necessary
to create the software, so the tasks aren’t all about coding. And, just
like Sydnie didn’t create her plan while she talked with me on the
phone, the development team won’t likely create their plan during the
story conversation. But they will listen, take notes, draw pictures, and
gather lots of the details they’ll need to create their plan. At least, that’s
the way we hope it goes.

132 | Chapter 10: Bake Stories Like Cake

When talking with Sydnie, I don’t tell stories about cups of sugar and
flour. I wouldn’t tell a story about baking unless my goal was to build
an oven. When you tell stories about software, and collect a list of story
names as you do, you tell the story imagining the software you’ll have
in the end. And you don’t just imagine the software—you think and
talk about who uses it and why. Sydnie didn’t just stick to details about
the cake, she asked me who it was for, what my daughter liked, how
many people would be at the party, and lots of information that helped
us decide together what the best cake should be. Sydnie wasn’t just
asking for cake requirements, we were working together to decide on
the best way to create a cake we’d all love. That’s the real spirit behind
a story conversation.

Breaking Down a Big Cake
But there’s just one thing. Often what goes wrong here is that, when
we start telling the story to people who are really capable of turning
our vision into reality, we quickly figure out that the software our story
describes is really big. Well, the card it’s written on is the same size as
all the others. And the goal our users are trying to reach with it may
be no more important to them than others, but it’s when we talk about
it that we realize it’ll take a lot of time to write the software necessary
to reach that goal.

The same thing could have happened when I was talking with Sydnie
about my cake. I could have imagined an elaborate cake that calls for
cake pans Sydnie doesn’t have, or cake-building and decorating tech‐
niques she’s not mastered. The result would be a cake I can’t afford,

Breaking Down a Big Cake | 133

and one that Sydnie couldn’t predictably deliver before my daughter’s
birthday.

In Chapter 7, I pointed out that when the solution we’re thinking of is
too expensive, we need to step back and really look at the problems
we’re trying to solve, and the outcomes we’re trying to achieve. And
we’ll need to consider other alternatives. That’s one way to get a smaller
cake—or maybe a pie?

If the story describes a solution that’s too ex‐
pensive, consider a different solution that

helps you reach the goal.

But, if it’s really big, and we can afford it, then there’s no reason to
break it down any smaller, right? Well, actually, there is. With software,
especially, by building things in smaller parts, we can see and measure
progress sooner. This helps the people spending money feel a bit less
nervous. And, as in Chapter 4's Mona Lisa strategy, it helps the people
making the product evaluate parts to make sure we’re on the right
track.

If the story describes a solution that’s afford‐
able but big, break it into smaller parts that
allow you to evaluate and see progress sooner.

There’s a trick to breaking down large stories, and it helps me to keep
the cake metaphor in my head. If you like cake, by now you might be
getting hungry—especially if the cake you’re imagining is a particu‐
larly tasty one. Sorry about that.

Let’s say our story describes a need for a lot bigger cake, like a super-
giant wedding cake that will feed hundreds of people. If so, then it isn’t
just cups of flour and sugar anymore, it’s sacks of flour and sugar. Most
people break down software the same way. Instead of just a little user
interface, a little business logic, and a little database interaction, there’s
lots of each. But remember that software isn’t cake. It doesn’t take that
much more time to measure two pounds of flour than it does to meas‐
ure two cups of flour. But building the user interface for 20 screens
takes a lot more time than for just 2 screens. So, if teams use the simple
breakdown structure that seems logical, they get tempted to break
software down into weeks of frontend development, weeks of business

134 | Chapter 10: Bake Stories Like Cake

logic development, and so on. When we use that strategy, it takes a
long time before we can "taste any cake," so to speak. So don’t do that.

Don’t break down big things into big plans.
Break big things into small things with small

plans.

Now the metaphor is really going to break down here, but stick with
me for just one more minute. The way you approach a big software
cake is to break it down into lots of little cupcakes. Each one is deliv‐
erable, and each one still has a similar recipe, with a little sugar, a little
flour, an egg or two, and so on.

OK, now let’s get a little more serious again. Software isn’t cake. It can
get huge, horrendously expensive, and horribly risky. As I write this
text, I’ve just heard yet another story on the morning television news
of the US government’s failed website to sign people up for healthcare.
It’s easy to criticize after the fact. But it’s also easy to see that no one
tasted that cake before it was served at the metaphoric wedding—at
least no one with any taste. And that half-baked cake ruined the party.

If you’ve worked in more traditional software development for a while,
you likely learned to break down big software into big plans. I know I
did. It’ll seems counterintuitive to break down something big into
smaller pieces that may not quite look like the finished product you’re

Breaking Down a Big Cake | 135

1. Mary’s wedding cake (photo courtesy of Mary Treseler).

trying to deliver. You’ll know that as you combine these pieces of soft‐
ware, you’ll have to do a bit of rewriting and adjusting of each piece
to combine them. But remember—you’re thinking this way for lots of
good reasons. One of the biggest is to avoid the risks involved with not
seeing, using, or "tasting" the software too late. You’re breaking big
things down to small, evaluable parts so you can learn sooner.

If I were breaking down a cake with the goal of tasting it sooner or
seeing the decoration sooner, I’d do well to bake small cupcakes that
help me learn sooner. I’d bake some in a number of different flavors
so I could taste them all, choose the one I liked best, and be confident
I’d made the right choice. If I were concerned about colors and deco‐
ration, I’d want to look at different cupcakes decorated in different
styles, and choose the one that was best.

With software, the cupcakes are portions of working software that
allow users to evaluate if they can effectively complete a user task. They
may be portions of software that help expose a technical risk. But each
piece helps us learn something.

But a pile of cupcakes isn’t a wedding cake—or is it?1

Software isn’t cake. And every piece of software we build does combine
into one larger working product in a way that cake can’t.

One of the silly mantras that comes from my friend Luke Hohman is
that you can deliver "half a baked cake, not a half-baked cake." Half a
baked cake may not be enough to feed a wedding party, but it’s enough
to taste and leave everyone looking forward to the rest of the cake.

136 | Chapter 10: Bake Stories Like Cake

CHAPTER 11

Rock Breaking

The original idea of stories was pretty simple—write something on a
card, talk about it, and agree on what to build. Then, complete the
cycle by building it and learning from what you’ve built. That’s it—
pretty straightforward, right? If you’ve been involved in software de‐
velopment for even a small amount of time, you know nothing is that
simple. Stories go through a long journey with lots of conversations
involving lots of people to move an idea for a product, feature, or
enhancement into your product, and then move that product out to
market. The good news is you can use stories and storytelling all the
way through. And I promise that relying on stories and storytelling
will help you all the way through.

Size Always Matters
I ended the last chapter by talking about Sydnie’s cake and the idea of
breaking big cakes into little cakes. But software is a lot less tangible,
and size can’t be measured in inches, centimeters, ounces, or grams
like it can with a cake.

The original idea was that a user or a person who needs something
could write what he needed on a card and then we could have a con‐
versation about that. The person who needed it didn’t figure out how
to express his need as something that would take only a short time to
develop. It was need sized.

A right-sized story from a user’s perspective
is one that fulfills a need.

137

When it comes time to write software, there’s big benefit in writing,
testing, and integrating software in small parts. If I can see and test
small parts sooner, I can measure how fast we’re building and what
kind of quality we’re getting. If I can divide something big into lots of
smaller parts, it makes it a little easier for my team to pick up and build
parts concurrently. A good rule of thumb is to break down stories to
something that takes a couple of days to build and test.

A right-sized story from a development
team’s perspective is one that takes just a few

days to build and test.

But, from a business perspective, it may make the most sense to release
software to customers and users in bundles of multiple features. If
you’re releasing a whole new product, that first bundle can be pretty
large. This is the bundle I called a minimum viable solution earlier, and
it’s focused on reaching specific outcomes for a target group of users.
Ideally, businesses should be striving to release more of these more
frequently—to push them closer to matching users' need size, or a
smaller and more specific business outcome. But, if you’ve got a large,
diverse group of customers using your product, and you don’t have an
infrastructure or business model that supports a more continuous re‐
lease process, then your business’s releases may be bigger.

A right-sized story from a business perspec‐
tive is one that helps a business achieve a

business outcome.

I could say there’s no "right size" for stories, but that’s not true. The
right size is the size that’s relevant to the conversation you’re having.

138 | Chapter 11: Rock Breaking

Those big stories contain lots of smaller stories, which in turn contain
lots more smaller stories. Depending on who you’re talking to, you
might have to "roll up" your conversation to a higher level.

Stories Are Like Rocks
Think of stories like rocks. If I were to take a really big rock and put
it in the middle of the floor and hit it with a mallet where it broke into
30 pieces, we’d call those 30 pieces rocks. If you took one of those
smaller rocks and hit it with a mallet, it would break into smaller pieces.
We’d call those pieces rocks, too. Now, we might get creative about the
names we give these rocks, like boulder or pebble. But I’m never sure
when something stops being a boulder and starts being just a plain old
rock. It looks like a rock until it’s dropped on your foot. Then it feels
like a boulder.

My rock-breaking tool is a big mallet. And that works pretty well.

Stories Are Like Rocks | 139

Big stories break down into smaller stories, and those smaller stories
can be broken down to even smaller stories. Just like rocks. And, at
every size—no matter how small—they’re still a story. But what’s the
best tool we use for breaking down stories? That’s right: it’s conversa‐
tion. Sometimes just a little thinking will do it, but if you use conver‐
sation and collaboration with someone else, then you’re spreading the
shared understanding.

Conversations are one of the best tools for
breaking down big stories.

Now software people, and I’m one of them, are uncomfortable with
the lack of precision here. In most organizations I’ve worked with,
language will emerge to classify stories by size. But it starts to raise the
"boulders versus pebbles" question again. The precision about size
matters most when you’re the one being hit with the rock, which could
explain why software people get wrapped up in classifying their stories.

If you create language in your organization, don’t try to be too precise.
The wiggliness about what’s in a story and how big it should be is
intentional. It gives us the flexibility we need to use this simple idea
throughout the development cycle.

Epics Are Big Rocks Sometimes Used to Hit
People
Epic is a common term (I’m not sure who coined it originally) used to
describe big user stories, sort of like boulder is a good term for a big
rock. Now I’ll be honest with you that it took me years to get com‐
fortable referring to the important stuff we were building as stories,

140 | Chapter 11: Rock Breaking

but I understand now why they’re called that. I’m still struggling with
the term epic. I hear my English Literature teacher describing an epic
as a story about a hero battling evil—like Beowulf or Achilles or Frodo
—usually with some sort of magic weapon or the assistance of the gods.
But, I digress…

An epic is a story that we expect is large, and
know needs to be broken down.

It’s OK to have a term for a large story, but watch out. The term epic
sometimes gets used as a weapon. I’ve often seen a development team
member tell someone who is a businessperson, a product manager, a
user, or someone who’s asking for something, that his story is an epic,
not a story. This is usually said in a tone that indicates the storywriter
has done something wrong, causing her to seriously consider sucker-
punching the development team member. So, please, if you are a team
member, don’t use the term epic as a stick to reprimand someone else.
It’s a bad start (and, possibly, a premature ending) to what should be
a productive conversation.

Remember, epics are big stories that may be the right size from a busi‐
ness, customer, or user perspective—just not from a development
perspective. Work together to break them down. But keep the epic
around because you’ll need to speak to people about it, and all the
detailed stories it broke down into.

If you’re using an electronic tool that supports Agile development, it’ll
likely use the concept of an epic as a big parent story that can be split
up into lots of smaller child stories.

Epics Are Big Rocks Sometimes Used to Hit People | 141

Themes Organize Groups of Stories
Use the term theme to describe a group of stories that it’s useful to
group together. As you start rock breaking—breaking down those big
stories and organizing them into products that people want, can use,
and can afford to build—you’ll end up with lots of smaller stories. I
think of a theme as a sack I can use to collect a pile of stories that are
related. I could use a theme to collect a bunch of stories that are needed
for a next release, part of the same feature, relevant to a particular type
of user, or related in some other way. But my metaphor is slightly bro‐
ken since the same story can be in two different themes, but the same
rock can’t be in two different sacks.

If you use one of the available tools that help organize groups of Agile
stories, it may support the concept of bundling stories up into a theme.
You might simply refer to the theme by what it really is: your next
release, the feature, or the stories relevant to a particular type of user.

Forget Those Terms and Focus on Storytelling
The terms epic and theme have found their way into Agile lifecycle
management tools, into some specific named Agile approaches, and
into the common language used to discuss stories. For that reason,
you’ll need to know and understand them.

Now, let’s set aside those terms; forget I even mentioned them. At least
for a little while. Let’s step back and take a look at the whole rock-
breaking lifecycle. In that cycle we’ll start with big ideas, which you
can think of as the big rocks, and move them all the way through to

142 | Chapter 11: Rock Breaking

small pieces of working software. And then reassemble those small
pieces of working software into features, products, and releases that
customers and users want.

From a distance, that rock-breaking cycle looks like this:

Now, let’s dig into the details.

Start with Opportunities
The story’s journey starts as an idea. It may be an idea for a new feature,
or a whole new product. It could be a change we’d like that would
improve a feature we already have. It could be a problem we need to
solve. But I’ll use the term opportunity, because it’s an opportunity for
us to make something that we’ll benefit from. I suggest you name and
build a list of these opportunities. I call them an opportunity backlog.

Start with Opportunities | 143

Our first good story conversation is a higher-level, who-what-why
discussion. And our big goal is to make a go/no-go decision. Go doesn’t
mean we’ll build it. It means we’ll go forward with deeper-dive dis‐
cussions to really understand the story. But I don’t want to move for‐
ward with spending lots of time doing this if we can detect that it’s a
bad idea from the outset. No-go is a polite way of saying "trash." So,
let’s call this a go-forward/trash decision. Remember, there’s always
too much to build, and killing a mediocre opportunity before it wastes
too much of everyone’s time should be celebrated.

Use opportunity discussions to agree the
problem is worth solving—to make a go-

forward or trash decision.

Discover a Minimum Viable Solution
Now that you’ve chosen to go forward, it’s time to dig much deeper.
Use discovery to find a solution worth building. And don’t forget to
really minimize that solution. Seek to make it as small and valuable as
you can.

144 | Chapter 11: Rock Breaking

During discovery you’ll really dig deep into:

• Who the customers and users are you believe will use your
solution

• How they meet their needs today without your solution
• How the world would change for them with your solution
• How your solution might look and behave
• How long your solution might take to build

There are a huge number of practices that can be helpful during dis‐
covery, especially story mapping. Story mapping can help you under‐
stand how people work today, and then map your ideas about how
things will change for them after your solution is created.

Discovery is where it’s critical to look hard at our assumptions and to
do work to validate them. This may take the form of deeper analysis
to understand business rules or outside regulations. It should take the
form of spending time directly with customers and users to under‐
stand how they work. It should involve building prototypes of your
solution and validating them with your target audience. And it should
include building technical prototypes to chase out technical risks.

Use discovery conversations and exploration
to find a small, viable solution.

Discover a Minimum Viable Solution | 145

Celebrate every part of that solution that you can safely trash, or push
back to a backlog of opportunities to deal with elsewhere. Our oppor‐
tunities may have been big rocks. But inside those rocks were dia‐
monds and precious metals. Break down those rocks and separate
those really valuable parts from the stuff that’s just rock. And celebrate
trashing that stuff.

Throughout discovery, you may choose to build small things that help
you learn—specifically, UI or architectural prototypes.

Spike is a term used for bits of development or research we do with
the explicit goal of learning. It’s a term that came from the Extreme
Programming community to describe work that may not yield soft‐
ware we choose to ship. Use stories to describe spikes that get your
team building something to learn.

After you’re confident you’ve got that small subset of stories you
should build and release to customers and users, then it’s time to move
them forward into delivery. That subset of stories that leads to a val‐
uable product release is what I refer to as a release backlog.

Dive into the Details of Each Story During
Delivery
Our opportunities may have started as big rocks. Discovery conver‐
sations broke them down and separated the rock from the precious
metals. But delivery will move fastest and most effectively if we can
keep breaking down those pieces into the smallest parts possible—
keeping in mind that every part still needs to be something we can
build and learn from. It’s going to take a lot more conversations that
dive into a lot more depth to do that.

146 | Chapter 11: Rock Breaking

I picture a cool rock-breaking machine: on one side I load these big,
rough rocks that contain all those precious metals, and then the other
side spits out small, just-right-sized rocks ready to go into the next
development cycle. I’m going to label this machine the story workshop
machine, and its name describes exactly what we’ll do.

We’ll use deep-dive discussions with developers and testers, and ev‐
eryone else on the team who’ll build the software, to really dig into the
details. These are our "last best conversations"—the conversations
where we really need to agree on confirmation, or the acceptance cri‐
teria for the small parts of software we build—because the next step is
building them. Since we know that it’s conversations that break up

Dive into the Details of Each Story During Delivery | 147

software, we’ll use these conversations to get our stories into the right
size and shape to put into the next development sprint, or iteration.

Use deep-dive story workshops to discuss the
details, break down stories, and really agree

on specifically what we’ll build.

I like to call these last best story conversations story workshops be‐
cause everyone knows that meetings are unproductive, but workshops
are for getting work done. They can happen as needed, almost every
day. Sometimes they happen all at once during a planning session. In
the Agile process Scrum, they may happen during what’s called a
backlog grooming or backlog refinement session. Whatever you call
these discussions, have them.

Keep Talking as You Build
The story workshop machine feeds the next in line—the Agile delivery
machine. And here’s where I picture the Agile delivery machine really
kicking in. In one side we put these small, regular-sized stories, and
out the other side comes a polished, working bit of software—or what‐
ever it is that your story described making.

No matter how hard you try, even your last best story conversations
won’t have predicted everything you’ll learn once you start to build.
Plan to have lots of frequent, ad hoc story conversations every day.
Bring up the need for them in your daily standup meetings.

148 | Chapter 11: Rock Breaking

If you’re a developer and the details you trapped in story discussions
aren’t enough to answer questions you have now, jump up and find
someone to talk with to continue your discussion. You can’t blame bad
requirements here. Remember that, before you started, you worked
with others to identify all you’d need to know to build. But we’re all
human. It’s OK to miss some things.

If you’re a product owner, UX designer, business analyst, or one of the
other folks who helped decide what to build, don’t be afraid to get up
from your desk to see how development is going. I promise that once
you see something working, you’ll see something useful. And, more
than likely, the person getting it working could use a little feedback.

Use conversations as you build to fill in de‐
tails and give feedback on what’s being built.

Evaluate Each Piece
When those finished bits of working software roll out of the Agile
delivery machine, it’s time for the people who helped describe what to
build, and the people who build it, to pause and look closely at what
we built.

Remember, these aren’t really machines. And you and the people you
work with aren’t cogs in a machine. And all those pieces you just turned
out aren’t exactly the same widget. They’re all different.

Evaluate Each Piece | 149

Stop and really look at the quality of the solution built. Reflect on how
effectively you planned. Did you really finish what you expected? Did
it take a lot longer? Shorter? Or about what you imagined? And really
talk about how well the "machine" is working. It’s time to make ad‐
justments or changes to the way you work to get better-quality stuff
out more predictably.

Frequently reflect on product quality, your
plans, and the way you work.

This first pass at evaluation in Scrum is called a sprint review and ret‐
rospective. Whatever you call these times to stop, review, and reflect,
make sure you have them.

Evaluate with Users and Customers
Remember that what you’re building wasn’t for you—at least not usu‐
ally. You’ll need to get it in front of users and customers to see how
they feel about it. For some of these folks, all they’ll have seen is a
prototype, or a wireframe, or a textual description. Seeing and

150 | Chapter 11: Rock Breaking

touching something working really lets them evaluate whether or not
they’ve got the right thing.

But each of these little pieces that came out of the Agile delivery ma‐
chine may not be enough for them to tell. In my mental model I picture
each of those pieces piling up on a scale. It’s one of those old-style scales
with a counterweight on the other side. On my counterweight is the
word Enough; that is, enough to test with users and customers and for
them and us to learn something.

Usually enough means a whole screen, or a flow of screens, that allows
users to complete a task or reach a meaningful goal. And I don’t want
to do a show and tell with users. I’m not looking for them to say, "That’s
great." I’m looking to learn—and learning usually takes the form of
"That’s not quite right" and "Now that I really use it, it would be better
if…"

Learn by testing meaningful chunks of work‐
ing software with customers and users.

Evaluate with Users and Customers | 151

Evaluate with Business Stakeholders
There are likely others in your organization who have a vested interest
in the software you’re building. They may not be the people who’ll use
it every day, but they’re concerned that the software is going to be
delivered to those people as soon as possible—or at least when you
said it would be.

Use a review to show them the product so far. Use the review to talk
about where you are in relationship to your bigger plan. Remember:
they likely aren’t interested in whether you meet your plan for the
bunch of single, small parts you built. What they’re interested in is
progress on the minimum viable solution—because that’s the smallest
part we could release and really get some value from in the outside
world. So speak to that. Share with them the results from tests you’ve
done with users or customers. They’ll be interested in learning that,
too.

Keep your progress and quality visible to
stakeholders inside your organization.

152 | Chapter 11: Rock Breaking

Release and Keep Evaluating
I picture one last scale at the end of all this. On this scale I pile up the
parts we’ve reviewed together, tested with customers and users, and
made visible to stakeholders in my company. Coincidentally, this scale
is very similar to the one that we used a couple of steps ago—evaluate
with users and customers. As with this other scale, on the counter‐
weight it says Enough—but this time it means enough to release to
those customers and users to produce the outcome I’m looking for.
When that scale balances, release it to customers and users.

But don’t stop there. You’ve still got something to learn. If you were
like Eric in Chapter 3, learning was your primary goal, so you’ll need
to use metrics to learn if and how people use your product. You’ll need
to use face-to-face conversations to learn why they do or don’t use it.
If you predicted that people would be using your product, and they
and your company would be benefiting from it, don’t just assume that.
Use metrics and conversations to really learn what’s happening.

Release and Keep Evaluating | 153

Use metrics and face time with users to really
learn if your target outcomes were met.

If this were a project, you’d be done—because you shipped it. But you
just made something. It’s a product. And a product’s life starts when
it’s delivered. When you start paying attention to what people are doing
with your product, I promise you’ll find opportunities to improve it.
Write those down, and feed them back into the beginning of this
model.

That’s the real circle of life—or at least, the life of a story.

And that’s a lot of rock breaking. So exactly who is supposed to do all
that rock breaking? I’m glad you asked, because that’s what the next
chapter is about.

154 | Chapter 11: Rock Breaking

CHAPTER 12

Rock Breakers

There’s a nasty misassumption in common Agile practice: that there’s
a single person responsible for writing stories and conducting all these
story conversations. In the Agile process Scrum, that person is called
the product owner. There are two big reasons, however, why this logic
doesn’t work, and probably a lot of smaller reasons, too.
Big reason #1

There are too many conversations to have to move a story along
its journey from vague idea to small, specific things to build. One
person isn’t enough to cover all these conversations. And, if you
set up your process so that one person has to be there, you’ll
quickly see what a bottleneck that person can be, and likely will
become.

Big reason #2
One person can’t come into the conversation with the expertise
and diverse viewpoints it takes to arrive at a best solution. It takes
the collaboration of people with different skills to really arrive at
best solutions.

Requiring a single product owner to write all
of the stories and be present for all story con‐

versations doesn’t work.

Don’t get me wrong here. In my vision of good product development,
the product owner is a critical leader. He keeps the product and whole
team focused on moving the same direction.

155

1. Leisa Reichelt originally included this gem of a comment in a 2009 IXDA talk. See her
later essay here: http://www.disambiguity.com/designbycommunity/.

The alternative is design by committee—a seriously bad anti-pattern
where everyone gets an equal say in what we do. In a committee, when
we only have time and resources to do one thing, we compromise. My
ex-wife and I would often do this when choosing a restaurant. She
wanted seafood, and I wanted Mexican food, and we’d settle on some‐
thing neither of us liked. When a committee isn’t constrained by time
and resources, we do it all. You’ve used software products like this: the
product with more features than anyone can count, and where your
biggest problem is finding the feature or remembering how to use it.

Effective product owners surround themselves with the people they
need to make good decisions. They incorporate the expertise and
opinions of many. But, in the end, when resources are constrained or
the success of the product is at stake, they must make decisions. And
there’s always someone who’ll be unhappy with that decision. My
friend Leisa Reichelt puts it well: "Design by community is not design
by committee…design is never democratic."1

Valuable-Usable-Feasible
In his book Inspired: How to Create Products Customers Love (SVPG
Press), Marty Cagan describes the responsibility of a product manager
to identify a product that’s valuable, usable, and feasible. When I first
read these words, I pictured in my head a simple Venn diagram where
the solution we want is an intersection of what’s valuable to our com‐
pany and our customers, usable by its users, and feasible to build given
the time and the tools we have.

156 | Chapter 12: Rock Breakers

http://www.disambiguity.com/designbycommunity/

But what may not be dead obvious here is that, to really identify the
solution in the center of that sweet spot will take collaboration between
people who understand our business, our customers, our users, and
the technology we use—and not just understand those things, but take
responsibility for the success of the solution. These people actually
speak with stakeholders, customers, and users; they actually design
and test user interfaces; they actually design and test the code that
makes the product work.

Remember that misconception in Agile development where a single
product owner or product manager decides what to build? It’s rare if
not impossible for a single person to possess the business, user inter‐
face design, and engineering skills necessary to find that valuable-
usable-feasible sweet spot. That’s why the most effective organizations
use small, cross-functional discovery teams that work together to find
that right solution. As we discussed in the preceding chapter, think of
discovery as rock-breaking work. It’s the work we do to move a story
from a big vague idea to something small and specific we can build.

A small, cross-functional team led by a prod‐
uct owner orchestrates product discovery

work.

The ideal size for the team is two to four people—dinner-conversation-
sized so the members can quickly build shared understanding.

This team should be led by a product owner or product manager who
has deep understanding of her business’s vision and strategy, and of
the market her product serves. This core team includes someone who
understands users, is comfortable working with them to learn about
the way they work, and can sketch and create simple UI prototypes. It
also includes a senior engineer from the team who’ll build the product.
This person needs to understand the current architecture of the system
and have insight into newer engineering approaches that could be used
to solve tough problems. The real secret here is that the most innova‐
tive solutions often come from the engineer supplied with insight
about the business problem and the users' problems.

Valuable-Usable-Feasible | 157

A cohesive discovery team is a powerful, fast-moving group of experts
who can find problems and validate solutions quickly. I often hear the
term triad used to describe this core team. On my recent visit to
Sydney-based Atlassian, Sherif, whom you met in Chapter 8, pointed
to three seats close together. He explained, "This is where the triad sits."
The area around the triad was filled with desks and computers where
the rest of the team sat. I hear the term triad used when there are two
people, four people, or even more on the discovery team, since it’s the
three concerns—valuable, usable, and feasible—we’re talking about,
not three bodies.

Support product owners with a core team
that includes user experience, design exper‐

tise, and technical expertise.

A Discovery Team Needs Lots of Others to
Succeed
An effective discovery coordinates collaboration with not only the
development team, but also business stakeholders, subject matter ex‐
perts, customers, and end users. It’s tough work that requires top-
notch communication and facilitation skills, in addition to the specific
expertise each team member brings in.

158 | Chapter 12: Rock Breakers

2. This article on the Scrum Alliance website by Ryan Thomas Hewitt explains a three
amigos–style story workshop: http://bit.ly/Utg8er.

Now, here’s the real secret. For a product of any significance, it’ll take
a team to get it built. To keep the vision of the product clear, ensure
the solution the team builds is cohesive, and help keep everyone mov‐
ing in the same direction, a good product leader is critical. The best of
these leaders focus on helping everyone take ownership. In a healthy
story-driven environment, you’ll see lots of story conversations going
on all the time. And many of them won’t need the product leader there.

The Three Amigos
¡Three Amigos! is the name of a mediocre 1986 western comedy star‐
ring Steve Martin, Chevy Chase, and Martin Short. What does this
film have to do with Agile software development and stories? There’s
a more tactical triad of collaborators that’s valuable during story work‐
shops. And I’m not sure who originally gave them the moniker "the
three amigos," but it appears to have stuck.2 (I’m sure if more people
had seen the movie, it wouldn’t have.)

The Three Amigos | 159

http://bit.ly/Utg8er

You might recall that story workshops is the term I give to that last best
conversation where we decide specifically what to build. It’s here where
the three amigos come in.

During this last best conversation, we really need to consider lots of
details and alternatives for implementation, so we’ll need a developer
from the team who’ll build the software—ideally, one of the developers
who will actually work on it.

For this small piece of software to be considered done, it’ll need to be
tested, so we’ll need a tester in the conversation. A tester—the first
amigo—will often bring a critical eye into the discussion, spotting
things that might go wrong sooner than most. The tester is often the
best at playing the "What-About" game.

And, of course, we’ll need someone who understands what we’re
building, who it’s for, and why we’re building it, so we’ll need a member
of that core product discovery team. That person is the second amigo.

At this stage we’re often not introducing a new feature idea. We likely
already did that back in discovery. Now we’ve more or less committed
to build something, so it’s important to understand specifically how
that software should look and behave. So often the person involved in
this conversation is a user experience designer or business analyst
who’s worked through those details. This is your third amigo.

160 | Chapter 12: Rock Breakers

This group will work through the details and agree on specific accept‐
ance criteria for the story. It’s out of this conversation that we’ll have
our best estimate of how long it will take to build and test the software.
And it’s often in this conversation that we’ll make decisions to split the
story into smaller, "right-sized" development stories—those stories
that take one to three days to build and test.

Story conversations happen continuously as we move ideas through
software development. In every conversation, keep what’s valuable,
what’s usable, and what’s feasible in the discussion. Include people who
can speak to those things. Avoid design by committee by holding a
product owner responsible for a successful, cohesive product.

The Three Amigos | 161

The Client-Vendor Anti-Pattern
There’s a nasty anti-pattern that gets in the way of using stories well.
In fact, it can get in the way of people working together to do any‐
thing well. It’s the dreaded client-vendor anti-pattern.

In this anti-pattern, one person in a conversation takes the client role,
while the other takes the vendor role. It’s the client’s job to know what
he wants, and to explain the details to the vendor. That’s what we call
"requirements." It’s the vendor’s job to listen, understand, and then
think through a technical approach for delivering what the client
asked for. The vendor then gives her estimate—which in software
lingo actually means "commitment," and is the reason why developers
often fear giving estimates without thorough investigation.

The rest of the story is sadly predictable.

Every once in a while, the estimate is deadly accurate, and the client
gets what he wanted, and what he wanted actually turns out to be what
he needs.

But, most of the time, constructing a solution takes longer than the
vendor predicted. The person in the vendor role can cite all sorts of
excuses for the delay, including lack of details in the requirements she
was given, or just "bad requirements." The client can blame inaccurate
estimation—which no one seems to notice is an oxymoron. When the
solution is delivered, and the person in the client role receives what
he asked for, he then gets an opportunity to use it and realize it’s not
what he needs. He doesn’t get the outcome he imagined he would.

162 | Chapter 12: Rock Breakers

The real tragedy here is that the person in the client role understands
his problem better than he’s able to predict what will solve it. And the
person who understands the technology is often the most qualified
to solve the problem because she knows how the technology she’s
working with can help. What’s more, most technologists honestly
want to help. They want to know the things they’re building are put
to good use.

But, in the client-vendor anti-pattern, conversations about problems
and solutions are replaced by discussions and agreements about re‐
quirements. No one wins.

One of the goals of stories is to break this anti-pattern.

One kind of relationship many of us have that does break this anti-
pattern when it goes well is the one we have with our doctor. Try
showing up at your doctor’s office and giving her your "requirements."
Tell her the prescriptions you’d like written and the operations you’d
like scheduled. If she’s nice, she’ll smile and say, "That’s interesting;
tell me where it hurts."

In my head, I picture a continuum where on one side is the word
waiter, and on the other is the word doctor. Try to make your working
relationships much more like a good doctor-patient relationship, and
much less like a waiter-diner’s.

Product Owner as Producer
If you work in a more traditional IT setting, the notion of a product
owner may seem confusing. For example, if you help build critical
systems for a bank, the bank knows its real products are the banking
services it sells to its customers. If there is a person with the official
title of "product manager," it’ll be his job to look after a specific type
of bank account or credit product. The computer systems that support
that service offering are just a piece of the puzzle. And often that same
IT infrastructure supports lots of different banking products. Under‐
standably, the bank doesn’t see that infrastructure as a product, and
there’s often no one who owns it.

In these types of organizations, business analysts (BAs) are often
placed in a "requirements gathering" role. They’ll act as an interme‐
diary between the developers and the business stakeholders like the
product manager of a banking or insurance product. When those
businesspeople need changes to the IT infrastructure that supports

Product Owner as Producer | 163

their product, they’ll work with the BA to describe those changes. And
here’s where they might take on the client role as the BA acts in a vendor
role, and that’s where the anti-pattern kicks in.

In casual conversation, my friend David Hussman gave me a better
metaphor for the relationship the BA should have with his business
stakeholders—the same relationship that a music producer has with a
band. This makes sense coming from David, who’s both an Agile guru
and ex-guitarist for the 1980s heavy metal band Slave Raider. He’s
worked with producers, and been a producer himself. In that rela‐
tionship the band comes to the music business with passion, and
hopefully some talent, but they don’t know the music business or the
mechanics of recording an album. The producer does, however. It’s
the producer’s job to help that band make the most successful record‐
ing it can. Successful producers can turn raw talent into a polished,
commercially viable recording artist.

As a business analyst in an IT context, that’s your job. Take the vision
of your business stakeholders and help them make it a success. You
can’t be just an order taker—you’ll need to behave more like a doctor.
And sometimes this means telling your stakeholders things they don’t
want to hear. But, if you’re sincere about helping them succeed, they’ll
see it and value your help.

When acting as product owner for other
stakeholders' ideas, take on the role of a pro‐

ducer who helps them succeed.

One potential anti-pattern is to make the business stakeholder take on
the product ownership role. I say potential because it can work if the
businessperson has lots of help and support from other team mem‐
bers, an aspiration to learn how to do the job of a product owner, and
the time it’ll take to do it. Product ownership isn’t a trivial responsi‐
bility, and shouldn’t be treated as something that could be done in your
spare time. Instead of forcing another job on businesspeople, I’d rec‐
ommend you find them a producer to help them succeed.

This Is Complicated
For an idea that at its core is simple, this whole story thing has gotten
terribly messy. If anyone told you software development—or any
product development, for that matter—was easy, they were lying.

164 | Chapter 12: Rock Breakers

Stories are many things at once. We’ll use the word to refer to the card,
to the chunk of software we build, and especially to the kind of con‐
versations we have to make decisions about what we should build.
Stories can describe very large opportunities, or the almost insignifi‐
cant deliverable pieces that by themselves aren’t necessarily meaning‐
ful to customers and users. Working with stories is a continuous pro‐
cess of conversation and discussion to break them down from big
things to small things. And through all those conversations, we’re
keeping not only what we could build in focus, but for whom, and why.
Story mapping is just one of the ways to help us break big things down
while keeping the focus of the conversation on the people using your
product and what makes them successful.

If this is all starting to make sense, then you’ve made that big, necessary
mindshift. It’s not a shift to use stories to document requirements, but
a shift toward working with people more effectively, and together fo‐
cusing on solving real problems with the products you create.

And that, I hope you’ll agree, is a beautiful thing.

This Is Complicated | 165

CHAPTER 13

Start with Opportunities

Let me point out again how stories are like rocks. And like a rock, when
you break it into smaller parts, you can call those parts "rocks" too—
just smaller rocks. But there’s always that first rock. That’s the one we’ll
need to look closely at to decide if it’s worth breaking up or not. Let’s
call it "rock zero." And in our flow of stories, I’ll call that an
opportunity.

I’m using opportunity for ideas that we believe will solve a problem.
I’m not just a glass-half-full guy. It’s just that it’s a bad idea to consider
every idea as something we need to include in our product, because
you know that there isn’t enough time and people to build all that stuff.
And, even if you did have the time and people, your customers would
be overwhelmed.

Have Conversations About Opportunities
When we come up with ideas, these ideas are often pretty big—but
not always. In story lingo, you could call them epics, but I prefer to call
them opportunities. No matter what you call them, they’re still stories,
and the goal of the first conversations we have about them is to decide
whether to move forward with them, or trash them. For each one of
these opportunities, we can discuss:
Who they’re for

At this level, it’s often different groups of users, customers, or a
target market.

167

What problems we’re solving
For each type of user, we can talk about what problems we’re solv‐
ing for them. We’ll need to talk about how they solve their prob‐
lems today by using manual tools, our competitors' products, or
worse, our product that’s causing them pain today.

What we’re imagining
We may have some ideas about what the product or feature should
be. We should discuss those ideas.

Why
It’s a good time to discuss why it benefits our organization to build
software for these users. Solving users' problems usually isn’t
enough. We also need to consider the ultimate return on this soft‐
ware investment and whether this investment is aligned with our
current business strategy. I’m not saying we need to calculate re‐
turn on investment (ROI), because anyone who can do that at this
stage is likely full of something other than just stories. Just discuss
in general terms how we imagine it’ll benefit our organization if
we build it.

Size
At this level, even when they’re big, we can start to give some gut
estimate of development time, although it won’t be very accu‐
rate. It works best to look at the opportunity and compare it to
something you’ve already done: "That sounds like it will be about
like this other feature we put in the last release. That took a couple
of weeks, so this may take about the same amount of time." To
help decide if we should proceed with discussion on this idea, it’s
valuable to know if we’re talking about something that’ll take days,
weeks, or months to build.

The whole stack of these stories is what I call an opportunity backlog.
We aren’t sure yet if we should build them, or at least we shouldn’t be.
Remember, there are always more ideas for things to build than we’ll
have time for. Find the opportunities aligned with your organization’s
business strategy and that solve problems for customers and users that
are compelling. Have enough discussions to make a go/no-go decision.

Dig Deeper, Trash It, or Think About It
"Go" doesn’t mean "We’re gonna build this thing," it means we’ll move
the opportunity forward into deeper discovery discussion. During

168 | Chapter 13: Start with Opportunities

discovery, it’ll take a lot more discussion—probably with others not
in the room. If this is a new feature or an entirely new product, it’ll
take diving a lot deeper into customers and users and how they solve
their problems today. Ideally, we’ll talk to them directly. It’ll take ex‐
ploring and prototyping different solutions. It’ll take lots of deeper
discussions in light of what you and your team learn to make a decision
about what specifically you’ll need to build to be valuable to customers,
users, and your organization. And, after all that work, you still might
decide to kill the idea.

"No-go" is a great result of an opportunity discussion. Remember,
there’s always more to build than there is time. If the opportunity
doesn’t look promising based on your discussion, trash it now. It may
be a good idea to involve the people who championed the idea in the
discussion so hopefully they come to the same conclusion.

Your group may not have enough information to make either a go or
a no-go decision. If that’s the case, make a list of what you need to
learn, and together get to work getting the information you need.

If you still can’t make a go or no-go decision, you can always put it
back into the opportunity backlog to discuss later. That’s called pro‐
crastination, and I do it a lot.

Dig Deeper, Trash It, or Think About It | 169

The Opportunity Canvas
When looking at product opportunities, I’ve used Marty Cagan’s Op‐
portunity Assessment template as my starting point. Recently, I’ve
really come to like using a canvas-driven approach. The canvas ap‐
proach to looking at business models, as described in Alexander Os‐
terwalder and Yves Pigneur’s book Business Model Generation (Wi‐
ley), is an effective way for groups to work together to size up a startup
business. But for me, and most of the people I work with, we’re not
looking at starting a new business or launching a new product. We’re
often looking at adding a next important feature to the product we
have. That shouldn’t stop you from using a similar canvas approach
to sizing up product opportunities, however.

A canvas organizes information spatially. It’s big and all in one place
so a group can see and work with it, which is hard to do in a slide or
printed document, and the organization allows you to see dependen‐
cies. Information is adjacent to other information it depends on.

A canvas looks like this:

And working together to gather information in a canvas format looks
like this:

170 | Chapter 13: Start with Opportunities

Using a canvas approach has real benefits like:

• You can see the important concerns of an opportunity in a single
view.

• You can see the relationships between these concerns.
• Building shared understanding, ownership, and alignment by

working together collaboratively to create a canvas leverages ev‐
eryone’s contribution.

As a product discovery team, initially fill out the canvas based on what
you understand today. Involve stakeholders, subject matter experts,
or anyone else you think can bring important information into the
conversation.

Use sticky notes to make it easy to change your mind as discussion
progresses. Iteratively improve the canvas as you learn more.

You could proceed through the canvas starting with the first box, and
continue to the ninth. However, if you don’t have good answers for a
box, record what you do know, or your assumptions now, and
proceed.

Fill Out the Canvas in One Flow, and Read It in Another
The boxes in the canvas are numbered in a logical order you can use
for discussing an opportunity. But, if you’re sharing the canvas with
someone else, you may want to read it left to right, and top to bottom.
You’ll notice the left-to-right flow is from "now" to "later" in the output
versus outcome model introduced earlier. You’ll also notice that top
to bottom moves from user needs to business needs.

This isn’t a form to fill out. This is instead a set of topics to discuss
and iteratively refine your understanding of. Remember: "design by
community isn’t design by committee." Involving lots of folks helps
everyone learn faster, but ultimately, the go/no-go decision to proceed
with an opportunity falls to the product owner. The best product
owners leverage their teams to help make the decision, and usually
find that they and their teams are in agreement.

Here’s the flow of spaces in the Opportunity Canvas.

1. Problems or Solutions
Ideally, we should start with a clear problem we’re trying to solve.
However, the world is rarely ideal. We’re often given a feature or en‐
hancement idea and then need to work backward to understand the
problem. Start with what you have.

Dig Deeper, Trash It, or Think About It | 171

Solution ideas
List product, feature, or enhancement ideas that solve problems
for your target audience.

Problems
What problems do prospective users and customers have today
that your solution addresses?

If you’re building a product for entertainment like a game or tool to
share fun stuff on a social network, they may not have a real "problem"
to solve, just a desire to be entertained.

2. Users and Customers
What types of users and customers have the challenges your solution
addresses? Look for differences in users' goals or uses that would affect
their use of the product. Separate users and customers into types based
on those differences. It’s a bad idea to target "everyone" with your
product.

3. Solutions Today
How do users address their problems today? List competitive prod‐
ucts or workarounds your users have for meeting their needs.

4. User Value
If your target audience has your solution, how can they do things
differently as a consequence? And how will that benefit them?

5. User Metrics
What user behaviors can you measure that will indicate that they
adopt, use, and place value in your solution?

6. Adoption Strategy
How will customers and users discover and adopt your solution?

7. Business Problem
What problem for your business does building this product, feature,
or enhancement solve for your business?

8. Business Metrics
What business performance metrics will be affected by the success of
this solution? These metrics are often a consequence of users chang‐
ing their behavior.

9. Budget
How much money and/or development would you budget to discov‐
er, build, and refine this solution?

172 | Chapter 13: Start with Opportunities

Opportunity Shouldn’t Be a Euphemism
I know your company probably doesn’t use opportunities. In fact, if
your company is anything like those I’ve worked with, you’ve got a
roadmap filled with stuff you’re supposed to build. You may even think
of them as your "requirements." Making a no-go decision on any of
that stuff may not be your call. The truth is, we really shouldn’t turn
all those clever ideas into software, no matter the job title of the person
with the clever idea.

Use this first big story conversation to frame the work you and your
team may be getting into. Even though the answer to the go/no-go
question may be "Go," make sure you leave the conversation with
shared understanding about the problems you’re solving, for whom,
and how your organization benefits from building software.

If it’s not your decision, or anyone on your team’s decision, to go ahead
with this opportunity, then make sure you include those in the
conversation who can make that decision. If they’re not available, have
the conversation anyway, and make assumptions about who, what, and
why. Then share those assumptions with decision makers. I promise
you that they’ll correct you if you’ve got it wrong. Discussing those
corrections will start the right conversation.

Story Mapping and Opportunities
As much as I like story maps, I wouldn’t use a map to manage oppor‐
tunities. Those opportunities are usually bigger chunks. And discus‐
sion about these big rocks usually drives toward the details we’ll need
in order to decide about moving them into deeper discovery.

But one thing that story maps are great at is giving you a really effective
way to step back and look at the big picture for the product you have
now. Use a map you create for your product today to find opportuni‐
ties, or to consider the opportunities you already have in the context
of your product today.

Try building a simple, very high-level map of your existing product.
This is a "now" map similar to the one you built in Chapter 5 about
starting your morning. (You did build it, didn’t you?) These types of
maps have been around in various forms for a while. They’re often
called journey maps. To make one for your current product’s experi‐
ence, just map the flow users take through the major activities they

Opportunity Shouldn’t Be a Euphemism | 173

engage in. Use this map to give context to your opportunities. To do
this, add each opportunity into the body of the map. Use a different
color of sticky note or index card to clearly call them out. What you
might see are opportunity "hot spots"—places in your users' flow
where there’s a higher density of ideas and likely pain from your users.

Look at the users engaged in each activity, and the frequency of that
activity. Opportunities that affect high-frequency activities engaged in
by critical users are likely opportunities you should be focusing on—
sooner rather than later.

You can use this same map to add in cards for the things users complain
about today. To balance things, look at the parts of the product that
they love today, and add in those joys. If you find places where there’s
lots of pain for users, but you haven’t yet identified any opportunities,
you probably should.

Journey Mapping and Concept Generation
Ben Crothers, Atlassian

Given that we offer over 10 different products, we have to make sure
that we design, build, and improve upon those products in ways that
match how our customers use them together, not one by one. As part
of a project to discover how the products could work together in a
better way, we formed a multidisciplinary team to map the entire end-
to-end customer experience in finding, evaluating, purchasing, and
using them, as well as getting help and adding more products and
services.

174 | Chapter 13: Start with Opportunities

This was huge. To help break it down, we mapped the experience at
a high level first, and then broke into subgroups to expand on each
section of that skeleton journey. We did this by initially filling a wall
with the moments, actions, and questions that customers go through,
color-coding as we went, and then going back over it, adding pain
points, opportunities, and assumptions.

We gained a lot of insight by being able to trace an end-to-end story
rather than just a feature-based experience. We quickly realized, for
example, that some parts of the experience—such as setting up prod‐
ucts or getting help—weren’t isolated to one part of a linear journey,
and needed to be catered for much more and in greater detail.

Various other stakeholders and teams were brought in to flesh out
more detailed journeys that were all pegged to various points along
the high-level skeleton journey, so that we captured and validated as
much existing knowledge as we could.

Then we went absolutely nuts coming up with as many concepts as
we could to improve upon and reinvent various parts of the detailed
journeys. All of the concepts were distilled and written up on cards,
and stuck on the wall in loose order along the journey.

Each team member explained each of his or her concepts, after which
we all voted on the concepts' effectiveness with sticky dots, according
to their feasibility, viability, and desirability.

Story Mapping and Opportunities | 175

We were then able to craft an overall cross-product vision of an ideal
customer experience, based on these journeys and validated concepts.
The journey was also brought to life with a 20-page comic, which
transformed the journey—and all the personas, scenarios, and con‐
cepts involved—into a single storyboard that made it easier to com‐
municate to the whole organization. This informs many product en‐
hancements that continue today.

What’s really compelling for us is that many of those involved in de‐
veloping and refining these enhancements now were also involved in
generating the concepts to start with. Even though this exercise was
done over eight months ago, that shared concepting and understand‐
ing makes things so much more efficient now.

176 | Chapter 13: Start with Opportunities

Challenging Assumptions with Rehearsal Remapping
Erin Beierwaltes and Aaron White

1. One Map to Rule Them All
After customer visits, interviews, and explorations, the project owner
had a journey map that he confidently believed covered the path to
the best outcome for the customer. Business as usual for many teams.
Now it was time to share with more people and get it going.

Story Mapping and Opportunities | 177

2. Question Everything
But after a few conversations, we started to question what we had
missed. What simple assumptions had we made that could have bigger
than expected impact? We needed a quick way to challenge our as‐
sumptions, find holes, and build shared understanding among ev‐
eryone who would be a part of the project.

3. Set the Scene
We gathered the team, assigned personas (there were multiple), and
described the desired outcomes that would naturally guide those per‐
sonas to use the part of the product that would test our assumptions.
We did not write step-by-step instructions. Our direction: "Simply, as
this person, you would like to accomplish this goal." Rehearsal!

4. Rehearsal
While the actors played their parts and tried to reach their described
goals, a few observers played the part of the silent audience.

The PO observed what paths were taken, answering a few questions,
and avoiding leading anyone down a particular path. The IxD ob‐
served behaviors, comments, and reactions.

5. Rebuild the Map
We didn’t show the original map, but instead walked all of the actors
through building a new map that described how they accomplished
their goals, sharing along the way how some took different paths.

6. Pains and Gains
After the rebuild, we asked each actor to share pains (things that
challenged, frustrated, or confused them) and gains (things they
thought were slick, cool, or intuitive). A real sense of new empathy,
understanding, and excitement filled the conversation.

7. Observations
Finally, it was the audience’s turn to ask questions about interesting
behaviors they had seen. We were amazed at how many things the
actors were unaware they had done, but that gave us a window into
how someone might naturally try to accomplish something.

178 | Chapter 13: Start with Opportunities

8. Profit!!!
After only 2.5 hours, we had built shared understanding about the
real feel of the new solution in a way only a conversation could have.
Actors spoke with real empathy for the customers they played, and
the discovery team had gained huge insights into what was working
and where more experiments might be required.

Be Picky
You’re not helping anyone if you agree to take on everything. Aggres‐
sively trash opportunities that don’t offer much hope of creating the
outcomes you hope for. Work with business stakeholders to do this so
they can help make those decisions.

If you’ve made a go-forward decision, it’s time to roll up your sleeves
and get to work. And that’s what the next chapter is about.

Be Picky | 179

CHAPTER 14

Using Discovery to Build Shared
Understanding

When I see simple models that describe Agile development, they often
start on the left side with a big list—the product backlog. Now, I’d con‐
sider that funny if I didn’t know that some people consider it that easy.
Getting a good actionable product backlog out of an opportunity is
going to take a lot of hard work; it won’t simply materialize for you.
And it definitely isn’t the result of capturing a list of things people want
built. It’s a deliberate process of discovery that initially focuses on
learning a lot more about who, what, and why.

Discovery Isn’t About Building Software
Discovery work isn’t about building shippable software. It’s about
learning. It’s about building a deeper understanding of what we could
build. It’s about asking and answering questions like:

• What problems are we really solving?
• What solutions could be valuable to our organization and to cus‐

tomers buying or adopting the product?
• What does a usable solution look like?
• What’s feasible to build given the time and tools that we have?

It’s asking and starting to answer all these questions about an oppor‐
tunity that starts your first round of rock breaking. All the details about
the product or feature you discuss become the titles of smaller stories.

181

And each of those smaller stories can result in even deeper discussions,
and still smaller stories.

All these discovery discussions don’t just result in more stories. Re‐
member that story discussions involve creating lots of other simple
models that represent what we understand. We’ll need these other
simple models to build shared understanding.

If the only thing you create while making
sense of a big, ambiguous opportunity is

smaller stories, then you’re probably doing it
wrong.

Four Essential Steps to Discovery
If I’ve got a big idea, or even a small one that needs some clarity, I
follow this progression of discussions to move from the big idea to the
details I’ll need to best understand if we’ve got a solution worth
building:

182 | Chapter 14: Using Discovery to Build Shared Understanding

1. Frame the idea from a business perspective.
2. Understand customers and users and how you’re helping them.
3. Envision your solution.
4. Minimize and plan to identify the smallest viable solution and how

you’ll build it.

1. Frame the Idea
If you really use an opportunity backlog, and really had an opportunity
discussion to make your decision to begin discovery, then you’re most
of the way there. Use framing discussions to kick off focused discovery.
Involve the people who’ll work together to better understand this
opportunity.

Use framing discussions to set bounds for the work you’re doing. If
you’re clear on why you’re building something and who it’s for, you
and your team will be better able to stop discussions about solutions
that don’t solve the problem you’re focusing on, or aren’t for the users
you’ve targeted.

2. Understand Customers and Users
Use discussions about customers and users to gain more insight into
the people your product or features are for, and how they benefit them.
Involve those who have deep user understanding, and others who need
to get it.

Sketch simple personas
I like creating simple persona sketches with a small discovery team
to build shared understanding of my users. A persona is an example
of your target user assembled from the facts and sometimes the as‐
sumptions you have about your users. Building personas helps us look
at the software through the eyes of our users. Personas are handy tools.

Four Essential Steps to Discovery | 183

I built this simple persona with a group at Mano a Mano, a nonprofit
group that helps people in Bolivia by doing everything from building
roads to supporting education and healthcare. Our discussion this day
was about small, Internet-savvy donors—the sort of people who may
not have a huge amount of money, but want what they do have to give
to be used wisely. We’d expect people like Chuck to find Mano a Mano
on the Web or hear about it via Twitter or Facebook.

We created this persona together as a group using flipchart paper. It’s
a fast, fun activity with lots of people shouting and contributing
information.

Now, if you’re an experienced UX designer who’s created personas
before, you may be feeling a little sick to your stomach right now. For
the rest of you reading, good personas are built from good data gath‐
ered through solid research. UX people concerned about that might
be nervous about team members just shouting stuff out and scribbling
it on flipchart paper. It doesn’t sound rigorous. So don’t just shout your
guesses. Discuss what you know and what you’ve observed. Tell stories.
Involve people in the discussion who have firsthand experience with
users. If you’ve done lots of research, bring it into the discussion with

184 | Chapter 14: Using Discovery to Build Shared Understanding

you. Identify the details most relevant to the opportunity you’re build‐
ing and put those into the persona. Filter out the noise. When you’re
done, have an honest discussion about how much of this is just a guess.

"We already have personas created. They’re beautiful documents we’ve
posted on the wall." I hear that a lot. But be honest with yourself. Most
people haven’t read them, have they? And half of the people who did
read them did so just to poke fun at them. Maybe I’m being cynical,
but I see that a lot.

Build personas together, collaboratively. Do this to build shared un‐
derstanding with the team about who’ll build the product. Do this to
really consider the most relevant aspects of the persona.

Build lightweight personas together to build
shared understanding and empathy within

the team.

I create simple personas for each type of user who might use the feature
we’re discussing. If I’m moving fast, I may just list different types of
users or roles using the software, and note a few details about them.
Remember Gary in Chapter 1? One of the piles of cards right next to
Gary was exactly that—a list of users and a few bullets of relevant
information about them.

Create organizational profiles or orgzonas
If you’re building a product that organizations might buy—for exam‐
ple, an accounting product—take the time to list different types of
organizations and record some details about them. These are your
customers—the people with cash in hand who need to get some value
from your product. An organization type with some supporting details
is often called an organizational profile. My friend Lane Halley first
introduced me to creating example organizational profiles much like
you’d create a persona. For fun, she called them orgzonas.

Map how users work today
You can go one step deeper and map the way your users work today
without your product, or with your current product. If you were play‐
ing along in Chapter 5, you built a story map about the way you do
things today. Doing this for the way your users work today will help
your discovery team really understand the problems they’re solving.

Four Essential Steps to Discovery | 185

These photos from Duncan Brown of the Caplin Group show some‐
thing they call a narrative journey map. It’s a map that tells a story
about the "now" side of the "now-and-later" model I started this book
with. It doesn’t describe our great solution; it describes the way people
reach their goals today—faults and all.

The body of the map contains facts, observations, pains, and joys.
When you map what you understand now, you’ll see "hot spots"—areas
in the flow where there are lots of problems. You’ll also find rewards
—the joys at the end of a set of steps that make your users' efforts
worthwhile. You can build valuable products by taking away pains, or
magnifying joys. Use this map as a springboard for brainstorming
solutions, or for validating that the solution you have in mind really
does solve problems.

3. Envision Your Solution
By now you’ve framed to be clear on why you’re building this from a
business perspective; you’ve dived deeper into users and customers so
you know what their world looks like now. It’s time to imagine the
future—to envision the solution and how your target customers and
users will make use of it.

Map your solution
This is where story maps shine, at least for me. I use the story map to
imagine the life of my users with the solution we’re building in place.
Both Gary and the Globo.com team in the first two chapters built maps
like this. As we discussed in the opening chapters, the steps people
take in the story you tell form the left-to-right flow. Remember from
Chapter 4 that those are user tasks—short verb phrases that, when read
from left to right, tell the story. The finer-grained tasks and other de‐
tails stack up vertically under each step. If it’s a long story, distill groups
of activities to create a three-level map.

186 | Chapter 14: Using Discovery to Build Shared Understanding

Words and pictures
Have you ever been in a situation where you describe a product idea
to a developer, and are pleasantly surprised when he says, "Oh, that’s
simple. It shouldn’t take long to build." But, then when you really get
going on it and start building it, you realize the developer was imag‐
ining something far simpler than you were. For example, you might
have described a site to sell your stuff online. You might have been
imagining something like eBay or Amazon Marketplace. But the de‐
veloper was imagining something more like Craigslist, and that’s why
you were pleased with the estimate. I’ve learned over the last decade
that words alone just aren’t enough.

Visualize your user interface to build shared
understanding of the solution.

If you’ve got UX designers on your team, now’s a good time for them
to start sketching. Sketch individual screens and post them above the
map in the order they appear. You’ll end up with something that looks
like a storyboard.

Visualizing the Whole Experience
Josh Seiden, with artwork by Demian Repucci

One day I received a call from Robert, a recently hired design manager
at a large, well-funded education startup. The company was in the
early stages of a big project, it was hiring rapidly, and it was on a tight
deadline to produce a huge system. Just one problem: it was having
trouble figuring out how to approach the enormous design challenge
it was facing. Could I help?

When I arrived in the office a few days later, Robert—both proud and
overwhelmed—showed me around. The company had hired a large
consulting firm to help it develop requirements for its project, and
that firm had done an impressive amount of work. Every wall in the
light-filled loft offices was covered with brown butcher paper, and
each one of those sheets was in turn covered with index cards and
Post-it notes: requirements, in the form of user stories. Thousands of
them. As Robert walked me past the walls of stories, I noticed that all
the stories were organized by functional module: a text editor wall, a
grading application. And curriculum modules: a wall of science, a wall
of English. I struggled to build a picture of the system in my mind.

Four Essential Steps to Discovery | 187

Robert was in the process of building a design team, and also trying
to segment the problem. As we talked through what his team needed,
we realized we could use a story map to help organize the thousands
of user stories in a way that would help the design and development
teams operate from a shared vision.

Coincidentally, a few weeks earlier, I had sat in on a workshop facili‐
tated by a team of storyboard artists. The goal of the workshop was
to help entrepreneurs articulate a vision for their business ideas.
Working quickly, these artists sat with the entrepreneurs, drawing
their stories out of them and sketching out the ideas as storyboards
—mini comic books that told each story with great clarity. I decided
I wanted to combine this approach with story mapping, and called
one of the artists who had impressed me in that workshop, Demian
Repucci.

Over the next few weeks, Demian and I met with Robert and his team,
as well as with the product managers of the various pieces of the sys‐
tem. Our focus was on high-level workflow—the major use cases in
the system. As we met, Demian sketched in his notebook and I used
index cards and Post-it notes to outline the use cases on the confer‐
ence room walls. After the meetings, Demian would return to his
studio to illustrate key moments, and I used Omnigraffle to produce
clean versions of the story maps that we had drafted in our meetings.

With Robert, we decided that the most valuable thing we could deliver
was the organizing structure for the team, so we produced a series of
posters that could be printed on 11×17 paper and taped to the walls
to form the "spine" of the story map. The teams could then use that
independently to organize their user stories in a new way. Instead of
a module-centric view that doesn’t lend itself to iterative development,
we now had a usage-centric approach that could be sliced into cross-
module releases.

188 | Chapter 14: Using Discovery to Build Shared Understanding

One approach to envisioning the user experience that involves the
whole team is a Design Studio approach. A Design Studio is a fast,
simple, and collaborative way to involve a large group in deliberate
ideation, which is a flashy word for coming up with lots of possible
ideas. What you’ll quickly learn is that no single person has the best
ideas. Rather, the best ideas are often a combination of several people’s
ideas along with more discussion to build on them. A Design Studio
(and simple ideation, for that matter) is the opposite of what most
folks, including me, often do: go with the first idea that seems like it’ll
work. I first saw Design Studio described by Jeff White and Jim Un‐
ger and wondered why I hadn’t always been doing it. I’ve done these
involving development teams, stakeholders, and even customers and
end users.

Whatever approach you use, combine ideas, refine them, and come to
a shared understanding of what the software could look like.

An uncomfortable thing that happens here is that visualizing your
solution will help you catch things you’ve missed in the map. You’ll
find you may need to add, change, or reorganize the map to support
what you’ve visualized. Don’t worry: that’s a good thing.

Design Studio Recipe
A Design Studio is a quick, collaborative approach to ideation. There
are lots of ways to do this right, but here’s my simple recipe:

1. Invite a group of people whose opinions and ideas you’d like, and
whose buy-in and understanding you’ll need to build the prod‐
uct. Eight to twelve people is a good number.

2. Describe the problem you’re solving. Review the work you did to
frame the opportunity. Review personas and any "now" maps that
describe how people work today. Review any solution maps you
may have started, but be wary of saying too much. If they anchor
their ideas on yours, you may be missing out on some of their
great ideas.

3. Optionally share examples and inspiration. Discuss and show
other similar products that are good examples. Discuss and show
products that may not be the same, but that have good ideas in
them that could be leveraged.

Four Essential Steps to Discovery | 189

http://portal.acm.org/citation.cfm?id=1358650
http://portal.acm.org/citation.cfm?id=1358650

4. Everyone sketch! Give everyone paper, pens, maybe some sketch‐
ing templates, and a fixed amount of time. I see as little as 5 mi‐
nutes, and as much as 60. I like using 15 minutes.

5. In small groups, share ideas. I like doing this in groups of 4, so if
you had 12 people, break that into three groups of 4. Person-by-
person, share your best idea. Team members give feedback.
Coach participants to give feedback on how well the solutions
address the problem, not on how much they like them. Coach
them to build on others' ideas. Continue person-by-person for a
fixed time-box—30 minutes usually works for me.

6. Ask each group to consolidate their best ideas into a single sketch‐
ed solution. This is the hardest part. Take 15–30 minutes for this.

7. Ask each group to share their best, consolidated ideas with the
whole group. Discuss these.

8. Thank everyone, and gather up the sketches and ideas. You, your
UX designer, or your core discovery team will need to leverage
them to create a final, best, consolidated UI sketch. Remember,
in the words of my friend Leisa Reichelt, "design by community
is not design by committee." You’ll have lots of good competing
ideas here, and someone’s got to make the tough call.

Validate completeness
One of the things our heads are good at is filling in details. For example,
when we see two frames of a comic strip, our brains fill in what hap‐
pened in between. This is a cool trick for comic books, novels, and
movies. But, when thinking through what software does, we’ll often
imagine the interesting features while neglecting the necessary stuff
that happens in between. Overextending the movie metaphor, it’s sort
of like talking only about the car chases and gunfights, and leaving out
the story that explains why all that action took place.

190 | Chapter 14: Using Discovery to Build Shared Understanding

Telling the full breadth of your users' stories using a map helps you
remember to talk about those critical details in between. You’ll usually
see that the really cool feature you were thinking of needed some set‐
ting up by the user early in the story, and resulted in some changes to
reports and notifications later in the story. There may even be conse‐
quences for others of your new feature idea. For example, adminis‐
trators may need to manage security concerns, or managers may like
oversight on how the feature is being used by their staff.

Validate engineering concerns
Back to the filmmaking metaphor, if you are going to move on to make
this movie, you’ll need to start thinking about how and where you’ll
film it. You’ll need to consider the kinds of special effects you’ll need.
At some point you’ll need to go deeper than the story and consider the
technical details of making your movie.

A story map of your software is helpful for the same kind of discussion
you’d have making a movie. Discuss your solution map with engineers
and architects before getting too far along. Seeing the big picture helps
them think through bigger engineering constraints that could result
in hopelessly flawed solutions. They can give you early warning that
your solution may sound cool, but it’s not feasible to build given your
current architecture and time budget. They can often suggest alter‐
native ways of doing things that’ll give your users an equivalent expe‐
rience, but be more cost effective to build.

Four Essential Steps to Discovery | 191

These engineers for a large insurance company have been talking in
front of this map for a long time. During the course of their conver‐
sation, they’ve found a snag in this big map about their product. The
business rules engine in their product needs to change. Seeing the big
picture helped them visualize and directly confront the complexity.
They’ll use that knowledge to talk about what they can plan to do early
to help mitigate risks.

Play "What-About"
You’ve imagined the solution from a user’s perspective, and visualized
the user experience. Take some time to discuss what’s going on un‐
derneath the user interface. Talk about tough business rules, complex
data validation, and nasty backend systems or services you’ll need to
connect with. Add stories into the map that name these parts. Or make
sure you make notes on the stories you have.

It’s a good time to review what you’ve got with lots of other people as
well. Share what you and your group have come up with. I promise
you’ll get people who ask lots of questions that start with "What
about…" I love these people, although not always when they’re right
in front of me. But I love that they’re helping me think of the tough
stuff before I stumble on it later, when it’ll be even more painful to
learn.

192 | Chapter 14: Using Discovery to Build Shared Understanding

The movie metaphor really works for me here. If I were going to make
a movie, I’d want a screenplay and a storyboard—the sketches of key
scenes that help me imagine the movie. If I were investing in a movie,
I’d need to see at least that to get a clear picture of what the writers and
directors were envisioning. If I liked the movie at this point, I’m going
to need to learn a bit more about how much it costs, and how feasible
it is to produce.

I’d hope they’d use those sketches to think more deeply about the
movie. I’d want to know that they’d considered how many locations
we’d need to film in and what they looked like. I’d want to know that
they’d considered what kinds of sets, props, and special effects we’d
need. As the important Hollywood investor, I’d need the screenplay,
the storyboard, and lots of other details that supported a rough plan
and an estimate. We’d need this so we could set a budget and a timeline
for making the movie.

This is the sort of stuff you need before you start building your
solution.

Four Essential Steps to Discovery | 193

Ideas, Examples, and Journeys
David Hussman, DevJam

Many people overcomplicate the discovery process, but it can be quite
simple and still remain powerful. Step past the mythical certainty of
"requirements," and take a moment to explore the discovery of ideas
using examples and journeys as your guide.

• Use the following simple guide: 1) suggest a product idea to ex‐
plore, 2) select people you think will benefit from the idea, 3)
create a collection of examples of them using the product idea,
and 4) use those examples to create a map and the journeys you
think they should take. Remember that as the product creator,
you’ve taken on the onus of creating meaningful experiences and
not just more features.

• Ideas do not need to be brilliant. Of course you want a great
product, but often ideas deemed to be brilliant don’t pan out,
while others—which don’t shine so brightly—grow in brilliance
as you explore their use in the context of someone trying to ac‐
complish something of meaning.

194 | Chapter 14: Using Discovery to Build Shared Understanding

• Selecting passengers is not rocket science. Don’t overcomplicate
the selection. If you are unsure where to start, simply make a list
of the people you think will benefit from your ideas. Frame them
in a humane way so they come to life and stay alive in the mouths
and minds of the product development community. After you
have worked them a bit, select someone to work with and don’t
worry if it’s the right person. Be ready to learn from exploring,
and avoid worrying whether or not your selection is right—it
probably is not.

• Create a varied list of examples. This is where many people lose
control and accidentally stumble into complexity. Start with a
simple or obvious example; the more concrete, the better. Then
come up with a complex example, and don’t fear setting the bar
high. You are creating a range of constraints, you are not prom‐
ising anyone the world. Again, make the complex example spe‐
cific. If you’re looking for how specific you should be, and you
are courageous, replace the work example with a test, and you’ll
be one step closer to an automated validation vehicle.

• Add a handful more examples that fit between the obvious and the
complex, and then start simple. Tell the story of the passenger
using the simple example as your guide. Tell it to someone else,
and have that person help you capture the stories on the journey.
Where are your users when they start? What triggers them to
engage? What do they do, specifically? How does it end? Use the
various examples to explore the various journeys for your
passengers.

• Choose the journeys that will help you learn. Worrying about
where to start is yet another complexity well. Walk the map, se‐
lecting journeys that you think will teach you the most about your
audience and their needs. Again, if you’re worried that you are
not making the right selection, you may be right. The best way
to find out, and the best investment in learning, is to select a few
journeys, build them, and watch people use them—in person or
via real-time analytics.

• Avoid the trap of product arrogance. The difference between what
you think people need and what they really need is the realm of
product arrogance. Using the process laid out here, you can more
quickly get to learning in context by building and validating one
journey at a time.

Four Essential Steps to Discovery | 195

Don’t celebrate yet
By this step in the discovery flow, you should have begun to describe
your solution’s parts as individual stories. Each piece is a part of the
big opportunity. If you’re like me, you’ve used a story map to organize
all the parts. If you’re smarter than me, you’ll have invented an even
better way to organize all the parts—and if that’s the case, you should
get in touch right away. If you’re a little dim, you’ll just have a big pile.
Or even worse, someone may have written a big long requirements
document that obfuscates all you’ve learned. Please don’t do that.

Whatever you end up with here, you’re at the point where lots of people
celebrate because they’ve "finished the requirements." Don’t be those
people. You’ve got a last and most important step to do.

4. Minimize and Plan
You’ve envisioned a solution with words and pictures, at this point,
your team may be feeling pretty proud. But one of the big problems
with discovery happens when we all work together to identify a fab‐
ulous solution with lots of bells and whistles that we all love.

I know what you’re thinking. Why would that be a problem?

The problem usually comes in when we focus on making everyone
happy, and at the same time fail to focus on small, specific target out‐
comes. The result is a solution that’s much bigger than it needs to be.

Remember, our goal is to minimize the amount we build (our output)
and maximize the benefit we get from doing it (the outcomes and
impact). Your opportunity will break into lots of possible smaller sto‐
ries. We certainly wouldn’t build them all. That wouldn’t be minimiz‐
ing output, would it?

If you’re not cutting away more ideas than
you keep, you’re probably not doing discovery

work right.

There’s always too much
I’m sorry, but there is. If you’ve been involved with software develop‐
ment for any length of time, you likely already know this. I’ve tried for
many years, over a decade really, to pretend it’s not true. I’ve given up
on that. You should, too. But don’t worry: you’ve got some tools that’ll

196 | Chapter 14: Using Discovery to Build Shared Understanding

help you identify something feasible to build given the time and people
you have.

In Chapter 3, you read about Globo.com’s approach to using a map to
confront a tough deadline. The company focused on that deadline,
embraced it, and identified an outcome that would let it be successful.
Then it sliced up its backlog; that is, it cut away all the stories that
weren’t necessary for it to reach that outcome. This was its minimal
viable solution hypothesis. And it wasn’t just a crappy, half-baked ver‐
sion of the big idea—it was a really great version that was sharply
focused on being successful for the Brazilian elections. The Globo folks
believed it would be valuable to their business, their advertisers, TV
networks, and their users. They’d thought about all their users, and
were pretty confident they had a usable solution. And by slicing their
map, they’d found a solution that was feasible to build given the time
and teams they had. That intersection of valuable, usable, and feasible
for a specific target set of customers, users, and uses is a viable solution.

Viable means successful for a specific busi‐
ness strategy, target customers, and users.

We can think past that first viable release to second and third viable
releases, too. But we know that once that first release goes live, the
world will have changed, and that’s good. But it’ll also mean we’ll need
to rethink the future releases in light of the new world we’ve created.

The secret to prioritization
Step in close, because I’m going to whisper this.

Not many people know this—or at least they behave like they don’t.
Maybe they’re just playing dumb to throw people off.

If you’ve hung around in Agile development for a while you might
have heard the phrase "prioritize stories by business value." The state‐
ment is true, sort of, but where you see the words "business value,"
you’re supposed to fill that in with something specific. This is where
you and your discovery team need to say specifically what is of value.

Let’s look at Mad Mimi again. Gary needed to find a product that would
be viable in a specific market soon, before he ran out of money. Via‐
ble for Gary meant he had an audience that liked the product and
would pay for it. And he could begin to grow the product’s audience
and the revenue he earned as a consequence.

Four Essential Steps to Discovery | 197

It’s that business goal combined with financial constraints that re‐
quired Gary to focus on specific users and user activities he’d support.
Gary still had high hopes of creating the "music industry marketing
interface" that gave Mimi her name. But he decided to focus first on
the band manager promoting his band using direct email marketing
to his fans. After he did that, the specific functionality he needed to
focus on became clear.

If you were listening closely just now, you caught the secret to
prioritization.

Specific business outcomes drive focus on specific users, their goals,
and the activities they’ll engage in with your product. Focus on those
activities drives focus on the specific features and functionality users
will need to be successful.

For Mad Mimi, Gary made a deliberate decision to focus on delighting
band managers promoting their bands. That’s the specific value he
chose to focus on. He didn’t use that ambiguous term "business value."
He filled in that blank with what was of value to him.

The prioritization error that most people make is to try to prioritize
features first.

Prioritize specific business goals, customers,
and users, and then their goals, before pri‐

oritizing features.

The next time you catch someone asking which feature is higher pri‐
ority without discussing business goals, target users, and their use,

198 | Chapter 14: Using Discovery to Build Shared Understanding

that’s your cue to start asking questions. Try not to act too smug. Not
everyone knows this secret.

Discovery Activities, Discussions, and Artifacts
There are a lot of activities and artifacts you and your team can create
during discovery. Here’s a quick table that’ll give you some basic start‐
ing points for the kinds of things you could do. Don’t do all these
things, because it’s likely too much. And don’t do just these things,
because there are likely equivalent or even better practices that suit
your skills and context. But definitely don’t just sit in a room and write
lots of stories. That’d be crazy.

Frame the idea
Use these discussions to review
why your business is building the
software, who it’s for, and how
you’ll measure success.

• Named business problems you're addressing
• Specific business metrics affected
• Short lists of specific customers and users
• Metrics that will allow us to measure whether people use

and like this new feature
• Big risks and assumptions
• Discussions with business stakeholders and subject matter

experts

Understand customers and users
Use discussions and research to
understand customers and users,
their needs, and how they work
today.

• Lists of user roles and descriptions
• Simple user profiles or person sketches
• Simple organizational profiles or orgzonas
• Story maps about how people do things today—also

known as journey maps
• User research and observation to fill in what we don't know

Envision solutions
Focus on specific customers and
users, and then envision solutions
that will help them. Visualize
solutions with words and pictures.
Validate those solutions with
customers and users.

• Story maps
• Use cases and user scenarios
• UI sketches and storyboards
• UI prototypes
• Architectural and technical design sketches
• Architectural or technical prototypes
• Lots of collaboration with team members, users, customers,

stakeholders, and subject matter experts

Discovery Activities, Discussions, and Artifacts | 199

Minimize and plan
Identify what you believe is a small, viable solution.
Estimate well enough to set a budget for delivering the
solution. Create a plan for development that will
minimize risk.

• Story maps used for slicing
• Estimation used for setting a

development budget

Discovery Is for Building Shared
Understanding
Do you recall working on a software project where no one quite un‐
derstood the big picture? Do you recall a time when the team learned
halfway through development about a big chunk of work they hadn’t
planned on? Often, when this stuff has happened to me in the past,
we’ll find that between all of us in the team, and the outside people we
collaborate with, we had the answers. We could have easily foreseen
problems we ran into if we’d have just gotten on the same page.

Gary’s story in Chapter 1 is a bit about Gary and his delivery team not
having shared understanding of the big picture. Even Gary—the guy
who held the vision of the product in his head—didn’t have a clear
understanding of the size and complexity of his product. Visualizing
his product as a bunch of simple models helped him and everyone he
was relying on get the same big picture in their minds.

For some things you build, it may be enough to just get everyone on
the same page about who your customers and users are, and the big
picture of the solution you have in mind for them. But I need to warn
you, your hypothesis about what you’re building is probably wrong.
Don’t worry: there are a couple of strategies I want to tell you about
that really make discovery practice work. And that’s what the next
chapter is about.

200 | Chapter 14: Using Discovery to Build Shared Understanding

CHAPTER 15

Using Discovery for
Validated Learning

I’ve misled you. Sort of.

Some of you may have been reading the last chapter, and other chapters
before that, and you’ve been slowly reaching a boiling point because
you know what I’m leaving out. Sorry about that.

The stories I told about MadMimi.com and Globo.com are both in‐
complete. The truth is that both of them used discovery conversations
to identify what they believed was a minimum viable solution. But
whether those solutions were actually viable or not was just a guess.
In fact, all this stuff is a guess until we actually ship and observe what
the market—our customer and users—actually does. Initial discovery
conversations, along with story maps, helped them get to a good start‐
ing guess. But, for both of them, it marked the beginning of a much
longer journey to really discover a viable product.

This leads me to one of the biggest mistakes people make, and that’s
actually believing their minimal viable solution will be successful.

We’re Wrong Most of the Time
I’m as guilty as the next guy in believing my great ideas will be suc‐
cessful. The truth is that in the past I released lots of solutions I thought
would be wildly successful, but they just weren’t. They weren’t dismal
failures, either—they just didn’t make much of a difference. When this
happened I, and my company, learned to look the other way. It wasn’t
just me. We all thought the features we were adding would be valuable.

201

http://madmimi.com

1. Jim Johnson, Chairman of the Standish Group, "ROI, It’s Your Job" (keynote), Third
International Conference on Extreme Programming, Alghero, Italy, May 26–29, 2002.

2. Deborah Gage, "The Venture Capital Secret: 3 Out of 4 Start-Ups Fail," Wall Street
Journal, September 20, 2012, http://on.wsj.com/UtgMZl.

But in the end we’d added a feature a few people used, but most didn’t,
and we knew we’d end up supporting for the life of our product.

My belief, not rooted in any formal scientific research or studies, but
just in my own failures and what I observe working with other com‐
panies, is that very little of what we build is successful or has the real
impact we hope for. I figure around 20 percent max. Then there is
another 20 percent of things we do that are genuine failures—solutions
that result in a negative impact. I’ve seen a variety of organizations that
release a new, better version of their website and see sales decrease, or
release a new version of their product that customers try and then
demand the old version back. That’s the kind of failure I’m talking
about.

But it’s that 60 percent in the middle, give or take, that is neither success
nor failure that’s the big problem. This is the stuff that we spend val‐
uable development money creating, and in the end wish we hadn’t.

Research from the Standish Group published in historic "Chaos" re‐
ports explains that between 64 and 75 percent of features are rarely or
never used.1 And, depending on the source you look at, 75–90 percent
of all software startups fail.2

202 | Chapter 15: Using Discovery for Validated Learning

http://on.wsj.com/UtgMZl

All this is pretty disappointing when you think about it. No wonder
just pretending it’s working is the strategy of choice for most
organizations.

The Bad Old Days
In the bad old days, I used to work a bit like this. I’d come up with a
great idea, or in reality, someone else like my CEO or a key customer
handed me their great idea. I’d get to work making sense of it and
fleshing it out. Then my team and I would build it. It always took twice
as long as we expected, but that’s a problem to deal with in later chap‐
ters. We’d finish. We’d ship. We’d celebrate. Sometimes we celebrated,
then shipped. But either way, we were done.

But then stuff actually started to happen. What usually happened was
people complaining about what we’d delivered not working the way
they wanted. Sometimes they didn’t complain at all (which we’d find
out later was a side effect of no one really using it). We’d then spend a
lot of time pretending we were successful. For some of you, that might
describe the way your company works today. And I’ll be honest with
you: it’s still the way I often fall back into working. Don’t tell anyone.
I’m supposed to be an expert.

The Bad Old Days | 203

But there are better alternatives.

Empathize, Focus, Ideate, Prototype, Test
Years ago, a potential client contacted me and asked me if I could help
it adopt a process called design thinking. This client had been using a
typical Agile process, and was doing it really well—"well" in that it was
delivering predictably and with high quality. But it had learned that
"the faster you deliver crap, the more crap you get." That’s a little harsh
sounding. To put it another way, the client had learned that there was
little correlation between the quantity of software it built, and the out‐
come and impact it got from it.

When this client called, I was known for my specialty in user experi‐
ence design and Agile development. I thought to myself: "I’m a de‐
signer, and I’m thinking, so I must be design thinking." But I was
wrong. That’s not what the client meant. Luckily for me, I didn’t say
what I was thinking out loud.

Design thinking refers to a way of working originally described by a
company called IDEO, and then later described and taught by Stanford
University’s d.school. These days, it’s taught in a number of universities
and used in lots of companies worldwide.

204 | Chapter 15: Using Discovery for Validated Learning

A design thinking process has several steps that, as I explain them,
seem like obviously good ideas. But, in practice, what I and most peo‐
ple tend to do is the exact opposite. No wonder things go bad so often.

The first step of a design thinking approach is empathize. It’s not called
research, which I’d normally expect from a design process. It’s called
empathize because a critical outcome of doing the work is to under‐
stand how it really feels to be a user of your product. To do this you
need to go to where users are, meet them, watch them work, and ideally
work alongside them. Now, of course, if you build software for sur‐
geons, no one expects you to become an amateur surgeon. But do your
best to understand what it’s like to walk in their shoes. It’s important
to remember that out of traditional research, especially the quantita‐
tive hands-off stuff, we get data and not always empathy.

Talk directly to customers and users. Experi‐
ence the challenges you’re helping them with

firsthand.

The next step is called define. From the work we do during empathize,
we learn a lot. But we need to make sense of it—to build shared

Empathize, Focus, Ideate, Prototype, Test | 205

understanding. And we’ll do this using lots of collaboration to tell
stories, share, and distill what we’ve learned. Then we’ll choose specific
people and problems on which to focus.

Use story maps here to map the way people do things today. Include
in them details of what you saw and learned. Focus on the pain points
users have, and the rewards they seek. Use simple personas to build a
good example user that synthesizes what you’ve learned. Choose spe‐
cific problems to focus on.

Really focus on one or a few problems. State
them specifically.

The next step is ideation. If you were paying close attention in the last
chapter, we talked about a simple practice called design studio. It’s an
example of a good ideation approach. In common business practice
where the first person to come up with a viable idea is the winner, it
seems a waste of time to come up with lots of possible ideas. If you
remember that your first obvious solutions are, well, obvious, then if
really coming up with an innovative solution is important, think past
that.

I like using a story map as a backdrop for ideation. Use a map that
shows pains, joys, and other information about users, and then
brainstorm ideas directly into it. Write solution ideas directly on cards
or stickies and inject them into the map where the solution is most
relevant.

Deliberately come up with multiple possible
solutions to customer and user problems.

The next step is to prototype. Now, we likely all know what prototypes
are, but we often neglect creating them in the rush to get working
products built. It’s a pity, really. Small investments in simple paper
prototypes help us think through our solution. They help us begin to
experience it ourselves. Building simple prototypes out of paper, or
the simplest of prototyping tools, helps us filter out a lot of ideas that
just won’t work. Beginning to simulate the actual act of using a product
helps you continue to ideate—to come up with ideas to make the sol‐
ution even better.

206 | Chapter 15: Using Discovery for Validated Learning

Build simple prototypes to explore your best
solutions. Advance prototypes to a level of fi‐

delity that allows users and customers to
evaluate whether the solution really solves

their problem.

The last step is to test. By that I don’t mean check to see whether there
are bugs. I mean learn whether your solution really does solve some‐
one’s problem. You might be surprised that it could do that even with
bugs. When you’ve got a prototype that you believe solves the prob‐
lems you’ve chosen to focus on, put that prototype in front of people
who’ll use your product. This isn’t exactly "show and tell." And it’s
definitely not selling. Potential users need to recognize the prototype
as something they could use to solve one of their problems. They need
to use it to accomplish a real task. You can actually accomplish this by
faking a lot of it.

Get your solutions in front of the people who
will buy or use your product. Don’t expect

them to be a success at first. Iterate and im‐
prove them.

In addition to those five steps, part of design thinking is a way of
working that emphasizes small, multidisciplinary collaborative teams
working together quickly using simple models, sketching, and low-
fidelity ways of documenting and communicating. You should recog‐
nize that as the discovery team and other collaborators I described in
Chapter 12. You should recognize their way of working as one that
emphasizes building shared understanding.

Using elements of design thinking helps us really understand the
problems we’re solving, so we don’t solve problems we imagine people
have. Prototyping and testing solutions before we invest big in build‐
ing full-featured scalable solutions helps us validate that we’re building
solutions people really value and can use.

But design thinking alone can lead to some problems.

Empathize, Focus, Ideate, Prototype, Test | 207

How to Mess Up a Good Thing
Design processes have been around a long time. Design thinking as a
generalized approach to design has, too. And a design process done
well can be a huge improvement over the bad old days. But don’t con‐
fuse process with skill. There are some predictable ways that design
processes fail. If you’ve seen a good design process take way too much
time and result in a bad outcome, then you might believe these sorts
of processes don’t work. It’s not the process.

Here are a few great ways to mess up a design process:

• Start without framing the business needs and target customer
well. This’ll make it hard to prioritize who to focus on, and hard
to tell if you’re finding a good solution.

• Spend a lot of time doing thorough research and making sense of
what you’ve learned. You’ll never run out of things to learn—so
why stop? Time-boxing might have been a good idea.

• Don’t spend any time at all talking to people and learning from
them. After all, we’ve got a lot of data, and really, our solution ideas
are great. We just need to get going on designing them.

• Fail to focus on specific problem, and instead try to solve lots of
problems for lots of people. The more problems you solve the
better, right? Except that big problems often result in big solutions.

208 | Chapter 15: Using Discovery for Validated Learning

And trying to solve a problem for people with conflicting needs
can result in a solution neither person likes.

• Consider multiple solutions, but only ask real designers to con‐
tribute solution ideas, because they’re the only ones trained to
have good ideas.

• Don’t waste time considering multiple solutions, because the idea
we have is so good.

• Beautifully craft a prototype that really looks real, but doesn’t work
well enough for customers and users to really use it. After all, when
they see it, they tell us it "looks really lovely."

• Convince yourself and then others that this well-researched, pro‐
fessionally designed solution will work. After all, you’ve followed
a rigorous design process. What could go wrong?

• Don’t worry about how much it’ll cost to build. It’s the right sol‐
ution, and any cost to build it is justified.

• When you deliver the solution to customers and users, and don’t
see the outcomes you expect, find the breakdown in the process
that’s at fault. Or better yet, find a person or group you can blame.

I’m being a bit snarky here, I know. But I’m a strong advocate for using
design processes. And, oddly, I find I’m often the one complaining
about them. I can also say that I’ve been guilty of almost all the failures
listed. But, over the past few years, I’ve found a twist on typical design
approaches that improves them.

Short Validated Learning Loops
Eric Ries is the author of a book called The Lean Startup (Crown Busi‐
ness). In his book Eric describes how he fell into the trap I described
earlier as the "bad old days." As the CTO of a startup, he helped his
company build what they believed to be a successful product. Only
their target customers and users didn’t see it that way. In fact, they
mostly responded with a mixture of pleasant feedback, bad feedback,
and outright apathy. Definitely not the outcome and impact they were
looking for.

One of Eric’s company advisors was Steve Blank. Steve had written a
book called The Four Steps to Epiphany (K&S Ranch) in which he
asserted that the first thing you need to develop isn’t a product, it’s
customers. He described a process for progressively validating that

Short Validated Learning Loops | 209

you’ve found customers who are interested in a solution, and for then
validating that the solutions you have in mind are the solutions they’ll
buy, use, and tell others about. Blank referred to this as a validated
learning process.

Eric Ries’s biggest contribution to product development is simplifying
and "productizing" that thinking into this simple mantra: build-
measure-learn. Eric emphasized reducing the time it takes to get
through this simple learning cycle. One of the biggest flaws in tradi‐
tional design processes is spending a very long time learning and de‐
signing—so long that you become very attached to the solutions, and
then failing to validate that those solutions really do bring about the
outcomes you intended. Where a typical design process may take
weeks or months to validate a solution idea, a Lean Startup process
usually takes just days.

What’s in a Name
I need to tell you that I love most things about Lean Startup think‐
ing. But one thing I don’t love is the name. It’s not all that Lean, and
the concepts are way too important to just be used by startups.

Lean refers to the use of Lean thinking and principles as described by
the Toyota Processing System decades ago, and Lean thinking as it’s
popularly used in lots of other contexts now, including software de‐
velopment. There are tons of good ideas to be found in Lean thinking,
and Lean Startup only scratches the surface.

Eric tries to make the case that startups exist inside even the largest
of businesses, that there are contexts of high risk and uncertainty that
call for startup thinking. But it’s my belief that if you catch yourself
saying, "There’s not much risk or uncertainty in this project," you need
to remember that those are famous last words. There’s always some
amount of risk, and the learning strategies described in a Lean Startup
process are pretty useful in most contexts. There’s no need to try to
justify to yourself or others that you need to behave like a startup.

How Lean Startup Thinking Changes Product
Design
In the bad old days, we’d have come up with a big idea, built it, and
hoped for the best.

210 | Chapter 15: Using Discovery for Validated Learning

If we were trying to break out of that trap using a rigorous design
process, we’d have done our best to set aside our great ideas, and then
dig deep into research to understand the problems we’re solving.

Here’s how I recommend we do things today, using Lean Startup
thinking.

Start by Guessing
Yes, guessing.

In the bad old days, you’d have guessed and pretended you weren’t. In
a design process, you’d not have allowed yourself to guess. You would
have anyway. But you’d have pretended you weren’t. So just stop
pretending.

It’s actually not just guessing. It’s a mixture of passion, experience, and
insight—along with a fair dose of guessing—that gets the ball rolling.
I take my assumptions and guesses about who my users are, usually
by sketching simple prototypes. I’ll describe how I think they work
today by building simple "now" story maps. I’ll do this collaboratively
with other people who have firsthand experience with users and cus‐
tomers. And, in some situations I’ll do this involving customers and
users directly. So, in fact, many of our team’s guesses aren’t guesses at

How Lean Startup Thinking Changes Product Design | 211

all. But it’s not exactly research like we used to do, either. We’ll spend
hours to a couple of days doing stuff like this—never weeks or months.

After we’ve all got shared understanding about who will use the soft‐
ware and some focus in the problems we’re solving, we then guess at
the solution. We’ll use principles of design thinking—deliberately
coming up with and considering multiple solutions. But we’ll try to
converge quickly on what we think our best solution is. Sometimes
we’ll fail to decide on a single solution, and pick a couple. We don’t
wring our hands about this too much, because we know we’re probably
wrong anyway.

Name Your Risky Assumptions
Since we may have guessed a lot about our users and their challenges
today, we’ll name those guesses. Specifically, we’ll work together to
write a bulleted list of the things we believe are true, but if we find they
aren’t, then we’ll need to rethink everything.

We’ll do the same with our solution. We’ll think about how we believe
people will respond to it and how they’d use it. We’ll form a hypothesis
in our minds about how we think they’ll behave with our solution.
We’ll also discuss technical risks—things that would threaten the fea‐
sibility of our solution.

Given a list of risks and assumptions about our customers, our users,
and our solution, we’ll identify what we think the few biggest risks are.

Design and Build a Small Test
Here’s where things get really different.

In the bad old days, we’d have planned and built a whole product. In
a design process, we’d have prototyped a whole product, or most of it
anyway. But using a Lean Startup approach, where our goal is to learn
something as quickly as possible, we’ll do our best to make the smallest
prototype possible. In lots of cases, it’ll be hard to call it a prototype at
all.

Here’s an example from my friends at a nonprofit organization called
ITHAKA. They make a product called JSTOR. If you’ve been enrolled
in a US college in the last decade, you likely used JSTOR in your college
library to find articles and books for a paper you had to write.

212 | Chapter 15: Using Discovery for Validated Learning

The students using the product wanted to easily use it from anywhere
—at coffee shops, or at home, or when they traveled. But getting to
JSTOR from outside the college could be a challenge for students. It
required them to set up a username and password with their college
so when they were sitting in a coffee shop, they could log in and get
access to all the resources their university had licensed. The JSTOR
team already had a solution, but it was a bit tricky to use. They wanted
to test a new way of doing things.

They had these assumptions about those students:

• Worked from coffee shops and dorm rooms
• Didn’t know they could access JSTOR from those locations
• Or, if they did know, they thought it was difficult

They had these assumptions about their solution:

• Would be easy to learn
• Would be obvious to students that they were getting full access to

JSTOR without being at their library

To test their assumptions, the JSTOR team didn’t need to build soft‐
ware—not yet. They needed to talk to students specifically about where
they were when they were doing research, especially when they were
using JSTOR. The team needed to confirm that students had the chal‐
lenges that they imagined, and, given that, that students thought
JSTOR’s solution idea would address those challenges.

The team planned on talking to lots of students. And, to make it easier
and more consistent to describe the problem and their solution to
students, they created a simple design comic. If you haven’t seen one,
a design comic is exactly what it sounds like. It looks like a few pages
from a comic book. But, instead of showing superheroes battling su‐
pervillains, it shows real people solving a real problem with your sol‐
ution idea.

Here are a few pages from JSTOR’s design comic (reproduced courtesy
of ITHAKA, © 2014 ITHAKA, all rights reserved):

How Lean Startup Thinking Changes Product Design | 213

The test the team designed required that they spend a little time in‐
terviewing students to learn about their challenges today. And then,
they’d review the scenario with the students to see if their solution
looked like it would address the students' challenges. They didn’t build
a full prototype. They did have concerns that their solution would be
really usable, and they couldn’t learn that from a comic book. They
also had a few technical concerns that would require writing some
prototype code to test. But none of that mattered if students didn’t have
the problem, and didn’t respond well to their idea.

That smallest possible solution to test is what Lean Startup refers to as
a minimum viable product. Yes, Eric Ries knows it’s not a whole prod‐
uct. But, when your goal is learning, it is the smallest product you could
build to learn.

Measure by Running Your Test with Customers and
Users
Put the test in front of customers and users. In early work this usually
means schedule interviews and spend time with people. If you’re cre‐
ating a consumer solution, you can do customer intercepts, which is a
technical way of saying go to where your customers and users are, stop
them, and talk to them. I’ve tagged along with people I work with as
they go to shopping malls, coffee shops, and tourist attractions.

JSTOR recruited students and grad students and spent 30–60 minutes
talking with them first to interview and learn how they did things today
so the team could confirm their assumptions about the problems they
were solving. Then they stepped students through the design comic
to get their response to the solution idea.

214 | Chapter 15: Using Discovery for Validated Learning

Rethink Your Solution and Your Assumptions
After running your test a few times, you’ll begin to get predictable
results. If you’re dead wrong, you’ll often learn that pretty quickly. Take
back what you’ve learned. Roll those facts back into what you thought
you knew about your users, and the way they work today. Use that to
rethink your solution. Then, rethink your assumptions about users
and solutions. Then design your next test.

After the JSTOR folks ran their tests, they learned that some students
didn’t have the problems they thought they did. Normally this would
be disappointing news, because we all hate being wrong. But, in a Lean
Startup approach, this is excellent news. It’s excellent because they
found they were wrong after a couple of days of thinking and working,
as opposed to finding out after weeks of a team building software.

If you’re using this sort of approach, your biggest challenge will be to
learn to celebrate what you’re learning as opposed to worrying about
being wrong.

In a Lean Startup approach, failing to learn
is frequently the biggest failure.

In a Lean Startup approach, build means build the smallest possible
experiment you can. Measure may be analytics gathered from working
software, direct observations from interviews and face-to-face testing
of prototypes, or both. Learning is what we do with the information.
It’s the rethinking of our assumptions and reforming what we believe
to be a best solution going forward.

Stories and Story Maps?
You might be asking, "Where are the stories and story maps in all this?"
And you’d be right to ask.

Throughout a validated learning approach, you’ll be constantly telling
stories about who your users are, what they’re doing, and why. You’ll
use story maps to tell bigger stories about how people work today, and
how you imagine they’ll use your solution. When it comes time to
build prototypes, you’ll use stories and story conversations to agree
specifically on what the prototype you’re building should look like,
and what you’ll check to confirm the prototype is done. After you

Stories and Story Maps? | 215

understand that stories are a way of working, you’ll find it’s difficult
to tell when you are or aren’t using them.

There is one big difference in the way we use stories during discovery,
though. Usually when we’re using them, we’re talking with developers,
testers, and lots of others about the software we intend to build and
put into production. We’ll work pretty hard to make sure we’ve got
shared understanding. We’ll get into a lot of details about how we’ll
build the software so we can learn enough to predictably estimate how
long it’ll take. Usually we’ll talk about a number of stories so we can
agree on how much we can get done in a two-week sprint or iteration.
But the way we’re working during discovery is faster. We hope to build
simple prototypes in hours, not days. Even the prototypes we build
using code and live data we hope will take days, not weeks. We’re
building to learn, and we expect most of our ideas to fail, or at mini‐
mum, need some adjustment to be successful. So we focus on working
together quickly, agreeing quickly, and minimizing the formality.

During discovery and validated learning, you may be telling stories
constantly, breaking ideas and work down into small buildable pieces,
and agreeing on exactly what to build. You’ll be doing it so fast that it
won’t be clear you’re using stories. But you are.

216 | Chapter 15: Using Discovery for Validated Learning

CHAPTER 16

Refine, Define, and Build

So, now what? If stories are for planning and facilitating discussions
in order to build software, all we seem to be doing is lots of talking.

Cards, Conversation, More Cards, More
Conversations…
Your first bunch of conversations helped you make sense of an op‐
portunity. You talked about who’d be using your product, and imag‐
ined how they’d use it to accomplish something valuable to them. Your
conversations went deep enough to break the big opportunity into
parts that were small enough that you could tell which parts were im‐
portant to be in a next product release, and which didn’t matter so
much. You collected the stories that described that next viable release
into a release backlog.

If you’re clever, and I know you are, your next conversations went
deeper into what the software might look like, how it would behave,
and how it might knit into your existing product and software archi‐
tecture. You had these conversations with a close eye on the risky stuff.
You sliced up the stories into the parts that you could build early that
would help you learn more, faster. And because you’re clever, you seg‐
mented your release backlog into stories to take on early to learn, in
the middle to build up, and later to refine.

But now it gets real. It’s time to have our best last conversations.

217

Cutting and Polishing
We’d like to get to work building these things, and we know that
building the software that our storytelling describes will go smoothly
and predictably if we can concisely describe exactly what we’d like to
build. But, after all these conversations, the stories we’re left with feel
a little rough around the edges. We likely haven’t talked about any of
them in enough detail to understand precisely what they are and what
they aren’t, and really predict how long they’ll take to build. But we’ve
got a magical machine that’ll fix all this.

I want you to picture an elegantly designed little machine. We’ll drop
jagged, rough stories from our release backlog into a big funnel on the
left side. Then, inside the machine, we’ll hear a little grinding and
clattering. But then out of a little spout on the right side comes small,
polished little nuggets. These little nuggets are the things that team
members can pick up and use to predictably build high-quality
software.

This machine looks magic from the outside. But, on the inside, you
and your team are having some serious rock-cutting and polishing
discussions. The special, secret mechanism hidden inside this machine
is a story workshop.

As you might recall from Chapter 11, story workshops are small, pro‐
ductive conversations where the right people work together to tell the
stories one last time, and in the process make all the tough decisions
about exactly what they’ll choose to build. These are the deep story
conversations that result in confirmation. Finally, we’re getting to that
third C in the card-conversation-confirmation flow. And it’s this C that
helps us really cut and add the polish to these rocks.

Workshopping Stories
You’ll need a small group that includes a developer, a tester, and people
who understand users and how the UI will look and behave—UI de‐
signers or business analysts in some organizations. This goes best
when the group is small enough to work together effectively in front
of a whiteboard. That’s usually three to five people.

218 | Chapter 16: Refine, Define, and Build

This is a workshop, not in a meeting. Meeting is the word that has
become a euphemism for unproductive collaboration. A story work‐
shop needs to be filled with lots of productive discussion, hand waving,
whiteboard drawing, and sketching. We’ll need to work together to
decide exactly what we’ll build. We’ve got to come out of this conver‐
sation with solid shared understanding, and we’ll need space to have
those productive words-and-pictures conversations.

In all those conversations prior to now, we talked through details, but
hopefully we had the restraint to go just deep enough to make the
decisions we needed to at the time. The decisions we’re making now
focus on answering the question: exactly what will we build?

It’s during this conversation that you’ll find out your story is too big.
By that I mean it’s bigger than the ideal size we like to see going into
development—a couple of days or less to build. OK, it’s not always too
big. But, if you just assume it will be, then you’ll be pleasantly surprised
when it’s not. Happily, you have exactly the right people in the room
to help you break down this story into smaller stories that can be de‐
livered, tested, and demonstrated in the growing product the team is
working together to build.

Workshopping Stories | 219

Story Workshop Recipe
Use a story workshop to refine understanding and define specifically
what the development team will build. The workshop is a product
conversation—supported by lots of pictures and data—that helps the
team make decisions and arrive at confirmation: the acceptance cri‐
teria for what we’ll choose to build.

Ahead of the workshop, let the team know what stories you’ll be work‐
shopping. Post it on a wall, or otherwise broadcast it. Let team mem‐
bers opt in; that is, choose to participate or not.

Keep the workshop small to stay productive. Three to five people is a
good size.

Include the right people. For this conversation to be effective, include:

• Someone who understands users and how the user interface
could or should work—often a product owner, user experience
professional, or business analyst

• One or two developers who understand the codebase you’ll be
adding the software into, because they’ll best understand what’s
feasible to build

• A tester who’ll help test the product—because he’ll help ask the
tough questions so that we consider the "what abouts" that others
are often too optimistic to consider

Other people and roles may be relevant here, but remember that the
right size for a good conversation is "dinner conversation–sized."

You may find that one person can wear two hats. For example, I often
see a combination business analyst-tester in some IT organizations.
But, if all the concerns aren’t considered, pause the workshop and try
to find someone from the team who can look after the missing
concern.

Dive deep and consider options. Use the conversations to dive deep
into:

• Exactly who the user is
• Exactly how we believe she would use it
• Exactly what it looks like—that is, the user interface
• Exactly how the software behaves underneath that user interface

—those sticky business rules and data validation stuff

220 | Chapter 16: Refine, Define, and Build

• Roughly how we might build the software—because we need to
predict how long it will take to build—and happily, we’re making
things real enough at this point we can more accurately predict
how long that will take

Remember that we need not consider anything absolutely required.
If the discussion leads to solutions that are expensive or complex, step
back and discuss the problems we’re really solving, and other alter‐
natives we could build to solve them.

Agree on what to build. After enough conversation to build shared
understanding, move to answering the questions:

• What will we check to confirm this software is done?
• How will we demonstrate this software later when we review it

together?

Talk and doc. Use whiteboards or flipchart paper to draw pictures,
write examples, and consider options. Don’t let your decisions va‐
porize. Record them on a whiteboard or flipchart where everyone can
see. Photograph notes and drawings and then transcribe them later.

Speak in examples. Wherever possible, use specific examples of what
users do, exactly what data might be entered, exactly what users would
see in response, or whatever examples best support your story.

Split and thin. When discussing details and thinking about develop‐
ment time, you’ll often find stories are larger than you like to put in
a development cycle. Work together as a group to split up big stories,
or "thin" out stories by removing unnecessary extras.

It’s not working when…

• No one participates—when one person describes what’s required
and everyone else listens

• When we focus only on acceptance criteria and not telling the
story about who does what and why

• When we fail to consider options both from a functional and
technical perspective

Workshopping Stories | 221

Sprint or Iteration Planning?
Some Agile practitioners accomplish these critical story conversations
during planning sessions like iteration planning or sprint planning.
That works pretty well if you’re working with teams that work effec‐
tively together and come into the discussion with a good understand‐
ing of their product. For teams I worked with for years, that’s the way
we did things.

But one of the biggest complaints I hear from Agile teams is that these
planning meetings are often long, torturous affairs. At some point ev‐
eryone agrees on what to build, even if they don’t have shared under‐
standing, just to make this torturous meeting stop.

Coming in from the Cold
Nicola Adams and Steve Barrett, RAC Insurance, Perth, Australia

My first foray into the world of an Agile project team in my role as
a business analyst was a cold, hard lesson in the power of collabo‐
ration over the written word.

— Nicola Adams

The Context

Recounting a slice of the transformational journey from waterfall to
Agile within RAC Insurance in Perth, Western Australia, Nicola—an
experienced BA—was well versed in the traditional delivery approach
to software development. Her role involved engaging the business,
understanding the problem domain, and working with IT to docu‐
ment functional specifications to hand off for delivery. The commu‐
nication lines were like this:

The focus had been on detailed specifications to try to leave no stone
unturned. Recognizing that "developers don’t read," mitigation strate‐
gies were employed (e.g., specification walkthroughs) with variable
success. Lengthy time lags were typical from after specifications were
completed to when the knowledge was needed to support develop‐
ment and testing.

222 | Chapter 16: Refine, Define, and Build

What Happened Initially?
The natural affinity to written specifications was not easily broken.
The concept of fitting requirements on the back of a card was hard to
grasp. How could Nicola expect the developers and testers to deliver
the required functionality, which she felt accountable for, if they didn’t
have sufficient information? The focus shifted to creating story nar‐
ratives, little different from the functional specifications except in
scale; the lines of communication did not change.

Nicola’s elaboration session preparations included:

• Requirements gathering with business stakeholders
• In-depth analysis of requirements and data
• Creating story narratives (one to five pages each) documenting

requirements, solution design, and acceptance criteria
• Reading the narratives to the team using a projector and asking

for any questions

Unfortunately, the outcomes were not so great. The elaboration ses‐
sions were flat and uninspiring, with the majority of the team disen‐
gaged. In addition, Nicola felt she had insufficient time to prepare
stories, and the team largely ignored the narratives during delivery.

After an elaboration session, Sam, a subject matter expert standing in
for the product owner, remarked, "If this is an Agile project, I don’t
want to be involved!"

This needed fixing!

What Changed?
Steve, the project manager, facilitated a team retrospective to focus
on the problem. This retrospective resulted in a number of key take‐
aways, including abandoning story narrative documents, including
the business and delivery team in story elaboration, and ensuring a
set cadence for backlog grooming and story elaboration.

Nicola went beyond simply applying the actions; she fully embraced
the intent. The next story elaboration session was a seismic shift from
what had preceded.

The team no longer sat bored and disengaged as they plowed through
screen-projected story narratives. They were now huddled around
visual models and artifacts, engrossed in real story conversations in‐
volving the product owner, business subject matter experts, and the
delivery team.

Sprint or Iteration Planning? | 223

The lines of communication had changed. Nicola was no longer the
intermediary between business and IT; she was now a facilitator al‐
lowing conversations to flow between those who understood the
business value, those who sat with the users to know what would be
usable, and the delivery team who knew what was feasible:

The business and delivery team loved the new format and were now
fully engaged, a shared understanding was created around the prob‐
lems to be solved, group divergence and convergence enabled the
team to arrive at optimum solutions within constraints, and Nicola
felt under less pressure and had more time.

Nicola had come in from the cold!

224 | Chapter 16: Refine, Define, and Build

Crowds Don’t Collaborate
The torturous sprint planning meeting has become such a common
dysfunction that many teams sensibly choose to have these story dis‐
cussions in the days preceding the meeting. They often have these
scheduled in their calendars as pre-planning meetings, backlog
grooming, or backlog refinement meetings. But, too often, what hap‐
pens is they’ve simply moved the same torture they hated during the
planning meeting to a different day. To add insult to injury, team
members are asked to take a break from their current productive work
to sit through this torture. No wonder they’re not excited about it.

The problem isn’t that story conversations are hard. Well, actually they
can be pretty hard at times. But all conversations are made tougher by
trying to include too many people. If many of those people aren’t in‐
terested or motivated to participate, you’re doomed. You know the
people I’m talking about—the ones pretending we can’t see them play‐
ing with their smartphones under the table.

Allow team members to opt in to these conversations. If later they
complain about the decisions made, make sure you invite them to be
there next time.

If everyone wants to participate, try using a fishbowl collaboration pat‐
tern like the one described in the following sidebar. This way, interested
people can drop by, participate if they want, and leave if they find
they’re not missing anything exciting.

Crowds Don’t Collaborate | 225

Fishbowl Collaboration Pattern
If you’ve got people who sincerely want to be involved in the conver‐
sation, but adding them expands the conversation past a productive
size, try using a fishbowl collaboration pattern. This’ll give them a
way to be involved with minimal impact to the outcome. What they
and others often find is that being there wasn’t as important as they
thought. Over time you’ll see that they’re happy to let others discuss
the details and then learn about the results in a later conversation.

The process works like this: three to five people work together in front
of whiteboard or flipchart paper—they’re the fish in the bowl.

Others in the room may observe but not speak. They’re outside the
bowl.

If someone from outside the bowl wants to participate, she can "jump
in." But, when one outsider jumps in, one insider must simultaneously
jump out.

In this way, the conversation stays small and productive, and others
stay informed and involved. It’s also a great way for learners to get up
to speed without slowing down work.

226 | Chapter 16: Refine, Define, and Build

Split and Thin
Remember the cake and cupcakes discussion from Chapter 8? Now’s
the time to break down those cakes to the smallest cupcakes you
can. It’s now—when we’ve got developers, testers, and others who can
really build the software—that we can really imagine how we could
break down the story.

Remember that software is "soft." Well, it’s not soft like a sponge or a
cupcake. Ideally, it’s more like a rather large document or a book. If
you were writing a book, like I’m doing my best to do right now, you
wouldn’t try to do it all at one time. You might sit down and write a
chapter at a time. In fact I’ll write a chapter at a time, and Peter, my
competent, supportive editor, will review what I’ve written and make
corrections and suggestions.

But then the chapter’s not "done." Far from it.

I’ll need to go back through and figure out where there should be
illustrations. I’ll need to figure out if I should add footnotes, references,
glossary terms, or index items. Then other editors from the publisher
will go back through each chapter, making final refinements. I’ve nat‐
urally split up the work to do it iteratively so that I can see the whole
book take shape sooner.

You’re reading the "Refine, Define, and Build" chapter. And if you’re
reading it now, it’s hopefully fully baked. If I were to think about my
final acceptance criteria, I’d say it should be:

• Edited and understandable by me
• Edited and understandable by my editors
• Supported by illustrations that help enable readers to visualize

points
• Supported by an index readers could use to find terms in the

chapter
• Supported by a glossary that readers could use to look up defini‐

tions of terms introduced in the chapter

Crap, that’s a lot of work. Even as I type those things into the first draft
now, I realize I’ve got lots of work to do. But I don’t want to do all of
it before moving on to the next chapter, because I’d like to see how the
whole book is hanging together. So I’ll break it into "cupcakes"—small,

Split and Thin | 227

complete parts that aren’t ready to ship, but that boost my confidence
that I’m on the right track as I move through this book.

I’d break down my work into stories like this:

• Refine, Define, Build first rough draft
• Refine, Define, Build second refined draft
• Refine, Define, Build with illustrations
• Refine, Define, Build with reviewer feedback incorporated
• Refine, Define, Build index terms
• Refine, Define, Build glossary terms
• Refine, Define, Build final draft

Each one of those things I can tell a story about describes what it looks
like, and thinks through the steps I (with Peter’s editing assistance)
must accomplish to finish each of these smaller versions and improve‐
ments to the chapter. And you can see that as each thing is completed,
the chapter gets progressively more refined and closer to releasable.
In theory, there’s something you could see and consume after the first
story in the list is done. But I wouldn’t do that to you. It wouldn’t be
pretty, and your reactions wouldn’t be good.

Finally, since I know you’re on top of your game, you may have noticed
that the list of smaller, cupcake-sized stories looks a lot like the ac‐
ceptance criteria for the chapter. That’s the magic here. It’s the discus‐
sion of the acceptance criteria that reveals how we could break down
the work into smaller parts we could create and inspect along the way.

It’s important to inspect your work along the way so you can evaluate
it and make course corrections. You should have seen the really stupid
example I’d originally written here. But you’ll never see it because I
wrote it, inspected it, and then removed it.

In a traditional software process, that "inspecting and removing" stuff
would be called bad requirements. But, when you’ve got your Agile
hat on, it’s just learning and iterative improvement.

228 | Chapter 16: Refine, Define, and Build

Play Good-Better-Best
One of my favorite simple techniques for splitting stories more finally
is the Good-Better-Best game. We played this game using a big story
and sticky notes and ended up with this:

Good Enough for Now
Given a story, start by having a discussion about what’s just good
enough—barely sufficient, really, and probably not good enough that
users or customers would love it. Write down characteristics that
would make it good enough and treat them as separate, smaller
stories.

In walking through an example that’s something like IMDb.com (the
Internet movie database), we discussed the "View movie info" story.
We imagined a screen where I could look at movie details so that I
could make a decision about seeing the movie. When we discussed
Good, we came up with these simple things:

• View the basic info: title, rating, director, genre, and so on
• View the movie poster
• Watch a preview

Better
Then ask what would make it even better. For the movie database
example, we ended up with things like:

Split and Thin | 229

http://imdb.com

• Read a movie synopsis
• Read member ratings
• Read reviewer ratings
• View a list of all the actors in the movie

Best
Finally, ask what would make it really fabulous. Don’t be afraid to go
crazy here. Remember, these aren’t the requirements. This is just you
and your team considering options. Some interesting things some‐
times come from these discussions—things that might make the
product really fabulous, but are surprisingly cheap to implement. For
the movie database example, we ended up with things like:

• Watch alternative previews or videos about the movie
• Read trivia about the movie
• Read news about the movie
• See and participate in discussions about the movie

You can see how this progression of smaller stories helps build the
"View movie info" story up from something that will let me just see
it work, to stories that would improve it to make it really fabulous. If
I were building this feature, I’d do the basics first across the whole
application before I moved on to making things better and then best.
I just feel safer meeting deadlines when I build that way.

When you’re really having good story discussions, and I know you
will, at the end of a story workshop you should have right-sized stories
supported by lots of extra documentation and models, and by accept‐
ance criteria that describe how you’ll check this story to confirm it’s
done. Sometimes it’ll take a couple of workshops supported by a little
outside research, analysis, and design work to arrive at agreement, but
that’s OK. Cutting and polishing takes time, and a bit more patience.

230 | Chapter 16: Refine, Define, and Build

Development Cycle Planning Recipe
Agile processes like Extreme Programming and Scrum use time-
boxed development, where each development cycle starts with a plan‐
ning session and ends with review. In many companies, they’re some
of the most loathed of meetings anywhere. They can be long and
painful, and by the time team members leave the meeting, they’re
often ready to agree to anything just to get out of the room. It doesn’t
take a rocket scientist to guess that the quality of the plans they make
isn’t so good.

But it doesn’t need to be that way.

Here’s a simple recipe that should help you avoid the worst problems.

Prepare
Choose stories a cycle or two ahead. If you’re a product owner, meet
routinely with your core product team to discuss the progress of the
solutions under way. Choose the stories that you’d like to take on next
to move those solutions closer to release.

Workshop ahead of time. For those on the product team, make time
to work together with team members ahead of the planning session.
Dig into details, split larger stories, and consider multiple options.
Look back to Mat Cropper’s story in Chapter 7. When I spoke with
Mat, one of the things he most looked forward to was the series of
short, half-hour, ad hoc story workshops he had developers and test‐
ers get ready for planning.

Invite the whole team, and others whose help you might need during
the upcoming development cycle.

Plan
Start by discussing the big goal for the upcoming cycle. You’ve chosen
some stories to work in. How does that group of stories help advance
the solution you’re trying to deliver?

Review the stories you’ll be discussing. Don’t go into extreme detail
here—just enough to give everyone the big picture. Look back to
Nicola and Steve’s story in this chapter. Look at the wall Nicola is
standing in front of: lots of words and pictures to help team members
imagine it, right? Isn’t she smart?

Set a time-box for the delivery team to plan on their own. Remember,
crowds don’t collaborate. And the people building and testing this

Split and Thin | 231

software need to do some real thinking to create their recipes for
building these stories—just like Sydnie did in Chapter 10. Give the
team an hour or so to break into small groups and work together on
the stories. If you’re a product owner, UI designer, or business analyst,
stay close by. Observe if you like. But be ready to answer questions
that’ll help them move fast.

In small groups, create a plan for each story. Remember the three
amigos discussed in Chapter 12? Make sure the small groups are like
that. And, as a development team, decide how many of these stories
can be successfully completed in the delivery cycle. Don’t forget to
take into account holidays and days off. I once had a team tell me their
plan was off because of the upcoming Thanksgiving holiday, as if that
holiday came out of nowhere and jumped up and surprised them.

All together, agree on the plan. At the end of the time-box, and after
the team does their plan for each story, they’ll need to come back and
share their plan—not every detail, because that would be super-
boring, even to them. What’s important is for the team to be clear
about what they believe they can get done in the cycle. They should
take this plan and their agreement seriously, especially if they want
others to consider them reliable and predictable.

Agreeing may take a little time, especially if all the work that needs to
be done won’t fit in the development time-box. It’s lucky you know
some tricks for slicing stories down thinner. Try dialing back a story
from better to just good enough. That should make it fit.

Celebrate. You’re done. In a past, we liked planning in the afternoon.
We tried to finish a bit before quitting time. Then we’d celebrate by
taking the rest of the day off. We showed up the next day refreshed
and ready to start working on the plan we created together.

Use Your Story Map During Delivery
Use a map to build shared understanding with your delivery team. I
often hear from team members working in an Agile process how much
they like collaborating, and how productive they feel because every
week or two they see and demonstrate working software. But then they
follow that up with statements like, "I feel like I’ve lost the big picture.
All I see are these little parts of the product we build." Use a map to
give the team the visibility of the whole product or feature you’re
working on. They’ll make better tactical design and development de‐
cisions if they understand the context those decisions fit into.

232 | Chapter 16: Refine, Define, and Build

Use a Map to Visualize Progress
As you begin to build your product release, the map makes a good
visual dashboard to show what you have and haven’t built.

Some teams remove detailed stories from the body of the map as they
bring them into development to complete. That way, when they look
at the map, all they see is what’s left to build.

Other teams like leaving the map in place and using pens or colored
stickers to mark the stories they’ve completed. When they step back
and look at the map, they see a visualization of what’s done, and what’s
left to do.

Use the map to identify the next stories to build. Every week, product
owners will need-assess the progress of ongoing development work,
and make decisions about what’s important to focus on next. When
the map visualizes progress, then it’s a bit easier to scan it to look for
areas that need more focus. It’s sort of like being a painter. If you can
step back and take in the entire painting, it’s easer to figure out where
to start working next.

Use a Map to Visualize Progress | 233

Use Simple Maps During Story Workshops
Each development cycle, you’ll identify stories in the map you should
work on next. You’ll carry those stories into those last best conversa‐
tions you’ll have during story workshops.

An easy visualization to build during that workshop is a simple map.
You might be mapping only the three or four steps the user takes using
a feature you’re discussing. But being able to point to sticky notes on
a wall that show the flow helps the discussion move faster. As you begin
to discuss acceptance criteria, write them on sticky notes and add them
into this mini-map. In the end, you’ll have a simple visualization that
supports the conversation you had in this workshop.

Visualize Your Working Backlog
Chris Gansen and Jason Kunesh, Obama Campaign Dashboard

As the Obama 2008 election campaign proved, the Internet has for‐
ever changed politics. Barack Obama’s online strategy played a direct
and significant role in his nomination and subsequent election. The
strategy for the 2012 election was to provide tools that supported
traditional grassroots organizing and fundraising, while using tech‐
nology as a "force multiplier" to counteract the massive amounts of
third-party money entering the race. While we used tools like Pivotal
Tracker and Basecamp to track the work our teams did to support the
2012 Obama Campaign Dashboard, to really help everyone else un‐
derstand what was going on we used walls full of sticky notes. You
might ask, "Why would you take the time to mess around with a bunch
of Post-its on the wall?" Here’s why.

We had two different cultures working together in the same space on
this effort. We were the folks in the corner who unscrewed the light
bulbs so we could work in relative darkness; who brought in our own
noisy keyboards; who wore gigantic headphones to drown out the
buzz of cable television interviews, bells, and handclaps that perme‐
ated the open newsroom-style office; and who wore metal band t-
shirts instead of seersucker suits. All the people who’d worked on
previous campaigns, the guys in suits, came in with a traditional view
of software development. "We describe the features we want, and you
build them for us. Yesterday." They weren’t used to receiving things
incrementally and seeing them iteratively change and improve, and
they definitely weren’t used to making the tradeoffs required to get
the stuff they really needed when it had the biggest impact. It’s a

234 | Chapter 16: Refine, Define, and Build

campaign. There’s no extending the delivery date, except by act of
Congress! The day after the election, it’s over whether we’re finished
or not. And there was no way they’d get everything they imagined.

When we originally got started, we used some basic mapping ap‐
proaches to describe the people using our system and the different
kinds of things they’d need to do. We could then organize the work
into releases over time. This worked OK, but it was hard for the people
leading the campaign to really get engaged with thinking about the
way people would work later, more than a year from the present day.
Their heads were focused on what they needed to get done now. And
they were making lots of guesses about what volunteers and group

Use Simple Maps During Story Workshops | 235

leaders would be doing. They had to, especially if we were reimagining
the way they worked.

After seven months, we shipped a small, minimum viable product—
just enough to release to our first users in Iowa. That’s when every‐
thing changed. The immediate reaction was bad because what we
released clearly wasn’t everything people envisioned it would be.
There were lots of important things missing. It had bugs. We heard a
lot of "Why didn’t you get it right the first time?" As much as we
assured them we’d be fixing broken things and improving things every
single week, they couldn’t really buy it until they saw it. But as things
quickly did improve, that really built trust.

That’s where the big wall of stickies comes in. We used Pivotal Tracker
and Basecamp, but all these other people weren’t going to use those
tools. We needed a fully transparent way that everyone could see what
we were working on, and what was coming. Our wall of stories was
organized left to right by calendar week, and top to bottom by priority.
We were all focused on time. There was a big clock on the wall count‐
ing down the minutes until the election. They all knew that some
things were less important now, and some even more critical as elec‐
tion day got closer. Every story on the wall was color-coded for the
activity the idea affected—like Field Work, Team Building, Voter
Registration, and Voter Turnout. There’s a lot of purple in this picture
because it’s early, and Team Building, represented by the purple stick‐
ies, is more important than other things like Voter Turnout right now.

236 | Chapter 16: Refine, Define, and Build

When we added things to the board, we did it together with the people
running the campaign. We talked about what was already planned for
that week, and what the odds were of it making it into the week’s work.
We talked about the real problem being solved behind the feature idea.
Together we decided how important it was relative to all the other
things on the wall. When it came time to build the software, the de‐
veloper responsible would work directly with the stakeholder who
knew the most. They’d work together to figure out the details. Some‐
times all it took was lots of scribbling on a whiteboard to agree.
Sometimes we’d take a day and build some simple UI prototypes.

This big visual wall of sticky notes was critical for building a bridge
between the people developing the software and the people who
needed it. It’s what they needed to help them visualize what was going
on and when, and to actively participate in making decisions.

Use Simple Maps During Story Workshops | 237

CHAPTER 17

Stories Are Actually Like Asteroids

If you’re of a certain age, you may fondly recall playing an early video
game called Asteroids. Stick with me here for a moment. I promise this
is relevant.

In the game Asteroids, you’re represented by a little ship floating deep
in outer space. But you’re stranded in a field of huge asteroids, and you
need to shoot your way out to survive! If you shoot a big asteroid, it
explodes into a few smaller asteroids. And, to make things more com‐
plicated, these smaller asteroids move faster, and in different direc‐
tions—which makes it harder for you to keep from getting hit. If you
shoot one of those smaller asteroids, it’ll break into even smaller as‐
teroids that move even faster in different directions. Pretty soon, the
screen is full of asteroids of all different sizes flying in every possible
direction. Happily, when you shoot the tiniest asteroids, they blow up
completely and help clear away this mess.

239

A really bad asteroid strategy is to shoot all the big rocks and break
them down into small rocks. The screen fills with lots of small rocks
flying every which way, and you’ll die a quick and painful death.

A really bad product backlog management strategy is to break down
all the big stories so they’re small enough to fit into the next develop‐
ment cycle. Your backlog will fill with lots of small stories flying every
which way, and you’ll die. Well, you won’t actually die, but you’ll be
buried alive in a lot of needless complexity. You and everyone else will
complain about losing the big picture amid all these tiny details.

Break stories down progressively, and just in time.

At each story discussion and splitting stage, you’ll do so with a purpose
in mind:

1. For opportunities you’ll discuss who they’re for, what problems
they solve, and if they’re well aligned with your business strat‐
egy. It may make sense to split bloated opportunities at this point.

2. During discovery, you’ll discuss the specifics of who uses the prod‐
uct, why, and how. Your team’s goal is to envision a product that’s
valuable, usable, and feasible to build. You’ll do lots of rock break‐
ing here. Hopefully you’ll move only the smallest number of sto‐
ries you need forward into a release backlog that describes a min‐
imum viable product release.

240 | Chapter 17: Stories Are Actually Like Asteroids

3. When planning a development strategy, you’ll discuss where the
risks are—risks that spring from concerns about what users will
like and adopt, and risks that spring from real technical feasibility
concerns. You’ll break rocks with learning in mind, building what
you need to first, to learn the most.

4. When planning for the next development cycle, you’ll have your
last best discussions to decide exactly what to build and make
agreements on how you’ll check the software to confirm it’s com‐
plete. Each one of those agreements provides an opportunity to
break down a story even further where each story satisfies as little
as one agreement.

You can see that if you tried to have all four of these conversations in
the same sitting, it’d be a long, grueling conversation. It’d take a wide
variety of people to weigh in on different aspects. And you’ve probably
gathered from my warnings and your own past experience that big
groups of people don’t work effectively together—at least not all in the
same room at the same time. That’s why we break stories down pro‐
gressively over time with lots of conversations.

Reassembling Broken Rocks
In the Asteroids game, you have to be very careful about which aste‐
roids you shoot because you can’t put split asteroids back together once
they’re broken. But you can put split stories back together.

To avoid a backlog filled with lots of tiny stories, take a bundle of stories
that go together, and write all their titles on a single card as a bulleted
list. Summarize those titles with a single title on your new card. Voilà,
you’ve got one big story.

This is pretty fantastic stuff when you think about it. The card, and
the title written on it, is a tangible handle to lots of intangible ideas.
Ideas are a lot more malleable than rocks or heavy documents. We
sometimes forget that another name for software development is
knowledge work. When we forget that and instead fixate on docu‐
ments and process, it turns into something dry and secretarial. And
when I work with people managing huge backlogs filled with tiny sto‐
ries, it feels horribly secretarial.

Reassembling Broken Rocks | 241

Bundle Small Stories to Clean Up Your Backlog
I often run into product teams that have backlogs with hundreds of
items in them. And, predictably, they tell me that they struggle to
prioritize their backlogs. When I look into their backlogs, they’re
often filled with lots of little stories. Talking about each one of them
to make a prioritization decision would take hours, or days in some
cases. So don’t.

If this were Asteroids, you’d have lost. But since it’s not, try bundling
up your small stories into bigger stories:

1. If your stories are in an electronic backlog, get them out onto
cards or sticky notes. Whatever tool you’re using should be able
to print or export to a spreadsheet. I’ll use a simple mail merge
in a word processing program to create labels for all the stories
and then stick them to a card, or print directly onto cards.

2. Ask for help from a group of team members who understand the
system. Schedule a room with lots of wall or table space where
you can work.

3. Give everyone a handful of story cards and ask them to start
placing them on the tabletop or sticking them to the wall.

4. When you see a card that seems similar to one you’re placing,
cluster them together. Don’t think too hard about what "similar"
means—just go with your gut.

5. Do this organizing in silence, at least to start. You’ll find that it’s
the conversation that slows things down. And it’s good to learn
to use the model and your body language to communicate.

6. Move and reorganize any card you want. It’s everyone’s model,
so that means no one owns the position of a card. If something
looks out of place, move it. If someone disagrees, he or she will
move it back. That’s your cue to discuss why.

7. After things settle into clusters, take a different color card or
sticky and make a header for each cluster. On that card, write a
better story name—one that distills why all these cards are sim‐
ilar. If you’ve written a distillation called "UI improvements," that
may be too vague. "Improve entering and editing comments"
would be better, assuming those UI changes were about
comments.

8. The distillations become your new, bigger stories. The other
cards become bullet points in its description. Add those

242 | Chapter 17: Stories Are Actually Like Asteroids

distillations back into your release backlog. Or, if they’re defer‐
rable, move them all the way back to your opportunity backlog.

This works fantastically well for deep backlogs composed of lots of
little items. It’s wonderful for deep bug lists, too. You know how there
are always lots of lower-priority bugs that never get fixed? Bundle
them with other higher-priority bugs in the same area of the system.
When a developer goes in to fix the high-priority bugs, it’s often trivial
to hit the low-priority bugs, too. Your customers and users will thank
you for it.

Don’t Overdo the Mapping
I often hear from people trying to figure out this story mapping stuff
that it’s just "too much." When I ask them "What went wrong?" they’ll
tell me about creating a very large map of their whole system in order
to discuss a simple feature. They’re right: that’s too much. So don’t do
that.

Map only what you need to tell a story about your feature.

For example, I was working with a company making some changes to
the commenting feature in its collaborative document editing soft‐
ware. The team mapped document editing at a high level, and they
only used a few cards for that. When they got to the area for com‐
menting, they added more cards that summarized what their product
did today using lots of bullets on a single card. Then they began to
discuss changes they’d like to make, adding lots more cards for all the
details and options they were considering.

Don’t Overdo the Mapping | 243

When adding a feature into an existing product, map a little ahead of
where the feature begins in your users' story, and a little beyond where
it ends. Don’t map your whole product.

Remember that story maps support conversations about your users
and your product ideas. A good rule of thumb is this: if you don’t need
to discuss it, you don’t need to map it.

Don’t Sweat the Small Stuff
I’ve described this whole rock-breaking journey, and even cautioned
you to treat those rocks like asteroids in the old Atari game so you’re
not tempted to break them down too fast. Hidden within all these
strategies is the assumption that a lot of the stories we come up with
are big. But, actually, a lot of them aren’t. After you deliver a product
or feature to users, you’ll immediately find lots of little things that are
dead obvious—things you wished you’d have thought of before ship‐
ping, but you didn’t. At least that’s what happens to me. For those things
I don’t have an opportunity discussion, or pull together a group to do
product discovery, because it’d be obvious to everyone they should be
done. For those things, I’ll get them into a current release backlog and
then as early as possible workshop them with team members so we
can get them built. The same goes for bugs, and lots of little
improvements.

244 | Chapter 17: Stories Are Actually Like Asteroids

Saving the World, One Little Fix at a Time

Here’s my friend Sherif from Atlassian again. He was explaining to
me that product team members pick up and work on lots of small
fixes and improvements all the time. They worry about their users a
lot there. And they know that lots of little bugs and imperfections
drive their users crazy—and that drives them crazy. They say it’s like
dying a "death by a thousand paper cuts." So, on the wall near a team
working on a product called Green Hopper is a bunch of tick marks.
Every time a team member fixes one of these little things, he or she
makes a mark on the wall. It looks like 47 of these little fixes will go
out in the next release. If you use Confluence or JIRA, you can thank
them later.

Don’t Sweat the Small Stuff | 245

CHAPTER 18

Learn from Everything You Build

If you’ve got a traditional development hat tightly on, you might be‐
lieve you’re done when the software is built. But Agile development
and stories are built for learning. We spend a lot of time before we
build anything making sure we should build it, and agreeing together
on what to build. And, after we build, we’ll look again and ask if should
have built it, and if it’s good enough.

Let’s talk about all the opportunities you have to learn after you build.

Review as a Team
Let’s rewind to the celebrating part. At the end of a cycle of develop‐
ment and testing, celebration is in order. You’ve turned some ideas,
lots of discussion, sketching, and hand waving into some honest-to-
goodness working software. It would have taken a lot longer using a
traditional requirements process. And you and your team would likely
feel a lot less ownership of the result.

After a few high-fives, it’s time to sit down as a team and take an hon‐
est look at what we’ve accomplished. If we’re being honest with our‐
selves, we’ll likely find some things we’d change to improve the soft‐
ware. For each of those things, we’ll write another story and add it to
our release backlog. We’ll decide if these are changes we need to make
right away, or changes we can defer 'til later during our endgame.

In processes like Scrum, this is called a sprint review. If you’re a Scrum
practitioner, you may have heard that everyone is welcome at this re‐
view, but I’m going to suggest you do something different.

247

The team that worked closely together, had those last, best story con‐
versations, agreed on what to build, and worked together to build it
needs time and a safe place to openly discuss their work. What others
outside the team, including business leadership, think of the product
is important and the team needs to hear their opinions. But those
people weren’t in the conversations that built shared understanding
about the details of what to build. They weren’t part of the discussions
that created the detailed plans to build software. And they weren’t
working alongside the team as it turned all these discussions and
agreements into working software. We need to first evaluate if we’ve
built what we envisioned at the quality level we hoped for and in the
timeframe we planned. Do this in a team product review and reflection.

Team Product Review and Reflection Recipe
The team that worked together to understand the stories—and to
make a short-term plan for building them—must stop and reflect on
the quality of their work. Use a short workshop to accomplish this.

248 | Chapter 18: Learn from Everything You Build

Constrain this workshop to include only the people who worked to‐
gether to understand and plan the work. Include the product owner
and any others on the product team, as well as developers, QA, and
anyone who did active delivery work. Yes, I’m saying that it’s OK to
exclude business stakeholders. We’ll share with them soon enough.
But right now we need a safe place to talk.

Bring food. Years ago in my team, this workshop simply couldn’t start
if we didn’t have bagels.

Use this workshop to review three things: the product, the plan, and
the process.

Product
Start by discussing the software built as a result of the stories. Make
sure you bring it up on a screen, and get a chance to try it out. All of
it. In big teams, it may be the only chance everyone has to see one
another’s work.

Grade your quality subjectively as a team. Grading will drive out lots
of good discussion.

• Discuss the quality of user experience. Not just how the UI looks,
but how it feels to use. Is it as good as you expected? Grade your‐
selves on a scale of 1–5, with 5 being best.

• Discuss the functional quality. Did testing go smoothly, or were
there lots of bugs? Do testers expect to find more bugs as more
software is added, or as they get more time to test? Grade your‐
selves on a scale of 1–5, with 5 being best.

• Discuss the code quality. Did you just write code that will be easy
to maintain and grow? Or did you just write your next batch of
legacy code? Grade yourselves on a scale of 1–5, with 5 being best.

Write stories to correct quality issues you see in the product.

If you’re engaged in both discovery and delivery work, and you should
be, discuss your discovery work of the last cycle. What did you do?
What did you learn?

Plan
If you were working in a time-boxed iteration or a sprint, you started
by making a plan and a prediction for how much you could get done.
Was it a good one?

• Decide which stories are and aren’t done. This may be harder than
you think. Having this discussion helps your team build a

Review as a Team | 249

1. This process improvement discussion is commonly called a retrospective, and there
are lots of great approaches to performing one. If you’d like to look at a more com‐
prehensive recipe of retrospective approaches, try the book Agile Retrospectives by
Esther Derby and Diana Larsen (Pragmatic).

common definition of what they consider to be done. Does
"done" mean there are automated tests? Does it mean that all
manual testing is done? Does it mean that product owners or UI
designers have reviewed it?

• Total the number of stories you agree are done. This is your
velocity.

• Total the stories started and not completed. If it’s a lot, it’ll signal
you need to work on your planning. I call this amount the over‐
hang. Someone I used to work with called it hangover, because it
makes your head ache.

• Discuss the amount of time budgeted on discovery work. Did you
use the time? Did you use more time than you budgeted? Using
too little will hurt you later when you don’t have things ready to
build that you feel confident in. Using too much may hurt your
chances for delivering what you’ve committed to on time.

Process
Discuss the way you worked over the last development cycle. Could
you make changes to the way you’re doing things to improve quality?
To improve your ability to predictably plan? To just make it more fun
to be at work every day? Because if you’re having fun, I promise you’ll
be able to go faster.1

• Start by discussing changes you tried last cycle. Did they work?
Do you want to keep them, or kill them?

• Discuss changes you’d like to try during the next cycle. Don’t take
on too much. Small changes are best. Trying to change too much
at once is similar to trying to take on too much work at once.
You’ll disappoint yourself.

That’s it. You’ve successfully learned from the stories you’ve built, and
all the work you’ve done for that matter.

250 | Chapter 18: Learn from Everything You Build

Review with Others in Your Organization
When the team has given their product a fair evaluation, widen the
audience to include anyone else in the organization that’s interested.
This group will need some insight on the discussions you had as a team
and any tradeoffs you made. Remember, the stories you’ve translated
to working software are likely little rocks chipped off of a larger vision
of the finished product. People outside the team may be expecting to
see that finished product. They’re likely to point out what’s missing
because they weren’t part of the planning sessions where you decided
what to defer until later. Expect that. And help them understand how
the pieces you’ve just built fit into the bigger plan. Do this in a stake‐
holder product review.

Stakeholder Product Review Recipe
There are lots of others in the organization who are likely interested
in what you’re working on, and what you’ve accomplished. You’ll need
to make this work visible to them. Unlike your team, these others
probably don’t know the details of what you chose to build, nor where
they fit into the big picture. So, you’ll need to plan on connecting what
you accomplished and learned back to the product. This is also an
excellent opportunity to learn from them, and to get their support.

Invite everyone who’s interested. This is a big public review. Anyone
interested is welcome. Make sure your whole team is there. Seeing
others' reactions to what they’ve done, either positive or negative,
helps remind them that what they’re doing matters.

Bring food. I promise everyone will like what you have to say when
they’re loaded up with carbohydrates. Even bad news goes down eas‐
ier with cookies.

You’ll review two categories of information: the discovery work
you’ve been engaged in, and the stories you’ve delivered.

Review Discovery Work
Reviewing discovery is critical. The best time to get feedback from
stakeholders is before you’ve invested lots of time building something.
If you’re showing real lessons learned from putting software in front
of customers and users, they’ll value learning what their customers
actually think. The only thing that trumps an executive opinion is a
cold, hard fact.

Review with Others in Your Organization | 251

• Discuss each opportunity you’ve taken up briefly: who it’s for,
why we’re building it, and the outcomes you expect if it’s
successful.

• Discuss and show the work you’ve done to understand the prob‐
lem and the solution.

• Discuss and show prototypes and experiments you’ve run. Dis‐
cuss what your customers and users are saying about your
solution.

Review Delivery Work
It’s been my experience that stakeholders are focused on what and
when you’ll release to customers and users. They should be because
it’s not until after you release a viable solution that you’ll be able to
observe real outcomes. They’ll be interested in progress made toward
that goal.

Review the delivery work you’ve completed at a solution-by-solution
level. Think of the minimum viable solution as the big rock that’s more
relevant to stakeholders.

For each solution:

• Review the solution’s target customers, users, and outcomes. It’s
good to remember why we’re building this and what success
means.

• Discuss and show the results of stories built for each solution.
Stakeholders will offer feedback. Hopefully if they had a chance
to give feedback when you were doing discovery work, the feed‐
back at this point will be, "Yup, that still looks good."

• Discuss the stories holistically. If you’re using a strategy like the
Mona Lisa strategy, you’ll need to explain to them why the soft‐
ware looks incomplete at this point. Remember that they may
want to see a square inch of a complete portrait, and not the
software equivalent of a sketch of the whole canvas.

• Share with them your progress toward getting this solution re‐
leasable. How much work is left? What have you learned while
building the solution that will affect its successful delivery?

Be prepared to write stories for new opportunities, or for changes
you’ll need to make.

It’s possible that others in the room unfamiliar with what you’re
building and why will suggest things that aren’t a good idea.

252 | Chapter 18: Learn from Everything You Build

Respectfully. and gently remind them of the target audience and out‐
come for the solution, and why what they’re suggesting might be a
great idea, but doesn’t support the outcome you’re currently focused
on.

Keep your work visible to everyone in your company. Help them be
excited about what you’re doing and learning.

Enough
I’m confident when I use a product I like that I’m not appreciating all
the little details and decisions that went into it. In fact, if it’s working
really well, I hardly notice the product at all. I don’t notice how my
mobile device loses and reestablishes an Internet connection. I don’t
notice how when I change the position of something in the mobile app
of my task management software that the web version seems to be
immediately in sync. But these are important qualities. And I’d notice
if they weren’t there. You as a team have been stewing in lots of details.
But, oddly, you may not want users and others to notice them. In fact,
you may want to notice that they don’t notice them.

You’ll learn the most from the stakeholders in your organization, cus‐
tomers who buy your product, and individual users who’ll use it when
you put enough software in front of them that they can clearly see how
it’ll help them reach one of their goals.
For stakeholders

Enough software may be the addition of a feature critical to ac‐
quiring new customers. Or enough may be information on what
you’ve learned about the details that must be in that feature to be
competitive.

For customers
Enough software may be the addition of a feature that will repre‐
sent real value for them when they or their organization begin to
use the new software.

For users
Enough software may be the addition of software that allows them
to reach one of their goals using your product.

If you did your rock-breaking process well, you ended up with lots of
small, buildable parts. Each of those parts allowed you and your team

Enough | 253

to learn something. But, if you were doing it right, those small parts
are likely not enough to be relevant to other groups.

In my mind, I picture this as small bits of software we build piling up
like LEGO bricks. I load all those bricks onto an old-fashioned scale,
the kind with two platforms and a counterweight on one side. What I
weigh this growing pile of software against is a bigger LEGO brick that
represents enough—enough to allow a user to complete a task or reach
a goal; enough for customers to see it as part of their value proposition;
enough for business stakeholders to see how it helps our organization
reach a business goal. When enough software piles up and tips the
scales, it’s time to test that software with users, review it with custom‐
ers, or review it with business stakeholders.

You as a team of close collaborators need to review the results of every
single story to learn and improve not only your product, but also the
way you plan and the way you work together. When getting feedback
and learning from other groups, be sensitive to what is enough for
those groups.

Learn from Users
We may have been pretty confident that we were building the right
things when we started, but to stay confident it’s important to test the
working software with users.

Notice that I said test here. We don’t learn much from users by playing
"show and tell"—that is, by demonstrating it to them and asking them
to imagine using it and decide if they’d like it. It’s a little like looking
at a new car on a showroom floor and trying to decide if you’d enjoy
driving it. Test-driving your software will help users really evaluate if
it’s solving a problem they have. As a team, we’ll learn more by watch‐
ing them use it. If you and your team were having good story conver‐
sations, you likely talked about users, why they’d value what you were
building, and how they’d use it. It’s watching them use it that really
validates those hypotheses.

When you’ve got enough software to allow users to accomplish some‐
thing meaningful to them, it’s time to test. You may not be testing
something completely new. You may have made changes or enhance‐
ments to something your product already does. Spend time with users
to observe them using your software doing realistic work.

254 | Chapter 18: Learn from Everything You Build

Learn from Release to Users
You’ve built small amounts of software and reviewed every bit of it as
a team. You’ve periodically reviewed it with stakeholders insider your
organization, and with customers who’ll buy or adopt your product,
and with users who’ll use it. But, if you remember where this book
started, it’s not the software we really wanted—it’s the outcomes we
get after the software is delivered and put into use.

When you feel like you’ve built enough that you’re confident you’ll get
those outcomes, then it’s time to release the software into the world.

I picture one more scale that’s piling up with bricks of software that
I’ve tested with users, iteratively improved, and I’m now confident
could be released. I’ll balance that growing pile against yet another,
larger brick that also represents enough—enough to release and be
successful with its target audience. When I’ve got enough, it’s time to
release.

You’ll need to plan to learn from each release. Please don’t release
software and sit around waiting for your customers and users to com‐
plain. Those complaints are outcomes. But they’re often lagging indi‐
cators of how they really feel and how well your product will really do.
For each release, discuss as a team how you’ll measure or observe the
users of your product to see if you really got the outcomes you ex‐
pected. Discuss and decide how you’ll:

• Build metrics into your product that allow you to track usage of
new features

• Schedule time to observe users as they use the new release

As a team, routinely discuss what you’ve learned, and then take your
ideas for improvement and write more stories. Some you’ll see as im‐
portant enough to implement right away. And others you’ll see as op‐
portunities to add to your opportunity backlog.

Outcomes on a Schedule
There are some companies and some software that allow us to release
whenever we have enough. But for a great number of companies and
products, if not most of them, we need to release on a schedule. If we’ve
been using our development strategy effectively, we’ve laid down a
foundation in our early opening-game stories, built up the product

Learn from Release to Users | 255

using midgame stories, and when it comes time to release, we’re play‐
ing our endgame stories.

Now I need to remind you of a few more truths about software
development.

Software is never really done.

You’ll finish implementing the software for each story your team takes
on during a short development cycle. But you likely won’t finish every
story you imagine at the outset of development, or identify as you learn
each cycle. If you’ve used an effective development strategy, however,
the software will be as good as it possibly can be at the time it’s released.

Outcomes are never insured.

In spite of all the work you’ve done to validate that you’re building the
right things, people using your product often don’t behave as predic‐
ted. Plan to learn with each release. Plan to make changes based on
what you’ve learned.

Improvements made after release are the
most valuable.

It’s those unpredictable things that you’ll observe when users begin to
adopt and use your software frequently that yield the most insight. If
you plan for time to really measure and observe outcomes, you’ll be
rewarded with people who really love your product and a product
that’s really valuable for your organization.

Use a Map to Evaluate Release Readiness
You’ll complete your product release story by story. As you draw near
the date you promised to deliver—and there’s always a promised de‐
livery date—for each major user activity ask, "If we had to ship right
now, what grade would we give ourselves?" If you use letter grades like
my kids get in school, you’ll end up with a report card for your product.

For example, if you looked at a product or feature with five major
activities a few weeks before its promised release date, and saw a report
card of A, A–, B+, D, B+, you might want to take the remaining weeks
and focus on the part in the user’s workflow that’s currently graded a
D. If in the end you release with A s and B s, that’s pretty good. Of

256 | Chapter 18: Learn from Everything You Build

course, straight A s would be better, but getting it out on time may be
more important.

As you draw near the release date of your product, work together to
assess release readiness. I promise you, everyone wants to know.

This book is almost done. If you’ve read this far, you may have some
opinions about its release readiness. You could go back to the table of
contents and write your letter grade on each chapter. Take a smart‐
phone photo and send it to me. I’d love to see it.

Use a Map to Evaluate Release Readiness | 257

The End, or Is It?

Just like a good software product, this book isn’t really done. Through‐
out the book are lots of great examples contributed by people I’ve met
who tell me about the cool things they’re doing with stories and story
mapping. I’ve got a lot more stories on my hard drive, too, and it’s
killing me that I don’t have time to get them refined and included in
the book.

There are also a lot more details I could discuss about stories and story
maps. And I’m sure you’ve got unanswered questions about using sto‐
ries in your own context. As I reach the close of this book, I worry
about that, too.

As someone who’s been a developer, a UI designer, and a product
manager, I can tell you I’ve rarely been happy at product release. And
that’s because it’s then that I know about all the things I couldn’t in‐
clude, and about all the little things that could be better with just a bit
more time to polish. If you really care about what you’re building, I
expect you’ll feel that way as well.

I’ll repeat the da Vinci quote I used earlier in Chapter 4:

Great art is never finished, only abandoned.

I’ll stop short of saying this book is great art. But I will say I’ve aban‐
doned it when there’s more that could be done. I’ll leave that more to
you, and expect to hear from you when you’ve discovered your own
better ways for working together to create great products.

259

Acknowledgments

This was one of the hardest parts of this book to write. I’ve been blessed
enough to enjoy the support of a huge number of people throughout
my career. I have and continue to receive so much encouragement
from everyone I meet and work with. So, what scares me is that as soon
as I start thanking people, I’m going to leave someone out. If I’ve left
you out, I am very sorry, and I suspect you’re in good company.

And, another thing is that I’m pretty sure I don’t have any original
ideas. I’ve heard it argued that there are no original ideas left. But for
me specifically, everything I know I’ve learned from the wise people
I’ve worked with over the past two decades. From these insightful
friends and peers I’ve learned and applied new ideas and practices.
Through long discussions with them, I’ve learned to interpret and
deeply understand the experiences I’ve had when practicing my craft.
It seems hard to take credit for any of the ideas in this book since I
know most were borrowed or simply stolen from others.

Whenever I do have what I believe to be an original idea, I’m reminded
of cryptomnesia. It’s a fun word that applies to the accidental plagiarism
that reputable people like George Harrison and Umberto Eco are guilty
of. Cryptomnesia occurs when a forgotten memory returns without
it being recognized as a memory. The crytomnesiac believes the great
idea they’ve just come up with is new and original, and not the for‐
gotten memory of something they’ve read, heard, or otherwise expe‐
rienced. The people I’m thanking below are quite likely many of the
people I’ve unintentionally stolen from.

261

So with that preamble, I’ll get started:

I’d practically given up on writing a book. I’ve had a real problem when
I was trying to write over the past ten years. I seemed to be able to
write short articles, or give a talk, but as soon as I tried to write anything
longer than a couple thousand words, things went sideways. I can best
describe my book writing as taxidermy. That is I’d take something
living and beautiful and then kill it and stuff it. The best I could hope
for is that it would be lifelike. Peter Economy broke me out of that
cycle. It was his years of experience writing and his always positive and
supportive attitude that helped me find a written voice that worked.
I’m grateful to Peter. If you’re struggling to get a book written, you
should call Peter.

Martin Fowler, Alan Cooper, and Marty Cagan are all heroes of mine.
I’ve had the pleasure of meeting with, working with, and enjoying long
conversations with all of them. Their thinking has influenced mine
throughout my career. Two of the three thought it was a bad idea to
have three forewords in the book, but I’m glad I insisted, and they
agreed. They represent the voices of engineering, user experience, and
product thinking that I see as critical to creating successful products.
I think it was critical that you, the reader, heard from each of them.

Alistair Cockburn has been a friend and mentor of mine for over a
decade. I’m quite certain that much of what I believe are my great ideas
were stolen directly from Alistair and my long conversations with him.
Calling the model of story cards I put on walls and tabletops a “story
map” came from one of these conversations. As I was trying to explain
to Alistair what it was I recall saying “it’s just a map of stories.” “Then,
why don’t you call it that” Alistair said. That instead of the other silly
names I’d been tossing around.

What I started doing with cards years ago to tell stories and build
product backlogs came from bastardizing practices I learned from my
friend Larry Constantine. The practice of story mapping and how I
think of user experience would never have come about without the
opportunity to learn directly from Larry.

David Hussman has been my wise friend, supporter, and a kindred
spirit to me for years now. It’s watching David tell stories and receiving
his encouragement that’s helped me find the voice I have today. David
was creating story maps before they were called that.

262 | Acknowledgments

And, I’d never have gotten a book completed without the support of
Tom and Mary Poppendieck. Tom in particular has read some of my
worst taxidermy over the past decade, and still offered words of en‐
couragement. A few months ago, he refused to leave my house until I
sent my final draft to O’Reilly. If he hadn’t, I’d have kept twiddling with
the book, never considering it good enough.

Other friends that stand out as supporters and sources of good advice
along the way include Zhon and Kay Johansen, Aaron Sanders and
Erica Young, Jonathan House, Nate Jones, and Christine DelPrete.

Special thanks to Gary Levitt, all the people at Globo.com, Eric Wright
from Liquidnet, and all my friends at Workiva for letting me tell their
stories in the first chapters of this book.

Countless times over the years I’ve been stopped by people who wanted
to tell me their stories about how they’d used story mapping or applied
a piece of advice I’d given them. My guilty secret is that I learn more
from them than I think they get from me. I was happy to get contri‐
butions from just a fraction of them for this book. Special thanks to
those that could get me a contribution given very short notice: Josh
Seiden, Chris Shinkle, Sherif Mansour, Ben Crothers, Michael Vath,
Martina Luenzman, Andrea Schmieden, Ceedee Doyle, Erin Beier‐
waltes, Aaron White, Mat Cropper, Chris Gansen and Jason Kunesh,
Rick Cusick, Nicola Adams, and Steve Barrett.

There’s a big group of people that I spoke with and learned from that
I simply didn’t give enough time to meet my unreasonable deadline.
These people include: Ahmad Fahmy, Tobias Hildenbrand, Courtney
Hemphill, Samuel Bowles, Rowan Bunning, Scout Addis, Holly Bie‐
lawa, and Jabe Bloom. To these people and all of you reading this, I
still want your stories. Perhaps I’ll release a special directors cut of the
book that includes all these deleted scenes.

In the final stretch of getting this book done, I received valuable de‐
tailed reviews from Barry O’Reilly, Todd Webb, and at the last minute
from Petra Wille. All of their detailed comments helped me smooth
out the rough edges in the book.

Finally, thanks to Mary Treseler and the production team at O’Reilly
for putting up with my delays and funky schedule, and sticking with
me to the bitter end.

Acknowledgments | 263

References

Adlin, Tamara, and John Pruitt. The Essential Persona Lifecycle: Your
Guide to Building and Using Personas. Burlington: Morgan Kaufmann,
2010.

Adzic, Gojko. Impact Mapping: Making a Big Impact with Software
Products and Projects. Surrey, UK: Provoking Thoughts, 2012.

--. Specification by Example: How Successful Teams Deliver the Right
Software. Shelter Island: Manning Publications, 2011.

Armitage, John. “Are Agile Methods Good for Design,” Interactions,
Volume 11, Issue 1, January-February, 2004. http://dl.acm.org/cita
tion.cfm?id=962352.

Beck, Kent. Extreme Programming Explained: Embrace Change. New
York: Addison-Wesley Professional, 1999.

Beck, Kent, and Michael Fowler. Planning Extreme Programming. New
York: Addison-Wesley Professional, 2000.

Cagan, Marty. Inspired: How to Create Products Customers Love. Sun‐
nyvale: SVPG Press, 2008.

Cheng, Kevin. See What I Mean: How to Use Comics to Communicate
Ideas. Brooklyn: Rosenfeld Media, LLC, 2012.

Cockburn, Alistair. Agile Software Development. New York: Addison-
Wesley Professional, 2001.

--. Writing Effective Use Cases. New York: Addison-Wesley Professio‐
nal, 2000.

Cohn, Mike. User Stories Applied: For Agile Software Development.
New York: Addison-Wesley Professional, 2004.

265

http://dl.acm.org/citation.cfm?id=962352
http://dl.acm.org/citation.cfm?id=962352

Constantine, Larry L., and Lucy A.D. Lockwood. Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered Design.
New York: Addison-Wesley Professional, 1999.

Cooper, Alan. The Inmates Are Running the Asylum: Why High-Tech
Products Drive Us Crazy and How to Restore the Sanity. Indianapolis:
Sams – Pearson Education, 2004.

Gothelf, Jeff. Lean UX: Applying Lean Principles to Improve User Ex‐
perience. Sebastopol: O’Reilly Media, 2013.

Jeffries, Ron, Ann Anderson, and Chet Hendrickson. Extreme Pro‐
gramming Installed. New York: Addison-Wesley Professional, 2007.

Klein, Laura. UX for Lean Startups: Faster, Smarter User Experience
Research and Design. Sebastopol: O’Reilly Media, 2013.

Ries, Eric. The Lean Startup: How Today’s Entepreneurs Use Contin‐
uous Innovation to Create Radically Successful Businesses. New York:
Crown Business, 2011.

Sy, Desiree. “Adapting Usability Investigations for Agile User-
Centered Design,” Journal of Usability Studies, Vol. 2, Issue 3, May
2007. http://www.upassoc.org/upa_publications/jus/2007may/agile-
ucd.html.

Tom Demarco et al. Adrenaline Junkies and Template Zombies: Un‐
derstanding Patterns of Project Behavior. New York: Dorset House,
2008.

Yates, Jen. Cake Wrecks: When Professional Cakes Go Hilariously
Wrong. Kansas City: Andrews McMeel Publishing, 2009.

266 | References

http://www.upassoc.org/upa_publications/jus/2007may/agile-ucd.html
http://www.upassoc.org/upa_publications/jus/2007may/agile-ucd.html

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
acceptance criteria, 94

agreeing on, 147
for Refine, Define, and Build chap‐

ter, 227
activities, 75

prioritizing in the backlog, 86
Adams, Nicola, 222
Agile development, 1

learning from everything you
build, 127

product owner, 155
RAC Insurance in Perth, Australia,

222
Scrum process, 148
story mapping and, 2

assumptions, 35
challenging with rehearsal map‐

ping, 176
conversations about, 105
naming your risky assumptions,

212
rethinking after running your test,

215
Asteroids video game, 239
Atlassian, 113

B
BA (see business analysts)
backbone (story map), 23

distilling your map to make, 75
backlog, 6, 93

flat backlog trap, 22
backlog grooming, 148
backlog refinement, 148
bad requirements, 90, 127
Beck, Kent, 2, 89, 128
beta customers, 44
Blank, Steve, 209
breaking software down into smaller

parts, 133
budget, time budget for development,

57
build-measure-learn cycle, 47, 210,

215
building software

building less, xli
building to learn, 41, 127
continuing conversation as you

build, 148
iterative builds until MVP is pro‐

duced, 44

267

learning from everything you
build, 247–257

planning to build less, 134, 196
planning to build piece by piece,

54
the wrong way, 44

business analysts, 110
in requirements gathering role,

163
in three amigos, 160
Nicola Adams at RAC Insurance,

222
business models, canvas approach to,

170
business value, prioritizing stories by,

197

C
Cagan, Marty, 47, 156, 170
canvas approach to sizing up opportu‐

nities, 170
card-conversation-confirmation flow,

218
Cardboard, 117
cards

contents of, 109–120
building shared understanding,

116
different team roles, different

conversations, 109
radiators and ice boxes, 114
remembering, 118
tracking huge amounts of in‐

formation, 110
using tools, 116
what's really on story cards,

114
writing desired product features

on, 93
changing the world, xxxvii
choosers, xli
client-vendor anti-pattern, 162

business analyst in requirements
gathering role, 163

coach for team use of user story map‐
ping, 85

Cockburn, Alistair, 70, 114, 127

code quality, 125
confirmation, 94, 147, 218
Confluence, 113
Connextra, 98
conversation, 93

about opportunities, 167
checklist of what to really talk

about, 104
continuing while building, 148
different roles, different conversa‐

tions for, 109
diving into story details during de‐

livery, 146
documenting using tools, 118
having best last conversations, 217
including too many people, 225
keeping valuable, usable, and fea‐

sible in discussions, 161
product owner responsible for all

story conversations, 155
tool for breaking down stories, 140
using after release to evaluate

product use, 153
using using story template to start,

99
words and pictures in, 95

Cs, 92, 218
cards, 93
confirmation, 94
conversation, 93

customer intercepts, 214
customers

conversations about, 104
describing your customers, 9
enough software for, 253
evaluating built software with, 150
understanding, 183, 199

D
da Vinci, Leonardo, 59
dates on story cards, 115
decomposition, 12
defining, 205
delivery

diving into details of each story,
146

268 | Index

reviewing in stakeholder product
review, 252

DeMarco, Tom, 102
dependencies on story cards, 115
descriptions of stories, 99
descriptions on story cards, 115
design by committee, 156
design by community, 156
design processes

changes to, from Lean Startup
thinking, 210

messing up, 208
traditional, big flaw in, 210

Design Studio, 189
recipe for, 189

design thinking, 204
defining, 205
empathizing, 205
ideation, 206
prototyping, 206
testing, 207
way of working, 207

details
exploring, 14
filling in for story map, 72
leaving until big picture is comple‐

ted, 12
development cycles

discussing in team review, 250
planning for, 241
planning recipe, 230

development partners, 42
development strategy

planning, 241
slicing out, 83

discovery, 47, 181–200
activities, discussions, and arti‐

facts, 199
collaboration of discovery team

with others, 158
cross-functional teams finding

right solution, 157
discovering a minimum viable sol‐

ution, 144
discovery team member in three

amigos, 160
discussing opportunities, 168
envisioning your solution, 186

essential steps in, 182
exploring ideas using examples

and journeys, 194
framing the idea, 183
minimizing and planning, 196
questions to ask and answer, 181
reviewing in stakeholder product

review, 251
story discussion and splitting, 240
time budgeted for, discussing in

team review, 250
understanding customers and

users, 183
using for validated learning, 201–

216
using to build shared understand‐

ing, 200
documenting conversations, 6, 107
documents

perfect, trying to write, xxxiv
similarity of good documents to

vacation photos, xxxv
using to aid memory, xxxvi

E
empathizing, 205
endgame strategy, 63
enough, 253
envisioning the solution, 186, 199
epics, 140
estimation

conversations about how long, 107
estimate, size, or budget on story

cards, 115
estimating development time, 168
in client-vendor anti-pattern, 162
measurement as key to good esti‐

mates, 56
time estimates for development, 53

evaluating built software, 149
continuing after product release,

153
with business stakeholders, 152
with users and customers, 150

experiments, minimizing, 48
Extreme Programming, 97

spikes, 146

Index | 269

F
Fabricant, Robert, xxxix
finishing on time, 51–65

envisioning the whole product, 59
iterative and incremental thinking,

62
managing your time budget, 57
not releasing each slice, 56
opening-, mid-, and endgame

strategy, 63
other secret to good estimates, 56
planning to build piece by piece,

54
risk, importance of, 64
secret to good estimation, 53
slicing out development strategy in

a map, 64
telling feature's story step by step,

52
fishbowl collaboration pattern, 225
flat backlog trap, 22
focusing on outcomes

slicing out a minimum viable
product release, 27

slicing out a release roadmap, 28
FORUM Credit Union, 31
framing the idea, 8, 183, 199
framing the problem, 83
functional quality, 125
functional walking skeleton, 55
functional-level tasks, 70

G
Globo.com, 21
go/no-go decision, 144, 168

on opportunities, 173
goal level, 70
goals

minimizing amount to be built, 9
ordering by importance, 8

Good-Better-Best game, 229
guessing, starting product design

with, 211

H
how, conversations about, 106

I
ideation, 206
impact, xli

maximizing, xli
incremental strategy, 60
incremental thinking, 62
information icebox, 114
information radiator, 113
iteration planning, 222
iterations, 62
iterative, defined, 62
ITHAKA, 212

J
Jeffries, Ron, 92
JIRA, 113

cumulative flow diagram gener‐
ated by, 120

journey maps, 80, 173
JSTOR, 212

L
large-scale development context, us‐

ing story mapping, 85
Lean Startup, 210

build-measure-learn, 215
designing and building a small

test, 212
how it changes product design,

210
measuring by running test with

customers and users, 214
naming your risky assumptions,

212
rethinking solutions and assump‐

tions, 215
starting by guessing, 211
validated learning over working

software, 128
The Lean Startup (Ries), 35
learning

after you build, 247
enough, 253
learning from release to users,

255
learning from users, 254

270 | Index

outcomes on a schedule, 255
review as a team, 247
review with others in the orga‐

nization, 251
best learning practices, 103
development or research for

(spikes), 146
in Lean Startup approach, 215
validated (see validated learning)

learning faster
building to learn, 41
customer/user reactions to proto‐

type, 41
discussing the opportunity, 38
doing it the wrong way, 44
iterating until product is viable, 44
minimizing your experiments, 48
prototyping to learn, 40
validated learning strategy, 46
validating the problem, 39

learning strategies
building to learn, 127
slicing out, 83

Levitt, Gary, 5
Liquidnet, 37
literals, xxx

M
mapping the big picture, 83
maps, 72

(see also story mapping; story
maps)

narrative journey map, 186
using simple maps in story work‐

shops, 234
using to evaluate release readiness,

256
visualizing progress with, 233

measurement
importance to good estimates, 56
in Lean Startup, 215
metrics on story cards, 115
running product test with custom‐

ers and users, 214
using metrics to learn if/how peo‐

ple use the product, 153
meetings, 219

midgame strategy, 63
minimizing and planning, 196, 200

prioritization, 197
minimum viable product (see MVP)
minimum viable product experiment

(MVPe), 47
minimum viable solution (see MVS)
minimum, defining, 33
Mona Lisa strategy, 128, 134
morning map exercise, 78
MVP (minimum viable product)

differing definitions of, 32
iterating until viable, 44
minimizng your experiments, 48

MVPe (minimum viable product ex‐
periment), 47

MVS (minimum viable solution), 34,
138, 201
discovering, 144

N
narrative flow, 25, 72

finding the flow, 74
narrative journey map, 186
NASA Mars Climate Orbiter, crash of,

xxxii
no-go decision, 144, 169
nonfunctional requirements, xxxi

O
Obama Campaign Dashboard, 234
Obama, Barack, 234
opening strategy, 63
opportunities, 167–179

being picky about, 179
canvas approach to sizing up, 169

flow of spaces in, 171
digging deeper, trashing, or think‐

ing about, 168
go/no-go decisions on, 173
having conversations about, 167
in story discussion and splitting

stage, 240
starting with, 143
story mapping and, 173

Opportunity Assessment template,
170

Index | 271

opportunity backlog, 143, 168
organizational profiles, creating, 185
Osterwalder, Alexander, 170
outcomes, xxxix

evaluating if target outcomes were
met, 153

maximizing, xli
on scheduled releases, 255
prioritizing instead of features, 29
slicing out tasks relevant to, 76

outcomes, focusing on, 27
output, xxxix

minimizing, xli
overhand, 250

P
patterns, 4
personas, sketching, 183
Pigneur, Yves, 170
planning

development cycle planning
recipe, 230

development strategy, 241
evaluating in team review, 249
for next development cycle, 241
sprint or iteration planning, 222

planning to build less, 21
creating smaller experiments and

prototypes, 34
definition of MVP (minimum via‐

ble product), 32
finding a smaller viable release, 30
prioritizing outcomes rather than

features, 29
slicing out a minimum viable

product release, 27
slicing out a release roadmap, 28

predictably unpredictables, 55
prioritization

prioritizing outcomes, 29
prioritizing user stories in the

backlog, 86
secret of, 197

problem, validating, 39
product backlog, 93, 181
product development

goal of, xxix

product discovery, 47
identifying a valuable, usable, and

feasible product, 156
Workiva example, 52

product managers, 109
product owners

as producers, 163
leading small, cross-functional dis‐

covery team, 157
responsibilities of, 155

progress
tracking using tools, 119
visualizing using a map, 233

project managers
conversations for, 110
identifying valuable, usable, and

feasible product, 156
Project Phoenix, 17
prototyping, 40, 206

Q
quality

discussions about, 125
examining for each soltuion built,

150
questions

identifying and discussing in con‐
versations, 105

to ask and answer in discovery,
181

R
RAC Insurance, Perth, Australia, 222
refining, defining, and building, 217–

237
cards and conversations, 217
cutting and polishing, 218
including too many people in in

story conversations, 225
splitting and thinning, 227
sprint or iteration planning, 222
using a map to visualize progress,

233
using simple maps in story work‐

shops, 234
using your story map during deliv‐

ery, 232

272 | Index

workshopping stories, 218
rehearsal mapping, challenging as‐

sumptions with, 176
Reichelt, Leisa, 156
release backlog, 146
release roadmap, 29
release strategy, slicing out, 83
releases

learning from release to users, 255
on a schedule, 255
using a map to evaluate readiness,

256
remote collaboration, tools for, 117
requirements, xxxviii, 89, 162

bad requirements, 90, 127
business analyst in requirements

gathering role, 163
misinterpreted, xxx
stopping conversations, xlii

reviews
team review of software builds,

247
with others in your organization,

251
Ries, Eric, 35, 47, 209
risk

exposing in story maps, 57
importance of dealing with, 64

rock breaking, 137–154
epics as big rocks, 140
lifecycle, 142
similarity of stories to rocks, 139

S
scaling user story mapping, 87
scope creep, 26, 127
Scrum process

backlog grooming or backlog re‐
finement, 148

sprint review and retrospective,
150

sprint reviews, 247
sea-level tasks, 70
sequence, identifying, 10
shared understanding, 11

building, xxxiii

building in large groups, mapping
as aid to, 22

building using cards' contents, 116
building with customers and users,

82
building with the team, 52
defined, xxxii
essential for good estimates, 54
mapping helping big groups with,

22
using discovery to build, 181–200

size, importance of, 137
solutions, 34

being wrong about, 201
conversations about better solu‐

tions, 106
envisioning, 186, 199

playing What-About, 192
using story maps, 186
using words and pictures, 187
visualizing the whole experi‐

ence, 187
rethinking after tests in Lean Start‐

up, 215
reviewing delivery work comple‐

ted for, 252
specifications, 222
spikes, 146
sprint planning, 222
sprint review, 247
sprint review and retrospective, 150
stakeholder product review, 251
stakeholders

business stakeholder in product
ownership role, 164

conversations about, 104
enough software for, 253
evaluating built software with, 152

status on story cards, 115
stories, xliii

baking like a cake, 131–136
breaking down a big cake, 133
creating a recipe, 132

breaking client-vendor anti-
pattern, 163

defined, 3
defining user stories, 85

Index | 273

diving into details of during deliv‐
ery, 146

epics, 140
exploring alternative stories, 72
focusing on breadth before diving

into its depth, 12
focusing on storytelling, 142
goal of using, xxix
in validated learning, 215
many components of, 165
product owner responsible for

writing all stories, 155
right size for, 137
similarity to asteroids, 239

not sweating small stuff, 244
reassembling split stories, 241
splitting stories, 240

similarity to rocks, 139
splitting and thinning, 227

Good-Better-Best game, 229
starting with opportunities, 143
taling through and finding holes in

your thinking, 11
telling better stories, 97–108

creating vacation photos, 107
template zombies and the

snowplow, 102
using Connextra template, 97

telling the whole story, 3
telling, not writing, 91
themes organizaing groups of sto‐

ries, 142
using to drive the making of any‐

thing, 128
story mapping, xxi, 165

and opportunities, 173
as aid to discovery, 145
creating a story map, 67–83

distilling your map to make a
backbone, 75

exploring alternative stories, 72
now and later maps, 79
organizing your story, 71
slicing out tasks relevant to a

specific outcome, 76
summary of important con‐

cepts, 77

trying the morning map exer‐
cise, 78

understanding how customers
work now, 81

using story maps, 84
writing story a step at a time,

67
describing your customers and

users, 9
exploring details and options, 14
exposing risk, 57
focus on telling, not writing, sto‐

ries, 91
focusing on outcomes, 27
for a feature, 52
framing your idea, 8
helping you spot holes in your

story, 25
increasing frequency and fidelity

of, 58
Kent's simple idea, 89
not overdoing, 243
scaling user story mapping, 87
six simple steps to, 83
talk and doc, 6
telling your users' stories, 10
think, write, explain, and place, 7

story maps
backbone, 23
in validated learning, 215
map across multiple teams to visu‐

alize dependencies, 23
map in narrative flow across many

users and systems, 24
map in whole deliverable releases,

24
mapping your solution, 186
using during delivery, 232

story number, 115
story tests, 94
story workshops, 148, 218

agreeing on what to build, 221
conducting, 218
diving deep and considering op‐

tions, 220
including the right people, 220
outcomes of, 230
recipe for, 220

274 | Index

splitting and thinning stories, 221
three amigos, 160
using simple maps, 234

storytelling, building an oral tradition
of, 123

subtasks, 71
summary-level tasks, 71

T
talk and doc, 6

in story workshops, 221
tasks, 68

aggregation into activities, 75
levels of detail, 70

telephone game, xxx
template zombies, 102
testers, 110

in three amigos, 160
testing

designing and building a small test
(Lean Startup), 212

learning if your solution solves a
problem, 207

meaningful chunks of working
software with users/customers,
151

user testing of software builds, 126
user testing of working software,

254
The Learning Connection (TLC), 17
themes, 142
three amigos, 159
three Cs, 92, 218

cards, 93
confirmation, 94
conversation, 93

time-boxed development, 231
title (on story cards), 114
tools

documenting models or examples
created in conversations, 118

for documenting conversations,
112

organizing stories into themes, 142
tracking planned work and its pro‐

gress, 119

using the wrong tool or the tool
wrong, 116

using to externalize product visu‐
alizations, 116

tracking, using tools for, 119
triad (core discovery team), 158
True, Doug, 32

U
UI designers, 110
Unger, Jim, 189
user experience quality, 125
user stories, 97

(see also stories)
user tasks, 68
users, xli

conversations about, 104
describing your users, 9
enough software for, 253
evaluating built software with, 150
researching typical users for a

product, 85
testing software builds, 126
testing working software with, 254
understanding, 183, 199

creating organizational pro‐
files, 185

mapping how users work to‐
day, 185

sketching simple personas, 183
UX designers

in three amigos, 160
visualizing the whole experience,

187

V
vacation photos, 107

similarity of good documents to,
xxxv

validated learning, 128
using discovery for, 201–216

being wrong most of the time,
201

design process, messing up,
208

empathize, focus, ideate, proto‐
type, and test, 204

Index | 275

Lean Startup, changes to prod‐
uct design, 210

short validated learning loops,
209

stories and story maps, 215
the bad old days, 203

validated learning strategy, 46
validating the problems, 39
valuable, usable, and feasible prod‐

ucts, 156
velocity, xxxix, 250
vendors, client-vendor anti-pattern,

162
viable, defined, 33
visualizing ideas, 107

W
what, conversations about, 104

What-About game, 25
playing, 192

White, Jeff, 189
who, 104

conversations about, 104
in conversations about opportuni‐

ties, 167
why, 104

conversations about, 105
in conversations about opportuni‐

ties, 168
Workiva, 51

Y
Yates, Jen, xxx

276 | Index

About the Author
Over his past two decades of experience, Jeff Patton has learned there’s
no “one right way” to design and build software, but there’s lots of
wrong ways.

Jeff makes use of over 15 years experience with a wide variety of prod‐
ucts from online aircraft parts ordering to electronic medical records
to helping organizations improve the way they work. Where many
development processes focus on delivery speed and efficiency, Jeff
balances those concerns with the need for building products that de‐
liver exceptional value and marketplace success.

Jeff has focused on Agile approaches since working on an early Ex‐
treme Programming team in 2000. In particular, he specializes in in‐
tegrating effective user experience design and product management
practice with strong engineering practice.

Jeff currently works as an independent consultant, agile process coach,
product design process coach, and instructor. Current articles, essays,
and presentations on variety of topics in Agile product development
can be found at agileproductdesign.com and in Alistair Cockburn’s
Crystal Clear. Jeff is founder and list moderator of the agile-usability
Yahoo discussion group, a columnist with StickyMinds.com and IEEE
Software, a Certified Scrum Trainer, and winner of the Agile Alliance’s
2007 Gordon Pask Award for contributions to Agile Development.

Colophon
The animal on the cover of User Story Mapping is a lilac-breasted roller,
often considered one of the most beautiful birds in the world with its
pastel plumage, striking field marks, and long tail streamers. It’s the
national bird of both Kenya and Botswana, and is relatively common
and widespread throughout much of southern Africa.

These birds are typically solitary or are found in pairs, but may stay in
small family groups during the winter months. They perch on high
vantage points at the very tops of trees and poles, and stay still while
watching for prey to approach. After dropping onto a victim, they may
beat their prey against a rock or on the ground to kill it before swal‐
lowing it whole.

The birds are monogamous (believed to mate for life) and the name
"roller" actually comes from the aerial displays the birds use during

http://www.agileproductdesign.com/

mating season. Lilac-breasted rollers will dive from a considerable el‐
evation, and then roll in the air while simultaneously letting out a loud
call to attract a partner.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help, go
to animals.oreilly.com.

The cover image is from Braukhaus Lexicon. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is
Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword by Martin Fowler
	Foreword by Alan Cooper
	Foreword by Marty Cagan
	Preface
	Why Me?
	This Book Is for You If You’re Struggling with Stories
	Who Should Read This Book?
	A Few Conventions Used in This Book
	The Headings Inside Each Chapter Guide You Through the Subject

	How This Book Is Organized
	Story Mapping from 10,000 Feet
	Grokking User Stories
	Better Backlogs
	Better Building

	Safari® Books Online
	How to Contact Us

	Read This First
	The Telephone Game
	Building Shared Understanding Is Disruptively Simple
	Stop Trying to Write Perfect Documents
	Good Documents Are Like Vacation Photos
	Document to Help Remember
	Talking About the Right Thing
	Now and Later
	Software Isn’t the Point
	OK, It’s Not Just About People
	Build Less
	More on the Dreaded "R" Word
	That’s All There Is to It

	Chapter 1. The Big Picture
	The "A" Word
	Telling Stories, Not Writing Stories
	Telling the Whole Story
	Gary and the Tragedy of the Flat Backlog
	Talk and Doc
	Frame Your Idea
	Describe Your Customers and Users
	Tell Your Users' Stories
	Explore Details and Options

	Chapter 2. Plan to Build Less
	Mapping Helps Big Groups Build Shared Understanding
	Mapping Helps You Spot Holes in Your Story
	There’s Always Too Much
	Slice Out a Minimum Viable Product Release
	Slice Out a Release Roadmap
	Don’t Prioritize Features—Prioritize Outcomes
	This Is Magic—Really, It Is
	Why We Argue So Much About MVP
	The New MVP Isn’t a Product at All!

	Chapter 3. Plan to Learn Faster
	Start by Discussing Your Opportunity
	Validate the Problem
	Prototype to Learn
	Watch Out for What People Say They Want
	Build to Learn
	Iterate Until Viable
	How to Do It the Wrong Way
	Validated Learning
	Really Minimize Your Experiments
	Let’s Recap

	Chapter 4. Plan to Finish on Time
	Tell It to the Team
	The Secret to Good Estimation
	Plan to Build Piece by Piece
	Don’t Release Each Slice
	The Other Secret to Good Estimation
	Manage Your Budget
	What Would da Vinci Do?

	Iterative AND Incremental
	Opening-, Mid-, and Endgame Strategy
	Slice Out Your Development Strategy in a Map
	It’s All About Risk
	Now What?

	Chapter 5. You Already Know How
	1. Write Out Your Story a Step at a Time
	Tasks Are What We Do
	My Tasks Are Different Than Yours
	I’m Just More Detail-Oriented

	2. Organize Your Story
	Fill in Missing Details

	3. Explore Alternative Stories
	Keep the Flow

	4. Distill Your Map to Make a Backbone
	5. Slice Out Tasks That Help You Reach a Specific Outcome
	That’s It! You’ve Learned All the Important Concepts
	Do Try This at Home, or at Work
	It’s a Now Map, Not a Later Map
	Try This for Real
	With Software It’s Harder
	The Map Is Just the Beginning

	Chapter 6. The Real Story About Stories
	Kent’s Disruptively Simple Idea
	Simple Isn’t Easy
	Ron Jeffries and the 3 Cs
	1. Card
	2. Conversation
	3. Confirmation

	Words and Pictures
	That’s It

	Chapter 7. Telling Better Stories
	Connextra’s Cool Template
	Template Zombies and the Snowplow
	A Checklist of What to Really Talk About
	Create Vacation Photos
	It’s a Lot to Worry About

	Chapter 8. It’s Not All on the Card
	Different People, Different Conversations
	We’re Gonna Need a Bigger Card
	Radiators and Ice Boxes
	That’s Not What That Tool Is For
	Building Shared Understanding
	Remembering
	Tracking

	Chapter 9. The Card Is Just the Beginning
	Construct with a Clear Picture in Your Head
	Build an Oral Tradition of Storytelling
	Inspect the Results of Your Work
	It’s Not for You
	Build to Learn
	It’s Not Always Software
	Plan to Learn, and Learn to Plan

	Chapter 10. Bake Stories Like Cake
	Create a Recipe
	Breaking Down a Big Cake

	Chapter 11. Rock Breaking
	Size Always Matters
	Stories Are Like Rocks
	Epics Are Big Rocks Sometimes Used to Hit People
	Themes Organize Groups of Stories
	Forget Those Terms and Focus on Storytelling
	Start with Opportunities
	Discover a Minimum Viable Solution
	Dive into the Details of Each Story During Delivery
	Keep Talking as You Build
	Evaluate Each Piece
	Evaluate with Users and Customers
	Evaluate with Business Stakeholders
	Release and Keep Evaluating

	Chapter 12. Rock Breakers
	Valuable-Usable-Feasible
	A Discovery Team Needs Lots of Others to Succeed
	The Three Amigos
	Product Owner as Producer
	This Is Complicated

	Chapter 13. Start with Opportunities
	Have Conversations About Opportunities
	Dig Deeper, Trash It, or Think About It
	Opportunity Shouldn’t Be a Euphemism
	Story Mapping and Opportunities
	Be Picky

	Chapter 14. Using Discovery to Build Shared Understanding
	Discovery Isn’t About Building Software
	Four Essential Steps to Discovery
	1. Frame the Idea
	2. Understand Customers and Users
	3. Envision Your Solution
	4. Minimize and Plan

	Discovery Activities, Discussions, and Artifacts
	Discovery Is for Building Shared Understanding

	Chapter 15. Using Discovery for Validated Learning
	We’re Wrong Most of the Time
	The Bad Old Days
	Empathize, Focus, Ideate, Prototype, Test
	How to Mess Up a Good Thing
	Short Validated Learning Loops
	How Lean Startup Thinking Changes Product Design
	Start by Guessing
	Name Your Risky Assumptions
	Design and Build a Small Test
	Measure by Running Your Test with Customers and Users
	Rethink Your Solution and Your Assumptions

	Stories and Story Maps?

	Chapter 16. Refine, Define, and Build
	Cards, Conversation, More Cards, More Conversations…
	Cutting and Polishing
	Workshopping Stories
	Sprint or Iteration Planning?
	Crowds Don’t Collaborate
	Split and Thin
	Use Your Story Map During Delivery
	Use a Map to Visualize Progress
	Use Simple Maps During Story Workshops

	Chapter 17. Stories Are Actually Like Asteroids
	Reassembling Broken Rocks
	Don’t Overdo the Mapping
	Don’t Sweat the Small Stuff

	Chapter 18. Learn from Everything You Build
	Review as a Team
	Review with Others in Your Organization
	Enough
	Learn from Users
	Learn from Release to Users
	Outcomes on a Schedule
	Use a Map to Evaluate Release Readiness

	The End, or Is It?
	Acknowledgments
	References
	Index
	About the Author

