

VMware	vRealize	Orchestrator	Cookbook
Second	Edition

Table	of	Contents

VMware	vRealize	Orchestrator	Cookbook	Second	Edition
Credits
About	the	Author
About	the	Reviewers
www.PacktPub.com

Why	subscribe?
Preface

Changes	in	this	edition
A	short	history	of	Orchestrator
Best	approaches	to	reading	this	book
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Example	workflows
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code	
Downloading	the	color	images	of	this	book	
Errata
Piracy
Questions

1.	Installing	and	Configuring	Orchestrator
Introduction

Licensing
vRealize	Orchestrator	7	changes
Orchestrator	appliance	basics
Orchestrator	and	vRealize	Automation	(vRA)

Deploying	the	Orchestrator	appliance
Getting	ready
How	to	do	it...

Download
Deploy
Log	in	to	the	Orchestrator	Client
Log	into	Control	Center

How	it	works...
There's	more...
See	also

Important	Orchestrator	settings
Getting	ready
How	to	do	it...

Starting,	stopping,	and	restarting	the	Orchestrator	service
Licensing
Package	Signing	Certificate
Trusted	SSL	certificates
Force	plugins	reinstall

How	it	works...
See	also

Configuring	an	external	database
Getting	ready
How	to	do	it...
How	it	works...

Sizing
Database	roles
Exporting	and	importing	a	database
Purging	the	Database

There's	more...
Microsoft	SQL
Oracle
Internal	PostgreSQL

See	also
Configuring	external	authentication

Getting	ready
How	to	do	it...

vSphere	(PSC)	and	vRealize	Automation	(vRA)
SSO	(legacy)
LDAP

How	it	works...
vRealize	Automation	and	vSphere	Authentication
Test	login
Internal	LDAP

There's	more...
See	also

Connecting	to	vCenter
Getting	ready
How	to	do	it...

Well,	there	is	that...
How	it	works...

Access,	rights,	and	logging
Technical	user
vRA,	Orchestrator,	and	vCenter

See	also
Installing	plugins

Getting	ready
How	to	do	it...

How	it	works...
Plugin	log	level
Updating	plugins
Disabling	and	uninstalling	plugins

See	also
Updating	Orchestrator

Getting	ready
How	to	do	it...

Using	an	ISO	file
Using	the	VMware	repository
Applying	the	update

How	it	works...
There's	more...
See	also

Moving	from	Windows	to	appliance
Getting	ready
How	to	do	it...

Migration	tool
External	database
Package	transfer

How	it	works...
There's	more...

Orchestrator	Client	and	4K	display	scaling
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

2.	Optimizing	Orchestrator	Configuration
Introduction
Tuning	the	appliance

Getting	ready
How	to	do	it...

Virtual	Hardware
Changing	the	IP	and	hostname
Setting	the	time	(NTP)
Turning	SSH	access	to	Orchestrator	on	and	off
Switching	off	unneeded	services
Root	account	expires

How	it	works...
See	also

Tuning	Java
Getting	ready
How	to	do	it...
How	it	works...

JVM	metrics	in	Control	Center
See	also

Configuring	the	Kerberos	authentication
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	access	to	the	local	filesystem
Getting	ready
How	to	do	it...

Fast	and	easy
Configuring	access

How	it	works...
There's	more...
See	also

Configuring	the	Orchestrator	service	SSL	certificate
Getting	ready
How	to	do	it...

Self-signed	certificates
Using	VMCA	generated	certificates
CA-signed	certificate

How	it	works...
Default,	self-signed,	or	CA-signed?
VMCA
PEM	encoded	files

There's	more...
Getting	the	SSL	store	password
Backing	up	the	default	certificates
Creating	certificates	and	requests
Generating	certificates	with	alternative	names	(SAN	certificate)
Signing	and	importing	certificates

See	also
Orchestrator	log	files

Getting	ready
How	to	do	it...

Server	log	in	Control	Center
Configuring	the	server	log	with	the	Control	Center
Accessing	the	log	files	via	SSH
Changing	log	file	behavior

How	it	works...
See	also

Redirecting	Orchestrator	logs	to	an	external	server
Getting	ready

vRealize	Log	Insight

How	to	do	it...
Syslog	with	Log4J
Log	Insight	Agent

How	it	works...
Configuring	the	Orchestrator	Log	Insight	Agent	to	forward	to	Syslog

There's	more...
See	also

Backup	and	recovery
Getting	ready
How	to	do	it...

Backing	up	Orchestrator	configuration
Backing	up	an	internal	database
Restore

How	it	works...
External	database

There's	more...
Cron	job
vRO	policy
vRO	Control	Center	API

See	also
Control	Center	titbits

Getting	ready
How	to	do	it...

Inspecting	workflows
System	properties
Changing	the	Control	Center	user	name
File	System	Browser

How	it	works...
Control	Center	API
System	properties

There's	more...
See	also

3.	Distributed	Design
Introduction

Cluster	design
Distributed	design

Geographically	Distributed
Logically	Distributed

Scaling	out
Central	management

Building	an	Orchestrator	cluster
Getting	ready
How	to	do	it...

Preparation	work

Configuring	the	first	node	of	the	cluster
Configure	cluster	settings
Join	a	node	to	the	cluster
Configuring	an	Orchestrator	cluster	in	vSphere
Playing	with	the	cluster
Push	configuration

How	it	works...
SSL	Certificates	in	vRO7.1.0
Cluster	and	Orchestrator	Client
Changing	cluster	content
Changing	cluster	settings
Removing	a	node	from	the	cluster

There's	more...
Logs
Another	method	of	load-balancing
Example	workflow	-	cluster	test

See	also
Load-balancing	Orchestrator

Getting	ready
How	to	do	it...

Creating	a	new	NSX	Edge
Configuring	the	load-balancer
Dealing	with	SSL	certificates
Monitors	-	health	checks
Configure	pools
Virtual	server
Done

How	it	works...
SSL	certificates	and	load-balancing

SSL	passthrough
SSL	SAN	(SSL	passthrough)
SSL	offload

Load-balanced	Orchestrator	cluster	with	vSphere	Web	Client
See	also

Upgrading	a	cluster
Getting	ready
How	to	do	it...

Minor	upgrades
Major	upgrades

How	it	works...
See	also

Managing	remote	Orchestrators
Getting	ready
How	to	do	it...

Adding	an	Orchestrator	server
Creating	proxy	workflows
Managing	packets	on	the	remote	Orchestrator

How	it	works...
See	also

Synchronizing	Orchestrator	elements	between	Orchestrator	servers
Getting	ready
How	to	do	it...
How	it	works...
See	also

4.	Programming	Skills
Introduction

The	Orchestrator	icons
Gotcha
Auto-setup	of	parameters

Version	control
Getting	ready
How	to	do	it...

Showing	differences	between	versions
Reverting	to	an	older	version

How	it	works...
See	also

Changing	elements	in	a	workflow
Getting	ready
How	to	do	it...

Changing	the	parameters	of	workflows	and	actions
Renaming	and	moving	actions
Finding	related	elements

How	it	works...
See	also

Importing	and	exporting	Orchestrator	elements
Getting	ready
How	to	do	it...

Exporting	an	object
Importing	an	element

How	it	works...
See	also

Working	with	packages
Getting	ready
How	to	do	it...

Create	a	new	package
Export	a	package
Import	a	package
Deleting	a	package

Import	from	remote
How	it	works...

Export	and	import	options
There's	more...
See	also

Workflow	auto	documentation
Getting	ready
How	to	do	it...
How	it	works...

Resuming	failed	workflows
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Using	the	workflow	debugging	function
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Undelete	workflows	and	actions
Getting	ready
How	to	do	it...
How	it	works...

Scheduling	workflows
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Sync	presentation	settings
Getting	ready
How	to	do	it...
How	it	works...

Locking	elements
Getting	ready
How	to	do	it...

Locking	workflows
Unlocking	workflows

How	it	works...
See	also

5.	Visual	Programming
Introduction

Variables	(general,	inputs,	and	outputs)
Variables	in	the	general	section
Variables	in	the	input	section
Variables	in	the	output	section
Variable	types

Working	with	a	schema
Presentation

Scripting	with	logs
Getting	ready
How	to	do	it...

Creating	logs
Checking	log	files

How	it	works...
Log	file	location
Altering	log	elements

See	also
Scripting	with	decisions

Getting	ready
How	to	do	it...

Basic	decision
Custom	decisions
Decision	activity
The	Switch	element

How	it	works...
JavaScript	-	if	and	else
JavaScript	-	Switch

See	also
Error	handling	in	workflows

Getting	ready
How	to	do	it...

Default	error	handler
How	it	works...

Ignoring	errors
The	handle	error	element

See	also
Scripting	with	loops

Getting	ready
How	to	do	it...

The	decision	loop
The	Foreach	loop

How	it	works...
Types	of	decision	loops
Foreach	and	arrays
JavaScript

There's	more...
See	also

Workflow	presentations
Getting	ready
How	to	do	it...

Preparation
Description
In-parameter	properties
Steps	and	groups
Hiding	input	values
Basic	linking

How	it	works...
General	properties
Plugin-specific	properties

select	value	as
show	in	inventory
Specify	a	root	object	to	be	shown	in	the	chooser
Authorized	only

There's	more...
See	also

Linking	actions	in	presentations
Getting	ready
How	to	do	it...
How	it	works...
See	also

Changing	credentials	during	runtime
Getting	ready
How	to	do	it...
How	it	works...
See	also

6.	Advanced	Programming
Introduction

Cool	stuff	in	the	scripting	tasks
A	-	show	all	objects
B	-	find	stuff
C	-	line	and	character

JavaScript	(the	very	basics)
JavaScript	tricks	and	tips

Is	a	string	part	of	another	string?	(indexOf)
Case	sensitivity	(toUpperCase)
Getting	rid	of	extra	space	(trim)
String	replacement	with	regular	expressions	(replace)
Check	a	variable	for	type	(instanceof)
Working	with	dates

Add	minutes	to	a	date
JavaScript	complex	variables

Getting	ready
How	to	do	it...

Arrays
Properties
Objects

How	it	works...
Array	methods
Properties	within	properties
Array	of	properties

See	also
Working	with	JSON

Getting	ready
How	to	do	it...

Parsing	JSON	REST	returns
Creating	a	JSON	object
Change	JSON	object

How	it	works...
See	also

JavaScript	special	statements
Getting	ready
How	to	do	it...

The	try,	catch,	and	finally	statement
The	function	statement

How	it	works...
See	also

Turning	strings	into	objects
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Working	with	the	API
Getting	ready
How	to	do	it...

Searching	for	items	in	the	API
Programming	help	from	the	API

How	it	works...
See	also

Creating	actions
Getting	ready
How	to	do	it...

Creating	a	new	action

Implementing	an	action	into	a	workflow
How	it	works...
See	also

Waiting	tasks
Getting	ready
How	to	do	it...

Creating	a	help	task
Using	the	Sleep	task
Waiting	for	a	date

How	it	works...
There's	more...
See	also

Sending	and	waiting	for	custom	events
Getting	ready
How	to	do	it...

Receiving	a	custom	event
Sending	a	custom	event
Trying	it	out

How	it	works...
External	events

See	also
Using	asynchronous	workflows

Getting	ready
How	to	do	it...

The	first	example
The	second	example

How	it	works...
See	also

Scripting	with	workflow	tokens
Getting	ready
How	to	do	it...
How	it	works...
See	also

Working	with	user	interactions
Getting	ready
How	to	do	it...

Creating	the	workflow
Answering	the	user	interaction

How	it	works...
There's	more...

Answering	using	vRealize	Automation
See	also

7.	Interacting	with	Orchestrator
Introduction

User	management
Getting	ready
How	to	do	it...

Giving	non-administrative	users	access	to	Orchestrator
Configuring	access	to	Orchestrator	elements

How	it	works...
Same	user	-	two	groups
Edit	user	rights
Right	inheritance
Rights	for	sub-elements
Visibility
Access	right

There's	more...
The	login	format
Typical	error	messages
Disabling	non-administrative	access	to	Orchestrator

User	preferences
Getting	ready
How	to	do	it...
How	it	works...

General
Workflow
Inventory
Script	editor

Using	Orchestrator	though	the	vSphere	Web	Client
Getting	ready
How	to	do	it...

Configure	workflows	for	the	vSphere	Web	Client
Run	workflows
Writing	workflows	for	web	integration
Passing	information	along

How	it	works...
Orchestrator	presentation	properties	in	vSphere	Web	Client

There's	more...
See	also

Accessing	Orchestrator	REST	API
Getting	ready
How	to	do	it...

Accessing	the	API	documentation	and	enable	"play	mode"
Try	it	out!
Interactive	REST	request

How	it	works...
There's	more...
See	also

Accessing	the	Control	Center	via	the	REST	plugin
Getting	ready
How	to	do	it…

Explore	the	Control	Center	API
Adding	start	and	stop	calls
Usage

How	it	works...
See	also

Running	Orchestrator	workflows	using	PowerShell
Getting	ready
How	to	do	it...

Run	a	workflow
Run	a	script	with	input
Getting	the	output	of	a	workflow

How	it	works...
Variables
JSON	return

There's	more...
See	also

Using	PHP	to	access	the	REST	API
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

8.	Better	Workflows	and	Optimized	Working
Introduction
Working	with	resources

Getting	ready
How	to	do	it...

Adding	resources	manually
Using	resources	in	workflows
Creating	a	new	resource	element
Create	a	resource	by	uploading	a	file
Updating	a	resource

How	it	works...
There's	more...

Accessing	resources	directly
Deleting	a	resource

See	also
Working	with	configurations

Getting	ready
How	to	do	it...

Creating	a	configuration

Using	a	configuration	in	a	workflow
How	it	works...
There's	more...
See	also

Working	with	Orchestrator	tags
Getting	ready
How	to	do	it...

Tagging	an	element	(manual)
Tagging	a	workflow	(workflow)
Viewing	all	tags	in	a	workflow
Finding	workflows	by	tag

How	it	works...
There's	more...
See	also

Using	the	Locking	System
Getting	ready
How	to	do	it...

Create	a	lock
Check	for	lock
Unlock

How	it	works...
See	also

Language	packs	(localization)
Getting	ready
How	to	do	it...
How	it	works...

Working	with	policies
Getting	ready
How	to	do	it...
How	it	works...

Policy	templates
Triggers
The	event	variable

See	also
9.	Essential	Plugins

Introduction
Working	with	e-mail

Getting	ready
How	to	do	it...

Configuring	the	e-mail	connection
Sending	e-mails
Receiving	e-mails

How	it	works...
Working	with	attachments

There's	more...
See	also

File	operations
Getting	ready
How	to	do	it...

Writing	a	file
Reading	a	file
Getting	information	on	files
Creating,	renaming,	and	deleting	a	file	or	directory

How	it	works...
Executing	scripts
Shared	directories

There's	more...
CSV	files
Doing	things	as	root

See	also
Working	with	SSH

Getting	ready
How	to	do	it...

Using	SSH
Using	SSL	key	authentication
Using	SCP

How	it	works...
See	also

Working	with	REST
Getting	ready
How	to	do	it...

Connecting	to	a	REST	host
Using	GET
Using	POST
Creating	a	workflow	from	a	REST	operation
Phrasing	the	return	value
Using	the	Swagger	spec	URL

How	it	works...
Authentications
Working	with	the	results	of	a	REST	request
Default	content	type

See	also
10.	Built-in	Plugins

Introduction
Dealing	with	return	values
Shared	or	Per	User	Session

Working	with	XML
Getting	ready

How	to	do	it...
Creating	an	XML	document
Parsing	XML	structures

How	it	works...
There's	more...
See	also

Working	with	SQL	(JDBC)
Getting	ready
How	to	do	it...

Creating	a	JDBC	connection	URL
Connecting	to	and	disconnecting	from	a	database	using	JDBC
Executing	an	SQL	statement	using	JDBC
SQL	queries	using	JDBC

How	it	works...
The	difference	between	the	prepare	and	create	statements
Creating	a	new	database	in	the	appliance's	PostgreSQL

See	also
Working	with	SQL	(SQL	plugin)

Getting	ready
How	to	do	it...

Add	an	SQL	DB	to	Orchestrator
Run	SQL	statement
Run	an	SQL	query

How	it	works...
See	also

Working	with	PowerShell
Getting	ready
How	to	do	it...

Preparing	the	Windows	host	with	WinRM
Adding	a	PowerShell	host
Using	Kerberos	authentication
Executing	a	script

Calling	a	script	that	is	stored	on	the	PowerShell	host
Sending	a	script	to	be	executed	to	the	PowerShell	host

Generating	an	action	and	workflow	from	a	script
How	it	works...

Workflow	TLC
Basic	versus	Kerberos	authentication
PowerShell	output	to	XML

See	also
Working	with	SOAP

Getting	ready
How	to	do	it...

Adding	a	new	SOAP	client

Invoking	a	SOAP	request
Generating	a	new	SOAP	workflow

How	it	works...
See	also

Working	with	Active	Directory
Getting	ready
How	to	do	it...

Preparing	AD	for	SSL
Registering	AD	with	Orchestrator
Working	with	AD

How	it	works...
See	also

Working	with	SNMP
Getting	ready
How	to	do	it...

Configuring	SNMP	devices
Sending	a	GET	query	to	an	ESXi	host
Configuring	a	vCenter	alarm	to	send	an	SNMP	message
Receiving	an	SNMP	message	from	vCenter
Using	policies	to	trap	SNMP	messages

How	it	works...
OID	and	MIB
Working	with	SNMP	return	data
SNMP	-	port	162	versus	port	4000

There's	more...
Configuring	SNMP	for	vCenter
Configuring	ESXi	servers	for	SNMP

See	also
Working	with	AMQP

Getting	ready
How	to	do	it...

Adding	an	AMQP	host
Defining	exchanges,	queues,	and	binds
Sending	messages
Receiving	messages
Subscribing	to	a	queue
Using	a	policy	as	trigger

How	it	works...
There's	more...

Installing	RabbitMQ
See	also

11.	Additional	Plugins
Introduction

Installing	plugins

Obtaining	plugins
VMware	core	plugins
vRO/vCO	Team
VMware	Solution	Exchange

NSX	integration
Getting	ready
How	to	do	it...

Configuring	an	endpoint
Creating	a	new	logical	switch

How	it	works...
vRealize	Automation	integration

See	also
Horizon	integration

Getting	ready
How	to	do	it...

Basic	setup
Examples
Access	point	configuration

How	it	works...
There's	more...

Integration	into	vSphere	Web	Client
VRA	integration

See	also
vSphere	Replication

Getting	ready
How	to	do	it...

Registering	sites
Setting	up	a	replication
Recovery

How	it	works...
There's	more...

Using	vCloud	Air	for	recovery
Integration	into	vSphere	Web	Client

See	also
SRM	(Site	Recovery	Manager)	integration

Getting	ready
How	to	do	it...

Preparation
Configuration
Working	with	the	plugin

How	it	works...
There's	more...

vSphere	Web	Client	integration
vRealize	Automation	integration

See	also
vROps	(vRealize	Operations	Manager)	integration

Getting	ready
How	to	do	it...

Deploy
Working	with	the	plugin

How	it	works...
There's	more...

12.	Working	with	vSphere
Introduction

vSphere	automation
The	vCenter	MoRef
The	vim3WaitTaskEnd	action
Other	vCenter	wait	actions

Things	to	try...
vAPI
Linked	Cloning
vSAN

Working	with	the	vCenter	API	(to	change	a	VM's	HA	settings)
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Standard	vSwitch	and	Distributed	Switch	ports
Getting	ready
How	to	do	it...

Creating	an	action
Creating	the	workflow
Making	it	work	with	presentation

How	it	works...
See	also

Getting	started	with	vAPI
Getting	ready
How	to	do	it...

Configuring	vCenter	endpoint	and	metadata
Exploring	the	content

How	it	works...
See	also

Custom	Attributes	and	Tags	(vAPI)
Getting	ready
How	to	do	it...

Custom	Attributes
vSphere	Tags

The	Notes	field
How	it	works...

Custom	Attributes
vAPI	tagging

See	also
Executing	a	program	inside	a	VM

Getting	ready
How	to	do	it...

Creating	a	waiting	workflow
Creating	an	installation	workflow
An	example	run

How	it	works...
There's	more...
See	also

An	approval	process	for	VM	provisioning
Getting	ready
How	to	do	it...

Using	User	interaction
Using	e-mail
Using	a	web	page

How	it	works...
13.	Working	with	vRealize	Automation

Introduction
How	the	integration	of	vRA	and	Orchestrator	works
Installation
Read	more...

Working	with	the	vRA-integrated	Orchestrator
Getting	ready
How	to	do	it...

Accessing	the	vRA-integrated	Orchestrator	Client
Starting	the	vRA-integrated	Orchestrator	Control	Center
Tuning	vRA

How	it	works...
Users
Database

Automating	a	vRA	instance	in	Orchestrator
Getting	ready
How	to	do	it...

Preparation
Example

How	it	works...
Configuring	an	external	Orchestrator	in	vRA

Getting	ready
How	to	do	it...

Building	and	configuring	an	external	Orchestrator
Configuring	a	general	default	external	Orchestrator
Configuring	an	external	Orchestrator	for	each	Tenant
Connecting	the	external	Orchestrator

How	it	works...
Authentication

There's	more...
Adding	Orchestrator	as	an	infrastructure	endpoint

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Adding	an	Orchestrator	endpoint
Getting	ready
How	to	do	it...
How	it	works...

Integrating	Orchestrator	workflows	as	XaaS	Blueprints
Getting	ready
How	to	do	it...

Activating	the	XaaS	tab
Adding	a	XaaS	Blueprint
Publishing	and	adding	the	workflow	to	the	catalog

How	it	works...
Orchestrator	presentation	properties	in	vRA

Managing	AD	users	with	vRA
Getting	ready
How	to	do	it...

Creating	a	custom	resource
Creating	the	service	Blueprint
Creating	a	resource	action
Conducting	a	test	run

How	it	works...
Using	the	Event	Manager	to	start	workflows

Getting	ready
How	to	do	it...

Create	a	workflow
Seting	up	the	Blueprint
Subscribing	to	an	event
Try	it	out

How	it	works...
There's	more...

VMware	vRealize	Orchestrator	Cookbook
Second	Edition

VMware	vRealize	Orchestrator	Cookbook
Second	Edition
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2015

Second	edition:	October	2016

Production	reference:	1241016

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78646-278-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

Daniel	Langenhan

Copy	Editor

Safis	Editing

Reviewers

Burke	Azbill

Christophe	Decanini

Spas	Kaloferov

Project	Coordinator

Sheejal	Shah

Commiss	ioning	Editor

Pratik	Shah

Proofreader

Safis	Editing

Acq	uisition	Editor

Divya	Poojari

Indexer

Tejal	Daruwale	Soni

Content	Development	Editor

Parshva	Sheth

Production	Coordinator

Aparna	Bhagat

Technical	Editor

Murtaza	Tinwala

Cover	Work

Aparna	Bhagat

About	the	Author
Daniel	Langenhan	is	a	Virtualisation	expert	with	formidable	skills	in	Architecture,	Design
and	Implementation	for	large	multi-tier	systems.	His	experience	and	knowledge	of	process
management,	enterprise-level	storage,	Linux	and	Windows	operation	systems	has	made	him
and	his	business	a	highly	sought	after	international	consultancy	in	the	Asia-Pacific	and
European	regions	for	multinational	clientele	in	the	areas	of	Finance,	Communication,
Education	and	Government.	Daniel	has	been	working	with	VMware	products	since	2002	and
is	directly	associated	with	VMWare	since	2008.	His	proven	track	record	of	successful
integrations	of	Virtualisation	into	different	business	areas	while	minimizing	cost	and
maximizing	reliability	and	effectiveness	of	the	solution	for	his	clients.

Currently,	Daniel	is	operating	in	the	Europe	and	Asia-Pacific	region	with	his	company	vLeet
GmbH	and	Melbourne	Business	Boosters	Pty	Ltd.

Daniel's	expertise	and	practical	approach	to	VMWare	has	resulted	in	the	publication	of	the
following	books:

Instant	VMware	vCloud	Starter,	Packt	Publishing
VMware	View	Security	Essentials,	Packt	Publishing
VMware	vCloud	Director	Cookbook,	Packt	Publishing
VMware	vRealize	Orchestrator	Cookbook,	Packt	Publishing
VMware	vRealize	Orchestrator	Essentials,	Packt	Publishing

He	has	also	lent	his	expertise	to	many	other	publishing	projects	as	a	Technical	Editor.

This	book	would	not	have	been	possible	without	my	understanding	and	loving	wife.	She
not	only	endured	a	“tunnel-vision”	writer	but	actively	contributed	as	Editor	number	1.

I	would	also	acknowledge	Pooja	Nair,	who	helped	me	out	with	valuable	editing	and
checking.

About	the	Reviewers
Burke	Azbill	has	been	a	technology	professional	since	1996	and	has	held	certifications	from
Cisco,	Citrix,	ITIL,	Linux	Professional	Institute,	Microsoft,	Novell,	and	VMware.	He	joined
VMware	in	2007	as	part	of	the	acquisition	of	Dunes	Technologies	from	Lausanne,
Switzerland	where	he	began	his	work	with	Orchestrator.	Burke	is	a	founder	and	contributor
of	the	blog	http://www.vcoteam.info	as	well	as	a	leading	contributor	to	the	VMTN
Communities	for	Orchestrator.	During	his	tenure	at	VMware,	Burke	has	trained	hundreds	of
employees	on	Orchestrator,	built	many	integrations	for	customers	and	partners,	and	has
worked	various	roles	in	the	VMworld	Hands	On	Labs.	Publications	include	contributing
author	for	VMware	vCloud	Architecture	Toolkit	(vCAT),	VMware	Press	2013	and	technical
resource	for	Automating	vSphere	with	VMware	vCenter	Orchestrator,	VMware	Press	2012)
and	VMware	vSphere	for	Dummies,	For	Dummies	2011.

Christophe	Decanini	is	a	Consulting	Architect	at	VMware,	Inc.,	where	he	started	in	2007;
currently,	he	is	the	technical	lead	for	Orchestration.	Based	in	Gland,	Switzerland,	Christophe
is	a	global	resource	supporting	customers	in	their	orchestration	and	automation	needs.	He	has
presented	orchestration	solutions	at	conferences	such	as	VMworld	and	is	the	main	contributor
of	the	www.vcoteam.info	blog	and	in	the	official	VMware	Orchestrator	community.
Christophe	has	reviewed	and	contributed	to	books	covering	vCenter	Orchestrator	including
VMware	vCloud	Architecture	Toolkit.	Christophe	was	awarded	the	vExpert	designation	for
several	years	given	to	the	top	VMware	evangelists	in	the	industry.	He	has	19	years	of
experience	in	IT	automation	and	holds	a	bachelor ’s	degree	in	computer	science.

Spas	Kaloferov	has	been	a	technology	professional	since	2004	and	holds	over	30	industry
certifications.	He	studied	in	Germany	and	is	now	living	back	in	Sofia,	Bulgaria,	where	he
joined	the	VMWare	family	in	2014.	While	working	with	many	VMware	products,	his	work
remains	mainly	focused	on	Orchestrator.	He	has	been	an	Orchestrator	contributor	not	only
internally,	but	also	via	the	VMTN	communities	and	his	personal
blog:	http://kaloferov.com/blog.

http://www.vcoteam.info
http://www.vcoteam.info
http://kaloferov.com/blog

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us
at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt
books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Several	things	have	happened	since	the	first	edition	of	this	book.	The	most	important	thing	is
that	vRealize	Orchestrator	7.1	(vRO)	was	released	and	changed	a	lot	with	the	Control	Center;	I
can	see	that	the	next	thing	would	be	Orchestrator	being	used	more,	last	but	not	least,	I	released
the	vRealize	Orchestrator	Essentials	book.	It	allowed	me	to	remove	a	lot	of	beginner	stuff
from	this	book	and	have	a	greater	focus	on	the	more	interesting	stuff.

The	release	of	vRealize	Automation	7.1	(vRA)	bought	about	a	lot	of	changes	too,	as
Orchestrator	is	now	even	more	integrated	into	vRA	than	before.

Tip

If	you're	completely	new	to	Orchestrator	I	would	suggest	that	you	start	your	journey	with	the
vRealize	Orchestrator	Essentials	book.

To	do	so	go	to	http://bit.ly/1KVVara.

http://bit.ly/1KVVara

Changes	in	this	edition
The	following	are	the	changes	from	the	First	edition:

We	have	restructured	all	chapters	and	recipes
We	have	focused	on	the	new	Control	Center
We	now	have	complete	chapter	on	Clusters,	distributed	design,	and	loadbalancing
We	have	reworked	on	all	recipes	to	fit	vRO7.1	and	vRA7.1
We	focus	on	REST	and	JSON
We	have	included	an	chapter	on	how	to	use	PowerShell,	REST,	PHP	and	other	methods	to
interact	with	Orchestrator	workflows
We	have	included	the	NSX,	Horizon,	Replication,	SRM,	and	VROPS	plugins
We	will	introduce	you	to	the	new	vAPI
We	have	a	complete	chapter	on	vRA7.1	integration	including	Event	Broker

A	short	history	of	Orchestrator
Orchestrator	is	VMware's	central	effort	in	Automation	and	Orchestrator.

Orchestrator	started	its	life	as	Virtual	Service	Orchestrator	(VS-O)	with	a	small	company
named	Dunes	in	Lausanne,	Switzerland.	In	2007,	VMware	bought	Dunes,	renaming	the
product	as	VMware	Orchestrator	(VMO),	and	then	introduced	Orchestrator	into	vSphere	4.0
as	vCenter	Orchestrator	(vCO).	Orchestrator's	first	stage	debut	was	with	VMware	Lifecycle
Manager,	which	used	Orchestrator	to	automate	the	virtual	infrastructure	life	cycle.
Orchestrator	itself	never	really	received	the	spotlight	until	the	recent	launch	of	VMware
vCloud	Automation	Center	(vCAC).	In	the	beginning,	vCAC	used	Orchestrator	only	as	an
extension,	but	with	version	6.1,	it	became	the	central	tool	for	automation.

Version	7	replaced	the	old	configuration	elements	and	came	up	with	a	fresh	and	wonderful
way	to	configure	things	the	Control	Center.	Also,	lots	of	features	were	reworked	on	and	new
ones	were	made	more	accessible.	The	most	important	step	was	to	reduce	the	number	of
Orchestrator	installations	to	two:	the	Orchestrator	appliance	and	the	vRA	integrated
Orchestrator	version.

Note

In	October	2014,	VMware	renamed	vCenter	Orchestrator	(vCO)	to	vRealize	Orchestrator
(vRO)	to	align	with	their	new	strategies.	vRO	is	not	a	new	product;	it's	is	just	the	new	name	of

vCO.

With	version	6.2	of	vCAC,	the	product	has	been	renamed	to	vRealize	Automation.	We	will	just
refer	to	it	as	Orchestrator.

Best	approaches	to	reading	this	book
As	I	already	said,	if	you’re	a	total	beginner	with	Orchestrator,	work	through	the	vRealize
Orchestrator	Essentials	book	first,	which	is	more	like	a	classroom	that	starts	and	develops
your	starting	skills.	Also	refer	to	the	upgrade	link	of	the	vRealize	Orchestrator	Essentials
book	(http://langenhan.info/vRO-Essential_update.pdf)	for	vRO7.

If	you	plan	to	use	vRealize	Automation,	it's	is	best	to	start	with	Chapter	13,	Working	with
vRealize	Automation	,	before	diving	deeper.	vRealize	Automation	just	leverages	Orchestrator
workflows	and	plugins.	Check	out	Chapter	1,	Installing	and	Configuring	Orchestrator	.

If	you	plan	to	automate	your	vSphere	infrastructure,	you	can	dive	straight	into	Chapter	13,
Installing	and	Configuring	Orchestrator	,	and	then	check	out	Chapter	12,	Working	with
vSphere	.	Then	I	would	start	looking	at	the	different	plugins.

If	you	would	like	to	improve	your	existing	skills,	check	out	Chapter	4,	Programming	Skills	,
to	Chapter	8,	Better	Workflows	and	optimized	working	.	

http://langenhan.info/vRO-Essential_update.pdf

What	this	book	covers
Chapter	1,	Installing	and	Configuring	Orchestrator	,	shows	you	how	to	install,	configure,	and
access	Orchestrator.

Chapter	2,	Optimizing	Orchestrator	Configuration	,	dives	into	more	specialized	tasks	such	as
tuning	the	Orchestrator	appliance,	changing	certificates	and	dealing	with	logs.

Chapter	3,	Distributed	Design,		focuses	on	Clusters,	distributed	Orchestrator	setups	and
loadbalancing.

Chapter	4,	Programming	Skills	,	contains	all	the	little	secrets	that	you	need	to	know	to	make
Orchestrator	programming	easier.

Chapter	5,	Visual	Programming	,	introduces	and	dives	into	the	visual	programming	of
Orchestrator.

Chapter	6,	Advanced	Programming	,	dives	into	more	advanced	operations	such	complex	Java
objects,	JSON	and	other	items	that	will	add	value	to	your	workflows.

Chapter	7,	Interacting	with	Orchestrator	,	focuses	on	how	to	interact	with	Orchestrator.	We
will	use	PowerShell,	REST,	and	PHP	to	interact	with	workflows.

Chapter	8,	Better	Workflows	and	Optimized	Working	,	dives	into	resources,	configurations,
packages,	and	more	for	optimizing	your	workflows.

Chapter	9,	Essential	Plugins	,	deals	with	the	most	plugins	used,	such	as	e-mail,	files,	SSH	and
REST.

Chapter	10,	Built-in	Plugins	,	dives	into	all	the	other	plugins	that	are	preinstalled	in
Orchestrator.

Chapter	11,	Additional	Plugins	,	takes	a	look	at	NSX,	Horizon,	Replication,	SRM	and	vROPS
plugins.

Chapter	12,	Working	with	vSphere	,	is	a	full	chapter	dedicated	to	all	things	vSphere	(vCenter).

Chapter	13,	Working	with	vRealize	Automation	,	dives	into	how	to	use	Orchestrator	in
vRealize	Automation.

What	you	need	for	this	book
This	book	covers	a	lot	of	ground	and	discusses	the	interactions	with	a	lot	of	other
infrastructure	services	such	as	Active	Directory	(AD),	e-mail,	the	vSphere	infrastructure,	and
vRealize	Automation.

You	can	use	this	book	with	Orchestrator	versions	5.0,	5.1,	and	5.5	and	with	the	renamed
version,	vRealize	Orchestrator	(5.5.2.x,	6.x,	7.x,	and	newer).

The	requirements	differ	from	chapter	to	chapter.	For	Chapter	1,	Installing	and	Configuring
Orchestrator	,	and	Chapter	2,	Optimizing	Orchestrator	Configuration	,	you	just	require	some
space	on	your	virtual	infrastructure	to	deploy	Orchestrator	and	maybe	a	working	vCenter.
Chapter	3,	Distributed	Design	,	requires	more	space	and	a	loadbalancer	or	NSX.	For	Chapter
7,	Interacting	with	Orchestrator	,	you	may	need	a	web	server.	Chapter	9,	Essential	Plugins	,
requires	SSH,	e-mail	and	a	REST	host;	however,	in	the	examples	we	will	use	easily	accessible
methods.	Chapter	10,	Build-in	Plugins	,	is	about	SQL,	PowerShell	(Windows	host),	Active
Directory	SNMP,	and	AMQP,	so	there	is	some	requirement	for	these	services;	again,	I	will
provide	some	easy	ways	to	handle	this.	Chapter	11,	Additional	Plugins	,	deals	with	NSX,
Horizon,	Replication,	SRM,	and	vROPS.	I	will	provide	links	that	will	help	you	set	them	up,
but	you	will	need	to	provide	the	infrastructure.	Chapter	12,	Working	with	vSphere	,	is	about
vCenter,	and	you	should	have	that	already.	The	last	Chapter	13,	Working	with	vRealize
Automation	,	is	about	vRealize	Automation.	You	will	need	to	install	and	configure	it	in	order
to	use	it.	This	is	much	easier	and	straightforward	in	vRA7	than	in	all	the	other	versions.

Some	readers	might	not	have	all	the	resources	or	infrastructure	to	rebuild	or	play	with	some
of	the	recipes;	however,	I	sometimes	have	been	in	the	same	boat.	I	used	the	following	little
mini	lab.

My	mini	lab	is	a	Shuttle	XPC-SZ170R8	with	an	i7	4	GHz	and	64	GB	using	1	TB	SSD	and	3	TB
HHD.

My	base	VMs	in	my	domain	Mylab.local	look	like	this:

Name Content Virtual	hardware

Central AD,	DNS,	DHCP,	MS-SQL	2k14R2,	HMail,	NFS,
SMB,	CA,	NTP,	RabbitMQ

Windows	2	K12R2,	2	vCPU,
8	GB,	40	GB

vCenter vCenter	Appliance Appliance,	2	vCPU,	8	GB,
~15	GB

Appliance,	2	vCPU,	6	GB,	12

vRO vRealize	Orchestrator	Appliance GB

vRA vRA	Appliance Appliance,	4	vCPU,	18	GB,
65	GB

IaaS IaaS	server	for	vRA Windows	2	K12R2,	2	vCPU,
8GB,	40	GB

NSX NSX	Manager Appliance,	2	vCPU,16	GB,
60	GB

vROPS vROPS	Appliance Appliance,	4	vCPU,	16	GB,
270	GB

vLI vRealize	Loginsight Appliance,	4	vCPU,	8	GB,
530	GB

For	the	vSphere	Replication,	SRM,	and	Horizon	recipes	I	used	extra	setups.

Tip

The	trick	is	to	choose	the	minimum	number	of	VMs	to	power	on	at	the	same	time.

Who	this	book	is	for
This	book	addresses	intermediate	and	advanced	VMware	enthusiast.	You	should	have	some
know-how	about	Orchestrator.	An	absolute	beginner	should	take	a	look	at	the	vRealize
Orchestrator	Essentials	book.

Example	workflows
All	workflows,	actions,	and	so	on	that	you	can	find	in	this	book	are	also	available	for
download.	The	example	package	that	contains	more	than	140	workflows	and	actions	is
available	for	download.	Simply	follow	these	instructions:

Navigate	to	https://www.packtpub.com/virtualization-and-cloud/vmware-vrealize-
orchestrator-cookbook-second-edition.	

Click	on	Code	Files	and	download	the	example	package.

Follow	the	recipe,	Working	with	packages,	in	Chapter	4,	Programming	Skills	,	to	upload	the
example	package	into	your	Orchestrator.

All	example	workflows	can	be	found	in	the	Orchestrator	Cookbook	2ndEdition	folder	and
the	actions	can	be	found	in	the	com.packtpub.Orchestrator-Cookbook2ndEditor	modules.

Tip

I	have	also	packed	some	extras	in.	Check	out	the	workflow	folder	Daniels	Toolsbox.

https://www.packtpub.com/virtualization-and-cloud/vmware-vrealize-orchestrator-cookbook-second-edition

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	All	example	workflows
can	be	found	in	the	folder	Orchestrator	Cookbook	2ndEdition.

A	block	of	code	is	set	as	follows:

var	current	=	new	Date();	

return	current

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

configurationElement.setAttributeWithKey(Key,	Value);

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"After	selecting	Create
project,	you'll	be	brought	to	the	Editor	Window"

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's
title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

https://www.packtpub.com/books/info/packt/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

Downloading	the	example	code	
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/VMware-vRealize-Orchestrator-Cookbook-Second-
Edition.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos	available
at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/VMware-vRealize-Orchestrator-Cookbook-Second-Edition
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book	
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used
in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/VMwarevRealizeOrchestratorCookbookSecondEdition_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/VMwarevRealizeOrchestratorCookbookSecondEdition_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we
would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.	Installing	and	Configuring
Orchestrator
In	this	chapter,	we	explore	how	to	install	and	configure	Orchestrator.	We	will	be	looking	at
the	following	recipes:

Deploying	the	Orchestrator	appliance
Important	Orchestrator	settings
Configuring	an	external	database
Configuring	external	authentication
Connecting	to	vCenter
Installing	plugins
Updating	Orchestrator
Moving	from	Windows	to	appliance
Orchestrator	Client	and	4K	display	scaling

Introduction
This	chapter	is	dedicated	to	the	configuration	of	Orchestrator	and	discusses	how	to	set	the
tone	for	your	Orchestrator	deployment.

Until	vRO	7,	there	were	three	different	Orchestrator	versions	that	one	could	use.	The
Windows-based	installation	(that	was	also	automatically	installed	along	with	vCenter),	the
appliance,	and	the	vRealize	Automation	integrated	one.	In	vRO7,	only	the	appliance	and	the
vRealize	Automation	(vRA)	integrated	Orchestrator	versions	are	left.	All	other	versions
have	been	discontinued.

If	you	still	have	a	Windows	version,	you	need	to	think	about	moving	it	to	the	appliance.	Check
out	the	recipe	Moving	from	Windows	to	appliance	in	this	chapter.	You	can	currently	still
download	and	use	the	vRO	6.0.4	appliance	or	Windows	version,	however,	you	should
consider	updating.

Before	the	vRO	appliance	came	along,	the	configuration	of	Orchestrator	wasn't	easy;
therefore,	not	many	people	really	used	it.	Now,	the	initial	configuration	is	already	done	out	of
the	box	and	people	can	start	using	Orchestrator	directly	without	too	much	fuss.	However,	if
one	plans	to	use	Orchestrator	in	a	production	environment,	it	is	important	to	know	how	to
configure	it	properly.

Licensing
One	of	the	questions	that	I	constantly	hear	from	customers	is	about	licensing	of	Orchestrator.

Orchestrator	is	licensed	with	vCenter	or	with	vRealize	Automation,	if	you	own	one	of	them,
you	own	Orchestrator.

With	vSphere,	you	need	at	least	a	vSphere	Standard	license	to	use	Orchestrator.	For	vRO7,
this	means	you	either	need	vSphere	6	or	vRA	7	license	numbers.	Although	Orchestrator	is
available	with	the	Essentials	or	Essentials	Plus	licensing,	it	operates	in	Player	mode	only.	This
limits	your	usage	to	executing	existing	workflows	and	prevents	you	from	editing	or	creating
them.

If	you	want	to	test	Orchestrator	you	just	need	to	get	a	vSphere	trial	license,	which	you	can
acquire	over	the	VMware	webpage.

vRealize	Orchestrator	7	changes
There	are	huge	differences	between	vRO	versions	5.x,	6.x,	and	7.x.	The	first	and	foremost	is
that	in	vRO7	the	Configurator	has	been	fully	replaced	by	the	new	Control	Center.	The	Control
Center	is	an	easy	tool	to	use	that	does	all	the	work	of	the	Configurator	and	more.	Trust	me
you	are	going	to	love	it.

The	other	important	thing	is	that	LDAP	as	an	authentication	source	for	Orchestrator	is	now
scheduled	to	be	removed.	It's	still	working	with	vRO7,	but	if	you	are	currently	using	LDAP
you	need	to	start	thinking	about	a	change.

Speaking	of	authentication,	vRO7	fully	supports	the	vSphere	Platform	Services	Controller
architecture	and	the	new	vIDM	that	has	been	introduced	with	vSphere	6	and	vRealize
Automation	7.

The	other	important	changes	are	in	the	network	section:

HTTP	8280	now	forwards	to	HTTPS	8281
HTTPS	8283	is	now	used	for	the	Orchestrator	Control	Center

Orchestrator	appliance	basics
The	vRO	7.1	appliance	requires	the	following	virtual	resources:

CPU 2	vCPU	with	at	least	2.0	GHz

Memory 6	GB

Disk	Space 17	GB	(1.5	GB	thin)

Network
1	x	NIC

1	x	IP	(DHCP	possible)

vHardware Version	7

The	only	change	from	the	previous	Orchestrator	versions	is	that	the	memory	has	increased
from	3	GB	to	4	GB.	Please	note	that	this	is	the	base	appliance	configuration,	we	will	see	how
to	change	and	improve	the	performance	in	the	recipe	Tuning	the	appliance	that	is	in	Chapter
2,	Optimizing	Orchestrator	Configuration.

The	same	is	true	for	the	following	table	of	Orchestrator	limits.	These	limits	are	not	hard
limits	and	can	be	changed,	we	will	discuss	this	in	the	recipe	Control	Center	titbits	in	Chapter
2,	Optimizing	Orchestrator	Configuration.

Maximal	concurrent	connected	vCenters 20

Maximal	concurrent	connected	ESXi	hosts 1280

Maximal	concurrent	connected	VM 35,000

Maximal	concurrent	running	workflows 300

Last	but	not	least,	we	have	to	discuss	network	security	in	detail	and	all	the	ports	that	need	to	be
opened	for	Orchestrator	to	function.	We	will	expand	the	list	of	ports	when	we	start	working
with	plugins,	but	these	are	the	ones	most	commonly	used:

Orchestrator	and	vRealize	Automation	(vRA)
The	vRealize	Automation	(formerly	vCloud	Automation	Center	or	vCAC)	appliance	is
shipped	with	a	preinstalled	and	preconfigured	vRO.	Orchestrator	installed	on	vRA	is	already
configured	and	works	the	way	the	normal	Orchestrator	appliance	does.

The	vRA	integrated	vRO	is	normally	only	used	for	small	environments	or	test	environments.
If	you	are	deploying	vRA	for	a	production,	large,	or	even	worldwide	role,	you	should
consider	using	a	vRO	cluster	and/or	a	distributed	Orchestrator	design.	We	will	discuss
distributed	design	in	more	detail	in	Chapter	3,	Distributed	Design.	We	also	discuss	the	vRA
integrated	appliance	in	more	detail	in	Working	with	the	vRA	integrated	Orchestrator	in
Chapter	13,	Working	with	vRealize	Automation.

Deploying	the	Orchestrator	appliance
We	will	now	deploy	the	Orchestrator	appliance	based	on	Linux.	If	you	are	using	the	vRA
integrated	Orchestrator,	see	the	introduction	to	Chapter	13,	Working	with	vRealize	Automation.

Getting	ready
We	can	deploy	the	Orchestrator	appliance	on	either	a	vSphere	environment	or	on	a	VMware
workstation	(or	Fusion	if	you	are	a	MAC	user).

Have	a	quick	look	at	the	requirements	in	the	introduction	of	this	chapter.

How	to	do	it...
In	this	recipe,	we	will	learn	how	to	download	and	deploy	Orchestrator.	We	will	configure	it	in
a	later	recipe.

Download
1.	 Navigate	to	http://vmware.com	and	select	Downloads.
2.	 Click	on	Download	Product	next	to	VMware	vSphere	or	vRealize	Automation.
3.	 Look	for	VMware	vRealize	Orchestrator	Appliance	7.1	and	click	on	Go	to

Downloads.
4.	 Look	for	the	OVA	file	and	click	on	Download	Now.

Deploy
1.	 Log	into	vCenter	using	the	vSphere	Web	Client.
2.	 Right-click	on	the	cluster	or	ESXi	server	and	select	Deploy	OVF	Template....
3.	 The	Deploy	OVF	Template	wizard	starts.	Select	the	OVA	file	you	have	downloaded	and

click	Next.
4.	 Accept	the	EULA	and	click	Next.
5.	 Select	a	name	(or	accept	the	default)	as	well	as	the	vCenter	folder	for	the	Orchestrator

appliance	and	click	Next.
6.	 Select	the	cluster	or	ESXi	server	or	a	resource	pool	for	the	Orchestrator	appliance	and

click	Next.
7.	 Select	the	datastore	you	would	like	to	deploy	the	Orchestrator	appliance	on	and	click

Next.
8.	 Select	a	network	for	the	Orchestrator	appliance	and	click	Next.
9.	 In	the	Customize	template	section,	set	a	password	for	the	root	user.
10.	 Enable	SSH	if	you	wish.	This	can	be	done	later	too.	See	the	recipe	Tuning	the	appliance

in	the	next	chapter.
11.	 If	you	like,	tick	to	join	the	Customer	Experience	Improvement	program.
12.	 Set	a	Hostname	for	the	Orchestrator	appliance.
13.	 If	you	want	to	use	a	fixed	IP,	expand	the	Network	Properties	section,	enter	all	IP	related

entries,	and	then	click	Next.	If	you	want	to	use	DHCP,	just	click	on	Next.

http://vmware.com

14.	 Select	to	power	on	the	VM	after	deployment	and	click	on	Finish.
15.	 Wait	until	the	VM	has	finished	deploying	and	is	powered	on.
16.	 Open	the	console	of	the	Orchestrator	appliance	and	wait	until	the	install	process	has

completed	and	the	VM	console	shows	the	following	screenshot:

Log	in	to	the	Orchestrator	Client
1.	 Open	a	browser	and	browse	to	the	IP	of	the	Orchestrator	appliance	(for	example,

http://192.168.220.12).
2.	 Depending	on	your	environment,	you	might	need	to	accept	the	SSL	certificate.	You	are

now	on	the	Orchestrator	home	page	with	several	useful	links	to	all	important
Orchestrator	topics:

3.	 To	open	up	the	Orchestrator	Client,	click	on	Start	Orchestrator	Client.
4.	 Enter	vcoadmin	as	user	and	vcoadmin	as	the	password.

You	are	now	logged	into	the	Orchestrator	Client.

Log	into	Control	Center

Some	of	the	next	recipes	need	us	to	log	into	Control	Center,	here	is	how	to	do	that:

1.	 On	the	Orchestrator	Home	page	click	on	Orchestrator	Control	Center.
2.	 Enter	the	user	root	and	the	password	you	assigned	during	deployment.

How	it	works...
The	Orchestrator	appliance	is	a	preconfigured	Orchestrator	installation	that	uses	the
following	software:

SUSE	Linux	Enterprise	Server	(SLES)	11	Patch	level	3
VMware-Postgres	9.4.5.0
ApacheDS	LDAP	2.4.42

Everything	is	ready	to	run;	however,	no	integration	with	vCenter	or	any	external	service	is
configured.	The	Orchestrator	appliance	comes	with	a	90-day	evaluation	license	installed.

There's	more...
If	you	want	to	deploy	the	Orchestrator	appliance	on	VMware	Workstation,	the	process	of
deploying	the	Orchestrator	appliance	differs	from	the	one	described	in	this	recipe.	Follow
these	steps	instead:

1.	 Use	Windows	Explorer	to	navigate	to	the	downloaded	.ova	file.
2.	 Double-click	on	the	OVA	file.	VMware	workstation	opens	up.
3.	 Select	a	name	and	a	path	for	the	new	VM	and	click	on	Import.
4.	 Accept	the	EULA	and	wait	until	the	VM	is	deployed.
5.	 You	might	need	to	select	a	different	network	(for	example,	Host-Only)	depending	on

your	lab	environment.
6.	 Power	on	the	VM	and	wait	until	the	install	pauses	at	the	line	indicated	in	this	screenshot:

7.	 Enter	and	confirm	a	new	password	for	the	root	account.
8.	 The	installation	will	now	continue.	Wait	until	it	has	finished.

The	appliance	will	start	with	a	DHCP	address	from	the	workstation.	To	set	a	static	IP,	you	will
have	to	access	the	admin	interface	of	the	appliance.

See	also
See	the	recipe	Tuning	the	appliance	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

Important	Orchestrator	settings
The	following	is	a	small	collection	of	things	that	one	should	do	or	at	least	know	how	to	do.	It
includes	licensing,	certificates,	and	virtual	hardware.

Getting	ready
We	just	need	a	working	Orchestrator	as	well	as	access	to	the	Control	Center.

How	to	do	it...
There	are	several	things	you	should	do	or	at	least	know	how	to	do.

Starting,	stopping,	and	restarting	the	Orchestrator	service

These	are	operations	that	have	to	be	done	quite	often,	so	it's	best	to	know	how	to	do	them:

1.	 Open	Control	Center	and	click	on	Startup	Options.
2.	 You	can	see	the	current	status	of	the	Orchestrator	service.
3.	 Click	on	one	of	the	action	buttons.
4.	 After	choosing	an	action,	wait	until	the	status	has	changed.

Licensing

You	can	either	enter	a	license	key	manually	or	connect	to	the	vCenter	Server	or	vRealize
Automation	to	acquire	the	license.

Tip

If	you	are	planning	to	use	vSphere	or	vRealize	Automation	as	an	external	authentication,	you
can	skip	this	step	as	the	licensing	will	be	configured	automatically.

If	you	change	the	database,	you	will	need	to	redo	the	licensing:

1.	 Open	Control	Center	and	click	on	Licensing.
2.	 If	you	have	an	authentication	provider	configured	(vSphere	or	VRA)	then	you	can	select

vSphere	License.
3.	 If	you	used	SSO	or	LDAP,	you	need	to	use	Manual	License.	With	vRO7	you	will	need	to

enter	a	vSphere	6	vCenter	or	vRealize	Automation	7	License	number.
4.	 Click	on	Save.

Package	Signing	Certificate

The	Packaging	Signing	Certificate	signs	all	packages	or	exports.	One	is	automatically
generated	with	the	Orchestrator's	VMs	Hostname.	We	will	now	show	how	to	create	a	custom
one:

1.	 Open	Control	Center	and	click	on	Certificates.
2.	 Click	on	Packaging	Signing	Certificate	and	then	on	Generate.
3.	 Enter	either	personal	information	or	information	of	the	VM.
4.	 Click	on	Generate.
5.	 Restart	the	Orchestrator	service.

Trusted	SSL	certificates

If	your	database	or	LDAP	is	secured	with	SSL,	which	by	the	way	isn't	such	a	bad	idea,	you	will
need	to	import	the	certificate	into	Orchestrator	first.	To	do	this,	follow	these	steps:

1.	 Open	Control	Center	and	click	on	Certificates.
2.	 In	the	Trusted	Certificates	section	click	on	Import.
3.	 In	Import	from	URL,	enter	https://Central.mylab.local.
4.	 Click	on	Import.

For	almost	all	VMware	infrastructure	the	import	of	their	certificate	is	integrated	into	the
workflows	and	doesn't	need	to	be	done	by	hand	anymore.

Force	plugins	reinstall

If	you	have	changed	the	database,	you	will	need	to	do	this	step	in	order	for	you	to	use	all	the
workflows	that	come	with	the	plugins.

1.	 Open	Control	Center	and	stop	the	Orchestrator	service.
2.	 Return	to	the	main	Control	Center	page	and	click	on	Troubleshooting.
3.	 At	the	end	of	the	screen	click	on	Force	plug-ins	reinstall.
4.	 Wait	until	you	see	the	green	Operation	started	successfully.
5.	 Start	the	Orchestrator	service	again.

When	Orchestrator	restarts,	it	installs	all	new	plugins	that	exist,	but	as	the	plugins	haven't
changed	in	the	versions	before	this,	updating	the	database	leads	to	this	little	problem.

How	it	works...
The	settings	we	have	just	applied	are	important	and	need	to	be	done	in	order	to	make
Orchestrator	production-ready.

The	package	signing,	as	well	as	the	licensing,	needs	to	be	done	only	once,	except	if	you	intend
to	change	the	database.

Importing	an	SSL	certificate	is	an	action	that	we	will	encounter	more	often.	Every	time	we
want	to	establish	a	secure	connection	(SSL)	between	Orchestrator	and	another	server,	we	first
have	to	import	this	server's	SSL	certificate.	However,	most	workflows	in	the	current	version
of	Orchestrator	include	an	automatic	import	(most	of	the	time).

See	also
Have	a	look	at	the	recipe	Backup	and	recovery	in	Chapter	2,	Optimizing	Orchestrator
Configuration,	to	learn	how	to	export	and	import	the	configuration.

Configuring	an	external	database
In	this	recipe,	we	will	attach	Orchestrator	to	an	external	database.	The	internal	Orchestrator
PostgreSQL	is	production-ready,	however	for	certain	designs,	such	as	Orchestrator	Cluster
and	large	deployments	we	still	require	one.

Getting	ready
We	will	need	a	database;	the	following	databases	are	supported	with	vRO7:

Oracle	11g	all	editions	-	64	bit
Oracle	12g/c	all	editions	-	64	bit
SQL	Server	2008	R1/R2	all	editions	-	64	bit
SQL	Server	2012	R1/R2	all	editions	-	64	bit
PostgreSQL

You	will	need	to	create	an	empty	database	for	Orchestrator,	and	you	should	also	create	a
dedicated	user	account	for	Orchestrator	to	access	the	database.

If	your	database	requires	SSL,	you	will	need	to	import	the	SSL	certificate	first;	for	this,	see
the	How	it	works...	section	of	this	recipe.

Tip

When	you	replace	the	database,	you	will	have	to	reconfigure	the	following	items:	Licensing
and	Packaging	Signing	Certificate.

How	to	do	it...
In	this	example,	we	have	added	an	MS-SQL	database	to	Orchestrator.	The	other	databases	are
not	that	much	different.

The	following	information	is	needed	for	each	type	of	database:

Database	type Oracle SQL	Server PostgreSQL

Login required required required

SSL optional optional optional

Hostname required required required

Port 1521	or	custom 1433	or	custom 5432	or	custom

Database	name - required required

Instance required optional -

Domain - optional -

Use	NTLMv2 - optional -

To	configure	a	database,	follow	these	steps:

My	MS-SQL	database	is	stored	on	the	VM	called	Central.mylab.local.

1.	 Open	Control	Center.
2.	 Click	on	Configure	Database.
3.	 Select	SQL	Server	for	Microsoft	SQL	server.
4.	 Fill	in	the	required	information.	You	only	need	to	fill	in	the	domain	if	you	are	using

Windows	authentication.
5.	 Click	on	Save	Changes.
6.	 You	are	now	asked	to	Update	database.
7.	 After	updating,	the	screen	returns	to	the	following	one.	You	have	configured	the	external

database.	You	may	need	to	configure	the	licensing	and	Package	Signing	Certificate	as
they	were	stored	in	an	internal	PostgreSQL	database.	Additionally,	you	may	need	to	force

the	re-installation	of	plugins:

How	it	works...
The	Orchestrator	database	contains	the	entire	configuration,	workflows,	workflow	runs,
events,	runtime	information,	actions,	and	a	lot	more.

If	you	want	to	use	your	existing	co-operation,	backup,	and	restore	procedures	of	your
database	or	a	database	cluster	for	more	security,	an	external	database	is	a	good	idea.

Orchestrator	comes	with	an	embedded	PostgreSQL	database,	which	is	rated	for	production
for	small	and	medium	deployments	by	VMware	and	can	be	easily	backed	up	using	the	Control
Center	or	a	cron	script	on	the	Linux	console	of	the	appliance.	However,	we	still	require	a
shared	database	for	clustering;	see	the	recipe	Building	an	Orchestrator	cluster	in	Chapter	3,
Distributed	Design.

Using	the	vCenter	Server	database	for	Orchestrator	is	not	really	a	pretty	solution.	IT	best
practices	dictate	the	usage	of	dedicated	resources	for	production	environments.

Sizing

Sizing	is	hard	to	predict.	Each	Workflow	run	consumes	around	4	KB,	and	most	objects	(for
example,	vCenter	Server	object)	require	around	50	KB	each.	VMware	recommends	1	GB	for
a	production	database.	The	good	thing	is	that	Orchestrator	regularly	runs	clean-up	jobs	to
reduce	the	database	content.	Also	have	a	look	at	the	recipe	User	preferences	in	Chapter	7,
Interacting	with	Orchestrator,	where	we	discuss	certain	properties	that	influence	how	much
information	is	kept	in	the	database.

Database	roles

For	the	initial	setup	(and	for	updates),	you	should	give	the	dedicated	Orchestrator	user	the
db_owner	rights	of	the	Orchestrator	database.

For	normal	usage	scenarios	the	Orchestrator	user	only	requires	db_dataread	and
db_datawrite	rights.

Exporting	and	importing	a	database

If	you	are	using	the	internal	PostgreSQL	or	an	external	PostgreSQL	database,	you	can	use	the
Control	Center	to	export	as	well	as	import	the	database	content.

The	export	can	include	information	on	the	last	workflow	runs	as	well	as	the	logs.

See	also	the	recipe	Backup	and	recovery	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

Purging	the	Database

This	sounds	much	harsher	than	it	is.	Purging	means	getting	rid	of	stuff	you	may	not	need
anymore	and	making	the	database	a	bit	smaller.

Purging	the	database	from	time	to	time	isn't	such	a	bad	idea,	however,	you	can't	be	sure
whether	or	not	you	will	throw	away	stuff	you	might	need.	For	example,	workflow	runs	and
logs	can	take	up	a	lot	of	space	after	some	time,	but	they	may	also	be	important.	(for	example,
SOX	compliance).

There's	more...
Here	are	some	things	you	might	find	useful.

Microsoft	SQL

Giving	the	database	the	settings,	ALLOW_SNAPSHOT_ISOLATION	and	READ_COMMITTED_SNAPSHOT,
will	reduce	the	possibility	of	deadlocks	and	is	also	a	prerequisite	for	Orchestrator	clusters.
This	can	be	done	by	running	the	following	script	on	the	SQL	cluster:

ALTER	DATABASE	[vRO	DB	Name]	SET	ALLOW_SNAPSHOT_ISOLATION	ON;	GO;	ALTER	

DATABASE	[vRO	DB	Name]	SET	READ_COMMITTED_SNAPSHOT	ON;	GO;	

Oracle

The	database	should	have	NLS_CHARACTER_SET	=	AL32UTF8	set	before	you	start	allowing
Orchestrator	to	build	its	tables.

To	avoid	an	ORA-01450	error,	it	is	important	that	you	have	the	database	block	size	configured
in	correspondence	with	your	database	index.

Internal	PostgreSQL

To	access	the	local	DB	(for	example,	for	backups),	you	need	the	following	information:

Database	name vmware

User vmware

Password vmware

The	PostgreSQL	install	is	protected	to	only	allow	local	access	to	it.	You'll	find	the	installation
in	/var/lib/pgsql.

See	also
The	recipe	Backup	and	recovery	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

Configuring	external	authentication
To	use	Orchestrator	to	its	fullest	possibilities	we	should	configure	it	with	an	external
authentication.

Getting	ready
We	need	an	up	and	running	Orchestrator	and	access	to	the	Control	Center	(root	account).	Also
see,	the	recipe	Deploying	the	Orchestrator	appliance	in	this	chapter.

You	should	have	an	AD/LDAP	group	for	your	Orchestrator	Administrators	with	at	least	one
user	in	it.	I	will	use	the	AD	group	vroAdmins	with	its	member	vroAdmin	and	my	domain	is
called	mylab.local.	My	PSC/SSO	is	on	vcenter.mylab.local.

If	you	are	using	AD/LDAP,	then	you	need	only	to	know	the	LDAP	path	to	your	vroAdmin	user
and	group.

If	you	are	using	SSO	or	vSphere(PSC),	you	should	either	have	configured	SSO	to	use	AD	or
created	a	local	SSO	group	and	user.

How	to	do	it...
We	are	splitting	the	recipe	into	multiple	parts,	one	for	each	authentication	method.

vSphere	(PSC)	and	vRealize	Automation	(vRA)

For	both	vSphere	6	and	vRA7,	the	entry	forms	look	alike	and	follow	the	same	pattern.
However,	there	are	some	really	important	considerations	to	take	into	account	for	both.	Please
see	the	How	it	works...	section	of	this	recipe.

To	set	either	vSphere	(PSC)	or	vRealize	Automation	(vIDM),	follow	these	steps:

1.	 Open	the	Control	Center	and	click	on	Configure	Authentication	Provider.
2.	 Choose	vSphere	or	vRealize	Automation.
3.	 Enter	the	host	name	of	your	vSphere	PSC	or	vRA.
4.	 After	clicking	on	Connect,	you	may	need	to	accept	the	SSL	certificate.
5.	 You	are	now	asked	to	enter	the	User	name	and	Password	of	an	SSO	administrator.
6.	 Clicking	on	Configure	licenses	will	automatically	configure	Orchestrator	licensing	with

the	vCenter	license.
7.	 Enter	the	default	tenant	of	your	SSO	and	click	on	Register:

8.	 After	the	registration,	you	are	asked	for	the	admin	group.	Enter	the	name	of	your	admin

group	(or	the	first	letters,	such	as	vro)	and	click	on	Search.
9.	 Select	your	admin	group	from	the	drop-down	menu,	such	as	mylab.local\vroAdmins.	In

vRA,	there	is	a	preconfigured	group	called	vsphere.local\vcoAdminis.
10.	 Click	on	Save	Changes	and	restart	the	Orchestrator	service.

SSO	(legacy)

If	you	are	using	vRO7	with	vSphere	5.5	(minimum	update	2)	you	need	to	use	the	SSO
configuration:

1.	 Open	the	Control	Center	and	click	on	Configure	Authentication	Provider.
2.	 Choose	SSO	(legacy).
3.	 Enter	the	following	for	Admin	URL:	https://vcenter.mylab.local:7444/sso-

adminserver/sdk/vsphere.local.
4.	 Enter	the	following	for	STS	URL:

https://vcenter.mylab.local:7444/sts/STSService/vsphere.local.
5.	 Click	on	Save	Changes.
6.	 You	will	now	need	to	accept	the	SSL	certificate	of	your	SSO	server	(not	shown	in	the

following	picture).
7.	 After	you	have	accepted	the	certificate	you	will	be	asked	to	enter	an	SSO	admin	account

and	its	password,	followed	by	the	Default	tenant,	which	is	vsphere.local	for	all	5.5
systems.

8.	 Click	on	Register.
9.	 If	everything	is	fine	you	will	now	be	asked	to	restart	the	Orchestrator	service.	However,

we	can	ignore	that	for	the	moment:

10.	 Now	you	need	to	choose	admin	group.	Enter	the	name	of	your	admin	group	(or	the	first
letters,	such	as	vro)	and	click	on	Search.

11.	 Select	your	admin	group	from	the	drop-down	menu,	such	as	mylab.local\vroAdmins.
SSO	5.5	has	a	preconfigured	Orchestrator	group
called	vcoAdministrators@vsphere.local.

12.	 Click	on	Save	Changes	and	restart	the	Orchestrator	service	again.

LDAP

Please	note	LDAP	will	be	discontinued	in	further	Orchestrator	releases	and	should	not	be	used
anymore.	Furthermore,	using	LDAP	won't	allow	Orchestrator	to	use	all	its	awesome	features.

If	you	are	using	LDAP,	you	can	choose	from	the	In-process	LDAP	(ApacheDS),	the	built-in
LDAP,	Active	Directory,	or	OpenLDAP.

Please	note	that	LDAP	entries	are	case	sensitive.	To	configure	Orchestrator	with	Active
Directory,	follow	these	steps:

1.	 Open	the	Control	Center	and	click	on	Configure	Authentication	Provider.
2.	 Choose	LDAP	and	then	Active	Directory.
3.	 Enter	the	domain	name	of	your	AD	and	set	the	port	to	389.
4.	 As	root,	enter	your	domain	in	LDAP	dc=mylab,dc=local.
5.	 Enter	the	username	in	LDAP	and	then	the	password.	Be	mindful	that	in	AD,	the	folder

Users	is	not	an	OU	but	a	CN,	cn=vroAdmin,cn=Users,dc=mylab,dc=local.
6.	 It	is	easiest	to	set	the	user	and	group	lookup	base	to	the	root	of	your	domain,	for

example,	dc=mylab,dc=local.	However,	if	your	AD	or	LDAP	is	large,	it	might	be	better
performance-wise	to	choose	a	different	root.

7.	 Enter	the	Orchestrator	admin	group	in	LDAP,
cn=vroAdmins,cn=Users,dc=mylab,dc=local.

8.	 Click	on	Save	Changes.
9.	 If	everything	is	fine	you	will	be	asked	to	restart	the	Orchestrator	service.

How	it	works...
Configuring	Orchestrator	to	work	with	an	external	authentication	enables	AD	users	to	log	in
to	the	Orchestrator	Client.	The	alternative	would	be	to	either	have	only	one	user	using	it	or
adding	users	to	the	embedded	LDAP.	However,	for	a	production	Orchestrator,	the	embedded
LDAP	solution	is	not	viable.

PSC/vIDM/SSO	is	a	highly	integrated	part	of	vSphere,	it	can	proxy	multiple	AD	and/or	LDAP
domains	and	lets	you	integrate	Orchestrator	directly	into	vCenter	as	well	as	other	corner
pieces	of	VMware	software	offerings.

If	you	are	using	vSphere	or	vRealize	Automation	authentication,	you	have	the	additional
benefit	of	having	Orchestrator	automatically	licensed.	If	you	are	using	LDAP	or	SSO	you
have	to	assign	a	license	to	Orchestrator.

When	using	SSO	or	vSphere,	Orchestrator	will	register	in	SSO	as	a	Solution	User	with	the
prefix	vCO.

vRealize	Automation	and	vSphere	Authentication

The	entry	masks	look	the	same,	however,	they	are	not.	vSphere	uses	SSO	and	vRA	7	uses
vIDM	and	those	are	very	different	beasts	indeed.

When	you	register	Orchestrator	with	vRealize	Automation	or	you	use	the	vRA	embedded
Orchestrator	you	will	not	be	able	to	use	a	per-user	session	with	vCenter	as	the	SSO	token	and
the	vIDM	token	are	incompatible	at	this	time.	I	have	been	informed	that	the	ability	to
configure	the	vRA	embedded	Orchestrator	version	will	not	be	able	to	use	PSC	configuration
anymore.	The	best	way	to	solve	this	is	to	use	a	secondary	Orchestrator.

Test	login

With	the	test	login,	you	can	test	if	you	can	log	on	to	Orchestrator	using	the	Control	Center:

If	you	get	a	reply	in	yellow	saying	Warning:	The	user	does	not	have	administrative	rights
in	vRealize	Orchestrator.	Login	to	the	Orchestrator	client	depends	on	the	user	view
permissions,	it	means	that	the	user	has	been	found	by	Orchestrator	but	he	is	not	a	member	of
the	Orchestrator	admin	group.	See	also,	the	recipe	User	management	in	Chapter	7,	Interacting
with	Orchestrator.

Internal	LDAP

The	internal	LDAP	has	the	following	preconfigured	entries:

Username Password Group	membership

vcoadmin vcoadmin vcoadmins

vcouser vcouser vcousers

The	LDAP	installation	is	protected	to	only	allow	local	access	to	it.	Using	the	internal	LDAP	is
not	recommended	at	all.

There's	more...
Changing	the	Authentication	Provider	is	quite	easy.	If	you	choose	LDAP	and	now	want	to
change	it	to	something	else,	just	select	the	new	provider.

If	you	chose	vSphere	SSO	or	vRealize	Automation	you	need	to	first	unregister	the	existing
Authentication	Provider.	To	do	this,	follow	these	steps:

1.	 Open	the	Control	Center	and	click	on	Configure	Authentication	Provider.
2.	 Click	on	Unregister	and	then	enter	the	SSO	admin's	password	and	click	Unregister.
3.	 Now	you	can	select	another	Authentication	mode.

See	also
Recipes	in	Chapter	11,	Additional	Plugins,	depict	which	authentication	is	the	most	preferable
for	the	plugins	discussed	there.

Connecting	to	vCenter
In	this	recipe,	we	connect	Orchestrator	to	vCenter.	This	will	allow	Orchestrator	to	access
vCenter	objects	as	well	as	vSphere	Web	Client	users	to	access	Orchestrator	workflows.	For
an	Orchestrator	used	with	vRA,	you	need	to	use	the	endpoint	configuration,	see	the	How	it
works...	section.

Getting	ready
We	need	a	running	Orchestrator	that	needs	to	be	registered	with	vSphere	(SSO	or	vRA	works
as	well).

Tip

If	you	are	planning	to	use	a	customer	SSL	certificate	for	your	Orchestrator,	then	exchange	the
certificate	before	you	continue	here.	See	the	recipe	Configuring	the	Orchestrator	service	SSL
certificate	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

You	should	consider	having	a	technical	user	that	is	able	to	log	into	vCenter	as	a	vCenter
administrator	as	well	as	being	a	member	of	the	Orchestrator	admin	group.	Using	a	dedicated
user	will	go	in	the	right	direction	for	automation,	see	the	How	it	works...	section.	I	will	use	my
dedicated	user,srv_vro@mylab.local.

Tip

Check	out	the	VMware	Product	Interoperability	Matrixes	for	the	interaction	with	your	vRO
version	and	the	vSphere	Web	Client.	For	example,	vRO	7	will	only	work	with	vSphere	Web
Client	6,	it	will	not	work	with	5.5.

How	to	do	it...
To	configure	the	vCenter	connection	we	need	to	follow	these	steps:

1.	 Open	the	Orchestrator	Client	with	an	Orchestrator	Administrator.
2.	 Start	the	workflow	Library	|	vCenter	|	Configuration	|	Add	a	vCenter	Server	instance.
3.	 Enter	your	vCenter	FQDN.
4.	 Select	that	you	would	like	to	orchestrate	this	instance	as	well	and	that	you	would	like	to

accept	SSL	certificates	even	if	they	are	self-signed.

Tip

Orchestrating	a	vCenter	means	that	the	content	of	the	vCenter	will	show	up	in	the
Orchestrator	Inventory	and	you	can	select	and	use	it.

5.	 Click	on	Next.
6.	 Select	No,	meaning	that	you	will	use	a	technical	user	for	the	connection	between

Orchestrator	and	vCenter.	This	is	also	the	recommended	setting	if	you	are	using	the	vRA
integrated	Orchestrator.

7.	 Enter	a	vCenter	server	administrative	user	or	a	technical	user	you	specified,	such	as
srv_vro@mylab.local	and	the	password	of	that	user.

8.	 Click	on	Submit.

9.	 Wait	until	the	workflow	is	successfully	finished.
10.	 Start	the	workflow	Library	|	vCenter	|	Configuration	|	Register	vCenter	Orchestrator

as	a	vCenter	Server	Extension.

11.	 Select	your	vCenter	from	the	Orchestrator	Library.
12.	 If	you	have	a	load	balancer	or	NAT	between	Orchestrator	and	vCenter,	enter	the	external

Orchestrator	address	here.
13.	 Click	on	Submit.

14.	 Now	log	in	to	the	vSphere	Web	Client	as	a	technical	user.
15.	 Navigate	to	vRealize	Orchestrator	|	vRO	Home	|	Summary.	Your	Orchestrator	should

be	registered	there.

For	more	information	and	usage,	see	the	recipe	Using	Orchestrator	through	the	vSphere	Web
Client	in	Chapter	7,	Interacting	with	Orchestrator.

Well,	there	is	that...

Sometimes	the	vSphere	Web	Client	-	Orchestrator	integration	doesn't	work	out-of-the-box
after	you	have	set	it	up.	Here	are	some	things	to	do	in	that	case:

Check	the	VMware	Product	Interoperability	Matrixes	for	interaction	with	your	vRO
version	and	the	vSphere	Web	Client.
Use	the	same	versions	of	vRO	and	vCenter.	For	example,	vRO7.0.1	(or	newer)	doesn't
integrate	into	vCenter	6.0U2	(or	earlier)	due	to	an	SSL	problem,	it	works	fine	with
vCenter	6.0U3	(and	newer).	This	is	due	to	a	change	in	encryption.
Have	some	patience.	It	may	take	some	15	minutes	until	the	Web	Client	gets	it	(in	a	slow
lab).	The	Web	Client	will	continue	to	show	the	following	error	message:	Error
occurred	while	processing	request.	Check	vSphere	Web	Client	logs	for	details.
Restart	the	vSphere	Web	Client.

Check	your	vCenter	logs.	When	you	register	an	extension,	a	plugin	is	downloaded.	In
Orchestrator's	case,	the	URL	is:https://[Orchestrator	IP]:8281/vco/vsphere-web-
client/vco-plugin.zip.
Make	sure	that	the	vCenter	user	has	access	rights	on	Orchestrator	(see	the	recipes	User
management	and	Using	Orchestrator	through	the	vSphere	Web	Client	in	Chapter	7,
Interacting	with	Orchestrator).
Unregister	all	Orchestrator	extensions	using	the	MOB	and	then	try	again.	See
kb.vmware.com/kb/1025360.
If	you	use	a	cluster,	you	need	to	use	the	external	address.	The	register	workflow	registers
the	Orchestrator	extension	with	its	IP:	https://[Loadbalancer_Address]:8281.	Also	see
the	recipe	Load-balancing	Orchestrator	in	Chapter	3,	Distributed	Design.

https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1025360

How	it	works...
Since	vCenter	Server	5.1,	vSphere	Web	Client	is	(or	better,	should	be)	the	main	method	to
access	vCenter.	Orchestrator	completely	integrates	with	vSphere	Web	Client,	making	it
possible	for	Orchestrator	workflows	to	be	executed	directly	from	vSphere	Web	Client.

Access,	rights,	and	logging

The	access	from	Orchestrator	to	vCenter	works	with	the	technical	user	we	used	to	make	the
connection.

When	a	workflow	is	started	from	Orchestrator,	vCenter	will	log	the	user	who	started	the
workflow	but	the	execution	of	the	workflow	will	be	logged	with	the	technical	user.

For	a	vSphere	Web	Client	user	to	be	able	to	start	a	workflow	they	need	to	have	access	to
Orchestrator.	Either	they	need	to	be	a	member	of	the	Orchestrator	admin	group	or	they	need
non-administrative	access.

Technical	user

The	idea	of	a	technical	user	is	to	use	a	dedicated	user	that	connects	between	Orchestrator	and
vCenter.	This	technical	user	would	be	a	full	vCenter	admin.	The	alternative	is	to	use	a	per-user
base,	which	means	that	each	user	uses	his/her	vCenter	rights	to	run	workflows.	The	difference
is	that	we	either	need	to	set	rights	and	roles	throughout	vCenter	for	different	users/groups	or
we	create	good	workflows	and	security	in	Orchestrator.

vRA,	Orchestrator,	and	vCenter

As	we	already	discussed	in	the	recipe	Configuring	external	authentication	in	this	chapter,	the
difference	between	vSphere	and	vRealize	Automation	authentication,	namely	SSO	or	vIDM.
When	you	configure	an	Orchestrator,	especially	for	vRA,	you	should	not	configure	the
vCenter	plugin	but	use	the	endpoints,	as	we	show	in	the	recipe	Adding	Orchestrator,	as	an
infrastructure	endpoint	in	the	final	chapter.

See	also
To	learn	more	about	the	Orchestrator	user	management,	see	the	recipe	User	management	in
Chapter	7,	Interacting	with	Orchestrator.

To	configure	the	Orchestrator	workflows	in	vSphere	Web	Client,	see	the	recipe	Using
Orchestrator	through	the	vSphere	Web	Client	in	Chapter	7,	Interacting	with	Orchestrator.

Installing	plugins
In	this	recipe,	we	will	learn	how	to	install	plugins	for	Orchestrator.	Configuration	and
programming-related	topics	are	discussed	in	Chapter	9,	Essential	Plugins,	Chapter	10,	Built-
in	Plugins,	and	Chapter	11,	Additional	Plugins.

Getting	ready
We	need	an	Orchestrator	server	installed	and	running,	as	well	as	access	to	the	Orchestrator
Control	Center.

Please	see	the	introduction	to	Chapter	11,	Additional	Plugins,	for	information	on	where	to
obtain	plugins.

Please	note	that	when	you	download	a	plugin,	your	download	should	contain	a	.vmoapp	or
.dar	file.	A	ZIP	file	needs	to	be	unpacked/unzipped	first.

How	to	do	it...
We	will	now	install	a	new	plugin.	I	will	use	the	Autodeploy	plugin:

1.	 Open	the	Orchestrator	Control	Center.
2.	 Click	on	Manage	Plug-Ins.
3.	 Click	on	Browse	and	select	the	.vmoapp	file	you	downloaded,	then	click	Install:

4.	 Accept	EULA	and	click	on	Install.
5.	 Restart	the	Orchestrator	service.

How	it	works...
Orchestrator	becomes	more	exciting	with	additional	plugins,	such	as	plugins	from	VMware
and	other	vendors.	The	current	version	of	vRO	(7.1)	comes	with	quite	a	few	plugins	already
installed,	such	as	the	following:

AD	3.0.2	4209033

AMQP	1.0.4.3217705

Configurator	7.0.1.3533702

DynamicTypes	1.2.0.426821

Enums	7.0.1.	.3767915

Library	7.0.1.3767915

Mail	7.0.1.	3767915

Net	7.0.1.	3767915

PowerShell	1.0.9.3895915

REST	2.0.1.4157277

SNMP	1.0.3.3767921

SOAP	2.0.0.4147531

SQL	1.1.4.4009493

SSH	7.0.1.3430925

VAPI	7.1.04262825

VC	6.5.0.4132889

VCO	7.1.0.4262825

Workflow	documentation	7.1.3767915

XML	7.0.1.3767915

vCAC	7.1.0.4147052

vCACCafe	7.1.0.4176993

We	will	discuss	how	to	use	most	of	these	plugins	in	Chapter	9,	Essential	Plugins	and	Chapter
10,	Built-in	Plugins.

Plugins	make	Orchestrator	the	great	product	that	it	is	and	create	a	variety	of	possibilities.	If
there	isn't	a	plugin	for	a	system,	think	outside	the	box.	For	instance,	you	can	connect
Orchestrator	to	Microsoft	System	Center	Virtual	Machine	Manager	(SCVMM)	via	SOAP,
to	Red	Hat	Satellite	using	REST,	or	to	your	Docker	using	SSH.

Last	but	not	least,	you	can	create	your	own	plugins.	There	is	an	Orchestrator	plugin	SDK
guide	that	is	dedicated	to	the	creation	of	plugins.	See	the	developer	documentation	for
Orchestrator.

Plugin	log	level

With	vRO7.1,	you	are	now	able	to	define	a	log	level	for	each	plugin.	The	log	level	ranges
from	DEFAULT 	to	OFF:

Updating	plugins

To	update	a	plugin,	just	download	the	new	version	and	deploy	it	as	shown	in	this	recipe.	The
plugin	will	be	updated.

Disabling	and	uninstalling	plugins

You	can	switch	off	plugins	by	de-selecting	the	Enable	plug-in	check	box.	Uninstalling	plugins
isn't	that	straightforward	and	should	only	be	done	if	you	have	no	other	choice,	there	is	a	KB
that	shows	how:

kb.vmware.com/kb/2064575	.

https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2064575

See	also
The	introduction	of	Chapter	11,	Additional	Plugins	gives	information	where	you	can	find
plugins	and	show	how	to	use	some	of	these.

Updating	Orchestrator
Here	we	will	describe	the	update	process	for	the	Orchestrator	appliance	as	well	as	the	best
way	to	get	from	5.x	or	6.x	to	7.	As	a	Windows	install	isn't	supported	in	7	anymore,	please	see
the	recipe	Moving	from	Windows	to	appliance	in	this	chapter.	If	you	are	updating	a	cluster,
please	see	the	recipe	Upgrading	a	cluster	in	Chapter	3,	Distributed	Design	first.

Getting	ready
We	need	an	older	version	of	Orchestrator	as	well	as	access	to	a	VMWare	webpage.

How	to	do	it...
There	are	two	methods	for	updating	the	appliance.	First	there	is	updating	via	an	ISO	file	and
second,	directly	accessing	the	update	repository.

Tip

Before	you	start	updating

Make	sure	you	have	a	backup	or	at	least	a	snapshot	of	the	Orchestrator	VM.	If	you	are	using
an	external	database,	make	a	backup	of	the	DB	as	well.

Using	an	ISO	file

Follow	these	steps	if	you	wish	to	use	the	ISO	file.

1.	 Open	vmware.comin	your	web	browser	and	then	click	on	Download	and	vSphere.
2.	 Look	for	VMware	vRealize	Orchestrator	Appliance	and	click	on	Go	to	Downloads.
3.	 At	the	very	end	of	the	download,	you	should	find	the	.iso	Update	Repository	Archive.

Click	on	Download	now.
4.	 After	the	download	has	finished,	go	to	your	vCenter	and	mount	the	image	to	the

Orchestrator	appliance.
5.	 Browse	to	the	Orchestrator	backend:https://[Orchestrator]:5480
6.	 Navigate	to	Update	|	Settings.
7.	 Continue	with	Apply	the	Update.

Using	the	VMware	repository

Follow	these	steps	if	you	wish	to	use	the	VMware	repository.	Your	Orchestrator	needs	a
HTTPS	connection	to	the	VMware	website	(vmware.com)

1.	 Open	a	web	browser	and	browse	to	the	Orchestrator
backend:https://[Orchestrator]:5480.

2.	 Navigate	to	Update	|	Settings.
3.	 Continue	with	Apply	the	Update.

Applying	the	update

After	we	have	the	update	source	in	place,	we	can	finally	update	the	appliance.

1.	 From	where	we	left	off,	click	on	Check	Updates.
2.	 You	should	now	see	the	version	you'd	like	to	upgrade	to	if	that's	not	the	case	check	the

source	of	the	update	(for	example,	ISO	file	or	iNET	connection).
3.	 Click	on	Install	Updates:

http://www.vmware.com/
http://www.vmware.com/

4.	 Accept	the	EULA	and	acknowledge	you	would	like	to	update	with	OK.
5.	 The	update	process	will	take	some	time.	Wait	until	Orchestrator	tells	you:	System	reboot

is	required	to	complete	the	update.
6.	 Reboot	the	Orchestrator	appliance.
7.	 After	the	reboot,	access	the	Control	Center	and	check	that	everything	is	fine.

How	it	works...
The	update	process	of	Orchestrator	is	pretty	simple	and	straightforward.	All	versions	have	the
default	repository	configured	and	with	Internet	access,	you	can	use	it	directly.

Before	you	update,	you	should	always	read	the	release	notes	of	the	newest	Orchestrator
release	to	see	if	there	are	any	problems	you	might	encounter.	The	update	from	5.5	or	6.x	to	7
is	pretty	easy	and	just	requires	the	newest	7	ISO.

Tip

If	you	are	upgrading	from	5.5	or	6	to	7	you	might	want	to	change	the	authentication	to
vsphere	to	make	use	of	the	vSphere	6	features.

In	the	Update	|	settings,	there	is	also	the	ability	to	automatically	check	for	updates	as	well	as
to	automatically	check	and	install	updates.	I	personally	wouldn't	use	the	feature	in	any
production	setting;	an	update	should	always	be	a	controlled	process.

Tip

After	an	upgrade,	you	need	to	check	your	workflows.	I	have	had	several	cases	where	a
method,	a	standard	library	workflow,	or	a	plugin	wasn't	working	the	same	anymore.	If	you
find	something	like	that	please	report	it	to	VMware	so	they	can	fix	it	in	the	next	release.

There's	more...
If	your	Orchestrator	has	no	Internet	connection	but	you	would	still	like	to	use	the	repository
feature	and	you	have	a	web	server	(for	example	IIS),	you	can	do	the	following:

1.	 Download	the	.zip	Update	Repository	Archive	from	vmware.com.
2.	 Unpack	the	ZIP	file.	After	unpacking,	copy	the	contents	of	the	following	directory	into

the	web	server	so	that	it	can	be	accessed	using	http(s)\build\mts\release\bora-
3571217\publish\exports\Update_Repo.

3.	 The	web	server	should	now	contain	two	folders;	manifest	and	package-pool.	Make	sure
that	the	folders	are	browseable	and	that	they	are	accessible.	In	IIS	you	might	need	to	add
the	.sig	and	.sha265	file	type	as	a	text/scriptlet	MIME	type.

4.	 Open	a	web	browser	and	browse	to	the	Orchestrator
backend:	https://[Orchestrator]:5480.

5.	 Navigate	to	Update	|	Settings.
6.	 Select	Use	Specified	Repository	and	enter	your	web	server	URL	into	Repository	URL

and,	if	needed,	the	subdirectory	where	the	patch	files	are	located.
7.	 Now	just	follow	the	recipe	to	update	from	the	repository.

http://www.vmware.com/

See	also
The	recipe	Upgrading	a	Cluster	in	Chapter	3,	Distributed	Design.

Moving	from	Windows	to	appliance
With	vRO	7,	the	Windows	install	of	Orchestrator	doesn't	exist	anymore.	This	recipe	discusses
how	to	move	an	existing	Windows	Orchestrator	installation	to	the	appliance.

Getting	ready
We	need	an	Orchestrator	installed	on	Windows.

Download	the	same	version	of	the	Orchestrator	appliance	as	you	have	installed	in	the
Windows	version.	If	needed,	upgrade	the	Windows	version	to	the	latest	possible	one.

How	to	do	it...
There	are	three	ways;	using	the	migration	tool,	repointing	to	an	external	database,	or
exporting/importing	the	packages.

Migration	tool

There	is	a	migration	tool	that	comes	with	vRO7	that	allows	you	to	pack	up	your	vRO5.5	or
6.x	install	and	deploy	it	into	a	vRO7.	The	migration	tool	works	on	Windows	and	Linux.	It
collects	the	configuration,	the	plugins,	as	well	as	their	configuration	certificates,	and
licensing	into	a	file.	Follow	these	steps	to	use	the	migration	tool:

1.	 Deploy	a	new	vRO7	appliance.
2.	 Log	in	to	your	Windows	Orchestrator	OS.
3.	 Stop	the	VMware	vCenter	Orchestrator	Service	(Windows	services).
4.	 Open	a	web	browser	and	log	into	your	new	vRO7	-	Control	Center	and	then	go	to

Export/Import	Configuration.
5.	 Select	Migrate	Configuration	and	click	on	the	here	link.	The	link	points	to:

https://[vRO7]:8283/vco-controlcenter/api/server/migration-tool	.
6.	 Stop	the	vRO7	Orchestrator	service.
7.	 Unzip	the	migration-tool.zip	and	copy	the	subfolder	called	migration-cli	into	the

Orchestrator	director,	for	example,	C:\Program
Files\VMware\Infrastructure\Orchestrator\migration-cli\bin\.

8.	 Open	a	command	prompt.
9.	 If	you	have	Java	installed,	make	sure	your	path	points	to	it.	Try	java	-version.	If	that

works,	continue,	if	not,	do	the	following:
10.	 Set	the	PATH	environment	variable	to	the	Java	install	that	comes	with	Orchestrator,	set

PATH=%PATH%;C:\Program

Files\VMware\Infrastructure\Orchestrator\Uninstall_vCenter

Orchestrator\uninstall-jre\bin

11.	 CD	to	the	directory	..\Orchestrator\migration-cli\bin.
12.	 Execute	the	command;	vro-migrate.bat	export.	There	may	be	errors	showing	about

SLF4J;	you	can	ignore	those.
13.	 In	the	main	directory	(..\Orchestrator)	you	should	now	find	an	orchestrator-config-

export-VC55-[date].zip	file.
14.	 Go	back	to	the	web	browser	and	upload	the	ZIP	file	into	Migration	Configuration	by

clicking	on	Browse	and	selecting	the	file.
15.	 Click	on	Import.	You	can	now	see	what	can	be	imported.	You	can	unselect	the	items	you

don't	wish	to	migrate.	Click	Finish	Migration.
16.	 Restart	the	Orchestrator	service.
17.	 Check	the	settings.

External	database

If	you	have	an	external	database,	things	are	pretty	easy.	For	using	the	initial	internal	database,
please	see	the	additional	steps	in	the	There's	more...	section	of	this	recipe.

1.	 Backup	the	external	database.
2.	 Connect	to	the	Windows	Orchestrator	Configurator.
3.	 Write	down	all	the	plugins	you	have	installed	as	well	as	their	version.
4.	 Shut	down	the	Windows	version	and	deploy	the	appliance,	this	way	you	can	use	the	same

IP	and	Hostname	if	you	want.
5.	 Log	into	the	appliance	version's	Configurator.
6.	 Stop	the	Orchestrator	service
7.	 Install	all	plugins	you	had	in	the	Windows	version.
8.	 Attach	the	external	database.
9.	 Make	sure	that	all	trusted	SSL	certificates	are	still	there,	such	as	vCenter	and	SSO.

10.	 Check	if	the	authentication	is	still	working.	Use	the	test	login.
11.	 Check	your	licensing.
12.	 Force	a	plugin	reinstall	(Troubleshooting	|	Reinstall	the	plug-ins	when	the	server

starts).
13.	 Start	the	Orchestrator	service	and	try	to	log	in.
14.	 Make	a	complete	sanity	check.

Package	transfer

This	is	the	method	that	will	only	pull	your	packages	across.	This	the	only	easy	method	to	use
when	you	are	transitioning	between	different	databases,	such	as	between	MS	SQL	and
PostgreSQL:

1.	 Connect	to	your	Windows	version
2.	 Create	a	package	of	all	the	workflows,	actions,	and	other	items	you	need.
3.	 Shut	down	Windows	and	deploy	the	appliance.
4.	 Configure	the	appliance	with	DB,	authentication,	and	all	the	plugins	you	previously	had.
5.	 Import	the	package.

How	it	works...
Moving	from	the	Windows	version	of	Orchestrator	to	the	appliance	version	isn't	such	a	big
thing.	The	worst-case	scenario	is	using	the	packaging	transfer.	The	only	really	important
thing	is	to	use	the	same	version	of	the	Windows	Orchestrator	as	the	appliance	version.	You
can	download	a	lot	of	old	versions,	including	5.5,	from	www.vmware.com	.	If	you	can't	find
the	same	version,	upgrade	your	existing	vCenter	Orchestrator	to	one	you	can	download.

After	you	have	transferred	the	data	to	the	appliance,	you	need	to	make	sure	that	everything
works	correctly,	and	then	you	can	upgrade	to	vRO7.

http://www.vmware.com/

There's	more...
When	you	just	run	Orchestrator	from	your	Windows	vCenter	installation	and	don't	configure
an	external	database,	then	Orchestrator	uses	the	vCenter	database	and	mixes	the	Orchestrator
tables	with	the	vCenter	tables.	In	order	to	only	export	the	Orchestrator	ones,	we	will	use	the
MS	SQL	Server	Management	Studio	(free	download	from	www.microsoft.com	called
Microsoft	SQL	Server	RTM).

To	transfer	only	the	Orchestrator	database	tables	from	the	vCenter	MS-SQL	to	an	external
SQL,	do	the	following:

1.	 Stop	the	VMware	vCenter	Orchestrator	Service	(Windows	Services)	on	your	Windows
Orchestrator.

2.	 Start	the	SQL	Server	Management	Studio	on	your	external	SQL	server.
3.	 Connect	to	the	vCenter	DB.	For	SQL	Express,	use	[vcenter]\VIM_SQLEXP	with	Windows

Authentication.
4.	 Right-click	on	your	vCenter	Database	(SQL	Express:	VIM_VCDB)	and	select	Tasks	|

Export	Data.
5.	 In	the	wizard,	select	your	source,	which	should	be	the	correct	one	already,	and	click

Next.
6.	 Choose	SQL	Server	Native	Client	10.0	and	enter	the	name	of	your	new	SQL	server.

Click	on	New	to	create	a	new	database	on	that	SQL	server	(or	use	an	empty	one	you
created	already).	Click	Next.

7.	 Select	Copy	data	from	one	or	more	tables	or	views	and	click	Next.
8.	 Now	select	every	database	which	starts	with	VMO_	and	then	click	Next.

https://www.microsoft.com/en-in/

9.	 Select	Run	immediately	and	click	Finish.

Now	you	have	the	Orchestrator	database	extracted	as	an	external	database.	You	still	need	to
configure	a	user	and	rights.	Then	proceed	with	the	External	database	section	in	this	recipe.

Orchestrator	Client	and	4K	display	scaling
This	recipe	shows	a	hack	to	make	the	Orchestrator	Client	scale	on	4K	displays.

Getting	ready
We	need	to	download	the	program	Resource	Tuner	(http://www.restuner.com/).	The	trial
version	will	work,	however,	consider	buying	it	if	it	works	for	you.

You	need	to	know	the	path	to	your	Java	installation,	it	should	be	something	like	this:

C:\Program	Files	(x86)\Java\jre1.x.xx\bin\.

http://www.restuner.com/

How	to	do	it...
Before	you	start....

Tip

Please	be	careful	as	this	impacts	your	whole	Java	environment.	This	worked	very	well	for	me
with	Java	1.8.0_91-b14.

1.	 Download	and	install	Resource	Tuner.
2.	 Run	Resource	Tuner	as	administrator.
3.	 Open	the	file	javaws.exe	in	your	Java	directory.
4.	 Expand	manifest	and	then	click	on	the	first	entry	(the	name	can	change	due	to

localization).
5.	 Look	for	the	line	<dpiAware>true</dpiAware>.
6.	 Exchange	the	true	for	a	false
7.	 Save	and	exit.
8.	 Repeat	the	same	for	all	the	other	java*.exe	in	the	same	directory	as	well	as

j2launcher.exe.

9.	 Start	the	Client.jnlp	(the	file	that	downloads	when	you	start	the	web	application).

How	it	works...
In	Windows	10	you	can	set	the	scaling	of	applications	when	you	are	using	high	definition
monitors	(4K	displays).

What	you	are	doing	is	telling	Java	that	it	is	not	DPI	aware,	meaning	that	it	will	use	the
Windows	10	default	scaler,	instead	of	an	internal	scaler.

There's	more...
For	any	other	application,	such	as	Snagit	or	Photoshop,	I	found	that	this	solution	works	quite
well:

http://www.danantonielli.com/adobe-app-scaling-on-high-dp	.

http://www.danantonielli.com/adobe-app-scaling-on-high-dp

Chapter	2.	Optimizing	Orchestrator
Configuration
In	this	chapter,	we	will	explore	how	to	optimize	the	Orchestrator	installation	and	look	at	the
following	recipes:

Tuning	the	appliance
Tuning	Java
Configuring	the	Kerberos	authentication
Configuring	access	to	the	local	filesystem
Configuring	the	Orchestrator	service	SSL	certificate
Orchestrator	log	files
Redirecting	Orchestrator	logs	to	an	external	server
Backup	and	recovery
Control	Center	titbits

Please	also	note	that	in	the	workflow	package	that	comes	with	this	book,	there	are	several
workflows	that	will	configure	Orchestrator.

Introduction
As	in	all	production	environments,	you	should	consider	using	dedicated	service	accounts	for
connections	between	different	services.	For	Orchestrator,	there	are	several	connections	that
we	should	have	a	look	at.

The	connection	between	Orchestrator	and	PSC/SSO	will	only	be	set	up	once	with	an	SSO
administrative	user,	after	that	Orchestrator	will	use	the	solution	user.

The	connection	between	Orchestrator	and	vCenter	depends	on	how	you	would	like	to	handle
the	role	and	rights	management	between	them.	You	can	either	use	one	administrative
connection	between	Orchestrator	and	vCenter,	or	choose	to	limit	access	by	the	role	and	rights
of	the	logged-in	Orchestrator	user.	We	have	already	discussed	this	a	bit	in	the	recipe
Connecting	to	vCenter	in	Chapter	1,	Installing	and	Configuring	Orchestrator	and	we	will
discuss	it	a	bit	more	in	the	recipe	User	management	in	Chapter	7,	Interacting	with
Orchestrator.

The	connection	between	clients	(desktops	and	application	servers)	and	Orchestrator	is
regulated	by	the	membership	of	the	Orchestrator	Administration	group	and	by	non-
administrative	users	in	Orchestrator.	We	will	discuss	how	to	add	non-administrative	users	to
Orchestrator	in	the	User	management	recipe	in	Chapter	7,	Interacting	with	Orchestrator.

In	general,	one	should	follow	the	IT	base	rule:	Dedicated	Services,	Dedicated	Users.

Tip

Please	note	that	the	vRA	integrated	Orchestrator	is	described	in	more	detail	in	the	recipe
Working	with	the	integrated	vRA	Orchestrator	in	Chapter	13,	Working	with	vRealize
Automation.

Tuning	the	appliance
In	this	recipe,	we	will	learn	how	to	tune	an	Orchestrator	appliance.	This	includes	changing	IP
settings	as	well	as	switching	off	unused	services	to	get	more	performance	out	of	the
appliance.

Getting	ready
We	need	a	configured	and	running	Orchestrator	appliance	as	well	as	a	web	browser	and	an
SSH	tool	(such	as	PuTTY).

How	to	do	it...
There	is	a	lot	that	could	be	done	to	tune	the	Orchestrator	appliance.

Virtual	Hardware

When	you	deployed	the	Orchestrator	appliance,	it	came	in	Virtual	Hardware	Version	7.	The
best	thing	to	do	is	to	upgrade	the	Virtual	Hardware	of	the	appliance	to	the	most	current
version.	To	do	this,	follow	these	steps:

1.	 Open	the	vCenter	vSphere	Web	Client	and	find	the	Orchestrator	VM.
2.	 Right-click	the	VM	and	select	Compatibility.
3.	 If	your	VM	is	running,	use	Schedule	VM	Compatibility	Upgrade,	if	the	VM	is	powered

off,	choose	Upgrade	VM	Compatibility.
4.	 Acknowledge	the	upgrade	and	select	the	compatibility	you	wish	to	use.	Use	the	highest

Virtual	Hardware	setting.
5.	 If	your	VM	was	running,	restart	it.

Changing	the	IP	and	hostname

The	IP	and	hostname	should	normally	be	assigned	when	the	appliance	is	deployed;	however,
some	aftercare	has	to	be	performed	when	using	a	DHCP	or	VMware	workstation.	Follow
these	steps	to	change	the	IP	and	hostname:

1.	 Open	the	virtual	appliance	management	interface	(VAMI)	area	on	port	5480.
2.	 Click	on	Network	and	select	Address.
3.	 Change	all	settings	as	required.
4.	 Click	on	Save	Settings.
5.	 Reconnect	the	browser	to	the	new	IP.

You	also	should	consider	giving	your	appliance	a	new	SSL	certificate.	See	the	Configuring	the
Orchestrator	service	SSL	certificate	recipe	in	this	chapter.

Setting	the	time	(NTP)

This	is	especially	important	when	using	encrypted	services	such	as	Kerberos	and
Orchestrator	clusters.	Follow	these	steps	to	set	the	time:

1.	 Open	the	VAMI	area	on	port	5480.
2.	 Click	on	System	and	then	on	Time	Zone.
3.	 Set	the	correct	time	zone	and	click	on	Save	settings.
4.	 Click	on	Admin	and	then	select	Time	Settings.
5.	 Set	Time	Sync.	Mode	to	Use	Time	Server.
6.	 Enter	NTP	servers	in	Time	Server	fields	and	click	on	Save	Settings.

It	is	very	important	to	have	the	same	time	settings	in	the	Orchestrator	server	and	vCenter

PSC/SSO,	as	well	as	the	Orchestrator	Client.	If	the	drift	is	too	high,	some	updates,	such	as	the
workflow	system	logs,	might	not	be	updated	properly.	The	worst	case	scenario	could	be	that
you	lose	connectivity	between	the	components.

Turning	SSH	access	to	Orchestrator	on	and	off

SSH	access	to	the	Orchestrator	appliance	is	by	default	switched	on.	If	your	environment
requires	stricter	security	policies,	here	is	how	you	can	switch	SSH	off:

1.	 Open	the	VAMI	area	on	port	5480.
2.	 Click	on	Admin	and	then	select	Admin.
3.	 You	can	switch	on	general	SSH	connectivity	as	well	as	root	access	separately:

Switching	off	unneeded	services

If	you	are	using	external	authentication	and	a	database,	you	might	as	well	switch	off	the
database	and	LDAP	services	to	gain	more	resources	for	Orchestrator.	If	you	switch	a	service
off,	the	service	will	not	start	on	the	next	reboot:

1.	 Using	SSH,	log	in	to	your	Orchestrator	appliance.
2.	 To	see	the	status	of	a	service,	type	chkconfig	[Linux	service	name].
3.	 To	switch	off	a	service,	type	chkconfig	[Linux	service	name]	off.
4.	 To	switch	the	service	back	on,	type	chkconfig	[Linux	service	name]	on.
5.	 To	stop,	start,	or	restart	the	service	immediately,	use	the	service	[Linux	service	name]

{start|stop|restart}	command.

Here	is	the	list	of	all	Linux	service	names	that	are	relevant	for	Orchestrator	appliances:

Service Linux	service	name

Orchestrator	server vco-server

Orchestrator	Configurator	Tool vco-configurator

Embedded	Database vpostgres

Embedded	LDAP ldap

Root	account	expires

By	default,	the	root	account	expires	after	365	days.	To	change	this	setting,	follow	these	steps:

1.	 Using	SSH,	log	in	to	your	Orchestrator	appliance	as	root.
2.	 Use	the	passwd	-x	99999	root	command.

Your	root	password	will	now	never	expire,	as	99999	(in	some	273	years)	is	the	highest	value
that	can	be	entered.

How	it	works...
The	Orchestrator	appliance	comes	with	a	fully	working	Linux	operating	system,	and
therefore,	it	is	highly	adaptable	to	your	needs.

If	you	are	into	Linux,	you	also	can	edit	the	configuration	files.	Please	note	that	the	SLES
licensing	used	for	the	appliance	might	not	cover	additional	packages.	Also,	installing
additional	software	on	the	Orchestrator	appliance	might	not	be	supported	by	VMware.

The	appliance's	iptables	firewall	is	not	configured.	So,	if	you	want	to	configure	the
firewalls,	you	have	to	use	the	iptables	commands.

See	also
The	example	workflow	02.01	Tuning	the	Appliance.

Tuning	Java
This	recipe	shows	how	to	increase	the	Java	heap	size	so	that	Orchestrator	performs	better	by
making	better	use	of	the	allocated	memory	resources.

Getting	ready
First	of	all,	we	need	more	virtual	memory	allocated	to	the	VM	on	which	Orchestrator	is
running.

You	also	need	SSH	access	to	the	appliance.

How	to	do	it...
This	how-to	is	for	vCO	5.5	and	higher,	for	versions	5.1	and	lower	please	see
kb.vmware.com/kb/2007423:

1.	 Log	in	to	the	Linux	operating	system	of	your	Orchestrator.
2.	 Stop	the	Orchestrator	service	with	service	vco-server	stop.
3.	 Make	a	backup	of	the	file	with	cp	/usr/lib/vco/app-server/bin/setenv.sh

/usr/lib/vco/app-server/bin/setenv.sh.bak.
4.	 Type	vi	/usr/lib/vco/app-server/bin/setenv.sh.
5.	 The	vi	command	opens	up	and	displays	the	contents	of	the	file.
6.	 Move	the	cursor	to	the	line	that	starts	with	MEM_OPTS="-Xmx2048m.
7.	 Press	I	and	remove	2048.	Enter	your	desired	heap	size	in	MB.
8.	 Press	Esc	and	then	type	:qw	to	exit	and	save.	If	you	want	to	exit	vi	without	saving,	enter

:q!	instead.
9.	 Start	the	Orchestrator	service	with	service	vco-server	start.

How	it	works...
If	you	are	increasing	the	virtual	memory	assigned	to	the	VM,	you	will	also	need	to	increase
the	Java	heap	size,	as	it	doesn't	automatically	adjust	itself.

The	Orchestrator	service	(vco-server)	is	a	Java	process	that	is	set	by	default	to	a	heap	size	set
to	2	GB.	Before	going	ahead	and	increasing	the	Java	heap	size,	it's	probably	a	good	idea	to
check	how	many	resources	the	Java	process	actually	takes.

You	need	to	balance	the	amount	of	memory	that	you	give	to	the	Orchestrator	Java	process
with	the	rest	of	the	memory	usage	of	the	system.	This	is	especially	important	if	you	are
running	Orchestrator	together	with	vRealize	Automation.	You	can	easily	end	up	with
programs	competing	for	memory,	which	will	slow	the	whole	system	down.	Don't	forget	that
the	Linux	system	needs	some	memory	too.

JVM	metrics	in	Control	Center

The	new	Control	Center	now	contains	a	collection	of	Java	metrics.	To	access	them,	click	on
Runtime	Metrics	and	then	on	Generic.	These	metrics	are	also	stored	every	five	minutes	in
/var/log/vco/app-server/metrics.log.

In	regards	to	the	Java	heap	size,	you	can	find	a	lot	of	answers	here.

The	most	important	metrics	in	regards	to	the	Java	Heap	are:

JVM	metric Value
in Explanation

ConcurrentMarkSweep.count Number The	number	of	times	the	Concurrent	Mark-Sweep
garbage	collector	has	run.

ConcurrentMarkSweep.time Number The	amount	of	time	the	Concurrent	Mark-Sweep
garbage	collector	has	run.

heap.max KB The	current	amount	of	system	memory	allocated	to
the	JVM.

heap.used KB The	amount	of	allocated	heap	memory	currently	in
use.

non-heap.* KB
The	current	amount	of	system	memory	allocated	to
non-heap	storage.	This	memory	is	used	by	Java	to
store	loaded	classes	and	other	meta-data.

See	also
The	recipe	Working	with	the	vRA	integrated	Orchestrator	in	Chapter	13,	Working	with
vRealize	Automation.

Configuring	the	Kerberos	authentication
This	recipe	shows	how	to	configure	the	Kerberos	authentication	with	Orchestrator.	The
Kerberos	configuration	is	only	needed	for	special	plugins,	such	as	PowerShell.

Getting	ready
We	just	need	administrative	access	to	the	Orchestrator	operating	system.	You	need	to	make
sure	that	the	clocks	are	in	sync	between	Orchestrator	and	the	KDC.	See	the	Tuning	the
appliance	recipe	in	this	chapter.	The	domain	in	this	example	is	called	mylab.local	and	the	AD
server	(KDC)	is	called	central.mylab.local.

How	to	do	it...
1.	 Log	in	to	the	Orchestrator	operating	system	with	root.
2.	 Edit	the	/usr/java/jre-vmware/lib/security/krb5.conf	file.	You	might	have	to	create

this	file.
3.	 Add	the	following	lines	to	the	file.	In	the	following	example,	replace	mylab.local	with

your	domain	settings.	Make	sure	that	you	use	the	same	case	as	in	the	example:

						[libdefaults]	

									default_realm	=	MYLAB.LOCAL	

									udp_preference_limit	=	1	

						[realms]	

									MYLAB.LOCAL	=	{	

												kdc	=	central.mylab.local	

												default_domain	=	mylab.local	

									}	

						[domain_realm]	

						.mylab.local=	LAB.LOCAL

						mylab.local=	MYLAB.LOCAL

4.	 Make	sure	that	the	file	is	owned	by	root:root	and	has	the	rights	644.	Execute	the	chmod
644	/usr/java/jre-vmware/lib/security/krb5.conf	command.

5.	 Save	the	file	and	then	restart	the	Orchestrator	service	using	either	the	Control	Center	or
the	Linux	service	vco-server	restart	command.

How	it	works...
Kerberos	is	an	authentication	protocol	that	uses	tickets	that	allow	systems	to	securely	talk	to
each	other.

Let's	see	how	Kerberos	works	with	a	simple	example.	A	client	(Orchestrator)	wants	to
communicate	with	a	server	(Windows	host)	securely.	The	client	will	communicate	with	a	Key
Distribution	Center	(KDC)	to	acquire	a	ticket.	In	Windows,	the	KDC	is	your	AD	controller,
who	then	authenticates	the	login	as	a	valid	user	and	grants	access.	The	KDC	will	then	issue	a
ticket.	This	ticket	is	then	used	to	login	to	the	Windows	server.

Configuration	of	the	krb5.conf	file	is	needed	for	Orchestrator	in	any	version,	as	the
connecting	service	is	really	the	Java	process	and	not	the	operating	system	underneath.

Since	Windows	2000,	Microsoft	uses	Kerberos	as	its	main	method	for	authentication.	It	is	a
secure	method	that	uses	encrypted	communication	and	therefore	the	best	choice	for	any
production	environment.

See	also
This	recipe	is	especially	important	for	the	Working	with	PowerShell	recipe	in	Chapter	10,
Built	in	Plugins.	The	example	workflow	02.03	Configure	Kerberos.

Configuring	access	to	the	local	filesystem
Here,	you	will	learn	how	to	set	permissions	for	Orchestrator	to	access	its	local	filesystem	and
make	an	external	filesystem	accessible	to	Orchestrator.

Getting	ready
We	need	administrative	access	to	the	operating	system	of	Orchestrator.

How	to	do	it...
There	are	two	ways	to	give	Orchestrator	access	to	its	local	filesystem.

Fast	and	easy

Orchestrator	already	has	full	access	to	the	folder	/var/run/vco	and	can	read	and	write	from
it.	You	can	place	files	there	via	SCP	for	Orchestrator	to	use	or	have	Orchestrator	write	files
into	that	directory.

Configuring	access

If	you	need	to	access	additional	folders	on	the	appliance	then	follow	these	steps:

1.	 Connect	to	the	Orchestrator	appliance	via	SSH	and	root.
2.	 Make	sure	that	the	directory	you	would	like	to	use	with	Orchestrator	is	accessible	for	the

Orchestrator	user.	The	user	or	group	should	be	vco.
3.	 Edit	the	following	file	/etc/vco/app-server/js-io-rights.conf.
4.	 To	give	Orchestrator	access	to	a	directory,	simply	add	the	directory	path	and	the	rights

such	as	+rwx	(see	the	How	it	works...	section	of	this	recipe).
5.	 Save	and	close	the	file.
6.	 Restart	the	Orchestrator	service.

How	it	works...
Access	for	Orchestrator	to	its	local	filesystem	is	needed	for	quite	a	lot	of	things,	such	as
using	SCP	and	uploading	and	downloading	files.	The	access	for	Orchestrator	is	regulated	by
the	entries	in	the	js-io-rights.conf	file.	The	following	snippet	shows	the	default	settings	in
the	file:

-rwx	/	

+rwx	/var/run/vco/	

-rwx	/etc/vco/app-server/security/	

+rx	/etc/vco/	

+rx	/var/log/vco/	

The	available	rights	for	Orchestrator	are	as	follows:

Allow Deny Read Write Access

+ - r w x

As	you	can	see,	Orchestrator	has	full	access	preconfigured	for	the	/var/run/vco	directory.

The	x	operator	means	that	Orchestrator	has	the	right	to	access	the	directory,	for	example,	to
list	the	content	or	to	execute	a	file.

Tip

In	a	clustered	Orchestrator	environment,	where	storing	local	files	isn't	a	good	solution,	you
should	use	NFS	or	SMB.

There's	more...
You	can	use	the	file	writer	to	write	to	a	shared	directory.	This	follows	the	same	principle	as
normal	file	writing.	The	only	thing	is	that	the	methods	differ	between	Orchestrator	OS
versions:

1.	 Login	as	root.
2.	 Create	a	new	directory	and	make	sure	it	has	the	correct	permissions.
3.	 Make	sure	Orchestrator	has	rights	to	access	this	directory.
4.	 Mount	the	Windows	directory	mount	-t	cifs	//host/share	/mnt		-o

username=user,password=password.	If	you	have	any	special	characters	in	the	password,
you	need	to	escape	them	with	password.

5.	 Access	the	/mnt/	directory	as	you	have	learned.

Naturally,	you	can	also	mount	NFS	directories	using	the	following	code:

mount	-t	nfs	host:/share	/mnt	-o	nolock	

See	also
See	the	Working	with	SSH	and	File	operations	recipes	in	Chapter	9,	Essential	Plugins.	The
example	workflow	02.04	Add	Folder	to	Orchestrator	access.

Configuring	the	Orchestrator	service	SSL
certificate
In	this	recipe,	we	will	have	a	closer	look	at	the	SSL	certificate	of	the	Orchestrator	server.

Getting	ready
You	need	a	running	Orchestrator	server.

If	you	are	intending	to	use	an	SSL	certificate	signed	by	a	Certificate	Authority	(CA),	you
need	to	be	able	to	sign	a	certificate	request.	You	also	need	the	CA	root	certificate,	as	well	as
any	intermediate	certificate,	so	that	you	can	import	it	into	the	Orchestrator	SSL	store.

If	you	are	creating	a	clustered	vRO,	please	see	the	recipe	Load-balancing	Orchestrator	in
Chapter	3,	Distributed	Design	first.

How	to	do	it...
There	are	basically	two	kinds	of	certificates	we	can	use,	self-signed	or	CA-signed.

Self-signed	certificates

When	you	installed	vRO,	a	self-signed	certificate	has	been	created,	but	you	are	free	to	create	a
new	one	containing	your	details:

1.	 Open	the	Orchestrator	Control	Center.
2.	 Click	on	Certificates	and	select	Orchestrator	Server	SSL	Certificate.
3.	 You	will	then	see	the	current	certificate.
4.	 Click	on	Generate	to	generate	a	new	self-signed	certificate.
5.	 As	the	First	and	last	names,	you	have	to	enter	the	FQDN	of	the	server	name.	The

Country	code	is	a	two-letter	code:	DE	=	Germany,	AU=Australia.
6.	 Click	again	on	Generate	and	then	reboot	the	appliance.

After	the	reboot,	your	Orchestrator	should	show	the	new	certificate	when	connecting.

Using	VMCA	generated	certificates

This	creates	a	PEM	file	using	the	VMCA	(VMware	Certificate	Authority)	that	is	part	of	the
PSC	(Platform	Controller	Service).	Consider	to	create	a	snapshot	of	Orchestrator	before
trying	this	out:

1.	 Open	an	SSH	connection	to	your	PSC	(or	to	vCenter	if	your	PSC	is	installed	with
vCenter).

2.	 Create	a	configuration	file,	/tmp/vro.conf,	with	content	similar	to	this:

						Country	=	DE	

						Name=	vro	

						Organization	=	vLeet	GmbH	

						OrgUnit	=	Consulting	

						State	=	Bayern	

						Locality	=	Munich	

						IPAddress	=	192.168.220.12	

						Email	=	daniel.langenhan@vleet.de	

						Hostname	=	vro.mylab.local	

Tip

If	you	want	to	create	subject	alternate	names	(SAN)	names	just	add	the	additional
hostnames	onto	the	Hostname.	This	is	especially	needed	if	you	want	to	use	CNAMEs.	For
example:		Hostname	=vro.mylab.local,orchestrator.mylab.local

3.	 Run	the	following	commands	to	generate	a	certificate	using	VMCA:

						cd	/usr/lib/vmware-vmca/bin/	

	

						./certool	--genkey	--privkey=/tmp/vro.prikey	--pubkey=/tmp/vro.pubkey		

	

						./certool	--gencert	--privkey=/tmp/vro.prikey	--cert=/tmp/vro.cert	

						--config	/tmp/vro.conf	

4.	 Download	the	VMCA	root	certificate:

						cd	/tmp	

	

						wget	https://127.0.0.1/certs/download	--no-check-certificate	

						-O	/tmp/vmca.zip	

	

						unzip		vmca.zip	

5.	 Select	the	correct	VMCA	root	certificate.	If	your	vCenter	is	not	a	CA	sub	authority,	the
correct	file	is	6bc2e122.0,	or	else	it	should	be	the	second	one	with	the	.0	ending.	Copy
the	file	to	/tmp:

						cp	certs/6bc2e122.0	vmcaroot.cert	

6.	 Build	the	.pem	file:

						awk	1	vro.prikey	vro.cert	vmcaroot.cert	>vro.pem	

7.	 Use	SCP	to	download	the	.pem	file	and	then	use	the	next	section	to	import	the	.pem	file.

CA-signed	certificate

A	CA-signed	certificate	can	be	imported	using	a	PEM	encoded	file,	see	the	How	it	works...
section.

1.	 Open	the	Orchestrator	Control	Center,	click	on	Certificates	and	select	Orchestrator
Server	SSL	Certificate.

2.	 You	will	then	see	the	current	certificate.
3.	 Click	on	Import	and	select	the	.pem	file	to	import.	If	you	secured	the	file	with	a

password,	enter	it	also.
4.	 Click	on	Import	again	and	then	reboot	the	appliance.

After	the	reboot,	your	Orchestrator	should	show	the	new	certificate	when	connecting.

How	it	works...
Orchestrator	uses	an	Apache	web	server	that	is	installed	along	with	Orchestrator.	The	SSL
certificate	is	stored	within	the	Java	environment	of	the	Orchestrator	installation.	The	SSL
certificate	we	discuss	here	is	the	certificate	that	Orchestrator	uses	to	communicate	with	other
instances,	such	as	the	Orchestrator	Client	or	other	programs.

vRO	7	made	some	changes	to	its	certificates	encryption.	MD2	and	RSA	must	have	a	minimum
length	of	1024	bit.	In	vRO7.1,	an	additional	change	was	introduced:

In	Cluster	mode,	the	nodes	exchange	certificate	information,	which	leads	to	the	fact	that
all	nodes	share	the	same	certificate.	This	requires	you	to	use	SAN	certificates	in	the
Cluster	mode.	Also,	see	the	recipe	Building	an	Orchestrator	cluster	in	Chapter	3,
Distributed	Design.
Plugins	now	need	to	use	the	plug-in	SDK	to	retrieve	a	certificate.

For	rounded	information	about	all	the	Orchestrator	certificates	that	exist,	see	Spas's	post:

http://kaloferov.com/blog/orchestrator-certificates-explained/

Default,	self-signed,	or	CA-signed?

The	question	now	is	which	certificate	should	we	use,	the	default	SSL	certificate,	a	self-signed
certificate,	or	a	CA-signed	certificate?

The	main	difference	between	the	default	and	the	self-signed	certificates	is	that	the	self-signed
certificate	is	issued	with	the	correct	FQDN	of	the	Orchestrator	server,	and	therefore,	is	more
secure	than	the	default	certificate.

A	CA-signed	certificate	has	the	advantage	as	it	is	automatically	accepted	by	all	hosts	that	trust
the	CA.	This	makes	large	deployments	easier	to	manage	as	well	as	comply	with	the	security
demands	of	your	company.

VMCA

The	VMCA	is	an	integrated	part	of	vSphere	6	and	creates	a	CA	that	signs	and	publishes	all
ESXi	and	solution	user	certificates.	The	cool	thing	is	that	if	you	have	used	your	own
enterprise	CA	to	make	the	VMCA	a	Subordinate	Certificate	Authority	(
kb.vmware.com/kb/2111219)	then	your	CA	trusts	your	VMCA	and	VMCA	trusts	vRO.

If	you	don't	have	a	CA,	you	can	export	the	VMCA	root	certificate	and	import	it	into	your
trusted	root	certificates	on	your	computer,	which	automatically	results	that	the	certificates	for
vCenter	and	all	ESXi	server	URLS	are	trusted.	(see
http://blogs.vmware.com/vsphere/2015/03/vmware-certificate-authority-overview-using-
vmca-root-certificates-browser.html).

PEM	encoded	files

http://kaloferov.com/blog/orchestrator-certificates-explained/
http://kb.vmware.com/kb/2111219
http://blogs.vmware.com/vsphere/2015/03/vmware-certificate-authority-overview-using-vmca-root-certificates-browser.html

PEM	encoded	files	are	a	one-stop	shop	and	the	new	way	forward	in	regards	to	certificates.
They	combine	not	only	a	signed	certificate,	but	also	the	certificate's	private	key,	the	root
certificate,	and	any	intermediate	certificates.	Orchestrator,	as	well	as	vRealize	Operations
Manager,	now	uses	this	method.	The	structure	is	as	follows:

-----BEGIN	PRIVATE	KEY-----	

(Your	Primary	SSL	certificate:	PrivateKey.key)	

-----END	PRIVATE	KEY-----	

-----BEGIN	CERTIFICATE-----	

(Your	Primary	SSL	certificate:	Server.crt)	

-----END	CERTIFICATE-----	

-----BEGIN	CERTIFICATE-----	

(Your	Intermediate	certificate:	Intermediate.crt)	

-----END	CERTIFICATE-----	

-----BEGIN	CERTIFICATE-----	

(Your	Root	certificate:	TrustedRoot.crt)	

-----END	CERTIFICATE-----	

The	-	-	-	-	,	as	well	as	the	headers	are	important	and	should	not	be	changed.	Also,	make
sure	that	you	copy	the	header	and	footer	notes	of	the	certificate.

There's	more...
Next	to	using	the	PEM	integration	of	the	Control	Center	you	can	also	use	the	old	method
shown	here.

Getting	the	SSL	store	password

Security	has	improved	as	the	password	of	the	SSL	keystore	isn't	dunesdunes	anymore.	It	is
now	generated	when	you	start	the	appliance	and	is	stored	in
/var/lib/vco/keystore.password.	As	we	need	that	password,	let's	save	it	into	a	bash	variable
and	also	create	one	for	the	SSL	store:

STOREPASS=`cat	/var/lib/vco/keystore.password`	

STORE="/etc/vco/app-server/security/jssecacerts"	

Backing	up	the	default	certificates

First	of	all,	we	need	to	back	up	the	default	certificate	that	comes	with	Orchestrator:

1.	 Log	in	to	the	Orchestrator	appliance	via	SSH	as	root.
2.	 Stop	the	Orchestrator	service.
3.	 Make	a	copy	of	the	existing	SSL	store:

						cp	$STORE	$STORE.bak	

Creating	certificates	and	requests

We	will	now	create	the	new	self-signed	certificate	and	then	create	a	request	from	it	to	get	it
signed	by	the	CA	making	it	a	CA-signed	certificate.	After	this	we	will	import	the	signed
certificate.	The	alias	for	the	Orchestrator	certificates	is	still	dunes	and	refers	to	the	original
name	of	the	company	that	created	Orchestrator	before	it	was	bought	by	VMware.	Follow	these
steps	to	create	a	certificate	and	request:

1.	 First,	we	need	to	delete	the	existing	certificate:

						keytool	-keystore	$STORE	-storepass	$STOREPASS	-alias	dunes	-delete	

2.	 We	will	now	create	the	certificate:

						keytool	-keystore	$STORE	-storepass	$STOREPASS	-alias	dunes	-keypass	

						$STOREPASS	-keyalg	RSA	-sigalg	SHA512withRSA	-keysize	2048	-genkey	

3.	 As	the	First	and	last	names,	you	have	to	enter	the	FQDN	of	the	server	name.	The
Country	code	is	a	two-letter	code:	DE	=	Germany,	AU=Australia.

4.	 Fill	in	the	rest	of	the	required	information.	When	asked	for	a	password,	just	press	Enter.
5.	 Generate	a	new	certificate-signing	request	(CSR)	with	the	following	command:

						keytool	-keystore	$STORE	-storepass	$STOREPASS	-alias	dunes	-keypass	

						$STOREPASS	-certreq	-sigalg	SHA512withRSA	-file	/tmp/cert.csr	

Generating	certificates	with	alternative	names	(SAN	certificate)

This	is	an	alternative	method	to	the	preceding	one,	and	you	can	use	it	for	an	Orchestrator
cluster	and	if	you	are	using	not	only	FQDNS	but	IPs	(only	in	Labs	please).	For	more	details,
see	the	recipe	Load-balancing	Orchestrator	in	Chapter	3,	Distributed	Design.

Replace	the	content	of	dname	and	SAN	with	your	DNS	names	and/or	IPs:

keytool	-keystore	$STORE	-storepass	$STOREPASS	-alias	dunes	-keypass	$STOREPASS	-

genkey	-keyalg	RSA	-sigalg	SHA512withRSA	-keysize	2048	-dname	

"CN=vro1.mylab.local,	OU=consulting,	O=vLeet	GmbH,	L=Munich,	ST=Bayern,	C=DE"	-

ext	SAN="ip:192.168.220.20,dns:vro2.mylab.local,ip:192.168.220.21"	

Signing	and	importing	certificates
1.	 Have	the	certificate	request	signed	by	your	CA.	Export	the	CA	root	as	well	as	any

intermediate	certificates.
2.	 Import	the	CA's	root	certificate	into	the	keystore:

					keytool	-keystore	$STORE	-storepass	$STOREPASS	-alias	root			-import	

					-file	[root	file	certificate]	

3.	 Import	the	CA-signed	certificate	into	the	keystore:

					keytool	-keystore	$STORE	-storepass	$STOREPASS	-alias	dunes		-import	

					-keypass	$STOREPASS	-sigalg	SHA256withRSA	-file	[file	name].crt	

4.	 Reboot	the	appliance.

Your	CA-signed	certificate	is	now	imported	into	Orchestrator.

See	also
Create	a	Microsoft	CA	VMware	template:

http://blogs.vmware.com/vsphere/2015/06/creating-a-microsoft-certificate-authority-
template-for-ssl-certificate-creation-in-vsphere-6-0.html

http://blogs.vmware.com/vsphere/2015/06/creating-a-microsoft-certificate-authority-template-for-ssl-certificate-creation-in-vsphere-6-0.html

Orchestrator	log	files
In	this	recipe,	we	will	have	a	closer	look	at	the	Orchestrator	log	file.	Where	they	are	and	how
to	configure	them.

Getting	ready
You	need	access	to	the	Orchestrator	Control	Center.

You	also	need	SSH	root	access	to	the	Orchestrator	appliance.	See	the	recipe	Tuning	the
appliance	in	this	chapter.

How	to	do	it...
As	log	files	are	a	bigger	theme,	this	section	is	split	up	into	multiple	parts.

Server	log	in	Control	Center

The	server	log	can	be	directly	shown	in	the	Control	Center:

1.	 Login	to	Control	Center.
2.	 Click	on	Live	Log	Stream.	The	server	log	is	then	shown.
3.	 Entering	a	search	string	into	the	Search	window	will	trigger	a	highlighting	function.
4.	 Click	on	Filter	(grep)	to	only	show	entries	that	contain	the	search	string.
5.	 Use	View	full	screen	to	show	the	log	in	full-screen	mode.

Configuring	the	server	log	with	the	Control	Center

We	will	now	configure	the	server	log	behavior:

1.	 Login	to	Control	Center.
2.	 Click	on	Configure	Logs.
3.	 The	Log	level	defines	the	log	level	threshold.	You	select	which	log	events	will	be

included	in	the	server	logs.
4.	 The	Max	file	count	defines	how	many	log	files	are	stored.
5.	 The	Max	file	size	defines	how	big	one	of	these	files	can	maximally	grow.	When	a	file

grows	bigger,	a	new	file	will	be	created.
6.	 Require	disk	space	shows	how	much	space	the	configuring	will	take	up.	It	is	[Max	file
count]	*	[Max	file	size].

7.	 Click	on	Save.	No	restart	is	needed:

Accessing	the	log	files	via	SSH

We	will	now	access	the	log	files	using	the	Orchestrator	OS:

1.	 Login	to	Orchestrator	using	SSH	and	root.

2.	 All	log	files	are	located	in	/var/log/vco/,	see	the	How	it	works...	sections	for	more
detail	about	them.

3.	 To	view	the	logs,	use	less	server.log.	You	can	then	use	the	cursor	keys	to	browse	the
log	and	q	to	exit	the	command.	You	can	search	by	pressing	/	and	then	enter	(case
sensitive)	what	you're	looking	for.	Use	G	to	go	to	the	end	of	the	log	and	g	to	go	back	to
the	beginning.

4.	 To	watch	a	log	file,	use	the	command	tail	-f	server.log,	this	will	continue	displaying
the	log	file	and	show	each	new	entry	into	it.	Exit	with	Ctrl	+	C.

Changing	log	file	behavior

This	shows	how	you	can	change	all	log	file	behavior,	not	just	the	server.log.	Check	the	How
it	works...	sections	for	more	details	about	the	different	log	files:

1.	 Login	to	Orchestrator	using	SSH	and	root.
2.	 Use	the	following	lines	to	create	a	backup:

						cd	/etc/vco/app-server/	

						cp	log4j.xml	log4j.xml.bak	

3.	 To	change	the	settings,	use	vi	log4j.xml.
4.	 Look	for	the	comment	<!---	tags.	Leave	all	sections	with	used	by	Log	Insight	Agent

alone:

						<!--	=================================	-->	

						<!--	Server	log																								-->	

						<!--	=================================	-->	

						<appender	class="org.apache.log4j.RollingFileAppender"	name="FILE">	

								<param	name="File"	value="${catalina.base}/logs/server.log"/>	

								<param	name="Append"	value="true"/>	

								<param	name="Encoding"	value="UTF-8"/>	

								<!--	Rollover	at	5MB	and	allow	4	rollover	files	-->	

								<param	name="MaxFileSize"	value="8MB"/>	

								<param	name="MaxBackupIndex"	value="4"/>	

								<layout	class="org.apache.log4j.PatternLayout">	

											<!--	The	default	pattern:	Date	Priority	[Category]	Message\n	-->		

											<param	name="ConversionPattern"	value="%d{yyyy-MM-dd	

												HH:mm:ss.SSSZ}	

												[%t]	%-5p	{%X{full}}	[%c{1}]	%m%n"/>	

								</layout>	

						</appender>	

5.	 To	change	the	maximum	file	size,	alter	the	parameter:	<param	name="MaxFileSize"
value="8MB"/>

6.	 To	change	the	amount	of	log	files	that	are	created,	change	the	parameter:	<param
name="MaxBackupIndex"	value="4"/>

7.	 To	change	the	priority,	scroll	down	to	the	<category	tags	and	change	the	parameter:
<priority	value="INFO"/>.

8.	 No	reboot	or	restart	is	needed.

How	it	works...
The	log	files	that	Orchestrator	creates	are	the	following	in	/var/log/vco/app-server/:

LogFiles Usage

server.log Contains	all	Orchestrator	login	information.	This	is	the	main	log.

scripting.log
Contains	all	logs	in	regards	to	workflows,	their	execution,	and
users.	The	same	information	is	also	shown	in	server.log.

metrics.log

Contains	all	matrixes	that	are	collected	for	Orchestrator	every	five
minutes.	These	are	the	values	shown	in	the	Control	Center	under
Runtime	Metrics.

localhost_access.log Contains	all	HTTP	requests	that	the	Orchestrator	service	is	getting.

integration-

scripting

integration-server

All	these	logs	are	for	usage	with	VMware	Log	Insight	and	are	just
copies	(see	log4j.xml).

warning.log Contains	all	server	logs	that	are	the	type	warning	or	higher.

The	log	files	that	Orchestrator	creates	are	in	/var/log/vco/configuration/,	they	are	as
follows:

LogFiles Usage

catalina.out
Contains	detailed	information	about	the	Tomcat	server	instance
running	Orchestrator.

controlcenter.log Contains	all	logs	in	regards	to	the	Control	Center.

vco_database.log Contains	information	about	the	database	upgrades.

See	also
The	recipe	Redirecting	Orchestrator	logs	to	an	external	server	in	this	chapter,	and	the	recipe
Scripting	with	logs	in	Chapter	5,	Visual	Programming.

Redirecting	Orchestrator	logs	to	an	external
server
In	this	recipe,	we	will	configure	the	Orchestrator	server	to	send	all	logs	to	a	centralized
Syslog	server.	This	is	especially	important	when	using	Orchestrator	clusters.

Getting	ready
You	need	a	Syslog	server	or	a	vRealize	Log	Insight	Server	as	a	target.

You	may	also	need	access	to	the	Orchestrator	appliance	OS	(SSH).

vRealize	Log	Insight

When	you	buy	vSphere,	you	also	get	licensing	for	Log	Insight	for	25	hosts.

If	you	are	using	vRealize	Log	Insight	then	you	should	also	consider	downloading	the	vRO7
package.	You	can	find	some	details	here:

http://blogs.vmware.com/management/2016/04/vrealize-orchestrator-7-0-content-pack-log-
insight.html	.

We	are	now	configuring	Log	Insight	to	access	Orchestrator:

1.	 Log	into	the	vRealize	Log	Insight	website.
2.	 Click	in	the	upper	right	corner	and	select	Content	Packs.
3.	 Select	the	VMware	-	Orchestrator	content	pack:

4.	 Tick	the	install	tickbox	and	then	on	Install.

http://blogs.vmware.com/management/2016/04/vrealize-orchestrator-7-0-content-pack-log-insight.html

How	to	do	it...
The	redirection	of	Syslog	became	much	easier	in	vRO7	as	everything	is	more	or	less	done	in
the	Control	Center:

1.	 Login	to	the	Orchestrator	Control	Center.
2.	 Go	to	Logging	Integration.
3.	 Tick	the	box	next	to	Enable	logging	to	a	remote	log	server	to	configure	Syslog.

Syslog	with	Log4J

Sadly,	Log4J	is	deprecated	at	this	stage.	However,	you	can	and	should	use	the	Log	Insight
Agent	to	send	Syslog	messages:

1.	 From	where	we	left	off,	select	Use	Log4j	Syslog	Appender.
2.	 Enter	your	FQDN	or	IP	of	the	Syslog	host	as	well	as	the	port,	if	it's	not	514.
3.	 Select	the	Facility.	The	facility	is	a	kind	of	folder	where	the	log	files	should	be	stored.

You	can	choose	between	User	and	Local0	to	Local7.
4.	 The	Threshold	is	setting	from	what	level	you	want	to	forward	Syslog	messages.	I	would

not	recommend	anything	lower	than	INFO,	but	that	depends	on	the	purpose	for
forwarding.

5.	 The	Network	Protocol	can	be	either	UDP	or	TCP.	Normally	UDP	is	the	way	to	go.
6.	 Click	on	Save	and	then	Test	connection.	If	that	works,	check	your	Syslog	server	for

incoming	messages:

Log	Insight	Agent

Orchestrator	has	been	fitted	with	an	agent	for	VMware	vRealize	Log	Insight.	Here	is	how	to
configure	it	from	where	we	left	off:

1.	 Select	Use	Log	Insight	Agent.
2.	 Enter	your	FQDN	or	IP	of	your	vRealize	Log	Insight	Server	as	well	as	the	port,	which	is

default	9000.	If	you	want	to	send	Syslog	messages	to	a	Syslog	server,	choose	the	Syslog
hostname	or	IP	and	then	select	port	514.

3.	 Select	the	Protocol.	Use	cfapi	with	Log	Insight	and	Syslog	for	the	usage	with	a	Syslog
server.

4.	 Click	on	Save.

5.	 We	now	need	to	configure	the	Log	Insight	Agent	to	send	logs	across.	For	this,	see	the
There's	more...	section.

How	it	works...
Redirecting	Syslog	files	to	a	central	logging	facility	can	be	quite	a	useful	thing.	Not	only	does
the	Orchestrator	Syslog	contain	the	normal	Orchestrator	Syslog	entries,	but	also	information
on	by	whom	and	when	was	the	workflow	run.	See	the	Scripting	with	logs	recipe	in	Chapter	5,
Visual	Programming,	for	more	information.

A	Syslog	server	is	normally	used	to	analyze	and/or	monitor	the	behavior	of	a	given	system.
Typical	actions	are	to	make	sure	problems	are	captured	early	as	well	as	to	track	the
performance	of	a	system.	A	lot	of	companies	also	use	Syslog	to	keep	a	record	of	what
workflow	has	been	run	by	whom	and	when.

You	can	download	and	test	vRealize	Log	Insight	for	free,	just	go	to	the	vmware.com	webpage
and	join	the	trial.

For	working	with	the	Orchestrator	log	files,	have	a	look	at	the	recipe	Orchestrator	log	files	in
this	chapter.

Configuring	the	Orchestrator	Log	Insight	Agent	to	forward	to	Syslog

If	you	want	to	use	a	classic	external	Syslog	server	(such	as	Splunk),	but	you	like	to	use	the
Log	Insight	Agent	on	Orchestrator,	to	forward	the	logs	you	need	to	do	some	configuration.
To	do	this,	follow	these	steps:

1.	 Configure	the	logging	integration	to	use	Log	Insight	Agent.
2.	 Enter	the	Syslog	host	IP	or	FQDN	and	then	choose	port	514.
3.	 Set	Protocol	to	syslog.
4.	 Connect	to	Orchestrator	via	SSH.
5.	 Edit	the	file	/var/lib/loginsight-agent/liagent.ini.
6.	 Add	the	following	entries	at	the	end:

						[filelog|scripting]	

						directory=/var/log/vco/app-server	

						include=	scripting.log;	scripting.log.*	

	

						[filelog|server]	

						directory=/var/log/vco/app-server	

						include=server.log;server.log.*	

7.	 Restart	the	log	insight	agent	with	the	service	liagentd	restart	command.
8.	 Check	the	log	files	for	errors:

						/var/log/loginsight-agent/liagent_[date].log

This	should	now	forward	all	the	servers	and	scripting	log	files	to	your	Syslog	server.	Also,
see	the	recipe	Orchestrator	log	files	in	this	chapter.

Tip

http://www.vmware.com/

The	Log	Insight	Linux	Agent	sends	the	logs	via	TCP,	not	UDP	so	you	may	need	to	adjust	your
Syslog	server.

The	configuration	of	the	Log	insight	Linux	Agent	is	documented	in	the	VMware	vRealize
Log	Insight	3	Agent	Administration	Guide	(http://tinyurl.com/VMwareLI30Admin)

https://pubs.vmware.com/log-insight-30/topic/com.vmware.log-insight.agent.admin.doc/GUID-04892000-72C6-4227-BB37-6A2271E03B8C.html
http://tinyurl.com/VMwareLI30Admin

There's	more...
There	are	tons	of	Syslog	software	tools	for	Windows	and	for	Linux.	Here	is	a	short	list	of	the
most	common	ones	for	Windows:

http://www.kiwisyslog.com/
http://www.splunk.com
http://www.balabit.com/network-security/syslog-ng

All	Linux	servers	come	with	a	Syslog	service	installed	and	can	be	used	as	well.	However,	in
general,	they	do	not	have	a	comfortable	web	or	GUI	frontend.

http://www.kiwisyslog.com/
http://www.splunk.com
http://www.balabit.com/network-security/syslog-ng

See	also
The	Scripting	with	logs	recipe	in	Chapter	5,	Visual	Programming.

All	Orchestrator	log	files	can	be	found	at	kb.vmware.com/kb/1010956.	The	example
workflow	02.06	Configure	Syslog	for	LoginSight.

Backup	and	recovery
In	this	recipe,	we	look	into	backing	up	and	restoring	Orchestrator.	To	back	up	and	restore
single	packages	or	workflows,	please	see	the	Importing	and	exporting	Orchestrator	elements
and	Working	with	packages	recipes	in	Chapter	4,	Programming	Skills.

Getting	ready
We	need	an	installed	and	running	Orchestrator	server.

How	to	do	it...
There	are	several	things	that	should	be	backed	up;	we	will	have	a	look	at	all	of	them.

Tip

A	snapshot	is	not	a	backup.

Backing	up	Orchestrator	configuration

This	is	a	one	off	job.	You	only	need	to	do	it	when	you	change	the	Orchestrator	configuration:

1.	 Open	the	Orchestrator	Control	Center.
2.	 Click	on	Export/Import	Configuration	and	then	on	Export	Configuration.
3.	 Select	all	the	checkboxes.
4.	 Depending	on	your	security	needs,	assign	a	Password	to	the	export.
5.	 Click	on	Export.
6.	 Place	the	file	in	a	secure	location	where	you	can	easily	retrieve	it	in	the	case	of	a	restore.

Backing	up	an	internal	database

The	backup	of	an	external	database	is	done	with	the	normal	enterprise	methods.	The	internal
Orchestrator	PostgreSQL	DB	is	a	different	thing:

1.	 Connect	to	your	Orchestrator	OS	via	SSH.
2.	 Run	the	following	command	to	backup	the	Orchestrator	DB:

						pg_dump	vmware	-U	vmware	-Fp	-c	|	gzip	-c	>	vRO-DB.gz	

3.	 Save	the	dump	in	a	place	where	you	can	find	it	again.	Please	also	see	the	There's	more...
section	of	this	recipe.

Tip

The	Control	Center	database	export	uses	the	same	method	and	both	files	are	compatible.

Restore

Assuming	that	your	Orchestrator	installation	died	and	you	need	to	restore	it,	follow	these
steps:

1.	 Deploy	a	fresh	Orchestrator	appliance	of	the	same	version	you	lost.
2.	 Open	the	Orchestrator	Control	Center.
3.	 Stop	the	Orchestrator	service.
4.	 Click	on	Export/Import	Configuration	and	then	on	Import	Configuration.
5.	 Browse	to	the	Orchestrator	backup	file.
6.	 You	may	need	to	enter	a	Password.
7.	 Click	on	Import.

Note

If	you	are	using	an	external	DB,	that's	it,	you're	done,	just	start	the	Orchestrator	service
again.	If	you	are	using	the	internal	database,	continue	below.

8.	 Click	on	Home	and	then	go	to	Import	Database.
9.	 Browse	to	the	exported	database	file.
10.	 Click	Import	database.
11.	 Select	the	item	you	want	to	import	(for	a	full	restore,	tick	everything).

12.	 Click	on	Finish	Import.
13.	 Start	the	Orchestrator	service.

How	it	works...
The	Control	Center	configuration	export	helps	quite	a	bit	with	preserving	your	Orchestrator
configurations;	however,	it's	not	perfect.	The	best	protection	against	any	loss	is	solid
documentation,	where	you	write	down	the	Orchestrator	configurations,	as	well	as	why	an	item
is	configured	the	way	it	is.

External	database

Using	an	external	database	for	Orchestrator	has	the	immense	advantage	that	this	database	can
be	backed	up	using	the	already-existing	methods	of	your	business.	The	Orchestrator	database
contains	most	parts	of	the	configuration,	but	more	importantly,	it	contains	all	workflows	and
workflow	executions.	Having	a	regular	database	backup	is	important.

If	one	restores	the	database,	it's	important	to	stop	the	Orchestrator	server	first.

There's	more...
The	continued	backup	of	the	internal	Orchestrator	PostgreSQL	database	can	be	done	with
quite	a	lot	of	methods.	Here	we	will	discuss	some	of	them.

Cron	job

The	idea	is	to	use	the	internal	Linux	scheduler	(called	CRON)	to	facilitate	the	backup.	You
need	access	to	the	Orchestrator	OS	as	well	as	to	a	shared	drive.	There	is	a	nice	article	that
goes	into	this	in	more	detail:

https://communities.vmware.com/docs/DOC-24026

vRO	policy

Using	Orchestrator	Policies,	it	is	possible	to	create	re-occurring	tasks.	We	can	use	this	to
create	a	workflow	that	will	back	up	the	Orchestrator	database	either	to	a	shared	drive	or	send
the	export	via	a	mail	attachment.

See	the	recipe	Working	with	policies	in	Chapter	8,	Better	Workflows	and	Optimized	Working
and	the	recipes	Working	with	mails	and	File	operations	in	Chapter	9,	Essential	Plugins.

vRO	Control	Center	API

The	Control	Center	has	an	API	that	is	REST	and	can	be	accessed.	We	have	a	short	look	at	it	in
the	recipe	Control	Center	titbits	in	this	chapter	and	a	more	detailed	look	in	the	recipe
Accessing	the	Control	Center	via	REST	plugin	in	Chapter	7,	Interacting	with	Orchestrator.
You	could	use	the	REST	to	connect	to	the	Control	Center	and	then	export	the	database	this
way.

https://communities.vmware.com/docs/DOC-24026

See	also
The	recipe	Working	with	packages	in	Chapter	4,	Programming	Skills,	shows	you	how	to	back
up	elements	in	Orchestrator.

Control	Center	titbits
This	recipe	contains	a	lot	of	small	little	bits	and	pieces	around	the	Orchestrator	Control
Center.

Getting	ready
We	need	access	to	the	Control	Center.

How	to	do	it...
This	is	a	collection	of	little	bits	and	pieces...

Inspecting	workflows

This	enables	you	to	check	what	workflows	are	running,	to	cancel	running	workflows	and	to
inspect	them:

1.	 In	the	Orchestrator	Control	Center,	go	to	Inspect	Workflow.
2.	 You	now	see	all	the	currently	running	workflows.	You	can	use	the	example	workflow

06.04.01	Sleep	for	testing.
3.	 To	cancel	the	workflow,	tick	it	and	then	select	Cancel	all	selected.
4.	 Click	on	Refresh	Grid	to	show	the	changes.

5.	 Click	on	Finished	Workflows.
6.	 You	can	now	select	for	either	failed,	completed,	and/or	canceled	workflows.
7.	 You	can	also	narrow	down	the	timeframe	of	the	search.
8.	 As	well	as	search	by	the	Workflow	name,	its	Workflow	ID,	or	its	Token	ID.
9.	 By	clicking	on	one	of	the	blue	links,	you	can	get	additional	information	of	the	workflow,

such	as	its	logs	and	schema.

System	properties

You	can	configure	several	system	properties	that	will	change	the	way	Orchestrator	behaves:

1.	 In	the	Orchestrator	Control	Center,	go	to	System	Properties.
2.	 Click	on	the	plus	sign.
3.	 Enter	the	Key	you	would	like	to	change	as	well	as	the	Value	it	should	now	have.	A

Description	helps	quite	a	lot	at	this	stage.
4.	 Click	on	Add	and	then	restart	the	Orchestrator	service.

In	the	How	it	works...	section	is	a	list	of	common	system	properties	to	set.

Changing	the	Control	Center	user	name

You	can	change	the	login	name	for	the	Control	Center	in	order	to	increase	security:

1.	 In	the	Orchestrator	Control	Center,	click	on	Settings	(top	right).
2.	 Click	on	the	Change	Credentials.
3.	 Enter	the	Old	password.
4.	 Now	enter	a	New	user	name	for	the	Control	Center	user.	The	default	is	root.
5.	 Enter	the	New	password	and	click	on	Change	Credentials:

File	System	Browser

The	Control	Center	also	includes	a	file	browser,	which	is	also	able	to	download	you	some
files:

1.	 In	the	Orchestrator	Control	Center,	go	to	File	System	Browser.
2.	 You	are	presented	with	four	different	folders	that	you	can	access	(see	the	following

screenshot).
3.	 Click	on	one	of	the	folders	to	see	its	content.
4.	 Select	the	blue	icon	on	the	right	of	the	file	to	download	it:

How	it	works...
The	Control	Center	has	quite	a	lot	of	features	and	turns	out	to	be	much	more	interesting	than
the	old	Configurator.	The	ability	to	use	a	REST	interface	pushes	automated	configurations
and	deployments	further	and	further.	One	could	create	in	Orchestrator	a	workflow	that
deploys	two	Orchestrators,	and	then	by	using	the	Control	Center	API,	configure	them	as
clusters.

Control	Center	API

The	Control	Center	comes	with	its	own	REST	API.	This	allows	you	to	configure	Orchestrator
via	REST	and	so	automate	the	configuration.	The	whole	thing	comes	with	a	bit	of
documentation	to	have	a	look	at:

https://[Orchestror	FQDN]:8283/vco-controlcenter/docs

We	will	have	a	much	closer	look	at	it	in	the	recipe	Accessing	the	Control	Center	via	REST
plugin	in	Chapter	7,	Interacting	with	Orchestrator.

System	properties

Here	we	have	a	selection	of	system	properties:

Property Value Description

com.vmware.js.allow-local-process true
Allows	orchestrator	to	execute
commands	on	the	appliance
OS.

com.vmware.o11n.smart-client-disabled true Disables	any	non-admin	access
to	the	Orchestrator	Client.

com.vmware.scripting.rhino-class-shutter-

file

[file
location]

Integrates	new	Java	classes	in
Orchestrator.

com.vmware.vmo.plugin.vi4.waitUpdatesTimeout [ms] vCenter	time	out.	Default
20,000	ms.

There's	more...
The	advanced	options	let	you	re-define	some	of	the	limitations	of	Orchestrator.	In	the
Orchestrator	Control	Center,	go	to	Advanced	Options.

Advanced	Options Usage

Enable	safe	mode This	option	cancels	all	running	workflows	without	restarting	them
after	an	Orchestrator	restart.

Number	of	concurrent
running	workflows The	number	of	workflows	that	run	at	the	same	time.

Maximum	amount	of
running	workflows	in

Defines	the	length	of	the	workflow	queue.	Workflow	requests	are
stored	in	the	queue	until	they	are	run.	If	the	queue	is	full,	no	new

the	queue workflows	can	be	run.

Maximum	number	of
preserved	runs	per
workflow

How	many	workflow	executions	should	be	kept	before	the	oldest
get	deleted?

Log	events	expiration
days

The	number	of	days	log	events	are	kept	in	the	database	before
being	purged.

Before	changing	these	settings	to	higher	values,	consider	scaling	out	your	Orchestrator
deployment,	see	the	Introduction	to	Chapter	3,	Distributed	Design.

See	also
The	recipe	Accessing	the	Control	Center	via	REST	plugin	in	Chapter	7,	Interacting	with
Orchestrator.

Chapter	3.	Distributed	Design
This	chapter	is	dedicated	to	discussing	how	a	distributed	design	of	Orchestrators	looks	and
can	be	designed.	We	will	be	discussing	the	following	recipes:

Building	an	Orchestrator	cluster
Load-balancing	Orchestrator
Upgrading	a	cluster
Managing	remote	Orchestrator
Synchronizing	Orchestrator	elements	between	Orchestrator	servers

Introduction
Why	a	full	chapter	dedicated	to	multiple	Orchestrators?	Well...	since	Orchestrator	became	the
central	turning	stone	for	vRealize	automation,	there	are	more	and	more	customers	that
distribute	and	protect	their	Orchestrator	infrastructure.

We	differentiate	between	different	goals	and	scenarios,	such	as	high	availability	(HA),
workload	spreading,	scaling	out,	and	bandwidth	optimization	and	localization.	In	the
following	sections	I	break	this	down	into	the	three	most	common	forms:	cluster,	distributed,
and	scale	out	designs.

Tip

Please	note	that	the	vRealize	automation	(vRA)	internal	Orchestrator	should	not	be	clustered
as	described	here.	If	you	scale	out	vRA,	you	should	consider	using	an	external	Orchestrator
cluster,	not	the	built-in	vRA	Orchestrator.	See	Chapter	13,	Working	with	vRealize
Automation	for	more	information.

Cluster	design
As	Orchestrator	becomes	more	and	more	production-critical	for	companies,	it	is	a	solid	idea
to	cluster	Orchestrator	to	guarantee	that	it's	up	and	working.	An	Orchestrator	cluster	is	most
powerful	when	combined	with	a	load-balancer.	However,	if	you	are	only	using	Orchestrator
to	run	workflows	without	any	other	input	(headless),	then	you	can	use	an	Orchestrator	cluster
without	a	load-balancer	and	use	the	steps	outlined	in	this	chapter	to	make	sure	that	workflows
are	started	or	logs	are	checked	using	a	central	Orchestrator	controlling	all	other	installations.

A	typical	situation	where	a	clustered	Orchestrator	(with	a	load-balancer)	is	a	very	good	idea
is	when	the	Orchestrator	acts	as	a	domain	manager.	What	is	meant	by	that	is	that	Orchestrator
is	responsible	for	automating	the	VMware	domain	(all	things	vSphere)	and	another
automation	tool	(such	as	Ansible,	Chef,	or	something	else)	uses	the	Orchestrator	workflows.
The	domain	manager	concept	is	another	solution	to	the	automation	problem.	Instead	of	using
one	tool	(such	as	Orchestrator	or	vRA)	to	automate	everything,	you	use	tools	specialized	for
their	domain.	Examples	of	domains	are	VMware,	Microsoft,	Red	Hat,	EMC	or	NetApp
storage,	and	Cisco	networking.	In	each	of	these	domains,	a	tool	exists	that	is	specialized	to
deal	with	the	automation	of	its	domain.	For	Red	Hat	there	is	Satellite,	for	Microsoft	there	is
SMS	or	SCOM,	and	so	on.	Each	of	these	tools	has	a	SOAP	or	REST	interface	that	can	be
accessed	by	a	general	management	tool.	Orchestrator	would	be	a	domain	manager	for
VMware.

The	following	pictures	show	how	an	Orchestrator	cluster	can	look	and	how	it	can	be
accessed.	Please	note	that	the	use	of	the	vSphere	client	isn't	supported	in	cluster	mode.

Distributed	design
When	we	talk	about	distributed,	we	mean	that	you	have	multiple	Orchestrator	installations	that
are	not	in	the	same	place	or	not	looking	after	the	same	things.	For	example,	your	main
corporate	data	center	sits	in	Europe	and	you	have	others	in	North	America,	Asia,	and	Oceania.
If	you	have	one	Orchestrator	sitting	in	Europe	that	manages	all	other	centers,	the	result	would
be	massive	problems	from	various	sources,	such	as	bandwidth,	time	zones,	workflow
distribution,	and	versioning.

But	that's	not	the	only	example.	One	can	generally	differentiate	Orchestrator	deployments	into
Geographically	Distributed	and	Logically	Distributed	ones:

Geographically	Distributed

The	use	of	geographically	dispersed	Orchestrators	is	common	in	large	companies.	Here,	a
central	Orchestrator	instance	executes	workflows	on	remote	environments.	The	amount	of
bandwidth	used	to	execute	a	workflow	remotely	(using	the	multi-node	plugin)	is	much	less
than	the	amount	that	would	be	needed	to	run	the	workflows	directly.	This	is	especially	true
when	a	lot	of	input	variables	have	to	be	collected	to	run	the	workflow.

Logically	Distributed

Logically	Distributed	means	that	your	Orchestrators	are	located	in	different	environments,
such	as	production,	development,	and	so	on.	In	this	case,	you	may	have	an	Orchestrator
infrastructure	that	creates	and	manages	your	different	infrastructure,	or	is	used	for
deployments	or	automation.	Central	management	is	then	also	quite	important.

Please	note	that	the	remote	Orchestrator	doesn't	necessarily	have	to	be	paired	with	a	vCenter.
A	remote	Orchestrator	could	be	used	to	handle	your	server,	storage,	or	any	other	add-on
infrastructure	services	or	hardware.

Scaling	out
The	last	design	deals	with	scaling	out	and	discusses	how	to	distribute	workloads	and	how	to
deal	with	Orchestrator's	limitations.	There	are	cases	where	the	maximum	number	of
concurrent	workflows	running	(300)	is	too	small.	One	way	to	deal	with	this	is	to	increase	the
limit	(see	the		recipe	Control	Center	titbits	in	Chapter	2,	Optimizing	Orchestrator
Configuration),	but	the	better	way	is	to	scale	your	deployment.

There	are	two	ways	to	do	this.	You	either	use	a	distributed	design	or	use	a	cluster	design,	as
seen	in	the	following	figure:

The	central	Orchestrator	in	both	approaches	is	responsible	for	syncing	workflows	and
settings	between	the	actual	working	Orchestrators.

Central	management
A	central	Orchestrator	instance	can	be	used	to	keep	control	of	all	the	distributed	installations.

A	central	Orchestrator	server	would	be	connected	to	all	sub-Orchestrators	using	the	multi-
node	plugin	(also	known	as	the	VCO	plugin).	This	will	allow	you	to	develop	and	then
distribute	your	workflows	centrally.

Using	proxy	workflows,	you	can	run	workflows	on	geographically	remote	sites	without
running	into	bandwidth	or	timing	problems.	You	can	also	schedule	the	execution	of
workflows	in	remote	locations	to	suit	time	zone	differences.

Using	the	Orchestrator	Control	Center	REST	API,	you	can	control	the
remote/distributed/clustered	Orchestrators	tidily	and	even	automate	their	behavior.

In	theory,	it	would	be	a	quite	a	lot	of	work,	but	it's	possible	to	create	a	workflow	that	deploys
multiple	Orchestrator	instances	using	the	vSphere	plugin,	then	configure	and	cluster	them
using	the	Control	Center	API,	and	then	create	a	load-balancer	using	the	NSX	plugin.

Building	an	Orchestrator	cluster
In	this	recipe,	we	are	building	an	Orchestrator	cluster	and	configuring	it	for	HA.	Load-
balancing	is	discussed	in	a	separate	recipe	in	this	chapter.

Getting	ready
The	prerequisites	for	a	cluster	are	not	that	hard,	but	they	are	important:

Shared	DB:	Please	have	a	look	at	the	recipe	Configuring	an	external	database	in	Chapter
1,	Installing	and	Configuring	Orchestrator.	Also,	check	that	you	have	set	the	required
extras	as	stated	in	the	There's	more...	section	of	the	recipe	Configuring	an	external
database.	This	is	especially	important	if	you	are	using	an	MS	SQL	DB.	Also	note	that	if
you're	serious	about	HA,	you	may	want	to	use	a	DB	cluster.
You	need	two	Orchestrator	installations.	It's	best	to	use	fresh	ones,	each	with	fixed	IPs.
Make	sure	NTP	is	configured	and	the	time	is	synced.
You	should	be	familiar	with	the	content	of	the	recipe	Important	Orchestrator	settings	in
Chapter	1,	Installing	and	Configuring	Orchestrator,	as	well	as	with	the
recipe	Configuring	the	Orchestrator	service	SSL	certificate	in	Chapter	2,	Optimizing
Orchestrator	Configuration.

How	to	do	it...
In	this	recipe,	I	will	deploy	and	configure	two	fresh	Orchestrator	installations	and	configure
them	into	a	cluster.

Tip

We	will	discuss	SSL	certificates	and	clusters	in	the	recipe	Load-balancing	Orchestrator	in	this
chapter.	If	you	want	to	use	load-balancing	or	CA	signed	certificates	with	your	cluster,	please
read	the	How	it	works...	section	of	that	recipe	first	before	continuing.

Preparation	work

Before	we	come	to	the	main	event,	we	need	to	prepare	some	things:

Create	an	external	DB	with	dedicated	user	(the	third	rule	of	IT:	Dedicated	Services	=
Dedicated	Users)	and	configure	the	DB	according	to	Configuring	an	external	database	in
Chapter	1,	Installing	and	Configuring	Orchestrator
Deploy	two	Orchestrator	installations,	as	shown	in	the	recipe	Deploying	the	Orchestrator
appliance	in	Chapter	1,	Installing	and	Configuring	Orchestrator

Configuring	the	first	node	of	the	cluster

We	now	prepare	the	first	node	of	the	cluster:

1.	 Connect	the	Orchestrator	to	an	authentication	source,	as	shown	in	the	recipe	Configuring
external	authentication	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

2.	 Connect	the	Orchestrator	to	an	external	DB	as	shown	in	the	recipe	Configuring	an
external	database	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

3.	 If	you	want	to	use	CA	signed	server	certificates	or	the	SSL	SAM	variant,	then	you	need	to
configure	them	now.	See	the	recipe	Configuring	the	Orchestrator	service	SSL
certificate	in	Chapter	2,	Optimizing	Orchestrator	Configuration,	and	Load-balancing
Orchestrator	in	this	chapter.

4.	 Configure	licensing	and	a	package	signing	as	shown	in	the	recipe	Important
Orchestrator	settings	inChapter	1,	Installing	and	Configuring	Orchestrator.

5.	 You	may	need	to	force	plugins	reinstall,	as	shown	in	the	recipe	Important	Orchestrator
settings	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

6.	 Configure	the	vCenter	connection,	as	shown	in	the	recipe	Connecting	to	vCenter	in
Chapter	1,	Installing	and	Configuring	Orchestrator.

7.	 Add	and	configure	any	other	plugins	you	need,	as	shown	in	the	recipe	Installing
plugins	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

8.	 Upload	any	package	you	need.	Basically,	make	this	Orchestrator	installation	production-
ready.

Configure	cluster	settings

We	are	now	configuring	the	cluster	settings:

1.	 In	the	Orchestrator	Control	Center,	click	on	Orchestrator	Cluster	Management.
2.	 For	this	example,	set	the	Heartbeats	to	1	and	the	Failover	Heartbeats	to	5.	This	setting

will	make	sure	that	the	Orchestrator	server	fails	over	after	5	seconds.	More	about	the
settings	in	the	How	it	works...	section.

3.	 Click	on	Save	and	restart	the	Orchestrator	service:

Join	a	node	to	the	cluster

Now	we	are	joining	an	additional	Orchestrator	to	the	cluster;	with	7.1	this	becomes	extremely
easy:

1.	 Log	in	to	the	second	Orchestrator's	Control	Center.
2.	 In	Control	Center,	click	Orchestrator	Cluster	Management	|	Join	Node	To	Cluster.
3.	 Enter	the	FQDN	or	IP	of	the	first	Orchestrator	node.
4.	 Enter	the	credentials	of	the	root	user	and	click	on	Join:

5.	 Restart	the	Orchestrator	service.
6.	 Click	on	Orchestrator	Cluster	Management.	The	current	status	of	the	cluster	is

displayed	at	the	bottom.	It	may	take	some	time	for	the	second	node	to	show	up:

You	can	see	which	Orchestrator	is	the	active	node	by	looking	at	the	state.	The	local	node	is	the
node	you	are	currently	connected	to.

Tip

Please	note	that	the	SSL	certificate	of	the	primary	node	has	also	been	pushed	out	to	the	new
node.	Please	also	see	the	How	it	works...	section	of	this	recipe.

Configuring	an	Orchestrator	cluster	in	vSphere

When	you	want	your	Orchestrator	cluster	to	work	properly,	you	also	need	to	configure	the
Orchestrator	VMs	to	be	properly	configured	in	vSphere:

1.	 Log	in	to	vCenter	and	navigate	to	the	cluster	where	your	Orchestrator	VMs	are.
2.	 Click	on	Manage,	then	on	VM	Overrides,	then	on	Add.
3.	 Add	both	Orchestrator	VMs	and	set	Automation	Level	to	Disabled	to	make	sure	that	the

failed	Orchestrator	VM	doesn't	restart.	This	could	cause	a	very	unstable	configuration.
Click	on	OK.

4.	 Click	on	VM/Host	Rules	and	then	on	Add.
5.	 Give	the	new	rule	a	name,	such	as	SeparateOrchestrator.
6.	 Select	Separate	Virtual	Machines	and	then	Add	the	two	Orchestrator	VMs.	This	will

make	sure	that	if	an	ESXi	hosts	fails,	only	one	Orchestrator	node	is	affected.
7.	 Click	OK	when	you	are	finished.

Playing	with	the	cluster

We	will	now	simulate	cluster	failover:

1.	 Log	in	to	vCenter.
2.	 Power	off	the	active	Orchestrator	node;	that	should	be	at	this	stage	the	first	node.
3.	 You	will	have	to	wait	5	seconds	for	the	failover	(see	the	settings	in	step	2	of	the
Configure	cluster	settings	section).

4.	 Log	in	to	the	second	node	and	check	Orchestrator	Cluster	Management.	You	should
see	that	the	second	node	is	now	running	and	the	first	one	is	down	(not	responding):

5.	 In	vCenter,	power	on	the	first	node	again.
6.	 After	a	while,	you	should	now	see	that	the	first	node	is	in	standby	mode.

Push	configuration

The	push	configuration	is	a	new	feature	in	vRO	7.1	and	makes	the	synchronization	of	clusters
much	easier.	Let's	have	a	look	at	this:

1.	 Log	in	to	the	active	node	of	your	cluster.
2.	 Add	an	additional	plugin,	as	shown	in	the	recipe	Installing	plugins	in	Chapter	1,
Installing	and	Configuring	Orchestrator.

3.	 Check	Orchestrator	Cluster	Management.	You	should	see	that	the	second	node	is	not	in
sync:

4.	 Click	on	Push	Configuration,	and	wait	until	you	see	the	notification	saying	that	the	node
configuration	was	pushed	successfully.

5.	 Click	on	Refresh.	You	should	see	that	the	second	node	requires	a	rest.	You	can	now
either	restart	the	second	node	via	the	Control	Center	or	click	on	Push	Configuration
and	reset	node.

6.	 Wait	a	little	and	then	click	Refresh.

Tip

Please	note	that	a	push	configuration	will	also	push	the	SSL	certificate	to	all	the	nodes.
Please	also	see	the	How	it	works...	section	of	this	recipe.

How	it	works...
Since	vRO7.1,	the	configuration	of	Orchestrator	clusters	has	become	a	lot	easier.	The
function	that	an	additional	node	will	automatically	be	synced	to	the	configuration	of	the
cluster	is	a	massive	improvement	and	makes	things	a	lot	easier.	The	other	function	that	was
added	is	the	ability	to	actively	push	a	configuration	to	all	the	nodes,	making	it	easier	to
change	clusters.

Tip

Please	note	that	with	vRO7.1,	the	certificates	are	shared	between	the	nodes	when	you	join	a
cluster.	This	results	in	the	fact	that	you	will	need	to	use	SAN	certificates	for	the	Orchestrator
cluster.	Please	also	see	the	How	it	works...	section	of	this	recipe.

The	Orchestrator	cluster	can	function	in	two	ways.	The	first	and	easiest	is	HA	mode.	This
means	that	we	have	at	least	two	Orchestrator	installations,	and	if	one	fails,	the	other	will
continue	running.	When	a	workflow	is	running,	Orchestrator	will	save	the	state	of	the
workflow	to	the	database,	before	executing	a	workflow	element.	This	is	the	same	behavior
that	lets	us	resume	failed	workflows	or	do	debugging	(see	the	recipe	Resuming	failed
workflows	in	Chapter	4,	Programming	Skills).

What	is	happening	when	one	server	fails	is	that	the	last	state	of	the	workflow	execution	will	be
picked	up	by	the	new	active	node	and	continued.	For	a	purely	HA	function,	you	set	the
Number	of	active	nodes	to	one.

The	difference	between	HA	and	load-balanced	is	that	in	the	load-balanced	versions	multiple
Orchestrators	can	execute	workflows	at	the	same	time,	meaning	that	each	Orchestrator
instance	is	doing	less	work.	For	load-balancing,	you	need	to	set	the	Number	of	active	nodes
to	more	than	one	and	you	should	configure	a	load-balancer	to	Round-Robin.

Clearly,	you	can	use	both	modes	at	the	same	time.	For	example,	if	you	have	four	Orchestrator
nodes	and	you	have	configured	Number	of	active	nodes	to	two,	two	of	the	Orchestrators	are
running	and	two	are	in	standby.	If	one	of	the	active	nodes	fails,	then	one	of	the	standby	nodes
will	be	brought	to	active	mode.	If	the	failed	node	is	available	again,	it	becomes	a	standby
node.

The	Heartbeat	interval	(in	seconds)	gives	the	interval	in	which	an	Orchestrator	node	sends
keep	alive	signals	to	all	other	nodes	of	the	cluster.

The	Number	of	failover	heartbeats	defines	how	many	keep	alive	signals	can	be	missed
before	a	node	is	declared	dead	by	the	other	members	of	the	cluster.

You	determine	the	failover	time	by	multiplying	the	Heartbeat	interval	(in	seconds)	by	the
Number	of	failover	heartbeats.

Tip

If	you	want	to	use	local	files	in	a	clustered	Orchestrator	environment	you	should	use	NFS	or
SMB	shares.	See	the	recipe	Configuring	access	to	the	local	filesystem	in	Chapter	2,	Optimizing
Orchestrator	Configuration.

SSL	Certificates	in	vRO7.1.0

At	the	time	of	writing	(vRO	7.1.0),	when	a	node	joins	a	cluster	it	will	automatically	take	the
certificate	of	the	primary	host.	If	you	reconfigure	a	node	for	a	different	certificate,	the	cluster
will	be	out	of	sync.	If	your	security	isn't	allowing	for	SAN	certificates,	you	can	run	with	an
unsynced	cluster.	It's	not	nice,	but	it	works.

VMware	has	promised	to	make	sure	that	in	the	next	release	the	certificates	will	not	be	pushed
out	automatically,	allowing	you	to	create	a	separate	machine	account	for	each	node.

Cluster	and	Orchestrator	Client

When	you	have	more	than	one	active	Orchestrator,	you	need	to	have	a	think	about	the
Orchestrator	Client	usage.	Officially,	the	usage	is	not	supported	but,	works	anyhow.	The	idea
behind	it	is	that	it	would	be	possible	for	two	users	(one	on	each	of	the	Orchestrators)	to
modify	the	same	resource	(for	example,	a	workflow).	This	can	be	worked	around	by	not
giving	the	users	edit	or	administrator	rights	(see	the	recipe	User	management	in	Chapter	7,
Interacting	with	Orchestrator)	or	by	using	locks	(see	the	recipe	Using	the	Locking	System	in
Chapter	8,	Better	Workflows	and	Optimized	Working).

The	supported	and	best	practice,	however,	is	to	test	a	change	on	a	separate	Orchestrator
installation	and	then	transfer	it	to	the	cluster	when	only	one	Orchestrator	node	is	running	and
the	workflow	that	is	to	be	changed	is	not	in	use.

Changing	cluster	content

When	you	want	to	change	content,	such	as	workflows,	that	are	stored	on	the	cluster,	you	must
shut	down	all	but	one	Orchestrator	services,	then	change	the	content	on	one	server	and	restart
all	the	other	Orchestrator	services.

If	you	are	adding	a	new	plugin,	you	will	need	to	install	this	plugin	on	all	nodes	before
restarting	the	Orchestrator	services.

Changing	cluster	settings

When	you	would	like	to	change	the	Orchestrator	server	settings,	it's	best	to	stop	all	but	one
Orchestrator	nodes,	change	the	settings,	and	then	restart	the	others.	If	you	don't	do	that,	you
will	end	up	with	an	unstable	cluster,	meaning	that	the	cluster	fails	over	from	one	node	to	the
other	all	the	time.	Try	it	out...

Removing	a	node	from	the	cluster

This	is	easier	than	you	think;	just	delete	the	node	or	reconfigure	it	to	use	a	different	database

(such	as	the	built-in	PostgreSQL).

There's	more...
There	are	several	more	interesting	things.

Logs

When	you	are	writing	to	logs	in	your	workflow	while	using	clusters,	you	should	use	the
Server	log,	not	the	System	log,	as	the	System	will	be	written	to	the	localhost	while	the	Server
is	written	to	the	database.	Check	out	the	example	workflow	for	this	recipe.

Tip

Please	remember	that	excessive	logging	will	impact	DB	growth.

Another	method	of	load-balancing

If	you	are	looking	for	pure	load-balancing,	as	in	trying	to	run	a	process	on	several
Orchestrators	in	parallel,	you	could	also	consider	using	the	AMQP	plugin.	Have	a	look	at	the
recipe	Working	with	AMQP	in	Chapter	10,	Built-in	Plugins.

Example	workflow	-	cluster	test

In	the	example	package,	there	is	a	workflow	called	03.01	Cluster	Test.	For	it	to	work,
follow	these	steps:

1.	 Connect	with	the	Orchestrator	Client	to	the	active	node.
2.	 Start	the	workflow	and	wait	until	the	first	counts	show	in	the	logs.
3.	 Power	off	the	active	node.
4.	 Connect	with	the	Orchestrator	Client	to	the	new	active	node	(you	need	to	wait	a	few

seconds).
5.	 Check	the	workflow	logs	and	then	the	events	of	the	workflow.

You	will	see	that	the	logs	show	only	the	entries	that	have	been	made	after	workflow	execution
was	switched	to	the	new	host	(System.log).	The	events	tab	will	show	all	the	log	entries
(Server.log).

See	also
The	recipe	Working	with	AMQP	in	Chapter	10,	Built-in	Plugins,for	alternative	workload
balancing.

The	recipe	Configuring	the	Orchestrator	service	SSL	certificate	in	Chapter	2,	Optimizing
Orchestrator	Configuration,	for	creating	SSL	certificates.

The	recipe	Load-balancing	Orchestrator	in	this	chapter	to	understand	and	set	up	load-
balancing.

Load-balancing	Orchestrator
In	this	recipe,	we	will	build	a	load-balancer	and	discuss	the	situation	with	certificates	as	well.

Getting	ready
Here,	we	will	be	using	VMware	NSX,	but	the	same	methods	apply	to	all	load-balancers.	So,
for	this	recipe	you	need	VMware	NSX.	If	you	don't	have	a	license	for	NSX,	check	out	F5
Networks,	who	have	a	trial	program,	or	the	Apache	load-balancer.	Alternatively,	you	could
also	use	Nginx;	see	https://kb.vmware.com/kb/2058674	.

The	NSX	appliance	needs	to	be	deployed	along	with	the	controllers.	If	you	need	some	help
with	that,	check	out	these	YouTube	videos:

https://www.youtube.com/watch?v=CATcY254pP8
https://www.youtube.com/watch?v=tum3eBIC-_c

No	VXLANs	or	any	fancy	configuration	is	needed.

https://kb.vmware.com/kb/2058674
https://www.youtube.com/watch?v=CATcY254pP8
https://www.youtube.com/watch?v=tum3eBIC-_c

How	to	do	it...
I	split	this	recipe	into	several	parts	for	easier	reading;	execute	them	in	sequence.

Creating	a	new	NSX	Edge

If	you	don't	have	an	NSX	Edge	yet,	let's	get	one	running:

1.	 Log	in	to	vCenter	and	click	on	Network	Security	and	then	on	NSX	Edges.
2.	 Click	on	the	green	plus	sign	to	create	a	new	NSX	Edge.
3.	 We	can	run	with	the	defaults	mostly,	just	change	the	settings	I	point	out.	Give	the	NSX

Edge	a	name	such	as	vROCluster	and	click	Next.
4.	 Set	a	new	password	and	click	Next.
5.	 Click	on	the	green	plus	sign	to	add	some	settings	for	the	new	Edge.	You	need	to	define

the	cluster,	the	datastore,	the	host,	and	the	VM	folder	that	the	new	Edge	VM	should	live
in.	Click	Next.

6.	 Click	on	the	green	plus	sign	to	create	a	new	interface,	basically	the	IP	that	the	load-
balancer	will	be	working	on.	Specify	the	load-balancer	IP	and	the	network	you	want	to
connect	to.	Make	sure	it's	an	Uplink.	Click	on	OK:

7.	 You	can	untick	the	Configure	Default	Gateway	option	and	click	Next.
8.	 Tick	Configure	Firewall	default	policy	and	switch	it	to	Accept.	Click	Next.
9.	 Finish	the	wizard	and	wait	until	the	Edge	is	deployed.

Configuring	the	load-balancer

This	enables	the	basic	load-balancing	functionality:

1.	 From	where	we	have	left	off,	double-click	on	the	new	Edge.	You	are	now	redirected	to
the	Edge	and	can	configure	it.

2.	 Click	on	Load	Balancer	and	then	on	Global	Configuration.
3.	 Click	on	Edit	(on	the	right	side)	and	tick	Enable	Load	Balancer.	Click	OK.

Dealing	with	SSL	certificates

Set	how	you	want	to	deal	with	the	certificates	(see	the	How	it	works...	section	for	more
information).	We	will	be	setting	up	SSL	passthrough	in	this	example:

1.	 Now	select	Application	Profiles	and	click	on	the	green	plus	sign.
2.	 Give	the	policy	a	name	and	set	it	to	HTTPS.
3.	 Ticking	Enable	SSL	Passthrough	will	be	okay	for	this	example;	depending	on	what	you

would	like	to	do,	you	can	also	untick	it	and	go	with	SSL	offload.	Leave	the	rest	as	the
defaults.	Click	OK.

Monitors	-	health	checks

Create	a	new	health	check	for	the	Orchestrator	services.	The	health	of	a	node	is	captured	in
https://[VRO	FQDN]:8281/vco/api/healthstatus:

1.	 Select	Service	Monitoring	and	click	on	the	green	plus	sign.	(previous	screenshot	A).
2.	 Enter	a	name	for	the	check.	VMware's	recommended	settings	are	captured	in	the

previous	screenshot	and	in	the	table	in	the	How	it	works...	section.

Configure	pools

This	configures	what	VMs	belong	to	the	load	balancing	setup:

1.	 Select	Pools	and	click	on	the	green	plus	sign.
2.	 Enter	a	name	for	the	new	pool	and	select	the	monitor	that	you	created	in	step	2	of	the
Monitors	-	health	checks	section.

3.	 Click	on	the	green	plus	sign	to	add	the	first	member	of	our	pool.
4.	 Give	the	pool	member	a	name	(best	to	give	it	the	VM	name)	and	then	fill	in	its	IP	and

port	8281	for	both	Port	and	Monitor	Port.	Click	on	OK	and	then	add	the	next	member.
Click	on	OK	when	finished:

Virtual	server

This	is	the	interface	that	a	client	will	connect	to:

1.	 Select	Virtual	Servers	and	click	on	the	green	plus	sign.
2.	 Enter	a	new	name	for	the	service	and	give	it	the	IP	of	the	frontend	you	selected	in	step	6

of	the	Creating	a	new	NSX	Edge	section.
3.	 Set	the	Protocol	to	HTTPS	and	enter	8281	as	Port.
4.	 Assign	this	virtual	server	to	use	the	pool	you	created	in	step	2	of	the	Configure	pools

section	and	click	OK:

Done

You	have	finished	configuring	the	NSX	load-balancer.	You	should	now	be	able	to	connect	to	it
using	the	frontend	IP	you	assigned	in	step	6	of	the	Creating	a	new	NSX	Edge	section:
https://192.168.220.22:8281/vco/.

How	it	works...
Load-balancing	is	a	method	by	which	a	central	unit	(the	load-balancer)	is	contacted	by	the
user	instead	of	one	of	the	Orchestrator	installations.	The	load-balancer	has	two	functions.	The
first	is	to	check	the	availability	of	the	underlying	Orchestrators	for	that,	the	load-balancer	is
checking	each	Orchestrator's	health	status	by	contacting
https://[vro]:8281/vco/api/healthstatus.	If	the	Orchestrator	service	is	alive	then	it	will
respond	with	the	following:

<node-status	xmlns="http://www.vmware.com/vco">	

<state>RUNNING</state>	

<health-status	state="OK"	time="1463231814183"/>	

<instance-id>9d40b766-e278-4f6c-8fa1-ab143d5b73e7</instance-id>	

The	other	function	of	a	load-balancer	is	to	forward	the	connection	request	to	one	of	the	active
Orchestrator	nodes.	The	method	we	should	use	for	this	with	Orchestrator	is	called	Round-
Robin,	which	will	give	a	connection	to	the	next	available	Orchestrator	node.	For	example,	if
there	are	three	active	Orchestrators	(vro1,	vro2,	and	vro3)	then	the	first	request	will	be	given
to	vro1,	the	next	one	to	vro2,	then	to	vro3,	and	then	again	to	vro1,	and	so	on.

The	following	settings	are	usable	for	all	load-balancers.	The	settings	may	be	called
something	slightly	different,	but	they	all	function	in	the	same	way:

Setting Value

Health	check	protocol HTTPS

Health	check	link GET/vco/api/healthstatus

Health	check	return RUNNING

Health	check	interval 3	sec

Health	check	timeout 9	sec

Health	check	max	retries 3

Load-balancing	mechanism Round-Robin

Load-balancing	port 8281

SSL	certificate Offload	or	passthrough

SSL	persistency None

SSL	certificates	and	load-balancing

All	connections	to	Orchestrator	use	HTTPS	and	SSL	certificates,	so	we	need	to	discuss	this.
The	problem	is	as	follows:	when	the	load-balancer	forwards	the	connection	to	one	of	the
Orchestrators,	the	client	will	be	connecting	to	a	different	certificate.

There	are	basically	three	methods	to	deal	with	this.

SSL	passthrough

This	is	the	default	for	most	load-balancers.	The	certificate	of	the	underlying	Orchestrator	is
passed	to	the	connecting	user.	If	the	certificate	is	CA	signed	and	trusted	by	the	connecting
computer,	then	this	works	quite	well.	If	you	are	using	self-signed	certificates	that	are	not
trusted	by	the	connecting	computer,	the	connection	must	be	approved	each	time,	which	can
lead	to	a	lot	of	problems.

If	you	use	a	VMCA-signed	certificate,	this	can	work	very	well.	(See	the	Use	VMCA	generated
certificate	section	in	the	recipe	Configuring	the	Orchestrator	service	SSL	certificate	in
Chapter	2,	Optimizing	Orchestrator	Configuration.

SSL	SAN	(SSL	passthrough)

You	can	create	a	SSL	certificate	with	alternative	names,	so-called	SAN	(Subject	Alternative
Name).	The	certificate	contains	not	only	one	FDQN	and/or	IP,	but	multiple	ones.	The	load-
balancer	is	configured	for	passthrough	and	the	connecting	server	gets	a	certificate	that	is
valid	for	not	only	one	Orchestrator	node	but	multiple	ones.

See	the	There's	more...	section	of	the	recipe	Configuring	the	Orchestrator	service	SSL
certificate	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

SSL	offload

This	mode	is	not	supported	by	all	load-balancers.	Offloading	means	that	the	load-balancer
will	trust	each	Orchestrator	certificate	but	will	present	its	own	certificate	to	the	connecting
computer.	Using	this	method,	you	can	use	self-signed	untrusted	certificates	on	the
Orchestrator	and	use	one	single	trusted	CA	certificate	on	the	load-balancer:

Load-balanced	Orchestrator	cluster	with	vSphere	Web	Client

One	of	the	very	cool	features	of	the	vSphere	Web	Client	is	that	you	can	execute	Orchestrator
workflows	directly	from	it.	When	you	are	using	a	load-balanced	Orchestrator	cluster,	you
will	need	to	register	the	load-balanced	address	instead	of	any	single	Orchestrator:

1.	 Execute	the	recipe	Connecting	to	vCenter	in	Chapter	1,	Installing	and	Configuring
Orchestrator,	for	both	Orchestrator	servers.	Make	sure	you	enter	the	FQDN	or	IP	of
your	Orchestrator	cluster	you	created	in	step	6	of	the	Creating	a	new	NSX	Edge	section
as	the	external	address	(see	the	following	screenshot):

2.	 Log	in	to	vCenter	with	an	administrator	account.
3.	 Go	to	vRealize	Orchestrator.	In	vRO	Home,	click	on	Manage,	and	under	Server,	select

your	vCenter.	Your	Orchestrator	cluster	should	already	be	set	up	here.	If	not,	continue
this	recipe.

4.	 Click	on	Edit	Configuration	and	enter	the	FQDN	or	IP	of	the	Orchestrator	Cluster	you
created	in	step	6	of	Creating	a	new	NSX	Edge	section.

5.	 Click	on	Test	Connection	to	check	weather	the	connection	is	working,	then	click	OK.

6.	 Click	on	the	workflows	in	the	inventory	list	to	see	whether	the	inventory	is	loading;	if
that	is	not	the	case	you	need	to	check	your	SSO	registration	of	your	Orchestrator.	See	the
recipe	Connecting	to	vCenter	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

See	also
Load	balancing	Orchestrator	with	F5:	kb.vmware.com/kb/2118472	.

F5	trial	license:	https://www.f5.com/trial	.

VMware	NSX	product	overview	and	Hands	on	Lab:	http://www.vmware.com/products/nsx/	.

https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2118472
https://www.f5.com/trial
http://www.vmware.com/products/nsx/

Upgrading	a	cluster
In	this	recipe,	we	are	looking	to	upgrade	a	cluster.	This	recipe	works	for	updates	as	well	as
upgrades.

Getting	ready
We	need	a	cluster	that	consists	of	at	least	two	nodes	and	is	ready	to	be	upgraded.

How	to	do	it...
This	is	a	simple	process	that	I	will	split	in	3	parts.	First	execute	the	following	steps	and	then
continue	with	either	Minor	upgrades	or	Major	upgrades:

1.	 Shut	down	all	the	Orchestrator	servers	in	the	cluster.
2.	 Upgrade	the	Orchestrator	servers,	as	seen	in	the	recipe	Updating	Orchestrator	in	Chapter

1,	Installing	and	Configuring	Orchestrator.
3.	 After	finishing	the	upgrade,	you	need	to	log	in	to	the	Control	Center.
4.	 Make	sure	all	the	node	settings	are	correct.
5.	 Continue	with	either	Minor	upgrades	or	Major	upgrades.

Minor	upgrades

If	you	are	upgrading	between	minor	versions,	such	as	7.0	and	7.0.1,	where	no	hardware
change	was	made,	then	follow	this	step:

Upgrade	the	next	Orchestrator	server	until	you	have	upgraded	the	whole	cluster.

Major	upgrades

If	you	are	upgrading	between	major	versions,	such	as	5.x,	6.x,	or	7.0	and	7.1,	where	hardware
changes	have	been	made,	you	should	follow	these	steps:

1.	 Deploy	a	new	instance	of	the	appliance	and	push	the	configuration	out	to	it.
2.	 Continue	until	you	replace	the	whole	cluster.
3.	 Then	replace	the	first	Orchestrator	you	upgraded	with	a	new	instance.

How	it	works...
As	clustering	changed	between	vRO	5,	6,	7,	and	7.1,	you	need	to	be	a	bit	more	careful	with	the
upgrade.	That's	why	you	need	to	bring	down	the	whole	cluster.	This	is	especially	true	when
the	hardware	has	been	changed:

Version 5.5	and	6 7.0 7.1

Memory 3	GB 4	GB 6	GB

vCPU 2 2 2

Hard	disk 7	+	5	GB 7	+	5	GB 7	+	10	GB

If	you	are	just	updating	a	minor	version,	such	as	7.0.1	to	7.0.2,	you	can	try	to	upgrade	the
cluster	hot.	However,	this	could	be	problematic	and	should	be	tested	for	each	minor	upgrade
before	doing	it	in	production.

See	also
Updating	Orchestrator	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

Managing	remote	Orchestrators
This	recipe	centers	on	using	the	multi-node	plugin	(formerly	known	as	the	VCO	plugin).	This
plugin	will	allow	us	to	manage	other	Orchestrators.

Getting	ready
We	need	at	least	two	Orchestrator	installations.

It	is	also	quite	important	that	both	Orchestrator	instances	are	compatible	with	each	other,
meaning	they	should	preferable	be	of	the	same	version	and	build.

How	to	do	it...
This	recipe	will	call	the	first	Orchestrator	installation	the	local	Orchestrator,	and	the	one	we
add	will	be	called	the	remote	Orchestrator.	The	remote	Orchestrator	can	be	a	cluster.

Adding	an	Orchestrator	server
1.	 Log	in	to	your	local	Orchestrator.
2.	 Start	the	workflow:	Library	|	Orchestrator	|	Server	Management	|	Add	an

Orchestrator	server.
3.	 Enter	the	FQDN	or	IP	of	your	remote	Orchestrator	and	specify	port	8281.
4.	 It	helps	if	you	accept	the	certificate	silently	as	it	creates	less	work	for	you.
5.	 You	may	not	want	to	create	proxy	workflows	at	this	stage	as	this	will	create	proxy

workflows	for	every	existing	workflow	(including	all	the	library	ones).
6.	 Click	on	Next.	The	following	page	will	ask	you	about	the	timeouts	(in	seconds)	for	the

connection	to	the	remote	Orchestrator.	You	should	align	this	according	to	your
bandwidth	and	or	cluster	settings.

7.	 The	Retry	timeout	(minutes)	is	the	time	the	local	Orchestrator	will	wait	for	a	response
form	the	remote	Orchestrator.

8.	 Select	Yes	if	you	want	to	share	the	connection,	meaning	that	the	user	you	specify	will	be
used	to	execute	workflows	on	the	remote	Orchestrator.	If	you	select	No,	the	user
executing	a	proxy	workflow	will	be	the	one	that	will	execute	the	remote	workflow.	This
requires	both	the	local	and	the	remote	Orchestrator	to	be	registered	on	the	same	SSO:

9.	 Click	on	Next.	The	following	page	will	ask	you	about	the	timeouts	(in	seconds)	for	the
connection	to	the	remote	Orchestrator.	You	should	align	this	according	to	your

bandwidth	and	or	cluster	settings.	The	Retry	timeout	(minutes)	is	the	time	the	local
Orchestrator	will	wait	for	a	response	form	the	remote	Orchestrator.	Select	Yes	if	you
want	to	share	the	connection,	meaning	that	the	user	you	specify	will	be	used	to	execute
workflows	on	the	remote	Orchestrator.	If	you	select	No,	the	user	executing	a	proxy
workflow	will	be	the	one	that	will	execute	the	remote	workflow.	This	requires	both	the
local	and	the	remote	Orchestrator	to	be	registered	on	the	same	SSO:	After	the	workflow
has	finished,	go	to	the	inventory	and	have	a	look	under	the	vRO	multi-node	plugin.
There,	you	will	find	all	the	items	that	exist	in	the	remote	Orchestrator.

Creating	proxy	workflows

We	declined	in	the	previous	section	to	create	proxy	workflows	because	we	will	do	it	here:

1.	 Using	the	local	Orchestrator	Client,	start	the	workflow	by	navigating	to	Library	|
Orchestrator	|	Remote	Executions	|	Create	a	proxy	workflow.

2.	 Select	the	remote	workflow	you	would	like	to	use.	Click	on	Next.
3.	 Choose	to	create	proxy	workflows	that	are	executed	synchronously	(Yes)	or

asynchronously	(No).	Synchronous	means	that	Orchestrator	will	wait	until	the	workflow
is	executed	completely	(use	the	default,	which	is	Yes).

4.	 Wait	until	the	workflow	has	finished.	Then,	check	whether	the	new	folder	has	been
created	in	the	workflow	tree	called	VCO@[IP	or	FQDN	Orchestrator]:8281,	as	well	as
the	workflows	under	it.	See	the	following	collage:

5.	 Now,	execute	one	of	the	proxy	workflows.	When	finished,	check	on	both	Orchestrators;
you	will	find	that	the	proxy	workflow	will	have	executed	on	both	sides.	However,	log
messages	and	variable	tracking	will	only	be	in	place	on	the	remote	server.

6.	 It's	a	good	idea	to	go	and	check	what	happened	on	the	remote	Orchestrator.	Look	at	the
execution	and	the	logs.

Instead	of	just	creating	one	proxy	workflow,	you	can	create	proxies	of	all	the	workflows	of
the	remote	Orchestrator	by	navigating	to	Library	|	Orchestrator	|	Remote	Executions	|
Server	Proxies	|	Create	proxy	workflows	for	an	Orchestrator	Server,	or	a	workflow
folder,	Library	|	Orchestrator	|	Remote	Executions	|	Create	proxy	workflows	from	a
folder.

Also,	note	that	you	can	refresh	the	proxy	workflows.	This	will	make	sure	that	changes	in	the
input	or	output	variable	are	synced	to	the	proxy	workflows.

Managing	packets	on	the	remote	Orchestrator

Another	useful	function	is	the	ability	to	deploy	packages	to	remote	servers.	Perform	the
following	steps:

1.	 Using	the	local	Orchestrator	Client,	start	the	workflow	by	navigating	to	Library	|
Orchestrator	|	Remote	Management	|	Packages	|	Deploy	a	package	from	a	local
server.

2.	 Select	the	package	you	would	like	to	deploy	from	the	local	Orchestrator	to	the	remote
Orchestrator.

3.	 When	selecting	the	remote	server,	you	are	actually	able	to	choose	multiple	remote
Orchestrators.	An	array	window	will	open;	select	Insert	Value.	An	additional	popup	will
show	up	here;	select	the	remote	Orchestrator	and	click	on	Add.

4.	 The	chosen	package	is	now	installed	on	the	remote	Orchestrator.

How	it	works...
The	multi-node	plugin	can	be	used	in	quite	a	lot	of	situations.	The	first	and	foremost	is	to
manage	remote	servers	that	are	in	a	cluster;	see	the	recipe	Building	an	Orchestrator	Cluster	in
this	chapter.	Using	the	Multi-Node	Plugin,	we	can	now	manage	the	Orchestrator	clusters
workflows	and	packages	as	shown	in	the	following	image:

Another	good	idea	is	to	make	sure	that	workflows,	or	basically	any	other	Orchestrator
element	(by	building	a	specific	workflow),	are	replicated	between	Orchestrator	installations.
For	example,	for	load-balancing	or	audit	reasons,	you	have	multiple	Orchestrator	servers	and
you	need	to	make	sure	that	elements	are	the	same	on	all	of	them.

A	very	common	use	of	the	multi-node	plugin	is	for	maintenance	work,	such	as	cleaning	out
all	finished	workflows	from	remote	Orchestrators.

Last	but	not	least,	you	can	execute	workflows	from	a	different	Orchestrator.	For	example,	you
can	write	a	workflow	that	automatically	configures	a	new	Orchestrator	installation.

Please	note	that	you	can	create	a	task	from	a	workflow	(see	the	recipe	Scheduling
workflows	in	Chapter	4,	Programming	Skills)	and	thus	create	an	automated	push	or	pull	update
from	a	cluster.

Explore	the	workflows	that	come	with	the	VCO	plugin,	as	there	is	quite	a	lot	you	can	do.	The
following	are	examples:

Type Description

Proxy
workflows

Server:	Create,	delete,	refresh;	create	one	proxy	workflow,	create	from	folder,
create	multi-proxy	action.

Packages Delete,	delete	by	name,	deploy	from	local,	deploy	from	remote,	deploy
packages	from	local.

Workflows

Delete	all	finished,	delete	remote,	deploy	from	local,	deploy	from	remote.

Refresh	stale	workflow	runs	in	waiting	state.

Start	in	series,	start	in	parallel.

Server Add,	update,	delete.

Tasks Create,	create	recurring.

As	a	last	note,	when	you	delete	an	Orchestrator	server	using	the	workflow	by	navigating	to
Library	|	Orchestrator	|	Server	Configuration	|	Delete	a	vCO	Server,	all	the	proxy
workflows	of	the	remote	Orchestrator	will	also	be	deleted	from	the	local	Orchestrator.

See	also
See	the	recipe	Building	an	Orchestrator	cluster	in	this	chapter
See	Distributed	Deployment	in	the	introduction	to	this	chapter

Synchronizing	Orchestrator	elements	between
Orchestrator	servers
This	recipe	will	show	how	to	use	synchronization	to	update	Orchestrator	objects	between	two
Orchestrator	servers.

Getting	ready
We	will	need	at	least	one	workflow,	action,	or	other	Orchestrator	object	that	can	be	synced.

Additionally,	we	also	need	two	Orchestrator	servers;	they	should	not	be	in	a	cluster.	For	test
purposes,	you	can	deploy	an	Orchestrator	appliance	without	any	additional	configuration.

How	to	do	it...
We	will	use	a	workflow	in	this	example.	The	same	method	applies	to	all	other	Orchestrator
elements	that	can	be	synchronized:

1.	 Right-click	on	a	workflow	(or	a	folder)	and	select	Synchronize.
2.	 You	will	now	be	asked	to	enter	the	IP	or	FQDN	of	the	other	Orchestrator	server	as	well

as	some	credentials	for	the	connection.	Click	on	Login.
3.	 You	will	now	see	a	summary	of	all	workflows	you	have	selected	for	synchronization	on

both	Orchestrator	servers:
A:	Here,	the	version	number	of	a	given	workflow	is	shown
B:	You	have	four	options	that	we	will	discuss	in	the	How	it	works...	section	of	this
recipe
C:	Clicking	on	the	magnifying	glass	icon	will	produce	a	split	screen	that	shows	you
the	difference	between	the	versions	(see	the	recipe	Version	control	in	Chapter	4,
Programming	Skills)

4.	 Click	on	Synchronize	!	to	synchronize	the	workflows.

How	it	works...
Synchronizing	Orchestrator	objects	is	one	of	the	easiest	ways	to	make	sure	that	two	servers
have	the	same	elements.	This	doesn't	work	for	clusters	as	both	Orchestrators	in	a	cluster	share
the	same	database	(same	workflow	IDs).	A	good	example	here	is	a	sync	between	a
development	environment	and	a	production	environment.

Note

The	Orchestrator	objects	that	can	use	synchronization	are	workflows,	actions,	resources,
configurations,	packages,	policy	templates,	and	WebViews.

When	synchronizing	a	local	element	that	doesn't	exist	on	the	remote	server,	Orchestrator	will
not	only	create	the	element	but	also	the	folder	structure	for	it.	This	will	make	sure	that	the
same	structure	exists	on	both	servers.	Also,	the	ID	of	the	Orchestrator	object	will	be	kept	the
same	when	synchronizing.

Please	note	that	depending	on	which	direction	you	sync,	the	options	you	see	might	be
different:

Action Description

None This	is	not	what	you	expect.	This	will	update	the	remote	version	with	the	local
version.	If	the	element	doesn't	exist	on	the	remote	side,	it	will	create	it	there.

Update Update	will	take	the	version	from	the	remote	server	and	will	overwrite	the	local
version.

Commit This	will	take	the	local	version	and	overwrite	the	remote	version.

Delete If	an	element	doesn't	exist	on	the	remote	server,	you	can	choose	to	delete	the	local
version.

See	also
The	recipe	Managing	remote	Orchestrators	in	this	chapter.

The	recipe	Working	with	REST	in	Chapter	9,	Essential	Plugins.

Chapter	4.	Programming	Skills
This	chapter	deals	with	the	skills	that	an	Orchestrator	user	needs	on	a	more	or	less	daily	basis.
We	will	be	looking	at	the	following	recipes:

Version	control
Changing	elements	in	a	workflow
Importing	and	exporting	Orchestrator	elements
Working	with	packages
Workflow	auto	documentation
Resuming	failed	workflows
Using	the	workflow	debugging	function
Undelete	workflows	and	actions
Scheduling	workflows
Sync	presentation	settings
Locking	elements

Introduction
In	this	chapter,	we	will	focus	on	using	the	Orchestrator	Client	and	what	one	should	know
about	it.	The	Orchestrator	Client	is	a	Java-based	client	that	can	be	launched	via	the
Orchestrator	home	page	or	can	be	locally	installed.	The	Orchestrator	Client	is	mainly	used	to
create	new	workflows	as	well	as	to	configure	plugins.	However,	you	also	can	use	it	for
executing	workflows.	In	this	case,	it	is	a	good	idea	to	configure	non-administrative	access	to
Orchestrator	as	shown	in	the	User	management	recipe	in	Chapter	7,	Interacting	with
Orchestrator.

The	Orchestrator	icons
The	Orchestrator	Client	has	three	modes:	Run,	Design,	and	Administer.	The	setting	can	be
changed	by	selecting	the	value	from	the	top	drop-down	menu.	You	will	use	the	Orchestrator
Client	mostly	in	the	Design	mode	when	you	program.	If	you	are	a	user,	you	probably	will	use
the	Run	mode.

Let's	have	a	quick	look	at	all	the	icons	of	Orchestrator	Client:

Icon Used	in	recipe/chapter What	is	covered?

My
Orchestrator

User	management	recipe	in	Chapter	7,
Interacting	with	Orchestrator.

Overview	and	non-admin
access.

Scheduler Scheduling	workflows	recipe	in	this
chapter.

Management	of	scheduled
workflows.

Policies Working	with	policies	recipe	in	Chapter	8,
Better	Workflows	and	Optimized	Working.

A	policy	is	basically	an	event
trigger.

Workflows Chapter	5,	Visual	Programming	and	most
of	the	other	chapters	too.

Manage	everything	that	has	to
do	with	workflows.

Inventory

Recipes	in	Chapter	9,	Essential	Plugins,
Chapter	10,	Built-in	Plugins,	and	Chapter
11,	Additional	Plugins,	as	well	as	Chapter
12,	Working	with	vSphere.

Shows	all	the	objects	that	each
plugin	has	access	to.

Creating	actions	recipe	in	Chapter	6, Manage	everything	that	has	to

Actions Advanced	Programming. do	with	actions.

Resources
Working	with	resources	recipe	in	Chapter
8,	Better	Workflows	and	Optimized
Working.

A	resource	is	a	file	that	can	be
used	from	workflows.

Configurations
Working	with	configurations	recipe	in
Chapter	8,	Better	Workflows	and	Optimized
Working.

Configurations	are	centrally
defined	attributes	that	are
available	to	all	workflows.

Packages Working	with	packages	recipe	in	this
chapter.

A	package	contains	workflows,
actions,	as	well	as	all	other
elements	to	export	and	import
Orchestrator	solutions.

Policy
templates

Working	with	resources	recipe	in	Chapter
8,	Better	Workflows	and	Optimized
Working.

Templates	for	policies.

Authorizations - Left	over	and	not	used	today
anymore	(deprecated).

Gotcha
One	of	the	things	you	need	to	know	is	that	when	Orchestrator	asks	you	for	something	(for
example,	workflows)	you	might	end	up	with	an	empty	window	such	as	this:

You	need	to	enter	something	into	Filter	(1)	and	then	press	Enter	(or	just	press	Enter).	The
area	below	(2)	will	then	fill	up	with	the	available	options	you	can	choose	from.

Since	vRO7,	the	search	window	has	been	introduced,	which	looks	as	follows:

You	start	typing	in	parts	of	the	name	you	are	looking	for	and	if	you	hold	the	mouse	on	one

selection	you	can	see	more	details.

Auto-setup	of	parameters
When	you	add	a	workflow	to	the	schema	you	can	make	it	easier	for	you	to	assign	all	the
parameters.	Just	click	on	Setup...	and	then	assign	the	parameter	either	as	an	Input	parameter,
give	it	a	Value,	or	Skip	it	to	set	it	up	later:

Version	control
In	this	recipe,	we	will	look	at	how	to	use	the	Orchestrator	version	control	and	use	it	to	control
your	software	development.	Version	control	is	part	of	almost	all	elements.

Getting	ready
A	working	Orchestrator	is	required,	and	you	will	need	the	rights	to	create	new	workflows	and
run	them.	We	will	work	with	the	Orchestrator	Client.

We	need	an	existing	workflow	that	we	can	play	around	with.	In	this	recipe,	we	will	use	the
00.00	BasicWorkflow	workflow	of	the	example	package.	The	finished	example	is	the	04.02
VersionControl	example	workflow.

How	to	do	it...
We	will	use	a	workflow	for	this	example;	however,	it	works	for	other	elements	too:

1.	 Make	a	duplicate	of	the	00.00	BasicWorkflow	workflow.
2.	 Click	on	General	and	have	a	look	at	the	current	version	(see	the	following	screenshot).
3.	 Open	the	workflow	for	editing	by	right-clicking	on	it	and	selecting	Edit.
4.	 Drag	a	system	log	element	from	the	log	section	into	the	schema.
5.	 Bind	the	text	in-parameter	to	an	existing	string	variable.
6.	 Click	on	General	and	then	on	the	second	version	counter	to	increase	the	version	of	the

workflow	to	0.1.0	(see	the	following	screenshot).
7.	 You	can	now	enter	a	comment	to	the	new	version.	This	is	a	good	place	to	record	changes

that	have	been	made.	When	finished	click	on	OK.
8.	 The	version	counter	in	the	General	section	should	now	be	increased.
9.	 Click	on	Show	version	history	to	see	an	overview	of	all	existing	versions:

10.	 Now	click	on	Save	and	Close.	If	you	now	select	Increase	version,	you	will	create
version	0.1.1,	so	you	should	select	Continue	anyway.

Showing	differences	between	versions

You	use	this	function	to	compare	the	differences	between	versions	of	a	workflow:

1.	 On	the	workflow's	General	tab,	click	on	Show	version	history.
2.	 Select	the	version	you	would	like	to	compare	the	present	one	against	and	click	on	Diff

Against	Current.
3.	 A	window	will	pop	up	and	show	both	versions	next	to	each	other.	Resize	the	window	as

required.
4.	 When	you	are	finished,	click	on	Close:

Reverting	to	an	older	version
1.	 Click	on	Show	version	history.
2.	 Select	the	version	you	would	like	to	revert	to	and	click	on	Revert.

Your	workflow	is	now	of	an	earlier	version,	but	the	newer	version	is	still	available.	You	can
also	revert	to	a	newer	version	if	you	wish.

How	it	works...
Version	control	is	a	very	important	tool	in	software	development.	It	not	only	helps	you	keep
track	of	your	code	development,	but	also	helps	you	in	other	ways.	For	instance,	when	you
import	a	workflow	or	a	package,	you	can	directly	see	whether	the	import	is	newer	or	older
than	the	existing	one.	The	other	thing	is	that	you	can	check	versions	against	each	other,	as	well
as	revert	to	different	versions.	You	can	use	the	revert	function	to	make	duplicates	of	older
versions.

Tip

Version	control	is	available	for	Workflows,	Actions,	Configurations,	Resources,	and	Policy
Templates.

See	also
The	example	workflow	04.02	Version	Control.

Changing	elements	in	a	workflow
In	this	recipe,	we	will	have	a	closer	look	at	the	challenges	that	change	the	workflow	elements
in	a	schema	pose.	Changing	the	in-	and	out-parameters,	as	well	as	moving	or	renaming
actions	will	be	discussed.	You	will	learn	how	to	make	these	changes	as	well	as	what	to	avoid.

Getting	ready
We	need	a	workflow	that	has	an	additional	workflow	as	well	as	an	action	in	its	schema.

You	can	use	the	04.01.02	MainWorkFlow	and	04.01.01	SubWorkflow	example	workflows	as
well	as	the	reNameMe	action,	which	is	part	of	the	example	package.

How	to	do	it...
There	are	only	two	major	tasks:	changing	the	parameters	and	renaming/moving	the	actions.

Changing	the	parameters	of	workflows	and	actions

If	you	change	a	subworkflow's	in/out-parameters,	you	will	need	to	synchronize	its	parameters
by	following	these	steps:

1.	 Make	sure	that	you	have	a	workflow	that	has	a	workflow	as	an	element	in	its	schema.	You
can	use	the	04.01.02	MainWorkFlow	and	04.01.01	SubWorkflow	example	workflows.

2.	 In	the	subworkflow,	change	the	name	of	an	out-parameter	and	add	another	in-parameter.
Then	save	and	exit	the	subworkflow	as	a	new	version	(making	it	easier	to	repeat	the
lesson).

3.	 In	the	main	workflow,	go	to	the	schema	and	edit	the	subworkflow	element.
4.	 Click	on	Info	and	then	on	Synchronize	parameters.
5.	 Now,	check	the	in-	and	out-parameters	of	the	element.	You	will	find	a	second	in-

parameter	and	that	the	out-parameter	isn't	bound	anymore:

The	same	method	also	works	for	actions.	Try	the	following:

Renaming	the	subworkflow
Moving	the	subworkflow	to	another	folder

Renaming	and	moving	actions

Actions	are	tied	into	a	workflow	using	their	module	name	and	the	action	name.	So,	if	an
action	is	moved	to	a	different	module	or	renamed,	you	will	have	to	do	the	following:

1.	 Make	sure	that	you	have	a	workflow	that	calls	an	action	either	as	a	scripting	task	or
schema	element.	You	can	use	the	04.01.02	MainWorkFlow	example	workflow	and	the
reNameMe	action.

2.	 Change	the	name	of	the	action	or	move	it	to	another	module.
3.	 In	the	main	workflow,	go	to	the	schema	and	edit	the	action	element.
4.	 You	will	see	that	you	can't	change	the	scripting	that	points	to	the	action,	so	the	only	thing

you	can	do	is	delete	the	action	element	and	insert	it	again:

5.	 If	you	called	the	action	in	a	Scriptable	task,	you	can	change	the	name	or	module.

Therefore	it's	important	to	know	which	element	is	used	where.	See	the	next	section	on	how	to
do	that.

Finding	related	elements

We	will	now	see	how	we	can	find	out	what	action	is	used	by	what	other	elements:

1.	 Go	to	the	actions	and	into	the	com.packtpub.Orchestartor-
cookbook2ndEdition.helpers	module.

2.	 Now	right-click	on	the	getNow	action	and	select	Find	elements	that	use	this	element
from	the	menu.

3.	 A	new	window	will	pop	up	displaying	all	the	Orchestrator	elements	that	use	this	action.

This	also	works	for	Resource	and	Configuration	elements.

How	it	works...
Workflows	are	tied	in	with	each	other	via	their	ID	(which	can't	be	changed	and	is	unique)	and
not	their	name.	So,	renaming	or	moving	a	workflow	has	no	impact.

If	you	add	or	remove	an	in/out-parameter	from	a	workflow	or	action,	you	can	simply
synchronize	the	parameter.	When	you	change	the	name	of	an	in/out-parameter	in	a	workflow
or	action	and	then	synchronize,	you	will	have	to	redefine	the	binding	of	that	parameter.

An	action	is	always	called	in	the	following	way:

System.getModule([module	name]).[action	name]([in-parameter],)	

When	you	move	or	rename	an	action,	you	will	need	to	adjust	this	call	by	either	changing	the
module	name	(move)	or	the	action	name	(rename).

If	you	rename	a	configuration	element	or	parameter,	you	will	have	to	bind	it	again	in	the
workflow.	The	setting	will	point	to	the	old	configuration	element	that	doesn't	exist	anymore.

See	also
The	example	workflows	04.01.02	MainWorkFlow	and	04.01.01	SubWorkflow	as	well	as	the
reNameMe	action.

Importing	and	exporting	Orchestrator	elements
In	this	recipe,	we	will	learn	how	to	import	and	export	elements	from	one	Orchestrator	to
another	using	Orchestrator	Client.

Getting	ready
We	need	at	least	one	workflow,	action,	or	other	element	that	we	can	export,	delete,	and	import.
If	you	have	two	Orchestrator	servers,	you	can	export	the	element	on	one	and	import	into	the
other.

How	to	do	it...
In	this	example,	we	will	use	a	workflow	to	import	and	export	an	object.	However,	the	same
methods	apply	to	all	Orchestrator	elements.

Exporting	an	object

We	will	use	the	00.00	BasicWorkflow	workflow	of	the	example	package	in	this	example.
Exporting	also	works	for	other	elements:

1.	 To	export	a	workflow,	right-click	on	it	and	select	Export	workflow.
2.	 A	window	will	pop	up	that	shows	you	your	local	drives	from	the	computer	you	are

running	Orchestrator	Client	on.
3.	 Select	a	directory	and	a	name	for	the	workflow	(the	default	name	is	the	name	of	the

workflow).	The	default	file	extension	is	.workflow.
4.	 You	can	define	a	name	to	encrypt	the	export	with,	basically	an	encryption	string.	This

will	make	it	possible	for	other	importers	to	import	the	file,	but	not	to	edit	it.	The	name	is
not	a	password	and	Orchestrator	will	not	ask	for	it;	encrypting	with	the	name	will	just
create	an	encrypted	file.

5.	 Click	on	Save.

Importing	an	element

To	import	a	workflow:

1.	 Right-click	on	a	folder	and	select	Import	workflow.
2.	 A	window	will	pop	up	that	shows	you	your	local	drives	from	the	computer	you	are

running	the	Orchestrator	Client	on.
3.	 Select	a	directory	and	a	name	for	the	workflow	you	would	like	to	import.

Tip

Orchestrator	will	not	ask	you	to	confirm	the	SSL	certificate,	nor	will	it	import	any
dependencies	that	this	workflow	might	have.

4.	 If	the	workflow	already	exists,	a	warning	will	be	displayed.	You	can	either	select	Cancel
or	continue	the	import.

5.	 The	workflow	will	now	be	imported	into	the	folder	you	right-clicked	on	in	step	1.

How	it	works...
You	can	import	and	export	single	Orchestrator	objects.	This	will	only	import	and	export	the
element	and	not	its	sub-elements	or	elements	the	workflow	(or	action)	depends	on.	You	can
use	a	package	(see	the	Working	with	packages	recipe	in	this	chapter)	to	export	multiple
workflows	as	well	as	their	dependent	elements.	As	workflows	are	identified	by	their	IDs	and
actions	by	their	name	and	module,	it	is	important	to	realize	that	a	single	workflow
export/import	might	not	result	in	a	working	configuration.	You	can	try	this	with	the	04.03
Export-Package	workflow.

When	you	export	an	object,	then	it	will	be	exported	along	with	the	SSL	certificate	of	the
Orchestrator	installation	(the	one	we	created	in	the	Package	Signing	Certificate	section	of	the
Important	Orchestrator	configurations	recipe	in	Chapter	1,	Installing	and	Configuring
Orchestrator).

Tip

The	elements	that	can	be	imported	and	exported	are	Workflow,	Action,	Resource,
Configuration,	and	Policy	Template.

In	addition	to	this,	the	element	will	keep	its	ID	when	exported	and	imported.	As	all	IDs	are
unique	(even	across	Orchestrator	installations),	this	is	an	important	point.

See	also
Have	a	look	at	the	Working	with	packages	recipe	in	this	chapter	and	the	Managing	Remote
Orchestrator	recipe	in	Chapter	3,	Distributed	Design.

Working	with	packages
In	this	recipe,	you	will	learn	how	to	create,	export,	and	generally	work	with	packages.
Packages	are	great	for	shipping	complete	Orchestrator	solutions	between	Orchestrators	to
customers	or	for	backup.

Getting	ready
We	need	at	least	one	workflow	or	action	to	work	with	in	this	recipe.	Optimally,	you	have
workflows	and	actions	that	depend	on	each	other.	You	can	test	with	the	04.03	Export-Package
example	workflow;	it	contains	an	action	and	another	workflow.

How	to	do	it...
This	recipe	has	several	sections.	As	an	overview,	the	following	screenshot	shows	all	the	icons
and	their	usages.	To	get	to	the	correct	section,	follow	these	instructions:

1.	 Using	Orchestrator	Client,	make	sure	that	you	are	in	Design	mode.
2.	 Click	on	packages	(the	yellow	box	with	a	white	circle	icon):

Create	a	new	package
1.	 Either	right-click	on	the	white	space	below	the	displayed	packages	and	select	Add

package,	or	select	the	icon	from	the	right-hand	side	(the	yellow	box	with	a	white	circle
icon).

2.	 Select	a	new	name	for	the	package;	the	default	is	org.company.mypackage.	A	good
naming	convention	is	useful.

3.	 The	new	package	is	created;	now	click	on	the	package	and	either	right-click	and	select
Edit	or	select	Edit	from	the	right-hand	side	(the	pencil	icon).

4.	 Click	on	Workflows.
5.	 To	add	a	workflow,	you	can	either	select	single	workflows	using	Insert	workflow	(List

search)	(the	green	plus	icon)	to	select	a	single	workflow	or	Insert	workflows	(Tree
browsing)	(the	folder	icon)	to	insert	all	workflows	of	a	specific	folder.	Remember	that
when	Orchestrator	shows	you	an	empty	selection	window,	you	need	to	use	the	Filter

option	(see	the	introduction	to	this	chapter).
6.	 Choose	one	option	and	click	on	Select	to	add	the	workflow(s).	If	your	workflow	depends

on	other	elements,	such	as	Actions,	Configurations,	Resources,	and	so	on,	these
elements	will	be	automatically	imported	into	the	package	as	well.

7.	 Click	on	Save	and	close	and	finish	the	packaging	process.

Export	a	package
1.	 Before	we	export	a	package,	we	should	make	sure	that	its	content	is	current.	To	do	so,	we

right-click	on	the	package	and	select	Rebuild	package.	The	content	of	the	package	will
now	be	updated	with	the	latest	versions	(and	their	dependencies)	of	all	elements	in	the
package.

2.	 After	the	rebuild	has	finished,	we	now	export	the	package	by	right-clicking	on	the
package	and	selecting	Export	package,	or	from	the	menu,	as	shown	in	the	beginning	of
this	recipe.

3.	 The	export	window	opens	up.	Choose	an	appropriate	directory	and	filename.	You	also
see	that	there	are	several	options	on	the	right-hand	side;	we	will	discuss	them	in	detail	in
the	How	it	works...	section	of	this	recipe:

4.	 Click	on	Save.	Your	package	has	now	been	exported.

Import	a	package
1.	 Either	right-click	on	the	white	space	below	the	displayed	packages	and	select	Import

package	or	select	from	the	menu,	as	shown	at	the	beginning	of	this	recipe.
2.	 Browse	to	the	appropriate	directory	and	select	the	package	you	would	like	to	import	and

click	on	Open.
3.	 You	might	now	be	presented	with	a	request	to	accept	the	user	certificate	of	this

Orchestrator	server	(also	see	the	Important	Orchestrator	settings	recipe	in	Chapter	1,
Installing	and	Configuring	Orchestrator).	You	can	choose	to	import	just	the	package
(Import	once)	or	import	the	package	and	add	the	SSL	certificate	of	this	user	to	your
trusted	certificates	(Import	and	trust	provider).	We	will	work	with	these	certificates
more	in	the	There's	more...	section	of	this	recipe:

4.	 Orchestrator	will	now	check	the	content	of	your	package	against	what	is	already
installed.	The	following	window	will	be	displayed.	Here,	you	can	choose	whether	an
element	should	be	imported	or	not.	You	see	on	the	left-hand	side	the	version	and	name	of
the	element	in	the	package	and	on	the	right-hand	side	the	same	information	for	the
Orchestrator	server	(if	that	element	already	exists).	You	can	use	the	magnifying	glass
icon	on	the	far	right	to	check	the	version	log	of	your	Orchestrator	server-based	element.
You	can	force	an	import	by	just	ticking	the	box	of	the	element.	Please	note	that	we	will
discuss	the	Import	the	values	of	the	configuration	settings	option	in	detail	in	the	How
it	works...	section	of	this	recipe:

The	package	will	now	be	imported.	Every	element	that	is	part	of	the	package	will	be	placed
back	in	its	folder	or	module	as	it	was.	This	means	that	the	import	will	also	create	folders	and
modules	as	required.

Deleting	a	package

When	right-clicking	on	a	package,	you	will	see	there	are	two	delete	options:

Option Description

Delete This	will	delete	the	package	only	but	no	content	(workflows,	actions,
and	so	on)	will	be	deleted.

Delete	element
with	content

This	not	only	deletes	the	package	but	also	its	content	(workflows,
actions,	and	so	on)	from	Orchestrator.

In	this	example,	we	will	delete	the	package	as	well	as	the	content:

1.	 Right-click	on	the	package	and	select	Delete	element	with	content.
2.	 If	you	used	the	example	package	or	have	elements	in	this	package	that	are	used	by	other

elements,	then	you	will	see	the	following	warning	message:

3.	 If	you	are	not	sure,	you	can	Keep	shared	elements	or	DELETE	ALL!.
4.	 Your	package	and	its	elements	will	now	be	deleted.

Import	from	remote

This	option	lets	you	import	a	package	that	is	stored	on	another	Orchestrator	installation:

1.	 Go	to	packages	and	click	on	get	remote	package.
2.	 Enter	the	URL	(including	the	port,	8281)	of	the	remote	Orchestrator,	followed	by	a	user

ID	and	password.
3.	 You	now	see	all	the	additional	packages	(not	the	basic	ones).
4.	 Select	a	package	and	click	on	Import....
5.	 You	are	now	presented	with	a	window	similar	to	the	one	we	saw	when	importing	a

workflow	that	shows	the	difference	between	the	versions	of	the	elements	between
Remote	server	and	Local	server.	Click	on	Synchronize!:

6.	 The	package	is	now	imported.	If	you	change	the	content	on	the	Remote	server,	you	can
right-click	on	the	package	and	select	Synchronize	to	actualize	the	content	on	the	Local
server.

How	it	works...
Building	packages	makes	it	very	easy	to	transport	or	publish	Orchestrator	solutions	that	have
been	developed.	A	package	contains	all	the	important	elements	such	as	Workflows,	Actions,
Policy	Templates,	Web	Views,	Configurations,	Resources,	and	Plugins	used.

Another	typical	usage	for	packages	is	to	create	a	backup.

When	your	package	contains	workflows	or	actions	from	a	plugin,	such	as	vCenter,	vCloud
Director	or	such	like,	the	plugins	and	their	versions	are	displayed	in	the	Used	plugin	tab	of
the	package.	Orchestrator	doesn't	display	any	warnings	or	messages	when	you	import	a
package	that	depends	on	a	certain	plugin.	It	will	just	import	all	the	elements	of	this	plugin	that
are	part	of	the	package.	However,	because	of	the	dependencies,	you	will	not	be	able	to	execute
workflows	that	depend	on	this	plugin.

Please	note	that	when	you	export	a	package	that	contains	AMQP,	SNMP,	or	other	Orchestrator
plugins,	the	resource	element	that	contains	the	server	configuration	is	exported	as	well.
Before	delivering	this	package	to	a	customer,	you	might	want	to	delete	these	elements.

The	package	that	is	created	is	zipped	and	contains	all	the	files.	When	you	export	to	a	folder,
the	content	of	the	package	is	more	exposed,	but	it's	not	the	same	format	as	when	extracting	the
package.

Export	and	import	options

When	exporting	a	package,	you	have	several	options	that	you	can	choose	from.	When	you
deselect	an	option,	all	elements	in	this	package	will	inherit	the	settings:

Option Description

Add	target
certificate We	shall	discuss	this	in	the	There's	more...	section	of	this	recipe.

View
Contents

This	is	not	really	as	restrictive	as	one	would	expect.

When	you	deselect	this	option,	you	can	still	see	all	the	normal	tabs	in	the
workflow.	The	only	thing	that	won't	work	is	that	you	can	go	to	an	element	by
double-clicking	on	it.	For	example,	if	the	workflow	contains	an	action,
double-clicking	on	it	won't	open	the	action	element.	However,	the	action	can
be	accessed	normally	and	you	can	see	the	scripting	content.

Deselecting	this	option	will	make	it	impossible	for	users	to	export	a	package

Add	to
package

that	contains	elements	from	this	package.	You	can	still	create	packages	with
elements	that	don't	have	the	Add	to	package	flag;	however,	you	will	get	an
error	message	when	trying	to	export	the	package.

Edit	content
Without	this	flag,	users	that	import	this	package	will	not	be	able	to	edit	the
workflow.	This	flag	is	mostly	set	for	all	packages	that	are	part	of	a	plugin	or
to	make	sure	that	for	support	reasons	changes	are	not	possible.

Export
version
history

Deselecting	this	option	will	not	export	the	full	version	history	of	each
element.	Instead,	the	element	will	be	displayed	in	the	latest	version	with	the
remark	imported	content	from	package.

Export
values	of	the
configuration
settings

Deselecting	this	section	will	export	the	configuration	and	its	attributes;
however,	it	will	not	export	their	values.

Export
global	tags

This	will	export	the	global	tag	of	the	objects	in	the	package.	See	the	Working
with	Orchestrator	tags	recipe	in	Chapter	8,	Better	Workflows	and	Optimized
Working.

When	importing	a	package,	you	can	deselect	the	Import	the	values	of	the	configuration
settings	option.	This	will	import	the	configuration	and	its	attributes,	but	not	its	values.

The	function	to	switch	off	editing	is	extremely	important	when	delivering	an	Orchestrator
solution	to	a	customer.	You	will	want	to	lock	down	the	customer's	ability	to	edit	workflows	or
actions	in	order	to	make	it	possible	to	support	the	solution.

The	target	server	function	comes	in	handy	if	you	want	to	make	sure	that	Orchestrator
packages	do	not	get	into	the	wrong	hands.	Typical	things	to	mention	here	are	configuration
items	in	Orchestrator	that	contain	sensitive	information.

There's	more...
Each	package	that	is	created	is	encrypted	with	this	user	certificate.	You	may	have	seen	that
when	you	imported	the	package	onto	a	different	Orchestrator	installation.	The	certificate	is
the	one	we	created	in	the	Important	Orchestrator	settings	recipe	in	Chapter	1,	Installing	and
Configuring	Orchestrator.

When	you	import	a	package,	you	can	choose	to	trust	this	certificate.	If	you	do	so,	it	will	be
stored	in	the	certificate	store.	You	can	manage	the	certificate	store	by	clicking	on	Tools	(this
is	in	the	top-right	corner	of	Orchestrator	Client)	and	then	selecting	Certificate	manager...:

A	popup	will	appear	in	which	the	upper	part	shows	your	user	certificate	and	the	lower	part
shows	all	known	certificates	(you	might	need	to	adjust	the	length	of	the	window).	See	the
following	screenshot.

You	are	able	to	export	your	own	certificate	and	also	import	others	or	remove	others	from	the
certificate	store.

When	you	export	a	package,	you	can	select	the	Add	target	certificate	option	to	make	sure
that	the	package	can	only	be	read	by	a	certain	Orchestrator	server.	When	you	add	a	certificate
to	the	package	that	is	contained	in	your	certificate	store,	you	can	make	sure	that	only	the
Orchestrator	server	that	is	the	owner	of	this	certificate	can	import	the	package.	If	you	try	to
import	a	package	that	is	not	intended	for	you,	you	will	get	an	error	message	that	says	this
package	is	not	intended	for	you.

In	the	example	package	that	comes	with	this	book,	I	have	placed	a	certificate	in	resources	that
you	can	use	to	test	this:

See	also
See	the	example	workflow	04.03	Export-Package.	Also,	see	the	recipe	Important
Orchestrator	settings	in	Chapter	1,	Installing	and	Configuring	Orchestrator,	and	the
recipe	Managing	Remote	Orchestrator	in	Chapter	3,	Distributed	Design.

Workflow	auto	documentation
This	recipe	will	showcase	the	automatic	documentation	ability	of	Orchestrator.	We	will	learn
what	Orchestrator	documents	and	how	it	documents	workflows.

Getting	ready
We	need	at	least	one	workflow	for	this	recipe	that	we	can	document.	A	good	example
workflow	would	be	one	that	contains	other	workflows,	actions,	and	scriptable	tasks.

How	to	do	it...
1.	 Right-click	on	a	workflow	or	a	folder	and	select	Generate	Documentation.
2.	 Select	a	directory	and	give	the	file	a	name.

A	PDF	with	the	documentation	is	now	created.

How	it	works...
The	documentation	that	is	created	isn't	that	flashy,	but	it	is	quite	useful.	The	created	PDF
document	contains	the	following	sections:

Section Description

Versions
This	is	a	summary	of	all	existing	versions	this	workflow	has,	including	the
create	date,	create	user,	and	any	comments	you	have	made	regarding	this
version.

Inputs This	contains	a	list	of	all	the	in-parameters	of	the	workflow	as	well	as	their
type	and	description.

Outputs This	contains	a	list	of	all	out-parameters	of	the	workflow	as	well	as	their
type	and	description.

Attributes This	contains	a	list	of	all	attributes	of	the	workflow	as	well	as	their	type	and
description.	It	does	not	contain	any	values.

Parameter
presentation

This	shows	all	properties	of	all	in-parameters	that	are	defined	in	the
presentation	of	this	workflow.

Workflow
schema This	is	a	picture	of	the	workflow	that	shows	the	elements	of	the	schema.

Workflow
items This	is	a	tabular	overview	of	all	existing	elements	in	the	workflow	schema.

Source	code
for	the	used
actions

This	lists	every	script	that	was	used	in	an	action,	scriptable	task,	log
element,	and	so	on.

If	you	are	running	the	documentation	feature	from	a	folder,	each	workflow	in	this	folder	will
be	documented.

Resuming	failed	workflows
This	recipe	looks	at	the	ability	to	resume	a	failed	workflow.	It	allows	you	to	resume	a
workflow	when	an	error	has	occurred.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

To	make	it	easier,	we	reuse	the	workflow	we	will	create	in	the	Error	handling	in	workflows
recipe	in	Chapter	5,	Visual	Programming	(the	05.03.01	Error	Handling	example
workflow).	If	you	don't	have	it,	please	create	it	as	described	or	use	the	example	package	that	is
supplied	with	this	book.

How	to	do	it...
The	following	steps	showcase	the	functionality:

1.	 Create	a	new	workflow.
2.	 Drag	Workflow	element	onto	the	schema	and	select	the	workflow	we	created	in	the
Error	handling	in	workflows	recipe	in	Chapter	5,	Visual	Programming.

3.	 Assign	the	in-parameter	of	the	Error	Handling	workflow	to	the	in-parameter	of	the
workflow	you	added	in	step	2.

4.	 Drop	two	additional	System	log	instances	before	and	after	the	workflow	element	and
have	it	write	something,	such	as	Before	and	After	onto	the	log.

5.	 Drop	a	Throw	exception	element	directly	onto	the	workflow	from	step	2.
6.	 Click	on	General	in	the	main	workflow	and	then	select	Enable	for	Resume	from	failed

behavior:

7.	 Click	on	Save	and	Close.
8.	 Run	the	workflow	and	enter	5	(this	will	result	in	an	error).	A	window	will	now	pop	up

and	ask	whether	you	would	like	to	Cancel	or	Resume	the	workflow:

9.	 Choose	Resume.	You	can	now	change	all	the	variables	of	the	workflow.	Enter	2	and	click
on	Submit.

10.	 The	script	now	runs	through	as	if	nothing	has	happened.	Check	the	Logs.

Notice	that	the	first	log	messages	and	the	log	message	from	the	Error	Handling	workflow
was	only	written	once,	so	the	resume	process	would	just	rerun	the	scriptable	task	and	not	the
whole	workflow	from	the	beginning.

How	it	works...
The	ability	to	resume	a	workflow	is	quite	a	powerful	tool.	Instead	of	rerunning	failed
workflows	again,	and	in	some	cases,	roll	back	the	previous	operations,	you	are	now	able	to
resume	at	the	same	element	the	error	occurred	in.

Please	note	that	in	our	little	example	we	used	a	workflow	inside	a	workflow,	and	the
workflow	that	failed	didn't	have	the	Resume	action	assigned	to	it.	What	this	means	is	that	you
don't	have	to	assign	the	Resume	action	to	all	workflows,	but	just	to	the	main	one	that	calls	all
the	others.	Also,	you	see	that	only	the	failed	element	is	allowed	to	be	rerun,	which	in	our	case
is	the	scriptable	task	inside	the	Error	Handling	workflow,	not	the	whole	workflow	of	error
handling.

For	example,	you	have	a	workflow	that	creates	a	VM,	adds	a	virtual	disk,	and	powers	it	on.	If
the	workflow	fails	because	you	are	out	of	disk	space	on	the	datastore,	you	will	have	to	rerun
the	workflow	again.	This	is	especially	true	if	some	other	application	triggers	the	workflow
via	the	Orchestrator	API.	Now,	you	can	simply	add	the	required	disk	space	to	the	datastore	and
resume	the	workflow,	or	just	use	a	different	datastore.

However,	you	need	to	understand	that	you	can	only	change	variables	or	rerun	the	same	failed
element.	If	the	error	can't	be	remedied	by	a	change	of	the	variable	content	or	by	rerunning
later,	the	resume	function	will	not	help	you.

In	addition	to	this,	rerunning	some	failed	elements	can	have	very	undesirable	results.	For
example,	if	you	add	two	items	to	a	database	using	one	scriptable	task,	the	insertion	of	the
second	fails.	You	resume	the	workflow	and	the	result	is	that	you	have	added	the	first	item
twice.	So	be	careful.

The	secret	to	the	resume	feature	lies	in	the	way	that	Orchestrator	works.	When	a	workflow	is
executed,	Orchestrator	writes	checkpoints	in	its	database.	One	checkpoint	before	a	step	in	the
workflow	is	executed.	These	checkpoints	consist	of	all	variable	values.	This	is	why	when	you
resume	a	workflow,	you	are	presented	with	all	the	variables	that	exist	in	the	workflow.

There's	more...
The	resume	function	is,	by	default,	switched	off	system-wide.	You	can	switch	it	on	system-
wide	using	the	com.vmware.vco.engine.execute.resume-from-failed	system	property	and
setting	it	to	true.	See	the	Control	Center	titbits	recipe	in	Chapter	2,	Optimizing	Orchestrator
Configuration.

If	you	consider	using	the	resume	function,	it	is	a	good	idea	to	define	the	timeout.	The	timeout
defines	how	long	a	workflow	waits	in	resume	mode	before	failing.	This	feature	can	be	used
to	make	sure	that	workflows	don't	stay	in	resume	mode	indefinitely	and	that	a	human
interaction	can	take	place	in	a	certain	time	frame.

Tip

I	personally	would	urge	caution	with	switching	on	the	resume	feature	system-wide,	because	as
mentioned,	not	every	workflow	can	or	should	be	recoverable.	Instead	of	switching	on	the
resume	feature	system-wide,	consider	writing	a	good	error	response	and	making	a	general
decision	if	you	want	to	roll	back	or	push	forward.

See	also
The	example	workflow	04.04	Resume	Workflow	.

Using	the	workflow	debugging	function
This	recipe	showcases	how	to	use	the	debug	feature	to	find	and	resolve	errors	in	a	workflow.
The	debug	function	was	introduced	in	version	5.5.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

We	need	a	new	workflow,	and	to	make	things	easier	we	reuse	some	old	workflows,	such	as
00.00	BasicWorkflow	and	05.03.01	Error	Handling	from	the	example	package.

How	to	do	it...
1.	 Create	a	new	workflow	and	add	the	00.00	BasicWorkflow	and	05.03.01	Error

Handling	workflows	(as	shown	in	the	following	screenshot).
2.	 Bind	all	variables	as	required.
3.	 Right-click	on	the	first	element	of	your	workflow	and	select	Toggle	breakpoint.	A	blue

ball	appears	on	the	left	next	to	the	element.
4.	 You	can	debug	a	workflow	either	while	still	in	edit	mode	or	when	you	exit	it.	Choose	one

and	click	on	Debug	(the	bug	icon)	to	start	the	debug	process.
5.	 The	debug	process	starts	the	workflow	and	will	stop	the	execution	on	the	first	breakpoint.

It	will	not	execute	the	step	the	breakpoint	is	located	on,	but	stops	before	it.	Please	note
that	you	have	access	to	all	variables	and	logs	during	the	debug	process:

6.	 While	debugging	a	workflow,	you	have	choices	such	as	Cancel,	Answer,	Resume	(F8),
Step	into	(F5),	Step	over	(F6),	and	Step	return	(F7).	You	can	use	the	icons	or	the
function	keys	to	perform	the	said	processing.	See	the	How	it	works...	section	for	more
details.

7.	 Use	Step	into	to	work	through	the	workflow.

How	it	works...
The	debugging	feature	was	introduced	in	vCO	5.5.	Before	this	feature	existed,	debugging
Orchestrator	was	quite	a	bit	more	complicated	and	mostly	involved	using	logs	to	write
checkpoints	and	display	variable	content.	With	the	debugging	feature,	things	are	now	fairly
easy.	The	debugging	feature	ties	in	with	the	checkpoints	that	Orchestrator	uses	when	it
executes	a	workflow.	Orchestrator	writes	all	variable	content	to	its	database	before	it	executes
one	step.	These	checkpoint	variables	are	displayed	in	the	debug	process.

You	can	set	multiple	breakpoints	in	each	script	and	advance	to	them	directly	using	Resume
(F8).

The	following	table	shows	all	the	actions	you	can	take	during	debugging:

Action Description

Cancel This	stops	the	workflow	execution.

Answer This	answers	an	interaction	that	the	workflow	has	issued.

Resume This	resumes	the	workflow	until	the	next	breakpoint.

Step
into

This	steps	into	an	element	and	starts	debugging	inside	the	element.	This	can	also	be
used	to	go	to	the	next	element.

Step
over This	will	step	over	an	element.	The	debugging	will	not	enter	the	element.

Step
return This	steps	out	of	an	element.	The	debugging	will	continue	with	the	main	element.

There's	more...
When	you	use	complex	variables	such	as	arrays	or	objects	(for	example,	a	VM),	the	content
can	be	rather	vast	and	won't	be	displayed	in	the	Values	section.	In	this	case,	have	a	closer	look
at	the	Variables	screen.	You	will	notice	a	small	i	icon	before	the	variable	value.	Clicking	on	it
will	show	you	the	content	of	the	variable	in	a	separate	window.	However,	this	doesn't	work	for
all	variable	types.	Properties	and	complex	variables	such	as	PowerShell	output	will	not	show
up.

See	also
The	example	workflow	04.05	Debugging	Workflows.

Undelete	workflows	and	actions
This	recipe	shows	how	to	undelete	deleted	workflows	and	actions,	as	this	comes	in	handy
when	one	deletes	something	that	one	shouldn't	have.

Getting	ready
To	undelete	a	workflow,	we	need	a	deleted	workflow	or	action	first.

How	to	do	it...
We	will	use	a	workflow	in	this	example,	as	the	undelete	function	for	actions	works	exactly	the
same:

1.	 Right-click	on	a	folder	(or	the	root	element)	and	select	Restore	deleted	workflows.
2.	 A	popup	will	display	all	the	workflows	or	actions	that	can	be	restored.	Tick	all	the

workflows	you	would	like	to	restore	and	click	on	Restore:

The	workflows	or	actions	will	now	be	restored.

How	it	works...
All	workflows	and	actions	are	stored	in	the	Orchestrator	database	and	as	such,	they	can	be
restored.	However,	you	cannot	restore	a	workflow	with	the	same	ID	that	already	exists;	names
of	workflows	are	of	no	importance	in	Orchestrator.

Scheduling	workflows
In	this	recipe,	you	will	learn	how	to	schedule	workflows.	Scheduled	workflows	will
automatically	run	at	given	times	and	intervals.

Getting	ready
We	need	at	least	one	workflow	we	can	schedule.	The	workflow	should	not	contain	a	user
interaction.

How	to	do	it...
1.	 Right-click	on	the	workflow	you	would	like	to	schedule	and	choose	Schedule	workflow.
2.	 Select	Task	name.	By	default,	the	task	name	is	set	to	be	the	workflow	name.	A	good

naming	standard	comes	in	handy	here,	especially	if	you	schedule	recurring	tasks.
3.	 Set	a	start	date	and	time.
4.	 If	this	task	has	been	scheduled	in	the	past,	you	can	still	run	the	workflow.	This	setting	is

useful	if	a	task	had	been	scheduled	but	during	the	planned	execution	time,	Orchestrator
server	was	not	available	(for	example,	powered	off).	The	task	will	then	start	as	soon	as
Orchestrator	server	is	available	again.

5.	 You	can	create	a	recurring	task.	You	have	the	base	setting	for	every	minute,	hour,	day,
week,	and	month.	Except	for	the	week	setting,	you	can	schedule	multiple	executions	by
clicking	on	the	green	plus	sign.	So,	you	can,	for	example,	set	a	task	that	runs	every	day	at
9	AM	and	9	PM.

6.	 Last	but	not	least,	you	can	set	a	stop	date	and	time	at	which	the	recurring	task	will	stop.
7.	 Click	on	Next	to	get	to	the	in-parameters	for	this	workflow.	Fill	them	out	as	required	and

when	finished,	click	on	Submit.
8.	 Orchestrator	will	now	automatically	jump	into	the	Run	|	Scheduler	view	and	show	you

the	scheduled	task:

How	it	works...
Using	the	Orchestrator	scheduler	allows	you	to	make	sure	certain	tasks	are	running	at	a
specific	time.	There	are	multiple	examples.	There	is	a	maintenance	task	that	is	scheduled	to
run	every	evening	to	disconnect	all	CD-ROM	drives	from	VMs	or	a
provisioning/decommissioning	task	that	you	want	to	enact	at	a	certain	time.	However,	you
could	also	use	a	policy	for	this,	see	the	Working	with	policies	recipe	in	Chapter	8,	Better
Workflows	and	Optimized	Working.

You	can	manage	all	scheduled	tasks	from	the	Run	|	Scheduler	view.	Here,	you	can	review	all
the	relevant	information	for	all	the	scheduled	tasks.	The	information	provided	includes	what
workflow	it	is	currently	running	when	the	last	run	was	made,	and	when	it	will	run	next;	you
also	see	the	in-parameters	(Parameters)	you	have	supplied	to	the	workflow.	By	right-clicking
on	the	task,	you	can	suspend	and	resume	it	as	well	as	cancel/delete	and	edit	it.	When	editing
the	task,	you	can	change	all	settings	with	regard	to	the	scheduling;	however,	you	cannot
change	the	workflow	you	have	scheduled	or	the	in-parameters	you	entered	when	you
scheduled	the	task:

If	you	click	on	the	Workflow	Runs	tab,	you	can	see	all	the	information	for	each	run.	You	see
the	start	and	end	time	as	well	as	the	workflow	state	(waiting,	failed,	completed,	canceled,
running).	If	the	workflow	is	currently	running,	you	can	see	which	element	of	the	workflow	is

currently	running	(Current	item)	as	well	as	its	business	state:

In	addition	to	this,	you	can	also	schedule	and	monitor	a	scheduled	task	from	vCenter.	In	the
vCenter	Web	Client,	click	on	vCenter	Orchestrator	and	then	on	Scheduled	workflows.

There's	more...
You	can	interactively	schedule	a	workflow	using	a	workflow.	A	typical	example	for	this	is	a
workflow	that	requests	a	VM	but	then	schedules	the	actual	provisioning	at	a	later	date	and
time.	To	do	this,	just	use	the	Schedule	workflow	schema	element	that	you	find	in	the	Generic
section.	This	element	only	schedules	tasks	once;	it	doesn't	allow	recurring	tasks.

You	can	schedule	workflows	using	JavaScript.	By	using	the	two	Workflow.schedule()	and
Workflow.scheduleRecurrently()	methods,	you	can	now	schedule	this	workflow.	Have	a
closer	look	at	the	Schedule	workflow	schema	element;	the	Workflow.schedule()	method	is
used	there.

See	also
See	the	example	workflow	5.8.1	Schedule	me!	and	5.8.2.	Automatic	schedule.

Sync	presentation	settings
In	this	recipe,	we	will	make	it	easier	for	you	to	reuse	presentation	settings	from	embedded
workflows.

Getting	ready
We	need	a	workflow	with	a	presentation	assigned	to	it;	you	can	use	the	05.05	Workflow
Presentation	example	workflow.

How	to	do	it...
1.	 Log	into	the	Orchestrator	Client	and	create	a	new	workflow.
2.	 Drag	the	workflow	with	the	presentation	onto	the	schema.	You	can	use	the	05.05

Workflow	Presentation	example	workflow.
3.	 Right-click	the	workflow	and	select	Synchronize	|	Synchronize	presentation.
4.	 Confirm	that	you	want	to	sync.
5.	 Check	the	presentation	of	your	new	workflow.

How	it	works...
This	is	one	of	the	functions	that	has	been	around	for	some	time	but	people	don't	know	about.	It
not	only	syncs	the	presentation	but	also	links	up	all	the	workflow	elements	inputs	as	INPUTs.

Locking	elements
We	will	have	a	quick	look	at	the	locking	mechanism	of	Orchestrator.

Getting	ready
For	locking	workflows,	we	need	a	workflow	that	we	can	use	to	lock,	primarily,	a	workflow
that	calls	other	actions	or	workflows.	If	you	don't	have	one	in	hand,	use	the	06.06.01	Using
Asynchronous	Workflows	example	workflow.

How	to	do	it...
There	are	only	two	options	in	the	locking	system.

Locking	workflows

To	lock	a	workflow,	action,	or	package,	follow	these	steps:

1.	 Right-click	on	a	workflow,	action,	or	package.
2.	 Navigate	to	Locking	|	Lock	or	Locking	|	Lock	with	dependencies.	The	Lock	with

dependencies	option	will	lock	all	subworkflows	and	subactions	that	are	used	in	this
workflow.

Notice	that	the	little	lock	icon	on	the	item	you	have	locked;	you	will	not	be	able	to	edit	this
workflow	anymore.	However,	you	are	still	able	to	run	it.

Unlocking	workflows

Unlocking	should	be	obvious	now.	However,	note	that	there	is	no	unlock	with	dependencies
option,	which	means	that	you	have	to	unlock	each	element	by	itself:

1.	 Right-click	on	a	locked	workflow,	action,	or	package.
2.	 Navigate	to	Locking	|	Unlock.

How	it	works...
Locking	locks	the	edit	mode	of	a	workflow,	which	marks	it	as	not	accessible.	Anyone
with	Admin	rights	can	place	or	lift	a	lock.

A	lock	disables	Edit,	Delete,	Synchronize,	and	Move.	Locks	cannot	be	exported.

Workflow	locking	actually	has	nothing	to	do	with	the	locking	system	(see	the	Using	the
locking	system	recipe	in	Chapter	8,	Better	Workflows	and	Optimized	Working).	Workflow
locking	locks	workflows	and	actions,	whereas	the	locking	system	locks	resources.

Locks	can	be	useful	in	a	production	environment	where	one	wants	to	make	sure	that	an
important	production	workflow	can't	be	altered.

See	also
The	Using	the	Locking	System	recipe	in	Chapter	8,	Better	Workflows	and	Optimized	Working.

Chapter	5.	Visual	Programming
This	chapter	looks	into	the	basic	visual	programming	tools	we	can	use.	We	will	have	a	look	at
the	following	recipes:

Scripting	with	logs
Scripting	with	decisions
Error	handling	in	workflows
Scripting	with	loops
Workflow	presentations
Linking	actions	in	presentations
Changing	credentials	during	runtime

Introduction
As	this	chapter	focuses	on	basic	visual	programming	tools,	it	is	a	good	place	to	have	a	quick
look	at	how	the	programming	of	workflows	works.

A	workflow	is	made	up	of	several	sections.	This	chapter's	focus	will	be	on	the	creation	of	new
workflows.	We	will	work	with	the	general,	inputs,	outputs,	schemas,	and	presentation.

Variables	(general,	inputs,	and	outputs)
Each	workflow	can	have	variables	in	three	different	areas.	Variables	are	called	attributes	or
parameters	depending	on	where	they	are.

In	JavaScript,	the	naming	convention	for	variables	is	to	start	with	lowercase	and	use
uppercase	when	a	new	word	starts,	for	example,	myFirstAttribute,	currentVM,	and	so	on.
This	is	what	programmers	call	a	camelCase	convention.	We	should	use	the	same	convention
when	programming	in	Orchestrator.

Variables	in	the	general	section

A	variable	in	the	General	section	is	called	an	attribute.	An	attribute	is	accessible	throughout
the	whole	workflow,	but,	not	outside	it.	An	attribute	can	have	an	initial	value	(at	the	start	of	a
workflow),	but	it	can	also	be	changed	at	any	stage.

Attributes	are	mostly	used	for	two	things:	as	a	constant	(defined	once	and	not	changing)	or	as
a	way	to	exchange	a	value	between	two	workflow	elements.	You	can	lock	an	attribute	(see	the
following	screenshot)	to	make	sure	that	the	initial	value	can't	be	changed.

You	can	move	an	attribute	to	become	an	input	or	output	parameter	if	you	have	created	it	in	the
wrong	spot.	Just	right-click	on	the	variable	and	choose	the	Move	as...	option:

Variables	in	the	input	section

A	variable	in	the	input	section	is	called	an	in-parameter.	The	content	of	an	input	variable	is
defined	at	runtime	and	entered	by	the	user.	Input	variables	cannot	be	changed	during
workflow	execution	directly,	as	you	cannot	assign	an	in-parameter	as	the	output	of	a
workflow	element.	You	can	move	an	input	parameter	to	become	an	attribute:

Variables	in	the	output	section

A	variable	in	the	output	section	is	called	an	out-parameter.	The	content	of	an	output	variable
can	be	defined	within	the	workflow	and	is	available	to	other	elements	when	the	workflow	has
finished.	You	can	move	an	output	parameter	to	become	an	attribute:

Variable	types

There	are	many	variable	types	that	are	already	implemented	in	Orchestrator	out-of-the-box,
but	the	basic	variable	types	are	as	follows:

Variable	type Description

Any

This	can	contain	any	content.	It	is	used	to	carry	variables	to	other	elements
that	are	not	defined	in	the	Orchestrator	GUI,	such	as	XML.	Note	that	Any
should	only	be	used	if	nothing	else	will	do,	as	it	has	been	known	to
mishandle	some	content	such	as	complex	variables.

boolean This	has	only	two	values,	either	true	or	false.	However,	Orchestrator	uses
Yes	and	No	in	the	GUI.

Credential This	contains	a	username	and	password.	The	password	is	encrypted.

Date This	is	used	to	store	the	date	or	time	in	the	JavaScript	format.

number This	contains	only	numbers,	which	can	be	integers	or	real	numbers.
Everything	is	stored	as	floats	in	Orchestrator.

SecureString
When	entering	values,	*s	will	be	shown	instead	of	characters.	The	value	is
plain	text	and	visible	to	the	workflow	developer,	but	encrypted	when	the
workflow	runtime	information	is	stored	in	the	database.

EncryptedString This	is	like	secure	string;	however,	the	value	is	always	encrypted.

string This	can	contain	any	characters.

NULL This	is	not	really	a	type,	but	defining	a	variable	as	NULL	means	that
anything	that	is	put	into	it	will	be	discarded.

In	addition	to	the	base	types,	each	plugin	will	install	its	own	type.	These	types	are	identified	by
their	prefixes.	For	example,	types	that	come	with	the	vCenter	plugin	have	the	VC:	prefix	and
types	from	the	SSH	plugin	have	the	SSH:	prefix:

Working	with	a	schema
Any	Orchestrator	workflow	programming	is	done	in	the	schema;	each	element	in	the	schema
is	connected	by	either	a	blue	(normal),	green	(True),	or	dotted	red	(Error/False)	line
between	a	start	point	and	an	endpoint.	You	can	have	more	than	one	endpoint,	but	only	one	start
point:

Dropping	an	element	on	a	line	will	insert	it	into	the	flow.	You	can	delete	elements	or	lines	by
right-clicking	on	them	and	selecting	Delete	(you	can	also	use	the	Delete	key).

To	create	a	new	line,	hover	the	mouse	above	an	element	(see	Scriptable	task	in	the	previous
figure)	and	then	drag	one	of	the	arrows	to	the	destination	element.

You	can	rename	any	element	by	just	double-clicking	on	it	and	entering	a	new	name.

Presentation
In	presentation,	we	define	how	the	workflow	input	masks	look	and	behave.	You	can	define	the
order	of	the	input	fields,	a	default	value,	whether	a	given	field	should	be	mandatory	and	link	it
to	other	fields	and	values.

The	presentation	is	quite	handy	for	workflow	execution	used	with	the	Orchestrator	Client	and
the	vSphere	Web	Client.	For	websites,	and	especially	for	workflows	used	in	vRA,	it's	not	that
important.	vRA	itself	has	an	interface	that	determines	all	the	things	above.	See	more	about
workflow	presentations	in	vRA	in	the	recipe	Workflow	presentation	in	Chapter	5,	Visual
Programming.

Scripting	with	logs
In	this	recipe,	we	will	look	into	how	logging	works	in	scripting.	You	will	learn	how	to	create
log	entries	and	where	they	are	stored.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

Additionally,	we	need	administrative	(root)	access	to	the	Orchestrator's	operating	system.

How	to	do	it...
We	will	split	this	recipe	into	two	sections,	Creating	logs	and	Checking	the	log	files.

Creating	logs

We	will	now	create	log	entries	during	a	workflow:

1.	 Create	a	new	workflow.
2.	 Drag	all	log	elements	from	the	Log	section	into	the	workflow	and	arrange	them	as

shown	here:

3.	 Create	the	following	variables:

Name Type Section Binds	with

logText String IN Transports	error	text

logObject String IN Transports	object	text

4.	 Bind	each	log	element	with	the	required	in-parameter.
5.	 Save	and	exit	the	workflow.
6.	 Run	the	workflow	and	enter	two	different	phrases,	such	as	LogText	and	LogObject.

Checking	log	files

We	will	now	check	the	logs:

1.	 Go	to	the	workflow	execution.
2.	 Check	the	Events	tab.

3.	 Click	on	the	Schema	tab	and	then	on	Logs:

How	it	works...
Logs	are	an	important	tool	for	programmers	and	for	system	administrators.	Log	files	help
programmers	understand	where	a	program	went	wrong	or	show	them	the	values	of	variables
during	runtime.	For	system	administrators,	log	files	help	them	keep	track	of	who	ran	what
workflow,	and	when.

In	logs	generated	by	the	execution	of	a	workflow,	you	can	copy	the	content	(the	copy	icon),
insert	a	***	line	(the	pencil	icon),	or	delete	the	whole	log	(the	red	X	icon)	and	filter	by
criticality,	and	even	switch	between	pages.

The	main	difference	between	server	and	system	logs	is	that	server	logs	are	stored	in	the
Orchestrator	database	and	system	logs	are	stored	in	the	system's	log	files.	This	is	especially
important	if	you	work	with	Orchestrator	clusters;	see	the	recipe	Building	an	Orchestrator
cluster	recipe	in	Chapter	3,	Distributed	Design.

The	server	log	files	get	rolled	as	specified	in	the	recipe	Orchestrator	log	files	in	Chapter	2,
Optimizing	Orchestrator	Configuration.	Server	logs	are	stored	with	the	workflow	execution
until	purged	depending	on	user	settings	(see	the	recipe	User	preferences	in	Chapter	7,
Interacting	with	Orchestrator).	Server	logs	are	persistent	as	they	are	stored	in	log	files	on	the
Orchestrator	server.

A	log	event	can	have	four	categories:

Syslog	value Debug Info Warn Error

Workflow
element - Log Warning Error

Logs [D] [I] [W] [E]

JavaScript System.debug	(text) System.log	(text) System.warn	(text) System.error	(text)

Server.debug	(text,
object)

Server.log	(text,
object)

Server.warn	(text,
object)

Server.error	(text,
object)

Each	of	the	four	categories	can	be	chosen	at	will.	Any	information	that	would	be	critical	to
troubleshoot	a	workflow	several	hours/days	after	it's	run	should	be	logged	using	the	server.

Tip

Sending	excessive	logs	to	the	server	will	dramatically	increase	the	size	of	the	Orchestrator
database	and	slow	down	the	orchestration	engine	performance,	so	it	must	be	used	wisely.

In	JavaScript,	using	logs	is	quite	a	good	way	to	fix	bugs.	A	typical	thing	to	do	is	to	write	out
variables	that	exist	only	inside	a	script	element,	for	example,	System.log("Mark"),
System.log("Log:	"+variable).

Log	file	location

There	are	multiple	ways	to	check	the	physical	log	files.	The	most	common	one	is	to	check	the
log	files	on	the	Orchestrator	OS.	The	one	we	are	interested	in	is:	/var/log/vco/app-
server/scripting.log.

This	directory	also	contains	other	log	files	that	are	discussed	in	the	recipe	Orchestrator	log
files	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

This	directory	contains	all	information	about	running	scripts.	When	we	look	at	it,	we	should
see	the	following	entry	for	our	example	workflow:

2016-04-22	23:38:04.140+0200	INFO		

{Administrator@mylab.local:40285c8c543d802d01543fe885a40127}	[SCRIPTING_LOG]	

[05.01	Working	with	Logs	(4/22/16	23:38:03)]	LogText	-	LogObject	

There	is	quite	a	lot	of	information,	for	example,	what	workflow	(05.01	Scripting	with
Logs)	was	executed	and	also	the	Orchestrator	user	(Administrator@mylab.local)	who
executed	it.

Alternatively,	instead	of	logging	into	the	appliance,	you	can	use	the	Control	Center	to	access
logs	in	two	ways:

You	can	download	the	scripting.log	from	the	Control	Center	file	browser	in	the	/app-
server-logs	folder
You	can	inspect	a	workflow	and	check	the	logs	there

For	the	last	two	methods,	please	see	the	recipe	Control	Center	titbits	in	Chapter	2,	Optimizing
Orchestrator	Configuration.

Altering	log	elements

You	can	easily	use	log	elements	to	delete	the	input	variable	out	of	it	and	then	use	scripting	to
fill	in	whatever	you	like.

See	also
The	example	workflow,	05.01	Scripting	with	Logs.

The	recipe,	Redirecting	Orchestrator	logs	to	an	external	server	in	Chapter	2,	Optimizing
Orchestrator	Configuration.

The	recipe,	Orchestrator	log	files	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

There	is	a	nice	example	in	the	recipe,	Building	an	Orchestrator	cluster	in	Chapter	3,
Distributed	Design	to	show	the	difference	between	server	and	system	logs.

Scripting	with	decisions
In	this	workflow,	we	will	see	how	decisions	can	be	implemented	into	scripts.	You	will	learn
how	to	create	basic	and	custom	decisions.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

We	need	a	new	workflow	where	we	can	add	a	decision.	You	also	should	know	how	to	work
with	logs.

For	the	Decision	activity	element,	we	will	be	using	the	example	workflow	00.00
BasicWorkflow,	which	is	stored	in	the	Basic	Helper	folder.

How	to	do	it...
There	are	three	decisions	that	can	be	used	in	Orchestrator;	we	will	discuss	them	in	the
following	sections.

Basic	decision

The	Basic	decision	lets	you	check	a	single	variable	against	a	condition.	A	condition	is	always
something	that	is	either	true	or	false.	For	example,	the	condition	5	>	3	is	true,	whereas	the
condition	Team	contains	i		is	false.

1.	 Create	a	new	workflow	and	define	an	in-parameter	of	the	String	type.
2.	 Assemble	the	structure	as	seen	in	the	previous	figure.	You	will	need	to	rearrange	the

lines	of	the	workflow.
3.	 Have	the	System	log	element	write	something	such	as	True	(green	line)	or	False	(red

dashed	line)	into	the	logs.
4.	 Edit	the	Decision	element	and	click	on	Decision.
5.	 Choose	a	condition	and	set	a	value	as	seen	in	the	previous	figure.	When	done,	click	on

Ok.
6.	 Save	and	run	the	workflow.

What	happens	is	that	the	workflow	will	check	whether	the	value	entered	fulfills	the	condition
you	have	specified	and	then	will	fork	to	either	the	true	or	false	path.

Try	this	out	for	several	other	variable	types.	Each	variable	type	has	other	conditions	with	it.
For	example,	the	VC:VirtualMachine	type	has	not	only	the	name	of	a	VM,	but	also	its	state
(power).

Custom	decisions

A	Custom	decision	enables	you	to	check	a	single	variable	or	multiple	variables	against
complex	conditions	using	JavaScript	code.

1.	 Create	a	new	workflow	(or	reuse	the	last	one)	and	define	two	in-parameters:

Name Type Section Use

varString String IN This	contains	a	word

varNumber Number IN This	contains	the	length	of	the	word

2.	 Assemble	the	structure	as	seen	in	the	previous	screenshot.
3.	 Have	the	System	log	element	write	something	such	as	true	(green	line)	or	false	(red

dashed	line)	into	the	logs.
4.	 Edit	the	Custom	decision	element	and	bind	both	in-parameter	to	IN.
5.	 Click	on	Scripting	and	enter	the	following	script	(also	see	the	How	it	works...	section	of

this	recipe):

						if	(varString.length	==	varNumber)		{	

										return	true;	

						}	else	{	

										return	false;	

						}	

6.	 Save	and	run	the	workflow.

When	the	workflow	executes	the	Custom	decision,	it	will	compare	the	entered	string's	length
with	the	entered	number	and	then	will	fork	to	either	the	true	or	false	path.

Tip

Please	note	that	you	have	to	use	the	JavaScript	return	command	with	either	true	or	false	to
make	this	decision	element	work.

Decision	activity

A	Decision	activity	lets	you	check	the	output	of	a	workflow	against	a	basic	condition.

1.	 Create	a	new	workflow	(or	reuse	the	last	one)	and	define	an	in-parameter	of	the	type
String.

2.	 Assemble	the	structure	as	seen	in	the	previous	screenshot.	When	you	add	the	Decision
activity	element,	you	will	be	asked	what	workflow	you	want	to	use	with	it.	For
simplicity,	we	will	use	the	00.00	BasicWorkflow	workflow,	which	is	stored	in	the	Basic
Helper	folder.

3.	 Click	on	IN.	You	will	now	see	all	the	in-parameters	of	the	workflow	you	have	selected.
Bind	the	workflow	input	to	the	in-parameter	you	defined	in	step	1.

4.	 Click	on	Decision,	choose	one	of	the	output	variables	of	the	workflow	you	selected,	and
then	choose	a	basic	condition	you	would	like	to	test	the	output	against.	Click	on	OK	when
finished.

5.	 Have	the	System	log	element	write	something	like	true	(green	line)	or	false	(red	dashed
line)	into	the	logs.

6.	 Save	and	run	the	workflow.

When	you	run	the	workflow,	the	in-parameter	you	defined	will	be	forwarded	to	the	basic
workflow	and	then	the	output	of	the	workflow	will	be	checked	against	the	condition	you	have
defined.

The	Switch	element

This	element	introduces	multiple	choices.	Just	drag	a	blue	arrow	from	the	Switch	element	to
the	case	element	and	then	enter	a	basic	condition:

1.	 Create	a	new	workflow	(or	reuse	the	last	one)	and	define	an	in-parameter	of	the	type
String.

2.	 Drag	the	Switch	element	onto	the	schema	and	edit	the	element.
3.	 Click	the	green	plus	sign	twice,	each	time	a	new	end	element	will	be	created.
4.	 Assign	the	in-parameter	to	the	new	branches	and	define	a	Basic	decision,	as	seen

previously.
5.	 Have	the	System	log	elements	write	something	such	as	one,	two	into	the	logs.
6.	 Save	and	run	the	workflow.

How	it	works...
Decisions	are	a	commonly-used	tool	in	programming.	Each	of	the	three	decision	types	lets
you	fork	your	workflow	into	different	areas.

A	Basic	decision	is	in	itself	easy	to	use	and	powerful,	as	it	doesn't	require	you	to	use	any
JavaScript.	The	previous	example	showed	you	which	conditions	are	possible	for	the	type
String,	but	each	variable	type	comes	with	its	own	pool	of	conditions.

A	Custom	decision	is	useful	if	your	decision	depends	on	things	that	the	Basic	decision	doesn't
cover	or	more	than	one	variable	is	needed	to	make	a	decision.	It	requires	you	to	use
JavaScript,	but	you	also	gain	a	lot	more	agility.

A	Decision	activity	checks	one	output	of	a	workflow	against	a	basic	condition.	It	is
commonly	used	to	check	whether	a	workflow	produced	a	certain	result.	A	Decision	activity
can	be	substituted	by	the	following	schema:

The	major	difference	is	that	you	won't	have	to	use	an	attribute	to	park	the	output	of	the
workflow	and	then	use	this	attribute	in	the	Basic	decision.	However,	a	Decision	activity	is
good	only	for	a	single	variable	and	a	basic	condition.	If	you	need	a	more	complex	condition
or	multiple	variables,	you	would	need	to	build	the	preceding	schema	and	use	a	Custom
decision	element.

The	Switch	element	allows	you	to	reduce	complex	code	and	use	multiple	decision	trees.	Not
only	can	you	use	the	Switch	element	like	the	Java	version,	but	you	can	actually	use	different
variables	for	each	decision.	In	this	respect,	it	behaves	more	like	an	if-else	if	structure.

Tip

The	Switch	element	and	Decision	activity	have	been	added	in	vRO6	and	should	not	be
imported	into	older	versions	of	Orchestrator.

JavaScript	-	if	and	else

As	we	already	saw	in	the	Custom	decisions	section,	the	JavaScript	code	for	an	if	statement
isn't	that	difficult.	It	is	made	up	of	operators	and	the	If	clause	itself.	The	form	looks	like	this:

Statement Example

	

if	(condition)	{

				code	block

}	else	if	(condition)	{

				code	block

}	else	{

				code	block

}

	

if	(varString	==	"test")	{

				return	true;

}	else	{

				return	false;

}

The	condition	is	made	up	of	a	statement	that	is	either	true	or	false.	This	statement	is	built
using	operators.	The	operators	that	JavaScript	knows	are	the	following:

and or not Equal Not	equal Smaller Bigger

&& || ! == != <	<= >=	>

As	an	example,	if	you	want	to	know	whether	the	number	that	is	stored	in	variable	A	is	bigger
than	5,	the	conditional	statement	will	be	(A	>	5).	If	you	want	to	know	whether	the	string
stored	in	the	variable	Text	equals	Hello,	the	statement	will	be	(Text	==	"Hello").

You	can	glue	conditions	together	with	the	&&	(and)	and	||	(or)	operators	and	normal	breaks
().	For	example,	if	A	is	bigger	than	5	and	Text	is	Hello,	the	conditional	statement	will	look
like	this:	((A>5)	&&	(Text	==	"Hello")).

JavaScript	-	Switch

The	Switch	statement	in	JavaScript	looks	like	this:

Statement Example

	

Switch	(GuestOS)	{

	

Switch	(expression)	{

case	condition:

code	block

break;

default:

default	code	block

}

case	"RedHat":

SCSI="LSi	Logic";

break;

case	"Win2008":

SCSI="Paravirtual";

break;

default:

throw	"Unknown	OS";

}

In	expression,	you	fill	in	the	variable	you	would	like	to	check,	and	in	the	case	condition:
part,	you	fill	in	the	condition	you	want	to	check	against.	Please	note	that	you	can	only	check
the	equals	(==)	condition	with	the	Switch	statement.	The	default:	part	is	used	if	all	other	tests
fail.

See	also
Also,	see	the	example	workflows:

05.02.1	Basic	Decision

05.02.2	Custom	decision

05.02.3	Decision	activity

05.02.4	Switch

Error	handling	in	workflows
This	recipe	is	dedicated	to	showing	how	to	handle	errors	in	workflows.	We	will	learn	how	to
catch	errors	and	redirect	them.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

How	to	do	it...
1.	 Create	a	new	workflow.	We	will	reuse	this	workflow	in	the	recipe,	Resuming	failed
workflows	in	Chapter	4,	Programming	Skills.

2.	 Add	the	following	variables:

Name Type Section Use

number Number IN Used	to	create	an	intentional	error

3.	 Assemble	the	workflow	(as	seen	in	the	following	screenshot)	by	dragging	a	Scriptable
task	into	the	workflow	and	then	a	Throw	exception	element	from	the	generic	section
onto	the	Scriptable	task.	Add	the	two	log	elements	to	the	workflow	by	just	dropping
them	onto	the	lines:

4.	 Bind	the	in-parameter	to	the	scriptable	task	and	add	the	following	script,	which	will
throw	an	error	when	the	value	5	is	entered:

						if	(number==5)	{	

										throw	"Intentional	Error";	

						}	

5.	 In	the	Scriptable	task,	click	on	Exception.	You	will	find	that	Orchestrator	has
automatically	created	a	new	workflow	attribute	called	errorCode	of	the	String	type	and
bound	it	to	the	Output	exception.

6.	 Use	the	log	elements	to	indicate	in	the	logs	which	path	has	been	taken.	You	can	do	this	by
removing	the	in-parameter	Text	in	the	log	element.	In	the	scripting	part	of	the	log
element,	replace	the	variable	Text	with	something	such	as	Normal	Path	and	Error	Path.

7.	 Save	and	close	the	workflow.
8.	 Run	the	workflow.	If	you	enter	5,	the	workflow	will	exit	with	an	error.	Check	the

workflow	logs.

Default	error	handler

The	default	error	handler	is	used	to	catch	all	errors	regardless	of	where	they	originated	and
pushes	them	into	one	error-handling	routine.	This	cleans	up	the	workflow	and	makes	them
easier	to	follow.

Tip

The	default	error	handler	has	been	added	in	vRO6	and	should	not	be	imported	into	older
versions	of	Orchestrator.

1.	 Copy	the	workflow	you	have	created	in	the	last	section	or	copy	the	example	workflow,
05.03.01	Error	Handling.

2.	 Delete	the	error	path	including	the	exception.
3.	 Drag	the	default	error	handler	onto	the	schema	(anywhere).
4.	 Insert	a	new	log	element	and	test	the	workflow.

How	it	works...
Error	handling	is	defined	as	a	reaction	to	an	error	(an	exception)	when	it	occurs.

In	automation,	there	are	generally	two	types	of	handling	errors:	push	through	and	rollback.
What	this	means	is	that	you	can	either	decide	that	you	push	on	and	try	to	resolve	the	error	in
the	code,	or	you	roll	back	any	change	that	you	made	to	the	system.	It	mostly	depends	on	the
task	you	are	performing	and	exceptions	you	have.

In	our	little	example,	we	intentionally	created	an	error	using	the	JavaScript	command	throw,
as	errors	normally	only	occur	when	one	doesn't	need	or	want	them.

Each	Orchestrator	element	has	an	Exception	section	in	which	you	can	define	an	attribute	of
the	type	String,	which	will	carry	the	error	message	that	occurred	in	this	element.	In	addition
to	this,	each	Orchestrator	element	has	a	blue	line	(normal	execution)	and	red	dashed	line
(exception).

We	connected	the	red	(exception)	line	to	the	Throw	exception	element	to	stop	further
execution	of	the	workflow,	but	we	used	a	log	element	in	between.	Have	a	closer	look	at	the
workflow.	You	will	notice	that	there	is	a	red	line	from	the	scriptable	task	to	the	error	log,	but
there	is	a	blue	line	between	it	and	the	Throw	exception	element.	What	this	means	is	that,	if	an
error	occurs	in	the	scripting,	we	fork	the	program	into	a	new	path.	Instead	of	stopping	the
workflow	in	a	failed	state,	we	could	have	used	other	programming	elements	to	resolve	the
error.

For	example,	if	you	have	a	workflow	that	creates	a	VM	and	the	workflow	fails	with	the	error
Not	enough	space,	you	can	then	use	Orchestrator	to	attach	an	additional	data	store	and	then
rerun	the	created	VM	workflow.

Ignoring	errors

It	is	also	possible	to	ignore	errors	in	a	workflow.	To	do	so,	you	just	drag	the	red	line	to	the
same	element	that	the	blue	line	already	points	to.	The	result	is	a	red	and	blue	dashed	line.	This
basically	means	that	the	workflow	continues	with	or	without	an	error	to	the	next	element.	If
you	don't	need	the	error	message	that	will	be	generated,	bind	the	exception	to	Null.

A	typical	example	of	this	configuration	is	deleting	a	VM.	If	you	want	to	delete	a	VM,	it	has	to
be	stopped.	The	workflow,	Power	off	virtual	machine	and	wait,	will	give	an	error	if	the	VM
is	already	switched	off.	To	solve	this,	you	can	connect	the	blue	and	the	red	path	of	the	Power
Off	workflow	to	the	Delete	VM	workflow.	This	will	make	sure	that	a	VM	is	powered	off;	if
not,	then	the	error	will	just	be	ignored.

The	handle	error	element

There	is	an	element	called	handle	error	that	helps	you	with	your	error	paths.	Just	drag	the
element	onto	a	workflow	element	and	then	you	can	choose	from	several	options.	Depending

on	the	option,	a	new	error	path	will	be	created.

See	also
The	example	workflows:

05.03.1	Error	Handling

05.03.2	Ignore	Errors

05.03.3	Default	Error	handler

Scripting	with	loops
Here,	we	will	explore	how	to	create	loops	in	scripts.	You	will	learn	how	to	build	loops	and
use	them.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

You	need	to	understand	how	decisions	are	used	in	Orchestrator;	this	was	explained	in	the
recipe	Scripting	with	decisions.

For	the	Foreach	element,	we	will	be	using	the	example	workflow	00.00	BasicWorkflow,
which	is	stored	in	the	Basic	Helper	folder.

How	to	do	it...
There	are	several	types	of	loop	one	can	create;	however,	they	can	all	be	reduced	to	the
following	two	basic	types.

The	decision	loop

This	basic	kind	of	loop	runs	until	a	certain	condition	is	met.	We	will	build	a	so-called	for
loop	in	this	example.	A	discussion	about	the	different	types	of	decision	loops	(for,	do-while,
and	while-do)	can	be	found	in	the	How	it	works...	section	of	this	recipe.

1.	 Create	a	new	workflow	and	build	the	preceding	schema.
2.	 Add	the	following	variables:

Name Type Section Use

number Number IN This	is	used	to	stop	the	loop

counter Number Attribute This	has	the	value	0	and	count	loop	iterations

3.	 Assign	the	counter	attribute	the	initial	value,	0.
4.	 Bind	the	counter	attribute	to	the	IN	and	OUT 	sections	of	the	Increase	counter	element.
5.	 Bind	the	text	in-parameter	of	System	log	to	the	counter.	This	will	write	the	current	count

into	the	logs.
6.	 In	the	Custom	decision	element,	bind	the	counter	and	the	in-parameter	to	the	IN	section.
7.	 In	the	Scripting	section,	enter	the	following	script:

						if	(number	==	counter)	{	

										return	true;	

						}	else	{	

										return	false;	

						}	

8.	 Save	and	run	the	workflow.
9.	 The	workflow	will	run	as	many	times	as	the	value	entered.

What	happens	is	that	the	decision	will	check	whether	the	attribute	counter	is	equal	to	the	value
entered;	if	it	is	not,	the	loop	will	run	and	increase	the	counter	by	one.

The	Foreach	loop

A	Foreach	loop	will	repeat	one	workflow	with	different	inputs.	For	the	input,	you	must	select
an	array.

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

input Array	of	string IN This	is	an	array	of	input	variables

output Array	of	string OUT This	is	an	array	of	output	variables

2.	 Drag	the	Foreach	element	onto	the	schema.	You	will	be	asked	what	workflow	you	want
to	use	with	it.	For	simplicity,	we	will	use	the	workflow	00.00	BasicWorkflow,	which	is
stored	in	the	folder,	Basic	Helper.

3.	 Open	the	Foreach	element	in	the	IN	section.	You	will	see	that	the	input	is	already	bound.
If	in	another	workflow,	you	want	to	choose	another	iterator,	click	on	Array(s)	to	be
traversed,	choose	another	array,	and	bind	the	variable.

4.	 Bind	the	output	variable.
5.	 Save	and	run	the	workflow.

When	the	workflow	runs,	you	will	be	prompted	to	enter	values	into	an	array.	The	basic
workflow	will	run	for	each	element	you	have	entered	into	the	array.	The	result	of	each	run
will	be	stored	in	the	array.

Tip

Foreach	workflows	are	run	synchronously,	meaning	that	if	one	fails	the	whole	element	will
fail.

Have	a	look	at	the	There's	more...	section	to	find	out	how	to	deal	with	exceptions	in	the
Foreach	element.

How	it	works...
Loops	are	a	very	common	tool	in	programming.	They	enable	programs	to	go	through
repetitions.	The	two	basic	types	we	have	introduced	are	different	in	the	way	they	work.
Decision	loops	use	a	condition	to	terminate,	whereas	the	Foreach	loop	terminates	when	all
elements	of	the	input	have	been	processed.

There	is	a	major	difference	between	looping	in	JavaScript	(such	as	inside	a	Scriptable	task)
and	using	the	workflow	schema.	Control!	When	we	loop	in	the	schema	we	can	control	error
handling,	exceptions,	attribute	handling,	and	get	a	better	grip	on	troubleshooting.

An	example	of	a	decision	loop	is	a	loop	that	checks	for	e-mails	with	a	certain	subject	every
minute.	The	loop	in	this	example	is	actually	a	combination	of	a	do-while	loop	and	a	for	loop
at	the	same	time.	The	double	loop	is	done	to	make	sure	the	loop	doesn't	run	forever.	After	10
runs,	the	loop	will	terminate.

The	classic	example	for	a	Foreach	loop	is	renaming	multiple	VMs.	You	define	in	one	array
the	VMs	you	want	to	rename	and	in	the	other	the	new	names.

Types	of	decision	loops

There	are	three	types	of	decision	loops:

Loop
type Description

for
A	counting	variable	is	used	to	count	the	number	of	runs.	The	loop	terminates	when
the	count	has	reached	a	predefined	value.

do-
An	action	is	performed	and,	after	that,	the	result	of	the	action	is	checked	against	a
condition.	As	in	the	previous	e-mail	example,	we	check	whether	the	e-mail	has

while arrived.	This	loop	will	run	at	least	once.

while-

do

This	is	the	same	as	the	do-while	loop,	except	the	check	is	performed	before	any
action	is	taken.	If	the	check	is	true,	the	loop	will	not	be	run.

Foreach	and	arrays

The	Foreach	element	needs	arrays	for	input	and	for	output.	However,	if	you	create	a	normal
(non-array)	variable	in	General	or	Input,	you	can	add	it	as	an	input	parameter	for	the
Foreach	element,	meaning	that	this	would	be	a	static	value	for	all	runs	of	the	Foreach
element.	Please	note	that	you	still	need	at	least	one	array	as	input.

An	example	for	this	discussion	is	the	creation	of	10	VMs	that	all	have	the	same	attributes
except	their	name.	You	would	use	a	Foreach	loop	on	the	Create	VM	workflow,	the	VM	name
would	be	an	array,	and	all	the	others	would	be	normal	attributes.

If	you	want	to	add	an	attribute	array	to	a	Foreach	element,	then	you	need	to	follow	these	steps:

1.	 Add	the	arrays	to	Array(s)	to	be	traversed.
2.	 Your	arrays	are	now	selectable	when	setting	them:

JavaScript

JavaScript	has	the	following	loops:

Statement Example

for	(start,

condition, for	(i	=	0;	i	<	5;	i++)	{

for increase)	{

code	block;

}

System.log(i);

}

while

while	(condition)	{

code	block;

}

do	{

code	block;

}

while	(condition);

Var	i	=	0;

while	(i	<	10)	{

System.log(i);

i++;

}

for	each

for	each	(variable	in	array)	{

code	block;

}

for	each	(day	in	week)	{

System.log(day);

}

This	is	straightforward.	condition	is	like	any	other	condition	we	explained	in	the	recipe
Scripting	with	decisions	in	this	chapter.	code	block	is	any	JavaScript	code	you	would	like	to
implement.	The	only	thing	that	might	need	a	bit	of	explanation	is	for	each.	The	(variable
in	array)	part	defines	a	new	variable	that	is	filled	each	time	with	a	new	element	from	the
array.	For	example,	if	we	have	an	array	that	contains	the	days	of	the	week,	each	time	the	loop
is	run	the	day	variable	will	be	filled	with	another	day.

There's	more...
When	handling	exceptions	with	the	for	each	loop,	there	are	some	extras	you	might	find
useful.	Just	adding	the	output	exception	will	stop	the	for	each	loop	as	soon	as	an	error
occurs.	If	you	activate	Catch	any	exception	and	continue	with	the	next	iteration,	the	for
each	loop	will	not	stop,	but	will	continue.	Additionally,	you	can	add	code	that	will	be	executed
each	time	an	exception	happens	in	the	loop.	You	have	access	to	all	the	in-parameters	of	the
for	each	loop,	but	also	the	$index	variable,	which	contains	the	current	iteration	of	the	loop:

See	also
The	example	workflows:

05.04.1	Decision-Loop

05.04.2	ForEach-Loop

05.04.3	DoWhile-Loop

05.04.4	ForEach-Exceptions

Workflow	presentations
In	this	recipe,	you	will	learn	how	to	configure	the	input	window	(the	presentation)	and	make	it
not	only	more	user-friendly,	but	also	reduce	the	amount	of	errors	a	user	can	enter.	You	will
learn	how	to	link	values,	hide	inputs	on	conditions,	and	use	predefined	answers.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

How	to	do	it...
We	will	split	this	recipe	into	several	sections.	We	will	only	create	a	presentation,	not	a
working	workflow.

Preparation

This	preparation	is	just	so	that	we	can	see	some	results:

1.	 Create	a	new	workflow	using	the	following	variables:

Name Type Section Use

number Number IN This	is	used	for	presentations

string String IN This	is	used	for	presentations

boolYesNo Boolean IN This	is	used	for	presentations

input
Array	of
Strings IN This	is	used	for	presentations

text String IN This	is	used	for	presentations

selection
Array	of
String Attribute This	fills	this	array	with	strings	in	the	order:	first,second,	third...

length Number Attribute This	sets	the	value	to	8

2.	 Drag	a	log	task	onto	the	schema	and	assign	all	the	variables	to	it.	This	is	just	so	that	the
validation	of	the	workflow	will	work.

Description
1.	 Switch	to	Presentation	and	click	on	the	first	variable	you	see.
2.	 Click	on	General	and	enter	some	text	into	Description.

Each	element	(including	Steps	and	Groups)	in	the	presentation	has	a	General	tab	with	a
Description	field.	In	this	tab,	you	can	enter	text	that	will	be	displayed	when	the	workflow	runs.
Each	in-parameter	automatically	gets	the	name	of	the	respective	in-parameter	in	Description.

You	can,	and	probably	should,	change	this	to	rather	more	meaningful	description.

The	description	is	interpreted	as	HTML,	but	not	all	tags	work;	however,	
,	<u>,	,	<i>,
<l>,	and	<a	href>	work	quite	well.

There	is	a	way	to	include	the	content	of	a	simple	variable	in	Description	of	a	variable.	Just
add	the	variable	in	the	${variableName}	form.

In-parameter	properties

You	can	add	to	each	in-parameter	a	list	of	different	properties	to	change	the	presentation.	We
cannot	discuss	all	the	properties	in	this	recipe,	just	the	basic	ones	(also	see	the	recipe	Linking
actions	in	presentations	in	this	chapter):

1.	 Click	on	Presentation	and	then	on	one	of	the	in-parameters.
2.	 Click	on	Properties	and	then	on	Add	property	(the	blue	triangle	icon).

3.	 You	can	now	add	various	properties,	which	can	differ	for	each	variable.	Go	and	try	them
out.	A	full	table	of	properties	can	be	found	in	the	How	it	works...	section	of	this	recipe.

4.	 Make	some	settings	and	run	the	workflow	to	see	the	results.	I	really	recommend	that	you
play	with	the	properties.

Steps	and	groups

Steps	and	groups	let	you	sort	inputs	by	themes,	such	as	one	page	for	general	parameters	and
one	for	advanced	inputs:

1.	 In	Presentation,	click	on	the	root	element	presentation.
2.	 Click	on	Create	new	Step	(the	paper	icon).
3.	 A	new	step	is	added	to	the	end	of	the	presentation	tree.	Give	it	a	new	name	by	double-

clicking	on	the	step,	typing	a	new	name	into	the	textbox,	and	pressing	Enter.
4.	 Now,	click	on	the	boolean	value	and	drag	it	under	the	new	step.	Move	at	least	three	more

variables	underneath	this	step.
5.	 Create	a	second	step	and	drag	all	the	rest	of	the	variables	underneath	it.
6.	 Now,	we	add	a	group.	Click	on	the	first	step	you	have	created	and	then	on	Create	Display

Group	(the	yellow	bar	icon).
7.	 A	new	group	has	been	added;	you	can	rename	the	group	as	required	and	press	Enter.
8.	 Now,	drag	variables	under	the	group.
9.	 Create	another	group	and	drag	some	other	variables	underneath	it.
10.	 Run	the	workflow.	I	would	also	recommend	experimenting	with	this	feature.

Hiding	input	values

To	make	the	input	window	even	more	user-friendly,	it's	sometimes	better	to	hide	some	inputs,
steps,	or	groups	if	they	are	not	used.	For	example,	a	step	that	contains	advanced	parameters
can	be	hidden:

1.	 In	Presentation,	make	sure	that	the	boolean	in-parameter	is	the	first	one	in	the
presentation	tree.

2.	 Add	the	Default	value	property	to	it	and	set	it	to	True.
3.	 Click	on	the	second	step	you	created	and	add	the	Hide	parameter	input	property.
4.	 Click	on	the	pencil	icon	on	the	right	of	the	hide	property.	A	popup	will	appear;	select	the

boolean	variable	and	click	on	Accept.	Note	that	the	variable	is	now	shown	in	the	#
[variableName]	format.	You	can	also	enter	directly	the	value	as	True	or	False.	You	can
also	always	put	an	!	before	the	#	of	the	variable	in	order	to	use	a	NOT.

5.	 Repeat	these	steps	to	link	a	hide	property	to	a	group	and	to	an	in-parameter	variable.
6.	 Run	the	workflow.	Change	the	boolean	value	to	false	and	watch	the	results.	All	elements

that	have	the	hide-property	will	respond	to	the	value	change	in	the	boolean	value.

Basic	linking

We	actually	have	already	used	linking	in	the	instruction	to	hide	inputs;	now	we	will	explore	it
in	more	detail.	Linking	can	help	you	create	drop-down	boxes	or	define	default	values:

1.	 Click	on	Presentation	and	then	select	one	of	the	string	in-parameters.
2.	 If	you	have	not	already	done	so,	assign	it	the	Maximum	string	length	property.
3.	 Now,	click	on	the	drop-down	menu	in	front	of	Value	and	select	the	yellow	arrows

(dynamic	binding).	The	box	icon	represents	the	static	binding.
4.	 You	will	see	that	the	Value	field	changes.	Click	on	the	pencil	icon	(Help	editing	OGNL),

and	in	the	pop-up	window,	you	will	see	all	the	variables	(attributes	and	in-parameters)
that	can	be	used	in	this	field.	Select	the	number	attribute	and	click	on	Accept.

5.	 Select	a	string	in-parameter	in	Presentation,	assign	it	the	Predefined	answers	property,
and	link	it	to	the	array	of	strings	attributes.

6.	 Run	the	workflow	and	test	out	the	results.

How	it	works...
The	presentation	section	of	a	workflow	allows	us	to	change	the	general	layout	of	the	input
window	that	a	user	encounters	when	they	start	the	workflow.	With	the	different	properties	that
can	be	defined,	it	is	easy	to	create	a	presentation	that	helps	the	user	interact	with	the	workflow
and	make	sure	that	they	enter	the	correct	(or	expected)	values.	This	can	dramatically	reduce
the	number	of	errors	a	user	is	able	to	cause	by	making	incorrect	entries.	A	typical	example	of
this	is	to	provide	the	user	with	a	list	of	predefined	answers	they	can	choose	from,	making	sure
that	only	the	correct	values	are	entered.

It	is	important	to	understand	that	the	presentation	is	WYSIWYG	only	in	the	Orchestrator
Client.	The	presentation	may	not	work	the	same	for	Orchestrator	Client,	vCenter,	vRA,	or
REST.	For	example,	vRA	will	not	be	able	to	use	Show	root	element,	or	the	list	view	doesn't
show	properties	in	vSphere	Web	Client.	One	should	develop	workflows	for	a	given	consumer.

Please	note	that	presentations	that	are	configured	with	the	workflow	work	fine	within	the
vSphere	Web	Client	and	in	vRA	integration,	but	not	in	REST	calls	that	launch	a	workflow.	You
can	test	the	behavior	with	the	example	workflow,	07.05.1	Presentations	test.

In	the	previous	example,	we	linked	several	properties	to	different	variables.	If	you	have	a
look	at	the	value	field,	you	will	notice	that	Orchestrator	will	use	the	#	symbol	to	mark	a
variable.	In	the	example	workflow,	we	used	a	Boolean	named	boolYesNo,	which	shows	up	in
the	hide-property	as	#boolYesNo.	The	entries	that	we	can	make	in	these	value	fields	follow
OGNL	(Object-Graph	Navigation	Language).	We	will	have	a	closer	look	at	OGNL	in	the
recipe	Linking	actions	in	presentations	in	this	chapter.

General	properties

The	following	is	an	almost	complete	list	of	common	properties:

Property Type Explanation

Show/hide
parameter
input

All Hide	or	show	an	input

Mandatory
input All The	user	has	to	enter	a	value	before	the	workflow	can	be	started.	An

error	will	be	displayed	if	this	variable	is	empty	(NULL).

Default
value All This	value	is	displayed	when	the	input	window	is	displayed.

Data
binding

All Binds	data

Predefined
answers

Predefined
list	of
elements

All

This	is	a	list	of	elements	that	you	can	select	from.	A	drop-down	list	will
be	displayed.

Answers	let	you	define	an	array	of	string;	Elements	let	you	link	an
array	of	strings

Custom
validation All

This	property	allows	for	the	use	of	OGNL	to	perform	your	own
validation	on	an	input.	(see	the	There's	more...	section	in	the	recipe
Linking	actions	in	presentations	in	this	chapter).

Minimum
(string
length)

Number,
String,
Path

This	is	the	minimum	length/value.	You	will	receive	an	error	message	if
you	exceed	the	maximum.

Maximum
(string
length)

Number,
String,
Path

This	is	the	maximum	length/value.	You	will	receive	an	error	message
if	you	are	under	the	minimum.

Number
format Number This	defines	a	format	in	which	numbers	are	displayed.	#

Matching
regular
expression

String This	uses	a	regular	expression	to	check	the	content.	An	error	is
displayed	if	the	content	isn't	part	of	the	regular	expression.

Multi-lines
text	input String This	displays	a	larger	text	window	instead	of	one	line,	where	more	text

can	be	entered.

Valid
internet
address

String Validates	an	input	if	it's	a	host	or	IP	address	(v4	or	v6)

Allow
same
values

Array Allow	only	unique	elements	in	Array

Input	date
before Date Last	possible	date

Input	date
after Date First	possible	date

Plugin-specific	properties

Certain	plugin	objects	(such	as	the	vCenter	plugin)	come	with	additional	properties	that	can	be
extremely	useful.	We	will	now	have	a	look	at	the	most	commonly-used	properties	that	come
with	the	base	plugins.

select	value	as

The	select	value	as	property	has	three	choices:	Tree,	List,	and	Dropdown.	This	property
makes	it	easier	to	manage	what	the	input	of	an	object	looks	like:

show	in	inventory

The	show	in	inventory	property	is	quite	a	powerful	property.	When	you	start	a	workflow
from	vSphere	Web	Client,	the	object	you	started	the	workflow	on	will	be	passed	to	the
workflow	as	an	in-parameter.	We	will	discuss	this	in	more	detail	in	the	recipe	Using
Orchestrator	through	the	vSphere	Web	Client	in	Chapter	7,	Interacting	with	Orchestrator.

This	property	also	makes	the	workflow	accessible	from	the	Orchestrator	inventory.	This
means	that	you	can	right-click	on	an	object	in	the	inventory	and	then	select	a	workflow	to	be
executed	onto	it.

Specify	a	root	object	to	be	shown	in	the	chooser

This	setting	lets	you	define	a	certain	start	point	for	your	searches.	For	example,	if	you	choose

an	ESXi	cluster	as	the	root	element,	then	a	user	can	only	select	objects	under	this	cluster.	To
use	the	root	element,	you	need	to	link	an	action	or	a	variable	to	this	property.	The	following
is	an	example:

Authorized	only

Adding	this	property	to	an	in-parameter	will	make	sure	that	only	an	authorized	user	can
access	this	in-parameter.

There's	more...

Custom	validation	can	be	used	to	check	a	value	against	a	more	complex	set	of	rules.	For	an
example,	let's	create	a	custom	validation	that	checks	if	a	given	VM	name	already	exists	in
vCenter:

1.	 Create	an	action	called	checkExistingVMName.
2.	 The	action	has	a	string	as	return	value	and	an	in-parameter	of	vmName:

						allVMs=System.getModule("com.vmware.library.vc.vm").getAllVMs();	

						for	each	(vm	in	allVMs)	{	

									System.log(vm.name);	

									if	(vm.name.toUpperCase()	==	vmName.toUpperCase())	{	

															return	"A	VM	with	the	name	"+vm.name+"	allready	exists";	

															break;	

									}	

						}	

						return	null;	

3.	 Create	a	new	workflow	with	an	in-parameter.
4.	 Add	the	presentation	parameter	Custom	validation,	and	link	the	action	you	just	created

to	it.

Also	see	the	example	workflow,	05.06.02	Custom	validation.

See	also
Learn	regular	expressions	at	the	following	links:

http://regexone.com/
http://regex.learncodethehardway.org/book/

The	example	workflow,	05.05	Workflow	Presentations	and		05.06.02	Custom	validation,
and	the	checkExistingVMName	action.

The	recipe	Integrating	Orchestrator	workflows	as	XaaS	Blueprints	in	Chapter	13,	Working
with	vRealize	Automation.

http://regexone.com/
http://regex.learncodethehardway.org/book/

Linking	actions	in	presentations
This	recipe	will	show	how	to	further	improve	and	automate	presentations	in	workflows	by
linking	actions	into	them.	This	is	done	to	present	to	the	user	only	a	specific	list	of	options
derived	on	runtime.

Getting	ready
We	will	create	a	new	workflow	and	reuse	the	action	getElementFromArray,	which	we	created
in	the	recipe	Creating	actions	in	Chapter	6,	Advanced	Programming	(see	the
com.packtpub.Orchestrator-Cookbook2ndEdition	module	in	the	example	pack).

You	should	be	familiar	with	the	topics	we	introduced	in	the	recipe	Workflow	presentations	in
this	chapter.

How	to	do	it...
1.	 Using	the	Orchestrator	Client,	create	a	new	workflow.
2.	 Create	the	following	variables:

Name Type Section Use

string String IN This	is	a	placeholder	for	the	linked	action

number Number IN This	is	used	to	select	a	value	from	an	array

array
Array	of
string Attribute This	can	take	values	such	as	Mon,	Tue,	Wed,	Thu,	Fri,

Sat,	Sun

3.	 Create	a	log	element	and	bind	all	variables	so	that	the	workflow	validation	will	succeed.
4.	 Click	on	Presentation	and	then	select	the	string	in-parameter.
5.	 Add	the	Data	binding	property	to	the	string	in-parameter.
6.	 On	the	Data	binding	property,	click	on	Link	action	(the	purple	puzzle	piece	icon).
7.	 In	the	pop-up	window,	in	the	filter	enter	the	name	of	the	action	you	want	to	use.	We	will

use	getElementFromArray.
8.	 Click	on	the	action;	underneath	it,	you	will	see	the	in-parameters	that	this	action	requires.

You	might	also	notice	that	each	in-parameter	can	take	either	a	Static	value	(the	white
rectangle	icon)	or	an	OGNL-linked	parameter	(the	yellow	arrow	icon).

9.	 Bind	the	number	and	the	array	in-parameter	to	the	action	and	click	on	Apply:

10.	 Save	and	run	the	workflow.

11.	 Enter	a	value	between	0	and	6	into	the	Number	field	and	see	how	the	value	of	the	string
fields	changes.

How	it	works...
Basically,	Orchestrator	uses	OGNL	to	create	the	interaction	with	an	action.	OGNL	is	used
most	commonly	with	the	Apache	web	server	to	enhance	presentations;	however,	VMware	has
deprecated	the	full	use	of	OGNL	in	Orchestrator	from	version	4.1	onwards;	the	only	remains
are	variables	and	the	ability	to	call	actions.	Variables	are	identified	with	a	leading	#	symbol
and	the	action	call	is	GetAction([Module],[Action]).call([in-parameters]).	You	can	use
action	linking	for	a	lot	of	things.	A	typical	example	is	that	you	use	an	action	such	as
getAllVMsOfVApps	to	display	a	Predefined	list	of	elements	for	a	user	to	select	a	VM	from.

The	in-parameter	property,	Data	binding,	makes	sure	that	values	in	the	presentation	are
updated	as	soon	as	the	value	that	it	is	bound	to	changes.	If	you	use	other	properties,	such	as
Default	value,	the	value	might	not	be	updated	instantaneously	in	the	presentation.

There	are	a	couple	of	predefined	OGNL	variables	that	Orchestrator	recognizes	and	can
become	useful:

Variable	name Description

#__username This	is	the	username	of	the	user	who	started	the	workflow.

#__userdisplayname
This	is	the	full	name	of	the	user	(if	available)	who	started	the
workflow.

#__serverurl
This	is	either	the	IP	or	the	name	of	the	Orchestrator	server	on	which
the	workflow	was	started.

#__datetime This	shows	the	current	date	and	time.

#__date This	shows	the	date	current	date	at	midnight.

#__timezone
This	shows	the	time	zone	configured	in	the	Orchestrator	server	that
started	the	workflow.

#__current The	current	variable.

In	addition	to	linking	variables,	you	can	also	directly	insert	values	using	#.	For	example,
instead	of	referencing	a	Boolean	in	Hide	parameter	input,	you	can	also	just	add	the	value
directly.	Just	enter	the	value	as	true	or	false.

See	also
The	example	workflows	05.06.01	Linking	actions	in	Presentations.

Changing	credentials	during	runtime
This	recipe	will	show	you	how	to	use	the	Change	credential	element	to	change	the	user	who
is	currently	executing	the	workflow.

Getting	ready
We	need	to	create	a	new	workflow.

For	this	recipe,	you	will	need	to	have	more	than	one	AD/LDAP	group	configured	to	have
access	to	Orchestrator.	Remember	that	you	can	use	the	Orchestrator	internal	LDAP	to	test	this.
To	facilitate	this,	please	follow	the	User	management	recipe	in	Chapter	7,	Interacting	with
Orchestrator.

How	to	do	it...
1.	 Create	a	new	workflow	with	the	following	variable:

Name Type Section Use

newCredential Credential IN The	user	name	and	password	of	the	new	user

2.	 Drag	a	Change	credential	element	onto	the	schema.
3.	 Bind	the	newCredential	in-parameter	to	the	Change	credential	element.
4.	 Now,	drag	one	System	log	element	before	and	one	after	the	Change	credential	element.
5.	 Edit	the	System	log	elements.	Remove	the	text	input	and	change	the	log	to

workflow.runningUserName.	This	will	log	the	username	that	is	currently	running	the
workflow.

6.	 Save	and	run	the	workflow.
7.	 When	asked,	enter	new	credentials	(for	example,	vcouser).	When	the	workflow	is

finished,	have	a	look	at	the	logs.	You	should	see	that	the	name	of	the	user	who	executed
the	workflow	has	changed	(see	the	following	screenshot):

How	it	works...
The	usage	is	simple;	you	define	the	user	who	executes	the	workflow	from	the	Change
Credential	element	onward.

A	typical	usage	is	that	you	have	a	workflow	started	by	a	user	who	has	no	rights	to	create	a	VM
on	vCenter.	So,	what	you	need	to	do	is	switch	credentials	before	the	VM	is	created	and	switch
them	back	for	the	rest	of	the	workflow.	The	best	practice	(please	note	that	this	is	only	true
when	you	use	the	vCenter	plugin	with	a	session	for	each	user)	for	this	is	to	put	the	elevated
credentials	that	are	used	into	a	configuration	(see	the	recipe	Working	with	configurations	in
Chapter	8,	Better	Workflows	and	Optimized	Working).

See	also
The	example	workflow	05.07	Change	Credentials.

Chapter	6.	Advanced	Programming
In	this	chapter,	we	are	aiming	at	improving	your	programming	skills.	We	will	look	at	the
following	recipes:

JavaScript	complex	variables
Working	with	JSON
JavaScript	special	statements
Turning	strings	into	objects
Working	with	the	API
Creating	actions
Waiting	tasks
Sending	and	waiting	for	custom	events
Using	asynchronous	workflows
Scripting	with	workflow	tokens
Working	with	user	interactions

Introduction
JavaScript	is	the	scripting	language	that	Orchestrator	is	based	on.	Learning	JavaScript	makes
for	a	much-improved	workflow	build.	JavaScript	is	especially	useful	in	the	creation	of
actions.

Tip

The	JavaScript	of	Orchestrator	doesn't	have	the	same	modules	and	functions	you	may	find	in
other	JavaScript	implementations.

Cool	stuff	in	the	scripting	tasks
There	are	some	nice	little	things	that	help	you	a	bit	if	you	know	about	them.

A	-	show	all	objects

When	you	are	in	a	scriptable	task,	start	typing	something	such	as	Server.	or	define	a	variable
of	type	VC:VirtualMachine	(vmObject)	and	then	type	vmObject.	Then	press	Ctrl	and	the
spacebar.	You	will	see	a	window	that	shows	you	all	the	properties	and	methods	that	go	along
with	this	object.

You	can	now	start	typing	the	attribute	or	method	you	want	and	see	the	list	shrinking.

B	-	find	stuff

Just	press	Ctrl	+	F	and	then	enter	what	you	are	looking	for.

C	-	line	and	character

Have	a	look	at	the	lower	left	corner	of	the	editor	field.	The	line	number,	as	well	as	the
character,	is	displayed	there.	Some	error	message	will	state	the	line	number	where	the	error
in	the	script	is:

JavaScript	(the	very	basics)
The	following	is	a	very	short	and	quick	reference	for	JavaScript.	It	is	aimed	at	people	who
already	know	a	programming	language	and	just	need	to	adapt	to	the	syntax	of	JavaScript.

To	learn	JavaScript,	you	can	have	a	look	at	http://www.w3schools.com/js/	.

Here	is	a	list	that	shows	the	very	basic	things	one	needs	to	know	about	JavaScript:

Every	line	ends	with	a	semicolon	(;).
Single-line	comments	are	done	with	//.
Multiline	comments	begin	with	/*	and	end	with	*/.
Everything	in	JavaScript	is	case	sensitive.
Variables	are	just	text	(for	example,	myTest5)	and	must	start	with	a	letter.
Math	operations	are	performed	using	symbols	such	as	+,	-,	*,	and	/.
Strings	are	combined	using	the	+	operator,	for	example,	"a"	+	"b"	or	stringVariable
+	"	text	to	append".
JavaScript	is	not	Java;	make	sure	you	always	search	for	JavaScript	on	the	Web.
Have	a	look	at	http://javascript.crockford.com/code.html	to	understand	how	JavaScript
should	be	formatted.
Variables	don't	have	to	be	declared	when	auto	casting	is	working.	To	declare	a	variable,
use	var	variable	name	=	new	variable_type;	for	example,	var	myString	=	new
String();.

Check	Chapter	5,	Visual	Programming,	for	JavaScript	on	decisions,	loops,	and	logs	and
Chapter	9,	Essential	Plugins,	and	Chapter	10,	Built-in	Plugins,	for	more	examples.

http://www.w3schools.com/js/
http://javascript.crockford.com/code.html

JavaScript	tricks	and	tips
This	is	a	small	collection	of	some	tricks	and	tips	that	are	quite	handy	to	know.

Is	a	string	part	of	another	string?	(indexOf)

A	typical	situation	that	you	may	come	across	is	this:	you	have	a	parameter	that	contains	a
string	and	you	would	like	to	know	if	this	string	contains	another	string.

For	example,	you	have	a	parameter,	myVM	that	contains	the	string	testVM.mylab.local.You
want	to	know	if	this	VM	is	in	the	mylab	domain,	and	if	the	myLab	string	is	part	of	it.	You	can
use	the	indexOf()	method	of	the	type	string.	The	index	functions	return	the	position	of	the
first	occurrence.	If	the	string	is	not	part	of	the	other	string,	the	return	value	will	be	-1.	Here's
an	example:

Var	myVM	=	"testVM.mylab.local";	

If	(myVM.indexOf("myLab")	>	0)	{	

			//is	part	of	mylab	

}	else	{	

			//is	NOT	part	of	mylab	

}	

Case	sensitivity	(toUpperCase)

Another	common	problem	is	that	a	user	might	enter	MyLab,	myLab,	or	MYLAB	instead	of	the
myLab	you	are	expecting	and	checking	for.	Here	is	a	simple	way	to	solve	this	one.	You	just
make	everything	capital	and	then	check.	So	instead	of	the	following	code:

var	myEntry	=	"MyLab";	

var	myTest	=	"myLab":	

if	(myEntry	==	myTest)	{	

			//	both	are	the	same	

}	

use	the	.toUpperCase()	method	of	the	type	string:

If	(myEntry.toUpperCase()	==	myTest.toUpperCase())	{	

			//	both	are	the	same	

}	

The	same	method	applies,	for	example,	to	the	hostnames	or	VM	names.	VM	names	or
hostnames	are	mostly	held	in	lowercase.	Use	the	.toLowerCase()	method	to	do	this.

Getting	rid	of	extra	space	(trim)

It	can	happen	that	users	enter	"myLab	"	or	"	myLab"	by	mistake	(an	extra	space	at	the
beginning	or	end)	and	you	can	imagine	how	this	can	play	havoc	with	an	if	clause.	Use	the
.trim()	method	to	solve	this:

var	dirtyString	=	"				Hello	World!					";	

var	cleanString	=	dirtyString.trim();	

String	replacement	with	regular	expressions	(replace)

You	can	use	regular	expressions	with	strings,	which	goes	a	long	way,	for	example,	with
HTML	mails.

Create	an	HTML	mail	body,	such	as	a	table	that	contain	some	places	that	you	later	want	to
exchange.	Such	a	table	could	look	like	this:

<table	border=1>	<tr>	<td>VM	Name</td><td>{VM}</td>	</tr><tr>	<td>vCPU</td><td>

{CPU}</td>	</tr></table	>	

You	then	can	store	this	as	an	attribute	(or	even	better,	as	a	resource)	and	when	you	need	it,	you
replace	it	with	the	following:

mailContent=mailContent.replace(new	RegExp("\{VM\}","g"),vmName);	

mailContent=mailContent.replace(new	RegExp("\{CPU\}","g"),vCPU);	

The	result	is	a	nice	e-mail	that	is	easily	formatted.	Please	not,	that	we	have	to	escape	the	{	in
the	regex.

Check	a	variable	for	type	(instanceof)

instanceof	is	used	to	determine	if	a	variable	is	of	a	given	type.	This	example	shows	how	to
use	it.	Also	see	the	example	action,	getAvailableCPUFromCluster.

If	we	have	a	vSphere	cluster	with	HA	configuration,	it	can	be	either	configured	as	n+1	or	with
%.	The	exact	mode	is	stored	as	follows:

HApolicy	=	clusterObject.configuration.dasConfig.admissionControlPolicy		

Using	an	if	statement,	we	can	determine	which	it	is:

if	(HApolicy	instanceof	VcClusterFailoverResourcesAdmissionControlPolicy)	

if	(HApolicy	instanceof	VcClusterFailoverLevelAdmissionControlPolicy)	

Working	with	dates

Just	a	few	words	on	working	with	the	Date	type	in	JavaScript.	Working	with	Date	is	easy	if
you	understand	how	it	works.	Basically,	it	counts	the	milliseconds	since	January	1,	1970	(in
1970,	UNIX	was	released).	If	you	want	to	read	or	set	the	time,	it's	best	to	use	the	methods	that
are	encapsulated	with	the	type.

Values Read Write

Day	of	the	week 0-6 getDay setDay

Day	of	the	month 1-31 getDate setDate

Number	of	month 0-11 getMonth setMonth

Year Four	digit	year:	for	example,	1970 getFullYear setFullYear

Milliseconds	since	01.01.1970 - getTime setTime

Seconds 0-59 getSeconds setSeconds

Minutes 0-59 getMinutes setMinutes

Hours 0-23 getHours setHours

Have	a	look	at	the	full	list	of	attributes	on	w3Schools:
http://www.w3schools.com/jsref/jsref_obj_date.asp

It	is	also	important	to	know	that	if	you	set	a	workflow	attribute	of	the	Date	type,	it	is	null	(it
doesn't	contain	the	current	time	or	the	time	you	started	the	workflow);	however,	if	you	set	a
date	as	a	workflow	in-parameter,	you	will	automatically	see	the	current	date	and	time	when
you	try	to	define	it.

To	initialize	a	Date	attribute,	you	can	bind	it	to	an	action	to	do	it	for	you.	Create	an	action	with
an	out-parameter	of	the	Date	type	and	the	following	script:

var	current	=	new	Date();	

return	current;	

This	action	will	set	an	existing	attribute	to	the	current	time	when	the	action	is	invoked.	Also
see	the	example	workflow,	06.04.03	Working	with	date	attributes,	and	the	example
action,	setNow.

To	display	the	date,	there	isn't	a	nice	way	implemented	in	Orchestrator,	so	you	have	to	go	the
long	way:

date.getDate()+"."+date.getMonth()+"."+date.getFullYear()	

Add	minutes	to	a	date

This	is	a	typical	problem	in	workflows.	You	have	a	wait	task	or	a	user	interaction	that
requires	a	timeout	as	Date	type.	You	can	define	the	new	end	date	with	the	following:

var	endDate	=	new	Date();	

http://www.w3schools.com/jsref/jsref_obj_date.asp

endDate.setMinutes(endDate.getMinutes()	+	minutes);	

This	will	create	a	new	endDate	that	is	minutes	in	the	future.	The	same	can	be	done	with	all	the
gets	and	sets	from	the	previous	table.	To	add	days,	use	24	hours.

JavaScript	complex	variables
In	this	recipe,	we	will	have	a	look	at	JavaScript	complex	variables,	such	as	arrays,	objects,
and	properties.	All	these	are	needed	to	deal	with	plugin	return	codes	such	as	from	REST	calls.

Getting	ready
We	need	a	new	workflow	and	a	scriptable	task	inside	it	to	try	it	out.

The	example	workflow	06.01	JavaScript	complex	variables	contains	all	the	examples	that
follow.

How	to	do	it...
We	will	look	into	several	different	JavaScript	complex	variable	type	pieces.

Arrays

Arrays	are	pretty	useful	for	storing	multiple	elements	of	the	same	type:

1.	 To	define	a	new	empty	array	in	JavaScript,	use	either	one	of	the	following	codes:
var	family	=	new	Array();

var	myArray	=	[];

2.	 You	can	define	a	new	filled	array	by	using	either	of	the	following	examples:
var	family	=	new	Array("Father","Mother","Daughter","Son");

var	myArray	=	["Father","Mother","Daughter","Son"];

3.	 While	accessing	the	element	(numbering	starts	at	zero),	System.log(family[2]);	will
show	Daughter.

4.	 You	can	add	element(s)	with	push.	You	can	add	multiple	ones	using	a	",":
family.push("baby");

5.	 The	amount	of	elements	in	an	array	can	be	found	with	length:
System.log(family.length);

6.	 As	seen	in	the	recipe	Scripting	with	loops	inChapter	5,	Visual	Programming,	you	can	loop
through	an	array	with	a	for	each	loop:

						for	each	(element	in	family)	{	

							system.log(element)	

						}	

These	are	the	basic	functions;	there	are	additional	ones	discussed	in	the	How	it	works...
section	of	this	recipe.

Properties

The	properties	variable	type	can	be	extremely	useful	to	transport	complex	content.	A
property	can	be	seen	as	a	hash	table,	which	means	that	you	can	assign	multiple	pairs	of	keys
with	their	values.

1.	 Define	a	new	property	using	the	following	code:

						var	relatives=	new	Properties();	

Tip

Note	that	even	if	you	define	a	property	in	Orchestrator	(attributes	or	out-parameters),
you	still	need	to	initialize	it	(see	step	1)	before	you	can	fill	it.

2.	 Add	a	key	(Uncle)	and	a	value	(David)	to	the	property:

					relatives.put("Uncle","David");	

Tip

Please	note	that	all	Property	and	Object	keys	are	case	sensitive.

3.	 You	read	elements	by	referring	to	its	key	(Uncle).	The	value	will	be	shown	as	follows:

					System.log(relatives.get("Uncle"));	

4.	 Show	all	keys	in	a	property	(as	an	array):

					System.log(relatives.keys);	

5.	 Loop	through	properties:

					for	each	(key	in	relatives.keys)	{	

								System.log(key+"	:	"+	relatives.get(key));	

					}	

6.	 Remove	an	element	from	a	property:

					relatives.remove("Aunt");	

Objects

Objects	are	a	bit	like	properties,	although	not	as	well	defined	and	user-friendly.

1.	 Declare	a	new	object:

						var	pets	=	new		Object();	

2.	 Create	a	property	named	Dog	with	the	value	Fido	for	the	object.	Use	either	one	of	the
following:

pets["Dog"]="Fido";

pets.Dog="Fido";

3.	 Read	out	an	object.	It	will	return	Fido	as	a	string.	Use	either	one	of	the	following:
System.log(pets["Dog"]);

System.log(pets.Dog);

4.	 To	create	an	array	inside	an	object,	use	the	following	form:

						var	pet.mice=["mouse1","	mouse2","	mouse3","	mouse4"]	

5.	 To	read	this	array,	use	the	following:

						System.log(pets.mice.length);	

						System.log(pets.mice[2]);	

A	good	usage	for	objects	is	to	use	them	together	to	form	JSON	objects.

We	will	take	look	at	JSON	in	the	recipe	Working	with	JSON	in	this	chapter.

How	it	works...
Complex	variables	are	used	quite	often	in	Orchestrator,	especially	when	we	are	using	plugins
such	as	PowerShell.

Array	methods

The	following	table	shows	all	the	methods	that	are	associated	with	arrays:

Function																											 Explanation

array3=array1.concat

(array2)
Joins	two	arrays	and	returns	the	new	one.

string=array.join

(separator)

Makes	a	string	out	of	the	array	using	the	separator	between
elements.

any=array.pop() Removes	the	last	element	and	returns	it.

number=array.push(Any)
Adds	a	new	element	to	the	end	of	the	array	and	returns	a	new
length.

array.reverse() Reverses	the	order	of	the	elements	in	the	array.

any=array.shift() Removes	the	first	element	and	displays	it.

newArray=array.slice(n,m) Slices	an	array	from	n	to	m	out	of	an	array.

array.sort() Sorts	an	array	alphanumerically.

array.splice(n,m,any) Inserts	(and/or	removes)	elements.

number=array.unshift(any)
Inserts	an	element	at	the	beginning	of	the	array	and	returns	a
new	length.

number=array.indexOf(any) Returns	the	index	of	the	element	you	are	looking	for.

Properties	within	properties

Sometimes,	you	have	properties	inside	properties.	This	is	harder	than	it	sounds.	Just	have	a
look	at	the	example	here:

var	mailProperties=	new	Properties();	

mailProperties.put("mailTo","info@langenhan.info");	

mailProperties.put("mailCC","info@langenhan.info");	

mailProperties.put("subject","Test	email");	

var	mailReplacements=	new	Properties();	

mailReplacements.put("vm.name","myVM");	

mailReplacements.put("vm.ip","192.168.220.10");	

mailReplacements.put("vm.mac","	0A:0B:0C:0D:0E:0F");	

mailProperties.put("mailReplacements",mailReplacements);	

To	read,	use	this	example:

mailTo=mailProperties.get("mailTo");	

keys=mailProperties.keys	

if	(keys.indexOf("mailCC")>=0){	

			mailCC=mailProperties.get("mailCC");	

}	

mailSubject=mailProperties.get("subject");	

mailReplacements=mailProperties.get("mailReplacements");	

for	each	(key	in	mailReplacements.keys){	

			System.log(key+"	:	"+mailReplacements.get(key));	

}	

Array	of	properties

An	array	of	properties	can	be	even	more	useful,	as	JavaScript	doesn't	really	do
multidimensional	arrays.	An	array	of	properties	is	more	or	less	a	two-dimensional	array.	To
create	an	array	of	properties,	use	the	following	steps:

Var	myArray	=	new	Array();	

var	myProp	=	new	Properties()	;		

myProp.put("myKey","Key	Value")	;	

myArray.push(myProp);	

Here's	an	example	of	an	array	of	properties:

Var	mails	=	new	Array();	

var	mail	=	new	Properties()	;		

mail.put("subject","Test	Email	1")	;	

mails.push(mail);	

var	mail	=	new	Properties()	;		

mail.put("subject","Test	Email	2")	;	

mails.push(mail);	

We	will	use	properties	in	the	recipe	Working	with	mail	in	Chapter	9,	Essential	Plugins.

See	also
See	the	example	workflow	06.01	JavaScript	complex	variables.

Working	with	JSON
Some	REST	clients	use	XML	and	some	use	JSON	to	exchange	data.	In	this	recipe,	we	will
look	at	how	to	parse	and	construct	JSON	objects	in	Orchestrator.

Getting	ready
You	should	be	comfortable	with	the	recipe	JavaScript	complex	variables	in	this	chapter	before
starting	this	recipe.

How	to	do	it...
We	will	divide	this	recipe	into	multiple	sections,	each	of	which	will	deal	with	the	different
aspects	of	JSON.

Parsing	JSON	REST	returns

The	(undocumented)	JSON.parse	function	makes	an	object	out	of	a	JSON	string.	This	is
typically	used	with	JSON	REST	returns.

In	this	example,	we	look	at	the	REST	return	from	the	Control	Center	GET	call:
api/server/status.

The	method	response.contentAsString	returns	the	following	string:

{"id":null,"error":null,"warning":null,"requestedStatus":null,"initialStatu

s":"RUNNING","currentStatus":"RUNNING","progress":"Status-ing

tcServer\nInstance	name:	app-server\nRuntime	version:

8.0.30.C.RELEASE\ntc	Runtime	Base:	/var/lib/vco/app-server\nStatus:

RUNNING	as	PID=24470\n","finished":true}

We	are	only	interested	in	currentStatus.	We	can	access	that	part	in	the	following	ways:

var	jsonObj	=	JSON.parse(response.contentAsString);	

System.log	("Serverstate	=	"+	jsonObj.currentStatus);	

Or:

System.log	("Serverstate	=	"+	jsonObj['currentStatus']);	

Creating	a	JSON	object

When	working	with	REST	and	JSON,	you	not	only	need	to	know	how	to	parse	JSON,	but	also
how	to	create	a	JSON	object.	There	is	a	very	good	article	that	shows	all	the	methods:
http://www.vcoteam.info/articles/learn-vco/305-creating-json-objects-in-orchestrator.html	.

I	will	quickly	show	how	to	do	it.	You	want	to	create	a	basic	JSON	object	that	looks	like	this:

{		

"private":"mobile	number",	

			"business":"landline	number"	

}	

First,	we	need	to	build	a	property	with	this	content:

var	propList=new	Properties();	

propList.put("private","mobile	number");	

propList.put("business","	landline	number");	

Then	we	have	to	convert	it	to	JSON	

var	jsonObj	=	new	Object();	

for	each	(key	in	propList.keys){	

http://www.vcoteam.info/articles/learn-vco/305-creating-json-objects-in-orchestrator.html

			jsonObj[key]=propList.get(key);	

}	

Content=	JSON.stringify(jsonObj);	

This	will	create	the	JSON	object	string	we	can	use	in	a	REST	call.	If	you	need	to	create	more
complex	JSON	with	arrays,	the	same	method	applies.	You	construct	an	array	of	properties	and
then	stringify	it.

Change	JSON	object

We	also	have	the	ability	to	alter	JSON	objects	quite	easily.	A	typical	example	is	that	you	have	a
REST	GET	that	results	in	a	JSON	and	you	like	to	PUT	the	same	back	with	some	slide	changes.
Here	is	how	that	works:

getContent=	REST.getContentAsMimeAttachment();	

jsonObj	=	JSON.parse(getContent.content);	

jsonObj['private']	=	"another	number";	

putContent=	JSON.stringify(jsonObj);	

How	it	works...
Orchestrator	uses	the	JSON	data	interchange	standard	to	exchange	information	via	the	REST
API.	Some	other	REST	APIs	(such	as	vCloud	Director)	use	XML.	JSON	stands	for	JavaScript
Object	Notation	and	is	a	standard	for	exchanging	information.

JSO	knows	the	following	elements:

Number:	A	simple	number	with	the	English	separation	of	a	dot	between	full	numbers	and
fractions
Value:	A	value	can	be	a	string,	number,	object,	array,	true,	false,	and	null

We	can	also	create	more	complex	types,	such	as	objects	and	arrays.

A	JSON	object	is	constructed	as	follows:

Format {	string	:	value	}	or	{string1:value1,	string2:value2}

Example {"version":"7.0.1",	"Build	Number":3232}

An	array	in	JSON	is	represented	as	follows:

Format [value1,value2]

Example ["Mother","Father"]	or	[{"Mother":"Mary",	"Father":"Adam"]}

JSON	is	quite	simple	when	you	get	the	hang	of	it.	If	you	need	to	construct	JSON	you	are
mostly	working	with	objects,	properties,	and	arrays.	All	these	are	explained	in
the	recipe	JavaScript	complex		variables		in	this	chapter.

See	also
See	the	example	workflow	07.04.1	Orchestrator	Service	Status.

More	information	on	JSON	can	be	found	here:	http://www.json.org/

http://www.json.org/

JavaScript	special	statements
This	recipe	introduces	three	usages	that	are	rather	advantageous	and	important,	try,	catch,	and
finally	functions.

Getting	ready
We	need	a	new	workflow	and	a	scriptable	task	inside	it	to	try	these	out.

The	example	workflow,	06.02	JavaScript	special	statements,	contain	all	the	following
examples.

How	to	do	it...
There	are	two	sections	in	this	recipe.

The	try,	catch,	and	finally	statement

When	writing	any	code,	you	want	to	make	sure	that	when	the	code	produces	an	error,	you	are
still	able	to	execute	some	critical	operations,	such	as	closing	an	open	connection:

1.	 Create	a	scriptable	task	and	enter	the	following	code:

						try	{	

								//Main	code;	

									System.log("Start	Main");	

									if	(error)	{	

															throw("Create	Error");	

									}	

									System.log("End	Main");	

						}	

						catch(ex)	{	

								//	error	handling		

								System.log("Error:	"+ex);	

						}	finally	{	

								//Final	Part	

									System.log("Finally");	

						}	

2.	 Create	an	input-parameter	of	the	type	Boolean	(error)	and	bind	it	to	the	scriptable	task.
3.	 When	executing,	you	can	create	an	error	(throw	statements	create	an	intentional	error).

Without	an	error,	the	main	code	(try)	would	be	executed	and	then	the	finally	code.
When	an	error	is	thrown	in	the	main	code,	the	execution	(try)	will	be	stopped	before
"End	Main"	and	then	will	execute	the	catch	code	followed	by	the	finally	code.

The	function	statement

The	function	command	enables	us	to	repeat	a	program	code.	A	function	needs	to	be	defined
before	it	is	used,	which	means	that	it	is	placed	at	the	beginning	of	a	program:

1.	 Create	a	scriptable	task	and	enter	the	following	code:

						function	functionName	(parameter1,	parameter2)	{	

										//	program	example	

										parameter3	=	parameter1	+	parameter2		

										return	parameter3	

						}	

2.	 You	now	can	call	the	function	in	the	same	scriptable	task	by	using:

						result	=	functionName(2,3);	

The	call	will	put	the	value	2	into	parameter1	and	the	value	3	into	parameter2	of	the
functionName	function.	The	result	variable	will	contain	the	return	value	of	the	function.

How	it	works...
A	typical	example	where	try/catch/finally	is	used;	is	to	make	sure	an	open	connection	to	a
database	is	closed	if	an	error	occurs.	Open	connections	can	cause	servers	to	perform	slower,
rendering	them	more	vulnerable	to	intrusion	or	even	corrupt	data.	You	would	open	the
connection	in	the	try	section	and	write	the	close	function	in	the	finally	section.

If	try,	catch,	and	finally	are	used,	you	would	place	the	function	before	the	try	command.	A
function	is	similar	to	the	way	an	action	works.	We	discussed	actions	in	the	recipe	Creating
actions	in	this	chapter.

See	also
See	the	example	workflow	06.02	JavaScript	special	statements.

Turning	strings	into	objects
In	this	recipe,	we	will	take	a	quick	look	at	how	to	turn	a	string	into	an	Orchestrator	object
(such	as	VC:VirtualMachine).	This	technique	is	rather	important	when	you	use	REST	to	start
workflows.

Getting	ready
We	only	need	the	Orchestrator	Client	with	the	right	to	create	a	workflow.

How	to	do	it...
In	this	example,	we	turn	a	string	into	VC:VirtualMachine:

1.	 Create	a	workflow	with	a	string	input	(vmString)	and	a	VC:VirtualMachine	output
(vmObject).

2.	 Add	a	scriptable	task	and	connect	the	in-	and	output	parameter.
3.	 In	the	script,	enter	the	following	code:

						query	=	"xpath:name='"	+	vmString	+	"'";	

						vms=Server.findAllForType("VC:VirtualMachine",	query);	

						vmObject=vms[0];	

4.	 Run	the	workflow	and	enter	a	Virtual	Machine	name.
5.	 Check	the	output	and	logs.

How	it	works...
The	find	function	looks	for	all	elements	of	a	given	type	and	can	be	limited	using	a	search
function.	It's	very	important	to	write	the	correct	type	and	the	search	string.

The	next	important	thing	is	to	make	sure	your	naming	of	objects	is	unique,	meaning	if	you
have	two	VMs	in	vCenter	that	have	the	same	name,	the	search	will	return	two	elements.	You
could	use	other	search	arguments,	such	as	ID	(vSphere	MoRef),	but	mostly	you	will	use	a
name.

A	typical	example	for	all	this	is	follows.

You	used	the	recipe	Using	PHP	to	access	the	REST	API	in	Chapter	7,	Interacting	with
Orchestrator,	to	create	a	website.	In	that	website,	you	show	a	dropdown	list	of	all	VMs	that	the
user	can	use.	For	this,	you	would	create	a	workflow	that	returns	an	array	of	strings,	which
you	can	then	put	into	your	dropdown.

When	you	select	one	of	the	dropdowns	and	press	a	button,	you	send	a	Virtual	Machine	name
as	a	string	back	to	Orchestrator.	To	make	use	of	that,	you	need	to	transfer	the	string	into	an
object	as	previously	described.

Here	is	a	list	of	the	common	types	you	might	be	looking	for:

vCenter	Virtual	Machine VC:VirtualMachine

ESXi	host VC:HostSystem

Datastore VC:Datastore

Network vc:network

VM	folder vc:vmfolder

Resource	pool vc:resourcepool

vRA	Virtual	Machine vCAC:VirtualMachine

vRA	server vCACCAFE:VCACHost

IaaS	server vCAC:vCACHost

There's	more...
Booleans	are	a	bit	special.	You	could	easily	use	an	if...else	statement	to	do	this,	as	follows:

if	((typeString.toLowerCase()	=="true")	||	(typeString.toLowerCase()	=="yes")){	

			typeBoolean=true;	

}	

if	((typeString.toLowerCase()=="false")	||	(typeString.toLowerCase()	=="no"))	{	

			typeBoolean=false;	

}	

However,	if	you	know	what	value	comes	back	and	in	what	case	you	can	make	your	life	easier
by	using:

typeBoolean=(typeString	==	"true");	

or

typeBoolean=(typeString	==	"yes");	

See	also
See	the	example	workflows	06.09.1	String	to	Object	and	06.09.2	String	to	Boolean.

Working	with	the	API
To	be	efficient	in	programming	using	Orchestrator	plugins,	one	needs	to	know	how	to	work
with	the	Orchestrator	API.	In	this	recipe,	we	showcase	how	to	access	and	get	information
from	the	Orchestrator	API.

Getting	ready
We	only	need	the	Orchestrator	Client	with	rights	to	edit	a	workflow.

How	to	do	it...
We	will	split	this	recipe	into	several	sections.

Searching	for	items	in	the	API

The	first	step	is	to	have	a	look	at	the	API.	To	access	the	API,	follow	these	steps:

1.	 Open	the	Orchestrator	Client.
2.	 Navigate	to	Tools	|	API	Explorer:

The	API	Explorer	opens,	and	you	have	four	sections,	as	marked	in	the	preceding	screenshot:

A	(search):	Here,	you	can	enter	a	search	word,	such	as	virtualmachine,	as	well	as	select
what	kinds	of	results	you	are	after
B	(search	results):	This	section	shows	you	the	result	of	the	search:	the	name,	the	type
(refer	to	the	How	it	works...	section	of	this	recipe),	and	a	short	description
C	(API	tree):	Double-clicking	on	a	search	result	in	section	B	will	browse	the	selected
result	and	open	the	API	tree	on	that	element
D	(detail):	Clicking	on	an	item	in	section	C	will	show	a	more	detailed	description	of	the
item	in	the	API

Programming	help	from	the	API

This	part	will	showcase	how	the	Orchestrator	API	can	help	us	program.	In	this	showcase,	we

will	begin	to	write	a	program	similar	to	the	one	that	we	will	create	in	the	recipe	Working	with
mails	in	Chapter	9,	Essential	Plugins.	Please	note	that	this	is	only	a	showcase	and	won't	result
in	a	working	program:

1.	 Create	a	new	workflow.
2.	 Add	a	scriptable	task	to	the	schema.
3.	 Edit	the	element	and	click	on	Scripting.
4.	 On	the	right-hand	side,	you	can	see	the	API	tree,	and	you	can	explore	it	by	browsing	it.

Try	it!
5.	 Click	on	Search	(the	magnifying	glass	icon)	and	enter	mailclient	in	the	pop-up	search

window.
6.	 Click	on	SEARCH,	mark	the	only	result,	and	then	click	on	Go	to	selection.	This	will

display	the	MailClient	object	in	the	API	tree:

7.	 Close	the	search	window.
8.	 Right-click	on	the	MailClient()	constructor	(the	C	symbol)	and	select	Copy.	If	there	is

no	dedicated	constructor,	you	can	always	copy	the	object	(the	green	circle)	directly.
9.	 In	the	script	area,	right-click	again	and	select	Paste	to	auto-create	a	new	constructor	for

the	MailClient	object.	See	the	preceding	screenshot.	This	will	create	an	instance	of	the
MailClient	type	and	assign	it	to	the	myMailClient	variable.

10.	 In	the	API	tree,	scroll	down	to	and	click	on	connect()	method.	In	the	detail	area
underneath,	you	will	see	details	for	this	command,	such	as	what	inputs	are	needed	and	of
what	type.	The	method	needs	a	host,	a	port,	a	username,	and	a	password.

11.	 Now,	copy	and	paste	the	connect()	method	as	you	did	in	steps	8	and	9	into	a	new	line	in
the	scripting	area.	Orchestrator	automatically	fills	in	some	parts,	and	the	new	line	will

look	like	this:

						connect(?String_host	,	?number_port	,	?String_username	,	

						?String_password)	

12.	 To	make	this	line	work,	we	will	need	to	put	an	object	before	it;	in	this	case,	it's	the
MailClient	object	we	created	in	step	9.	Just	add	myMailClient	before	connect	with	a
period	between	them.	This	will	enact	the	method	connect	on	the	MailClient	instance.	The
result	will	look	like	this:

						myMailClient.connect(?String_host	,	?number_port	,	?String_username	,	

						?	String_password).	

13.	 The	next	step	is	to	substitute	each	of	the	placeholders	(the	?names)	with	either
Orchestrator	variables	or	values.	Replace	the	first	placeholder,	?String_host,	with	a
mail	host	address,	such	as	mail.mylab.local.

14.	 As	we	want	to	showcase	the	API	a	bit	more,	we	will	get	the	value	for	the	?number_port
placeholder	a	bit	differently.	Insert	a	new	line	above	the	connect	line.

15.	 Use	the	API	search	to	search	for	getDefaultPort.	You	will	see	that	it	is	an	action	in	the
module	called	com.vmware.libary.mail	and	needs	the	input	of	a	type	string	(a	protocol
name).	Its	return	value	is	a	number	(the	port).	If	you	like,	take	a	look	at	the	action	itself
and	its	script.	This	will	help	you	understand	how	it	works	and	what	input	it	requires.

16.	 Now,	copy	and	paste	the	action	from	the	API	tree	to	the	scripting	area,	as	done
previously.	You	will	see	that	additional	code	is	created	and	looks	like	this:

						System.getModule("com.vmware.library.mail").getDefaultPort(protocol)	

17.	 We	want	the	output	of	the	action	to	be	put	into	a	local	variable,	so	insert	var	port	=
before	System.getModule.

18.	 Now,	we	need	to	tell	the	action	what	protocol	we	want,	so	replace	protocol	with	imap.
This	will	save	the	default	port	for	IMAP	into	the	variable	port.

19.	 Next,	replace	the	?number_port	placeholder	in	the	connect	line	with	the	port	variable.
20.	 Last	but	not	least,	let's	add	an	Orchestrator	variable	to	the	connect	line.	In	the	scriptable

task,	create	an	in-parameter	of	a	type	string	called	userName.
21.	 Replace	the	?String_username	placeholder	with	userName.	Notice	the	color	change	of

userName	when	it	matches	the	in-parameter.

At	this	stage,	we	leave	the	showcase,	as	we	have	explored	the	interesting	parts.	Your	little
script	should	look	something	like	this:

var	myMailClient	=	new	MailClient();	

var	port	=	System.getModule("com.vmware.library.mail").getDefaultPort("imap");	

myMailClient.connect("192.168.220.4"	,	port	,	userName,	?String_password);	

The	full	working	script	can	be	found	in	the	recipe	Working	with	mails	in	Chapter	9,	Essential
Plugins.

How	it	works...
The	Orchestrator	API	contains	all	types,	methods,	attributes,	objects,	and	so	on	that	can	be
used	for	programming.	All	the	content	comes	from	Orchestrator	or	its	plugins	and	gives	the
Orchestrator	programmer	a	wide	range	of	tools	to	use.

As	you	can	see	in	the	preceding	showcase,	the	items	in	the	API	are	color-coded;	the	following
table	shows	you	all	the	item	colors	along	with	a	short	description	of	their	meaning:

Icon Name Usage

Gray
bullet Type Types	are	complex	variables.

Purple
bullet Function	set A	set	of	functions	that	centers	on	certain	topics,	for	instance,	the

System	function	set	that	contains	the	.log	and	.warn	methods.

Blue
bullet Primitive

A	primitive	is	a	basic	variable	type.	These	are	array,	function,
number,	object,	secure	string,	string,	Boolean,	and	char.	String	and
array	contain	methods.

Green
bullet Object Objects	contain	attributes,	constructors,	and	methods.

Gray	and
blue	gear Module Modules	contain	actions.	We	worked	with	actions	and	modules	in	the

recipe	Creating	actions	in	this	chapter.

Color
icons SDKModule SDKModule	is	part	of	the	plugins	and	contains	types	and	objects.

C-shaped
icon Constructor

A	constructor	creates	a	new	entity	of	a	given	type.	Sometimes,	there
is	no	constructor;	in	this	case,	you	can	try	to	copy	and	paste	the
parent	object.

Empty
square Attribute An	attribute	is	a	property	of	an	object;	it	can	be	either	read-only	or

read-write.

Filled
Method

The	function	(action)	that	is	implemented	with	the	object	and	acts	on

square the	object.

See	also
In	the	recipe	Working	with	the	vCenter	API	(to	change	a	VM's	HA	settings)	in	Chapter	12,
Working	with	Vsphere,	we	will	explore	the	vCenter	API	integration	in	Orchestrator.

Creating	actions
In	this	recipe,	we	will	take	a	look	at	actions	and	their	differences	to	workflows	as	well	as	their
creation	and	usage.

Getting	ready
We	just	need	a	working	Orchestrator	and	you	will	need	the	rights	to	create	new	workflows
and	actions	as	well	as	the	right	to	run	workflows.	We	will	work	with	the	Orchestrator	Client.

JavaScript	arrays	will	be	used,	so	you	should	read	the	introduction	to	this	chapter.

How	to	do	it...
We	will	split	this	recipe	into	two	sections,	the	creation	and	the	implementation	of	an	action.

Creating	a	new	action
1.	 In	the	Orchestrator	Client,	click	on	Actions	(the	gray	gear	icon).
2.	 Right-click	on	the	top-level	(the	orange	icon)	and	select	New	module.
3.	 Give	the	module	a	name	that	is	based	on	either	your	URL	or	the	type	of	work	you	intend

to	do	with	it.	For	example,	I	chose	com.packtpub.Orchestrator-Cookbook.
4.	 Right-click	on	the	module	you	have	created	and	select	Add-action.
5.	 The	name	should	be	descriptive	and	tell	a	user	directly	what	it	does.	For	this	example,	I

chose	the	name	getElementFromArray.
6.	 Click	on	Add	Parameter	(the	yellow	right	arrow	icon)	and	add	the	following	variables:

Name Type Values

number Number This	is	the	index	number	of	the	array	that	should	be	returned.	The	firstelement	in	an	array	has	index	0.

array Array This	is	the	array	that	contains	all	elements

7.	 Now,	click	on	void	directly	to	the	right	of	Return	type	and	select	String.
8.	 In	the	scripting	field,	enter	the	following	code:

						return	array[number];	

9.	 Click	on	Save	and	Close.

Implementing	an	action	into	a	workflow
1.	 Using	the	Orchestrator	Client,	create	a	new	workflow.
2.	 Drag	Action	element	(out	of	Generic)	onto	the	schema.	In	the	Choose	Action	Dialog

field,	enter	the	beginning	of	the	name	of	the	action	you	have	just	created.	As	you	type,
you	will	see	the	list	of	objects	to	choose	from	decreases.	Alternatively,	you	can	also	use
the	All	Actions	section	and	browse	through	the	existing	actions.

3.	 Add	the	getElementFromArray	action	to	the	schema.
4.	 Create	and	assign	the	following	variables	to	the	action:

Name Type Variable	type

number IN This	is	a	number.

weekDays Attribute This	is	an	array	of	string	values	such	as	Mon,	Tue,	Wed,	Thu,	Fri,
Sat,	Sun.

output Out This	is	a	string	value.

5.	 Click	on	Save	and	Close	to	save	and	close	the	workflow	and	run	the	workflow.

When	you	now	enter	a	number	during	workflow	execution,	the	output	will	be	one	of	the	days
of	the	week.

How	it	works...
Actions	are	what	programmers	would	call	functions.	There	are	multiple	differences	between	a
workflow	and	an	action;	the	main	difference	is	that	an	action	can	only	return	one	variable,
whereas	a	workflow	can	return	multiple	variables.	Another	is	that	actions	are	purely
JavaScript-based	and	do	not	contain	any	visual	programming.	Actions	can	still	call	other
actions;	however,	you	will	need	the	JavaScript	command	System.getModule([Module]).
[Action]([in-parameter])	to	call	them.	As	you	can	see,	an	action	is	called	using	its	module
name,	while	a	workflow	is	called	(for	example,	via	the	API)	using	its	ID.	This	is	a	rather
important	difference,	as	renaming	an	action	is	hard	because	its	name,	and	maybe	the	module
name,	must	be	changed	everywhere.

In	an	action,	in-parameters	are	defined	the	same	way	as	in	a	workflow;	however,	the	return
type	is	a	bit	different.	The	return	code	is	always	one	variable	and	its	value	is	assigned	using
the	JavaScript	return	command.	If	you	don't	want	or	need	any	return	code,	define	the	return
code	as	void.

Binding	an	action	into	a	workflow	can	be	done	just	as	you	would	integrate	any	workflow,	by
dragging	the	Action	element	onto	the	schema.	When	binding	the	out-parameter	of	an	action,
you	will	notice	that	the	name	that	is	displayed	in	the	Action	element	is	ActionResult.	Your
attribute	or	out-parameter	that	is	bound	to	the	return	value	of	the	Action	element	should	be
named	something	more	meaningful.

Another	thing	that	is	important	for	good	programming	is	the	name	of	the	action	and	the
module	you	place	it	in.	Browse	through	the	existing	action	modules	to	explore	how	other
programmers	have	done	it.

A	good	recommendation	is	to	start	the	name	with	a	verb,	such	as	get,	set,	create,	delete,	and	so
forth.	Then,	describe	what	the	action	is	doing.	A	good	way	to	make	the	name	more	readable	is
to	capitalize	each	word	(except	the	first).	Examples	of	good	naming	are	startVM,
removeAllSnapshots,	and	getAllVMsOfVApps.	If	you	need	more	information	on	this,	check	the
JavaScript	style	guide	at	http://javascript.crockford.com/code.html	.

Exploring	the	existing	action	library,	you	will	find	a	lot	of	useful	actions	that	are	pre-created
and	can	be	used	in	your	own	workflows.

http://javascript.crockford.com/code.html

See	also
See	the	example	workflow	06.03	Creating	actions	and	the	getElementFromArray	action.

See	Changing	elements	in	a	workflow	in	Chapter	4,	Programming	Skills.

Waiting	tasks
This	is	a	recipe	that	will	make	you	wait	for	it...

Getting	ready
We	need	a	new	workflow	and	time!

How	to	do	it...
There	are	two	different	kinds	of	wait	tasks,	tasks	that	wait	for	a	duration	and	tasks	that	wait	for
a	specific	date	and	time	until	they	proceed.

Creating	a	help	task

We	need	to	create	an	action	to	help	us	track	time.	It	will	just	log	the	current	date	and	time.	The
action	already	exists	in	the	action	folder	com.packtpub.Orchestrator-
Cookbook2ndEdition.helpers:

1.	 Create	a	new	action	and	call	it	getNow.	There	is	no	need	to	define	any	in-	or	out-
parameters.

2.	 In	the	script	section,	place	the	following	script:

						var	current	=	new	Date();	

						System.log(current);	

Using	the	Sleep	task
1.	 Create	a	new	workflow.
2.	 Drag	a	Sleep	task	onto	the	schema	and	create	the	sleepTime	in-parameter	as	input	for	the

workflow.
3.	 Add	the	getNow	action	we	have	just	created	before	and	after	the	Sleep	task.
4.	 When	running	the	workflow,	check	the	log.	You	will	notice	how	the	workflow	will	wait

for	the	allocated	seconds.

Waiting	for	a	date
1.	 Create	a	new	workflow.
2.	 Drag	a	Wait	until	date	task	onto	the	schema	and	create	the	waitDate	in-parameter	as

input	for	the	workflow.
3.	 Add	the	getNow	action	we	have	just	created	before	and	after	the	Wait	until	date	task.
4.	 When	running	the	workflow,	check	out	the	log.	You	will	notice	how	the	workflow	will

wait	until	the	allocated	date	and	time:

How	it	works...
A	wait	task	will	pause	the	workflow	execution	for	a	certain	amount	of	time.	The	main
difference	between	a	Sleep	task	and	a	Wait	until	task	is	the	amount	of	system	resources	that
are	used	for	waiting.

The	Sleep	task	will	just	wait;	however,	it	will	still	require	memory	and	one	thread	per	sleep
task.	The	Wait	until	task	is	more	specific	in	how	it	saves	system	resources.	When	the	Wait
until	task	starts,	the	workflow	is	saved	to	the	Orchestrator	database	and	is	woken	up	again	on
the	specified	date	and	time.	Orchestrator	uses	a	single	thread	to	deal	with	the	all	the
workflows	that	are	set	to	wait	until	a	certain	date/time.	This	preserves	quite	a	bit	of	resources.

This	leads	us	directly	to	the	most	important	usage	for	wait	tasks,	long-running	workflows.	If	a
workflow	is	running	for	a	long	time,	such	as	polling	for	new	e-mails	or	waiting	for	a	user
interaction,	a	wait	task	can	reduce	the	amount	of	system	resources	consumed	during	the	wait
period.

There	are	actually	two	waits	for	date	tasks,	one	in	Generic	called	Waiting	timer	and	the	other
in	Basic	called	Wait	until	date.	Both	are	essentially	the	same.

There's	more...
The	JavaScript	commands	for	waiting	are	System.sleep([milliseconds])	and
System.waitUntil([Date],[Number	of	milliseconds]).

Please	note	that	the	sleep	command	works	with	milliseconds,	whereas	the	Sleep	schema
element	works	with	seconds.

The	waituntil	command	has	two	inputs:	the	date	and	the	number	of	milliseconds.	The
milliseconds	define	the	delay	time	between	two	checks	to	see	whether	a	certain	date	has	been
reached.	Also,	the	command	returns	a	Boolean	value	that	is	true	when	the	wait	has	finished.

Tip

No	JavaScript	wait	tasks	will	save	any	system	resources,	as	the	schema	tasks	do.

See	also
See	the	example	workflows:

06.04.01	Sleep

06.04.02	Wait	until	date

06.04.03	Working	with	date	attributes

See	the	example	actions:	getNow	and	setNow.

Sending	and	waiting	for	custom	events
This	recipe	will	showcase	how	to	send	interactions	between	workflows.	This	is	mostly	used
together	with	asynchronous	workflows,	which	we	will	explain	in	the	recipe	Using
asynchronous	workflows	in	this	chapter.

Getting	ready
We	need	to	be	able	to	create	two	workflows.

We	will	reuse	the	getNow	action	that	we	created	in	the	recipe	Waiting	tasks	in	this	chapter	(see
the	com.packtpub.Orchestrator-Cookbook2ndEdition.helpers	module	in	the	example	pack).

How	to	do	it...
This	recipe	requires	us	to	create	two	workflows	and	then	use	them	together.

Receiving	a	custom	event

First,	we	create	the	receiving	part:

1.	 Create	a	new	workflow	using	the	setup	shown	in	the	following	figure:

2.	 Create	the	following	variables:

Name Type Section Use

isExternalEvent Number AttributeValue:	false
This	is	a	setting	to	indicate	where	Orchestrator
has	to	listen	to	for	the	event.

eventName String IN This	is	a	string	that	contains	the	event	identifier.

endDate Date IN The	date/time	until	Orchestrator	should	listen
for	the	event.

Success Boolean Attribute This	returns	a	value	from	the	wait	element.
true	indicates	that	the	event	was	received.

3.	 Bind	all	the	variables	to	the	Wait	for	customer	event	task;	only	success	will	be	bound	to
the	output.

4.	 Bind	the	Decision	task	to	the	success	attribute.
5.	 Add	some	meaningful	text	to	the	system	log	tasks,	such	as	Success	and	Failure.
6.	 Save	and	close,	but	don't	run	this	workflow	yet.	Proceed	to	the	next	section.

Sending	a	custom	event

We	now	create	the	workflow	that	sends	the	custom	event:

1.	 Create	a	new	workflow	with	the	following	variable:

Name Type Section Use

eventName String IN This	is	a	string	that	contains	the	event	identifier

2.	 Just	drag	a	Send	Custom	event	task	onto	the	schema	and	bind	the	eventName	in-
parameter	to	it.

3.	 Save	and	close	the	workflow.	Don't	run	this	workflow	yet.	Proceed	to	the	next	section.

Trying	it	out

As	we	have	now	created	all	the	moving	parts,	let's	give	it	a	spin:

1.	 Start	the	receive	workflow	and	enter	an	event	name	such	as	getThis	as	well	as	a
date/time	that	is	in	the	future	(10	minutes	or	so).

2.	 Now,	start	the	send	workflow	and	enter	the	same	event	name	you	entered	in	the	receive
workflow.	Watch	the	result	and	the	logs.

Start	both	workflows	again,	but	this	time,	let	the	time	expire	and	watch	the	result.

How	it	works...
Custom	events	are	Orchestrator	internal	events	that	help	exchange	states	between	workflows.
A	typical	example	is	that	you	have	a	workflow	that	needs	to	wait	for	another	workflow	to
finish.	Another	example	is	that	a	workflow	should	not	proceed	before	a	certain	event	has
taken	place.	In	the	recipe	Using	asynchronous	workflows	in	this	chapter,	we	will	have	a	closer
look	at	how	this	works.	Another	possibility	is	to	use	an	event	as	a	crude	approval	mechanism.

Tip

Check	the	introduction	to	this	chapter	on	how	to	work	with	dates.

External	events

External	events	enable	workflows	to	wait	for	an	input	from	outside	of	Orchestrator.	This
input	is	received	using	the	SOAP	interface.	As	the	SOAP	interface	is	gone,	external	events
don't	work	anymore.

The	custom	event	URL	that	is	used,	looked	like	http://[server	IP]:8280/vmware-vmo-
webcontrol/SendCustomEvent?EventName=[event	name].

This	leaves	only	REST,	e-mail,	and	SNMP	as	input	methods.	You	could	send	an	e-mail	to	an	e-
mail	account	that	is	monitored	by	Orchestrator	(see	the	recipe	Working	with	mails	in	Chapter
9,	Essential	Plugins)	or	you	could	use	PHP	(see	the	recipe	Using	PHP	to	access	the	REST
API	in	Chapter	7,	Interacting	with	Orchestrator)	in	a	website	to	send	an	(internal)	event	or
answer	a	user	interaction	(see	the	recipe	Working	with	user	interactions	in	this	chapter).	SNMP
traps	are	discussed	in	the	Working	with	SNMP	in	Chapter	10,	Built-in	Plugins.

See	also
See	the	example	workflows:

06.05.01	Receive	Custom	event

06.05.02	Sending	Custom	event

06.05.03	Generate	External	Event

06.05.04	Receive	External	Event

See	the	recipe	An	approval	process	for	VM	provisioning	in	Chapter	12,	Working	with	vSphere.

Using	asynchronous	workflows
A	workflow	executes	its	elements	along	its	path	one	after	another.	Using	asynchronous
workflow	execution,	we	can	change	this	behavior	and	actually	execute	workflows	in	parallel.

Getting	ready
We	will	need	to	build	a	new	workflow.

For	the	first	example,	we	will	reuse	the	sleep	workflow	as	well	as	the	getNow	action	we
created	in	the	recipe	Waiting	tasks	in	this	chapter.	(06.04.01	Sleep	and	the
com.packtpub.Orchestrator-Cookbook2ndEdition.helpers	module	in	the	example	pack).

How	to	do	it...
We	will	see	two	examples	to	demonstrate	the	asynchronous	feature.

The	first	example

Here	are	some	basics:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

sleepTime Number IN It	defines	the	time	the	workflow	should	sleep

wfToken WorkflowToken Attribute The	workflow	token	of	the	asynchronousworkflow

2.	 Drag	an	Asynchronous	workflow	task	into	the	schema.
3.	 When	prompted,	enter	the	name	of	the	sleep	workflow	we	have	created	in	the

recipe	Waiting	tasks		in	this	chapter	(06.04.01	Sleep	in	the	example	package).
4.	 Now,	edit	the	Asynchronous	workflow	tasks.	The	in-parameter	is	the	one	from	the	sleep

workflow.	Bind	it	to	the	sleepTime	in-parameter.
5.	 The	out-parameter	is	a	workflowToken.	Bind	it	to	the	wfToken	attribute.
6.	 Drag	one	getNow	action	on	each	side	of	the	Asynchronous	workflow	tasks.
7.	 Save	the	workflow	and	run	it:

Have	a	look	at	the	execution.	The	workflow	that	started	the	sleep	workflow	asynchronously
has	finished	(A	in	the	previous	screenshot)	but	the	sleep	workflow	is	still	running	(B).	Also,
please	note	that	the	sleep	workflow	doesn't	write	its	logs	into	the	main	workflow.

The	second	example

This	example	shows	how	to	combine	asynchronous	workflows	with	custom	events:

1.	 Duplicate	the	sleep	workflow	we	created	in	the	recipe	Waiting	tasks	in	this	chapter
(06.04.01	in	the	example	package).

2.	 Edit	the	workflow	and	add	the	following	variable:

Name Type Section Use

eventName String IN This	transports	the	custom	event	name

3.	 Add	Send	custom	event	after	the	Sleep	task	and	bind	the	eventName	in-parameter	to	it.

4.	 Save	and	exit	the	workflow.	Don't	run	it	now.
5.	 Create	a	new	workflow	with	the	following	variables:

Name Type Section Use

sleepTime Number IN Time	the	asynchronous	workflow	for
when	it	should	sleep.

eventName String IN This	is	a	string	that	contains	an	event
name.

endDate Date IN This	is	the	date/time	until	the	workflow
should	wait.

This	is	the	return	value	from	the	wait	for	a

Success Boolean Attribute custom	event.

wfToken WorkflowToken Attribute This	is	the	return	value	from	anasynchronous	task.

isExternalEvent Boolean Attribute Set	to	false.

6.	 Drag	an	Asynchronous	workflow	task	onto	the	schema.
7.	 When	prompted,	enter	the	name	of	the	workflow	you	have	just	created	(3.15.2	in	the

example	package).
8.	 Add	a	wait	for	custom	event	element	to	the	schema	as	well	as	some	getNow	actions	(see

the	following	figure).
9.	 Bind	the	variables	to	the	Asynchronous	task	and	the	Wait	for	custom	event	element.
10.	 Save	and	run	the	workflow.	Watch	the	execution.

You	will	see	that	the	main	workflow	will	wait	until	it	has	received	the	custom	events,	which
indicates	that	the	asynchronous	workflow	has	finished.

How	it	works...
Normally,	a	workflow	executes	one	element	after	the	other	in	a	serial	approach.	From	time	to
time,	this	can	mean	that	your	main	program	has	to	wait	for	some	other	tasks	to	finish	before
continuing.	Using	asynchronous	execution,	we	can	make	workflows	execute	in	parallel.	A
typical	example	is	that	you	clone	a	VM	(which	can	take	a	few	minutes),	and	while	it	clones,
you	can	create	a	new	PortGroup	that	you	can	later	attach	to	the	cloned	VM.	To	do	this,	create	a
new	workflow	that	runs	the	create	VM	workflow	asynchronously	and	sends	a	custom	event
when	it	is	finished.	In	the	meantime,	the	main	workflow	creates	the	PortGroup	and	then	waits
for	the	custom	event	to	signal	that	the	VM	is	ready.	After	the	custom	event	has	arrived,	you
can	then	map	the	PortGroup	to	the	VM.

One	thing	you	have	to	watch	out	for	is	a	so-called	race	condition.	If	you	start	a	workflow
asynchronously	and	in	sequence	and	then	wait	for	the	other,	you	might	run	into	this.	If	the
asynchronous	workflow	finishes	before	the	sequential	does,	the	event	is	already	sent	but
nobody	is	waiting	for	it,	resulting	in	the	fact	that	the	event	wait	will	time	out.	In	this	case,	you
should	either	use	the	workflow	token	(see	the	recipe	Scripting	with	workflow	tokens	in	this
chapter)	or	add	a	sleep	to	the	asynchronous	task	to	make	sure	it	finishes	after	the	sequential
one.	As	an	example	for	this,	check	out	the	example	workflow,	06.06.04	wait	for
asynchronous	(Race	condition).

See	also
See	the	example	workflows:

06.06.01	Using	Asynchronous	Workflows

06.06.02	Sleep	and	send	event

06.06.03	wait	for	Asynchronous	workflow	to	finish

06.06.04	wait	for	asynchronous	(Race	condition)

Scripting	with	workflow	tokens
In	this	recipe,	we	have	taken	a	closer	look	at	the	workflow	token.	The	workflow	token	is	the
execution	of	a	given	workflow.

Getting	ready
We	don't	need	anything	special,	just	the	ability	to	create	a	new	workflow.

How	to	do	it...
In	this	example,	we	start	a	workflow	asynchronously	and	then	wait	for	it	to	finish	the
workflow	token:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

sleepTime Number IN It	defines	the	time	the	workflow	should	sleep.

wfToken WorkflowToken Attribute The	workflow	token	of	the	asynchronousworkflow.

waitTaskTime Number Attribute How	long	to	wait	between	checks.

2.	 Build	the	following	workflow	(06.07.01	Wait	for	Workflow	Token	in	the	example
package):

3.	 The	custom	decision	element	should	contain	the	following	script:

						if	(wfToken.state	=="completed"){	

									return	true;	

						}	else	{	

									return	false;	

						}	

4.	 Save	and	run	the	workflow

How	it	works...
The	workflow	token	is	a	unique	ID	that	is	created	with	each	workflow	run.	It	contains	a	link
to	all	the	content	of	a	workflow	run,	such	as	the	logs,	as	well	as	all	the	attributes	and	in-and
out	parameters.	You	can	access	it	via	JavaScript,	the	API	(see	the	recipe	Accessing
Orchestrator	REST	API	in	Chapter	7,	Interacting	with	Orchestrator)	or	the	Control	Center
(see	the	recipe	Control	Center	titbits	in	Chapter	2,	Optimizing	Orchestrator	Configuration).
When	you	look	at	a	workflow	run	(the	items	underneath	a	workflow),	you	see	nothing	else
but	the	Orchestrator	Client	accessing	the	data	stored	in	the	workflow	token.

In	addition	to	the	properties,	there	are	also	some	methods	that	allow	you	to	cancel	or	answer
the	workflow.

Each	workflow	token	has	simple	properties	and	methods,	and	they	are	as	follows:

Properties	and	methods Description

.id Converts	the	token	ID	into	a	string.

.startDate
This	is	the	date	and	time	the	workflow
was	started.

.endDate

This	is	the	date	and	time	the	workflow
was	finished.	Null	means	that	it	is	still
running.

.state

This	is	the	state	the	workflow	is	in.	The
different	states	are	waiting,	failed,
completed,	cancelled,	and	running.

.name This	is	the	name	of	the	workflow.

.exception

This	is	the	error	message	a	workflow
generated	and	is	Null	if	no	error
occurs.

.getAttributes()

This	helps	get	all	the	attributes	of	the
workflow;	it	returns	an	Orchestrator
properties	object.	The	return	is	a
JavaScript	object.

.getInputParameters()

This	helps	get	all	the	in-parameters	of
the	workflow;	it	returns	an
Orchestrator	properties	object.	The
return	is	a	JavaScript	object.

.getOutputParameters()

This	helps	get	all	the	out-parameters	of
the	workflow;	it	returns	an
Orchestrator	properties	object.	The
return	is	a	JavaScript	object

.cancel() Cancels	the	workflow	execution.

.saveSchemaImageToFile(file)
Saves	the	image	of	the	workflow
schema	to	a	file.

Server.getWorkflowTokenState(String_token_id)
Gets	the	state	of	a	given
String_token_id.

See	also
See	the	example	workflow	06.06.04	Wait	for	Workflow	Token.

Working	with	user	interactions
This	recipe	will	teach	us	how	to	create	user	interactions.	User	interactions	are	additional
inputs	that	can	be	asked	of	users	during	the	workflow	execution.

Getting	ready
We	need	to	be	able	to	create	a	new	workflow.

For	this	recipe,	you	will	need	to	have	more	than	one	AD/LDAP/SSO	group	configured	to
access	Orchestrator.	Remember	that	you	can	use	the	Orchestrator	internal	LDAP	to	test	this.
To	facilitate	this,	please	follow	the	recipe	User	management	in	Chapter	7,	Interacting	with
Orchestrator.

For	the	example,	in	the	There's	more...	section,	we	will	also	showcase	the	interaction	with	the
vSphere	Web	Client.

How	to	do	it...
We	will	split	this	recipe	into	two	parts,	the	creation	of	the	interaction	workflow	and	the	test
run	that	will	show	how	to	answer	the	interaction.

Creating	the	workflow
1.	 Create	a	new	workflow	with	the	following	variables:

Name Type Section Use

Group LdapGroup IN This	contains	the	group	that	is	enabled	to	answer	the
interaction.

userString String Attribute This	is	defined	when	the	user	answers	the	interaction.

errorCode String Attribute This	contains	the	error	code.

Date Date IN This	is	the	date	until	the	customer	interactions	waits
for	answers.

inString String IN This	is	a	string	value	that	is	defined	when	the
workflow	starts.

2.	 Define	for	the	group	attribute	an	LDAP	group	that	should	be	allowed	to	answer	the
interaction	(if	you	don't	have	an	LDAP/AD/SSO,	you	can	use	vcousers	from	the	local
Orchestrator	LDAP).

3.	 Drag	a	User	interaction	element	onto	the	schema	and	edit	it.
4.	 The	User	interaction	element	looks	different	from	the	elements	you	have	encountered

before.	The	Attributes	tab	contains	the	security.group	and	timeout.date	attributes,	as
well	as	arrays	for	users	and	groups.	The	security.group	(or	the	arrays)	attribute	defines
which	users	(or	groups)	are	allowed	to	answer	this	user	interaction.	Bind	this	attribute	to
the	group	attribute.	The	timeout.date	attribute	defines	when	this	user	interaction	expires.
Bind	the	date	in-parameter	to	it.

5.	 The	External	inputs	tab	defines	what	variables	the	user	interaction	asks	for.	You	can	add
workflow	attributes	or	out-parameters	here.	For	our	example,	we	just	add	the
userString	attribute:

6.	 The	Presentation	tab	works	the	same	way	as	the	normal	workflow	presentation	(see	the
recipe	Workflow	Presentations	in	Chapter	5,	Visual	Programming).

7.	 We	will	be	building	the	following	structure	in	the	next	steps:

8.	 Drag	the	System	error	element	onto	the	User	Interaction	element	and	make	sure	that	the
bindings	are	correct	(see	the	recipe	Error	handling	in	workflows	in	Chapter	5,	Visual
Programming).

9.	 To	make	sure	that	something	happens	after	the	interaction,	add	Scriptable	task	to	the
schema	(see	the	previous	screenshot)	and	bind	the	inString	and	userString	variables	as
an	in-parameter	to	it.	Also,	bind	the	outString	out-parameter	as	an	out-parameter.	In	the
scripting	section,	add	outString=inString+UserString.

10.	 We	now	need	to	make	sure	that	the	group	that	should	answer	the	interaction	actually	is
able	to	access	the	workflow.	In	the	Permission	tab	of	the	workflow,	add	the	group	you
have	defined	as	the	security	group	in	step	4.	The	user	group	needs	the	Execute
permission.	Check	the	recipe	User	management	in	Chapter	7,	Interacting	with
Orchestrator.

11.	 Save	and	close	the	workflow.

Answering	the	user	interaction
1.	 Run	the	workflow	you	have	just	created.
2.	 First,	you	are	presented	with	the	normal	input	request	from	the	workflow.	Enter	an

expiration	date	(maybe	15	minutes	from	now)	and	some	text.
3.	 If	you	are	an	Orchestrator	admin,	you	will	now	be	presented	with	the	user	interaction

input.	If	this	is	the	case,	click	on	Cancel.
4.	 Have	a	look	at	the	workflow;	you	will	notice	that	it	is	still	running	and	is	now	waiting	for

a	user	input.	Log	in	to	a	second	Orchestrator	Client	as	a	member	of	the	group	you
defined	as	the	security	group	in	step	10	of	the	previous	section.

5.	 Select	the	Run	mode	of	the	Orchestrator	Client	and	click	on	the	Waiting	for	Input	tab.
Here,	you	find	all	the	workflows	that	are	currently	waiting	for	input.

6.	 Click	on	the	workflow	and	then	on	Answer	a	user	interaction	(the	speech	bubble	icon).
7.	 The	input	for	the	user	interaction	will	now	pop	up.	Enter	a	value	for	userString	and

click	on	Submit.
8.	 Wait	till	the	workflow	has	finished	and	then	change	back	to	the	Orchestrator	Client	with

the	administrator	login.
9.	 Take	a	look	at	the	finished	workflow	execution.

How	it	works...
User	interactions	are	created	so	that	a	workflow	can	get	additional	input	when	it	is	already
running.	You	can	define	variables	(External	inputs)	as	an	input	that	a	user	should	use,	and
you	can	format	the	input	as	you	have	already	learned	in	the	recipe	Workflow	presentations	in
Chapter	5,	Visual	Programming.

The	security.assignee	and	security.assignee.groups	fields	are	new	in	vRO	7.	Please	note
that	you	can	assign	the	security	group	or	array	input	as	NULL.

The	important	thing	is	that	you	can	define	a	security	group	that	is	the	recipient	of	this	user
request.	This	makes	it	possible	that	one	group	of	Orchestrator	users	(for	example,	VM
requesters)	can	start	a	workflow	and	have	the	workflow	wait	until	a	different	group	(VM
approvers)	has	answered	the	user	interaction.

The	expiry	date	is	also	useful	as	it	lets	you	define	when	a	user	action	was	not	answered	in	a
certain	timeframe.	If	a	user	interaction	was	not	answered,	the	User	interaction	element	will
generate	an	error	with	the	Timeout	on	signal	message.	This	makes	it	possible	to	create	a
follow-up	action,	for	example,	send	an	e-mail	to	the	VM	requester	that	his	request	has	failed.

A	workflow	that	is	in	the	state	of	Waiting	keeps	this	state,	even	if	the	Orchestrator	server	is
powered	off,	as	this	information	is	stored	in	the	Orchestrator	database.

A	common	practice	is	to	put	the	security	group	that	is	used	into	a	configuration	(see	the
recipe	Working	with	configurations	in	Chapter	8,	Better	Workflows	and	Optimized	Working).

There's	more...
To	use	the	vSphere	Web	Client	to	answer	a	user	interaction,	follow	these	steps:

1.	 Log	in	to	vSphere	Web	Client	as	a	member	of	the	group	you	defined	as	the	security
group	in	step	4	in	this	recipe	(or	as	an	Orchestrator	admin).

2.	 Click	on	vCenter	Orchestrator	and	then	on	Waiting	for	interaction.	(You	might	need
to	wait	a	moment	for	the	Web	Client	to	load	the	information.)

3.	 You	will	see	all	currently	waiting	workflows.	Mark	the	workflow	and	select	Answer	the
workflow	run	(the	blue	person	icon).	A	pop-up	window	will	show	you	the	user
interaction:

Answering	using	vRealize	Automation

When	you	start	a	workflow	using	vRealize	Automation	(vRA)	and	this	workflow	contains	a
user	interaction	element,	the	user	can	answer	by	navigating	to	Inbox	|	Manual	User	Action.

See	also
See	the	example	workflow	06.08	Working	with	User	Interaction.

Chapter	7.	Interacting	with	Orchestrator
In	this	chapter,	we	will	have	a	closer	look	at	how	you	can	interact	with	Orchestrator.	We	will
be	looking	at	the	following	recipes:

User	management
User	preferences
Using	Orchestrator	through	the	vSphere	Web	Client
Accessing	Orchestrator	REST	API
Accessing	the	Control	Center	via	REST	plugin
Running	Orchestrator	workflows	using	PowerShell
Using	PHP	to	access	the	REST	API

Introduction
Orchestrator	has	a	REST-based	API	that	allows	you	to	interact	with	workflows	as	well	as	a	lot
more.	We	will	be	exploring	this	in	this	chapter	in	more	detail.

Orchestrator	used	to	have	a	SOAP	API	but	it	was	discontinued;	however,	the	VMware
document	vrealize-orchestrator-70-develop-web-services-guide.pdf	still	contains	a
chapter	on	it.	So	don't	be	mislead.	Orchestrator	SOAP	is	gone.

The	REST	API,	in	my	opinion,	is	better	and	easier	to	use,	especially	as	we	have	the	fabulous
Swagger	UI	to	go	and	play	with	it	(see	the	recipe	Accessing	Orchestrator	REST	API	in	this
chapter).

Orchestrator	can	be	accessed	in	a	lot	of	ways,	but	they	all	come	down	to	using	the	REST	API.

http://pubs.vmware.com/orchestrator-70/topic/com.vmware.ICbase/PDF/vrealize-orchestrator-70-develop-web-services-guide.pdf

User	management
In	this	recipe,	we	will	see	how	to	control	access	to	Orchestrator.	You	will	learn	how	to	give
and	control	access	to	users	outside	the	Orchestrator	administrator	group.

Getting	ready
We	need	a	running	Orchestrator	configured	either	with	vSphere	/	vRA	authentication	or	AD.
Check	the	recipe	Configuring	an	external	Authentication	in	Chapter	1,	Installing	and
Configuring	Orchestrator.

Also,	we	need	either	access	to	a	user	management	system	(LDAP,	SSO,	or	AD)	or	to	have
other	users	and	groups	on	a	given	user	management	system.	If	you	are	using	the	Orchestrator
appliance	without	any	external	authentication	you	can	use	the	local	LDAP	user	vcoadmin	and
vrouser	which	are	set	out	in	the	recipe	Configuring	an	external	Authentication	in	Chapter	1,
Installing	and	Configuring	Orchestrator.

How	to	do	it...
We	have	three	parts	to	this	recipe,	each	for	different	tasks.

Giving	non-administrative	users	access	to	Orchestrator

Giving	restricted	access	to	users	is	better	than	just	adding	everyone	to	the	Orchestrator
administrative	group.	Please	note	that	you	can	only	add	LDAP/AD	groups.	To	grant	non-
administrative	access	to	Orchestrator,	follow	these	steps:

1.	 Log	in	to	Orchestrator	Client	as	an	Orchestrator	administrator.
2.	 The	MyOrchestrator	(the	house	symbol)	page	opens	up	by	default.	Select	the	Run	mode

if	not	already	selected.
3.	 Click	on	the	Permissions	tab.
4.	 Click	on	Add	access	right	(the	group	with	a	green	plus).
5.	 Select	the	correct	Domain	from	the	drop-down	menu.
6.	 In	the	Search	field,	either	just	press	Enter	to	see	all	existing	groups	or	enter	a	string	to

filter	for	groups	and	press	Enter.
7.	 Select	the	group	you	want	to	add.
8.	 Select	the	rights	you	want	this	group	to	have	(View	is	the	lowest-needed	right).
9.	 Click	on	Select.

10.	 Log	in	to	Orchestrator	Client	with	a	user	that	is	a	member	of	the	user	group	you	added	in
step	6.

11.	 You	are	now	logged	in	as	a	non-administrative	user.

Configuring	access	to	Orchestrator	elements

After	we	are	granted	non-administrator	access	to	Orchestrator,	we	can	now	modify	the	user
rights	of	other	Orchestrator	elements:

1.	 Log	in	to	Orchestrator	Client	as	an	Orchestrator	administrator.
2.	 Select	an	element	(for	example,	a	workflow	or	folder).
3.	 Click	on	Edit	(the	pencil	symbol).
4.	 Click	on	Permissions	and	then	on	Add	access	right	(the	group	with	a	green	plus).
5.	 In	the	Filter	field,	either	just	press	Enter	to	see	all	existing	groups	or	enter	a	string	to

filter	for	groups	and	press	Enter.
6.	 Select	the	group	you	want	to	add.
7.	 Select	the	rights	you	want	this	group	to	have	(View	is	the	lowest-needed	right).
8.	 Click	on	Select.
9.	 Click	on	Save	and	Close.
10.	 Log	in	and	test.

How	it	works...
As	Orchestrator	administrators	have	access	to	all	Orchestrator	elements	as	well	as	having	all
user	rights	(including	delete),	you	might	want	to	restrict	the	access	that	users	have.

The	best	thing	is	to	create	a	dedicated	Orchestrator	administrator	group	in	AD	and	configure
this	group	as	the	Orchestrator	admin	group	in	the	External	Authentication	in	Control
Center.	See	Configuring	an	external	Authentication	in	Chapter	1,	Installing	and	Configuring
Orchestrator,	and	add	one	or	more	user	groups	for	Orchestrator	non-administrative	access
(such	as	vRO-test	and	vRO-production)	to	your	AD	and	then	to	Orchestrator.	This	will	result
in	a	user	structure	you	can	manage	through	AD	instead	of	Orchestrator.

The	user	management	in	Orchestrator	can	be	a	bit	tricky.	Here	are	some	of	the	more	common
problems.

Same	user	-	two	groups

If	you	have	a	user	that	is	a	member	of	the	user	group	as	well	as	a	member	of	the	admin	group,
then	the	user	will	have	the	rights	of	the	admin	group.

The	highest	right	will	be	used.

Edit	user	rights

Well...you	can't.	The	only	thing	you	can	do	is	delete	the	right	and	then	add	it	again.

Right	inheritance

The	user	rights	that	are	given	to	one	Orchestrator	element	will	automatically	be	inherited	by
all	its	child	elements.	You	cannot	break	the	inheritance.	However,	you	can	extend	or	restrict
the	rights.	Because	of	this,	it	is	prudent	to	give	only	View	rights	to	a	group	on	the	My
Orchestrator	level	and	extend	the	rights	as	needed	in	the	child	elements.

To	extend	or	restrict	the	rights	of	a	user	group,	just	add	the	same	user	group	to	the	element
again	and	adjust	the	rights	as	required.	Have	a	look	at	the	following	screenshot.	You	find	the
inherit	right	(Parent)	and	the	current	right	for	this	element	(This	object)	there.	The	right	of
the	This	object	element	will	always	overwrite	the	inheritance.	Please	note	that	when	you
expand	or	restrict	the	user	rights,	all	children	will	again	inherit	this	setting:

Rights	for	sub-elements

This	is	a	very	typical	problem.	Let's	assume	you	have	a	workflow	called	mainWorkflow	that
calls	the	workflow	subWorkflow.	The	user	has	execute	rights	for	mainWorkflow	but	not	for
subWorkflow.	The	result	would	be	that	the	mainWorkflow	can't	be	executed	by	this	user.

The	only	way	around	that	is	to	use	the	Switch	Credentials	workflow	element	we	discussed	in
the	recipe	Changing	credentials	during	runtime	in	Chapter	5,	Visual	Programming.

Visibility

Have	a	look	at	the	following	screenshot.	You	will	notice	that	we	have	two	Administrator
groups.	One	is	from	mylab.local	and	the	other	one	from	vsphere.local;	however,	you	can't
distinguish	between	them.	The	only	thing	we	can	do	here	is	to	use	user/group	names	that	are
more	descriptive:

Access	right

The	following	are	the	existing	Orchestrator	user	rights:

User
right Description

View Base	access	to	Orchestrator	Client	and	view	elements	but	not	their	schema,
presentation,	script,	and	parameter	references.

Inspect View	schema,	presentation,	script,	and	parameter	references	in	elements.

Execute
Able	to	run	a	workflow.	If	this	right	is	not	given,	every	user	can	still	use	the	Run
As	feature	by	right-clicking	on	it.	This	right	also	allows	you	to	answer	a	user
interaction.

Edit Able	to	edit	elements.

Admin Able	to	set	permissions	on	elements.

There's	more...
Here	are	some	more	notes	of	interest.

The	login	format

To	log	into	Orchestrator,	you	can	use	one	of	the	following	syntaxes:

Username	(only	if	you	are	using	vSphere	or	vRA	setup)
username@FQDN-Domain

Domain\username

Typical	error	messages

This	is	a	list	of	the	most	typical	login	error	messages:

Node	not	Active:	This	could	mean	that	Orchestrator	isn't	fully	up	yet,	or	that	the
connection	from	Orchestrator	to	the	external	Authentication	isn't	up	yet.	Waiting	or
restarting	the	Orchestrator	service	helps.
[002]	User	[username]	is	not	authorized:	Here,	the	user	is	not	a	member	of	the
Orchestrator	administrator	group	or	doesn't	have	the	View	right	in	My	Orchestrator.
Smart	client	connection	is	disabled	by	server	security:	Here,	non-administrative	access
to	Orchestrator	has	been	disabled.
Invalid	user/password:	This	is	one	of	those	error	messages	that	can	mean	a	lot,	starting
with	the	obvious	typo	in	the	username	or	password	to	the	fact	that	the	user	doesn't	exist.	A
typical	problem	here	is	that	a	user	exists	and	has	access	rights	to	Orchestrator.	In	this
case,	this	message	means	that	the	user	management	system	can't	find	him,	indicating	that
something	in	the	external	Authentication	is	not	working	correctly.

Disabling	non-administrative	access	to	Orchestrator

If	you	want	to	turn	off	the	possibility	of	any	non-administrative	access	to	Orchestrator,	have	a
look	at	the	section	System	Properties	in	the	recipe	Control	Center	Titbits	in	Chapter	2,
Optimizing	Orchestrator	Configuration.

User	preferences
In	this	recipe,	we	will	have	a	look	at	how	to	configure	the	behavior	of	Orchestrator	Client.
You	will	learn	how	to	manipulate	the	coloring	of	scripts,	the	start-up	behavior,	and	much
more.

Getting	ready
We	need	a	running	Orchestrator	installation	as	well	as	an	Orchestrator	account	that	we	can
log	into.

How	to	do	it...
1.	 Log	into	Orchestrator	Client.
2.	 Click	on	Tools	(in	the	top-right	corner	of	Orchestrator)	and	select	User	preferences....

3.	 The	User	Preferences	window	will	open.
4.	 Configure	the	settings	as	you	like.
5.	 Click	on	OK.

The	user	preferences	have	four	areas	of	configuration:	General,	Workflow,	Inventory,	and
Script	Editor.

How	it	works...
The	user	preferences	can	only	be	set	by	Orchestrator	administrators,	as	they	determine	how
Orchestrator	Client	behaves.

The	user	preference	settings	are	specific	for	each	user	and	are	stored	in	the	vmware-vmo.cfg
file	that	is	located	in	the	local	Orchestrator	Client	directory.	If	you	are	using	Java	Web	Start
(from	the	Orchestrator	home	page),	the	settings	are	stored	in	the	hidden	folder	.vmware	in
your	local	user	profile.	This	means	that	if	you	are	logging	in	from	the	same	computer	or	with
the	same	Windows	user	account	(even	when	using	different	Orchestrator	users),	the	settings
will	be	shared.

There	are	four	sections	that	can	be	configured:	General,	Workflow,	Inventory,	and	Script
Editor.

General

The	general	section	contains	the	settings	for	the	general	behavior	of	Orchestrator	Client.	You
can	set	the	following	items:

Item Options Default Meaning

Auto-edit	new	inserted [Yes|NO] Yes A	new	object	will	open	automatically	in	edit
mode

Script	compilation	delay [ms] 2000 How	often	input	will	be	checked	by	the	editor

Show	decision	scripts [Yes|NO] No Shows	the	script	that	is	the	base	of	a	decision
object

Delete	non-empty	folder
permitted [Yes|NO] No Able	to	delete	non-empty	folders

Size	of	run	logs [lines] 300 Amount	of	lines	displayed	in	the	workflow
log

Server	log	fetch	limit [lines] 100 Amount	of	lines	displayed	in	the	Events	tab
of	an	element

Finder	maximum	size [items] 20 Amount	of	elements	returned	in	a	search

Check	usage	when	deleting
an	element [Yes|NO] No Check	whether	an	element	is	used	by	another

element	before	deleting

Check	OGNL	expression [Yes|NO] Yes Not	supported	since	vCO	5.1

A	typical	setting	you	might	like	to	change	is	Finder	maximum	size.	A	higher	number	will
return	a	greater	number	of	search	results	in	a	search	box,	which	can	be	helpful	but	may	also
take	a	bit	longer.

Workflow

The	workflow	settings	alter	how	Orchestrator	workflows	behave.	Changing	some	of	these
settings	should	be	considered	carefully.	Changing	them	won't	damage	Orchestrator	but	can
impact	the	visual	presentation	of	your	work.	An	extremely	cool	feature	is	the	Edit	workflow
items	in	a	pop-up	window	option.	This	will	allow	you	to	edit	workflow	elements	directly
without	clicking	on	the	edit	icon.	This	feature	is	switched	on	depending	on	your	screen
resolution.

Inventory

There	is	only	one	option	available,	that	is,	Use	contextual	menu	in	inventory.	The	function
automatically	displays	all	workflows	that	can	be	used	with	a	selected	object	in	the	inventory.
For	example,	right-clicking	on	the	cluster	in	the	vCenter	Server	inventory	will	display	all	the
workflows	that	are	available	for	a	cluster:

To	make	this	work,	you	will	need	to	assign	the	workflow	presentation	property	Show	in
Inventory	to	an	in-parameter	of	a	particular	type	(for	example,	VC:ClusterComputeResource).
Also	see	the	Workflow	Presentations	recipe	in	Chapter	5,	Visual	Programming.

Script	editor

In	the	script	editor	section,	you	can	choose	how	a	script	element	behaves	when	you	enter	the
JavaScript	code.

Item Options Default Meaning

Enable	code
assist

[Yes	|
NO] Yes Code	assist	allows	the	use	of	Ctrl	+	spacebar	to	see	the

properties	or	methods	of	the	object.

Highlight
selected	line

[Yes	|
NO] Yes This	highlights	the	current	line	you	selected.

Highlight
brackets

[Yes	|
NO]

Yes When	the	cursor	is	on	a	bracket	(any	type),	it	will	display
its	corresponding	partner.

Display	EOL [Yes	|
NO] No This	displays	the	end	of	a	line	of	a	given	line	of	code.

The	rest	of	the	choices	are	about	color	and	how	elements	(such	as	strings	and	comments)	are
color	coded.	You	can	use	the	default	or	create	a	color	scheme	that	resembles	other	code
editors	you	use.

Using	Orchestrator	though	the	vSphere	Web
Client
In	this	recipe,	we	further	explore	the	Orchestrator	integration	into	vSphere	Web	Client.	You
will	learn	how	to	run	Orchestrator	workflows	using	vSphere	Web	Client	as	well	as	how	to
configure	workflows	so	that	they	work	with	it.

Getting	ready
You	find	the	base	information	on	how	to	integrate	Orchestrator	into	the	vSphere	Web	Client
in	the	recipe	Connecting	to	vCenter	in	Chapter	1,	Installing	and	Configuring	Orchestrator.

For	this	recipe,	we	need	Orchestrator	integrated	into	vSphere	Web	Client.

How	to	do	it...
This	recipe	is	made	up	of	two	parts,	the	configuration	and	the	passing	along	of	information
between	the	Web	Client	and	Orchestrator.

Configure	workflows	for	the	vSphere	Web	Client

We	now	configure	workflows	for	use	with	the	vSphere	Web	Client:

1.	 Open	the	vSphere	Web	Client	in	a	web	browser.
2.	 Log	in	to	vCenter	with	a	user	that	is	a	member	of	the	Orchestrator	admin	group	that	you

configured	in	vSphere	authentication	(see	recipe	Configuring	an	external	Authentication
in	Chapter	1,	Installing	and	Configuring	Orchestrator).

3.	 Click	on	vRealize	Orchestrator	and	wait	until	the	Web	Client	has	finished	loading	all
information.	You	should	now	see	at	least	one	Orchestrator	server	registered.

4.	 Click	on	Manage	and	then	on	Context	Actions.	You	can	now	see	all	the	workflows	that
have	been	configured	for	use	with	the	right-click	menu	from	vSphere	Web	Client.	If	you
can't	see	Manage,	you	need	to	use	a	user	that	is	part	of	the	Orchestrator	admin	group:

5.	 To	configure	a	new	workflow	for	use	with	the	vSphere	Web	Client,	click	on	Add	(the
green	plus).

6.	 Select	a	workflow	from	the	list	of	available	workflows	(choose	the	workflow	Library	|
vCenter	|	Virtual	Machine	Management	|	Basic	|	Rename	virtual	machine,	as	this
workflow	can	be	used	without	extra	configuration)	and	click	on	Add.

7.	 Select	the	type	of	vSphere	object	this	workflow	should	be	available	to	(such	as	a	VM).
8.	 Multi	selection	lets	you	choose	not	only	one	but	multiple	instances	of	the	same	vSphere

object,	for	example,	not	only	one	VM	but	multiple	VMs.	For	this	to	work,	you	also	have
to	make	sure	that	the	workflow	has	an	in-parameter	of	the	Array	of	[any
vCenterobject]	type.

9.	 Click	on	OK:

Run	workflows

To	run	workflows,	a	vCenter	user	must	have	at	least	the	view	and	execute	right	in
Orchestrator;	see	recipe	User	management	in	this	chapter.

If	you	just	configured	the	new	workflow	you	need	to	re-log	in:

1.	 To	run	the	Rename	Virtual	Machine	workflow	from	our	example,	navigate	in	the
vSphere	Web	Client	to	a	VM.

2.	 Right-click	on	the	VM,	and	navigate	to	All	vRealize	Orchestrator	Actions	|	Rename
Virtual	Machine.

3.	 Enter	a	new	name	for	the	VM	and	click	on	Submit:

Writing	workflows	for	web	integration

When	running	a	workflow	from	the	Web	Client,	you	might	want	to	pass	some	information	to
the	workflow	in	Orchestrator,	for	instance,	the	vSphere	object	you	are	running	the	workflow
on:

1.	 Open	the	workflow	you	want	to	use	with	the	Orchestrator	Client	in	edit	mode.
2.	 Make	sure	that	you	have	a	workflow	in-parameter	of	the	type	you	want	to	associate	with

in	the	vSphere	Web	Client,	for	example,	VC:VirtualMachine.	If	you	plan	to	use	the	Multi
selection	option,	make	sure	that	you	use	an	Array	of	VC:VirtualMachine.

3.	 In	Presentation,	assign	the	Show	in	Inventory	property	to	the	workflow	in-parameter.	If
this	property	is	assigned	to	more	than	one	in-parameter,	only	one	parameter	at	a	time	is
used.	For	example,	if	you	have	an	in-parameter	for	a	VM	and	for	a	cluster,	both	have	the
Show	in	Inventory	property	assigned	to	them.	When	starting	the	workflow	from	a	VM,
the	VM	ID	will	be	used	and	the	cluster	ID	will	not	be	transferred	to	the	workflow.	When
starting	the	workflow	from	a	cluster,	the	cluster	ID	will	be	used	and	the	VM	ID	will	be
ignored.

4.	 Save	the	workflow.

Passing	information	along

In	case	you	want	to	use	a	workflow	such	as	run	a	SSH	command.	You	will	find	that	you	will
need	to	still	add	a	hostname,	even	if	you	assign	it	to	a	VM.	To	solve	this,	follow	these	steps:

1.	 Make	a	copy	of	the	workflow	Library	|	SSH	|	Run	a	SSH	Command
2.	 Move	the	input	parameter	hostNameOrIP	to	attribute	(right-click	and	select	Move	as

Attribute)
3.	 Add	an	input	parameter	called	VM	of	type	VC:VirtualMachine
4.	 Add	a	scriptable	task	with	the	input	of	VM	and	output	of	hostNamOrIP
5.	 Add	the	following	code:
6.	 hostNameOrIP=VM.guest.hostName;
7.	 This	little	modification	will	make	sure	that	you	can	now	run	the	workflow	on	a	VM

without	entering	a	hostname.
8.	 Also,	see	the	example	workflow	07.04.5	Run	SSH	command	(Web	Client).

How	it	works...
The	vSphere	integration	of	Orchestrator	into	the	vSphere	Web	Client	allows	you	to	easily	use
workflows	that	you	have	created.

You	can	also	start	all	the	workflows	from	the	vSphere	Web	Client	by	clicking	on	vRealize
Orchestrator	|	Inventory	Trees	|	Workflows.	The	Orchestrator	workflow	tree	you	know
from	Orchestrator	Client	will	appear	and	you	can	select	and	then	start	the	workflow.

It's	also	possible	to	schedule	workflows;	just	click	on	the	workflow	that	you	would	like	to	run
and	then	click	on	the	right	window	onto	Schedule	workflow.	This	works	the	same	as	in
Orchestrator	Client.	You	can	monitor	all	scheduled	workflows	by	clicking	on	vRealize
Orchestrator	|	Inventor	List	|	Scheduled	workflows.

The	last	and	most	important	thing	is	that	you	can	also	interact	with	workflows	that	are	waiting
for	interaction.	Just	click	on	vRealize	Orchestrator|	Inventor	List	|	Waiting	for	interaction
to	see	all	workflows	that	are	currently	waiting	for	interaction.

You	can	see	all	the	workflows	that	are	and	have	been	running	on	vRealize	Orchestrator	|
vRO	Servers	|	[your	server]	|	Monitor.	Here,	you	can	also	Cancel	and	Answer	workflows.
The	workflows	you	see	here	are	all	the	Orchestrator	workflow	runs,	not	only	the	ones	run	via
the	vSphere	Web	Client.

Orchestrator	presentation	properties	in	vSphere	Web	Client

The	Orchestrator	presentation	properties	that	you	have	set	up	will	be	working	in	vSphere	Web
Client	with	an	exception;	hiding	a	page.

Check	out	the	example	workflow	07.05.01	Presentations	test	to	test	this.

There's	more...
As	you	need	to	define	Context	Actions	(right-click	on	the	menu),	it	is	rather	important	that
you	are	able	to	back	up	or	restore	these	settings.

By	clicking	on	vCenter	Orchestrator	|	Manage	|	Context	Actions,	you	can	use	the	export
action	(the	white	paper	icon	with	the	blue	right	arrow)	to	export	all	current	settings	into	an
XML	file.	Using	import	(the	white	paper	icon	with	the	green	left	arrow),	you	can	import	these
settings	into	Web	Client	again.	Please	note	that	the	export	contains	the	workflow	ID,	so	make
sure	that	the	workflows	on	another	Orchestrator	server	have	the	same	ID	(see	the	Synchronize
Orchestrator	element	between	Orchestrator	Servers	recipe	in	Chapter	3,	Distributed	Design
and	the	Working	with	packages	recipe	in	Chapter	4,	Programming	Skills).

See	also
Recipe	Connecting	to	vCenter	in	Chapter	1,	Installing	and	Configuring	Orchestrator
Recipe	Working	with	user	interaction	in	Chapter	6,	Advanced	Programming
Recipe	Workflow	presentations	in	Chapter	5,	Visual	Programming
Recipe	Language	packs	(localization)	in	Chapter	8,	Better	Workflows	and	Optimized
Working

The	example	workflows	07.04.5	Run	SSH	command	(Web	Client)	and	12.05.01
Presentation	Test.

Accessing	Orchestrator	REST	API
In	this	recipe,	we	are	looking	at	how	to	access	and	play	with	the	Orchestrator	REST	API.

Getting	ready
We	need	a	browser,	preferably	Chrome	or	Firefox.

To	play	and	explore,	we	also	need	access	to	the	Orchestrator	Control	Center.

We	will	be	using	the	example	workflow	07.02	Access	via	PowerShell	(Input).

How	to	do	it...
The	recipe	is	broken	up	into	multiple	parts	for	easier	reading;	the	best	way	forward	is	to
work	through	one	after	the	other.

Accessing	the	API	documentation	and	enable	"play	mode"
Note

Please	note	that	this	is	a	stetting	that	you	shouldn't	use	in	any	production	environments.

1.	 Open	the	Orchestrator	Control	Center	and	enter	the	system	property
com.vmware.o11n.sso.basic-authentication.enabled	=	true	as	shown	in	section
System	properties	in	the	recipe	Control	Center	titbits	in	Chapter	2,	Optimizing
Orchestrator	Configuration.

2.	 Open	a	browser	and	browse	to	https://[Orchestrator]:8281/vco/api/docs/
3.	 The	SwaggerUI	of	Orchestrator	will	open	up.

Try	it	out!

Let's	give	it	a	quick	go:

1.	 Navigate	to	service-descriptor-controller	and	click	on	it.
2.	 A	lot	of	functions	should	show	up.	Click	on	/api/about:

3.	 Scroll	down	a	bit	and	then	click	on	Try	it	out!
4.	 You	should	now	see	the	result	of	your	REST	request:

Interactive	REST	request

We	will	now	request	information	using	some	inputs:

1.	 Go	to	and	expand	workflow-controller.
2.	 Select	Post	/api/workflows/{workflowId}/executions.
3.	 Under	workflowID,	enter	bb7bcb76-515e-4fdb-80e3-63227ad0cfd0,	which	is	the	ID	of

the	example	workflow,	07.02	Access	via	PowerShell	(Input).
4.	 Click	on	the	eggshell	colored	field	on	the	left	side.	This	will	fill	the	basic	template	into

the	white	right	field	(number	12).
5.	 Fill	in	the	values	as	shown	here:

						{	

								"parameters":	[

										{	

												"value":	{"string":{"value":"VMware"}	

																						},	

												"name":	"vmName",	

												"type":	"string",	

												"description":	"",	

												"scope":	"local",	

												"updated":	false	

										}	

]	

					}	

6.	 Make	sure	that	the	Parameter	content	type	is	set	to	application/json.
7.	 Scroll	down	and	click	on	Try	it	out!

8.	 If	you	now	check	in	Orchestrator	you	see	that	the	workflow	was	run.
9.	 Scroll	down:	you	will	see	that	you	didn't	get	an	output.	For	that,	you	need	to	look	at	the

workflow	execution,	the	same	as	you	would	by	using	the	Orchestrator	Client.
10.	 Have	a	closer	look	at	the	Response	headers.	You'll	find	a	key	called	location	and	behind

it,	a	URL.	This	is	the	response	URL	to	the	execution	you	triggered.	It	contains	the
Workflow	ID	and	the	Execution	ID:

11.	 Scroll	further	down	to	get	/api/workflows/{workflowId}/executions/{executionId}.
12.	 Copy	the	Workflow	ID	and	the	Execution	ID	from	the	response	URL	into	the	required

fields	and	then	click	on	Try	it	out!.
13.	 The	Response	Body	now	shows	a	JSON	object	that	contains	all	the	links	to	more

information,	such	as	the	logs,	but	it	also	contains	the	output	parameters	that	contain	the
return	values	of	our	workflow:

We	are	finished	with	the	showcase;	you	might	want	to	reverse	the	system	property	you	set	up
in	the	first	section	of	this	recipe.

How	it	works...
The	Orchestrator	REST	API	is	the	central	point	of	contact	for	everything	Orchestrator.	If	you
understand	how	to	work	the	API	you	can	use	any	programming	language	to	connect	and	run
the	workflows.

When	you	run	a	workflow,	you	POST	the	parameters	you	need	in	the	BODY	of	the	message
to	the	correct	URL.	If	you	don't	have	any	parameters,	such	as	in	our	first	example,	you	POST
an	empty	JSON	body	{}.

Orchestrator	will	now	run	the	workflow	and	store	all	the	parameters	(in,	out	and	attributes)	as
well	as	the	logs	with	the	workflow	execution.	The	return	value	of	the	post	will	contain	the
current	status	of	the	workflow	execution	(running,	completed)	as	well	as	the	response	URL.
The	response	URL	consist	of	the	workflow	ID	and	the	execution	ID:

If	you	now	GET	the	response	URL	you	will	receive	all	the	information	that	the	workflow
execution	contains	as	JSON.

There's	more...
The	XSD	for	the	Orchestrator	API	can	be	found
here:https://[Orchestrator]:8281/vco/api/docs/o11n-sdk-rest.xsd

See	also
To	further	explore	the	REST	API,	have	a	look	at	the	following	recipes:

Running	Orchestrator	workflows	using	PowerShell	in	this	chapter
Working	with	REST	in	Chapter	9,	Essential	Plugins
Accessing	the	Orchestrator	Control	Center	API	via	REST	in	this	chapter
Using	PHP	to	access	the	REST	API	in	this	chapter
A	collection	of	examples	to	connect	to	REST:

http://blog.mashape.com/30-ways-to-make-rest-calls-in-node-js-php-python/

http://blog.mashape.com/30-ways-to-make-rest-calls-in-node-js-php-python/

Accessing	the	Control	Center	via	the	REST
plugin
In	this	recipe,	we	have	a	closer	look	at	the	Orchestrator	Control	Center.

Getting	ready
We	need	access	to	the	Orchestrator	Control	Center.

Add	the	Orchestrator	Control	Center	to	the	REST	plugin	as	shown	in	the	recipe	Working	with
REST	in	Chapter	9,	Essential	Plugins	.

How	to	do	it…
The	recipe	has	been	broken	up	into	several	sections,	just	work	through	them.

Explore	the	Control	Center	API

We	will	be	having	a	look	at	the	possibilities	of	the	Control	Center	API:

1.	 Open	a	browser	to	the	URL	and	authenticate	with	your	Control	Center	account:
https://[Orchestrator]:8283/vco-controlcenter/docs/

2.	 You	now	are	connected	to	the	swagger	UI,	which	helps	you	explore	the	Control	Center
API.

3.	 Expand	server-controller	and	check	out	GET	/api/server/status	and	POST
/api/server/status/start.	We	used	these	functions	in	recipe	Working	with	REST	in
Chapter	9,	Essential	Plugins.

Adding	start	and	stop	calls

Create	control	workflows	for	your	Remote	Orchestrators.

1.	 Check	out	the	swagger	UI	for	the	calls	/api/server/start,	stop,	and	status	calls.
2.	 Follow	the	recipe	Working	with	REST	in	Chapter	9,	Essential	Plugins,	to	add	the	three

functions	to	the	REST	host.
3.	 Create	three	workflows	from	the	calls
4.	 Edit	the	GET	workflow	to	set	the	correct	content	type.
5.	 Edit	the	POST	workflows	and	move	the	content	input	to	be	an	Attribute.
6.	 Use	the	recipe	Working	with	REST	in	Chapter	9,	Essential	Plugins,	and	the	Working	with
JSON	in	Chapter	6,	Advanced	Programming,	to	understand	how	to	phrase	the	JSON
returns.

Usage

There	are	several	ideas	that	you	can	use	from	here:

Create	a	policy	that	monitors	the	cluster	and	restarts	VMs	or	Orchestrator	services.
Auto	deploy	additional	Orchestrators	in	a	server	(stop	service,	import	configuration,
join	cluster,	start	service)

How	it	works...
The	ability	to	tie	the	Orchestrator	control	into	your	workflow	enables	you	to	use	Orchestrator
to	orchestrate	remote	Orchestrators	much	more	easily.	As	there	isn't	any	documentation
except	the	swagger	UI	at	this	time,	it	may	be	a	bit	hard,	but	I	wouldn't	be	surprised	to	see
someone	coming	up	with	an	Orchestrator	Control	Center	plug-in	soon.

You	can	also	attach	the	Control	Center	using	the	swagger	specification	URL	(see	recipe
Working	with	REST	in	Chapter	9,	Essential	Plugins).	The	URL	for	the	swagger	spec	of
Control	Center	is	https://[FQDN	Orchestrator]:8283/vco-controlcenter/api/api-docs.

See	also
There	are	several	examples	in	the	example	pack.	They	won't	work,	as	you	need	to	define	the
REST	host	and	the	REST	call	(see	resource	element	in	Workflows)	but	these	are	an	example
of	what	they	could	look	like	and	what	could	be	done	with	them:

07.04.1	Orchestrator	Service	Status

07.04.2	Start	Orchestrator	Service

07.04.3	Stop	Orchestrator	Service

07.04.4	Cluster	Status

The	recipe	Turning	Strings	into	Objects	in	Chapter	6,	Advanced	Programming.

Running	Orchestrator	workflows	using
PowerShell
In	this	recipe,	we	will	showcase	how	to	run	an	Orchestrator	workflow	using	PowerShell.

Getting	ready
We	need	a	Windows	host	that	has	PowerShell	installed	(which	should	be	any	modern	version
of	Windows).	VMware	PowerCLI	is	not	needed.

The	PowerShell	host	needs	to	be	able	to	connect	to	Orchestrator	on	TCP	port	8281.

If	you	are	new	to	REST	or	the	Orchestrator	REST	API,	you	may	like	to	work	through	the
recipe	Accessing	Orchestrator	REST	API	in	this	chapter	first.

How	to	do	it...
All	PowerShell	scripts	shown	here	are	also	stored	as	a	resource	with	the	example	package.

Run	a	workflow

We	will	start	by	just	running	a	workflow	that	doesn't	require	any	input.	We	will	be	accessing
the	example	workflow	07.01	Access	via	PowerShell.

1.	 Create	a	new	empty	PowerShell	script.	For	example,	use	Editor:
2.	 Write	the	following	code:

						#some	basic	variables	

						$usr	=	'vroadmin@mylab.local'	

						$pwd	=	'What4Ever'	

						$vroServer	=	'192.168.220.12:8281'	

						#	Example	Workflow	"07.01	Access	via	PowerShell"	

						$wfid	=	'48e10dcf-998c-4db7-b93d-144678e15368'	

	

						#	you	need	this	to	accept	untrusted	SSL	certs.	

						add-type	@"	

										using	System.Net;	

										using	System.Security.Cryptography.X509Certificates;	

										public	class	TrustAllCertsPolicy	:	ICertificatePolicy	{	

														public	bool	CheckValidationResult(

						ServicePointsrvPoint,	X509Certificate	certificate,	

						WebRequest	request,	intcertificateProblem)	{	

																		return	true;	

														}	

										}	

						"@	

							[System.Net.ServicePointManager]::CertificatePolicy	=	New-Object	

							TrustAllCertsPolicy	

	

						#	you	need	to	add	TLS12	for	vRO	7,	else	you	cant	establish	a	secure	

						connection	

							[Net.ServicePointManager]::SecurityProtocol	=	

							[Net.SecurityProtocolType]::Tls12	

	

						#we	build	the	BASIC	authentication	header.		

						function	ConvertTo-Base64($string)	{	

									$bytes		=	[System.Text.Encoding]::UTF8.GetBytes($string);	

									$encoded	=	[System.Convert]::ToBase64String($bytes);	

	

									return	$encoded;	

						}	

						$token	=	ConvertTo-Base64($usr+":"+$pwd)	

						$auth	=	"Basic	$($token)"	

	

						#	we	build	the	headers	we	need	to	call	the	REST	flow		

						$headers	=	@{"Authorization"=$auth;"Content-Type"="application/json"}	

	

						#build	the	URL	we	are	connecting	to	

						$URL	=	

						"https://"+$vroServer+"/vco/api/workflows/"+$wfid+"/executions"	

	

						#invoke	the	run	of	the	workflow	via	REST	

						$ret	=	Invoke-WebRequest	-Method	Post	-uri	$URL	-Headers	$headers	

						-body	"

						{}"	

	

						#Show	the	raw	response	of	the	run	

						Write-Host	$ret.RawContent	

	

3.	 Save	and	run	the	script.
4.	 Check	in	Orchestrator;	a	new	execution	should	now	exist.

Run	a	script	with	input

We	will	now	extend	the	preceding	script	to	pass	along	some	inputs.	We	will	be	accessing	the
example	workflow	07.02	Access	via	PowerShell	(Input).

1.	 Make	a	copy	of	the	preceding	script	and	edit	the	copy.
2.	 Just	above	the	Invoke-Webrequest	line,	enter	the	following	code.	Exchange	the	$input

content	for	the	name	of	one	of	your	VMs:

						#build	body	

						$input="VMware"	

						$body='{"parameters":	[{"name":	"vmName","scope":	"local","type":	

						"string","value":	{"string":	{"value":	"'+$input+'"}}}]}'	

3.	 Replace	the	Invoke-Webrequest	line	with	the	following:

						#invoke	the	run	of	the	workflow	via	REST	

						$ret	=	Invoke-WebRequest	-Method	Post	-uri	$URL	-Headers	$headers	-

body	

						$body	

4.	 Save	and	run	the	workflow.
5.	 You	should	now	see	in	Orchestrator	that	the	workflow	has	been	run.

Getting	the	output	of	a	workflow

We	want	to	get	the	output	of	the	workflow.	We	will	be	accessing	the	example	workflow	07.02
Access	via	PowerShell	(Input):

1.	 Make	a	copy	of	the	preceding	script	and	edit	the	copy.
2.	 Enter	the	following	lines	below	the	Write-Host	line:

						#sleep	for	20	seconds,	to	make	sure	the	workflow	finished	

						Start-Sleep	-Seconds	20	

	

						#get	the	execution	ID	from	the	reply	

						$URL=$ret.Headers.Location	

	

						#ask	Orchestrator	to	give	us	detail	of	the	workflow	

						$result	=	Invoke-WebRequest	-Method	Get	-uri	$URL	-Headers	$headers	

	

						#covert	and	get	the	output	

						$outputObj=($result.Content).Replace("output-

						parameters","outputparameters")|ConvertFrom-Json	

						$output=($outputObj.outputparameters[0]).value.string.value	

	

						Write-Host	$output		

	

3.	 Save	and	run	the	workflow.

How	it	works...
Using	PowerShell	to	start	Orchestrator	workflows	isn't	that	difficult	as	soon	as	you
understand	how	to	build	the	request	lines	and	the	content.

The	basics	are	the	same	for	all	REST	operations.	First,	you	need	to	create	a	POST	to	start	the
workflow,	which	will	return	an	execution	ID.	With	the	execution	ID,	you	can	go	and	check	the
results	of	the	workflow	using	GET.

Variables

The	hard	part	is	the	input	variables:	here	you	need	to	be	a	bit	more	careful.	The	JSON	object
that	is	the	input	isn't	that	easy	to	get.	In	the	preceding	code,	I	pushed	it	into	one	line,	in	the
recipe,	Accessing	Orchestrator	REST	API	in	this	chapter	is	the	fully	expanded	code.

Using	the	ConvertTo-Json	PowerShell	function	you	can	build	the	JSON	body	in	a	more
dynamic	way	from	a	PSObject.

Tip

The	best	way	to	work	with	Orchestrator	input	variables	is	to	reduce	the	input	to	Strings	and
numbers;	otherwise,	the	input	to	them	can	be	quite	hard.

JSON	return

The	return	JSON	is	quite	a	beast	to	handle	in	PowerShell;	one	reason	is	that	the	variables	are
stored	under	output-parameter	and	using	$outputObj.output-parameters	will	result	in	an
error,	as	PowerShell	expects	a	function	called	output-parameters.	That's	why	I'm	using	a
dirty	trick	and	renaming	the	parameter	(replace	function)	before	converting	from	JSON.

There's	more...
Here	is	a	nice	little	addition.	The	following	do/while	loop	will	wait	until	a	workflow	has
finished.	You	can	test	it	with	the	workflow	07.03	PowerShell	WAIT	for	it.

#wait	until	the	workflow	has	finished	

$URL=$ret.Headers.Location	

do	{	

			Start-Sleep	-Seconds	5	

			$result	=	Invoke-WebRequest	-Method	Get	-uri	$URL	-Headers	$headers	

			$status=($result|ConvertFrom-Json).state	

}	until	($status	-eq	"completed")	

See	also
Accessing	Orchestrator	REST	API	in	this	chapter
Working	with	Powershell	in	Chapter	10,	Built-in	Plugins
Working	with	REST	in	Chapter	9,	Essential	Plugins
Accessing	the	Orchestrator	Control	Center	API	via	REST	in	this	chapter
Burke	Azbill	post	on	how	to	do	the	same	using	Python	and	Perl:
http://bit.ly/vroClientScripts

The	example	workflows	07.01	Access	via	PowerShell,	07.02	Access	via	PowerShell
(Input)	and	07.03	PowerShell	WAIT	for	it.

As	well	as	the	PowerShell	scripts	stored	as	a	Resource

http://bit.ly/vroClientScripts

Using	PHP	to	access	the	REST	API
In	this	recipe,	we	will	quickly	look	at	how	you	can	build	an	easy	webpage	using	PHP	to	access
the	Orchestrator	REST	API.

Getting	ready
We	will	make	our	life	a	bit	easier	and	use	a	bit	of	help	with	PHP	and	REST.	We	will	use	Nate
Good's	HTTPFUL,	which	you	can	find	at	http://phphttpclient.com/	.

You	need	to	download	the	following	file,	httpful.phar,	from	his	website	and	place	it	in	the
same	directory	as	your	script.

You	also	need	a	Webserver	that	uses	PHP	and	has	cURL	activated.	I	used	LAMP	stack	from
Turnkey	https://www.turnkeylinux.org/lampstack	.	See	the	There's	more	section	for	a	fast	how-
to.

http://phphttpclient.com/
https://www.turnkeylinux.org/lampstack

How	to	do	it...
This	is	a	quick	intro	only:

1.	 Edit	a	file	such	as	callWorkflow.php
2.	 Enter	the	following	code:

						<?php	

						include('./httpful.phar');	

	

						$usr	=	'vroadmin@mylab.local';	

						$pwd	=	'What4Ever';	

						$vroServer	=	'192.168.220.12:8281';	

						//	Example	Workflow	"07.01	Access	via	PowerShell"	

						$wfid	=	'48e10dcf-998c-4db7-b93d-144678e15368';	

	

						//	URL	for	the	request	

						$uri	=	"https://{$vroServer}/vco/api/workflows/{$wfid}/executions";	

						$response	=	\Httpful\Request::post($uri)	//	use	post	

									->sendsJson()											//conent-typ:applicalion/json	

										->basicAuth($usr,$pwd)		//use	basic	Authentication	

										->body("{}")												//empty	jsonboady	

										->withoutStrictSsl()				//ignore	SSL	certs	

										->send();															//send	it	off																		

	

						//get	the	Associative	array	out	of	the	response	headers	

						$location=$response->headers;	

						//get	the	location	for	the	workflow	execution	

						echo	$location[location];	

						?>	

3.	 Save	the	workflow	and	access	the	webpage	using	http://[ip]/	callWorkflow.php.
4.	 You	should	see	a	response	location.

How	it	works...
Using	PHP	mostly	employs	the	same	method	as	using	PowerShell	or	the	Swagger	UI.	You
post	a	request,	you	get	a	response,	you	parse	the	response.

Using	this	as	a	stepping	stone,	you	can	now	develop	your	own	web	services	for	Orchestrator.
The	full	HTTPFUL	document	can	be	found	here:	http://phphttpclient.com/docs/class-
Httpful.Request.html

Please	have	a	look	at	the	recipe	Turning	strings	into	objects	in	Chapter	6,	Advanced
Programming,	to	understand	how	to	create	an	object	out	of	a	string.

http://phphttpclient.com/docs/class-Httpful.Request.html

There's	more...
Here	is	how	to	get	the	Turnkey	LAMP	ready	to	rumble	in	some	short	steps:

1.	 Download	and	deploy	the	ova	image	from	https://www.turnkeylinux.org/lampstack	.
2.	 Open	a	console.	When	asked,	define	passwords	and	skip	the	rest.
3.	 Connect	and	log	in	as	root	to	the	web	console	https://[ip]	:12320.
4.	 Run	the	following	commands:

						apt-get	update

						apt-get	install	curl	libcurl3php5-curl

						mv	/etc/php5/mods-available/xcache.ini	/etc/php5/mods-

										available/xcache.ini.OLD

5.	 Reboot	the	appliance.
6.	 You	can	now	upload	your	.php	script	to	/var/www	and	call	it	directly	with

http://[ip]/[scipt.php].	There	is	also	a	file	manager	in	the	web	console,
https://[ip]:12321/filemin/.

https://www.turnkeylinux.org/lampstack

See	also
Running	Orchestrator	workflows	using	PowerShell	in	this	chapter
Working	with	REST	in	Chapter	9,	Essential	Plugins
Accessing	the	Control	Center	API	via	REST	in	this	chapter
Turning	strings	into	objects	in	Chapter	6,	Advanced	Programming

Chapter	8.	Better	Workflows	and	Optimized
Working
This	chapter	discusses	how	you	can	improve	your	workflows	as	well	as	optimize	your	work
much	more.	We	will	be	looking	at	the	following	recipes:

Working	with	resources
Working	with	configurations
Working	with	Orchestrator	tags
Using	the	Locking	System
Language	packs	(localization)
Working	with	policies

Introduction
Here,	we	are	going	to	explore	how	to	optimize	your	workflows	and	how	to	make	your
workload	easier.

Configurations	come	in	handy	when	you	have	multiple	workflows	that	need	the	same	inputs.
For	instance,	you	have	multiple	workflows	that	send	e-mails.	Instead	of	having	all	needed
mail	settings	stored	in	each	workflow,	you	can	put	them	in	a	configuration	and	have	them
stored	centrally.	This	makes	it	easier	for	you	when	you	need	to	change	a	setting,	such	as
updating	a	password.

Another	example	is	that	you	have	one	workflow	that	you	use	in	two	environments,	like
development	and	production.	You	design	and	upkeep	one	workflow	instead	of	two	just	by
duplicating	it,	and	then	storing	the	different	variables	in	a	configuration.

A	resource	is	basically	a	file	that	is	stored	in	Orchestrator	and	can	be	used	within	a	workflow.
A	typical	example	is	the	language	packs,	which	are	basically	text	files	stored	as	resources.
Another	example	for	resources	is	to	store	information	in	them	such	as	the	configurations	of
connections.	The	following	screenshot	shows	that	when	you	use	the	AD	plugin,	Orchestrator
will	create	a	resource	element	containing	all	the	required	information:

The	tags	are	not	yet	very	well	used;	however,	they	do	have	some	merits.	You	can	use	them	to
tag	any	element	in	Orchestrator.

The	language	packs	come	in	handy	when	you	use	Orchestrator	workflows	with	vCenter
across	multiple	language	areas;	however,	if	you	are	using	REST	or	the	Orchestrator	Client	it
doesn't	help	that	much.

The	Locking	System	can	be	used	for	a	lot	of	good	work.	When	you	have	multiple	users	or
processes	that	need	to	use	the	same	resources,	such	as	files	or	databases,	the	Locking	System
can	help	make	sure	that	only	one	process	is	using	the	resource.

The	policies	will	make	Orchestrator	actively	monitor	certain	things,	such	as	vSphere	objects,
SNMP,	or	AMPQ	connections.	A	policy	allows	Orchestrator	to	react	to	events	that	are
monitored.	For	example,	if	Orchestrator	registers	an	SNMP	trap,	a	workflow	can	be	executed.

Working	with	resources
In	this	recipe,	we	will	work	with	resources.	We	will	see	how	we	can	integrate	files	with
Orchestrator	and	use	them	in	workflows	and	for	other	purposes,	such	as	storing
configuration	information.

Getting	ready
We	need	a	functional	Orchestrator.	We	also	need	a	text	file	in	a	directory	that	Orchestrator	can
access.	To	create	such	a	text	file,	you	could	use	the	example	workflow	09.02.1	Write	a
File.	Also	see	the	recipe	File	operations	in	Chapter	9,	Essential	Plugins.

How	to	do	it...
This	recipe	contains	multiple	parts,	each	dealing	with	different	aspects	of	resources.

Adding	resources	manually

Let's	start	by	adding	a	resource	to	Orchestrator	manually:

1.	 Switch	Orchestrator	to	Design	mode.
2.	 Click	on	Resources	(the	white	page	with	a	blue	symbol	on	it).
3.	 Create	a	new	folder	where	you	can	store	your	resources	by	right-clicking	the	root	in	the

tree	and	selecting	New	folder.
4.	 Right-click	on	the	new	folder	and	select	Import	resources.
5.	 Select	a	file	such	as	an	image	or	text	file	from	your	local	folder	and	click	on	Open.	The

new	resource	is	now	available	under	the	folder	you	created.
6.	 Click	on	the	resource	and	browse	through	the	tabs	that	are	presented.
7.	 Please	note	that	Description	automatically	contains	the	location	from	where	you

imported	it.	Also,	if	the	file	is	a	picture	or	text	file,	you	can	view	it	in	the	Viewer	tab.

You	can	also	update	(re-upload	a	file)	and	download	(save	to	a	file)	resources	in	Orchestrator.

Using	resources	in	workflows

To	add	a	resource	to	a	workflow,	we	need	to	add	it	as	an	attribute.	This	is	shown	as	follows:

1.	 Create	a	new	workflow	and	add	a	new	attribute.
2.	 Rename	the	attribute	textFile.
3.	 Change	the	type	of	the	attribute	to	ResourceElement.
4.	 Now	click	on	Value.	You	can	now	search	the	existing	resources	and	select	one.
5.	 Add	a	scriptable	task	to	the	schema	and	edit	it.
6.	 Bind	the	textFile	attribute	as	an	input	parameter	and	add	the	following	script:

						System.log("Name	:"+textFile.name);	

						System.log("MimeType	:"+textFile.mimeType);	

						System.log("Resource	Category	

						:"+textFile.getResourceElementCategory().name);	

						System.log("Description	:"+textFile.description);	

						System.log("Version	:"+textFile.version);	

						System.log("Size	:"+textFile.contentSize);	

						//get	the	content	as	MimeAttachment	

						Attachment	=	textFile.getContentAsMimeAttachment();	

						//	get	string	content	from	MimeAttachment	

						content	=	attachment.content;	

						System.log("Content:	\n"+content);	

7.	 Save	and	run	the	workflow.

In	the	logs,	we	output	all	the	possible	properties	of	resourceElement.	The	most	important	one

is	its	content.

Creating	a	new	resource	element

Instead	of	manually	uploading	a	resource	element,	you	can	dynamically	add	new	resource
elements	to	Orchestrator:

1.	 Create	a	new	workflow	and	add	the	following	variables:

Name Type Section Use

name String IN This	is	the	name	of	the	resource

resourceFolder ResourceElementCategory IN This	is	where	the	resource	should
be	stored

textContent String IN This	is	the	plain	text	that	the
resource	should	contain

2.	 Add	a	scripting	task	to	the	schema	and	bind	all	variables.
3.	 Add	the	following	script:

						//initialize	a	mime	attachment	object	

						var	attachment	=	new	MimeAttachment();	

						//fill	it	

						attachment.name	=	name;	

						attachment.mimeType	=	"text/plain";	

						attachment.content	=	textContent;		

						//create	the	resource	element	from	the	Mime	attachment	

						Server.createResourceElement(resourceFolder,name,attachment);	

4.	 Save	and	run	the	workflow.

Create	a	resource	by	uploading	a	file

Instead	of	using	a	mime	element,	you	can	upload	a	resource	from	a	file.

1.	 Create	a	new	workflow	and	add	the	following	variables:

Name Type Section Use

localfile path IN File	that	you	want	to	make	a	resource.

2.	 Add	a	scripting	task	to	the	schema	and	bind	the	variable.
3.	 Add	the	following	script:

						//get	filename	of	path	

						temp=localfile.split("/")	

						fileName=temp[temp.length-1];	

						//upload	resource	

						attachment=Server.createResourceElement("vRO	Example",	

fileName,localfile);	

4.	 Save	and	run	the	workflow.

After	the	workflow	has	finished,	check	the	resource	folder	vRO	Example	and	its	content.

Updating	a	resource

We	can	also	update	existing	resources.	To	do	this,	perform	the	following	steps:

1.	 Create	a	new	workflow	and	add	the	following	variables:

Name Type Section Use

resource ResourceElement IN This	is	the	resource	element	that	should	be
updated

newTextContent String IN This	is	the	new	text	content

2.	 Add	a	scripting	task	to	the	schema	and	bind	all	variables.
3.	 Add	the	following	script:

						//prepare	for	update	

						var	attachment	=	new	MimeAttachment()	;	

						//set	new	content	

						attachment.content	=	newTextContent;			

						//use	old	settings	

						attachment.name	=	resource.name;	

						attachment.mimeType	=	resource.mimeType;	

						//update	

						resource.setContentFromMimeAttachment(attachment);	

						//overwrite	the	description	

						resource.description="Updated";	

4.	 Save	and	run	the	workflow.

When	you	run	the	workflow,	select	a	resource	to	update,	preferably	one	you	have	created
before.	After	the	workflow	has	finished,	check	the	resource	and	its	content.

How	it	works...
Resource	elements	have	many	uses.	First	of	all,	you	can	use	a	small	picture	as	an	icon	for
Orchestrator	workflows.	Secondly,	you	can	use	them	to	send	e-mail	attachments	(see	the
recipe	Working	with	mails	in	Chapter	9,	Essential	Plugins).	There	is	also	a	method	of	storing
information	as	a	resource	element.	Orchestrator	uses	this	method	to	store	the	configuration
for	the	SOAP,	REST,	and	multi-node	plug-ins.	The	stored	information	is	the	configuration	for
each	SOAP,	REST,	or	Orchestrator	server.	Go	have	a	look!

Last	but	not	least,	you	can	use	the	resource	elements	to	store	templates.	For	example,	you	can
store	a	text	template	for	an	e-mail	you	want	to	send	to	customers.	You	can	write	variables	in
the	text	such	as	"Dear	{name}..."	and	use	the	string	method	replace	to	substitute	the	variables
before	sending	the	e-mail,	for	example	ResourceContent.replace("
{name}",sendToName);.	Have	a	look	at	the	workflows	stored	under	Daniels
Toolbox/CoolMail

Any	kind	of	file	can	be	used	as	a	resource	element,	but	typically	one	uses	XML,	plain	text,	or
pictures	as	resource	elements.

There's	more...
You	can	do	more	with	resources.	Some	examples	follow.

Accessing	resources	directly

You	don't	need	to	actually	add	a	resource	as	an	attribute	to	a	workflow	to	access	it:	you	can
access	them	directly.

You	can	get	all	existing	resource	element	categories	with
Server.getAllResourceElementCategories().	To	get	resource	elements	from	a	given
category,	use	ResourceElementCategory.resourceElements.	Use
ResourceElementCategory.subCategories	to	get	all	sub	categories	from	a	given	category.

The	following	little	script	lets	you	find	a	resource	by	its	name.	It	loops	through	all	resource
folders	and	all	resource	elements:

allresource=Server.getAllResourceElementCategories();	

for	each	(category	in	allresource)	{	

			for	each	(resource	in	category.resourceElements){	

									if	(resource.name	==	name){	

															System.log("Found:	"	+	name);	

									}	

			}	

}	

Deleting	a	resource

You	can	delete	a	resource	by	using:

Server.removeResourceElement(attachment);	

See	also
The	following	are	some	example	workflows:

08.01.1	Use	Resources

08.01.2	Create	Resources	(mime)

08.01.3	Create	Resource	(file)

08.01.4	Access	Resources	directly

08.01.5	get	resource	from	name

Working	with	configurations
In	this	recipe,	we	will	see	how	configurations	can	improve	our	design.	Configurations	are
like	global	variables	that	are	centrally	defined	and	can	be	used	by	all	workflows.

Getting	ready
We	just	need	a	working	Orchestrator,	and	you	will	need	the	rights	to	create	new	workflows
and	run	them.	We	will	work	with	the	Orchestrator	Client.

We	will	use	the	example	workflow	05.05	Workflow	Presentation	to	test	the	configuration.

How	to	do	it...
We	will	split	the	recipe	in	two	sections,	creating	and	using	a	configuration.

Creating	a	configuration
1.	 Using	the	Orchestrator	Client	in	Design	mode,	click	on	Configurations	(the	white	paper

with	a	gear	icon).
2.	 Right-click	on	the	root	and	create	a	new	folder.	Give	the	folder	a	name.	It's	always	a

good	idea	to	use	new	folders.
3.	 Right-click	on	the	new	folder	and	select	New	element.	Give	the	new	element	a	name.	The

new	configuration	opens	up	in	edit	mode.	Click	on	Attributes.
4.	 Now,	we	can	create	new	variables	as	we	used	to	in	a	normal	workflow.	Create	the

following	variables:

Name Type Value(s) Use

selectionList
Array	of
String

First,	Second,
Third This	represents	a	selection	list

passwordLength Number 8 This	limits	the	number	of	letters	that	can
be	entered

5.	 Click	on	Save	and	Close.

Using	a	configuration	in	a	workflow

We	will	now	make	use	of	the	variables	we	created	in	the	configuration:

1.	 Using	the	Orchestrator	Client,	either	make	a	duplicate	of	the	example	workflow	05.05
Workflow	Presentation	or	edit	it.

2.	 In	the	General	tab,	click	on	the	selection	attribute	and	click	on	the	two	blue	arrows	right
next	to	value	(see	the	following	screenshot).

3.	 In	the	window	that	pops	up,	you	will	find	all	the	configurations	that	Orchestrator	knows;
click	on	the	one	you	have	created.

4.	 You	now	see	all	the	variables	that	you	have	defined	in	this	configuration;	please	note	that
only	the	ones	that	match	the	current	type	are	black	and	selectable,	all	others	are	grayed
out.

5.	 Select	the	array	of	strings	and	click	on	Select.	See	how	the	value	of	the	attribute	has
changed	and	that	it	now	points	to	the	configuration.

6.	 Link	the	length	attribute	to	the	configuration	element	of	the	same	name.

7.	 You	are	now	able	to	use	the	values	from	the	configuration	inside	the	workflow.	Give	it	a
go.

How	it	works...
A	configuration	is	what	programmers	would	call	a	global	variable.	A	global	variable	is	a
centrally-stored	variable	that	is	accessible	to	all	workflows.	Configurations	are	commonly
used	to	define	global	objects,	for	example,	the	FQDN	and	credentials	of	a	mail	server	or
general	password	policies.

Let's	look	at	a	typical	example	for	the	use	of	configurations.	You	have	a	Development
environment	and	a	Production	environment.	In	each	environment,	you	have	different
vCenters,	mail	servers,	and	so	on.	You	develop	your	workflows	in	Development	and	then	use
them	in	Production.	Using	configurations,	you	can	point	the	workflow	to	different
configurations	that	are	stored	in	Development	or	Production	Orchestrator.

Another	example	is	to	reduce	the	number	of	inputs	a	workflow	requires	by	pushing	the
variables	to	configurations	and	binding	them	to	attributes.	We	will	explore	this	in	the	recipes
in	Chapter	12,	Working	with	vSphere.	Last	but	not	least,	you	can	use	configuration	to	share	the
same	variables	between	different	workflows,	such	as	mail	server	configurations.

To	integrate	a	configuration	into	a	workflow	you	have	to	link	an	attribute	to	the	configuration
variable.	The	variables	have	to	be	of	the	same	type.	After	you	have	integrated	the
configuration	attribute	into	the	workflow,	you	can	use	it	to	not	only	pass	information	along
(such	as	credentials	or	common	server	names)	but	also	link	presentation	properties	(such	as
predefined	values	to	reduce	the	possible	selections).	We	will	explore	this	in	the	recipe	An
approval	process	for	VM	provisioning	in	Chapter	12,	Working	with	vSphere.

You	can	also	create	new	attributes	in	a	configuration	from	a	workflow.	You	have	probably
noticed	the	Create	New	selection	in	the	Link	Configuration	window.

Please	note	that	a	configuration	also	has	a	history	like	the	workflows	do;	see	the	recipe
Version	control	in	Chapter	4,	Programming	Skills	for	more	information.

There's	more...
You	can	use	JavaScript	to	read	and	write	configuration	values.	The	scripting	classes	are	as
follows:

ConfigurationElement
ConfigurationElementCategory
Attribute

To	read	a	configuration,	you	can	use	this:

attrib=configurationElement.getAttributeWithKey(Key);	

Here,	Key	is	a	string,	which	contains	the	name	of	the	attribute.	The	return	value	is	of	the
Attribute	type.

To	set	a	configuration	attribute,	use	this:

configurationElement.setAttributeWithKey(Key,	Value);	

Here,	Key	is	a	string	that	contains	the	name	of	the	attribute	and	Value	is	the	value	you	would
like	to	set	it	to.

See	also
The	example	workflows:

08.03.1	Using	Configuration

08.03.2	read	and	write	configurations

Working	with	Orchestrator	tags
Let's	explore	the	tagging	of	workflows.	Tagging	introduces	the	same	kind	of	tagging	you're
familiar	with	from	vCenter	server.	Tagging	allows	you	to	add	tags	to	Orchestrator	objects
and	search	for	them.

Getting	ready
We	need	some	elements	such	as	a	workflow	or	action	we	can	tag.

How	to	do	it...
Tagging	involves	the	following	procedures.

Tagging	an	element	(manual)

Let's	start	by	tagging	a	workflow	manually.

1.	 Open	a	workflow	for	editing.
2.	 Go	to	the	General	tab	and	click	on	the	[Type	here	to	add	a	tag...].
3.	 Type	a	tag	name	such	as	glbTest	and	then	press	Enter.
4.	 Next,	we	are	adding	a	tag	with	a	value.	Enter	another	tag	such	as	author,	then	press	Ctrl	+
S	and	then	enter	the	value	for	the	tag,	such	as	Daniel.

5.	 Click	on	Save	and	close.

Tagging	a	workflow	(workflow)

You	can	tag	a	workflow	using	a	workflow.

1.	 Start	the	workflow	by	navigating	to	Library	|	Tagging	|	Tag	workflow.
2.	 Select	the	workflow	you	would	like	to	tag.
3.	 Enter	a	tag	and	a	value.

4.	 Select	whether	you	would	like	this	tag	to	be	global	or	not.	A	Global	tag	is	visible	to	all
users,	whereas	non-global	(private)	tags	are	only	visible	to	the	user	who	places	the	tag:

5.	 Submit	the	workflow.

Viewing	all	tags	in	a	workflow
1.	 Start	the	workflow	by	navigating	to	Library	|	Tagging	|	List	Workflow	tags.
2.	 Select	the	workflow	for	which	you	would	like	to	see	a	list	of	all	its	tags.
3.	 After	submitting	the	workflow,	check	the	logs.	All	tags	and	their	values	will	be	listed:

Finding	workflows	by	tag
1.	 Start	the	workflow	by	navigating	to	Library	|	Tagging	|	Find	objects	by	tag.
2.	 Enter	only	a	tag	or	a	tag	and	its	value.
3.	 Select	whether	this	tag	is	global	or	private	and	submit	the	workflow.

4.	 The	output	is	an	array	of	workflows:

How	it	works...
Tags	have	been	integrated	into	Orchestrator	since	5.5.1.	There	are	two	types	of	tags:	global
tags	and	private	tags.	A	global	tag	is	visible	to	all	users	whereas	non-global	(private)	tags	are
only	visible	to	the	user	who	places	the	tag.

Tip

Tags	can	be	used	on	workflows,	actions,	resources,	configurations,	packages,	policy
templates,	and	you	can	add	them	to	inventory	elements.

Tags	are	not	stored	with	the	workflows.	Importing	and	exporting	a	workflow	to	a	different
Orchestrator	will	not	preserve	the	tags;	however,	several	websites	state	that	this	is	the	case.

There's	more...
The	JavaScript	behind	the	tags	is	straightforward:

JavaScript	tags Function

Server.tagGlobally(taggedObject,tagName,tagValue

);

This	allows	tagging	an	object	with	a
global	tag.

Server.tag(taggedObject,tagName,tagValue);
This	allows	tagging	an	object	with	a
private	tag.

Server.findGlobalTagsForObject(taggedObject);
This	allows	listing	an	object's	global
tags.

Server.findTagsForObject(taggedObject);
This	allows	listing	an	object's
private	tags.

Server.queryByTags(tagQuery,null);
This	allows	finding	an	object	by	its
tags.

Server.untagGlobally(taggedObject,tags);
This	allows	untagging	a	global	tag
from	an	object.

Server.untag(taggedObject,tags);
This	allows	untagging	a	private	tag
from	an	object.

See	also
For	using	vCenter	tags	see	recipe	Custom	Attributes	and	Tags	(vAPI)	in	Chapter	12,	Working
with	vSphere.

Using	the	Locking	System
Here	we	will	have	a	look	at	the	Locking	System.	We	will	learn	how	to	lock	and	unlock
objects	using	locks.	Locks	are	used	to	make	sure	objects	are	only	used	by	one	owner.

Getting	ready
The	Locking	System	doesn't	need	anything,	as	it	itself	is	just	virtual.

How	to	do	it...
There	are	three	phases	to	locking:	locking,	checking	and	unlocking.

Create	a	lock

We	will	now	create	a	lock:

1.	 Create	a	new	workflow	and	add	a	scriptable	task.
2.	 Add	the	following	variables	as	input:

Name Type Section Use

object String IN Any	string

owner String IN Any	string

3.	 Enter	the	following	script:

LockingSystem.lockAndWait(object	,owner);	

4.	 Add	the	workflow	Display	all	Locks	at	the	end.
5.	 Save	and	run	the	workflow.	Enter	as	object	any	string,	such	as	Test	and	as	owner	or	any

other	string	such	as	Goofy.
6.	 Check	the	logs.

Check	for	lock

We	will	now	check	if	an	object	is	locked:

1.	 Create	a	new	workflow	and	add	a	scriptable	task.
2.	 Add	the	following	variables	as	input:

Name Type Section Use

object String IN Any	string

owner String IN Any	string

newLock Boolean OUT True	if	a	new	lock	should	be	acquired

3.	 Enter	the	following	script:

						newLock=LockingSystem.lock(object	,owner);	

4.	 Save	and	run	the	workflow.	Enter	as	object	the	string	from	the	first	workflow	and,	as
owner,	any	string	you	like.

5.	 Check	the	output,	it	should	be	false	as	the	workflow	is	still	locked	from	the	first	run.

Unlock

We	will	now	unlock	a	locked	object:

1.	 Create	a	new	workflow	and	add	a	scriptable	task.
2.	 Add	the	following	variables	as	input:

Name Type Section Use

object String IN Any	string

owner String IN Any	string

3.	 Enter	the	following	script:

						LockingSystem.unlock(object	,owner);	

4.	 Add	the	workflow	Display	all	Locks	before	and	after	the	scriptable	task.
5.	 Save	and	run	the	workflow.	Enter	as	object	the	string	from	the	first	workflow	and	the

owner	from	the	first	workflow.
6.	 Check	the	logs.

How	it	works...
Orchestrator	has	an	internal	locking	mechanism.	It	enables	you	to	lock	a	virtual	object,
basically,	a	string.	You	set	a	lock	with	LockingSystem.lock(object,	owner).	Using	the
LockingSystem.lockAndWait(object,	owner)	method	with	the	same	object	string	will	pause
the	workflow	until	the	object	is	unlocked	with	LockingSystem.unlock(object,	owner).

Please	note	that	the	object	isn't	really	locked;	only	a	lock	entry	is	set.	The	lock	is	just	a	flag
and	nothing	else.	If	you	want	to	use	the	Locking	System,	you	will	need	to	check	for	the
locking	entry.	You	can	check	all	locking	entries	with	LockingSystem.retrieveAll(),	which
returns	an	array	of	strings	where	each	string	represents	object,owner.	You	can	release	all
locks	with	LockingSystem.unlockAll().	In	the	example	packages,	there	are	three	examples	of
how	to	use	the	Locking	System.

Have	a	look	at	the	example	workflows	08.02.4	Locktest	(RUN	ME)	and	08.02.5	secondary
locker,	which	show	how	the	locking	works.

A	very	important	point	to	note	here	is	that	you	have	to	make	sure	your	workflow	handles
errors	(in	the	workflow)	well.	You	could	end	up	in	a	situation	where	you	lock	a	resource	and
the	workflow	locking	it	terminates	on	error	and	does	not	release	the	log.	Have	a	look	at	Try-
catch-finally	in	the	recipe	JavaScript	special	statements	in	Chapter	6,	Advanced	Programming.

See	also
For	locking	elements	in	the	Orchestrator	Client,	see	the	recipe	Locking	elements	in	Chapter	4,
Programming	Skills.

The	following	are	some	example	workflows:

08.02.1	Lock

08.02.2	Check	for	Lock

08.02.3	unlock

08.02.4	Locktest	(RUN	ME)

08.02.5	secondary	locker

Language	packs	(localization)
This	recipe	will	look	into	the	possibility	of	creating	localized	language	packs	for	workflows.
Localization	enables	users	to	see	workflow	presentations	in	their	local	language.

Getting	ready
We	just	need	an	Orchestrator	and	the	ability	to	edit	text	files.	Additionally,	you	might	want	to
know	a	foreign	language	(or	use	Google	Translate).

How	to	do	it...
We	will	now	create	a	language	pack	for	the	example	workflow	00.00	BasicWorkflow:

1.	 Navigate	to	the	workflow	you	want	to	create	localization	on.
2.	 Right-click	on	the	workflow	and	navigate	to	Localization	|	create	localization

resources.
3.	 Navigate	to	the	Orchestrator	resources.	You	will	notice	that	new

ResourceElementCategory	folders	have	been	created	along	with	ResourceElements	for
English,	Japanese,	French,	German,	and	Korean:

4.	 Right-click	on	the	workflow	again,	navigate	to	Localization	|	export	localization
bundle,	and	save	it	onto	a	local	file.

5.	 Switch	to	your	local	filesystem	and	unzip	the	localization	bundle.
6.	 Edit	one	of	the	language	files	and	replace	the	text	with	a	local	language.
7.	 Re-zip	the	file	and	then	upload	the	bundle	by	right-clicking	on	the	workflow	and

navigating	to	Localization	|	import	localization	bundle.
8.	 Check	ResourceElement	to	see	the	updates.
9.	 To	check	the	result,	switch	the	language	of	a	web	browser	to	the	language	you	have

specified,	for	example,	de-DE	(not	just	de).	Please	note	that	this	is	case-sensitive.	If	you
are	using	a	German	system,	you	may	want	to	try	English	instead.

10.	 Now	start	vSphere	Web	Client	and	then	the	workflow	(see	the	recipe	Using	Orchestrator
through	the	vSphere	Web	Client	in	Chapter	7,	Interacting	with	Orchestrator):

How	it	works...
Localization	works	with	any	application	that	pulls	the	REST	API	using	an	Accept-Language
header	to	transport	the	language	code,	such	as	de-DE.	Orchestrator	Client	doesn't	support	this
feature.

vRealize	Automation	(vRA)	supports	localization	from	version	6.2	onwards.

Working	with	policies
In	this	recipe,	we	will	look	into	policies.	We	will	learn	how	to	create	and	use	policies	to	react
automatically	to	events	that	occur	outside	Orchestrator.

Getting	ready
For	this	recipe,	we	need	something	that	we	can	monitor	for	events.	We	have	a	look	at	policies
with	the	recipes	Working	with	SNMP	and	Working	with	AMQP	in	Chapter	10,	Built-in	Plugins.

In	this	example,	we	will	monitor	objects	in	the	vCenter	server.

How	to	do	it...
We	will	create	a	simple	policy	that	will	monitor	a	VM	by	performing	the	following	steps:

1.	 In	the	Orchestrator	Client,	switch	to	the	Run	mode	and	click	on	Policies.
2.	 Click	on	Create	a	new	Policy	(the	icon	that	looks	like	a	scroll	with	a	plus	sign).
3.	 After	you	give	the	policy	a	name,	you	will	find	a	new	policy	in	the	policy	list.	Right-click

the	policy	you	have	created	and	select	Edit	(the	pencil	icon):

4.	 In	the	General	tab	under	Startup,	choose	whether	the	policy	should	be	started	with	the
Orchestrator	service	or	not.	This	is	used	when	Orchestrator	is	powered	down	and	you
want	to	start	the	policy	with	an	Orchestrator	server	start.

5.	 Priority	regulates	how	multiple	policies	determine	priorities	about	each	other.
6.	 The	credentials	under	Startup	user	are	used	to	run	the	policy:

7.	 Switch	to	the	Scripting	tab.
8.	 Click	on	the	top	element	(scroll	icon)	and	then	select	Add	policy	element	(scroll	down;

you	will	see	an	icon	with	a	plus	sign).
9.	 Select	a	policy	element	(choose	VC:VirtualMachine)	and	click	on	OK.	Then,	select	a

VM	that	you	would	like	to	monitor	(I	selected	a	VM	called	OrchestratorVM	which	is
just	a	plain	VM,	not	the	Orchestrator	itself).

10.	 Right-click	on	the	new	policy	(called	tag-0)	and	then	Add	trigger	event.	From	the	pop-
up,	select	OnStateChanged.	This	trigger	will	monitor	the	VM	for	changes	in	its	power
state.

11.	 Click	on	the	OnStateChanged	trigger	and	then	select	a	workflow	or	write	a	script	that	is
executed.	I	wrote	the	following	script:

						System.log("VM	changed	state");	

12.	 Click	on	Save	and	close.
13.	 Now	start	the	policy	by	clicking	on	the	play	button.	Go	to	vCenter	server	and	start	or	stop

the	VM	you	are	monitoring.	If	you	have	used	the	same	script	as	mine,	you	should	see	a
message.

How	it	works...
Policies	are	constant	monitoring	programs	that	check	whether	a	monitored	event	has	been
triggered.	The	VMware	documentation	about	policies	is	really	nonexistent.	You	will	find
some	more	information	regarding	policies	in	the	upcoming	sections.

As	a	supplement	to	this	recipe,	have	a	look	at	the	recipes	Working	with	SNMP	and	Working
with	AMQP	in	Chapter	10,	Built-in	Plugins.	In	these	recipes,	we	use	policies.

When	you	configured	the	policy	to	start	with	the	Orchestrator	server,	then	the	check	box	next
to	the	policy	shows	a	tick	in	it	(see	following	figure):

Policy	templates

Let's	start	by	defining	the	difference	between	polices	and	policy	templates.	If	you	repeat	the
same	recipe	as	described	earlier,	under	the	Policy	Templates	tab	you	will	find	that	you	won't
be	able	to	define	which	VM	you	would	like	to	monitor.	This	is	what	templates	are	about;	you
define	the	raw	layout,	triggers,	and	script,	and	so	on.	If	you	then	want	to	apply	the	template,
you	can	choose	Apply	Policy	(scroll	down,	you	will	see	a	green	right	arrow	icon)	from
either	the	template	in	the	Template	tab	or	the	Policy	tab.

Triggers

Triggers	are	implemented	by	plugins	and	can	be	used	to	build	policies.	There	are	three	basic
elements	that	can	be	added	to	policies:

Icon Name Function

Policy	Element This	monitors	an	element	such	as	a	VM	or	SNMP	device.

Periodic	Task This	is	a	workflow	or	script	that	will	be	executed	on	a	given	timescale.

Trigger This	is	a	trigger	that	starts	a	script	or	workflow.

Each	element	can	have	special	triggers.	A	trigger	can	either	start	a	workflow	or	run	a	script,
but	not	both.	In	the	following	tables,	you	will	find	detailed	information	on	which	trigger	is
available	with	what	element.	The	OnInit	and	OnExit	triggers	can	be	added	to	any	element.
The	OnInit	and	OnExit	triggers	are	actually	quite	important,	for	example,	when	you	need	to
write	a	script	that	checks	whether	all	conditions	that	the	policy	requires	(such	as	whether	an
AMQP	queue	exists	or	a	VM	exists)	are	met:

Element Trigger	element Threshold

Periodic	task OnExecute N/A

SNMP:SnmpDevice OnTrap N/A

AMQP:Subscription OnMessage N/A

VC:ClusterComputerResource OnOverallStatusChanged N/A

VC:ComputerResource OnOverallStatusChanged N/A

VC:DatacenterFolder OnOverallStatusChanged N/A

VC:HostFolder OnOverallStatusChanged N/A

VC:VmFolder OnOverallStatusChanged N/A

VC:HostSystem

OnOverallStatusChanged

OnConnectionStateChanged

OnInMaintenanceModeChange

NumMksConnections

RealtimeCpuUsage

RealtimeMemoryUsage

RealtimeDiskUsage

RealtimeNetworkUsage

VC:ResourcePool OnOverallStatusChanged N/A

VC:VirtualApp OnOverallStatusChanged N/A

VC:VirtualMachine

OnOverallStatusChanged

OnStateChanged

OnConnectionStateChanged

NumMksConnections

RealtimeCpuUsage

RealtimeMemoryUsage

RealtimeDiskUsage

RealtimeNetworkUsage

Here	is	an	explanation	of	all	triggers:

Trigger Meaning

OnInit This	is	triggered	when	the	policy	is	started.

OnExit This	is	triggered	when	a	policy	is	stopped.

OnExecute This	is	triggered	when	a	periodic	task	is	triggered.

OnTrap This	is	triggered	when	a	new	SNMP	message	is	trapped.

OnMessage This	is	triggered	when	a	new	AMQP	message	is	in	the	queue.

OnOverallStatusChanged This	is	triggered	when	the	health	of	the	object	changes.

OnConnectionStateChanged

This	is	triggered	when	a	VM/host	is	not	available	for
management;	for	example,	VM	is	disconnected	due	to	ESXi
failure	or	a	host	is	switched	off.

OnInMaintenanceModeChange
This	is	triggered	when	a	host	is	entering/exiting	the
maintenance	mode.

OnStateChanged This	is	triggered	when	the	power	state	of	a	VM	changes.

NumMksConnections
This	is	triggered	when	the	amount	of	console	session	towards
a	VM/host	is	below	or	above	a	set	value.

RealtimeXXXUsage
This	is	triggered	when	a	CPU,	memory,	disk,	or	network	is
below	or	above	a	set	value;	all	values	are	in	percentages.

The	event	variable

The	event	variable	is	almost	un-documented	and	any	information	is	hard	to	find.	The
following	are	the	known	event	properties	and	methods:

Variable Function

event.when Gets	the	date	as	a	number.

event.source An	object	that	contains	the	source	of	the	event.

event.getValue("agent") Receives	the	SNMP	source.

event.getValue("key") Retrieves	the	SNMP	message.

self.retrieveMessage(event) Retrieves	an	AMQP	message.

See	also
See	the	recipes	Working	with	SNMP	and	Working	with	AMQP	in	Chapter	10,	Built-in	Plugins.

Chapter	9.	Essential	Plugins
In	this	recipe,	we	are	looking	at	essential	plugins	that	are	often	used.	We	will	be	looking	at	the
following	plugins:

Working	with	e-mail
File	operations
Working	with	SSH
Working	with	REST

Introduction
These	plugins	are	just	normal	plugins	that	are	used	regularly	(well...at	least	by	me).	All	the
plugins	shown	in	this	recipe	will	add	a	lot	of	possibilities	in	your	programming	kit	bag.

Let's	have	a	look	at	an	example:	You	have	a	workflow	that	deploys	a	VM	and	after	it	is
finished	you	would	like	to	send	an	acknowledgment	e-mail	to	a	user	and	a	CSV	file	to	a
CMDB	(Content	Management	Database).

Another	example	would	be	current	or	legacy	systems	that	have	an	SSH	interface	but	no	API	or
plug-in	available.	The	SSH	plug-in	could	be	used	to	SCP	files/scripts	to	and	from	the	target
system,	automatically	backup	configurations,	or	apply	approved	configurations.

Working	with	e-mail
In	this	recipe,	we	will	learn	how	to	interact	with	e-mails	and	discuss	configuring,	sending,	and
receiving	e-mails	with	Orchestrator.	We	will	discuss	both	e-mail	objects	that	the	API	currently
has.

Getting	ready
Unsurprisingly,	we	need	an	e-mail	server.	If	you	don't	have	one	handy,	you	can	use
hMailServer	for	Windows;	refer	to	the	There's	more...	section	of	this	recipe	to	learn	how	to
install	and	configure	this	free,	open	source	e-mail	server.

For	this	recipe,	we	will	use	IMAP	and	SMTP	to	connect	to	the	e-mail	server.	In	the	How	it
works...	section,	we	also	take	a	quick	look	at	POP3	and	SSL.	We	will	also	need	two	e-mail
addresses.	In	our	example,	we	will	use	vcotest@mylab.local	and	vcotest2@mylab.local.

There	are	two	API	objects	that	can	be	used	when	working	with	e-mail:	the	MailClient	object
and	the	EmailMessage	object.	We	will	use	EmailMessage	to	send	messages	and	MailClient	to
receive	e-mail.

How	to	do	it...
We	will	break	this	recipe	down	into	configuration	and	sending/receiving	e-mail.

Configuring	the	e-mail	connection

As	you	probably	need	e-mail	a	lot	in	all	your	Orchestrator	workflows,	it's	a	good	idea	to
store	all	the	necessary	e-mail	configuration	information	in	a	configuration,	as	shown	in	the
recipe	Working	with	configurations	in	Chapter	8,	Better	Workflows	and	Optimized	Working.
Follow	these	steps	to	prepare	the	information	you	need	to	interact	with	a	e-mail	server:

1.	 Create	a	new	configuration.
2.	 Create	the	following	items:

Variable	name Type Description

mailHost String The	IP	or	FQDN	of	the	e-mail	server.

mailUser String The	username	that	is	needed	to	access	the	e-mail
account	(it's	the	e-mail	in	the	case	of	hMail).

mailPass SecureString The	password	for	the	user	account.

smtpPort Number The	TCP	port	that	should	be	used	(the	default	port	is	TCP
25).

SmtpFromName String A	string	that	identifies	the	sender,	for	example,	the	full
name	of	the	user.

smtpFromMail String The	e-mail	address	of	the	sender.

receiveProtocol String The	protocol	used,	either	POP3	or	IMAP.

You	can	now	use	this	configuration	in	workflows,	as	shown	in	the	recipe	Working	with
configurations	in	Chapter	8,	Better	Workflows	and	Optimized	Working.

Sending	e-mails

To	send	e-mails,	there	is	a	ready-made	workflow	that	we	can	use	by	navigating	to	Library	|
Mail	|	Send	notification.	However,	we	will	create	a	new	one	to	understand	the	code	and	API	a

bit	better:

1.	 Create	a	new	workflow	and	create	the	following	variables	(and	if	you	did	the
configuration,	link	the	values	to	your	configuration):

Variable
name Section Type Description

mailTo IN String The	e-mail	address	the	e-mail	should	go	to.

mailCC IN String The	e-mail	address	that	should	be	sent	to	CC
(carbon	copy).

mailBCC IN String
The	e-mail	address	that	should	be	sent	to	BCC
(blind	carbon	copy);	the	BCC	e-mail	address	is
not	disclosed	to	other	e-mail	recipients.

mailSubject IN String The	subject	of	the	e-mail.

mailContent IN String The	text	content	you	want	to	send.

mailHost Attribute String The	link	with	the	corresponding	configuration
attribute.

mailUser Attribute String The	link	with	the	corresponding	configuration
attribute.

mailPass Attribute SecureString The	link	with	the	corresponding	configuration
attribute.

smtpPort Attribute Number The	link	with	the	corresponding	configuration
attribute.

smtpFromName Attribute String The	link	with	the	corresponding	configuration
attribute.

smtpFromMail Attribute String
The	link	with	the	corresponding	configuration

attribute.

2.	 Add	a	scriptable	task	to	the	schema	and	enter	the	following	code:

						//Create	a	message	object	

										var	message	=	new	EmailMessage();	

						//	set	connections	parameters	

										message.smtpHost	=	mailHost;	

										message.smtpPort	=	smtpPort;	

										message.username	=	mailUser;	

										message.password	=	mailPass;	

										message.fromName	=	smtpFromName;	

										message.fromAddress	=	smtpFromMail;	

						//Set	email	specific	information	

										message.toAddress	=	mailTo;	

										message.ccAddress	=	mailCC;	

										message.bccAddress	=	mailBCC;	

						//	the	subject	of	the	message	

										message.subject	=	mailSubject;	

						//	the	mail	content,	message	type	and	the	character	

									set	

										message.addMimePart(mailContent,"text/html;	

												charset=UTF-8");	

						//	send	the	message	

										message.sendMessage();	

3.	 Save	and	run	the	workflow.

You	can	now	use	this	workflow	to	send	e-mails.

Receiving	e-mails

There	are	already	two	workflows	to	receive	e-mails	by	navigating	to	Library	|	Mail:	Retrieve
messages	and	Retrieve	messages	(via	MailClient).	The	problem	with	them	is	that	they	don't
have	any	output	that	we	can	use	and	therefore,	they	are	quite	useless	to	anyone	who	wants	to
use	e-mails	to	check	for	content.	In	this	example,	we	will	use	the	more	powerful	MailClient
object	to	create	a	workflow	that	receives	e-mail	and	outputs	the	important	parts	of	an	e-mail.

1.	 Create	a	new	workflow	and	define	the	following	variables;	link	them	to	the
configuration	from	the	first	part,	as	required:

Variable	name Section Type Description

mailHost Attribute String Link	with	the	configuration.

receiveProtocol Attribute String Link	with	the	configuration.

mailUsername Attribute String Link	with	the	configuration.

mailPassword Attribute SecureString Link	with	the	configuration.

deleteMail IN Boolean Should	the	messages	be	deleted?

outMail OUT Array	of	properties The	output	array	for	messages.

2.	 Add	a	scriptable	task	and	bind	all	the	variables	to	it.
3.	 Enter	the	following	script:

						//	initialize	array	

						var	outMail	=	new	Array	();	

						//	initialize	Property	

						var	mail	=	new	Properties();	

						//mail	constructor	

						var	myMailClient	=	new	MailClient();	

						//get	the	default	port	for	the	protocol	

						var	mailPort=System.getModule("com.vmware.library.mail").

						getDefaultPort(receiveProtocol)	

						myMailClient.setProtocol(receiveProtocol);	

						//	connect	to	mail	server	

						myMailClient.connect(mailHost,	mailPort,	mailUsername,	mailPassword);		

						//open	the	inbox	

						myMailClient.openFolder("Inbox");	

						//	get	messages	

						var	messages	=	myMailClient.getMessages();	

						//if	there	are	any	messages	loop	thought	them	

						if	(messages	!=	null	&&	messages.length	>	0)	{	

										for	(i	=	0;	i	<	messages.length;	i++)	{	

						//get	the	mail	details	and	write	them	into	a	property	

														var	mail	=	new	Properties();	

														mail.put("from",messages[i].from);	

														mail.put("date",messages[i].getSentDate());	

														mail.put("subject",messages[i].subject);	

														mail.put("content",messages[i].getContent());	

														//	push	Properties	into	array.	

														outMail.push(mail);	

														//delete	messages	if	this	was	chosen	

														if	(deleteMail)	{	

																		messages[i].delete();	

														}	

										}	

						}	else	{	

										System.warn("No	messages	found");	

						}	

						//	Close	mail	connection	

						myMailClient.closeFolder();	

						myMailClient.close();	

4.	 Save	and	run	the	workflow.

This	workflow	will	output	one	array,	with	these	property	keys:	from,	date,	subject,	and
content.	Refer	to	the	introduction	to	this	chapter	to	learn	how	to	access	the	output	of	this
workflow.

Check	out	the	recipe	Working	with	XML	in	Chapter	10,	Built-in	Plugins	to	change	the	output	of
this	workflow	to	XML.

How	it	works...
E-mail	can	quickly	become	a	really	important	addition	to	Orchestrator.	Just	think	about	the
possibilities	of	sending	e-mail	to	users	after	a	task	has	been	successfully	finished	(or	not)	or
for	sending	a	report	of	some	sort.

In	Orchestrator,	the	Mail.EmailMessage	object	is	responsible	for	sending	e-mails;	to	receive
or	work	with	e-mails,	there	are	actually	three	objects:	Mail.MailClient,	Net.POP3Client,	and
Net.IMAPClient.

Tip

Remember	that	e-mail	uses	HTML,	which	can	be	attractively	formatted.

Mail.MailClient	is	the	more	powerful	of	the	objects	for	reading	e-mails	as	it	comes	with	a
lot	of	types	and	methods	centered	around	e-mails	that	can	be	useful,	such	as	extracting
attachments	or	using	different	e-mail	folders.	The	other	two	objects	are	more	rudimentary
and	more	directed	at	either	POP3	or	IMAP.	For	more	information,	I	would	suggest	that	you
check	out	the	API	and	look	for	the	available	attributes	and	methods	that	they	contain.

The	receive	workflow	that	we	have	created	in	the	recipe	isn't	very	sophisticated,	but	it	lets	you
build	a	workflow	that	extracts	all	e-mails	so	that	you	can	check	for	specific	content.	Take	a
look	at	the	example	workflow	05.04.3	DoWhile	loop	to	see	how	it	can	be	used.

Working	with	attachments

Sending	an	attachment	is	more	or	less	easy;	we	will	showcase	it	by	uploading	the	attachment
as	an	Orchestrator	resource.	We	covered	how	to	work	with	resources	in	the	Working	with
resources	recipe	in	Chapter	8,	Better	Workflows	and	Optimized	Working.

the	following	example	attaches	a	picture	to	e-mail.	There	is	also	another	example	workflow
in	the	example	pack	that	lets	you	attach	any	file	from	the	local	Orchestrator	to	an	e-mail:
09.01.5	SendAttachment(File).

1.	 You	will	need	to	add	the	following	variable	to	the	send	the	workflow:

Name Type Section Use

attachment ResourceElement IN Contains	the	Orchestrator	resource	for	the
attachment

2.	 Add	the	following	code	to	the	send	script:

message.addMimePart(attachment.getContentAsMimeAttachment());	

In	order	to	fetch	an	attachment	from	an	e-mail,	we	need	to	have	a	much	closer	look	at	how	the
MailClient	object	works.	Each	e-mail	can	have	multiple	content	parts,	such	as	attachments
and	text.	To	check	whether	a	message	contains	more	than	one	part,	use	the
MailClient.isContentMultiPart()	method;	it	returns	either	true	or	false.	To	get	all	the	parts,
use	the	following:

var	multiPartContent	=	message.getMultiPartContent();	

This	will	return	an	array	(multiPartContent).	Now	we	need	to	look	into	each	of	the	parts	by
looping	through	them.	We	get	a	single	part	by	using	the	following	:

var	bodyPart	=	multiPartContent.getBodyPart(counter);	

To	know	whether	the	body	part	is	an	attachment,	check	bodyPart.isAttachment().	To	fetch
the	attachment,	use	the	following	:

var	attachment	=	bodyPart.getAsMimeAttachment();	

You	now	have	the	attachment	as	a	mime	type.	Refer	to	the	Working	with	resources	recipe	in
Chapter	8,	Better	Workflows	and	Optimized	Working.

To	get	the	mime	type	of	the	attachment,	use	attachment.mimeType;	to	get	the	name,	use
attachment.name.

There's	more...
A	fast	and	pretty	easy	way	to	configure	the	e-mail	server	is	the	open	source	hMailServer,
which	you	can	download	from	www.hmailserver.com.

Creating	a	non-relaying,	local-only	e-mail	server	is	pretty	straightforward.	I	will	not	waste
too	much	page	space	on	this,	so	there	are	no	screenshots.	The	following	steps	let	you	create	a
e-mail	server	and	e-mail	addresses	that	are	configured	for	SMTP,	POP3,	and	IMAP:

1.	 In	Windows,	download	hMail	and	start	the	installer.
2.	 Make	sure	that	SMTP	(TCP	25),	POP3	(TCP	110),	and	IMAP	(TCP	143)	can	pass	through

the	Windows	firewall.
3.	 Select	a	folder	where	you	would	like	to	place	the	program	binaries	(this	is	not	the	place

where	the	e-mails	will	end	up;	hMail	needs	less	than	15	MB	disk	space).
4.	 Install	Server	and	Administrator	tools.
5.	 You	can	now	choose	to	use	an	external	DB	(MSSQL,	MySQL,	or	PostgreSQL)	or	the

Microsoft	SQL	Server	Compact	Edition	(2	MB	installation	size)	shipped	with	hMail	(use
the	compact	edition	for	the	lab).

6.	 You	are	now	asked	whether	you	would	like	to	create	a	shortcut	(recommended	for	the
lab).

7.	 Set	a	password	for	the	admin	access	of	hMail.
8.	 After	the	installation	is	finished,	run	Administrator	tools.
9.	 Connect	to	the	localhost	e-mail	server	and	enter	the	admin	password	from	step	7.
10.	 After	the	administrator	console	opens,	click	on	Domains	and	then	click	on	Add.
11.	 In	the	Domain	field	under	General,	enter	your	domain	name	and	click	on	Save.
12.	 Your	domain	is	now	created.	Click	on	your	domain,	then	click	on	Accounts,	and	then

click	on	Add.
13.	 To	create	an	e-mail	address,	just	fill	in	the	name	of	the	account	by	navigating	to	General

|	Address	and	give	it	a	password.	Adjust	Maximum	size	(MB)	to	10	MB	(we	will	just	use
some	text	e-mail).	Finally,	click	on	Save.

That's	it.	Now	you	can	play	with	this	recipe.

See	also
See	the	CoolMail	folder	in	Daniels	Toolsbox	in	the	example	package	a	for	an	example	of	a
way	to	send	HTML	e-mail.

The	example	workflows	are:

09.01.1	SendMail

09.01.2	getMail

09.01.3	getMail(XML)

09.01.4	SendAttachment(Resource)

09.01.5	SendAttachment(File)

File	operations
Here	we	will	explore	how	Orchestrator	can	interact	with	the	filesystem	of	its	operating
system.	We	will	also	take	a	look	at	how	to	access	a	network	share	and	execute	local	files.

Getting	ready
Orchestrator	needs	to	be	able	to	access	a	directory	on	the	local	filesystem.	To	configure	this
access	and	set	the	access	rights,	take	a	look	at	the	Configuring	access	to	the	local	filesystem
recipe	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

In	my	example,	I	will	simply	use	the	default	Orchestrator	file	location	that	is	set	to	rwx	the
directory	/var/run/vco/.

In	addition	to	this,	you	should	have	administrative	(root)	access	to	Orchestrator's	operating
system.

How	to	do	it...
We	have	a	bit	of	ground	to	cover,	so	let's	start!

Writing	a	file

This	part	showcases	how	to	write	into	a	file	with,	and	without,	a	line	feed	as	well	as	how	to
append	to	an	existing	file:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

fileName String IN The	name	of	the	file,	including	its	path

fileContent Sting IN Some	random	content

2.	 Add	a	scriptable	task	to	the	schema	and	enter	the	following	script:

						//FileWriter	constructor		

						var	myFileWriter	=	new	FileWriter(fileName);	

						//open	the	file	for	writing	

						myFileWriter.open();	

						//Empties	existing	file.	Without	it	we	append		

						myFileWriter.clean();	

						//write	a	line	into	the	file	

						myFileWriter.writeLine(fileContent);	

						//write	without	line	feed	

						myFileWriter.write(fileContent);	

						myFileWriter.write("	-:-	");	

						myFileWriter.write(fileContent);	

						//write	line	feed	

						myFileWriter.write("\n");	

						//Close	the	file	

						myFileWriter.close();	

3.	 Run	the	workflow	and	check	the	result;	you	should	have	a	file	that	contains	something
like	this:

						Test	

						Test	-:-	Test	

Note

If	the	clean	method	is	not	used	when	opening	an	existing	file,	it	will	be	opened	for	appending.
Try	it!

Reading	a	file

This	part	showcases	how	to	read	a	file	fully	and	line-by-line.

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

fileName String IN The	name	of	the	file,	including	its	path.

2.	 Add	a	scriptable	task	to	the	schema	and	enter	the	following	script:

						//File	reader	constructor	

						var	myFileReader	=	new	FileReader(fileName);	

						//	check	if	the	file	actually	exists	

						if	(myFileReader.exists){	

						//Open	the	file	

										myFileReader.open();	

						//read	everything	

										System.log(myFileReader.readAll());	

						//	Close	the	file	(undocumented	in	API).	

										myFileReader.close();	

										System.log("----------------------");	

						//read	line	by	line	until	the	file	is	empty	

										myFileReader.open();	

										do{	

														temp=myFileReader.readLine();	

														System.log(temp);	

										}	while(temp!=null);	

										myFileReader.close();	

						}	

3.	 Run	the	workflow	and	check	the	logs.

Getting	information	on	files

This	section	showcases	how	to	access	information	about	a	directory	or	file:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

directory String IN The	name	of	the	file,	including	its	path.

2.	 Add	a	scriptable	task	to	the	schema	and	enter	the	following	script:

						//File	constructor	

						var	myDir	=	new	File(directory);	

						//Does	the	file	or	directory	exist	and	is	it	a	directory?	

						if	(myDir.exists	&&	myDir.isDir){	

									System.log("This	is	a	directory.	It	Contains:");	

						//list	the	content	of	the	directory,	returns	an	array	of	Strings	

									for	each	(fileInDir	in	myDir.list())	{	

						//read	file	properties.	Cause	its	strings	we	need	to	make	them	files	

first									

															var	temp	=	new	File(fileInDir);	

															System.log("FileName:	"+	temp.name);	

															System.log("Path:	"+	temp.path);	

															System.log("Directory:	"+	temp.directory);					

															System.log("FileExtention:	"+	temp.extension);	

															System.log("Readable:	"+	temp.canRead())	

															System.log("Writeable:	"+	temp.canWrite());	

									}	//end	of	Foreach	

						}//end	of	ifexists	and	isdir	

3.	 Run	the	workflow	and	enter	a	directory	(such	as	/var/run/vco).	Check	the	logs.

Creating,	renaming,	and	deleting	a	file	or	directory

We	now	showcase	how	to	create	an	empty	file,	rename	it,	and	then	delete	it:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

directory String IN The	name	of	the	file,	including	its	path.

2.	 Add	a	scriptable	task	to	the	schema	and	enter	the	following	script:

						//File	Constructor	

						var	myDir	=	new	File(directory);	

						//is	it	a	Directory	

						if	(myDir.isDir){	

									//create	a	new	File	Constructor	

									var	newFile	=	new	File(Directory+"/TempFile");	

									//create	an	empty	file	

									newFile.createFile();	

									//Show	directory	

									System.log(myDir.list());	

									//Rename	the	file	

									newFile.renameTo(Directory+"/RenamedFile")	

									//Show	directory	

									System.log(myDir.list());	

									//	new	constructor	as	the	file	name	has	changed	

									var	renamedFile	=	new	File(Directory+"/RenamedFile");	

									//Delete	the	File	

						renamedFile.deleteFile();	

						//Show	directory	

									System.log(myDir.list());	

						}	

3.	 Run	the	workflow	and	supply	a	directory.	A	file	will	be	created,	renamed,	and	deleted.

If	you	want	to	create	a	directory,	use	the	createDirectory	method.	To	rename	and	delete	a
directory,	the	renameTo	and	deleteFile	methods	are	used,	just	as	we	have	seen	earlier	with	a
file.

How	it	works...
As	you	can	see,	file	operations	are	quite	easy	and	straightforward.	They	come	in	handy	if	you
want	to	save	or	load	XML	or	CSV	content	or	anything	else,	for	that	matter.

Please	note	that	Orchestrator	regards	a	file	and	a	directory	the	same	when	it	comes	to
methods.

If	you	want	to	use	a	file	to	write	logs,	there	is	a	special	scripting	class	called	LogFileWriter.
However,	it	is	not	much	different	from	the	FileWriter	class.

Directory	dividers	are	different	in	Linux	and	Windows.	Where	Windows	uses	a	backslash	(\),
Linux	uses	a	forward-slash	(/).	However,	when	we	deal	with	file	paths	in	Orchestrator,	we	use
only	the	forward-slash.

Executing	scripts

You	can	execute	scripts	from	the	local	OS	using	Orchestrator.	To	do	that,	Orchestrator	needs
access	(x)	to	the	folder	where	the	script	is	located	and	the	Orchestrator	user	needs	to	be	able
to	read	and	execute	(rx)	it.	You	also	need	to	allow	Orchestrator	to	execute	local	files;	see	the
System	properties	section	in	the	Control	Center	titbits	recipe	in	Chapter	2,	Optimizing
Orchestrator	Configuration.	Here	is	an	example	script	that	will	execute	the	file	script.bat:

//prepare	command	

var	command	=	new	Command("c:/var/run/vco/script.bat");	

//execute	the	command	

command.execute(true);	

//get	the	return	code	

var	returnCode	=	command.result;	

//get	the	output	of	the	command	

var	returnOutput	=	command.output;	

Please	note	that	the	script	needs	to	be	in	a	file	location	that	Orchestrator	can	access	and	that
Orchestrator	will	run	as	user	vco	with	the	group	vco.

Shared	directories

You	can	use	the	file	writer	to	write	to	a	shared	directory.	Check	out	the	Configuring	access	to
the	local	filesystem	recipe	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

Tip

This	is	especially	important	in	a	clustered	Orchestrator	environment	where	storing	local	files
isn't	a	good	solution.	You	should	use	NFS	or	SMB	shares;	see	the	Configuring	access	to	the
local	filesystem	recipe	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

There's	more...
The	following	points	are	worth	knowing.

CSV	files

Comma	separated	files	are	quite	good	for	transferring	data.	For	example,	you	could	create	a
CSV	in	/var/run/vco	and	then	send	it	as	a	e-mail	attachment.	Here	is	an	example:

var	myFileWriter	=	new	FileWriter(filename);	

myFileWriter.open();	

//CSV	header	

header="VMname,Memory,CPU";	

myFileWriter.writeLine(header);	

//one	line	per	VM	

for	each	(vm	in	vms)	{	

				line=vmName+","+vmMemory+","+vmCPU;		

				myFileWriter.writeLine(line);	

}	

myFileWriter.close();	

Doing	things	as	root

If	you	need	to	execute	a	command	as	root,	or	any	other	operation	that	requires	you	to	use
root,	here	are	some	ideas	on	how	to	do	it:

Use	SSH	with	an	SSL	key	to	login	to	127.0.0.1,	as	shown	in	the	example	workflow
02.01	Tuning	the	Appliance

Change	/etc/sudoers	and	add	vco	ALL=(ALL)	NOPASSWD:ALL,	which	will	add	vco	to	the
sudoer	list	and	doesn't	need	a	password.	You	the	run	commands	with	sudo	[command]
Add	vco	to	the	root	group

All	of	these	methods	are	more	or	less	problematic.	With	opening	SSH	and	root,	you	open	up
a	potential	attack	vector.	Using	sudoers,	you	will	need	to	make	sure	the	setting	stays	after
Orchestrator	updates.	Adding	vco	to	root	is	the	same	or	worse;	it	makes	it	possible	for
Orchestrator	to	take	over	your	Linux	system,	meaning	Orchestrator	users	could	alter	the	local
Linux	system	or	even	break	into	other	systems.

See	also
The	example	workflows	are:

09.02.1	Write	a	File

09.02.2	Read	a	File

09.02.3	Getting	File	information

09.02.4	Creating,	renaming,	and	deleting

Working	with	SSH
This	recipe	centers	on	using	the	SSH	plugin.	With	this	plugin,	you	are	able	to	connect	to
appliances	(think	managed	routers,	switches,	and	so	on...)	or	a	Linux-	or	Solaris-based
system,	run	programs,	or	transfer	files.

Getting	ready
We	need	to	be	able	to	create	a	new	workflow.	We	also	need	a	Linux	or	Solaris	system	that	we
can	access	via	SSH	(for	example,	as	root).	If	you	don't	have	a	Linux	system	handy,	you	can
use	the	Orchestrator	appliance	itself.

For	the	SCP	example,	you	need	to	allow	Orchestrator	access	to	its	local	filesystem,	or	use	the
default	/var/run/vco	directory.	Refer	to	the	Configuring	access	to	the	local	filesystem	recipe
in	Chapter	2,	Optimizing	Orchestrator	Configuration.

If	you	want	to	connect	to	the	appliance	itself	(127.0.0.1)	you	need	to	enable	SSH	access	as
shown	in	the	Tuning	the	appliance	recipe	in	Chapter	2,	Optimizing	Orchestrator
Configuration.

How	to	do	it...
We	split	this	recipe	into	three	parts:	SSH	access,	SSL	key	access,	and	SCP	usage.

Using	SSH

You	will	find	a	very	good,	while	rather	chatty	(logs),	SSH	workflow	in	Library	|	SSH	|	Run
SSH	command.	However,	we	will	create	a	new	short	version	to	showcase	SSH:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Place Usage

Host String IN The	IP	or	FQDN	of	the	host	we	want	to	connect	to.

User String IN The	username	to	connect	to	the	host.

Password SecureString IN The	password	of	the	user	to	connect	to	the	host.

Command String IN The	command	we	want	to	run	on	the	host.

Output String OUT The	result	of	the	command	we	run.

exitcode Number OUT The	exit	code	0	=	OK.

Error String OUT The	error	message	encountered.

2.	 Add	a	scriptable	task	to	the	schema	and	enter	the	following	script:

						//	Open	a	new	SSH	session	with	password	

						var	mySSHSession	=	new	SSHSession(host	,	user);	

						mySSHSession.connectWithPassword(password);	

						//execute	the	SSH	command	

						mySSHSession.executeCommand(command	,	true);	

						//	prepare	output	

						output=mySSHSession.output;	

						exitcode=mySSHSession.exitCode;	

						error=mySSHSession.error;	

						//disconnect	the	SSH	session	

						mySSHSession.disconnect();	

3.	 Save	and	close	the	workflow.

When	running	this	workflow,	you	will	have	to	supply	a	command	string.	The	string	can	be	a
single	command	or	a	string	of	commands	the	Linux	system	can	utilize.	A	command	you	can
try	is	date.

Using	SSL	key	authentication

In	the	previous	example,	we	used	password	authentication	to	log	in	to	the	Linux	host	system.
We	can	use	SSL	keys	to	allow	automatic	login	without	using	a	password,	which	is	the	method
commonly	used	for	automation	purposes.

To	enable	SSL	authentication,	first	we	need	an	SSL	key,	and	we	need	to	store	it	on	the	target
Linux	system.	We	will	use	the	existing	workflows	to	accomplish	this:

1.	 Start	the	workflow	by	navigating	to	Library	|	SSH	|	Generate	key	pair.

Tip

Every	time	you	run	this	command,	a	new	SSL	key	pair	with	the	vco_key	and
vro_key.pub	is	generated	in	the	/etc/vco/app-server/	directory.

2.	 Use	the	default	setting	and	don't	enter	a	password.	Basically,	just	click	on	Submit.
3.	 Next,	we	need	to	register	the	SSL	key	on	the	host	with	the	user	we	will	use	for	the

connection.	To	do	this,	we	will	use	the	existing	workflow	by	navigating	to	Library	|	SSH
|	Register	vCO	public	key	on	host.	This	workflow	will	add	vco-key.pub	onto	the	file
/root/.ssh/authorized_keys.

4.	 Start	the	workflow,	enter	the	hostname	of	the	target	server	as	well	as	the	credentials	of
the	user,	and	click	on	Submit.

5.	 The	SSL	pairing	is	now	done.	Let's	try	it	out.	Create	a	duplicate	(or	change	the	original)
of	the	workflow	you	have	created	in	the	first	section	of	this	recipe.

6.	 Replace	the	mySSHSession.connectWithPassword(Password);	line	with
mySSHSession.connectWithIdentity("../conf/vco_key"	,	"");.	The	shorter	path
works	as	Orchestrator's	working	directory	is	the	app-server	directory.

7.	 Remove	the	password	in-parameter	from	the	workflow.
8.	 Run	the	workflow.	You	won't	need	a	password	any	longer.

Using	SCP

SCP	stands	for	Secure	CoPy	and	allows	you	to	transfer	files	using	an	SSH	encryption	tunnel.
However,	before	we	can	copy	anything	from	or	to	the	Orchestrator	server,	we	need	to	have	a
directory	that	Orchestrator	has	access	to	(see	the	Configuring	access	to	the	local	filesystem
recipe	in	Chapter	2,	Optimizing	Orchestrator	Configuration.	You	can	also	use	the	default
directory,	/var/run/vco.

1.	 Make	a	copy	of	one	of	the	SSH	workflows:	either	the	password	or	the	SSL	one.
2.	 Remove	the	command	in-parameter	and	add	the	following	in-parameter:

Name Type Place Usage

filename String IN The	name	of	the	file.

localDir String IN The	directory	on	the	Orchestrator	server.

remoteDir String IN The	directory	on	the	remote	host.

3.	 Replace	the	mySSHSession.executeCommand(Command	,	true);	line	with	one	of	the
following,	depending	on	whether	you	want	to	send	or	receive	a	file:

Upload mySSHSession.putFile(localDir+file	,	remoteDir);

Download mySSHSession.getFile(remoteDir+file	,	localDir);

4.	 Save	and	run	the	workflow.

How	it	works...
Using	SSH	together	with	Orchestrator	generates	a	very	powerful	team.	You	can	use	SSH	to
access	an	existing	Linux	system,	configure	it,	or	to	connect	to	a	Linux-based	management
system,	such	as	a	Red	Hat	satellite	server.

But,	even	more	powerfully,	you	can	connect	to	the	Orchestrator	appliance	itself.	If	you
generate	a	SSL	key	and	register	it	on	127.0.0.1	(Orchestrator	itself),	you	can	run	commands
as	root,	such	as	mounting	a	NFS	or	SMB	directory.	Please	be	aware	that	opening	SSH	for
Orchestrator	may	be	considered	a	security	risk.

SCP	can	be	used	in	conjunction	with	Orchestrator	resources	to	upload	and	download	files	or
to	transfer	any	other	files	between	Orchestrator	and	a	target	system.	Please	note	that	you	can
also	transfer	files	from	one	remote	system	to	another	using	Orchestrator	as	a	temporary
storage	between	transfers.

See	also
Refer	to	the	Configuring	access	to	the	local	filesystem	recipe	in	Chapter	2,	Optimizing
Orchestrator	Configuration.
Refer	to	the	File	operations	recipe	in	this	chapter.

The	example	workflows	are:

09.04.1	SSH	(short	with	password)

09.04.2	SSH	(short	with	SSL	Key)

09.04.3	SCPput

09.04.4	SCPget

02.01	Tuning	the	Appliance

Working	with	REST
In	this	recipe,	we	will	use	the	REST	plugin.	We	will	use	it	to	connect	to	the	Orchestrator
Control	Center	REST	API.

Getting	ready
We	need	a	REST-capable	host	you	can	contact.	As	every	REST	host	handles	things	a	little
differently,	we	will	use	the	REST	interface	Orchestrator	and	the	Orchestrator	Control	Center,
to	showcase	the	functionality.

I	have	also	collected	some	other	Orchestrator-REST	integration	examples	in	the	See	also
section	of	this	recipe.

If	you	are	new	to	REST,	I	would	like	to	point	you	to	the	Accessing	Orchestrator	REST	API
recipe	in	Chapter	7,	Interacting	with	Orchestrator.

How	to	do	it...
This	recipe	is	divided	into	connecting,	gathering	information,	sending	information,	as	well	as
creating	workflows.

Connecting	to	a	REST	host

There	are	two	methods	(as	of	vRO7.1)	to	connect	to	a	host.	We	will	use	the	normal	method
here	to	connect	to	a	REST	host,	as	this	showcases	a	lot	of	things	you	should	know.	The	other
one	(using	Swagger)	is	discussed	in	the	There's	more...	section:

1.	 Start	the	workflow	by	navigating	to	Library	|	HTTP-REST 	|	Configuration	|	Add	a
REST	host.

2.	 Enter	the	name	under	which	you	want	to	save	this	connection.
3.	 Enter	URL	to	the	REST	API	of	the	host.

Orchestrator https://[Orchestrator]:8281/vco/

Orchestrator	Control	Center https://[Orchestrator]:8283/vco-controlcenter/

4.	 The	default	timeouts	are	OK.	Make	sure	you	accept	the	certificate;	click	on	Next.
5.	 Choose	an	authentication	method	(refer	to	the	How	it	works...	section)	if	you're	unsure

whether	basic	authentication	will	work	with	all	clients;	however,	it	isn't	safe	for
production	use.

Orchestrator Orchestrator	Control	Center

Authentication Basic Basic

Session Shared	or	per	user Shared	(root)

6.	 Choose	whether	you	want	to	share	the	connection	or	use	the	current	logged	in
Orchestrator	user.	Please	remember	that	the	Orchestrator	Control	Center	has	only	the
root	user	so	you	have	to	use	shared	for	that.

7.	 Choose	whether	you	require	a	proxy	to	connect	to	the	REST	host.	This	means	that
Orchestrator	will	not	connect	to	the	REST	host	if	the	hostname	you	supplied	isn't	in	the
SSL	certificate.	For	example,	if	you	add	the	IP	instead	of	the	FQDN	(and	the	IP	isn't	in	the
certificate	as	SAN)	then	Orchestrator	will	not	connect	to	this	host.

8.	 The	advanced	setting	can	be	left	at	the	default	for	this	example.

You	have	now	added	the	REST	host	to	Orchestrator.	However,	some	REST	interfaces	(such	as
vCloud	Director)	require	a	certain	path	for	login.	To	adjust	to	this	behavior,	you	can	have	a
look	at	the	example	workflow:	Library	|	HTTP-REST	Samples	|	Set	vCloud	Director
Authentication	to	a	REST	host.

Using	GET

We	will	now	demonstrate	a	GET	request	to	a	REST	host.	GET	gets	information	from	a	REST
host:

1.	 Start	the	workflow	by	navigating	to	Library	|	HTTP-REST 	|	Configuration	|	Add	a
REST	operation.

2.	 Select	the	REST	host	to	which	you	want	to	add	the	operation.
3.	 Give	the	operation	a	name	for	the	inventory,	such	as	About	or	Status.
4.	 Add	the	template	URL.	The	template	URL	is	the	URL	that	you	will	use	the	method	on	(in

our	example	here,	GET).	Use	the	following	examples:

Orchestrator /api/about/ Displays	version	information	of	Orchestrator.

Control	Center /api/server/status Displays	the	status	of	the	Orchestrator	service.

5.	 Submit	the	workflow	and	wait	until	it	has	finished.
6.	 Start	the	workflow	Library	|	HTTP-REST 	|	Invoke	a	REST	operation.
7.	 Select	the	REST	operation	you	created	above	from	the	inventory	and	submit	it.

You	will	see	that	the	GET	on	Orchestrator	will	result	in	a	string	that	contains	a	JSON	object.
Have	a	look	at	the	logs.	The	Orchestrator	will	show:

Content	as	string:	{"version":"7.0.1.3533702","build-number":"3533702","build-

date":"2016-02-09T12:19:45Z","api-version":"5.5.2"}	

Whereas	the	Control	Center	shows	an	error	(all	in	red),	which	shows:

Error	in	(Workflow:Invoke	a	REST	operation	/	Check	status	code	(item3)#1)	

HTTPError:	status	code:	415	

This	is	due	to	the	way	the	default	content	type	is	used	in	the	request.	Check	the	How	it	works...
section	of	this	recipe.

Using	POST

While	GET	gets	information,	POST	will	alter,	create,	or	transfer	information	on	the	REST
host:

1.	 Start	the	workflow	by	navigating	to	Library	|	HTTP-REST 	|	Configuration	|	Add	a

REST	operation.
2.	 Select	the	REST	host	to	which	you	want	to	add	the	operation.
3.	 Give	the	operation	a	name	for	the	inventory,	such	as	Info	or	Start.
4.	 Add	the	Template	URL	and	Content	type	with	the	following	content:

Host Template	URL Content	type

Orchestrator /api/workflows/{id}/executions application/xml

Orchestrator	Control	Center /api/server/status/start application/json

The	{id}	part	will	be	replaced	later	at	execution.

1.	 Select	POST 	and	Submit	the	workflow.

Before	we	can	execute	the	workflow,	we	need	to	get	the	ID	of	the	workflow.	In	this
example,	we	will	use	the	example	workflow	00.00	BasicsWorkflow.	Using	the
Orchestrator	Client,	browse	the	workflow	and	copy	its	ID	from	the	General	tab	(for
example,	312b7be1-abd2-47b6-9bc9-9e44c80ad168):

2.	 Start	the	workflow	by	navigating	to	Library	|	HTTP-REST 	|	Invoke	a	REST
operation.

3.	 Select	the	REST	operation	from	the	inventory.
4.	 For	the	Orchestrator	POST	enter	the	ID	of	the	workflow	under	Parameter	1.
5.	 For	the	Orchestrator	POST	enter	the	following	under	Content:

						<execution-context	xmlns="http://www.vmware.com/vco">	

										<parameters>	

														<parameter	type="string"	name="input"	scope="local">	

																		<string>Entry	String</string>	

														</parameter>	

										</parameters>	

						</execution-context>	

6.	 For	the	Control	Center	just	leave	everything	at	the	defaults.
7.	 Submit	the	workflow	and	use	the	Orchestrator	Client	to	see	the	result.

The	POST	request	requires	you	to	enter	additional	information.	The	content	is	in	the	string
form;	however,	it	contains	XML.	The	return	code	should	be	a	202	status	code,	which	means
that	the	request	was	accepted.

The	Control	Center	doesn't	need	extra	information	but	executes	a	command	that	starts	the
Orchestrator	service	on	the	selected	host.

Creating	a	workflow	from	a	REST	operation

To	create	a	workflow	out	of	a	REST	operation,	follow	these	steps:

1.	 Start	the	workflow	by	navigating	to	Library	|	HTTP-REST 	|	Generate	a	new	workflow
from	a	REST	operation.

2.	 Select	the	REST	operation;	if	you	are	using	a	POST,	you	will	also	see	the	content	type
you	entered.

3.	 Give	the	new	workflow	a	name	and	select	a	folder	for	it.

When	running	the	workflow,	you	will	be	required	to	enter	the	same	variables	that	you	entered
when	using	the	Invoke	a	REST	operation	workflow.

Phrasing	the	return	value

For	the	examples	we	are	looking	at,	there	are	only	two	return	types;	XML	and	JSON.

XML	parsing	is	discussed	in	the	Working	with	XML	recipe	in	Chapter	10,	Built-in	Plugins.

JSON	parsing	is	shown	in	the	Introduction	to	Chapter	7,	Interacting	with	Orchestrator.

Using	the	Swagger	spec	URL

The	other	method	to	connect	a	host,	and	probably	the	best	one	for	Control	Center,	uses	the
workflow	Add	a	REST	host	by	Swagger	spec	from	a	URL.

Swagger	is	a	method	describing	the	operations	of	a	REST	host.	The	interface	is	pretty
common	nowadays	but	not	every	REST	host	uses	it	yet.

To	try	it	out,	we	will	add	the	Orchestrator	Control	Center	using	the	following	method:

1.	 Start	the	workflow	by	navigating	to	Library	|	HTTP-REST 	|	Configuration	|	Add	a
REST	host	by	Swagger	spec	from	a	URL.

2.	 Enter	a	name	for	the	connection.
3.	 As	the	Swagger	spec	URL,	enter:	https://[FQDN	Orchestrator	control

Center]:8283/vco-controlcenter/api/api-docs.
4.	 Choose	HTTPS	and	enter	application/json	as	the	default	content	type.
5.	 Accept	the	certificate	silently	and	click	Next.
6.	 Enter	the	authentication	to	the	Swagger,	which	can	be	different	to	the	products

authentication.	In	the	case	of	the	Control	Center	you	are	connecting	with	root.	Click
Next.

7.	 Choose	Basic	Authentication	and	use	the	credentials	that	will	execute	the	REST
operation.	In	the	case	of	the	Control	Center	you	are	connecting	with	root.	Click	Next.

8.	 Choose	weather	you	want	to	check	the	hostname.	Just	select	No	and	Submit	the
workflow.

9.	 Check	your	Orchestrator	inventory.	You	should	now	have	all	the	GETs,	PUTs,	and	so	on

that	are	associated	with	your	REST	service.

How	it	works...
REST 	stands	for	Representational	State	Transfer	and	is	the	way	that	most	applications
nowadays	use	an	interface.	Even	Orchestrator	itself	switched	from	a	SOAP	interface	to	a
REST	interface.

Authentications

Orchestrator	can	use	the	following	authentication	methods	out-of-the-box:

Method Description

None Doesn't	use	any	authentication	at	all.

OAuth A	token-based	authentication.	For	the	difference	between	v1	and	v2,	see	
https://blog.apigee.com/detail/oauth_differences	.

Basic Basic	authentication,	no	encryption,	and	clear	text	passwords.

Digest Provides	a	basic	encrypted	authentication.

NTLM NTLM	(NT	LAN	Manager)	provides	encryption	using	the	Window	Security
Support	Provider	(SSPI)	framework.

Kerberos Encrypted	authentication	using	tickets.	Also	see	the	Configuring	the	Kerberosauthentication	recipe	in	Chapter	2,	Optimizing	Orchestrator	Configuration.

Taking	a	look	at	the	code	behind	the	workflows,	we	find	that	authentications	are	created	by	the
RESTAuthenticationManager	object	using	the	createAuthentication()method.	This	method
requires	the	authentication	type	(Basic,	OAuth	1.0,	and	so	on)	as	well	as	the	authentication
parameters	(authParams).	The	authParams	variable	can	have	different	content	depending	on
the	REST	host	and	login	method	used.	Take	a	look	at	this	example:

Method Usage

OAuth
1.0

var	authParams	=	[consumerKey,	consumerSecret,	accessToken,

accessTokenSecret];

https://blog.apigee.com/detail/oauth_differences

OAuth
2.0

var	authParams	=	[oauth2Token];

Basic var	authParams	=	[sessionMode,	authUserName,	authPassword];

vCD var	authParams	=	[sessionMode,	username,	password,	organization,

loginUrl];

So,	if	you	have	trouble	connecting	to	your	REST	host,	you	can	simply	alter	authParams	to	the
specifications	of	your	REST	host.

Working	with	the	results	of	a	REST	request

Let's	take	a	look	at	the	results	of	a	request.	The	results	are	part	of	the	RESTResponse	object.
The	two	important	attributes	of	this	object	for	most	users	are	contentAsString	and
statusCode.	The	statusCode	attribute	contains	the	status	code	of	the	request.	You	can	view	the
basic	response	codes	at	https://[IP	or	FQDN
Orchestrator]:8281/vco/api/docs/rest.html.

The	contentAsString	attribute	returns	a	string	that	represents	which	is	returned,	which	is
XML	in	case	of	the	Orchestrator	and	JSON	in	case	of	the	Control	Center.	You	can	use	the
information	in	the	Working	with	XML	recipe	in	Chapter	10,	Built-in	Plugins	or	the	JavaScript
complex	variables	recipe	in	Chapter	6,	Advanced	Programming	to	phrase	the	return	code.

Default	content	type

The	error	we	get	in	the	GET	of	the	Control	Center	is	related	to	the	fact	that	we	didn't	(or
better,	couldn't)	define	a	default	content	type	(Header).	Other	REST	servers,	such	as	vCloud
Director,	might	also	need	some	more	headers.	To	fix	this	you	can	do	the	following:

Method	A:

1.	 Generate	a	new	workflow	from	a	(non-working)	REST	operation	and	edit	it.
2.	 Edit	the	scriptable	task	and	find	the	following	section:

						//Customize	the	request	here	

						//request.setHeader("headerName",	"headerValue");	

3.	 Uncomment	request.setHeader	and	replace	the	header	content:

						request.setHeader("content-type",	"application/jso");	

4.	 Save	and	run	the	workflow.

Method	B:

1.	 Duplicate	the	workflow	Library	|	HTTP-REST 	|	Configuration	|	Add	a	REST

operation.
2.	 Edit	the	workflow	and	remove	the	Show	parameter	input	from	the	workflow

presentation	of	the	defaultContentType	variable.
3.	 Now	add	the	workflow	and	set	the	default	content	type	to	application/json.

See	also
Orchestrator	and	VEEAM	backup:

http://www.vcoportal.de/2014/02/automating-veeam-with-vco-and-the-restful-api/
Orchestrator	and	Nutanix	PrismAPI:

http://philthevirtualizer.com/2014/03/03/connecting-to-the-nutanix-prismapi-with-
vcenter-orchestrator/

Orchestrator	and	Avamar:
http://velemental.com/2014/07/18/accessing-avamar-rest-api-from-the-vco-rest-
plugin/

Orchestrator	and	vCNS	(vShield):
https://v-reality.info/2013/04/provisioning-vds-vxlan-virtual-wires-using-vcenter-
orchestrator/

Orchestrator	and	NSX:
http://virtuallygone.wordpress.com/2014/03/27/automating-firewall-rule-creation-
in-nsx-with-vco-and-vcac-part-one-rest-host-configuration-in-vco/

The	example	workflows	are	as	follows:

09.04.1	Copy	of	Add	a	REST	operation

09.04.2	Invoke	'status:	GET	/server/status'

09.04.3	Invoke	'start	Orchestrator	Service:	POST	server/status/...'

http://www.vcoportal.de/2014/02/automating-veeam-with-vco-and-the-restful-api/%20
http://philthevirtualizer.com/2014/03/03/connecting-to-the-nutanix-prismapi-with-vcenter-orchestrator/
http://velemental.com/2014/07/18/accessing-avamar-rest-api-from-the-vco-rest-plugin/
https://v-reality.info/2013/04/provisioning-vds-vxlan-virtual-wires-using-vcenter-orchestrator/
http://virtuallygone.wordpress.com/2014/03/27/automating-firewall-rule-creation-in-nsx-with-vco-and-vcac-part-one-rest-host-configuration-in-vco/

Chapter	10.	Built-in	Plugins
We	will	now	look	at	all	the	plugins	that	come	pre-installed	in	Orchestrator.	We	will	be
looking	at	these	recipes:

Working	with	XML
Working	with	SQL	(JDBC)
Working	with	SQL	(SQL	plugin)
Working	with	PowerShell
Working	with	SOAP
Working	with	Active	Directory
Working	with	SNMP
Working	with	AMQP

Introduction
By	now	you	are	aware	of	the	importance	of	plugins	and	how	they	expand	the	capabilities	of
Orchestrator.	The	next	parts	of	the	book	will	focus	on	plugins	that	were	firstly	touched	upon
in	Chapter	9,	Essential	Plugins,	where	we	discussed	some	of	the	very	essential	plugins.	Here,
we	will	go	over	all	the	plugins	that	are	pre-installed	in	Orchestrator,	while	future	chapters
will	show	additional	plugins	and	then	finish	on	the	vCenter	plugin,	which	will	round	off	the
possibilities	for	expansion.

Dealing	with	return	values
We	have	already	had	a	look	at	the	return	values	of	the	REST	plugin,	but	there	are	also	the
return	values	of	the	SOAP	and	PowerShell	plugin	to	look	at.	All	of	them	are	a	bit	more
complex	than	just	a	string.	A	lot	of	the	return	values	are	either	JSON,	XML,	or	Arrays	of
Properties.	In	the	JavaScript	complex	variables	recipe	in	Chapter	6,	Advanced
Programming,	we	showcased	how	to	harness	them.

The	most	important	thing	to	figure	out	is	the	information	you	really	need	for	your	workflow
and	whatnot.	A	request	returns	a	lot	of	different	values	that	you	may	or	may	not	really	need.
What	you	need	is	to	sort	out	what	values	you	need	and	in	what	format	you	need	them.	Then
select	these	values	and	reformat	them	into	something	you	can	pass	back	to	your	workflow.

For	example,	you	may	only	need	to	know	if	an	operation	you	performed	worked,	so	passing
back	a	boolean	to	your	workflow	would	be	enough.	On	the	other	hand,	you	may	need	several
strings,	so	you	could	pass	on	an	array	of	strings	back.

If	you	have	to	pass	on	more	complex	information,	it	might	be	a	good	idea	to	parse	the	return
values	and	extract	the	information	you	need.	Then	you	could	build	a	brand	new	JSON	or	XML
string	or	a	property	and	pass	this	more	complex	information	back.

Shared	or	Per	User	Session
When	dealing	with	REST,	PowerShell,	SOAP,	and	SQL,	you	need	to	provide	credentials.
When	you	need	to	provide	credentials	you	are	mostly	asked	if	you	would	like	to	use	a	Shared
Session	or	a	Per	User	Session.

It's	an	important	decision	that	needs	to	be	thought	about	early	on.	The	differences	between
methods	are	as	follows.

With	a	Shared	Session	you	define	one	user	that	is	used	to	facilitate	all	actions	that	are	used.
For	example,	you	connected	to	an	SQL	server	using	a	user	called	srv-dbuser.	The	user	srv-
dbuser	is	a	DBO	and	system	administrator	on	the	database.	Now	a	user,	for	example,	James,
starts	a	workflow	that	uses	the	SQL	connection	you	have	defined,	meaning	that	James	will	use
the	user	rights	of	srv-dbuser	to	run	the	workflow.

Per	User	Session	means	that	the	user	credentials	of	the	logged-in	(or	executing)	user	are	used
to	facilitate	the	connection.	However,	there	is	a	bit	of	a	problem	with	this.	If	you	are	not	using
LDAP	as	the	external	authentication	method,	then	Per	User	Session	will	not	necessarily	work.
This	is	due	to	the	way	that	SSO/vIDM	work.	For	example,	if	you	are	using	the	vRealize
Automation	integrated	Orchestrator	you	can't	(at	the	time	of	writing)	use	a	Per	User	Session
to	connect	to	vCenter.	This	is	because	vRA	uses	vIDM	and	vSphere	uses	SSO,	and	they	are
currently	not	compatible.

I	personally	prefer	using	a	service	account	and	Shared	Session	to	connect	services	to
Orchestrator.	The	reason	is	that	I	want	to	keep	users	out	of	systems.	Instead	of	adding	a	ton	of
users	to	for	example	SQL	so	that	they	can	use	the	database	workflows,	I	just	add	one	user	and
make	sure	that	all	the	other	users	only	use	the	workflows	that	they	should.	This,	in	my
opinion,	reduces	the	amount	of	administering	and	reduces	the	attack	vectors.

However,	there	are	cases	where	a	Per	User	Session	is	a	better	fit.	For	example,	when	you	are
using	the	vRealize	Automation	plugin	(see	Chapter	13,	Working	with	vRealize	Automation),	a
given	user	can	only	interact	with	the	elements	that	they	are	entitled	to	interact	with.

Working	with	XML
In	this	recipe,	we	explore	how	to	use	the	XML	plugin	to	create	and	phrase	XML	structures
with	Orchestrator.	XML	is	a	good	way	to	exchange	complex	information	between	systems.

Getting	ready
We	don't	need	anything	special;	however,	we	need	to	understand	the	basics	of	XML.	Take	a
look	at	http://www.w3schools.com/xml/	.

You	should	be	familiar	with	the	JavaScript	concept	of	functions	(see	the	introduction	to	this
chapter).

http://www.w3schools.com/xml/

How	to	do	it...
This	recipe	is	split	into	two	parts;	first,	we	create	an	XML	document,	and	then	phrase	an	XML
document.

Creating	an	XML	document

This	is	the	rather	more	complex	part;	however,	we	will	go	through	it	slowly.

We	will	create	a	simple	XML	document	that	looks	like	this:

<?xml	version="1.0"	encoding="UTF-8">	

<MailMessages>	

		<Mail>	

				<From>test@test.net</From>	

				<Subject>Test	message</Subject>	

				<Content	Date="10/12/12">This	is	a	test	message	

						</Content>	

		</Mail>	

</MailMessages>	

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Where Usage

from String IN The	sender	of	the	e-mail.

subject String IN The	subject	of	the	e-mail.

date String IN The	date	of	the	e-mail.

content String IN The	content	of	the	e-mail.

XMLout String OUT The	XML	output	in	a	one-line	string.

2.	 Drag	a	scriptable	task	into	the	schema	and	enter	the	following	script:

						//create	empty	XML	document	

						var	document	=	XMLManager.newDocument();	

						//	add	a	root	element	

						var	mailMessages	=	document.createElement("MailMessages");	

						//add	the	root	element	to	the	document	

						document.appendChild(mailMessages)	;	

						//Create	new	node		

						var	mail	=	document.createElement("Mail");	

						//add	new	node	under	the	root	element	

						mailMessages.appendChild(mail)	;	

						//add	a	Child	node	under	the	mail	node	

						var	nodeFrom	=	document.createElement("From");	

						mail.appendChild(nodeFrom);	

						//set	a	text	value	for	the	From	node	

						var	txtFrom	=	document.createTextNode(from);	

						nodeFrom.appendChild(txtFrom);	

						//add	another	node	with	a	value	to	the	mail	node	

						var	nodeSubject	=	document.createElement("Subject");	

						mail.appendChild(nodeSubject);	

						var	txtSubject	=	document.createTextNode(subject);	

						nodeSubject.appendChild(txtSubject);	

						//add	content	node	

						var	nodeContent	=	document.createElement("Content");	

						mail.appendChild(nodeContent);	

						var	txtContent	=	document.createTextNode(content);	

						nodeContent.appendChild(txtContent);	

						//Add	an	attribute	to	the	Content	node	

						nodeContent.setAttribute("Date",date);	

						//Output	the	XML	Document	as	string	

						XMLout=XMLManager.getDocumentContent(document)	

3.	 Save	and	run	this	workflow.	Copy	and	paste	the	output	into	Notepad	and	check	the	XML
structure	you	have	created.

4.	 We	now	improve	the	program	by	using	the	JavaScript	function	command.	Use	the
following	script:

						function	createNode(doc,rootNode,NodeName,NodeText,

						attribName,attribValue)

						{	

										var	newNode	=	doc.createElement(NodeName);	

										rootNode.appendChild(newNode);	

						//	if	there	is	no	NodeText	don't	add	anything	

										if	(NodeText!=	null){	

														var	newTxt	=	doc.createTextNode(NodeText);	

														newNode.appendChild(newTxt);	

										}	

						//	if	there	is	an	attribute	defined	add	it	

										if	(attribName!=	null){	

														newNode.setAttribute(attribName,attribValue);	

										}	

						//	return	the	new	created	node	

										return	newNode;	

						}	

	

						//create	empty	XML	document	

						var	document	=	XMLManager.newDocument();	

	

						mailMessages	=	createNode(document,document,"MailMessages");	

						mail	=	createNode(document,mailMessages,"Mail");	

						createNode(document,mail,"From",from);	

						createNode(document,mail,"Subject",subject);	

						createNode(document,mail,"Content",content,"Date",date);	

	

						//Output	the	XML	Document	as	string	

						XMLout=XMLManager.getDocumentContent(document);	

You	can	see	how	using	the	function	command	reduces	the	number	of	lines	and	makes	the
code	more	reusable.	Alternatively,	you	can	also	create	an	action	and	put	the	function	content
into	it.

If	you	like,	you	can	now	go	and	integrate	XML	into	the	workflow	that	you	built	in	the
Receiving	e-mails	section	of	the	Working	with	mails	recipe	in	Chapter	9,	Essential	Plugins,	to
format	the	e-mail	output.

Parsing	XML	structures

Taking	the	XML	string	we	created,	we	now	focus	on	how	to	parse	the	XML	structure:

1.	 Create	a	new	workflow	and	drag	a	scriptable	task	into	it.
2.	 Create	the	XML	in-parameter	of	type	string.
3.	 In	the	scriptable	task,	enter	the	following	script:

						//convert	the	string	into	an	XML	document	

						var	document	=	XMLManager.fromString(XMLin);	

						//	get	all	Child	elements	of	the	document	(type:	XMLNodeList)	

						var	docNodelist	=	document.getChildNodes();	

						//as	we	know	from	the	XML	structure	there	is	only	mailmessages	

						var	mailmessage	=	docNodelist.item(0);	

						//now	we	get	all	child	elements	from	mailmessages	

						var	maillist	=	mailmessage.getChildNodes();		

						//lets	see	how	many	child	elements	there	are	

						var	mails	=	maillist.length;	

						//lets	walk	though	each	mail	(type:	XMLNode)	

						for	(i	=	0;	i	<	mails;	i++)	{	

										mail	=	maillist.item(i);	

						//get	the	child	elements	of	each	mail	

										var	mailchilds	=	mail.getChildNodes();	

						//walk	through	the	mail	Childs		

										for	(j	=	0;	j	<	mailchilds.length;	j++)	{	

						//get	one	child	

														var	child	=	mailchilds.item(j);	

						//get	child	name	

														var	childName	=	child.nodeName;	

						//get	child	content	(type:	XMLElement)	

														var	childText	=	child.textContent;	

						//output	

														System.log	(childName+"	:	"+childText);	

						//lets	get	the	childs	attributes	(type:	XMLNamedNodeMap)	

														var	ChildAttribs=child.getAttributes();	

						//walk	though	all	attributes	

														for	(k	=	0;	k	<	ChildAttribs.length;	k++)	{	

						//get	one	attribute	(type:	XMLNode)	

																		var	ChildAttrib	=	ChildAttribs.item(k);	

						//get	Attribute	name		

																		var	ChildAttribName	=	ChildAttrib.nodeName;	

						//get	Attribute	value	

																		var	ChildAttribValue	=	ChildAttrib.nodeValue;	

						//output	

																		System.log("Attribute	:	"+ChildAttribName+"	:	

																		"+ChildAttribValue);	

														}	

										}	

						}	

4.	 Run	the	workflow.	Paste	the	XML	string	that	was	created	earlier	into	the	in-parameter,
and	watch	the	logs	for	the	output.

Instead	of	walking	through	the	XML	tree,	we	can	take	some	shortcuts;	take	a	look	at	the	How
it	works...	section	of	this	recipe.

How	it	works...
XML	is	a	very	nice	way	to	exchange	complex	information.	As	you	can	see,	forming	an	XML
isn't	that	hard,	especially	when	using	a	function	or	action.	Parsing	an	XML	is	quite
straightforward,	too;	the	example	we	used	is	very	detailed,	but	it	will	work	for	any	simple
XML.	It	can	be	made	easier	by	using	some	of	these	XML	methods:

nodeList	=	Node.getElementsByTagName(tag):	This	method	can	be	used	to	create	a
node	list	of	all	nodes	that	have	the	same	node	name
attributeValue	=	Node.getAttribute(attributeName):	This	is	an	undocumented
method	that	is	quite	useful,	as	you	can	directly	access	the	value	of	the	attribute	by
supplying	the	attribute's	name
XMLDoc	=	XMLManager.loadDocument(file,	validate);

XMLManager.saveDocument(XMLDoc,file):	Using	these	methods,	you	can	load	and	save
XML	documents	onto	the	local	Orchestrator	filesystem

There's	more...
In	addition	to	the	XML	plugin	that	we	looked	at	in	this	recipe,	Orchestrator	also	supports	the
JavaScript	built-in	XML	(E4X).	Please	note	that	most	browsers	no	longer	support	E4X	and
therefore	it	is	doubtful	how	long	its	shelf	life	in	JavaScript	will	be.	On	the	other	hand,	the
JavaScript	implementation	of	Orchestrator	isn't	a	new	one	either,	so	for	that	purpose	it	doesn't
matter.

Here	is	a	short	introduction	to	E4X	XML:

Define	a	new	XML	doc:

						var	doc	=	new	XML(XMLin);	

Output	the	amount	of	children:

						doc.Mail.length()	

Output	all	From	tags:

						doc.Mail.From	

						doc..From	

Output	only	the	From	tag	from	the	first	child:

						doc.Mail[1].From	

Get	the	Date	attribute	from	the	From	tag:

						doc.Mail[1].Content.@Date	

Output	the	Mail	record	for	the	From	tag	that	has	the	Username	text	in	it:

						doc.Mail.(From=='Username')	

Change	the	text	of	the	tag:

						doc.Mail[1].Subject	=	"Test";	

Change	the	attribute	of	the	tag:

						doc.Mail[1].Content.@Date	=	"04.09.14";	

Loop	throughout	the	children	of	the	element:

						for	each	(mail	in	doc)	

See	also
To	learn	more	about	E4X,	take	a	look	at	the	following	URLs:

http://wso2.com/project/mashup/0.2/docs/e4xquickstart.html
http://www.xml.com/pub/a/2007/11/28/introducing-e4x.html

The	example	workflows	are	as	follows:

10.01.1	CreateXML

10.01.2	CreateXML(Function)

10.01.3	phraseXML(General)

http://wso2.com/project/mashup/0.2/docs/e4xquickstart.html
http://www.xml.com/pub/a/2007/11/28/introducing-e4x.html

Working	with	SQL	(JDBC)
This	recipe	focuses	on	the	interaction	between	Orchestrator	and	an	SQL	database	using	the
Java	database	connector	(JDBC).	You	will	learn	how	to	send	SQL	queries	as	well	as
commands	to	a	database.

Getting	ready
Obviously,	we	need	a	database.	This	database	can	be	PostgreSQL,	MS	SQL,	Oracle,	or
MySQL.	For	testing,	you	can	use	the	PostgreSQL	database	that	is	implemented	in	the
appliance	(refer	to	the	Tuning	the	appliance	recipe	in	Chapter	2,	Optimizing	Orchestrator
Configuration).	Also,	take	a	look	at	the	There's	more...	section	of	this	recipe.

We	will	use	a	Microsoft	SQL	2008	R2	database	in	this	example;	however,	the	steps	are	the
same	for	all	databases.	The	database	we	will	be	using	is	called	testDB.

You	will	need	an	existing	database	and	a	user	who	is	able	to	create/drop	tables	as	well	as
insert/delete	information,	for	example,	the	DBO	role.

How	to	do	it...
This	recipe	has	multiple	parts	that	will	cover	all	aspects	of	working	with	a	database.

Creating	a	JDBC	connection	URL

To	connect	to	an	SQL	database,	Orchestrator	uses	JDBC.	Therefore,	first,	we	need	to	create	a
JDBC	URL:

1.	 Log	in	to	the	Orchestrator	Client	and	start	the	workflow	by	navigating	to	Library	|
JDBC	|	JDBC	URL	generator.

2.	 Select	the	type	of	database	you	would	like	to	connect	to.
3.	 Enter	the	database's	IP	or	FQDN,	the	database	name,	as	well	as	the	authentication	details.
4.	 For	a	Microsoft	SQL	server,	you	may	need	to	provide	additional	information,	such	as	the

SQL	instance	and	the	DB's	domain	name:

5.	 After	the	workflow	has	finished	successfully,	it's	easy	to	copy	the	connection	string	from
the	logs.	The	string	for	my	SQL	server	looks	like	the	following:

						jdbc:jtds:sqlserver://192.168.220.4:1433/vcoapp;domain=mylab.local	

This	workflow	not	only	creates	the	URL,	it	also	tests	it,	which	is	quite	handy.	Keep	the	URL,
as	we	will	need	it	for	all	the	other	parts	of	the	recipe.	A	good	idea	is	to	store	the	URL	in	a
configuration.

Connecting	to	and	disconnecting	from	a	database	using	JDBC

We	are	now	going	to	open	and	close	the	JDBC	connection	to	a	database:

1.	 Create	a	new	workflow	and	the	following	variables:

Name Type Place Usage

jdbcURL String Attribute The	JDBC	URL	from	the	first	part	of	this	recipe.

user String Attribute The	username	for	the	DB	connection.

password SecureString Attribute The	password	for	DB	connection.

2.	 Search	for	or	browse	the	SDK	module,	SQL.	This	module	contains	all	the	methods	we
will	use	in	this	recipe.

3.	 Drag	a	scriptable	task	onto	the	schema	and	enter	the	following	script:

						//	constructors	for	JDBC	DB	and	connection	

						var	myDB	=	new	JDBCConnection();	

						var	myConnect;	

						//	connect	to	DB	

						myConnect	=	myDB.getConnection(jdbcURL,	user	,	password);	

	

						//further	scripting	

	

						//	if	the	connection	is	open,	close	it.	

						if	(myConnect)	{	

										//	disconnect	from	DB	

										myConnect.close();	

						}	

Executing	an	SQL	statement	using	JDBC

Next,	we	pass	an	SQL	statement	to	the	SQL	server	to	be	executed.	Note	that	this	executes	an
SQL	statement,	not	an	SQL	query;	we	will	address	SQL	queries	in	the	next	section	of	this
recipe.	The	difference	is	that	queries	return	values,	whereas	the	execution	of	an	SQL	statement
is	either	successful	or	unsuccessful:

1.	 Duplicate	(or	add	to)	the	workflow	from	the	first	part	of	this	recipe.
2.	 Create	the	following	variables	and	bind	them	to	the	scriptable	task:

Name Type Place Usage

sqlStatement String IN The	string	with	the	complete	SQL	command.

result Number OUT The	result	of	the	SQL	command.	0	=	OK.

3.	 Enter	the	following	script	after	//further	scripting:

						//	Open	SQL	statement	

						var	mySQL	=	myConnect.createStatement();	

						//	Open	SQL	results	

						var	result	=	mySQL.executeUpdate(sqlStatement);	

						//close	SQL	statement	

						mySQL.close();	

4.	 Run	the	workflow.	The	following	SQL	statement	will	create	a	table	called	testtbl	that
contains	the	ID,	LastName,	and	FirstName	columns:

						CREATE	TABLE	testtbl	(ID	int,	LastName	varchar(255),FirstName

						varchar(255));	

5.	 Run	the	workflow	again	and	use	the	following	statement.	It	will	create	an	entry	in	the
table:

						INSERT	INTO	testtbl	VALUES	(1,'Langenhan','Daniel');	

In	the	How	it	works...	section	of	this	recipe,	we	will	discuss	the	difference	between	the
createStatement	and	prepareStatement	methods.

SQL	queries	using	JDBC

In	this	part,	we	will	look	at	how	to	deal	with	the	results	from	a	query.	We	will	create	a	CSV	of
the	results	of	the	query:

1.	 Duplicate	the	workflow	from	the	first	part	of	this	recipe.
2.	 Create	the	following	variables	and	bind	them	to	the	scriptable	task:

Name Type Place Usage

sqlQuery String IN The	string	with	the	SQL	query.

output String OUT The	output	in	a	CSV	format.

3.	 Enter	the	following	script	after	//further	scripting:

						//	constructors	for	JDBC	DB	and	connection	

						var	myDB	=	new	JDBCConnection();	

						var	myConnect;	

						//	connect	to	DB	

						myConnect	=	myDB.getConnection(jdbcURL,	user	,	password);	

						//initialize	output	

						output="";	

						//open	SQL	statement	

						var	mySQL		=	myConnect.createStatement();	

						//	open	query	

						var	results	=	mySQL.executeQuery(sqlQuery);	

						//	get	number	of	columns	in	a	table	from	results	metadata	

						var	resultMetaDate	=	results.getMetaData();	

						var	colCount	=	resultMetaDate.getColumnCount();	

						//walk	thought	all	rows	

						while	(results.next())		{	

										//Walk	thought	all	columns		

										for	(i	=	1;	i	<	colCount+1;	i++)	{	

														//	Past	row	together	

														output	=	output+","+results.getStringAt(i);	

										}	

										//new	line	after	end	of	row	

										output	=	output+"\n";	

						}	

						//	close	query	

						results.close();	

						//	close	SQL	statement	

						mySQL.close();	

4.	 Try	the	workflow	with	a	SQL	query	such	as	select	*	from	testtbl.

Also,	take	a	closer	look	at	the	ResultSet	and	ResultSetMetaData	objects	for	more
possibilities	on	how	to	deal	with	the	output	of	an	SQL	query.

How	it	works...
Orchestrator's	ability	to	use	an	external	database	and	queries	and	execute	statements	on	them
makes	it	possible	for	Orchestrator	not	only	to	integrate	with	other	systems,	but	also	to	store
and	process	data.	A	typical	system	that	Orchestrator	will	integrate	with	is	a	configuration
management	database	(CMDB).

The	difference	between	the	prepare	and	create	statements

Looking	into	the	methods	of	the	Connection	object,	we	find	the	createStatement()	method
that	we	used	earlier	as	well	as	the	prepareStatement()	method.	The	difference	between	these
is	that	you	can	use	variables	in	the	prepareStatement	method;	these	are	defined	during
runtime,	whereas	in	createStatement,	we	can	use	only	fixed	queries.	Let's	work	through	an
example.	We	want	to	delete	an	entry	from	the	database.	The	SQL	delete	statement	is	the
following:

DELETE	FROM	testtbl	where	(FirstName	=	"Daniel"	and	LastName	=	"Langenhan")	

If	we	wanted	to	delete	something	else,	we	would	have	to	rewrite	the	whole	statement	every
time.	Using	prepareStatement,	we	don't	have	to	do	that.	We	use	the	following	SQL	statement:

DELETE	FROM	testtbl	where	(FirstName	=	?	and	LastName	=	?)	

To	make	this	work,	we	have	to	not	only	change	the	code	of	the	script,	but	also	add	two	new	in-
parameters	(lastName	and	firstName).	The	new	code	looks	like	this:

var	stat	=	mySQL.prepareStatement(sqlStatement);	

//	exchange	the	first	?	for	the	content	from	the	in-parameters	

stat.setString(1,	firstName);	

//	exchange	the	second	?	for	the	content	from	the	in-parameters	

stat.setString(2,	lastName);	

//run	the	altered	statement	

var	result	=	stat.executeUpdate();	

//close	the	statement	

stat.close	;	

Basically,	we	just	substituted	?	with	the	values	of	in-parameters	while	the	workflow	is
running.

Creating	a	new	database	in	the	appliance's	PostgreSQL

The	appliance	comes	with	a	preinstalled	PostgreSQL	database	that	can	(but	should	not)	be
used.	The	appliance	is	configured	to	allow	local	access,	so	you	just	need	to	create	a	new
database.	To	do	this,	follows	these	steps:

1.	 Log	into	the	appliance	with	root	access.
2.	 Run	the	following	commands	one	after	another:

						su	postgres	

						psql	

						CREATE	USER	testuser	with	PASSWORD	'testpass';	

						CREATE	DATABASE	testdb;	

						GRANT	ALL	PRIVILEGES	on	DATABASE	testdb	to	testuser;	

						\q	

						exit	

This	will	create	a	database	called	testdb	and	give	testuser	all	rights	using	the	password
testpass.

See	also
You	can	learn	more	about	SQL	at	http://www.w3schools.com/sql/default.asp	.

The	example	workflows	are	as	follows:

10.02.1	Connecting	to	a	DB

10.02.2	Execute	SQL	statement

10.02.3	Execute	SQL	Query

10.02.4	Execute	SQL	statement	(with	prepareStatement)

And	the	configuration	item	is	10.02	DB	Config.

http://www.w3schools.com/sql/default.asp

Working	with	SQL	(SQL	plugin)
In	this	recipe,	we	will	explore	the	SQL	plugin	to	work	with	SQL.	This	is	a	bit	different	from
the	JDBC	recipe.

Getting	ready
Obviously,	we	need	a	database.	This	database	can	be	PostgreSQL,	MS	SQL,	Oracle,	or
MySQL.	For	testing,	you	can	use	the	PostgreSQL	database	that	is	implemented	in	the
appliance	(refer	to	the	Tuning	the	appliance	recipe	in	Chapter	2,	Optimizing	Orchestrator
Configuration).	Also,	take	a	look	at	the	There's	more...	section	of	this	recipe.

We	will	use	a	Microsoft	SQL	2008	R2	database	in	this	example;	however,	the	steps	are	the
same	for	all	databases.	The	database	we	will	be	using	is	called	testDB.

You	will	need	an	existing	database	and	a	user	who	is	able	to	create/drop	tables	as	well	as
insert/delete	information,	for	example,	the	DBO	role.

How	to	do	it...
See	the	following	sections.

Add	an	SQL	DB	to	Orchestrator

In	this	section,	we	will	connect	an	SQL	server	to	Orchestrator:

1.	 Start	the	Library	|	SQL	|	Configuration	|	Add	a	database	workflow.
2.	 Enter	a	name	for	the	connection.
3.	 Select	the	kind	of	database	you	like.
4.	 Enter	the	JDBC	connection	string	to	your	database.	You	can	use	the	Library	|	JDBC	|

JDBC	URL	generator	workflow	to	create	and	test	the	string:

5.	 When	the	workflow	has	finished,	go	and	check	the	inventory:

Run	SQL	statement

We	will	now	run	a	SQL	statement:

1.	 Start	the	Library	|	SQL	|	Execute	a	custom	query	on	a	database	workflow.
2.	 Select	the	database.
3.	 Enter	the	following	as	a	statement:	INSERT	INTO	testtbl	VALUES	(2,'some

lastname','some	firstname');.
4.	 Run	the	workflow	and	check	the	database	table.

Run	an	SQL	query

We	will	now	run	an	SQL	query:

1.	 Create	a	new	workflow.
2.	 Add	the	workflow	and	create	the	inputs	as	in-parameters.	Assign	the	output	variable

(array	of	SQL:ActiveRecord)	as	an	attribute.
3.	 Add	a	scriptable	task	and	assign	the	attribute	as	in-parameter.
4.	 Enter	the	following	script:

						for	each	(result	in	resultRecords){	

									columns=(result.getFieldNames());	

									for	each	(column	in	columns){	

															System.log("Column	:"+column+"	

content:"+result.getProperty(column));	

									}	

						}	

5.	 Save	and	run	the	script	with	a	SQL	query	such	as	select	*	from	testtbl.

How	it	works...
The	SQL	plugin	is	a	bit	different	than	the	JDBC	connector	as	it	uses	Orchestrator	objects.
There	are	the	following	Orchestrator	scripting	classes:

SQLActiveRecord

SQLColumn

SQLDatabase

SQLDatabaseManager

SQLTable

Also	extremely	valuable	are	the	Generate	CRUD	workflows	for	a	table.	CRUD	stands	for
Create,	Read,	Update	and	Delete	and	will	create	these	four	workflows	a	given	table.

See	also
The	example	workflow	10.03.1	Execute	SQL	query	(SQL	plugin).

Working	with	PowerShell
In	this	recipe,	we	will	enable	Orchestrator	to	execute	PowerShell	scripts	on	a	Windows	host
and	deal	with	the	results.

Getting	ready
We	need	a	Windows	host	where	the	PowerShell	scripts	are	stored	and	can	be	executed	from.
This	can	be	any	Windows	host;	however,	a	Windows	2008	R2	(or	better)	server	contains	all
the	programs	required	to	allow	Orchestrator	to	connect	to	the	Windows	host.

To	configure	the	Windows	host,	we	need	to	use	Windows	Remote	Management	(WinRM),
which	is	already	installed	and	integrated	into	Windows.

Installing	the	VMware	PowerCLI	add-on	to	PowerShell	on	the	Windows	host	is	optional.

You	may	also	add	a	Linux	PowerShell	host	to	vRO.	Check	this:
http://kaloferov.com/blog/how-to-add-a-linux-machine-as-powershell-host-in-vro-skkb1030/

http://kaloferov.com/blog/how-to-add-a-linux-machine-as-powershell-host-in-vro-skkb1030/

How	to	do	it...
This	recipe	is	split	into	preparation,	adding	the	host,	executing	a	PowerShell	script,	and
generating	a	workflow.

Preparing	the	Windows	host	with	WinRM

In	this	part,	we	will	configure	WinRM	with	basic	authentication,	HTTP,	and	unencrypted
transfer.	To	configure	WinRM	for	HTTPS,	please	refer	to	the	PowerShell	plugin
documentation:

1.	 Log	in	to	the	Windows	OS	with	administrator	rights.
2.	 Create	a	local	user	who	is	part	of	the	local	administrator	group.
3.	 Start	a	Windows	command	line	with	elevated	rights.
4.	 Run	the	following	command	to	configure	the	listener:

						winrm	quickconfig	

5.	 Enable	basic	authentication	and	unencrypted	transfer	for	the	service	by	running	the
following	commands:

						winrm	set	winrm/config/service/auth	@{Basic="true"}	

						winrm	set	winrm/config/service	@{AllowUnencrypted="true"}	

6.	 Last	but	not	least,	we	need	to	increase	the	package	size	that	can	be	received:

						winrm	set	winrm/config/winrs	@{MaxMemoryPerShellMB="2048"}	

7.	 Make	sure	that	TCP	5985	is	accessible	from	Orchestrator	to	the	PowerShell	host.

This	is	a	fast	and	easy	configuration	that	leaves	security	wanting;	however,	it	enables	you	to
connect	Orchestrator	to	a	PowerShell	host	and	run	PowerShell	scripts	without	facing	any
obstacles.	If	this	connection	works,	you	might	want	to	shift	to	the	more	secure	Kerberos
connections	(discussed	later).

Adding	a	PowerShell	host

Now	that	have	we	configured	the	Windows	host,	we	need	to	connect	Orchestrator	to	the
Windows	host.	As	this	is	a	one-off	operation,	we	will	use	the	existing	workflow	to	do	this:

1.	 Start	the	workflow	by	navigating	to	Library	|	PowerShell	|	Configuration	|	Add	a
PowerShell	host.

2.	 Enter	a	name	for	the	connection	to	the	PowerShell	host.	We	will	use	this	name	later	to
establish	connections	to	this	host.	Also,	add	the	FQDN	of	the	Windows	host	as	well	as
port	5985

3.	 Choose	WinRM,	HTTP	(HTTP:5985,	HTTPS:5986)	as	the	transport	protocol	and	Basic
for	the	authentication.

4.	 If	your	Orchestrator	is	configured	for	SSO,	you	have	to	choose	Shared	Session.
Otherwise,	you	are	welcome	to	use	Session	per	User.	If	you	choose	Shared	Session,	you

will	need	to	provide	a	username	and	password.
5.	 Click	on	Submit	and	wait	until	the	workflow	is	completed	successfully.	If	that	is	not	the

case,	check	out	the	WinRM	configuration:

6.	 In	the	Orchestrator	Client,	click	on	Inventory	(the	paper	symbol	with	a	blue	puzzle
piece)	and	explore	the	tree	under	PowerShell.	You	will	find	all	available	PowerShell
SnapIns	as	well	as	their	Cmdlets:

Using	Kerberos	authentication

In	this	section,	we	are	configuring	Orchestrator	to	connect	to	the	PowerShell	host	using
Kerberos	authentication:

1.	 In	Windows	host,	make	sure	Kerberos	is	enabled:

						winrm	set	winrm/config/service/auth	@{Kerberos="true"}	

2.	 The	AD	user	that	should	be	used	needs	to	be	part	of	the	Administrator	group.
3.	 Use	the	Configuring	the	Kerberos	authentication	recipe	in	Chapter	2,	Optimizing
Orchestrator	Configuration,	to	configure	Orchestrator	to	use	Kerberos	authentication
(even	if	you	are	using	the	Windows	version).

4.	 Rerun	the	Add	a	PowerShell	host	workflow	but,	this	time,	use	Kerberos	as	the
authentication	type.

This	should	work	in	most	cases;	however,	Windows	can	be	a	bit	tricky.	If	you	experience
problems,	take	a	look	at	Spas	Kaloferov's	awesome	article	(see	the	See	also	section	of	this
recipe	for	the	link).

Executing	a	script

Now	that	we	have	added	a	PowerShell	host,	we	can	run	a	script.	There	are	two	workflows	that
can	be	used	for	this	by	navigating	to	Library	|	PowerShell;	they	are	discussed	in	upcoming
sections.

Calling	a	script	that	is	stored	on	the	PowerShell	host

For	this	to	work,	you	need	a	PowerShell	script	on	the	PowerShell	host,	preferably	one	that
requires	some	arguments,	such	as	get-PSDrive	-name	c:

1.	 Start	the	workflow	by	navigating	to	Library	|	PowerShell	|	Invoke	an	external	script.
2.	 Select	the	PowerShell	host	that	you	have	added	to	Orchestrator.
3.	 Enter	the	complete	path	to	the	script.
4.	 In	Arguments,	enter	all	the	arguments	that	you	want	to	transfer,	like	this:

						-Argument1	value1	-Argument2	value2	

5.	 Click	on	Submit	and	wait	until	the	script	is	executed.
6.	 Take	a	look	at	the	logs	to	see	the	results.

Sending	a	script	to	be	executed	to	the	PowerShell	host

1.	 Start	the	workflow	by	navigating	to	Library	|	PowerShell	|	Invoke	a	PowerShell	script.
2.	 Select	the	PowerShell	host	that	you	have	added	to	Orchestrator.
3.	 For	the	script,	enter	Get-PSDrive	-name	c.
4.	 Click	on	Submit	and	wait	until	the	script	is	executed.

5.	 Take	a	look	at	the	logs	to	see	the	results.

Generating	an	action	and	workflow	from	a	script

The	PowerShell	plugin	brings	with	it	the	ability	to	automatically	create	an	action	and	a
workflow	from	a	PowerShell	script.	This	allows	you	to	integrate	PowerShell	permanently
into	your	automation:

1.	 Start	the	workflow	by	navigating	to	Library	|	PowerShell	|	Generate	|	Generate	an
Action	from	a	PowerShell	script.

2.	 Enter	the	script	you	would	like	to	run	in	the	script.	Replace	all	argument	values	with	the
{#ParamName#}	placeholder.	Here's	an	example:

Original Get-PSDrive	-Name	C

Enter Get-PSDrive	-Name	{#DriveName#}

3.	 Select	a	name	for	the	action	you	would	like	to	create	as	well	as	the	module	where	you
want	to	create	it.

4.	 Choose	whether	you	would	like	to	create	a	workflow	and	also	choose	the	folder	you
would	like	to	create	it	in.

5.	 Click	on	Submit	and	wait	until	the	process	has	finished.
6.	 Check	out	the	created	workflow,	called	Invoke	Script	[Action	Name]:

7.	 See	how	{#Parameter#}	has	been	changed	into	an	in-parameter	in	the	action	you	created:

8.	 Run	the	new	workflow	and	take	a	look	at	the	logs.

How	it	works...
Adding	PowerShell	to	Orchestrator	will	give	you	a	far	greater	perspective	on	what
Orchestrator	can	be	used	for.	In	the	last	few	years,	PowerShell	has	become	a	broadly	used
tool	to	write	automation	scripts.	Microsoft	uses	PowerShell	for	a	lot	of	management
functions,	such	as	System	Center	Configuration	Manager	(SCCM),	System	Center	Virtual
Machine	Manager	(SCVMM),	and	System	Center	Operations	Manager	(SCOM).

Using	PowerShell	with	Orchestrator,	we	are	basically	able	to	execute	PowerShell	scripts	with
a	right-click	in	the	vSphere	Web	Client	and	even	transport	VMware	objects	to	PowerShell
scripts.

Workflow	TLC

A	workflow	or	action	that	has	been	generated	by	Orchestrator	will	require	some	TLC	(tender
loving	care),	for	instance,	changing	a	password	entry	from	string	to	SecureString,
reworking	the	naming	structure,	rearranging	the	variables	in	the	workflow	call,	and	so	on.

Another	typical	and	vital	task	is	escaping	variables.	When	you	run	a	command	that	requires
entering	a	string	that	contains	special	characters	such	as	spaces,	backslashes	\	or	quotation
marks	",	you	need	to	escape	them	using	an	additional	\	or	use	single	quotation	marks	'.	In	the
following	example,	we	will	show	you	both	methods:

Original
psScript	+='Get-PSDrive	-Name	'	+	DriveName	+	'\n';

Output:	Get-PSDrive	-Name	c:

Using	"
psScript	+='Get-PSDrive	-Name	"'	+	DriveName	+	'"	\n';

Output:	Get-PSDrive	-Name	"c:"

Escaping	'
psScript	+='Get-PSDrive	-Name	''	+	DriveName	+	''	\n';

Output:	Get-PSDrive	-Name	'c:'

The	difference	between	"	and	'	is	that	PowerShell	will	look	inside	"	"	for	$	and	assumes	that
what	follows	is	a	variable,	whereas	it	will	take	all	content	between	the	'	as	it	is.

Entry "Test	$date" 'Test	$date'

Output Test	12.01.12 Test	$date

Basic	versus	Kerberos	authentication

In	this	recipe,	we	used	the	basic	connection	to	connect	Orchestrator	to	the	PowerShell	host.	As
mentioned,	this	is	the	easiest	way	to	build	the	connection,	and	therefore	it	is	good	for	a
beginner.	As	a	professional,	you	want	to	use	Kerberos	as	the	authentication;	however,	you
should	first	try	to	connect	via	the	basic	method	to	make	sure	that	you	don't	have	any	Firewall
or	other	basic	connection	problems	before	going	for	the	secure	connect.

One	of	the	differences	between	basic	and	Kerberos	authentication	is	that	basic	authentication
can	only	use	local	users,	whereas	Kerberos	uses	AD	users.	Secondly,	Kerberos	uses
encryption	when	communicating,	whereas	basic	doesn't.	This	is	quite	a	big	difference,
especially	in	a	business	environment	where	local	users	should	really	not	be	used	and
encryption	is	a	must.

As	already	mentioned,	if	you	use	Orchestrator	with	SSO,	you	can	only	use	Shared	Session,	as
Orchestrator	is	not	able	to	forward	the	session.	You	can	use	Session	per	User	only	with	an
LDAP-connected	Orchestrator.

PowerShell	output	to	XML

To	convert	the	PowerShell	output	into	XML,	run	the	following	lines:

psXML	=	PowerShellOutput.getXml();	

The	XML	output	of	PowerShell	can	be	quite	messy.	The	first	thing	that	one	needs	to	realize	is
that	the	PowerShell	XML	output	adds	a	large	amount	of	spaces	between	tags.	To	clean	this	up,
run	the	following	regular	expression:

xmlClean	=	psXML.replace(/>\s+</g,	"><");	

The	following	is	an	example	of	the	Get-Culture	PowerShell	command.	You	can	clearly	see
how	the	diminished	command-line	output	(the	blue	PowerShell	window)	looks	in	PowerShell
XML:

As	you	can	see,	PowerShell	creates	tag	names	along	with	the	variable	names	(Obj=Object,
S=String,	and	I32=32-bit	Integer)	and	sets	the	name	of	the	output	as	an	attribute	with	the	N	key.
It's	not	easy	to	phrase	these	constructs;	however,	it's	doable.

See	also
This	blog	about	using	PowerShell	and	Orchestrator:

http://blogs.vmware.com/management/2015/05/optimizing-powershell-workflows-
vrealize-orchestrator.html

Learn	PowerShell:
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

Learn	PowerCLI:
https://www.packtpub.com/virtualization-and-cloud/learning-powercli

Refer	to	the	Working	with	XML	recipe	in	this	chapter	to	learn	more	about	phasing	XML
with	Orchestrator
Connecting	Orchestrator	to	PowerShell	using	Kerberos:

http://blogs.vmware.com/orchestrator/2012/06/vco-powershell-plugin-how-

to-set-up-and-use-kerberos-authentication.html

http://kaloferov.com/blog/adding-vco-powershell-host-with-account-other-than-the-
default-domain-administrator-account/

The	example	workflows	are	as	follows:
10.04.1	Invoke	Script	psExample	and	the	psExample	action	in	the
com.packtpub.Orchestrator-Cookbook	module
10.04.2	Cleanup	PS	XML

http://blogs.vmware.com/management/2015/05/optimizing-powershell-workflows-vrealize-orchestrator.html
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx
https://www.packtpub.com/virtualization-and-cloud/learning-powercli
http://kaloferov.com/blog/adding-vco-powershell-host-with-account-other-than-the-default-domain-administrator-account/

Working	with	SOAP
This	recipe	focuses	on	the	interaction	between	Orchestrator	and	a	SOAP-based	server.	We
will	learn	how	to	add	a	SOAP	host	to	Orchestrator	and	execute	SOAP	operations.

Getting	ready
We	need	a	host	that	can	present	SOAP	operations	for	Orchestrator	to	use.	If	you	don't	have	a
SOAP	host	that	you	can	access,	you	can	follow	our	example.

Orchestrator's	SOAP	API	has	been	retired	and	is	not	available	anymore.

To	add	a	SOAP-based	service	to	the	Orchestrator	host,	we	need	its	WSDL	address.

For	our	example,	we	will	use	http://www.webservicex.net	to	test	our	SOAP	plugin.	The	WSDL
we	will	use	is	http://www.webservicex.net/globalweather.asmx?WSDL	.

http://www.webservicex.net
http://www.webservicex.net/globalweather.asmx?WSDL

How	to	do	it...
Again,	this	recipe	is	split	into	different	parts.

Adding	a	new	SOAP	client

Before	we	can	execute	any	SOAP	operations,	we	need	to	add	the	SOAP	interface	of	a	host	to
Orchestrator:

1.	 Open	the	Orchestrator	Client	and	switch	to	Design	mode.
2.	 Make	sure	that	you	have	imported	the	SSL	certificate	of	the	SOAP	host	(refer	to	the
Important	Orchestrator	settings	recipe	in	Chapter	1,	Installing	and	Configuring
Orchestrator).

3.	 Start	the	workflow	by	navigating	to	Library	|	SOAP	|	Configuration	|	Add	a	SOAP
host.

4.	 Choose	the	name	you	want	to	save	this	SOAP	host	under.
5.	 Enter	the	WSDL	address,	click	Next.
6.	 If	you	need	to	use	a	proxy	to	connect	to	the	internet	then	fill	it	in	now,	or	else	click	on

Next.
7.	 Choose	None	for	Authentication	type	and	click	Next.	The	authentication	method

depends	on	the	type	of	server	and	can	be	very	different.
8.	 For	the	Session	mode,	you	won't	have	to	choose	anything	as	we	choose	no

authentication.	If	you	choose	another	SOAP	service,	you	need	to	decide	between	using	a
Shared	Session	or	Per	User	Session.

9.	 Click	on	Submit	to	finalize.

Now	we	have	access	to	all	SOAP	operations	that	are	exposed:

Invoking	a	SOAP	request

We	will	now	test	out	a	SOAP	request:

1.	 Open	the	Orchestrator	Client	and	run	the	workflow	by	navigating	to	Library	|	SOAP	|
Invoke	a	SOAP	operation.

2.	 Click	on	Operation	and	then	select	from	the	inventory	an	operation,	such	as
GetCitiesByCountry.

3.	 Click	on	Next	and	then	replace	the	parameter1	with	a	state,	such	as	Germany.
4.	 Click	on	Submit.	When	the	workflow	has	finished,	check	out	the	logs:

Generating	a	new	SOAP	workflow

To	invoke	a	SOAP	operation,	we	will	create	a	new	workflow:

1.	 Open	the	Orchestrator	Client	and	run	the	workflow	by	navigating	to	Library	|	SOAP	|
Generate	a	new	workflow	from	a	SOAP	operation.

2.	 Click	on	Operation	and	select	a	workflow,	such	as	GetWeather.	Click	on	Next.
3.	 Choose	a	name	for	the	new	workflow	as	well	as	a	folder	where	the	new	workflow	should

be	located.
4.	 As	the	format,	you	can	just	use	the	default.
5.	 After	clicking	on	Submit,	a	new	workflow	will	be	created	in	the	folder	you	specified.

The	in-parameters	and	out-parameters	for	the	workflow	are	aligned	to	the	inputs	and
outputs	of	the	SOAP	operation.

6.	 You	can	now	run	this	workflow.	The	workflow	will	invoke	the	SOAP	operation	on	the
SOAP	host.	The	return	values	will	be	returned	in	properties.

How	it	works...
SOAP	(Simple	Object	Access	Protocol)	is	a	common	way	to	access	automation	or	scripting
services	via	a	network.	A	SOAP	service	advertises	what	scripts	can	be	run	on	the	SOAP	host
and	what	variables	are	needed	to	run	it	on	its	WSDL	interface.

We	used	the	Digest	authentication,	which	provides	an	encrypted	authentication.	The	other
authentication	types	are	basic	(no	encryption)	and	NTLM.	NTLM	(NT	LAN	Manager)
provides	encryption	using	the	Window	Security	Support	Provider	(SSPI)	framework.	If	you
want	to	use	NTLM,	the	SOAP	host	you're	connecting	to	must	be	able	to	understand	and	use	it
(this	is	not	the	case	with	Orchestrator).	Additionally,	you	also	need	to	provide	additional
information	in	the	configuration	workflow.	You	need	to	specify	the	NTLM	domain	and,
additionally,	maybe	a	NTLM	workstation.

If	your	Orchestrator	is	SSO-configured,	we	have	to	use	shared	sessions,	as	we	already
discussed	in	the	Working	with	PowerShell	recipe.

A	typical	SOAP-Orchestrator	integration	is	with	Microsoft	SCOM	or	SCVMM.

Most	generated	workflows	require	a	bit	of	aftercare.	A	typical	example	is	that	a	password	is
handled	as	a	string	not	a	SecureString.	Refer	to	the	How	it	works...	section	in	the	Working
with	PowerShell	recipe.

See	also
A	full	workout	of	this	can	be	found	in
http://blogs.vmware.com/orchestrator/2011/06/example-of-high-level-workflow-with-the-
soap-plug-in.html	.

http://blogs.vmware.com/orchestrator/2011/06/example-of-high-level-workflow-with-the-soap-plug-in.html

Working	with	Active	Directory
In	this	recipe,	we	will	look	at	how	Orchestrator	uses	the	Active	Directory	(AD)	plugin.

Getting	ready
We	need	an	AD	server	for	this	recipe	as	well	as	access	to	the	AD	server	OS	itself.

How	to	do	it...
We	split	this	recipe	into	multiple	parts.

Preparing	AD	for	SSL

You	can	add	AD	to	Orchestrator	without	using	SSL;	however,	you	will	not	be	able	to	create
users,	change	passwords,	or	use	any	other	more	secure	options.	If	you	decide	not	to	use	SSL,
skip	this	step.

First,	we	will	install	Active	Directory	Certificate	Services.

Note

Microsoft	does	not	recommend	that	you	run	a	CA	server	on	a	domain	controller;	however,
for	a	lab,	it	is	totally	okay.

To	activate	SSL	for	AD,	follow	these	steps:

1.	 Log	in	to	the	Windows	server	that	will	host	the	CA.	In	my	case,	this	is	my	domain
controller,	central.mylab.local,	with	domain	administrator	rights.

2.	 Add	the	Active	Directory	Certificate	Services	server	role.
3.	 Just	click	on	Next	and	accept	all	the	default	settings.	In	the	following	screenshot,	you'll

find	all	the	settings	I	used	(the	default	ones	for	my	domain):

4.	 After	the	wizard	has	finished,	open	up	Group	Policy	Manager	and	edit	Default	Domain
Controller	Policy.

5.	 Navigate	to	Computer	Configuration	|	Policies	|	Windows	Settings	|	Security	Settings
|	Public	Key	Policies	|	Automatic	Certificate	Request	Settings	and	then	go	to	New	|
Automatic	Certificate	Request	Setup.

6.	 Finish	this	wizard	again	by	just	clicking	on	Next,	which	forces	the	creation	of	a
certificate	for	your	domain	controllers.

7.	 Wait	a	few	minutes	or	force	a	policy	update	on	the	domain	controller	using	the
gpupdate/force	command.

8.	 Start	the	Certification	Authority	tool	and	check	in	Issued	Certificates	whether	the
domain	controller	was	issued	with	a	certificate.

9.	 To	test	the	SSL	configuration	connection,	we	will	use	Microsoft's	ldp	tool
(C:\Windows\System32\ldp.exe).	Start	ldp	and	connect	to	the	domain	controller	using
SSL	(port	636).	If	this	test	is	successful,	continue.	If	not,	check	out
http://technet.microsoft.com/en-us/library/cc875810.aspx	.

10.	 Last	but	not	least,	make	sure	that	the	Windows	firewall	allows	TCP	389	(with	SSL	TCP
636)	to	pass.

http://technet.microsoft.com/en-us/library/cc875810.aspx

Registering	AD	with	Orchestrator

Now,	we	add	AD	to	Orchestrator:

1.	 Start	the	workflow	by	navigating	to	Library	|	Microsoft	|	Active	Directory	|
Configuration	|	Add	an	Active	Directory	server.

2.	 Give	the	connection	a	name.
3.	 Enter	the	FQDN	of	your	AD	server.
4.	 Enter	the	port	you	are	using:	389	without	SSL	and	636	with	SSL.
5.	 The	root	is	written	in	the	LDAP	format,	for	example,	DC=mylab,DC=local.
6.	 Choose	whether	to	use	SSL	or	not.	If	you	are	using	SSL,	you	can	choose	to	be	asked

when	importing	the	certificate.
7.	 The	default	domain	is	written	in	the	@[FQDN	Domain	name]	format,	for	example,

@mylab.local.
8.	 If	you	have	configured	Orchestrator	with	SSO,	you	have	to	choose	a	Shared	Session.

Enter	domain-administrator	credentials.
9.	 In	Options	you	can	choose	to	follow	referrals,	meaning	that	if	the	AD	doesn't	have	a

given	object	in	its	own	tree	it	might	know	the	right	domain	controller.	You	can	also
specify	a	timeout	to	reduce	the	amount	of	time	you	spend	waiting	for	an	object	in	a	large
AD	structure.

There	is	an	additional	workflow	that	lets	you	define	some	additional	settings	for	AD.	The
workflow	is	Library	|	Microsoft	|	Active	Directory	|	Configuration	|	Configure	Active
Directory	Plug-in	options.	Here,	you	can	define	a	default	AD	server	(if	you	are	using
multiple)	as	well	as	a	maximum	number	of	returned	items:

Working	with	AD

The	AD	plugin	comes	with	a	lot	of	great	workflows	that	work	without	a	problem.	The
following	table	shows	you	which	workflows	exist:

Workflow Use

Computer Create,	destroy,	disable,	and	enable	a	computer.

Organizational
unit Create	and	destroy.

Create,	destroy,	disable,	enable,	change	password,	add,	and	remove	from

User groups.

User	groups Create	and	destroy	groups	and	add	and	remove	users,	computers,	and
groups	to/from	groups.

As	long	as	you	have	added	the	domain	controller	to	your	Orchestrator,	you	can	run	and
integrate	all	these	scripts	into	your	own	workflows.

How	it	works...
The	Microsoft	plugin	is	quite	easy	to	use;	however,	as	you	may	have	noticed,	setting	it	up	isn't
as	straightforward.	The	main	issue	is	using	SSL	with	the	domain	controller;	as	soon	as	this	is
working,	you're	home	free.

The	drawback	of	an	SSO-configured	Orchestrator	should	now	be	apparent,	making	it
necessary	to	use	a	shared	session.	Some	clients	have	argued	that	it	would	make	more	sense	to
use	an	LDAP	integration	rather	than	an	SSO	one,	so	they	can	use	a	Session	per	User.	My
argument	is	that	SSO	integration	is	the	way	forward	with	VMware	and	that	the	same
customers	are	happy	to	use	vCloud	Director	or	VMware	View	with	a	dedicated	user.

Microsoft	integration	allows	a	range	of	possibilities,	user	management	being	the	prime
target.	There	are	more	possibilities	that	the	plugin	offers;	explore	the	AD	API	object.

When	you	are	using	a	large	AD	directory	you	might	like	to	consider	using	a	different	base
for	your	AD	connection.	You	could,	for	instance,	use	an	OU	such	as	the	following:

OU=acme,DC=mylab,DC=local	

See	also
Refer	to	the	Managing	AD	users	with	vRA	recipe	in	Chapter	13,	Working	with	vRealize
Automation.

Working	with	SNMP
This	recipe	centers	on	SNMP.	Here,	you	will	learn	how	to	use	Orchestrator	to	receive	SNMP
traps	from	vCenter/ESXi	and	use	them	to	trigger	workflows.

Getting	ready
For	this	recipe,	we	need	an	SNMP	source.	We	will	use	vCenter	and	ESXi	hosts	as	SNMP
sources.

To	prepare	vCenter	and	ESXi	servers	to	send	or	receive	SNMP	messages,	refer	to	the	There's
more...	section	of	this	recipe.

How	to	do	it...
We	will	split	this	recipe	into	configuring	and	using	SNMP	with	Orchestrator.

Configuring	SNMP	devices

To	configure	Orchestrator	to	send	or	receive	SNMP	messages	from	SNMP	devices,	follow
these	steps	for	each	SNMP	device:

1.	 In	Device	address,	enter	the	IP	or	FQDN	of	the	device	you	want	to	send	or	receive	SNMP
messages	to/from.

2.	 In	the	Orchestrator	Client,	start	the	workflow	by	navigating	to	Library	|	SNMP	|	Device
Management	|	Register	an	SNMP	device.

Name	is	just	a	string	to	identify	the	SNMP	device	in	the	inventory.
3.	 The	Advanced	function	is	the	configuration	that	is	used	to	send	SNMP	messages.	Here,

you	can	configure	the	port,	the	protocol	function,	as	well	as	the	community	string	for
sending.

Note

Please	remember	that	for	vCenter,	you	just	need	to	configure	the	hostname,	as	vCenter
won't	answer	SNMP	requests.

Sending	a	GET	query	to	an	ESXi	host

Having	configured	ESXi	to	send	and	receive	SNMP	messages,	let's	try	one	out:

1.	 In	the	Orchestrator	Client,	start	the	workflow	by	navigating	to	Library	|	SNMP	|	Query
Management	|	Add	a	query	to	an	SNMP	device.

2.	 In	Device,	select	the	ESXi	server	and	select	GET 	in	Type.
3.	 In	OID,	enter	1.3.6.1.2.1.1.5.0	(this	gets	the	hostname	of	the	device).
4.	 In	Name,	enter	Hostname.
5.	 Next,	run	the	query	by	running	the	workflow;	navigate	to	Library	|	SNMP	|	Query

Management	|	Run	an	SNMP	query.
6.	 Select	the	query	underneath	the	ESXi	SNMP	device	and	click	on	Submit.	Check	the	logs

for	the	results.

Refer	to	the	How	it	works...	section	for	more	information	about	OIDs.

Configuring	a	vCenter	alarm	to	send	an	SNMP	message

vCenter	can	only	send	an	SNMP	message	using	an	alarm	configured	to	send	SNMP	messages.
We	will	configure	an	alarm	that	goes	off	when	a	new	resource	pool	is	created:

1.	 Open	your	vSphere	Web	Client.
2.	 Navigate	to	the	object	the	alarm	should	be	added	to,	such	as	a	cluster.
3.	 Click	on	the	Manage	tab	and	then	click	on	Alarm	Definitions.

4.	 Click	on	Add	(the	green	plus	icon).
5.	 Give	the	new	alarm	a	name	such	as	SNMP	Example,	opt	to	monitor	Clusters,	and	select

specific	event	occurring	on	this	object.
6.	 Use	add	(the	green	plus	icon)	to	add	a	trigger.	Use	the	selector	to	choose	Resource	Pool

created	and	set	the	status	to	Warning.	Click	on	Next.
7.	 Use	add	(the	green	plus	icon)	to	add	an	action.	Use	the	selector	to	choose	Send	a

notification	trap	and	click	on	Finish.

Note

To	learn	more	about	vCenter	alarms,	please	take	a	look	at	the	vSphere	documentation,	or
check	out	this	article:	http://www.pearsonitcertification.com/articles/article.aspx?
p=1928231&seqNum=6

Receiving	an	SNMP	message	from	vCenter

After	you	have	configured	vCenter	to	send	an	SNMP	alarm,	we	now	use	Orchestrator	to
receive	the	SNMP	message:

1.	 In	Orchestrator,	start	the	workflow	by	navigating	to	Library	|	SNMP	|	Wait	for	a	trap
on	an	SNMP	device.

2.	 Select	the	SNMP	device	you	want	to	listen	to.	The	OID	is	optional.
3.	 The	workflow	will	pause	until	it	receives	an	SNMP	message	from	the	selected	device.
4.	 In	vCenter,	create	a	new	resource	pool.	This	should	trigger	the	configured	alarm	and

send	an	SNMP	message	to	Orchestrator.
5.	 Check	the	logs	of	the	workflow	after	it	has	received	the	SNMP	message.

Refer	to	the	How	it	works...	section	for	more	information	about	OID.

Using	policies	to	trap	SNMP	messages

To	use	Orchestrator	to	continually	monitor	a	device	for	new	SNMP	messages,	follow	these
steps:

1.	 Switch	Orchestrator	to	the	Administer	mode.
2.	 Click	on	Policy	Templates	(the	yellow	page	with	a	green	border	icon).
3.	 Navigate	to	Library	|	SNMP	|	SNMP	Trap	and	select	Apply	policy.
4.	 Give	the	new	policy	a	name	and	description.
5.	 Select	the	SNMP	device	you	would	like	to	use	and	click	on	Submit.
6.	 Orchestrator	automatically	switches	to	the	Run	mode,	into	the	Policies	section,	and	onto

the	policy	you	have	just	created.	Select	Edit	(the	pencil	icon).
7.	 In	Scripting,	expand	the	subscription	and	click	on	OnTrap.
8.	 In	the	Script	tab,	you	will	find	that	there	is	already	a	script	that	will	output	the	SNMP

message	to	the	logs.
9.	 Save	and	close.

http://www.pearsonitcertification.com/articles/article.aspx?p=1928231&seqNum=6

Instead	of	the	existing	script,	you	can	create	a	script	or	workflow	to	phrase	the	SNMP
messages.	To	get	to	the	SNMP	message	data	from	the	policy	event	as	an	array	of	properties,
follow	this	script:

//get	the	SNMP	data	out	of	the	Policy	

var	key	=	event.getValue("key");	

var	snmpResult	=	SnmpService.retrievePolicyData(key);	

//	convert	the	SNMPSnmpResult	into	Array	of	Property	

var	data	=	

System.getModule("com.vmware.library.snmp").processSnmpResult(snmpResult);	

You	can	then	use	the	OID	number	to	fork	to	different	workflows	to	address	the	issues	raised
by	the	SNMP	message.	A	very	good	example	of	this	can	be	found	at
http://blogs.vmware.com/orchestrator/2013/04/vcenter-operations-integration-with-vcenter-
orchestrator-in-5-minutes-or-less.html	.

http://blogs.vmware.com/orchestrator/2013/04/vcenter-operations-integration-with-vcenter-orchestrator-in-5-minutes-or-less.html

How	it	works...
SNMP	stands	for	Simple	Network	Management	Protocol	and	is	used	to	manage	and
monitor	systems	by	sending	or	receiving	SNMP	messages.	A	system	can	be	monitored	or
managed	by	either	making	it	send	SNMP	messages,	or	by	responding	to	requests	for
information.

Each	SNMP	message	can	be	accompanied	by	a	community	string.	When	an	SNMP	message	is
received,	the	receiver	checks	the	community	string	against	the	one	defined	in	the	SNMP	trap.
If	the	string	matches	the	message,	it	is	accepted.	The	community	string	acts	as	a	security
measure.	The	default	community	string	is	public.

The	important	thing	to	understand	about	vCenter	is	that	vCenter	can	only	send	SNMP
messages	when	it	starts	up	or	when	a	triggered	alarm	is	configured	to	send	an	SNMP
message;	it	doesn't	respond	to	SNMP	requests.

ESXi	hosts,	however,	can	not	only	send	messages,	but	can	also	react	to	SNMP	requests.

OID	and	MIB

A	Management	Information	Base	(MIB)	is	a	file	that	contains	descriptions	of	Object
Identifiers	(OIDs).	Each	vendor	defines	its	own	OIDs	that	are	then	distributed	in	MIBs.	The
VMware	MIBs	can	be	downloaded	from	kb.vmware.com/kb/1013445.

A	text	file	that	can	be	downloaded	from	kb.vmware.com/kb/2054359	contains	all	the	VMware
OIDs	in	a	more	readable	version.

Working	with	SNMP	return	data

The	return	data	of	the	default	SNMP	workflows	is	an	array	of	properties.	Each	of	the	array
elements	contains	one	OID.	Each	property	contains	the	following	keys:

Key Meaning Example	key	content

oid The	OID	identifier 1.3.6.1.4.1.6876.4.3.306.0

type
The	Orchestrator
variable	type

String

snmpType
The	SNMP	variable
type

Octet	String

Alarm	ResourcePool	-	Event:	Resource	pool	created

value
The	content	of	the
message

(6656)

Summary:	Created	resource	pool	asdsadfsad	in	compute-

resource	MyCluster	in	mylab

Date:	16/11/2014	3:07:01	PM

User	name:	VSPHERE.LOCAL\Administrator

Resource	pool:	MyCluster

Data	center:	mylab

Arguments:			parent.name	=	Resources

However,	this	is	produced	by	the	processSnmpResult	action	in	the	com.vmware.library.snmp
module.	The	real	SNMP	results	are	stored	in	a	bit	more	complex	variable	type,	which	is
SNMPSnmpResult.	In	Orchestrator,	it	is	easier	to	work	with	the	array	of	properties,	but	check
out	the	action	and	the	variable	type	yourself.

SNMP	-	port	162	versus	port	4000

The	default	port	to	send	SNMP	messages	on	is	TCP	162;	however,	due	to	the	fact	that	Linux
systems	have	security	restrictions	for	listening	on	ports	below	1024,	the	Orchestrator	SNMP
listener	is	set	to	listen	on	port	4000.	This	is	true	for	the	Orchestrator	appliance	as	well	as	for
the	Windows	installation.

If	you	have	a	device	that	is	not	able	to	send	SNMP	messages	on	any	port	other	than	162,	here
is	a	way	around	it	(at	least	with	the	appliance):

1.	 Log	in	to	your	Orchestrator	appliance	with	the	root.
2.	 Run	the	following	command:

						iptables	-t	nat	-A	PREROUTING	-p	udp	--dport	162	-j	REDIRECT	--to	

						4000	

3.	 To	make	this	change	stick,	run	the	following	command:

						iptables-save	

There's	more...
In	this	section,	we	take	a	look	at	how	to	configure	SNMP	on	vCenter	and	on	ESXi.

Configuring	SNMP	for	vCenter

For	vCenter	to	be	able	to	send	SNMP	messages	using	alarms,	we	need	to	configure	it	first:

1.	 You	can	add	up	to	four	different	SNMP	receivers	that	vCenter	can	send	messages	to.	For
each	one	you	need	to	specify	the	following:

2.	 Click	on	SNMP	receivers.
3.	 Click	on	Settings	and	then	click	on	Edit.
4.	 Navigate	to	your	vCenter	and	then	click	on	the	Manage	tab.
5.	 Open	your	vSphere	Web	Client.

The	IP	or	FQDN	of	the	SNMP	receiver.
The	port.	The	default	is	TCP	162;	however,	the	listener	on	the	Orchestrator
appliance	is	set	to	TCP	4000.
The	community	string	(if	you're	unsure,	use	the	default,	public).

6.	 When	finished,	click	on	OK.
7.	 Don't	forget	to	configure	your	firewall	to	allow	TCP	4000	out.

Configuring	ESXi	servers	for	SNMP

There	are	quite	a	lot	of	ways	to	configure	SNMP	on	ESXi	hosts.	However,	they	all	come
down	to	the	same	basic	method:	set	SNMP	locally	for	every	ESXi,	and	then	open	the	ESXi
firewall.	You	can	use	PowerCLI	or	any	other	method	to	interact	with	the	API	or	use	host
profiles.	In	the	following	steps,	we	will	use	the	esxcli	command	directly	on	the	ESXi	host	to
configure	SNMP	v1	and	v2.	Please	note	that	the	default	port	of	the	Orchestrator	SNMP	listener
is	TCP	4000	not	TCP	162:

1.	 Configure	the	SNMP	target(s):

						esxcli	system	snmp	set	--targets	target_address@port/community	

2.	 Set	a	different	GET	port	for	SNMP	(if	required):

						esxcli	system	snmp	set	--port	port	

3.	 Enable	SNMP:

						esxcli	system	snmp	set	--enable	true	

4.	 Allow	SNMP	on	the	ESXi	firewall:

						esxcli	network	firewall	ruleset	set	--ruleset-id	snmp	--allowed-all	

						true	--

						enabled	true	

						esxcli	network	firewall	refresh	

We	have	used	the	local	esxcli	commands	in	this	example	simply	because	you	could	write	an
SSH	workflow	to	patch	all	your	ESXi	hosts	based	on	this	example.

To	configure	SNMP	v3	(using	authentication	and	encryption),	take	a	look	at	the	vSphere
Monitoring	and	Performance	Guide,	which	is	part	of	the	VMware	vSphere	documentation	set.

By	default,	ESXi	SNMP	is	configured	to	send	SNMP	messages	for	CIM	hardware	monitoring.
This	means	that	you	will	receive	SNMP	messages	if	a	hardware	component	of	your	ESXi
server	is	alerted.

See	also
Check	out	the	SNMP	example	that	comes	with	vRO7.

An	example	of	automating	hardening	for	new	VMs	is	here:
http://blogs.vmware.com/vsphere/2012/07/automatically-securing-virtual-machines-using-
vcenter-orchestrator.html

Here's	an	example	showing	you	how	to	integrate	vCOPs	into	Orchestrator:
http://blogs.vmware.com/orchestrator/2013/04/vcenter-operations-integration-with-vcenter-
orchestrator-in-5-minutes-or-less.html

http://blogs.vmware.com/vsphere/2012/07/automatically-securing-virtual-machines-using-vcenter-orchestrator.html
http://blogs.vmware.com/orchestrator/2013/04/vcenter-operations-integration-with-vcenter-orchestrator-in-5-minutes-or-less.html

Working	with	AMQP
This	recipe	demonstrates	how	to	use	Orchestrator	as	a	producer	and	consumer	of	AMQP
message	queues,	how	to	create	a	subscription,	and	how	to	use	Orchestrator	policies	to	react	to
messages	in	the	queues.

Getting	ready
If	you	are	totally	new	to	AMQP,	I	suggest	you	start	reading	the	How	it	works...	section	first.

An	AMQP	broker	such	as	RabbitMQ	is	required.	You	can	download	it	from
http://www.rabbitmq.com	.	You	can	find	a	fast	and	easy	Windows	installation	and
configuration	for	RabbitMQ	in	the	There's	more...	section.

http://www.rabbitmq.com

How	to	do	it...
As	with	SOAP,	REST,	and	a	lot	of	other	modules,	we	can	actually	use	the	provided
workflows.	So	in	the	following	sections,	we	will	make	use	of	them.

Adding	an	AMQP	host

To	start	with	AMQP,	we	first	need	to	add	an	AMQP	broker	to	Orchestrator:

1.	 Start	the	workflow	by	navigating	to	Library	|	AMQP	|	Configuration	|	Add	a	broker.
2.	 Give	the	connection	a	name.
3.	 Add	the	broker	IP	or	FQDN;	the	default	port	is	TCP	5672.
4.	 Virtual	host	(vhost)	is	always	in	a	freshly	installed	AMQP	broker.
5.	 You	can	use	SSL	(and	probably	should)	and	then	enter	the	username	and	password	that

are	granted	access	to	the	virtual	host.
6.	 After	you	have	submitted	the	workflow,	check	out	the	inventory.	Your	host	should	now

be	visible:

Defining	exchanges,	queues,	and	binds

To	work	with	AMQP,	we	need	exchanges	and	queues,	so	we	will	define	them	now:

1.	 Run	the	workflow	by	navigating	to	Library	|	AMQP	|	Declare	an	exchange.
2.	 Select	the	broker	for	which	you	want	to	add	the	exchange.
3.	 Give	the	exchange	a	name	such	as	systemExchange	(this	is	used	by	vCloud	Director).
4.	 Select	a	type	of	exchange	(refer	to	the	How	it	works...	section).
5.	 Durable	means	that	messages	will	be	kept	in	the	broker	even	if	it	restarts.
6.	 AutoDelete	will	delete	the	exchange	as	soon	as	there	are	no	more	queues	bound	to	it.

Now	we	will	create	a	queue:

1.	 Run	the	workflow	by	navigating	to	Library	|	AMQP	|	Declare	a	queue.
2.	 Select	the	broker.
3.	 Name	the	queue,	such	as	vco.
4.	 Select	Durable.
5.	 Exclusive	means	that	only	one	client	is	allowed	for	this	queue.
6.	 Auto	Delete	in	a	queue	means	that	the	queue	itself	will	be	deleted	as	soon	as	there	are	no

more	subscribers	to	it.

Now	we	will	bind	the	queue	to	an	exchange:

1.	 Run	the	workflow	by	navigating	to	Library	|	AMQP	|	Bind.
2.	 Select	the	broker.
3.	 Select	the	queue	name	and	the	exchange	you	want	to	bind	it	to.
4.	 Enter	a	routing	key	(#	is	a	wildcard	for	everything).

Sending	messages

We	will	now	send	a	message	to	the	exchange:

1.	 Run	the	workflow	by	navigating	to	Library	|	AMQP	|	Send	a	text	message.
2.	 Select	the	broker.
3.	 Enter	the	exchange	as	well	as	the	routing	key	(at	this	stage,	anything	will	do).
4.	 Enter	a	text	message.
5.	 The	message	is	now	stored	in	the	queue	until	it	is	read.

Receiving	messages

We	will	now	read	the	message	we	sent	to	the	queue:

1.	 Run	the	workflow	by	navigating	to	Library	|	AMQP	|	Send	a	text	message.
2.	 Select	the	broker.
3.	 Enter	the	queue	you	would	like	to	receive	the	message	from.
4.	 The	message	body	is	in	the	out-parameter	body.

If	you	are	new	to	AMQP,	then	I	would	suggest	that	you	read	the	How	it	works...	section	at	this

stage,	where	an	example	of	the	value	of	all	this	is	provided.

Subscribing	to	a	queue

Subscribing	to	a	queue	means	that	Orchestrator	can	use	a	policy	to	monitor	this	queue
continually	for	new	messages:

1.	 Run	the	workflow	by	navigating	to	Library	|	AMQP	|	Configuration	|	Subscribe	to
queues.

2.	 Enter	a	name	for	the	subscription	by	which	you	can	later	identify	it	in	the	policy.
3.	 Select	the	broker.
4.	 Select	the	queue(s)	you	would	like	to	subscribe	to,	such	as	vco.
5.	 Your	subscription	is	now	visible	under	the	AMQP	infrastructure.

Using	a	policy	as	trigger

You	should	be	aware	of	how	Orchestrator	policies	work;	refer	to	the	Working	with	policies
section	in	Chapter	8,	Better	Workflows	and	Optimized	Working.

1.	 Switch	Orchestrator	to	the	Administer	mode.
2.	 Click	on	policy	templates	(the	yellow	page	with	the	green	border	icon).
3.	 Navigate	to	Library	|	AMQP	|	Subscription	and	select	Apply	policy.
4.	 Give	the	new	policy	a	name	and	description.
5.	 Select	the	AMQP	subscription	you	would	like	to	use	and	click	on	Submit.
6.	 Orchestrator	automatically	switches	to	the	Run	mode,	and	you	are	automatically

presented	with	the	policy	you	have	just	created	in	the	Policies	section.	Select	Edit	(the
pencil	icon).

7.	 In	the	Scripting	tab,	expand	the	subscription	and	click	on	OnMessage.
8.	 In	the	Workflow	tab,	click	on	Choose	a	workflow	(the	magnifying	glass	icon)	and	select

the	workflow	to	execute	when	a	new	message	arrives.	You	can	choose	the	example
workflow	10.06.1	AMQP	Worker.

9.	 Save	and	close.

10.	 Now,	start	the	policy	(the	green	play	button).
11.	 You	can	use	the	example	workflow,	10.6.3	Fill,	to	fill	up	the	queue	with	messages.

Watch	the	logs	in	the	policy	to	see	the	execution	happening.

How	it	works...
A	message	bus	such	as	RabbitMQ	can	be	compared	to	a	mail	server	that	stores	e-mails	until
they	are	taken	off	the	server.	The	Advanced	Message	Queuing	Protocol	(AMQP)	defines	a
publisher/producer	as	someone	sending	messages,	a	broker	(server)	as	the	storage	and
process	host,	and	a	client/consumer	as	someone	who	receives	messages.

Any	message	that	is	sent	to	the	broker	will	be	put	in	an	exchange.	The	exchange	will	use	the
routing	key	to	route	the	message	into	a	queue.	A	consumer	will	read	messages	from	a	queue.

AMQP	uses	a	virtual	host	or	vHost	(nothing	to	do	with	virtualization),	which	defines
authentications,	which	means	that	you	can	have	different	vHosts	that	provide	access	to
different	users,	as	you	cannot	give	access	rights	to	exchanges	or	queues.

Here	is	a	simple	example	using	Orchestrator	(example	workflows	10.06.1	AMQP	Worker	and
10.6.2	Fill	up	and	work):

The	example	workflow	10.6.2	Fill	up	and	work	will	fill	up	the	systemExchange	exchange
from	an	attribute	(an	array	of	strings)	using	the	#	routing	key.	The	#	routing	key	will	just
forward	everything	into	the	vco	queue.	It	will	then	start	the	workflow	example	10.06.1	AMQP
Worker	twice	asynchronously.	Each	of	the	Worker	workflows	will	go	and	get	a	message	from
the	queue,	check	whether	the	body	is	defined	(not	Null),	and	then	sleep	one	second	for	each
letter	in	the	message.

When	you	run	the	workflow,	you	will	see	how	the	two	worker	workflows	grab	the	next
message	in	the	queue	and	work	on	it	until	the	queue	is	empty.

To	understand	routing	and	exchanges,	we	need	to	explain	the	four	different	kinds	of

exchange:

Exchange
type Description

Direct This	exchange	routes	messages,	depending	on	their	routing	key,	to	a	specific
queue	that	is	specified	by	the	routing	key	in	the	exchange-queue	binding.

Fanout All	messages	sent	to	this	exchange	will	be	forwarded	into	all	queues	that	are
bound	to	it.

Headers This	ignores	the	routing	key.	It	routes	messages	depending	on	the	sender	(as	in,
mail	headers).

Topics Routing	is	done	using	wildcards.	There	are	two	wildcards	that	AMQP
understands:	*	means	exactly	one	word	and	#	means	none	to	many	words.

There's	more...
Let's	take	a	quick	look	at	how	to	install	and	get	AMQP	going	using	RabbitMQ.

Installing	RabbitMQ

The	following	steps	will	install	RabbitMQ	on	a	Windows	host	and	configure	a	user	to	connect
from	the	outside.	Please	note	that	this	is	a	quick-and-dirty	installation	and	configuration	that	is
only	okay	for	labs;	however,	it	gets	beginners	going:

1.	 Download	RabbitMQ	from	http://www.rabbitmq.com	(in	this	example,	we	will	use	the
Windows	installation).

2.	 Download	OTP	from	http://www.erlang.org/download.html	,	as	RabbitMQ	for	Windows,
requires	this	package.

Tip

Perform	all	the	following	steps	on	the	same	host.	This	is	important,	as	RabbitMQ	is
configured	to	only	accept	localhost	connections	by	default.

3.	 Make	sure	TCP	5672	and	15672	are	open	in	and	outgoing.
4.	 Install	OTP	with	the	defaults.
5.	 Install	RabbitMq	with	the	defaults.
6.	 Run	the	program	by	navigating	to	Start	|	RabbitMQ	Server	|	Command	Prompt	(sbin

dir).
7.	 In	the	console	that	opens,	type	rabbitmq-plugins	enable	rabbitmq_management.
8.	 Open	a	browser	and	browse	http://localhost:15672.
9.	 The	default	user	is	guest	and	the	password	is	guest.
10.	 In	the	RabbitMQ	management,	click	on	Admin.
11.	 Enter	a	new	username	(for	example,	testuser)	as	well	as	a	password.	Add	the	tag	Admin

and	click	on	Add	user.
12.	 The	user	is	created.	Now,	click	on	the	user,	as	shown	in	the	following	screenshot.
13.	 The	details	of	the	user	are	displayed.	Click	on	Set	permission.

You	are	now	able	to	connect	from	the	outside	to	RabbitMQ	and	use	it:

http://www.rabbitmq.com
http://www.erlang.org/download.html

See	also
Check	out	the	AMQP	example	that	comes	with	vRO7.

AMQP	basics:

https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/tutorials/tutorial-one-java.html

There's	a	worthwhile	article	on	how	to	use	AMQP,	vCloud	Director,	and	Orchestrator
together	at:

http://www.vcoteam.info/articles/learn-vco/179-configure-the-amqp-plug-in.html	.

The	example	workflows	are	as	follows:

10.06.1	AMQP	Worker

10.06.2	Fill	up	and	work

10.06.3	Fill

https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/tutorials/tutorial-one-java.html
http://www.vcoteam.info/articles/learn-vco/179-configure-the-amqp-plug-in.html

Chapter	11.	Additional	Plugins
This	chapter	is	dedicated	to	some	of	the	more	commonly	used	plugins	for	Orchestrator.	All
these	plugins	require	that	you	download	them.	We	will	be	looking	at	the	following	plugins:

NSX	integration
Horizon	Integration
vSphere	Replication
SRM	(Site	Recovery	Manager)	integration
vROps	(vRealize	Operations	Manager)	integration

Introduction
In	the	last	two	chapters,	we	took	quite	an	intense	look	at	all	the	plugins	that	come	with
Orchestrator.	Now	we	will	look	at	plugins	you	can	add	to	it.	The	selection	is	based	on	using
them	with	clients	and	discussions	with	other	consultants.

There	are	many	different	plugins,	such	as	VMware-based	plugins	for	a	lot	of	VMware
products,	as	well	as	plugins	from	EMC,	NetApp,	Cisco	UCS,	Infoblox,	F5,	and	more.

Installing	plugins
Installing	plugins	is	pretty	simple;	please	see	recipe	Installing	Plugins	in	Chapter	1,	Installing
and	Configuring	Orchestrator.

Please	note	that	when	you	download	a	plugin,	your	download	should	contain	either	a	.vmoapp
or	.dar	file.	If	the	download	is	a	ZIP	file,	it	needs	to	be	unzipped	first.

Obtaining	plugins
There	are	three	main	ways	(in	my	opinion)	to	get	plugins:	from	the	VMware	site,	from	the
vCO/vRO	team	website,	and	from	VMware	Solution	Exchange.

VMware	core	plugins

The	VMware	page	(https://www.vmware.com/support/pubs/vco_plugins_pubs.html)	contains
download	links,	as	well	as	release	notes	and	any	additional	documentation	for	the	following
plugins:

vRealize	Automation
Amazon	Web	Services
AMPQ
Auto	Deploy
Elastic	Services
HTTP-REST
Multi-node
PowerShell
SNMP
SOAP
SQL
UCS	Manager
vCenter	Chargeback	Manager
vCenter	Service
vCenter	Site	Recovery	Manager
vCloud	Director
vSphere	Replication

vRO/vCO	Team

The	vCOTeam	web	page	is	run	by	Christopher	Decanini	and	Burke	Azbill,	who	not	only
reviewed	this	book	but	are	also	considered	global	experts	on	Orchestrator	within	VMware.

The	site	contains	a	very	good	collection	of	available	plugins	and	also	a	great	deal	of
information	and	tutorials	on	Orchestrator.	For	more	information,	refer	to:

		http://www.vcoteam.info/links/plug-ins.html

VMware	Solution	Exchange

The	VMware	Solution	Exchange	is	a	platform	run	by	VMware	featuring	extra	material	for
vRealize	Operations,	vRealize	Log	insight,	vRealize	Orchestrator,	vRealize	Automation,	and
vSphere	Web	Client	and	is	a	source	of	really	useful	documentation.

You	may	be	required	to	create	a	free	account	to	access	some	of	the	downloads	or	some

https://www.vmware.com/support/pubs/vco_plugins_pubs.html
http://www.vcoteam.info/links/plug-ins.html

additional	licensing	from	vendors.	For	more	information,	refer	to
https://solutionexchange.vmware.com/store	.

https://solutionexchange.vmware.com/store

NSX	integration
In	this	recipe,	we	take	a	look	at	automating	NSX	with	Orchestrator.

Getting	ready
You	need	NSX	installed	and	connected	to	your	vCenter.	There	are	some	good	YouTube	videos
that	show	the	essential	setup.	For	more	information,	refer	to	https://www.youtube.com/watch?
v=CATcY254pP8	.

You	will	need	the	latest	version	of	the	NSX	plugin	(as	of	writing,	version	1.0.4)	and	to	install
it	in	your	Orchestrator.	You	can	find	it	here	by	logging	into	www.vmware.com	and	then
selecting	NSX	and	then	under	Drivers	&	Tools.

To	understand	NSX,	there	is	a	wonderful	Hands-on	Labs	from	VMware	that	you	may	like	to
work	through:	http://www.vmware.com/products/nsx/nsx-hol.html	.

https://www.youtube.com/watch?v=CATcY254pP8
http://www.vmware.com/
http://www.vmware.com/products/nsx/nsx-hol.html

How	to	do	it...
This	recipe	is	broken	up	into	two	sections:	configuring	and	an	example.

Configuring	an	endpoint
1.	 Run	the	workflow	Library	|	NSX	|	Configuration	|	Create	NSX	endpoint.
2.	 Enter	a	name	for	the	endpoint.
3.	 The	user	must	be	defined	as	an	NSX	user	(you	can	also	use	the	admin	user	you	defined

when	installing	the	NSX	appliance).
4.	 The	URL	is	https://[FQDN	NSX	appliance].
5.	 The	default	settings	are	fine	for	the	time	being.	They	define	how	often	and	how	long

Orchestrator	should	try	with	an	NSX	operation.

6.	 We	need	to	check	if	everything	has	worked.	In	the	Orchestrator	Client,	click	on
Inventory	and	then	expand	the	NSX	entry.	You	should	see	some	items,	as	shown	in	the
following	screenshot:

Creating	a	new	logical	switch

We	will	now	create	a	new	logical	switch	in	NSX	with	default	settings	(unicast	and	IP
discovery).	You	need	an	existing	Transport	Zone	for	this	to	work.

1.	 First	we	need	to	get	the	MoRef	of	the	Transport	Zone	(for	MoRefs,	see	the	Introduction
to	Chapter	12,	Working	with	Vsphere).	In	Orchestrator	Client,	click	on	NSX	and	browse
to	the	Transport	Zone	you	need.

2.	 The	objectId	is	what	you're	looking	for:

3.	 You	can	mark	and	copy	this	using	Ctrl	+	C.

4.	 Run	the	workflow	Library	|	NSX	|	NSX	workflows	|	Create	logical	switch.
5.	 Select	the	NSX	endpoint	you	have	defined.
6.	 Paste	(Ctrl	+	V)	the	Transport	Zone	MoRef.
7.	 Give	the	network	a	name	and	description.
8.	 The	Tenant	id	can	be	left	empty;	this	is	a	value	that	vRealize	Automation	uses:

9.	 After	submitting	the	workflow,	check	your	NSX	in	vCenter.

How	it	works...
The	NSX	plugin	is	a	useful	tool	for	automating;	however,	the	workflows	that	come	with	the
plugin	are	mostly	designed	for	vRealize	Automation.	It's	important	to	understand	that	they
return	mostly	an	NSX	object,	meaning	that	they	need	to	be	modified	before	they	can	be	used
in	vSphere	or	vRA	XaaS:

If	you	want	to	use	the	workflows	for	some	kind	of	automation,	you	need	to	use	some	extra
programming.	As	we	saw	earlier,	you	need	to	provide	all	the	MoRefs	of	each	object.	Here	is
an	example	of	how	to	do	this:

To	get	all	the	scopes	(Transport	Zones)	use	the	following	code:

scopes=NSXVdnScopeManager.getVdnScopes(connection);	

To	show-case	this,	I	have	provided	an	example	workflow	11.01	Create	logical	switch	and
its	two	actions:	getAllScopes	and	getScopeIDFromName.

vRealize	Automation	integration

NSX	is	directly	integrated	into	vRA	and	is	configured	and	used	through	the	vCenter	Endpoint.

To	integrate	NSX,	you	need	to	configure	the	vCenter	Endpoint	to	allow	for	NSX	integration
as	well	as	create	a	vRO	Infrastructure	Endpoint,	follow	these	instructions:

1.	 In	the	vCenter	Endpoint,	click	on	the	box	Specify	manager	for	network	and	security
platform.

2.	 Enter	the	address	of	your	NSX	manager	in	the	form	of	https://[FQDN	NSX].
3.	 The	credentials	should	be	a	user	who	has	the	rights	to	manage	your	NSX.
4.	 Follow	the	recipe	Adding	Orchestrator	as	an	Infrastructure	Endpoint	in	Chapter	13,
Working	with	vRealize	Automation	to	add	Orchestrator	as	an	Infrastructure	endpoint.

For	vRA	to	be	able	to	use	the	NSX,	we	need	to	have	at	least	one	transport	zone	as	well	as	one
Distributed	Logical	Router	(DLR).

Please	note	that	you	could	attach	the	DLR	directly	onto	the	external	network	if	this	network

would	have	a	VLAN	ID	other	than	0.	In	my	example,	I	used	an	extra	Edge.

The	following	is	an	example	of	the	setup	that	allows	me	to	create	NSX	networks	that	can
connect	to	iNet	(see	the	following	figure):

1.	 You	need	to	create	a	Unicast	Transport	Zone.
2.	 Create	a	Unicast	Logical	Switch	on	this	Transport	Zone	with	the	default	settings.
3.	 Create	an	Edge	Service	Gateway	with	two	interfaces:

An	Uplink	to	an	external	network	on	a	Distributed	Port	Group	(220Net).	Use	an	IP
from	your	external	network	(192.168.220.90).
An	Internal	to	the	Logical	Switch	you	created	(Transport),	use	the	IP	that	will	be
the	gateway	for	the	Logical	Network	(192.168.10.1)

As	the	Gateway,	you	select	the	Uplink	and	enter	the	IP	of	your	external	Network
Gateway	(192.168.220.2).

4.	 Create	a	Distributed	Logical	Router	(DLR)	with	one	interface:
Connect	the	HA	interface	to	the	Logical	Network	(Transport)
Create	an	Uplink	to	the	Logical	Network	(Transport),	and	use	an	IP	from	the
Logical	Network	(192.168.10.10)

5.	 In	vRA,	go	to	Infrastructure	|	Reservation	|	Network	Profiles.
6.	 Create	an	External	Network	Profile	that	matches	your	External	network	settings.
7.	 Create	an	External	Network	Profile	for	your	Logical	network	(Transport)	with	the

DNS	setting	of	your	External	Network	(220Net	–	Mylab.local).	Set	the	IP	of	your	Edge
(192.168.10.1)	as	the	Gateway.

8.	 Make	sure	that	you	update	your	data	collection	so	that	vRA	sees	the	new	DLR	you
created.

9.	 Assign	in	the	reservation	the	Transport	Zone	as	well	as	the	DLR	with	its	Logical
Network	and	the	External	Network	Profile.

10.	 You	can	now	create	Routed	and	NATed	Network	profiles,	which	you	can	connect

directly	to	the	External	Network	(220Net)	using	its	Gateway.

See	also
Example	workflow	11.01	Create	logical	switch.

Horizon	integration
In	this	recipe,	we	will	look	into	integrating	VMware	Horizon	View	into	Orchestrator.

Getting	ready
You	need	the	Horizon	7	plugin	and	you	need	to	load	it	into	Orchestrator.	The	plugin	can	be
found	at	https://my.vmware.com/group/vmware/details?
productId=577&downloadGroup=HVRO-130-GA	.

There	is	a	known	issue	(plugin	version	1.3	at	the	time	of	writing).	Follow
kb.vmware.com/kb/2144316	in	order	to	switch	on	TLSv1.1	and	1.2	for	Orchestrator.

Tip

Always	fully	read	the	release	notes	of	any	plugin	or	update.	There	are	five	known	issues	that
you	need	to	be	aware	of:	https://pubs.vmware.com/Release_Notes/en/hvro-plugin/horizon-
vro-plugin-13-release-notes.html.

You	also	need	the	Horizon	infrastructure.	The	minimum	would	be	a	Connection	Server	with
one	pool	and	one	VM.

https://my.vmware.com/group/vmware/details?productId=577&downloadGroup=HVRO-130-GA
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2144316
https://pubs.vmware.com/Release_Notes/en/hvro-plugin/horizon-vro-plugin-13-release-notes.html

How	to	do	it...
The	following	shows	the	basic	setup,	an	example,	and	access	point	automation.

Basic	setup

We	will	now	connect	Orchestrator	to	Horizon.	This	basic	setup	will	allow	a	chosen	user	to	do
everything:

1.	 Start	the	workflow	Library	|	Horizon	|	Configuration	|	View	Pod	Configuration	|	Add
View	Pod	In	Configuration.

2.	 Give	the	POD	an	alias.
3.	 Enter	the	FQDN	of	the	connection	server.	The	IP	doesn't	work	most	of	the	times.
4.	 Enter	a	Horizon	user	with	administrator	rights.
5.	 Click	on	Submit	and	wait	until	the	workflow	has	finished.

6.	 Start	the	workflow	Library	|	Horizon	|	Configuration	|	Delegated	Admin
Configuration	|	Add	delegated	Administrator	Configuration.

7.	 If	the	Horizon	View	Pod	isn't	a	drop-down	menu,	the	last	workflow	hasn't	worked,	even
if	it	has	showed	no	error.	Check	kb.vmware.com/kb/2144316	to	fix	this	issue.

8.	 Choose	Yes	on	all	questions	in	order	to	make	the	user	you	choose	in	step	9	an	admin
who	is	able	to	perform	all	the	actions	on	all	pools.

9.	 Choose	a	user	or	group	that	is	allowed	to	administer	Horizon	through	Orchestrator:

https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2144316

10.	 Click	on	Submit	and	wait	until	the	workflow	has	finished.
11.	 Run	the	workflow	Library	|	Horizon	|	Configuration	|	Manage	Self	Service	Pool

Configuration.
12.	 Set	all	to	Yes	to	make	sure	that	the	user	from	step	9	is	allowed	everything.

13.	 Click	on	Submit	and	wait	until	the	workflow	has	finished.

Examples

Let's	run	an	example	by	adding	a	user	to	a	pool.

1.	 Run	the	workflow	Library	|	Horizon	|	Configuration	|	Workflow	delegation	|	Add
User(s)	to	Desktop	Pool.

2.	 Select	the	delegated	administrator	you	defined	earlier.
3.	 Select	the	pool	you	would	like	to	add	a	user	to.
4.	 Enter	a	user	(or	users)	to	be	added.

5.	 Click	on	Submit	and	wait	until	the	workflow	has	finished.
6.	 Check	your	pool	in	Horizon.

Access	point	configuration

Access	points	can	be	configured	during	deployment	but	also	via	REST.	So	let's	do	that.	Please
have	a	look	at	the	following	recipes:	Working	with	REST	in	Chapter	9,	Essential	Plugins	and
Working	with	JSON	in	Chapter	6,	Advanced	Programming	and	Accessing	the	Control	Center

via	REST	plugin	in	Chapter	7,	Interacting	with	Orchestrator,	before	starting.

The	swagger	UI	URL	for	the	access	point	configuration	is	as	follows:

https://[FQDN	accesspoint]:9443/swagger-ui/index.html

1.	 Add	the	Access	point	as	a	REST	host.	The	URL	is
https://access1.mylab.local:9443/rest/	with	basic	authentication	using	the	admin
user	you	defined	during	deployment.

2.	 Add	the	following	REST	operation	with	Content-Type=application/json	and	create
workflows	for	it:	PUT	/v1/config/certs/ssl.

3.	 Update	the	workflows	with	the	header:

						request.setHeader("Content-Type",	"application/json");	

4.	 Edit	the	PUT	/v1/config/certs/ssl	workflow.
5.	 Move	content	to	attributes	and	add	privateKey	and	chain	as	the	string	input-parameter.
6.	 Add	a	scriptable	task	with	the	following	code:

						var	propList=new	Properties();	

						propList.put("privateKeyPem",privateKey);	

						propList.put("certChainPem",chain);	

						var	jsonObj	=	new	Object();	

						for	each	(key	in	propList.keys){	

									jsonObj[key]=propList.get(key);	

						}	

						content=	JSON.stringify(jsonObj);	

7.	 This	will	now	enable	you	to	directly	put	a	new	SSL	certificated	onto	the	access	point.

You	could	now	create	a	workflow	that	updates	the	configuration	just	by	using	these
operations:

GET	/v1/config/edgeservice
PUT	/v1/config/edgeservice/view

How	it	works...
The	Horizon	plugin	is	written	to	be	used	with	the	vSphere	Web	Client	or	with	vRealize
Orchestrator.	If	you	explore	the	workflows	that	come	with	the	plugin,	you	will	see	that	there
are	vCAC	(for	vRA)	and	vSphere	Web	Client	specific	versions	of	all	the	basic	workflows
shown	in	workflow	delegation.

From	here	it's	just	a	small	step	to	build	the	plugin	into	vRealize	Automation	or	the	vSphere
Web	Client.

Once	you	run	the	configuration	workflows,	the	configuration	is	stored	as	an	Orchestrator
configuration	(also	see	the	recipe	Working	with	configurations	in	Chapter	8,	Better	Workflows
and	Optimized	Working)	in	a	folder	called	View.

The	Horizon	plugin	also	comes	with	a	lot	of	Orchestrator	resource	elements	(see	Working
with	resources	in	Chapter	8,	Better	Workflows	and	Optimized	Working),	which	contain	Icons	as
well	as	configured	localizations	(see	recipe	Language	packs	(localization)	in	Chapter	8,
Better	Workflows	and	Optimized	Working)	for	the	vSphere	Web	Client	and	vCAC	(vRA)
workflows.

There's	more...
Let's	look	at	the	integration	of	the	Horizon	Client	into	vSphere	and	vRealize	Automation.

Integration	into	vSphere	Web	Client

The	Horizon	plugin	comes	with	preconfigured	workflows	aimed	at	being	used	in	the	vSphere
Web	Client.	You	find	them	in	the	folder	Library	|	Horizon	|	Workflows	|	vSphere	Web
Client.

You	can	use	them	directly	in	the	vSphere	Web	Client.	However,	you	can	also	customize	the
workflows;	for	example,	you	could	restrict	the	workflows	to	only	one	view	pool	(or	a	couple
of	pools).	To	do	so,	follow	these	instructions:

1.	 Take	one	of	the	workflows,	such	as	Desktop	Allocation	for	Users,	and	create	a	copy	of
it.

2.	 Edit	the	copy.
3.	 Move	the	input-parameter	poolID	as	an	attribute	by	right-clicking	on	the	poolID	and

selecting	Move	as	attribute.
4.	 Click	on	General	and	then	put	in	the	name	of	the	pool.	The	value	is	case-sensitive.
5.	 Do	the	same	with	the	PodAlias.
6.	 In	the	Presentation	section,	click	on	Presentation	(the	top	element)	and	then	on	General,

and	enter	the	following	text:

						This	will	add	a	user	to	the	pool:	${poolId}	in	the	Pod:	

						${podAlias}	

7.	 Running	the	workflow	now	will	only	ask	for	the	user.

An	even	better	method	is	using	configurations	(also	see	the	recipe	Working	with
configurations	in	Chapter	8,	Better	Workflows	and	Optimized	Working)	to	manage	the	settings
centrally.

Also,	see	the	example	workflow:	11.03	Desktop	Allocation	for	Users.

VRA	integration

The	Horizon	plugin	comes	with	a	lot	of	preconfigured	workflows	that	are	ready	to	be	XaaS
blueprints	and	actions.

The	process	to	create	a	vRA	Horizon	Integration	is	a	pretty	lengthy	one	and	will	not	fit	into
this	book.	However,	the	Horizon	plugin	comes	with	a	not	so	bad	PDF	that	describes	the
process.	Go	to	the	plugin	download	page	or	search	for	using-horizon-vro-plugin-13-
guide.pdf.

Some	things	that	are	not	discussed	in	this	PDF	but	are	essential	are	as	follows:

Configure	a	new	Tenant	with	AD	connection	and	external	Orchestrator	using	basic
authentication
Install	and	configure	an	Orchestrator	with	vSphere	authentication	that	uses	the	same	AD
as	Horizon
Your	Horizon	should	be	connected	to	the	same	AD	as	the	Tenant	and	the	Orchestrator
(using	vSphere	Authentication)
The	users/groups	you	use	in	vRA	should	also	have	permissions	in	Horizon
The	vRA	VDI	admins	should	also	be	delegated	admins	in	the	Horizon	plugin

The	Horizon	plugin	also	contains	a	collection	of	icons	(Configuration,	Library	|	Horizon	|
Icon).	You	can	export	these	to	a	local	disk	and	then	import	them	into	vRA	when	you	import
the	workflow	or	action.

See	also
Configure	Access	points	via	REST:
https://communities.vmware.com/people/Windspirit/blog/2016/08/08/configuring-an-
horizon-accesspoint-the-easy-way.

VMware	documentation	for	Horizon	plugin:	https://pubs.vmware.com/horizon-7-
view/topic/com.vmware.ICbase/PDF/using-horizon-vro-plugin-13-guide.pdf.

https://communities.vmware.com/people/Windspirit/blog/2016/08/08/configuring-an-horizon-accesspoint-the-easy-way
https://pubs.vmware.com/horizon-7-view/topic/com.vmware.ICbase/PDF/using-horizon-vro-plugin-13-guide.pdf

vSphere	Replication
In	this	recipe,	we	explore	the	vSphere	Replication	plugin.

Getting	ready
You	need	the	vSphere	Replication	deployed.	You	also	need	a	second	vCenter	(not	really
required	but	it	makes	things	more	interesting)	or	a	Cloud	service	such	as	VMware	vCloud
Air.	If	you	want	to	use	vCloud	Air,	check	kb.vmware.com/kb/2083867	.

If	you	are	new	to	vSphere	Replication,	check	out	the	video	at:	

		https://www.youtube.com/watch?v=EWRs36nS5F0

You	need	to	have	at	least	one	replication	site	configured.

Last	but	not	least,	you	need	the	vSphere	Replication	plugin	(see	the	introduction	to	this
chapter).

https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2083867
https://www.youtube.com/watch?v=EWRs36nS5F0

How	to	do	it...
This	recipe	is	split	into	several	sections.

Registering	sites

The	first	thing	we	need	to	do	is	register	the	sites	for	Orchestrator	to	use.	This	requires	that
you	have	already	registered	a	site	with	vSphere	Replication	in	the	vSphere	Web	Client.

1.	 Check	out	the	Orchestrator	inventory	for	the	sites	that	the	Replication	can	see.	In	my
example,	Replication	can	see	my	two	vCenters.

2.	 Run	the	workflow	Library	|	vSphere	Replication	|	Remote	Site	Management|	Register
VC	Site,	which	registers	the	credentials	for	the	connection	to	a	site	with	Orchestrator;
these	workflows	do	not	register	sites	in	Replication.

Setting	up	a	replication

We	will	now	quickly	set	up	a	replication	of	a	new	VM.

1.	 Start	the	workflow	Library	|	vSphere	Replication	|	Configure	Replication	|	Configure
Replication.

2.	 For	Site,	select	from	your	the	Orchestrator	inventory	in	Replication	your	Primary	Site
(see	first	figure	of	the	section	Registering	Sites).

3.	 For	Source	VM,	select	from	the	Orchestrator	inventory	in	vCenter	Server	a	VM	you
would	like	to	replicate.

4.	 For	the	Target	Site,	select	your	replication	site	from	the	Orchestrator	inventory	in
Replication.	Then	select	a	target	datastore.

5.	 Last	but	not	least,	you	can	select	replication	options	(if	you're	not	sure,	select	the	default
values).

6.	 The	VM	should	now	be	replicated.

Recovery

Well	...	there	is	no	API	exposed	way	to	do	a	vCenter	Replication	recovery.	Only	to/from
vCenter	Replications	in	the	cloud	are	exposed	and	can	be	used.

How	it	works...
vSphere	Replication	is	a	really	useful	tool	that	is	included	in	vSphere	licensing	(from
Standard	onward).	The	tool	allows	you	to	replicate	VMs	between	sites.	Please	note	that	the
recovery	site	doesn't	have	to	be	a	separate	vCenter.	I	have	customers	who	have	multiple	sites
(as	in	distance	from	each	other)	in	the	same	vCenter	using	one	Replication	appliance	to
replicate	VMs	between	Sites.	However,	two	vCenters	are	more	fun	for	this	example.

It	is	a	great	oversight	that	there	is	no	vCenter	-	vCenter	Recovery	function	exposed	on	the	API
and	I	sincerely	hope	that	it	will	be	back	filled	at	some	stage.

The	following	vSphere	Replication	workflows	exist:

There's	more...
There	are	a	couple	of	things	to	explore.

Using	vCloud	Air	for	recovery

To	use	vCloud	Air	for	recovery	you	require	a	vCloud	Air	subscription	with	service	credits
for	Disaster	Recovery	to	the	Cloud.	The	Replication	doesn't	work	with	service	credits	for
Virtual	Private	Cloud	OnDemand.

If	you	don't	have	a	vCloud	account,	you	can	still	test	it.	Just	use	this	Hands-on	Labs	at
https://www.vmware.com/vca-dr-hol-labs.html	.

To	configure	a	vCloud	Air	target,	follow	these	steps:

1.	 Log	in	to	your	vCloud	Air	.
2.	 Click	on	Disaster	Recovery	to	the	Cloud	and	select	your	source	datacenter	(in	this

example	UK	Slough	1	6).
3.	 Click	on	the	Connection	icon	on	the	left	side.
4.	 Copy	the	URL	and	the	Organization	Name	into	a	notepad.
5.	 Log	in	to	your	vCenter.
6.	 Go	to	vSphere	Replication	and	then	click	on	Manage.
7.	 Go	to	target	sites	and	click	on	 	.
8.	 Copy	the	URL	into	Cloud	provider	address	and	the	Organization	Name	in	the	field	with

the	same	name.
9.	 The	login	credentials	are	those	you	use	to	sign	into	vCloud	Air.
10.	 Click	on	Next	and	select	Virtual	Data	Center	(in	this	example	VDC1).
11.	 After	you	have	finished	the	Connect	to	a	Cloud	Provider	Wizard,	you	need	to	map	the

networks	between	vCenter	and	vCloud	Air.	Right-click	on	the	vCloud	Air	connection	and
select	Configure	target	networks.

12.	 In	Orchestrator,	run	the	workflow	Library	|	vSphere	Replication	|	Remote	Site
Management	|	Register	Cloud	Site.

You	are	now	ready	to	use	Replication	with	vCloud	Air.

https://www.vmware.com/vca-dr-hol-labs.html

Integration	into	vSphere	Web	Client

Integration	into	vSphere	Web	Client	isn't	really	needed	as	vSphere	Replication	already	is	a
plugin.	However,	you	could	create	some	workflows	that	create	a	VM	replication	with	your
typical	values.	The	value	in	this	would	be	to	use	the	Orchestrator	user	management	to	allow	a
user	to	run	a	workflow	that	configures	replication	with	preset	values.

See	also
Recipe	SRM	(Site	Recovery	Manager)	integration	in	this	chapter.

The	example	workflow:	11.04	Protect.

SRM	(Site	Recovery	Manager)	integration
In	this	recipe,	we	will	look	into	how	to	automate	SRM	(Site	Recovery	Manager).

Getting	ready
You	will	need	SRM	installed	and	base	configured.	Meaning	that	SRM	should	be	configured
either	with	vSphere	Replication	or	an	SRA	(Storage	Replication	Adapter)	that	connects	to
your	storage.	If	you	are	new	to	SRM,	have	a	look	at	the	video	at
https://www.youtube.com/watch?v=drOdnRaDZ4Q	.

Last	but	not	least,	you	need	the	vSphere	Replication	plugin	(see	the	introduction	to	this
chapter).

https://www.youtube.com/watch?v=drOdnRaDZ4Q

How	to	do	it...
This	recipe	is	broken	up	into	several	sections.

Preparation

You	need	to	make	sure	that	the	following	things	are	set:

Orchestrator	is	authenticating	to	the	PSC	(vSphere	authentications)
Orchestrator	is	configured	to	use	both	the	protected	and	the	recovery	vCenter
The	protected	and	the	recovery	vCenter	must	be	in	the	same	SSO	domain
The	user	that	is	used	in	the	vCenter	connection	should	have	SRM	rights	on	both	the
protected	and	the	recovery	vCenter

Configuration

The	following	steps	are	needed	to	connect	to	SRM:

1.	 Run	the	workflow	Library	|	SRM	|	Configuration	|	Configure	Local	Site.
2.	 Just	accept	the	certificates;	nothing	much	to	do	here.
3.	 Run	the	workflow	Library	|	SRM	|	Configuration	|	Configure	Remote	Site.
4.	 Click	on	Local	Site	and	expand	the	SRM	tab	in	the	inventory.	If	the	tab	is	empty,	then	you

need	to	check	the	rights	of	the	vCenter	user.	Select	the	protected	vCenter	and	accept	the
certificates.

5.	 Run	the	workflow	Library	|	SRM	|	Configuration	|	Login	Remote	Site.
6.	 Select	the	local	site	and	enter	a	user	that	has	SRM	administrator	rights.
7.	 Check	the	Orchestrator	inventory;	it	should	now	show	the	protected	and	the	recovery

sites.

Working	with	the	plugin

Now	that	it	is	all	configured,	let's	try	something.	For	this	we	will	use	vSphere	Replication.

You	need	a	defined	protection	group	and	a	recovery	plan.

1.	 Make	sure	you	have	protected	a	VM	using	vSphere	Recovery.	You	could	use	the	vSphere
Replication	plugin	as	discussed	in	recipe	vSphere	Replication	in	this	chapter.

2.	 Run	the	workflow	Library	|	SRM	|	Protection	Group	|	Add	Replicated	VM	to	vSphere
Replication	Protection	Group.

3.	 Select	the	Protection	Group	and	the	VM	you	have	replicated.
4.	 Wait	until	the	workflow	is	finished.	The	VM	added	to	the	protection	plan,	however,	is	not

configured.
5.	 Run	the	workflow	Library	|	SRM	|	Protection	Group	|	Protect	All	Unprotected

Virtual	Machines	Associated	with	Protection	group.
6.	 The	VM	is	now	protected	with	the	recovery	plan	in	the	protection	group.

How	it	works...
The	SRM	plugin	lets	you	automate	the	protection	of	your	VMs.	The	plugin	comes	with	a	lot
of	good	workflows	and	actions	that	fulfill	almost	all	your	automation	needs.

The	only	negative	is	that	you	can	only	use	the	plugin	on	vCenters	that	are	in	the	same	SSO
domain,	therefore	limiting	its	use.

There's	more...
Let's	talk	about	the	integration	possibilities	for	the	plugin.

vSphere	Web	Client	integration

Integration	into	vSphere	Web	Client	is	pretty	straightforward.	You	can	either	implement	the
existing	workflows	or	modify	them	using	configurations	to	create	fixed	settings.

Another	choice	is	to	create	a	workflow	that	will	replicate	a	VM,	add	it	to	a	recovery	plan,	and
configure	its	protection	in	one	go.	What	would	be	good	in	addition	to	that	is	to	assign	tags	to
the	VMs	that	show	the	protection	group	and	the	recovery	plan	(see	Custom	Attributes	and	Tags
(vAPI)	in	Chapter	12,	Working	with	vSphere).

Also,	see	the	example	workflow:	11.04	Protect.

vRealize	Automation	integration

The	integration	of	SRM	into	vRealize	Automation	7.x	is	described	very	nicely	in	the
following	PDF	from	VMware	(you	need	to	Google	for	it):	vrealize-suite-70-disaster-
recovery-SRM-61.pdf.

See	also
See	the	recipe	vSphere	Replication	in	this	chapter.

Also	see	the	example	workflow:	11.04	Protect.

vROps	(vRealize	Operations	Manager)
integration
In	this	recipe,	we	explore	how	to	use	Orchestrator	to	expand	the	capabilities	of	vRealize
Operations	Manager	(vROps).

Getting	ready
You	will	need	a	vROps	installation	collecting	data	from	vCenter.	You	also	need	to	have
Orchestrator	connected	to	the	same	vCenter.

You	need	to	download	the	vROps	plugin	from	Solution	Exchange	(see	the	introduction	to
this	chapter).	You	may	need	to	create	a	free	account	to	access	the	download.

If	you	are	new	to	vROps,	check	out	the	video	at:	https://www.youtube.com/watch?
v=aN85uCtPtJ4	.

https://www.youtube.com/watch?v=aN85uCtPtJ4

How	to	do	it...
This	recipe	is	split	into	multiple	sections.	To	reduce	confusion	about	what	plugin	is	which,	I
will	talk	about	the	vROps	plugin,	meaning	the	plugin	that	goes	into	vROps	and	the	vROps
package	that	went	into	Orchestrator.

Deploy

After	you	have	downloaded	the	ZIP	folder	from	Solution	Exchange,	you	need	to	unzip	it.	It
contains	the	.package	file	from	Orchestrator	and	the	.pak	file	for	vROps.	We	will	now	deploy
them:

1.	 Import	the	.package	file	into	Orchestrator	(see	recipe	Working	with	packages	in	Chapter
4,	Programming	skills).	This	will	create	a	new	folder	that	contains	the	workflows	that
vROPS	will	call.

2.	 Log	in	to	vROps	as	an	vROps	administrator	(for	example,	using	the	local	admin	account
you	created	on	install).

3.	 Go	to	Administration	and	then	to	Solutions.
4.	 Click	on	the	green	+	sign	to	add	a	solution.	Choose	the	.pak	file	that	comes	with	the

plugin	and	click	on	Upload.
5.	 Wait	until	the	package	is	uploaded.	Click	on	Next	and	accept	the	warning	about	the

signature.
6.	 Accept	the	EULA	and	click	Next.
7.	 Wait	until	the	installation	is	done	and	then	click	on	Finish.
8.	 Now	click	on	Support	and	then	on	Redescribe;	then	run	Redescribe.	Wait	until	you	read

Describe	operation	completed	successfully.
9.	 Go	back	to	Solutions,	select	vRealize	Orchestrator	Action	Adapter,	and	click	on

Configure	(the	gear	icon	on	top).
10.	 Enter	a	name	for	the	configuration.
11.	 Enter	the	IP	or	FQDN	of	your	Orchestrator.
12.	 Click	on	the	green	plus	sign	to	create	new	credentials.	The	user	should	have	permissions

to	execute	workflow	in	Orchestrator	depending	on	your	vCenter	Orchestrator
connection	(shared	or	not)	rights	in	vCenter.

13.	 Click	on	Test	Connection	and	accept	the	Orchestrator	certificate.
14.	 If	the	test	was	successful,	click	on	Save	Settings	and	then	on	Close.

Working	with	the	plugin

We	will	now	use	one	action	in	vROps.	We	will	configure	an	alarm	and	then	trigger	it.

1.	 First	we	have	to	assign	an	action	to	a	recommendation.	Click	on	Content	and	then	on
Recommendations.

2.	 Click	on	the	green	plus	sign	to	create	a	new	recommendation.	Select	an	action	and	enter
text	such	as	vROPS	Test	Alarm.

3.	 Next	we	need	to	define	an	alarm.	Go	to	alarm	Definitions	and	click	on	the	green	plus
sign	to	create	a	new	alarm.

4.	 Name	the	alarm	vROPS	test.
5.	 Select	Base	Object	Type:	Virtual	Machine	from	vCenter	Adapter.
6.	 As	a	symptom,	select	Virtual	machine	is	powered	off	by	writing	power	into	the	filter	and

pressing	Enter.
7.	 As	a	recommendation,	select	the	vROPS	Test	Alarm	you	have	created	by	writing	vrops

into	the	filter	and	pressing	Enter.
8.	 Save	the	alarm	and	wait	for	five	minutes.

9.	 Go	to	alarms.	You	should	see	now	some	alarms	(depending	on	weather	you	have	a
powered	off	VM	or	not).	Click	on	one	of	them	and	you	can	execute	the	action.

How	it	works...
The	vROpsplugin	basically	makes	use	of	Orchestrator's	REST	interface.	What	happens	is	that
an	action	triggers	a	rest	call	to	one	of	the	workflows	that	comes	with	the	package.	As	all
workflows	have	a	unique	ID,	this	works	quite	well.

The	package	contains	the	following	vROps	actions:

vROps	actions Description

Host:	Maintenance
Mode Puts	a	host	in	or	out	of	maintenance	mode.

Host:	Decommission
Host

Puts	a	host	in	maintenance	mode	and	then	removes	it	from
vCenter.

Host:	Power	Operation Shuts	down	or	reboots	a	host.

VM:	Migrate Moves	a	VM	to	a	different	host	and	datastore.

VM:	Power	Operation Reboots,	shuts	down,	or	starts	a	VM.

VM:	Manage	Snapshots Takes,	reverts,	or	deletes	snapshots.

VM:	Reconfigure Changes	the	CPU	and	memory	settings	of	a	VM.

VM:	Upgrade	Tools Runs	the	automated	VMware	Tool	upgrade.

All	these	action	are	not	assigned	to	any	vROps	recommendation.

There's	more...
There	is	another	little	post	I'd	like	to	point	out	to	you.	It's	highly	unsupported	but	still	a	cool
way	to	do	it.	In	this	post,	a	REST	outbound	is	used	to	start	an	Orchestrator	workflow.	For
information,	refer	to:

http://pierrelx.com/new-vrops6-outbound-plugin-alarms-vro-workflows/	.

http://pierrelx.com/new-vrops6-outbound-plugin-alarms-vro-workflows/

Chapter	12.	Working	with	vSphere
This	chapter	is	dedicated	to	working	with	vSphere—or,	to	put	it	bluntly,	the	vCenter	itself.	We
will	be	looking	at	the	following	recipes:

Working	with	the	vCenter	API	(to	change	a	VM's	HA	settings)
Standard	vSwitch	and	Distributed	Switch	ports
Getting	started	with	vAPI
Custom	Attributes	and	Tags	(vAPI)
Executing	a	program	inside	a	VM
An	approval	process	for	VM	provisioning

Introduction
Here	we	will	have	a	look	into	the	vSphere	plugin	and	what	we	can	do	with	it.

vSphere	automation
The	interaction	between	Orchestrator	and	vCenter	is	done	using	the	vCenter	API.	Let's	have	a
closer	look	at	the	interaction,	and	how	it	works,	in	more	detail.

A	user	starts	an	Orchestrator	workflow	(1)	either	in	an	interactive	way	through	the	vSphere
Web	Client	or	the	Orchestrator	Client,	or	through	the	API.	The	workflow	in	Orchestrator
will	then	send	a	job	(2)	to	vCenter	and	receive	a	task	ID	back	(type	VC:Task).	vCenter	will
then	start	enacting	the	job	(3).	Using	the	vim3WaitTaskEnd	action	(4),	Orchestrator	pauses
until	the	task	has	been	completed.	If	we	do	not	use	the	wait	task,	we	can't	be	certain	whether	the
task	has	ended,	was	successful,	or	has	failed.	It	is	extremely	important	to	use	the
vim3WaitTaskEnd	action	whenever	we	send	a	job	to	vCenter.	When	the	wait	task	reports	that
the	job	has	finished,	the	workflow	will	be	marked	as	finished,	as	shown	in	the	following
diagram:

The	vCenter	MoRef

The	Managed	Object	Reference	(MoRef)	is	a	unique	ID	inside	vCenter	for	every	object.
MoRefs	are	basically	strings.	The	following	table	shows	some	examples	of	different	MoRefs:

VM Network Datastore ESXi	host Data	center Cluster

vm-301
network-312

dvportgroup-242
datastore-101 host-44 datacenter-21 domain-c41

The	MoRefs	are	typically	stored	in	the	attribute	.id	or	.key	of	the	Orchestrator	API	object.
For	example,	the	MoRef	of	a	vSwitch	network	is	VC:Network.id.	We	will	make	use	of	them	in
the	Standard	vSwitch	and	Distributed	Switch	Ports	recipe	of	this	chapter.

The	MoRefs	that	are	defined	in	vCenter	are	shown	as	ID	in	Orchestrator.	This	can	either	be	in
the	Orchestrator	inventory	or	as	an	attribute	of	an	API	class	such	as	VM.id.	To	browse	for
MoRefs,	you	can	use	the	Managed	Object	Browser	(MOB),	documented	at
http://pubs.vmware.com/vsphere-
60/index.jsp#com.vmware.wssdk.pg.doc/PG_Appx_Using_MOB.20.1.html	,	or	the
Orchestrator	inventory	and	looking	for	the	field	ID.

The	vim3WaitTaskEnd	action

As	previously	mentioned,	vim3WaitTaskEnd	is	one	of	the	most	central	actions	while
interacting	with	vCenter.	The	action	has	the	following	variables:

Category Name Type Usage

IN vcTask VC:Task This	will	carry	the	reconfiguration	task	from	the	script	tothe	wait	task.

IN progress Boolean Write	the	progress	of	a	task	to	the	logs	as	a	percentage.

IN pollRate Number How	often	the	action	should	be	checked	for	task
completion	in	vCenter.

OUT ActionResult Any Returns	the	task's	result.

The	waiting	task	will	check	(pollRate)	the	status	of	a	task	that	has	been	submitted	to	vCenter
at	regular	intervals.	The	task	can	have	the	following	states:

State Meaning

Queued The	task	is	queued	and	will	be	executed	as	soon	as	possible.

http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.wssdk.pg.doc/PG_Appx_Using_MOB.20.1.html

Running The	task	is	currently	running.	If	the	progress	is	set	to	true,	the	progress	will	be
displayed	in	the	logs	as	a	percentage.

Success The	task	has	finished	successfully.

Error The	task	has	failed	and	an	error	will	be	thrown.

The	function	behind	this	is	the	scripting	class	Task	based	on	type	VC:Task,	which	has	quite	a
lot	of	functions:

Other	vCenter	wait	actions

There	are	actually	five	waiting	tasks	that	come	with	the	vCenter	server	plugin.	The	following
table	gives	an	overview	of	the	other	four:

Task Description

vim3WaitToolsStarted
This	task	waits	until	the	VMware	tools	are	started	on	a	VM	or
until	a	timeout	is	reached.

Vim3WaitForPrincipalIP

This	task	waits	until	the	VMware	tools	report	the	primary	IP	of	a
VM	or	until	a	timeout	is	reached.	This	typically	indicates	that	the
operating	system	is	ready	to	receive	network	traffic.	The	action
will	return	the	primary	IP.

Vim3WaitDnsNameInTools

This	task	waits	until	the	VMware	tools	report	a	given	DNS	name
of	a	VM	or	until	a	timeout	is	reached.	The	in-parameter
addNumberToName	is	not	used	and	can	be	set	to	Null.

WaitTaskEndOrVMQuestion
This	task	waits	until	a	task	is	finished	or	a	VM	develops	a
question.	A	vCenter	question	is	related	to	user	interactions.

Things	to	try...
With	the	release	of	vSphere	6,	a	few	new	features	have	been	added	for	Orchestrator	to
consume.

vAPI

From	vSphere	6,	the	vAPI	is	a	new	way	to	automate	vCenter.	Have	a	look	at	the	Getting	
started		with		vAPI	and	Custom		Attributes		and		Tags	(vAPI)	recipes	in	this	chapter	for	more
details.

Linked	Cloning

Linked	Cloning	allows	you	to	create	new	VMs	quickly	and	with	minimal	storage	use.	All	the
workflows	you	could	ask	for	exist	and	I	would	highly	recommend	giving	it	a	try,	especially
as	this	vCenter	function	is	only	available	(at	this	stage)	through	the	API.	This	feature	has	been
available	since	vCO	5.5:

vSAN

Several	new	workflows	for	vSAN	have	been	added	since	vRO	6.

The	workflow	Library	|	vCenter	|	Host	management	|	Basic	|	Enter	Maintenance	mode	has
a	vSAN	option.

There	is	also	the	new	workflow	Library	|	vCenter	|	Networking	|	VSAN,	which	allows	for
VSAN	network	settings.

In	Library	|	vCenter	|	VSAN	you	will	find	a	new	workflow	to	manage	day-to-day	operations.

Working	with	the	vCenter	API	(to	change	a
VM's	HA	settings)
This	recipe	will	showcase	how	to	derive	a	function	for	a	more	complicated	feature.	We	will
be	configuring	the	HA	setting	for	a	single	VM.	Here,	we	will	primarily	be	focusing	on	how	to
work	with	the	vCenter	API.

Getting	ready
For	this	recipe,	we	will	need	a	vCenter	cluster	that	is	configured	for	VMware	High
Availability	(HA),	as	well	as	a	VM	which	has	an	HA	restart	priority	that	we	can	change.

To	do	this,	you	should	have	an	understanding	of	the	introduction	to	Chapter	6,	Advanced
Programming,	as	well	as	the	recipes	Working	with	the	API	and	JavaScript	complex	variables	in
the	same	chapter.

How	to	do	it...
We	will	use	the	API	and	find	out	how	to	set	VM's	HA	restart	priority.	This	recipe	requires	you
to	take	a	close	look	at	each	of	the	objects	that	we	will	visit	and	read	its	properties	and	external
documentation.

It	is	best	to	follow	this	step	by	step	using	the	API	browser:

1.	 Create	a	new	workflow	and	create	the	following	variables:

Name Type Section Use

priority String IN

This	variable	denotes	the	HA	priority.
It	can	have	the	values
clusterRestartPriority,	disabled,
high,	medium,	and	low.	It	can	also	use
the	presentation	property	Predefined
answers.

VM VC:VirtualMachine IN This	is	the	VM	we	will	be	working
with.

cluster VC:ClusterComputeResource IN This	is	the	cluster	the	VM	is	in.

vcTask VC:Task Attribute
This	variable	will	carry	the
reconfiguration	task	from	the	script	to
the	wait	task.

progress Boolean Attribute The	default	value	is	false.	It	shows	theprogress	of	a	task.

pollRate Number Attribute
The	default	value	is	5	(seconds).	It
shows	how	often	it	should	be	checked
for	task	completion.

2.	 Add	a	scriptable	task	to	the	schema	and	edit	it.
3.	 Use	the	API	browser	to	search	for	the	word	restart.
4.	 Check	the	results.	You	should	find	VcClusterDasVmConfigInfo.restartPriority	and

VcClusterDasVmSettings.restartPriority.	Click	on	the	first	one	and	open	it	in	the	API
browser.

5.	 Then,	click	on	External	documentation.	Your	web	browser	will	open	and	bring	you	to
the	vCenter	API	documentation.	Take	a	look;	the	things	we	need	are	marked	as
Deprecated,	meaning	they	are	of	no	use	to	us.	They	still	work,	but	it's	not	a	good	idea	to
use	functions	that	are	about	to	be	removed:

6.	 Repeat	Step	5	with	the	second	choice.	You	will	find	that	there	are	no	deprecated
functions,	meaning	we	can	use	them.	Let's	start	adding	some	lines	to	our	script.	First,	we
need	the	constructor.	We	will	copy	and	paste	VcClusterDasVmSettings,	which	results	in
the	following:

						var	myVcClusterDasVmSettings	=	new	VcClusterDasVmSettings();	

7.	 Then,	we	need	to	add	the	restartPriority	attribute	to	it.	Clicking	on	the
restartPriority	attribute	tells	us	that	it	is	of	the	type
VcClusterDasVmSettingsRestartPriority,	so	take	a	look	at	that.	We	will	use	the	value
directly,	as	shown	in	the	following	line:

						myVcClusterDasVmSettings.restartPriority=

						VcClusterDasVmSettingsRestartPriority.fromString(priority);	

8.	 Next,	we	need	to	think	about	changing	the	configuration.	The	external	documentation
also	tells	us	that	VcClusterDasVmSettings	is	a	property	of	VcClusterDasVmConfigInfo.
Taking	a	look	at	this	object,	we	find	that	the	attribute	.key	is	a	VM	object,	and	that	the
.dasSettings	attribute	will	take	our	myVcClusterDasVmSettings.

9.	 Now	we	will	add	the	constructor	of	VcClusterDasVmConfigInfo	to	our	script,	as	well	as
the	rest	of	the	lines:

						var	myVcClusterDasVmConfigInfo	=	new	VcClusterDasVmConfigInfo();	

						myVcClusterDasVmConfigInfo.key=VM;	

						myVcClusterDasVmConfigInfo.dasSettings=myVcClusterDasVmSettings;	

10.	 Again,	we	need	to	go	higher	in	the	API	tree.	Looking	at	the	parent	of
VcClusterDasVmConfigInfo	we	find	VcClusterDasVmConfigSpec.	This	has	a	.info
attribute,	which	will	take	a	value	of	VcClusterDasVmConfigInfo.	However,	a	closer	look
at	the	external	documentation	shows	us	that	we	need	to	define	the	.operation	attribute.
We	know	this	because	all	the	other	attributes	come	with	a	*	saying	that	they	do	not	need
to	be	present,	meaning	the	operation	has	to	be	there.	So,	we	will	add	that	as	well:

						var	myVcClusterDasVmConfigSpec	=	new	VcClusterDasVmConfigSpec();	

						myVcClusterDasVmConfigSpec.operation	=	VcArrayUpdateOperation.add;	

						myVcClusterDasVmConfigSpec.info	=	myVcClusterDasVmConfigInfo;	

11.	 We	will	still	need	to	go	higher.	The	parent	of	myVcClusterDasVmConfigSpec	is
vcClusterConfigSpecEX.	It	has	a	.dasVmConfigSpec	attribute,	which	will	take	a	value	of
VcClusterDasVmConfigSpec,	but	further	inspection	reveals	that	it	needs	an	array	of
VcClusterDasVmConfigSpec.	So	let's	do	that:

						var	myVcClusterDasVmConfigSpecArray	=	new	Array()	;	

						myVcClusterDasVmConfigSpecArray.push(myVcClusterDasVmConfigSpec);	

						var	myVcClusterConfigSpecEx	=	new	VcClusterConfigSpecEx()	;	

						myVcClusterConfigSpecEx.dasVmConfigSpec	=	

						myVcClusterDasVmConfigSpecArray;	

12.	 The	next	part	isn't	documented,	but	results	from	trial	and	error.	We	need	to	define	the
.dasConfig	attribute.	Try	the	finished	script	and	comment	the	next	two	lines	out,	and	you
will	get	an	error	message	telling	you	that	you	need	VcClusterDasConfigInfo:

						var	myVcClusterDasConfigInfo	=	new	VcClusterDasConfigInfo()	;	

						myVcClusterConfigSpecEx.dasConfig	=	myVcClusterDasConfigInfo;	

13.	 We	are	almost	there;	one	more	step	and	we	are	done.	Check	out	the
VcClusterConfigSpecEx	object,	which	tells	us	that	it	can	be	used	with	a	cluster,	so	let's
look	the	other	way	around.	Search	for	Cluster	and	take	a	closer	look	at
ClusterComputeResource.	It	has	a	method	called	reconfigureCluster_Task(),	which
will	take	our	VcClusterConfigSpecEx.	So,	let's	use	the	following:

						vcTask=cluster.reconfigureComputeResource_Task

						(myVcClusterConfigSpecEx,	true);	

14.	 The	return	value	of	this	attribute	is	a	vCenter	task.	We	will	define	the	Boolean	of	the
method	as	true,	as	only	the	changes	to	the	cluster	are	needed.	If	we	set	it	to	false,	it	will
apply	all	the	changes	defined	in	VcClusterDasConfigInfo.

15.	 Our	little	script	is	finished	and	looks	like	the	following:

						var	myVcClusterDasVmSettings	=	new	VcClusterDasVmSettings();	

						myVcClusterDasVmSettings.restartPriority=

						VcClusterDasVmSettingsRestartPriority.fromString(priority);	

	

						var	myVcClusterDasVmConfigInfo	=	new	VcClusterDasVmConfigInfo();	

						myVcClusterDasVmConfigInfo.key=VM;	

						myVcClusterDasVmConfigInfo.dasSettings=myVcClusterDasVmSettings;	

	

						var	myVcClusterDasVmConfigSpec	=	new	VcClusterDasVmConfigSpec()	;	

						myVcClusterDasVmConfigSpec.operation	=	VcArrayUpdateOperation.add;	

						myVcClusterDasVmConfigSpec.info	=	myVcClusterDasVmConfigInfo;	

	

						var	myVcClusterDasVmConfigSpecArray	=	new	Array()	;	

						myVcClusterDasVmConfigSpecArray.push(myVcClusterDasVmConfigSpec);	

						var	myVcClusterConfigSpecEx	=	new	VcClusterConfigSpecEx()	;	

						myVcClusterConfigSpecEx.dasVmConfigSpec	=

						myVcClusterDasVmConfigSpecArray;	

						var	myVcClusterDasConfigInfo	=	new	VcClusterDasConfigInfo()	;	

						myVcClusterConfigSpecEx.dasConfig	=	myVcClusterDasConfigInfo;	

	

						vcTask=cluster.reconfigureComputeResource_Task

						(myVcClusterConfigSpecEx,	true);	

16.	 As	the	final	step,	we	will	add	the	action	vim3WaitTaskEnd	to	the	workflow:

How	it	works...
This	recipe	has	probably	caused	you	a	bit	of	a	headache,	but	it	is	also	extremely	important	to
understand	how	to	create	workflows	that	use	properties	that	are	not	implemented	in	the
existing	library.	Working	through	the	API,	finding	the	items,	and	putting	them	together	is	a
vital	part	of	advanced	programming	skills	in	Orchestrator.

The	method	shown	here	is	a	difficult	one,	but,	if	you	already	know	to	which	object	a	setting
belongs,	you	can	also	move	from	the	top	down.	In	this	case,	you	will	have	to	drill	down	from
ClusterComputeResource.	If	you	like,	give	it	a	try.	Have	a	go	at	the	DRS	setting	for	a	VM.	It
basically	follows	the	same	route.

There	is	another	way	to	generate	this	kind	of	script.	Check	out	the	Onyx	project	at
labs.vmware.com/flings/onyx.

Onyx	integrates	itself	between	vSphere	Client	and	vCenter	Server	and	translates	the	actions	in
a	script.	However,	it	is	always	better	to	understand	what	actually	happens	and	how	to	search
and	find	it.

There's	more...
To	make	the	workflow	work	better,	we	will	apply	a	few	presentation	properties	to	it.	We
looked	at	these	in	the	Workflow	presentations	and	Linking	actions	in	presentations	recipes	in
Chapter	5,	Visual	Programming:

1.	 Add	the	Predefined	answers	property	to	the	presentation	of	the	in-parameter	priority.
The	correct	answers	are	found	in	the	VcClusterDasVmSettingsRestartPriority	object.
This	will	only	show	the	correct	values	that	should	be	entered.

2.	 Add	the	Predefined	list	of	elements	property	to	the	presentation	of	the	in-parameter	VM.
3.	 Click	on	the	purple	puzzle	piece	(it	helps	us	to	create	an	action	call),	and	in	the	pop-up,

search	for	Cluster;	select	the	only	return	action	called	getAllVMsOfCluster	and	assign	it
to	the	input	of	the	cluster:

See	also
Refer	to	the	example	workflows,	12.02.1	Change	VM	HA	settings	and	12.02.2	Change	VM
DRS	settings.

Standard	vSwitch	and	Distributed	Switch	ports
Here,	we	will	discuss	the	problems	that	arise	in	vCenter	from	the	difference	between	vSwitch
and	Distributed	Switch	ports	in	vCenter.	We	will	learn	how	to	bypass	these	problems,	and
create	a	workflow	that	will	connect	a	VM	to	a	Standard	vSwitch	or	Distributed	Switch	port.

Getting	ready
We	need	a	vSphere	environment	that	has	at	least	one	vSwitch	and	at	least	one	Distributed
Switch	configured,	each	with	at	least	one	VM	Network	port	group.	For	this	recipe,	it	is	not
necessary	for	the	switches	to	be	actually	connected	to	any	NICs;	they	can	be	implemented	as
blind	switches.

To	understand	the	creation	of	the	action,	you	should	understand	how	to	use	the	vCenter	API,
as	showcased	in	the	recipe	Working	with	the	vCenter	API	(to	change	a	VM's	HA	settings).

We	also	need	a	VM	with	a	virtual	network	card.

How	to	do	it...
We	will	split	this	recipe	into	three	parts:	building	an	action,	building	a	workflow	that	uses	the
action,	and	the	final	piece,	to	make	it	work	the	way	we	want	it	to.

Creating	an	action

We	will	create	a	new	action	that	will	connect	a	VM	to	any	network.	I	derived	the	code	for	this
action	from	the	existing	vCenter	server	plugin	actions
connectVmNicNumberToVirtualDistributedPortgroup	and
createVirtualEthernetCardNetworkConfigSpec.	Take	a	look	at	their	source	code.	To	create
an	action,	complete	the	following	steps:

1.	 Create	a	new	action	and	name	it	connectVmToNetwork.
2.	 Define	the	following	variables:

Name Type Section Use

vm VC:VirtualMachine IN This	variable	contains	the	VM	that	should
be	changed

network VC:Network IN This	variable	defines	the	new	network	you
will	connect	to

startConnected Boolean IN
This	variable	denotes	whether	or	not	the
network	should	be	connected	at	the	start
of	the	VM

connected Boolean IN This	variable	denotes	whether	or	not	the
network	should	be	connected

VC:Task Return The	return	value	of	the	action	that
contains	the	vCenter	task	ID

3.	 Enter	the	following	script:

						//connection	settings	

						var	connectInfo	=	new	VcVirtualDeviceConnectInfo();	

						connectInfo.allowGuestControl	=	false;	

						connectInfo.connected	=	connected;	

						connectInfo.startConnected	=	startConnected;	

						//check	if	this	is	a	distributed	switch?	

						if	(network.id.indexOf("dvport")>=0){	

										//backing	for	distributed	switch	

										var	netBackingInfo	=	new

										VcVirtualEthernetCardDistributedVirtualPortBackingInfo();	

										var	port	=	new	VcDistributedVirtualSwitchPortConnection();	

										var	dvSwitch	=	VcPlugin.convertToVimManagedObject(network,

										network.config.distributedVirtualSwitch);	

										port.switchUuid	=	dvSwitch.uuid;	

										port.portgroupKey	=	network.key;	

										netBackingInfo.port	=	port;	

						}	else	{	

										//backing	for	vSwitch	

										var	netBackingInfo	=	

										new	VcVirtualEthernetCardNetworkBackingInfo();	

										netBackingInfo.deviceName	=	network.name;	

						}	

						//Devicespecs	are	arrays	

						var	nicArray	=	new	Array();	

						//constructor	for	VM	configuration	

						var	vmspec	=	new	VcVirtualMachineConfigSpec();	

						//constructor	for	the	device	configuration	

						var	devicespec	=	new	VcVirtualDeviceConfigSpec();	

						//get	existing	configuration	

						var	devices	=	vm.config.hardware.device;	

						//go	through	all	devices	to	find	NIC	

						for(var	i	in	devices){	

						//	is	it	a	NIC?	

										if	(System.getModule("com.vmware.library.vc.vm.network")

										.isSupportedNic(devices[i]))	{	

														devicespec.device	=	devices[i];	

														//edit	the	exiting	configuration	

														devicespec.operation	=	

														VcVirtualDeviceConfigSpecOperation.edit;	

														//attach	new	backing	

														devicespec.device.backing	=	netBackingInfo;	

														//attach	new	connection	setting	

														devicespec.device.connectable	=	connectInfo;	

														//make	array	

														nicArray.push(devicespec);	

										}	

						}	

						//build	config	

						vmspec.deviceChange	=	nicArray;	

						//enact	change	on	VM	

						return	vm.reconfigVM_Task(vmspec);	

4.	 Save	and	close	the	action.

Note

Please	note	that	this	is	a	simplified	version	that	will	connect	all	virtual	network	cards	of	a	VM
to	the	new	network.	Please	refer	to	the	original	action,
connectVmNicNumberToVirtualDistributedPortgroup,	for	pointers	on	how	to	select	a	single
network	card.

Creating	the	workflow

Now	we	will	create	the	workflow:

1.	 Create	a	new	workflow	and	define	the	following	variables:

Name Type Section Use

vm VC:VirtualMachine IN This	contains	the	VM	that	should	be	changed

network VC:Network IN This	is	the	new	network	which	you	connect	to

task VC:Task Attribute This	transports	the	vCenter	Task	ID

progress Boolean Attribute Value	False.	Show	progress	in	percent

pollRate Number Attribute Value	5.	Interval	for	task	check

2.	 Add	the	following	actions	to	the	schema:
connectVmToNetwork

vim3WaitTaskEnd

3.	 Bind	all	the	parameters.
4.	 Run	the	workflow.	You	will	see	that	at	the	moment,	you	can	only	select	vSwitch	ports.

Distributed	Switch	ports	cannot	be	selected.

Making	it	work	with	presentation

Now,	we	will	make	the	workflow	function	for	distributed	port	groups:

1.	 Edit	the	workflow	and	go	to	presentation.
2.	 Add	the	following	properties	to	the	network	in-parameter:

Property Value

Predefined
list	of
elements

GetAction("com.vmware.library.vc.network","getNetworkForResourcePoolHostVm").call(

null	,	null	,	#vm)

Select
value	as

list

3.	 Save	and	run	the	workflow.

Now	when	you	select	the	network,	you	will	be	presented	with	a	list	of	all	the	existing	networks
(vSwitch	and	Distributed	Switch).

How	it	works...
There	isn't	much	magic	here;	what	we	have	used	is	a	deeper	understanding	of	the	API.
VMware	introduced	the	Distributed	Switch	back	in	vSphere	4,	and	before	that,	only	normal
switches	(vSwitch)	existed.	So,	VMware	has	added	new	types	for	the	Distributed	Switch.	A
vSwitch	port	group	is	of	the	VC:Networks	type,	while	a	distributed	port	group	is	of	the
VC:DistributedVirtualPortGroup	type.	If	you	take	a	look	at	each	of	these	types	in	the	API
browser,	you	will	find	that	they	have	the	same	structure.	Both	types	are	more	or	less
interchangeable.

Let's	discuss	how	this	workflow	functions	in	more	detail:

We	will	use	the	property	in	the	presentation	to	display	all	the	available	vSwitch	and
Distributed	Switch	ports.
We	will	then	push	either	VC:Network	or	VC:DistributedVirtualPortGroup	in	a
VC:Network	in-parameter.	As	both	are	the	same,	this	works.	We	will	use	VC:Network
because	of	the	existing	action	we	used	in	the	presentation.
In	the	action,	we	will	check	the	ID	of	the	network	object.	The	ID	is	the	MoRef	(Managed
Object	Reference-refer	to	the	Introduction	section	of	this	chapter)	string	that	each	object
in	vCenter	has.	The	MoRef	of	VC:Network	begins	with	network,	and	that	of
VC:DistributedVirtualPortGroup	starts	with	dvport.
We	will	then	use	the	method	for	either	vSwitches	or	Distributed	Switches	to	define
VcVirtualEthernetCardNetworkBackingInfo.
The	rest	is	more	or	less	a	straightforward	copy	of	the	action,
connectVmNicNumberToVirtualDistributedPortgroup.

If	you	take	a	closer	look	at	the	script,	you	will	see	the	difference	in	how	the	vSwitch	and	the
Distributed	Switch	ports	are	connected.	Both	use	the	BackingInfo	type	to	build	the	connection.
Please	note	that	although	they	are	interchangeable,	they	are	actually	different	types.

The	vSwitch	port	uses	a	netBackingInfo	instance,	var	netBackingInfo	=	new
VcVirtualEthernetCard		Network		BackingInfo();,	and	then	simply	connects	the	network
name	to	it,	as	follows:

netBackingInfo.deviceName	=	network.name;	

For	the	Distributed	Switch,	we	will	also	use	a	netBackingInfo	instance;	however,	we	will	use
a	slightly	different	one:

var	netBackingInfo	=	new	

VcVirtualEthernetCardDistributedVirtualPortBackingInfo();	

We	need	to	define	a	port	connection:

var	port	=	new	VcDistributedVirtualSwitchPortConnection();	

The	port	connection	requires	the	UUID	of	the	Distributed	Switch:

var	dvSwitch	=	VcPlugin.convertToVimManagedObject(network,	

network.config.distributedVirtualSwitch);	

port.switchUuid	=	dvSwitch.uuid;	

Instead	of	the	name,	we	will	connect	the	network	using	its	key	(MoRef):

port.portgroupKey	=	network.key;	

Now	we	can	build	the	connection:

netBackingInfo.port	=	port;	

Independent	of	the	vSwitch	or	Distributed	Switch,	we	will	use	the	backinginfo	variable	to
alter	the	device	settings	of	the	VM:

devicespec.device.backing	=	netBackingInfo;	

See	also
Refer	to	the	example	workflow	12.05	Connect	VM	to	Network	and	the	connectVmToNetwork
action.

Getting	started	with	vAPI
In	this	recipe,	we	will	look	at	the	vAPI	plugin	that	comes	with	vSphere	6.

Getting	ready
You	will	need	the	vAPI	plugin	(which	is	already	integrated	into	vRO	7.x).

How	to	do	it...
This	recipe	is	broken	up	into	two	parts	just	work	though	them	in	sequence.

Configuring	vCenter	endpoint	and	metadata

We	will	now	create	a	vCenter	vAPI	endpoint	and	import	the	metadata:

1.	 Run	the	workflow	Library	|	VAPI	|	Add	vAPI	Endpoint.
2.	 The	vAPI	endpoint	is	the	https://[FDQN	vCenter]/api.
3.	 Using	SSL	is	always	a	good	idea.
4.	 If	you	are	using	self-signed	certificates	you	can	import	them	without	warnings.
5.	 Use	a	user	that	will	be	the	connection	between	Orchestrator	and	vCenter:

6.	 We	now	need	to	import	the	metamodel	of	the	vAPI	endpoint.	Run	the	workflow	Library	|
VAPI	|	import	vAPI	metamodel.

7.	 The	inputs	are	the	same	as	with	adding	the	endpoint.

Exploring	the	content

Now	we	have	created	an	endpoint	and	imported	the	metamodel,	let's	have	a	look	what	we	get.

1.	 Select	Tools	|	API	Explorer	from	the	upper	right-hand	corner	of	the	Orchestrator	Client.
2.	 Scroll	down	to	the	VAPI	plugin	and	expand	it:

What	you	see	here	is	the	metamodel	that	has	been	imported,	showing	all	objects	and
properties	that	are	available	for	this	endpoint.	Have	a	look	and	scroll.

We	will	be	giving	the	vAPI	a	go	in	the	Custom	Attributes	and	Tags	(vAPI)	recipe	of	this
chapter.

How	it	works...
With	vSphere	6,	VMware	also	released	the	vAPI.	The	vAPI	is	a	REST-based	package	that	is
actually	called	VMware	vCloud	Suite	SDK.	At	this	stage	it	has	some	limited	functionality	such
as	tagging,	transfer	services,	and	access	to	the	content	library;	however,	VMware	has
announced	that	functionality	will	be	increased	in	the	future.

As	VMware	(and	lots	of	other	vendors)	are	moving	towards	a	REST-based	API,	the	common
old	SOAP	API	of	vCenter	will	be	replaced	more	and	more	with	the	vAPI.	However,	never
fear:	too	much	money	and	effort	has	been	sunk	into	vCenter	API	programming	for	it	to
vanish	overnight.

The	most	interesting	thing	about	the	vAPI	is	the	way	that	the	API	content	is	delivered.
Traditionally,	the	API	content	is	included	in	the	plugin,	but	with	the	vAPI,	you	import	the
content	and	the	metamodel	(see	the	Working	with	the	vCenter	API	recipe	in	this	chapter).	This
makes	it	possible	to	have	one	plugin	to	handle	multiple	API	contents.	It	is	reminiscent	of	the
SOAP	model,	where	the	API	documentation	is	contained	in	the	interface.

See	also
Christophe	Decanini’s	blog	on	the	vAPI	at	https://cto.vmware.com/vmwares-solution-to-api-
challenges/	.

Using	REST	to	talk	to	the	vAPI	at	http://www.vcoteam.info/articles/learn-vco/307-leveraging-
vcenter-6-vapi-rest-endpoint.html	.

https://cto.vmware.com/vmwares-solution-to-api-challenges/
http://www.vcoteam.info/articles/learn-vco/307-leveraging-vcenter-6-vapi-rest-endpoint.html

Custom	Attributes	and	Tags	(vAPI)
In	this	recipe,	we	will	see	how	to	create	and	use	custom	attributes	and	tags.	We	are	talking
about	vCenter	tags	and	not	about	Orchestrator	tags,	which	have	no	common	ground.	This
recipe	will	also	use	the	vAPI	plugin.

Getting	ready
You	need	to	have	a	VM	to	which	you	can	tag	or	assign	a	custom	attribute.

For	tagging,	you	need	to	have	a	vAPI	vCenter	Endpoint.	See	the	Getting	started	with	vAPI
recipe	in	this	chapter.

How	to	do	it...
We	will	split	this	recipe	into	two	parts.	The	first	part	concerns	Custom	Attributes,	while	the
second	concerns	Tags.

Custom	Attributes

Please	note	that	Custom	Attributes	are	only	visible	in	the	vSphere	Client	(also	called	Fat	client
or	c-Client).

We	will	now	work	through	the	lifecycle	of	a	Custom	Attribute:

1.	 Create	a	new	workflow.
2.	 Drag	the	setOrCreateCustomField	action	onto	the	schema.	This	action	will	create	a

definition	and	set	a	value	to	an	object.
3.	 Drag	the	getCustomField	action	onto	the	schema.	This	action	will	read	a	Custom

Attribute	from	an	object.
4.	 Now	assign	all	the	variables	as	input	parameters.
5.	 Change	the	type	of	managedEntity	from	Any	to	VC:VirtualMachine.
6.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	create	the	delete	custom

attribute:

						var	vimHost	=	managedEntity.vimHost;	

						var	key;	

								var	customFieldDefs	=	vimHost.customFieldsManager.field;	

								for	(var	i	=	0;	i	<	customFieldDefs.length;	i++)	{	

										if	(customFieldDefs[i].name	==	customFieldName)	{	

										key	=	customFieldDefs[i].key;	

												break;	

										}	

								}	

								vimHost.customFieldsManager.setField(managedEntity,	key,	"");	

7.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	delete	the	custom
attribute	definition:

						var	vimHost	=	managedEntity.vimHost;	

						var	customFieldDefs	=	vimHost.customFieldsManager.field;	

								for	(var	i	=	0;	i	<	customFieldDefs.length;	i++)	{	

										if	(customFieldDefs[i].name	==	customFieldName)	{	

												key	=	customFieldDefs[i].key;	

												break;	

										}	

								}	

						vimHost.customFieldsManager.removeCustomFieldDef(key);	

8.	 Now	assign	all	the	variables	as	input	parameters.
9.	 Change	the	type	of	managedEntity	from	Any	to	VC:VirtualMachine.
10.	 Save	and	run	the	workflow.

See	also	the	example	workflow	12.02.1	Custom	Attribute	Lifecycle.

vSphere	Tags

We	will	now	work	with	Tags	using	the	vAPI:

1.	 Create	a	new	workflow	with	the	following	variables:

Name Type Section Use

endpoint VAPI:VAPIENDPOINT IN The	endpoint	we	want	to	use

tagCatName String IN Name	of	the	tag	category

tagName String IN Name	of	the	tag

tagValue String IN Value	of	the	tag

VM VC:VirtualMachine IN VM	to	tag

tagCatID String Attribute ID	of	the	tag	category

tagID String Attribute ID	of	the	tag

2.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	create	a	new	tag
category.	Define	tagCatID	as	OUT:

						var	client	=	endpoint.client();	

						var	tagging	=	new	com_vmware_cis_tagging_category(client);	

						var	spec	=	new	com_vmware_cis_tagging_category_create__spec();	

						spec.name	=	tagCatName;	

						spec.description	=	tagDesciption;	

						spec.cardinality	=	"MULTIPLE";	

						spec.associable_types	=	["VirtualMachine"];	

						var	tagCatID	=	tagging.create(spec);		

3.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	create	a	new	tag	using
the	created	tag	category.	Define	tagID	as	OUT:

						var	client	=	endpoint.client();	

						var	tagging	=	new	com_vmware_cis_tagging_tag(client);	

						var	spec	=	new	com_vmware_cis_tagging_tag_create__spec();	

						spec.category_id	=	tagCatID;	

						spec.description	=	tagDesciption;	

						spec.name	=	tagName;	

						var	tagID	=	tagging.create(spec);	

4.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	associate	a	tag	with	a
VM:

						var	client	=	endpoint.client();	

						var	tagging	=	new	com_vmware_cis_tagging_tag__association(client);	

						var	objectId	=	new	com_vmware_vapi_std_dynamic__ID()	;	

						objectId.id	=	VM.id;	

						objectId.type	=	VM.vimType;	

						tagging.attach(tagID,	objectId);	

5.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	read	all	tag	and	tag
category	information:

						var	client	=	endpoint.client();	

						var	tagging	=	new	com_vmware_cis_tagging_tag(client);	

						var	tag	=	tagging.get(tagId);	

						System.log("Name	:"+tag.name+"\nCategory

						:"+tag.category_id+"\nDeciption	:"+tag.description);	

	

						tagCatID=tag.category_id;	

						var	tagging	=	new	com_vmware_cis_tagging_category(client);	

						var	tagCat	=	tagging.get(tagCatID);	

						System.log("Name	:"+tagCat.name+"\nCategory

						:"+tagCat.cardinality+"\nDeciption	:"+tagCat.description+"\nTypes	

						:"+tagCat.associable_types);	

6.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	delete	a	tag	from	a	VM:

						var	client	=	endpoint.client();	

						var	tagging	=	new	com_vmware_cis_tagging_tag(client);	

						tagging.delete(tagID);	

7.	 Drag	a	scriptable	task	onto	the	schema.	The	following	script	will	delete	a	tag	category:

						var	client	=	endpoint.client();	

						var	tagging	=	new	com_vmware_cis_tagging_category(client);	

						tagging.delete(tagCatID);	

8.	 Assign	all	the	parameters	and	then	run	the	workflow.	For	testing	purposes,	you	may	want
to	comment	the	delete	instructions	from	Steps	6	and	7	out.

The	Notes	field

The	only	field	that	is	the	same	in	vSphere	Client	and	vSphere	Web	Client	is	the	Notes	field.
Here	is	how	to	read	it:

content=vm.config.annotation;	

Here	is	how	to	set	it:

var	spec	=	new	VcVirtualMachineConfigSpec();			

spec.annotation	=	"test";			

vm.reconfigVM_Task(spec);	

How	it	works...
This	recipe	is	actually	more	about	the	changes	in	vSphere	in	the	last	couple	of	years.	Until
vSphere	5.5	and	the	first	real	workable	vSphere	Web	Client,	the	vSphere	Client	using	Custom
Attributes	have	been	the	way	to	handle	things.	With	vSphere	6,	vAPI	and	a	higher	value	in
vSphere	Web	Client	tagging	is	the	way	to	go.

With	the	instructions	in	this	recipe,	you	could	create	a	workflow	that	transports	your	Custom
Attributes	into	Tags:

Custom	Attributes

Custom	attributes	are	actually	two	things.	First,	we	have	the	custom	attribute	definition	and
then	we	have	the	custom	attribute	value.	The	definition	is	set	once	and	is	then	available	for	all
(or	almost	all)	objects	inside	vCenter.	A	value	is	specifically	assigned	to	one	object.	For
instance,	you	set	a	Definition	called	Manager.	This	field	is	now	available	to	all	objects	in
vCenter.	Then	you	define	a	value	of	Mickey	Mouse	to	one	(or	more)	VM(s).

There	are	basically	only	three	methods	of	customFieldsManager	that	we	are	using:

Method Description

addCustomFieldDef() Adds	a	definition	to	vCenter.

removeCustomFieldDef() Removes	a	definition	from	vCenter.

setField() Sets	a	value	to	an	object.

vAPI	tagging

Tagging	is	one	of	those	things	that	has	been	missing	from	Orchestrator	since	their
introduction.	The	only	way	around	that	was	to	use	PowerShell.	With	the	vAPI,	things	are
easier.

Tags	in	vSphere	are	a	combination	of	a	tag	category	and	the	Tag	itself.	Both	items	are
available	for	all	vCenter	objects.	The	tag	category	can	be	limited	to	specific	types	of	Objects,
for	example,	virtual	machines.	In	addition	to	this,	a	tag	category	can	be	set	to	either	one	Tag
per	object	or	multiple	Tags	per	object.	The	Tag	itself	has	only	a	name	and	description,
however,	it's	the	item	that	gets	assigned	to	an	object.

To	get	some	more	information	about	the	vAPI	documentation,	here	is	what	I	used:

https://pubs.vmware.com/vsphere-
60/index.jsp#com.vmware.dcli.cmdref.doc/com/vmware/cis/tagging/Category.html

If	you	get	the	hang	of	it,	it's	actually	quite	easy,	and	I'm	looking	forward	to	more	possibilities.

https://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.dcli.cmdref.doc/com/vmware/cis/tagging/Category.html

See	also
See	also	the	following	example	workflows:

12.03.1	Custom	Attribute	Lifecycle

12.3.2	Tag	Lifecycle

12.3.3	assignTag2VM

Executing	a	program	inside	a	VM
In	this	recipe,	we	will	take	a	look	at	how	to	use	Guest	Operations	(formerly	called	VIX)	with
Orchestrator.	Guest	Operations	is	a	method	by	which	vCenter	can	transfer	files	and	execute
programs	inside	a	VM	using	VMware	Tools.	This	method	is	of	interest	in	DMZs,	where
security	reduces	the	amount	of	automation	possible.

Getting	ready
We	will	need	a	running	VM	of	any	OS	flavor	you	are	happy	with.	This	VM	also	needs	to	have
VMware	Tools	installed.	In	this	example,	we	will	use	a	Windows	VM.

We	also	need	a	program	to	install	in	the	operating	system.	In	this	example,	we	will	use	Java
for	Windows.	The	silent	install	instructions	can	be	found	at
https://www.java.com/en/download/help/silent_install.xml	.

You	will	need	to	upload	this	file	to	Orchestrator	in	a	directory	that	is	accessible	to
Orchestrator.	Refer	to	the	Configuring	access	to	the	local	filesystem	recipe	in	Chapter	2,
Optimizing	Orchestrator	Configuration.	In	this	example,	we	will	upload	the	file	to	the
Orchestrator	appliance	in	the	/var/run/vco/	directory.

You	need	a	user	that	has	local	administrator	rights	on	the	VM's	operating	system.

https://www.java.com/en/download/help/silent_install.xml

How	to	do	it...
We	will	divide	this	recipe	into	two	steps:	first,	building	the	two	necessary	workflows,	and
second,	conducting	a	test	run.

Creating	a	waiting	workflow

When	we	want	to	run	a	program	on	a	VM,	we	need	to	know	when	it	has	finished.	So,	let's
build	a	waiting	workflow	first:

1.	 Create	a	new	workflow	and	name	it	waitUntilProgramInstalled.
2.	 Define	the	following	variables:

Name Type Section Use

vmUsername String IN This	variable	denotes	the	local	VM	user.

vmPassword SecureString IN This	variable	denotes	the	local	VM	user
password.

vm VC:VirtualMachine IN This	variable	denotes	the	VM	to	run	on.

processID Number IN This	variable	denotes	the	process	ID	of	the
program	that	is	running.

sleepTime Number IN This	variable	denotes	the	time	to	wait
between	polls,	in	seconds.

counter Number Attribute The	default	value	of	this	variable	is	0.

errorCode String Attribute This	variable	denotes	the	error	code.

3.	 Create	the	workflow	shown	in	the	following	figure	by	adding	the	following	elements:
Sleep
Get	process	from	guest
Custom	decision
Decision
Increase	counter
Scriptable	task

Throw	exception

4.	 Edit	the	Get	process	from	guest	element	and	bind	the	result	out-parameter	as	an
attribute.	We	will	do	this	because	result	is	a	composite	type	and	is	too	complicated	to
create	manually.

5.	 In	the	Custom	decision	element,	select	processID	and	result	(defined	in	the	previous
step)	as	in-parameters.	Add	the	following	script:

						var	finished=true;	

						for	each	(value	in	result)	{	

										if	(value.pid	==	processID)	{	

														finished=false;	

														System.log(processID+"	still	running");	

										}	

						}	

						return	finished;	

6.	 In	the	Decision	element,	set	counter	as	equal	to,	or	greater	than,	9.
7.	 In	the	Increase	counter	element,	set	counter	as	in-parameter	and	out-parameter.
8.	 In	the	Scriptable	task	element,	add	the	following	parameters:

In-
parameters vm,	sleepTime,	counter,	and	processID

Out-
parameters

errorCode

Script

time=sleepTime*counter;

errorCode="PID:"+processID+"	on	VM	"+vm.name+"	still	running

after	"+time;

9.	 Bind	errorCode	to	Throw	exception.
10.	 Save	and	close	the	workflow.	Proceed	to	the	next	section.

Creating	an	installation	workflow

We	will	now	build	a	workflow	that	will	copy	a	file	to	the	VM,	install	a	program,	and	perform
clean	up:

1.	 Create	a	new	workflow	and	define	the	following	variables:

Name Type Section Use

vmUsername String IN This	variable	denotes	the	local	VM
user	password.

vmPassword SecureString IN This	variable	denotes	the	local	VM
user	password.

vm VC:VirtualMachine IN This	variable	denotes	the	VM	to	run
on.

programFileName String IN This	variable	denotes	the	name	of
the	file	to	run.

arguments String IN This	variable	denotes	the	install
arguments.

dirPath String Attribute This	variable	denotes	the	pathdirectory	on	VM.

createParents Boolean Attribute This	variable	denotes	whether	or	notto	create	parent	folders.

result Boolean Attribute This	variable	is	set	to	true	if	thedirectory	is	created	successfully.

vcoPath String Attribute This	variable	denotes	the	path	on	the
vCO	server.

guestFilePath String Attribute
This	variable	denotes	the	path	on	the
VM.

overwrite Boolean Attribute This	variable	allows	you	tooverwrite	a	file	if	it	exists.

interactiveSession Boolean Attribute
This	variable	enables	an	interactive
session	for	the	program	running	on
the	VM.

ProcessID Number Attribute This	variable	denotes	the	process	IDof	the	running	program.

recursive Boolean Attribute This	variable	allows	deletion	of	thedirectory	content	recursively.

sleepTime Number Attribute This	variable	denotes	the	timebetween	the	polls.

errorCode String Attribute This	variable	denotes	the	errorcode.

2.	 Now	we	need	to	assign	some	values	to	all	the	attributes.	The	attributes	that	are	not
mentioned	in	the	following	table	do	not	require	a	start	value:

dirPath c:\OrchestratorInstall

createParents False

vcoPath /var/run/vco

overwrite True

interactiveSession False

recursive True

sleepTime 90

errorCode nothing

3.	 Create	the	workflow	shown	in	the	following	figure	by	adding	the	following	elements:
Scriptable	task
Create	directory	in	guest
Copy	file	from	vCO	to	guest
Run	program	in	guest
waitUntilProgramInstalled
Kill	process	in	guest
Delete	directory	in	guest
Decision
Throw	exception

4.	 In	the	Scriptable	task	element,	add	the	following	parameters:

In-parameters programFileName,	vcoPath,	and	dirPath

Out-parameters vcoPath	and	guestFilePath

Script
vcoPath=vcoPath+"/"+programFileName;

guestFilePath=dirPath+""+programFileName;

Please	note	the	double	backslashes	\\.	We	need	to	escape	the	\	for	Windows.
5.	 In	the	Decision	element,	set	errorCode,	equal,	and	nothing.
6.	 Bind	all	the	other	parameters	to	all	the	other	workflow	elements.

An	example	run

Now,	let's	play	through	an	example	run	of	the	workflows:

1.	 Copy	the	Java	installation	file	(jre-8u25-windows-i586.exe)	to	the	Orchestrator
appliance	in	the	/var/run/vco	directory.	You	may	need	to	change	the	access	rights	with
chmod	555	jre-8u25-windows-i586.exe.

2.	 Make	sure	that	your	test	VM	is	ready,	has	VMware	Tools	installed,	and	that	you	have
access	to	it	as	a	local	administrator.	Creating	a	snapshot	at	this	stage	isn't	a	bad	idea
either.

3.	 Run	the	workflow,	Install	program	on	VM	(the	second	workflow	you	created).
4.	 Select	the	VM	on	which	you	want	to	execute	the	program	and	enter	the	credentials	for	the

local	administrator.
5.	 The	value	of	programFileName	is	jre-8u25-windows-i586.exe.
6.	 The	input	for	Arguments	is	/s	(refer	to	Java's	silent	install	options).
7.	 Submit	the	workflow.
8.	 The	workflow	will	now	create	a	directory,	C:\OrchestratorInstall,	in	the	VM	and	copy

the	Java	install	file	from	the	Orchestrator	to	the	VM	through	VMware	Tools.	If	any	of
these	actions	fail,	the	program	will	clean	up	and	exit	with	an	error.

The	program	will	now	be	executed	and	the	process	ID	is	piped	to	the	waiting	workflow	(the
first	workflow	you	built).

1.	 In	the	waiting	workflow,	we	will	first	wait	a	bit	before	we	get	all	the	processes	that	run
on	the	VM.	We	will	check	whether	the	process	ID	exists,	and	if	so,	we	will	go	back	to
waiting.	To	make	sure	that	we	can	break	out	of	this	loop,	we	will	only	run	the	loop	10
times.

2.	 If	the	wait	task	finishes	with	an	error,	we	will	kill	the	install	process	on	the	VM,	clean	up,
and	exit	with	an	error.

3.	 If	the	installation	finishes,	we	will	delete	the	directory	we	created.
4.	 If	no	error	has	occurred,	errorCode	will	still	contain	the	start	value	"nothing";	so,	we

will	check	whether	this	is	the	case,	and	if	so,	we	will	exit	successfully.	Otherwise,	if	an
error	exists,	errorCode	will	throw	an	error.

How	it	works...
In	this	recipe,	we	used	the	Guest	Operations	system,	which	is	implemented	with	VMware
Tools	in	the	VMs.	This	allows	us	to	work	directly	inside	the	Guest	OS,	without	the	need	for
network	connectivity	between	the	VM	and	Orchestrator.	Guest	Operations	is	useful	for	a	lot	of
functions:

VMs	that	are	in	a	DMZ	and	can't	be	accessed	through	a	network	by	Orchestrator.
VMs	that	have	no	network	connection.	Typically,	you	do	this	when	you	want	to	configure
the	VM	first	before	connecting	it	to	a	network.	A	good	example	is	to	reconfigure	an	SQL
server	you	have	just	cloned.
You	can	also	configure	VMs	that	are	hardened	and	do	not	allow	a	network	to	log	in	to
the	OS.

There's	more...
One	way	to	optimize	this	workflow	is	as	follows:

Creating	a	configuration	element	to	store	the	central	configuration	elements
Adding	decisions	to	choose	between	Linux	and	Windows	VMs	and	to	adjust	the
guestPath	accordingly
Copying	the	file	to	be	installed	from	a	central	shared	directory	onto	Orchestrator	first
Checking	whether	the	program	has	installed	correctly

See	also
Refer	to	the	example	workflows,	12.04.1	waitUntilProgramInstalled	and	12.04.2
Install	program	on	VM.

An	approval	process	for	VM	provisioning
This	recipe	looks	at	how	to	build	an	approval	process.	If	you	don't	happen	to	have	vRealize
Automation	this	could	be	an	easy	way	forward.

Getting	ready
Depending	on	how	you	want	to	build	it,	you	may	either	need	an	e-mail	server	or	a	web	server.

How	to	do	it...
The	approval	process	we	are	discussing	is	not	a	finished	program	but	more	of	an	architecture
on	how	to	construct	one.

Using	User	interaction

This	would	be	a	program	that	uses	User	interaction	for	approval:

1.	 Create	a	workflow	that	will	provision	a	VM.
2.	 Before	the	VM	is	actually	provisioned,	add	a	User	interaction.
3.	 Make	sure	the	user	interaction's	timeout.date	is	somewhat	in	the	future.
4.	 Make	sure	that	the	security.group	or	the	security.assignees	have	the	users	that	are

allowed	to	approve	this	VM	assigned.
5.	 Add	a	Boolean	into	the	external	inputs	that	approves	or	disapproves	a	VM.
6.	 After	the	User	interaction,	add	a	base	decision	that	works	on	the	Boolean:

Using	e-mail

This	would	be	a	program	that	uses	email	for	approval:

1.	 Develop	a	workflow	that	sends	e-mail.
2.	 Develop	a	workflow	that	checks	an	e-mail	account	for	a	given	body	text.
3.	 Create	a	workflow	that	will	provision	a	VM.
4.	 Before	the	VM	is	actually	provisioned,	add	a	workflow	that	does	the	following:

Sends	an	e-mail	to	an	approver
Checks	the	e-mail	for	a	given	sentence	or	word
Depending	on	the	e-mail,	either	provisions	or	sends	a	"Sorry"	e-mail	to	the	user

Using	a	web	page

This	would	be	a	program	that	uses	a	web	page	for	approval:

1.	 Develop	a	workflow	that	sends	a	custom	event.
2.	 Create	a	workflow	that	will	provision	a	VM.
3.	 Before	the	VM	is	actually	provisioned,	add	a	workflow	that	does	the	following:

Checks	if	the	Custom	Event	has	happened
Depending	on	that,	deploys	the	VM

How	it	works...
There	are	lots	of	ways	to	create	an	approval	process.	The	ones	given	here	are	the	easiest.
More	complicated	ones	could	involve	a	database	where	a	user	stores	the	information	about
the	VM	he	wants.	Another	policy	would	check	the	DB	each	day	and	provisions	the	VMs	where
a	certain	flag	is	set.	The	flag	can	be	altered	through	a	workflow	that	uses	either	e-mail	or	a
web	interface.

You	already	have	all	the	tools	you	need	to	create	such	a	workflow	or	the	ones	given	here.	The
recipes	you	need	are	as	follows:

Sending	and	waiting	for	custom	events	in	Chapter	6,	Advanced	Programming
Using	PHP	to	access	the	REST	API	in	Chapter	7,	Interacting	with	Orchestrator
Working	with	policies	in	Chapter	8,	Better	Workflows	and	Optimized	Working
Working	with	e-mails	in	Chapter	9,	Essential	Plugins
Working	with	SQL	(JDBC)	and	Working	with	SQL	(SQL	plugin)	inChapter	10,	Built-in
Plugins

Chapter	13.	Working	with	vRealize	Automation
This	chapter	is	dedicated	to	the	interaction	between	Orchestrator	and	vRealize	Automation
(vRA).	In	this	chapter,	we	will	cover	the	following	topics:

Working	with	the	vRA-integrated	Orchestrator
Automating	a	vRA	instance	in	Orchestrator
Configuring	an	external	Orchestrator	in	vRA
Adding	Orchestrator	as	an	Infrastructure	endpoint
Adding	an	Orchestrator	endpoint
Integrating	Orchestrator	workflows	as	XaaS	Blueprints
Managing	AD	users	with	vRA
Using	the	Event	Manager	to	start	workflows

Introduction
Automation	has	changed	since	the	arrival	of	Orchestrator.	Before	tools	such	as	vCloud
Director	or	vRA,	Orchestrator	was	the	main	tool	for	automating	vCenter	resources.	In	fact
you	may	remember	VMware	Life	Cycle	Manager	(LCM)	which	was	the	first	such	product
based	on	Orchestrator.

Tip

With	version	6.2	of	vCloud	Automation	Center	(vCAC),	the	product	has	been	renamed	to
vRealize	Automation.	However,	you	will	find	the	name	vCAC	all	across	the	API.

Now,	vRA	is	the	central	cornerstone	in	the	VMware	automation	effort.	vRealize	Orchestrator
(vRO)	is	used	by	vRA	to	interact	with	and	automate	VMware	and	non-VMware	products	and
infrastructure	elements.

Throughout	the	various	vRA	interactions,	the	role	of	Orchestrator	has	changed	substantially.
Orchestrator	started	off	as	an	extension	to	vCAC	and	became	a	central	part	of	vRA.	The
following	list	only	focuses	on	the	changes	that	influence	Orchestrator:

In	vCAC	5.x,	Orchestrator	was	only	an	extension	of	the	IaaS	life	cycle.	Orchestrator	was
tied	in	using	Stubs.
vCAC	6.0	integrated	Orchestrator	as	an	XaaS	(Everything	as	a	Service)	using	the
Advanced	Service	Designer	(ASD).
In	vCAC	6.1,	Orchestrator	is	used	to	perform	all	VMware	NSX	operations	(VMware's
new	network	virtualization	and	automation),	meaning	that	it	became	even	more	of	a
central	part	of	the	IaaS	services.
With	vCAC	6.2,	the	ASD	was	enhanced	to	allow	more	complex	formula	designs,
allowing	a	better	leverage	of	Orchestrator	workflows.
With	vRA	7,	an	automated	IaaS	install	was	added	making	the	initial	deployment	much
easier.	The	Event	Manager	was	introduced	as	well	as	other	new	features.
With	vRA	7.1,	a	lot	of	small	but	important	things	changed.	The	ASD	has	gone	and	is	now
called	XaaS.	It	has	been	announced	that	Stubs	are	now	deprecated	and	Event	Manager
should	be	used.

How	the	integration	of	vRA	and	Orchestrator	works
As	you	can	see	in	the	following	diagram,	vRA	connects	to	the	vCenter	Server	using	an
infrastructure	endpoint,	which	allows	vRA	to	conduct	basic	infrastructure	actions,	such	as
power	operations,	cloning,	and	so	on.	It	doesn't	allow	any	complex	interactions	with	the
vSphere	infrastructure	such	as	HA	configurations.	Using	the	XaaS	endpoint,	vRA	integrates
the	Orchestrator	(vRO)	plugins	as	additional	services.	This	allows	vRA	to	offer	the	entire
plugin	infrastructure	as	services	to	vRA.	The	vCenter	Server,	AD,	and	PowerShell	plugins	are
typical	of	integrations	used	with	vRA.

Using	XaaS,	you	can	create	integrations	that	use	Orchestrator	workflows.	XaaS	allows	you	to
offer	Orchestrator	workflows	as	vRA	catalog	items,	making	it	possible	for	tenants	to	access
any	IT	service	that	can	be	configured	with	Orchestrator	via	its	plugins.	The	following
diagram	shows	an	example	using	the	Active	Directory	plugin.	The	Orchestrator	Plugin
provides	access	to	the	AD	services.	By	creating	a	custom	resource	using	the	exposed	AD
infrastructure,	we	can	create	a	service	Blueprint	and	resource	actions,	both	of	which	are	based
on	Orchestrator	workflows	that	use	the	AD	plugin.	In	the	Managing	AD	users	with	vRA	recipe
in	this	chapter,	we	will	showcase	all	of	these	features.

Prior	to	vRA	7,	the	only	way	to	integrate	additional	functions	into	the	life	cycle	was	using
Stubs.	Stubs	were	predominately	used	in	vCAC	5.x	and	allowed	you	to	attach	a	workflow	at
certain	points	(Stubs)	in	the	IaaS	workflow,	such	as	pre-provisioning,	post-provisioning,	and
so	on.	Such	actions	could	be	taken	to	change	the	VMs	HA	or	DRS	configuration	or	to	use	the
guest	integration	to	install	or	configure	a	program	on	a	VM.	From	vRA7.1	onward,	Stubs	are
deprecated	and	will	soon	be	removed.

With	vRA7,	the	Event	Manager	was	introduced,	allowing	for	a	much	higher	integration	into
the	life	cycle.	Where	the	Stubs	offered	only	6	entry	points	for	integration,	the	Event	Manager
offers	33.	We	will	show	how	to	integrate	Orchestrator	into	the	Event	Manager	in	the	Using	the
Event	Manager	to	start	Workflows	recipe	in	this	chapter.

Installation
How	to	install	and	configure	vRA	is	out	of	the	scope	of	this	book,	but	take	a	look	at:

https://www.youtube.com/watch?v=RM-X5TGuKJo	.

If	you	don't	have	the	hardware	or	the	time	to	install	vRA	yourself,	you	can	use	the	VMware
Hands-on	Labs,	which	can	be	accessed	after	clicking	on	Try	for	Free	at:

		http://hol.vmware.com	.

https://www.youtube.com/watch?v=RM-X5TGuKJo
http://hol.vmware.com

Read	more...
To	read	more	about	the	Orchestrator	integration	with	vRA,	please	take	a	look	at	the	official
VMware	documentation.	At	the	time	of	writing	the	documentation	can	be	found	at:

https://www.vmware.com/support/pubs/vrealize-automation-pubs.html	.

The	document	called	vrealize-automation-71-extensibility	discusses	customization	using
Stubs.

https://www.vmware.com/support/pubs/vrealize-automation-pubs.html

Working	with	the	vRA-integrated	Orchestrator
In	this	recipe,	we	explore	the	vRA-integrated	Orchestrator.	We	will	have	a	closer	look	at	what
is	integrated	and	how	it	is	working.

Getting	ready
You	need	Java	installed	to	start	the	Orchestrator	Client	and	access	the	vRA	shell	(root	access).

How	to	do	it...
I	have	split	this	recipe	into	several	small	independent	sections.

Accessing	the	vRA-integrated	Orchestrator	Client

To	start	the	Orchestrator	Client,	follow	these	steps:

1.	 Open	a	web	browser	and	enter	the	IP	or	FQDN	of	the	vRA	appliance.
2.	 Click	on	the	vRealize	Orchestrator	Client	link.
3.	 Enter	[IP	or	FQDN	of	the	vRA	appliance]:8281	as	Host	name	and

administrator@vsphere.local	as	User	name	with	the	corresponding	password	and	click
on	Login.

Starting	the	vRA-integrated	Orchestrator	Control	Center

The	Orchestrator	Control	Center	is	by	default	switched	off	to	conserve	resources	since	it	is
only	needed	during	configuration	and	to	install	plugins.	To	switch	it	on,	you	need	to	login	to
the	vRA	and	execute	the	following	command:

Service	vco-configurator	start

Also	see	the	example	workflows	13.01.1	Start	vRA	vRO	Control	Center	and	13.01.2	Stop
vRA	vRO	Control	Center.

Tuning	vRA

If	we	decide	to	use	an	external	Orchestrator,	we	can	give	the	vRA	appliance	some	resources
back	by	disabling	the	startup	of	the	Orchestrator	Services:

1.	 Log	in	to	the	vRA	appliance	as	root.
2.	 Run	the	following	script,	line	by	line:

				chkconfig	vco-server	off

				service	vco-server	stop

				chkconfig	vco-configurator	off

				service	vco-configurator	stop

This	will	stop	and	disable	the	services	for	Orchestrator	and	the	Orchestrator	Configurator.

How	it	works...
The	vRA	appliance	comes	with	an	installed	and	configured	vRO	instance.	The	integrated
instance	is	pretty	well	balanced	and	does	everything	you	need.	With	vRA7.1,	when	you	add
vRA	nodes	to	a	cluster,	the	integrated	Orchestrator	will	also	be	added	as	nodes.

The	direction	for	vRA/vRO	clusters	is	definitely	towards	using	the	embedded	version.

Please	also	check	the	Configuring	an	external	Orchestrator	in	vRA	recipe	in	this	chapter	for
more	information	on	external	Orchestrator	installations.

Users

The	registered	Orchestrator	administrator	group	is	vcoadmins,	which	contains	the	following
user:	administrator@vsphere.local.

Database

The	database	that	Orchestrator	uses	is	the	one	vRA	uses.

Database vcac

User vcac

Port 5433

vRA	7.x	and	above	dynamically	generates	and	encrypts	the	vcac	user	password	upon
installation.	The	following	steps	will	show	how	to	obtain	that	password,	allowing	you	to
connect	things	such	as	PGAdmin	to	the	DB:

1.	 Login	to	vRA	as	root.
2.	 In	the	/etc/vcac/server.xml	file,	look	for	password,	for	example:

password="s2enc~3g5DjU8zn4/0akhnM0uSUheiZZyGagt0dEdjg="

3.	 Run	the	following	command:

vcac-config	prop-util	-d	--p	

						"s2enc~3g5DjU8zn4/0akhnM0uSUheiZZyGagt0dEdjg="

4.	 The	result	will	be	the	password	for	the	connection	to	the	database,	which	you	can	access
by	the	following	command:

	psql	-U	vcac	-p	5433	-h	localhost	-d	vcac

Automating	a	vRA	instance	in	Orchestrator
Not	only	can	vRA	use	Orchestrator	to	access	vCenter	or	other	plugins,	but	you	can	also
automate	your	vRA	instance	using	Orchestrator.	In	this	recipe,	we	will	show	you	how	to	do
the	initial	steps.

Getting	ready
Please	make	sure	that	you	read	the	introduction	to	vRA	at	the	beginning	of	this	chapter.	We
need	a	functional	and	configured	vRA.	We	also	need	the	vRA	plugin	for	Orchestrator
installed.

The	vRA	plugin	is	integrated	into	Orchestrator	from	version	7.1	onward.

However,	you	should	be	aware	that	even	the	plugin	(7.1	at	the	time	of	writing)	still	shows
vCAC	and	vCACCafe	in	Control	Center,	and	it	shows	up	in	the	Library	as	vRealize
Automation.

How	to	do	it...
This	recipe	is	split	into	Preparation	and	Example.

Preparation

To	configure	the	vRA	plugin,	perform	the	following	steps:

1.	 Log	in	to	the	Orchestrator	Client.
2.	 Run	the	workflow	Library	|	vRealize	Automation	|	Configuration	|	Add	a	vRA	host.
3.	 Add	a	name	for	the	vRA	host.
4.	 Enter	the	HTTPS	URL	of	the	vRA	installation,	as	https://vra.mylab.local.
5.	 Agree	to	install	the	SSL	certificates.
6.	 Leave	the	connection	variables	at	their	defaults	and	click	Next.
7.	 Choose	Shared	session	and	enter	the	name	of	the	Tenant	as	vSphere.local.
8.	 Enter	a	vRA	Infrastructure	Admin	account.
9.	 Click	on	Submit	and	wait	till	the	workflow	has	finished.
10.	 Run	the	workflow	Library	|	vRealize	Automation	|	Configuration	|	Add	the	IaaS	host

of	a	vRA	host.
11.	 Select	the	vRA	host	from	the	Inventory.
12.	 Accept	the	defaults,	but	don't	forget	to	add	the	Administrator	password	for	the	Windows

IaaS	host.
13.	 Check	out	your	Orchestrator	Inventory.

Example

Let's	run	an	example	by	creating	a	new	Machine	Prefix:

1.	 Log	in	to	the	Orchestrator	Client.
2.	 Run	the	workflow	Library	|	vRealize	Automation	|	Infrastructure	Administration	|

Extensibility	|	Machine	Prefix	|	Create	a	Machine	Prefix.
3.	 Set	the	IaaS	host	from	vRealize	Automation	Infrastructure,	as	shown	in	the	following

screenshot:

https://vra.mylab.local

4.	 Enter	the	New	Machine	Prefix,	such	as	Test,	as	well	as	the	number	of	digits	and	the	next
number.

5.	 Check	on	vRA	for	the	new	Machine	Prefix.

How	it	works...
You	have	hooked	up	Orchestrator	to	vRA	and	are	able	to	do	a	lot	of	things.	You	can	now	use
vRO	to	configure	vRA.

With	this	plugin,	you	can	create	and	configure	vRA	tenants	automatically.	It	becomes	even
more	handy	when	you	are	using	the	Event	Broker	and	want	to	retrieve	some	additional
information	from	vRA.

The	difference	between	the	vRA	Host	(VCAC:VcacCafeHost)	and	the	IaaS	Host
(VCAC:VcacHost)	is	that	things	such	as	requests	and	catalog	items	are	stored	in	the	vRA	Host
and	objects	such	as	VMs	in	the	IaaS	host.

For	any	automation	of	vRA	you	need	to	configure	this	plugin.

Configuring	an	external	Orchestrator	in	vRA
vRA	comes	with	an	installed	and	configured	Orchestrator.	While	VMware	now	recommends
using	the	embedded	vRO	in	production	systems,	this	primarily	applies	to	small-/medium-
sized	infrastructure	deployments.	In	much	larger	enterprise	deployments,	it	may	be	beneficial
to	use	an	external	vRO	cluster.

Another	example	is	if	you	require	a	different	vRO	for	a	given	tenant.

Getting	ready
Please	make	sure	you	read	the	introduction	to	vRA	at	the	beginning	of	this	chapter.	We	need	a
functional	and	configured	vRA.

How	to	do	it...
This	recipe	has	three	parts.	First,	we	will	configure	the	Orchestrator,	bind	it	to	vRA,	and	then
we	will	clean	up	the	vRA	appliance.

Tip

Changing	between	Orchestrators	will	result	in	losing	all	your	endpoints	that	you	have
configured	with	Orchestrator.

Building	and	configuring	an	external	Orchestrator

To	attach	an	external	Orchestrator,	we	first	need	an	Orchestrator	that	we	can	connect	to:

1.	 Install	the	Orchestrator	appliance	(refer	to	the	Deploying	the	Orchestrator	appliance
recipe	in	Chapter	1,	Installing	and	Configuring	Orchestrator).

2.	 You	may	want	to	configure	Orchestrator	with	an	external	DB	(refer	to	the	Configuring	an
external	database	recipe	in	Chapter	1,	Installing	and	Configuring	Orchestrator).

3.	 Configure	the	appliance	for	vRealize	Automation	authentication	(or	vSphere,	see	the
How	it	works...	section);	refer	to	the	Configuring	an	external	Authentication	recipe	in
Chapter	1,	Installing	and	Configuring	Orchestrator.

4.	 Tune	the	appliance	by	disabling	LDAP	and	the	local	DB	(refer	to	the	Tuning	the
appliance	recipe	in	Chapter	2,	Optimizing	Orchestrator	Configuration).

If	you	want	to	build	an	Orchestrator	cluster,	you	should	check	out	Chapter	3,	Distributed
Design.

Configuring	a	general	default	external	Orchestrator

To	configure	an	external	Orchestrator	as	a	default	for	all	tenants,	follow	these	steps:

1.	 Log	in	to	the	vRA	default	Tenant	as	a	System	Administrator,	such	as
Administrator@vspehre.local.

2.	 Click	on	Administration	|	Advanced	Service	|	Server	Configuration	and	select	Use	an
external	Orchestrator	server.

3.	 Continue	with	section	Connecting	the	external	Orchestrator.

Configuring	an	external	Orchestrator	for	each	Tenant

If	you	want	to	connect	one	specific	Orchestrator	for	each	Tenant,	follow	these	steps:

1.	 Log	in	to	vRA	Tenant	as	an	Infrastructure	or	Tenant	admin.
2.	 Click	on	Administration	|	vRO	Configuration	|	Server	Configuration	and	select	Use

an	external	Orchestrator	server.
3.	 Continue	with	section	Connecting	the	external	Orchestrator.

Connecting	the	external	Orchestrator

In	this	section,	we	will	discuss	the	connection	settings:

Perform	the	following	steps:

1.	 Select	a	name	under	which	you	would	like	to	store	this	configuration	and	description.
2.	 In	the	Host	field,	enter	the	FQDN	or	IP	of	the	Orchestrator	or	the	Orchestrator	cluster.
3.	 The	default	port	is	8281.
4.	 Choose	either	Single	Sign-On	or	Basic	authentication	(see	this	section's	How	it	works...

for	more	details).
5.	 Test	the	connection,	and	when	successful,	click	on	OK.
6.	 After	you	click	on	OK,	you	can	be	notified	that	the	existing	endpoints	will	be	deleted.

These	are	the	existing	Orchestrator	endpoints.	Accept	and	then	add	new	endpoints.
Follow	recipe	Adding	an	Orchestrator	endpoint	in	this	chapter.

How	it	works...
The	vRA	appliance	has	Orchestrator	installed	in	it,	the	same	way	as	in	the	Orchestrator
appliance.	The	initial	configuration	of	vRA	is	done	to	use	the	internal	Orchestrator.	VMware
no	longer	recommends	using	Orchestrator	as	an	external	server	or	using	an	external	DB.	In
fact,	VMware	now	recommends	using	an	embedded	DB	and	an	embedded	vRO	for	production
use.

Authentication

The	two	different	methods	of	authentication	are	quite	important:

Single	Sign-on:	This	requires	Orchestrator	and	vRA	to	be	in	the	same	SSO	domain,
meaning	the	external	Orchestrator	should	use	vRealize	Automation	authentication
configured	with	the	vRA.	Starting	with	vRA,	7.0	vIDM	is	used;	however,	vCenter	still	(as
of	6.0	U2)	uses	SSO	(also	see	the	recipe	Configuring	an	external	Authentication	in
Chapter	1,	Installing	and	Configuring	Orchestrator).	This	can	currently	lead	to	some
problems.	This	functions	the	same	way	as	the	shared	connection	in	Orchestrator	that	we
have	discussed	several	times	previously.
Basic:	This	uses	one	account	to	connect	and	execute	workflows.	The	account	used	must
be	a	member	of	the	Orchestrator	administrator	group.	You	could	configure	the	external
orchestrator	with	any	kind	of	authentication;	this	may	especially	make	sense	for	some
plugins	that	depend	on	vCenter	SSO,	such	as	Horizon	Replication	and	SRM.

This	is	a	problem	for	the	time	being	as	vCenter	and	vRA	do	not	use	the	same	authentication
base	(vIDM	versus	SSO).

There's	more...
You	can	define	a	workflow	folder	per-tenant.	This	enables	you	to	expose	different	workflows
to	different	tenants.	The	default	value	is	the	base	folder.

1.	 Log	in	to	the	vRA	default	Tenant	as	a	System	Administrator,	such	as
Administrator@vspehre.local.

2.	 Navigate	to	the	Administration	|	Advanced	Services	|	Default	vRO	folder.
3.	 Select	the	Tenant	you	want	to	assign	a	base	folder	to	and	click	on	Edit.
4.	 Browse	to	the	Orchestrator	workflow	folder	and	then	click	on	Add.

Adding	Orchestrator	as	an	infrastructure
endpoint
This	will	add	Orchestrator	as	an	additional	endpoint	into	the	vRA	infrastructure.	This	will
allow	you	access	to	plugins	that	are	not	part	of	the	endpoints	we	can	configure	in	the	Adding
an	Orchestrator	endpoint	recipe	in	this	chapter.

Getting	ready
You	need	an	external	or	internal	Orchestrator	as	well	as	a	user	account	that	has	Administrator
rights	in	Orchestrator.

How	to	do	it...
We	are	now	adding	Orchestrator	as	a	vRA	Infrastructure	endpoint:

1.	 Log	in	to	vRA	with	an	Infrastructure	Admin	account.
2.	 Go	to	Infrastructure	|	Endpoints	|	Endpoints.
3.	 Click	on	New	and	select	Orchestration	|	vRealize	Orchestrator.
4.	 Give	the	Orchestrator	a	name.
5.	 The	Address	for	the	internal	Orchestrator	is	https://[vra	FQDN]/vco,	and	for	an

external	Orchestrator	it	is	https://[vROFQDN]/vco.	As	vRA	uses	a	proxy,	you	don't	have
to	specify	the	port	number	anymore.

6.	 Create	Credentials	with	a	user	who	is	a	member	of	the	vRO	Administrator	group.
7.	 Add	a	new	property	by	clicking	on	New.	Enter	VMware.VCenterOrchestrator.Priority

and	set		Value	to	1.	Click	on	The	green	tick	button	to	save	this	setting.
8.	 Click	on	OK	to	save	the	endpoint.

How	it	works...
An	Orchestrator	endpoint	lets	you	create	additional	customization	and	lets	you	use	plugins
that	are	not	part	of	the	endpoints	we	configured	in	the	Adding	an	Orchestrator	endpoint	recipe
in	this	chapter.

For	some	features,	such	as	NSX,	you	may	require	an	Orchestrator	Infrastructure	endpoint.
Also	see	the	recipe	NSX	integration	in	Chapter	11,	Additional	Plugins.

There's	more...
You	can	associate	a	Blueprint	with	a	given	Orchestrator	Infrastructure	endpoint	by	adding	to
the	Blueprint	the	Custom	Property	VMware.VCenterOrchestrator.EndpointName	and,	as	a
value,	the	endpoint	name	you	specified.

Adding	an	Orchestrator	endpoint
Before	you	can	use	any	Orchestrator	plugins	in	vRA,	you	need	to	define	them	as	endpoints.	In
this	recipe,	we	will	show	you	how	to	do	this.	This	is	not	how	to	add	an	Orchestrator	as	an
Infrastructure	endpoint	(for	this	see	the	Adding	Orchestrator	as	an	Infrastructure	Endpoint
recipe	in	this	chapter).

Getting	ready
For	this	recipe,	you	will	need	a	working	and	configured	vRealize	Automation	installation.
Please	refer	to	the	introduction	to	this	chapter.

You	can	either	use	the	vRA-integrated	Orchestrator	or	an	external	Orchestrator.

In	this	example,	we	will	add	an	Active	Directory	endpoint.	Please	note	that,	if	you	want	to	add
users	or	change	passwords,	you	will	need	to	enable	SSL	for	AD	(refer	to	the	recipe	Working
with	Active	Directory	in	Chapter	10,	Built-in	Plugins).

How	to	do	it...
There	are	some	plugins	that	can	be	added	directly	in	vRA.	See	How	it	works...	for	more
details:

1.	 Log	in	to	vRA	as	an	Infrastructure	admin.
2.	 Navigate	to	Administration	|	Advanced	Services	|	Endpoints.
3.	 Click	on	Add	(the	green	plus	sign)	and	select	the	plugin	that	you	would	like	to	configure

as	an	endpoint,	such	as	the	Active	Directory	plugin.
4.	 Give	the	endpoint	a	name,	such	as	ActiveDirectory.
5.	 Follow	the	recipe	Working	with	Active	Directory	in	Chapter	10,	Built-in	Plugins,	to

configure	this	endpoint.	What	you	are	basically	doing	is	running	the	configuration
workflow.

6.	 Click	on	Finish	to	add	the	endpoint.

How	it	works...
As	discussed	in	the	introduction	to	this	chapter,	endpoints	are	essentially	the	connection	points
between	vRA	and	plugin-driven	infrastructures.

Using	the	vRA-integrated	Orchestrator,	you	can	add	the	following	endpoints	out-of-the-box.
The	following	table	contains	the	recipes	in	which	the	plugin	is	discussed	and	a	quick
overview	of	the	prerequisites	for	using	the	plugin:

Plugin Recipe/chapter Prerequisite

Active
Directory

Working	with	Active	Directory	in	Chapter	10,	Built-In
Plugins

AD	SSL	Certs,	SSL	Cert
import

HTTP-
REST Working	with	REST	in	Chapter	9,	Essential	Plugins SSL	Cert	import

PowerShell Working	with	PowerShell	in	Chapter	10,	Built-InPlugins
WinRM	and	Kerberos
configurations

SOAP Working	with	SOAP	in	Chapter	10,	Built-In	Plugins SSL	Cert	import

vCenter
Server

Connecting	to	vCenter	in	Chapter	1,	Installing	and
Configuring	Orchestrator SSL	Cert	import

Integrating	Orchestrator	workflows	as	XaaS
Blueprints
We	will	now	showcase	how	to	integrate	Orchestrator	workflows	in	vRealize	Automation.	We
will	learn	how	to	create	a	vRA	Catalog	item	that	will	run	a	workflow	when	requested.

Getting	ready
In	order	to	use	an	Orchestrator	workflow	as	a	vRA	Catalog	item,	you	should	have	the
following	vRA	items	configured:

Entitlements
Services
Business	groups

To	configure	these	items,	please	refer	to	the	link	shown	in	the	introduction	to	this	chapter	or
take	a	look	at	the	official	VMware	documentation	for	vRA.

We	will	use	the	example	workflow	00.00	BasicWorkflow	to	add	to	the	vRA	catalog.

How	to	do	it...
This	recipe	is	divided	into	three	parts.

Activating	the	XaaS	tab

By	default,	the	Xaas	tab	is	not	visible,	so	the	first	step	is	to	make	it	appear:

1.	 Log	in	to	vRA	as	an	Infrastructure	admin.
2.	 Navigate	to	Administration	|	Users	&	Groups	|	Custom	Groups.
3.	 Click	on	Finish.
4.	 Give	the	group	a	name	and	then	assign	it	the	role	of	XaaS	Architect.
5.	 Click	on	Next	and	select	a	group	or	user	to	assign	to	this	group.
6.	 Log	out	and	log	in	with	the	user	that	you	specified	in	step	5.

The	XaaS	tab	should	now	be	visible.

Adding	a	XaaS	Blueprint

We	will	now	add	a	simple	Orchestrator	workflow	as	a	vRA	Catalog	item.	We	will	add	the
example	workflow	00.00	BasicWorkflow.

1.	 Log	in	to	vRA	with	a	user	who	is	a	service	architect.
2.	 Navigate	to	Design	|	XaaS	|	XaaS	Blueprint	and	click	on	New.
3.	 Select	the	workflow	00.00	BasicWorkflow.	On	the	left-hand	side,	you	will	see	all	in-	and

out-parameters	of	the	workflow.	Click	on	Next.

4.	 You	can	now	change	the	display	name	of	the	workflow	as	well	as	modify	the	Description
and	the	Version	fields.	Click	on	Next.

5.	 The	Blueprint	form	allows	you	to	modify	the	presentation	screen.	A	detailed	discussion
is	beyond	the	scope	of	this	book,	so	see	section	How	it	works...	for	more	details.	For
now,	just	click	on	Next.

6.	 You	are	now	asked	what	you	would	like	to	provision.	As	we	did	not	define	any	custom
resources,	you	can	only	choose	No	provisioning.	Click	on	Finish.

Publishing	and	adding	the	workflow	to	the	catalog

We	will	now	publish	this	workflow	and	then	add	it	to	the	catalog:

1.	 Navigate	to	Design	|	XaaS	|	XaaS	Blueprint,	click	on	the	service	Blueprint	that	you
created	in	the	last	section,	and	then	select	Publish	(the	green-colored	tick).

2.	 Now,	navigate	to	Administration	|	Catalog	Management	|	Catalog	Items.	The	service
Blueprint	can	now	be	seen.	Click	on	it	and	select	Configure	(a	gray	gear	icon).

3.	 You	can	now	change	the	icon	that	will	be	displayed	with	the	Catalog	item.	This	icon	will
always	be	an	Orchestrator	Item,	and	it	has	no	connection	to	the	workflow	item	in	the
Orchestrator	Client.

4.	 Select	the	Status	as	Active	to	make	it	usable	in	the	catalog.

5.	 Select	a	Service	to	attach	(not	<None>)	and	then	click	on	OK:

6.	 Now,	go	to	the	Catalog	tab	and	take	a	look	at	the	result:

You	can	now	Request	this	Catalog	item,	which	results	in	the	workflow	being	executed.	Check
the	Orchestrator	Client	for	the	result.

How	it	works...
This	is	a	very	simple	integration	of	a	workflow	with	vRA,	but	it	shows	the	power	of	the	whole
concept	and	the	possibilities.

In	this	example,	we	have	just	used	a	simple	workflow	that	doesn't	interact	with	any
infrastructure.	In	the	Managing	AD	users	with	vRA	recipe	in	this	chapter,	we	will	use	a	more
elaborate	setup;	however,	the	principle	is	the	same	for	all	workflow	interactions.

If	the	workflow	you	are	executing	uses	a	customer	interaction,	you	can	find	and	start	the
interaction	by	clicking	on	your	inbox.

Orchestrator	presentation	properties	in	vRA

The	Orchestrator	presentation	properties	that	you	have	set	up	will	be	working	in	vRA	with	the
following	exception:

Hide	a	page
Show	root	element

Check	out	the	example	workflow	07.05.01	Presentation	Test	to	test	this.

Managing	AD	users	with	vRA
In	this	recipe,	we	will	explore	the	full	spectrum	of	the	Orchestrator/vRA	integration.	You	will
learn	how	to	create	custom	resources	and	actions	and	how	to	integrate	and	use	them.

Getting	ready
In	order	to	add	an	Orchestrator	workflow	as	a	vRA	Catalog	item,	you	should	have	the
following	vRA	items	configured:

Entitlements
Services
Business	groups

To	configure	these	items,	please	refer	to	the	link	shown	in	the	introduction	of	this	chapter	or
take	a	look	at	the	official	VMware	documentation	for	vRA.

The	Design	tab	must	be	activated	as	shown	in	the	Integrating	Orchestrator	workflows	as	XaaS
Blueprints	recipe	in	this	chapter.

You	also	have	to	add	the	AD	endpoint	as	shown	in	the	Adding	an	Orchestrator	endpoint
recipe	in	this	chapter,	and	the	AD	endpoint	needs	to	be	configured	with	SSL	for	this	recipe	to
work.

How	to	do	it...
We	have	split	this	recipe	into	multiple	sections.	Work	though	them	one	after	another.

Creating	a	custom	resource

We	will	first	need	to	create	a	custom	resource,	which	makes	it	possible	for	vRA	users	to
manage	their	resources:

1.	 Log	in	to	vRA	with	a	user	that	is	a	XaaS	Architect.
2.	 Navigate	to	Design	|	XaaS	|	Custom	Resources	and	click	on	New.
3.	 Start	typing	AD:User	in	the	Orchestrator	Type	field.	You	will	see	how	the	field's

selection	is	reduced.	Click	on	AD:User.	This	is	the	Orchestrator	variable	type	we	will
add	to	vRA.

4.	 Give	this	resource	a	name	under	which	it	will	be	shown	in	vRA,	such	as	AD	User,	and
then	click	on	Next.

5.	 The	Details	Form	shows	all	attributes	of	the	variable	type	we	just	defined.	We	need	to
delete	the	Category	name	attribute	as	it	can't	be	used	in	vRA.	Hover	the	mouse	to	the
right	on	the	Category	Name	field	and	click	on	the	red	X	sign.

6.	 Finish	the	setup	by	clicking	on	Finish.

Creating	the	service	Blueprint

Next,	we	will	create	the	service	Blueprint	to	create	a	new	AD	user:

1.	 Follow	the	Integrating	Orchestrator	workflows	as	XaaS	Blueprints	recipe	in	this	chapter
to	add	a	service	Blueprint	with	the	following	changes.

2.	 Use	the	workflow	by	navigating	to	Library	|	Microsoft	|	Active	Directory	|	User	|
Create	a	user	with	a	password	in	a	group.

3.	 In	the	Provisioned	Resource	tab,	select	the	custom	resource	(AD	User)	that	you	have
created.

Don't	forget	to	add	the	Blueprint	to	the	catalog.

Creating	a	resource	action

We	will	now	create	a	resource	action	and	bind	it	to	an	entitlement:

1.	 Navigate	to	Design	|	XaaS	|	Resource	Actions	and	click	on	New.
2.	 Select	the	workflow	by	navigating	to	Library	|	Microsoft	|	Active	Directory	|	User	|

Change	a	user	password	and	click	on	Next.
3.	 As	Resource	type,	select	the	custom	resource	that	you	created,	as	Input	parameter,

select	user.
4.	 In	the	Details	screen,	you	can	just	accept	the	default	settings	by	clicking	on	Next.
5.	 You	can	now	change	the	form	with	which	a	user	will	interact.	Click	on	Add	and	finish

creating	this	action.
6.	 Now,	publish	this	action	by	clicking	on	Publish.
7.	 Navigate	to	Administration	|	Catalog	Management	|	Entitlements.
8.	 Click	on	your	entitlement	and	edit	it.
9.	 Under	Items	&	Approvals	in	Entitled	Actions,	add	the	custom	action	you	have	just

created.	Click	on	Finish.

Conducting	a	test	run

We	will	now	start	a	test	run	to	see	what	we	have	achieved	and	how	it	works:

1.	 Go	to	your	vRA	catalog	and	request	the	service	Blueprint	that	you	have	created.
2.	 Wait	a	minute	until	it	is	finished.
3.	 Click	on	Items	and	you	will	find	a	new	item:	the	user	you	have	just	created.
4.	 Click	on	the	user	and	select	Actions.	You	will	find	the	custom	action	you	created	here:

How	it	works...
This	example	shows	how	powerful	the	Orchestrator	integration	in	vRealize	Automation	has
become.

A	custom	resource	is	simply	an	Orchestrator	plugin	type	that	you	reuse	as	a	resource	and	that
can	be	managed	and	worked	with	using	custom	actions.	Please	note	that	the	request	and
approval	mechanism	of	vRA	can	also	be	used	to	regulate	the	use	of	custom	actions	and
Blueprints.

You	can	leverage	any	Orchestrator	plugin	type	to	manage	its	life	cycle	from	vRA	or	you	can
create	your	own	type	using	the	Orchestrator	Dynamic	Types.

Using	the	Event	Manager	to	start	workflows
With	vRA7.1,	Stubs	are	deprecated	and	will	be	soon	gone.	The	Event	Broker	is	the	new	way	of
interacting	with	the	vRA	life	cycle.

Getting	ready
We	need	a	connection	to	vRA	as	an	Infrastructure	Admin.

We	also	need	an	Orchestrator	client	open	and	ready.

To	fully	try	this	recipe	out,	you	will	need	a	working	Blueprint	that	deploys	a	VM.

How	to	do	it...
This	recipe	is	split	into	several	sections.	In	this	recipe,	we	will	only	activate	the	event
subscription	for	the	event	when	a	VM	is	provisioned.

Create	a	workflow

We	now	need	a	workflow	we	can	trigger	when	the	VM	is	deployed.	(You	can	also	use	the
example	workflow	13.03	EventBrokerTest):

1.	 Go	to	the	Orchestrator	Client	and	create	a	new	workflow.
2.	 Add	an	input	called	payload	of	type	Properties.
3.	 Add	a	scriptable	task	with	the	following	code:

						for	each	(key	in	payload.keys)	{	

								System.log(key	+	"	:	"	+	payload.get(key));	

						}	

						var	lifecycleState	=	payload.get("lifecycleState");	

						for	each	(key	in	lifecycleState.keys)	{	

								System.log("Life	"+key	+	"	:	"	+	lifecycleState.get(key));	

						}	

						var	machine	=	payload.get("machine")	;	

						for	each	(key	in	machine.keys)	{	

								System.log("Machine	"+key	+	"	:	"	+	machine.get(key));	

						}	

						var	properties	=	machine.get("properties")	;	

						for	each	(key	in	properties.keys)	{	

								System.log("Props	"+key	+	"	:	"	+	properties.get(key));	

						}	

4.	 Save	and	close	the	workflow.

Seting	up	the	Blueprint

We	need	to	add	some	custom	properties	to	the	Blueprint	so	that	we	get	a	lot	more	data	to	play
with.

1.	 Log	in	to	vRA	as	an	Infrastructure	Admin.
2.	 Go	to	Design	|	Blueprints	and	edit	your	existing	Blueprint.
3.	 Click	on	your	VM	and	add	a	Custom	Property	as	follows	with	the	Value	of	*	(star):

						

Extensibility.Lifecycle.Properties.VMPSMasterWorkflow32.MachineProvisioned	

4.	 Now	add	a	second	Custom	Property	proptest	with	the	Value	false.
5.	 Click	on	Finish	to	save	the	changes	to	your	Blueprint.

Subscribing	to	an	event

We	now	link	the	workflow	to	the	event.	To	do	so,	follow	these	steps:

1.	 Go	to	Administration	|	Events	|	Subscriptions.
2.	 Click	on	New	to	generate	a	new	event	subscription.
3.	 Select	Machine	provisioning.
4.	 Select	Run	based	on	conditions.
5.	 Expand	Data	and	then	the	Lifecycle	state,	and	then	choose	LifecycleState	Name.
6.	 Choose	Equals	and	then	select	VMPSMasterWorkflow32.MachineProvisioned.
7.	 Click	on	Next	and	then	select	the	workflow	you	created.
8.	 Click	on	Finish.
9.	 Now	select	the	Subscription	you	created	and	click	on	Publish.

Try	it	out
1.	 Request	the	Catalog	item	from	the	Blueprint	you	altered.
2.	 Watch	what's	happening	in	Orchestrator.
3.	 Check	the	variables	and	try	to	find	the	property	protest.

How	it	works...
The	Event	broker	is	a	powerful	tool	that	lets	you	really	explore	the	full	possibilities	of	vRA.

Adding	properties	to	a	Blueprint	or	other	areas	makes	it	possible	for	you	to	steer	your
programming.	For	instance,	you	can	now	check	if	the	proptest	property	is	true,	and	if	it	is,
you	could	run	a	workflow	on	it.

There	are	a	lot	more,	33	in	total,	different	events	you	can	subscribe	to;	here	are	some	of	the
ones	that	you	will	properly	use	a	lot:

VMPSMasterWorkflow32.Requested

VMPSMasterWorkflow32.WaitingToBuild

VMPSMasterWorkflow32.BuildingMachine

CloneWorkflow.CloneMachine

CloneWorkflow.CustomizeMachine

CloneWorkflow.InitialPowerOn

CloneWorkflow.CustomizeOS

CloneWorkflow.BuildComplete

VMPSMasterWorkflow32.BuildingMachine

VMPSMasterWorkflow32.MachineProvisioned

VMPSMasterWorkflow32.MachineActivated

VMPSMasterWorkflow32.DeactivateMachine

VMPSMasterWorkflow32.UnprovisionMachine

VMPSMasterWorkflow32.Disposing

There's	more...
If	you	want	to	see	all	events	and	properties,	follow	these	steps:

1.	 Create	a	workflow	with	the	following	code:

						function	getSubproperties(subject,prop){	

								for	each	(subkey	in	prop.keys)	{	

										subcontent=prop.get(subkey);	

										if	((typeof	subcontent)	==	"object"){	

												getSubproperties((subject+"/"+subkey),subcontent);	

										}	else	{	

												System.log((subject+"/"+subkey)	+	"	:	"		

												+	subcontent);	

										}	

								}	

						}	

	

						for	each	(key	in	payload.keys)	{	

								content=payload.get(key);	

								if	((typeof	content)	==	"object"){	

										getSubproperties(("/"+key),content);	

								}	else	{	

										System.log("/"+key	+	"	:	"	+	content);	

								}	

						}	

2.	 Add	the	custom	property	Extensibility.Lifecycle.Properties.VMPSMasterWorkflow32
to	your	Blueprint.

3.	 Subscribe	the	workflow	you	created	to	all	events.

	VMware vRealize Orchestrator Cookbook Second Edition
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Why subscribe?
	Preface
	Changes in this edition
	A short history of Orchestrator
	Best approaches to reading this book
	What this book covers
	What you need for this book
	Who this book is for
	Example workflows
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Installing and Configuring Orchestrator
	Introduction
	Licensing
	vRealize Orchestrator 7 changes
	Orchestrator appliance basics
	Orchestrator and vRealize Automation (vRA)
	Deploying the Orchestrator appliance
	Getting ready
	How to do it...
	Download
	Deploy
	Log in to the Orchestrator Client
	Log into Control Center
	How it works...
	There's more...
	See also
	Important Orchestrator settings
	Getting ready
	How to do it...
	Starting, stopping, and restarting the Orchestrator service
	Licensing
	Package Signing Certificate
	Trusted SSL certificates
	Force plugins reinstall
	How it works...
	See also
	Configuring an external database
	Getting ready
	How to do it...
	How it works...
	Sizing
	Database roles
	Exporting and importing a database
	Purging the Database
	There's more...
	Microsoft SQL
	Oracle
	Internal PostgreSQL
	See also
	Configuring external authentication
	Getting ready
	How to do it...
	vSphere (PSC) and vRealize Automation (vRA)
	SSO (legacy)
	LDAP
	How it works...
	vRealize Automation and vSphere Authentication
	Test login
	Internal LDAP
	There's more...
	See also
	Connecting to vCenter
	Getting ready
	How to do it...
	Well, there is that...
	How it works...
	Access, rights, and logging
	Technical user
	vRA, Orchestrator, and vCenter
	See also
	Installing plugins
	Getting ready
	How to do it...
	How it works...
	Plugin log level
	Updating plugins
	Disabling and uninstalling plugins
	See also
	Updating Orchestrator
	Getting ready
	How to do it...
	Using an ISO file
	Using the VMware repository
	Applying the update
	How it works...
	There's more...
	See also
	Moving from Windows to appliance
	Getting ready
	How to do it...
	Migration tool
	External database
	Package transfer
	How it works...
	There's more...
	Orchestrator Client and 4K display scaling
	Getting ready
	How to do it...
	How it works...
	There's more...
	2. Optimizing Orchestrator Configuration
	Introduction
	Tuning the appliance
	Getting ready
	How to do it...
	Virtual Hardware
	Changing the IP and hostname
	Setting the time (NTP)
	Turning SSH access to Orchestrator on and off
	Switching off unneeded services
	Root account expires
	How it works...
	See also
	Tuning Java
	Getting ready
	How to do it...
	How it works...
	JVM metrics in Control Center
	See also
	Configuring the Kerberos authentication
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring access to the local filesystem
	Getting ready
	How to do it...
	Fast and easy
	Configuring access
	How it works...
	There's more...
	See also
	Configuring the Orchestrator service SSL certificate
	Getting ready
	How to do it...
	Self-signed certificates
	Using VMCA generated certificates
	CA-signed certificate
	How it works...
	Default, self-signed, or CA-signed?
	VMCA
	PEM encoded files
	There's more...
	Getting the SSL store password
	Backing up the default certificates
	Creating certificates and requests
	Generating certificates with alternative names (SAN certificate)
	Signing and importing certificates
	See also
	Orchestrator log files
	Getting ready
	How to do it...
	Server log in Control Center
	Configuring the server log with the Control Center
	Accessing the log files via SSH
	Changing log file behavior
	How it works...
	See also
	Redirecting Orchestrator logs to an external server
	Getting ready
	vRealize Log Insight
	How to do it...
	Syslog with Log4J
	Log Insight Agent
	How it works...
	Configuring the Orchestrator Log Insight Agent to forward to Syslog
	There's more...
	See also
	Backup and recovery
	Getting ready
	How to do it...
	Backing up Orchestrator configuration
	Backing up an internal database
	Restore
	How it works...
	External database
	There's more...
	Cron job
	vRO policy
	vRO Control Center API
	See also
	Control Center titbits
	Getting ready
	How to do it...
	Inspecting workflows
	System properties
	Changing the Control Center user name
	File System Browser
	How it works...
	Control Center API
	System properties
	There's more...
	See also
	3. Distributed Design
	Introduction
	Cluster design
	Distributed design
	Geographically Distributed
	Logically Distributed
	Scaling out
	Central management
	Building an Orchestrator cluster
	Getting ready
	How to do it...
	Preparation work
	Configuring the first node of the cluster
	Configure cluster settings
	Join a node to the cluster
	Configuring an Orchestrator cluster in vSphere
	Playing with the cluster
	Push configuration
	How it works...
	SSL Certificates in vRO7.1.0
	Cluster and Orchestrator Client
	Changing cluster content
	Changing cluster settings
	Removing a node from the cluster
	There's more...
	Logs
	Another method of load-balancing
	Example workflow - cluster test
	See also
	Load-balancing Orchestrator
	Getting ready
	How to do it...
	Creating a new NSX Edge
	Configuring the load-balancer
	Dealing with SSL certificates
	Monitors - health checks
	Configure pools
	Virtual server
	Done
	How it works...
	SSL certificates and load-balancing
	SSL passthrough
	SSL SAN (SSL passthrough)
	SSL offload
	Load-balanced Orchestrator cluster with vSphere Web Client
	See also
	Upgrading a cluster
	Getting ready
	How to do it...
	Minor upgrades
	Major upgrades
	How it works...
	See also
	Managing remote Orchestrators
	Getting ready
	How to do it...
	Adding an Orchestrator server
	Creating proxy workflows
	Managing packets on the remote Orchestrator
	How it works...
	See also
	Synchronizing Orchestrator elements between Orchestrator servers
	Getting ready
	How to do it...
	How it works...
	See also
	4. Programming Skills
	Introduction
	The Orchestrator icons
	Gotcha
	Auto-setup of parameters
	Version control
	Getting ready
	How to do it...
	Showing differences between versions
	Reverting to an older version
	How it works...
	See also
	Changing elements in a workflow
	Getting ready
	How to do it...
	Changing the parameters of workflows and actions
	Renaming and moving actions
	Finding related elements
	How it works...
	See also
	Importing and exporting Orchestrator elements
	Getting ready
	How to do it...
	Exporting an object
	Importing an element
	How it works...
	See also
	Working with packages
	Getting ready
	How to do it...
	Create a new package
	Export a package
	Import a package
	Deleting a package
	Import from remote
	How it works...
	Export and import options
	There's more...
	See also
	Workflow auto documentation
	Getting ready
	How to do it...
	How it works...
	Resuming failed workflows
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using the workflow debugging function
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Undelete workflows and actions
	Getting ready
	How to do it...
	How it works...
	Scheduling workflows
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Sync presentation settings
	Getting ready
	How to do it...
	How it works...
	Locking elements
	Getting ready
	How to do it...
	Locking workflows
	Unlocking workflows
	How it works...
	See also
	5. Visual Programming
	Introduction
	Variables (general, inputs, and outputs)
	Variables in the general section
	Variables in the input section
	Variables in the output section
	Variable types
	Working with a schema
	Presentation
	Scripting with logs
	Getting ready
	How to do it...
	Creating logs
	Checking log files
	How it works...
	Log file location
	Altering log elements
	See also
	Scripting with decisions
	Getting ready
	How to do it...
	Basic decision
	Custom decisions
	Decision activity
	The Switch element
	How it works...
	JavaScript - if and else
	JavaScript - Switch
	See also
	Error handling in workflows
	Getting ready
	How to do it...
	Default error handler
	How it works...
	Ignoring errors
	The handle error element
	See also
	Scripting with loops
	Getting ready
	How to do it...
	The decision loop
	The Foreach loop
	How it works...
	Types of decision loops
	Foreach and arrays
	JavaScript
	There's more...
	See also
	Workflow presentations
	Getting ready
	How to do it...
	Preparation
	Description
	In-parameter properties
	Steps and groups
	Hiding input values
	Basic linking
	How it works...
	General properties
	Plugin-specific properties
	select value as
	show in inventory
	Specify a root object to be shown in the chooser
	Authorized only
	There's more...
	See also
	Linking actions in presentations
	Getting ready
	How to do it...
	How it works...
	See also
	Changing credentials during runtime
	Getting ready
	How to do it...
	How it works...
	See also
	6. Advanced Programming
	Introduction
	Cool stuff in the scripting tasks
	A - show all objects
	B - find stuff
	C - line and character
	JavaScript (the very basics)
	JavaScript tricks and tips
	Is a string part of another string? (indexOf)
	Case sensitivity (toUpperCase)
	Getting rid of extra space (trim)
	String replacement with regular expressions (replace)
	Check a variable for type (instanceof)
	Working with dates
	Add minutes to a date
	JavaScript complex variables
	Getting ready
	How to do it...
	Arrays
	Properties
	Objects
	How it works...
	Array methods
	Properties within properties
	Array of properties
	See also
	Working with JSON
	Getting ready
	How to do it...
	Parsing JSON REST returns
	Creating a JSON object
	Change JSON object
	How it works...
	See also
	JavaScript special statements
	Getting ready
	How to do it...
	The try, catch, and finally statement
	The function statement
	How it works...
	See also
	Turning strings into objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Working with the API
	Getting ready
	How to do it...
	Searching for items in the API
	Programming help from the API
	How it works...
	See also
	Creating actions
	Getting ready
	How to do it...
	Creating a new action
	Implementing an action into a workflow
	How it works...
	See also
	Waiting tasks
	Getting ready
	How to do it...
	Creating a help task
	Using the Sleep task
	Waiting for a date
	How it works...
	There's more...
	See also
	Sending and waiting for custom events
	Getting ready
	How to do it...
	Receiving a custom event
	Sending a custom event
	Trying it out
	How it works...
	External events
	See also
	Using asynchronous workflows
	Getting ready
	How to do it...
	The first example
	The second example
	How it works...
	See also
	Scripting with workflow tokens
	Getting ready
	How to do it...
	How it works...
	See also
	Working with user interactions
	Getting ready
	How to do it...
	Creating the workflow
	Answering the user interaction
	How it works...
	There's more...
	Answering using vRealize Automation
	See also
	7. Interacting with Orchestrator
	Introduction
	User management
	Getting ready
	How to do it...
	Giving non-administrative users access to Orchestrator
	Configuring access to Orchestrator elements
	How it works...
	Same user - two groups
	Edit user rights
	Right inheritance
	Rights for sub-elements
	Visibility
	Access right
	There's more...
	The login format
	Typical error messages
	Disabling non-administrative access to Orchestrator
	User preferences
	Getting ready
	How to do it...
	How it works...
	General
	Workflow
	Inventory
	Script editor
	Using Orchestrator though the vSphere Web Client
	Getting ready
	How to do it...
	Configure workflows for the vSphere Web Client
	Run workflows
	Writing workflows for web integration
	Passing information along
	How it works...
	Orchestrator presentation properties in vSphere Web Client
	There's more...
	See also
	Accessing Orchestrator REST API
	Getting ready
	How to do it...
	Accessing the API documentation and enable "play mode"
	Try it out!
	Interactive REST request
	How it works...
	There's more...
	See also
	Accessing the Control Center via the REST plugin
	Getting ready
	How to do it…
	Explore the Control Center API
	Adding start and stop calls
	Usage
	How it works...
	See also
	Running Orchestrator workflows using PowerShell
	Getting ready
	How to do it...
	Run a workflow
	Run a script with input
	Getting the output of a workflow
	How it works...
	Variables
	JSON return
	There's more...
	See also
	Using PHP to access the REST API
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	8. Better Workflows and Optimized Working
	Introduction
	Working with resources
	Getting ready
	How to do it...
	Adding resources manually
	Using resources in workflows
	Creating a new resource element
	Create a resource by uploading a file
	Updating a resource
	How it works...
	There's more...
	Accessing resources directly
	Deleting a resource
	See also
	Working with configurations
	Getting ready
	How to do it...
	Creating a configuration
	Using a configuration in a workflow
	How it works...
	There's more...
	See also
	Working with Orchestrator tags
	Getting ready
	How to do it...
	Tagging an element (manual)
	Tagging a workflow (workflow)
	Viewing all tags in a workflow
	Finding workflows by tag
	How it works...
	There's more...
	See also
	Using the Locking System
	Getting ready
	How to do it...
	Create a lock
	Check for lock
	Unlock
	How it works...
	See also
	Language packs (localization)
	Getting ready
	How to do it...
	How it works...
	Working with policies
	Getting ready
	How to do it...
	How it works...
	Policy templates
	Triggers
	The event variable
	See also
	9. Essential Plugins
	Introduction
	Working with e-mail
	Getting ready
	How to do it...
	Configuring the e-mail connection
	Sending e-mails
	Receiving e-mails
	How it works...
	Working with attachments
	There's more...
	See also
	File operations
	Getting ready
	How to do it...
	Writing a file
	Reading a file
	Getting information on files
	Creating, renaming, and deleting a file or directory
	How it works...
	Executing scripts
	Shared directories
	There's more...
	CSV files
	Doing things as root
	See also
	Working with SSH
	Getting ready
	How to do it...
	Using SSH
	Using SSL key authentication
	Using SCP
	How it works...
	See also
	Working with REST
	Getting ready
	How to do it...
	Connecting to a REST host
	Using GET
	Using POST
	Creating a workflow from a REST operation
	Phrasing the return value
	Using the Swagger spec URL
	How it works...
	Authentications
	Working with the results of a REST request
	Default content type
	See also
	10. Built-in Plugins
	Introduction
	Dealing with return values
	Shared or Per User Session
	Working with XML
	Getting ready
	How to do it...
	Creating an XML document
	Parsing XML structures
	How it works...
	There's more...
	See also
	Working with SQL (JDBC)
	Getting ready
	How to do it...
	Creating a JDBC connection URL
	Connecting to and disconnecting from a database using JDBC
	Executing an SQL statement using JDBC
	SQL queries using JDBC
	How it works...
	The difference between the prepare and create statements
	Creating a new database in the appliance's PostgreSQL
	See also
	Working with SQL (SQL plugin)
	Getting ready
	How to do it...
	Add an SQL DB to Orchestrator
	Run SQL statement
	Run an SQL query
	How it works...
	See also
	Working with PowerShell
	Getting ready
	How to do it...
	Preparing the Windows host with WinRM
	Adding a PowerShell host
	Using Kerberos authentication
	Executing a script
	Calling a script that is stored on the PowerShell host
	Sending a script to be executed to the PowerShell host
	Generating an action and workflow from a script
	How it works...
	Workflow TLC
	Basic versus Kerberos authentication
	PowerShell output to XML
	See also
	Working with SOAP
	Getting ready
	How to do it...
	Adding a new SOAP client
	Invoking a SOAP request
	Generating a new SOAP workflow
	How it works...
	See also
	Working with Active Directory
	Getting ready
	How to do it...
	Preparing AD for SSL
	Registering AD with Orchestrator
	Working with AD
	How it works...
	See also
	Working with SNMP
	Getting ready
	How to do it...
	Configuring SNMP devices
	Sending a GET query to an ESXi host
	Configuring a vCenter alarm to send an SNMP message
	Receiving an SNMP message from vCenter
	Using policies to trap SNMP messages
	How it works...
	OID and MIB
	Working with SNMP return data
	SNMP - port 162 versus port 4000
	There's more...
	Configuring SNMP for vCenter
	Configuring ESXi servers for SNMP
	See also
	Working with AMQP
	Getting ready
	How to do it...
	Adding an AMQP host
	Defining exchanges, queues, and binds
	Sending messages
	Receiving messages
	Subscribing to a queue
	Using a policy as trigger
	How it works...
	There's more...
	Installing RabbitMQ
	See also
	11. Additional Plugins
	Introduction
	Installing plugins
	Obtaining plugins
	VMware core plugins
	vRO/vCO Team
	VMware Solution Exchange
	NSX integration
	Getting ready
	How to do it...
	Configuring an endpoint
	Creating a new logical switch
	How it works...
	vRealize Automation integration
	See also
	Horizon integration
	Getting ready
	How to do it...
	Basic setup
	Examples
	Access point configuration
	How it works...
	There's more...
	Integration into vSphere Web Client
	VRA integration
	See also
	vSphere Replication
	Getting ready
	How to do it...
	Registering sites
	Setting up a replication
	Recovery
	How it works...
	There's more...
	Using vCloud Air for recovery
	Integration into vSphere Web Client
	See also
	SRM (Site Recovery Manager) integration
	Getting ready
	How to do it...
	Preparation
	Configuration
	Working with the plugin
	How it works...
	There's more...
	vSphere Web Client integration
	vRealize Automation integration
	See also
	vROps (vRealize Operations Manager) integration
	Getting ready
	How to do it...
	Deploy
	Working with the plugin
	How it works...
	There's more...
	12. Working with vSphere
	Introduction
	vSphere automation
	The vCenter MoRef
	The vim3WaitTaskEnd action
	Other vCenter wait actions
	Things to try...
	vAPI
	Linked Cloning
	vSAN
	Working with the vCenter API (to change a VM's HA settings)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Standard vSwitch and Distributed Switch ports
	Getting ready
	How to do it...
	Creating an action
	Creating the workflow
	Making it work with presentation
	How it works...
	See also
	Getting started with vAPI
	Getting ready
	How to do it...
	Configuring vCenter endpoint and metadata
	Exploring the content
	How it works...
	See also
	Custom Attributes and Tags (vAPI)
	Getting ready
	How to do it...
	Custom Attributes
	vSphere Tags
	The Notes field
	How it works...
	Custom Attributes
	vAPI tagging
	See also
	Executing a program inside a VM
	Getting ready
	How to do it...
	Creating a waiting workflow
	Creating an installation workflow
	An example run
	How it works...
	There's more...
	See also
	An approval process for VM provisioning
	Getting ready
	How to do it...
	Using User interaction
	Using e-mail
	Using a web page
	How it works...
	13. Working with vRealize Automation
	Introduction
	How the integration of vRA and Orchestrator works
	Installation
	Read more...
	Working with the vRA-integrated Orchestrator
	Getting ready
	How to do it...
	Accessing the vRA-integrated Orchestrator Client
	Starting the vRA-integrated Orchestrator Control Center
	Tuning vRA
	How it works...
	Users
	Database
	Automating a vRA instance in Orchestrator
	Getting ready
	How to do it...
	Preparation
	Example
	How it works...
	Configuring an external Orchestrator in vRA
	Getting ready
	How to do it...
	Building and configuring an external Orchestrator
	Configuring a general default external Orchestrator
	Configuring an external Orchestrator for each Tenant
	Connecting the external Orchestrator
	How it works...
	Authentication
	There's more...
	Adding Orchestrator as an infrastructure endpoint
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding an Orchestrator endpoint
	Getting ready
	How to do it...
	How it works...
	Integrating Orchestrator workflows as XaaS Blueprints
	Getting ready
	How to do it...
	Activating the XaaS tab
	Adding a XaaS Blueprint
	Publishing and adding the workflow to the catalog
	How it works...
	Orchestrator presentation properties in vRA
	Managing AD users with vRA
	Getting ready
	How to do it...
	Creating a custom resource
	Creating the service Blueprint
	Creating a resource action
	Conducting a test run
	How it works...
	Using the Event Manager to start workflows
	Getting ready
	How to do it...
	Create a workflow
	Seting up the Blueprint
	Subscribing to an event
	Try it out
	How it works...
	There's more...

